
1			· · ·]
1			Ŧ
2	STATE OF N ENERGY AND MINER		
3	OIL CONSERVAT		
4	STATE LAND O SANTA FE, N		
5	23 Novemb		
	EXAMINER	HEARING	
6			
7	IN THE MATTER OF:		•
8	The application of F		
9	Producers Association of a tight formation		CASE 7746
10	Sandoval counties, N	lew Mexico.	
10			
11			
12			
13	BEFORE: Richard L. Stamets		
14			
15	TRANSCRI	PT OF HEARING	
16			
17	APPE	ARANCES	
18	· ·	· •	
19	For the Oil Conservation	W. Perry Pearce,	Esa
20	Division:	Legal Counsel to	the Division
21		State Land Office Santa Fe, New Me	-
22	For the Applicant:	William F. Carr, E	lsa.
23		CAMPBELL, BYRD, & Jefferson Place	- /
24		Santa Fe ¹ New Mexi	.co 87501
25			
	1		1

EXHIBITS.

Applicant Exhibit One, Map Applicant Exhibit Two, Map Applicant Exhibit Three, List Applicant Exhibit Four, Document Applicant Exhibit Five, Cross Section Applicant Exhibit Six, Cross Section Applicant Exhibit Seven, Document Applicant Exhibit Eight, Core Data Applicant Exhibit Nine, Core Data Applicant Exhibit Ten, Core Data Applicant Exhibit Eleven, Core Data Applicant Exhibit Twelve, Core Data Applicant Exhibit Thirteen, Core Data Applicant Exhibit Fourteen, Core Data Applicant Exhibit Fifteen, Core Data Applicant Exhibit Sixteen, Core Data Applicant Exhibit Seventeen, Paper 22^{+} Applicant Exhibit Eighteen, Document Applicant Exhibit Nineteen, Summary Applicant Exhibit Twenty, Calculations :18. Applicant Exhibit Twenty-one; Text

1 Δ 2 MR. STAMETS: We'll call next Case 3 7746. 4 MR. PEARCE: That case is on the 5. application of Four Corners Gas Producers Association for 6 designation of a tight formation, Rio Arriba and Sandoval 7 Counties, New Mexico. 8 MR. CARR: May it please the Exam-9 iner, my name is William F. Carr, with the law firm Campbell, 10 Byrd, and Black, P. A., of Santa Fe, appearing on behalf of 11 Four Corners Gas Producers Association. 12 I have one witness who needs to be sworn. 13 MR. STAMETS: Any other appearances? 14 MR. PADILLA: Mr. Examiner, Ernest 15 L. Padilla on behalf of Turner Production Company, Dallas, 16 Texas. 17 I have no witnesses. 18 MR. STAMETS: Any others? 19 20 (Witness sworn.) 21 KEVIN McCORD 22 being called as a witness and being duly sworn upon his oath, 23 testified as follows, to-wit: 24 25

1	5
2	
3	DIRECT EXAMINATION
4	BY MR. CARR:
5	Q
6	residence?
7	A. Kevin McCord, Farmington, New Mexico.
8	Q. Mr. McCord, by whom are you employed?
9	A. I am a consultant acting for the Four Corners
10	Gas Producers Association.
11	Q. And in what capacity have you been employed?
12	A. As a petroleum engineer to present this
13	report.
14	0. Have you previously testified before this
15	Commission or one of its examiners and had your credentials
16	as a petroleum engineer accepted and made a matter of record?
17	A. I have.
18	0. Are you familiar with the application of
19	Four Corners Gas Producers Association in this case?
20	A. Yes, I am.
21	Q. Are you familiar with the subject area?
22	A. I am.
23	MR. CARR: Are the witness' quali-
24	fications acceptable?
25	MR. STAMETS: They are.

1	
1	6
2	Q Mr. McCord, what is Four Corners seeking
3	with this application?
4	A. The Four Corners Gas Producers Association
5	is applying for portions of the Ballard Pictured Cliffs and
6	South Blanco Pictured Cliffs Gas Pool to be designated as a
. 7	tight formation under Section 7 of the Natural Gas Policy
8	Act of 1978.
9	The proposed Five Lakes Canyon Tight Gas
10	Area is located in the southeastern portion of the San Juan
11.	Basin. The area is located in Rio Arriba and Sandoval Counties,
12	approximately forty miles southeast of the town of Bloomfield
13	in northwestern New Mexico.
14	Q. Have you prepared certain exhibits for in-
15	troduction in this case?
16	A. Yes, I have.
10	
18	Q Have these exhibits previously been submitted
•	to the Oil Conservation Division and Minerals Management Ser-
19 20	vice, as required by Oil Conservation Commission rules?
	A Yes, they have.
21	Q. Will you please refer to what has been marked
22	for identification as Exhibit Number One, explain what this
23	is and what it shows?
24	A. Exhibit Number One displays the proposed
25	Five Lakes Canyon Tight Gas Area map on a map showing the

1.11

.

1	7
2	Pictured Cliffs formation wells in the San Juan Basin.
3	The Five Lakes Canyon Tight Gas Area includes
. 4	approximately 234,240 acres.
5	Q. Generally, how does the Pictured Cliffs
6	formation in this proposed area qualify for designation as
7	a tight formation?
8.	A. The Pictured Cliffs formation in this Five
9	Lakes Canyon Area meets the criteria established in Section
10	107 of the Natural Gas Policy Act of 1978, in that the esti-
11	mated average in situ gas permeability throughout the pay
12	section is expected to be 0.1 millidarcy or less; the stabi-
13	lized gas production rates without stimulation at atmospheric
14	pressure of these gas wells are not expected to exceed the
15	maximum allowable production rate of 79 Mcf of gas per day
16	for an average depth of 2685 feet to the top of the Pictured
17	Cliffs formation in this area, and no well drilled to the
18	Pictured Cliffs formation in this area is expected to produce
.19	more than 5 barrels of crude oil per day prior to stimula-
20	tion.
21	Q. Will you review to Exhibit Number Two and
22	review this for the Examiner?
23	A. Exhibit Number Two it's in your folder
24	there Exhibit Number Two is a Pictured Cliffs formation
25	completion and production map of the proposed Five Lakes

Canyon Tight Gas Area. The production figures presented for 2 each producing well are initial potential, date of initial 3 potential, natural gas production for 1981, and January 1, 4 1982, cumulative production of gas for the well. 5. Exhibit Number Two also presents completion 6 and production data from some wells surrounding the proposed 7 tight gas area. 8 The Five Lakes Canyon Tight Gas Area is .9 bounded to the southwest by the sparsely drilled portion of 10 the Basin and toothe northeast by the extensively developed 11 South Blanco Pictured Cliffs Field. Included within the 12 proposed area is a moderately developed southeastern extension 13 of the Ballard Pictured Cliffs Field. 14 The Five Lakes Canyon Tight Gas Area con-15 tains 466 Pictured Cliffs formation gas wells, 94 of which are 16 abandoned in' the Pictured Cliffs at this time. The average 17 depth to the top of the Pictured Cliffs formation is 2685 18 A list of operator, well names, and production figures feet. 19 for the Pictured Cliffs wells in the Five Lakes Canyon Area 20 is presented as Exhibit Number Three. 21 Will you generally describe the geology of 22 the Pictured Cliffs formation in the proposed area? 23 The Pictured Cliffs formation is a marine, 24 clay field sandstone, whose source was to the southwest. The 25

formation was deposited as near shore bars aligned northwest-2 southeast with each sand body becoming progressively younger 3 from the southwest to the northeast by the regressive Late 4 Cretaceous sea. The form of gas entrapment in the Five Lakes 5 Canyon Tight Gas Area is stratigraphic. Sediments within 6 this area are seaward deposits of the Ballard Pictured Cliffs 7 Field rather than landward deposits of the South Blanco Pictured Cliffs Field. Sample examination indicates the Pic-·9 tured Cliffs in this area is predominantly siltstone rather 10 than sandstone, which, with clay filling, is the contributing 11 12 factor to the low permeability found in the Five Lakes Canyon Tight Gas Area. 13 The sand deposition within a tight gas area 14 is more limited than it is in the South Blanco Field. 15 The 16 near shore bars within the proposed area are extremely lenticular, ribbon-like deposits with a very limited southwest-17 northeast areal extent, as evidenced by the Ballard Pictured 18 Cliffs Field. 19 20 This compares to the better developed, more blanket-like deposits of the South Blanco Field. 21 The ribbon-like nature of the sands within 22 the proposed area result in linear well development with 23 limited numbers of better producing wells being drilled on 24 the near shore bar crests where the sand is best developed. 25

1

1 10 2 These could be referred to as sweet spots. 3 Once off the bar crest, the sands become 4 siltier and more clay-filled, with drastic -- which drasti-5 cally reduces the effective permeability. 6 Will you now refer to Exhibit Number Four 7 and identify this and explain what it shows? 8 Exhibit Number Four is a type log of the 9 Pictured Cliffs formation in the Five Lakes Canyon Tight Gas 10 Area. This well is the John Schalk Cinco Diablos No. 6 Well, 11 and is located in Township 23 North, Range 4 West, Section 12 14, in the northwest quarter. 13 The top of the Pictured Cliffs formation on 14 this type log is 3046 feet and is overlain by a 7-foot coal 15 bed. 16 The base of the Pictured Cliffs is at 3141 17 feet and is underlain by the Lewis Shale. 18 This type log is representative of the Pic-19 tured Cliffs formation in the Ballard Pictured Cliffs Pool. 20 Some of the wells in the vicinity of this type log have exhibited 21 better than average producing characteristics in the remainder 22 of the area; therefor, wells in the remaining portion of the 23 Five Lakes Canyon Area would be expected to have the same or 24 poorer log characteristics than this type log. 25 Mr. McCord, will you now review for Mr. Q.

1	
2	Stamets Exhibits Five and Six?
3	A. Exhibit Number Five presents cross section
4	A-A', which shows Pictured Cliffs development in the tight
5	gas area in a general north/south direction, while Exhibit
6	Number Six is a log cross section B-B', which shows Pictured
7	Cliffs development in a general west-to-east direction in the
8.	area.
9	The log reference datum shown on these cross
10	sections is the Pictured Cliffs formation. The cross sections
11	illustrate the Pictured Cliffs formation to be a continuous,
12	lithologic unit throughout the Five Lakes Canyon Tight Gas
13	Area. Both cross sections indicate that the good, productive
14	sands from this formation are not continuous throughout the
15	area. This lenticular sand development makes drilling in this
16	area considerably risky.
17	0. Have you been able to obtain stabilized un-
18	stimulated gas production rates for the area?
19	A. Yes, I have. Obtaining stabilized unstimu-
20	lated gas production rates for Pictured Cliffs wells is not a
21	standard procedure used by companies when completing their
22	wells in the San Juan Basin. Past experience has shown that
23	these low permeability Pictured Cliffs wells must be stimu-
24	lated to obtain commercial production.
25	However, in preparation for this Five Lakes

1	12
2	Canyon Tight Gas study, Amerada Hess performed unstimulated
3	natural gas production tests on eight wells scattered through-
4	out the tight gas area. On Exhibit Number Two these wells
5	are shown as orange squares, on Exhibit Two.
6	Exhibit Number Seven gives the location of
7	these test wells and indicates that the average unstimulated
. 8	natural gas production rate for the tight gas area is 16.5
9	Mcf of gas per day. This rate is well below the 79 Mcf of
10	
11	gas per day allowed for tight formation gas wells having an
12	average depth of 2685 feet.
	Not all of the natural production tests taken
13	were used to calculate an average unstimulated natural pro-
14	duction rate for the Five Lakes Canyon Tight Gas Area. Wells
15	Nos. 8 and 3 were not considered to be representative tests
- 16	for the tight gas area. Well No. 8, Amerada Hess' Jicarilla
17	"C" No. 3 Well, is located in a localized high production
18	area, which I referred to earlier as a sweet spot.
19	Exhibit Number Two shows the location of
20	this well in Township 24 North, Range 5 West, Section 35,
21	northwest northwest.
22	These sweet spots are generally near shore
23	bar crests of the linear developed sand trends. They have
24	very good sand development associated with them and tend to
25	have very limited pockets of high porosity and permeability

.

. .

1	13
2	with some associated natural fracturing. All of these fac-
3	tors contribute to a very good well contribute to very
4	good well producing characteristics in these limited areas.
5	A large problem with developing these sweet
6	spots with further drilling, an operator might find may
· 7	find these localized well developed lenticular sands are often
8	not more than one or two locations wide. This is shown in
. 9	the area of the Jicarilla "C" No. 3 Well on Exhibit Two.
10	There are very good wells in this sweet spot area; however,
11	drilled and abandoned locations appear only one drill site
12	away.
13	Another problem with development drilling
14	in sweet spots is that one well may adequately drain the
15	limited areal extent of the well developed sand. The second
16	well penetrating the sweet spot often has reduced reservoir
17	pressure, which substantially reduces gas reserves for the
18	second well. These two factors often make the drilling of
19	the sweet spots risky, making the initial well very economi-
20	cal with the second well oftentimes uneconomical.
21	The Jicarilla "C" 3 had an unstimulated
22	natural production test of 259 Mcf of gas per day, which is
23	very good for a Pictured Cliffs well in this area. This very
24	high production rate can only be attributed to a sweet spot
25	and cannot be thought of as average for the area. For this

۰.,

1	14
2	reason, this high natural production rate was not used to
3	calculate an average unstimulated natural production rate
4	for the area.
5	The other well not used to average the un-
6	stimulated natural production test is Amerada Hess' Jicarilla
, 7	"I" 10 Well, located in Township 23 North, 3 West, Section 2,
8	northwest of the southwest. This well had an unstimulated
9	natural production test of gas that was too small to measure.
10	The well was subsequently abandoned. This well is not repre-
11	sentative of the producing portion of this tight gas area;
12	therefor, is not used in the averaging.
13	The remaining six producing wells have un-
14	stimulated natural production tests that seem reasonable for
15	the area. The majority of these test wells, Wells 1, 3, 5,
16	6, 7, and 8; were open hole completions. These wells had
17	5-1/2 inch casing set at the top of the Pictured Cliffs form-
18	ation and the pay zone was drilled with air. When total
. 19	depth was reached, 24-hour production tests were taken to
20	measure the unstimulated natural production from each well.
21	The remaining two wells, Wells 2 and 4, had
- 22	casing set through the Pictured Cliffs pay interval. These
23	wells were evacuated of fluid in the wellbore and perforated
24	across the pay interval. The wells were then tested for 24
25	hours to obtain an unstimulated natural production test for

. 1	15
2	each well.
3	The averaging of these unstimulated production
4	tests results in a 16.5 Mcf of gas per day natural production
5	rate for an average well in the Five Lakes Canyon Area. This
6	16-1/2 Mcf of gas per day unstimulated gas production rate
7	is well below the 79 Mcf of gas per day rate allowed to qual-
8	ify an area for tight formation gas prices at the average
9	formation depth of 2685 feet.
10	Q. Mr. McCord, were you able to obtain stabi-
11	lized unstimulated oil production rates?
12	A. No, I was not. The natural gas produced
13	from the Pictured Cliffs formation in the Five Lakes Canyon
• 14	Tight Gas Area is virtually dry gas. There has been very
15	little oil and condensate reported for any of the wells now
16	producing in the area. Some of these wells will have asso-
17	ciated water production with the gas but condensate production
18	is not common. These dry gas production figures indicate a
19	well drilled in the Pictured Cliffs formation is not expected
20	to produce without stimulation more than five barrels of crude
21	oil per day.
22	Q. Would you generally describe the permeability
23	in the Pictured Cliffs in the proposed area?
24	A. The Pictured Cliffs formation in the San Juan
25	Basin is dependent on stimulation techniques to be commerci-

-*.

ана стана 1. 1. г.

ally productive due to the low permeability of the reservoir rock. Exhibits Numbers Eight through Sixteen present core analysis data used to determine the average laboratory permeability to air for Pictured Cliffs formation pay zones in this area.

1

7 The exhibits contain the actual core analysis 8 reports plus summary tables showing the analysis of cores 9 taken from only the productive portion of the Pictured Cliffs 10 formation for each well. The core intervals chosen for perm-11 eability averaging were determined by log examination of the 12 interval cored for each well. Only cored intervals of sand 13 which were perforated by the operator of the well were used 14 for permeability averaging. ON wells which were not perfor-15 ated a reasonable pay interval was chosen for the well and 16 this cored interval was used for permeability averaging. 17 The average permeability value determined 18 in Exhibits Eight through Sixteen are average laboratory 19 determined permeability values. 20 The average in situ permeability of the form-

21 ation is less than this laboratory determined value due to 22 water saturation and net confining pressures found in the 23 Pictured Cliffs reservoir.

24 Q. Will you now refer to Exhibit Seventeen,
25 identify this and explain what it shows?

1	17
2	A. Exhibit Number Seventeen presents a techni-
3	cal paper entitled Effect of Overburden Pressure and Water
4	Saturation on Gas Permeability of Tight Sandstone Cores,
5	written by Thomas Ward of the U.S. Bureau of Mines. This
6	paper presents relationships between laboratory determined
7	permeability in cores and actual in situ permeability found
8	in reservoirs.
9	Exhibit Number Eighteen explains how in situ
10	permeability is calculated from the core analysis, using the
11	technical paper presented.
. 12	0. Will you now refer to Exhibit Nineteen and
13	review this for Mr. Stamets?
14	A. Exhibit Nineteen is a summary of all labor-
15	atory core analysis results for the Five Lakes Canyon Tight
16	Gas Area. Not all of the well which had core analysis avail-
17	able were used to obtain an average permeability for the
18	tight:gassarea from core data.
19	Exhibit Number Nineteen shows that core data
20	from Wells 1 through 4 was used to obtain the best permeabi-
21	lity average for the tight gas area.
22	The core data from Well No. 5 was not used
23	in this as this well is also located in a sweet spot area.
24	The higher average permeability value shown
25	for this well is not considered normal for the area.
· .	

1 18 2 The core data from Wells 6 through 9 also 3 was not used, as these wells have not produced from the Pic-4 tured Cliffs formation. These dry holes are also not indica-5 tive of the average producing well in the tight gas area. 6 The average laboratory permeability to air 7 obtained for the Five Lakes Canyon Area from the four remaining 8 cored wells is 0.047 millidarcy. An average in situ perme-9 ability value of 0.009 millidarcy was calculated from this 10 average laboratory permeability value. The 0.009 millidarcy 11 permeability value calculated from core data is well below 12 the 0.10 millidarcy cutoff for tight gas reservoirs. 13 Were other methods employed to determine 14 permeability in the subject area? 15 Yes, they were. A. 16 Another method of determining reservoir perm-17 eability was performed, making use of the unstimulated natural 18 production tests taken in the area. The average unstimulated 19 gas flow rate of 16.5 Mcf of gas per day, along with other 20 Pictured Cliffs reservoir data for the tight gas area, can be 21 used in Darcy's Law to calculate a reservoir permeability. 22 This Darcy's Law calculation is presented as Exhibit Number 23 Twenty. 24 Darcy's Law calculations report an average 25 reservoir permeability value of 0.04 millidarcy for the Five

Lakes Canyon Tight Gas Area. This permeability value compares to the 0.009 millidarcy permeability value determined by core analysis methods. Both of these values are well below the 0.10 millidarcy tight gas cutoff.

Q. Were build-up tests run?

1

2

3

4

5

6

7. Yes, they were. In attempt to obtain even 8 more permeability data for this area, Amerada Hess conducted 9 build-up tests in seven of the eight wells which had natural 10 production tests performed on them. Unfortunately, these 7-day build-up tests, as is common with many build-up tests 11 12 in tight formations, were not long enough to obtain accurate 13 permeability data for the area. Both Horner analysis and 14 tight curve analysis were studied in detail on this data and 15 no precise permeability data for this area could be obtained. 16 For this reason, no build-up analysis data is presented for 17 the Five Lakes Canyon Tight Gas Area.

18 Mr. McCord, what general conclusions can 19 you reach conerning the permeability in the subject area? 20 From examination of the two sources of perm-21 eability data, the reservoir permeability value of 0.04 millidarcy, determined by Darcy's Law, is thought to be the 22 23 best estimate of reservoir permeability for the Five Lakes 24 Canyon Area because it involves actual formation flow charact 25 eristics and reservoir parameters to determine formation

1	20
· 2	permeability. Therefor, the estimated average in situ gas
3	permeability throughout the Pictured Cliffs formation pay
4	section is expected to be 0.1 millidarcy or less in the Five
5	Lakes Canyon Tight Gas Area.
6	2. I'd now like to direct your attention to
7	fresh water protection in the proposed area and ask if you've
8	reviewed existing State and Federal regulations concerning the
- 9	protection of fresh water?
10	A. Yes, I have. Existing State and Federal re-
11	gulations will assure that development of the Pictured Cliffs
12	formation will not adversely affect or impair any fresh water
13	aquifers that are being used or expected to be used in the
14	foreseeable future for the domestic or agricultural water
15	supplies.
16	Regulations require that casing programs be
17	designed to seal off potential water-bearing formations from
18	oil and gas producing formations. These fresh water zones
19	exist from the surface to the base of the Ojo Alamo formation.
20	. The base of the Ojo Alamo averages 2445
21	feet in the proposed area. Most Pictured Cliffs wells drilled
22	in the Five Lakes Canyon Area are drilled with natural mud
23	that will not contaminate fresh water zones. Normal casing
24	designs consist of 7-inch OD surface casing being set from
25	the surface to a depth of 120 feet. Production casing nor-

1	21
2	mally used is 2-7/8ths inch OD and is set from surface to
3	total depth.
4	The open hole completions mentioned earlier
5	have 5-1/2 inch OD production casing set just above the Pic-
6	tured Cliffs formation and the productive formation is drilled
. 7	with air and left open to produce.
8	The surface casing is cemented in place by
. 9	circulating cement to the surface, protecting the near-surface
.10	formations from downhole contamination.
11	The production casing is cemented from total
12	depth to the surface or to a depth sufficient to cover the
13	Ojo Alamo formation. This process protects the Pictured
14	Cliffs and other shallow formations from contaminating the
15	Ojo Alamo aquifer.
16	Therefor, all productive and fresh water
17	zones are protected by both casing and cement.
18	Stimulation of the Pictured Cliffs formation
19	involves varied fracture treatments, depending on the opera-
20	tor. Fracture treatments usually consist of one or two per-
21	cent potassium chloride water-based fluid with sand, or a
22	nitrogen-water foam base fluid and sand. Either treatment
23	will not harm a fresh water aquifer.
24	Fresh water protection is assured during
25	these fracture-stimulation treatments due to zone isolation

. 1	22,
2	caused by cementation. A distance of over 200 feet between
3	the Pictured Cliffs formation and the Ojo Alamo fresh water
4	aquifer is additional insurance that no existing fresh water
5	zone will be contaminated by stimulation of Pictured Cliffs
6	wells in the area.
7 4	Therefor, New Mexico and Federal regulations
, 8	will protect any fresh water supply that may be affected by
9	drilling, completing, and producing the Pictured Cliffs form-
10	ation in the Five Lakes Canyon Tight Gas Area.
11	Q. Will you summarize the conclusions you've
12	reached as a result of your study of the proposed area?
13	A. The evidence I've presented substantiates
14	that for an average Pictured Cliffs Well depth of 2685 feet
15	the stabilized production rate at atmospheric pressure of
16	wells completed in the Pictured Cliffs formation without
17	stimulation is not expected to exceed the maximum allowable
18	rate of 79 Mcf of gas per day.
<u>1</u> 9	No well drilled into the Pictured Cliffs
20	formation in the Five Lakes Canyon Area is expected to pro-
21	duce without stimulation more than five barrels of crude oil
22	per day, and the estimated average in situ gas permeability
23	throughout the Pictured Cliffs pay section is expected to be
24	0.1 millidarcy or less.
25	The proposed Five Lakes Canyon Tight Gas

• .

2.

÷	1	23
	2	Area meets all the specifications required, as stated, and
	3	should be designated a tight formation in the Pictured Cliffs
•	4	formation under Section 107 of the Natural Gas Policy Act
. •	5	of 1978.
	6	0. Mr. McCord, will you identify what has been
	7	marked as Applicant's Exhibit Number Twenty-one?
ŕ	8	A. Exhibit Number Twenty-one is prepared text
•	9	to go along with this reservoir report.
1	10	0. Were Exhibits One through Twenty-one pre-
	1	pared by you or under your direction and supervision?
	12	A. Yes, they were.
. •	13	MR. CARR: At this time, Mr. Stamets,
	14	we would offer into evidence Four Corners, Exhibits One through
	14	
		Twenty-one.
	16	MR. STAMETS: These exhibits will
	17	be admitted.
	18	Q. Mr. McCord, in your opinion will granting
	19	this application be in the best interest of conservation,
	20	the prevention of waste, and the protection of correlative
	21	rights?
	22	A. Yes.
2	23	MR. CARR: Mr. Stamets, we have re-
	24	ceived several questions from the Minerals Management Ser-
	25	vice, and with your permission, at this time I will ask those
	ļ	

6. X4

1 24 2 for them. 3 MR. STAMETS: Please go ahead. 4 Mr. McCord, in the report submitted with 5 this application, it is stated that the form of gas entrapment 6 is stratigraphic. Why then don't the boundaries to the south 7 and west more closely parallel the general northwest/southeast 8 stratigraphic trend of the Ballard Pictured Cliffs Field? 9 That's strictly a boundary determination. Α. 10 In talking this matter over with the Four Corners Gas Producers 11 we decided on this area. It was not by any other means other 12 than acreage position. It had nothing to do with geology. 13 Why is the southwest corner of the Lindrith 14 Unit, including all or parts of Sections 26 through 28 and 15 33 through 35 of 24 North, 3 West, excluded from the tight 16 sands area? 17 Once again, this was a determination of the 18 boundary of the area. Not enough interest was shown in the 19 Lindrith Unit to include it in this area. 20 Would the Four Corners Gas Producers Asso-21 ciation provide the Minerals' Management Service with structure 22 and Isopach maps of the Pictured Cliffs formation in the 23 proposed Five Lakes Canyon Tight Sands Area? 24 These maps could be prepared. We have not 25 presented, or have not prepared these maps as yet. It would

1	25	
2	involve a great expense and I don't feel, personally, that	
3	would help any more than what we've seen right now. But if	
4	that could be done, if need be.	
5	Q. And will you contact the Minerals Management	
6	Service concerning this request?	
7	A. Yes, I will.	
8	Q. Using the charts and the technical paper	
9	listed as Exhibit Seventeen, you came up with a reduction of	
10	98 percent in laboratory permeability. Realizing that the	
11	laboratory permeabilities were to air and there will be a	
12	reduction in permeability due to overburden pressure, why do	
13	you expect that much of a reduction in the in situ permeabilit	y
14	of these wells since they are at a shallower depth than those	
15	used to generate the charts?	
16	A. Well, first of all, in reading through Exhi-	
17	bit Number Seventeen, most of the cores used to generate the	
18	charts, that I can see, were all at a deeper depth than what	
19	we're looking at. So I feel they are \neg the charts used are	
20	very indicative of this type of area.	
21	Also, the main factor used in determining	
22	the percentage reduction in the permeability from laboratory	
23	to in situ deals mainly with overburden pressure rather than	
24	depth. The overburdens calculated were up to an overburden	
25	pressure of 6000 psi. The overburden seen in this area in	

1	26	
2	the Pictured Cliffs is in the neighborhood of 2000 psi; there	
3	for, I think the charts used were well within the scope of	
4	this presentation and very indicative of the rock in this	
5	area.	
6	MR. CARR: Mr. Stamets, that con-	ľ
7	cludes our direct questions.	
. 8	MR. STAMETS: Are there other ques-	
9	tions of the witness?	
10		
11	CROSS EXAMINATION	
12	BY MR. STAMETS:	
13	Q. Mr. McCord, how many sweet spots wells do	
14	you know of in this area?	
15		
•	A. Obviously that's a tough question to define.	
16	I've thought about that when establishing the boundaries	İ.
· 17	for this area, and I definitely think the Amerada Well that	i
18	I mentioned, and also the core analysis well that I mentioned	,
19	are sweet spots, and that from examining the wells around,	
20	and some of these wells have made over a Bcf of gas. For a	
21	shallow Pictured Cliffs Well that's quite a quite a good	
22	well.	
23	Although the big problem with defining what	
24	is a sweet spot is the actual extent of the wells. When	
25	you go one drill spot away and you have a dry hole, it's	

27 1 pretty hard to establish what is a sweet spot other than 2 wells already drilled, and most of the wells already drilled 3 that I consider a sweet spot are in the general area of 24, 4 5, Sections 31, 32, 33, 34, and the northwest of 35. This is 5 the general area I'm referring to as a sweet spot. Anyone 6 7 going through there could make their own interpretation of 8 which well's production is due to very good reservoir rock. It's just a personal opinion there. Most of the wells in that 9 10 general area, though, I think are sweet spot wells. 11 I'd like to add that most of those wells 12 are -- most spacing units are drilled up at this time and 13 the effect of 107 pricing for that sweet spot area would be -14 would be minimal, and that's the main reason I didn't try to 15 exclude any of those wells. Based on your testimony, I would anticipate, 16 17 then, that this area that is drilled up, the big area running 18 from the southeast up to the northwest through the center of 19 the proposed area, is -- is the crest of one of these sand-20 stones, and the area where the drilling has previously taken 21 place. 22 That is correct. Most of the future drilling 23 involved, Mr. Stamets, of course, is going to be step-out 24 I believe the real structures have been defined by drilling. 25 drilling so many wells in this area,

There are a number of dry holes; most of them, some of them very recent, generally showing us that we've got a definite sand difference between very good wells and offset wells. So most of the major -- it appears most of the major crest drilling has already occurred and future drilling would involve step-out type of wells with somewhat less chance of success.

28

Q. If we go into 23, 3, and look at Section 22, 27, and 34, just looking at the initial potentials in there, those wells came on pretty well. Now, is that an area that that has good wells in it? I see one of them is marked as a shut-in gas well. Or is that an area that you believe still is a tight formation?

A. I believe, especially in Section 22, that you just referred to, the south half of that, of course, is undrilled, I definitely think that is an area that would need tight gas pricing to be economic.

There are some high initial potentials; of course, initial potentials are very, very misleading in that the wells don't produce near that type of amount when put on line pressure.

It is also evident from looking at some of the surrounding wells, especially the south half of 27, the north half of 34, we've got some high cumulative productions,

. .

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

1	29	
2	but also, looking at the south half of 34, we haved a drille	đ
3	and abandoned location and a well that was drilled in 1972	
4	that's uneconomical; therefor, the actual defining of which	
5	is a sweet spot well and which is an uneconomical venture in	·
6	the Pictured Cliffs is real hard to make.	
7	Still, drilling in Section 27, say, an off-	
. 8	set well there, I would I would guess that that the	
9	chances of obtaining a well like the south part of Section	
10	27 are not that great, and it's a risky business.	
11	Q. Mr. McCord, on Exhibit Two, just to the	
12	south and east of the area we are talking about, there appear	
13	to be eleven or twelve wells that have been drilled in 1981	
14	and '82. Can you tell me why that has occurred?	
15.	A. Okay. Those particular wells drilled in	
16	Section 36 I don't know about. The great majority of new	
17	wells drilled in this area are drilled are drilled due to	
18	Jicarilla demand. The great majority of this area is in the	
19	Jicarilla Reservation and as you know, many demand letters	
20	were sent out to operators to diligently develop their ac-	
21	reage.	
22	The numbers I have, in 1982 out of these	
23	466 wells, 31 of them were drilled in 1982, and I would I	
24	would guess that the great majority of those 31 were drilled	
25	due to Jicarilla demand. That is the main reason.	

1 :30 2 MR. STOGNER: Do you know if there 3 was any wells drilled in '81 - '82 in the sweet spot areas, 4 so-called? 5 A. In the sweet spot area I defined in 24, 5, 6 I don't see any that I would consider sweet spot wells. 7 Now, I'm sure throughout the period of time 8 that drilling has taken place, which, mainly it started in 9 1955 in this area, there have been many offset wells drilled 10 to supposedly sweet spot wells, otherwise very good producers. 11 Some of these wells, obviously, turned out to be good wells, 12 also; other wells exhibited the problems I've talked about 13 earlier, such as reservoir drainage and drilling a dry hole 14 next to a very good producer. 15 This can be seen, like in 24, 5, Section 27, 16 in the northwest quarter, there's a well that was drilled 17 Three wells surrounding it have made and abandoned in 1955. 18 3/4 of a B -- excuse me, two have made 3/4 of a Bcf; the 19 other made -- the other two, 1/2 a Bcf. Those are obviously 20 economical wells, but we have a dry hole right next to it. 21 In Section 35 the Amerada well, which had 22 the good unstimulated natural production test, one drill site 23 away in the southeast of 26 we have a well that was drilled. 24 and abandoned in 1963. 25 So predicting how a well will do just by

1	31
2	offsetting a sweet spot well is pretty tough.
3	It's certainly an uncertain area.
4	MR. STAMETS: Any other questions of
5	the witness? He may be excused.
6	Mr. McCord, in light of the fact
7	that we have so much drilling activity inside this area, we
8	may have some additional questions following the hearing, in
9	which case we'll be in touch, and we will add that additional
10	information to the record in this case.
11	A. I'd be happy to supply it.
12	MR. STAMETS: Anything further in
13	the case? Mr. Padilla?
14	MR. PADILLA: Mr. Examiner, Turner
15	Production Company is here in support of this application.
16	MR. STAMETS: If there is nothing
17	further, we'll take the case under advisement.
18	
19	(Hearing concluded.)
20	
21	
22	
23	
24	
25	

32 . RTIFICATE Ε С I, SALLY W. BOYD, C.S.R., DO HEREBY CERTIFY that the foregoing Transcript of Hearing before the Oil Conservation Division was reported by me; that the said transcript is a full, true, and correct record of the hearing, prepared by me to the best of my ability. Sterry W. Boyd C.S. Z