OIL CONSERVATION COMMISSION P. O. BOX 871 SANTA FE, NEW MEXICO

February 14, 1958

Nr. S. B. Christy, IV Hervey, Dow & Hinkle Box 547 Roswell, New Mexico

Dear Mr. Christy:

On behalf of your client, Cabot Carbon Company, we enclose two copies of Order R-1126 issued February 12, 1958, by the Oil Conservation Commission in Case 1365, which was heard on January 7th at Santa Fe.

Very truly yours,

A. L. Porter, Jr. Secretary - Director

bp Encla.

CABOT CARBON COMPANY

P.O. BOX 1101 PAMPA, TEXAS

1000 (10) CARDY, Carbon Black • Oil and Gas • Oil Field Pumping Equipment

January 14, 1958

Re: OCC Case No. 1365 -Cabot Carbon Company's Application to Dual Complete H. L. Lowe "B" Well No. 1, Lea County, New Mexico

New Mexico Oil Conservation Commission P. O. Box 871 Santa Fe, New Mexico

Attention: Mr. A. L. Porter

Gentlemen:

Attached are the data and information requested by Mr. D. S. Nutter during the January 8, 1958 hearing of Case No. 1365 " Application for Permit to Dually Complete Cabot Carbon Company's H. L. Lowe "B" Well No. 1".

Listed below are the Outside Diameters of the several tubing sizes and the auxiliary equipment:

Item	Joint	0.D.	or	Largest	0.D.	of	Equip.
*1½" Tubing with Hydril CS couplings				2.113"			
*2-1/16" Tubing with Hydril CS couplings				2.330"			
1½" API non-upset tubing				2.054"			
1之" API non-upset tubing				2.200"			
1攴" API external upset tubing				2.200"			
$1_2''$ API external upset tubing				2.500"			
*12" Garrett Oil Tools, Inc. Type SSC-12	1						
gas lift mandrel				2 . 250"	مدجورون		
2-1/16" Garrett Oil Tools, Inc. Type SSG	3-						
2-1/16" gas lift mandrel			1	not avai:	Lable		
2-1/16" Camco gas lift valve mandrels			1	not avai:	lable		

*Attachments I and II are photostats of the data sheets furnished by Hydril Company and Garrett Oil Tool, Inc., giving dimensions of their equipment. The remaining tubing data was obtained from Spang's "Engineering Data Book".

Attachment III is a summary of clearances that would be available using various sizes of tubing and gas lift valves or mandrels, and the number of times this clearance would be required in running the tubing into the well bore. It is believed that Attachment III will show that we are using the largest tubing possible and yet providing a minimum safe clearance. Also, using a combination dual string, one string of 12" tubing with Hydril CS joints and the other string of 2-1/16" tubing with Hydril CS joints, we would be unable to run mandrels on the l_2^{\perp} " or 2-1/16" tubing strings. See Part 3 & 4 of Case IV on Attachment III.

To: New Mexico Oil Conservation Commission

Regarding your question "why 7" casing was not used in Cabot's H. L. Lowe "B" Well No. 1 instead of 5¹/₂" casing", our previously drilled wells in the King Field had not encountered the Lower Wolfcamp as being productive. The drilling program therefore was planned for the use of $5\frac{1}{2}$ " casing as the oil string. On the Lowe "B" No. 1 we set 13-3/8" casing at 381', drilled out using a 11" bit, set 8-5/8" casing (32#/ft. and 24#/ft.) at 4615', and drilled to 12,320' with a 7-7/8" bit. At the time the Lower Wolfcamp was determined to be productive we had some 5700' of 7-7/8" hole drilled, which would not permit us to run 7" casing. The coupling OD of 7" casing is 7.656". The clearance between the walls of the well bore and the coupling's outside diameter was only 0.219".

I do hope that the attached data and information will be adequate to permit the Commission to review our application with all necessary data at hand.

Yours very truly,

Joe M. Waniel, Jr.

8 58 32# ED 2.921 Senior Petroleum Engineer

JMD:mn Encls.

Page 2

TUBING JOINTS

HYDRIL COMPANY

HYDRIL "CS" TUBING JOINT

(Potented)

The Hydril "CS" tubing joint was first introduced to the industry in 1947. Since then this joint has proved its merits so conspicuously that most oil and gas producers now prefer Hydril "CS" tubing strings wherever the producing conditions require better tub-ing. Hydril "CS" tubing strings are now in use in most of the high-pressure producing fields of the country.

This tubing joint is as strong as is needed in the deepest of wells. High pressure is sealed off positively at every joint by three separate sealing surfaces. In torque capacity (to resist over-tonging) this "CS" joint far exceeds the collared type tubing joints.

In corrosive gas or gas-distillate fields the need for flush-bore tubing joints is extreme. Hydril "CS" tubing provides streamline flow

Hydril "CS" tubing strings can be run on standard tubing elevators using elevator plugs to provide a lifting shoulder equivalent to a tubing collar. When tubing is to be round-tripped several times, time is saved by

through the joints, there being no shoulders to cause eddying in the flow of the corrosive fluid at the joints.

All these advantages combine in the Hydril "CS" tubing joint to make it uniquely suited to solving problems encountered in difficult producing fields. There are many fields where all these advantages are required. The gasdistillate fields generally are deep, and usually are characterized by high pressure and corrosive conditions. In these areas the producing problems can be solved with economy by using tubing equipped with Hydril "CS" joints. It is the excellent performance record of this joint under all these adverse conditions that testifies most graphically to the merit of the Hydril "CS" tubing joint.

ELEVATORS

providing an elevator plug for each stand.

Or, if desired, the elevator plugs can be eliminated and the string handled on slip-type elevators, available for rental for 23%", 27%" and 31/2" "CS" tubing.

HOW THE JOINT MAKES UP

As the pin is stabled into the box, guiding bevels bring the joint into the full stabbed position and land it on two full starting threads. At this position the joint is loosefitting to permit free stabbing and easy starting of the threads. During spinning up of the joint, both threads engage so that only a few turns are required for full make-up. The first seating occurs on the 14° internal seal. This contact usually stops free spinning. Moderate further make-up preloads this internal seal, and then the outside shoulder seats. This double seating can usually be achieved by torque application equivalent to that of hand tubing tong make-up. As the joint is further tonged up with power tools (to the make-up torque shown in Table No. 18) the bore shoulder seats, forming a final positive stop. In this made-up position the 14° inside seal and the 30° outside seal both are properly preloaded to establish pressure seals against both low and high pressures. The bore shoulder itself is, of course, a third pressure seal as well as a third and final stop to the make-up of the joint.

Fig. 59 Hydril "CS" **Tubing** Joint

Table No. 18 HYDRIL "CS" JOINT FOR EXTERNAL UPSET TUBING

				.i						TENSION-(Pipe)† (Joint is Stronger than Pipe)					
		TUBING			JOINT			1 a	J-55	N-80	P-105	- Recommended Make-Up			
Size (O.D.) & Weight (Nominal)	₩all Thick.	1.D. (Nom- inal)	Drift Diam. (A.P.I.)	Pin Length	0.D. (Std.)	O.D. (Special)	1.D. (Bored)	Elli- ciency	of Pupe	Min. Yield	Min. Yield	Min. Yield	J-55	N-80 P-105	
laches Lbs.	Inches	Inches	Inches	Inches	Inches	Inches	laches	Percent	ge 25 Lings	1000 L.b.я.	1000 Lbs.	1000 Ц.Бъ.	FtLbs.	FtLbs.	
1 (1.315-O.D.)-1.8 1!4 (1.660-O.D.)-2.4 1!2 (1.900-O.D.)-2.9	.133 .140 .145	1.049 1.380 1.610	.955 1.286 1.516	2.1872.1872.1872.187	1.552 1.883 2.113	· <u>••</u>	.970 1.300 1.530	116 114 119	No. 21, Pa ollapse Ra	27 37 44	40 53 64	52 70 51	380) \$600 5600	400 1300 1300	
2416-3.4 2916-3.4 2916-4.7 2916-4.7 2916-3.4	.156 .190 .215	$1.750 \\ 1.995 \\ 1.939$	$1.656 \\ 1.901 \\ 1.545$	2.187 2.272 2.272	2.330 2.700 2.700	2.630	1.700 1.945 1.890	109 105 (05	Fallr and (51 72 81	75 104 115	98 137 155	N00 1300 1300	1100 1500 1500	
27 s - 6.5. 3 ¹ 2 - 9.3. 3 ¹ 2 - 10.3.	.217 .254 .289	2.441 2.992 2.922	2.347 2.867 2.797	2,338 2,787 2,787	3.220 3.865 3.865	3.1 55 3.805	$2.375 \\ 2.920 \\ 2.878$	102 105 101	Burst	100 142 160	145 207 233	190) 272 306	17(N) 25(N) 25(N)	2500 3006 3000	
4 - 11 $4^{1} - 12.75$.262 .271	3.476 3.955	3.351 3.833	2,787 2,830	4,340 1,855	1.315 1.825	3,395 3,865	105 105		169 198	246 288	42.3 47.8	3500 3500	3500 3500	

t Pipe Tension Strength Calculated on: J_{*} = 55,000 Yield and 92,000 Ultimate. N-80 \times 80,000 Yield and 105,000 Ultimate. P-105 = 105,000 Yield and 120,000 Ultimate. Hydril "A" and "CA" and "CS" threads are interchangeable. Hydril 40., "O.D. type "A" and "CS" and "E1" "casings threads are interchangeable.

2596

MANDRELS FOR RETRIEVABLE VALVES

These mandrels accommodate the gas lift valves described on the opposite page. Both types contain the GOT Sliding Sleeve Valve, through which communication between the casing and tubing may be opened or shut off with wire line tools. The sliding sleeve, which serves as the receiver for the gas lift valve. is fitted with snap rings that engage when the sleeve valve is in full open or fully closed position and thus secure the sleeve against accidental movement. A direct thrust load of 3200 pounds is required to unseat the snap ring from its groove. O-Rings supported by Teflon back-up rings provide the pressure seal around the sleeve. The mandrels are made of high tensile, corrosion-resistant materials, and are designed to outlast the tubing under all conditions.

The sleeve valve is closed on upward movement of the sliding sleeve, and opened on downward movement. The design of the mandrels and the gas lift valves which they accommodate is such that the sleeve valve is shifted to open position when a gas lift valve is installed, and shifted to closed position when the valve is retrieved. When circulation between casing and tubing is desired. any or all sleeve valves may be shifted by wire line tools without using gas lift valves.

Coupled with the features of the Type "S" Gas Lift Valve, this design provides these advantages:

1. The gas lift valve may be installed or retrieved in one run of the wire line.

- Undesired communication between the casing and tubing never exists. 2.
- Gas lift valves may be installed or retrieved without equalizing pressures. 3.
- Concentric mounting of the gas lift valve facilitates engagement of the fish-4. ing tool.
- Turbulence, erosion and deposits of sand and silt are minimized. 5.
- All types of valves of the same size are interchangeable in mandrels of the 6. same size.
- 7. Welding has been eliminated from the mandrels.


TYPE "SSC" MANDREL

This mandrel is designed especially for dual completions and slim holes. It permits two strings of 11/2" upset tubing equipped with wire line retrievable gas lift valves to be run inside 51/2" O.D. casing, or two strings of 2" upset to to be run inside 7" O.D. casing, without clamping. The flow of fluid is through the gas lift valve.

Circulation between casing and tubing is provided by a series of drilled ports in the body of the mandrel, and slots in the sliding sleeve. The total area of the ports and slots is equal to the inside area of the tubing, as a result of which a Type "SSC" Mandrel serves as a *full capacity circulating valve* that may be opened or closed with wire line tools, and in which a gas lift valve may be installed whenever desired.

in fin			HAN AAGI (ANIS)	1	e a na mara	· · · · · · · · · · · · · · · · · · ·
7.3. <u>Type</u>		Tubing Size	Diameter	Inside Diameter	Length	Weight
SSC		11/2"	2.250"	17/16"	30 ⁵ /16"	19½ lbs.
SSC		11/2"	2.375"	17/16"	305/16"	21 lbs.
SSC		2″	2.910"	1 29/32"	27″	22 lbs.
SSC	<u></u>	2″	3.000"	1 29 /32 "	27″	23 lbs.

21/2'

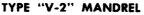


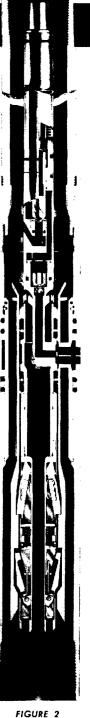
FIGURE 1

Type "SSC"

Mandrel with

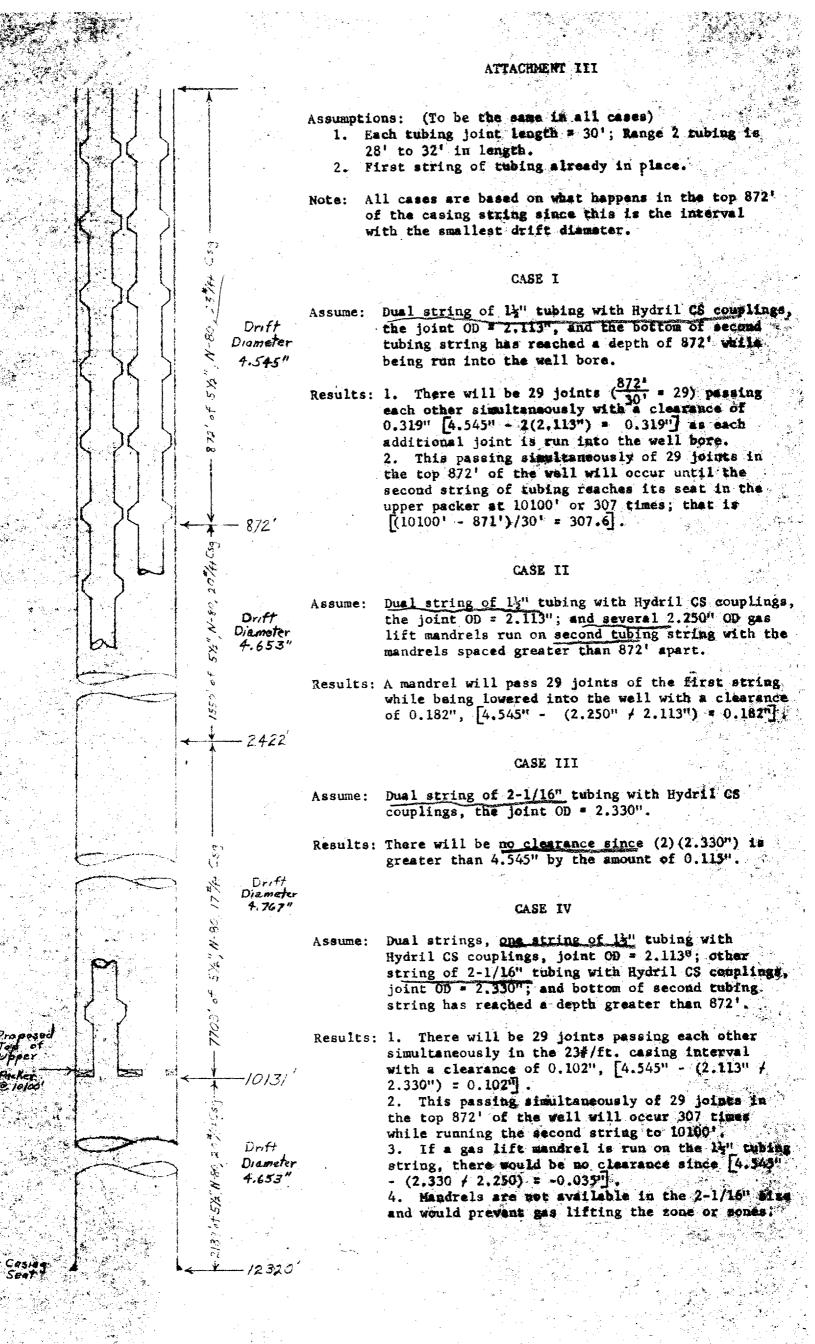
Type "S-O"

Gas Lift Valve


installed.

Sliding sleeve valve is in open position Fluid flows through the gas lift valve

The sliding sleeve in this mandrel contains a fluid by-pass with a flow capacity equal to that of the tubing. The gas inlet port is large enough to pass any required volume of injection gas, and provides for emergency circulation between casing and tubing.


DIMENSIONS AND WEIGHTS

Туре	 Tubing Size	Outside Diameter	Inside Diameter	Length	Weight
V-2	 2″	4.125"	129/32"	48″	72 lbs.
V-2	 $2\frac{1}{2}''$	4.750″	211/32"	48″	90 lbs.

26¹/₄ lbs.

Type "V-2" Mandrel with Type S-O Gas Lift Valve installed. Fluid flows through by pass in sliding sleeve, and through the gas lift valve.

