Revised 7-1-dl

r	STATE LAND OFFICE BIN LINE BANTA FE MEW MERILU 197501 Case //042
APPLI	TATION FOR AUTHORIZATION TO INJECT
Ŀ.	Purpose: Secondary Recovery Pressure Maintenance Disposel Storage Application qualifies for administrative approval? Jyes Ind
Ц.	Operator: MERIDIAN OIL INC.
	Address: P.O. BOX 4289, FARMINGION, NM 87499
	Contact party: TRAVIS D. STICE Phone: (505) 326-9812
III.	Well data: Complete the data required on the reverse side of this form for each well proposed for injection. Additional sheets may be attached if necessary.
IV.	ATTACHED Is this an expansion of an existing project? ves no If yes, give the Division order number authorizing the project
٧.	Attach a map that identifies all wells and leases within two miles of any proposed injection well with a one-half mile radius circle drawn around each proposed injection well. This circle identifies the well's area of review. ATTACHED
· vi.	Attach a tabulation of data on all wells of public record within the area of review which penetrate the proposed injection zone. Such data shall include a description of each well's type, construction. date drilled, location, depth, record of completion, and a schematic of any plugged well illustrating all plugging detail. ATTACHED
VII.	Attach data on the proposed operation, including: ATTACHED
	 Proposed average and maximum daily rate and volume of fluids to be injected; Whether the system is open or closed; Proposed average and maximum injection pressure; Sources and an appropriate analysis of injection fluid and compatibility with the receiving formation if other than reinjected produced water; and If injection is for disposal purposes into a zone not productive of oil or gas at or within one mile of the proposed well, attach a chemical analysis of the disposal zone formation water (may be measured or inferred from existing literature, studies, nearby wells, etc.).
VIII.	Attach appropriate geological data on the injection zone including appropriate lithologic detail, geological name, thickness, and depth. Give the geologic name, and depth to bottom of all underground sources of drinking water (aquifers containing waters with total dissolved solids concentrations of 10,000 mg/l or less) overlying the proposed injection zone as well as any such source known to be immediately underlying the injection interval. ATTACHED
IX.	Describe the proposed stimulation program, if any. ATTACHED
х.	Attach appropriate lagging and test data on the well. (If well logs have been filed with the Division they need not be resubmitted.) CURRENTLY NOT AVAILABLE
XI.	Attach a chemical analysis of fresh water from two or more fresh water wells (if available and producing) within one mile of any injection or disposal well showing location of wells and dotes samples were taken. ATTACHED
XII.	Applicants for disposal wells must make an affirmative statement that they have examined available geologic and engineering data and find no evidence of open faults or any other hydrologic connection between the disposal zone and any underground source of drinking water. ATTACHED
XIII.	Applicants must complete the "Proof of Notice" section on the reverse side of this form.
XIV.	Certification
	I hereby certify that the information submitted with this application is true and correct to the best of my knowledge and belief.
	Name: TRAVIS D. STICE Title REGIONAL ENGINEER
•	Signature: Mart W Ora Date: 6/2/94
submi	e information required under Sections VI, VIII, X, and XI above has been previously tted, it need not be duplicated and resubmitted. Please show the date and circumstance se earlier submittal.

III. WELL DATA

- A. The following well data must be submitted for each injection well covered by this application. The data must be both in tabular and schematic form and shall include:
 - Lease name; Well No.; location by Section, Township, and Range; and footage location within the section.
 - (2) Each casing string used with its size, setting depth, sacks of cement used, hole size, top of cement, and how such top was determined.
 - (3) A description of the tubing to be used including its size, lining material, and setting depth.
 - (4) The name, model, and setting depth of the packer used or a description of any other seal system or assembly used.

Division District offices have supplies of Well Data Sheets which may be used or which may be used as models for this purpose. Applicants for several identical wells may submit a "typical data sheet" rather than submitting the data for each well.

- 8. The following must be submitted for each injection well covered by this application. All items must be addressed for the initial well. Responses for additional wells need be shown only when different. Information shown on schematics need not be repeated.
 - (1) The name of the injection formation and, 1 pplicable, the field or pool name.
 - (2) The injection interval and whether it is perforated or open-hole.
 - (3) State if the well was drilled for injection or, if not, the original purpose of the well.
 - (4) Give the depths of any other perforated intervals and detail on the sacks of cenent or bridge plugs used to seal off such perforations.
 - (5) Give the depth to and name of the next higher and next lower oil or gas zone in the area of the well, if any.

XIV. PROOF OF NOTICE ATTACHED

All applicants must furnish proof that a copy of the application has been furnished, by certified or registered mail, to the owner of the surface of the land on which the well is to be located and to each leasehold operator within one-half mile of the well location.

Where an application is subject to administrative approval, a proof of publication must be submitted. Such proof shall consist of a copy of the legal advertisement which was published in the county in which the well is located. The contents of such advertisement must include:

- (1) The name, address, phone number, and contact party for the applicant;
- (2) the intended purpose of the injection well; with the exact location of single wells or the section, township, and range location of multiple wells:
- (3) the formation name and depth with expected maximum injection rates and pressures; and
- (4) a notation that interested parties must file objections or requests for hearing with the Oil Conservation Division, P. G. Box 2088, Santa Fe, New Mexico 87501 within 15 days.

NO ACTION WILL BE TAKEN ON THE APPLICATION UNTIL PROPER PROOF OF NOTICE HAS BEEN SUBMITTED.

NOTICE: Surface owners or offset operators must file any objections or requests for hearing of administrative applications within 15 days from the date this application was mailed to them.

III. Well Data

Jillson Federal SWD #1 Form C108 - Attachment Documentation

A. Proposed Disposal Well Data:

1.) Well Location:

Lease Name:

Jillson Federal SWD

Well Number:

1

Location:

T24N-R03W-Section 08

2305' FNL, 2415' FWL

Rio Arriba County, New Mexico

2.) Well Bore Casing Configuration:

					Proposed
Casing	Hole Size	Casing Size	Depth Set	Cement Vol.	Top/Cmt
Surface	12-1/4"	9-5/8" 36 lb.	300'	188 ft ³	Surface
Longstring	8-3/4"	7" 23 lb.	8,800'	2,381 ft ³	Surface

3.) Injection Tubing:

Tubing Size Tubing Wght/Grd Lining Material Depth Set 4-1/2" 10.5 lb., L-80 ST&C Scotch 650 PlastiCoat 8,400'

4.) Isolation Packer:

<u>Name</u>

<u>Model</u>

Depth Set

Baker

FAB-1, Ret. Prod.

AD-1, 1000.110

8,400'

Pkr, 4.00" ID

B. Proposed Well Data:

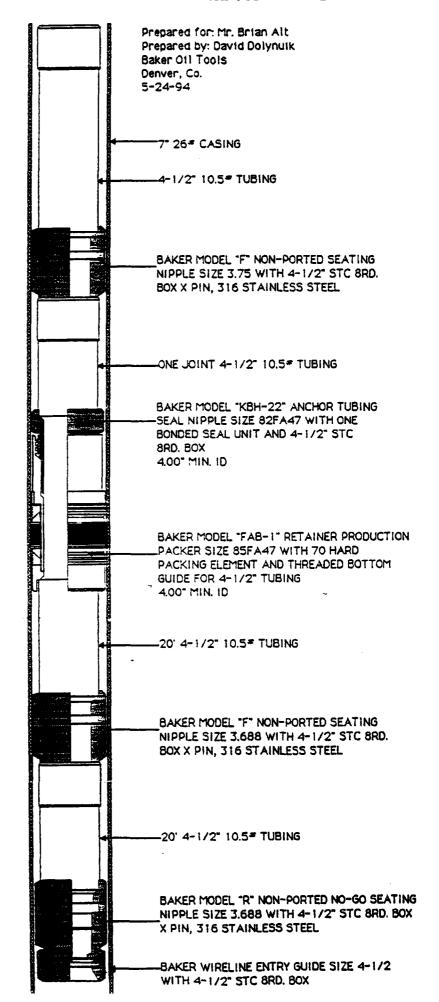
1.) Formation:

Formation Name:

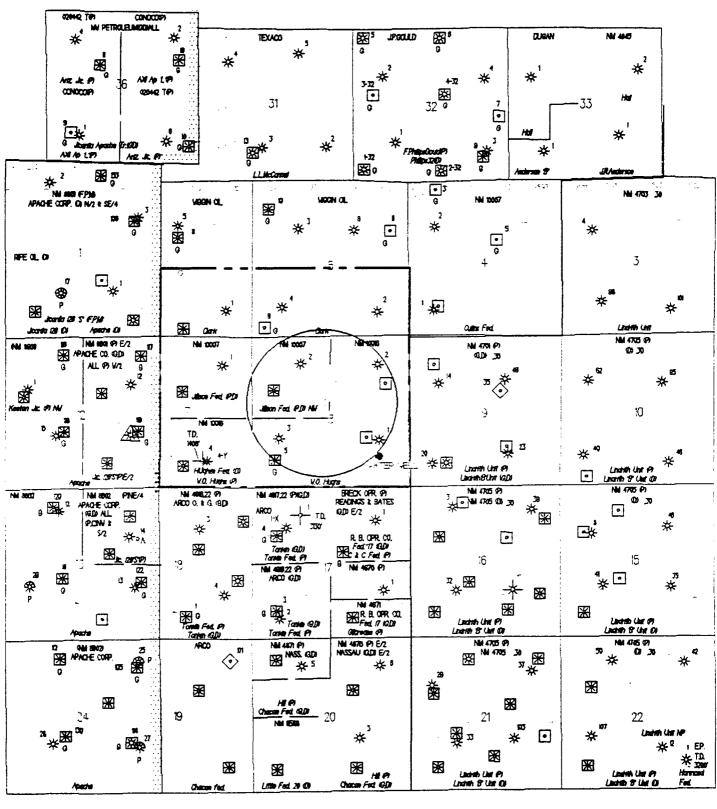
Entrada

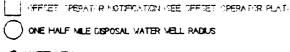
2.) Injection Intervals:

Injection Intervals:


Approx. 8,441' - 8,683'

- 3.) The original purpose for drilling this well is to dispose of produced water.
- 4.) There will be no additional perforated intervals in the proposed well.
- 5.) There are no lower producing intervals, and the next higher producing interval is the Dakota at 7285'-7680'.


III. New Lata (Farker . Licembry,


Meridian Oil Inc.

Jillson Fed. SWD *1

V. Identifier Map JILLISON FEDERAL SWD #1 NW/4 SECTION 8, T24N, R3W

VATER WELL

FRUITLAND SAND WELL

MESAVERDE WELL

FRUTTLAND COAL WELL

O DAKOTA WELL (OIL) M DAKOTA WELL KLAS **⋘ GALLUP WELL**

* PICTURED CLIFFS WELL

SP CHACRA WELL

```
Dwights Well Data System CD-ROM
                                         H# R-405343-0 Original
Copyright 1994 Rocky Mountains
                                              Run Date: 4-May-94
 RM Merid 24N - 3W - 8 se nw se 7
State : New Mexico
Comunity: RIO ARRIBA
                      Oper: MOBIL PRODUCING TX & NM
                                Compl: 11/18/1983 D OG O4G
Fimld : LINDRITH WEST GAL/DK
Well: W O HUGHES #6
                                             Last Info: 01/11/1994
Fto: 1743 fsl 1341 fel
Lat-Long by GITI: 36.322296 - 107.174911
Oper Address: PO Drawer G, Cortez CO 81321 - 303/565-9558
Ohrjj: 7700 Gallup/Dakota Permit #:
                                   06/30/1983 API: 30-039-2324000
                                  Elev: 6871GR
                Spend: 09/06/1983 . Contr: Arapahoe #7
TD:: $700 on 09/25/1983 Chinle
                                                     PB: 7557
_____
 Elev: 6871GR FORMATION TOPS
                               (Type: L=Log S=Sample V=True Vertical)
                    (Source: H=Scout, I=IOG, T=Govt, S=Shell, G=USGS, N=NRIS)
                Depth Elev T/S Formation
                                               Depth Elev T/S
Forcmation
                4702 2169 L H Dakota
Cliff House
                                                 7286 -415 L H
Meme fee
                4731 2140 L H Morrow
                                                7680 -809 L H
Point Lookout
                5152 1719 L H Morrison
                                               7684 -813 L H
                5362 1509 L H Todilto
                                               8338 -1467 L H
Maunicos
                6330
                       541 L H Entrada
                                               8400 -1529 L H
Gallup
                7195 -324 L H Chinle
                                                 8645 -1774 L H
Greenhorn
                 7258 -387 L H
Grameros
Cassing: 13 3/8 @ 412
     8 5/8 @ 3300
      4 1/2 @ 7601 w/1680 - DAKOta
Core :
                                        None
DST :
                                        None rptd
Logs : FDC CNL DIL
Turming: 2 3/8 3 7499 w/pkr 3 7464
          7484-7504 (Dakota D
Perffs :
      w/1 SPF - spot 150 gal 7 1/2% HCl - bk dn w/1800 gal 2% KCl wtr 30
      ball sealers - frac w/28,000 gal 40# xlink gel 2% KCl wtr 56,000#
      20/40 sd - flush w/119 bbl 2% KCl wtr
          7280-7404 (Dakota
      w/44 holes @ 7280-7307, 7323-7329, 7336-7342, 7400-7404
      - bk dn w/200 gal 7 1/2% HCl 3700 gal 2% KCl 70 ball sealers
      - frac w/55,000 gal 40# xlink gel 2% KCl wtr 110,000# 20/40 sd -flush
      w/1 w/118 bbl 2
         7280-7504 (Dalgottar
    : (Dakota 7280-7504 ) -- P 116 BOPD grav 43; 257 MCFGPD; 40 BWPD
Journ1: 9/14/83 drlg @ 4300.
      9/22/83 drlg @ 7978.
      10/5/83 drlq out cement.
      10/19/83 cleaning out sand.
```

10/27/83 tstg Dakota. 11/22/83 S&; WOPT.

12/6/83 SI; WOPL to potential test. 12/16/83 SI; WOPL to potential test.

> Page: 1 Continued

Dwights Well Data System CD-ROM

H# R-405343-0 Original

Copyright 1994 Rocky Mountains

Run Date: 4-May-94

State : New Mexico

NM Merid 24N - 3W - 8 se nw se

County: RIO ARRIBA

Oper: MOBIL PRODUCING TX & NM

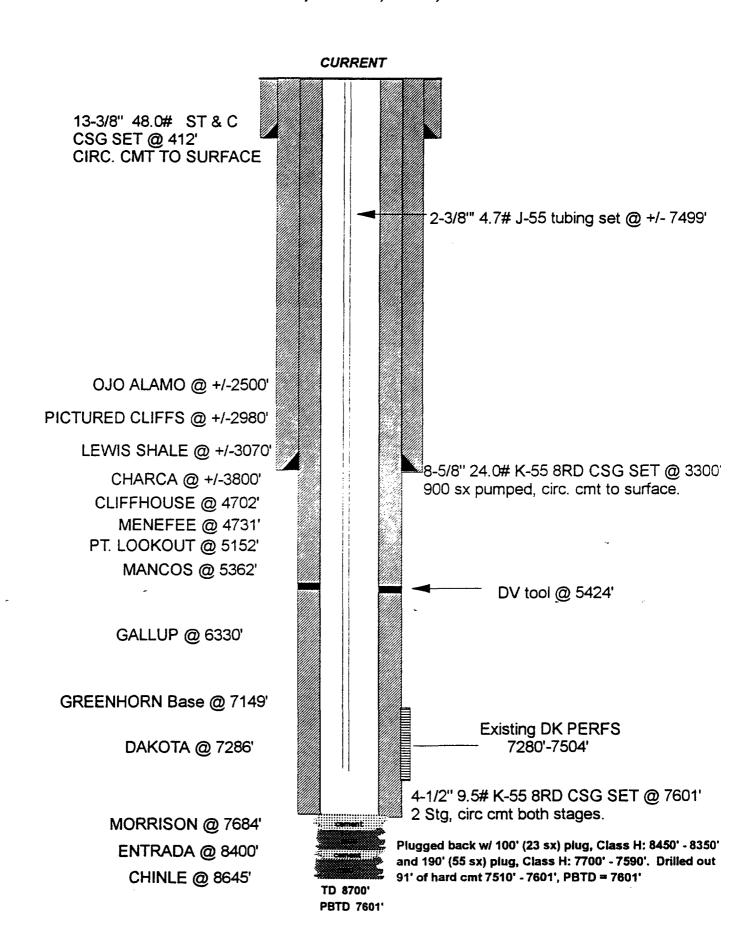
Field : LINDRITH WEST GAL/DK

Compl: 11/18/1983 D OG O&G

Journl: 2/1/84 SI; WOPL to potential test.

2/29/84 SI; WOPL to potential test.

3/21/84 WOPL to IP.


5/9/84 SI; WOPL to potential test.

6/6/84 WOPL. 7/3/84 WOPL.

8/8/84 completed oil well.

W. O. Hughes #6

Unit J, Sec. 08, T24N, R03W

VII. Proposed Disposal Well Operations

Jillson Federal SWD #1 Form C108 - Attachment Documentation

1.) Proposed Injection Rates:

600 BPD Average Injection Rate: Maximum Injection Rate:

8000 BPD

2.) The system will be closed.

3.) Proposed Injection Pressures:

Average Injection Pressure:

450 - 600 psi. (anticipated)

Maximum Injection Pressure: 1690 psi

4.) Injection Fluids:

Source:	Fluid Analysis	<u>Compatibility</u>
Fruitland Coal	Sample Included	*Unavailable at this time
Pictured Cliffs	Sample Included	*Unavailable at this time
Chacra	Sample Included	*Unavailable at this time
Mesaverde	Sample Included	*Unavailable at this time
Gallup	Sample Included	*Unavailable at this time
Dakota	Sample Included	*Unavailable at this time

^{*}Upon retrieving a fluid sample from the Entrada formation compatibility tests will be conducted.

5.) Analysis of disposal zone formation water:

Published salinities for the Entrada Formation are relatively scarce except for data from produced waters in known Entrada Formation fields. The following is published data from Four Corners Geological Society publications on San Juan Basin Entrada Formation Oil Fields:

Entrada Field	<u>Location</u>	Depth	CI Salinity (ppm)
		<u>(ft.)</u>	
Media & SW Media	T19N-R3W	5,300	2,500
Papers Wash	T19N-R5W	5,200	3,010
Eagle Mesa	T19N-R4W	5,500	6,205
Ojo Encino	T20N-R5W	5,900	10,726
Snake Eyes	T21N-R8W	5,600	11,114

^{*} Note the general salinity increase with increasing depth.

Superior Oil reported an Entrada salinity of 80,000 ppm in the Sealy Government #1-7 in Section 7-T25N-R6W from a depth of 8,400 feet. Six miles east of the Jillson Federal SWD location and at the same depth of 8,400 feet, Magnolia Petroleum swabbed oil and a lot of water from the Entrada Formation in the Magnolia Ingwerson Federal #4 (Section 20-T24N-R2W). Based on a general increase in salinity with depth, oil and gas recoveries on production tests and the reported salinity in the Superior Sealy Gov't. #1-7, the Entrada water salinity in the Jillson Federal SWD is expected to be at least 20,000 to 30,000 ppm chlorides.

VII. Proposed Disposal Well Operations

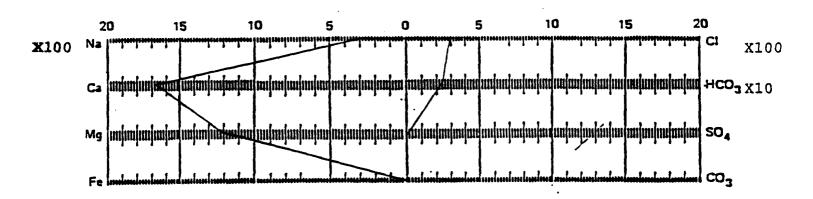
4.) Injection Fluids: (Addendum to 4.) Injection Fluids (previous page)

Injection fluids will include only those materials suitable for a Class II well under the Underground Injection Control Program.

Sample analyses of example Class II fluids are attached for review. These include analyses from:

Well	<u>Location</u>	<u>Formation</u>
Jicarilla 117-E #1	T26N-R03W-SEC 33	Fruitland Coal
Canyon Largo Unit #144	T25N-R06W-SEC 17	Pictured Cliffs
Jicarilla 67 #3	T25N-R05W-SEC 19	Pictured Cliffs
Klein #15	T26N-R06W-SEC 33	Chacra
Klein #16	T26N-R06W-SEC 33	Chacra
Vaughn #30E	T26N-R06W-SEC 28	Mesa Verde
Vaughn #12	T26N-R06W-SEC 26	Mesa Verde
Klein #28E	T26N-R06W-SEC 33	Gallup
Jicarilla 67 #5E	T25N-R05W-SEC 29	Dakota
Canyon Largo Unit Com #295	T25N-R06W-SEC 04	Dakota

In addition to the attached sample analyses, a table documenting additional example analyses is attached.


Foreman: STEVE MC CAMENT

STRICKCO Water Analysis Laboratories FARMINGTON, NEW MEXICO 87401

	· · · · · · · · · · · · · · · ·	File WA/0514/91	
Company MERIDIAN OIL INC.	Well Name Jicarrilla 117-	-E #1 Sample No. One	·····
Formation Fruitland Coal	DepthN/A	Sampled From Produced	
Location N/A	Field Basin Fruitland	County_Rio Arriba_State_N	.м.
Date Sampled 7/9/91	Date Analyzed 7/10/91	Engineer_WDS	·
Total Dissolved Solids 19,626 mg/L	Calculated	Sp. Gr. 1.013 @ 78	
Resistivity 0.39 ohm-meters @ 7	8 - • Measured	рН <u> 6.41 @ 78 - ⊬Ме</u> г	asured

Constituents	meg/L	mg/L	Constituents	meq/L	mg/L	
Sodium _	299.6	6,888	Chlorida .	304.4	10,792	_
Calcium _	16.8	336	Bicarbonate .	24.0	1,464	
Magnesium _	12.0	146	Sulfate	-0-		_{Grav.
iron _	-0-		Carbonate .	-0-		
Hydrogen Su	offide Absent	,	• Hydroxide	-0-	-0-	

Scale: meq/L

Lab	Number:	

W94-050

Standard A.P.I. Water Analysis Report

Company:

MERIDIAN OIL INC.

Date Collected: 2/25/94

Sample ID:

CANYON LARGO 144

Date Received: 2/28/94

Formation:

Pictured Cliffs

Date Analyzed: 2/28;3/01/94

Location:

0-17-25-6

County:

Rio Arriba State: New Mexico

Collected By: Joe Golding

Analyst: Linda Spencer did

Remarks:

Attention:

Lary Byars

Accention:	Lary Byars				
PARAMETER	as ION	Comment	PARAMETER	as ION	Comment
Sodium , Na	3,300 mg/l		Chloride , Cl	15,500	mg/l
Potassium, K	1,700 mg/1		i :		ר
			Sulfate, SO4	660	mg/l
Calcium, Ca	740 mg/1		•		7
Magnesium , Mg	60 mg/1		Hydroxide, OH	၁	mg/l
			Carbonate, CO3	0	mg/l
Iron, Fe (Total)	mg/1	NOT RUN	Bicarbonate, HCO3	500	mg/l
Sulfide	mg/1	NOT RUN	Resistivity	0.24	ohm-m
			Conductivity	41,300	1
рĦ	6.9 units		(@25 Degrees C)		ng .
Total Dissolved			Specific Gravity	1.022]
Solids	28,400 mg/l		(@60 Degrees F)	•	

Remarks:

98% Anion/Cation: Stiff Diagram 250

Scale: Meg/L

Foreman: LARY BYARS

PROPERTY MANAGEMENT & CONSULTING, INC.

P. O. BOX 2596 FARMINGTON, NEW MEXICO 27400-2504 (505) 325-5220

Company MERIDIAN	OIL, INC.		arilla #67-3	File WA/OR		
	rmetion Pictured Cliffs Out N/A					
Location N/A			Sampled From_	See N.M.		
Date Sampled 9/02/9	3	Date Analyzed			D. Stricklin	
Total Dissorved Solids		·				
Resistivity 0 . 20	elun-meners O.,	70 , 	<u>leasured</u> pH	6.52	70 ≤ Measi	
Constituents	meg/L	mg/L	Constituents	meg/L	my/L	
Section 5.6	1.6	12 912	Chlorida	560.8	19,880	
Calcium _1	8.4	368	Siczrbenete	30_0	1,830	
Magnesium _1	0.8	+ 131	Sulface	TR	TR	
iron	TR	+ TR	Carbonate	-9-	-0-	
Hydrogen Sulfi	Absent		Hydroxide	=0-		
		- Seale	s: meg/L			
A4 (41114-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	5 10	. 5	G 5	10 15	20	
00 Na			1. 7		X100	
Ca minimization			ur insiparianjunjun insumiunjuni		інініні нсэ_з х 10	
		3	1. / 1	, ,	1	
Mg Unkninnimian	naintaina maista ann	Mainiming ir paramatan da maioreste				

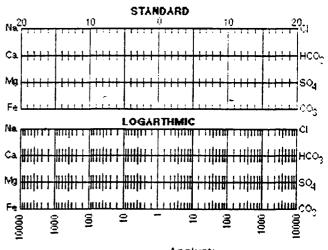
The Western Company of North America

3250 South Side River Road Farmington, New Mexico 87401 Phone (505)327-6222 Fax (505)327-5766

API WATER ANALYSIS Meridian Oil Company W.C.N.A. Sample No. Date Sampled Field Legal Description County or Parish State Lease or Unit Klein Well # 15 Depth Formation Water, B/D chacra Type of Water (Produced, Supply, ect.) producer HZU Sampling Point Sampled By DISSOLVED SOLIDS OTHER PROPERTIES 6.65 CATIONS mg/l me/l ρH Sodium, Na + 176 Specific Gravity, 60/60 F 1.010 4062 Potassium, K (caic) Total Hardness 160 3 64 of 1.10 Calcium, Ca Resistivity (ohm-meter) 3. 40 Magnesium, Mg (calc) Barium, Ba ANIONS WATER PATTERNS-me/I

Chloride, Cl 5855 Sulfate, SO₄ Carbonate, CO3 Bicarbonate, HCO3 10/26 Hydroxide, CH

Total Disolved Solids (calc.)


20176

Iron, Fe² + Fe³ (total)

0

Sulfide, as H2S

Remarks & Recommendations:

Analyst: Date Analized:

Dr. HH 4-7-94

Please refer any questions to: Loren Diede, District Engineer Thank you.

The Western Company of North America

3250 South Side River Road Farmington, New Mexico 87401 Phone (505)327-6222 Fax (505)327-5766

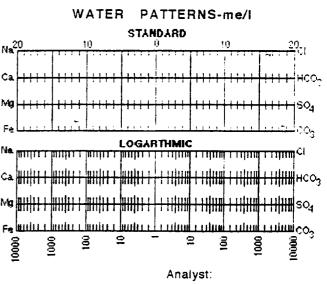
API WATER ANALYSIS

Meridian 0:1 Company W.C.N.A. Sample No. Date Sampled Field Legal Description County or Parish State Lease or Unit Klein Well #16 Deptn Formation Water, E.D Chacra Type of Water (Produced, Supply, ect.) Sampling Point Sampled By OTHER PROPERTIES

DISSOLVED SOLIDS

CATIONS Sodium, Na +	mg/l 7 <i>20</i> €	me/l 3/6	pH Specific Gravity, 60/60 F	6.9
Potassium, K (calc)		·	Total Hardness	400
Calcium, Ca	160	8	Resistivity (ohm-meter)	°F .29
Magnesium, Mg (caic)	99	8	, ,	,
Barium, Ba	• •			

ANIONS 305 Chloride, Cl 10812


Sulfate, SO₄ Carbonate, CO3

Bicarbonate, HCO3 18605 305

Hydroxide, OH

Total Disolved Solids (calc.) 36885 Iron, Fe² + Fe³ (total) 0 Sulfide, as H2S

Remarks & Recommendations:

Date Analized:

4-7-94

Please refer any questions to: Loren Diede, District Engineer Thank you.

PROPERTY MANAGEMENT & CONSULTING, INC.

P. O. BOX 2596 FARMINGTON. NEW MEXICO 87499-2596 (505) 325-5220

				1	•						
Compeny MERIDIAN OIL, INC.				1				FileN	A/UB57/	13	
				_ Well Name	Wall Name Vaughn #30-E			Sample No. One			
Formstion	Mesa 1	Verde		. Pepth	N/A			_ Sampled	From <u>Pr</u>	oduced	
Location	ocationN/A				N/A			Rio Rio	Arriba	State	NM
Date Samples 07/20/93				Date Anai	yzed0	7/21/93		_ Engineer.	W. D.	Storick	lin
Total Dissolve	d Solide.	11.459	mg/L_	Calculat	ed			Se Gr.1	.004		
Resistivity	3.70	_ohm-meter	77	·*	Measure	đ	pHq	6.48	<u> 77</u>		Measured
Constitues	nts	meg/L		mg/L		Const	itvents	mesi	L	×ng	r
Sodi	um _	138.1		3.174			Catorida	78.1		2,769	·———
اعاط	lum _	14.0		280	والكشاسيور		Sicarbonste	84.0		5,124	
Magr	nesium _	10.0	——————	122	حينيشكت		Suifate	0		C-	
Iron	-	-0-		-0-			Carbonets	()=_		-0-	
Hydr	rogen Su	ifide. Ab-	ent				Нусілокіся	-0		-0-	
				1							
•	•				Scale: m	Ma/L					•
20		15	טד	5	σ		S	10	15	20	
X10 Na	7-7-4-		1				1				x10
Ca I	nizalen			uninelen mika	dankoinu va		CONTROL DESCRIPTION OF			Mains 41CZ	3. X10
					1						-
Mg	a in the latest of the latest	ing Schulening	ing serial				raine animieri		1111111 300 100	SO.	ŀ
plan in						1 1 1			,	یص است	:
			į :					•			
			ļ								

File 10A/0855/93

JUL-20-1993 10:31 FROM PROPERTY MGMT + CSTLG

Foreman: LARY BYARS

PROPERTY MANAGEMENT & CONSULTING, INC.

P. O. BOX 2596

FARMINGTON. NEW MEXICO 87499-2596

(505) 325-6220

Company MERTITIAN	LOTT. INC		eghn #12	Sample No. One	
FormationMesa_Ve	erde	, G eom N/A		Sampled From Pr	roduced
Location N/A	·	Field N/A	Con	my Rio Arriba	StateNM
Date Sampled 07/19	7/93	. Date Ansiyzed	07/20/93	Engineer W. D.	Stricklin
Total Disselved Solids. Resistivity 0.78		Calculated Measu	<u>rred</u> pH.	Sp. Gr. 1.005	
Constituents	meg/L	me/L	Constituents	mes/L	ma/L
Şodium .	124.1	2,853	Chlaride	74.1	2,627
Calcium	18.0	360	Sicurcionans	78.0	4,758
Magnesium .	10.0	122	Suifme	-0-	-0- i
iran .	-0-	-0-	Carbonate	0-	_ - - <u>-</u> -
Hydrogen St	Absent		Hydravida	-0-	-0-
20 X10		ojanjanjan porjenjenjen		10 TS	I

The Western Company of North America

3250 South Side River Road Farmington, New Mexico 87401 Phone (505)327-6222 Fax (505)327-5766

API WATER ANALYSIS

Company Meridian Dil

W.C.N.A. Sample No.

Date Sampled

Field

Legal Description

County or Parish

State

Lease or Unit Kkin

Well # 28F

Depth

Formation Gallup

Water, B/D

Type of Water (Produced. Supply, ect.) Sampling Point

Sampled By

DISSOLVED SOLIDS

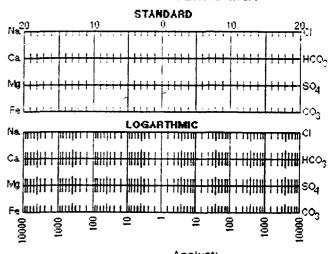
CATIONS Sodium, Na + Potassium, K (caic)	mg/l 34/7	me/l / 49
Calcium, Ca Magnesium, Mg (calc) Barium, Ba	285 176	14 15

OTHER PROPERTIES

рH		6.04
Specific Gravity, 60/60 F		1.016
Total Hardness		710
Resistivity (ohm-meter)	٥F	. 28

ANIONS

Chloride, Cl	5495	155
Sulfate, SO ₄	175	4
Carbonate, CO3	~3	7
Bicarbonate, HCO3	9455	155
Hydroxide, OH		


Total Disolved Solids (calc.)

19002

Iron, Fe² + Fe³ (totai) Sulfide, as H₂S

Remarks & Recommendations:

WATER PATTERNS-me/I

Analyst: Date Analized:

D HH

4-7-94

Please refer any questions to: Loren Diede, District Engineer Thank you.

T - 1	\T	
מבע	Number	ï

W94-084

Standard A.P.I. Water Analysis Report

Company:

MERIDIAN OIL INC.

Date Collected: 4/13/94

Sample ID: JICARILLA 67-5E

Date Received: 4/13/94

Formation:

Dakota

Date Analyzed: 4/13-15/1994

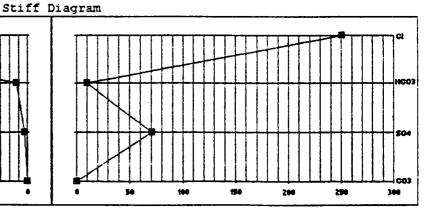
Location:

County:

State:

Collected By:

Analyst:


Linda Spencer

Remarks:

Caught sample off separator when well started unloading.

Attention:	Lary Byars	
PARAMETER	as IDN Comment	PARAMETER as ION Comment
Sodium , Na	7,100 mg/1	Chloride , Cl 8,875 mg/l
Potassium, K	86 mg/1	Sulfare, SO4 3,400 mg/l
Calcium , Ca	245 mg/1	
Magnesium , Mg	40 mg/1	Hydroxide, OH 0 mg/l Carbonate, CO3 0 mg/l
Iron, Fe (Total)	7 mg/1	Bicarbonate, HCO3 610 mg/l
Sulfide	mg/l NOT RUN	Resistivity 0.36 ohm-m
. Eq	7.5 units	Conductivity 27,900 us/cm (@25 Degrees C)
Total Dissolved		Specific Gravity 1.019
Solids	20,500 mg/l	(@60- Degrees F)

Remarks: Compared to other Dakota, this water has elevated sodium and chloride.

Anion/Cation:

101%

Scale: Meq/L

Lab Number:

W94-107

Standard A.P.I. Water Analysis Report

Company:

MERIDIAN OIL INC.

Date Collected: 4/27/94

Sample ID:

CLU 295

Date Received: 4/27/94

Formation:

Dakota

Date Analyzed: 4/28-29/94

Location:

County:

State:

Collected By:

Analyst:

Sheila F./Linda S. Xii -

Remarks:

Attention: Lary Byars

Accention:	Lary Byars				
PARAMETER	as ION	ownent:	PARAMETER	as ION	Comment
Sodium , Na	4,500 mg/1		Chloride , Cl	5,650	mg/l
Potassium, K	60 mg/1				1
			Sulfate, SO4	1,950	mg/l
Calcium, Ca	60 mg/1				-
Magnesium , Mg	10 mg/1		Hydroxide, OH	0	mg/l
		1	Carbonate, CO3	0	mg/l
Iron, Fe (Total)	mg/l N	OT RUN	Bicarbonate, HCO3	1,280	mg/l
					1 .
Sulfide	mg/1 N	OT RUN	Resistivity	0.51	ohm-m
			Conductivity	19,750	us/cm
рH	7.9 units		(@25 Degrees C)	ı	·u
Total Dissolved			Specific Gravity	1.012]
		1	•		1
Solids	12,800 mg/1	-	(060 Degrees F)		•

Remarks: Sample had organic odor.

Anion/Cation: 110% Stiff Diagram

Scale: Meq/L

Resist.	ohm-m	0.05	deg F	0.15	70 deg F	1	70 deg F	0.25	70 deg F	0.25	70 deg F	0.06	70 deg F	90.0	70 deg F	0.05	70 deg F	0.05	70 deg F	90.0	70 deg F	0.16	70 deg F	0.38	70 deg F	0.11	70 deg F	•	70 deg F	0.055	70 deg F	0.19	70 deg F	ı	70 deg F	1	70 deg F	- 70 deg F
	0		70		70	2	70		70		20		70		2		70		70		70		2		70		20		70		70		70					
8.0		1.015		1.01		1.015		1.01		1.01		1.0		101		1.015		1.015		1.015		1.0		1.01		1.015		1.02		1.02		1.01		1.01		1.03		1.02
Hd		8.5	_	7		8		7		-		7		7.5		8		8		8		_		_		6.5		7		7.5		6.5		6.5		_		7.5
Ŀ	mg/l	4.0		12.2		0.2		7		5 0+		0		2.6		0	i	0.8		2.8		7		0		24		4.9		8.0		0		0	ļ	2.6	_1	6.0
108	mg/l	16437		6125		21054		3613		3381		7519		10769		15318		15441		14816		6075		1735		7139		20119		15882		1816		6584		20847		18779
Heos	mg/I	3050		1086		3782		109		293		24		572		1806		2684		1952		622		24		439		988		3013		24		2684		756		5414
င္ဝဒ	mg/	0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0	,	•
804	mg/l	-20		-20		9		-20		09		200+		200+		-09		20		-20		-20		20		5 /		20		54		-20-		-05		200+	3	50
ō	mg/l	6745		2130		9585		1420		1775		1775		6390		7100		7100		7100		2485		1065		3905		11360		7100		355		1065		12070	7,00	/100
Mg	mg/l	41		34		37		28		34		39		609		41.3		4		37		24		92		59		39		34		34		59		37	3	32
Сa	mg/l	0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		72	Ġ	D
Ne	mg/l	6601		2875		7590		2047		1219		5681		3197		6371		2566		5727		2944		539		2691		7682		5681		1403		2806		7912	0000	6233
DATE	SAMPLED	4/28/94		4/28/94		4/26/94		4/29/94		4/28/94		4/27/94		4/27/94/		4/29/94		4/29/94		4/26/94		4/26/94		4/27/94		4/26/94		4/26/94		4/26/94		4/27/94		4/27/94	!	4/21/94	10,00,1	4/26/94
Ulaj		> ₩		>₩		GL/DK		GL/DK		숨		GUDK		GLDK		≩		≥		₩		>		> W		ਰ		GUDK		≥		GL/DK ,		GL/DK		GUDK	70,10,74	MV/GL/UK
WELL NAME		SJ 27-4-20A	S29 T27N R4W	JIC 117E2A	533 1 ZON R3W	JIC J 21	S36 T26N R5W	LIT FED 20-1	S20 T24N R3W	SJ 27-4 69	S34 T27N R4W	COLLINS FED 5	S4 T24N R3W	MEDIO CAN. 3	S36 T27N R4W	JIC. 98-3-A	S10 126N R3W	JIC. 101-7	S20 T26N R3W	MCCRODEN A8A	S9 T25N R3W	JIC. 101-7	S33 126N K3W	JIC. 101-7	S12 T26N R4W	FLORENCE 7	S4 T25N R3W	MEDIO CAN 7	333 124N R4VV	JIC 117 E-5	SZ8 126N K3W	CULLINS 3	S4 124N R3W	W.O. HUGHES 7	S8 T24N R3W	JIC 123 G NO 9E	00 123N R4VV	SZ6 TZ6N R5W
		۵.		-		<u>×</u>		Σ		ш		ပ ပ		I		∢		<u> </u>		<u> </u>				a.		ш		Ш		Σ		<u> </u>		I	-	-	(a

.

. SAMPLED mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l
700/04
K 4/29/94 /291 0 51 11005
4/26/94 1265 0
MV 5/4/94 6555 0 39 2840 50-
MV 5/4/94 3082 0 37 4260 95
MV 5/4/94 1748 0 39 1775 125
MV 5/4/94 414 0 39 710 200+
MV 5/4/94 2254 0 44 3550
ATER WEL 5/4/94 460 0 41 355
MV 4/29/94 2461 0 39 1775
GL/DK 4/27/94 7981 0 37 8920
, 4/27/94 6463 0
MAN 4/29/94 6854 0 32 2840
MAN 4/29/94 13615 0 56 19170
GL/DK 4/27/94 1541 0 44 710
MV 4/26/94 2530 0 29 1775
GL/DK 4/29/94 1794 0 41 1065
GL/DK 4/29/94 8119 0 32 10650
DK 4/26/94 2254 0 34 3195 200+

ONI	WELL NAME	Fm	DATE	Na	Ca	Mg	IJ	804	CO3	SO4 CO3 HCO3	TDS	Fe	Ha	S.G.	Resist.
			SAMPLED	mg/l	mg/l	mg/l	l/gm	mg/l	mg/l mg/l	mg/l	mg/l	mg/l			m-m4o
∢	JIC 126S-15	GL/DK	4/26/94	5382	0	27	6390	-09	0	427	12226	-	7	1.02	0.5
	S11 T24N R4W										-			-	70 deg F
Σ	JIC J NO 12E	MV/GL/DK	4/26/94	4508	0	39	3195	5	0	3611 11353		9.0	80	1.01	0.01
	S35 T26N R5W													_	70 dea F
-	CHAC JIC D-2	GL/DK	4/29/94	6026	0	51	9250	70	0	293	15670	1.5	7	1.02	0.5
	S16 T23N R3W														70 dea F
Σ	SJ 27-4 149	ΛW	4/27/94	1564	0	37	710	-05	0	51	2335	1.6	6.5	1.01	0.02
	S22 T27N R4W													٠	70 deg F
٧	MEDIO CAN 1	GL/DK	4/27/94	7360	0	49	9330	-05	0	878	17517 0.2	0.2	7	1.015	0.5
	S25 T24N R4W												•		70 deg F
¥	HAWK FED 3	MAN	4/27/94	1334	0	24	328	-09	0	24	1737	0	6.5	1.01	0.09
	S35 T25N R2W														70 den F

VIII. Geological Data

Jillson Federal SWD #1
Form C108 - Attachment Documentation

The proposed water injection zone in the Jillson Federal SWD is the Entrada Formation, which is Middle Jurassic in age. The clastic sandstones were deposited in an arid climate by a combination of water and wind (eolian). The sandstones are predominantly white to light gray, very fine- to medium-grained, moderately- to wellsorted quartz grains that are often "frosted" as a result of being transported and deposited by the wind in sand dunes. The Entrada sandstones are massively bedded with only negligible to no shale breaks. Outcrops of the Entrada sandstones are highly cross-bedded, which are highlighted by subtle mineralogical changes and weathering. Porosity in the upper 80 feet ranges from 15% to 25% and averages 22%. Porosity ranges from 10% to 19% and averages 15% in the lower 160 feet of Entrada. Permeabilities range from approximately 100 to 300 millidarcies in the upper sandstone and 25 to 100 millidarcies in the lower sandstones. Interstitial cement varies from siliceous to calcareous and varies in amount from none to about 10% by bulk volume. Cementation most commonly occurs in the lower sandstone units. The Entrada sandstones in a 24 township area around the proposed injection well varies in thickness from 200 feet to 240 feet.

At the Jillson Federal SWD proposed location the top of the Entrada Formation will be encountered at an approximate drill depth of 8,441 feet and the base will be at 8,683 feet. The Entrada Formation is overlain by the Middle Jurassic Todilto Formation, consisting of 50 feet of anhydrites and shales. These shales and especially the anhydrites are very effective "seals" that naturally prevent the vertical migration of fluids. The Triassic Chinle Formation shales underlie the Entrada Formation.

Potable water sources exit in the near surface Tertiary sandstones of the Nacimiento-San Jose Formations, basically from less than 500 feet deep. No known sources of potable water exists in the stratigraphic section from the Cretaceous Kirtland Shale down to Precambrian basement (meta-igneous rocks). The shallow aquifers will be protected by setting surface casing.

JILLSON FEDERAL SWD

Se/4 Nw/4 Section 8, Township 24 North, Range 3 West Rio Arriba County, New Mexico

STRATIGRAPHIC COLUMN

RECENT	Surface
	Nacimiento
TERTIARY	Ojo Alamo Ss.
CRETACEOUS	Kirtland Shale
	Fruitland Formation
	Pictured Cliffs Ss.
	Lewis Shale
	Chacra
	Mesaverde Group
	Cliffhouse Ss.
	Menefee
	Point Lookout Ss.
	Mancos Shale
	"Gallup"
	Niobrara
	Tocito Ss. (not present this location)
	Juana Lopez
	Lower Mancos Shale
-	Greenhorn Ls
•	Graneros Shale
	Dakota
CRETACEOUS	Burro Canyon Ss.
JURASSIC	Morrison
	Bluff Ss.
	Summerville Shale
	Todilto
JURASSIC	Entrada Ss.
TRIASSIC	Chinle

IX. Stimulation Program

Jillson Federal SWD #1
Form C108 - Attachment Documentation

JILLSON FEDERAL SWD #1 UNIT F SECTION 08, T24N, R03W RIO ARRIBA COUNTY, NEW MEXICO SWD Completion Procedure

ENTRADA COMPLETION

- 1. Comply with all NMOCD, BLM, and MOI rules & regulations. MOL and RU completion rig. NU 7-1/16" 1500 series BOP and stripping head. Test operation of rams. NU two 2-7/8" relief lines.
- 2. Place 9 clean 400 bbl tanks on location and fill with 2% KCL water. Filter all water to 1 micron nominal. Total water needed for each frac is 3100 bbls.
- 3. TIH w/ 6-1/4" bit on 2-7/8" L-80 tbg work string & C.O. to PBTD 8800'. Roll hole w/ 2% KCL water. TOH. Run CBL-CCL log from PBTD 8800' to surface. Relog w/ 1000# pressure, if necessary. Evaluate CBL for sqz operations across perforated intervals.Set 7" RBP at 8730'. Place sand on top of RBP. Pressure test csg to 2500 psi for 30 min & record pressure data.
- 4. TIH w/ 2-7/8" tbg open ended to 4425' & unload hole w/ N2. TOH.
- 5. Perf Entrada w/ 2 SPF @ 8441' 8683'. Total 210 holes. Perforate w/ 4" csg guns and Owens CML X1X # 316 19 gr which give a 0.5" hole w/ 20.05" penetration in Berea.
- 6. TIH w/ 7" pkr on 2-7/8" tbg & set @ 8400'. Swab at least 85 bbl water & take 4 one quart water samples.
- 7. Pull into test position; & test tbg to 5000 psi. Reset pkr @ 8400', load & pressure up backside to 1000 psi. Monitor & record backside pressure during breakdown. Breakdown and attempt to balloff Entrada w/ 3500 gal. 15% HCL acid, 400 7/8" 1.3 sp. gr. RCN ballsealers. Max. pressure = 5000 psi. Acid to contain 1 gal/1000 aqua flow, 5 gal/1000 XA-2L (Fe control), and 2 gal/1000 I17 (corrosion inhibitor) based on prejob testing. Lower pkr to 8455' to knock off perf balls. TOH.
- 8. Prepare to run pre-frac Entrada step rate test. Max pressure is 3000 psi. Ensure that at least 2880 useable bbls of filtered 2% KCL water are available for test. Shut down & use ISIP & surface injection pressures to adjust computer van friction calculations at 8550'. Begin step rate test at 1 BPM for 15 minutes. Increase rate in 1 BPM increments until four points above parting pressure are recorded. Save computer data so datum depth adjustments can be made.

Decision Point (Entrada): Team 9 will decide whether to:

- (A.) Proceed with the Entrada frac job. (Injection rate prior to parting pressure is <8 BPM) Go to step #9.
- (B.) Injection rate before parting pressure is >15 BPM. Go to Step 12

IX. Stimulation Program

JILLSON FEDERAL SWD #1 - COMPLETION PROCEDURE Page 2

9. Heat frac fluid to 75 degrees F. Install 7" tree saver & frac Entrada with 220,000# 20/40 Ottawa sand in 108,000 gal 30# X-linked gel water @ 60 BPM. Bottom hole pressure to be monitored by computer van. All sand to be tagged w/ 0.40 mCi/1000# Ir-192 tracer. Anticipated surface pressure = 2350 psi. Max pressure = 5000 psi. Frac using the following schedule:

		SAND
	FLUID	VOL.
STAGE	(GALS.)	<u>(lbs.)</u>
Pad	30,000	
1.0 ppg	10,000	10,000
2.0 ppg	12,000	24,000
3.0 ppg	20,000	60,000
3.5 ppg	36,000	126,000
Flush	<u>(13,335)</u>	********
Totals	108,000	220,000#

Treat frac fluid with the following additives per 1000 gallons:

* 6.81 gal J-4L (Gel)

* 3 gal Buffer5-L (Buffer)

* 1 gal CL30 (Borate X-linker)

* 0.3 lb B-5 (Oxydizing Breaker) Test break times at 185°F

* 1 lb Ultra Perm (Encap. Breaker)

* 2% KCL

- 10. Remove tree saver. Shut well in for 6 hours to allow gel to break. Flow Entrada back slowly. TiH w/ 6-1/4" bit on 2-7/8" tbg & circ out sand to 8730'. TOH.
- 11. Prepare to run after-frac Entrada step rate test. Max pressure is 3000 psi. Ensure that at least 3100 bbls of filtered 2% KCL water are available for test. Preceed test w/ 3000 gal 15% HCL acid with same additives as step #7 (this is to insure all gel is broken). Shut down & use ISIP & surface injection pressures to adjust computer van friction calculations at 8550'. Begin step rate test at 1 BPM for 15 minutes. Increase rate in 1 BPM increments until four points above parting pressure are recorded. Save computer data so datum depth adjustments can be made.
- 12. TIH w/ retrieving head on 2-7/8" tbg. Circ sand off retrievable bridge plug @ 8730', retrieve BP, & TOH.
- 13. TIH w/ 6-1/4" bit on 2-7/8" tbg & clean out to 8800'. TOH. Run after frac gamma ray log from 8750' to 7400'.

TUBING & PACKER INSTALLATION

14. See the attached pkr assemble diagram. MI wireline truck. PU 7" 23# Baker "FAB-1" pkr w/ 4" bore, 20' pup jt. of 4-1/2" 10.5# tbg, "F" nipple (3.688), 20' pup jt. of 4-1/2" 10.5# tbg, seating nipple (3.688), & wireline L-80 re-entry guide. Set pkr @ 8400'.

IX. Stimulation Program

JILLSON FEDERAL SWD #1 - COMPLETION PROCEDURE Page 3

- 15. PU Baker Model "KBH-22"Anchor tubing seal nipple, one joint 4-1/2" 10.5# tubing, "F" nipple (3.75), & 4-1/2" L-80 ST&C tbg. Land seal assembly in pkr @ 8400'.
- 16. Nipple down BOPs & nipple up wellhead. Release rig.

Mechanical Integrity Test and Final Step Rate Test

- 17. Shut-in well at least 12 hours prior to conducting the MIT. Note pressures on tubing and annulus. Bleed off pressure on annulus.
- 18. Twenty hours prior to MIT, fill annulus with inhibitor fluid (record volume)
- 19. At time of test, note and record pressure on injection tubing and casing/tubing annulus.
- Pressure up casing/tubing annulus to 2000 psi. Note time and pressure when pressure source is turned off.
- 21. Monitor pressure for 45 min., noting pressures every five (5) min. Fill out appropriate documentation.
- 22. A loss of 10% pressure in 45 minutes is considered a failure. If loss is slightly more than 12 psi, bleed off pressure and retest.
- 23. Prepare to run total well step rate test. Notify BLM, & NMOCD to witness step rate test. Maximum pressure is 3000 psi. Ensure that at least 4000 bbls of filtered produced water are available for test. Run electronic gauge to 8440'. Begin step rate test at 3 BPM for 15 min. Increase rate in 1 BPM increments until four points above parting pressure are recorded. Shut well in for 36 hours. Save computer data so datum depth adjustments can be made. Provide 6 hard copies and one disk of pressure data.

	•	
Approve:_		
	Orilling Superintendent	

X. Logs and Test Data

Jillson Federal SWD #1 Form C108 - Attachment Documentation

Logs and test data will be supplied when available. The following log and test program is proposed for this disposal well:

Logging:

Dual Induction Log

Gamma ray Caliper Log

Spontaneous Potential Formation Density

Compensated Neutron Log

Photo Electric Curve

MicroLog

NUMAR Log (Magnetic Resonance Imaging)

Dipole Sonic Log Side-Wall Cores Drill Stem Tests

Testing:

Producible hydrocarbons testing following the swabbing.

Pre, post and Final step rate tests

Mechanical Integrity Test

API Water Analysis

Operator

: Meridian Oil, Inc.

Well

C andeleria W.W.

Field

Formation

Prepared for

: Brian Ault

DS Service Point

Farmington, NM

Business Phone No.

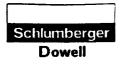
: 505 326-5096

Proposal No.

Prepared by

: Kevin D. Mauth

Date


: May 16, 1994

Disclaimer Notice

This information is presented in good faith, but no warranty is given and Dowell Schlumberger assumes no liability for advice or recommendations made concerning results to be obtained from the use of any product or service. The results given are estimates based on calculations produced by a computer model including various assumptions on the well, reservoir and treatment. The results depend on input data provided by the operator and estimates as to unknown data and can be no more accurate than the model, the assumptions and such input data. The information presented is Dowell Schlumberger's best estimate of the actual results that may be achieved and should be used for comparison purposes rather than absolute values. The quality of input data, and hence results, may be improved through the use of certain tests and procedures which Dowell Schlumberger can assist in selecting.

The operator has superior knowledge of the well, the reservoir, the field and conditions affecting them. If the operator is aware of any conditions whereby a neighboring well or wells might be affected by the treatment proposed herein it is the operator's responsibility to notify the owner or owners of the well or wells accordingly.

Prices quoted are estimates only and are good for 30 days from the date of issue. Actual charges may vary depending upon time, equipment, and material ultimately required to perform these services. Freedom from infringement of patents of Dowell Schlumberger or others is not to be inferred.

Client Well : Meridian Oil, Inc.: C andeleria W.W.

Formation : District :

: Farmington, NM

Country

WELL DATA

Data			
Water Source	C andeleria W.W.		
Date of Sample	5/4/94		
Test Date	5/4/94		
Test Performed By	Dustin Jensen		

API WATER ANALYSIS

Dissolved Solids	mg/L	me/L
Cations		
Sodium, Na (Calc)	460	20
Calcium, Ca	0	0
Magnesium, Mg	41	3.4
Barium, Ba		<u> </u>
Anions		
Chloride, Cl	355	10
Sulfate, SO4	0	0
Carbonate, CO3	0	0
Bicarbonate, HCO3	769	12.6
Hydroxide ~	0	0

OTHER PROPERTIES

Other Properties				
Total Dissolved Solids, mg/l	1625			
Iron, mg/l	6			
pН	7.5			
Specific Gravity	1.005			
Resisitivity, ohm-meter	0.60			
Temperature	70 deg F			

XII. Zone Isolation

Jillson Federal SWD #1
Form C108 - Attachment Documentation

An examination of geologic and engineering data indicates no evidence of open faults or any hydraulic connection between the disposal zone and any source of drinking water and/or any currently producing formations. This conclusion is based on log data and proof of isolation between gas- and oil-bearing sands above the Entrada within the area of review.

XIII. Proof of Notice

Jillson Federal SWD #1 Form C108 - Attachment Documentation

A copy of the application and support material has been sent by certified mail to the following:

Détrict 1
PO Hox 1988, Habbs, NM 22241-1986
District II
PO Drawer DD, Artenia, NM 22211-0719
District III
1000 His Branes Rd., Assoc, NM 27419
District IV
PO Bag 2008, Santa Fe, NM 27504-2028

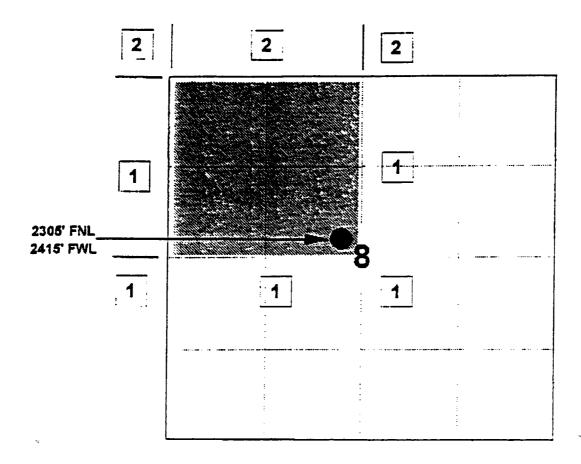
State of New Mexico Energy, Mineran & Natural Manuscreen Department

OIL CONSERVATION DIVISION PO Box 2088 Santa Fe, NM 87504-2088 Form C Revised February 21. Instructions on

Submit to Appropriate District C:
State Lease - 4 Co

Fee Louis - J Co

AMENDED REPO


AFI Number			1 Pool Cas	le	ND ACREAGE DEDICATION PLAT				
· Property (Cado		_1_		· Prope	ny Name			· Well Num
				Jills	on Feder	al SWD			1
OGRID:	Ye.				Opera	ior Nume			Elevene
				Meridi	an Oil I	nc.			6907'
					10 Surfac	e Location			
ar let so.	Section	Townsip	Reage	Let Ida	Feet from the	North/South lie	e Feet from the	East/West time	County
F	8	24 N	3 W		2305	North	2415	West	R.A
			11 Bo	tom Hol	e Location	If Different	From Surface		
er jot se.	Satura	Tawastip	Renge	Lot Ida	Feet from the	Nerth/South tin	er Fees (man the	East/West lies	Causiy
dicated Acre	oj ¹⁸ Joins	er iafili 14 C	- aganidae	n Code i 10 C	rder No.			!	
ALLOW	ABLE	WILL BE A	SSICNE	ים דם דאו	S COMPLET	ION UNTIL AL	L INTERESTS	HAVE REEN	TONSOL'E
- Carried A	, week 1						ED BY THE DIV		-~,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
				5278.0			جنيسا الأحتين التكاملا	RATOR CE	श्रीमार
				1			18	Ely was the informa	
			,				18	opiese to the best of	
USA	55	08047		!}			i I		
			0.5						
			53						
	1			<u> </u>					
							Signature		
					~		Printer Nac		
241	ا 'پ						Tiue		
671			<u> </u>		8 Date		_		
				\$		<u> </u>			
						1	N SUR	EYOR CE	RTIFICA
							I heresy can	ijy ihas iha weil loci	
	1					}		rom field noves of e	
	1						14	supervision, and the best of my benef.	m and serve A. I
	1			1		ļ	5-9-6	and the second	
	1					•	Date or Surv		N.Y
			·	1			Signature and	A COL	
	1					1			1/0
	- 1							(085	7
								(8k)X	
				1		t	م از ارسسال	YEY V	/ 4.7
				1			1/10		之上
							6857 Catulisms No	TO TO	大

MERIDIAN OIL INC

JILLISON FEDERAL SWD #1 OFFSET OPERATOR PLAT

Saltwater Disposal Well

Township 24 North, Range 3 West



1) Meridian Oil Inc	
2) Carolyn Clark Wiggin Oil Properties	PO Box 420, Farmington, NM 87499
_	

MERIDIAN OIL INC JILLISON SWD #1 DISPOSAL WELL

TOWNSHIP 24 NORTH, RANGE 3 WEST

2305 from North Line. 2415 from West Line

Proposed Well Location

🔲 Daneis & Faul Cancelonia

Bureau of Land Management