	⊢ <u>۲</u>	с v	μēω		
-	5	33	4	ν	C ABO UNIT NTY, NEW MEXICO POSED GAS VELLS AND LINES SIDUE GAS INJECTION TE: 3-27-73 2640 33200
R 29 E	GEN AVER	SE	ی ۲	END NIT BOUNDARY RACT BOUNDARY RACT NUMBER ARTIAL TRACTS ESIDUE GAS LINES ROPOSED GAS INJECTION WELL	EMPIRE EDDY COU PROF INJECTION W UNITIZED RES
	CONTINENTAL GEN AMER CONTINENTAL GEN AMER BU BU CONTINENTAL CONTINENTAL CONTINENTAL	ñ	ω		
	AR.Co. AR.Co. 25 23 24 4 44 20 29 34 4 44 44 20 29 34 4	9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	_	2	Ē
			N	<u>—</u>	
	KNOX YLTES AMOCO KNOX YLTES AMOCO 76 + (33) + 3 AMOCO CHAMBERS SAME CAN BZ BW TRCO 1.8.	FDDY AMOCO A	Ŵ	Q	ũ

		Operational M	ethod
	Competitive Natural Depletion (Non- Unitized)	Residue Gas Injection (Unitized)	Advantage of Unitized Case Over Non-Unitized Case
Pool Ultimate Oil Recovery (Percent of original oil-in-place)	45.0	52.9	+7.9
Pool Total Reserves After 7-1-73 (Bbls. 011)	79,023,854	108,956,651	+29,932,797 (Reserve Increase: 37,9%)
State Leases Gross Reserves After 7-1- (Bbls. 011)	-73 60,734,252	77,702,773*	+16,968,521
12.5% Net Royalty Reserves for State Leases after 7-1-73 (Bbls. 011)	7,591,781	9,712,847*	+ 2,121,066
Value of State Net Royalty Reserves After 7-1-73 (@ \$3.81/Bbl.)	\$28,924,686	\$37,005,947*	+\$8,081,261
Future Life After 7-1-73 (Years)	26	24	
*Unitized Reserves are based on the pr the following share of a Field-wide U	roposed unit formula, which gi Unit: Phase I: 69.64897% (du Phase II: 71.50243% (Th	ves State leases ring first 11,000,0 ereafter)	00 BO after unitization)
NOTE: Calculated oil lost for each ye reservoir pressure: 2,050,000 State of New Mexico share of th	ear delay, due to starting uni Bbls. Oil lost per year delay his loss:	t operations and ga	s injection at a lower

State of New MeXICO Share of this ross: (2,050,000)(.71315)(.125) = 182,834 Bbls. oil reserves lost per year delay. Value of this lost oil = (\$3.81)(182,834) = \$694,883 lost to State per year delay.

Ś.ĸ

/ |

EMPIRE ABO POOL, EDDY COUNTY, NEW MEXICO

.

HUMBLE OIL AND REFINING COMPANY

Chalk Bluff Draw Unit A Well No. 4 990'FNL & 2310'FWL SEC.9, T-18-S,R-27-E EDDY COUNTY, NEW MEXICO INJECTION WELL DIAGRAM

EXHIBIT NO. _

AMOCO PRODUCTION COMPANY *R.H. Windfohr Well No. 4* 1582'FSL & 1645'FEL SEC.4, T-18-S, R-27-E EDDY COUNTY, NEW MEXICO INJECTION WELL DIAGRAM

AMOCO PRODUCTION COMPANY Maico "H" Federal Well No. 2 1980' FNL & 660' FEL SEC. 3, T-18-S, R-27-E EDDY COUNTY, NEW MEXICO INJECTION WELL DIAGRAM

EXHIBIT NO. _

MARTIN YATES,III Dooley State ABO No. 2 1650' FSL & 1650' FEL SEC. 36,T-17-S,R-27-E EDDY COUNTY, NEW MEXICO INJECTION WELL DIAGRAM

EXHIBIT NO.

AMOCO PRODUCTION COMPANY State "BM" Well No. 1 1650' FSL & 2387' FWL SEC. 31, T-17-S,R-28-E EDDY COUNTY, NEW MEXICO INJECTION WELL DIAGRAM

AMOCO PRODUCTION COMPANY State "BV" Well No. 1 2280'FNL & 978'FEL SEC.32, T-17-S,R-28-E EDDY COUNTY, NEW MEXICO INJECTION WELL DIAGRAM

EXHIBIT NO. _

ATLANTIC RICHFIELD COMPANY *M. Yates "B" (ARC) Well No.8* 1980' FNL & 2130' FEL SEC.33, T-17-S, R-28-E EDDY COUNTY, NEW MEXICO INJECTION WELL DIAGRAM

EXHIBIT NO.

HONDO OIL AND GAS COMPANY (ATLANTIC RICHFIELD COMPANY) State "A" Well No. 21 1650' FSL & 1980'FWL SEC.26, T-17-S, R-28-E EDDY COUNTY, NEW MEXICO INJECTION WELL DIAGRAM

EXHIBIT NO. ___

EMPIRE ABO POOL

Potential Rate Benefits to New Mexico State Lands Leases by Unitization.

(Pool Total Requested Top Allowable: 42,000 BOPD*) Unitized State Rate Phase I:(42,000)(.6965) = 29,253 BOPD Non-Unitized State Rate: (25,600)(.6881) 17,615 BOPD Ξ State Lease Rate Gain by Unitization =' +11,638 BOPD State Leases Net Royalty Gain by Unitization: (.125)(11,638) 1,455 BOPD = Value of State Leases Net Royalty Gain by Unitization (\$3.81)(1,455) \$ 5,544/Day =

(*To be requested from N. M. O. C. C., supported by reservoir numeric model predictions.)

EMPIRE ABO UNIT AREA

Table of Fluid Properties (P Base = 15.025 P_{bp} = 2231)

Tres. = 109° F (569° R)

	BO	Bg ·	Rs	
P _r (PSIA)	(RVBO/STBO)	RVB/MCF	(MCF/BBL)	<u>Z</u>
15.025	1,000	194.696	0	1.0
100	1,125	28.229	.180	.965
200	1.163	13.749	. 235	.940
300	1.193	8.970	. 290	.920
400	1,218	6.692	• .345	.915
500	1.244	5,236	.395	.895
600	1.263	4.276	.445	.877
700	1.285	3.644	. 495	.872
800	1.304	3.108	.540	.850
900	1,325	2.746	. 585	.845
1000	1.344	2.437	.625	.833
1100	1.364	2.178	.675	.819
1200	1,384	1,962	.725	.805
1300 -	<u> </u>	<u> </u>		
1400		 1.649 -		
1500	1.445	1.516	.875	.777
1600	1.465	1.404	.925	.768
1700	. 1.485	1.304	.975	.758
1800	1.505	1.220	1.025	.751
1900	1.525	1.147	1.075	,745
2000	1.548	1.053	1.125	.720
2100	1.573	1.000	1.175	,718
2200	1.597	.953	1.225	.717
2231	1.606	.939	1.250	.716

 $P_r = Reservoir average pressure at datum -2264' subsea, lbs/in² absolute.$ $<math>B_0 = Oil$ formation volume factor, reservoir volumetric bbls/stock tank bbl. $B_g = Gas$ formation volume factor, reservoir volumetric bbls/thousand std. cu. ft. $R_s = Solution Gas/Oil Ratio, Thousand std. cu. ft./stock tank bbls. oil.$ Z = Gas Compressibility Factor.

EXHIBIT

4-25-73

ATLANTIC RICHFIELD COMPANY *M. Yates "B" (ARC) Well No.8* 1980' FNL & 2130' FEL SEC.33, T-17-S, R-28-E EDDY COUNTY, NEW MEXICO INJECTION WELL DIAGRAM EMPIRE ABOUNIT PLAN OF OPERATION EXHIBIT 4

. 12. 445-3

EXHIBIT NO. ___

United States Department of the Interior

GEOLOGICAL SURVEY WASHINGTON, D.C. 20242

AUG 1 0 1972

Atlantic Richfield Company P.O. Box 1610 Midland, Texas 79701

Attention: Mr. R. E. Howard

Gentlemen:

Your application of November 18, 1971, revised by letters of January 14, 1972, and July 7, 1972, filed with the Area Oil and Gas Supervisor, Roswell, New Mexico, requests the designation of the Empire Abo unit area embracing 11,339.15 acres, more or less, Eddy County, New Mexico, as logically subject to operation under the unitization provisions of the Mineral Leasing Act, as amended.

Unitization is for the purpose of conducting more efficient operation with partial pressure maintenance by the injection of residue gas and will be limited to the Abo formation as defined by Section 2(h) of the unit agreement. You estimate that such operations will result in the recovery of approximately 30,000,000 barrels of additional oil.

The land requested, as outlined on your plat marked "Exhibit A, Empire Abo unit, Eddy County, New Mexico," is hereby designated as a logical unit area. In order that the land now included in the Chalf Bluff unit area may be incorporated into the Empire Abo unit agreement, the Chalf Bluff unit agreement should be terminated.

Your proposed form of unit agreement will be acceptable if modified as indicated. One marked copy of the form is returned herewith, one copy is being retained, and one copy is being sent to the Oil and Gas Supervisor, Roswell, New Mexico. We hereby concur in the Supervisor's recommendation that the proposed basis for allocating unitized production be accepted.

The format of the sample exhibits attached to the 1968 reprint of the Form of Unit Agreement for Unproved Areas should be followed closely, including the latest status of all acreage, in the preparation of Exhibits A and B.

201-

In the absence of any objection not now apparent, a duly executed agreement conformed to the returned copy and approved by the appropriate officials of the State of New Mexico will be approved if submitted in approvable status within a reasonable period of time. However, the right is reserved to deny approval of any executed agreement that, in our opinion, does not have full commitment of sufficient lands to afford effective control of operations in the unit area.

As the unit area contains State of New Mexico lands, we are sending a copy of this letter to the Commissioner of Public Lands of the State of New Mexico in Santa Fe. Please contact the State of New Mexico before soliciting joinders, regardless of prior contacts with or clearance from the State.

Sincerely yours,

ſ

W. le. Nachurten

Acting Director

Commissioner of Public Lands August 30, 1972

ALEX J. ARMIJO COMMISSIONER

P. O. BOX 1148 SANTA FE, NEW MEXICO

Atlantic Richfield Company P. O. Box 1610 Midland, Texas 79701

> Re: Proposed Empire Abo Unit Eddy County, New Mexico

ATTENTION: Mr. W. L. Embry

Gentlemen:

We have reviewed the proposed unexecuted copy, as well as the modified copy by the USGS and exhibits for the captioned unit and find that it meets with the requirements of the Commissioner of Public Lands, therefore, the Commissioner approves the proposed agreement for the Empire Abo Unit as to form and content.

Your Exhibit "B" requires the following changes.

TRACT NO.	CHANGE TO BE MADE
48	Sec. 31-17S <u>-27E(</u> should be <u>28E</u>)
56	Sec. 28 <u>-275</u> -28E(should be <u>175</u>)
57	Sec. 31-17S- <u>27E</u> (should be <u>28E</u>)
64	Sec. 31-17S- <u>27E</u> (should be 28E)

Upon submitting this unit for final approval the following are required by this office:

- 1. Two executed copies of Unit Agreement-one must be an original
- 2. One copy of Operating Agreement
- 3. Two sets of all Ratifications from Lessees of Record and Working Interest Owners-one copy must be an original
- 4. Order of the Oil Conservation Commission
- 5. Initial Plan of Operation

Atlantic Richfield Company August 30, 1972 Page 2

6. Filing Fee in the amount of Three-Hundred (\$300.00) Dollars.7. Re-designation of wells

In your final application we would also like for you to state all tracts qualified and verification that the Working Interest in the qualified tracts have been contacted and requested to join. Also, state all tracts committed and not committed to the unit.

If we may be of further service please do not hesitate to call on us.

Very truly yours, raha

RAY D. GRAHAM, Director Oil and Gas Department

AJA/RDG/s

S 1 .

North American Producing Division Permian District Post Office Box 1610 Midland, Texas 79701 Telephone 915 682 8631

BEFORE PMALAUER STAMENS OIL CORRECTION PACE PACE ALL CON App 2011 2012 2012 2012 2012 2012 CASE PACE 4952 29953 Submitted by ARCO Hearing Date 25 April 1573

April 25, 1973

United States Department of the Interior Geological Survey P. O. Drawer 1857 Roswell, New Mexico 88201

Attention: Mr. N. O. Frederick (6) Oil and Gas Supervisor

State of New Mexico Mr. Alex J. Armijo Commissioner of Public Lands P. O. Box 1148 Santa Fe, New Mexico

Attention: Mr. Ray D. Graham, Director (3) Oil and Gas Department

State of New Mexico Oil Conservation Commission P. O. Box 2088 Santa Fe, New Mexico

Attention: Mr. A. L. Porter, Jr. (3) Secretary Director

Working Interest Owners Empire Abo Unit (see attached address list)

Re: Initial Plan of Operation Empire Abo Unit Eddy County, New Mexico

Gentlemen:

In compliance with Section 11 of the Unit Agreement, Empire Abo Unit, Eddy County, New Mexico, Atlantic Richfield Company, as United States Department of the Interior Page 2 April 25, 1973

Unit Operator on behalf of itself and the other participating working interest owners, hereby submits for your approval a Plan of Operation to cover the period beginning with the effective date of the Unit Agreement and extending through the remainder of calendar year 1973.

Yours very truly,

ATLANTIC RICHFIELD COMPANY . OPERATOR

P. E. Fletcher Operations Manager

PEF/SHC/jrb

1. Project Area

History and Background

The Empire Abo Unit area consists of some 11,339.15 acres in Eddy County, New Mexico (see attached plat, Exhibit 1). The area is located in portions of sections 34, 35, 36 Township 17 South, Range 27 East; sections 1, 2, 3, 4, 8, 9, 10, 11, 12, 15, 16, 17 Township 18 South, Range 27 East; sections 25, 26, 27, 28, 31, 32, 33, 34, 35, 36 Township 17 South, Range 28 East; sections 4, 5, 6 Township 18 South, Range 28 East; sections 29, 30 Township 17 South, Range 29 East. Within the Unit Area, owners of the following tracts have chosen not to participate in the unit: 2,6,42,46,49,55,56,69,73C,77,79,84,91. These non-participating tracts total 684.84 acres. 640 The remaining 10,654.31acres is to be developed as a project area for pressure maintenance by injection of plant residue gas from Abo production back into the Abo formation.

The Abo producing zone is found at an average depth of about 5800 feet (see attached type log, Exhibit 2). The Abo is a lower Leonard (Permian) carbonate reef which has undergone complete dolomitization. Vugs, fractures and fissures have been observed in cores throughout the main reef, with local anhydrite infilling sometimes restricting flow. Reef development is long (l2 l/2 miles) and narrow (l l/2 miles). The reef crest dips about 1° from southwest to northeast. Average gross reef thickness is about 300 feet, ranging to the maximum of 732 feet on the Amoco State AT No. 1 (L2-18S-27E).

On the up-dip west and southwest end of the reservoir productive limits are the result of anhydrite deposition, while on the back-reef north side there is a facies change to an impermeable carbonate "mud" interspersed with green shale. Limits to the south, east and northeast result as the top of the reef dips below the oil-water contact.

2. Current Production, Future Recovery

The original discovery well was the Amoco Malco Federal A No. 1, located in the NE NW Section 11, T-18-S - R-27-E, completed in November 1957.

> At the present time the Pool has 235 producing wells. Of these, 153 are capable of producing more than the current top allowable of 142 BOPD/well. There are 183 flowing wells. Field performance and detailed study of cores indicate excellent vertical permeability. The principal producing mechanism is gravity drainage with an expanding secondary gas cap. There are 22 operators in the field and 112 separate working interest owners.

In January 1973, Abo Pool total oil production averaged 25,625 BOPD with 9% water production and gas oil ratio 1,366 cu. ft./BO. Cumulative oil production from the pool is 90 MMBO to February 1, 1973. Remaining primary after February 1, 1973, based on ARCO numeric model studies, is estimated to be 83 MMBO. Unitized residue gas injection for pressure maintenance is calculated to increase future recovery by about 30 MMBO compared to continued primary operations.

- 3. <u>Basic Concepts Governing Future</u> Unit Operations
 - a) Field production history and reservoir numeric model studies have demonstrated that reservoir recovery is governed by a gravity drainage mechanism. With unitization, the operator will be able to maximize beneficial effects of this most efficient recovery mechanism by careful observation of well performance and shutting in or curtailing production from inefficient wells.
 - b) Injection of plant residue gas will act toward pressure maintenance and orderly control of expansion of the secondary gas cap.
- 4. Special Rules
 - a) Unit Allowable

lst Step - Starting on the effective date of the unit, the unit will receive a unit allowable, calculated so that Unit Area reservoir voidage will not exceed average daily reservoir voidage rate for 1972. This will result in an increase from current 23,600 BOPD to about 30,000 BOPD for the Unit Area.

> 2nd Step - to be effective with the start of gas injection. Unit Area allowable to be 40,192 BOPD. Reservoir numeric model studies demonstrate added recovery and no reservoir waste at this rate.

- b) Provision to produce the unit allowable from the most efficient wells without restriction. The only exception will be where a Unit producing well+offsets a non-unit well.
- c) Provision that if any unit well is located within 660' of a non-participating tract on which is located an Empire Abo producing well, such unit well will be allowed to produce no more than two times normal unit allowable for the Empire Abo Pool.
- d) Provision for administrative approval of additional injection wells, or changes in injection well locations.
- 5. Operating Plans for 1973

Initially gas injection will be into the Abo gas cap in the following eight wells (see plat Exhibit 1):

Current Operator

Lease & Well

Location

Exxon	Chalk Bluff Draw Unit "A" No. 4	NE/4 NW/4 Sec.9-T18S-R27E
Amoco	Windfohr Federal No. 4	NW/4 SE/4 Sec.4-T18S-R27E
Amoco	Malco "H" Federal No. 2	SE/4 NE/4 Sec.3-T18S-R27E
M.YatesIII	Dooley Abo State No. 2	NW/4 SE/4 Sec.36-T17S-R27E
Amoco	State "BM" No. 1	NE/4 SW/4 Sec.31-T17S-R28E
Amoco	State "BV" No. 1	SW/4 NW/4 Sec.32-T17S-R28E
Arco	M. Yates B (ARC) No. 8	SW/4 NE/4 Sec.33-T17S-R28E
Hondo	State "A" No. 21	NE/4\SW/4 Sec.26-T17S-R28E

Attached Exhibit 3 is an example of an injection well log, while Exhibit 4 is a schematic diagram of a typical mechanical setup for an injection well.

Maximum gas injection volume into all wells is estimated at 37,000 MCF/Day. In terms of reservoir space fill-up, this is equivalent to over 60,000 barrels of water injection per day. Plans are to ptck up residue gas at about 700 psi and compress it to 2000 psi for injection. The gas will contain hydrogen sulfide. Superdehydration facilities are planned in order to minimize possible corrosion.

A rigorous corrosion checking procedure will be maintained.

A regular and comprehensive well-testing program will be followed to maintain reservoir control and aid in determining optimum operating conditions.

Workovers: Wherever well production data and reservoir conditions so indicate, workovers will be performed to lower gas-oil or water-oil ratios and maximize producing well efficiencies.

Facilities for produced water gathering and reinjection will be constructed.

Atlantic Richfield Company, as unit operator, will act prudently to preserve all rights of the mineral owners and to effectively and efficiently recover the unit area reserves. This Company will meet all economical offset obligations and act to prevent undue waste.

<u>Modifications</u> - It is understood that to meet changing conditions, this Plan of Operation may be modified from time to time, with the approval of the Supervisor, the Commissioner of Public Lands of the State of New Mexico and the New Mexico Oil Conservation Commission.

Effective Date:

This Plan of Operation shall be effective July 1, 1973.

If this Plan of Operation meets with your approval, please indicate in the space below and return one copy for our files.

Yours very truly,

ATLANTIC RICHFIELD COMPANY OPERATOR

P. E. Fletcher Operations Manager

PEF/SHC/jrb

APPROVED BY: _____ Date: _____ Supervisor of United States Geological Survey

APPROVED BY:

Date:_____

Commissioner of Public Lands, State of New Mexico

APPROVED BY:

Date: Secretary-Director New Mexico Oil Conservation Commission

	13 F	12 F	11 F	10 F	9 77	ъ Т	7 F	ਹ ਸ	ليا د	4 F	ω ٣	2 F	1 J 36 17 27 Inj.	R. Well Location Well	Empire Abo Unit	(1) (2) (3)	PROJECT AREA: EMP		Attn: Mr. W. A. G	To: N.M.O.C.C. Dist. 1 P. O. Drawer DD	
l See A See A 2See A x = Pr y = Li	ω	ω	ω	3	ω	ω	ω	ω	ω	ω	ω	ω	ω	Date	We	(4	IRE AE		resset	1 (3) ^ 2291	
ttachr ttachr oduct: mited	74	74	74	74	74	74	74	74 ,	74	74	74	74 3	74 -		911 Te		30 UNI		;; ;;;	>	
nent I ment I ion li capac	150	250	250	360	310	325	372	124	382	365	100	350	 	1 Wt	st Dat		Ч			-	
(b) Cc (a) Cc mited ity, s		0	0	0	0	0	0	0	0 	ο ω	0 	2		ols. M							
566 Vt	180	275	250	324	248	228	146	166	382	329	320	245	 	CF 0	atest						
))). ())). /ice N.U tachmen	1200	1100	1000	006	800	700	1200	1100	1000	006	800	700	1	GOR CF/B	24-hr.		Ţ				
.A.) t I(c)	150	210	250	250	284x	284x	284x	348	300	300	300	300		0il BOPD	Top W	(5)	otal Re	MONTHI	ATLANT	(N.M.C	EMPIRE
Col.	0	0	0	0	0	0	0	0	0	0	0	0		Wtr. BWPD	Ma Ma Vell A		equest	Y REP	IC RIG).c.c.	ABO J
% (6) s	180	231	250	225	227	199	341	383	300	270	240	210	1 1 1	Gas MCF/D	r <u>ch</u> llow.	-	ed Allov	DRT FOR_	CHFIELD	ORDERS	PRESSURE
(9c).).	1200	1100	1000	900	800	700	1200	1100	1000	006	800	700	1	GOR CF/B	1974 BO	3	able fo	Marc	COMPANY		MAINTEN
-													2773	Gas MCF/D		(6)	r June	ch ,	- OPE	•	VANCE PR
-										<u> </u>			1800	Press. PSI	Marc WHInj			19 74	RATOR		OJECT
· •											+		250	Inj. MMCF	h 19 Cum.		19 74				
<u>ى ئەرىمە ھەرىمە بەرىمە بەرىمە</u> 10.20													484.6	Trnsfi Resvl	74 Avai for	(7) Void	is <u>37</u>				
-	1	ω	5	4	5	4	∞	11	8	7	6	ບາ		r h B/D Resu	l. Voic	(8)	00 BOP				
-	3.6	3.1	2.5	6.8	7.2	9.9	6.3	8.7	9	2.7	4.7	6,5	}	/B/D	dage nsfer	Detal	·				
	95.3	88.0	80.8	73.4	66.2	58,9	95.3	88.0	80.8	73.4	66,2	58,9		Allow. 7 ResvB/Day	@ Normal Unit 2	(9)					
-	91.7	121.1	133.3	120.2	123.4	108.8	181.6	206.7	161.7	146.1	130,9	115.4	1	Sæ I (9 / ResvB/Day	Net Void. ((8)+(9))	(10)					
-	150	210	250	250	284	284	284	348	300	300	300	300	1	BOPD	for 6,19	(11)					•

•

.•

HONDO OIL AND GAS COMPANY (ATLANTIC RICHFIELD COMPANY) State "A" Well No. 21 1650' FSL & 1980'FWL SEC.26, T-17-S, R-28-E EDDY COUNTY, NEW MEXICO GAMMA RAY - NEUTRON

ATLANTIC RICHFIELD COMPANY *M. Yates "B" (ARC) Well No.8* 1980' FNL & 2130' FEL SEC.33,T-17-S,R-28-E EDDY COUNTY,NEW MEXICO GAMMA RAY - ISOTRON

AMOCO PRODUCTION COMPANY State "BV" Well No. 1 2280'FNL & 978'FEL SEC.32, T-17-S,R-28-E EDDY COUNTY, NEW MEXICO GAMMA RAY - ISOTRON

AMOCO PRODUCTION COMPANY State "BM" Well No. 1 1650'FSL & 2387'FWL SEC. 31, T-17-S,R-28-E EDDY COUNTY, NEW MEXICO GAMMA RAY - NEUTRON

MARTIN YATES, III Dooley State ABO No. 2 1650' FSL & 1650' FEL SEC. 36, T-17-S, R-27-E EDDY COUNTY, NEW MEXICO LATEROLOG-GAMMA RAY-NEUTRON

. .

AMOCO PRODUCTION COMPANY Maico "H" Federal Well No. 2 1980' FNL & 660' FEL SEC. 3, T-18-S, R-27-E EDDY COUNTY, NEW MEXICO GAMMA RAY - NEUTRON

AMOCO PRODUCTION COMPANY *R.H. Windfohr Well No. 4* 1582'FSL & 1645'FEL SEC.4, T-18-S, R-27-E EDDY COUNTY, NEW MEXICO GAMMA RAY - NEUTRON - LATEROLOG

.

.

HUMBLE OIL AND REFINING COMPANY Chalk Bluff Draw Unit A Well No. 4 990' FNL & 2310' FWL SEC. 9, T-18-S, R-27-E EDDY COUNTY, NEW MEXICO GAMMA RAY - NEUTRON

Reservoir Voidage Formula:

Equation 1: $V_{rvb} = Q_0 (B_0 + (R_{pn} - R_s) B_g) + (Q_{wp} - Q_{we})B_w$

Where:

Vrvb	= Reservoir voidage, bbls. per day
Q	= 0il production rate, Stock tank bbls. per day
Bo	= Oil formation volume factor (1) , reservoir
R _{pn}	.volumetric bbls/stock tank bbl. = Net producing gas-oil ratio, MCF/S.T.B.O.
	$R_{pn} = R_{p}(1.0 - \frac{G_{1}}{G_{p}})$
	Where: R_{-} = producing gas-oil ratio, MCF/BO
	G_1^p = daily volume of gas injected, MCF/Day
	$G_p = daily volume of gas produced, MCF/Day$
R	= Solution gas-oil ratio ⁽²⁾ , MCF/STBO
B	= Gas formation volume factor (3) , RVB/MCF
og G	= Water production rate S T B W /Day
awb.	- Acuifon waton influx note C T D W /Day determined
₩we	= Aquiler water initiax rate, 5.1.B.w./Day, determined
	irom reservoir numeric model runs to be 1950 BWPD
₿ _₩	= Water formation volume factor, RVBW/STBW, use 1.0

Solving Equation 1 for daily oil rate, Q,

Equation 2:

$$Q_{o} = V_{rvb} - (Q_{wp} - Q_{we}) B_{w}$$
$$(B_{o} + (R_{pn} - R_{s}) B_{g})$$

(1), (2), (3): These values calculated from fluid analysis data.

= (Qwp-Qwe)Bw, sis.	0-Gi/Gp); 2) Vrw ided on daily ba) Rpn = Rp (1.(rvoir space voi	0 dage, RvB/D; la. 7. Total net rese	tank bbl =1. ocarbon resv voi /rt = Vrhc + Vrw	bls/stock Net hydro VB/D: 3) V	cor, Resv b Rpn-Rs)Bg), I by wtr, R	n volume Fact c) = Qo (Bo (1 snace voidec	er formatio s: 1) Vr(h Net resv	Bw, Wat e Equation	Basic Voldag	
·	A., STBOPD = 142	per-well N.U./	71 = 180 795 Qo, Toj	nd std cu ft =1. $=0.$	ls/thousan k bbl oil	/Stock tan	Volume Factor il ratio, MCF	Formation ution gas-o	Bg, Gas Rs, Sol		
r encroachment model studies:	we, Natural wate based on Numeric	d Constants: Qv ank bbls/day, k): Establishe 415 stock t	psi, July, 1973 ock tank bbl=1.	vey, 1343 r bbls./st	essure Sur , Reservoi	Reservoir Pi Volume Factor	on Previous Formation	s: (based Bo, Oil	Fluid Factor	
	< 1.0, Daily Oi	vrt(9a)/vrt(9) 9b)).	(9) or (2) x (5	x Vrt(9a)/Vrt(9) x Vrt(9a)/Vrt(9)	as long b r than (2)	t any rate no greate	to produce a well must be	ell allowed of capacity	Capacity w allowable	(z Note:)	
3 40	484.6 8.80	54.8	6-	63.8	0.900	3.000	0.300	0.700	40 1	17	
2 100	484.6 1.68	288.1	26	262.1	1,500	5.000	0.300	0.700	100	1 16	
) (9b) EOPD (9b) (9c)	$\frac{\text{ell Ib(9), }}{\text{ResB/D}} \frac{\text{Vrt(9)}}{\text{9a)}} \text{Frac}$										allowable calculations:
: [Req.Cap.All. a)/ [Col(2),or(2)]	rt for top Ratio 11. Max GOR Vrt(S	- a.V									c) Capacity wells,
		1922.2	-33	1955.2					242		b) Totals
		480.3	-9	489.3	3,500	3.500*	1.000	0	81	20	•
		477.9	-8-	485,9	56,800	56.800*	1.000	0	5	19	allowables:
		479.4	-7	486.4	20,286	20.286*	1.000	0	14	18	Transfering
		484.6	6 -	493.6	2,000	2.000*	1.000	0	142	1) Wells
	1079.4	1960.8	49	1911.8			0,300	0.700	3560		a)Totals:
	58.9	128,2	66	62.2	0.210	0.700			150	15	
	95.3	191.7	91	100.7	0.360	1.200			150	14	
	95.3	91.7	- 9	100.7	0.360	1.200			150	13	
	88.0	121.1	-9	130.1	0.330	1,100			210	12	
	80.8	133.3	6-	142.3	0.300	1.000			250	11	
	73.4	120.2	-9	129.2	0.270	0.900			250	10	•
	66.2	123.4	-9	132.4	0.240	0.800			284	6	
	58.9	108.8	9 -	117.8	0.210	0.700			284	8	
	95.3	181.6	6-	190.6	0.360	1.200			284	7	
	88.0	206.7	-9	215.7	0.330	1.100			348	6	
	80,8	161.7	- 9	170.7	0.300	1,000			300	5	
	73.4	146.1	- 9	155.1	0.270	0.900			300	4	allowables:
	66.2	130.9	6-	139.9	0.240	0.800			300	ω	transferred
	58,9	115.4	-9	124.4	0.210	0.700	0.300	0.700	300	1 2) Wells accepting
	(10)	(9)	(8)	(7)	(6)	(5)	(4)	(3)	(2)	(1)	
	(ResBbls/Dav)	(ResBbls/Day)	(ResBbls/Day)	(ResBbls/Day)	MCF/BO	MCF/BO	(Fraction)	(Fraction)	STBOPD	No. No.	
	142 BOPD	Voidage	U L ~	(Equation 1)	(5)x(4)	6L	((8-000 L)		ALLOWDL.	Tract Wall	
		Total Rec	(Equation 2)	Vrlhol	+ion la	COL. A-D	=(10,000,1)	ط ۱	hor mern		spire Abo Unit
	well @ N.U.A.	Vrt=(7)+(8)	Vr(w)	~	Rpn =	Rp, from			00 =		
	Vr(hc) for ea.		oir Voldage.	d on Net Reserv	tions Base	le Calcula	: I: Allowab	Attachment			
				rch , 1974	r Mar	Report fo	Monthly				
				CE PROJECT	MAINTENAN	O PRESSURE	EMPIRE AB				
											•

* Rp = 284MCFPD/QoI(2), where 284 MCFPD is the daily gas limit, and QoI(2) is from Attach. I, Column (2). ļ

				20	19	18	17	16	15	14	. Well	Enj		(1)				10.	
			TOTALS :								Location	vire Abo Unit		(2)	PROJECT AREA:		Attn: Mr. W.	P. O. Drawer I	
(y (x (2))))))))))))))))))				SI	SI	IS	۲IJ	F	קי	Р	Well Sta.			(3)	ENPI		A. Gr	DD DD DD	·+ •
ee Att ee Att = Prod = Limi			 	3 74	3 74	3 74	3 74	3 74	3 74	3 74	Date M Y	Wel]		LA (4)	RE ABO		essett	(J) 88210	(2)
achmen achmen uction ted ca			 	158	<u>л</u>	14	40	100	150	150	Oil Bbls.	Test			UNIT				
t I(b) t I(a) limit pacity	 		 	0		10	0	35	75	100	Wtr Bbls.	Data -						-	
Col. (Col. (Col. (ed to 1				553	70	42	120	500	105	180	Gas MCF	Lates							
(9)). (10)). twice N. Attachme				3500	14000	3000	3000	5000	700	1200	GOR CF/B	t 24-hr			_				
U.A.) nt I(c)			3700		I I I	1	40	100	150	150	Oil BOPD	Top W	Pro	(5)	Total Re	MONTHL	ATLANT	(N.M.O	EMPIRE
Col.'s			210	1	1 -	1	0	35	75	100	Wtr. BWPD	Nell Al	ductio		queste	Y REPO	IC RIC	.c.c.	ABO P
3 (e) 3 (e)			3961			1	120	500	105	180	Gas MCF/D	larch low.	n-Avera		d Allow	RT FOR	HFIELD	ORDERS	RESSURE
(9c).)			1071	1		1	3000	5000	700	1200	GOR CF/B	197 BO	ge		able fo:	March	COMPANY		MAINTEN
-			2773								Gas MCF/D		In	(6)	r Ju		- OPE	-	VANCE PR
-										<u>.</u>	Press PSI	Mar WHI nj	jection		ne	19 74	RATOR		OJECT
· -			250								. Inj. MMCF	.ch 197	-Average			·		•	
· · ·			1922.2	480.3	477.9	479.4					Trnsfr. ResvB/	4 Avail. for	Voidag	(7)	.s 3700				
-			881.4				0	0	69.3	96.4	L D ResvB/D	Voidage Transfer	e Requeste	(8)	BOPD.				
-			1422.3				54.8y	288.1y	58.9	95.3	Allow." ResvB/Day	@ Normal Unit 2	d Net Void.	(9)					
-			2303.7				54.8	288.1	128.2	191.7	See I (9 ResvB/Day	Net Void. ((8)+(9))	. Requestec	(10)					
- · .			3700	1	1		40	100	1 50	150) EO PD	Oil Allowable for 6,1974	Requested	(11)					N

EXHIBIT NO. 2 INITIAL PLAN OF OPERATION TYPE LOG-UNITIZED FORMATION EMPIRE ABO UNIT

AMOCO PRODUCTION COMPANY State AU No. 1 1980'FSL & 1830' FWL SEC. 2, T-18-S, R-27-E EDDY COUNTY, NEW MEXICO RADIOACTIVITY LOG

ATLANTIC RICHFIELD COMPANY *M. Yates "B" (ARC) Well No.8* 1980' FNL & 2130' FEL SEC.33, T-17-S, R-28-E EDDY COUNTY, NEW MEXICO GAMMA RAY - ISOTRON EMPIRE ABO UNIT PLAN OF OPERATION EXHIBIT 3

Care 4 953

HUMBLE OIL AND REFINING COMPANY Chalk Bluff Draw Unit A Well No. 4 990'FNL & 2310'FWL SEC.9, T-18-S, R-27-E EDDY COUNTY, NEW MEXICO INJECTION WELL DIAGRAM

Case 495-3

1

AMOCO PRODUCTION COMPANY R.H. Windfohr Well No. 4 1582'FSL & 1645'FEL SEC.4, T-18-S, R-27-E EDDY COUNTY, NEW MEXICO INJECTION WELL DIAGRAM

1/12 4453

EXHIBIT NO.

AMOCO PRODUCTION COMPANY Maico "H" Federal Well No. 2 1980' FNL & 660' FEL SEC.3, T-18-S, R-27-E EDDY COUNTY, NEW MEXICO INJECTION WELL DIAGRAM

D- 1161-2

EXHIBIT NO.

MARTIN YATES,III Dooley State ABO No. 2 1650' FSL & 1650' FEL SEC. 36,T-17-S,R-27-E EDDY COUNTY, NEW MEXICO INJECTION WELL DIAGRAM

(1) H95-2

ÊXHIBIT NO.___

AMOCO PRODUCTION COMPANY State "BM" Well No. 1 1650' FSL & 2387' FWL SEC. 31, T-17-S,R-28-E EDDY COUNTY, NEW MEXICO INJECTION WELL DIAGRAM

EXHIBIT NO.

P. 495-3

AMOCO PRODUCTION COMPANY State "BV" Well No. 1 2280'FNL & 978'FEL SEC. 32, T-17-S,R-28-E EDDY COUNTY, NEW MEXICO INJECTION WELL DIAGRAM

EXHIBIT NO.

10, 4453

ATLANTIC RICHFIELD COMPANY *M. Yates "B" (ARC) Well No.8* 1980' FNL & 2130' FEL SEC.33, T-17-S, R-28-E EDDY COUNTY, NEW MEXICO INJECTION WELL DIAGRAM

· Chon 49.5-2 EXHIBIT NO._

HONDO OIL AND GAS COMPANY (ATLANTIC RICHFIELD COMPANY) State "A" Well No. 21 1650' FSL & 1980'FWL SEC.26, T-17-S, R-28-E EDDY COUNTY, NEW MEXICO INJECTION WELL DIAGRAM

. 495-3

EXHIBIT NO. ___

HUMBLE OIL AND REFINING COMPANY Chalk Bluff Draw Unit A Well No. 4 990'FNL & 2310'FWL SEC.9, T-18-S, R-27-E EDDY COUNTY, NEW MEXICO GAMMA RAY - NEUTRON

AMOCO PRODUCTION COMPANY *R.H. Windfohr Well No. 4* 1582'FSL & 1645'FEL SEC.4, T-18-S, R-27-E EDDY COUNTY, NEW MEXICO GAMMA RAY - NEUTRON - LATEROLOG

AMOCO PRODUCTION COMPANY Maico "H" Federal Well No. 2 1980' FNL & 660' FEL SEC.3, T-18-S, R-27-E EDDY COUNTY, NEW MEXICO GAMMA RAY - NEUTRON

.

-

MARTIN YATES, III Dooley State ABO No. 2 1650' FSL & 1650' FEL SEC. 36, T-17-S, R-27-E EDDY COUNTY, NEW MEXICO LATEROLOG-GAMMA RAY-NEUTRON

Cher 4953

AMOCO PRODUCTION COMPANY State "BM" Well No. 1 1650' FSL & 2387' FWL SEC. 31, T-17-S,R-28-E EDDY COUNTY, NEW MEXICO GAMMA RAY - NEUTRON

•

AMOCO PRODUCTION COMPANY State "BV" Well No. 1 2280'FNL & 978'FEL SEC.32, T-17-S,R-28-E EDDY COUNTY, NEW MEXICO GAMMA RAY - ISOTRON

.

.

ATLANTIC RICHFIELD COMPANY M. Yates "B" (ARC) Well No.8 1980' FNL & 2130' FEL SEC.33, T-17-S, R-28-E EDDY COUNTY, NEW MEXICO GAMMA RAY - ISOTRON

HONDO OIL AND GAS COMPANY (ATLANTIC RICHFIELD COMPANY) State "A" Well No. 21 1650' FSL & 1980'FWL SEC.26, T-17-S, R-28-E EDDY COUNTY, NEW MEXICO GAMMA RAY - NEUTRON

.

.

