Case file paragraph (1) of 1473

R. W. BYRAM & CO. -- SEPT., 1957

BUCKSHOT FIELD (4950' Sand)

Cochran County, Texas.

Special Order No. 8-35,048, Adopting Operating Rules for the Buckshot (4950' Sand) Field, Cochran County, Texas, Effective March 4, 1957, and Amended by Order Effective August 12, 1957.

WHEREAS, After due notice, the Railroad Commission of Texas held a hearing on February 28, 1957, on the application of Anderson-Prichard Oil Corporation to consider the adoption of rules and regulations to govern the drilling, completion and operation of wells in the Buckshot (4950' Sand) Field, Cochran, County, Texas; and

WHEREAS, From evidence adduced at said hearing, it appears to the Commission that the subject field was discovered in 1956 and produces from a San Andres Dolomite at 4950-5010' with an average gross pay thickness of 90 feet and an average net thickness of 55 feet; that the average porosity of the formation is 7.4 and the permeability is 2.02 mds and that one well will effectively drain 40 acres in this reservoir; that the field has been developed by the completion of 9 wells and that additional drilling is under way and contemplated for further development of said field; and

WHEREAS, From evidence submitted at said hearing, the Commission is of the opinion and finds that waste as the term is defined in the applicable statutes will take place in said field unless rules are adopted by the Commission for the prevention thereof, and that the following field rules are necessary to prevent such waste and to provide for a more orderly development and operation of said field.

NOW, THEREFORE, IT IS ORDERED By the Railroad Commission of Texas that effective March 4, 1957, the following rules in addition to such of the Commission's general rules and regulations as are not in conflict herewith, be and the same are hereby adopted to govern the drilling, completion and operation of wells in the Buckshot (4950' Sand) Field, Cochran County, Texas.

RULE 1. No well for oil or gas shall hereafter be drilled nearer than twelve hundred (1200) feet to any well completed in or drilling to the same reservoir on the same lease, unitized tract or farm, and no well shall be drilled nearer than five hundred ten (510) feet to any property line. lease line or subdivision line, provided, however, that the Commission will, in order to prevent waste or to prevent the confiscation of property grant exceptions to permit drilling within shorter distances than herein prescribed whenever the Commission shall have determined that such exceptions are necessary either to prevent waste or to prevent the confiscation of property. When exception to this rule is desired, application therefor shall be filed and will be acted upon in accordance with the provisions of Commission Statewide Rules 37 and 38, which applicable provisions of said rules are incorporated herein by reference.

The aforementioned distances in the above rule are minimum distances to allow an operator flexibility in locating a well, and the above spacing rule and the other rules to follow are for the purpose of permitting only one well to each forty (40) acre proration unit.

In applying this rule the general order of the Commission with relation to the subdivision of property shall be observed.

RULE 2. The acreage assigned to the individual oil well for the purpose of allocating allowable oil production thereto shall be known as a proration unit. No proration unit shall consist of more than forty (40) acres except as hereinafter provided, and the two farthermost points in any proration unit shall not be in excess of twenty-one hundred (2100) feet removed from each other; provided, however, that in the case of long and narrow leases or in cases where because of the shape of the lease such is necessary to permit the utilization of toleranc acreage the Commission may after proper showing grant exceptions to the limitations as to the shape of proration units as herein contained. All proration units, however, shall consist of continuous and contiguous acreage which can reasonably be considered to be productive of oil.

SECTION V

If after the drilling of the last well on any lease and the assignment of acreage to each well thereon in accordance with the regulations of the Commission there remains an additional unassigned lease acreage of less than forty (40) acres, then and in such event the remaining unassigned lease acreage up to and including a total of twenty (20) acres may be assigned to the last well drilled on such lease or may be distributed among any group of wells located thereon so long as the proration units resulting from the inclusion of such additional acreage meets the limitations prescribed by the Commission.

Operators shall file with the Commission of such additional Operators shall file with the Commission certified plats of their properties in said field, which plats shall set out distinctly all of those things pertinent to the determination of the acreage credit claimed for each well; provided that if the acreage assigned to any proration unit has been pooled, the operator shall furnish the Commission with such proof as it may require as evidence that interests in and under such proration unit have been so pooled.

RULE 3. The daily total field oil allowable, as fixed by the Commission after deductions have been made for marginal wells, high gas-oil ratio wells and wells which are incapable of producing their allowables as determined hereby, shall be distributed among the remaining producing wells in the field on the following basis:

(a) The daily acreage allowable for each well, after said deductions have been made, shall be that proportion of seventy-five (75) percent of the daily field allowable which the acreage assigned to the well bears to the remaining acreage assigned to all the wells in the field.

(b) The daily per well allowable for each well, after said deductions have been made, shall be determined by dividing twenty-five (25) percent of the total field daily allowable by the number of producing wells in the field.
(c) The total daily oil allowable for each well shall be the

(c) The total daily oil allowable for each well shall be the sum of its per well and acreage allowables.

RULE 4. The permitted gas-oil ratio for all wells shall be two thousand (2000) cubic feet of gas per barrel of oil produced. Any oil well producing with a gas-oil ratio in excess of two thousand (2000) cubic feet of gas per barrel of oil shall be allowed to produce daily only that volume of gas obtained by multiplying the daily oil allowable of such well as determined by the applicable rules of the Commission by two thousand (2000) cubic feet. The gas volume thus obtained shall be known as the daily gas limit of such well. The daily oil allowable therefor shall then be determined and assigned by dividing the daily gas limit by its producing gas-oil ratio.

RULE 5. (As Amended by Order No. 8-36,057, Effective August 12, 1957.) Surface casing shall be of new or reconditioned pipe of proper weight and test to withstand the known pressures in said field set and cemented at a depth not less than twenty (20) feet below the top of the Red Beds, said amount of surface casing to be adequate to protect all fresh water sands. Cementing shall be by the pump and plug method with a sufficient volume of cement used to fill the annular space back of the casing to the surface of the ground or the bottom of the cellar. Cement shall be allowed to stand a minimum of twentyfour (24) hours under pressure before drilling the plug or initiating tests. Before drilling the plug, pump pressure of at least one thousand (1000) pounds per square inch shall be applied. If at the end of thirty (30) minutes the pressure shows a drop of one hundred (100) pounds per square inch, or more, the casing shall be tested again in the same manner. The depth to the top of the Red Beds in each well shall be shown on Form 2 (Well Record) for such well.

RULE 6. The datum reservoir pressure of all oil wells in the field, except marginal wells as defined by statutes, shall be determined once a year during the months of October-November-December and the results reported to the Commission by the first (1st) day of January. The datum reservoir pressure shall be obtained by the use of a subsea pressure gauge and the pressure observations shall be made at or corrected to a datum of one thousand eighty (1080) feet below sea level after a shutin period of not less than seventy-two (72) continuous hours. The Commission's Form BHP-1 shall be used to report to the Commission the results of all pressure determinations made under the provisions of this rule. Page 460

(BUCKSHOT (4950' SAND) FIELD—Cont'd)

In any well where it is impossible or impracticable to use a subsea pressure gauge, excluding parafine obstructions which may be cleaned by scraping, the bottom hole pressure determinations may be made by using the float or sound wave method to determine the fluid level after the well has been shut-in for the same number of hours required to obtain bomb pressure results. The pressure at the datum depth shall be calculated by adding the pressure exerted by the weight of the oil and gas column above this level in pounds per square inch to the gauge pressure at the tubing head when the float method is used, and to the gauge pressure at the casing head when the sound wave method is used.

IT IS FURTHER ORDERED That this cause be held open on the docket for such other and further orders as may be necessary.

MONAHANS, NORTH FIELD (Devonian) Winkler County, Texas.

Special Order No. 8-35,089, Adopting Operating Rules for the Monahans, North (Devonian) Field, Winkler County, Texas, Effective March 4, 1957.

WHEREAS, After due notice, the Railroad Commission of Texas held a hearing on February 26, 1957, on the application of Pan-American Petroleum Corporation to consider the adoption of rules and regulations to govern the drilling, completion and operation of wells in the Monahans, North (Devonian) Field, Winkler County, Texas; and

WHEREAS, From evidence adduced at said hearing, the Commission finds that said field was discovered in 1955, and is developed with five oil wells producing from an average depth of 9300', and said reservoir has been penetrated by eight wells; the producing formation has a gross thickness of 235', and the average porosity and permeability is 4% and 14 mds., with permeability ranging up to 494 mds., and the reservoir pressure data indicate one well will drain 80 acres; and

WHEREAS, From evidence submitted at said hearing, the Commission is of the opinion and finds that waste as the term is defined in the applicable statutes will take place in said field unless rules are adopted by the Commission for the prevention thereof, and that the following field rules are necessary to prevent such waste and to provide for a more orderly development and operation of said field.

NOW, THEREFORE, IT IS ORDERED By the Railroad Commission of Texas that effective March 4, 1957, the following rules in addition to such of the Commission's general rules and regulations as are not in conflict herewith, be and the same are hereby adopted to govern the drilling, completion and operation of wells in the Monahans, North (Devonian) Field, Winkler County, Texas.

RULE 1. No well for oil or gas shall hereafter be drilled nearer than thirteen hundred and twenty (1320) feet to any well completed in or drilling to the same reservoir on the same lease, unitized tract or farm, and no well shall be drilled nearer than four hundred forty (440) feet to any property line, lease line or subdivision line; provided ,however, that in order to prevent waste or to prevent the confiscation of property the Commission will grant exceptions to permit drilling within shorter distances than herein prescribed whenever the Commission shall have determined that such exceptions are necessary sary either to prevent waste or to prevent the confiscation of property. When exception to this rule is desired, application therefor shall be filed and will be acted upon in accordance with the provisions of Commission Statewide Rules 37 and 38, which applicable provisions of said rules are incorporated herein by reference.

The aforementioned distances in the above rule are minimum distances to allow an operator flexibility in locating a well, and the above spacing rule and the other rules to follow are for the purpose of permitting only one well to each eighty (80) acre proration unit.

In applying this rule the general order of the Commission with relation to the subdivision of property shall be observed.

RULE 2. The acreage assigned to the individual oil well for the purpose of allocating allowable oil production thereto shall be known as a proration unit. No proration unit shall consist of more than eighty (80) acres except as hereinafter provided, and the two farthermost points in any proration unit shall not be in excess of three thousand (3,000) feet removed from each other; provided, however, that in the case of long and narrow leases or in cases where because of the shape of the lease such is necessary to permit the utilization of tolerance acreage the Commission may after proper showing grant exceptions to the limitations as to the shape of provation units as herein contained. All proration units, however, shall consist of continuous and contiguous acreage which can reasonably be considered to be productive of oil.

If after the drilling of the last well on any lease and the assignment of acreage to each well thereon in accordance with the regulations of the Commission, there remains an additional unassigned lease acreage of less than eighty (80) acres, then and in such event the remaining unassigned lease acreage up to and including a total of forty (40) acres may be assigned to the last well drilled on such lease or may be distributed among any group of wells located thereon so long as the proration units resulting from the inclusion of such additional acreage meets the limitations prescribed by the Commission.

Operators shall file with the Commission certified plats of their properties in said field, which plats shall set out distinctly all of those things pertinent to the determination of the acreage credit claimed for each well; provided that if the acreage assigned to any proration unit has been pooled, the operator shall furnish the Commission with such proof as it may require as evidence that interests in and under such proration unit have been so pooled.

RULE 3. The daily total field oil allowable, as fixed by the Commission after deductions have been made for marginal wells, high gas-oil ratio wells and wells which are incapable of producing their allowables as determined hereby, shall be distributed among the remaining producing wells in the field on the following basis:

(a) The daily acreage allowable for each well, after said deductions have been made, shall be that proportion of seventy-five (75) percent of the daily field allowable which the acreage assigned to the well bears to the remaining acreage assigned to all the wells in the field.

(b) The daily per well allowable for each well, after said deductions have been made, shall be determined by dividing twenty-five (25) percent of the total field daily allowable by the number of producing wells in the field.

(c) The total daily oil allowable for each well shall be the sum of its per well and acreage allowables.

RULE 4. Surface casing shall be of new or reconditioned pipe of proper weight and test to withstand the known pressures in said field, set and cemented at a depth not less than six hundred (600) feet below the surface of the ground; said amount of surface casing to be adequate to protect all fresh water sands. Cementing shall be by the pump and plug method with a sufficient volume of cement used to fill the annular space back of the casing to the surface of the ground or the bottom of the cellar. Cement shall be allowed to stand a minimum of twenty-four (24) hours under pressure before drilling the plug or initiating tests. Before drilling the plug, pump pressure of at least one thousand (1,000) pounds per square inch shall be applied. If at the end of thirty (30) minutes the pressure shows a drop of one hundred (100) pounds per square inch, or more, the casing shall be condemned. After corrective operations ,the casing shall be tested again in the same manner.

IT IS FURTHER ORDERED That this cause be held open on the docket for such other and further orders as may be necessary.

11	4900. (-00.)	4.1	3.2	11.2	12.4	0.1 C	rr				1.3	1 71	400		T I	
184		1.2	0,0	\$	ł	ļ										
18	4988.3-90.0	0.6	0.6	11.9	16.7	27.7	PP				· · · · · ·	- 4 4990		┝╍┽╸┽┊		
19	90.0-91.7	0.1	~0.1	4.6	0.7	45.6	F, 2P					v 9 Z	とこ			
194		0.3	0.1	l.							i.,	SAZ_	ZŇ.			
20	4991.7-92.7	7.1	3.9	5.2	13.4	30.7	F.PP	Н.,				ž Z	zŔ		∴ IX.	
21	92.7-94.0	4.1	1.5	12.5	9.6	30.4	PP				X	b				
22	94.0-95.8	1.0	0.8	2.0	10.0	75.0	F.PP				1					
224		0.7	0.5										2	K.		
22	LOOF 2 07 7		-0.1	2.	12 5	יבא <u>ו</u>	6 9 B			┝╼┽┽╇	┼┿╸╆╇	XZ-				
22	4772s.9471s1	V. C		6.4	****	20.4	r , r ,		+ + + +		* * * + +	: Z	*2			
	1007 7 00 (0.4	0.1	24	1 2 2 2				++++	┝╍╋┿╋		1	Z			
24	4991.1-99.0	4.2	V.2	1.0	+1.+	כ. טכ	г <u>, гг</u> .	┨┝╴┽┊┿	+ • • +-	┝┾┥┥┥	· · · X	t Iz	z		$\cdot \cdot \cdot \cdot \mathbf{Y}$	┥╋┿┿┥
244		0.8	0.1					┥┝┼┽╺	+		+ + + + +	+# 5000		┢┊┼┼┼┼	\	
25	4999.6-01.3	1.0	ا کی ک	10.1	21.8	26.7	r		┪┿┿┿┾╴	┥┥┽┥	++			╅╌┽╌┽╶┤╶┼	·	╵╻╷╷
264		1.0	0.7	 	. .	-		╶┨┝╌┥┝╴┥	╶┫╶╅╺╇╌╇╶	┝┿┥┽╅	┼┵┽┨┙			┝╅┿┿╋┥		+++-
26	5001.3-03.0	1.0	0.8	8.9	16.8	30.3	F,PP	╌┨┝╴╅┊┿		┼╷┥┑┥	++++	J = Z		┝┥┽┿╉╶╴	X X X	+
27	03.0-04.5	0.6	0.5	7.9	16.5	35.4	F,PP				1 X					, , , , , ,
28		1.2	1.2		• · ·	, 		┥┥┥┥		┥┥┥┛	┿┿╍┢╽	5005		┝╅┷┽╉╬	\	
28	5004.5-06.0	1.1	0.9	9.6	11.5	25.2	F,PP									
29	06.0-07.7	0.4	0.2	9.5	13.7	30.5	F, 79					1 Marz	<u>40</u> ;			
29		0.0	0.3	l	ļ						110	1 Kezz				
30 '	5007.7-09.5	1.0	0.4	10.3	12.6	32.0	F, PP				1	1 Car			1	
314	1	0.3	0.1			.			1				4001			
31	5009.5-11.0	~U.1	~U.1	1.3	12.3	41.0	P, 1P								1 11	
32	11,0-12,8	0.1	-0.2	6.0	11.7	60.0	V, F									
32		<0,1	<0.1	1		i										
33	5012.8-14.4	0,8	0.5	9.6	15.6	31.2	F, PP				X					
21.		0.9	0.9									L COL				
34	5011 1-15 8	0.7	0.6	11.9	16.8	22.6	SF.PP	1	T		N	1-3013				9
35	15 8-17 5	5.1	3.6	7.1	16.9	33.8	P.PP								B	
26		0.7	0.6	ţ I ∎■ 			· · · · · · · · · · · · · · · · · · ·	╶┨┝╌╅┥╧				H FZ	-10.	┝┥┽┾╂┼		
26	CO17 E 10 O	0.7		0 1	11. 2	2 C 7	C2 90				X	0,		┝┥┥┍┨┤		
20	JUIT-2013-0	0.7		10.2	7.4.1	20.0	CP BB	╶┨┠╼┽┼╌┵	╋┽┝┦┈	┆┼┽ぺ╍				┝┼┾┦╂┽	··+++ X +	╵╉┽┢╸
34	19.00.00.0					JUAN	Dr gr T	╶┫┠┽┽╼			┼┼╀╉╡	5020				
304	5000 2 02 0	<u> </u>				80.0		╶┨┠╌┽╌╾	╺╋╼╴┾┼╌	┝┾┾┥╊	╵┥┍┿┩ ╋	1 the				
202	5020.3-22.0	<0,1	<0.1	1.0		60.0	Dr, Fr				<u>}</u>		5			• • • •
39	22.0-23.0	<0.1	<0.1	2.0	5.0	00.0	, , , ,				$\frac{1}{2}$	¥-7-	- - +			
394		<0.1	<0.1										2.			
	5023.0-25.4	-0.1	<0.1	<u> </u>	TH_	10.2	Farr	┈┨┝┼┷┿	╉┿╋┿╸	┝┥┿┿╉	┽┿┿╋┥	+ 5025	; * +++		╺╆┿╉┝┾┪	┝╋┽┝
414		<0.1	-0.1							1.1		I =Z			\mathbf{U}	
m	5025.4-27.2	<0,1	<0.1	2.3	13.0	41.1	35,27								1111	
42	27.2-20.5	<0.1	<0.1	1.7	11.5	10.5	F					*-7				
434		<0.1	<0.1						 • 	┥┥┥┽┫	1					
13	5028.5-30.0	<0.1	<0.1	2.1	9.5	52.5	F.PP	- ┨┝┿┿┿	╉╍┿╋╸	┟┊┽┽╉	┾┿┿╋┿	+14 5030		┠┼┼┼╂╴╄	┺┼┼┼┼┥	┝╋┿╇╌
1	TOO BROKEN FY	OR ANA	ISIS					4141	4 . 4 4	<u>↓</u> ↓↓↓	┥┥┥┥	· K	3 -	▋┊┊╽╽	┊┊┊╋╏╽	
		•				-										
		}														
			ļ ,	ļ	ł	1	1					5033				11:1

Exhibit 5

tonn, Inc.

MIDLAND, TEXAS

TELEPHONE MU 2.0801

W D YORK PRESIDENT ED S. BROOKS ICE PRESIDENT D JENKINS C J RUTTEN PRES & TREAS

May 19, 1958

Re: Rowan Oil Company Federal Lease South Sawyer San Andres Field Lea County, New Mexico

Rowan Oil Company P. O. Pox 1873 Midland, Texas

BEFORE THE OIL CONSERVATION COMMISSION SANTA FE, NEW MEXICO EXHIBIT NO CASE 147

Attention: Mr. J. T. Klingler

P. O. BOX XBACK 634

- Gentlemen:

This will confirm our telephone conversation of May 16. 1958 remarding the captioned lease.

You will please recall that at the time the number one well on this property was completed, we advised that we anticipated no difficulty in arranging a market for the oil if the well was classified in the Buckshot (4950' Sand) Field. We have purchased the oil during the time the well was carried as an undesignated location; however, the lease has now been placed in the South Sawyer San Andres Field and it is necessary that we discontinue purchasing this oil.

Cur market outlet in this area is to The Atlantic Refining Company and said Company does not desire to purchase oil from the South Sawyer San Andres Field.

Since this well is producing like crude to the Buckshot (4950' Sand) Field and is located immediately west across the Texas-New Mexico State line, it right be that you could prevail upon the New Mexico Oil Conservation Commission to re-classify this well in the Buckshot Field, and if so, we will te in position to resume our purchases.

Yours very truly,

CACTUS PETROLEUN, INC.

Norvin R. Griffin

NRG: bg

cc: Mr. Sam F. Weir

OIL CONSERVATION COMMISSION P. O. BOX 871 SANTA FE, NEW MEXICO

August 14, 1958

Mr. Jack Campbell Campbell & Russell P.O. Box 721 Roswell, New Mexico

Dear Mr. Campbell;

On behalf of your client, Rowan Oil Company, we enclose two copies of Order R-1210-A, Order of Dismissal, issued in Case 1473.

Very truly yours.

A. L. Porter, Jr. Secretary - Director

bo Encls. Case 1473: (A) Extension of an existing pool

County EDDY	POOL ATOKA
-------------	------------

0-5 San Andres

	18	South,	RANGE	26	East ,		NEW	MEXICO	PRINCIPAL	MERIDIAI
6		5		-		3				1
7				•		10				12
		17		18		15		14		13
		- 20		21		22		23		24
- 30-		29		28		27		- 26		25
31		38		33				38		36

Purpose: One completed well capable of producing

Poel Boundary colored in Red:

Proposed Extension colored in Green: Section 23: N/2 NW/4

Pan American Pet. Corp.-C. R. Martin #1 in Unit C of Sec. 23-18-26 Comp. in San Andres 4/15/58. Top perf. 1584 Case 1473: (B) Extension of an existing pool

2 11 ^{- 1}	Cou	nty_	 LI	EA				_ Po	DOI BLI	NEBRY GAS	5
5-6	Bli	nebry									
		07		207			-				
TOWN	SHIP -	~1	South,	RANGE 37		East ,		NEW	MEXICO	PRINCIPAL	MERIDIAN
-	. к.					_	. 12				
-	6		 5				3		2		
		-	-			_					
-		-									
-			 -								
-	7	-	-8	-		-	-10				12
		-									
-		17									
-											
	- 18		-17		6		-15		14		13
							-				
			-				-				
	10		-20		1		20		23		24
-											
	30						27				25
					T	_					1
L		-				-					-
			_								
-	91		- 32		33	-	34		35		36
-											

Purpose: One completed well capable of producing

Pool Boundary Colored in Red: Proposed Extension colored in Green: W/2 of Section 29

Sinclair Oil & Gas Co.-H. S. Turner #3 in Unit N of Sec. 29-21-37 Comp. in Blinebry 10/31/57. Top perf 5567. Case 1473: (C) Extension of an existing pool

County LEA Pool EUMONT GAS

0-5 Yates, Seven Rivers, & Queen

TOWNSHIP	19	Souti	A RANGE	36	East,	NE	W MEXICO PRIN	CIPAL MERIDIAN
<u> </u>	-				_			
6		5		4		3		
				•		10		12
18		17		16		15	14	13
	-		+					
19		20		21	1	- 212	23	24
						1 1 1		
			-					
- 30	1	29		28	-	27	28	25
- 31	-			33		34	35	36
L		les de la companya de						
Purpose	: T	wo compl	eted we:	lls caj	pable	of produc	ing	
Pan	Amer	ican Pet	. Corp.	-State	B #1	in Unit H	of Sec. 1-19	-36
Pan	Amer	ican Pet	Corn	-State	B #2	in Unit A	of Sec. 1-10	-36
				Comp.	in Pe	nrose 5/2	6/58. Top pe	erf. 3992

Pool Boundary Colored in Red

Proposed Extension colored in Green: E/2 of Section 1

case 14/3: (D) Extension of an existing pool

County LEA Po	0	GLADIOLA
---------------	---	----------

12-13 Devonian

TOWNSHIP	11	South,	RANGE 38	East ,	NEW	MEXICO PRIN	CIPAL MERIDIAN
6		5			3	2	
		_					
		-					
					10	11	12
	-						
	Carl Carl						
. 18	in a	17			15		13
19		20	- 21		22	23	24
30		20-	28		27	28	25
5.12							
3		32	33		34	35	36
1. 1.4							

Purpose: One completed well capable of producing

Shell Oil Co.-Ivey #1 in Unit 0 of Sec. 29-11-38

Comp. in Devonian 4/4/58. Top Perf. 12,068.

Pool Boundary Colored in Red: Proposed Extension Colored in Green: SE/4 of Section 29 NE/4 of Section 32 Case 1473: (E) Extension of an existing pool

County	EDDY	POOL GRAYBURG-JACKSON
--------	------	-----------------------

0-5 Queen, San Andres, & Grayburg

TOWNSHIP	17	South,	RANGE	29	East ,	NE	W MEXICO PRI	NCIPAL MERIDIAN
		5		4		3	2	
- 7-				•		10		12
		17		18		18	14	13
19		20		21		22	23	84
		29		-28		27		25
31		32		-33		34	38	36

Purpose: One completed well capable of producing

Continental Oil Co.-State S-19 #2 in Unit I of Sec. 19-17-29

Comp. in Grayburg 10/27/57. Top perf. 2289

Pool boundary colored in Red: Proposed Extension Colored IN Green: SE/4 of Section 19 Case 1473: (F) Extension of an existing pool

Coun	ty	LE.	A			Poo1	HARE	
-8 Simps	30n	72/5	- R37E.					
WNSHIP	22	South,	RANGE	37 E	ast ,	NEW MEXIC	CO PRINCI	PAL MERIDI
1 22	18 35							
		5						
								The second secon
17		.8			10	1	1	12
			12 2					
18	+-+-	17		6	18	1	•	13
			_					
				11				
19		20			22			24
			-					47
30		29	2	8	27	2	8	25
	+							
31		- 92		33	34	3	5	36
		+ + +						
urnose .	Tuo	Complete	d welle	canal	le of pro	ducing		
Shall	1 041	Co Ring	wells	in It	t For	and 1 00	207	
DIGT	T OIT	- ILLINE	walt mo	In or	loo /rd	~~~ 4=~~		-
		Comp	. in Mc	nee 4/	20/58. 1	op perf.	7380.	
Shel	1 0il	CoRine	ewalt #4	in Ur	nit C of S	ec. 4-22-	37	Sec. 2

Comp. in McKee 5/17/58. Top perf. 7402

Pool Boundary Colored in Red:

Proposed Extension Colored in Green: NW/4 of Section 4

Case 1473: (G) Extension of an existing pool

County EDDY

PART OF THIS UNADVERTISED Pool WEST HENSHAW-GRAYBURG

0-5 Grayburg

WNSHIP	16		South	, RAN	IGE	30	Ea	st,			NE	W M	EXIC	CO 1	PRIN	ICIP.	AL	MER	IDIAN
															_				
6			-		_	4			-	-	_		2	-	_			-	
	-	-				-					-								
						-					_	-							-
	-		-			-		-		-				_					
7	-	-		-	-	•			1	-			-1	1	_	-	1	2	-
	+					+							1.	-	_				
						-					-			-	-	-		-	-
	-				-	-			2					-					-
18						16			1	5			1	4			1	3	
										-									
18			20			21			2	a			0	9					
						-							-	5			-	3-2	
						-						_						-	
	-				-	4				-31									
30			29			28	-	-	2	7			2	6	-		2	25	-
	-	100		+ +			-	-		-		-				-	-		
	-	-		+-+	-	+-	+	-	-	-					-	-	-	-	+
	-	-						-		-		-	-	-			-	-	-
91			32			33	-		3	4			3	5			:	36	-
							1						-						
rpose John	: Tr H.	wo d Trig	comple	eted leral	well D #	.s ca 8–17	pab) in	le d Uni	of p it J	proc	duc: f S	ing ec.	17-	-16-	-30				
			Cor	np.i	n Gr	aybu	rg	4/10	0/58	в.	Tøj	XXX	XX]	Dep	th	to	cas	ing	g sh
ITS PA	RT U	NADI	VERTI	SED:	Gene	ral	Ame	rica	an (<u>011</u>	Co	. 0	f Te	ex.	-Sta	abl	ein	#4	in in
	-	_			of S	bec.	3-1	6-3(0.	Co	mp :	in	Prei	nie	r 5,	/29	/58		Ope
ol bo	unda	ry (Colore	d in	Red	:		-	-		-	-							

Proposed Extension Colored in Green: SW/2 of Section 17.

UNADVERTISED: Lots 19 & 22 of Section 3

Case 1473: (H) Extension of an existing pool

PART OF THIS UNADVERTISED

County LEA

POOI_ KEMNITZ-WOLFCAMP

10-11 Wolfcamp

OWNSHIP	16	South,	RANGE		East	<u> </u>	VEW MEXICO	PRINCIPAL	MERIDI
		-							
			-						
			•						
+		8				10	11	1	2
18		17		18		15	14	1	3
19	-	20		21		22	23	2	4
		29		28		27		2	5
-									
31		32		33		34	35	3	6

Forest Oil Corp.-State A #1 in Unit A of Sec. 26-16-33 Comp. in Wolfcamp 1/19/58. Top perf. 10,676

THIS PART UNADVERTISED: Forest Oil Corp.-State A #2 in Unit I of Sec. 26-16-33

Comp in Wolfcamp 5/5/58. Top perf. 10,789.

Pool Boundary Colored in R d:

Proposed Extension Colored in Green: NE/4 of Section 26

UNADVERTISED: SE/4 of Section 26

CASE 1473: (I) Extension of an existing pool

County	EDDY	Poo	SOUTH	LEO-GRAYBURG
			-	

0-5 Grayburg

	18	South,	RANGE	29	East ,	NEV	V MEXICO PRI	INCIPAL MERIC	DIAN
h. 7									
								20	
	- 1 a		8 - A.S.		4				
				100					1.1
							0 2 20 20		
S. 199 (9).				- 11-					
7		8		-		10	11	12	
									-
									10.1
- 18		17		-16		15	14	13	-
									-
									-
		20	_	- 21		22	23	24	_
									-
									-
		29		28		27		25	
	1. 1.								
									20
	-								15° R2
91									110
		Ga	S.	3			30		
-1 - 2									

Purpose: One completed well capable of producing

Leonard Oil Company-State #-1819 #1 in Unit H of Sec. 36-18-29 Comp. in Grayburg 4/17/58. Top perf 2783.

Pool boundary colored in Red.

Proposed extension colored in Green? NE/4 of Section 36

Case 1473: (J) Extension of an existing pool

		PART	THIS UNADVERTISED
County	LEA	Pool	PEARL-QUEEN

0-5 Queen

TOWN	SHIP	19	South,	RANGE	35	East ,	<u> </u>	IEW MEXI	CO PRI	NCIPA		DIAN		
			R											
						- 18					Î			
					-	-11 - 12			1					
		1												
			8		9		10	1 1	1		12			
	0 455													
			· · ·											
	18		17		-18		18	1	4		13			
-										-	-			
-														
-				-										
-	19		20			-	- 92	2	3	-	24			
-						-					-			
-		-									-			
	30		29		28		27		8		25			
1 3	3									-				
											26			
											30			
1.2	1000	¥ 23333	2.043	N							1			
urpos	se: S	Six com	pleted	wells	capabi	le of	producin	ng	<u> X</u>		<u>19</u> 8145			
ake I	L. Han	on-Sta	te E-8.	182 #1 ,	Unit	C, Se	c. 28-19	-35, Co	mp. i	a Que	en 4/	30/5	8. Perf	. 4715
HOR.	in the	Sta	te E-8	182 #4,	Unit	F, Se	c. 28-19	-35, Co	mp. i	n Que	en 5/	20/5	8. Perf	. 4884 1
he11	011 (CoMcI	ntosh 1	E 約, U	nit N	, Sec.	21-19-3	35, Comp	• in (Queen	4/19	/58.	Perf.	47431
HISI	PART I	INADVER	TISED:	Shell	Oil C	oMeI	ntosh B	#1, Uni	t L,	Sec.	22-19	-35.	Comp.	in
12-1	12/24			Queen	5/8/5	8. To	p perf.	47621.	F C		10.0	E O		
	144	1124		Queen	5/31/	58. 1	Varks #.	Casin	g Sho	e. 29	19-3	0.0	omp. in	
OOL	Bounda	ry Col	ored i	n Red:	0					110				
ropos	sed Ex	tensio	n Colo	red in	Green	: SW/	4 of Sec	ction 21						
					44-3	Ind	4 OI DOG	STON SC	St.					
			UNA	DVERTIS	SED:	N/2	SW/4 03	f Section	n 22					
						1412/	4 01 080	010H 23						

Case 1473: (K) Extension of an existing pool

CountyLEA	Poo	I SAN STMON	
-----------	-----	-------------	--

0-5 Yates

WNSHIP	21	South,	RANGE 3	5 East	NE	W MEXICO PRI	NCIPAL MERIDI
		8					
					1.	177 En 2 4 42	
							E
					10	11	12
		1					
18		17	1	8		14	13
19		20	2	1	22	23	24
-		+					
30		29		8	27	28	25
			-				
31		- 32	_		34	38	36
-							

Purpose: One completed well capable of producing

Resler & Sheldon-Phillips State #B-1 in Unit L of Sec. 28-21-35 Comp. in Yates 2/8/58. Top perf. 3850'.

Pool Boundary Colored	n Red:		
Proposed Extension Co.	red in Green:	SW/4 of S	ection 28
		NW/4 of S	ection 33

RANGE AND AVERAGES OF

GRAVITIES AND GAS-OIL RATIOS

BUCKSHOT FIELD, COCHRAN COUNTY, TEXAS

Gravities:

Z.4. (-Range: 2452 degrees to 34 degrees

Average: 28.4 degrees

Gas-Oil Ratio:

Range: 163 to 1 to 92, 359 to 1

Average: 1474 to 1

FILES OF RAILROAD COMMISSION

OPERATOR: ANDERSON_PRICHARD

Well	Date Potential	T otal Depth	G. O. R.	Gravity	Perferations or Top Pay	Barrels Oil	Percent Water	Pump or Flow
Frost No. 1	11/28/56	5108	163	28. 7	49451-50071	178.62	0	Flow
Frost No. 2	3/12/57	50561	4040	29	49951-50051	55 . 8 9	10	Flow
Frost No. 3	12/27/56	50751	510	29	49501-49851	128. 4	0	Flow
Frost No. 4	2/1/57	50 60'	1378	29	5014-5020	127.13	Q	Flow
Frest No. A-1	4/2/57	50 80 •	262	29. 2	4962°-4980° 5006°-5016°	106.21	11	Pump
Frest No. A-2	8/11/57	5056"	3140	29.2	49951-50051	67.63	14	Flow
Frest No. A-3	4/1/57	50591	1185	29.3	49501-49821	129.66	15	Flow
Frost No. A-4	5/20/57	50501	910	29.3	49621-49861	165.6	jung	Flow
Freet No. A-5	6/22/57	50591	623	29.8	49541-49881	118.62	0	Flow
Frost No. E-1	2/6/58	50731	370	24. 64	49501-49841	107.95	0	dumd
Watson No. 1	4/4/58	50931	562	26.5	50221-50421	104.88	12	dund
Watson No. 2	5/29/58	50521	166	29.2	50041-50241	116.61	0	Flow

. --

FILES OF RAILROAD COMMISSION

OPERATOR: CHRISTMANN

Well	Date Potential	Total Depth	G. O. R.	Gravity	Perforations or Top Pay	Barrels Oil	Percent Water	Pump or Flow
No. 1 Wilson	1/19/58	49961	244	28.6	49661-49921	129. 65	5 2	Flow
No. 2 Wilson	2/1/58	5006	300	28.4	49681-49961	239. 29	0.6	Moli

4

FILES OF RAILROAD COMMISSION

OPERATOR: CITIES SERVICE

Wilson "J"-5	Wilson "J"-4	Wilson "J"-2	Wilson "J"-1	
7/14/57	7/3/57	4/2/57	2/4/57	Date Potential
5034"	5049*	50281	5031"	Total Depth
1047	515	492	2040	G.O. R.
28.9	28.9	28. 6	27.3	Gravity
4996'-5027'	4989'-5024'	4992'-5014'	4967' - 4984' 4994' - 5010'	Perforations or Top Pay
641.70	991	828	403	Barrels Oil
0.8	3.0	1.0	٠	Percent Water
Flow	Flow	Flow	Flow	Pump or Flow

FILES OF BAILROAD COMMISSION

OPERATOR: DE KALB

t	•							
Flow	60	108.30	* 4960"	29	1875	5009"	10/24/57	Standefer No. 1
Pump or Flow	Percent Water	Barrels Oil	Perforations or Top Pay	Gravity	G. O. R.	Tetal Depth	Date Potential	Well

• Open hale completion

FILES OF RAILROAD COMMISSION

OPERATOR: FROST & FLEMING

Frost No. 3	Frost No. 2	Frost No. 1	Well
10/8/57	9/30/57	7/28/57	Date Potential
50561	50831	5070*	Total Depth
450	400	650	G. O. R.
29	29	29	Gravity
5007'-5021'	4986'-5012'	48821-50041	Perforations or Top Pay
103	103	112	Barrels Oil
2	30	jana	Percent Water
Pump	Pump	Flow	Pump or Flow

FILES OF RAILROAD COMMISSION

OPERATOR: FULTON

Effie Wilson No. 1	Pierson No. 1	Cunningham No. 1	Well
5/4/58	6/2/58	5/8/58	Date Potential
5015	4996"	50271	Total Depth
550	250	450	G. O. R.
28	28	28	Gravity
4984'- 5012'	4960' -4990'	4991'-5020'	Perforations or Top Pay
287.21	62	185.03	Barrels Oil
jus	48	a% BS&W	Percent Water
Flow	Pump	Flow	Pump or Flow

FILES OF RAILROAD COMMISSION

OPERATOR: HUMBLE

Sherrill No. 1	Well
11/9/57	Date Potential
49931	Total Depth
92, 359	G. O. R.
28	Gravity
49671-49801	Perferations or Top Pay
13. 61	Barrels Oil
0	Percent Water
Flow	Pump er Flew

FILES OF RAILROAD COMMISSION

OPERATOR: KATZ

Cunningham No. 1	Well
6/5/57	Date Potential
5044'PB	Total Depth
403	G. O. R.
28.6	Gravity
4 993'-5000' 5003'-5030'	Perferations Or Top Pay
114. 13	Barrels Oil
25	Percent Water
Pump	Pump or Flow

FILES OF RAILROAD COMMISSION

OPERATOR: MONTEREY

Frost No. 41-8	Frost No. 31-8	Well
6/30/57	6/3/57	Date Potential
5032'PB	503 8' PB	Total Depth
1032	348	G. O. R.
28.9	29.4	Gravity
5008'-5028'	5004'-5024	Perforations or Top Pay
148.5	293, 09	Barrels Oil
*	ئي	Percent Water
Flow	Flow	Pump er Flow

•

FILES OF RAILROAD COMMISSION

OPERATOR: MURCHISON AND MALLORY

	Date	Total	2 2 9		Perforations	Barrels	Percent	Pump or
Fred Frost No. 1	1/4/57	50031	1870	28	49 44 *	131	4	Flow
Fred Frost No. 2	3/7/57	4995"	1885	28, 5	4958'-4995'	140	10	Flow
Fred Frost No. B-1	7/14/57	50371	668	29.1	5016"-5037"	108.27	12	Flow
J. W. Frost No. 1	6/9/57	5047"	650	28.4	4940**	121.46	7	Flow
J. W. Frest No. 2	12/12/56	50031	250	28	4963'-5003'	123	22	Pump
J. W. Frost No. 3	2/14/57	50001	1450	27.5	4974" *	263	10	Flow
J. W. Frost No. 4	2/6/57	50031	557	2 8. 5	4952' *	132.48	*	Flow
J. W. Frost No. 5	4/1/57	50391	650	28	5011" *	119.89	0	Flow
J. W. Frost No. B-1	6/9/57	50471	650	28.4	4940'-5047'	121.46	7	Flow
J. W. Frost No. B-2	9/13/57	5001"	236	28. 3	4984" *	105.50	0	Pump
Froat No. C-1	8/19/57	50 36 1	325	29.3	49601-49741	92.03	0.2	Pump
Froat No. C-2	7/15/57	49991	515	29.1	4965* *	105.48	0.3	Pump
Front No. C-3	4/15/58	5014"	595	29	49751-50141	105.50	O	Flow
Freet No. D-1	2/12/58	50251	1437	28.4	50021- 50251	105. 52	Э	Flow

* Open hele completion

Page No. 2

OPERATOR: MURCHISON AND MALLORY

.

Well	Date Potential	Total Depth	G. O. R.	Gravity	Perforations or Top Pay	Barrels Oil	Percent Water	Pump or Flow
Sherrill No. 1	3/3/58	5013'	595	27.5	4981°-4988°	105	0	Flow
Sherrill No. 2	6/2/58	4994'	600	27.7	4971* *	111.30	0.3	Pump
Sherrill No. 3	7/1/58	4991"	460	27.6	49591 *	105	Ð	Pump
Sherrill No. B-1	3/26/58	5017*	846	28.5	4980" *	103, 12	0	Flow
Sherrill No. C-1	5/28/58	5025"	992	27.9	50141 *	112	0.2	Flow
Sherrill No. C-2	7/2/58	50251	1997	28. 9	5019" #	102.78	O	Flow
Murray Watson No. 1	3/22/57	50211	565	31		135	U.	Flow
Murray Watson No. 2	9/18/57	50501	560	29.6	5019"-5027"	105.56	0	Flow

FILES OF BAILROAD COMMISSION

OPERATOR: RUTTER & WILBANKS

	Frost No. 3-2 11/3/57	Frost No. B-1 7/18/57	Froat No. A-1 5/15/57	Date Well Potential
	5100.	5117'	5049'PB	Total Depth
4 R)	575	300	300	G. O. R.
	27.3	26. 2	26. 6	Gravity
40971 - EAAAI	4996"-5011"	5004"-5026"	4998-5010-	Perforations or Tep Pay
100	119	158	112	Barrels Oil
N	15	20	60	Percent Water
	Puznp	Pump	Pump	Pump or Flow

FILES OF RAILROAD COMMISSION

OPERATOR: STEKOLL

Frost No. 1 3	Well P
/6/58	Date otential
5200'	Total Depth
238	G. O. R.
29.5	Gravity
4959*-5040*	Perforations or Top Pay
139.89	Barrels Oil
35	Percent Water
Pump	Pump or Flow

FILES OF RAILROAD COMMISSION

OPERATOR: TEXAS COMPANY

.

4	J.	ي •	4	ч.	
Markham No.	W e i i				
B-1	*	نوي	N	i yandi	
4/23/58	4/25/58	1/5/58	12/13/57	11/17/57	Date Potential
50071	4999'	4987"	4977"	4976"	Total Depth
490	1230	800	27	940	G. O. R.
27.2	27.4	28. 6	28.9	28. 2	Gravity
4970'-5006'	4960'-4990'	4956"-4978"	4946'-4976'	4946'-4970'	Perforations or Top Pay
158.09	596.44	405.33	110.40	192	Barrels Oll
ŝ	0	UI	0.5	0	Percent Water
Pump	Flow	Flow	Flow	Flow	Pump or Flow

FILES OF RAILROAD COMMISSION

OPERATOR: TIDEWATER

Cunningham No. 1	Well
3/25/58	Date Potential
5070'	Total Depth
348	G.O. R.
34	Gravity
4993'-50 30'	Perferations or Top Pay
106. 19	Barrels Oil
دی در	Percent Water
Pump	Pump or Flow

,

SUMMARY, CORE DATA

. .

T-9-S, R-38-E, LEA COUNTY & BUCKSHOT FIELD, COCHRAN COUNTY

.

	Range	Average
Permeability	1.1 to 7.7 md.	4.2 md.
Pozesity	5.5 to 10.9	7.58%
Oil Saturation	12.7 to 24.1	17.67%
Water Saturation	18.3 to 38	31 .25%

BOTTOM HOLE PRESSURE DATA, BUCKSHOT FIELD, COCHRAN COUNTY, TEXAS FILES OF RAILROAD COMMISSION

April 10, 1957

	Top Pay	Shut in Hours	B.H. Temp.	Test Depth	Observed Pressure	Datum Plane	Corrected Pressure
Cities Service:							
Wilson J-1	-1081	24	114	-1080	1567	- 1080	1567
Wilson J-2	-1080	24	112	-1080	1601	-1080	1601
		Decem	ber 9, 19	57			
	Top Pay	Shut in Hours	B.H. Temp.	Test Depth	Observed Pressure	Datum Plane	Corrected Pressure
Anderson-Prichard:							
Jack Frost No. 1	4945	77	115	4997	1436	-1080	1436
Jack Frost No. 2	4995	76	115	5000	1496	-1080	1496
Jack Frost No. 3	4950	74	115	4997	1428	-1080	1428
Jack Frost No. 4	5014	73	115	4991	1303	-1080	1303
Frost A No. 1 *	4962	76	NT			-1080	1463
Frost A No. 3 *	4950	76	NT			-1080	1362
Frost A No. 4	4962	74	115	4944	1272	-1080	1 2 91
Frost A No. 5	4954	73	115	4943	1539	-1080	1563
	* Det	ermined b	y acoust	ical sou	nding		
Cities Service:							
Wilson J-1	-1081	74	115	4993	1443	-1080	1443

December 9, 1957

~

	Top Pay	Shut in Hours	B.H. Temp.	Test Depth	Observed Pressure	Datum Plane	Corrected Pressure
Cities Service:							
Wilson J-2	-1088	74	115	4994	1448	-1080	1448
Wilson J-3	-1082	73	115	4998	1611	-1080	1611
Wilson J-4	-1081	72	1 15	4988	1431	-1080	1431
Wilson J-5	-1083	72	1 15	4993	1422	-1080	1422
Cyrus Frost, Jr., et al:							
J. W. Frost No. 1	-1053	75-1/2	115	4992	1331	-1080	1331
J. W. Frest No. 2 *	-1058	72	115	4992	1061	-1080	1061
J. W. Frost No. 2*	-1077	72	115	4992	740	-1080	740
	* Pum	ping wells	tested	by acous	tical sound	ing	
Katz Oil Company:							
Cunningham No. 1	-1087	72				-1080	1079
Monterey Oil Company:							
Jack Frost No. 31-8	-1103	70.5	115	-1029	1375	-1080	139 2
Jack Frost No. 41-8	-1110	70	115	-1028	1397	-1080	1414
Rutter & Wilbanks:							
Frost A No. 1	4926	69	115	5000	1395	-1080	1411
Frost B No. 1 *	4943	69				-1080	1546
Frost B No. 2 *	4939	69				-1080	1526
Frost C No. 1 *	4906	69				-1080	936

* Pumping wells tested by acoustical sounding

-December 9, 1957

	Top Pay	Shut in Hours	B.H. Temp.	Test Depth	Observed Pressure	Datum Plane	Corrected Pressure
Texas Company:							
Jack Markham No. 1	-1034	72	110	-1038	1591	-1080	1605

•

.

164		0.1	<0.1						· • • • • •		
17	4986.7-88.3	4.1	3.2	11.1	12.4	٥. ـ لا	7 2				
18		1.2	0.8								
18	1988.3-90.0	0.6	0.6	11.9	16.7	27.7	PP		X		K P
10	90 0-91.7	0.1	< 0.1	1.6	d.7	45.6	F.PP		•		
	///////////////////////////////////////	0.2	0.3								
TAN		V.3	0.1								
20	4991.7-92.7	7.1	3.9	5.2	13.4	30.7	F, PP		· + + + • []*		
21	92.7-94.0	4.1	1.5	12.5	9.6	30.4	PP				
22	94.0-95.8	1.0	0.8	2.0	10.0	75.0	F.PP			· 4995 N	
22		0.7	0.5			4					
0.2		0 2		21.	125	- EA 1.	F DD				
2	4772.9071.1	- VAZ	VV.T	6.4		20.4	↓ F 9 EF	┨┠╼╍┪┝╂╺┍┽┥╸	┊╎╎┊╸╸╄╋╸		
234		0.4	0.1					╶┨┠╾╎╌╎┠╾┽┿┠╼╴	<u>+++</u> ++++		6 ++++++ N 1 ++++
24	4997.7-99.6	1.2	Q.2	7.6	17.1	30.3	F <u>, F</u>	┨┠╼┥┿╉╼╵┽┽┾╴	∔++++ + + X		▓╪┊┿╕┼╍╺╺╏╺╲┫╿┾┿┽
24		0.8	0.3	·				╶╢┿╍╁╍┝┼╇╸	┵┊╞┽╺╌┥┩┥	- F 5000 - N	NIIIIIIIIIIIII
25	4999.6-01.3	1.0	0.9	10.1	21.8	26.7	F		X		
264		1 1 0	0.7			1					3.1
04	6001 2 02 0	1 1 0		4.0	14 8	20 3	7 21			Z Z	
20	J.CheC.TMC	1.0	U.0	0.9	10.0		rjrr m nm				Still
27	03.0-04.5	0.6	0.5	7.9	10.5	32.4	r, PP				
28		1.2	1.2	ł		•	• • • • • • • • • •	╶┨┝┶┝╼┝┿┿╇┿	╸╷┠╎┥╸┢ ┥		· · · · · · · · · · · · · · · · · · ·
28	5004.5-06.0	1.1	0.9	9.6	11.5	22.2	F, PP		A LINE N		S Contraction (Section 2)
29	06.0-07.7	0.4	0.2	9.5	13.7	30.5	F, 12				
29	L	0.0	0.3								
30	5007 7-04.5	1.0	0.4	10.3	12.6	32.0	F. PP				i 5
224	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.3	0.1	10.9		<i>J</i>			· · · · · · · · · · · · · · · · · · ·	AZ ZN	
-24	feee f 11 ()			+	107	1.1 0	12			5010	
11	-5009-5-11-U	<u> <0.1</u>	t . SVert	1.1.2	12.3	14 1. 0	r , rr				
32	11.0-12.8	0,1	<0.1	0.0	11.1	0.00	V,F		· · · · · · · · ·		
.32		<0,1	<0.1	Ļ		ł					
33	5012.8-14.4	0,8	0.5	9.6	15.6	31.2	F, PP				
21.	'	0.9	0.9				:				
21	CO11 1 15 8	0.7	0.6	11 0	16 3	22 6	SP PP				R
-244	2014 •4=12•4				10.0	א בכי	D BB	╶┨┠┄┽╌┾╌╸╞╌╸┝╶┽╶╂╌╴			
-35-	. 12.0=1(.5	1	3.0	f Ind	70•X	ه.دد	F, FF	╌┨┠╌┡╌╸┝╋╌┾┿┥╶┠╼╴	┼┼╂┽┼┼╉╏		
- 361		_0.7	0.6		- ·	.		╾┫┣┿┽┵╋┽┽┽╆╈	· • • • • • • • • • • • • • • • • • • •		┇┥┥┥╸┥┼┑┍┥┑╊┽┥┯┿
_36	5017.5-19.0	_0.7	0.5	9.1	14.3	29.7	SF, PP	╶┨┢┿┽╍╋┿┽┥╋┽	+ + + + +	YZ ZN	3
37	19.0-20.3	0.7	0.5	10.3	10.4	30.0	SP.PP			5020	
28		<0.1	-0.1								
38	5020. 3-22.0	<0.1	\$0.1	1.0	TR	80.0	SF. PP				
20	20 0 /22 8	-0.7	-01	20	5 0	60 0	P PP		**		
27	£2:V=23.V			1 2.0	1.0	00.0	· • • •		· ! ! ! ! !		
374		<0.1	<0.1								
	5023.0-25.4	↓. <u>~Qa1</u>	<u><0,1</u>	1. 4.4	TR	10.5	F, PP	╴ ╎ ┣╍ <u>╄</u> ╺╈╍╋╼┥╴	· ŧ + ┩·┥·╄·╇ ╇ ┿	+ 5025	╶┼╒┑┪┥┼┽┽┥┝┝┤┼┽┤
414		<0.1	0.1								
Ш	5025.4-21.2	<0.1	<0.1	2.3	13.0	41.7	34,4P				
42	27.2-28.5	<0.1	×0.1	1.7	11.8	70.5	P			9Z ZN	
434		<0.1	40.1								
1.2	5028 5-30 0		201	21	Q L	52.5	P = = =			NX	
- M 2		AD ANTAS	Vete		1	1000	+ * * * · · · · · · · · · · · · · · · · ·	╾┨┠┾┾┾╉╍┦┾╉┿	┼┼┨┼┽┼┠┼	5030	╵╵┫╡╎╎┥┫┥ ┥┥┨┤┤
1	TON BUNYER L	ANA NY	1313	†			-	╶┫┠┥╅┊╂╸┽┽╊┽	┼╍┠┼┾┿╊┿		╾╾╉┊╴╪╌╅┠╞╌┾┅╋┽┾╌┾┣╺╌┾
.		4	+	1 .	ł				+	$+ \cdot \mid \mathbf{X} \mid \cdot \mid$	╶┾╅╀┊╿╉╽┽┊╉╿╿┊╉╷┦
			ļ	ł	ļ						
			L	1		[5033	
		1	1	1	1		1				

REFERENCE Nº A 1959 -A

BEFORE THE OIL CONSERVATION COMMISSION MEXICO CASE

	ND N	Bill CONFr Conver 1224 Traver 1224 Th, 16, Tex	COMPANY R. RF. W.LN. 660' F.SL 4 GOV FILL DATE COMPANY WELL DATE Permanent Carrow GROUND LIVEL CHOUND LIVEL F. 33 1, 0-S 4, 1995 CHOUND LIVEL F. 33 1, 0-S 4, 1995 COMPANY A. 1995	OWAN OIL COMPANY OWAN OIL COMPANY EDERAL # 1 ILDCAT EA EW MEXICO FIELD WILDCAT COUNTY LEA STAT NET HEXICO	
Train to 488 32 Train Model No Train SCINTI Distance Train SCINTI Distance Train Science Reference to trainer Distance Train To 5033 3800 5033 2300 2300 50 Container Conta C Francisco Conta C Francisco Conta C	006 CAMMA RAY 402 Do (D-iG1 LLATION Length 110, 0 50-00 U C 10 2 3 20 2 3 10 2 3 R STANDARD C 7	LOrd host Druck No. 467 3 3 3 3" 4" Gontro Ray Southvity Zor- 5 RU O RI 5 RU O RI 10 RU - 14 RI 1033 N. L EN	GRUC POCE LATA 32: GUS GUT Tepe 1 COM det N D Forte Mode Pr Tore SCINTI Store Model No Store Model No	Interview VEUTRON - NEUTRON 402 DCNI LLATION STOAL STOAL MATION BERYLLIUM 300 MG 125 EU 125 EU	
G A M I	MA RAY	CASING L COLLAP : O'S		NEUTRON	→
		49 84 19 625	OIL	BEFORE THE CONSERVATION COMM SANTA FE, NEW MEXI EXHIBIT NO EXHIBIT NO EXHIBIT NO	12) 3125

*

*

