Calculation of Drainage Areas

Pc = 670 psiaTc = 387 degrees R are the critical properties of the Feather Morrow gas T = 184 degrees F or 644 degrees R is the bottomhole temperature P = 5481 psia is the original bottom-hole pressure from DST #3 on UTP #1 Then, Pr = Pressure/Pc= 5481/670 = 8.18Tr = Temperature/Tc = 644/387= 1.66The Standing and Katz chart says the Compressibility Factor (z) = 1.02 for this gas. The formation volume factor is Bg 35.35*P/z*T = where P 5481 psi = 1.02 = Z 644 degrees R = 35.35*5481/(1.02*644) Bg so that 295 Scf per cubic foot Bg =

Then, we calculate the drainage area (A) from the volumetric equation

		$Gp = Rf^{43560}A^{H*Phi^{(1-Sw)}}Bg$
where Gp	=	Gas Produced in Scf
Rf	=	Recovery Factor (assumed equal to 0.80 for normal rock)
Α	=	Drainage Area in acres
Н	=	Reservoir height in feet
Phi	=	Reservoir porosity, fraction
Sw	=	Water Saturation, fraction
Bg	=	Formation Volume Factor in Scf/cubic foot

Note that	H*Phi*(1-Sw)	=	H*Phi*Sg	is the hydrocarbon pore
volume calcul	ated for each of the w	ells.		

	and	A	=	1.748*10^-7*Gp/[H*Phi*Sg]	
			Gp	=	5.719*10^6*A*[H*Phi*Sg]
Now			Gp	=	0.80*43560*A*[H*Phi*Sg]*295

where we already know the equivalent gas produced (Gp) and the hydrocarbon pore volume (H*Phi*Sg) for each of the wells.

As an example for the current drainage area of the UTP #1 well,

A = $1.748*10^{-7}1.792*10^{9}/1.826$ A = 313.2/1.826 = **172 acres**

Yates Petroleum Case 12596 Exhibit \7