

NMOCC CASE NO. 2118 & 2459
OHIO EXHIBIT NO. _____3

DATE 12-13-61

RECOVERABLE OIL RESERVES

LEA DEVONIAN POOL

Basic Data

Net Pay = 65 feet

Porosity = 5.49% (Core Analysis)

Water Saturation = 43% (Capillary Pressure Tests)

Formation Volume Factor = 1.185 (Fluid Analysis)

Recovery Factor = 50% (Estimated)

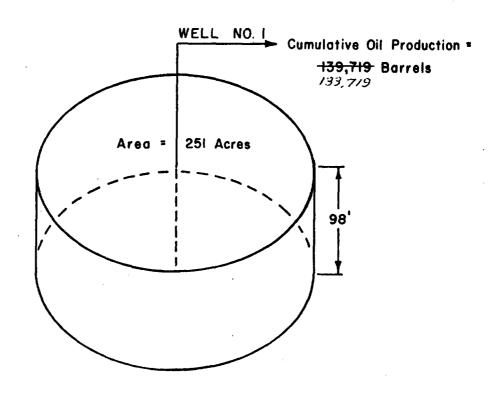
Volumetric Calculation

7758 Bbl/acre-ft. x Porosity x (1-Water Saturation) x Net Pay x Recovery Factor Formation Volume Factor

 $\frac{(7758)(0.0549)(0.57)(65)(0.50)}{1.185} = 6,658 \text{ bbls/acre}$

NMOCC Case No. 2/18 5 2459
Ohio Exhibit No. 9
Date 12-13-61

FOR DEVELOPMENT OF LEA DEVONIAN POOL


40-ACRE SPACING VS. 80-ACRE SPACING VS. 160-ACRE SPACING

Proposed Participating Area	2280 Acres	
Wells Required with 40-Acre Spacing Wells Required with 80-Acre Spacing Wells Required with 160-Acre Spacing	57 Wells 29 Wells 15 Wells	
Investment @ \$510,000 per Well For 40-Acre Spacing (57 Wells) For 80-Acre Spacing (29 Wells) For 160-Acre Spacing (15 Wells)	\$29,070,000 \$14,790,000 \$ 7,650,000	
Ultimate Reserves Oil Gas @ 300 cu. ft. per bbl.	15,180,240 bbls. 4,554,072 MCF	
W.I. Net Operating Income Per Gross Bbl. of Oi Produced Including Income From Gas Produced Wi Value Bbl. of oil 300 cu. ft. of gas Total Gross Value		\$2.81 <u>.06</u> \$2.87
Costs Severance & Ad valorem Taxes Royalty Lifting Costs	\$0.20 0.36 <u>0.25</u>	\$0. 81
Net Operating Income Per Gross Bbl.		\$2.06
W.I. Total Net Operating Income 15,180,240 x \$2.06/bbl.		\$31,271,294
Net Profit for 40-Acre Spacing Net Profit per Well. Profit to Investment Ratio	\$ 38 , 619	\$ 2,201,294
		0.08 to 1
Net Profit for 80-Acre Spacing Net Profit per Well	\$ 56 8 ,320	\$ 16,4 8 1,294
Profit to Investment Ratio		1.11 to 1
Net Profit for 160-Acre Spacing Net Profit per Well	\$1,574,753	\$23,621,294
Profit to Investment Ratio		3.09 to 1

NMOCC Case No. 2118 \(\) 2459
Ohio Exhibit No. 10
Date 12-13-61

EV 10

PRESSURE DECLINE CALCULATED FOR LEA UNIT NO. 1 TO OCTOBER 1, 1961, BASED ON MAXIMUM RADIAL DRAINAGE OF 251 ACRES

Pressure Decline =
$$\frac{N_D}{c_e N} \times \frac{B_O}{B_{Oi}}$$

Pressure Decline = $\frac{133,719}{(23.2 \times 10^{-6})(5.04 \times 10^{6})} \times \frac{1.198}{1.185}$

Pressure Decline = $\frac{160,195}{139}$

Pressure Decline = 1153 psi

Measured Pressure Change to October 1, 1961 = 12 psi increase

NMOCC Case No. 2118 \$ 2459
Ohio Exhibit No. 11
Date 12-13-61

The Material Balance for an oil reservoir producing when the reservoir pressure is above the bubble point pressure of the reservoir fluid is given by the following equation:

$$\mathtt{NB_{oi}}$$
 $\mathtt{c_e} \, \mathtt{\Delta p} = \mathtt{N_p} \, \mathtt{B_o} - \mathtt{W_e} + \mathtt{B_w} \, \mathtt{W_p}$

where:

N = original oil in place

 N_D = cumulative oil production

 B_{O} = oil formation volume factor

 W_e = cumulative water influx

 B_{w} = water formation volume factor

Wp = cumulative water production

 Δp = reservoir pressure decline

 B_{oi} = initial oil formation volume factor

ce = effective fluid compressibility

$$c_e = \frac{S_o c_o + S_w c_w + c_f}{S_o}$$

 $S_0 = qil saturation$

 c_{O} = oil compressibility

 $S_{\mathbf{w}} = \text{water saturation}$

 \mathbf{c}_{O} = water compressibility

cf = formation or rock compressibility

For a volumetric reservoir W_e = 0 and W_p = 0 and the above equation reduces to:

$$NB_{oi} c_e \Delta p = N_p B_o$$

The reservoir pressure decline at any time is thus given by the following expression:

$$\Delta p = \frac{N_p}{c_e N} \times \frac{B_0}{B_{0i}}$$

Basic Data for Lea Unit No. 1:

Porosity
$$(\emptyset)$$
 = 5.49%

Water Saturation
$$(S_w)$$
 = 43%

Net Pay
$$(h)$$
 = 98 feet

Area (A)
$$= 251$$
 acres

Oil Compressibility (
$$c_0$$
) = 9.99 x 10^{-6} vol/vol/psi

Water Compressibility (
$$c_w$$
) = 3.00 x 10^{-6} vol/vol/psi

Rock Compressibility (
$$c_f$$
) = 6.25 x 10⁻⁶ vol/vol/psi

Original Oil in Place in 251 Acres Sprrounding Lea Unit No. 1

$$N = \frac{7758 \text{ Ah } \emptyset \text{ (1 - S_W)}}{B_{\text{oi}}}$$

$$N = \frac{(7758)(251)(98)(0.0549)(0.57)}{1.185}$$

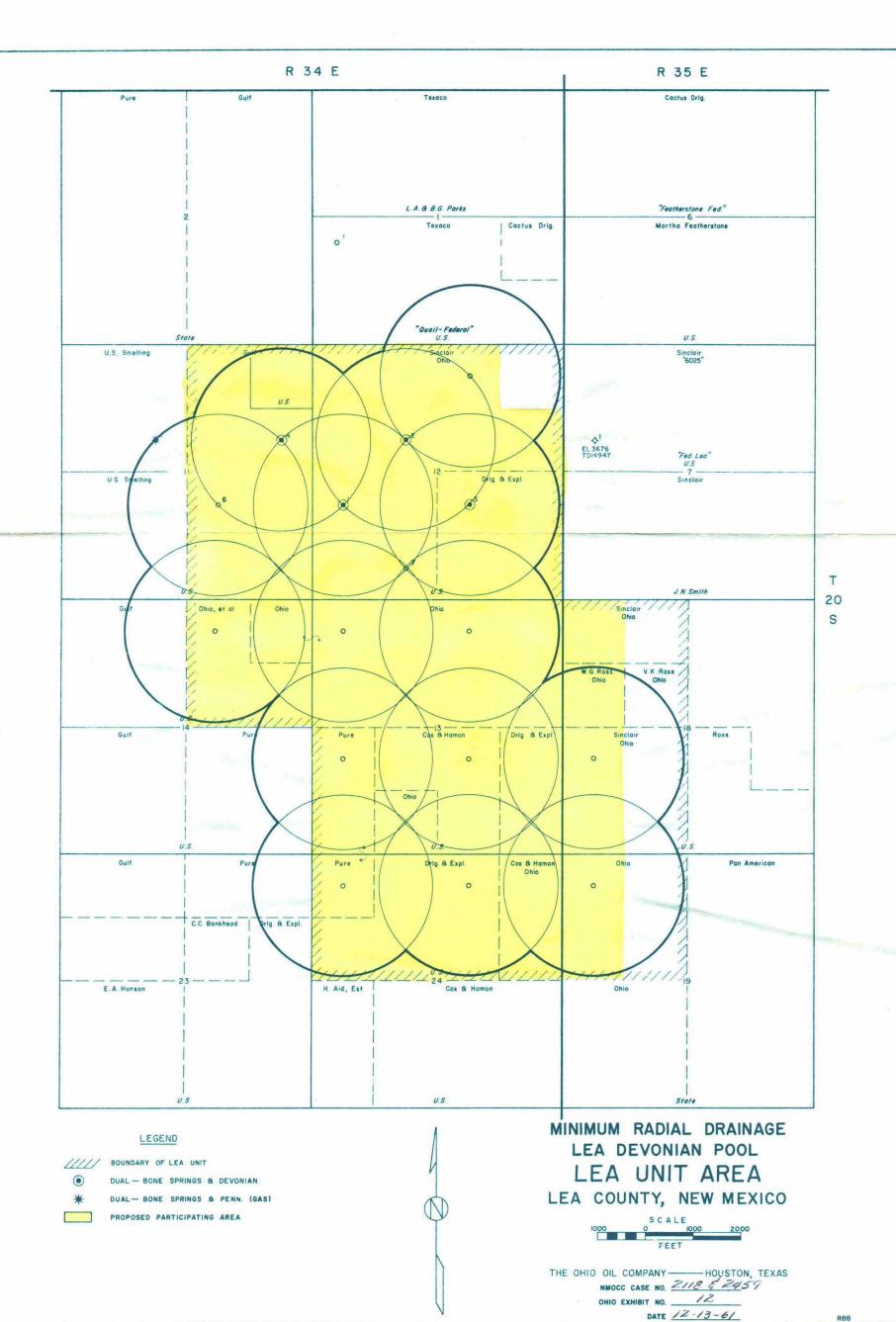
N = 5,040,000 bbls. of stock tank oil

Effective Fluid Compressibility

$$c_e = \frac{S_o c_o + S_w c_w + c_f}{S_o}$$

$$c_e = \frac{[(0.57)(9.99) + (0.43)(3.0) + (6.25)]10^{-6}}{(0.57)}$$

$$c_e = 23.2 \times 10^{-6} \text{ vol/vol/psi}$$


RELATIONSHIP OF TOTAL DAILY WITHDRAWALS LEA DEVONIAN POOL

40-ACRE SPACING VS. 80-ACRE SPACING VS. 160-ACRE SPACING

Normal Unit Allowable = 34 BOPD

Spacing	(Acres)	40	80	160
Allowable Factor 14	'000, 15	9.33	10.33	15.50
Top Well Allowable	(BOPD)	31.8	352	527
No. of Wells		57	29	1.5
Top Field Allowable	(BOPD)	18,126	10,208	7,905

NMOCC Case No. <u>2118 & 2459</u>
Ohio Exhibit No. <u>13</u>
Date <u>12-13-61</u>

LARGE FORMAT EXHIBIT HAS BEEN REMOVED AND IS LOCATED IN THE NEXT FILE

LARGE FORMAT EXHIBIT HAS BEEN REMOVED AND IS LOCATED IN THE NEXT FILE

LARGE FORMAT EXHIBIT HAS BEEN REMOVED AND IS LOCATED IN THE NEXT FILE