

INDEX

March 21st, 1996 Examiner Hearing CASE NO. 11,497

PAGE

	11102
EXHIBITS	3
APPEARANCES	4
APPLICANT'S WITNESSES:	
SAM CULPEPPER (Landman)	
Direct Examination by Mr. Carr	8
Examination by Examiner Catanach	17
Examination by Mr. Johnson	17
Further Examination by Examiner Catanach	19
HERBERT J. WACKER (Geologist)	
Direct Examination by Mr. Carr	21
Examination by Examiner Catanach	32
Examination by Mr. Johnson	33
Further Examination by Examiner Catanach	35
<u>BILL GRIFFIN</u> (Engineer)	
Direct Examination by Mr. Gallo	37
Examination by Examiner Catanach	65
Examination by Mr. Johnson	68
REPORTER'S CERTIFICATE	71
* * *	

STEVEN T. BRENNER, CCR (505) 989-9317

2

EXHIBITS

Applicant's		Identified	Admitted
Exhibit	1	12	16
Exhibit	2	13	16
Exhibit	3	14	16
Exhibit	4	14	16
Exhibit	5	15	16
Exhibit	6	23	32
Exhibit	7	26	32
Exhibit	8	28	32
Exhibit	9	29	32
Exhibit	10	31	32
Exhibit	11	39	65
Exhibit	12	40	65
Exhibit	13	46	65
Exhibit	14	48	65
Exhibit	15	51	65
Exhibit	16	53	65
Exhibit	17A	57	65
Exhibit	17B	58	65
Exhibit	170	59	65
Evhibit	18	61	65
Exhibit	10	62	65
EXHIDIC	TA	62	65

* * *

3

APPEARANCES

FOR THE DIVISION:

RAND L. CARROLL Attorney at Law Legal Counsel to the Division 2040 South Pacheco Santa Fe, New Mexico 87505

FOR THE APPLICANT:

CAMPBELL, CARR, BERGE and SHERIDAN, P.A. Suite 1 - 110 N. Guadalupe P.O. Box 2208 Santa Fe, New Mexico 87504-2208 By: WILLIAM F. CARR and AMOCO PRODUCTION COMPANY Houston Region 501 WestLake Park Boulevard P.O. Box 3092 Houston, Texas 77253-3092 By: A. ANDREW GALLO

ALSO PRESENT:

ROY E. JOHNSON Senior Geologist, NMOCD 2040 South Pacheco Santa Fe, New Mexico 87505

* * *

WHEREUPON, the following proceedings were had at 1 2 1:05 p.m.: EXAMINER CATANACH: At this time we'll call the 3 hearing back to order, and I will call Case 11,497. 4 5 MR. CARROLL: Application of Amoco Production Company for fourteen unorthodox infill carbon dioxide gas 6 7 well locations, Union County, New Mexico. EXAMINER CATANACH: Are there appearances in this 8 case? 9 May it please the Examiner, my name is 10 MR. CARR: 11 William F. Carr with the Santa Fe law firm Campbell, Carr, 12 Berge and Sheridan. 13 We represent Amoco Production Company in this 14 matter. I'm appearing today in association with A. Andrew 15 Gallo, counsel for Amoco, who's a member of both the Texas 16 17 and Missouri bars, who's going to assist in presentation of the case. 18 We have three witnesses. 19 EXAMINER CATANACH: Are there additional 20 21 appearances? Can I get the three witnesses to stand and be 22 sworn in at this time? 23 24 (Thereupon, the witnesses were sworn.) MR. CARR: Mr. Catanach, as you're aware, the 25

Bravo Dome was formed in the late 1970s and became effective in 1980. Since it was originally created, this unit has been developed by and large on a 640-acre spacing pattern. There are two spacing patterns in the unit, but most of the development has occurred within the 640-acre spacing area.

Recently Amoco undertook a study of the reservoir
and evaluated the feasibility of further developing the
Tubb formation with an infill drilling program, and the
Application we bring to you today is the result of that
evaluation.

We also determined that certain wells needed to be located at unorthodox well locations if, in fact, we were going to maximize the recovery of carbon dioxide from this unit.

We will present three witnesses today. We will first call Sam Culpepper, a landman, who's going to generally identify the three areas or clusters of wells that are the subject of this hearing. He will review the general ownership in the area and the current status of Amoco development in the areas that are affected by this case.

Next we will call Herbert J. Wacker, a geologist.
He's testified before this Division and Commission before.
He will review the geology of the Tubb formation in the

unit as a whole, but especially in each of the areas that
 are the subject of this Application, and he will review the
 geologic parameters that have been utilized in our computer
 modeling of the reservoir.

We will call a petroleum engineering witness, Mr. 5 He's going to review the criteria used by 6 Bill Gibson. Amoco to identify the area selected for infill development. 7 He's going to review the computer models that we have used 8 to simulate flow, both in the reservoir and on the surface. 9 10 He will show how these have been integrated and used to 11 predict performance of wells at individual specific well sites. And using these tools we will show you that we have 12 selected 13 locations for wells, unorthodox locations, for 13 infill wells within the Bravo Dome unit. 14

We will then show you that to maximize the ultimate recovery of carbon dioxide from this reservoir, wells must be drilled at these locations.

We will also request, at the end of the presentation, that if future applications for infill wells do not qualify under the provisions of new Rule 104, that the order in this case authorize an administrative procedure whereby future infill wells can be considered for approval without the necessity of hearing. And with that, we are now ready to call Mr.

25 Culpepper.

STEVEN T. BRENNER, CCR (505) 989-9317 7

1	EXAMINER CATANACH: Let me introduce Mr. Roy
2	Johnson, who's our guest up here today, who's going to
3	assist us in this case.
4	SAM CULPEPPER,
5	the witness herein, after having been first duly sworn upon
6	his oath, was examined and testified as follows:
7	DIRECT EXAMINATION
8	BY MR. CARR:
9	Q. Would you state your name for the record, please?
10	A. Sam Culpepper.
11	Q. Where do you reside?
12	A. Houston, Texas.
13	Q. By whom are you employed?
14	A. Amoco Production Company.
15	Q. And what is your position with Amoco Production
16	Company?
17	A. I'm senior business analyst, land negotiator in
18	the Permian Basin business unit.
19	Q. Mr. Culpepper, have you previously testified
20	before the Oil Conservation Division?
21	A. No, I have not.
22	Q. Could you briefly review your educational
23	background for Mr. Catanach?
24	A. Yes, I have a BA from Southern Methodist
25	University and received my law degree from SMU in December

1	of 1975.
2	Q. When did you go to work for Amoco?
3	A. I went to work for Amoco in 1981.
4	Q. Could you summarize the nature of your work
5	experience with Amoco Production Company?
6	A. I've worked in both property administration and
7	land negotiations since that time, and I'm currently
8	supporting the Bravo Dome since November of 1995.
9	Q. Are you familiar with the Application filed in
10	this case on behalf of Amoco and the amended Application?
11	A. Yes, I am.
12	Q. Are you aware of the status of the lands in the
13	portion of the Bravo Dome unit on which the proposed infill
14	wells are to be drilled and also on the offsetting tracts?
15	A. Yes, I am.
16	Q. And are you familiar with the ownership in those
17	adjoining and diagonal offsetting properties?
18	A. Yes, I am.
19	MR. CARR: We tender Mr. Culpepper as an expert
20	witness in petroleum land matters.
21	EXAMINER CATANACH: Mr. Culpepper is so
22	qualified.
23	Q. (By Mr. Carr) Could you briefly state what Amoco
24	seeks with this Application?
25	A. Yes, Amoco is seeking 13 unorthodox carbon

1	dioxide gas wells in the Bravo Dome unit area.
2	Q. What are the locations for each of these wells?
3	A. The exact locations are set out in the amended
4	Application filed in this case.
5	Q. Now, the Application is styled "seeking approval
6	of fourteen unorthodox locations". Today we're here only
7	seeking 13; is that right?
8	A. That's correct, one is on an orthodox location.
9	Q. Is that the Unit Well 1835, Number 72?
10	A. 72K, yes.
11	MR. CARR: And Mr. Catanach, that is Well Letter
12	I on the amended Application. That well is 1980 from the
13	south and west lines. It's a standard location, and
14	therefore it can be dismissed from this Application.
15	Q. (By Mr. Carr) Mr. Culpepper, why was an amended
16	Application filed in this case?
17	A. Two wells were changed from the original
18	Application, two were deleted, and two were substituted.
19	Q. What are the new wells? And if you can maybe
20	refer to the
21	A. Okay.
22	Q amended Application.
23	A. On the amended Application the new wells are
24	listed as H and N, as in Nancy. These are at 2134132P, and
25	2234172A.

1	MR. CARR: Mr. Catanach, the legal advertisement
2	provided in this case did not provide specific well
3	locations within Bravo Dome. It generally referred to
4	townships and ranges.
5	Both of these wells fall within those townships
6	and ranges, so there is nothing that can be changed in the
7	published notice on this matter, and therefore we submit
8	that that notice is appropriate and the case should not
9	have to be continued for readvertisement.
10	EXAMINER CATANACH: Was there any notice provided
11	to any interest owner, Mr. Carr?
12	MR. CARR: We'll review that with Mr. Culpepper.
13	We have provided There are no individuals to whom notice
14	is required under the rule, but I will review that with
15	this witness.
16	EXAMINER CATANACH: Well, in terms of Was
17	notice provided in terms of exact well locations to those
18	interest owners?
19	MR. CARR: There are no interest owners to whom
20	we can give notice. We will show that.
21	EXAMINER CATANACH: Okay, all right.
22	Q. (By Mr. Carr) Mr. Culpepper, will each well
23	covered by this Application be an infill well on the
24	subject spacing units?
25	A. Yes, each well will be either a second or third

1	well on the 640 spacing unit.
2	Q. And are additional wells, more than one well,
3	authorized on the 640-acre spacing units in this portion of
4	the unit?
5	A. Yes, under the special rules for the Bravo Dome,
6	640-acre area Rule 2, it allows up to four wells per or
7	doesn't preclude four wells on a 640-spacing unit.
8	Q. So there's no need to seek additional approval
9	for multiple wells on this unit?
10	A. Correct.
11	Q. What are the well-location requirements set forth
12	in the rules for the 640-acre Bravo Dome area?
13	A. Applicable to this case, it's a setback from the
14	outer boundary of the section, 1650 feet.
15	Q. So we're actually closer with each of these wells
16	than that 1650-foot setback?
17	A. That's correct.
18	Q. Let's go to what has been marked as Amoco Exhibit
19	Number 1. Can you identify that, please?
20	A. Yes, this is the major carbon dioxide supply and
21	systems in the United States, and it's offered in order to
22	locate Bravo Dome in the northeast corner of the State of
23	New Mexico.
24	Q. This also shows pipelines from the area?
25	A. Yes, it also shows the pipelines from which

supply is shipped. 1 2 ο. Let's go to Exhibit Number 2. Can you identify 3 that, please? 4 Α. Yes, Exhibit 2 is the -- You notice on the right-5 hand side, you have the eastern boundary of the Bravo Dome unit, and the largely developed area, if you note that 6 7 there are three colored squares on it with red dots inside. 8 The green area at the top is a cluster of wells 9 that are proposed on Leg 9 of the gathering system. 10 The black square is another cluster of wells on 11 Leg 9 of the gathering system, four wells there. And then to the south in the yellow square, 12 13 that's four proposed wells on Legs 6 and 7 of the gathering 14 system. 15 0. Mr. Culpepper, later exhibits will show these 16 particular clusters of wells as they are located within the 17 entire unit boundary; is that right? That's correct. 18 Α. 19 Q. What is the red line around this exhibit? What 20 does that indicate? The red line is, as I understand it, the 21 Α. 22 boundaries of an engineering model. 23 And that will be reviewed by a later witness? Q. That's correct. 24 Α. 25 Let's go to Exhibit Number 3. Can you identify Q.

2	A. Okay, Exhibit Number 3 is focusing in on the
3	northern part of Leg 9 that you saw on Exhibit 2, the north
4	end. It indicates the proposed unorthodox well locations,
5	and it also indicates the adjacent and diagonal tracts to
6	those unorthodox locations. It also indicates wells that
7	are on those adjacent and diagonal tracts that are operated
8	by Amoco Production Company.
9	Q. So what you've done is, you have highlighted with
10	the yellow blocks all adjacent and diagonal spacing units
11	as that term is defined by OCD rules?
12	A. Correct.
13	Q. And you've shown the existing development on
14	those tracts, and all tracts are operated by Amoco?
15	A. Correct.
16	Q. All right. Let's go to Exhibit Number 4. Can
17	you identify and review that, please?
18	A. Okay, Exhibit Number 4 is the other cluster of
19	wells that we saw in Exhibit 2, just to the south on Leg 9.
20	Again, I've indicated the unorthodox proposed unorthodox
21	locations, the adjacent and diagonal tracts and the wells
22	existing on those tracts, all operated by Amoco Production
23	Company.
24	Q. And now let's move to Exhibit Number 5. Can you
25	identify and review that, please?

1	A. Exhibit Number 5 are the proposed well locations
2	that exist between Legs 6 and 7 of the gathering system.
3	Again, we show the one orthodox location, being
4	72K, and the three proposed unorthodox locations, all of
5	the adjacent and diagonal tracts, the wells existing on
6	those tracts, all operated by Amoco Production Company.
7	Q. Now, Mr. Culpepper, are all of the wells that we
8	are proposing to drill located in the 640-acre spacing
9	unit?
10	A. Yes.
11	Q. Or a portion of the unit?
12	A. Yes, they are.
13	Q. And are all of the diagonal and offsetting
14	spacing units also located in the 640-spacing unit?
15	A. Yes, they are.
16	Q. Are all the properties that we're dealing with
17	here today in this hearing operated by Amoco?
18	A. Yes, they are.
19	Q. Are there any affected parties who are entitled
20	to actual notice of this Application pursuant to Division
21	Rules either 104 or 1207?
22	A. No, since we operate all of it, there is no
23	notice.
24	But public notice was published in the Union
25	County Leader March 6th, 1996.

Now, Mr. Culpepper, there are tracts in the 0. 1 adjoining and diagonal spacing units that have not been 2 committed or interests that have not been committed to the 3 Bravo Dome unit agreement; is that right? 4 There are a few tracts where there is unleased 5 Α. mineral interest that's either unknown, unlocatable, and 6 7 it's very small. Do all of the interests -- or all of the tracts 8 0. that are not committed in these particular offsetting or 9 diagonal spacing units -- are the owners of those interests 10 either unknown or unlocatable? 11 That's correct. 12 Α. 13 Q. Will Amoco call a geological and engineering 14 witness to review the technical portions of this 15 Application? Yes, they will. 16 Α. Were Exhibits 1 through 5 prepared by you or 17 0. compiled under your direction and supervision? 18 Yes, they were. 19 Α. MR. CARR: At this time, Mr. Catanach, we move 20 the admission into evidence of Amoco Exhibits 1 through 5. 21 EXAMINER CATANACH: Exhibits 1 through 5 will be 22 admitted as evidence. 23 24 MR. CARR: And that concludes my direct examination of Mr. Culpepper. 25

1	EXAMINATION
2	BY EXAMINER CATANACH:
3	Q. Just to clarify that, Mr. Culpepper, the offset
4	tracts to these infill well locations, was it your
5	testimony that the royalty interest owners are all signed
6	up as to participate in the unit, with the exception of
7	those that are not locatable?
8	A. Other than well, we have some unleased mineral
9	interest in some tracts, particularly in the most northern
10	leg. It's small interests in only not over the whole
11	640, but in small tracts of that 640 spacing, there are
12	some small unleased mineral interests, and of course money
13	is being set aside, if they're locatable and can be
14	determined.
15	Q. The reason they're unleased is because they're
16	not locatable?
17	A. As I understand it, yes.
18	EXAMINATION
19	BY MR. JOHNSON:
20	Q. Mr. Culpepper, on your Exhibit Number 2, this
21	exhibit has got three green dots
22	A. Exhibit 2.
23	Q on it. What do those signify? Is that
24	something that's going to be talked about?
25	A. Those three green dots will be discussed by

1 subsequent testimony.

2	Q. Okay. And to just clarify Mr. Catanach's
3	question, the offsetting acreage on this one, come as a
4	royalty, all that royalty is in the Bravo Dome unit except
5	for those tracts that you can't find the owners of; is that
6	correct?
7	A. Yes, as I understand it, through my research,
8	that's what I see.
9	MR. JOHNSON: Okay, that's all I have, David.
10	EXAMINER CATANACH: When we say "offsetting
11	tracts", did you were those tracts that completely
12	surrounded these infill proration units?
13	THE WITNESS: Well, the tracts were as I
14	understand the definition of what an adjacent and diagonal
15	tract is, it's the tracts either diagonal or adjacent to
16	the encroaching well. So it would be caddy-corner and the
17	two tracts on either side, and that's the way that I did my
18	exhibits and research.
19	Q. (By Mr. Johnson) You didn't scribe a half-mile
20	radius around one of these wells to see if any other tracts
21	were affected?
22	A. No, sir, because that was not the definition of
23	adjacent and diagonal as I understood it and was
24	communicated to me.
25	Q. And yet these wells are capable of draining 640

acres; is that correct? 1 2 I can't speak to that. I think you'll have Α. 3 subsequent testimony that I think it would probably be -you'll get a better answer if you ask people who know. 4 All right. Well, assuming that that is the last 5 ο. testimony on your 640-acre spacing case, then potentially 6 there could be a tract within a half-mile radius around 7 these wells that is not in the unit that could possibly be 8 affected; is that correct? 9 10 I can't really -- I can't really speak to that. Α. I'm not an engineer. 11 Thank you. MR. JOHNSON: 12 13 FURTHER EXAMINATION 14 BY EXAMINER CATANACH: Mr. Culpepper, did you personally do the 15 Q. 16 examination of these records? 17 Yes, I did. Yes, I did. Α. Okay. And as I understand it -- let me just --18 Q. 19 one more time. For any given proration unit in which you propose to drill a well, you looked at the eight 20 surrounding proration units? 21 22 Α. I looked at the -- For each unorthodox well 23 location, I looked at the two adjacent 640s and the 24 diagonal 640. 25 Q. Now, the two adjacent being --

19

Well, as an example, if you'd like to look at 1 Α. 2 Exhibit Number 3, and you look at the top there and you see 3 the unorthodox location proposed, 172A --4 Q. Uh-huh. -- as I understand the definition of "adjacent" 5 Α. and "diagonal", it would be Section 8 to the north, Section 6 7 9 diagonally, and Section 16 to the east. And those would be the three applicable proration units, spacing units. 8 Q. Okay, you looked at the tracts which the 9 unorthodox location was moving towards --10 Correct. 11 Α. 12 0. -- encroaching towards? 13 Α. Correct. 14 Okay, got it. Q. And I did that in every case. 15 Α. MR. JOHNSON: And you looked at the entire 16 17 section? Yes, I did. 18 THE WITNESS: 19 MR. JOHNSON: Okay. (By Examiner Catanach) Mr. Culpepper, you stated 20 Q. that this case was -- or this request was advertised in the 21 Union County newspaper? 22 23 Α. Yes. Was that done by Amoco? 24 Q. 25 Α. Yes, it was.

MR. CARR: No, it was done by the OCD. 1 THE WITNESS: Was it? 2 3 MR. CARR: It was the regular notification that 4 appeared March the 6th in the Union County Leader. I have 5 copies here if you'd like to see one. 6 EXAMINER CATANACH: Yeah, could you -- Mr. Carr? 7 THE WITNESS: I've got one here, I believe. Ι think I have an original. 8 9 (Off the record) MR. CARR: March the 6th. 10 11 EXAMINER CATANACH: I think that's all we have of this witness. He may be excused. 12 MR. CARR: Thank you, Mr. Catanach. 13 At this time we would call Mr. Herb Wacker. 14 15 (Off the record) 16 HERBERT J. WACKER, the witness herein, after having been first duly sworn upon 17 his oath, was examined and testified as follows: 18 19 DIRECT EXAMINATION 20 BY MR. CARR: 21 ο. Mr. Wacker, would you state your full name for the record, please? 22 23 Α. My name is Herbert J. Wacker. Where do you reside? 24 Q. 25 I live in Houston, Texas. Α.

1	Q. And for whom do you work?
2	A. I work with Amoco, USOG.
3	Q. And how long have you been employed by Amoco?
4	A. I've worked with Amoco for 23 years.
5	Q. Mr. Wacker, you have previously testified before
6	this Division and Commission concerning the Bravo Dome,
7	have you not?
8	A. Yes, I have.
9	Q. At the time of that prior testimony, were your
10	credentials as an expert witness in the field of petroleum
11	geology accepted and made a matter of record?
12	A. They were.
13	Q. Are you familiar with the Application filed in
14	this case on behalf of Amoco Production Company?
15	A. Yes, I am.
16	Q. And are you a member of the team within Amoco
17	that has made a study of the Bravo Dome to determine the
18	feasibility of performing an infill drilling program in
19	portions of the Bravo Dome unit?
20	A. I'm a member of that team.
21	Q. And what was your role as a member of that team?
22	A. My role was to provide the base geologic
23	information on which the modeling relied.
24	Q. And are you prepared here today to review that
25	geological work with Mr. Catanach and the other

representatives of the Oil Conservation Division? 1 2 Α. Yes, I am. 3 MR. CARR: Are the witness's qualifications 4 acceptable? EXAMINER CATANACH: Yes, they are. 5 6 Q. (By Mr. Carr) Mr. Wacker, have you prepared or has there been prepared under your direction certain 7 exhibits for presentation here today? 8 9 Α. Yes. I'd like to direct your attention to what has 10 ο. been marked as Amoco Exhibit Number 6, and I'd like you to 11 12 first simply review for Mr. Catanach what this exhibit is 13 designed to show. 14 Α. This exhibit is a montage, including a regional 15 base map on the left-hand side of the exhibit, that includes all of the Bravo Dome area. It includes on the 16 17 right-hand side the areas that are particularly important 18 to this hearing involving Leg 9 and also Legs 6 and 7 19 further to the south. On the regional structure map of the Bravo Dome 20 21 the contour interval is 50 feet. The colors that you see on there range from a green in the south where it's 22 structurally low, to a red in the northwest that is 23 24 structurally high. This helps give us a picture of the 25 general shape and configuration of the Bravo Dome

1 reservoir.

2	Outlined in blue are the two key areas that are
3	shown on the right-hand side of the montage. They're
4	labeled "Leg 9 Area" on the regional reference map and
5	"Legs 6 and 7 Area" on the regional reference map.
6	Q. When we look at your exhibit and we go to the
7	structural top map, the large orientation map you have
8	shown a lot of additional information, have you not?
9	A. Yes, I have.
10	Q. What are the red lines that go back and forth
11	across the unit area?
12	A. The red lines are the geophysical data points
13	that were used to help construct the structural
14	configuration of the dome. Because of the well control and
15	the distribution, it was important to have a good
16	distribution of data points to come up with an accurate
17	structure.
18	Q. And is the area that is shown as the unitized
19	or the unit, is that the boundary following contraction of
20	the unit, or is that the original unit boundary?
21	A. The actual colored area is the original unit
22	boundary. The contracted area is shown in a black line
23	just inside that, and it's identified back down in the
24	lower left-hand corner of the diagram as the approximate
25	unit outline, and you can see that it's just a dark line.

1	It shows also some of the windows that are present in the
2	Bravo Dome field, as far as leasing and so forth.
3	Q. This map also has the zero net pay isopach line
4	shown on it, does it not?
5	A. Yes, it does. It skirts around the outside and
6	is identified as it was in Case 11,122, where we defined
7	that line.
8	Q. This exhibit was prepared by you?
9	A. Yes, it was.
10	Q. And the information shown on this exhibit
11	reflects the current status of the development and
12	operation of Amoco in the Bravo Dome unit; is that right?
13	A. It does. It has been reconfigured to include the
14	additional drilling that took place in 1995. We've
15	reflexed the structures and recontoured the maps in the
16	area where we have additional well control, and that way we
17	can accurately represent the reservoir.
18	Q. All right, Mr. Wacker, let's go to the enlarged
19	map of the Leg 9 area, and I would ask you to review the
20	information contained on that portion of this exhibit for
21	Mr. Catanach.
22	A. In the Leg 9 area there are ten well locations.
23	they are all unorthodox locations, and they are identified
24	by a red dot and an arrow above them.
25	There are two provinces that we talk about in Leg

1	9. One is the northern province outlined in green, and the
2	southern province outlined in brown. Later on, I'll be
3	showing a cross-section that goes across the Leg 9 area
4	also known geologically as the Clapham Anticline that
5	the cross-section will go generally from north to south and
6	demonstrate the porosity configuration for the Leg 9 area.
7	Q. Would you like to go to that cross-section now,
8	and then we can come back and look at the wells in Exhibit
9	6 and 7?
10	A. That would be great.
11	Q. Let's move to what has been marked as Amoco
12	Exhibit Number 7, and again I'd ask you to first identify
13	this and then explain the significance of this exhibit to
14	the Examiner.
15	A. Exhibit 7 is a structural cross-section through
16	Leg 9. It shows the structural latitude of the Cimarron
17	anhydrite, which is important because the base of the
18	Cimarron anhydrite defines the top of the Bravo Dome unit.
19	It also shows an approximate gas-water contact.
20	The wells that we show on here are the wells that were
21	drilled in 1995. We haven't actually drilled through the
22	gas-water contact in any of those.
23	The objective in this cross-section is to
24	demonstrate how broadly continuous the porosity is in the
25	Bravo Dome reservoir.

On the right-hand side of each log is a bulk

density curve. The vertical line going through the bulk
density curve identifies the 12-percent porosity cutoff
that we determine to be the porosity cutoff for Bravo Dome
reservoir.

To the left of that line is porosity greater than 12 percent, up to 30 percent. And it clearly shows that the reservoir is continuous from well to well. In drilling the thirty wells, we had no dry holes. The production was good in each one, and the tops came in more than -- More than half of them were plus or minus 12 feet of the predicted interval.

So we feel like we have a reservoir that is
predictable, continuous and relatively easy to describe
geologically.

Q. In this area, what generally or approximately isthe gross pay thickness that you're encountering?

A. The maximum gross pay out here is 250 feet. It
drops down to 100 to 150 as you move further to the south
on the southern part of Leg 9.

Q. Let's go back now to your Exhibit Number 6, and let's look at the enlarged portion of that exhibit that relates to the locations on Leg 6 and 7 of the gathering system.

25

1

A. In the lower right is the outline of the 6 and 7.

1	It's a 1-to-4 base map, pretty much the same as the one
2	above it, which is the Leg 9.
3	The area in yellow is the area of particular
4	interest to us. It shows four dots. One is an orthodox
5	location. The other three, identified by red arrows, are
6	unorthodox locations.
7	What you'll see there is also a red line, which
8	defines the Bueyeros Fault. It's a fault that was active
9	fairly recently. Based on information that we've got, it's
10	Quaternary or Ogallala in age, and it has offset the
11	reservoir.
12	The drilling of these wells up against this fault
13	will help drain the acreage between the fault and the
14	existing wells.
15	Q. You again have a trace for a subsequent cross-
16	section on this exhibit?
17	A. Yes, I do.
18	Q. Let's go to that cross-section, which has been
19	marked Amoco Exhibit Number 8, and would you please review
20	that for Mr. Catanach?
21	A. Yes. Exhibit 8 shows five wells, two of them on
22	the downthrown side of the Bueyeros Fault and three on the
23	upthrown side. It also shows the position of the
24	unorthodox locations between the Bueyeros Fault and the
25	first well to the south, which would be 1835161M.

What's important to notice here is that there is 1 a variance in the gas-water contact, which helps us 2 identify the Bueyeros Fault as a sealing fault. The fact 3 that it's sealing demonstrates that there won't be any 4 drainage from the south side of the fault by wells that are 5 drilled on the north side. 6 Again, you can see the massive porosity in the 7 8 density curve marked on the right-hand side of each of the wellbores identified on the cross-section. The 12-percent 9 10 porosity line is shown, and the blue identifies the porosity that's characteristic of the wells in those areas. 11 12 Q. Basically, what is the thickness in this area we're looking at in terms of gross pay? 13 The gross pay is somewhat thinner here; it's 14 Α. about 50 to 75 feet. But the pressures are slightly 15 16 higher, and I'm encouraged by the fact that the porosity is 17 excellent. If we look at where we're proposing unorthodox 18 Q. locations on this cross-section, is it fair to say we're 19 proposing to develop an area that probably cannot be 20 21 efficiently drained without some additional drilling and development? 22 That's right. 23 Α. Let's go to what has been marked as Amoco Exhibit 24 Q.

> STEVEN T. BRENNER, CCR (505) 989-9317

Number 9. Will you identify and -- Explain first, what

25

1	this is?
2	A. This includes two pieces of information. The
3	colored photograph on the right-hand side is a photograph
4	of the sediment that is present in the well, on the center
5	well, in the cross-section 1835101K. The blue represents
6	porosity, the white represents the sand grains.
7	What's important to notice is the fine-grained
8	nature of this particular reservoir. The formation itself
9	is called a loessite. This loessite is broadly distributed
10	throughout the Bravo Dome area and constitutes a good,
11	uniform, continuous, porous interval.
12	One of the characteristics of this rock is that
13	it has relatively uniform porosity and predictable
14	permeability characteristics, based on the cores that we've
15	taken and the logs that we've evaluated in Bravo Dome.
16	That includes 40 cores and all 500 wells or so that are in
17	the province.
18	What's important here is the fine-grain nature.
19	The formation is really coarse silt, which identifies it as
20	loess or loessite, and it says that it's a little bit
21	different from what we normally think of as coarse
22	sandstones that are regionally productive in the rest of
23	the Permian Basin. It's just a little bit different
24	reservoir. More like a sand-dune concept than what we
25	usually think of.

Q. Mr. Wacker, what geological conclusions can you
reach concerning this portion of the Bravo Dome and its
suitability for infill development?
A. The summary of the concepts is shown on Exhibit
10, and it does a good job characterizing the reservoir
properties of Bravo Dome. The porosity is 12 to 30
percent. It averages 5 to 40 millidarcies. It has a gross
pay thickness in this area of 50 to 250 feet, and the water
saturations are about 30 percent.
The characteristics of Bravo Dome Reservoir are
such that they are almost textbook, as far as modeling.
The facies are broadly distributed and easily described
geologically. And by taking the facies distribution and
the porosity, ϕ h, maps that we've put together we have been
able to develop excellent properties for engineering
modeling.
Q. Now, these properties that you have developed
through your geological work, they were then in turn taken
and input into the modeling effort to select not only areas
for infill development but actual well locations
A. That's right.
Q is that not correct?
A. That is true.
Q. And will Amoco be calling an engineering witness
who will review exactly how that modeling took place?

1	A. Yes, they will.
2	Q. Were Exhibits 6 through 10 prepared by you or
3	compiled under your direction?
4	A. They were.
5	Q. Did you tape them together this morning like
6	this?
7	A. Yes, I did. And if you would like replacements,
8	I'll get replacements for you later.
9	MR. CARR: Mr. Catanach, we would move the
10	admission into evidence of Amoco Exhibits 6 through 10.
11	EXAMINER CATANACH: Exhibits 6 through 10 will be
12	admitted as evidence.
13	MR. CARR: And that concludes my direct
14	examination of Mr. Wacker.
15	EXAMINATION
16	BY EXAMINER CATANACH:
17	Q. Mr. Wacker, the wells located on the Legs 6 and 7
18	have geologic considerations as to why infill wells are
19	needed in those in that area.
20	Are there similar geologic considerations in Leg
21	9, or are those basically
22	A. Those are engineering.
23	Q drainage-type situations?
24	A. That's right.
25	Q. So there's no geologic factors up here?

1	A. The importance to the geology is that the fine-
2	grained nature of the rock and the relatively low pressures
3	of the rock cause the gas to migrate more slowly than we
4	normally think of in a normally pressured reservoir.
5	The original bottomhole shut-in pressures on
6	these wells was about 390 p.s.i., which is really quite low
7	if you think about it in comparison to other reservoirs
8	we're familiar with. As a result, the combination of that
9	low pressure with the fine-grained nature of the rock makes
10	it slower for the gas to move through.
11	Q. Does that reduce the ultimate recovery from these
12	wells?
13	A. The engineering information that you'll hear
14	today will demonstrate that.
15	Q. Does Amoco plan to drill more wells on the south
16	side of that Bueyeros Fault at later times?
17	A. We'll take a look at those and see, you know,
18	which ones are best for us and which ones are appropriate.
19	There's pretty good space between the existing
20	well control in that fault right now, and I think it will
21	help us quite a bit to get some wells against that fault.
22	EXAMINATION
23	BY MR. JOHNSON:
24	Q. Mr. Wacker, your Well Number 182
25	A. Yes, sir.

-- in Township 18 North, from where you have the Q. 1 Bueyeros Fault drawn in, it appears possibly that this will 2 be a standard location, or is that something that you know 3 the fault is there but you can't pinpoint it? 4 5 Α. If you'll look at the location of the two seismic lines --6 7 Uh-huh. Q. -- those two locations really do kind of -- that 8 Α. 9 location in Leg 8 kind of splits the seismic lines, and I 10 lose control geologically between the well numbered 11 1835081C and the next point of control, which would be 12 1835181G. So it's a geologic interpretation as to where 13 that fault goes. Thank you, Mr. Johnson. 14 Q. So your confidence level on this position --15 It degrades towards an unorthodox location. Α. Okay. Do you have an estimate of the size of 16 Q. 17 this pool? Can you give me an estimate in acres, how big is it? 18 The CO₂ Bravo Dome reservoir? 19 Α. Yes, sir. 20 ο. No. No, I don't. 21 Α. You wouldn't want to hazard a guess? 22 Q. Well, what I know is what we defined for the unit 23 Α. I'm not sure how when we had the unit-contraction hearing. 24 25 far it goes outside. We know that there is CO₂ outside by

1 west Bravo Dome. I mean, there's another unit abutting 2 I wouldn't want to hazard the guess of the single ours. continuous reservoir. 3 Well, Bravo Dome is what? Currently a little 4 Q. over 900,000 acres? 5 That's right. 6 Α. 7 And you would say probably the bulk of that would Q. be inside the unit -- inside the gas --8 9 From the information that I have right now, Α. 10 geographically the answer is yes. 11 Q. Okay. What percentage has Bravo Dome been 12 developed? I haven't taken the time to calculate that 13 Α. 14 number. 15 Hazard a quess? Q. 16 Α. No. 17 MR. JOHNSON: That's all, David. 18 FURTHER EXAMINATION BY EXAMINER CATANACH: 19 20 Mr. Wacker, the geologic Q. Just one more. 21 properties within the zone, permeability, porosity, that 22 kind of thing, do they vary from area to area considerably, or not much? 23 24 Within all of the areas, the permeability seems Α. 25 to be fairly consistent between 5 and 40 millidarcies as a

gross interval. Occasionally, we'll get a few stringers 1 2 that are 100 or 200 millidarcies. Some of them are even higher than that, but they're just thin spikes and 3 generally are not good representatives, samples of the 4 5 reservoir as a whole. But we do have some that are really 6 quite high. 7 Q. Porosity varies? 8 Α. Porosity varies, but -- that is productive 9 between 12 and 30. Occasionally we'll get it a little 10 higher than that, but for the most part it -- For an 11 average, I would pick something in that range. 12 Is this Amoco's first attempt at infill drilling 0. 13 the unit? 14 Α. We've drilled interference wells back in the 1970s, but I'm not familiar with any of that work. 15 Ι wasn't involved with it. That was different from 16 17 interference -- that was different from infill drilling. 18 Is it possible at this point to tell how much of Q. 19 the unit may eventually be infill drilled? 20 Α. I wouldn't alone be able to answer that right now. I haven't been part of that kind of estimate. 21 22 EXAMINER CATANACH: I believe that's all I have, Mr. Carr. 23 24 MR. CARR: Thank you, Mr. Catanach. 25 At this time, Mr. Gallo will present Mr.

Griffin's testimony. 1 MR. GALLO: At this time we'll call Mr. Bill 2 Griffin. 3 4 BILL GRIFFIN, 5 the witness herein, after having been first duly sworn upon his oath, was examined and testified as follows: 6 7 DIRECT EXAMINATION 8 BY MR. GALLO: 9 0. Mr. Griffin, would you please state your name for 10 the record? 11 Α. William Griffin. I go by Bill Griffin. And where do you reside, sir? 12 Q. Houston, Texas. 13 Α. 14 And by whom are you employed? Q. I'm employed by Amoco Production Company as a 15 Α. petroleum engineer in the regulatory affairs group. 16 How long have you been in the regulatory affairs 17 Q. 18 group? Since 1979, or approximately 15 years. 19 Α. 20 Have you testified before administrative agencies Q. 21 in the past? Yes, sir, I've testified before this board as 22 Α. 23 well as in the states of Texas, Louisiana, Michigan and 24 Pennsylvania. 25 Q. And are you a registered professional engineer

anywhere? 1 2 Yes, sir, within the State of Texas in the field Α. of petroleum engineering. 3 Are you familiar with Amoco's Application in this 4 Q. matter? 5 6 Α. Yes, sir, I am. 7 Are you a member of the team that made a study of Q. the Bravo dome unit to determine the feasibility and 8 9 desirability of performing additional drilling within the Bravo Dome unit? 10 11 Yes, sir, I was. Α. What was your role as a member of that team? 12 Q. Well, my part was to examine the very detailed 13 Α. 14 infill drilling evaluation based on our computer 15 programming, and compared what that indicated that we would 16 like to do and what we ultimately decided we would like to 17 do with the rules and regulations that govern our activity 18 in the Bravo Dome area. 19 And if exceptions were necessary to implement 20 that particular program, I was to digest our complex 21 computer program and the results it was indicating and put 22 it in a form where we could officially present it to the 23 regulatory body to gain approval for the exceptions. 24 MR. GALLO: At this time we would tender Mr. 25 Griffin as an expert petroleum engineer.

1	EXAMINER CATANACH: He is so qualified.
2	MR. GALLO: Thank you.
3	Q. (By Mr. Gallo) Mr. Griffin, have you prepared or
4	had prepared under your direction and supervision certain
5	exhibits summarizing the results of Amoco's study?
6	A. Yes, sir, I've prepared 11 exhibits.
7	Q. Let's go ahead, then, and turn our attention to
8	what has been previously marked as Amoco Exhibit 11, which
9	I believe is the first of your series of exhibits. Would
10	you please tell us what that shows?
11	A. Okay, Amoco's Exhibit Number 11 is the starting
12	point, the criteria that we use to simultaneously satisfy
13	or call or high-grade the potential drilling opportunities
14	that we might have in the Bravo Dome unit as a result of
15	what our computer program is telling us.
16	There's three bullet points here.
17	We want to locate drilling areas where infill
18	drilling can maximize ultimate recovery, of course.
19	We also want to locate areas where infill
20	drilling will result in wells with relatively high
21	deliverabilities. This first pass, we were looking at
22	wells that generate rates of 2.5 million cubic feet per day
23	or greater. Of course, these areas are closely related to
24	the higher pressure areas.
25	Then finally, we want to identify areas where our

drilling cost and completion cost would be minimized. 1 2 These areas correspond directly to those where current gathering lines exist and, in addition to that, where the 3 current gathering lines have additional capacity that could 4 5 carry additional gas. 6 What type of study did Amoco perform to determine 0. 7 if infill drilling would increase ultimate recovery and where the best spot was to perform that drilling? 8 We performed pretty well sophisticated computer-9 Α. model studies, actually two of them, one for representing 10 11 properties beneath the earth, up through the wellbore, and then the second one was a sophisticated model that modeled 12 13 the surface flow. Have you prepared an exhibit that shows the 14 Q. configuration and interrelation of these two models? 15 16 Yes, sir, that's Amoco's Exhibit Number 12. Α. Let's turn our attention to what we've previously 17 0. marked as Amoco Exhibit 12, and if you would, please, tell 18 19 us what that shows. 20 Okay, Amoco's Exhibit Number 12 is a model or a Α. horizontal cross-section through the Bravo Dome unit. 21 22 What it shows up at the top is surface 23 facilities, including a wellhead, flow lines or gathering And over on the right at the top is the central 24 lines. facility, represented with a square with the letter F in 25

1 it.

2	Now, toward the bottom I've shown the reservoir
3	which the CO ₂ is originating from, and that's labeled the
4	top of the Tubb formation and the base of the Tubb
5	formation.
6	Now, to explain how our model works, I've
7	identified certain points on this exhibit.
8	Looking at the lower left, point "A", that's the
9	inter-well area. Gas flows, of course, when the well is
10	placed on production from the inter-well area, point A to
11	point B. And then from point B it flows, of course, up the
12	wellbore to the wellhead at point C.
13	Now, this is the portion where our reservoir
14	model performs its work. It's a very sophisticated model.
15	It simulates the entire developed area. There's 350 wells
16	out there. The input parameters for this model include the
17	net pay, the porosity, the permeability, as well as the
18	wellbore configuration that represents what we model from
19	point B to C as the gas flows from the reservoir to the
20	surface.
21	Now, I've also shown here the surface model, and
22	that's the model for flow from point C to point F.
23	Included in that model is This flow to our central
24	facility is not entirely radial. It flows into gathering
25	systems. And as this exhibit indicates, the pipe diameters

1	get larger and larger, and that's what's represented by
2	these headers.
3	Now, input into that particular model are pipe
4	lengths, pipe diameters, bends, relative roughness and
5	things of that nature to represent pressure drop as one
6	flows from point C to point F.
7	Now, we merged these models into one composite
8	model. And what we wanted to do, we felt like in order to
9	use these models to predict future performance, we had to
10	calibrate them against some standard. Fortunately, in this
11	case we've had production since 1984, so we have ten years
12	of production that establishes a standard with which to
13	calibrate this model, and that's what we did.
14	The method that we used to calibrate the model is
15	shown on this verbiage on the right-hand side of the
16	exhibit. We first calibrated the reservoir model. We
17	input the reservoir parameters for the model area and the
18	wellbore configuration for each of the 350 active
19	producers.
20	For this first pass, we used our best estimate of
21	reservoir parameters, porosity, permeability and effective
22	wellbore diameter that we got from engineering and geologic
23	studies.
24	Then we allowed the model to run, to simulate
25	production from 1984 through 1995, in monthly increments.

Г

1	The model predicts the flow rate and flowing tubing
2	pressures at point C for each of the 350 wells.
3	We then compared these predicted flow rates with
4	actual flow rates from historical data. And we adjusted
5	the effective wellbore radius, since that was the item that
6	we felt the least secure about in our input data, with
7	We adjusted effective wellbore radius as necessary to
8	approach a match from our simulator to actual field
9	conditions.
10	The reason we had to adjust the effective
11	wellbore radius, because we felt like the reservoir was
12	rather uniform from well to well, so we didn't have great
13	permeability variations. However, each one of these wells
14	has received some sort of fracture stimulation. We know
15	the diameter or the radius of each wellbore, and of course
16	that is one of the components in the flow equation.
17	However, when you fracture-stimulate these wells,
18	it alters the effective wellbore radius somewhat, and in
19	varying matters, and that's what we adjusted to fine-tune
20	this model to calibrate the predicted performance during
21	the historical mode against actual performance.
22	Q. Now, did the model compare the or did you
23	compare the model's predicted pressures with historical
24	pressures as well?
25	A. Yes, sir, and that was at point C.

f

Q. And once you got it calibrated on the reservoir,
 what did you do?

3	A. Then we calibrated our surface model, and that's
4	also shown in the verbiage on the right-hand side. We went
5	again and input the pipe parameters, the diameters, the
6	lengths, the valves, roughness, et cetera, for the
7	gathering system within the model area and the flow rate at
8	point C for each of the 350 active producers. We input
9	inlet pressure at the central facility each month, which
10	varies from 90 pounds to 175 pounds.
11	The surface model was allowed to run to simulate
12	flow and pressure drops at the surface, again, from 1984
13	through 1995 in monthly increments. The model, the surface
14	model, calculates flowing tubing pressures at given rates
15	at point C for each well.
16	Then we compared that flowing tubing pressure
17	with the actual conditions on a monthly basis and adjusted
18	our parameters within our surface model to match historical
19	performance of the flowing tubing pressures at point C.
20	The big unknown for our surface facilities is not
21	pipe diameters or length; those are measurable. However,
22	things like the relative roughness of the pipe or the flow
23	efficiency of the pipe itself, that we can adjust to
24	achieve our history match.
25	And in this particular case at this point C we

STEVEN T. BRENNER, CCR (505) 989-9317 44

	•••
1	would continue our adjusting until our pressures were
2	within one or two pounds of what we actually experienced in
3	the field.
4	Q. And when you reached that plus-or-minus-two-pound
5	match at point C, you considered the model calibrated; is
6	that right?
7	A. That's correct, we considered that both models
8	are then calibrated to the real conditions that exist, both
9	beneath the earth and at the surface, in real life out in
10	the field.
11	And we feel like, then, we have a composite model
12	that's tuned and that is ready for us to use to predict
13	anticipated performance in the area developed of the Bravo
14	Dome unit under various that we might want to pick to
15	examine, such as infill drilling.
16	Q. Can you describe for Mr. Catanach the size of the
17	computer model?
18	A. Yes, the computer model is modeling an area that
19	was shown on Mr. Culpepper's Exhibit 2, which is roughly 40
20	miles in the north-south direction and 24 miles in the
21	east-west direction. The grid size within the model is
22	1320 feet, so we're modeling each governmental quarter-
23	quarter section.
24	But when you talk about size of computer models,
25	the modelers usually like to envision how long it takes to

1	make a single run. And when we flipped the switch on this
2	model Well, when you flip the switch on a normal model,
3	if it takes six or eight hours to run, that's considered a
4	fairly sophisticated, large-scale, fine-tuned model.
5	This particular model for each run takes a little
6	greater than 36 hours per run, which is the biggest model
7	that I'm familiar with. And that's a pretty good size
8	model, take that amount of time to run.
9	Q. Do you have an exhibit which shows the modeled
10	area as well as the surface facilities?
11	A. Yes, sir, that's Amoco's Exhibit Number 13.
12	Q. All right. If you would, please, turn your
13	attention to what we've previously marked as Amoco Exhibit
14	13 and tell us, please, sir, what that shows.
15	A. Amoco's Exhibit Number 13 is a map that's similar
16	It's almost identical to that that Mr. Culpepper
17	presented as Exhibit Number 2. It's a map of the eastern
18	portion of the Bravo Dome area
19	The scale of this map is roughly one inch to
20	16,000 feet. And as you can see, each one of those squares
21	is a section.
22	And it shows the location of 350 wells within the
23	modeled area of the Bravo Dome unit.
24	Also, we talk about legs in reference to our
25	gathering system out there, and I'd like to identify those.

1	Those are color-coded. The legend for the legs is shown on
2	the lower left-hand portion of the exhibit.
3	Plus there's little numbers. They're a little
4	more difficult to see in there. There is The one I'm
5	really looking at is toward the upper portion where our 10
6	recommended infill drilling wells will be located, and
7	that's Leg 9, and you can see a little "9" there.
8	Now, Legs 1 through 7 are generally down in the
9	southern portion of this area, and Legs 1 through 7 were
10	developed from 1979 through 1985.
11	Leg 8, that extends to the northwest from our
12	central facility, was developed in 1993.
13	Then Leg 9, that just goes due north, was
14	developed basically last year.
15	Q. Can you see on this exhibit the central facility
16	where all the gathering lines converge?
17	A. Yes, sir, that's located in the southern portion
18	of the unit, roughly at Township 19 North and Range 34
19	East.
20	Q. And as I understand it, the red outline shows the
21	entire modeled area; is that right?
22	A. That's correct.
23	Q. Do you have an exhibit which shows the results of
24	the history matching part of your computer model study?
25	A. Yes, sir, that's Amoco's next exhibit, Exhibit

1	Number 14.
2	Q. If you would, please, turn your attention to
3	Exhibit 14 and tell us what that shows.
4	A. Well, I'm going to preface my discussion of this
5	exhibit by mentioning, as Mr. Wacker already previously
6	mentioned, that this is almost a perfect reservoir for
7	modeling. That is, there's no major changes over
8	relatively short distances in permeability. And that makes
9	modeling much, much easier.
10	Now, the format of this exhibit on the left side,
11	or the Y axis, is in MCF per day. It goes from zero to
12	roughly 500 million cubic feet per day.
13	And on the bottom is a chronological scale that
14	starts January 31st, 1984, and goes through January 31st,
15	1996. It's divided into annual increments. Each one of
16	those little dashed lines there represents a year.
17	Now, the green line is the actual producing rate.
18	As you can see, production from the unit started in 1984,
19	and the current rate is roughly 400 million cubic feet of
20	gas per day.
21	The red squares are the results of our history
22	match, our modeling results. And you can see I've
23	represented four per year, so this is the result of a
24	history matching at the end of each quarter. They almost
25	It's almost a perfect history match, again, due to the

r

STEVEN T. BRENNER, CCR (505) 989-9317 48

outstanding pay quality in this reservoir. 1 And what does the excellent nature of this 2 ο. 3 history match tell you about the quality and reliability of your model? 4 Well, an excellent history match such as this 5 Α. 6 tells us two things. 7 One, that our reservoir and gathering system parameters that we've input into the model are almost 8 9 exactly as they appear in nature, in the field, and hence 10 we've got almost a perfect history match here. The second thing this near-perfect history match 11 12 tells us is that it will be an excellent tool for predicting future performance under various scenarios. 13 14 And that's the key. You want an excellent 15 history match to know that your model is accurately 16 calibrated, so it's an excellent tool to predict 17 performance in the future. 18 Q. And this history match is for the entire modeled 19 area; is that right? 20 That's correct. Α. Do you have history matches that you'll show for 21 Q. individual wells, based on the final model run? 22 Yes, sir, and those individual wells, as Mr. 23 Α. 24 Johnson mentioned, are located -- they're shown as green dots on Amoco's Exhibit Number 2. 25

1	Q. Okay, but we're not going to get to those just
2	yet?
3	A. A little later, yes, sir.
4	Q. Now, did this model resolve any of the questions
5	you originally posed on Exhibit 11 about the criteria for
6	infill drilling?
7	A. Yes, sir, it did.
8	Q. And what did the model help you determine?
9	A. Okay, as I showed on Exhibit Number 1, we wanted
10	to use the model to identify any areas, if they do exist,
11	where we can anticipate an increase in ultimate recovery
12	through infill drilling, and the model did provide that
13	answer.
14	We also wanted to know within those areas, if we
15	could increase ultimate recovery, could we expect a
16	respectable producing rate to make the economics
17	attractive? And it did tell us that answer.
18	Q. Do you have an exhibit that shows the increase of
19	ultimate recovery, the model predicted, as we place infill
20	drilling wells at various locations within the unit?
21	A. Yes, sir.
22	Q. And that's Exhibit 15?
23	A. Yes, sir, Exhibit Number 15.
24	Q. All right, let's turn our attention to what we've
25	previously marked as Exhibit Number 15, then, and if you

would, please tell us what that shows. 1 Amoco's Exhibit Number 15 is a two-part 2 Α. Okav. exhibit. On the left side I've shown a model grid 3 configuration. This is simply just four sections. 4 I've 5 located an existing well in location number G in each one of these sections. 6 7 On the right side is the same four-section grid, 8 except that I've added contours that were generated by the 9 model to show the anticipated increase in ultimate recovery as one locates an infill well and as he moves about these 10 11 existing units with the existing wells. Intuitively, you feel like that if you locate a 12 well, geometrically, the maximum distance away from 13 14 existing wells, that that's where you could locate a well and gain or achieve a maximum increase in ultimate 15 16 recovery. 17 That may or may not be true. That would only 18 occur if all the characteristics of each of the four wells 19 were identical. 20 So the model helped us locate where we should drill an infill well, if one was warranted, the area where 21 we would get the maximum increase in ultimate recovery --22 23 in this case, and you can see this, at the exact geometric center of a fivespot. 24 25 However, the thing where the model proved the

1	most benefit was telling us how much incremental recovery
2	we could expect, because intuitively you put your well
3	where there are no wells, at least within the fivespot.
4	But the amount of incremental recovery, that's the key
5	question that the model was used to answer.
6	Q. And Exhibit 15, as I understand it, the
7	concentric circles radiating areally from the wellbores are
8	percents of increased recovery; is that right?
9	A. That's correct. And of course, it's zero where
10	existing wells were, and it moves out to a maximum of seven
11	percent incremental increased recovery.
12	Q. And as to the 13 unorthodox locations involved in
13	this Application, have you determined how much additional
14	CO ₂ we will recover by drilling wells at unorthodox versus
15	orthodox locations?
16	A. Yes, sir, on the average. But the incremental
17	increase in recovery moving from an orthodox location I
18	mean yeah, from an orthodox location to an unorthodox
19	location will exceed one BCF of gas.
20	Q. So for these 13 proposed wells, no less than 13
21	BCF of additional reserves will be recovered by drilling at
22	unorthodox locations versus orthodox locations?
23	A. That's correct.
24	Q. If you would, now, turning back to your Exhibit
25	11 or our Exhibit 11, explain how you went about high-

1 grading the drilling opportunities to come up with the 2 location that we've proposed here today.

A. Okay, I took Amoco's Exhibit Number 11 and I used the format from it and expanded it a little bit, and that's included as Amoco's Exhibit Number 16, which shows how we used our high-grading method to select a given number of wells for our initial infill drilling program, 14 wells in this case. Looking at Exhibit Number 16, it also -- it duplicates the criteria that we examine.

We of course wanted to locate an area where infill drilling can maximize ultimate recovery. We first placed wells in every undrilled location between existing wells, so that would be roughly 350 wells. Then we surrounded the existing developed area with a halo of wells to evaluate those at the same time.

After looking at item number 2, after our model was run in the predictive mode, we sorted the wells by the highest predicted producing rate, which also means the cumulative gas production, for the first three years.

20 The predictive mode, by the way, started January 21 1st, 1996.

From that group or from that high-grading, we selected the top 35 candidates, based on the highest threeyear producing rate or cumulative. With those 35 wells, we further simulated their anticipated performance for a total

1 of 20 years. Then we sorted those again by the highest 2 cumulative.

3 At this point we've got a sort of 35 wells, when we move down into our second criteria, which is to locate 4 5 an area where the infill drilling will result in wells with 6 relatively high deliverabilities. We selected those. As T mentioned, our computer model will tell us how much each 7 8 well will produce if it were drilled. And we eliminated 9 all of those wells in that 35-well group with a producing 10 capability less than 2.5 million cubic feet per day. Now, with those wells that we had left, we 11 12 entered into our third criteria, which was to minimize the cost of drilling, completing and hooking up the wells, by 13 locating them near existing surface facilities. 14 We 15 eliminated the wells which were not located close to the 16 existing gathering lines, as well as those that are located 17 near existing gathering lines but the gathering lines were relatively loaded. This was --18

19 Q. What was the result -- Sorry. What was the 20 result of that analysis?

A. This resulted -- when we started out with -- We
started out with 450 potential candidates. Those were
high-graded first to 35, and then we ended up under this
particular program, 14 potential infill drilling locations.
Q. And are all of those wells located at unorthodox

1	locations?
2	A. No, sir, 13 are located at unorthodox locations
3	and one at an orthodox location.
4	Q. And if you would, please, describe for us why
5	unorthodox versus orthodox locations are necessary here.
6	A. Well, the rules require that wells be 1650 feet
7	from the unit boundary or the section boundary, as well as
8	330 feet from any quarter-section boundary.
9	Of course, all of these wells, as we saw on the
10	previous exhibit, Exhibit Number 15, will be located very
11	close to the corner of each section. Therefore, they will
12	be unorthodox locations, all of them but one of them,
13	anyway.
14	Q. And so to drill that close to the section
15	boundary, we needed an exception to the spacing rule for
16	the Bravo Dome unit?
17	A. That's correct.
18	Q. All right. Then let's turn back to Exhibit 15.
19	Which groups of wells are represented by the recovery
20	profile distribution shown on this exhibit?
21	A. This Amoco's Exhibit 15, the production
22	profile that's indicated on the right-hand side is
23	represented It's an average of the 14 proposed
24	development wells we are recommending be drilled.
25	The range actually was from 6.5 In the maximum

1	increase in ultimate recovery area, was from 6.5 to 7.5
2	percent. And here I've shown the average as 7 percent.
3	Q. And as I understand it, our Exhibit 2, again,
4	shows where these 14 wells are located in the areas with
5	the green box, the brown box, and the yellow box; is that
6	right?
7	A. That's correct.
8	Q. Okay. And if you would just describe for the
9	Examiner how Exhibit 2 fits into your analysis of the
10	infill drilling program.
11	A. Okay, I'm looking at Exhibit 2 that was
12	introduced by Mr. Culpepper, and again it shows the three
13	basic areas where we would like to infill drill.
14	To the north and we refer to it as the Leg 9
15	area the northern Leg 9 area, you see six wells outlined
16	in green. The southern Leg 9 area, which is the middle
17	area outlined in dark brown, there's four wells. That's
18	the southern Leg 9 area. Then down in the south is the Leg
19	6 and 7 area, outlined in yellow. There's four wells down
20	there.
21	Now, the three green dots Mr. Johnson I'm glad
22	he was able to see those. I was worried because the dots
23	were kind of small. But what I wanted also to show was the
24	results of individual well history matching within the
25	vicinity of these three areas.

Now, of course the Leg 9 area was developed in 1 1995, so I didn't have a whole lot of history versus 2 computer performance to compare, so I moved over here into 3 Leg 9, and that's -- I'm going to be comparing the 4 5 northwesternmost green dot with that in the upper Leg 9 6 area wells. 7 Moving on down is the middle green dot which we consider representative of those in the southern Leg 9 8 9 area. Then down in the south you see a green dot just to 10 the north of the yellowed area that I'll be showing the 11 actual performance versus the history match on that 12 individual well. 13 And as I understand it now, our next three 0. exhibits, which we've labeled 17A, -B and -C, are 14 15 individual history matches for those three wells 16 represented by those three green dots? 17 That's correct. Α. Let's go ahead, then, and turn our attention to 18 0. what's been previously marked as Exhibit 17A, and if you 19 would tell us what that shows. 20 21 Α. Okay, Amoco's Exhibit 17A, the format is the same 22 as I previously showed for the fieldwide model matching, 23 and that was Exhibit Number 14. This particular exhibit is 24 a lot of Well Number 081G, which is located in Township 21 25 North, Range 33 East. It was the well located up in the

> STEVEN T. BRENNER, CCR (505) 989-9317

57

1 upper northwest portion of the unit that's offsetting the 2 upper Leg 9 area.

And it shows -- Now, this is in the Leg 8 area, and as I mentioned earlier in my testimony, it first came on production in 1993. And you can see a relatively good history match in this case, so we feel like, of course, in this area our model is calibrated.

I would like to point out, now, that the green is 8 9 the actual production, and the red diamonds is the model 10 prediction. You can see in the early days -- and this will 11 occur on the next two exhibits also -- that the model predicted flow rates as less than that which actually 12 occurred in the early stages of production from the well. 13 That's because the model grid is guite large in relation to 14 a wellbore. 15

The model grid size is 1320 feet in each 16 direction, and of course a wellbore may be a foot by a 17 Therefore what's happening in actual production, 18 foot. there's some flush production that's occurring -- that 19 occurs in actual conditions that's not able to be seen by 20 21 the model with its larger grid. So it takes a little while 22 for the model to catch up, and that's what you see there. 23 But after that, after the model does catch it, it 24 appears to be an excellent history match. 25 Now, moving on to Amoco's Exhibit Number 17B,

1	this is the green dot that was in the middle of the
2	previous exhibit, and this is for Well Number 161G, which
3	is located in Township 20 North, Range 34 East, and this
4	represents a history match in the area of wells in the
5	lower Leg 9 area. Again, the model had to catch up due to
6	flush production when it came on in late 1984, but other
7	than that it's an excellent history match that we saw, even
8	on a fieldwide basis. But this is for the individual well.
9	Now, moving on down to a well representative of
10	the southern area, the Leg 6, Leg 7 area, I have on Exhibit
11	Number 17C the model versus actual for well Number 041G,
12	which is located in Township 18 North, Range 35 East. And
13	you can see again an excellent history match on an
14	individual basis, as we saw with the fieldwide model.
15	Q. Now, when you couple the excellent history match
16	you have on a well basis with the match you had on a
17	fieldwide basis, did it lead you to any conclusion about
18	the model?
19	A. Uh-huh.
20	Q. And what's that?
21	A. I mean, yes, sir.
22	Based on my examination of these individual
23	history matches and I looked at several more besides
24	these it indicates that again it really confirms that
25	the model is a very good tool to predict performance under

various scenarios. 1 Now, does your simulator model the reservoir 2 0. 3 pressures in the inter-well area in both the calibration 4 and predictive mode? Α. Yes. 5 6 And does the model allow you to generate isobar Q. 7 maps to show that? 8 Α. Yes, sir, it does. We can generate isobar maps or pressure maps, pressure distribution maps, really 9 10 anytime in the life cycle, whether I'm in the history mode or the predictive mode. 11 12 Do those isobar maps help you in your examination ο. for the reason these 14 wells were selected during the 13 14 high-grading process? Yes, sir. Again, one can intuitively feel like 15 Α. 16 the best place to locate them is in the geometric center of a fivespot, and we see relatively large incremental 17 18 recoveries for some of our wells, but we would like to 19 generate pressure isobar maps to help us feel comfortable 20 that the reason these wells are indicated by the computer is that these are located in wells that are of relatively 21 22 high pressure, and that's where the isobar maps become an essential tool. 23 And our next two exhibits, 18 and 19, which 24 ο. actually also are our last two exhibits, as I understand 25

1	it, show those isobar maps and how they helped you
2	determine locations for these wells?
3	A. That's correct.
4	Q. If you would, then, please, turn your attention
5	to Exhibit 18 and tell us what that shows.
6	A. Amoco's Exhibit Number 18 is also a two-part
7	exhibit. On the left side I've shown the Leg 9 area wells.
8	Those scribed by the green at the top are the six wells
9	located in the upper Leg 9. Those scribed by the brown
10	toward the lower right is the lower Leg 9 area.
11	Now, over on the right-hand side I've shown the
12	same map, except the green and the brown scribing is
13	removed. However, it's the isobar map.
14	Now, this isobar map occurs after a particular
15	point in time. It occurs after a year in the predictive
16	mode of our computer run, and it shows pressures after the
17	wells were shut in for 24 hours. And you can see that
18	where there are existing wells, there are pressure sinks.
19	The exceptions are located down toward the lower
20	right-hand portion. You see Well Number 181K and 191F, and
21	these wells are located in the Leg 9 area, and they are
22	relatively new, and the effects of their withdrawals have
23	not yet been seen, is what the deal is there. The other
24	wells have been on a little longer than these.
25	You can also see the location of our proposed

-

infill drilling wells, and they are located exclusively in 1 2 areas of higher pressure. Now, this tells us two things. One, that they're 3 4 located where we can expect to maximize our increase in 5 ultimate recovery, as well as a maximum incremental 6 producing rate, as compared to other areas. 7 Now, if we turn our attention to what's been 0. previously marked as Exhibit 19, as I understand it, this 8 9 shows the four wells in the more southern part of the unit. 10 Tell us, please, what that shows. That's correct. Amoco's Exhibit Number 19 is a 11 Α. 12 format similar as our Exhibit Number 18. It shows the four 13 wells in the southern area. Looking at the left, the wells that are located to -- the three wells on the -- to the 14 15 right in the square are the unorthodox-location wells, with 16 proposed Well Number 072K in the upper left is the well 17 that's at an orthodox location. Now, on the right-hand side, again, is the isobar 18 map. Now, the isobars terminate at this northwest-19 20 southeast trending fault that Mr. Wacker referred to 21 earlier. All of the pressures in all of those wells on the north side -- or on the northeast side of that fault are 22 23 roughly 200 pounds, so you can see that this fault in this 24 area is definitely sealing. 25 Now, the drilling opportunities down here in the

south in this particular area are different than those in 1 the north in that there's two reasons these wells will 2 recover incremental reserves. 3 4 The first, of course, they're located in the 5 inter-well area, between wells. 6 The second, as Mr. Wacker pointed out, is, 7 they're in an area between the existing wells and this 8 sealing fault where there's relatively high pressure and there's a lot of reserves out there that are yet to be 9 10 recovered or could not be recovered with existing wells. So as to the northern area, there's an 11 ο. engineering basis for the need for the wells at unorthodox 12 locations. As to the southern area there is both an 13 14 engineering and geologic reason for the wells? 15 Α. That's correct. 16 Q. To summarize, then, have you made a comparison of whether wells at unorthodox locations will recover more 17 reserves than wells at orthodox locations? 18 19 Yes, sir, we have. Α. And what was the result of that analysis? 20 Q. The results are that the wells at unorthodox 21 Α. 22 locations will recover typically at least a BCF of reserves more than if that well were located at an orthodox 23 location. 24 So the bottom line is, if we don't get permission 25 Q.

1	to drill these 13 wells in this Application at unorthodox
2	locations, something more than 13 BCF of CO_2 will be left
3	in the ground?
4	A. That's correct.
5	Q. In your opinion, will the drilling of the
6	proposed wells at the proposed locations increase the
7	ultimate recovery of CO ₂ from the unit and prevent the
8	waste of CO ₂ ?
9	A. Yes.
10	Q. Now, on our Exhibit 18, the isobar exhibit, there
11	appear to be other additional areas for possible infill
12	drilling; is that right?
13	A. That's correct.
14	Q. At this time do we intend to drill in those
15	areas?
16	A. We're looking at those. As you recall in my
17	testimony, we initially high-graded our list of 450
18	candidates down to 35. We selected the top 14 candidates,
19	but that left 21, at least in that group, that we're still
20	looking at. Many of those are located in this Leg 9 area,
21	in these higher-pressure areas not indicated by existing
22	wells. 、
23	We were definitely We decided on these first
24	14, and now we're looking at our second grouping and
25	anticipate one or more wells might come out of that

evaluation. 1 Would the analysis and justification for those 2 Q. wells be the same as what we presented here today? 3 Yes, sir, it would be almost identical. 4 Α. Does Amoco request that future applications be 5 Q. granted administratively, pursuant to Rule 104 or that an 6 7 administrative procedure be established by this order? 8 Yes, sir. Α. MR. GALLO: At this time I have no further 9 10 questions for Mr. Griffin. Oh, and I'd move to admit our Exhibits 11 through 11 19. 12 EXAMINER CATANACH: Exhibits 11 through 19 will 13 be admitted as evidence. 14 15 EXAMINATION BY EXAMINER CATANACH: 16 Mr. Griffin, once you have all your isobar data 17 Q. and everything else, how do you specifically go about 18 locating a well at any given location? 19 20 Α. The computer actually picks it out, down to 21 roughly a quarter section, down to a 40-acre location, 22 because we can move those wells around in that model, we 23 can place them anywhere we want to in each section. 24 And the computer model tells us, of course -- We 25 output these isobar maps to kind of give us a hint as to

1	where we ought to place them in our model in the first
2	place, and that's in the area of the highest pressures.
3	Q. By fine-tuning these locations, will you recover
4	more reserves in the infill well?
5	A. Yes. Incremental recoverable?
6	Q. Yes.
7	A. Yes, sir. Yes, sir.
8	Q. Do you know what the range of recoveries on these
9	infill wells is?
10	A. Not exactly. I know they're greater than a BCF
11	though.
12	MR. GALLO: I would point out, Mr. Catanach, that
13	one of the reasons we didn't give a little bit more
14	specificity is because a lot of proprietary information
15	goes into ultimate recoveries and reservoir ultimate
16	production from the reservoir, a lot of things that we
17	don't really want to have in the public record, and so
18	that's why we used just the we used a number that we
19	felt could substantiate the wells, and didn't get more
20	specific on that.
21	Q. (By Examiner Catanach) Basically, you're saying
22	that drilling at these unorthodox locations, you'll recover
23	1 BCF more than if you had to drill at standard locations?
24	A. That's correct.
25	Q. That's what you're using to justify it?

	67
1	A. Yes, sir.
2	MR. GALLO: And I hope we were clear in saying
3	that that was the bare minimum, that we were going to be at
4	least one BCF and that it would be something more than
5	that.
6	EXAMINER CATANACH: Right.
7	Q. (By Examiner Catanach) Now, as I understand it,
8	these infill wells will recover gas that will not be
9	recovered by the existing wells?
10	A. That's correct.
11	Q. It's not just accelerating it, but it's
12	A. It's incremental recovery, a BCF, yes, sir.
13	Q. There's a possible 21 more wells that you might
14	drill eventually?
15	A. I hate to place a number on it. I just used that
16	as an example to show that there were 35 that passed our
17	original criteria. It could be more than 21. It could be
18	less, of course. It could be more than 21. But we got to
19	this point with this criteria that we set out, 14 of these
20	wells popped out of our analysis. Now, we start looking at
21	the next group in detail.
22	Q. Is it possible that your criteria could change?
23	A. Yes, sir.
24	Q. Is that dependent on, say, economics?
25	A. Yes, sir.

1	Q. The model that you guys ran, is it two separate
2	models, or is it one that incorporates surface and
3	downhole?
4	A. It's two separate models. The downhole model
5	models through the reservoir down to the wellhead
6	Q. Uh-huh.
7	A and then the other one models just surface
8	conditions. But we marry them where they run together,
9	basically, because once those models We calibrated them
10	separately, and once they were calibrated they run
11	together, they run predicting the flow from point A to the
12	bottomhole at point B, up to the wellhead at point C, on up
13	through our gathering system and all the junctures and
14	everything, D and E, to the tailgate of that central
15	facility at point F.
16	Q. So your history match on Exhibit 14, that
17	represents both models combined?
18	A. Running together, yes, sir. That's one reason
19	why it takes so long, 36 hours plus.
20	EXAMINATION
21	BY MR. JOHNSON:
22	Q. Mr. Griffin, these areas up here on Leg 9
23	A. Yes, sir.
24	Q the bulk of those wells up there are
25	tubingless completions. Did that have any real big effect

68

1	on your modeling when you did that, and especially when you
2	started making these isobar maps?
3	A. Whether they're tubingless completion or cased
4	and perforated I mean, however they're completed, the
5	thing that we adjusted to fine-tune that model was the
6	effective wellbore diameter. And therefore that took into
7	consideration whatever completion technique that we used,
8	regardless of whether that well was had a drill diameter
9	of 4 1/2 inches or a drill diameter of 7 $5/8$.
10	Q. That's built into your modeling?
11	A. Yes, sir. Yes, sir.
12	Q. These 14 wells you're proposing to drill, are
13	they all going to be fiberglass casing, or do you know?
14	A. I don't know. I don't know that.
15	Q. Are these 14 locations specifically designed to
16	achieve better recovery in the long run, or is there
17	something going on at the plant, with the demand for gas
18	A. There is a demand
19	Q justifying these locations?
20	A. There is a demand for the gas that we anticipate
21	to be incrementally produced from these wells.
22	The primary driving force was to increase
23	ultimate recovery, but of course we married, you know, both
24	criteria. If we could increase ultimate recovery and had
25	no demand for the gas, you know, then no pay out. So they

have to be -- It has to be a simultaneous circumstance. 1 (Off the record) 2 EXAMINER CATANACH: I believe that's all we have. 3 MR. CARR: That concludes our presentation in 4 5 this case, Mr. Catanach. EXAMINER CATANACH: Okay, just -- The amended 6 7 Application reflects the current correct locations for the 13 wells; is that correct? 8 MR. CARR: Yes, sir, it does. 9 10 EXAMINER CATANACH: Okay. And I think we've agreed that there's no need to readvertise the case or 11 continue it? 12 13 MR. CARR: It would be exactly the same as what 14 we've gone out with before. Yeah. Okay, I think that's 15 EXAMINER CATANACH: 16 all we have in the case. 17 If there's nothing further, Case Number 11,497 will be taken under advisement. 18 (Thereupon, these proceedings were concluded at 19 20 2:40 p.m.) I dowhereby certify that the foregoing is 21 a complete record of the proceedings in the Examiner hearing of Case No. 1497, heard by me on 1996. 22 23 , Examiner 24 Oil Conservation Division 25

CERTIFICATE OF REPORTER

STATE OF NEW MEXICO)) ss. COUNTY OF SANTA FE)

I, Steven T. Brenner, Certified Court Reporter and Notary Public, HEREBY CERTIFY that the foregoing transcript of proceedings before the Oil Conservation Division was reported by me; that I transcribed my notes; and that the foregoing is a true and accurate record of the proceedings.

I FURTHER CERTIFY that I am not a relative or employee of any of the parties or attorneys involved in this matter and that I have no personal interest in the final disposition of this matter.

WITNESS MY HAND AND SEAL April 2nd, 1996.

STEVEN T. BRENNER CCR No. 7

Tolun L

Fine -

My commission expires: October 14, 1998