

-•.

ţ

KEE 10 YEARS BY MONTHS 359-200L X 110 DIVISIONS KEUFFEL & ESSER CO. NADE IN 15 & A

•

 \sim

BOTTOM HOLE PRESSURE @-5600, p.s.i.

r.

.

 \sim

.

,

;

•

	c	5		500				5 00				2500		3000		8 6 0	 1 000				<u>. </u>	
1954	Jan. Feb. Mar. Apr. May June June July												ATLANTIC, SI									
-	Sept. Oct. Nov. Dec.			· · · ·			· · · ·		: ·	, ,			rate AD'N	7		V SIIIW-D						
19 5:	Feb. Mar. Apr. May June	· · ·					· · · · · · · ·	· · · · ·					6.1)		2	io.u tate"E"No						
ບ -	Aug. Sept. Oct. Nov. Dec.														SUN, Mills							
19	Jan. Feb. Mar. Apr. May June														No. 1)							
56	July Aug. Sept. Oct. Nov.																					
61	Jan. Feb. Mar. Apr. May				· · ·		· · · · · · · · · · · · · · · · · · ·	····	5 · · ·			/										
57	July Aug. Sept. Oct. Nov.					· · · · ·							(ATLA)									
- 1	Dec. Jan. Feb. Mar. Apr. May	· · · ·	•		· · ·								NTIC, Fed		(ATLA)				· · · · · ·			
58	June July Aug. Sept. Oct. Nov	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			· · · ·		· · · · · · · · · · · · · · · · · · ·					-Yates No.		VTIC, State			1				
	Dec Jan. Feb. Mar. Apr.				4 -		· · · · · · · · · · · · · · · · · · ·	· · · · ·			•				"AE "No.1)							
19 59	May June July Aug. Sept. Oct.	· · ·			· · · · · · · · · · · · · · · · · · ·	· · · · ·						Ø	6		47							
	Nov. Dec. Jan. Feb. Mar. Apr.												5		LANTIC E				· · · · · ·			
19 60	May June July Aug. Sept.												R K		ed-Gulf N							
	Det. Nov. Dec. Jan. Feb. Mar.												2		a 1)							
19	Apr. May June July Aug. Sept	· · · · ·																	A			BHP
	Oct. Nov. Dec. Jan, Feb.																		ATLAN		-ATLAN	's vs Tim
19	Mar. Apr. May June July Aug.																		ric, Fed-G	IIC, Fed-Y	State "E"	e for Indi ed-Mills I
 	Sept Oct. Nov. Dec. Jan. Fab																		IT NO.I	ites No. I	No.1	Vidual III
19	Mar. Apr. May June July																		2.12			e//s
	Aug. Sept Oct, Nov. Dec.	┫╌╴╴╴╴ ┫╺╴┥╸╴╴╸ ┩╶╌╶┧╼┱╶┿ ┥╴┨╶┍╼┯┯																				

BASIC DATA ALLISON AND NORTH ALLISON FOOLS

- 1. Physical Properties of Reservoir Rock
 - A. Porosity 5.15% (Avg. of 5 cores)
 - B. Permeability 107.2 md. (Avg. of 5 cores)
 - C. Saturation estimated 75,5 oil, 25;5 water
 - D. Type of porosity matrix and vugular
- 2. Structural Features
 - A. NOC undetermined
 - B. GOC none observed
 - C. Gross pay thickness Bough "C" 30-50*
 - D. Arithmetic avg. net pay thickness 8,941
 - E. Dip gentle, 100' to 150' per mile
 - F. Anticlinal structure limits undefined
- 3. Fluid Characteristics
 - A. Average oil gravity 48° API
 - B. Salinity of water 107,316 ppm, NaCl
 - C. Saturation pressure 3150 psig
 - D. Solution gas-oil ratio 1517 CF/B at 3150 psia
 - E. Formation volume factor 1.821 at 3518 psi
 - F. Viscosity of oil .19 cp at 3150 psi
 - G. Compressibility of saturated oil at 156°F from 3150 psi to 5000 psi 23.03 x 10°Vol/vol/psi

4. Pressures And Temperatures

- A. Original pressure 3518 psig
- B. Reservoir temperature 156°F
- C. January, 1959, weighted average pressure at -5600' 2734 psig (Shut-in from 72 hours to 168 hours prior to test)
- D. Average productivity index 5.01 (Range: 2.22 - 11.88)
- 5. Statistical Data
 - A. Oil production rate 47,447 barrels for April, 1959
 - B. Cumulative oil production to 5-1-59 1,998,553 barrels
 - C. Average GOR see graph
 - D. Mater production see graph
 - E. Well count 1% producing, 1 drilling, 2 dry
- 6. Mell Completion Nethods Casing Perforations Nest Common
- 7. Area Within Recommended Boundary 2320 Acres
- 8. Average Well Density 80 Ac/Well
- 9. Disposition of Gas for Nonth of April, 1959
 - A. Vent 7810 MCF
 - B. Lease 1374 MCF
 - C. Sold 47,162 NCF (Sinclair, Magnolia, Phillips)

ALLISON POOL LEA COUNTY, NEW MEXICO SUMMART OF CORE ANALYSES

OPERATOR:	JIND	Gulf	Magnolia	Megnolia	Magnolia	Average
LEASE AND WELLS	Ped. Hills #1	Ped. Mills #2	Fed. Childers #1	Fed. Childers #2	Fed. Cox #2	8
PAY INTERVAL FROM CORES	18696-1796	1 6,2070-1163 0	9687-970h	1212-0417	12°TTL6-80L6	8
NET PAT FROM CORRS	10.11	9.41	4.5.	14.01	3.21	7.7
WEIGHTED AVERAGE POROSITT:	6.7%	8.15	1. 8%	3.5%	1.3%	5 . 15%
WEIGHTED AVERAGE PERMEABILITY	301 md.	80 .6 md.	e7 måa	6.0 md.	o3 md.	107.2 md.
					•	

.

ŝ,

NET PAY BY MELLS ALLISON AND NORTH ALLISON FOOLS

OPERATOR, LEASE & LELL	<u>NET IAY, FT</u>
Ada Oil Co. Adams St. No. 1	6
Atlantic Refining Co. Federal-Gulf No. 1 Federal-Yates No. 1 State "AD" No. 1 State "AE" No. 1	20 9 4 13
Cactus Drilling Co. Sunray State "A" No. 1 Sunray State "A" No. 2	10 4
Gulf Oil Corp. Mills (Fed.) No. 1 Mills (Fed.) No. 2	11 9
Magnolia Petroleum Co. Childers (Federal) No. 1 Childers (Federal) No. 2 Cox (Federal) No. 1 Cox (Federal) No. 2	7 12 7 3
Ohio Oil Co. State "A" No. 1 State "A" No. 2	5
Sun Oil Co. R. G. Mills No. 1	9
Trice Production Co. Nerrill No. 1	13

Arithmetic Average Thickness - 8.941

٠

.

VOLUMETRIC CALCULATION FOR OIL IN PLACE - 40 ACRE TRACT ALLISON AND NORTH ALLISON POOLS LEA AND ROOSEVELT COUNTIES, NEW MEXICO

 $N_{1} = \frac{7758 \times \cancel{0} \times (1 - Sw) \times h \times A}{B_{0}}$ $= \frac{7758 \times .0515 \times (1 - .25) \times 8.94 \times 40}{1.821}$

= 58,841 barrels

A recovery factor of 30% is believed to be reasonable for the Allison and North Allison Pools. Recoverable oil per 40-acre location would therefore be:

Recoverable oil = .30 x N = .30 x 58,841 barrels = 17.652 barrels

Definition of Symbols:

 $N_1 = 0$ original oil in place per 40 acre tract, stock tank barrels

 ϕ = Porosity as a fraction, .0515

Sw = Interstibial water saturation, fraction of pore space - .25

h = Net pay thickness, feet - 8.94

A = Area for which oil in place is being calculated - 40 acres

- B₀ = Original oil formation volume factor, barrels of reservoir space per barrel of stock tank oil = 1.821
- 7758 = Number of barrels per acre-foot

VARIATIONS REQUIRED IN APPLIED DATA TO ACCOUNT FOR OIL PRODUCED GULF MILLS NO. 1 WELL ALLISON POOL

Estimated Recoverable Oil For 40 Acre Tract Assigned To Oulf's Federal Mills No. 1 is:

Recoverable Oil = $\frac{7758 \times \# \times A \times h \times (1-SW) \times R_oF_o}{B_o}$

$= \frac{7758 \times .067 \times 40 \times 11 \times (1 - .25) \times .30}{1.821}$

= 28,258 SPB

22.

RF is the recovery factor and is estimated to be 30%. Other symbols in the above equation are defined on the Exhibit showing volumetric calculations for oil in place.

The measured oil production from Gulf's Federal Mills No. 1 was 273,437 barrels as of May 1, 1959. The tabulation below shows what each variable in the above equation would have to be to account for the volume of oil actually produced from the tract as of May 1, 1959, if all variables but one are equal to their applied values. In reviewing this Table, it should be remembered that 28,258 STB is the estimated ultimate recovery of oil that was originally situated beneath the 40-acre tract. The 273,437 barrel figure is what the well has actually produced and of course the well is still producing. An even greater variation in the applied values and required values would exist if the required values were based on actual ultimate recovery.

	Applied Values	Required Values
Net Pay	11 feet	106.4 feet
Porosity	6.7%	64.8%
Recovery Factor	30%	290.3%
Water Saturation	25%	*0%
Formation Volume Factor	1.821	0.188

All applied values are measured except water saturation and recovery factor. Water saturation usually occurs between 15% and 60% but cannot be less than 0%. Recovery factor will occur normally between 15% and 50%.

ECONOMICS OF DRILLING ONE WELL PER LO ACRES IN ALLISON AND NORTH ALLISON POOLS

REVE	
-	(17,652) (1.0125) (02.95) =
-	las (17,652) (1.0125) (3.540) (20.08) 4,374 Less Severance Taxes At 0.0264 Of Value
t	Cotal Gross Revenue Less Severance Taxes
COST	Development \$ 175,000 Pumping Equipment 30,000 Flow Lines. 1,600 Total Development Cost. \$ 206,600 Derating \$ 1,412 (%0.08) (17,652). \$ 1,412 Total Costs \$ 208,012 Loss Per 40-Acre Well \$ 160,302
COND:	TIONS 17,652 barrels Recoverable Oil In Place Per 40 Acres 17,652 barrels Werage Gas-Oil Ratio Throughout Life 3,540 cubic feet per bbl. Dil Price 2.95 per barrel Casinghead Gas Price 0.08 per MCF Operating Cost 0.08 per barrel Royalty 1/8

All Wells Completed At Same Time

.

RESULTS OF INVESTIGATION OF DRAINAGE

•

CASE	I	п	III
OPERATOR WELL LOCATION	Atlantic Fed. Yates #1 SE NE Sec. 35 T-8S, R-36E	Ohio State E-6859"A"#2 SE SE Sec. 2 T-9S, R-36E	Cactus Sunray St. "A" <i>[</i>] NW NE Sec. 2 T-9S, R- 36 E
OIL IN PLACE BY VOLUMETRIC CALCULA- TION FOR 80 AC., STB	118,470	112,959	112,959
CALCULATED PRODUCTION BY EXPANSION OF RESERVOIR FLUIDS & ROCK ABOVE BUBBLE POINT (3518-3150 psi), STB	بلابارو 1	1 ₀ 588	1 ,5 88
CALCULATED PRODUCTION BY EXPANSION OF RESERVOIR FLUIDS BELOW BUBBLE POINT, STB	1 , 815	12 , 204	6,131
PRESSURE INCREMENT FOR CALCULATION BELOW BUBBLE POINT, psi	3150-3059	31.50-2602	31.50-2803
TOTAL CALCULATED PRODUC- TION FROM EXPANSION FOR 80 AC. TRACT, STB	3,229	13,792	7,719
ACTUAL MEASURED PRODUCTION TROM WELL AS OF DATE OF LAST PRESSURE, STB	14,653	124 ,3 99	19,053
PRODUCTION DUE TO DRAINAGE FROM OTHER AREAS, STB	11,124	110,607	11,334
CALCULATED DRAINAGE AREA, ACRES	360	720	200

SAMPLE CALCULATION FOR PRODUCTION DUE TO EXPANSION OF RESERVOIR FLUID & ROCK-80 ACRE TRACT SITUATED ABOUT ATLANTIC'S FEDERAL YATES NO. 1

Calculation of original oil-in-place:

$$N_{1} = \frac{7758 \times \cancel{0} \times h \times (1-3w) \times A}{B_{0}}$$

= $\frac{7758 \times .0515 \times 9 \times (1-.25) \times 80}{1.821}$

= 118,470 Stock Tank Barrels

Calculation of production due to expansion of reservoir fluids and rock above the bubble point:

Pressure increment is from 3518 psi down to 3150 psi.

$$\Delta N = \frac{N_{f1} Bo_{f1} \left[(C_{om} - C_{um}) + \left(\frac{C_{um} + C_{f}}{S_{o1}} \right) \right]_{\Delta P} \times 10^{-6} - B_{w} \Delta W_{p}}{Bo_{f2}}$$

$$= \frac{118.470 \times 1.821 \left[(23.03 - 3.1) + \left(\frac{3.1 + 6.5}{.75} \right) \right]_{368} \times 10^{-6} - 0}{1.837}$$

= 1414 STB

Calculation of production due to reservoir fluid expansion below the bubble point:

Pressure increment is from 3150 psi down to 3059 psi. The latter pressure was measured on April 21, 1959.

Oil in place at bubble point is 118,470 bbls - 1414 bbls = 117,056 STB

Since gas liberation in the reservoir is a differential process, the barrels of stock tank oil-in-place must be changed to residual differential barrels. This is done as follows:

$$N_{d} = N_{f} \frac{B_{of}}{B_{od}}$$

= 117,056 (1.831)
1.850)

= 115,604 Residual Differential Barrels

Page 2

1

Differential reservoir production below the bubble point is as follows:

$$\Delta N_{d} = N_{d1} \left[B_{g2}(R_{sd1} - R_{sd2}) + \frac{G_{F1}}{N_{d1}} (B_{g2} - B_{g1}) - (B_{od1} - B_{od2}) \right] - B_{sr} \Delta N_{p}$$

$$(B_{od2} - B_{g2}R_{sd2} + B_{g2}R_{sdm})$$

$$= \frac{115_{*}604 \left[.826 (1.525 - 1.455) + 0 - (1.860 - 1.831) \right] - 0}{(1.831 - .826 \times 1.455 + .826 \times 1.490)}$$

$$= 1790 \text{ RDB}$$

The above differential production can be converted to flash production as follows:

$$\Delta N_{f} = \Delta N_{d} \left(\frac{B_{od}}{B_{of}} \right)_{m} = 1790 \left(\frac{1.847}{1.821} \right) = 1815 \text{ STB}$$

Note: Flash production is considered to be equivalent to stock tank production.

Total calculated production from original reservoir pressure to 3059 psi is:

1414 STB + 1815 STB = 3229 STB

Nomencl	etu	re for Material Balance Calculations
a	•	pscT/2.92, (RVB)(PSIA)/(MSCF)
Bor	=	Flash PVT basis, oil formation volume factor, RVB/STB
Bod		Differential PVT basis, oil formation volume factor, RVB/RDB
Bg		Gas formation volume factor, RVB/MSCF
B	-	Water formation volume factor, RVB/STB
6 ₀		Oil compressibility RVB per MMRVB per PSI
CW	8	Water compressibility, RVB per MMRVB per PSI
of	8	Formation (rock) compressibility, RVB per MMRVB per PSI
¢t	8	Total (sverage) compressibility of fluid-rock system, RVB par MMRVB per PSI
G	8	Total reservoir gas in-place (differential PVT basis) at pressure p ₁ , MMSCF (In retrograde systems below the dew point this is the gas equiva- lent of both the gas and liquid phases in the reservoir: total mols in-place times conversion factor from mols to standard cubic feet.) (In oil reservoirs this is the sum of the free gas and the gas in solution.)
۵Gd	8	Decrease in total (differential) gas in-place over interval, MMSCF
G _{F1}	-	Reservoir free gas in-place at pressure pl, MMSCF
∆G _F		Reservoir free gas produced over an interval, MMSCF
00 8 ₽	-	Separator gas production over interval, MMSCF (For non-volatile oil reservoirs and gas reservoirs, this is the actual separator gas produced. For volatile oil reservoirs, this is the separator gas which would be obtained if there were no liquid condensing out from the reservoir free gas produced.)
۵Gp	-	Total surface gas production over interval, MMSCF
∆G _R		Actual separator gas produced over interval (for volatile oil systems), MMSCF
ΔG _F ΔNC	-	Total reservoir free gas production to yield one stock tank barrel of condensate (for volatile oil systems), MSCF/STB.
$\left(\frac{\Delta G_{RF}}{\Delta G_{F}}\right)$	-	Separator gas obtained from a unit of total reservoir free gas produced (for volatile oil systems). SCF/SCF

Pa	g e	2
	-	

- AG_{sl} = Reservoir gas equivalent of separator liquid (for gas reservoirs), MMSCF
- (OE)_{sl} = Equivalent "reservoir gas" of separator liquid per stock tank barrel of oil production (for gas reservoirs), MSCF/STB. (This is the mols of separator liquid, per STB of oil obtained, times the conversion factor from mole to standard cubic feet. This is usually for the high pressure separator liquid. If the reported gas production includes the low pressure separator gas, this is for the low pressure separator liquid.)
- Nfl = Flash oil in-place at pressure pl. MSTB (Reservoir oil volume in-place divided by flash formation volume factor.)
- ANy Decrease in flash oil in-place over interval, MSTB
- Ndl = Differential oil in-place at pressure pl, MRDB (Reservoir oil volume in-place divided by differential formation volume factor.)
- ANd . Decrease in differential oil in-place over interval, MRDB

AN	12	Surface oil production over interval, MSTB
p		For volatile oil reservoirs this is the oil obtained from the
		oil condensed out from the reservoir free gas production. For non-volatile oil reservoirs and for gas reservoirs this is the
		total stock tank oil production.

- AN. Oil which condenses out of reservoir free gas production at surface (for volatile oil systems), MSTB
- $\Delta N_{R} = Actual oil production over interval for volatile oil systems,$ $MSTB (<math>\Delta N_{R} = \Delta N_{e} + \Delta N_{p}$)
- n = Lb.-mols of hydrocarbons in-place in reservoir
- p Average reservoir pressure, PSIG for oil reservoirs, PSIA for gas reservoirs
- Ap = Reservoir pressure decrease during interval, PSI
- Psc = Standard pressure, PSIA (14.07 for most states; in Louisiana it is 15.03 PSIA)

R_ = Flash PVT basis, solution gas-oil ratio, MSCF/STB

- R = Gas constant (for gas reservoirs) = 10.73 (ft³)(PSIA) per (°R) (lb. mol)
- (R_g)_{sp} = Gas in solution in separator liquid, MSCF/STB
- R____ Differential PVT basis, solution gas-oil ratio, MSCF/RDB

Page	3
------	---

S _o	8	Oil saturation, fraction of total pore space
S _W	*	Water saturation, fraction of total pore space
T		Reservoir temperature, ^{OR} = (^{OF} plus 460)
Tac	8	Standard temperature, ^o R (T _{sc} = 520 °R)
v	æ '	Volume, ft ³
V _p	a	Total pore space in reservoir, MRVB
Vg	8	Reservoir hydrocarbon volume (for gas reservoirs), MRVB
Wl	8	Water in place at pressure pla MRVB
∆W.	8	Water influx (encroachment) over interval, MRVB
۵W	•	Water production over interval, MSTB
8	•	Compressibility factor in pV = znRT, gas equation (For retrograde systems below the dew point this is for the average hydrocarbons in place, gas plus liquid phases.)
sud m	=	To refer to average pressure over an interval or to value of a PVT factor at average pressure over an intervalo
sub b	-	To refer to bubble point pressure.
sub 1		To refer to pressure, in-place values, and PVT factors, at start of an interval.
sub 2	-	To refer to pressure, in-place values, and PVT factors, at end of an interval.

۰.

3.00

1			•••••	• _ F	i ji i i		;							1 I I 												1 · 1 · · ·
	!	Q				∔		k																		
ç	2	hexic				1			:						、 ⁻ -											
	Sig	lew h						, 4																		
r sin	on Po	2 				 																				
- Nor	Alls	intie			set					+				L		- -		 				 		· · · ·		
rec	orth	00 00 +			t.	····				1				:		• •			,							••• • •
	N S N	evel			BCIT	1			 						ľ			 				 . 		1 . 		
that a	Isor	1005		ł	- S								· · · · · · · · · · · · · · · · · · ·							· ·		 	: 	· 		
Pure la	AL				0								 													; • ·
2	5	8	 	Ś	6				\$								<u></u>					• •				
				2				25	# 5	<u> </u>	· 										 		 	 	 	1
		_ <u> </u>			0			5	N		+						 		 			 	 			;
 					D D D				n 									ļ				 .			· · ·	
+				ſ	- <u>-</u>	a	(]	 	 			-			 					· ·						
	· • • • • • • •				1. in . in			•	+		7				 		- 							1 1 1		T: I
		- +	<u> </u>		Ö	 			·	1	\$			· · · · ·				-				1	+		. :	
4 .					- 0 - 0			0	1 .		1															1
					10			12.0	1		1			: • • • • • • •			1	ļ				· · ·		· · · ·		ļ
. .		· .			Ela	, ď		8			Å	1							+	. 		 	· · ·			
1		. .	ļ				F	22	2		,	1					 	 				 				
		; 		<u> </u>	- 0	5	3		 				ļ	1	.			<u> </u>		+			+		. 	
: 1			 				100				g			. 		!	. 	ļ				+	<u>.</u>		· ·	
+				F			2	-	<u> </u>			<u> </u>								<u> </u>	<u> </u>					+
i 	-				Ă		80	1			R -														· ·	-
•					8		ê															 			<u> </u> :	Ţ
-	- ·; · 1			- 2			ace	10 . 		1						+									+ . 	1
				4	2		Ę	G			ğ															
1				5			H	000	9		5														ļ	+
;	- 		<u> </u>	1	101		8	n d			8		ļ 	+		·	-		1			-		ļ	ļ	
-			1	1			Led.						+	ļ :.:			- -			+					+	-
			 			<u>.</u>	1						 													
; 				ŕ	٥ ٩ ٥	· · · ·	ð			,	1										.†	<u>+::::</u> 				
				-									-													
				-		-		. 194			·															
-+-						 11.11	 • ·																			
	33	1.1.7	32	<u>-E::-</u>	6	aitt t	0 P		591	1111	58 58		27		9 8		S	<u>ية الم</u>	4	م منه بلد ا	53	-لى <u>ئىنى</u> ل	8	امیدانیدان	5	

.

Well Spacing, Acres/well

ADDITIONAL COST TO DEVELOP ALLISON AND NORTH ALLISON POOLS ON LO ACRES

29 Additional Wells on 40-Acre Spacing.

Each costs \$175,000 to drill Flow lines 1,600 Pumps <u>30,000</u> \$205,600

29 x 206,600 = \$5,991,400

Additional Pool Recovery on hO-Acre Spacing:

29 wells x 35 bbls/well = 1015 STB additional recovery for pool