STATE OF NEW MEXICO

ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT

OIL CONSERVATION DIVISION

IN THE MATTER OF THE HEARING CALLED BY THE OIL CONSERVATION DIVISION FOR THE PURPOSE OF CONSIDERING:

CASE NO. 12,181

ORIGINAL

)

)

APPLICATION OF DAVID H. ARRINGTON OIL AND GAS, INC., FOR AN UNORTHODOX LOCATION AND FOR AN EXCEPTION TO DIVISION RULE 104.D (3) FOR SIMULTANEOUS) DEDICATION, LEA COUNTY, NEW MEXICO

REPORTER'S TRANSCRIPT OF PROCEEDINGS

EXAMINER HEARING

BEFORE: DAVID R. CATANACH, Hearing Examiner

August 5th, 1999

Santa Fe, New Mexico

OIL CONSERVENDIN DIV. 93 AUG 30 AN 8: 51 This matter came on for hearing before the New

Mexico Oil Conservation Division, DAVID R. CATANACH, Hearing Examiner, on Thursday, August 5th, 1999, at the New Mexico Energy, Minerals and Natural Resources Department, Porter Hall, 2040 South Pacheco, Santa Fe, New Mexico, Steven T. Brenner, Certified Court Reporter No. 7 for the State of New Mexico.

STEVEN T. BRENNER, CCR (505) 989-9317

1

INDEX

August 5th, 1999 Examiner Hearing CASE NO. 12,181

-

PAGE

8

37

- 3 APPEARANCES APPLICANT'S WITNESSES: BILL D. BAKER, JR. (Geologist)
 - Direct Examination by Mr. Kellahin Examination by Examiner Catanach 26

REPORTER'S CERTIFICATE

* * *

EXHIBITS

Applicant's		Identified	Admitted
Exhibit	1	10	26
Exhibit	2	11	26
Exhibit	3	15	26
Exhibit	4	21	26
Exhibit	5	16	26
Exhibit	6	21	26
Exhibit	7	24	26
Exhibit	8	5	-
Exhibit	9	7	-
Exhibit	10	6	_
		* * *	

A P P E A R A N C E S

FOR THE DIVISION:

BRUCE ROGOFF Attorney at Law Legal Counsel to the Division 2040 South Pacheco Santa Fe, New Mexico 87505

FOR THE APPLICANT:

KELLAHIN & KELLAHIN 117 N. Guadalupe P.O. Box 2265 Santa Fe, New Mexico 87504-2265 By: W. THOMAS KELLAHIN

FOR YATES PETROLEUM CORPORATION:

CAMPBELL, CARR, BERGE and SHERIDAN, P.A. Suite 1 - 110 N. Guadalupe P.O. Box 2208 Santa Fe, New Mexico 87504-2208 By: WILLIAM F. CARR

* * *

WHEREUPON, the following proceedings were had at 1 2 8:30 a.m.: EXAMINER CATANACH: At this time we'll call Case 3 12,181, which is the Application of David H. Arrington Oil 4 5 and Gas, Inc., for an unorthodox location and for an 6 exception to Division Rule 104.D (3) for simultaneous 7 dedication, Lea County, New Mexico. 8 Call for appearances in this case. MR. KELLAHIN: Mr. Examiner, I'm Tom Kellahin of 9 10 the Santa Fe law firm of Kellahin and Kellahin, appearing 11 on behalf of the Applicant. I have one witness to be 12 sworn. 13 EXAMINER CATANACH: Additional appearances? 14 MR. CARR: May it please the Examiner, my name is William F. Carr with the Santa Fe law firm Campbell, Carr, 15 16 Berge and Sheridan. We represent Yates Petroleum 17 Corporation in this matter. Mr. Examiner, I can advise you that Yates is 18 19 prepared to withdraw the objection it filed in this case. 20 EXAMINER CATANACH: Any additional appearances? 21 Do you have any witnesses, Mr. Carr? MR. CARR: No, I do not. 22 23 EXAMINER CATANACH: Okay. Will the witness 24 please stand to be sworn in? 25 (Thereupon, the witness was sworn.)

	5
1	MR. KELLAHIN: Mr. Catanach, if I may provide you
2	a brief summary, I can explain the status of the case.
3	EXAMINER CATANACH: Okay.
4	MR. KELLAHIN: If you'll look at Exhibit Number
5	8, which is a plat of this area, you'll see the
6	configurations of some gas-well dots. And if you'll look
7	closely in the area contained within the colored dots,
8	you'll find Section 14. We're dealing with the west half
9	of Section 14 insofar as we're forming a 320-acre spacing
10	unit for deep gas.
11	Within the west half of 14 is a yellowish-green
12	circle. That's the existing gas well on this spacing unit.
13	It's operated by Mark Shidler. It's the Monsanto State Com
14	Number 1 well.
15	Mr. Arrington is seeking to drill a well at an
16	unorthodox gas well location where the red triangle is
17	located. That location is 330 out of the north and west
18	corner of that 40-acre tract. His primary objective is to
19	drill a Strawn oil well.
20	Mr. Stogner has determined for us that this
21	location is adjacent to and currently subject to inclusion
22	in the Northwest Shoe Bar-Strawn Oil Pool. That pool is
23	spaced on 40 acres. So the oil well to the Strawn would be
24	standard and not subject to a location penalty.
25	Because of the proximity of the Strawn to the

-

deeper gas incrementally, it will cost Arrington only 1 approximately \$83,000, \$85,000 to go ahead and drill to the 2 deeper zones. 3 In order to do so, we would be at an unorthodox 4 gas well location. And as you look at the map, that 5 location encroaches on the tracts in Section 11. 6 Those two 7 wells are operated by Yates. 8 If you look to the west in Section 10, the east half, those two wells are operated by Yates. They were the 9 10 subject of earlier hearings in which the Brunson sand of 11 the Morrow formation is being produced in those two wells as exception from the second-well rule that we currently 12 have under Rule 104. 13 The west half of 10 is Ocean's well. 14 It's 15 producing out of the Carlisle sand. You may remember that well -- it was a big blowout -- and that everyone else has 16 been searching for the Carlisle sand. It's the only well 17 18 that produces from the Carlisle sand. 19 The rest of them shown on the plat with the color code produce from the Brunson sand. And, as the geologist 20 21 will show you, it's slightly shallower and 22 stratigraphically different. 23 We are seeking approval, then, to have the 24 Division approve this unorthodox location. In order to 25 facilitate that, if you'll look at Exhibit 10 that's got my

1 letterhead on it, that's the stipulated penalty that has 2 the approval of Ocean and Yates, and it is simply this, 3 that in the event of deep gas production below the top of 4 the Wolfcamp, the well is subject to a 50-percent 5 production penalty. We will apply the standard Division 6 deliverability testing for that well. It will be semi-7 annual, and we'll produce it accordingly.

8 In addition, there are other stipulations between 9 the parties with regards to corresponding waivers of 10 objection and exchange of data. We believe with that 11 stipulated penalty, then, the correlative rights have been 12 satisfied as to all parties.

The last remaining party to describe are the interest owners in Section 15. It currently is undrilled as to the deep gas. Chesapeake Operating, Inc., has proposed and obtained approval for an east-half dedication for deep gas. With their assistance, we've got a notification list of all the owners in the northwest quarter, northeast quarter, the southeast quarter.

And on the notice list, Exhibit 9, all those names are identified. they were all sent appropriate notice of this hearing, and there is no objection from any of the interest owners in Section 15. There was an entry of appearance by Mr. Bruce on behalf of Ocean, and then Mr. Carr entered an appearance for Nearburg. Nearburg's

1	interest appears within the context of Section 15.
2	With that introduction, then, Mr. Catanach, we'll
3	proceed to have Mr. Bill Baker, Mr. Arrington's petroleum
4	geologist, describe for you the geology.
5	<u>BILL D. BAKER, JR.</u> ,
6	the witness herein, after having been first duly sworn upon
7	his oath, was examined and testified as follows:
8	DIRECT EXAMINATION
9	BY MR. KELLAHIN:
10	Q. Mr. Baker, for the record, sir, would you please
11	state your name and occupation?
12	A. Bill Baker, and I'm exploration manager for David
13	H. Arrington Oil and Gas in Midland, Texas.
14	Q. Are you also a qualified petroleum geologist, Mr.
15	Baker?
16	A. Yes, sir.
17	Q. On prior occasions, have you testified in that
18	capacity before this agency?
19	A. Yes, sir, I have.
20	Q. As part of your responsibilities for Mr.
21	Arrington, including those of a petroleum geologist, have
22	you and others under your control and direction developed a
23	geologic evaluation of this particular location and this
24	prospect?
25	A. Yes, sir, we have.

1	Q. And based upon that evaluation, have you come to
2	certain geologic conclusions?
3	A. Yes, sir, we have.
4	Q. In your opinion, in the west half of Section 14,
5	is the proposed well to be drilled at the optimum location
6	in which to attempt to access and produce hydrocarbons from
7	the Strawn formation?
8	A. Yes, sir, it is.
9	Q. Why are you proposing to utilize this same
10	wellbore to access the deeper gas reservoirs that are
11	spaced on 320-acre gas spacing?
12	A. Because I'm prepared to show today that there's
13	justification to drill on down deeper for the Atoka Brunson
14	zone that has not been adequately depleted by the well in
15	the south half of Section 14.
16	Q. Are the circumstances available to you in Section
17	14 such that you could drill from surface to total depth a
18	second wellbore, if you will, to penetrate and produce the
19	deep gas?
20	A. Yes, sir.
21	Q. Could you do that economically, though, in light
22	of the potential reserves for the deep gas?
23	A. No, sir.
24	Q. Your proposed plan, then, is to utilize the
25	Mayfly well?

1	A. Yes, sir.
2	Q. And to access the Strawn, take it down
3	incrementally to the deeper zones and test the deep gas?
4	A. Yes, sir.
5	Q. Do you have a geologic opinion as to whether this
6	well is necessary in light of the fact that Mr. Shidler,
7	Mr. Mark Shidler, has a well in the southwest quarter of
8	this spacing unit?
9	A. Yes, sir.
10	Q. And what is that opinion?
11	A. That is that his will not drain the reserves in
12	the north half of this unit, and I'm prepared to show that
13	through my exhibits.
14	Q. Is Mr. Arrington prepared to enter into an
15	agreement with Mr. Shidler so that the Division has but one
16	single designated operator for the deep gas formations
17	being produced out of the Townsend-Morrow Gas Pool?
18	A. Yes, sir.
19	Q. Let's look at your analysis. Let's start at
20	Exhibit 1, take a moment and have you explain to us what it
21	is that we're looking at.
22	A. Okay, actually if you don't mind, you'll need
23	Exhibit 2 to complement Exhibit 1 here, to help us explain
24	it.
25	Exhibit 1 is taken from a 3-D data seismic

_--

1	data set that is conducted over the prospect area.
2	Q. What would you call Exhibit 1?
3	A. Exhibit 1 is a Strawn algal isochron map, taken
4	from the 3-D data set that we acquired over this.
5	Q. All right. When we look at Exhibit 2, what do
6	you call this?
7	A. Okay, Exhibit 2 is an arbitrary line taken from
8	our 3-D data set that shows the zero crossing the line at
9	the top of the Strawn B and the base of the Strawn B and
10	will give you what we consider to be our algal isochron.
11	And if you'll look at Exhibit 2, and at the very
12	top of it, you'll see the top of the Strawn B and you'll
13	see where I've labeled the base of the Strawn B. If you'll
14	go along and follow those blue lines, you'll see where the
15	Strawn thickens. Okay, that thickening right there is what
16	is represented in Exhibit 1. That's the algal isochron.
17	This is a standard practice for identifying these algal
18	mounds out in this West Lovington area.
19	Q. To aid Mr. Catanach in seeing what you've just
20	described, have you color-coded that interval in any way
21	that he can see?
22	A. Yes, sir, it's the area colored in yellow.
23	Q. And that represents, again, what, sir?
24	A. That indicates the algal thickness from the top
25	of the Strawn B to the base of the Strawn B, the

-

1	thickening.
2	Q. There's a vertical red line that intersects that
3	yellow pod?
4	A. Yes, sir.
5	Q. What does that represent?
6	A. That is our current proposed location for the
7	Mayfly 14-1.
8	Q. As we read horizontally, what's the scale of each
9	of those intervals or data points?
10	A. Okay, that's one millisecond, is what you're
11	looking on your Exhibit 1, and those are basically the
12	contour intervals, and one millisecond equates to
13	approximately eight to ten feet.
14	Q. When we look at Exhibit 2 and we're looking at
15	the horizontal scale on Exhibit 2, the data point is
16	pulsed, if you will
17	A. Uh-huh.
18	Q at various horizontal intervals. What are
19	those?
20	A. Once again, those are time intervals, is what
21	they are, showing and they are measured in well, you
22	can figure anything from one-millisecond up to ten-
23	millisecond intervals, showing the thickness of the Strawn
24	in here.
25	Q. Each interval represents what distance in

footage? 1 Okay, if you're going in a horizontal mode, it's 2 Α. 110-foot spacing. 3 If you were to move the Mayfly 14 well in a 4 Q. 5 position in the west half of 14 so that it would also be a 6 standard deep gas well location, you would have to be at 7 least 1650 from the north line. To do that, what happens 8 to your opportunity in the Strawn? You have no opportunity in the Strawn. 9 Α. 10 Q. Why is that? 11 Basically, as you can see, we would move Α. 12 approximately three to four traces further back to the 13 south, and we'd also have to move to the south and east, in 14 which you'd basically go into just the typical Strawn carbonate platform, which has no porosity in it. 15 It would 16 be tight. 17 Q. Okay, let's go back to Exhibit 1. There is a vertical scale and a color code on the far right. 18 Identify for us how we associate that color code with what you 19 20 believe to be the opportunity for a Strawn reservoir. 21 Α. Okay, this color code is what I kind of mentioned a little bit before, but it measures the thickness that we 22 23 have measured on the seismic section in Number 2, and it's 24 numbered by one-millisecond increments. In other words, 25 this is going to be your contour interval. And for every

color change, you're increasing seven feet, seven to ten 1 2 feet. And as you can see, the most optimum place to be 3 would be in that white area, and that would be 4 5 approximately 21 milliseconds of thickness in there. The 6 Mayfly 14-1 is in that real light brown area, which is as 7 close as we can get to an unorthodox location. 8 ο. So Mr. Catanach understands the scale of what he's seeing on Exhibit 1, the square that contains the 9 10 Mayfly 14 well location and this color data is an area of 11 how many acres? That's 40 acres. This is on a 1-to-500 scale, so 12 Α. 13 you can see the little 40-acre outline right there, which 14 would be the northwest of the northwest. 15 Using Exhibit 1, then, if you were to move south 0. 16 to a standard deep gas well location, if would put you in 17 the blue area? 18 Yes, sir. Α. And the blue area is an absence of Strawn 19 0. reservoir? 20 21 Α. It's an absence of porous Strawn algal mound. 22 All right. How was this 3-D seismic data Q. prepared and evaluated and analyzed? 23 24 Α. We have a consultant by the name of Louis Lint 25 who does all our geophysical interpretation. Lou oversaw

1	the data acquisition parameters. It was processed by
2	Western Geophysical, he oversaw that, and then he did the
3	interpretation as well, tying all subsurface well data and
4	any synthetics that we have in the area.
5	Q. Are you satisfied that this has been done
6	correctly to the best of yours and Mr. Lint's ability?
7	A. Yes, sir, I am.
8	Q. Has it provided Arrington and others utilizing
9	this the technology to access reservoirs that otherwise
10	would not have been discovered and produced?
11	A. Absolutely.
12	Q. Let's turn your attention now to the issue of the
13	deeper gas zones.
14	A. Okay.
15	Q. If you'll take a moment and find Exhibit 3,
16	before we talk about the details of Exhibit 3, describe for
17	us the coding of what we're seeing.
18	A. In Exhibit 3 will be a net interval isopach of
19	the Brunson Atoka sand, which is the primary pay sand out
20	here. And this will be based on a 6- to 8-percent porosity
21	cutoff.
22	As you can see on Exhibit 3, the channel system
23	is a north-south oriented channel system, but due to
24	bottomhole pressure information, I believe we have a number
25	of isolated reservoirs in here. And as you can see on the

Exhibit 3, I'll show you three different wells in here which all have different bottomhole pressures, indicating that the reservoir is either encountering some permeability barriers within the sand itself, or else some fault systems. And I will back this up with some 3-D seismic data as well.

Q. Let's take a moment and look at Exhibit 5, which
is the cross-section, so that Mr. Catanach can see what you
are identifying as the Brunson Atoka sand. Let's unfold
that display and identify that interval for him.

A. Mr. Catanach, Exhibit 5 is a structural crosssection, and basically it's a two-well cross-section with our proposed location. And it runs kind of from the northeast through the Yates Runnels ASP Number 2 well, which was drilled in -- I think it was October of last year -- down to our proposed location and down to the southeast through the Monsanto well.

I've indicated the Strawn interval on here, the top of the Atoka lime, which are just good markers in the area, and then I've indicated the Atoka Brunson sand, which is the principal pay zone in this area, the top of the Morrow Lime, and then the approximate interval where the Carlisle sand should be present if it is here.

Q. Is it your understanding that the Division
nomenclature is such that when they identify the Townsend-

1	Morrow Gas Pool, that is a collective identification of an
2	interval that includes the Atoka Brunson, as well as the
3	Carlisle sand?
4	A. Yes, sir.
5	Q. They have not been distinguished by the Division?
6	A. No, sir.
7	Q. The operators have been looking for the Carlisle
8	sand in certain of these wells, have they not?
9	A. Yes, sir.
10	Q. Let's find the Carlisle well. It's in the
11	What, the west half of 10 on Exhibit Number 3?
12	A. Yes, sir, if you look on Exhibit Number 3, it is
13	that the well on the far west side, which is the Number 1
14	Carlisle, and this was Ocean's well that was drilled I
15	think it was early 1998 in an attempt to encounter what
16	we now call the Atoka Brunson sand.
17	That particular sand was absent there, and they
18	stumbled into this lower Morrow sand, which is the zone
19	that subsequently blew out for about 30 days before they
20	killed the well and subsequently drilled the twin well to
21	it.
22	Q. They were trying to offset what Yates had
23	discovered in the east half of 10 with what you identify as
24	the Brunson well?
25	A. Yes, sir, correct.

1	Q. Ocean drills the Carlisle well, and then Yates
2	drills the Big Flat well?
3	A. Yes, sir. And they drilled that in an attempt to
4	find the Carlisle zone.
5	Q. And they were successful or not?
6	A. No, sir, they did not find any Carlisle sand but
7	once again encountered the Brunson interval.
8	Q. Let's look now at your opportunity in the Brunson
9	in the west half of 14. There currently is the Monsanto 1
10	well producing out of the Brunson sand, is there not?
11	A. Correct, yes, sir.
12	Q. Describe for Mr. Catanach your argument that the
13	Mayfly well is not going to be competing for the same
14	Brunson reserves that have been produced or will continue
15	to be produced by the Monsanto Number 1 well.
16	A. Okay. There are two compelling facts that
17	indicate that the Mayfly will not be competing for the same
18	reserves, and the Monsanto well has produced about 3.9 BCF
19	to date and is currently producing at a rate of around 200
20	MCF a day. I do not have the bottomhole pressure on it,
21	but by all indications it has to be low. The well has
22	produced for over 20 years.
23	With the new well activity that mostly Yates has
24	done in Section 10 and 11 to the north, we started
25	encountering higher bottomhole pressures from the same

stratigraphic interval. Well, that's a clue to you real 1 quick that there's some separation, either by different 2 sands, faults, permeability barriers, something. 3 If you 4 will look in Section 10, the Brunson well in 10 of 1997 had a bottomhole pressure of 4086 pounds. 5 Shortly after the Brunson well was completed, 6 7 Yates re-entered and deepened the Shell Lusk well there in 8 Section 11, and they got that well at 3016 pounds of bottomhole pressure. 9 10 After that well was drilled in March of 1999 they 11 drilled the Runnels well, which is on my cross-section, and 12 I have a shut-in bottomhole pressure of 1881. That was run 13 in March of 1999. The well when it was originally drilled 14 in November of 1998 had a bottomhole pressure of 3500 15 pounds. 16 Well, all of these wells have a higher bottomhole pressure than you would have expected in the Monsanto well, 17 18 to the south, given the reserves it has produced and the 19 current producing rate, and the fact that structurally it's 20 running about 200 feet high too. So that information right there would lead you to 21 believe that there's something more complex going on. 22 23 And then through our 3-D seismic data -- and you 24 can even infer it with subsurface well control -- it's my opinion that we now have fault separation from the zones to 25

1	the north and the Monsanto well to the South. And that's
2	the reason for the Mayfly proposed location, is that I do
3	not believe that we're going to be in the same reservoir as
4	the Monsanto well, due to a fault separation.
5	Q. When we look at Exhibit 3, finding Section 14,
6	and in the northwest quarter of 14, running east and west,
7	there is a line.
8	A. Yes, sir.
9	Q. What does that line represent?
10	A. That line is a fault, and that fault I'm going to
11	show you in just a few minutes that we identified through
12	our 3-D seismic data.
13	Q. Okay. If you were to move to a standard deep gas
14	location in the west half of 14, where would you be in
15	relation to that fault?
16	A. You'll be just about in the approximate fault
17	plane, is where you're going to be. Or you're going to
18	If you happen to miss the fault, you'll probably come in
19	upthrown in the same reservoir as the Monsanto well, which
20	we believe now to be depleted.
21	Q. Your best opportunity, then, remaining in the
22	west half of 14 for producing deep gas that's not currently
23	or could be produced by the Monsanto well, would be at this
24	unorthodox well location?
25	A. Yes, sir.

_	
1	Q. And it would place you north of the fault?
2	A. Yes, sir.
3	Q. Let's look at Exhibit 4
4	A. Okay.
5	Q and have you identify and describe this
6	display.
7	A. Exhibit 4 is nothing more than a subsurface map
8	for the top of the Morrow limestone, which you will see on
9	Exhibit 5 is a marker that is directly below the Brunson
10	interval. This is a very good seismic marker that we have
11	out here, it's a very good regional marker.
12	As you can see from here also, you'll see that
13	there's a lot of structural difference between the Monsanto
14	well to the south and all of the wells located in 10 and
15	11. There's approximately 200 to 2100 feet of vertical
16	relief in there.
17	You could have put these faults in there without
18	3-D seismic data, different interpretations could just
19	indicate a steep dip, or you could say that it was due to
20	faults. I think with the 3-D seismic data we will
21	definitely determine that there are fault separations in
22	here.
23	Q. Let's look at that data. If you'll turn to
24	Exhibit 6, identify and describe Exhibit 6.
25	A. Okay. Mr. Catanach, Exhibit 6 is an arbitrary

1	line that basically mimics the cross-section line, A to A'.
2	It comes from the Runnels well on the far south side
3	through the Monsanto well on the left.
4	If you will look down kind of midway, you will
5	see some markers that we have identified on the right side
6	out there. That very top one is the base of the Atoka
7	limestone, and then you will see the yellow marker down
8	there, and we call that the Brunson. That's where the
9	Brunson sand should occur if you could see it via 3-D
10	seismic data.
11	The Morrow lime is that strong peak that's
12	indicated in red directly below the Brunson. It's an
13	outstanding seismic marker in here.
14	And then drop on down to what we call the top of
15	the Austin, there in blue, the top of the Chester, and then
16	the top of the lower Mississippian.
17	If you look at the Runnels ASP 2 and just take
18	the Morrow marker in there that's probably the best one
19	in there and you follow that peak right on up, you will
20	see that there's a termination directly to the west of the
21	Runnels. That's the fault that we believe separates the
22	Runnels well from probably the Lusk or the west half of
23	Section 11. It's clearcut in this seismic data set here.
24	You'll see that you drop down approximately 20
25	milliseconds, and you'll see how the red marker comes

through our proposed location, and then it pops back up 1 right there, just south at around 74/114, it pops back up, 2 and this is the same fault block that the Monsanto would --3 the well would be in. 4 5 So there's clear interpretation that there is fault separation between all three of these reservoirs in 6 7 here. 8 0. If the Division approves the unorthodox location 9 for the Mayfly 14 well, looking at Exhibit 6, are you able 10 to conclude that there's a reasonable geologic probability 11 that it may be in its own separate Brunson sand reservoir, fault-separated from the other wells that are producing 12 from that reservoir? 13 14 Α. Yes, sir, I mean, we feel right now they're 15 definitely going to be fault-separated from the Runnels. Ι 16 don't have enough information to definitely say whether 17 there is a fault over -- separating us from the wells in 18 10, but we note from pressure information something's going 19 on over there. My seismic data set did not go over that 20 far, so I cannot conclusively say that I know there's 21 faults or permeability barriers. 22 But yes, sir, we could be in our own reservoir. 23 Q. Looking at Exhibit 6 as you move to the left or 24 south, by going to a standard location you increase the 25 probability of being close to or on the same side of the

1	fault as the Monsanto well?
2	A. Yes, sir.
3	Q. You'll either be close to that fault or competing
4	for Monsanto in the same
5	A. Right.
6	Q fault block?
7	A. You're going to be so close in the interval that
8	you could theoretically fault out your interval altogether.
9	Or if you happened to get lucky enough not to do it, you're
10	probably going to be on the upthrown side with it, of which
11	I mean, you're in a depleted reservoir.
12	Q. Are the economics of this prospect such, Mr.
13	Baker, that Mr. Arrington could drill a stand-alone deep-
14	gas well?
15	A. No, sir.
16	Q. You couldn't do it?
17	A. No, sir.
18	Q. How is the most effective and efficient way for
19	Mr. Arrington to accomplish that objective?
20	A. It's for us to take this proposed location that
21	we've got for the Strawn and simply deepen it to the
22	Morrow, which is about 1200 feet.
23	Q. Have you prepared an analysis to demonstrate to
24	Mr. Catanach that opinion?
25	A. Yes, sir. Exhibit 7 is just some drilling and

completion AFE costs that we have prepared on wells that 1 we're drilling in the area. We're currently drilling a 2 3 well, the Mayfly 14-2, right now, which is a pure Strawn 4 test, and it has a completed AFE cost of \$967,000. The 5 proposed well here, the Mayfly 14-1, for a 12,700-foot Mississippian test, is a little over a million dollars, 6 7 \$1,050,000. 8 So you can see that the incremental cost simply to deepen the Strawn test is \$83,000. 9 10 The total bottomhole depth of your proposed ο. 11 Mayfly well is intended to be deep enough to access the 12 lowest of the Pennsylvanian formation? 13 Α. Yes, sir, it will be proposed to go through that 14 Carlisle interval. At this particular time, there's so little geological data, because we've got one well that's 15 16 actually found it, it's very difficult to map. But it makes sense to go that additional 200 or 300 feet. 17 If you 18 go on to the Brunson it's not but about another 300 or 400 19 feet just to look for it, to see it, because it is so 20 prolific when you do find it. 21 Q. Have representatives of Mr. Arrington been in 22 contact with the successor to Mr. Mark Shidler operating 23 the Monsanto State Com well? 24 Α. Yes, sir, we have. 25 Q. Okay. That successor operator is Five States, is

1	it not?
2	A. Yes, sir, it is.
3	Q. And the discussion is that both companies will
4	reach some type of agreement so that one of you is the
5	official designated operator of the spacing unit within the
6	Townsend-Morrow Gas Pool?
7	A. Yes, sir, they have indicated they will work with
8	us.
9	MR. KELLAHIN: All right. Mr. Catanach, that
10	concludes my examination of Mr. Baker.
11	We move the introduction of his Exhibits 1
12	through 7.
13	EXAMINER CATANACH: Exhibits 1 through 7 will be
14	admitted as evidence.
15	EXAMINATION
16	BY EXAMINER CATANACH:
17	Q. Mr. Baker, you've not yet determined who's going
18	to operate this half section?
19	A. From the deep standpoint, we are completely
20	prepared to do the operations. Five States has indicated
21	to us that that is not a problem and that they will work
22	with us, but that agreement has not just simply been inked.
23	Q. And that will be accomplished before the Mayfly
24	is completed and starting to produce?
25	A. Absolutely.

Have you guys done any drainage calculations on 1 Q. 2 that Monsanto well? No, we have not done any formal volumetrics on 3 Α. 4 that. 5 Q. Why is that? Well, first of all, it's -- we don't have a 6 Α. 7 reservoir engineer. But then also, we have determined 8 that, based on the well that's over in the east half of that, the Skelly 6 well, which hardly produced anything, 9 10 that the Monsanto well around here has a very limited area, 11 being this kind of mid-area right in here, and that it's 12 probably going to end up making approximately 4.5 to 5 BCF, and that's about all it's going to end up doing. 13 14 So you've still got that well projected to Q. produce for quite a long time? 15 16 Well, sir, the decline curves on it are producing Α. 200 MCF on a fairly shallow rate, yes, sir. 17 18 Q. And that's producing exclusively from the 19 Brunson; is that right? 20 Α. Yes, sir, to the best of my knowledge. They did 21 attempt a dual completion in the Wolfcamp, but I think the 22 Wolfcamp depleted, and they subsequently just went back to 23 purely the Atoka interval in there. 24 Q. Do you know if that well went deep enough to 25 penetrate what may be the Carlisle sand in that --

1	A. They I believe, sir, that it went right to the
2	top of the Morrow, is where it's at. I do not believe it
3	went deep enough to go to the Carlisle.
4	Q. That well encountered the thickest pay section in
5	the Brunson; is that right?
6	A. Yes, sir, it appears to have hit just about the
7	meat of it. The Runnels well, if you will look on that
8	cross-section, those two wells almost look identical. And
9	it's simply When you get into the net-pay cutoffs, is
10	that it looks like it has two or three more net feet of
11	pay, but it looks like those two wells are almost in the
12	thickest part of the channel system.
13	Q. You guys, according to your geology, you're
14	targeting about 15 feet of that Brunson sand in the Mayfly?
15	A. Yes, sir, 15 to 20 feet of it. We believe it's
16	being influenced by a deep fault system over here, and how
17	fast that thing thickens and thins due to that fault system
18	over there we can't determine, but we're guessing we're
19	going to have around 15 feet.
20	Q. You've got a permeability barrier shown between
21	that Mayfly well and the wells in Section 10, but you don't
22	know that that actually exists?
23	A. No, sir. I'm basing that on, is the fact that we
24	have such discrepancies in the bottomhole pressures here,
25	something has to be separating this. It could be another

fault like we see between the Runnels well and the Mayfly 1 2 location. I just don't have any type of data to put it in But there is something that appears to be 3 there. separating these things out. 4 Now, did you have differences in bottomhole 5 Q. 6 pressure between the wells in Sections 10 and 11? 7 Α. These bottomhole pressures are pressures that were filed by Yates Petroleum and Ocean in another case. 8 We, being Yates or David Arrington, we do not have interest 9 10 in those wells, so I don't have that hard data. That came 11 from hearing data that they supplied. 12 0. But there is a difference between those and --13 Yes, sir. Α. 14 -- and the wells in Section 11? Q. 15 Yes, sir. Yes, sir. Α. 16 Have you guys used 3-D seismic to identify faults Q. 17 previously? 18 Α. Oh, yes, sir. Yes, sir, I think seismic data, 19 both 2-D and 3-D, was used principally to identify faultblock-type reservoirs. So we've used it for ten 20 21 years. 22 Q. So even though you guys believe that you may be separated from the rest of the Brunson wells, you've still 23 agreed to a production penalty for the well? 24 25 Α. Yes, sir, and I think -- There's so many unknowns

there that you can't conclusively say, beyond a shadow of a 1 doubt, that I'm not in some type of communication with the 2 well in the north half of 11, that Shell Lusk well. 3 Τ think I can pretty conclusively say that I'm not going to 4 5 be in communication with the Runnels well, but I can't 6 positively say I'm not going to be in some type of 7 communication with the Shell Lusk. 8 Q. And you're pretty confident that you're not going 9 to be in communication with the Monsanto well? 10 Α. Yes, sir, I feel pretty strongly about that. You 11 don't know what type of pressure drainage may occur across a fault, but I have to make assumptions it's a sealing 12 fault at this particular time, and that if I'm on the 13 downthrown side I will be pressure-separated from the 14 15 Monsanto well. Is that well, the Ocean well, is that the only 16 0. 17 one that's encountered the Carlisle sand? 18 Α. In this particular area, yes, sir. Yates 19 Petroleum just drilled a well up in Section 3 that I have 20 just got the logs, and it appears like they have 21 encountered about six feet of what appears to be a Carlisle 22 interval to the north of us. But as far as in this 23 immediate area right here, commercial Carlisle sand, yes, 24 sir, it's the only one. 25 On the Runnels ASP Number 2, you will notice

there's about four feet of tight sand in that particular 1 well there that was noncommercial. Now whether that's 2 leading to a reservoir nearby, that's what we're hoping. 3 So you've been unable to try and map the Carlisle 4 0. 5 sand? 6 Yes, sir, at this particular time I think there's Α. 7 a lot of different interpretations as to how it was done. 8 But without more than one well, it's hard to determine whether this is a channel system, a bar, how it was 9 deposited. 10 11 Q. The primary objective, though, on the well is the 12 Strawn formation? 13 Α. Yes, sir. 14 Q. And this is in the area of all the Strawn algal 15 mounds? 16 Α. Yes, sir. 17 I'm a little curious how it is that -- Most of Q. those are spaced on 80 acres, but this pool is 40-acre 18 19 spacing? 20 Α. Yes, sir, and that's, I guess, kind of an enigma. 21 This is an old field, the Northwest Shoe-Bar field, and it 22 was just evidently setup on wildcat pool rules. You're 23 quite correct in your assessment that most of them are 24 spaced on 80-acre spacing, yes, sir. 25 On Exhibit Number 1, you've got that thing Q.

At the location of the Mayfly 14 well, how thick 1 mapped. is that interval at that point? 2 Well, the entire carbonate interval should be 3 Α. 150, 200 feet thick, and that's from top to bottom. 4 Now, we're hoping to have 75 feet of porosity, and the porosity 5 6 in these mounds varies as to where you hit them. 7 Obviously, you hit them on the edge, you're going to have a 8 lesser porosity. If you hit them in the thickest part of 9 the gross interval there, then you've got the opportunity 10 for more porosity development, yes, sir. 11 0. It appears that you could move maybe north and 12 further east and actually get into a thicker section, but did you want to maintain a standard 330 location? 13 14 Α. Yes, sir, I mean, that was it. I mean, I think 15 what we're looking at there is -- and of course you're starting to get down to the resolution of the data. 16 We 17 could move to the north one or two -- you could even move a 18 half a trace, and you'd get into a seven-foot difference, based on seismic, basically one millisecond. 19 20 And when you start saying, Well, is that worth 21 the effort to go for an unorthodox location, I think we can 22 adequately drain our portion of the reservoir if I get that 23 bottomhole vertical right there. 24 Q. What is the plan as far as producing the well, if 25 you do encounter some production in the Morrow? How is

1 that well going to be produced?

2	A. We're setting the well up currently to be drilled
3	to run 5-1/2-inch casing. We're not setting it up to do a
4	dual completion on it. Not having visited specifically
5	with Mr. Arrington and our drilling engineer, I think a lot
6	of it would depend on if we hit a Carlisle zone, obviously,
7	and it is as big as Ocean's well, we will produce it
8	immediately. Because we feel like at this particular time,
9	even if we had the Strawn, it's not going to be depleted by
10	anybody else. I mean, those reserves are there. So we
11	would attempt probably a Carlisle completion.
12	If we hit the Atoka Brunson zone in there, and
13	you have a good Strawn zone in there, then you're faced
14	with whether to try to make a dual completion in 5 $1/2$, or
15	you try to take your reserves out of the Atoka at this
16	particular time. A lot of that would be based on
17	bottomhole pressure information, of which we would probably
18	run a drill stem test across the information to obtain what
19	we think is the bottomhole to see if it's in communication
20	with any of these other reservoirs.
21	Q. Have you got more seismic data than what you're
22	showing on Exhibit Number 1 here?
23	A. Yes, sir.
24	Q. You've got this cutoff
25	A. Yes, sir, we do. Yes, sir.

And it appears that there may be another one of 1 Q. 2 these pods just to the south and east of this one? 3 Α. Yes, sir. 4 Q. Do you have any information to show, or do you have any belief that this may be in communication with that 5 other pod? 6 7 Our interpretation right now indicates that it's Α. not in communication with it. One of the things that we 8 9 have found in regional studies of other producing algal 10 mounds is that you can have mounds that are very close 11 together in here and then through -- and in the intermound 12 facies there you have some type of fracture system or 13 something, and so there is pressure communication, although there is not fluid communication, meaning that fluids don't 14 15 move between the two, but pressures do. Our interpretation would say that the mounds are 16 17 not connected until you get wells in them and see some from drill stem tests and pressure tests, you don't know whether 18 19 or not that fracture system is in there to pressure-deplete 20 them. 21 So what I'm saying is, by our interpretation I 22 would say that these are stand-alone pods at this 23 particular point. 24 Q. Does Arrington have plans to drill that second 25 pod?

Well, sir, that's what I was just getting -- At 1 Α. this particular time, also, we'd have to see some very good 2 results from the one up here to give us indicat- -- If 3 you'll notice that this one down here, just from what I've 4 5 shown, appears to be much smaller i size. And part of the problem that reservoir engineers 6 7 have out here is determining volumetrics on these pods. 8 How small is too small? Because it's been very difficult 9 sometimes to put back all the oil into these pods that have 10 come out of that one. But you would have to watch the 11 production history on one here and feel that that little 12 pod down there would be commercial to go and drill. 13 EXAMINER CATANACH: I believe that's all I have 14 of the witness. Mr. Kellahin, as far as notice goes, notice was 15 given to, I believe, all of the interest owners in the 16 17 north half of Section 15 --MR. KELLAHIN: As well as the southeast. 18 19 EXAMINER CATANACH: -- and the southeast quarter? 20 MR. KELLAHIN: Yes, sir. 21 EXAMINER CATANACH: Okay. And the east half of 22 Section 10 and all of Section 11 is operated by Yates; is 23 that correct? 24 MR. KELLAHIN: Yes. 25 EXAMINER CATANACH: And Ocean operates the west

1	half of Section 10?
2	MR. KELLAHIN: And they've entered their
3	appearances.
4	EXAMINER CATANACH: Okay.
5	MR. KELLAHIN: One final comment. Mr. Baker
6	referred to the inference of this permeability barrier
7	THE WITNESS: Yes, sir.
8	MR. KELLAHIN: and pressure data. He was
9	taking that information from Division Case 12,037. It was
10	the case that Mr. Ashley heard for the simultaneous
11	dedication of the two Yates wells in the east half of 10.
12	EXAMINER CATANACH: Okay, is there anything
13	further in this case?
14	MR. KELLAHIN: No, sir.
15	EXAMINER CATANACH: There being nothing further,
16	Case 12,181 will be taken under advisement.
17	(Thereupon, these proceedings were concluded at
18	9:16 a.m.)
19	* * *
20	
21	I do hereby certify that the foregoing is
22	the Examiner hearing of Gase No. 1214
23	hears by me on 25 198
24	M Conservation Division
25	an action (duon for the

36

_

CERTIFICATE OF REPORTER

STATE OF NEW MEXICO)) ss. COUNTY OF SANTA FE)

I, Steven T. Brenner, Certified Court Reporter and Notary Public, HEREBY CERTIFY that the foregoing transcript of proceedings before the Oil Conservation Division was reported by me; that I transcribed my notes; and that the foregoing is a true and accurate record of the proceedings.

I FURTHER CERTIFY that I am not a relative or employee of any of the parties or attorneys involved in this matter and that I have no personal interest in the final disposition of this matter.

WITNESS MY HAND AND SEAL August 9th, 1999.

Pren -

STEVEN T. BRENNER CCR No. 7

My commission expires: October 14, 2002