STATE OF NEW MEXICO

ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT

OIL CONSERVATION DIVISION

IN THE MATTER OF THE HEARING CALLED BY THE OIL CONSERVATION DIVISION FOR THE PURPOSE OF CONSIDERING:

APPLICATION OF OCCIDENTAL PERMIAN LIMITED PARTNERSHIP ("OXY") TO AMEND DIVISION ORDER R-6199 CONCERNING THE EXPANSION OF ITS NORTH HOBBS GRAYBURG-SAN ANDRES UNIT PRESSURE MAINTENANCE PROJECT, AND TO QUALIFY THE PROJECT FOR THE RECOVERED OIL TAX RATE PURSUANT TO THE ENHANCED OIL RECOVERY ACT, LEA COUNTY, NEW MEXICO CASE NO. 12,722

ORIGINAL

1 SEP 20 AM 10: 1

REPORTER'S TRANSCRIPT OF PROCEEDINGS

EXAMINER HEARING

BEFORE: DAVID R. CATANACH, Hearing Examiner

September 6th, 2001

Santa Fe, New Mexico

This matter came on for hearing before the New Mexico Oil Conservation Division, DAVID R. CATANACH, Hearing Examiner, on Thursday, September 6th, 2001, at the New Mexico Energy, Minerals and Natural Resources Department, 1220 South Saint Francis Drive, Room 102, Santa Fe, New Mexico, Steven T. Brenner, Certified Court Reporter No. 7 for the State of New Mexico.

* * *

INDEX

September 6th, 2001 Examiner Hearing CASE NO. 12,722	
	PAGE
EXHIBITS	3
APPEARANCES	4
APPLICANT'S WITNESSES:	
ANDREW FALLS (Engineer) Direct Examination by Mr. Kellahin Examination by Examiner Catanach	5
MICHAEL STARRETT (Engineer)	40
Direct Examination by Mr. Kellahin Examination by Examiner Catanach	58 71
<u>RICK FOPPIANO</u> (Engineer, Regulatory Affairs Advisor)	
Direct Examination by Mr. Kellahin Examination by Examiner Catanach	75 112
REPORTER'S CERTIFICATE	124
* * *	

STEVEN T. BRENNER, CCR (505) 989-9317 2

EXHIBITS

Applicant's		Identified	Admitted
Exhibit	1	6	46
Exhibit	2	7	46
Exhibit	3	8	46
Exhibit	4	12	46
Exhibit	5	14	46
Exhibit	6	14	46
Exhibit	7	23	46
Exhibit	8	25	46
Exhibit	9	31	46
Exhibit	10	31	46
Exhibit	11	35	46
Exhibit	12	37	46
Exhibit	13	41	46
Exhibit	14	42	46
Exhibit	15	44	46
Exhibit	16	59	70
Exhibit	17	61	70
Exhibit	18	62	70
Exhibit	19	62	70
Exhibit	20	62	70
Exhibit	21	64	70
Exhibit	22	65	70
Exhibit	23	67	70
Exhibit	24	67	70
Exhibit	25	67	70
Exhibit	26	69	70
Exhibit	27	78	112
Exhibit	28	82	112
Exhibit	29	85	112
Exhibit	30	86	112

(Continued...)

EXHIBITS (Continued)

Applicant's		Identified	Admitted
Exhibit	31	94	112
Exhibit	32	100	112
Exhibit	33	102	112
Exhibit	34	102	112
Exhibit	35	104	112
Exhibit	36	104	112
Exhibit Exhibit	37	107	112
EXILIDIC	50	109	112

* * *

A P P E A R A N C E S

FOR THE DIVISION:

DAVID BROOKS Attorney at Law Energy, Minerals and Natural Resources Department Assistant General Counsel 1220 South St. Francis Drive Santa Fe, New Mexico 87505

FOR THE APPLICANT:

KELLAHIN & KELLAHIN 117 N. Guadalupe P.O. Box 2265 Santa Fe, New Mexico 87504-2265 By: W. THOMAS KELLAHIN

* * *

1	WHEREUPON, the following proceedings were had at
2	12:40 p.m.:
3	EXAMINER CATANACH: At this time I will call Case
4	12,722, which is the Application of Occidental Permian
5	Limited Partnership to amend Division Order Number R-6199
6	concerning the expansion of its North Hobbs Grayburg-San
7	Andres Unit Pressure Maintenance Project and to qualify the
8	project for the recovered oil tax rate pursuant to the
9	Enhanced Oil Recovery Act, Lea County, New Mexico.
10	Call for appearances in this case?
11	MR. KELLAHIN: Mr. Examiner, I'm Tom Kellahin of
12	the Santa Fe law firm of Kellahin and Kellahin, appearing
13	on behalf of the Applicant. I have three witnesses to be
14	sworn.
15	EXAMINER CATANACH: Call for additional
16	appearances.
17	There being none, can the witnesses please stand
18	to be sworn in?
19	(Thereupon, the witnesses were sworn.)
20	ANDREW FALLS,
21	the witness herein, after having been first duly sworn upon
22	his oath, was examined and testified as follows:
23	DIRECT EXAMINATION
24	BY MR. KELLAHIN:
25	Q. Mr. Falls, for the record, sir, would you please

state your name and occupation? 1 Andrew Falls, I'm a CO₂ project manager with 2 Α. Occidental Permian. 3 And where do you reside? Q. 4 5 Α. Houston, Texas. On prior occasions have you testified before the 6 Q. **Division?** 7 Α. I have not. 8 Summarize for us your educational background? 9 Q. I have a bachelor of science in chemical 10 Α. engineering from the California Institute of Technology, 11 earned in 1978, and I have a PhD in chemical engineering 12 with a mathematics minor and a petroleum engineering-13 related thesis from the University of Minnesota, earned in 14 1982. 15 Summarize your employment experience for us, Mr. 16 Q. 17 Falls. Over the last 20 years I've been employed in the 18 Α. 19 oil and nuclear industries in project management roles. 20 ο. Let me ask you to turn to what is marked as OXY's 21 Exhibit Number 1 and identify that for us. 22 Α. Exhibit Number 1 is a map identifying the 23 location of the Hobbs field, both within east central Lea 24 County, as well as within the subsurface structure of the 25 Permian Basin. The Hobbs field is located on the northwest

1	corner of the Central Basin Platform within the Permian
2	Basin.
3	Q. Do you have another display that more closely
4	defines where this project is in relation to other CO_2
5	projects?
6	A. Yes, I do. That would be Exhibit 2.
7	Q. Let me direct your attention to Exhibit 2. Would
8	you identify and describe this display?
9	A. Exhibit 2 shows the locations within the Permian
10	Basin of fields that have undergone CO_2 flood as well as
11	the distribution of CO ₂ supply pipelines within the Permian
12	Basin.
13	It is common for oilfields in the Permian Basin
14	to go through three stages of development, first a primary
15	stage of development where the oil flows from the
16	subsurface under the natural energy present, followed by a
17	waterflood development in order to increase the recovery of
18	hydrocarbons, and some fields would then go beyond that to
19	a CO ₂ flood to further increase the recovery of
20	hydrocarbons from the resources.
21	So this map shows the locations of the floods
22	that have gone to CO_2 flood. CO_2 flooding has been active
23	in the Permian Basin for over 30 years. There have been
24	over 50 floods in the Permian Basin. Occidental Permian
25	operates 16 floods, the most of any operator.

7

What has been your professional experience with 1 Q. other CO₂ projects? 2 I have managed the expansion of CO_2 -flood 3 Α. projects in the Permian Basin, time period 1992 through 4 1996. 5 You're about to sponsor a number of exhibits, 6 Q. 7 conclusions and displays concerning the project. Do these represent your own personal professional opinions? 8 Yes, they were all prepared under my supervision, 9 Α. my direction, or by me personally. 10 MR. KELLAHIN: We tender Mr. Falls as an expert 11 12 petroleum engineer. 13 EXAMINER CATANACH: Mr. Falls is so qualified. Q. (By Mr. Kellahin) Let's turn to the map that 14 shows the unit itself. My copy is marked Exhibit Number 3. 15 Is that what yours is? 16 Yes. 17 Α. All right, let's take a moment and unfold it. 18 Q. In addition, Mr. Examiner, we have a large copy 19 of this same display which we'd like to leave on the easel 20 to give you a point of reference as we make the 21 presentation. 22 First of all, Mr. Falls, let's talk about how we 23 identify on this plat what is the current boundary for the 24 25 North Hobbs Unit.

Okay, on this plat the North Hobbs Unit boundary 1 Α. is denoted by the bold dashed line, and it's so labeled on 2 the plat. 3 Where is this project in relationship to the 4 Q. community of Hobbs, New Mexico? 5 It is located on the western-northwestern Α. 6 outskirts of the City of Hobbs and northwest of the City of 7 Hobbs. On the plat the city limits is denoted by the blue 8 chain dashed line on the plat. 9 There are two colored areas, one colored in blue, 10 Q. one in grey. They're both captioned "Phase I". What do 11 12 you intend the Examiner to understand by the phrase "Phase I"? 13 We believe that the entire North Hobbs Unit is a 14 Α. target for CO₂ flooding. We're coming today to propose a 15 first phase of a CO₂ flood in the North Hobbs Unit, which 16 is the combination of these two areas. 17 The area proposed for the Phase I flood is 18 further subdivided into two subareas, one area which is 19 proposed for pipeline CO₂ gas injection, which is colored 20 gray on the plat on Exhibit 3; and a second area, which 21 colored light blue, is proposed for the area in which we 22 will reinject the gas that's produced from the project. 23 Identify for us the types of gases produced from 24 Q. the project that will be reinjected into the gas 25

1 reinjection area. The gas produced from the project, as in many 2 Α. similar CO₂ floods around the Permian Basin, will contain 3 mostly CO₂, will also contain methane, natural gas liquids 4 and hydrogen sulfide. 5 Is hydrogen sulfide currently being produced now Q. 6 7 in the unit? Yes, it is. 8 Α. And what is being done with that substance? 9 Q. Currently it's gathered and is shipped to a plant 10 Α. 11 for processing, and ultimately sale. Can you give us a general idea of how OXY has 12 Q. developed the boundary between the gas reinjection area and 13 the gas injection area? 14 15 Yes, the boundary between those areas has been Α. identified and chosen based on the plan to further reduce 16 17 the risk of exposure of the public to hydrogen sulfide. 18 The area proposed for gas reinjection is located in the 19 most remote portions of the unit. 20 On Exhibit Number 3 there are some well symbols Q. with numbers associated with them, and then they're circled 21 by a green circle. What does that represent? 22 Those denote water injectors that exist around 23 Α. the boundary of the proposed CO2-flood area, which serve to 24 25 help contain the proposed CO₂ flood within the project

11

area.

1

Q. Do you have a professional opinion as to whether there's any potential adverse consequences to operators or interest owners outside of the unit if this project is approved?

A. We believe there will be no adverse consequences to offset operators. There is the South Hobbs Unit, south of the North Hobbs Unit, which is also operated by Occidental Permian, and the row of waterflood patterns between the project area and the South Hobbs Unit will contain the CO₂ project within the project area within the North Hobbs Unit.

Most of the offsetting wells outside the unit have been plugged and abandoned. Our investigation has shown that there are still some wells that have not been plugged and abandoned, and -- on a couple of leases in Section 13 and 18 at the top of the unit. However, our visual observation indicates that those wells, operation is suspended, they're not active operations.

There's another offsetting well that is still available for production in Section 21, which through our visual observation it appears there are some active operations through that lease. However, the operator was notified about our intended operations and has given us no objections to our project.

Has OXY estimated the cost associated with the 1 Q. development of Phase I within the unit? 2 Yes, we have. 3 Α. Do you have an exhibit that summarizes those 4 0. 5 costs? Yes, I do. Before I get to that exhibit, let me 6 Α. first talk about some of the impacts and anticipated 7 benefits that will accrue because of the project, which I 8 direct your attention to Exhibit Number 4. 9 All right, please do so. 10 0. Thank you. First of all, we expect that this project will 11 Α. 12 provide a good boost to the local Hobbs/Lea County economy. 13 This project will entail spending about \$130 million on 14 wells and facilities in order to implement the project. It will create between 200 and 300 construction jobs at the 15 peak of construction activity. It will also increase the 16 expenses for lease costs by about \$10 million annually. 17 We also estimate that it will extend the field 18 life, and therefore the economic activity in the area, by 19 more than 20 years. And we also estimate there will be the 20 reinvestment benefits as dollar spent in the community are 21 then reinvested before they ultimately leave the area. 22 23 The project will also generate additional taxes and royalties. At peak we expect this project to add 24 14,000 barrels of oil a day incremental production, which 25

represents over a 7-percent increase to the current New 1 Mexico daily production. 2 In total we expect there to be an additional 76 3 4 million barrels of oil recovered by the project. 5 Now, as far as costs go, Exhibit 5 --6 Q. Let me ask you this, Dr. Falls, can you rank this 7 project in terms of its size with other projects that are utilizing carbon dioxide as a medium to increase ultimate 8 9 recovery? 10 Α. This would be the largest CO₂ project in New 11 Mexico, and it would be the largest CO₂ project in the 12 Permian Basin in the last 15 years. 13 Q. Can you give Examiner Catanach a general time 14 frame for the construction of the additional facilities and 15 the period of time over which you will commence actual injection into the various injection wells? 16 Certainly, provided we receive Division 17 Α. 18 authorization to go ahead with the project, approving the 19 project, we estimate that we could begin construction and 20 activity associated with it in early 2002, in order to be ready to inject CO_2 in the fourth quarter of 2002. 21 22 Q. Let me direct your attention now to your next 23 display, which subdivides the major cost component of the Phase I project. I show that as Exhibit 5. 24 25 Α. Yes.

1	Q. Identify and describe that for us.
2	A. Okay, Exhibit 5 is a bar chart showing the
3	breakdown of the major costs associated with the proposed
4	project. As I mentioned previously, there's about \$130
5	million that will be spent on capital for wells and
6	facilities. We will also expend about \$190 million for CO_2
7	purchases, about \$80 million for incremental well and
8	surface operating expenses, an incremental \$20 for extra
9	lifting costs, about \$30 million for chemical costs which
10	will be required to separate and perform corrosion
11	inhibition and the like, and finally about \$65 million will
12	be spent to recompress and reinject the gases produced
13	during the project.
14	Total expenditure for the project will be in the
15	neighborhood of about a half a billion dollars.
16	Q. Mr. Falls, what in your opinion is need from the
17	Oil Conservation Division to provide the opportunity to
18	achieve this level of additional oil recovery from the
19	unit?
20	A. I have those summarized on Exhibit 6. First of
21	all, we're requesting that the Division grant us
22	authorization to inject CO ₂ and water and reinject produced
23	gas which will contain CO_2 and methane, natural gas
24	liquids and hydrogen sulfide and water into the North
25	Hobbs Grayburg-San Andres Pool, into the wells that are

listed in our C-108 Application. 1 Let me ask you this, Mr. Falls: Why are you 2 Q. seeking permission to reinject these produced gases? 3 Our analysis has shown that in order to make the 4 Α. flood viable we need to handle the produced gases. We went 5 through an examination of several alternatives, and this 6 alternative is one that was found to be economically 7 viable. 8 Q. As part of the analysis to determine the 9 10 feasibility of effectively reinjecting produced gases, is 11 there a safety plan component to that decision process? Yes, as we'll describe later and a subsequent 12 Α. witness will give more details about, the entire flood 13 design has been driven by the plan to safequard and protect 14 15 the welfare and safety of the public. Has OXY's safety plan been submitted to the 16 0. Bureau Chief of the Environmental Bureau of the Oil 17 Conservation Division for his review and approval? 18 19 Α. Yes. 20 0. And what result? My understanding is, the Bureau Chief is a 21 Α. proponent of the project and is satisfied that the safety 22 23 plan meets or exceeds the requirements to adequately 24 protect the health and safety and welfare of the public. 25 We do have another witness, Mr. Starrett, who will describe

1	more of the details about that.
2	Q. You mentioned a while ago that H_2S is currently
3	being produced within the unit and is being removed from
4	the unit area?
5	A. Yes, sir.
6	Q. And the plan is economically viable only with the
7	reinjection of that produced gas?
8	A. For the CO ₂ flood, yes.
9	Q. Can you give us a general summary of what is the
10	composition and concentration of the H_2S now and afterwards
11	if this is approved?
12	A. Certainly. Currently, the H ₂ S concentration
13	produced from the North Hobbs Unit is 65,000 parts per
14	million. With the implementation of the flood, the
15	produced CO_2 will dilute the produced gas stream
16	considerably, such that our calculation, based on a
17	reservoir-simulation model, indicates that the
18	concentration of hydrogen sulfide in the produced gas will
19	drop to 5000 parts per million.
20	Q. This is classified as a pressure maintenance
21	project?
22	A. Yes, I mean, the pressure is maintained during
23	the project.
24	Q. And you're going to continue to maintain a
25	certain reservoir pressure balance, if you will?

16

A. Yes, that's very important for the displacement
 efficiency of the flood, to maintain adequate pressure
 within the reservoir.

Q. Let's go to the second part of your request and talk about the pressures you're recommending be utilized from a regulatory perspective concerning the project. What is your recommendation?

As we change this mode of operation to CO₂ flood, 8 Α. we'll obviously be injecting fluids that have different 9 properties than water, and so to accommodate the density 10 11 differences of the fluids and also frictional pressure 12 losses that will erode the surface injection pressure, 13 we're recommending that the Division approve and grant 14 authorization to inject water up to 1100 pounds, CO₂ up to 1250 pounds, and produced gas up to 1770 pounds surface 15 16 pressure.

Q. What is the current maximum surface injection
pressure on a general basis for the unit?

Generally 800 pounds, which would be the 19 Α. .2-p.s.i.-per foot limit, although we do have on many wells 20 authorization to inject at pressures above that currently. 21 What is OXY's professional opinion about the 22 Q. current bottomhole pressure of the reservoir? 23 The current bottomhole pressure of the reservoir 24 Α. 25 in the target zones is around 1100 p.s.i.

1	Q. What, in your opinion, is the bottomhole pressure
2	fracture percentage for the unit?
3	A. The Based on our extensive amount of step-rate
4	testing, the data indicate that the minimum fracture
5	pressure, formation parting pressure in the unit, is 2600
6	p.s.i.
7	Q. How do we translate that minimum parting pressure
8	of twenty What did you say, 2600?
9	A. 2600.
10	Q 2600 pounds, to a surface pressure limitation
11	for the three substances that you're asking for limitations
12	on?
13	A. As one of our subsequent witnesses will testify
14	the details of, basically we go through a tubing flow
15	model, which accounts for the hydrostatic as well as the
16	frictional pressure losses in the tubing when the various
17	fluids are injected, so that we can relate a surface
18	injection pressure to a maximum or sand face or
19	bottomhole pressure.
20	Q. In your professional judgment are the surface
21	limitation pressures you're requesting here appropriate in
22	order not to fracture the reservoir being injected into?
23	A. Yes, as Mr. Foppiano will testify, we have built
24	in quite a bit of margin in estimating those maximum
25	surface injection pressures.

1	Q. In addition, are you requesting an administrative
2	procedure where you may petition the Division to increase
3	those numbers for individual wells or population of wells
4	based upon engineering data including but not limited to
5	step-rate tests?
6	A. Yes, we are.
7	Q. And that may be necessary over time, right?
8	A. Yes.
9	Q. Let's turn to the third request. Would you
10	identify and describe what the third request is?
11	A. The third request would be to increase the
12	fieldwide GOR level from the present 3500 standard cubic
13	feet per stock tank barrel to 6000 standard cubic feet per
14	stock tank barrel, and this is to accommodate the large
15	volumes of CO_2 that will be produced as we implement the
16	project.
17	Q. Let's turn to the fourth item. Identify and
18	describe what you're requesting here.
19	A. Yes, in order to allow us time to carry out the
20	construction schedule and activities from when we receive
21	approval, we're asking that the Division modify their
22	practice requiring that injection commence within 12 months
23	of approval, and we're asking that we be granted up to 18
24	months to begin injection. Again, this is a very large
25	project, it will take a while to carry out the various

activities to get it ready, so we would ask that that be up 1 to 18 months. 2 We also ask that you allow for an administrative 3 process whereunder we can request an additional extension 4 in case we run into delays. 5 It's obvious that you're not going to get all 6 Q. these injectors ready to actually inject within 18 months 7 of approval, correct? 8 That's right, actually the surface facility 9 Α. construction schedule is more limiting, but that's correct. 10 11 Why are you seeking approval for these injectors Q. now, if it's apparent that you're not going to be able to 12 get them actually into injection status within 18 months? 13 Well, we need approval for the entire project, 14 Α. 15 because with an investment of this magnitude, we need to be sure that we can, in fact, implement it and carry it out. 16 What is the status of your working interest 17 Q. owners' participation and cooperation in the project? 18 We have issued an authority for expenditure to 19 Α. our working interest owners. As of last week, 20 out of 20 21 the 60 working interest owners had voted their approval for the project, we had not received any negative or nay votes 22 23 from any of our working interest owners. At this point we do not have a sufficient working 24 interest to approve the project, however, we have been in 25

1 steady communication and have been participating in the review of the project with our principal working interest 2 owners, and they've indicated to us that they intend to 3 approve the project. 4 One of them, it's very important to them that we 5 receive Division approval before they want to approve the 6 7 project. Who are your major working interest owner 8 Q. 9 partners by percentage? 10 Chevron, which has a little over 18 percent of Α. 11 the unit, Texaco which has a little over 17 percent of the 12 unit, and Exxon Mobil which has around 14 percent of the 13 working interest in the unit. Let's turn to the last item in which you request 14 Q. 15 Division action. Identify and describe what you're asking. 16 We request that the Division qualify the project Α. for the recovered tax rate under the Enhanced Oil Recovery 17 Act. 18 At this time, Mr. Falls, I'd like you to assist 19 Q. 20 me in correcting something that was filed in the 21 Application. One of the items -- I think it was paragraph 22 5 in the original Application -- attempted to set forth what the volumes of production were in association with 23 primary, secondary and then now this, if you will, tertiary 24 project that involves CO₂. I think you've advised me that 25

1	there's a way to describe this more clearly than I've done
2	so in the Application.
3	Would you take a moment and just restate this for
4	us?
5	A. Yes, evidently in drafting this we got
6	confused some of the field production data with the North
7	Hobbs data, so I would like to set the record straight.
8	We're talking about the letter dated August 15th, 2001,
9	from Thomas Kellahin to addressed giving notice of this
10	hearing, and the attached Application. On page 2 of that
11	Application, item 5, what I would like to do is just state
12	the amended paragraph in its entirety as opposed to trying
13	to correct what's there.
14	Q. Please do so.
15	A. That paragraph should read, "per unit oil
16	recovery from the unit was 160 million barrels of oil.
17	Under the current secondary recovery project, ultimate oil
18	recovery is estimated to be 275 million barrels of oil.
19	Total oil production from the unit as of January, 2001, has
20	been 231 million barrels of oil."
21	Q. And then if the project is approved, your
22	forecast for the incremental additional oil attributed to
23	the CO ₂ project is the 76 million barrels?
24	A. That's correct.
25	Q. Let's turn to a different topic now. That

1 completes the request list.

2	Let's look at a general concept of how OXY has
3	analyzed and believes the reservoir to exist in a
4	structural relationship. Do you have a display that shows
5	what you have concluded to be a structural picture?
6	A. Yes, Exhibit 7 shows the structure of the Hobbs
7	Grayburg-San Andres Pool reservoir.
8	Q. Let's take a moment now, before we talk about
9	Exhibit 7, and show the Examiner how Exhibit 7 fits to
10	Exhibit 3, which is the unit boundary map.
11	A. Certainly. The project area in Exhibit 3
12	basically covers the majority of the crest of the
13	structure, and the point of reference on the Exhibit 7 is
14	the dark blue vertical/horizontal line which represents the
15	Township 18/19 dividing line and the Range 37/38 dividing
16	line.
17	Q. If we look at that point of intersection of the
18	townships on Exhibit 7, help us find that same point on
19	Exhibit 3.
20	A. Certainly. May I show you on the large map?
21	That would be located right here, so the crest of the
22	structure is basically what is proposed for the CO_2 flood
23	project.
24	Q. So on Exhibit 3 he can find the coding that
25	intersects the four townships at that point, overlay the

1	structure map It's not on the same scale obviously, but
2	you can make a general comparison as to where the Hobbs
3	Pool structure is?
4	A. That's correct.
5	Q. Now, the North Hobbs Unit that you're operating
6	is not the entire San Andres structure, is it?
7	A. No.
8	Q. There's a color code on Exhibit 7. Explain the
9	color code.
10	A. Okay. First of all, the thinner black lines
11	denote the contours of the structure mapped to the top of
12	the San Andres. So you see them labeled, the first one,
13	the shallowest contour, minus 400 feet subsea. Then we
14	have a contour at minus 500 feet subsea, one at minus 600
15	feet subsea, and one at minus 700 subsea.
16	The other colored lines that are bolder, first of
17	all, the gas-oil contact, original gas-oil contact at
18	discovery, is shown by the dark bold red line, which was
19	located at minus 365 feet subsea. There's currently not a
20	gas cap in the San Andres, because supplemental operations,
21	secondary operations have basically filled that gas cap up
22	with water. But originally it was present.
23	The green line denotes the producing oil-water
24	contact, which was the depth at which water in the
25	hydrocarbon accumulation, water was first encountered.

That was at minus 635 subsea depth. 1 And finally, the blue contour shows what's 2 referred to as a free water level, which is at minus 735 3 feet, which is the depth at which there is no more moveable 4 5 oil. Do you have a display that illustrates the 6 Q. geology of the unit in a cross-sectional perspective? 7 Yes, that would be Exhibit 8. 8 Α. 9 Q. Let's turn to that exhibit. First of all, let's 10 start -- Ignore for a moment the wellbore data. Let's start with the left scale in a vertical sense. Starting at 11 the top, go down and give us a geologic summary. 12 Well, this is meant to illustrate the typical 13 Α. geology encountered in the Hobbs Grayburg-San Andres Pool. 14 15 Beginning at the top of the pool is the Grayburg formation. And I might add, all of these sediments were deposited --16 or consist of dolomite or dolomitic siltstones that were 17 18 deposited in a shallow carbonate-shelf environment, and we see all the depositional facies and the field associated 19 with that environment, the shallow subtidal shelf, the 20 beach, the tidal flat, tidal channels and the like. 21 The Grayburg consists of a dolomitic siltstone. 22 23 The top 200 feet of the interval are filled with a lot of anhydrite clay and quartz, and so the porosity and 24 25 permeability is nonexistent. There's basically no porous

and permeable zones at the top of the Grayburg. 1 The bottom hundred feet or so is called the basal 2 Grayburg, and here the anhydritic content of the rock has 3 diminished to where there is some porosity, about 10- to 4 12-percent porosity. But because it's basically siltstone 5 the permeability is quite low, 2 millidarcies. 6 Next to the sequence is -- at the top of the San 7 Andres, is a very tight, dense dolomitic cap which forms a 8 9 seal between the accumulations in the San Andres and the accumulation in the Grayburg. And I might add, the 10 Grayburg itself forms the total seal for the total 11 12 hydrocarbon accumulation in the Hobbs Grayburg-San Andres 13 Pool. All right, Mr. Falls, please continue. 14 Q. The San Andres zone has been subdivided into 15 Α. three major intervals. The shallowest interval, referred 16 to as Zone 1, is the most porous and permeable member. 17 It's basically an extensively dolomitized colloidal and 18 oolitic deposited carbonate. It has about an 18-percent 19 porosity and averages 90 millidarcies of permeability, so 20 it's quite permeable rock. 21 Below that in some areas of the field, although 22 by no means is it extensive across the field, is a shaly 23 24 streak that separates Zone 1 from Zone 2. And where it's 25 present in the field, this shaly streak has been a good

The Zone 2 porosity and barrier to flow of hydrocarbons. 1 permeability is about 15-percent porosity and about 15 2 millidarcies permeability. 3 Below Zone 1 and 2 is a clay/sand field member, 4 which is referred to as the "sandy break", and the Zone 3 5 San Andres below that has about a 15-percent porosity and a 6 12-millidarcy permeability. We show below that, of course, 7 the producing oil-water contact and, even farther below 8 9 that, the free-water level. Before we do the horizontal scale and talk about 10 Q. the development and the status of the project, identify for 11 12 me now what vertical limits you're seeking injection authority for from Mr. Catanach by his action in this case. 13 We're seeking authority from the unitized 14 Α. interval, which runs from the top of the Grayburg down to 15 4500 feet, which is no change over the current authorized 16 interval. 17 That continues your current approvals as to 18 Q. allowing the operator the flexibility and the internal 19 choice as to which if any of those are flooded and how? 20 21 Α. Yes, sir. And you're seeking no change in that? 22 Q. No, we're not. 23 Α. Let's start, then, on the left side and have you 24 Q. walk us through a summary of how development has taken 25

1 place in the North Hobbs Unit.

2	A. Okay. Well, the field was discovered in 1928,
3	and during early stages of primary development the practice
4	typically was to drill a well to the bottom of the most
5	productive zone, so the bottom of the Zone 1-2 interval,
6	just above the sandy break, and case the well down to
7	around the top of the basal Grayburg and then produce the
8	well open hole.
9	In later stages of primary development, as the
10	Zone 1 and Zone 2 became depleted, the practice was to
11	deepen the wells down through Zone 3 to the producing
12	oil/water contact and set a liner in the 7-inch casing and
13	then complete the well in Zone 3 to gain the solution gas
14	drive recovery from Zone 3.
15	As Zone 3 began to become depleted, the operators
16	in the area saw the benefits of going to a pressure
17	maintenance project and so made application to the Division
18	to have a pressure maintenance project at North Hobbs, and
19	in 1979 was granted an order approving water injection in
20	the unit.
21	The waterflood that was done was a waterflood of,
22	for the most part, Zone 3. And the reason for that was
23	because Zone 1 was connected downdip to an active aquifer.
24	And so during the primary recovery period, this natural
25	water drive effectively did a natural waterflood of Zone 1.

And so as the waterflood has been implemented since 1979, the flood has been of mostly Zone 3. But in some areas of the field where I mentioned that we have the shaly streak separating Zone 1 and 2, it has also undergone waterflood where there's reserves there to be recovered.

Now, in the proposed flood, we would propose 6 7 flooding both the Zone 1 and 2 and Zone 3 intervals by actually conducting two floods concurrently. And the 8 9 reason for needing to flood both zones but not commingle 10 injection is because of the disparity in reservoir 11 properties between the zones. If we were to flood this as 12 an entire package, we would not achieve very good vertical sweep efficiency of the interval. And so we will be 13 conducting separate floods of the two zones, a 40-acre 14 15 fivespot containing the current waterflood layout in Zone 3, and then flooding Zone 1 and 2 at a wider spacing 16 because of the much higher productivity, much higher 17 18 reservoir quality rock, flooding that on 160 acres with the ninespot, as is illustrated in the diagram. 19 The 1979 order that the Division issued, I 20 Q. 21 believe, is Order Number 6199? 22 Α. Yes. 23 Are you familiar with that order? Q. 24 Α. Yes.

Q. The current request involves a substantial change

25

1	in operation and technology so that you can now have
2	approval to utilize carbon dioxide?
3	A. Yes.
4	Q. That's the concept, right?
5	A. Yes.
6	Q. Take a moment, and let's talk about the flood
7	pattern specifically that's shown on here. Summarize that
8	for us.
9	Q. Okay, up at the top of the diagram it simply just
10	illustrates the flood pattern that was used during the
11	various stages of development. We ended up with about a
12	25-acre well spacing under primary, somewhat an irregular
13	well spacing, but about averaging 25 acres.
14	The waterflood of Zone 2 and 3 is occurring on a
15	40-acre fivespot, which is illustrated about there on the
16	exhibit, and in the case of the CO ₂ flood, we would take
17	the current water injector of Zone 3 and convert it into a
18	CO ₂ -and-water or produced gas-and-water injector. And
19	using the existing well penetrations in the field, we would
20	on top of that have a 160-acre ninespot for flooding Zone 1
21	and 2.
22	Q. All right, sir. Do you have a tabulation or a
23	sheet that summarizes the basic reservoir data that was
24	utilized and available to you, as we begin to analyze the
25	feasibility of the project and go on to develop the
-	

1	methodology for determining the opportunity to produce an
2	additional 76 million barrels of oil?
3	A. Yes, Exhibit 9 summarizes the pertinent reservoir
4	data for the Hobbs field.
5	Q. All right, let's turn past that and let's go into
6	having you give us an illustration about the details for
7	the carbon dioxide Phase I implementation, and if you'll
8	start with the first of three areas that would be up in
9	the top left with "Well Work" what are you describing
10	here?
11	A. Okay, Exhibit 10 is meant to summarize the
12	activities that will go on in order to implement a $ extsf{CO}_2$
13	flood in the North Hobbs Unit. First of all, we'll be
14	needing to do some well work in order to configure the
15	patterns, to get them right for implementing the CO_2 flood.
16	This will involve drilling some new wells at locations that
17	we would need to complete the patterns, sum total of around
18	60 new wells over the lifetime of the project
19	implementation.
20	We will be required to reactivate about 30
21	currently temporarily abandoned wells in order to, again,
22	fill out the desired CO_2 -flood patterns. We'll also need
23	to convert the function of some wells. Wells that are
24	currently producers, we will need to make them injectors
25	and vice-versa. And we'll also need to be opening up Zone

1 pay, which was basically, you know, scabbed off or 1 plugged back at the time that the initial waterflood was 2 implemented. 3 So the upper left-hand portion of Exhibit 10 kind 4 of summarizes the well work associated with the project. 5 Would you look at the bottom half of the display 6 Q. and describe for us what OXY recommends to be the 7 8 illustration of facilities necessary to implement the 9 flood? Yes, this is a simplified block-flow diagram of 10 Α. 11 the facility layout for the proposed flood. To carry out the flood we will need to bring in a supply of CO_2 . We 12 will build a lateral that will supply CO₂ from the existing 13 CO₂ supply pipeline infrastructure in the Permian Basin 14 over to the Hobbs field. 15 And so walking through this bottom portion of 16 Exhibit 10 from the upper left, we will bring in the CO_2 17 supply into an injector and introduce it into the 18 reservoir. 19 The produced oil, gas and water will be collected 20 through a brand-new gathering system designed and 21 constructed of the appropriate materials to handle the 22 23 produced fluids and collect at a well test satellite where the oil and water will be separated from the gas. 24 25 The oil and water will go through a new flow line

1	system to a tank battery and water injection station. We
2	will use the existing tank battery of water injection
3	stations, but because of the increase in the volumes of
4	fluid produced as a result of this project we'll actually
5	have to build one new battery and water injection station.
6	So you see the color scheme here, the gray
7	indicates what is the system that we'll need to modify
8	in implementing the flood, and the yellow denotes a new
9	system that we'll need to build from scratch, and so that
10	one is shown as both colors because we'll both be using
11	existing facilities as well as building a replica of the
12	existing facilities for the tank battery and water
13	injection.
14	And the water, of course, then goes to injection
15	wells for injection back in the project, and the oil goes
16	to sales.
17	I might add that this project is self-sufficient
18	in terms of water. We do not require any freshwater makeup
19	or makeup from other areas, nor do we require disposal of
20	produced water from the project.
21	Q. Are you currently utilizing any fresh water?
22	A. No, we're not.
23	Q. And the plan is not to utilize fresh water?
24	A. No, we will not.
25	Q. All right, sir. Please continue.

The gas from the satellite will go to a 1 Α. dehydration and compression unit which will remove the 2 3 water from the gas and then recompress it up to be reinjected within the gas reinjection area of the project. 4 Let's go to the third portion, which is in the 5 Q. upper right corner, and talk about some of the design 6 7 components of the project. Okay first of all, we have made safety our top Α. 8 9 priority in designing this project. As I mentioned earlier, one step we've taken to further reduce risk is to 10 11 segregate the project area into CO₂ -- pipeline CO₂ gas 12 injection area, which is closer to the populated areas, and reinjecting produced gas only in the most remote areas of 13 14 the unit. 15 In addition, as a subsequent witness, Mr. Starrett will be prepared to testify the details of, we've 16 17 built into the project the appropriate design and risk reduction measures and have set up operational practices to 18 19 operate the flood in a safe manner. Is there a cost component directly attributed to 20 Q. the safety plan? 21 Yes, there is. 22 Α. And do you have an approximate number to share 23 Q. 24 with the Examiner? 25 Α. It's around \$4 million.

1	Q. Talk about the project in terms of phasing it in
2	over a given number of months or years.
3	A. Yeah, the project needs to be phased in over 10
4	years. That's to first of all level-load CO ₂ purchases as
5	well as the facilities, and also because we have to wait
6	for gas to be produced from the gas-injection area in order
7	to put on the patterns that exist in the gas produced
8	gas reinjection area.
9	I also might note that around this project area
10	the current waterflood will continue. And so we will not
11	be changing the operation in the other areas, units that
12	are outside the boundaries of the proposed Phase I $ extsf{CO}_2$
13	project area.
14	Q. Let me direct your attention, Mr. Falls, to the
15	exhibit that illustrates the design limitations or
16	constraints that you were dealing with when you began to
17	analyze and decide if this project was feasible.
18	A. Okay, Exhibit 11 summarizes the major design
19	premises or what the major things that form the
20	framework or fabric for the CO ₂ -flood design.
21	First of all, we are asking for permission to
22	reinject produced gas. As I mentioned previously we looked
23	at some other alternatives, but they were not found to be
24	economically viable.
25	Secondly, the flood is designed around a CO ₂

purchase rate of 110 million cubic feet per day, which is 1 limited by the existing CO_2 -supply infrastructure in the 2 area. 3 As also mentioned previously, we have designed 4 the flood to separate the flood of the two major San Andres 5 intervals in order to get adequate vertical sweep 6 7 efficiency for the project. And finally, we have been driven by a need to 8 9 maximize the use of existing wellbores. The project has a hard time bearing, you know, drilling all brand new wells, 10 so we must use existing wellbores. 11 Because of the existing well construction, we're 12 limited to tubing size of about 3 1/2 inches. And this has 13 a role in the project because in order to process the 14 reservoirs at the desired or needed rates we need to put 15 quite large volumes down this 3-1/2 tubing, which 16 introduces the frictional pressure loss that's the 17 motivation behind us requesting additional surface 18 19 injection pressure to be able to accommodate that. 20 0. What engineering method did you utilize in order 21 to come to the conclusion that there was an opportunity to produce 76 million barrels of additional oil? 22 23 The backbone of our analysis is a comprehensive Α. 24 reservoir simulation model, which is summarized in the next 25 two exhibits.
Let's turn to Exhibit Number 12, and before you 1 Q. describe that, let ask you a couple of questions. Examiner 2 Catanach has seen a number of modeling simulation 3 presentations. Rank for him, if you will, the level of 4 sophistication that was used by OXY in order to simulate 5 what we believe to be the reservoir and then how we 6 7 forecast recovery. Well, we've tried to bring to bear the world-8 Α. 9 class and highest level of sophistication in designing this 10 flood. We recently were privileged to have an external 11 party come in and review our work and classify this work as 12 being, you know, world class. 13 What type of model are you using here? Q. Okay, we began -- We actually built two models 14 Α. 15 for -- to describe the Hobbs field. The first model was one of the waterflood, because we needed to make sure we 16 17 understood the reservoir characterization and the response of the field to water injection before going on to design 18 the CO₂ flood. 19 You've called this the full field model? 20 0. Yes, I have. 21 Α. Identify and describe for us, utilizing Exhibit 22 Q. 12, what you've done and what you've concluded. 23 Occidental Permian being the operator of both the 24 Α. 25 North and South Hobbs Units has the opportunity to build a

1 comprehensive integrated model for the entire Hobbs Grayburg-San Andres Pool. And so the full field model 2 basically represents the simulation model that was built to 3 incorporate the fundamental reservoir characterization 4 data, as well as the injection and production history over 5 the lifetime of production from the field, and be able to 6 7 history-match that. We used a simulation with 120,000 grid blocks to 8 discretize or break up the spatial relationship of the 9 geology and petrophysics in the field. 10 11 So the top panel shows the structure and permeability that was in the model, with the structure 12 being shown, obviously, by the layout of the grid blocks. 13 14 And the permeability, going from the cool colors would be 15 the lowest permeability, down say 1 millidarcy in the top of the Grayburg, and the warmer colors being higher 16 17 permeability, getting up in some layers up to 200 millidarcies in Zone 1 of the San Andres. 18 The bottom panel --19 The top portion of the display, then, represents 20 Q. the input of all the data you have available, and you now 21 22 have what you believe to be an accurate geologic and reservoir depiction of the reservoir? 23 Yes, the geologist and petrophysical description 24 Α. was used directly in the model without manipulation or 25

1	modification.
2	Q. The next sequence is then to run the model and
3	try to match certain characteristics of the reservoir,
4	right?
5	A. Uh-huh.
6	Q. What did you match?
7	A. We matched the oil, gas and water production over
8	time from the entire field, and that's what's represented
9	in the bottom panel of Exhibit 12.
10	Q. Describe for us how we read and understand that.
11	A. Okay, the graph shows over time the actual gas,
12	water and oil production by the symbols, the gas being the
13	solid-filled black symbols, the water being the diamond
14	blue-filled diamonds, and the oil being the green solid
15	circles. And the simulation shows the model history match
16	of that actual data. And this is a very good history
17	match, as judged by those that are schooled in the art.
18	Q. Okay, what then did you do?
19	A. Okay, having this full field model and the
20	degree, quality of history match that we had, we felt that
21	we had an adequate understanding of the reservoir in order
22	to form the basis for a CO ₂ -flood design.
23	Q. Did you have to manipulate any of the parameters
24	of the full-field model in order to achieve this quality of
25	match?

A. Fortunately, not very much. That's because since
OXY operates so many projects and fields around the Permian
Basin, we have a good handle on the basic inputs for
obtaining a history match, like relative permeability
curves and the PVT description, et cetera, and those were
used as we've used them elsewhere in this model.

7 The principal tuning parameter, if you will, in 8 obtaining the history match was the completion interval. 9 That is the depth to which -- and intervals in which wells 10 were completed over time. That was the principal mechanism 11 used to obtain the history match.

Q. Give us the transition from the full field model
now to the simulation for the CO₂ flood.

A. Okay. Important in capturing the response and
performance of the CO₂ flood is understanding how the CO₂
will go into the various layers. And so it requires a much
finer discretization of the vertical direction than a
waterflood.

Given that in order to obtain the degree of definition of the vertical strata there we would be unable to model the CO_2 flood using the full-field model, so we went to a proven approach, which is illustrated on Exhibit 13, which shows the approach we took in actually modeling and designing the CO_2 flood for North Hobbs. Q. Why did you call it a proven approach?

A. Because in the other 16 floods that we've
 operated we've used that with success in projecting the
 performance of CO₂ floods.

Summarize this Exhibit 13 for us, then. 4 0. Okay, we refer to it as a prototype simulation 5 Α. approach where we represent an element of symmetry within 6 the existing or intended pattern of the flood, so that's 7 illustrated here on the upper left-hand portion of the 8 diagram where we subdivide the pattern into a quarter 9 element of symmetry and develop a prototype simulation 10 model. 11

12 As you'll note, that's shown by the colored diagram in the middle where we show the quarter element, 13 ninespot or fivespot element symmetry. And you see that 14 we've built a lot more vertical layers, 50 vertical layers 15 instead of the 14 in the full field model. Because of the 16 smaller area extent, though, the number of grid blocks in 17 18 the prototype simulation model is low enough that the model is tractable and can be run to project various flood 19 options and then evaluate them. 20

21 An input to the model is geologic and 22 petrophysical characterization as determined, principally 23 by well logs but also core, and a number of 24 characterization data that we have available to us. 25 The prototype simulation model has been used to

1	develop a dimensionless injection production functions,
2	which form the basis and inputs to a scaling and scheduling
3	algorithm that basically applies these element of
4	symmetries and adds them together to build up the full
5	field or full project area injection production functions.
6	Q. Do you calibrate or history-match this type of
7	model as you did with the full-field model?
8	A. Yes, typically the prototype simulation model
9	will actually be run itself on the waterflood performance
10	data and calibrated that way.
11	Q. At this point in time, have you constructed the
12	model in such a way and have it prepared that it can now
13	forecast for you what would be the effect if you commence
14	CO ₂ injection?
15	A. Yes, that's been our experience.
16	Q. Do you have an illustration that forecasts for
17	you what you believe will be the performance of the unit
18	under Phase I CO ₂ development?
19	A. Yes, that would be Exhibit 14.
20	Q. Let's look at that.
21	A. This exhibit shows the forecast of oil production
22	response from the proposed flood in relationship to the
23	historical performance history.
24	Again, the solid filled green symbols denote the
25	actual production history through the primary and then

1	post-unitization waterflood periods. And the solid line
2	shows the forecast. First of all, the forecast that if we
3	were to continue the existing secondary flood operations,
4	the waterflood decline is shown beginning in the year 2002
5	as the solid line underneath the cross-hached area.
6	The open symbols show the forecast for the
7	proposed CO ₂ flood, and the shaded region in between is the
8	total volume of oil expected to be recovered by the
9	project.
10	Q. If the Examiner approves the project for the
11	recovered tax oil rate, you will come back at some future
12	date and prove to his satisfaction a positive response to
13	that CO ₂ ?
14	A. (Nods.)
15	Q. Is Exhibit 14 a display that he could utilize to
16	know the baseline, if you will?
17	A. Yes, and I believe we've tabulated those numbers
18	also in the Application.
19	Q. All right. So there will be a method that he can
20	use this as the baseline to see what would have happened if
21	you had not utilized CO ₂ ?
22	A. Yes.
23	0. And then he can compare it to what you present
~ .	
24	for a positive response?

All right, let's turn to the last display that 1 Q. you're presenting. Identify for us Exhibit 15. 2 Exhibit 15 shows the gas injection and production 3 Α. of the proposed project and forms the basis of our request 4 to up the GOR for the unit. 5 First of all, this depicts in the magenta-colored 6 7 curve with the solid diamonds the CO₂ purchase rates associated with the project. The CO₂ purchase will be 8 about 110 million cubic feet per day for about five years. 9 And then as patterns in the flood reach their designed slug 10 size, the CO₂ purchases will be curtailed and fall off as 11 the curve shows. 12 The gas produced during the -- by the project is 13 shown by the -- indicated by the black line with the 14 squares, and it shows that the project will produce about 15 70 million cubic feet of produced gas over about eight or 16 nine years before it begins to decline. 17 18 The red curve with the triangles shows the total gas injected in the project, which is the sum of those two 19 20 curves. 21 Also displayed against the right-hand Y axis is the unit GOR. We see it would rise, predicted to rise from 22 23 the current 800 standard cubic feet per stock tank barrel up to about 5000 standard cubic feet per barrel as the CO_2 24 25 breaks through and is produced, and this is the basis for

1	our request to allow up to a 6000 GOR to give us some
2	margin on these projections.
3	Q. In conclusion, Mr. Falls, would you take a moment
4	and summarize your opinions, conclusions and
5	recommendations for Mr. Catanach?
6	A. Certainly. Mr. Examiner, OXY Permian has
7	designed a CO $_2$ flood of the North Hobbs Unit Grayburg-San
8	Andres Pool to safely protect the welfare of the public in
9	implementing a CO ₂ flood while increasing the recovery of
10	hydrocarbons from the field.
11	We expect there to be substantial benefits to
12	accrue by implementing the flood, first of all to the local
13	economy, as well as the State of New Mexico, and to carry
14	out the project we need your approval of several items
15	which are listed in Exhibit 6.
16	We need you to grant authorization to inject CO_2
17	and produced gas into the project area, into the wells that
18	are listed in our C-108 Application.
19	We need you to approve increased surface
20	injection pressures to accommodate our density differences
21	and frictional pressure losses.
22	We request that we be granted an increase in the
23	fieldwide GOR, up to 6000 standard cubic feet per stock
24	tank barrel.
25	We ask that you give us 18 months to begin

injection from approval and also grant us an administrative 1 process to request extension of that time period if we run 2 3 into construction delays. And then we ask that you qualify the project 4 5 under the Enhanced Oil Recovery Act. MR. KELLAHIN: Mr. Examiner, that concludes my 6 7 examination of Mr. Falls. We move the introduction of the exhibits that he sponsored, which are Exhibits 1 through 8 9 15. EXAMINER CATANACH: Exhibits 1 through 15 will be 10 admitted as evidence. 11 A lot of information. 12 Sir? MR. KELLAHIN: 13 EXAMINER CATANACH: Lots of information. 14 MR. KELLAHIN: It's a big project, Mr. Examiner. 15 EXAMINER CATANACH: Okay, Mr. Falls, I have a few 16 17 questions. EXAMINATION 18 19 BY EXAMINER CATANACH: Initially, as shown on your map, the gas 20 Q. injection area on the right-hand side will be strictly CO₂ 21 22 injection; is that correct? Not just initially but throughout the lifetime of 23 Α. 24 the project, only CO₂-pipeline gas will be introduced in 25 the gas injection area.

1	Q. At some point during the operations do you
2	Well, when the CO ₂ purchase is reduced, are you still going
3	to have enough CO ₂ to inject into that area?
4	A. The CO_2 purchase will be reduced as the patterns
5	in that area reach their ultimate designed CO_2 slug size.
6	So they will be basically going on chase water at the time
7	the CO ₂ purchases are being curtailed.
8	Q. Okay. Within that area, do you alternate CO_2 and
9	water injection in that area?
10	A. Yes, I didn't mention that, but the slug the
11	flood is designed as what's called a tapered WAG injection
12	strategy, where an initial slug of CO ₂ is injected,
13	followed by a slug of water, and then alternating CO_2 and
14	water. But the CO_2 portions get progressively smaller, and
15	the water injection portions get progressively longer until
16	ultimately you chase the entire slug with a water drive.
17	Q. So initially, how long would your CO ₂ injection
18	phase last, in a given well?
19	A. In a given well, the CO ₂ slug size is envisioned
20	ultimately in Zone 1 to be 60 percent hydrocarbon pore
21	volume. The design throughput for Zone 1 and 2 is 15
22	percent hydrocarbon pore volume per year, so within six to
23	eight years, given that the WAG cycle is going on, will be
24	what the Zone 1-2 injector how long it would be
25	injecting CO ₂ .

Zone 3, as I mentioned, has tighter rock, and so 1 the forecast throughput rate is only 10 percent hydrocarbon 2 pore volume per year, so it's basically 50 percent longer. 3 So it's projected to be nine to twelve years before chase 4 water is introduced. 5 Okay, in the other area, the gas reinjection 6 Q. area, that is going to be strictly produced gas? 7 Produced gas and water in the same WAG strategy. 8 Α. And that's throughout the life of the project? 9 Q. Yes. 10 Α. What's the percentage of CO₂ that's going to be 11 Q. in that produced gas? 12 About 90 percent is what our model projects, once 13 Α. the CO₂ breaks through. I mean, it starts from the current 14 15-percent average, but it builds very quickly, especially 15 from Zone 1-2, which is a very prolific zone. 16 So do you envision that area as getting the same 17 Q. benefits or nearly the same benefits as the CO₂-injection 18 19 area? 20 Yes. The presence of the hydrocarbons does Α. diminish the displacement efficiency somewhat, but not 21 22 greatly. Okay. Now, is your project going to be -- the 23 0. CO₂ injection going to be limited to the area that you've 24 25 defined on the map there?

Α. Yes, Phase 1. 1 Now, is there a Phase 2? 2 0. We envision if Phase 1 is successful, potentially 3 Α. coming back in the 2008 time frame and potentially 4 expanding to other portions of the unit. 5 Expanding CO₂ injection? б Q. CO₂ injection, yes. 7 Α. Let me ask you whether -- The CO₂ injection, will 8 Q. 9 that benefit the area outside the CO_2 -injection area? For the producing wells that are just adjacent, 10 Α. to some extent, yes, but not much beyond that as the, you 11 know, ring of producers captures the CO₂-injection 12 production. 13 Okay. Now, on this particular map you don't have 14 Q. the injection patterns mapped. Is there an exhibit that 15 has those mapped? 16 We do not have one prepared, Mr. Examiner, but we 17 Α. certainly can provide one for you. 18 Okay. Now, I guess the H₂S is currently being 19 Q. 20 produced from the San Andres zone? 21 Α. Yes. And it's currently being processed at -- Where is 22 Q. it being processed at currently? 23 24 At nearby gas plants. Α. And you have examined the possibility of 25 Q.

continuing that process and have found it uneconomic; is 1 that correct? 2 Yes, the existing gas plants with the technology 3 Α. that is employed cannot accommodate large concentrations of 4 CO_2 , so the gas produced by this project cannot be 5 6 processed by gas plant. There are some CO_2 -recovery plants in the area, however we have investigated the Hobbs gas 7 there and have found that the existing plants do not have 8 9 sufficient capacity to handle the Hobbs volume, so it would 10 require substantial expansion to that, and that's quite an 11 investment that this project cannot bear. 12 Now, does the H_2S in the produced gas, does that Q. present some problems with the injection wells or the 13 14 producing wells that you've had to deal with, or that we'll deal with? 15 I don't know if you'd classify them problems. 16 Α. It's a common practice to produce H₂S and CO₂ floods across 17 18 the Permian Basin, and over the 30 years CO₂ floods have been implemented, the technology and operational procedures 19 have been developed to handle it in a safe manner. 20 21 So as far as the tubulars in the wells, you're Q. not going to -- They're not going to be any different than 22 23 what they are now? Well, the injection wells will be -- the tubing 24 Α. will be a coating, coated, that will withstand the fluids. 25

1	And same thing on the gathering system. I mean, it will be
2	a line system that will accommodate the produced fluids,
3	and
4	Q. How do you guys deal with the produced gas
5	royalty issues? I'm just curious. I mean, do you pay
6	royalty on the produced gas?
7	A. Generally we pay royalty on gas that's sold.
8	Q. So if it's reinjected you won't pay any royalty
9	on it?
10	A. That's correct. However, I should add that the
11	gas that gets contaminated by this project in proportion to
12	total unit gas is fairly small, because we have gas
13	production from the Grayburg currently that we intend to
14	keep producing, as well as the gas from the waterflood in
15	non-CO ₂ -flooded areas of the unit.
16	And in fact, the way we envision doing this is,
17	you know, as we implement the flood, we will switch the
18	production over to the new gathering and recompression
19	system only as the CO ₂ breaks through. We'll continue to
20	market the gas until it goes out of spec for the gas plant.
21	Q. And that should only be for the CO ₂ -injected
22	area?
23	A. Yes.
24	Q. Produced gas from there?
25	A. That's right, the current gas production will
•	

	52
1	continue to be gathered and sold as it is right now.
2	Q. Okay. And do you know if Roger Anderson is going
3	to sign off on anything or approve any kind of plan that
4	you guys have?
5	A. The plan has been reviewed with him, and Mr.
6	Starrett is prepared to give the details of those
7	discussions in subsequent testimony.
8	Q. Okay. All right, you've requested certain
9	fracture or certain injection pressures, and you've
10	testified that the fracture pressure that you've determined
11	in the field is approximately 2600 p.s.i.
12	A. That's the minimum of the data that's been
13	collected.
14	Q. Which is my next question. What data did you use
15	to determine that fracture pressure?
16	A. These were step-rate tests conducted over a
17	several-year period over the lifetime of the unit, and Mr.
18	Foppiano in his testimony will go through the details of
19	that.
20	Q. Okay. I believe you testified the current GOR of
21	the field is 3500 to 1?
22	A. That's the limit.
23	Q. The limit.
24	A. The current GOR, I believe, is around 800. It's
25	been dropping recently.

Your simulation shows a GOR that goes up 1 Q. Okay. to maybe 5000? 2 Α. Yes. 3 Are you just requesting a little leeway above 4 Q. 5 that? Yes, a 20-percent margin on the predictions. 6 Α. 7 Now, are you guys seeking with this Application Q. 8 to convert additional wells to injection at this time? Yes, as outlined in the Application, which Mr. 9 Α. 10 Foppiano will go over. 11 Okay. How many, do you know? 0. How many conversions to injectors? I believe I 12 Α. had tabulated in one of the exhibits the number of 13 conversions but that's both ways, and I don't have that 14 15 number -- don't know that number off the top of my head. 16 Q. Okay. I can research it for you. 17 Α. 18 That's okay. But that's through the life of the Q. project, right? I mean, all of these will be converted --19 Yeah, the red -- the wells that are color-coded 20 Α. red denote the proposed injectors for the project. There's 21 22 red wells on Exhibit 3 that show the proposed injectors. 23 Q. Okay. Now, there are existing injection wells within that area too --24 25 Α. Yes.

-- that will be utilized as well? **Q**. 1 Yes, they will be converted to CO₂ injection, 2 Α. converted to production or, you know, temporarily 3 abandoned, depending on how they're needed in carrying out 4 the flood pattern associated with the CO₂ flood. 5 Okay. You anticipate -- I guess under the unit 6 Q. 7 agreement you need a certain percentage of the working 8 interest owners to approve the project? 9 Α. Yes. 10 Q. And that's 75 percent? 11 Sixty-five percent. Α. Sixty-five. And you're not there yet, but you 12 Q. 13 anticipate being there? That's correct. This is a large project, and our 14 Α. 15 major working interest owners have elaborate review and approval processes that they're currently going through. 16 Okay. The Grayburg section is being produced in 17 Q. the field, right? 18 19 Α. Yes. That's not in the whole field; is that in certain 20 Q. areas in the whole field? 21 Well, throughout the field the Grayburg has been 22 Α. 23 produced either for gas or on the flanks. The oil column 24 is in the Grayburg as well. Okay. Now, are you going to CO₂-flood the 25 Q.

54

1 Grayburg? Α. No. 2 And the reason is -- ? 3 Q. Well, the Grayburg is largely -- originally gas 4 Α. 5 accumulation, and over at the flanks of the field the richness of the patterns is not sufficient to justify CO_2 -6 7 flooding the Grayburg at this point. Right now our intention in Phase 1 is not to flood the Grayburg with CO₂. 8 Okay. Now, tell me the injection is going to 9 Q. work. In some wells are you saying that just Zone 3 will 10 be flooded, in some injection wells? 11 12 Α. Yes. And in some injection wells 1 and 2 will be open 13 Q. and not 3? 14 Correct, we do not intend to commingle injection 15 Α. between Zone 1 and 2 and Zone 3, so the injectors will be 16 dedicated to either Zone 1 and 2, or Zone 3. 17 Now, producing wells will be open in all three 18 Q. zones? 19 Yes, we intend to commingle production. 20 Α. Okay, and the reason you don't want to commingle 21 Q. the injection fluid is what again? 22 23 The properties of the Zone 1 in particular are Α. such that if we tried to commingle injection, inject, it 24 25 would not effectively sweep Zone 3. We've run simulation

1	models were we've commingled injection versus where we
2	separate the floods, and it's much better recovery of the
3	hydrocarbons by separating the two intervals.
4	Q. This increases the number of injection wells that
5	are necessary?
6	A. Yes.
7	Q. What's the plan for South Hobbs?
8	A. South Hobbs is a CO ₂ -flood target. It's not as
9	rich or as good a reservoir as North Hobbs. We envision
10	beginning to design a flood for South Hobbs and hopefully
11	one day we'll be in front of you asking for permission to
12	conduct that one as well.
13	Q. Okay. What is your CO ₂ source?
14	A. Well, we have several options there. We've
15	already begun discussions and preliminary negotiations with
16	various CO ₂ suppliers. It could come from any one of the
17	major CO ₂ sources. In fact, our working interest owners
18	have the option to deliver their share of CO_2 in kind, and
19	so some of them have a holdings in one or the other.
20	So I imagine all the CO ₂ sources, McElmo Dome,
21	Bravo Dome, potentially Sheep Mountain, as well as the gas
22	plants in the southern part of the Permian Basin will
23	contribute to the CO ₂ supply.
24	I might add that the CO_2 supply is food-grade
25	CO_2 , 99.9-percent CO_2 coming off the pipeline system.

1	Q. What do you anticipate the response time to $ extsf{CO}_2$
2	injection will be?
3	A. Because of the prolific reservoir in Zone 1,
4	we're estimating we will see response in some wells in six
5	months and definitive response most likely within a year.
6	That has been common in the few reservoirs around the
7	Permian Basin that have had high permeability, Salt
8	Mobil's Salt Creek project for example, Exxon Mobil's Salt
9	Creek Project, for example, saw an extremely fast response.
10	And that's what we're expecting at North Hobbs, because of
11	the high quality of the reservoir in Zone 1 San Andres.
12	EXAMINER CATANACH: I think that's all I have for
13	now, Mr. Kellahin.
14	Are there any other questions of this witness?
15	MR. KELLAHIN: No, sir.
16	EXAMINER CATANACH: This witness may be excused.
17	MR. KELLAHIN: May we have a five-minute break?
18	EXAMINER CATANACH: Certainly.
19	(Thereupon, a recess was taken at 1:56 p.m.)
20	(The following proceedings had at 2:05 p.m.)
21	EXAMINER CATANACH: Okay, we'll call the hearing
22	back to order, and at this time we'll Mr. Johnson, can I
23	Never mind.
24	Go ahead, Mr. Kellahin.
25	MR. KELLAHIN: Thank you, Mr. Examiner.

1	MICHAEL STARRETT,
2	the witness herein, after having been first duly sworn upon
3	his oath, was examined and testified as follows:
4	DIRECT EXAMINATION
5	BY MR. KELLAHIN:
6	Q. Would you please state your name and occupation?
7	A. My name is Michael Starrett, and I'm an engineer
8	with OXY.
9	Q. Mr. Starrett, on prior occasions have you
10	testified before the Division as an engineer?
11	A. No, sir, I have not.
12	Q. Where do you reside?
13	A. Houston, Texas.
14	Q. Summarize for us your education.
15	A. I received a bachelor's of science in petroleum
16	engineering in 1983 from the University of Texas, I
17	received a master's of science in petroleum engineering
18	from the University of Texas in 1988, I received a
19	jurisprudence doctorate from the University in 1994, a
20	registered professional engineer.
21	Q. Summarize for us your employment experience as an
22	engineer.
23	A. I was hired by Amoco Production Company in the
24	Permian Basin in 1988, and I've worked there in various
25	engineering forms, production, reservoir. Since that time

and for the last ten years I've worked in the health, 1 environment and safety department. 2 Q. Summarize your experience as a safety engineer. 3 I have been more a project AGS engineer for major 4 Α. capital projects, acquisitions, divestments. How it bears 5 on the CO₂ flood, every significant-sized project since 6 1991 I have worked to ensure that it's been appropriately 7 risk-designed and -engineered to protect our workers and 8 the public. 9 Let's turn to what is marked as Exhibit 16. 10 Q. Yes, sir. 11 Α. Would you identify that for me? 12 Q. Exhibit 16 represents H₂S injection operations 13 Α. 14 around the Permian Basin. Of these projects, how many involve OXY Permian? 15 Q. The red-starred projects, outlined, scattered 16 Α. around the Basin, are the OXY-operated projects, the green 17 18 are outside-operated projects. Of the projects shown in the Permian Basin on 19 0. Exhibit 16, how many of these have you been personally 20 21 involved with? Quite a few. Starting at the north, the Anton 22 Α. Irish project, both phases; going down to the southwest, 23 the Central Mallet Unit project; further south, the Bennett 24 Ranch project; further southeast, the Cedar Lake project, 25

1	both phases; way off to the east, the Cogdell project; down
2	to the south, the North Cowden project; and the proposed
3	Hobbs project in the outlined red star.
4	Q. What has been your task or responsibility with
5	regards to the North Hobbs project?
6	A. As the health, environment, safety and regulatory
7	team leader, I am responsible for ensuring that this
8	project is appropriately designed, constructed and
9	implemented in a safe manner.
10	MR. KELLAHIN: We tender Mr. Starrett as an
11	expert petroleum engineer with expertise in safe planning
12	for facilities such as this project.
13	EXAMINER CATANACH: He is so qualified.
14	Q. (By Mr. Kellahin) Mr. Starrett, let's have you
15	express an ultimate opinion for me, if you will. In your
16	opinion, has this project been designed to be constructed
17	and operated in a safe manner?
18	A. Yes, sir, it is.
19	Q. Have you emphasized and focused on the handling
20	of the H ₂ S component of the project?
21	A. As one of the most significant components, yes,
22	sir.
23	Q. When we talk about a safety plan
24	A. Yes, sir.
25	Q can you identify and describe for us the major

components of OXY's safety plan for the North Hobbs Unit? 1 Yes, sir, I've brought an exhibit with me marked 2 Α. Number 17, which describe three of the major safety-plan 3 components. 4 All right, go through that for us and summarize 5 Q. them. 6 Yes, sir. The first one is a construction safety 7 Α. This is basically a communication plan for the 8 plan. 9 actual installation of the project. This is a multi-year 10 project involving many crews from different contractors. 11 We want to ensure that the drilling and workover and 12 facility construction pipeline all get coordinated and communicated and implemented safely. 13 The next plan is a close proximity operating 14 It is an operating plan for wells and facilities 15 plan. that are located in close proximity to people. 16 That's roads, homes or businesses. It ensures the integrity of 17 the facility design and operation, because it has increased 18 material specification, hazard reviews, inspections and 19 20 maintenance plans and management of change associated with 21 it. And then the third plan is the emergency action 22 23 plan, which is an integrated emergency response plan that incorporates a wide potential hazards, and one of the major 24 components of it is the H₂S contingency plan required under 25

	62
1	Rule 118.
2	Q. Can you identify for us your exhibits that are
3	associated to what you've summarized to be the three
4	components of what we're characterizing as the safety plan?
5	A. Yes, sir, Exhibit 18, 19 and 20 are the draft
6	versions of these three plans, and I will just quickly
7	outline it.
8	The one marked 18 would be our construction safe
9	work plan. It's summarized on the top portion of Exhibit
10	17.
11	On Exhibit 19 is the close proximity operating
12	plan, which is summarized in the middle portion of Exhibit
13	17.
14	And the larger Exhibit Number 20 is the Hobbs
15	emergency action plan, which is also summarized on Exhibit
16	17.
17	Q. Have those documents been submitted to the
18	Environmental Bureau of the Oil Conservation Division?
19	A. All three of these documents have been reviewed
20	and submitted with both the District and the Environmental
21	Bureau of the OCD.
22	Q. What if any response have you received from the
23	District Supervisor in Hobbs and from the Bureau Chief of
24	the Environmental Bureau here in Santa Fe for the Division?
25	A. I would characterize their response as a strong

1	proponent for the design plan of action to construct this
2	facility and operate it.
3	Q. When you Can you categorize or characterize
4	the quality and sophistication of this plan with the other
5	plans that you've been involved in that you described in
6	the earlier exhibit?
7	A. Yes, sir, about ten years ago, when we were first
8	going into the H_2S injection concept, when the plant
9	started to fill up and we didn't have the supplies and we
10	needed to use reinjection, we started the concept of
11	designing these plans and operating programs.
12	And over the last ten years we've learned a lot
13	of lessons, we've gotten better, and I would characterize
14	this one as the best and most sophisticated project we've
15	put in, eclipsing all the others in terms of its degree of
16	safety design and program implementation.
17	Q. When you're developing the three parts to what we
18	characterize as the safety plan, there is an underlying
19	technical basis that supports the plan as you've drafted
20	it; is that not true?
21	A. That is correct, sir.
22	Q. Before we look at those documents, describe for
23	us why these are simply called draft or preliminary plans.
24	What does that mean?
25	A. Well, a safety plan is never complete until the

1	project is actually implemented. Because we have not yet
2	hired construction companies and individuals, we cannot
3	specify the communication of who to call and do those kind
4	of events.
5	Because the facilities have not been completely
6	designed and implemented, i.e., right of ways may change
7	due to surface obstructions or changes may occur in the
8	design process, the plan is marked "draft" until we get the
9	actual in-place, as-built drawings, so that we can finalize
10	the plan and then implement it.
11	Q. That's simply inherent in all safety plans, is it
12	not?
13	A. That's correct, sir.
14	Q. Let's turn to the documentation, then, you're
15	prepared to submit to Mr. Catanach that supports the plan
16	itself
17	A. Yes, sir.
18	Q. Starting with Exhibit 21.
19	A. Exhibit 21 and 22 are kind of to be viewed
20	together. One of the bases for designing that safety plan
21	is to have a good understanding as to what the ${ m H}_2{ m S}$ or
22	hydrogen sulfide rates of exposures are for the project
23	that we're implementing.
24	Exhibit 21 displays model results, the worst-case
25	model results for each facility type that we're going to be

installing in the unit. 1 Exhibit 22 is actually a technical manual for the 2 dispersion model that we utilize for this particular flood. 3 Do you have an opinion as to whether or not this 4 Q. unified dispersion model in Exhibit 22 is an appropriate 5 6 model that meets all the API guidelines? 7 My opinion is that this unified dispersion model Α. is the best model that would meet all the API guidelines 8 9 for the substance that we are injecting in Hobbs, being a 10 denser phase gas. You're familiar with the Division's current Rule 11 Q. 12 118 on H_2S ? 13 Yes, sir. Α. Does your plan and the technical documentation to 14 Q. support that plan meet or exceed all the current 15 requirements of Rule 118? 16 17 Yes, sir. Α. 18 Are you aware that the Division has under Q. consideration a work group that is studying making 19 20 revisions to Rule 118? 21 Α. Yes, sir. 22 Q. To the best of your knowledge, information and 23 belief, does OXY's plan and supporting technical documentation in this case satisfy the requirements that 24 25 are anticipated to be changed for Rule 118?

1	A. Since 118 is still under development there may be
2	minor changes necessary, but I have no doubt that whatever
3	ultimately gets proposed for Rule 118 we will be able to
4	slightly modify and meet fairly easily.
5	Q. What are you asking Mr. Catanach to do with
6	regards to the safety plan?
7	A. I just wanted to put OXY just wanted to put it
8	into the record and to allow public comment on it if
9	necessary.
10	Q. All right, there's no specific action he needs to
11	take at this time as the Examiner in this hearing case?
12	A. No, sir, I assume all action will be taken by
13	either Mr. Williams or Mr. Anderson, should that be
14	necessary.
15	Q. And your understanding of the division of
16	responsibility within the Division would require Mr.
17	Anderson to approve and act upon your plan?
18	A. My current understanding is that Mr. Anderson is
19	not required to act upon the plan.
20	Q. What is his responsibility?
21	A. Well, the Director asked that I review it with
22	Mr. Anderson, and under the current rule the plan has to be
23	available for inspection according to the Division's will,
24	and so had our plan upon inspection not met Rule 118, he
25	would then have the authority or obligation to correct it.

1	Q. All right, sir. Let's turn past Exhibit 22 and
2	have you identify and describe for us what's contained in
3	Exhibit 23.
4	A. Yes, sir. Exhibit 23 and its companion exhibit,
5	24, are an attempt to represent the risk management
6	practices that were incorporated into the design of this
7	flood.
8	Exhibit 23 is simply a summary of those by
9	facility type, put on a three-page document.
10	Exhibit 24 is very much the same information
11	drawn in a simplified flow diagram at each facility. So
12	starting from a production well, following the flow through
13	the entire battery satellite and back into an injection
14	well, those are the drawings in Exhibit 24.
15	MR. BROOKS: Looks to me like Exhibit 24 is the
16	summary and Exhibit 23 is the diagram, as they're marked in
17	my set.
18	THE WITNESS: I'm sorry, did I have them in the
19	wrong order? I did? Okay, excuse me, please switch those
20	two numbers, yes, sir.
21	Q. (By Mr. Kellahin) All right, let's turn to a
22	different topic, Mr. Starrett. Do you have an exhibit that
23	summarizes the chronology of your contacts and efforts with
24	regards to the safety plan itself?
25	A. Yes, sir, that would be Exhibit Number 25.

1	Q. Identify and describe what you're showing here.
2	A. This is the safety plan chronology of meetings
3	between OXY and outside parties on developing the safety
4	plan. Would you like me to go through it?
5	Q. Yes, sir.
6	A. On April 12th, OXY met with the NMOCD Hobbs
7	Office, and at that initial meeting with Mr. Williams we
8	proposed the delineation of the gas and gas reinjection
9	areas as shown on the large map in front of me.
10	We also proposed hiring Det Norske Veritas, which
11	is a world-class risk assessment company, to help us in the
12	design of the safety mitigation measures on this flood.
13	On April 18th, OXY then met with the NMOCD Santa
14	Fe Office, where the Director Mr. Anderson reviewed the
15	project, and the Director requested a follow-up review with
16	Mr. Anderson prior to coming to this hearing.
17	Then on July 10th through 11th, an independent
18	project analysis is what IPA stands for. It's a third-
19	party consultant which reviews major capital projects.
20	They analyzed and made recommendations on our projects, and
21	one of the prongs of their investigation was the safety
22	plan on the project.
23	On July 25th, our major working interest owners,
24	Chevron, Texaco and Exxon Mobil started a peer-review
25	technical review of our flood, and they have one of the

areas they are analyzing is the safety plan and practices 1 proposed to be implemented. 2 Then on August 16th, OXY followed up with the 3 NMOCD Hobbs office to review the -- basically the documents 4 we're submitting here today, and Mr. Williams supported the 5 plan, and he requested a follow-up review with the facility 6 engineer and the construction supervisor after this 7 hearing, before construction begins, so roughly in late 8 October, I think, we're setting up that date for. 9 And 10 that's just to determine that we meet all of his expectations in the construction and implementation phase. 11 And then August 22nd, we had a follow-up meeting 12 13 with the NMOCD Santa Fe Office where Mr. Anderson and Mr. Price reviewed all this same information, and they voiced 14 their support for the plan, and they just want to request 15 that we keep an open dialogue flowing during the multi-year 16 development of this project. 17 Let me turn to a different topic, Mr. Starrett. Q. 18 Do you have an exhibit that summarizes the efforts OXY has 19 undertaken to inform the public, and particularly the 20 public in the Hobbs community, about the project and the 21 22 safety plan? Yes, sir, I brought with me Exhibit Number 26, 23 Α. which is the North Hobbs Unit CO₂ flood highlights. As 24 I've already talked about in the previous exhibit, we've 25

had several briefings with the Hobbs and Santa Fe NMOCD
 Office, because we consider the NMOCD our primary push,
 that we get them educated so they can answer questions that
 come to them.

5 Then we've discussed with elected representatives 6 from the city, county and state about our flood. We've 7 also met with some community representatives, including the 8 Hobbs city manager. We've had a couple of press releases 9 and a couple of favorable news articles, two of which I've 10 attached. I think there's quite a few more articles, but I 11 attached some examples to this exhibit.

We are also in the process of sending out a CO₂ flyer to the City, "Oxy Permian and the City of Hobbs" -the flyer is attached to the back of this exhibit -discussing what a CO₂ flood does and basically CO₂ flooding.

And then of course as we implement the actual project and further develop our H₂S contingency plan over time, we will involve the affected residents in notice what we're up to.

21 MR. KELLAHIN: Thank you. Mr. Examiner, that 22 concludes my examination of Mr. Starrett. We move the 23 introduction of Exhibits 16 through 26.

24 EXAMINER CATANACH: Exhibits 16 through 26 will
25 be admitted as evidence.

	71
1	EXAMINATION
2	BY EXAMINER CATANACH:
3	Q. Mr. Starrett, was this flyer mailed to the
4	residents of Hobbs?
5	A. No, sir, we printed up a couple of thousand
6	copies for the affected people, and we're in the process of
7	sending it out. I think we're imminent is the proper
8	word. I'm not sure why it didn't make it out before the
9	hearing, but it's making out as we speak, I think.
10	Q. You said affected people.
11	A. Well, obviously we're not going to send 30,000 or
12	whatever the population of Hobbs is. What we're trying to
13	do is give it to OCD so that they can have it on hand to
14	distribute, give it to the community leaders.
15	We're actually going I think our plan is to
16	prepare it in a letter to be published in the paper, the
17	same information with a letter from our CEO, president,
18	saying this is what we're up to. We're going to
19	disseminate this information to the community at large, and
20	then we're going to, I think, try to send it to I don't
21	know if it's a door drop. We're still how we get the
22	information out.
23	Q. Okay. I assume that when you had your
24	discussions with Roger Anderson and his group and Chris
25	Williams and his group that you went into great detail on

1	some of the safety plans that you have proposed?
2	A. Yes, sir, those discussions with Roger and them
3	lasted over three and a half hours the second time. The
4	first time I don't know how many hours it was. It was very
5	long, very detailed discussions.
6	Q. I just want to make sure that on my behalf,
7	that I don't have to spend a whole lot of time dealing with
8	the safety issues, because I think they're already covered
9	by Roger and the Hobbs District Office.
10	A. That was my plan of action prior to this hearing,
11	yes, sir.
12	Q. Okay. This As I understand it, the gas
13	injection area is basically on the north and northwest side
14	of Hobbs; is that correct?
15	A. That's correct, the city limits are not I
16	don't know if they're shown on that map. They probably
17	are, I can't see it from this far. But the City of Hobbs
18	is generally on the southeastern portion there of the map.
19	Q. Okay.
20	A. The city limits would be denoted in the dashed
21	blue line, if you can look at
22	Q. Okay, I see it.
23	A. So it cuts through a portion of the pipeline
24	quality gas injection area. It does not encounter any of
25	the gas reinjection area.
1	Q. What It's been a while since I've been to
----	--
2	Hobbs. What is in your area that you're What is in the
3	gas reinjection area? Are there residences, houses, roads,
4	things like that?
5	A. Yes, all of the above, sir.
6	Q. And that's throughout the whole area?
7	A. Yes, sir. The difference simply in the density.
8	The gas reinjection area, as stated by Mr. Falls, is much
9	more remote, much less populated area.
10	Q. But you probably have ranches out there and
11	things like that?
12	A. Yes, sir, I've supplied the Division with the
13	actual maps with all the homes on them and stuff like that
14	for them, yes, sir.
15	Q. Now, is there going to be more involvement on
16	OXY's part with residences and people in that area with
17	regards to educating them on the safety plan or
18	A. Absolutely. But you see, sir, some of that area
19	doesn't get in that area until 2008 or 2010. So our plan
20	would be to inform the residents that are affected kind of
21	right more in close proximity to when they'd actually be
22	affected. They can see the entire plan any time, but the
23	point is, we would be I'd kind of feel bad if I thought
24	I educated someone and then five years later I really got
25	in their area, and that's when I really should have

educated them on what to do. 1 Basically all of the production facilities and 2 Q. storage and pipelines and things are going to be mostly 3 located within the gas injection and gas reinjection area; 4 is that correct? 5 The existing -- the proposed new tank battery and Α. 6 the proposed new reinjection facility are, yes, we picked 7 absolutely the most remote area down in a portion of that 8 blue section, so the new facility we construct, the major 9 two facilities. 10 The individual CO₂ satellites that we're building 11 12 today are going to be on the exact same location as today's waterflood production satellites are on. So there's ten of 13 those spread throughout that area, sir, and they're within 14 15 the colored phases there. You're currently producing H₂S? 16 Q. Yes, sir. 17 Α. 18 And is the danger in this area going to increase Q. as -- with your proposal? 19 What will happen is, the H₂S concentration will 20 Α. go down dramatically, as Mr. Falls stated, from a current 21 65,000 parts per million to a probable 5000 parts per 22 23 million later. But the volume of gas is going to go up dramatically, almost by the same -- because it is a 24 dilution effect, almost by the same numbers. 25

So what will happen is, your rates of exposure, 1 which is a function of the volume, will actually increase 2 3 in areas, even though the concentration of H_2S has dropped 4 dramatically. I know that OXY hasn't operated the North Hobbs 5 Q. Unit for very long. Do you know what the safety record so 6 7 far has been with maybe Shell or Amoco? Yes, sir, I pulled the records on the Hobbs Unit 8 Α. 9 with Altura and then OXY, and it was previously operated by 10 Shell prior to Altura. I think we have an outstanding 11 safety record, would be the way to classify it, in terms of 12 lost-time accidents and no lost-time accidents. EXAMINER CATANACH: Okay, I have nothing further 13 of this witness. 14 Thank you. 15 MR. KELLAHIN: RICHARD E. FOPPIANO, 16 the witness herein, after having been first duly sworn upon 17 18 his oath, was examined and testified as follows: 19 DIRECT EXAMINATION BY MR. KELLAHIN: 20 Mr. Foppiano, for the record, sir, would you 21 Q. please state your name and occupation? 22 23 My name is Rick Foppiano, and I'm employed as a Α. 24 senior advisor for regulatory affairs for Occidental 25 Permian, Limited.

1	Q. So what's that mean?
2	A. It means I get to do the C-108 for this.
3	Q. Where do you reside?
4	A. I'm in Houston, Texas, right now.
5	Q. All right. It has been your responsibility for
6	the North Hobbs CO2 project to do what, sir?
7	A. For the North Hobbs CO_2 project I was brought in
8	to oversee some of the regulatory matters, in particular
9	the preparation of the C-108, and as part of that to
10	investigate and analyze the wells in the area of review, to
11	identify any problem wells that may have existed, and also
12	to analyze the step-rate pressure-test information and
13	justify a recommendation to the Division for what the
14	surface pressure maximum limits should be for our injection
15	wells.
16	Q. You've testified before the Division on prior
17	occasions as an expert in petroleum engineering, have you
18	not?
19	A. Yes, I have.
20	Q. And you've testified before the Division with
21	regards to the C-108, have you not?
22	A. I have.
23	Q. You were responsible for processing and
24	testifying on a saltwater disposal well, I think it was the
25	Government AD 9 well, if I'm not mistaken?

1	A. AB 9, yes.
2	Q. AB 9, all right. So you're familiar with the
3	entire process?
4	A. Yes.
5	Q. And what we're about to look at is your work
6	product and your recommendations?
7	A. Yes.
8	Q. In order to achieve this level of effort, have
9	you utilized outside experts or additional technical
10	support to develop to the fullest extent possible an
11	accurate and reliable C-108 plus all their attachments?
12	A. Yes, I have. As you can see by the volume, it's
13	a fairly large undertaking to identify and analyze and
14	compile all this information, and so I utilized people who
15	have tremendous experience in it, I utilized some of our
16	own employees and others, anybody that I felt was qualified
17	to help us prepare this filing.
18	Q. All right, sir. And you are, finally, a
19	registered professional engineer, are you not?
20	A. Yes, I am.
21	MR. KELLAHIN: We tender Mr. Foppiano as an
22	expert witness.
23	EXAMINER CATANACH: He is so qualified.
24	Q. (By Mr. Kellahin) All right. First thing I'd
25	like to have you do, Mr. Foppiano, is have you identify

1 Exhibit 27. What is this?

.

2	A. Exhibit 27 is the C-108. And, Mr. Examiner, I'll
3	point out that it's slightly revised from what was filed
4	several almost a month ago, I guess. And I can walk you
5	through it, but basically the revisions were just to update
6	the well information that was contained in the spreadsheet.
7	We continued to search for well information after the
8	filing date and some more information became available, so
9	I incorporated that into the spreadsheet and have that
10	available as the exhibit today.
11	So what you have before you is a corrected C-108.
12	It has corrected the AOR spreadsheet that's in it; it's the
13	legal-size filing. And as a result of that, a couple of
14	P-and-A schematics that were not available at the time of
15	filing have now been added, and we found a couple of minor
16	errors on the injection well data sheets, so we re-gen
17	those, and those are also corrected and part of the filing
18	today.
19	Q. If Mr. Catanach takes this Exhibit 27 and
20	utilizes this to replace any previous filings of the C-108,
21	he is using the best and most correct information?
22	A. Yes, he is.
23	Q. Let's turn to the C-108, and detach the map that
24	you would like to utilize to show us the area of review.
25	Which one of the two maps should we look at?

Give me a minute, I've got to -- Mr. Examiner, 1 Α. there are two maps attached to the C-108 filing. Because 2 of the large size of this area, and to try to get all of 3 this information on one map, I've attached two maps to the 4 C-108 filing, and the first map is the map that shows the 5 half-mile area of review and a two-mile circle for notice 6 purposes. However, you can also see that it's -- the font 7 8 is so small as to make the well information unreadable.

9 So the second map, which is entitled North Hobbs (Grayburg San Andres) Unit Area of Review Map, is a more 10 zoomed-in version of the same map, and it shows the wells 11 within a half mile -- it shows the proposed injectors 12 first, and it shows all the wells that have penetrated the 13 Hobbs Grayburg-San Andres Pool within a half mile. And it 14 15 does not show anything beyond that, so it's just focused in on those wells that are the subject of the area of review. 16 All right, let's take a moment, Mr. Foppiano, and 17 0. unfold that map so that we can all look at the same thing. 18

All right, let's identify the various things we're looking 19 at, and then we'll focus in specifically on certain areas. 20 First of all, how do we find the boundary of the unit?

21

22 Α. The boundary of the unit is denoted by the heavy black dashed line, and it's obviously the same shape of the 23 unit we've been using throughout the prior exhibits. 24 And you see we're only showing the North Hobbs Grayburg -- I 25

mean, sorry, the North Hobbs Unit operated by OXY Permian. 1 To the south is the South Hobbs Unit. I think we show it 2 there at the bottom, but we don't show the entire South 3 Hobbs Unit. So we're just looking at the North Hobbs Unit. 4 What's the significance of this scalloped in --5 Q. 6 It appears to me to be green. Is that a green-scalloped unit area? 7 The line around the unit area is the one-half-8 Α. mile area of review. You can see that obviously the first 9 part of this area-of-review process was to locate all the 10 11 proposed injection wells, and those are shown on this map as pink. And all the wells, every well that is shown on 12 13 here in pink has got a -- is listed or is tabulated in the 14 injection well data sheets. Once we located those, we drew half-mile circles 15 around all of those wells, and what you see with all the 16 wells are all the wells that are within those half-mile 17 circles. 18 Will there be a tabulation presented to the 19 Q. Examiner where he can identify and know the exact injectors 20 in the gas injection area, as well as a list of injectors 21 in the gas reinjection area? 22 23 Yes, there is attached in the C-108 a listing of Α. the injection wells, and they are denoted as to whether 24 they are in the gas reinjection area or the gas injection 25

81 1 area. Tell us the color-coding you've utilized for the 2 Q. other wells here, other than what you've just described for 3 4 the injection wells. Okay, the color-coding, as I mentioned, pink 5 Α. identifies the injectors that are either produced gas 6 injectors or -- I'm sorry, gas reinjectors or gas 7 8 injectors. The purple shows all the other North Hobbs Unit 9 wells that are active, and all of those obviously are 10 Occidental Permian, Limited, wells. 11 12 Shown in green are other Occidental Permian wells 13 that -- producing from other horizons. And there's very few of those, but they're shown on this map. 14 15 Light blue identifies the plugged and abandoned 16 wells for which there are schematics attached in the C-108. And shown in brown are the outside-operated 17 You can see a few of them in there that -- We're 18 wells. 19 mostly looking at a Blinebry waterflood that operates below 20 the North Hobbs Unit. Q. To the best of your knowledge, Mr. Foppiano, have 21 you identified all wells within the area of review that 22 penetrate to or through the unitized interval? 23 Yes, I believe I have. 24 Α. Let's keep the locator available and turn your 25 Q.

attention to Exhibit 28, and I would like you to summarize
 for us the research efforts that went into compiling and
 preparing the data that go into the area-of-review
 tabulation of wellbore information.

Yes, sir. As I mentioned before, the first step, 5 Α. obviously, was to locate all the injection wells, even the 6 7 proposed ones, as part of this CO₂ project, and then 8 construct the half-mile circles. And then after that we 9 obtained exact well-location information, construction and 10 cementing data, not only from our files but also the NMOCD 11 files in Hobbs and Santa Fe. We used Dwight's PI, and we 12 even used another operator's C-108 filings that proved to That was basically the Texland C-108 filing, 13 be valuable. was helpful on some of the Texland wells. 14

15 So we spent several months and outside help, 16 utilizing every available resource to us to acquire data n 17 these wells to be sure that we were here today with the 18 most accurate information available.

Q. Approximately how many wells are in thepopulation of wells in the area of review?

A. In the area of review, just the wells that
penetrate the Hobbs Grayburg-San Andres Pool, we're looking
at approximately 400 wells.

24 Q. Of that population, when you've ultimately come 25 down to making a professional opinion about potential

1	problem wells, how many of those wells are we going to
2	describe as potential problem wells?
3	A. There's three wells that I'm going to discuss
4	that we're going to discuss as potential problem wells, two
5	of which we'll illustrate remedial action that we'll
6	perform on it.
7	Q. Why are there so few wells identified as
8	potential problem wells in a population that large?
9	A. Well, in my opinion it's because this has been an
10	ongoing waterflood since 1979. It was When it was
11	originally authorized there was a significant amount of
12	corrective action required by the operator Shell, and that
13	information is detailed in the order authorizing the
14	injection. I think there were 15 wells that Shell was
15	required to re-enter and re-plug back in 1979.
16	Since then we have expanded the initial injection
17	authority by adding injection wells and then filing
18	subsequent C-108s, and those of course had associated area
19	of reviews with those. And then we have a deeper
20	waterflood, and they underwent an area of review.
21	And so what I think what we're coming to is, this
22	area has undergone extensive area of review and we're down
23	to the point where there just are few if any problem wells
24	left.
25	Q. When we review the tabulation and look at the

data for wells for which there is not the ability to 1 measure top of cement, what is the methodology you have 2 used to calculate the volume of fill-up in those wellbores 3 for which you do not have measured tops? 4 I utilized the standard yield of 1.32 cubic feet 5 Α. per sack and 50-percent excess. And I'll point out that I 6 7 only utilized calculated tops of cement where there was no 8 other information available about where the top of cement was, either through a cement bond log or a temperature log 9 or visual observation if it was circulated. Only then did 10 I calculate the top of cement, and then I did it according 11 to the parameters described here. 12 Is the spreadsheet attached to the C-108 13 Q. configured in such a way that Mr. Catanach can readily see 14 the wellbores for which you have calculated top of cement? 15 Yes, the legal-size spreadsheet denotes when tops 16 Α. of cement were calculated, as opposed to determined by 17 other methods, cement bond log or whatever. I think that's 18 19 in the last -- It's under the column marked "Source", which 20 is the third column from the right on the legal-size spreadsheet, and it says "CALC", meaning calculated top. 21 22 Q. All right, let's go through a presentation to show Mr. Catanach how you have organized an analysis of the 23 24 area of review. I assume you've categorized these in terms 25 of some type of wellbore?

A. Yes, sir, because this is such a large number of
wells and I knew I would be sitting here today trying to
describe this large universe, I decided to try to organize
these wells into some sort of a completion type. And after
looking at them closely, they appear to fall in one of five
different types of well completions.

And then after I did that, I went through the analysis of looking at our unitized interval in the North Hobbs Unit, which comprises the productive portion of the Hobbs Grayburg-San Andres Pool, and I looked to see if that was isolated from the nearest uphole zone, which is the Byers-Queen at about 3650, or the nearest downhole zone, which is the Glorieta at approximately 5300.

14 And I'll Just point out, Mr. Examiner, that on 15 the legal-size sheet in the C-108, the last column says "Completion Type", and that is either a type 1 through 5 16 17 for the non-plugged-and-abandoned wells, and so that will correlate to the next exhibit that I'm going to review. 18 19 All right, let's turn your attention to Exhibit Q. 20 29. Yes, Exhibit 29 is just a pie chart that gives 21 Α. you a picture of the relative numbers of these different 22

And the first group are the gray wells, they're the plugged and abandoned wells. You can see there are 63

types of completions that I've categorized.

23

total plugged and abandoned wells that fell within this 1 area of review, and there are 63 schematics attached to the 2 C-108. The Category-1 or Type-1 completions are basically 3 open-hole completions, and Type 2 are those with production 4 5 casing set into the San Andres. Type 3 have an intermediate with a liner, and Type 4 and 5 are wells that 6 are deeper and either have a liner or deep production 7 casing set through the San Andres. So you can see that for 8 9 Type 1 there's 36 open-hole completions in this area of 10 review.

11 And shown in red there's 160 wells with 12 production casing set into the San Andres. That's by far 13 the largest number of wells in the area of review, fall 14 into that completion category. 108 of the intermediate-15 plus-liner-type situation. And then we have very, very few of the ones that just have a deep production casing set all 16 the way through the San Andres, and the deeper wells are 17 18 represented more by the deep production liner with an 19 intermediate casing string.

Q. Let's take this to the next level of analysis,
Mr. Foppiano. If you'll turn to Exhibit 30, let's have you
identify and describe this display.

A. Exhibit 30 is entitled "Well Construction
Analysis", and it's for the non-plugged-and-abandoned wells
only. And because these wells -- the Type 1 through Type 3

don't penetrate below the San Andres, the analysis that 1 I'll walk you through looks at isolation of the Hobbs 2 Grayburg-San Andres from the Byers-Queen. But before I 3 start there, I'll just mention that in terms of isolation 4 of the fresh water, all these wells have a surface pipe, 5 either down to about 200 or 300 feet, or they have a 6 shorter surface pipe with a kind of a middle-level 7 intermediate casing string set at about 1600. 8 9 Q. Let me interrupt you for a second. Am I correct in understanding that in the area of review you have not 10 found a single wellbore that didn't have sufficient surface 11 12 casing, string and cement to isolate the fresh water? That's correct, I didn't find a single one. 13 Α. So the fresh water is protected? 14 Q. 15 Α. Fresh water is definitely protected. Okay. Do you find any wellbore in which a lower 16 Q. interval below the San Andres 3 Zone might be communicated 17 with in that wellbore if an injection occurs in the 18 unitized interval? Are there any lower formations at risk? 19 There are lower formations, yes. 20 Α. 21 But none of them are at risk, are they? Q. No, I'm sorry, I'm thinking about my schematic. 22 Α. Yeah, I don't believe we have any of those that are at 23 24 risk. 25 All right, so we don't have any of those kind of Q.

1	problems where a unique circumstance exists where injection
2	into the San Andres is going to contaminate or reduce
3	hydrocarbon production from a deeper zone?
4	A. That's correct.
5	Q. How about the other way? Do we have an
6	opportunity in this area where injection takes place in the
7	San Andres and there's a wellbore that's a conduit by which
8	fluids would migrate into a hydrocarbon-producing zone
9	above that interval?
10	A. There is one well.
11	Q. Okay. Is the availability of the Grayburg an
12	opportunity to seal these wellbores and confine the
13	injected fluids to the unitized interval?
14	A. Yes, as Mr. Falls testified, the Grayburg, the
15	top 100 feet of it is nonproductive. It's dolomite filled
16	with anhydrites, so it's actually a good seal, so there's a
17	very thick vertical interval between even the productive
18	portion of the Grayburg and the next highest pool up the
19	hole, which is the Byers-Queen.
20	Q. Okay. Walk us through, from left to right, the
21	various types now and the data on the bottom half of the
22	spreadsheet and what significance that should have for us.
23	A. Yes, Exhibit 30, I'll just walk you through it a
24	little bit. The upper part of Exhibit 30 shows some
25	wellbore diagrams, and these are Type 1, 2 or 3. And what

I'm attempting to show is how the wells in that particular
 type are constructed in relation to the unitized interval,
 which is from the top of the Grayburg down to the 4500
 feet.

5 And starting with Type 1, you can see by the 6 short casing string there all the wells in Type 1 have 7 surface pipe. And then the next smallest size casing down 8 is shown with a dashed line. Some of those wells have that 9 short intermediate, some don't, so it's not present in all 10 of them.

But then the next smallest casing size down is the intermediate set into the Grayburg, and all the wells in this type have that intermediate set into the Grayburg. And then you have this open hole that is drilled out below the intermediate.

And the information below the schematic drawing, you can see in the first column that says "Section", and you see various numbers on it, those are the section numbers corresponding to the sections that have wells within the area of review.

And the next column over from that are the number of wells and some top-of-cement information about those particular wells in those sections. For example, Section 13 we see "4/2770-surface". What that means is, there are four wells in Section 13 that are Type 1 wells, and the

lowest top of cement of all those four wells is 2770 feet, 1 and the highest top of cement is all the way to surface. 2 And you can see as you go all the way down that 3 that column -- there are a couple of wells in some 4 sections, in some sections there are no open-hole 5 completions -- getting all the way to the bottom where it 6 says "Summary", you can see that the open-hole completions 7 total 36 within the area of review, and the lowest top of 8 cement on these Type 1 completions is 3125, and the highest 9 top of cement is surface. 10 So what this is attempting to represent in a kind 11 12 of summarized fashion is where the top of cement is on these wells that are categorized as Type 1, and what that 13 says is that behind the intermediate casing string, the 14 15 deepest, lowest top of cement of all those 36 wells is 3125 feet, indicating that the Grayburg, the top of the Grayburg 16 or the Byers-Queen, is well isolated from the Hobbs 17 18 Grayburg-San Andres Pool. All right, let's turn to Type 2 and have you 19 Q. reach your opinions as to whether all the wellbores in this 20 type category are configured in such a way as to have 21 isolated the Grayburg-San Andres. 22 23 Yes, sir. Type 2 are wells that have surface Α. pipe, may or may not have that short intermediate string, 24 25 but they have a production casing set all the way into the

San Andres and cemented, and you can see there's 160 of
 these total.

3	And so the analysis that I looked at there was,
4	where was the top of cement behind the production string on
5	these types of wells? And there's 160 of them, the lowest
6	top of cement is 3624 feet, and the highest is surface.
7	And I will just point out that the one well that causes
8	that 3624 value to show up in here is a well in Section 32.
9	It has a low top of cement. And I went in and I
10	investigated that well in particular to look to see where
11	the top of the Grayburg was on that well, and it's about
12	3700 feet. So in my opinion that is not a problem well
13	because it has about 80 feet of cement above the top of the
14	Grayburg, behind the production casing string.
15	And if you take that value out, the next deepest
16	top of cement is 3112, so that was the only one that there
17	might be some question about.
18	Q. Take us to Type 3 and identify and describe your
19	conclusions.

A. Type 3 is very much like Type 1. The only difference is that these wells have a liner run in them, and the liner is cemented. The liner may or may not be run all the way back to surface. You can see there's 108 of these particular type of wells, and the top of cement -the same type of analysis was utilized as the wells in Type

> STEVEN T. BRENNER, CCR (505) 989-9317

91

1, and the lowest one is 3460 feet behind the intermediate,
 and the highest is surface. So I didn't see any well that
 was a Type 3 that was even close to being a problem well.
 Q. All right, turn the page and let's look at Type
 Summarize your observations and give us your
 conclusions.

Type 4, we're starting to look at the deeper 7 Α. wells, and you can see surface pipe, you can see -- it may 8 9 or may not have the short intermediate, but these wells have production casing string set all the way through the 10 unitized interval down to 6000, 7000 feet, I think, as I 11 recall, is the -- is a common TD for those wells. But 12 there's very few of them, there's a total of four of them. 13 And the top of cement behind that production casing string, 14 the lowest is 2510 feet, indicating that those wells are 15 well cemented to isolate our unitized interval from any 16 17 uphole or downhole zones.

And finally the last type, Mr. Foppiano, Type 5. 18 Q. Type 5 wells are the deep producers that have a 19 Α. liner but also have an intermediate. All of these wells 20 have intermediate casing strings set into the Grayburg and 21 22 cemented, and then they have either a liner run down to a deeper horizon, 6000, 7000 foot, whatever, and that liner 23 24 may or may not be cemented back -- I mean, may or may not 25 be tied back to surface, as denoted by the dashed line.

> STEVEN T. BRENNER, CCR (505) 989-9317

92

And so the analysis there was first to look to see what the top of cement was behind the intermediate casing string. And we have a total of 37 of these wells, and the lowest top of cement observed on these wells was 5 3653 feet, and the highest was surface.

And I would like to point out that the well that 6 7 has the 3653-foot value is a well in Section 33, and there again I looked at the top of Grayburg on that particular 8 well, and the top of Grayburg on that well is 3684, so 9 there's roughly 30 foot of cement above the top of Grayburg 10 11 on that well. And in addition to that, the long string --12 that is, down to the deeper horizon -- is cemented up into the intermediate. 13

And also what I've shown in the top of cement 14 15 behind the liner, since it would be important to look at 16 the isolation of the Hobbs Grayburg-San Andres unitized 17 interval from any deeper horizons since these are wells 18 that are completed in a deeper horizon, I looked at the top 19 of cement behind the liner on these wells. And 33 of them, as you can see under the summary line, the liners are 20 21 cemented all the way back into the intermediate, and on 22 four of the wells they're not, but the tops of cement on those range anywhere from 4368 feet to 3945. But that's 23 sufficient to get up to the San Andres and isolate the 24 25 unitized interval from any deeper horizons, so I don't see

. 1	any problem wells under a Type 5 at all, either.
2	Q. In fact, Mr. Foppiano, you see no problem wells
3	in Type 1 through 5, do you?
4	A. That's correct. In my opinion, all of these
5	wells have the unitized interval isolated from the Byers-
6	Queen or the Glorieta, either by casing or by cement.
7	Q. Let's turn now to Exhibit 31 and talk about the
8	three wells that require further discussion. All three of
9	these wells are plugged and abandoned wells, right?
10	A. Almost. Two of the wells are plugged and
11	abandoned, and one is an injector that will be utilized as
12	a CO ₂ injector.
13	Q. My list shows they're all abandoned and the
14	injector is a proposed injector. Have I misunderstood
15	this?
16	A. It's a proposed injector, but it's currently an
17	injector, I believe.
18	Q. Ah, okay, all right. My question is, out of the
19	population of P-and-A'd wells, you've examined all the
20	P-and-A'd wells, and you pulled up two that need to be
21	discussed?
22	A. Of the 63 plugged and abandoned wells, there are
23	two of them that I'd like to discuss.
24	Q. All right. And then the third one is a current
25	water injector?

1	A. That's my understanding, yes.
2	Q. All right, let's talk about that one first. I
3	believe it is the first page of Exhibit 31?
4	A. Yes, it's the first schematic that you see on
5	Exhibit 31.
6	Q. All right, that's where I'd like to start. And
7	let's take that information and relate it back to the area-
8	of-review map so that Mr. Catanach can find that wellbore
9	and see what injection wells are within a half-mile radius
10	of that wellbore.
11	Mr. Catanach, I think we have marked one of these
12	area-of-review maps in such a way that you can easily find
13	that potential problem well.
14	EXAMINER CATANACH: Are you talking about the
15	311, Mr. Kellahin?
16	MR. KELLAHIN: Yes, I am. It should be color-
17	coded. Did we get you the right map?
18	THE WITNESS: It may be the other map that
19	MR. KELLAHIN: Oh, this is it. Yeah, here it is,
20	right there.
21	All right, let's talk about the 311, Mr. Stogner
22	Mr. Foppiano. No, I recognize the difference. They
23	wear the same kind of tie, but Mr. Foppiano has got
24	glasses, and Mr. Stogner
25	THE WITNESS: I take that as a compliment, Mr.

Kellahin. 1 I'm getting tired, Mr. Examiner. 2 MR. KELLAHIN: Please do not tell Mr. Catanach -- Mr. Catanach, Mr. 3 4 Stogner. (By Mr. Kellahin) Okay, let's look at Exhibit 5 ο. 6 Number 31. What's the first page, sir? Exhibit 31 is a schematic of the North Hobbs 7 Α. Grayburg-San Andres Unit Well Number 311. And if you look 8 at the area-of-review map, this well shows up obviously as 9 It's a proposed CO₂ injector. It's located in about 10 pink. the middle of the north half of Section 19, almost in the 11 middle of the area of review, and it is an injection well. 12 The liner, as you can see from the schematic, 13 there's a liner down to 4200 feet, there's intermediate 14 casing strings set to 3952 feet. This well is not a 15 potential problem well from the standpoint that there's an 16 avenue of communication from the San Andres to either the 17 Byers-Queen or the Glorieta. It is just a well that it 18 19 would appear that doesn't have enough cement to cover the 20 San Andres and would need to be squeezed -- because it's a 21 proposed injector, it would need to be squeezed before we utilize it for CO₂-injection service. 22 23 So what's your recommendation? 0. Our recommendation will be that -- What we plan 24 Α. 25 to do is to re-enter or go into this well and squeeze the

1	top of the liner before it's placed on CO ₂ -injection
2	service.
3	Q. Is that action going to be necessary, in your
4	opinion, to take place before you can utilize any other
5	injector within a half-mile radius of that wellbore?
6	A. Yes, I guess that would be the case.
7	Q. All right, so we'll fix this first and then
8	either concurrently or thereafter we'll utilize the
9	affected injectors?
10	A. Okay, that's
11	Q. Is that right?
12	A. That's right.
13	Q. Is that okay?
14	A. That's okay.
15	Q. Okay, let's go to page 2. Help us find the
16	Humble New Mexico State A 4 well, Mr. Foppiano.
17	A. The Humble New Mexico State A 4 well should be
18	shown in light blue, and it's in Section 25, and I believe
19	on the Examiner's copy it's also circled in yellow. It is
20	in the about the middle of the east half of Section 25,
21	right next to Well Number 431.
22	Q. All right, sir, I have it. What's the problem
23	with this, or potential problem with this well?
24	A. This well is a problem well. It has 5-1/2-inch
25	casing set to 3189 feet and cemented back. It's not deep

enough to cover the Byers-Queen. And the top of San Andres 1 in this well is determined to be about 4050. We do have a 2 3 cement plug that was placed in this well at TD. It was a 25-sack cement plug, and it doesn't appear to be enough to 4 isolate the unitized interval from the Byers-Queen. 5 So this well will have to be re-entered and re-plugged in such 6 a manner that the unitized interval is isolated from the 7 8 Byers-Queen. 9 And then what is your recommendation? Q. Our recommendation is that that work be done to 10 Α. the satisfaction of the NMOCD District Office before 11 12 injection commences into the five wells that are circled in green on the Examiner's map. 13 All right, sir. Let's turn to the last potential 14 Q. problem well. I have that shown as the Moran SM 20 Number 15 1 well. 16 Yes, sir, the Moran SM 20 Number 1 well is 17 Α. located in Section 20 in the northeast quarter. It's also 18 19 shown in blue on your area-of-review map. 20 The two wells, the proposed injection wells that are within a half mile, are also circled in green, and 21 there are two of them, the 120 DF and 431 A. 22 Show us what is the potential problem with this 23 Q. 24 wellbore and describe for us what if any action you're 25 recommending take place.

As has been previously testified to the injection 1 Α. interval, we plan to inject into the San Andres. 2 The top of San Andres in this well is about 4200 feet, and there 3 was a plug set right at about 4200 feet on up the hole. So 4 that doesn't appear to be enough to isolate below the top 5 of San Andres from the Glorieta, which occurs at about 5300 6 7 feet. You are going to be isolated from other producing Q. 8 9 formations below the Glorieta, correct? 10 Α. Yes, because of the cement plug at 5575. Yeah, so the potential area of concern is to 11 Q. determine what if any probability exists for production out 12 of the Glorieta, and if that is in close proximity to this 13 wellbore, then you might have to take remedial action? 14 15 Yes, sir, Mr. Kellahin, and in our investigation Α. of this particular well, as you can tell, 8-5/8 casing was 16 run to 305 feet and cemented, and then this hole was 17 18 drilled and this well was plugged. And so the well was drilled and abandoned, there 19 was obviously no productive potential found in any of these 20 21 horizons below -- in any of these San Andres, Glorieta, Byers-Queen, whatever, and in fact we've looked a little 22 23 further and there's another deep penetration in the same section that there was no Glorieta production from. 24 In fact, the nearest Glorieta production occurs about -- in 25

1	Section 32, which is almost a mile and a half away.
2	And so in our opinion, there's not any potential
3	production that could occur from the Glorieta in the
4	immediate vicinity of this well, and so there would be no
5	need for us to re-enter this well and attempt to isolate
6	the San Andres from the Glorieta, because there are no
7	reserves that appear to be in danger, in our opinion.
8	Additionally, I'd like to point out that this
9	early spotting of this well indicates that it could be very
10	close to a highway. In fact, it may actually be under a
11	business of some sort, and if we were required to re-enter
12	this well there might be serious problems in trying to rig
13	up on it. In fact, depending on where it exactly is
14	located, it might be impossible to rig up and re-enter this
15	well.
16	So in our opinion, given primarily the fact that
17	we don't think anything is at risk in the Glorieta, we
18	don't see the need for the Division to require that we do
19	any remedial action on this well.
20	Q. Let's turn to a different topic, Mr. Foppiano.
21	Let's turn to the documentation and technical support for
22	OXY's request for certain surface pressure limitations in
23	the project. If you'll direct your attention to what is
24	marked as I have omitted one detail.
25	Before we get to that, there is Exhibit 32 which

1	is the certificate of hearing. You were responsible for
2	tabulating the interest owners affected that were required
3	to be notified pursuant to Division rules?
4	A. The surface owners, yes.
5	Q. All right. In addition, were there any operators
6	other than OXY within a half-mile radius for which notice
7	was required?
8	A. Within a two-mile radius, yes, there were several
9	operators that were found to be within the two-mile radius
10	and were identified and given notice by a copy of the C-
11	108.
12	Q. So you went as far as the two-mile radius with
13	your notification?
14	A. Yes.
15	MR. KELLAHIN: All right. Mr. Examiner, I have a
16	replacement for Exhibit Number 32 for your purposes. The
17	one I have to replace includes, now, copies of all the
18	green cards that were returned to us pursuant to that
19	notification. We'd like to substitute that.
20	Q. (By Mr. Kellahin) To the best of your knowledge,
21	Mr. Foppiano, has OXY received any objections for approval
22	to their Application presented before Examiner Catanach
23	this afternoon?
24	A. We've received no objections.
25	Q. Let's turn now to the topic of the step-rate test

1	and the surface pressure limitations. If you'll look at
2	Exhibit 33, identify that for me.
3	A. Exhibit 33 is once again an outline of the North
4	Hobbs unit with some selected wells shown thereon, and
5	these are injection wells. OXY has or actually Shell at
6	the time these step-rate tests were performed, they did
7	step-rate tests on approximately 50 wells in the North
8	Hobbs Unit. And this exhibit just merely shows those wells
9	on which step-rate tests were performed, and it indicates
10	that they were all over the unit. So there's broad
11	coverage of the North Hobbs Unit with this step-rate test
12	information and in particular, coverage throughout the
13	Phase 1 area.
14	Q. Let me have you turn to Exhibit 34, and let's
15	look at the step-rate data.
16	A. Yes, Exhibit 34 is a tabular presentation of the
17	step-rate test data, and in 1988 you can see by the top
18	group of wells and information several step-rate tests were
19	performed. The wells on which those step-rate tests were
20	performed are identified in the first column.
21	And I'll point out the well nomenclature; it may
22	be a little confusing. For example, 18-242 just merely
23	says it's Section 18, Well Number 242. And then the middle
24	column is the injection rate that the fracture occurred at,
25	and the third column is the bottomhole fracture pressure

observed during the step-rate test. The bottom group of 1 wells are the step-rate tests that were performed in 1991. 2 And as you can see from analysis of this data, 3 the minimum bottomhole fracture pressure experienced in 4 1988 was about 2587 p.s.i., and the minimum in 1991 was 5 2600 p.s.i. And this is obviously a wealth of data on 6 which to base a request for surface pressure maximums, and 7 that's why we analyzed it and utilized it in this fashion. 8 And so what we did in designing our request for 9 surface pressure maximums for our project is, we looked at 10 11 this data and then decided that we would impart a little 12 conservatism to it, and we picked a design bottomhole pressure maximum condition of 2400 p.s.i., based on this 13 data. 14 Of all the -- is it 50, 51 tests? --15 0. Approximately 52 tests. 16 Α. -- 52 tests, the lowest pressure in which you get 17 0. fractures in the reservoir is 2587? 18 19 Α. Correct. Everything else is higher than that? 20 Q. 21 Α. Correct. So you back down from 2587 to 2400 pounds as the 22 Q. 23 presumed conservative bottomhole pressure, parting 24 pressure? 25 Correct. Α.

And from there, then, how do we make the 1 0. calculation to get us to the surface pressure appropriate 2 for the various substances to be injected? 3 If you'll turn to the next exhibit -- actually 4 Α. 5 it's the exhibit beyond that. 6 0. Well, let's do 35 first. Okay, 35 is nothing more than a graphical 7 Α. presentation of the data that was tabulated on Exhibit 34. 8 It simply shows that if we use 2400 pounds, all 9 Q. the data points on the fracture tests are above that, and 10 11 some of them substantially above that? Correct. 12 Α. All right. Take me through 36 and show me how 13 0. you're going to use the parting pressure of the reservoir 14 back down by 200 pounds, and confer that to an appropriate 15 surface limitation for the various substances. 16 Yes, sir, as Andy Falls, the previous witness, 17 Α. testified to, we ran our tubing flow model to give us 18 19 hydrostatic pressure information and friction pressure 20 information at certain flow-rate conditions and based on 21 the different types of injectant that we're going to experience in this project. 22 23 Starting with the -- Before I get there, though, 24 this exhibit is an attempt to explain where the requested 25 surface pressure maximums come from, how we derived them.

So starting at the column on the left, three 1 different types of injectant that we'll be utilizing in 2 this project: Obviously produced water will be reinjected 3 with a specific gravity of 1.09; almost pure CO_2 coming off 4 the pipeline, at about 80 degrees -- and the temperature is 5 important in the density calculations -- and then produced 6 gas, which is primarily CO₂ but 15-percent other 7 components, and it comes in off the compression station at 8 110 degrees. 9

And so looking at these different types of 10 11 injectants and starting with a design condition, a design 12 maximum condition of 2400 p.s.i. at the bottomhole, which 13 you've just seen how we derived that, we then went into the 14 next two columns to represent the output of our tubing flow model, and they show the density differences and the 15 friction differences that we'll be experiencing, and it 16 17 also illustrates the reason for our requested surface 18 pressure maximums.

19 The hydrostatic head, as you see for water, is 20 just a hydrostatic head of water, 18, 19 p.s.i. But then 21 going down and looking at CO_2 , you can see it has much less 22 hydrostatic head, and then when you get to the produced gas 23 even much, much less hydrostatic head. And that's due to a 24 couple of reasons.

25

One is the temperature. The hotter temperature

of the CO₂ and the produced gas mixture results in a lighter density for that mixture, and those other components present in that stream also cause that mixture to have a lighter density. So one of the reasons why we have these surface pressure maximums we're requesting are the different densities, not only from water and CO₂ but between produced gas and pipeline CO₂.

8 And then the tubing flow model also gave us 9 friction pressures at different rates, and what I've shown here on this exhibit are the friction pressures at the 10 design rate for the different injectants, for, starting 11 with water, 9000 barrels a day, we see a friction pressure 12 of 507 p.s.i, which -- this is a fairly high rate of 13 injection of water, as compared to normal waterfloods, and 14 so it carries with it a correspondingly high friction 15 pressure. You can see the friction pressures for the two 16 gaseous mixtures are a lot less, a little less than 200 17 18 p.s.i.

19 So the third column is the surface pressure at 20 design rate, and that's nothing more than the 2400 p.s.i. 21 design condition, minus the hydrostatic head, plus the 22 friction pressure.

And then the last column, which is the pressures that we're requesting, the maximum pressures we're requesting for the different injectants, they are just

1 rounded up from the calculations.

2	So the sum of this exhibit illustrates that there
3	are two reasons for these pressure maximums that we're
4	asking for. It's different densities, and then it's the
5	friction pressure caused by the high rates of injection.
6	Q. Does this calculation or presentation take into
7	consideration the size of the tubing?
8	A. Yes, these calculations are based on injection
9	down 3-1/2-inch tubing, which is from the standpoint of
10	this presentation a worst case. It's a minimum-friction-
11	type case. We're not going to have anything bigger than
12	3-1/2-inch tubing, but we do we will have 2-7/8-inch
13	tubing in a number of these wells, but 2-7/8-inch tubing at
14	the same rates will carry with it correspondingly higher
15	friction pressures, which will result in correspondingly
16	lower bottomhole pressures.
17	Q. Let's turn to Exhibit 37 and have you describe
18	this display.
19	A. Exhibit 37 is the output from the tubing flow
20	model for the different injectants at all rates between
21	zero and the design rates.
22	And on the left, the scale on the left is the
23	wellhead injection pressure, surface pressure, and on the X
24	axis are the injection rates, a million cubic feet per day
25	or a thousand barrels of water per day. And shown in blue

1	is the profile for produced gas injection, and in red for
2	pipeline CO ₂ injection and then in green for water
3	injection. And this is essentially the same data as what
4	was on the previous exhibit except it's all different rates
5	between zero and the design rate.
6	And also what I've shown on here, just for
7	illustration, is the standard .2-p.s.iper-foot
8	limitation, which it appears immediately obvious that the
9	standard .2-p.s.iper-foot limitation won't allow us to
10	inject at the rates that are necessary to conduct the
11	project.
12	So this exhibit, what we're asking the OCD is to
13	allow us to operate under these pressures, based on the
14	type of injectant and that you know, this is designed
15	for 3-1/2-inch tubing; we would ask that it apply to no
16	matter what size tubing we have, because it is a worst-case
17	condition, and it would be more conservative to apply to
18	2-7/8, and we're comfortable with that.
19	And we believe that this is not only necessary
20	but that this will represent a situation that keeps us well
21	below the fracture pressure, based on step-rate test data,
22	based on the design condition of 2400 p.s.i. that is the
23	basis of this analysis, and so our request is really that
24	these surface pressure maximums we be allowed to operate
25	under these surface pressure maximums, based on this
1 analysis.

2	Q. Does OXY propose to construct facilities that
3	will allow you to monitor and manage these various pressure
4	limitations at the surface, based upon the type of
5	substance being injected or moved through the system?
6	A. Yes, we will plan to have systems that keep our
7	operations below pressures that will initiate a fracture.
8	Q. Do you have an exhibit that will illustrate for
9	the Examiner this automated pressure-control system?
10	A. Yes, Exhibit 38 is a facilities diagram of our
11	automated control system, and what this automated control
12	system is, it's a system that will automatically keep us
13	keep these injection wells, the pressures based on the
14	pressures and the flow rates at conditions below the
15	lines seen on the previous graph.
16	And I would point out, it's an automated system,
17	it's an automatic system, it responds instantaneously, and
18	this is what we believe, based on our experience in other
19	CO ₂ floods, the best way to keep the surface injection
20	pressures at certain points, based on a flow rate and based
21	on the type of injectant.
22	So this facilities diagram, there's two pages of
23	it. The first page is the facilities diagram or the
24	automated control system that will be set up at the WAG
25	injection header at the satellite, and the second page is

part of the automated control system that will be installed 1 near the wellhead. 2 And just starting at the left and kind of moving 3 to the right, you can see at the WAG header produced gas --4 I mean, excuse me, produced water or CO₂ or produced gas, 5 whichever the well needs to be, whatever we need to be 6 injecting in that well for reservoir purposes -- that will 7 be coming in. And we shut off one and open the other 8 through these valves called MOV's -- that's just for motor-9 operated valves. 10 And then we come into the central part of the 11 12 exhibit or the middle part of the exhibit where we'll be analyzing and calculating the flow rate of that injectant 13 at that time, and then we'll be modulating based on that 14 calculated flow rate, and our design flow rate for that 15 particular well will be modulating a choke to keep it at 16 that design condition. 17 18 However, the choke will have a maximum pressure limit, based on pressure monitoring that goes on at or near 19 the wellhead. And what that will do is, if that pressure 20 maximum is reached, then that choke will not open any more. 21 So that will keep us below those curves shown on that prior 22 exhibit, depending on the type of injectant that we're 23 putting in the well and depending on the flow rate for that 24

25 | particular well.

STEVEN T. BRENNER, CCR (505) 989-9317

110

And essentially this is the same type of system 1 -- somebody described it to me as analogous to a cruise 2 control on a car, and that's basically what this is. 3 It's a cruise control with a governor. And it's saying that at 4 5 a certain speed there is -- we can't speed up anymore because that's the pressure -- based on that flow rate that 6 7 we cannot exceed, and that's the same that is the basis of the prior exhibit. 8

9 Q. In addition to requesting these surface 10 limitation pressures, Mr. Falls testified a while ago that 11 he's requesting an administrative process where he can 12 apply to the Division and obtain increases above this 13 pressure when he can submit appropriate engineering data, 14 including but not limited to step-tests?

A. Yes.

15

16

Q. Do you support that opinion?

17 Yes, I do. I think that the data that we have Α. here allows for certain pressure maximums to be set for the 18 injection wells, and if the conditions warrant and we go 19 out and run step-rate injection pressure tests and need a 20 higher injection pressure on a particular well, then the 21 22 performing of step-rate tests and utilizing the same 23 methodology, the same approach as we've explained here, 24 which is to account for the friction and the density, that 25 we should be allowed to increase the injection pressure

above what we're recommending here based on step-rate tests 1 performed after this order is entered. 2 Are there other types of data or tests that can 3 Q. be submitted to the Division, instead of a step-rate test, 4 that can be utilized to satisfy the regulators that it's 5 safe to increase the surface pressure limitation? 6 My understanding that there is, there are Hall 7 Α. and Hearn plots and maybe even some other data, Poisson's 8 ratio and other things, based on the rock properties, to 9 justify a bottomhole pressure limit that will not exceed a 10 11 fracture pressure. 12 0. So we would like an order that gives an 13 administrative procedure to submit appropriate engineering 14 data, including but not necessarily limited to step-rate tests? 15 That's correct. 16 Α. MR. KELLAHIN: That concludes my examination of 17 Mr. Foppiano. We would move the introduction of his 18 19 Exhibits 27 through 38. Exhibits 27 through 38 will 20 EXAMINER CATANACH: be admitted as evidence. 21 EXAMINATION 22 BY EXAMINER CATANACH: 23 Mr. Foppiano, initially how many injection wells 24 0. 25 are we adding at this time?

Well, we are asking for, I think it's 1 Α. approximately a hundred injection wells that will be CO₂ 2 injectors, but we are asking for them to be authorized for 3 -- all of them for water injection. Several of them 4 currently are authorized for water injection, but none of 5 them, obviously, are authorized for CO₂ injection. 6 But some of them we're asking for authorization to inject just 7 CO_2 , and others we're asking for authorization to inject 8 9 CO_2 and produced gas. Now, these are all -- Are there new conversions 10 Q. at this point that are not currently injection wells? 11 There are wells that are not currently injection 12 Α. wells, that will be in the future as part of this project, 13 14 yes. Okay, how many of those? Do you know? Estimate? 15 Q. No, I do not. I'd be happy to supply that 16 Α. information later. 17 Does your proposal, your C-108, does it specify 18 Q. whether it's a new injection well or whether it's an 19 existing injection well, things like that? 20 The tabular data shows existing condition, and so 21 Α. it will show it as a water injection well if it's currently 22 a water injection well. And then the injection well data 23 sheets, as I understand, are showing proposed conditions. 24 And so I'm trying to remember. I can look to see. I don't 25

1	think we put current status on the injection well data
2	sheets, but I'll take a look at it real quick.
3	MR. KELLAHIN: Mr. Foppiano, maybe it will help,
4	when we attached the Application to Mr. Catanach we had an
5	exhibit that listed all of these wellbores and I think
6	included their current status and proposed status. I've
7	handed Mr. Foppiano those exhibits out of the Application,
8	and with his assistance maybe we can answer your question.
9	THE WITNESS: Yes, I apologize. I didn't realize
10	the current status was reflected on this exhibit. This is
11	part of the C-108, and it's an injection well list, and it
12	details the current status of all these proposed injectors,
13	whether they're currently a producer or whether they're
14	currently being utilized for water injection. And then it
15	also show whether they'll be utilized for CO ₂ injection or
16	produced gas injection.
17	Q. (By Examiner Catanach) Okay, so from that list
18	if a well is showing as currently a producer, I would
19	assume that's a new injector that you're permitting for
20	injection at this time?
21	A. That's correct.
22	Q. And also on that exhibit there's a reference to
23	whether or not that well will be injecting water or CO_2 or
24	both, or what it will inject, or are you asking for all of
25	these wells to have authorization to inject CO_2 and water?

We're asking for authorization to inject water in Α. 1 all of these wells. And then in the wells that are shown 2 on this exhibit as -- that are not shaded, I believe the 3 shading on this list indicates wells for which we're 4 requesting authority to inject CO_2 , water and produced 5 And for the wells that are not shaded on this list, 6 gases. we're requesting authorization to inject water and CO₂ but 7 not produced gas. 8 EXAMINER CATANACH: Mr. Kellahin, I may ask you 9 -- I don't know, I haven't looked at that exhibit, I don't 10 know if it's clear enough, but --11 MR. KELLAHIN: We'll organize it for you sir. 12 EXAMINER CATANACH: -- can you --13 MR. KELLAHIN: You bet. 14 EXAMINER CATANACH: -- summarize it --15 MR. KELLAHIN: Yes, sir. 16 EXAMINER CATANACH: -- in a better fashion? 17 MR. KELLAHIN: Yes, sir. 18 19 EXAMINER CATANACH: Okay. (By Examiner Catanach) Mr. Foppiano, with 20 0. regards to cement tops within the area-of-review wells, do 21 22 you know, or do you have an estimate on how many of those were measured and how many were calculated? 23 24 Α. I don't, the short answer to your question is no, 25 I don't have a number. But I would venture a guess that on

1	the top the cement tops that were critical, which are
2	the ones either behind the intermediate or behind the long
3	string if it was drilled through the San Andres, most of
4	those, more than 50 percent, my feeling is, were measured
5	tops of cement, as opposed to calculated. But I did not do
6	an analysis to see which ones were calculated versus other.
7	Q. Okay, and those that were not measured you did
8	calculations on?
9	A. Correct.
10	Q. Were factors such as the type of cement taken
11	into account when you calculated tops, or was it just a
12	uniform assumption?
13	A. The yield assumption was uniform based on
14	applied to the number of sacks, because there just wasn't
15	much information available about the actual yield of the
16	cement that was utilized even when we had that information.
17	We knew the sacks, we knew some description of the cement.
18	But as far as what the yield, what the mix was of that
19	cement, we didn't get into that level of detail on the
20	different types of cement that were utilized.
21	Q. Okay. With regards to the You used a 50-
22	percent efficiency factor?
23	A. Yes, sir.
24	Q. Do you have an opinion on whether or not that is
25	a good number, or do you have a feel for that?

1	A. In my opinion, it was it resulted in tops of
2	cement that were either close to ones that were determined
3	by cement bond log or resulted in lower tops of cement. So
4	it was a fairly, I think, pessimistic approach to use 50
5	percent. Generally, I think if the bond log was run, the
6	top of cement might actually be farther up the hole than
7	what was calculated using a 50-percent excess.
8	Q. Mr. Foppiano, I know that you've had some
9	experience working in the South Hobbs Unit, but there are
10	some in the North Hobbs unit as well, I'm sure some
11	wells that were drilled what? in the 1920s, 1930s,
12	or am I
13	A. I know there were some wells drilled early in the
14	19th Century or the 20th Century. And I remember 1948,
15	1930 on some of the dates drilled, but I didn't remember
16	seeing any 1920s.
17	Q. Okay.
18	A. And here again, the wells we've analyzed closely
19	were only the ones that penetrated the Hobbs Grayburg-San
20	Andres Pool, so the shallower some of the shallower
21	wells, they may have been drilled later I mean earlier
22	than the ones that I was looking at.
23	Q. Okay. The P-and-A'd wells that you've looked at,
24	that were plugged maybe in the 1940s, do you have an
25	opinion as to whether those were properly plugged or

1 | conventionally plugged?

A. My opinion is, based on the -- We actually obtained plugging approvals on all of those wells except one, where we could not find the data on how it was plugged. But in my opinion they were all properly plugged at the time they were plugged. They were approved by the local NMOCD office in the manner in which they were plugged.

9 The only well that we could not find plugging 10 information on has casing set to a little over 5000 feet 11 and cemented, so it was -- the Hobbs Grayburg-San Andres 12 Pool, the unitized portion of it is isolated behind the 13 casing in that well. So how it was plugged inside the 14 casing, it didn't appear to be anything that related to the 15 isolation issue.

16 Did you find any wells that were unconventionally Q. 17 plugged? You hear stories about certain objects being 18 thrown in the wellbores when they're plugged, and I just --19 I mean, I don't know if that's true in this area or not, but did you come across any of those? 20 21 A. No, I didn't. I don't recall seeing any of 22 those. There's all manners of plugging, as you can 23 I know there were several wells that had dual imagine. 24 strings of 3-inch tubing in the well, and they were left in 25 place, cut off and left in place and cemented. So there's

a large variety of plugging approaches on these 63 plugged 1 and abandoned wells. 2 When you looked at whether or not a well was 3 Q. plugged properly, you looked at it from the standpoint of 4 5 the San Andres being isolated with respect to other producing zones? 6 7 That's correct, and fresh water. Α. Okay, and fresh water? 8 Q. Yes. 9 Α. So generally if a well, say a San Andres well, 10 Q. was plugged, if it had a plug above the San Andres it 11 12 protected the formations above there as well as the fresh 13 water? I'm just trying to recall -- and obviously 14 Α. Yes. 15 the schematics are all part of the C-108, but some of them had cut-off casing, and there was a plug in and out of 16 where the cut-off stub was. So in my analysis I looked to 17 see was the unitized portion of the Hobbs Grayburg-San 18 19 Andres Pool isolated from the other pools, based on how the well was plugged? And in my opinion that was the case on 20 21 those plugged and abandoned wells, except the two that I've described. 22 Did you find wells that were not plugged to 23 Q. modern standards, say, did you find some wells that maybe 24 25 didn't have a casing stub plug or a casing shoe plug or

things like that? 1 I can't answer that because I didn't analyze it 2 Α. 3 from the standpoint of modern plugging requirements. So basically in your analysis, if a well had a 4 0. bottom plug which isolated the San Andres, was that 5 considered adequate? 6 Either it had casing in the Grayburg and there 7 Α. was a plug inside that casing that isolated it on the 8 9 inside portion of the casing, and so it was isolated by 10 cement behind that casing, that condition... 11 But I basically looked for something to prevent 12 the communication of floods from the San Andres to any of those other producing zones uphole or downhole, either 13 through casing, cement, a plug set even up the hole where 14 there was a cutoff on the casing. I looked for something 15 on the schematics that showed me that there was -- it was 16 17 there to prevent the movement of fluids from where we were going to inject and the Byers-Queen and Glorieta. 18 Well, for instance, if a well had a bottom plug 19 Q. and it didn't have a plug from the bottom except maybe at a 20 surface plug, I mean, is that -- In your analysis, is that 21 22 considered adequate? If the outside of the casing was 23 cemented and you had a plug inside the casing above the San 24 Andres, I mean, would that be adequate? 25 Α. In my opinion, yes, that was adequate.

The current pressure out there that you guys are 1 Q. injecting at is -- I believe an earlier witness said that 2 it was about 800 pounds? 3 It's about .2 p.s.i. -- Well, it is .2 p.s.i. per 4 Α. foot, and so it varies close to 800 pounds, unless it is 5 increased by step-rate tests. As you see, we've run step-6 rate tests 52 times, and so those wells have higher 7 authorized surface pressure limits. 8 It's your opinion that a bottomhole pressure of 9 Q. 2400 pounds is not going to result in any fractures of the 10 11 injection formation? 12 Α. Yes, sir, it is my opinion. And another thing that gives me comfort in that is that I looked at the 13 reservoir pressure about the time those step-rate tests 14 were run and it was about the same as what it is today, 15 around 1100 p.s.i. 16 17 And as Mr. Falls testified to, we're going to operate this CO₂ flood at a reservoir pressure of about 18 1300 p.s.i., which is a couple of hundred pounds higher. 19 And as you know, the pore pressure affects the bottomhole 20 21 fracture significantly, and the higher the pore pressure, the higher the bottomhole fracture pressure we're going to 22 23 have. So the fact that we're actually going to move 24 25 from a condition of -- to a pore pressure that is going to

result in a higher than 2600 minimum bottomhole fracture 1 pressure gives me further comfort that using 2400 should 2 keep us well below any possibility of fracturing the 3 reservoir. That and our automation system will ensure that 4 we stay at design -- we will stay at certain pressures 5 based on the flow rate of that injector. 6 When you look at area-of-review wells that have 7 Q. cement behind the production casing, do you give any 8 consideration as to the type of fluid that will be 9 injected, as to whether or not the cement will be able to 10 prevent any migration, for instance water as opposed to CO₂ 11 12 or produced gas? Is that any consideration? 13 No, sir, in our experience -- Obviously we've got Α. 14 a lot of experience injecting CO_2 , and to my knowledge we have not seen a situation that it had an adverse impact on 15 the cement. And certainly the type of cement we're using 16 here and have used in constructing these wells, I think, 17 will serve very well for the type of flood we're proposing 18 19 here. EXAMINER CATANACH: Okay, I'm sure there's some 20 21 other stuff but I can't think of it right now. I may -- If in the process of writing this order, Mr. Kellahin, if I 22 23 have further questions I may, in fact, call on you or OXY to help me out with that. 24 25 MR. KELLAHIN: We'll be more than happy to, Mr.

1	Examiner.
2	EXAMINER CATANACH: Other than that, I have no
3	further questions of this witness.
4	MR. KELLAHIN: All right, sir. That concludes
5	our presentation.
6	EXAMINER CATANACH: Okay, if there's nothing
7	further in this case, Case 12,722 will be taken under
8	advisement, and
9	MR. KELLAHIN: Have you got one, Steve?
10	EXAMINER CATANACH: this hearing is adjourned.
11	(Thereupon, these proceedings were concluded at
12	3:40 p.m.)
13	* * *
14	
15	
16	
17	I de hereby conting that the foregoing the complete record of the proceedings let
18	the Examiner hearing of Case the 19722 heard by ma on 2760 4-07
19	Doerd 1. (atank . Excentioner
20	Oil Conservation Division
21	
22	
23	
24	
25	

CERTIFICATE OF REPORTER

STATE OF NEW MEXICO)) ss. COUNTY OF SANTA FE)

I, Steven T. Brenner, Certified Court Reporter and Notary Public, HEREBY CERTIFY that the foregoing transcript of proceedings before the Oil Conservation Division was reported by me; that I transcribed my notes; and that the foregoing is a true and accurate record of the proceedings.

I FURTHER CERTIFY that I am not a relative or employee of any of the parties or attorneys involved in this matter and that I have no personal interest in the final disposition of this matter.

WITNESS MY HAND AND SEAL September 13th, 2001.

STEVEN T. BRENNER CCR No. 7

My commission expires: October 14, 2002