STATE OF NEW MEXICO	
ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT	
OIL CONSERVATION DIVISION	
IN THE MATTER OF THE HEARING CALLED BY) THE OIL CONSERVATION DIVISION FOR THE) PURPOSE OF CONSIDERING:) CASE NO. 12,857	
APPLICATION OF BURLINGTON RESOURCES OIL AND GAS COMPANY, LP, BP AMOCO AND ENERGEN RESOURCES CORPORATION FOR APPROVAL OF A PILOT PROJECT INCLUDING UNORTHODOX WELL LOCATIONS AND AN EXCEPTION FROM DIVISION RULE 104.D.3 FOR PURPOSES OF ESTABLISHING A PILOT PROGRAM IN THE PICTURED CLIFFS FORMATION TO DETERMINE PROPER WELL DENSITY REQUIREMENTS FOR PICTURED CLIFFS WELLS IN SAN JUAN, SANDOVAL AND RIO ARRIBA COUNTIES, NEW MEXICO	
REPORTER'S TRANSCRIPT OF PROCEEDINGS	
EXAMINER HEARING	
BEFORE: MICHAEL E. STOGNER, Hearing Examiner	
May 2nd, 2002	
Santa Fe, New Mexico	
This matter came on for hearing before the New Mexico Oil Conservation Division, MICHAEL E. STOGNER, Hearing Examiner, on Thursday, May 2nd, 2002, at the New Mexico Energy, Minerals and Natural Resources Department, 1220 South Saint Francis Drive, Room 102, Santa Fe, New Mexico, Steven T. Brenner, Certified Court Reporter No. 7 for the State of New Mexico.	
* * *	

INDEX	
May 2nd, 2002 Examiner Hearing CASE NO. 12,857	
	PAGE
EXHIBITS	3
APPEARANCES	3
APPLICANT'S WITNESSES:	
<u>MIKE DAWSON</u> (Geologist) Direct Examination by Mr. Kellahin Examination by Examiner Stogner	8 25
<u>ERIC BROACHA</u> (Engineer) Direct Examination by Mr. Kellahin Examination by Examiner Stogner Examination by Mr. Jones	34 64 69
<u>MATT GRAY</u> (Landman) Direct Examination by Mr. Kellahin Examination by Examiner Stogner Examination by Mr. Jones	73 82 84
STATEMENT BY MR. HAWKINS	86
REPORTER'S CERTIFICATE * * *	88

2

EXHIBITS

Applicant's		Identif	ied	Admitted
Exhibit	1		77	82
Exhibit	2		10	25
Exhibit	3		16	25
Exhibit	4		35	64
Exhibit	5		41	64
Exhibit	6		48	64
Exhibit	7		52	64
Exhibit	8		56	64
Exhibit	9		77	82
Exhibit	10	61,	76	82
Exhibit	11		74	82
Exhibit	12	41,	86	-

* * *

APPEARANCES

FOR THE DIVISION:

DAVID K. BROOKS Attorney at Law Energy, Minerals and Natural Resources Department Assistant General Counsel 1220 South St. Francis Drive Santa Fe, New Mexico 87505

FOR THE APPLICANT:

KELLAHIN & KELLAHIN 117 N. Guadalupe P.O. Box 2265 Santa Fe, New Mexico 87504-2265 By: W. THOMAS KELLAHIN

(Continued...)

STEVEN T. BRENNER, CCR (505) 989-9317

3

APPEARANCES (Continued)

FOR BP AMOCO:

HOLLAND & HART, L.L.P., and CAMPBELL & CARR 110 N. Guadalupe, Suite 1 P.O. Box 2208 Santa Fe, New Mexico 87504-2208 By: WILLIAM F. CARR

FOR XTO ENERGY, INC.:

JAMES G. BRUCE, Attorney at Law 324 McKenzie Santa Fe, New Mexico 87501 P.O. Box 1056 Santa Fe, New Mexico 87504

* * *

ALSO PRESENT:

WILL JONES Engineer New Mexico Oil Conservation Division 1220 South Saint Francis Drive Santa Fe, NM 87501

BILL HAWKINS Petroleum Engineer BP Amoco 1670 Broadway, Room 2456 Denver, CO 80201

* * *

1	WHEREUPON, the following proceedings were had at
2	8:23 a.m.:
3	EXAMINER STOGNER: This hearing will come to
4	order. Please note today's date, May 2nd, 2002. This is
5	for Docket Number 13-02.
6	And at this time I will call Case Number 12,857,
7	which is the Application of Burlington Resources Oil and
8	Gas Company, LP, BP Amoco and Energen Resources Corporation
9	for approval of a pilot project including unorthodox well
10	locations and an exception from Division Rule 104.D.3 for
11	purposes of establishing a pilot program in the Pictured
12	Cliffs formation to determine proper well density
13	requirements for said Pictured Cliffs wells in San Juan,
14	Sandoval and Rio Arriba Counties, New Mexico.
15	Call for appearances at this time.
16	MR. KELLAHIN: Mr. Examiner, I'm Tom Kellahin of
17	the Santa Fe law firm of Kellahin and Kellahin. I'm
18	appearing on behalf of the Applicant, and there are three
19	witnesses to be sworn.
20	EXAMINER STOGNER: Any other appearances?
21	MR. CARR: May it please the Examiner, William F.
22	Carr with Holland and Hart, L.L.P., Santa Fe, New Mexico.
23	We're entering our appearance on behalf of BP Amoco, and we
24	will have a statement.
25	EXAMINER STOGNER: No witnesses?

5

	0
1	MR. CARR: No witnesses.
2	EXAMINER STOGNER: Other appearances?
3	MR. BRUCE: Mr. Examiner, Jim Bruce of Santa Fe,
4	representing XTO Energy, Inc. I have no witnesses.
5	EXAMINER STOGNER: Other appearances?
6	Can I have the three witnesses stand at this time
7	to be sworn in?
8	(Thereupon, the witnesses were sworn.)
9	EXAMINER STOGNER: Mr. Kellahin?
10	MR. KELLAHIN: Thank you, Mr. Examiner.
11	EXAMINER STOGNER: While they're getting set up,
12	I will invite everybody that's interested to kind of shift
13	around, because it appears that you're going to be shooting
14	the screen and covering the material over here on the east
15	wall; is that correct?
16	Let's go off the record for a while and let's get
17	set up first. We're off the record at this time.
18	(Off the record)
19	EXAMINER STOGNER: Okay, let's go back on the
20	record now.
21	Mr. Kellahin?
22	MR. KELLAHIN: Thank you, Mr. Examiner. We have
23	a collective presentation on behalf of all three companies
24	that are participating in the pilot project. The witnesses
25	are going to be:

6

Mr. Mike Dawson. Mr. Dawson is a geologist with 1 2 Burlington. He's going to give you a guick overview of 3 what he anticipates to be the issues involved in the study. He is also a geologist, and he's going to set the 4 5 background in the Pictured Cliff pools in the San Juan 6 Basin to give you a sense of the geologic characteristics 7 of the pool. Mr. Eric Broacha is a petroleum engineer. 8 He works for Burlington, and he is going to provide you the 9 engineering basis for the project area. 10 11 And then Mr. Matt Gray is a landman with 12 Burlington. He's going to illustrate for you the 13 satisfactory compliance with the notice requirements, identify for you each of the plats that we have for the 24 14 pilot wells that are at standard locations. They will be 15 increased density wells in a standard 160-acre spacing 16 There are an additional six wells that could not be 17 unit. located at standard locations, and we'll talk about those, 18 and they're separately indexed in the exhibit book. 19 With that introduction, then, we'll have Mr. 20 Dawson commence his presentation and discuss with you the 21 22 framework of the study and the geology. 23 EXAMINER STOGNER: Okay now, I have Mike Dawson, 24 Eric Broacha, and what was the third one again? 25 MR. KELLAHIN: Matt Gray.

1	EXAMINER STOGNER: Now, they all work for
2	Burlington?
3	MR. KELLAHIN: They do.
4	EXAMINER STOGNER: All right, please continue.
5	MIKE DAWSON,
6	the witness herein, after having been first duly sworn upon
7	his oath, was examined and testified as follows:
8	DIRECT EXAMINATION
9	BY MR. KELLAHIN:
10	Q. Mr. Dawson, for the record sir, would you please
11	state your name and occupation?
12	A. I'm Mike Dawson, I'm a petroleum geologist. I've
13	worked for Burlington Resources and its predecessors for
14	over 20 years.
15	Q. On prior occasions have you qualified as a
16	petroleum geologist and testified before the Division?
17	A. Yes, sir, I have.
18	Q. What are your responsibilities concerning this
19	pilot project area in the Pictured Cliff reservoirs in the
20	San Juan Basin?
21	A. I've been instrumental in designing a test
22	program and furnishing geologic support to our reservoir
23	studies.
24	Q. And you are part of the technical team that's
25	involved with the various companies to make a study of the

8

1	opportunity for increasing the density in the Pictured
2	Cliff pools in the Basin?
3	A. Yes, sir.
4	MR. KELLAHIN: We tender Mr. Dawson as an expert
5	witness.
6	EXAMINER STOGNER: Any objections?
7	Mr. Dawson is so qualified.
8	Q. (By Mr. Kellahin) Mr. Dawson, we've put up the
9	first display. If you'll turn into the hardbound exhibit
10	binder and turn to Exhibit Tab 2, the first display after
11	the indexed tab is the colored pool map that's on the
12	display screen, Mr. Stogner.
13	In addition, if there's people in attendance that
14	would like copies of the exhibit book, we do have them
15	available on a CD disc that you can view and install
16	through your computer. If you'll give me your name and
17	address, we'll have Burlington provide you with the disc
18	copy of the exhibit book.
19	EXAMINER STOGNER: Yes, Mike Stogner
20	MR. KELLAHIN: Yes, sir.
21	EXAMINER STOGNER: 1220 South St. Francis.
22	Would you Do you all have those available today?
23	MR. KELLAHIN: Yes, we have some sets today, and
24	we will hand those out to the extent we have them, and in
25	addition you have the hard copy and the book.

9

1	EXAMINER STOGNER: I'd like to reserve one, but
2	there's everybody else here that wants one, then I can get
3	one later.
4	MR. KELLAHIN: There's no music.
5	EXAMINER STOGNER: Oh, well, in that case
6	(Laughter)
7	EXAMINER STOGNER: This will be an interesting
8	way for me to go back and review and utilize this. This is
9	something new, and I appreciate that, so
10	MR. KELLAHIN: We'll see if it works on a regular
11	basis, certainly.
12	Q. (By Mr. Kellahin) All right, Mr. Dawson,
13	describe for us what we're seeing on this first display
14	that's identified as the Pictured Cliff Pool Map.
15	A. This map defines the 29 pools that we have
16	identified as having Pictured Cliffs production. We've
17	included it as sort of an introductory index map to show
18	the distribution of the productive areas of the Basin.
19	From the 29 pools that we've identified, we
20	believe that approximately 3.6 trillion cubic feet of gas
21	have been produced from approximately 6220 wells. The
22	Pictured Cliffs, of course, is nearly entirely a gas-
23	productive formation. It's only produced a reported
24	784,000 barrels of oil, so it's essentially a dry gas
25	reservoir.

Let's see, the discovery well, I think, is very 1 2 interesting. It was the first commercial Pictured Cliffs 3 production. It was completed in November of 1927. It was 4 the Number 1 Frank Garland in the southeast of Section 34, 5 29 North, 11 West. That is in the Fulcher-Kutz Pool. 6 That's Section 34, 29-11. 7 Of interest to me is the fact that the same quarter section has produced nearly continuously since 8 1927. It's now on its third wellbore, but that well is 9 producing 80 MCF a day as a current rate. So I think this 10 typifies the long-lived production that we see from the 11 Pictured Cliffs reservoirs. 12 Mr. Dawson, let me ask you the source of the map Q. 13 14 that is displayed here. How did you get the various pool configurations and boundaries? 15 Those came from the OCD Aztec office. 16 Α. 17 Do you have a summary that shows us what in you Q. opinion, or the collective opinion of the technical group, 18 is the reasons that justify pursuing the opportunity to 19 increase the density in the Pictured Cliff pools? 20 Yes, sir, in the next slide we'll list some of 21 Α. our key observations that lead us to ask the critical 22 23 question, is increased density needed in the Pictured 24 Cliffs? I'd like to just briefly summarize these 25 observations and these lines of investigation. Each will

	12
1	be elucidated in a lot more detail later in the testimony.
2	One of the first things that lead us to ask this
3	question are the results of a four-township pilot
4	volumetric study. What we found was that we actually had a
5	relatively low recovery factor from the Pictured Cliffs
6	formation relative to other tight gas formations throughout
7	the Rocky Mountain province.
8	A second observation that we've made that leads
9	us to ask the critical question is that, looking at
10	historic pressure data and some data that we've acquired in
11	the last couple years, within the productive field areas of
12	the Pictured Cliffs, we see highly variable pressures
13	today.
14	Another thing that we've recognized is that we
15	are fairly inefficient in completing the lower Pictured
16	Cliffs, which tends to have very low matrix permeabilities.
17	And that sort of leads us to want to investigate whether
18	we're recovering all the gas that we can from that
19	interval.
20	A fourth area of investigation involves wells
21	that have produced concurrently from the Pictured Cliffs
22	within 160-acre blocks, and historically we were able to
23	find about 80-some-odd examples of that, and about 45 or so
24	had clear enough data, including pressure and rate data, so
25	that we could at least address the production trends and

1 look for interference and so forth.

-	
2	Then the final thing that we've looked at, that I
3	think bears on the question of increased density, is our
4	successful redrill and restimulation programs in the
5	Pictured Cliffs. In particular, in the redrill program we
6	go into areas where we've abandoned production, and we're
7	able to drill a new well and have economic results.
8	So in summary, we've addressed each of these
9	areas. None of the areas give us conclusive evidence that
10	increased density is appropriate. Each leads us to want to
11	further our investigations and gather more data.
12	Q. Do you have a slide, Mr. Dawson, that summarizes
13	for us the major objectives of the pilot project?
14	A. Yes, sir, this next slide also poses a critical
15	question that we ask ourselves: Why should we implement a
16	pilot program? And it summarizes some of our data needs in
17	order to thoroughly evaluate how appropriate infill
18	drilling might be in the Pictured Cliffs formation.
19	One of the first things we find that we need is
20	some new core, and we plan to core wells to be drilled with
21	foam so that we can minimize the invasion of drilling
22	fluids. We find the limited data that's available in our
23	files and in our partners' files suspect in terms of water
24	saturation in particular.
25	The other thing that's lacking is much analysis

1	
1	in the lower part of the Pictured Cliffs formation, which
2	represents a very low-permeability reservoir.
3	A second thing that we feel we need to address is
4	the efficiency of our drilling and completion techniques.
5	When we look at the Pictured Cliffs, especially with the
6	historical perspective, what we realize is that the
7	reservoir doesn't really behave as it did 20, 30 or even 50
8	years ago. It's a much lower-pressured reservoir. Also,
9	drilling and completion technologies have changed over the
10	years.
11	So we want to examine drilling and completion
12	techniques in the context of a comprehensive reservoir
13	optimization program.
14	The same thing goes for compression. We know
15	it's an important component of Pictured Cliffs production.
16	We need to learn all we can about compression and its
17	effects on the reservoir in order to adequately evaluate
18	increased density.
19	We need to collect more data for reservoir
20	simulation studies and modeling. The best data we can get
21	would be empirical data resulting from the pilot completion
22	and drilling program that we're proposing today.
23	Finally, we feel like where the rubber really
24	meets the road is going to be where we do pilot projects
25	and actually look for interference, look for efficiencies

1	or inefficiencies, try to document whether or not we
2	actually can increase ultimate production.
3	So each of these areas of investigation and data
4	acquisition will be explained in a lot more detail during
5	the course of our testimony.
6	Q. Mr. Dawson, do you have a slide that gives us the
7	outline of the presentation book and the various chapters
8	that
9	A. Yes, sir.
10	Q you and the other technical people are going
11	to present this morning?
12	A. Yes, sir, we do. This next slide shows that
13	we're starting out with a geologic overview.
14	We're going to present the results of our four-
15	township volumetrics study in some detail.
16	We're going to discuss the historical performance
17	and production trends of wells that are produced
18	simultaneously from the Pictured Cliffs in 160-acre drill
19	blocks. They're described here as 80-acre well pairs, and
20	we'll use this term several times through the presentation.
21	We want to present to you our 2001 layer pressure
22	test program and the results of that program.
23	We want to show some of the results of the
24	redrill and restimulation program that Burlington, in
25	particular, has been very active in, as have our partners.

	10
1	We want to define our proposed pilot program.
2	And finally, we want to review current pool rules
3	and setback regulations and discuss some of the regulatory
4	considerations.
5	Q. All right, Mr. Dawson, let's turn to Exhibit Tab
6	3 and look at the first geologic summary, if you will.
7	A. What we want to accomplish with this geologic
8	summary is to give you a feel for the degree to which the
9	reservoir stratigraphy and geology is consistent through
10	the productive field area and sort of set out the ability
11	to evaluate whether our proposed program will be
12	representative of the entire productive area of the
13	Pictured Cliffs.
14	Q. From a geologic perspective, Mr. Dawson, are the
15	various Pictured Cliff pools, some 29 pools in the area, is
16	the geology sufficiently consistent that we can treat the
17	Pictured Cliff under a common set of geologic conclusions?
18	A. Yes, sir, it is.
19	Q. Is it, in your opinion, necessary to have pilot
20	wells within each and every one of the pools involved?
21	A. No, it isn't, but we have tried within the
22	constraints of our leasehold and economics to put tests in
23	as many pools as possible, between Burlington Resources,
24	Energen and BP.
25	Q. Give us a summary of the geology, then, Mr.

1 Dawson. Okay, we're going to start out looking at a PC 2 Α. 3 cum map. How is this useful in understanding the geology? 4 Q. For the Pictured Cliffs, the cumulative 5 Α. 6 production map reflects the depositional system and the 7 geologic trends perhaps even more clearly than a gross sandstone or a net sandstone map. 8 Certainly structure is not a very important part 9 of the Pictured Cliffs story. The structural contours 10 basically parallel the production trends that we see on 11 this map. 12 13 The production trends shown in red here represent 14 wells that have cum'd over a BCF in general. What you see 15 are very long, linear trends of high permeability reflected in this map. This represents deposition in a wave-16 17 dominated deltaic system, and it represents the 18 accumulation of cleaner, better-sorted sands in the upper shore face and in the beach parts of the system. 19 Those 20 high-permeability sands aren't present everywhere, and when we get between the high-capacity trends we still have thick 21 22 gross sandstone, but we don't have the high permeability that results in production and cum totals over a BCF. 23 The Pictured Cliffs depositional system prograded 24 25 from the southwest -- try to use the pointer here -- in

And the red, by the way, is the outcrop of the 1 this area. PC, commonly taken to be a reflection of the outline of the 2 San Juan Basin. But it prograded from the southwest to the 3 northeast. As the sea level dropped, in effect, relative 4 to this local area, we filled the accommodation space, and 5 this represented the last regression of the large 6 epicontinental seaway that covered most of North America. 7 So in our local area, this was the last gasp of marine 8 deposition. 9

As this shoreline system prograded to the northeast, it deposited trends of very high permeability rock with the best reservoir potential, and it sort of marched along. And we happen to know through some recent USGS work how long it took for it to build through the San Juan Basin from this outcrop down south of Bisti up to the Colorado border area. It took about two million years.

So our Pictured Cliffs reservoir rock -- it's wet 17 near the outcrop, of course, but it's about 75 million 18 years old. And as we get up into the Colorado area, it's 19 about 73 million years old. And just for fun, we tried to 20 find an analog to that, and that rate of progradation turns 21 out to be just about the same speed or the same rate that 22 23 your hair grows. So that's how long it took for us to fill 24 in this basinal area with Pictured Cliffs sandstone. 25 Q. Do you have a slide that gives us a cross-

1	sectional view of the Pictured Cliff so that we can have a
2	visualization or a characterization of what this looks in a
3	vertical
4	A. Yes, sir, we do, and if we could back up one,
5	I'll show you where this schematic cross-section is. It's
6	located right here. And while we're on this index slide,
7	this is the volumetric study area, the four-township area
8	that we'll discuss in some detail later, and this is the
9	location of a type log that we've included.
10	EXAMINER STOGNER: Okay, when you said the cross-
11	section, it's marked on the exhibit as the cross-section,
12	there's a line there
13	THE WITNESS: Yes, sir.
14	EXAMINER STOGNER: going from the northeast to
15	the southwest, and then you have your type log within that
16	magenta box
17	THE WITNESS: Yes, sir.
18	EXAMINER STOGNER: is that correct?
19	THE WITNESS: Yes, sir.
20	EXAMINER STOGNER: Okay.
21	Q. (By Mr. Kellahin) This is the cross-section, Mr.
22	Dawson.
23	A. This cross-section is called a schematic cross-
24	section. It's actually based on very detailed log
25	correlations. But what we really wanted to show here is

1	something that could conceptually set us up for an
2	understanding of the Pictured Cliffs reservoir and the
3	depositional mechanics and the reservoir stratigraphy.
4	This is about 12 miles from end to end. This is
5	updip to the left, and this is downdip, both structurally
6	and stratigraphically. When we look at the Pictured
7	Cliffs, the dip section in particular, we see parasequences
8	prograding out, marching out into the sea, as our clastic
9	system builds out onto a very gently dipping shelf upon
10	which the Lewis Sea muds were being deposited.
11	The exaggeration here vertically is about 125 to
12	1, so this looks like it's quite a steep shelf situation.
13	But if you put it in sort of the true geometry, the dip of
14	the shelf would be around a degree or less. So it's a very
15	shallow, just barely dipping shelf, dipping seaward.
16	What we want to show here is the distribution of
17	the high permeability sandstones, and this is approximately
18	to scale and fits our cum map fairly well. What we see in
19	the upper shore face environment and the beach environment
20	are sandstones that today have, say, greater than one
21	millidarcy of permeability. Each of the parasequences has
22	preserved somewhere, in general, some of these facies that
23	provide the best reservoirs.
24	What you'll notice, though, is that most of the
25	sandstone here and we're showing this as maybe 80 to 90
ı	

1 feet of gross sandstone -- most of it shown as the pale 2 yellow color here has much lower permeability, very much In general, it has higher water saturation. tighter. And 3 when we talk about an upper and a lower Pictured Cliffs, 4 commonly we're talking about the tight stuff at the bottom, 5 in contrast to the permeable stuff at the top. 6 Is there a way to generally characterize the 7 Q. range of permeability for a low-perm area and then the 8 ranges for a high-perm area? 9 Yes, sir, there is. The permeabilities at 10 Α. reservoir conditions in the updip part of the field could 11 be as high as 30 millidarcies. 12 As we go deeper into the Basin we have changes in 13 clay type and more compaction and thermal alteration. That 14 maximum permeability might be as low as a millidarcy. 15 As we look at the Pictured Cliffs vertically, we 16 have permeabilities that might range from that maximum of 17 30 all the way down to thousandths of a millidarcy, and 18 essentially even with core, the permeabilities are not 19 20 measurable. Yet there is gas stored in that extremely tight matrix system. 21 22 Q. Do you have a type log that you can describe for us? 23 Yes, sir, the next exhibit, please. 24 Α. 25 We've included this exhibit to define what we

	22
1	mean when we refer to upper and lower Pictured Cliffs.
2	This is a well in northwest 25, 27 North, 9 West. It is a
3	Mesaverde well, but it twins one of our recent Pictured
4	Cliffs redrills.
5	If you'll look at the log, looking at
6	approximately 90 feet of PC section here, you'll see that
7	the lower Pictured Cliffs essentially is about as clean in
8	terms of the shaliness as determined by the gamma ray as
9	the upper Pictured Cliffs. You'll see that the porosities
10	are actually fairly similar. There's a little higher
11	porosity in the upper Pictured Cliffs.
12	The big contrast that we see in typical logging
13	suites is in resistivity. The lower Pictured Cliffs has
14	much lower resistivity. This is one of the phenomena that
15	we hope to define and learn more about from our core
16	program. What we believe is going on here is that we have
17	in the upper Pictured Cliffs slightly coarser grain size,
18	better sorting, lower water saturations. And we believe in
19	order to adequately create a petrophysical model, that we
20	need to distinguish between upper and lower Basinwide and
21	perhaps actually have different log parameters, such as A,
22	m and n in the Archie equation for the upper and lower.
23	This well is of particular interest since it
24	twins a redrill and that was part of our layer pressure
25	program. We measured the pressure in the upper and the

	23
1	lower separately and found that the upper Pictured Cliffs
2	had 342 pounds of remaining pressure, the lower about 406
3	pounds. I think this pressure stratification is
4	significant.
5	This redrill was drilled 310 feet from the old
6	abandoned Pictured Cliffs well. Original pressures in this
7	area were something like 500 pounds.
8	Q. In summary, then, Mr. Dawson, do you have a slide
9	that gives us the general Pictured Cliffs characteristics
10	that you have investigated?
11	A. Yes, sir, the next slide. We have listed here
12	some of the key characteristics that we feel should be
13	considered in particular in evaluating our proposed pilot
14	program. I won't go into each one of these in detail.
15	In general, the Pictured Cliffs reservoirs were
16	deposited in the same system as it prograded to the
17	northeast. Grain sizes are similar throughout the
18	productive area.
19	There are some systematic changes that you see
20	going from the updip edge of the production to the downdip
21	edge to the northeast, and the most significant, if course,
22	is the lower permeabilities. Those result from greater
23	depth of burial, more compaction.
24	There's actually a systematic change in clay type
25	so that as we get toward the axis of the Basin, as we

1	approach it from the southwest, we see more illite-
2	smectite. Nearly all these clays are orthogenic or
3	secondary, they weren't deposited with the sand grains.
4	And so the greater burial has led to more swelling clay and
5	more core-bridging clay in the downdip parts, and that's a
6	big part of the story why it gets tighter as we go downdip.
7	But we feel that we have with the program that
8	we're presenting to you today, we've sampled both updip and
9	downdip areas of the productive area of the San Juan Basin,
10	and we've also attempted to try to pick areas that were on
11	trend, such as the greater than the BCF trends that we
12	saw on the cum map, and off-trend in areas where cum
13	productions have been less.
14	Q. Have you satisfied yourself, Mr. Dawson, that the
15	pilot project wells have been dispersed and located
16	throughout the Basin in such a way that you can sample the
17	typical characteristics of the pool?
18	A. Yes, sir, we did that to the best of our ability.
19	Of course, that's dependent on our leasehold and what
20	wellbores are available to us for recompletions and what
21	areas are available to us for new drills.
22	MR. KELLAHIN: Mr. Stogner, that completes Mr.
23	Dawson's presentation.
24	At this time we would move the introduction of
25	the exhibit material behind Exhibit Tabs 2 and 3.

	23
1	EXAMINER STOGNER: Any objections?
2	The information in the booklet behind Tabs 2 and
3	3, Exhibit Tab 2 and Exhibit Tab 3, will be admitted into
4	evidence at this time.
5	Mr. Carr, any questions? I guess not.
6	Mr. Jim Bruce, any questions? I guess not.
7	EXAMINATION
8	BY EXAMINER STOGNER:
9	Q. You talk about some new coring to be done
10	A. Yes, sir.
11	Q is that correct?
12	How many cores are you talking about? Will this
13	be through the whole Pictured Cliffs interval?
14	A. Yes, it will, two cores approximately 120 feet.
15	We plan on taking four trips and recovering 30 feet of core
16	each trip for two different wells.
17	What will be different about this core from
18	what's been done in the past is that we're foam-drilling.
19	We're doing that in order to preserve the water saturation
20	to the best of our ability.
21	It turn out that the volumetrics in the
22	petrophysical model is extremely sensitive to your
23	assumptions on water saturation. And in the past the
24	Pictured Cliffs, when we core it, it's almost always
25	invaded by drilling fluid. And in particular, when we're

	20
1	looking at a situation where the pore pressures have
2	already been depleted, we expect a very deep invasion
3	whenever we mud-drill.
4	So what we hope to do is analyze this core, and
5	it will be the whole section. And we'll get from the very
6	top, upper shore face, hopefully, and beach sandstones, all
7	the way down to the distal, deltaic very tight sandstones
8	that interfinger with Lewis shale.
9	Q. Have you or will you be investigating any of the
10	cores that have been taken in the past?
11	A. Yes, sir, we will. In fact, we have a couple of
12	our older cores at Texas Tech University. As we speak,
13	they're trying to do some work relating water saturations
14	to log resistivity. We've reviewed all the core reports
15	that we can get our hands on.
16	Most of the wells through history have been
17	analyzed only the PC cores only for water saturation,
18	porosity and permeability, and actually most of those cores
19	are no longer available. They've ended up in
20	unfortunately, in landfills somewhere. But we've reviewed
21	all of that data to get as much as we can from it.
22	After that review, we realized that there's some
23	missing components that we need in order to give us
24	confidence in our petrophysical model.
25	Q. Is this work being done at Texas Tech or New

1	Mexico Tech?
2	A. It's Texas Tech.
3	Q. Texas Tech. Did those old cores come from a
4	certain era?
5	A. Yeah, in general the 1950s and 1960s is when
6	most of the coring took place. That was a time when the
7	field was evolving. The Pictured Cliffs, historically, was
8	developed just by extending along production, and when you
9	got a low-rate well, why, you didn't go any further in that
10	direction.
11	So in general, they found the high-permeability
12	parts of the reservoir and they extended it along strike.
13	And many of those extensional wells were cored.
14	Q. Now, your presentation today has pretty much been
15	an overview of the Pictured Cliffs formation. Will you
16	be What kind of geological parameters will you be
17	looking at in the different pilot programs? A closer look
18	at the what the results in the What exactly will you
19	be looking for with the pilot project?
20	A. Well, I'll try to look at the performance of the
21	infill wells in a stratigraphic context so that we can come
22	up with a predictive model. Our suspicion is that in order
23	to most efficiently manage the Pictured Cliffs reservoirs,
24	we're going to need to be able to predict whether infills
25	in a certain drill block are going to be economic,

uneconomic, whether there's going to be interference, 1 whether there's not going to be interference, whether or 2 not -- that the stratigraphy is controlling the reservoir 3 performance. We're going to try to determine the 4 5 contribution of natural fracturing to Pictured Cliffs 6 production. In general, we'll try to use geology to help us 7 with a predictive model for infill well performance. 8 Basically, we'll take those empirical results from each of 9 the pilot infills and put those in a geologic context. 10 How about you as a geologist, in determining the 11 0. completion of the new infill wells? What kind of 12 parameters are you going to be using? Are you going to be 13 picking and choosing certain perforated intervals, or are 14 you going to do an overall kind of perforation, or --15 Well, that's a great question. We're studying, 16 Α. first of all, the sensitivities to various completion and 17 drilling fluids, and we'll be doing some more of that work 18 with our new core. 19 We know that the Pictured Cliffs formation has a 20 very high clay content, ranging from -- About as low as it 21 ever gets is, say, five percent, and intervals that we 22 still call pay can have up to 35 percent clay. Nearly all 23 24 orthogenic. And we know that, particularly in the downdip 25 areas where we have the mixed-layer illite-smectites and

when we have some chloride, that the reservoir is going to 1 be very sensitive to drilling and completion fluids. 2 So we're going to do some of that testing. 3 In terms of how much of the interval to complete, 4 we've already done some work with that. We've looked at --5 6 after frac logs and a limited number of production logs, trying to determine what the contribution of the lower 7 8 Pictured Cliffs is. We know in general that it is likely to have a little more pressure than the upper, high-9 permeability part. We're trying to figure out whether we 10 can actually get much of a contribution from that and 11 whether it actually pays off to put perforations in it, or, 12 alternatively, whether you should just concentrate on the 13 14 high-permeability part. 15 One interesting thing that we've learned is 16 that -- through our layer-pressure-testing program, that 17 the lower, very, very low-permeability part of the formation is being depleted in terms of pressure, at least in the tests that we've performed where we've taken

formation is being depleted in terms of pressure, at least in the tests that we've performed where we've taken redrills out in excess of 1000 feet from the old well, we do find that that lower rock has been depleted. It has as much as 30 or 40 percent more pressure than the upper, high-permeability part, but still we are managing to drain it over the course of the 40 or 50-odd years that we have in most of our established field areas.

1 0. In referring now to the map -- call that the base map behind the Exhibit Tab Number 2, when I look at this, 2 there's obviously a grouping of pools together sort of in -3 - we'll call that the center, going from the northwest down 4 to the southeast, in the center of the San Juan Basin. 5 And then as you work yourself back to the north and the east, 6 you've got some pools that kind of stand out by themselves. 7 And in between there I'm assuming that's an area of 8 nonproduction. I'm sure that it's probably been tested, 9 but geologically speaking, what happened in this interval? 10 Α. Well, that's the part of the Basin where the clay 11 type has become dominantly illite-smectite, and what we're 12 doing in that part of the Basin, for instance in the 29-7 13 14 area, we're still doing some extensional drilling in the Pictured Cliffs there. What we're trying to find are the 15 sweet spots. You can find sweet spots that result from two 16 17 things. One would be to find where we've built up a beach 18 and foreshore and built up and preserved those reservoir 19 Those tend to occur in rather narrow trends. 20 facies. It might only be a mile wide. And as we go down into the 21 22 Basin, if we can't find that trend it's unlikely that we'll establish commercial production. Although there still may 23 be gas stored in the rocks, the matrix permeabilities are 24 25 so terribly low that you have a hard time even recovering

1 100 million cubic feet of gas.

2	The second thing you could look for is, there are
3	places where apparently dissolution of cements and where we
4	had a more unstable feldspar grains in our sandstone,
5	where that's been dissolved, so where we have anomalies in
6	that secondary porosity, unexpectedly. And those aren't
7	necessarily associated with the reservoir facies. Those
8	are usually found by accident, just by finding good shows
9	while drilling and so forth.
10	The variations that we considered in selecting
11	our pilot tests, the systematic variations, are gradational
12	as we go from the updip pools down into the Basin, in the
13	downdip pools. And so the white areas, obviously, are
14	areas where no one's been able to establish commercial
15	rates.
16	But it has not yet been fully developed, so there
17	still is an effort to extend PC production down into the
18	Basin, and I would kind of categorize that as exploratory
19	extensional drilling.
20	Q. Or recompletions of existing wells?
21	A. Yes, sir, absolutely.
22	Q. Now as you know, there's several pools, or many
23	pools out there that include the Fruitland sand portion of
24	the Pictured Cliffs and the Pictured Cliffs.
25	A. Yes.

	32
1	Q. Are those going to be looked at in a different
2	manner, or are any of those going to be cored, or how will
3	those be handled?
4	A. We don't have The three companies involved in
5	the effort we're describing today, in general we don't have
6	large leaseholds in some of the peripheral pools where the
7	Fruitland sands are more prolific and where essentially we
8	commingle Pictured Cliffs and Fruitland.
9	What we hope to do in the next year or even two
10	years is to at least take a look at those pools and the
11	geology, perhaps, work a little bit with the active
12	operators there and see whether or not it's reasonable to
13	extend by analogy the conclusions that we reach from our
14	test program to those pools.
15	In general, we don't have a lot of data in-house
16	now, and we don't have much leasehold to work with.
17	EXAMINER STOGNER: Any other questions of this
18	witness?
19	Thank you, you may be excused.
20	THE WITNESS: Thank you, sir.
21	EXAMINER STOGNER: Before we continue, just for
22	those that are in here, we're going to essentially go
23	through the docket, the remaining cases. And this will be
24	the Burlington case, and then we're going to have the Devon
25	Energy case, that's 12,778. This is a re-opened case of a

	55
1	matter heard by Dave Catanach, I believe, a couple weeks
2	ago. And then I have a short presentation from David
3	Arrington on 12,858.
4	And if anybody is here for the remaining two
5	cases this is 12,862 and 12,758-A both of these are
6	what we refer to as the inactive well hearings, and these
7	are wells in a group up in Chaves County and another
8	group in the Lea, Roosevelt and Chaves County, that portion
9	of District 1. These will not be called these two
10	inactive well cases won't be called until after lunch.
11	So I just wanted to make that announcement, so if
12	there's anybody here in the audience that are just
13	interested in those cases, feel free to take a long lunch
14	break and show back up about one o'clock. You will be safe
15	then to show back up. Due to some scheduling of our
16	witnesses, the Division witnesses won't be available till
17	then. So if we get through with these cases this morning,
18	I'm going to take a break anyway until lunch.
19	So I just wanted to make that announcement. If
20	there's anybody here for those two cases, the inactive well
21	cases, feel free to take off and come back at one o'clock,
22	and either we'll call those or you will see that we're
23	still on the Burlington case or one of the other two cases.
24	Thank you, Mr. Kellahin, you may continue.
25	MR. KELLAHIN: Thank you, Mr. Examiner.

1	At this time we'd like to call our engineering
2	expert, Eric Broacha, is the next witness.
3	ERIC BROACHA,
4	the witness herein, after having been first duly sworn upon
5	his oath, was examined and testified as follows:
6	DIRECT EXAMINATION
7	BY MR. KELLAHIN:
8	Q. Will you please state your name and occupation?
9	A. My name is Eric Broacha. I am a petroleum
10	engineer with Burlington Resources.
11	Q. Have you testified on prior occasions before the
12	Division?
13	A. No, I have not.
14	Q. Summarize for us your education.
15	A. I have a bachelor of science degree in chemical
16	engineering from Colorado School of Mines.
17	Q. In what year was that?
18	A. 1978.
19	Q. All right.
20	A. I have worked in the industry as a petroleum
21	engineer for the last 23 years with both majors and
22	independents. For the last 18 years my area of focus has
23	been tight gas reservoirs in the Rocky Mountain region, all
24	basins. My experience spans from petrophysics to reservoir
25	modeling to general reservoir-engineering issues.

.

1	Q. What has been your involvement in the design of
2	the Pictured Cliff pilot project?
3	A. I've been a member of a team for the last year.
4	My contribution has mainly focused around the design of a
5	new petrophysical model of a testing program with a new
6	core, also the collection of data for reservoir simulation
7	and the calculation of gas in place and volumetrics in the
8	four-township area and across the Basin.
9	MR. KELLAHIN: Mr. Stogner, we tender Mr. Broacha
10	as an expert witness.
11	EXAMINER STOGNER: No objection, Mr. Broacha is
12	so qualified.
13	Q. (By Mr. Kellahin) Let's start with Exhibit Tab 4
14	and explain to Mr. Stogner the volumetric portion of the
15	study.
16	A. Other slide, please. Other way.
17	The purpose of this study and what I'm going to
18	show you here is, we need to understand what the at the
19	current spacing, what our recovery factors were. We have
20	picked, selected an area which I believe is representative
21	of how the PC has produced across the Basin. We picked a
22	four-township area, which includes 27 to 28 North, Range 9
23	West to 10 West. The study area included 559 PC wells.
24	The objective of the study area was to first
25	calculate the gas in place in the Pictured Cliffs per 160-

	36
1	acre-spaced area, calculate the main resource and then
2	estimate what the recovery factor would be for a typical
3	well on 160-acre spacing.
4	Two types of analysis method were used. We used
5	volumetrics using the well logs to calculate gas in place,
6	and we used the decline curves from each individual
7	producing PC well to calculate the EUR of each well.
8	Q. Can you summarize for us the characteristics
9	you've selected to define why you chose this four-township
10	project area?
11	A. Yes, I can. This slide here illustrates the main
12	selection criteria we used to select the four-township
13	area. I'll show you on the map that proceeds this that the
14	area we've selected encompasses a portion of five different
15	PC pools. It also includes what we'll call on- and off-
16	trend wells, or high-permeability wells and low-
17	permeability PC wells.
18	The area is also in one of the highest cumulative
19	production areas in the Basin, or an area at the highest
20	level of depletion.
21	Also in the four-township study area, the large
22	majority of the wells have been restimulated, which means
23	that they are currently producing at their optimum
24	productivity, which will also enable us to calculate EURs
25	of optimally completed PC wells.

In the study area we have a large number of 1 digitized logs, 163 wells. This is very important since we 2 used these logs to calculate volumetrics. 3 We have production data on all the wells in the area, and we have 4 5 pressure data on approximately 50 percent of the wells in 6 the area. 7 Q. All right, let's turn to the map and get 8 ourselves oriented. As you can see on this display here, the red 9 Α. square outlines the four-township area that we studied, and 10 also you can see that it encompasses a portion of five 11 different PC pools. 12 If I was to take a four-township area to try to 13 Q. do conventional volumetrics on and wanted to select as a 14 target an area of the Pictured Cliff that might give me my 15 greatest opportunity to see how well I had done in 16 recovering the maximum amount of gas on current spacing, 17 where would I place the project? 18 We believe that the four-township area we select 19 Α. probably represents an area of the most efficient depletion 20 under current operating conditions of the PC, mainly, 21 22 because of the behavior of the current wells, that they've been recompleted or redrilled, that the line pressures are 23 at the lowest possible right now with our system, and we're 24 25 looking at PC wells that are producing out of both the

	38
1	high-permeability PC and the low-permeability PC.
2	Therefore, the recovery factors that we calculate
3	for this area are probably the highest you'll see in the
4	whole Basin right now.
5	Q. So if I take this project area, do the
6	volumetrics, it will give me a sense of how well I am doing
7	under current spacing
8	A. That is correct.
9	Q to recover the gas in place?
10	A. That is correct.
11	MR. KELLAHIN: Mr. Stogner, Mr. Broacha has a
12	number of individual slides in the exhibit book that are
13	layered, so you'll have available for your own
14	investigation the cum production map, an EUR gas-in-place
15	map, an estimated-recovery map, the remaining-reserve map.
16	But you finally get down to a summary page after you look
17	at the maps, and that's where I'd like him to focus his
18	next part of the presentation.
19	Q. (By Mr. Kellahin) Let's go to the volumetric
20	conclusions, after you do all the volumetric work in the
21	four-township area.
22	A. Okay. As you can see by this slide, from our
23	current petrophysical model we calculate a gas in place in
24	this four-township study area of approximately 1.3 TCF. In
25	doing the decline-curve analysis in all 559 wells, we have

calculated an EUR from the existing wells in this area of
approximately 500 BCF. By subtracting the two, you have a
remaining resource of 789 BCF remaining in the PC.
If we go ahead and divide our EUR by our gas in
place you come up with a recovery factor. The current
recovery factor that we're predicting for this area is only
39 percent.
Q. If this is one of my best areas, how do I know
how well I am doing when I compare this to what would be
your forecast of ultimate recovery from a tight-sand PC
reservoir?
A. Typical tight gas reservoirs in the Rocky
Mountains that are very similar to this recovery factors
range from 60 percent to 75 percent. So the significance
of this recovery factor is to either our petrophysical
model needs further refinement, or some type of additional
recovery mechanism either a change in completion
technique or additional well spacing will be needed to
recover the rest of the PC gas.
Q. What will you achieve with the pilot well program
that would allow you to more accurately define the
engineering parameters that go into the volumetric
calculation?
A. The pilot well program, as I'll illustrate later
in this presentation, has several parts. In each of the

1	parts the program focuses on a different issue that we have
2	identified as a weakness in our current model. Mike has
3	already talked to you about the new core, and I will
4	explain to you what we're going to do with that and how
5	that will refine our petrophysical model to improve our
6	gas-in-place calculation.
7	We are also going to be looking at With the
8	drilling of the pilot wells, we'll be able to actually
9	monitor whether we have see interference and what kind
10	of rates we can expect, and also be able to collect data so
11	we can do reservoir simulation for future prediction of
12	increased-density wells.
13	Q. When we look at your conclusions from the
14	volumetric analysis, one of the things that you need to
15	investigate further is the probability that current density
16	within the volumetric area is inadequate to maximize your
17	recovery?
18	A. That's correct.
19	Q. All right. In addition, you're going to examine
20	the parameters such as water saturation and resistivity and
21	other components of the calculation?
22	A. That is part of the petrophysical program that we
23	have designed. Those are Some of the main weaknesses in
24	our gas-in-place calculation right now is our inability to
25	calculate current water saturation in the PC.

1	Q. Mr. Dawson made reference to the fact that
2	historically in the Pictured Cliff there are occurrences
3	where a 160-acre spacing unit has had two wells producing
4	at the same time.
5	A. This is correct.
6	Q. Let's turn to Exhibit Tab 5 and talk about what
7	you have identified as the 80-acre well pairs. Is there a
8	display that shows where those wells are scattered?
9	A. Not in the presentation. We have a large map
10	that does show the distribution of these wells across the
11	Basin. Once we had finished the volumetric area analysis
12	and realized that increased density may be an option, we
13	did research and tried to find in the Basin where
14	historically wells had produced simultaneously on an 80-
15	acre-type spacing or two wells per 160.
16	Q. Before you start talking about this part of the
17	chapter, let me identify what I've handed the Examiner.
18	This is an additional display we will separately mark after
19	the hearing. It shows, I believe the 49 well pairs. There
20	were originally, I think, 80 investigated, and the map you
21	now have doesn't have all 80. It shows what Mr. Broacha
22	finally studied.
23	You have a distribution of those areas?
24	A. That's correct.
25	Q. Their location is not unique or confined to an

	72
1	individual well?
2	A. That's correct.
3	Q. Give us the time frame of where you discovered
4	the occurrence of two wells within a 160 spacing unit.
5	A. Most of these well pairs produced between the
6	mid-1970s and the early 1990s. We identified
7	Q. Go ahead.
8	A. We identified approximately 85 pairs, although we
9	only had sufficient information on approximately 49 where
10	we could do any type of analysis. Most of the well pairs
11	which I'll refer to as original and second well were
12	approximately 1000 feet apart, so they kind of was
13	analogous to a current infill situation.
14	Although we looked at all 49 pairs, production
15	and pressure data turned out to be inconclusive from our
16	analysis. But I will review some of the observations that
17	we did see by looking at all 49 pairs.
18	The first observation that we noticed was
19	approximately 40 to 50 percent of the well pairs
20	appeared to exhibit some type of interference in later
21	years, and I will give you an example of what we mean by
22	interference after we finish the observations.
23	The second observation we noticed, if we looked
24	at the total producing rate from the lease while the
25	original well was producing and while both the original and

1	the second well was producing, lease production increased
2	during the period of time when two wells were producing off
3	the lease, as compared to only the one.
4	The third observation was, if we did a decline-
5	curve analysis on the original well, both while it was
6	producing by itself and while it was producing with the
7	second well, it appeared that in most of the cases we
8	actually had an increase in reserves while the two wells
9	were producing.
10	Now again, the analysis, we felt, was
11	inconclusive because and I'll show you on this
12	example much of the time when the two wells were
13	producing was a time of gas curtailment in the Basin due
14	to basically lack of sales with the marketing companies
15	forcing the operators to choke back many of the wells.
16	Q. It wasn't a regulatory gas-allowable curtailment?
17	A. No, it was not, it was more an overabundance of
18	gas in the marketplace at the time.
19	Next slide, please.
20	Here is an example of what I'll call one of our
21	best or one of the wells we felt we can do the most
22	analysis on. You'll notice there are two wells, the Kutz
23	Government Number 8, which I'll refer to as the original
24	well, and the second well, the Kutz Government Number 8J,
25	the J designation, again, indicating infill.

	44
1	The original well produced from October of 1953
2	until September of just last year, 2001. You can see it's
3	a fairly good well, an on-trend well. Cum production is
4	approximately 1.35 BCF.
5	The second well was located approximately 732
6	feet away from the original well. It produced from
7	November of 1973 until April of 1992.
8	Next slide, please.
9	This is a semi-log plot of the production trends
10	of both the original and the second well. The original
11	well is in the blue here, the second well is in the red.
12	As you can see from this plot, it's very difficult to see
13	any type of interference between the two wells.
14	This plot is based on monthly production data, so
15	what I did was, I converted the monthly production data to
16	annual data next slide, please to try to understand
17	if there was interference between the wells.
18	On this plot here, you can see production data on
19	the Y axis and time on the X axis. The red dots there are
20	the original well, and the blue squares are the second
21	well, and the green curve right here represents total lease
22	production.
23	You can see from this plot that when the second
24	well came on line, the production did not change in the
25	original well. Also notice that between the early 1980s

1	right here and the early 1990s, this is the period I'll
2	refer to as gas takes or curtailment when both wells were
3	choked back.
4	Now, sometime at the early 1990s, 1992, the
5	second well was converted to a coal well and no longer
6	produced from the PC. At that same time the original well
7	was worked over, and that's why you see the increase in
8	production.
9	The importance of this plot is to notice that
10	while both wells were producing, you don't see a decrease
11	in the rate from the original well.
12	This is one of our best cases. The rest of them,
13	as you can see, interpretation is very difficult.
14	One thing you will notice next slide, please
15	if I draw a decline curve through the original
16	production this is a green line represented right here
17	I don't see any change in the decline except for the
18	period of time when they worked over the well. In other
19	words, I can't really see a direct effect of the second
20	well producing simultaneously with the original.
21	Now, if I can draw this same decline curve on our
22	original plot, which is a semi-log plot of production
23	and again, you can see here, it appears flat and appears
24	like you don't see any effect from the second well.
25	Now, this well pair also had pressure data on it.

1	So if we look at the next slide, we can observe the
2	pressure data of both the original well and the second
3	well. The blue diamonds here represents the pressure data
4	collected on the original well, and the red circles
5	represents the pressure data collected on the second well.
6	You can see the decline in the pink curve here.
7	This is the decline of the original well. When the second
8	well came on line the pressure was approximately 120 p.s.i.
9	higher than the pressure in the original well. However,
10	after about four years the pressure of the two wells became
11	about the same. This does not necessarily indicate
12	interference, but it indicates that the pressure around
13	both producing wells came down to the same point.
14	Again, we can't really from this example here,
15	I can't really tell you yes or no, whether the two wells
16	are affecting each other.
17	Q. Do any of these pairs currently produce any of
18	these spacing units with pairs currently produce both wells
19	at the same time?
20	A. Currently? No, they do not.
21	Q. That practice is stopped, for whatever reason?
22	A. Early 1990s, all of the second wells were
23	converted to some other formation for some reason. I do
24	not know why.
25	Q. If we're trying to decide well density in the

	4/
1	Pictured Cliff, the strategy that you have investigated
2	here is to see if we had ample data on wells that were on
3	effective 80-acre density and whether that was enough
4	evidence to show you that all of these pools needed to have
5	that type of density?
6	A. That is correct. We were hoping by looking at
7	these historical well pairs that it would answer our
8	question about whether increased density was needed or not
9	and which areas it was needed. As we went through the
10	analysis, it became evident that because of curtailment and
11	other issues, we did not have enough data to make that
12	decision.
13	And that's one of the reasons for going forward
14	with our recommendation for a pilot program, is to collect
15	this data under more controlled conditions. Some of the
16	other analysis that we saw, you did see interference with.
17	But again, we can't really model that because there is
18	insufficient data to be able to do that.
19	Q. Have you studied the pressures in the Pictured
20	Cliff to see if there is sufficient pressure data from
21	which you can use that database to draw definitive
22	engineering conclusions about well density?
23	A. Yes, we did. We conducted in 2001 an extensive
24	layer pressure measurement program, which we are continuing
25	this year also.
I	

1Q. Let's talk about that. If you'll turn to Exhibit2Tab 6, let's go through the pressure data.3A. This slide shows the synopsis or summary of what4we did in 2001. We measured what I'll refer to as layer5pressures in 16 different PC wells. Five of these wells6were new drills and 11 were what we refer to as redrills.7The distance for the redrill case, the distance8between the original well and the redrill well, ranged9anywhere from only 10 feet to over 1000 feet. Shut-in10times varied from five days to 13 days.11To obtain better data, we used downhole bombs and12we also used plugs, downhole plugs, to minimize wellbore13storage.14Next slide, please.15The results of the layer pressure measurement16pressure measurements indicated we had some level18of depletion in all wells that we did test. Original well19pressures across the Basin ranged anywhere from 500 pounds20in the shallow areas to 1250 pounds in the deeper PC areas.21You can see there that the upper, middle and22lower PC, the pressure ranges that we got from a test, they23ranged anywhere from extremely depleted at 61 pounds, all24the way up to almost virgin pressure at 1195 pounds.25You also notice that there was a difference in		40
 A. This slide shows the synopsis or summary of what we did in 2001. We measured what I'll refer to as layer pressures in 16 different PC wells. Five of these wells were new drills and 11 were what we refer to as redrills. The distance for the redrill case, the distance between the original well and the redrill well, ranged anywhere from only 10 feet to over 1000 feet. Shut-in times varied from five days to 13 days. To obtain better data, we used downhole bombs and we also used plugs, downhole plugs, to minimize wellbore storage. Mext slide, please. The results of the layer pressure measurement program are summarized in this slide. Pressure measurements indicated we had some level of depletion in all wells that we did test. Original well pressures across the Basin ranged anywhere from 500 pounds in the shallow areas to 1250 pounds in the deeper PC areas. You can see there that the upper, middle and lower PC, the pressure ranges that we got from a test, they ranged anywhere from extremely depleted at 61 pounds, all the way up to almost virgin pressure at 1195 pounds. 	1	Q. Let's talk about that. If you'll turn to Exhibit
 we did in 2001. We measured what I'll refer to as layer pressures in 16 different PC wells. Five of these wells were new drills and 11 were what we refer to as redrills. The distance for the redrill case, the distance between the original well and the redrill well, ranged anywhere from only 10 feet to over 1000 feet. Shut-in times varied from five days to 13 days. To obtain better data, we used downhole bombs and we also used plugs, downhole plugs, to minimize wellbore storage. Next slide, please. The results of the layer pressure measurement program are summarized in this slide. Pressure measurements indicated we had some level of depletion in all wells that we did test. Original well pressures across the Basin ranged anywhere from 500 pounds in the shallow areas to 1250 pounds in the deeper PC areas. You can see there that the upper, middle and lower PC, the pressure ranges that we got from a test, they ranged anywhere from extremely depleted at 61 pounds, all the way up to almost virgin pressure at 1195 pounds. 	2	Tab 6, let's go through the pressure data.
pressures in 16 different PC wells. Five of these wells were new drills and 11 were what we refer to as redrills. The distance for the redrill case, the distance between the original well and the redrill well, ranged anywhere from only 10 feet to over 1000 feet. Shut-in times varied from five days to 13 days. To obtain better data, we used downhole bombs and we also used plugs, downhole plugs, to minimize wellbore storage. Next slide, please. The results of the layer pressure measurement program are summarized in this slide. Pressure measurements indicated we had some level of depletion in all wells that we did test. Original well pressures across the Basin ranged anywhere from 500 pounds in the shallow areas to 1250 pounds in the deeper PC areas. You can see there that the upper, middle and lower PC, the pressure ranges that we got from a test, they ranged anywhere from extremely depleted at 61 pounds, all the way up to almost virgin pressure at 1195 pounds.	3	A. This slide shows the synopsis or summary of what
 were new drills and 11 were what we refer to as redrills. The distance for the redrill case, the distance between the original well and the redrill well, ranged anywhere from only 10 feet to over 1000 feet. Shut-in times varied from five days to 13 days. To obtain better data, we used downhole bombs and we also used plugs, downhole plugs, to minimize wellbore storage. Next slide, please. The results of the layer pressure measurement program are summarized in this slide. Pressure measurements indicated we had some level of depletion in all wells that we did test. Original well pressures across the Basin ranged anywhere from 500 pounds in the shallow areas to 1250 pounds in the deeper PC areas. You can see there that the upper, middle and lower PC, the pressure ranges that we got from a test, they ranged anywhere from extremely depleted at 61 pounds, all the way up to almost virgin pressure at 1195 pounds. 	4	we did in 2001. We measured what I'll refer to as layer
7The distance for the redrill case, the distance8between the original well and the redrill well, ranged9anywhere from only 10 feet to over 1000 feet. Shut-in10times varied from five days to 13 days.11To obtain better data, we used downhole bombs and12we also used plugs, downhole plugs, to minimize wellbore13storage.14Next slide, please.15The results of the layer pressure measurement16program are summarized in this slide.17Pressure measurements indicated we had some level18of depletion in all wells that we did test. Original well19pressures across the Basin ranged anywhere from 500 pounds20in the shallow areas to 1250 pounds in the deeper PC areas.21You can see there that the upper, middle and22lower PC, the pressure ranges that we got from a test, they23ranged anywhere from extremely depleted at 61 pounds, all24the way up to almost virgin pressure at 1195 pounds.	5	pressures in 16 different PC wells. Five of these wells
 between the original well and the redrill well, ranged anywhere from only 10 feet to over 1000 feet. Shut-in times varied from five days to 13 days. To obtain better data, we used downhole bombs and we also used plugs, downhole plugs, to minimize wellbore storage. Next slide, please. The results of the layer pressure measurement program are summarized in this slide. Pressure measurements indicated we had some level of depletion in all wells that we did test. Original well pressures across the Basin ranged anywhere from 500 pounds in the shallow areas to 1250 pounds in the deeper PC areas. You can see there that the upper, middle and lower PC, the pressure ranges that we got from a test, they ranged anywhere from extremely depleted at 61 pounds, all the way up to almost virgin pressure at 1195 pounds. 	6	were new drills and 11 were what we refer to as redrills.
 anywhere from only 10 feet to over 1000 feet. Shut-in times varied from five days to 13 days. To obtain better data, we used downhole bombs and we also used plugs, downhole plugs, to minimize wellbore storage. Next slide, please. The results of the layer pressure measurement program are summarized in this slide. Pressure measurements indicated we had some level of depletion in all wells that we did test. Original well pressures across the Basin ranged anywhere from 500 pounds in the shallow areas to 1250 pounds in the deeper PC areas. You can see there that the upper, middle and lower PC, the pressure ranges that we got from a test, they ranged anywhere from extremely depleted at 61 pounds, all the way up to almost virgin pressure at 1195 pounds. 	7	The distance for the redrill case, the distance
 times varied from five days to 13 days. To obtain better data, we used downhole bombs and we also used plugs, downhole plugs, to minimize wellbore storage. Next slide, please. The results of the layer pressure measurement program are summarized in this slide. Pressure measurements indicated we had some level of depletion in all wells that we did test. Original well pressures across the Basin ranged anywhere from 500 pounds in the shallow areas to 1250 pounds in the deeper PC areas. You can see there that the upper, middle and lower PC, the pressure ranges that we got from a test, they ranged anywhere from extremely depleted at 61 pounds, all the way up to almost virgin pressure at 1195 pounds. 	8	between the original well and the redrill well, ranged
11To obtain better data, we used downhole bombs and12we also used plugs, downhole plugs, to minimize wellbore13storage.14Next slide, please.15The results of the layer pressure measurement16program are summarized in this slide.17Pressure measurements indicated we had some level18of depletion in all wells that we did test. Original well19pressures across the Basin ranged anywhere from 500 pounds20in the shallow areas to 1250 pounds in the deeper PC areas.21You can see there that the upper, middle and22lower PC, the pressure ranges that we got from a test, they23ranged anywhere from extremely depleted at 61 pounds, all24the way up to almost virgin pressure at 1195 pounds.	9	anywhere from only 10 feet to over 1000 feet. Shut-in
 we also used plugs, downhole plugs, to minimize wellbore storage. Next slide, please. The results of the layer pressure measurement program are summarized in this slide. Pressure measurements indicated we had some level of depletion in all wells that we did test. Original well pressures across the Basin ranged anywhere from 500 pounds in the shallow areas to 1250 pounds in the deeper PC areas. You can see there that the upper, middle and lower PC, the pressure ranges that we got from a test, they ranged anywhere from extremely depleted at 61 pounds, all the way up to almost virgin pressure at 1195 pounds. 	10	times varied from five days to 13 days.
13 storage. 14 Next slide, please. 15 The results of the layer pressure measurement 16 program are summarized in this slide. 17 Pressure measurements indicated we had some level 18 of depletion in all wells that we did test. Original well 19 pressures across the Basin ranged anywhere from 500 pounds 20 in the shallow areas to 1250 pounds in the deeper PC areas. 21 You can see there that the upper, middle and 22 lower PC, the pressure ranges that we got from a test, they 23 ranged anywhere from extremely depleted at 61 pounds, all 24 the way up to almost virgin pressure at 1195 pounds.	11	To obtain better data, we used downhole bombs and
 14 Next slide, please. 15 The results of the layer pressure measurement 16 program are summarized in this slide. 17 Pressure measurements indicated we had some level 18 of depletion in all wells that we did test. Original well 19 pressures across the Basin ranged anywhere from 500 pounds 20 in the shallow areas to 1250 pounds in the deeper PC areas. 21 You can see there that the upper, middle and 22 lower PC, the pressure ranges that we got from a test, they 23 ranged anywhere from extremely depleted at 61 pounds, all 24 the way up to almost virgin pressure at 1195 pounds. 	12	we also used plugs, downhole plugs, to minimize wellbore
15The results of the layer pressure measurement16program are summarized in this slide.17Pressure measurements indicated we had some level18of depletion in all wells that we did test. Original well19pressures across the Basin ranged anywhere from 500 pounds20in the shallow areas to 1250 pounds in the deeper PC areas.21You can see there that the upper, middle and22lower PC, the pressure ranges that we got from a test, they23ranged anywhere from extremely depleted at 61 pounds, all24the way up to almost virgin pressure at 1195 pounds.	13	storage.
 program are summarized in this slide. Pressure measurements indicated we had some level of depletion in all wells that we did test. Original well pressures across the Basin ranged anywhere from 500 pounds in the shallow areas to 1250 pounds in the deeper PC areas. You can see there that the upper, middle and lower PC, the pressure ranges that we got from a test, they ranged anywhere from extremely depleted at 61 pounds, all the way up to almost virgin pressure at 1195 pounds. 	14	Next slide, please.
Pressure measurements indicated we had some level of depletion in all wells that we did test. Original well pressures across the Basin ranged anywhere from 500 pounds in the shallow areas to 1250 pounds in the deeper PC areas. You can see there that the upper, middle and lower PC, the pressure ranges that we got from a test, they ranged anywhere from extremely depleted at 61 pounds, all the way up to almost virgin pressure at 1195 pounds.	15	The results of the layer pressure measurement
 of depletion in all wells that we did test. Original well pressures across the Basin ranged anywhere from 500 pounds in the shallow areas to 1250 pounds in the deeper PC areas. You can see there that the upper, middle and lower PC, the pressure ranges that we got from a test, they ranged anywhere from extremely depleted at 61 pounds, all the way up to almost virgin pressure at 1195 pounds. 	16	program are summarized in this slide.
19 pressures across the Basin ranged anywhere from 500 pounds 20 in the shallow areas to 1250 pounds in the deeper PC areas. 21 You can see there that the upper, middle and 22 lower PC, the pressure ranges that we got from a test, they 23 ranged anywhere from extremely depleted at 61 pounds, all 24 the way up to almost virgin pressure at 1195 pounds.	17	Pressure measurements indicated we had some level
in the shallow areas to 1250 pounds in the deeper PC areas. You can see there that the upper, middle and lower PC, the pressure ranges that we got from a test, they ranged anywhere from extremely depleted at 61 pounds, all the way up to almost virgin pressure at 1195 pounds.	18	of depletion in all wells that we did test. Original well
You can see there that the upper, middle and lower PC, the pressure ranges that we got from a test, they ranged anywhere from extremely depleted at 61 pounds, all the way up to almost virgin pressure at 1195 pounds.	19	pressures across the Basin ranged anywhere from 500 pounds
22 lower PC, the pressure ranges that we got from a test, they 23 ranged anywhere from extremely depleted at 61 pounds, all 24 the way up to almost virgin pressure at 1195 pounds.	20	in the shallow areas to 1250 pounds in the deeper PC areas.
23 ranged anywhere from extremely depleted at 61 pounds, all 24 the way up to almost virgin pressure at 1195 pounds.	21	You can see there that the upper, middle and
24 the way up to almost virgin pressure at 1195 pounds.	22	lower PC, the pressure ranges that we got from a test, they
	23	ranged anywhere from extremely depleted at 61 pounds, all
25 You also notice that there was a difference in	24	the way up to almost virgin pressure at 1195 pounds.
	25	You also notice that there was a difference in

	49
1	pressure at each different interval within the PC. We saw
2	higher pressures in the lower, tighter zones, and we saw
3	more depletion in the upper zones. But the bottom line is,
4	we saw depletion in all the zones, in every well that we
5	did test.
6	I have a couple of examples here where I compared
7	the pressures we measured today with the historical
8	pressures to see if they were on trend with what we saw in
9	the past. You've already seen that we did have some
10	pressure data on older wells. I have three examples here
11	at different distances between the original well and the
12	redrill well to kind of show you what we saw with all the
13	wells we looked at.
14	First example here is a well in the 27-5 unit,
15	Well Number 92. Again, the blue diamonds are the
16	historical pressure data, and the red represents the
17	pressure measurements that we conducted in 2001. This well
18	here is an off-trend well. It had only cum'd about .3 BCF.
19	The redrill was drilled only ten feet away from the
20	original well.
21	You can see from the decline in the red right
22	here of the original pressure data, the original well
23	stopped producing here in 1991. The green line represents
24	where the pressures should be when we measured them in
25	2002. And as you can see, we measured pressures that are

1	very close to where they should have been. Again, we would
2	expect this, since the two wells are only ten feet apart.
3	Now, the second example here shows two wells that
4	are almost 1000 feet apart. And again, the blue represents
5	the historical pressure data, and again the red line is the
6	decline. This well here is a fairly good well. It
7	produced about .7 BCF from 1962 to 1985, and then again in
8	1985 it was shut in.
9	The green line represents the pressure level in
10	that well when it was shut in. The red right here
11	represents the pressures that we measured in the upper,
12	middle and lower PC last year. And as you can see here,
13	the pressures we measured almost 1000 feet away were about
14	200 to 300 pounds higher than what was in the original
15	well, again indicating that we had some depletion out that
16	far, but not very much. Again, this example, the wells are
17	actually 965 feet apart, but this is not always the case.
18	The next example shows two wells that are also
19	923 feet apart. Again, the blue is the historical pressure
20	data, the red is the pressures we measured last year. You
21	can see that in this case, the pressures we measured last
22	year fall right on the decline of the original, showing
23	that in this situation where you're almost 1000 feet away,
24	you do have pressure depletion.
25	So we saw with all 16 wells every case was

1	different, no matter where you are in the Basin. There was
2	no pattern, there was nothing to say that on-trend wells
3	had a certain depletion and off-trend wells had a certain
4	different depletion, or by pool. It was completely random.
5	Again, this type of behavior leads us to believe
6	that in some areas we're going to have to either need some
7	type of completion enhancement or increased density to be
8	able to produce all the resource, and some areas we may
9	not. But we have to define that.
10	So again, the results of the pressure program
11	leads us to believe that we need a pilot program to collect
12	more data.
13	Q. Let's talk about your conclusions for this
14	chapter.
15	A. Okay. The main conclusions are, first, as I've
16	stated, all the redrills measured indicate some sort of
17	depletion, both in the upper PC and the lower PC. The
18	measurements indicated the existence of more vertical perm
19	than we ever believed was possible in the lower PC. As
20	Mike explained to you, the matrix perm in the lower PC is
21	very tight, yet we saw a depletion in every well in the
22	lower, indicating some sort of fracture-enhancement
23	production.
24	There appeared to be relationships between the
25	pressure we measured in the redrill and the original well

1	cumulative production. The Next. The distance between
2	the original well and the redrill. The azimuth between the
3	original well and the redrill gave us an indication, and
4	the area of the Basin or reservoir quality. Again, these
5	relationships were very were not specific, but we did
6	see some minor trends.
7	Q. Can we improve our recovery efficiencies without
8	an increased density program by simply restimulating or
9	redrilling the existing Pictured Cliff wells? Is that
10	going to satisfy your problem?
11	A. We looked at our historical redrill and restim
12	programs and the results we saw, that it will probably not
13	satisfy it everywhere in the Basin. And I can go over next
14	the results of our analysis of both our redrill and restim
15	program to show you what we found, again indicating the
16	need to collect a little more data to better understand
17	this.
18	Q. Let's turn to Exhibit Tab 7 and have you give us
19	that presentation.
20	A. First, let's look at the results of our analysis
21	of our historical restimulation programs. Between the
22	period of 1995 and 2001, Burlington Resources restimulated
23	approximately 374 PC wells. All the restims were very
24	successful. And what we mean by that was, we saw an
25	increase in production. Our average increase was

1 approximately 160 MCF a day.

2	What made the analysis more difficult is, in many
3	cases after the restimulation the well was put on
4	compression. So it was very difficult for us to
5	distinguish the increase due to the restimulation and the
6	increased rate due to the compression by itself.
7	However, five or six years later now, we have
8	seen that many of these wells have returned to their
9	original decline. In other words, the restimulation hasn't
10	maintained the production of the well. We don't completely
11	understand why the restimulations work. That is part,
12	again, of the pilot program. We feel that if we can
13	improve our knowledge of why these work, we can further
14	improve how we're restimulating the wells and maybe in some
15	areas replace the need for an increased density well with a
16	restimulation of the existing well if possible.
17	I have two examples to show you what I'm talking

17 If have two examples to show you what I'm talking 18 about out of those 374 wells. Here is what I'll call an 19 on-trend well. It is in the Ballard area, Ballard Number 20 7, Township 26 North, Range 9 West. It is a very good 21 well. It was originally put on production in 1954, and 22 since then it has cum'd about -- almost 2 BCF. 23 It was restimulated in April of 1995. You can

see here immediately production went from about 1500 MCF a month to over 9000 a month. And it immediately started to

	54
1	decline. Right now, the producing rate on this well has
2	almost returned to its original decline from six years ago.
3	This well was not put on compression, so we couldn't
4	analyze the results.
5	Now, we compare this with what we'll call an off-
6	trend well or a lower-perm well. This is in the Township
7	26 North, Range 8 area, it's the Luthy Number 2. It is an
8	off-trend well. You can see that it was first completed in
9	1952, and when the recompletion was done on this well, or
10	the restimulation in 1996, the well had only cum'd about
11	.15 BCF.
12	As soon as we recompleted the well production
13	increased, as you can see by the production curve here.
14	And it has stayed flat ever since; it has not returned to
15	its original decline.
16	So this is the two types of situation that we've
17	looked at. Again, we're trying to understand exactly why
18	the restimulation works, why it works better in some areas
19	than others, and can we improve it? So it is part of the
20	PC resource optimization program that we're looking at and
21	does affect increased density. It is an alternative if it
22	will work.
23	Q. Can the poor recovery efficiency out of the
24	Pictured Cliff be explained in terms of the vintage of the
25	original wellbore compared to our technology now? Can you

1	solve your depletion dilemma by simply redrilling your
2	Pictured Cliff wells, rather than adding density to your
3	spacing units?
4	A. Not necessarily. We have looked at a redrill
5	program that we have been doing for the last five years
6	also. A lot of times we'll have mechanical problems with
7	some of the PC wells, which will force us to redrill them,
8	and I'll go over the results of that program. In many
9	cases, the redrill program will emulate what we'd see with
10	an 80-acre-spaced well, only you'd only have one well
11	producing.
12	Between 1995 and 1999, we redrilled approximately
13	52 PC wells. The redrill was placed anywhere from 10 feet
14	to over 1600 feet away from the original. Two observations
15	could be made from the review of the data.
16	One, we have some weak relationship between rate
17	and distance from the original well, and also we had a weak
18	relationship between the rate in the redrill well and the
19	azimuth from the original well.
20	I have a plot here that shows the results of
21	actually 79 redrill wells that we looked at. And you can
22	see there's a lot of scatter here, for two reasons. One,
23	this plot shows both off-trend and on-trend wells, so high-
24	perm and low-perm wells, and some of these wells are on
25	compression and some are not on compression.

But the general trend you see here is, as you get 1 further away from the original well your average rate, for 2 the first year, at least, is what we looked at where the 3 redrill actually increases. And it starts increasing guite 4 significantly when you pass about 400 feet. 5 Again, there's a lot of scatter, but it gives you 6 the general trend, what we would expect from a redrill. 7 Let's turn your attention now to the summary of 8 0. the pilot program itself. If you'll look at Exhibit Tab 8, 9 let me have you explain that to us. 10 Okay, again this is probably -- this pilot Α. 11 program is set up a little different than maybe pilot 12 programs you've seen in the past. What we're looking at 13 here is more than just, do I need an increased density 14 We are actually trying to collect the data so that 15 well? we can optimize the production of the PC resource at the 16 17 same time. So one of our goals here, or the main goal, is to 18 investigate the need for increased density to optimize 19 20 recovery and develop guidelines that tell us where and when 21 we would need such an increase. Our strategy is to first evaluate historical 22 23 production pressure, core data, which we have done already. 24 The conclusion is, we'll need to acquire new core data, 25 refine our petrophysical model and revise our current

1	volumetrics in the Basin.
2	Next, please.
3	We are planning to complete a number of pilot
4	wells, monitor and evaluate the production trends from
5	these pilot wells, also investigate and refine our current
6	drilling completion techniques. As Mike has told you, the
7	conditions in the PC have changed, which has forced us to
8	re-look at how we're drilling and completing wells.
9	We're also intending to perform pilot well
10	simulation studies and then from those studies to ahead and
11	try to predict what infill or increased density performance
12	would look like.
13	Now, in this endeavor we have two partners. We
14	are partnered with BP and Energen, and we're working this
15	together, this project.
16	Next slide, please.
17	Q. Let's turn to the summary.
18	A. What I'm going to I'm not going to go through
19	every program here, but the difference in color is, these
20	are the separate programs that we have divided the pilot
21	program into, so that each one focuses on a different area
22	where we need additional data so we can evaluate how to
23	optimize the PC resource.
24	The first four there, in the white lettering,
25	indicate programs that are already underway and we're

1	already studying. The programs in the yellow down here
2	indicate programs that will be initiated as soon as the
3	pilot program is initiated.
4	Q. Mr. Broacha, let me ask you to take a moment and
5	give us the characteristics that you selected to identify
6	what would qualify as a project pilot well.
7	A. I believe these are outlined on the Actually,
8	before I do that, let me show you on the map where we've
9	placed the pilot wells, and then what I'll do is, I'll go
10	through the criteria of how we selected these.
11	This is a map you've seen before. Again, our
12	study area, our four-township study area, is in the red.
13	What you're seeing now on the screen is the proposed pilot
14	program to be implemented by Burlington. We have divided
15	it into three different well types.
16	The black dots here are the new drills that we
17	intend to do in 2002, and there are four of them.
18	The red dots are the recomplete pilot wells we
19	intend to do in 2002. There are six of them.
20	And then the blue dots there represent the
21	recomplete pilot wells we intend to do in 2003, and there
22	are an additional nine of them.
23	Now, also you'll see here the wells Energen is
24	proposing. They are proposing to do their wells in 2003.
25	They're mainly concentrated on pools where we have very

	66
1	little leasehold. They are intending to do four new-drill
2	pilots and two recomplete pilots.
3	And then BP Amoco, they're intending to do six
4	recompletion pilots, and they will all be done in 2002.
5	So from this distribution you can see that we
6	have at least one test in each of the pools where we have
7	acreage available to do the tests.
8	Now, the next slide will kind of outline the
9	criteria we use to select the pilot wells. As I mentioned,
10	we wanted to do at least one pilot test per pool if we
11	could. We looked at the distance at the pilot well and the
12	offsetting producing PC wells to try to get a distance that
13	simulated 80-acre spacing, so we tried to have a minimum
14	900 feet, a maximum of 1600 feet if possible.
15	We also wanted to place a pilot well in an area
16	where the offset PC wells were in good producing condition.
17	In other words, they had either been restimulated or
18	redrilled, so they were at their optimum producing
19	condition, so if any type of interference was going to
20	happen we would be able to see it.
21	We also picked pilot wells, both on trend and off
22	trend, since those are the two types of reservoirs that
23	we're going to have to look at how do we drain optimally.
24	Now, when we looked at recompletion pilot wells,
25	rather than just drilling the new ones, we also had to

1 consider the existing producing horizon.

2	We tried to pick ones where the existing
3	producing horizon was making less than 50 MCF a day, where
4	the condition of the wellbore, the cement and casing were
5	in good condition, so we could recomplete to the PC, and
6	where the current formation could be commingled with the
7	PC. In other words, where the current formation was not
8	producing large amounts of water that may make it difficult
9	to produce the PC later on when the pilot program is over
10	and we end up commingling both zones together.
11	So these are the main criteria we used to select
12	our pilot wells.
13	The one other piece that's not here is, we tried
14	to minimize the number of new drills so we'd minimize the
15	amount of surface disturbance. So that's why you see a mix
16	between new drills and recompletes in the PC.
17	MR. KELLAHIN: Mr. Stogner, this slide is not in
18	the exhibit book. We'll after the hearing, I'll supply
19	you a copy of that, but it did not get in the book you're
20	looking at.
21	Q. (By Mr. Kellahin) When I look at the 30 pilot
22	wells, you were able to satisfy this criteria on 24 of
23	those wells and keep them at standard locations?
24	A. That's correct.
25	Q. There are six that are at unorthodox locations?

	10
1	A. That's correct.
2	Q. Can you turn to the exhibit tab that shows under
3	Exhibit Tab 10 and show us what has caused the unorthodox-
4	location wells to be at unorthodox locations?
5	A. Mainly what the reason these wells were
6	I'll call NSL wells are not unorthodox locations, we
7	were trying to satisfy the rest of the criteria, mainly
8	distance from existing producing wells.
9	For example, this one right here, the Canyon
10	Largo 204E, we tried to place this well 1226 feet away from
11	the closest offset producing PC well. Topography did not
12	allow us to go in certain directions, therefore forcing us
13	to go into an NSL-type location.
14	We tried to minimize these. Out of all our pilot
15	programs we only ended up with six of these out of the 30
16	that we had.
17	Q. Out of six NSLs, have you compromised any of your
18	criteria in terms of selecting why you're using that as a
19	pilot well?
20	A. No, we did not. In fact, the need for the NSLs
21	came about by trying to get a test in every pool and
22	minimizing surface disturbance by not having to drill a
23	brand-new well. We could get around the NSLs if we limited
24	our testing only to certain pools where we have the
25	available wellbores or we drilled a new well. So that was
-	

1	a compromise that we made with these six wells.
2	Q. And those answers are consistent for all six of
3	these?
4	A. That is correct.
5	Q. Let's go back to your presentation on the
6	program, and let's look at the next slide. There you are.
7	A. Okay, my next slide is to answer the question,
8	what kind of rate can we expect from the I'll call it
9	typical pilot or typical infill well during our pilot
10	program?
11	What we did was, we looked back at the results of
12	all the redrills that we'd done, which emulate what a pilot
13	will perform at. This is the compilation of that data here
14	in a typical type curve. We expect a typical pilot well to
15	IP at about 165 MCF a day and to decline starting
16	hyperbolically, to exponential decline, eventually to cum
17	about .7 B's in about 44 years. That is what our
18	prediction is at this time with the data we have available.
19	Now, we can also look at typical costs of PC
20	wells. And what I've done here is looked at not only the
21	costs of the pilot wells but what kind of costs and
22	economics we would see for development wells if we went
23	into a program.
24	As you can see here, on the new-drill pilot wells
25	the economics were actually negative because we've got a

•

lot of testing we put into the program.
The pilot well recompletes here are more
positive.
If we went into increased density and we had a
drill well, as you can see, the economics are here.
Our best economics would be to take an existing
wellbore and recomplete it to the PC or do a commingle,
let's say the Fruitland Coal and the PC together.
Just to give you an idea of how all the economics
compare in these various cases.
You have two more slides in there which I'm not
talking about, but those slides are the background data for
that graph. They give you the decline-curve parameters and
the costs that we use in the economics.
Q. Let's talk about the slide that gives us our
target dates for the project.
A. Okay, this slide summarizes our time line that
we're predicting for the pilot program in general.
The first item here is, Burlington plans to
drill/recomplete ten 80-acre pilot tests by December of
this year.
BP Amoco plans to recomplete five 80-acre pilot
tests by December of this year also.
Burlington also plans to take two new cores, as
we've talked about, and complete the routine analysis by

1 December. The advanced core analysis is anticipated to be 2 completed by July of 2003. 3 Burlington also plans to recomplete nine 4 additional 80-acre pilot tests by July of 2003, and then 5 complete our petrophysical model revisions and Basin 6 volumetrics by August of 2003. 7 Energen has anticipated to drill and complete 8 their six pilot programs by December of 2003. 9 And then our model simulation work should all be 10 finished by December of 2003 also. 11 So by the end of next year we should have a good 12 idea of the impact of increased density and where it will 18 be effective and where it would not be effective. 14 MR. KELLAHIN: Mr. Stogner, that concludes my 15 examination of Mr. Broacha. 16 We move the introduction of the exhibits behind 17 EXAMINER STOGNER: Exhibits between 4 through 8 19 will be admitted into evidence at this time. 20 EXAMINATION 21 Q. I'm going to refer to Tab Number 5, and you 23 talked about the Kutz Government Number 8 and Number 8J. 24<		
3 Burlington also plans to recomplete nine 4 additional 80-acre pilot tests by July of 2003, and then 5 complete our petrophysical model revisions and Basin 6 volumetrics by August of 2003. 7 Energen has anticipated to drill and complete 8 their six pilot programs by December of 2003. 9 And then our model simulation work should all be 10 finished by December of 2003 also. 11 So by the end of next year we should have a good 12 idea of the impact of increased density and where it will 13 be effective and where it would not be effective. 14 MR. KELLAHIN: Mr. Stogner, that concludes my 15 examination of Mr. Broacha. 16 We move the introduction of the exhibits behind 17 EXAMINER STOGNER: Exhibits between 4 through 8 18 EXAMINER STOGNER: 19 will be admitted into evidence at this time. 20 EXAMINATION 21 Q. I'm going to refer to Tab Number 5, and you 23 talked about the Kutz Government Number 8 and Number 8J. 24 A. Yes, sir.	1	December. The advanced core analysis is anticipated to be
4additional 80-acre pilot tests by July of 2003, and then5complete our petrophysical model revisions and Basin6volumetrics by August of 2003.7Energen has anticipated to drill and complete8their six pilot programs by December of 2003.9And then our model simulation work should all be10finished by December of 2003 also.11So by the end of next year we should have a good12idea of the impact of increased density and where it will13be effective and where it would not be effective.14MR. KELLAHIN: Mr. Stogner, that concludes my15examination of Mr. Broacha.16We move the introduction of the exhibits behind17EXAMINER STOGNER: Exhibits between 4 through 819will be admitted into evidence at this time.20EXAMINATION21BY EXAMINER STOGNER:22Q. I'm going to refer to Tab Number 5, and you23talked about the Kutz Government Number 8 and Number 8J.24A. Yes, sir.	2	completed by July of 2003.
5 complete our petrophysical model revisions and Basin 6 volumetrics by August of 2003. 7 Energen has anticipated to drill and complete 8 their six pilot programs by December of 2003. 9 And then our model simulation work should all be 10 finished by December of 2003 also. 11 So by the end of next year we should have a good 12 idea of the impact of increased density and where it will 13 be effective and where it would not be effective. 14 MR. KELLAHIN: Mr. Stogner, that concludes my 15 examination of Mr. Broacha. 16 We move the introduction of the exhibits behind 17 EXAMINER STOGNER: Exhibits between 4 through 8 18 EXAMINER STOGNER: Exhibits between 4 through 8 19 will be admitted into evidence at this time. 20 EXAMINATION 21 BY EXAMINER STOGNER: 22 0. I'm going to refer to Tab Number 5, and you 23 talked about the Kutz Government Number 8 and Number 8J. 24 A. Yes, sir.	3	Burlington also plans to recomplete nine
 volumetrics by August of 2003. Energen has anticipated to drill and complete their six pilot programs by December of 2003. And then our model simulation work should all be finished by December of 2003 also. So by the end of next year we should have a good idea of the impact of increased density and where it will be effective and where it would not be effective. MR. KELLAHIN: Mr. Stogner, that concludes my examination of Mr. Broacha. We move the introduction of the exhibits behind EXAMINER STOGNER: Exhibits between 4 through 8 will be admitted into evidence at this time. EXAMINER STOGNER: Q. I'm going to refer to Tab Number 5, and you talked about the Kutz Government Number 8 and Number 8J. A. Yes, sir. 	4	additional 80-acre pilot tests by July of 2003, and then
7 Energen has anticipated to drill and complete 8 their six pilot programs by December of 2003. 9 And then our model simulation work should all be 10 finished by December of 2003 also. 11 So by the end of next year we should have a good 12 idea of the impact of increased density and where it will 13 be effective and where it would not be effective. 14 MR. KELLAHIN: Mr. Stogner, that concludes my 15 examination of Mr. Broacha. 16 We move the introduction of the exhibits behind 17 EXAMINER STOGNER: Exhibits between 4 through 8 19 will be admitted into evidence at this time. 20 EXAMINATION 21 BY EXAMINER STOGNER: 22 Q. I'm going to refer to Tab Number 5, and you 23 talked about the Kutz Government Number 8 and Number 8J. 24 A. Yes, sir.	5	complete our petrophysical model revisions and Basin
 their six pilot programs by December of 2003. And then our model simulation work should all be finished by December of 2003 also. So by the end of next year we should have a good idea of the impact of increased density and where it will be effective and where it would not be effective. MR. KELLAHIN: Mr. Stogner, that concludes my examination of Mr. Broacha. We move the introduction of the exhibits behind EXAMINER STOGNER: Exhibits between 4 through 8 will be admitted into evidence at this time. EXAMINER STOGNER: Q. I'm going to refer to Tab Number 5, and you talked about the Kutz Government Number 8 and Number 8J. A. Yes, sir. 	6	volumetrics by August of 2003.
9 And then our model simulation work should all be 10 finished by December of 2003 also. 11 So by the end of next year we should have a good 12 idea of the impact of increased density and where it will 13 be effective and where it would not be effective. 14 MR. KELLAHIN: Mr. Stogner, that concludes my 15 examination of Mr. Broacha. 16 We move the introduction of the exhibits behind 17 EXAMINER STOGNER: Exhibits between 4 through 8 19 will be admitted into evidence at this time. 20 EXAMINATION 21 BY EXAMINER STOGNER: 22 Q. I'm going to refer to Tab Number 5, and you 23 talked about the Kutz Government Number 8 and Number 8J. 24 A. Yes, sir.	7	Energen has anticipated to drill and complete
 finished by December of 2003 also. So by the end of next year we should have a good idea of the impact of increased density and where it will be effective and where it would not be effective. MR. KELLAHIN: Mr. Stogner, that concludes my examination of Mr. Broacha. We move the introduction of the exhibits behind Exhibit Tabs 4 through 8. EXAMINER STOGNER: Exhibits between 4 through 8 will be admitted into evidence at this time. EXAMINER STOGNER: EY EXAMINER STOGNER: Q. I'm going to refer to Tab Number 5, and you talked about the Kutz Government Number 8 and Number 8J. A. Yes, sir. 	8	their six pilot programs by December of 2003.
11 So by the end of next year we should have a good 12 idea of the impact of increased density and where it will 13 be effective and where it would not be effective. 14 MR. KELLAHIN: Mr. Stogner, that concludes my 15 examination of Mr. Broacha. 16 We move the introduction of the exhibits behind 17 Exhibit Tabs 4 through 8. 18 EXAMINER STOGNER: Exhibits between 4 through 8 19 will be admitted into evidence at this time. 20 EXAMINATION 21 BY EXAMINER STOGNER: 22 Q. I'm going to refer to Tab Number 5, and you 23 talked about the Kutz Government Number 8 and Number 8J. 24 A. Yes, sir.	9	And then our model simulation work should all be
 idea of the impact of increased density and where it will be effective and where it would not be effective. MR. KELLAHIN: Mr. Stogner, that concludes my examination of Mr. Broacha. We move the introduction of the exhibits behind Exhibit Tabs 4 through 8. EXAMINER STOGNER: Exhibits between 4 through 8 will be admitted into evidence at this time. EXAMINER STOGNER: BY EXAMINER STOGNER: Q. I'm going to refer to Tab Number 5, and you talked about the Kutz Government Number 8 and Number 8J. A. Yes, sir. 	10	finished by December of 2003 also.
 be effective and where it would not be effective. MR. KELLAHIN: Mr. Stogner, that concludes my examination of Mr. Broacha. We move the introduction of the exhibits behind Exhibit Tabs 4 through 8. EXAMINER STOGNER: Exhibits between 4 through 8 will be admitted into evidence at this time. EXAMINER STOGNER: BY EXAMINER STOGNER: Q. I'm going to refer to Tab Number 5, and you talked about the Kutz Government Number 8 and Number 8J. A. Yes, sir. 	11	So by the end of next year we should have a good
 MR. KELLAHIN: Mr. Stogner, that concludes my examination of Mr. Broacha. We move the introduction of the exhibits behind Exhibit Tabs 4 through 8. EXAMINER STOGNER: Exhibits between 4 through 8 will be admitted into evidence at this time. EXAMINER STOGNER: EXAMINER STOGNER: BY EXAMINER STOGNER: Q. I'm going to refer to Tab Number 5, and you talked about the Kutz Government Number 8 and Number 8J. A. Yes, sir. 	12	idea of the impact of increased density and where it will
 examination of Mr. Broacha. We move the introduction of the exhibits behind Exhibit Tabs 4 through 8. EXAMINER STOGNER: Exhibits between 4 through 8 will be admitted into evidence at this time. EXAMINATION BY EXAMINER STOGNER: Q. I'm going to refer to Tab Number 5, and you talked about the Kutz Government Number 8 and Number 8J. A. Yes, sir. 	13	be effective and where it would not be effective.
 We move the introduction of the exhibits behind Exhibit Tabs 4 through 8. EXAMINER STOGNER: Exhibits between 4 through 8 will be admitted into evidence at this time. EXAMINATION BY EXAMINER STOGNER: Q. I'm going to refer to Tab Number 5, and you talked about the Kutz Government Number 8 and Number 8J. A. Yes, sir. 	14	MR. KELLAHIN: Mr. Stogner, that concludes my
 17 Exhibit Tabs 4 through 8. 18 EXAMINER STOGNER: Exhibits between 4 through 8 19 will be admitted into evidence at this time. 20 EXAMINATION 21 BY EXAMINER STOGNER: 22 Q. I'm going to refer to Tab Number 5, and you 23 talked about the Kutz Government Number 8 and Number 8J. 24 A. Yes, sir. 	15	examination of Mr. Broacha.
 EXAMINER STOGNER: Exhibits between 4 through 8 will be admitted into evidence at this time. EXAMINATION BY EXAMINER STOGNER: Q. I'm going to refer to Tab Number 5, and you talked about the Kutz Government Number 8 and Number 8J. A. Yes, sir. 	16	We move the introduction of the exhibits behind
<pre>19 will be admitted into evidence at this time. 20 EXAMINATION 21 BY EXAMINER STOGNER: 22 Q. I'm going to refer to Tab Number 5, and you 23 talked about the Kutz Government Number 8 and Number 8J. 24 A. Yes, sir.</pre>	17	Exhibit Tabs 4 through 8.
EXAMINATION EXAMINATION EXAMINER STOGNER: Q. I'm going to refer to Tab Number 5, and you talked about the Kutz Government Number 8 and Number 8J. A. Yes, sir.	18	EXAMINER STOGNER: Exhibits between 4 through 8
 BY EXAMINER STOGNER: Q. I'm going to refer to Tab Number 5, and you talked about the Kutz Government Number 8 and Number 8J. A. Yes, sir. 	19	will be admitted into evidence at this time.
 Q. I'm going to refer to Tab Number 5, and you talked about the Kutz Government Number 8 and Number 8J. A. Yes, sir. 	20	EXAMINATION
 talked about the Kutz Government Number 8 and Number 8J. A. Yes, sir. 	21	BY EXAMINER STOGNER:
A. Yes, sir.	22	Q. I'm going to refer to Tab Number 5, and you
	23	talked about the Kutz Government Number 8 and Number 8J.
25 Q. Where were those wells located?	24	A. Yes, sir.
	25	Q. Where were those wells located?

1	A. Those are Oh, I don't have the The location
2	should be on the graph there. I don't have a copy in front
3	of me.
4	Oh, thank you very much, sir.
5	Those two wells were located in Section 21,
6	Township 28, Range 10 West.
7	Q. And that's within your project area, the four-
8	township area in which
9	A. Yes.
10	Q you identified earlier?
11	A. Yes, those two wells are.
12	Q. The completion method used on the 8 over the 8J,
13	was there much difference, or was there a difference?
14	A. Yes, there was. From what we can tell, the 8 was
15	an open-hole completion shot with nitro, and the 8J was a
16	frac'd well. It was also open-hole.
17	Q. Now, in your initial introduction today, I
18	believe you introduced yourself as a tight-formation
19	specialist, or that's what you have been working on for the
20	last several years?
21	A. That's 18 years, yeah, that's correct.
22	Q. And has that all been in the San Juan Basin?
23	A. No, it has also been in the Green River Basin,
24	Wattenburg, Hugoton, Cotton Valley, Texas, most of the
25	tight gas fields in the US.

Q. Okay, and when did you move down or come down to
the San Juan Basin area?
A. I worked in San Juan for Amoco back in the early
1990s and then recently with Burlington.
Q. Are you familiar with the gas vuggy studies of
the Pictured Cliffs formation done back in the 1960s?
A. No, I am not, that was We did similar tests up
in Wyoming, but I was not familiar with that. My main
concentration was Mesaverde and Dakota in the San Juan
Basin.
Q. So the Pictured Cliffs is somewhat of a recent
study for you, essentially?
A. My last assignment with Amoco was a petrophysical
model on the Pictured Cliffs back in I believe it was
1991.
Q. Now, it's my understanding that some of these
will not only be an infill well, but the old well will be
restimulated. Is that your plan or on some of the
wells?
A. If the old well has not been restimulated
already, then our plans is to do it before we complete the
infill well so that all offset wells are at their optimum
producing capacity, that's correct.
Q. Did you find some sort of a criteria on these
restimulated wells, what created that, or at least what

1	kind of conditions were present in that well before those
2	wells were restimulated? Did you see some sort of a
3	pattern?
4	A. No, and that's kind of disconcerting to us.
5	That's one of the things we want to investigate during the
6	pilot program is, what conditions caused the original well
7	or the restimulated well to decline so much, and then why
8	did the restimulation work?
9	Many of the restimulated wells originally
10	completed open hole with a frac or with nitro, yet they did
11	have high cums, so they were effective. Now, some of the
12	reasons that we have come up with but we haven't been able
13	to prove yet is, at the lower pressures we may be seeing
14	some condensate drop out around some of these wells, which
15	causes a relative perm problem. When you refrac the well,
16	you actually frac past that perm damage.
17	That is something that we will be investigating
18	when we have the new core, because right now, you know,
19	we've looked at it, and our original theory of fines
20	migration, we have consulted with some of the core
21	companies, and they do not believe that that is what's
22	occurring right now with the type of clays that we do have.
23	Q. Now, of the wells or I should say the 160-acre
24	tracts that are going to have infill pilots on them, has
25	there been some sort of a pattern which you have chose

1	the original wells, were they from the 1950s and some from
2	the 1970s or different eras?
3	A. That was not a criteria, but by default that's
4	what turned out. There's a good mixture. We were more
5	concerned with distance and condition of the offset wells
6	to make sure that it was going to be representative and
7	then whether it was on or off trend. And it turned out
8	that many of the wells are spread all through the
9	development. Some are 1950s, 1960s, 1970s.
10	Q. Now, are any of these 160-acre tracts did they
11	have an old well from the 1950s that was plugged and
12	abandoned with a replacement well, if you will allow me
13	that definition
14	A. Uh-huh.
15	Q where this one, the new drill, will
16	essentially be a third well, not concurrent production but
17	a third well on a tract?
18	A. Yes, several of those tracts, the original well
19	was replaced by a redrill.
20	Q. Okay. So that will give you some additional
21	A. Yes.
22	Q information on that.
23	A. We tried to cover every situation that we could
24	foresee.
25	Q. Now, referring to the map, and if I remember
I I	

1	right from the previous witness, production started in 1927
2	up there just a little bit north and west of your area.
3	Did the historical beginnings of the production stay within
4	the Bloomfield area, within this area that you're planning
5	to do most of the infill projects, this 28-10, 27-9 area?
6	A. I don't understand the question.
7	Q. Okay. The oldest production in the San Juan
8	Basin, is it within the area of what you're looking at?
9	A. It started there, but actually you'll see that
10	wells started popping up in a lot of different areas, and
11	that's how the different pools started to be developed.
12	Q. Okay.
13	A. They didn't just concentrate on one area to start
14	with.
15	Q. Okay, so it wasn't a
16	A. It wasn't just a migration out from that one
17	area, just sort of sporadically.
18	EXAMINER STOGNER: Any other questions of this
19	witness?
20	MR. JONES: Yeah, I've got a couple. Thanks,
21	Michael.
22	EXAMINATION
23	BY MR. JONES:
24	Q. Mr. Broacha, I didn't hear either one of you guys
25	mention the imaging logs. Are you looking at Obviously

	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
1	fractures are a big part of this problem with the random
2	production, so are you going to run some imaging logs?
3	A. We have historically run imaging logs with mixed
4	success. We have not finalized our logging programs for
5	these wells as yet, and we're still looking at maybe trying
6	them once again and seeing if the evolution with tools will
7	improve the results. But the fracturing, as I understand
8	it, in the PC is more random than, let's say, in the
9	Mesaverde, and you don't have as much success identifying
10	where those fractures are with imaging logs. It's almost
11	luck to be able to see them.
12	Q. What about fracturing in the lower PC? Is that
13	more prevalent than the upper PC with the portioning upward
14	sequence?
15	A. The production indicates that it has to be
16	because of the level of depletion.
17	Q. Right.
18	A. The imaging logs show some, but you can't really
19	map it, let's say, if you're trying to do a mapping of the
20	fracturing. We're still investigating how to look at that
21	and gather the data before we start the infill program, or
22	the pilot program, I should say.
23	Q. Okay, do you do two fracs in the PC, a lower frac
24	and an upper frac?
25	A. No, right now we've only done one frac in the PC.

-	
1	We have done some experiments with two fracs in the PC.
2	Q. Do you have stress data that shows that it's
3	confined to the fracture being confined to the PC?
4	A. Yes. In fact, one of the programs that's ongoing
5	right now is a fracture diagnostic program. Even though
6	the results aren't all in, preliminary results show that we
7	are confined to the PC interval.
8	Q. Okay, so you have your closure pressures on
9	your
10	A. Correct.
11	Q PC?
12	On your drilling, do you use a closed mud system
13	in your drilling?
14	A. No, we do not.
15	Q. And there is no coal tubing drilling planned for
16	this?
17	A. Not for these wells, no.
18	Q. And I guess the biggest question I've got is what
19	you've brought from the greater Green to this reservoir as
20	far as what you predict, such as, you know, Parachute field
21	and the Piceance, Barrett or Williams is doing a lot of
22	infill drilling. Do you predict the same results here?
23	A. The PC is a lot different than those formations
24	that they're infilling right now. The problem we get into
25	is, our clay content is much higher and our pressure is

1	much lower, and it gives unique completion problems in,
2	one, trying to unload the wells, and also the pore-throat
3	geometry. We tend to have very small pore throats, so by
4	capillary forces you tend to trap completion fluids, and
5	you don't have the reservoir pressure to clean them up.
6	And that's kind of the situation we believe we're
7	seeing now as the reservoir is depleted. That's why we're
8	investigating new ways of drilling and completing wells,
9	even though when we do this we always get rate, we're still
10	investigating, can we get more rate, can we get it better?
11	Pressure is what hurts us out here in the San
12	Juan Basin, or the lack of it, I should say, compared to
13	Green River.
14	Q. So you're still planning on setting casing
15	through the PC and frac'ing the wells?
16	A. Well, actually in some of the wells, yes. In
17	other wells we have actually intended on topsetting the PC,
18	drilling open hole with a non-water fluid and seeing what
19	kind of production we can get first without fracturing,
20	with compression, and then with fracturing, to try to kind
21	of get the components of what each of those operations does
22	for the total rate of the well.
23	Q. Can you do air drilling in this Basin?
24	A. We can in some areas where we don't have water
25	problems from the coals or from some of the upper zones,

72

and it has been done too. 1 MR. JONES: Okay, thank you. That's all my 2 questions. 3 EXAMINER STOGNER: Any other questions of this 4 You may be excused. 5 witness? How long do you reckon your next witness will 6 7 take? MR. KELLAHIN: Oh, less than 30 minutes. 8 EXAMINER STOGNER: Let's go ahead and take a 9 10 short five-minute break. (Thereupon, a recess was taken at 10:10 a.m.) 11 (The following proceedings had at 10:30 a.m.) 12 EXAMINER STOGNER: This hearing will come to 13 order. 14 Mr. Kellahin? 15 MR. KELLAHIN: Thank you, Mr. Stogner. Our next 16 witness is Mr. Matt Gray. 17 MATT GRAY, 18 19 the witness herein, after having been first duly sworn upon his oath, was examined and testified as follows: 20 DIRECT EXAMINATION 21 BY MR. KELLAHIN: 22 Mr. Gray, for the record would you please state 23 0. your name and occupation? 24 Matt Gray. I'm a landman for Burlington 25 Α.

1	Resources.
2	Q. On prior occasions have you testified as an
3	expert petroleum landman before the Division?
4	A. Yes, I have.
5	Q. What has been your responsibility for the
6	Pictured Cliff project?
7	A. I've been responsible for identifying all of the
8	owners offset to any of our projects, as well as
9	coordinating with BP and Energen landmen to identify owners
10	offset to their projects.
11	Q. In addition, are you familiar with the location
12	and spacing-unit requirements for the Pictured Cliff pools?
13	A. Yes, I am.
14	MR. KELLAHIN: I tender Mr. Gray as an expert
15	witness.
16	EXAMINER STOGNER: Mr. Gray is so qualified.
17	Q. (By Mr. Kellahin) Let's turn to the Exhibit Tab
18	11, and behind this tab are a number of individual
19	displays. Let's take the first one as an illustration, and
20	the first one I have is the San Juan 32-9 Unit Well 98J.
21	A. Uh-huh.
22	Q. All right. For this exhibit set, what have you
23	prepared?
24	A. I prepared a map that will identify each
25	individual pilot well, along with the parent well for that

	13
1	infill well, and I've also identified the distance between
2	the pilot well and the parent well.
3	Q. Now, under a different exhibit tab we have set
4	aside the six plats that relate to the six unorthodox well
5	locations?
6	A. Yes, we have.
7	Q. Within the current population of 24 plats that
8	we're looking at, in terms of notification to affected
9	interest owners that are adjacent to the spacing unit
10	containing the pilot well, or the proposed pilot well, what
11	have you done about notification?
12	A. On these wells we notified all offset operators
13	to the spacing unit. In the cases where the party drilling
14	the well was the operator of the offset, we went to the
15	working interest owner level. In cases where there was no
16	PC well drilled, so therefore no operator, we identified
17	the working interest owners in that formation and notified
18	them.
19	Q. All right.
20	A. And there were no instances where the minerals
21	were unleased.
22	Q. So for example, in each of these instances, if we
23	take 160 acres where the pilot well is to be located, if
24	the immediately adjacent 160 is operated by Burlington, you
25	notify the working interest owners?

1	A. Yes, we do.
2	Q. And if the adjacent operator is Energen or BP
3	Amoco, you also notify the working interest owners?
4	A. Yes.
5	Q. Okay. When we come to the population of wells
6	under the tab for unorthodox well locations it's Tab
7	10
8	A. Uh-huh.
9	Q if you'll turn to that first display, there's
10	a Gallegos Canyon Unit Well 204E In this example it shows
11	that the offset ownership is Burlington. In this case
12	would you have notified the working interest owners?
13	A. Actually, this is an instance where BP Amoco is
14	the operator of this well, and Burlington just happens to
15	be the offset owner of the interest.
16	Q. Oh, and so you have 100 percent
17	A. Yes.
18	Q of the offset?
19	A. Yes.
20	Q. Is that true of all the rest of the NSL's?
21	A. No, it's not. There's actually just The only
22	one that different is the Congress Number 18, in which we
23	did have offset ownership that did not have a PC well
24	already drilled in it, and in that case I went to the
25	working interest owner level and notified those working

	//
1	interest owners.
2	Q. As part of the notification, did you send these
3	parties a copy of the Application and a notice of the
4	hearing today?
5	A. Yes, I did.
6	Q. As a result, are you aware of any objection to
7	the Application?
8	A. None that I'm aware of.
9	Q. If we go behind Exhibit Tab Number 1, which
10	contains the Application, what have you enclosed for the
11	Examiner behind that Application?
12	A. We had the Application, which is the letter of
13	notice to all the owners, and behind that we have enclosed
14	a list of all the owners that we notified, along with
15	return receipts from any certified mailings that we sent
16	out.
17	Q. And to the best of your knowledge, you have
18	complied with the notice requirements of the Division?
19	A. To the best of my knowledge, yes.
20	Q. Let's turn now to Exhibit Tab Number 9 and show
21	Mr. Stogner some illustrations concerning the current
22	requirements.
23	A. Okay. The first map is just another map of the
24	Pictured Cliffs. We can skip over that.
25	Q. This is our base source map that Burlington has

	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
1	prepared?
2	A. Yes, it is, and that's just in there to identify
3	the Pictured Cliffs pools and to notify you that we did
4	receive all those pool outlines from the Aztec OCD office.
5	Q. All right, let's turn to the next slide. If
6	we're looking at all 20-something, 29 PC pools in the pilot
7	project area, have you found any of those PC pools that
8	have special rules and regulations?
9	A. None that we've been able to come by. That's not
10	to say that there's some that we couldn't just find.
11	Q. The best of your knowledge
12	A. To the best of my knowledge
13	Q the current search, they were all subject to
14	Rule 104 in terms of well locations and well density?
15	A. That's correct.
16	Q. If we're going to illustrate to the Examiner the
17	current location requirements under Rule 104, is that we
18	can see on this display?
19	A. Yes, this display shows that the PC is developed
20	on 160-acre drillblocks. The current setback distance, as
21	you're aware, is 660 from the exterior of the spacing unit.
22	And one interesting point is that with these
23	setbacks on 160-acre drillblocks, that only leaves 25
24	percent of the drillblock area available for drilling. And
25	as Eric and Mike have alluded to, this could possibly lead

1	to a negative influence on drainage of the drillblock, as
2	we've seen in previous slides that the farther away you get
3	from an existing well, the better it seems to be at this
4	point. And we plan on studying that further in our pilot
5	projects.
6	Q. Well, if the technical people determine there's a
7	need for an additional well in the PC on an existing 160-
8	acre spacing unit, that technical group is also going to
9	have to deal with the well-location requirements of the
10	rule?
11	A. Correct.
12	Q. All right. Are there some other illustrations
13	that you can give us to identify the location problem?
14	A. Yes, this next slide shows the difference between
15	the Pictured Cliffs formation and the Mesavede formation.
16	And as Eric demonstrated earlier in our economics, the most
17	economic way to develop these 80-acre Pictured Cliffs wells
18	will be to commingle or to recomplete an existing well,
19	which means that in order to get in a proper location
20	for an existing well makes it very difficult, in that the
21	setback issues are different in the two separate
22	formations.
23	As you can see in the Pictured Cliffs, like I
24	said, the area ratio that you have to drill in is 25
25	percent, while in the Mesaverde and Dakota the area ratio

1	is 37 percent because you have that interior setback to the
2	quarter section.
3	Q. All right, let me ask you this. Let's assume
4	that we have a Mesaverde spacing unit in the east half of
5	the section as you've illustrated here, you've got a 320.
6	A. Uh-huh.
7	Q. We've got a Mesaverde infill well that we want to
8	exercise the opportunity to also produce the Pictured
9	Cliff. It's likely that the Pictured Cliff is going to be
10	at an unorthodox location unless we consider well distance
11	requirements
12	A. Correct.
13	Q or the setback requirements in addition to
14	density?
15	A. Correct, and that can be demonstrated in our
16	pilot project. We spent numerous hours looking at hundreds
17	of different situations to try to find these pilot
18	projects, and in the instances where we were going to
19	commingle these wells in order to find a standard location
20	for the Pictured Cliffs it was very difficult. And as
21	you've seen, we had six that we had to pick that were
22	nonstandard, so
23	Q. Do you find a situation where the ownership of
24	the oil and gas in the Pictured Cliff is different between
25	the two quarter sections in, say, a Mesaverde 320 spacing
I	

r	
1	unit?
2	A. Yes, the majority of the time the ownership
3	between the two Pictured Cliffs drillblocks is going to be
4	different than the Mesaverde because of the allocation of
5	the 160-acre spacing compared to the 320-acre spacing.
6	Q. So we can't solve our location problem by having
7	common ownership in the 160 acres towards which you're
8	making the encroachment?
9	A. Typically that's not the case, we cannot.
10	Q. Okay. Let's look at your last illustration, Mr.
11	Gray. What are you showing us here?
12	A. This is just an illustration to kind of show some
13	of the limitations that we're up against in trying to find
14	infill wells.
15	Q. We are looking at a full section?
16	A. We're looking at a full section, and each one of
17	these quarter sections, the green dots represent a current
18	well drilled in that quarter section.
19	What this shows is that the setbacks with the
20	660-foot setbacks in the 160-acre spacing, the original
21	well was oftentimes drilled just directly in the center of
22	that 160-acre spacing unit. And that was done for various
23	reasons: topography Infill was never even thought of
24	when most of these wells were drilled, so there was never
25	any concern as to where they put those wells.

1	And as you can see from our demonstration here,
2	in order to have a standard location for our infill well,
3	if a well happened to be in the very center of the
4	drillblock the maximum distance you can get away with a
5	standard location is 933 feet.
6	Q. So one of the things the technical group is going
7	to study is to determine what may be a minimum distance
8	between the infill well and the parent well?
9	A. Correct.
10	Q. And whether or not we need to examine altering
11	setback requirements for the PC?
12	A. Yes, that's correct.
13	Q. In addition to well density, then, the well
14	locations is a topic for investigation by the pilot
15	project?
16	A. That is correct.
17	MR. KELLAHIN: That concludes my examination of
18	Mr. Gray, Mr. Stogner. We move the introduction of his
19	exhibits that he's talked about. I think they're Exhibits
20	9, 10, 11 and 1.
21	EXAMINER STOGNER: Exhibits 9, 10, 11 and 1 will
22	be admitted into evidence at this time.
23	EXAMINATION
24	BY EXAMINER STOGNER:
25	Q. Mr. Gray, let me make sure I'm getting this

1	straight. Behind Tab Number 9 this is the last page
2	A. Uh-huh.
3	Q you're considering the minimum distance of 933
4	933 feet as the minimum from wellbores
5	A. That was
6	Q or just the infill wells?
7	A. Well, this was just an illustration. In looking
8	for these pilot projects, one of the main things, as I
9	previously told you, we look for distance away from initial
10	wells, from the initial well in the drillblock.
11	In doing that, we noticed that a number of the
12	wells that we looked at were drilled directly in the center
13	of the drillblock, which makes it very difficult to get
14	very far away from that initial well. And in the cases of
15	a recompletion it makes it impossible in a lot of cases to
16	use the same wellbore and be on a standard location.
17	And this illustration is just to show you that if
18	a well is drilled directly in the center of a drillblock,
19	the maximum that you can get away from that well and be in
20	a standard location is 933 feet. That's not to say that
21	that's the maximum or minimum that we are looking to drill
22	infill wells from the parent well, that's just to show you
23	what kind of limitations we're up against in this
24	situation.
25	Q. What kind of responses did you get from your

1	notification, other than the people that are here today?
2	A. We have not heard anything, really, from anybody,
3	as far as I know. I believe some people have supported it
4	just verbally, but no letters of support. But I have not
5	heard anything negative about our Application.
6	EXAMINER STOGNER: Any further questions of this
7	witness?
8	MR. KELLAHIN: No, sir.
9	EXAMINATION
10	BY MR. JONES:
11	Q. Mr. Gray, can I ask you one question?
12	A. Yes.
13	Q. On the information-sharing for this project it
14	looked like there was only one scenario where you will have
15	a negative present worth index for I think that was for
16	the drilling and complete new well on the infill wells. So
17	the information-sharing, is it going to be just between
18	Energen and Burlington and
19	A BP.
20	Q BP?
21	A. Yes, that's the people who are participating in
22	the project and who will contribute information to the
23	pilot?
24	MR. JONES: Okay, thanks.
25	EXAMINER STOGNER: Any other questions?

MR. KELLAHIN: That concludes our presentation, 1 2 Mr. Stogner. 3 EXAMINER STOGNER: All right, you may be excused. Anything further, Mr. Kellahin? 4 5 MR. KELLAHIN: No, sir. 6 EXAMINER STOGNER: Would you provide me a rough 7 draft? 8 MR. KELLAHIN: I'll be happy to. EXAMINER STOGNER: And I'm assuming that for the 9 10 presentation today there will be some sort of a revisitation paragraph included. What is the plan on that? 11 2003 of December or --12 MR. KELLAHIN: Well, that's the conclusion, I 13 think, of the simulation-study portion. It's December, is 14 completion of the simulation work, and we're going to have 15 to have some time to talk to the operators in the pool, not 16 17 only about the results but what to do with those results in terms of density of well location. So I would think in the 18 spring of the following year. 19 20 EXAMINER STOGNER: Okay. MR. KELLAHIN: So I'll put some kind of reporting 21 requirement in the draft order for you to consider, 22 23 advising the Commission on the status of the pilot. 24 EXAMINER STOGNER: Okay, would appreciate that. 25 MR. KELLAHIN: One last thing, I would like to

	80
1	mark that large display which was not otherwise identified.
2	We'll mark that as Exhibit, I guess, 12 to the hearing.
3	In addition, if you find it necessary, Mr.
4	Examiner, I have larger copies of some of the other
5	displays which are already in the book, but there are
6	larger copies available if you need them.
7	EXAMINER STOGNER: I don't believe that will be
8	necessary at this time. However, we'll know how to get
9	ahold of you if that be the instance. And I do have a copy
10	of the CD-ROM you've provided me. I appreciate that.
11	And if you'll get a rough draft to me
12	MR. KELLAHIN: I think Mr. Carr indicated he had
13	a statement he wanted to make.
14	EXAMINER STOGNER: Oh, yes, Mr. Carr? Statements
15	at this time?
16	MR. CARR: Mr. Hawkins is going to make a
17	statement for BP.
18	EXAMINER STOGNER: Why don't you come up here
19	since we've got some noise, and that way it will at least
20	be recorded more clearly.
21	Identify yourself and your affiliation, and
22	please feel free to comment.
23	MR. HAWKINS: Okay, my name is Bill Hawkins. I
24	am a petroleum engineer for BP.
25	BP is an Applicant in this case with Burlington

and Energen, and we are participating in the PC pilot 1 program with five infill wells. We hope to learn more 2 about the potential for incremental recovery with these 3 wells, and from the work that's been done by Burlington we 4 see there is a significant potential for 80-acre infill 5 development in the PC and the San Juan Basin. 6 One important issue which will need to be 7 addressed in the future is how best to locate these wells, 8 the 80-acre infill wells, to maximize recovery of gas. 9 We believe this will most likely require modification of the 10 current well-location setbacks, and we look forward to 11 working with other operators and the NMOCD to address that 12 important issue. 13 And that concludes our statement. 14 Thank you, any others? 15 EXAMINER STOGNER: Okay. With that, I'll take this matter under 16 17 advisement and anticipate a rough draft from you, Mr. Kellahin. 18 19 MR. KELLAHIN: All right, sir. Thank you. (Thereupon, these proceedings were concluded at 20 21 10:48 a.m.) 22 I do hereby certify that the foregoing is 23 a complete record of the proceedings in 24 the Examiner hearing of Case No. 12857 heard by magn 2 May 2002 # 25 Examine Oll Conservation Division STEVEN T. BRENNER, CCR (505) 989-9317

87

CERTIFICATE OF REPORTER

STATE OF NEW MEXICO)) ss. COUNTY OF SANTA FE)

I, Steven T. Brenner, Certified Court Reporter and Notary Public, HEREBY CERTIFY that the foregoing transcript of proceedings before the Oil Conservation Division was reported by me; that I transcribed my notes; and that the foregoing is a true and accurate record of the proceedings.

I FURTHER CERTIFY that I am not a relative or employee of any of the parties or attorneys involved in this matter and that I have no personal interest in the final disposition of this matter.

WITNESS MY HAND AND SEAL May 6th, 2002.

70 A

STEVEN T. BRENNER CCR No. 7

My commission expires: October 14, 2002