

WELL COMPLETION DATA SHEET

Midwest Oil Corporation #4 South Empire Deep Unit South Empire Deep Unit (Wolfcamp) Field Eddy County, New Mexico

- 1. Location: 1980' FNL and 2230' FEL Section 32, T-17-S, R-29-E
- 2. Elevation: 3598 KB
- 3. TD: 10,950' PBTD: 8560'
- 4. Top Wolfcamp: 7567 (-3969)
- 5. Top Pay: 8449 (-4851)
- 6. Completion Date: 3-13-74
- 7. Perforated Interval: 8449 to 8522 w/21 shots (OA)
- 8. Treatment: A/3,000 gals. (15%)
- 9. IP 303 BOPD + 414 MCFG
 - 10/64" ch
 - 1510 FTP
 - Pkr. FCP
 - 1380 GOR
 - 46.5 Gravity API
- 10. Net Pay: 31'
- 11. Average Porosity: 4%
- 12. Average Permeability: 43 md
- 13. Average Water Saturation: 30%
- 14. Reservoir Temperature: 155°
- 15. Initial Reservoir Pressure: 3730#

80 0000 0.000 310 BOPD 58

BEFORE EXAMINER NUTTER CIL CONSERVATION COMMISSION EXHIBIT NO. 5 SE NO. 5219

Exibit

BEFORE EXAMINER NUTTER
CIL CONSERVATION COMMISSION
EXHIBIT NO. 6
CASE NC. 5219

PRESSURE DATA ANALYSIS

MIDWEST OIL COMPANY

SOUTH EMPIRE DEEP UNIT #4

By

E. R. Brownscombe

SONICS INTERNATIONAL, INC. Dallas, Texas

PRESSURE DATA ANALYSIS

Midwest Oil Company South Empire Deep Unit #4

SUMMARY

Breaks in the build up and drawdown curves suggest that there is a fault or other barrier about 400 - 600 feet from the well. The rate of pressure fall off toward the end of the drawdown test suggests that there are more than 250 productive acres. Permeability is about 40 m.d., the initial reservoir pressure, 3720 psig at 8485. There is improved permeability near the well, but at high rates of flow there is an indication of local blockage by solution gas.

DISCUSSION

Introduction

and Two buildup curves on a drawdown curve were analyzed. The pressures and production history are given in Table I.

Reservoir characteristics are given in Table II.

Table III summarizes the rates of flow (bbls/day) and length (hours) corresponding to the cleanup production, the first buildup, the pressure drawdown and the second buildup. The first period is assumed to flow at the 387 B/D (average of last nine days) for the whole period, the time being that required for the actual production during the period. This simplifies the analysis and gives essentially the same result as would be obtained if the exact production history were used for the first period.

Frick refers to the "Petroleum Production Handbook" edited by T. C. Frick; M & R refers to Mathews & Russell "Pressure Buildup and Flow Tests in Wells"

-2-

EVIDENCE OF A BARRIER

The break in the drawdown curve (Fig. III) indicates the presence of a barrier near the well. The drawdown had been planned for 50 hours, but failure of surface equipment terminated it at 24 hours. The rise of the last two points on the drawdown curve above the trend is not explainable on the basis of reservoir characteristics - it undoubtedly reflects changes in operating conditions they have been disregarded in the analysis. If we had a small reservoir so that the later points represented the "semi-steady state" regime, they would also fall below the early trend. However, in this case the later points would plot as a straight line on a linear plot, and would have a strong downward curvature on this plot. Further, the time at which this break occurs is much shorter than corresponds to the size of the reservoir on the basis of an assumed semi-steady state for the late points. This confirms the barrier interpretation.

The presence of a barrier should also be reflected in the build up curves. Unfortunately, the second build up curve is too short to confirm the break, and the first build up curve shows an erratic behavior beginning at about 25 hours. The pressure beginning at this time remained constant for the next 48 hours and then rapidly rose 35 psi. Such behavior is not reasonable reservoir performance, even with two pays open to the well. It seems likely that this was a reflection of further surface equipment problems. For example, a leak at the surface might cause the liquid level to rise with a constant bottom hole pressure. This would cause the well compressibility to decrease markedly, causing the

-3-

bottom hole pressure to rise rapidly to the ambient reservoir pressure when the leak stopped.

On the basis of this hypothesis, the first build up curve becomes consistent with the drawdown curve. Further the P* of 3730 for this interpretation (dashed line, Fig. 1) is also closer to the initial drill stem test of 3779 (datum level?) than extrapolation of the first part of the curve which gives $P^* = 3678$.

The break in this curve is at 14 hours instead of 7 hours as in the drawdown, but in view of the uncertainties of interpretation, this is considered a reasonable agreement.

As indicated above, the second build up (Fig. II) is of too short duration to reflect the barrier. At 20 hours there is a hint the curve may be on the rise, but another 24 hours at least would be required to establish a slope for the later part of the curve.

The distance to the barrier is estimated in Table IX. The drawdown indicates about 450 feet; the build up 600 feet. This is a reasonable check for this type of analysis.

-4-

RESERVOIR PERMEABILITY

The two buildups and the drawdown showed 41, 38 and 50 m.d., averaging 43.

RESERVOIR PRESSURE

Using the dashed line Fig. I to get the best value of P^* and assuming 320 productive acres, the average reservoir pressure (initial reservoir pressure) is estimated as 3720.(Table VI). If the reservoir is larger, the pressure will be closer to P^* (3730 psig).

-5-

The first build up showed S = -4.4, the drawdown S = +4.1 and the second buildup S = +9.5.3.

The negative value of the first test suggests that the acidizing caused fractures around the well, leading to an improved permeability near the well. The drawdown was run at a higher rate than the initial cleanup, and probably lead to evolution of solution gas around the well, causing local blockage and a positive value for S. This is consistent with a rise in gas oil ratio from 1820 (Table II) for the cleanup period at 387 B/D to (637 + 656)/685 = 1887 at 685 B/D. Continued production at the higher rate should result in the GOR falling back to 1820 as equilibrium gas saturation around the well is established. The second buildup should check the drawdown value of S. Perhaps $S = (4.1 + \frac{34}{-5})/2 = \frac{3.8}{2+3}$ would be a better value for 685 B/D.

PRODUCTIVE ACREAGE

If the drawdown had been run long enough to establish a straight line section for pressure vs. time, this would have permitted the most reliable estimate of reserves using the "semi-steady state" analysis. A 50 hour test was planned but was cut short by surface equipment problems. It would also be possible to estimate the reserves from a "late transient" analysis if the latter part of the drawdown had reached this stage. However, the straight line in Fig. III for the later points indicates that we are still in the transient period - the late transient should show a pressure fall off from the trend. Therefore the late transient calculation, Fig. V, giving 108 acres is undoubtedly much too low. Figure VI indicates a gradual curvature of P vs. time which is expected before the "semi-steady state" period is reached. If we use a tangent to the later points with a semi-steady state analysis, we should get a figure which is below the actual reserves. This analysis gives a minimum of 250 acres (Fig. VI).

-7 -

TABLE 1

Midwest Oil Company South Empire Deep Unit No. 4

	·		······································	K_	Mid Perforation	Elapsed Time
Date	Time	Barrels	High Pressure	Low Pressure*	Pressure 8485 Ft.	Pressure Tests
(1)	Vew Mexico)		(MCF/D)	(MCF/D)	(psig)	(Hours)
3-7-74		(120)	(311)	(321)		
3-8-74		(93)	(241)	(249)		
3-9-74		0	0	0		
3-10-74		0	0	0		:
3-11-74		(162)	(421)	(435)	·	
3-12-74		215	414	(428)		
3-13-74		285	346	(358)		
3-14-74		255	308	(318)		
3-15-74	_	132	300	(310)		
3-16-74		110	- 226	(234)		
3-17-74		175	143	(148)		
3-18-74		382	226	(234)		
3-19-74		360	226	(233)		
3-20-74		387	226	(234)		
3-21-74		390	226	(233)		
3-22-74		388	226	(234)		
3-23-74		383	226	(233)		
3-24-74		395	226	(234)		
3-25-74		386	226	(233)		
3-26- 74		380	226	(234)		
3-27-74		389	226	(233)		
3-28-74	08:30	390	226	(234)		
	11:30		· .	. ,	3573	-1.
	12:00				3572	5
ell closed	12:30	70	(63 MCF)	(65 MCF)	3573	0.
	12:36				3607	.1
	12:42				3618	. 2
	12:48				3619	.3
	12:54				3620	.4
	13:00				3625	.5
	13:12				3626	.7
	13:30				3628	1.0
	14:00				3630	1.5

*Estimated from High Pressure gas and ratio of Low Pressure gas to High Pressure gas during drawdow flow test.

TABLE I (Continued)

Midwest Oil Company South Empire Deep Unit No. 4

			Production and	Pressure History		
					Mid Perforation	Elapsed Time
Date	Time	Barrels	High Pressure	Low Pressure*	Pressure 8485 Ft.	Pressure Tests
(Ne	ew Mexico)		(MCF/D)	(MCF/D)	(psig)	(Hours)
3-28-74	14:30				3631	2.0
	15:00				3633	2.5
	15:30				3635	3.0
	16: 30				3636	4.0
	17:30				3639	5.0
	19:30				3642	7.0
	22:30				3644	10.0
3-29-74	03:30				3648	15.0
	08:30				3653	20.0
	13:30			1	3655	25.0
	18:30				3655	30.0
3-30-74	04:30				3655	40.0
	14:30				3655	50.0
3-31-74	00:30				3656	60.0
	10:30				3657	70.0
4-1-74	14:15				3690	97.75
vell opened	15:00			-	3691	98.5
-	15:00				3518	25
	15:18				3552	.05
	15:24		ì		3517	. 15
	15:30				3494	. 25
• .	15:42				3411	.45
	16:00		520	633	3402	.75
	17:00		533	646	3389	1.75
•	18:00		494	565	3384	2.75
	19:00		571	659	3382	3.75
	20:0 0		593	646	3380	4.75
	21: 00		646	672	3375	5.75
	22:0 0		646	682	3373	6.75
	23:00		672	691	3370	7.75
	24:00		646	691	3366	8.75
4-2-74	01:00		646	691	3361	9.75
	02:00		672	672	3359	10.75

*Estimated from High Pressure gas and ratio of Low Pressure gas to High Pressure gas during drawdown flow test.

TABLE 1 (Continued)

Midwest Oil Company South Empire Deep Unit No. 4

			Production and	Pressure History		
		•			Mid Perforation	Elapsed Tim
Date	Time	Barrels	High Pressure	Los Pressure*	Pressure 8485 Ft.	Pressure Tes
	(New Mexico)		(MCF/D)	(MCF/D)	(psig)	(Hours)
4-2-74	03:00		721	691	3361	11.75
	04:00		793	706	.3357	12.75
	05:00		746	721	3352	13.75
	06:00		721	721	3350	14.75
	07:00	433	746	682	3349	15.75
	08:00	35	646	672	3347	16.75
	09:00	25	691	672	3345	17.75
	10:00	27	672	672	3343	18.75
	11:00	22	646	672	3342	19.75
	12:00	-	(573)**	593	3340	20.75
	13:00	36	(625)**	646	3339	21.75
	14:00	22	(490)**	506	3338	22.75
	15:00	22	(519)**	536	3356	23.75
well close	ed 15:00	63	-	-	3356	0.
	15:06				3519	.1
	15:12			· .	3571	. 2
	15:18				3583	.3
	15:24				3594	.4
	15:30				3599	.5
	15:42				3608	.7
	16:00				3618	1.0
	16:30				3622	1.5
• •	17:00			~	3626	2.0
	17:30		•		3629	2.5
	18:00				3631	3.0
	18:30		·		3633	3.5
	19:00				3636	4.0
	20:00				3640	5.0
	21:00				3643	6.0
	22:00				3645	7.0
4-3-74	01: 00				3649	10.0
	06:00				3654	15.0
bomb out	10:00				3659	19.0

Ì

*Estimated from High Pressure gas and rato of Low Pressure gas to High Pressure gas during drawdown flow test.

**Leak developed in High Pressure system, volume estimated from Low Pressure data.

TABLE II

Reservoir Characteristics

Depth: 8485 Feet

Temperature: 155°F

Pay Thickness: 22 Feet Upper, 9 Feet Lower = 31 Feet

Porosity: $(.045 \times 22 + .031 \times 9)/31 = .0409$

Oil Gravity: 46.5°API

GOR: (Table I, 3/07 to 3/28) = (5259 + (5435))/5847 = 1820

Formation Volume Factor: (Frick 5-29) = 1.9

Viscosity of Reservoir Oil:

Frick 19-39	46.5°API @ $155^{\circ}F =$	1.1 cp.
Frick 19-40	1.1 cp @ 1800 GOR	. 23 cp.

Compressibility (Frick p. 37-1)

Rock8. x 10^{-6} Oil (70% pore saturation) . 7 x 25 x. $10^{-6} = 17.5 \times 10^{-6}$ Connate Water. 3 x 3 x $10^{-6} = .9 \times 10^{-6}$ Overall2.6 x 10^{-5} /psi

(.7 is assumed oil saturation; .3, connate water)

TABLE III

Rates and Times

From Hours	To Hours	Rate	Bbls/Day
0	362.6	387	Well Clean Up
362.6	461.4*	0	First Build Up Test
461.4	485.1	685	Drawdown Test
485.1	504.1	0	Second Build Up Test

*15 minutes was added to build up time from flow time to account for adjustments in establishing rates during first half hour.

Length of first period was that necessary to produce total oil as rate of last 9 days, since later production has most effect on build up.

Oil Produced = 5847 barrels, average rate last 9 days = 387 barrels/day

5847/387 x 24 = 362.6

TABLE IV

First Build Up Test t = 362.6

	$t + \Delta t$	
Δt	Δt	PSIG
0	-	· 3573 Flowing Pressure
.1	3627	3607
.2	1814	3618
.3	1210	3619
.4	907.5	3620
.5	762.2	3625
.7	519.0	3626
1.0	363.6	3628
1.5	242.7	3630
2.0	182.3	3631
2.5	146.0	3633
3.	121. 9	3635
4.	91.7	3636
5.	73.52	3639
7.	52.80	3642
10.	37.26	3644
15.	25.17	3648
20.	19. 13	3653
25.	15.50	3655
30.	13.09	3655
40.	10.07	3655
50.	8.25	3655
60.	7.04	3656
70.	6.18	3657
97.75	4.71	3690
98.5	4.68	3691

TABLE V

Second Build Up Test

Flow rates in Table III will be matched if we take following flows for times given.

 Δt is the time of the second shut in

From	То	Rate
0	485 . 1+∆t	387
362.6	$485.1 + \Delta t$	- 387
461.4	485 . 1 +∆ t	685
485.1	485.1 +∆ t	- 685

At time 485.1 + Δ t the summation of all four of these production periods will give:

$$Pwf = Pi - 162.6 \times \frac{.23 \times 1.9}{kh} \left[387 \log \frac{485.1 + \Delta t}{485.1 - 362.6} + \Delta t + 685 \log \frac{485.1 - 461.4 + \Delta t}{485.1 - 485.1 + \Delta t} \right]$$
$$= Pi - 71.05/kh \left[387 \log \frac{485.1 + \Delta t}{122.5 + \Delta t} + 685 \log \frac{23.7 + \Delta t}{\Delta t} \right]$$

This shows how the build up is affected not only by the drawdown test, but also by the earlier production which will also have an appreciable effect.

$$\sum = 387 \log \frac{485.1 + \Delta t}{122.5 + \Delta t} + 685 \log \frac{23.7 + \Delta t}{\Delta t}$$

See M & R Eq. 6.5 to 6.7

Δt	Σ	Mid Perforation Pressure
		(psig)
0	-	3 338
.1	1859	3519
.2	1654	3571
.3	1535	3583
.4	1450	. 3594
.5	1385	3599
.7	1287	3608
1.0	1184	3618
1.5	1069	3622
2.0	989	3626
2.5	928	3629
3.0	879	3631
3.5	838	3633
4.0	803	3636
5.0	746	3640
6.0	701	3643
7.0	664	3645
10.0	583	3649
15.0	499	3654
19.0	. 454	3659

TABLE VI

Average Reservoir Pressure

If the reservoir were infinite, the average pressure would be P^* . Let us assume the reservoir has 320 acres and calculate the average pressure \overline{P} from the dashed line extrapolation of the first build up curve. In view of the evidence that we are near the side of the reservoir, we will use M & R Fig. 4.6 curve II to estimate average pressure.

 $320 \times 43560 \approx 13.94 \times 10^6$ sq. ft. Α = k Ħ 41.3 m.d. t 362.6 hrs. 31 feet 387 B/D h = q = .0409 .23 cp Φ = u ₽ 2.6×10^{-5} /psi С = В = 1.9 Reservoir Barrels/Stk Barrels 3730 P*

From M & R, Fig. 4.6, the dimensionless time (abscissa) is:

 $\frac{.000264 \times 41.3 \times 362.6}{.0409 \times .23 \times 2.6 \times 10^{-5} \times 13.94 \times 10^{6}} = 1.1596$

The corresponding dimensionless pressure (ordinate, curve II) is:

$$1.1 = \frac{P^* - \overline{P}}{70.6 \times 387 \times .23 \times 1.9/41.3/31}$$

 $P^* - \overline{P} = 10$ $\overline{P} = 3730 - 10 = 3720$

TABLE VII

Drawdown Test

From	То	Rate of Flow
0	461.4 +∆t	387
362.6	461.4 + Δ t	-387
461.4	461.4 + Δ t	685

 $Pwf = Pi - 162.6 \frac{.23 \times 1.9}{kh} \left[387 \log_{10} \frac{461.4 + \Delta t}{98.8 + \Delta t} + 685 \log_{10} \Delta t \right]$

 $\Sigma = 387 \log_{10} \frac{461.4 + \Delta t}{98.8 + \Delta t} + 685 \log_{10} \Delta t$

Δt	<u> </u>	P	
0	-	3667	(see Table VI)
.05	-632	3552	,
. 15	-305	3517	
. 25	-154	3494	
.45	.21	· 3411	
. 75	172	3402	
1.75	423	3389	
2.75	556	3384	
3.75	647	3382	
4.75	716	3 380	
5.75	772	3375	
6. 75	818	3 373	
7.75	858	3 370	
8.75	893	3366	
9.75	924	3361	
10.75	952	3359	
11.75	977	3361	
12.75	1000	3357	
13.75	1022	3352	
14.75	1041	3350	
15.75	1060	3349	
16.75	1077	3347	
17.75	1093	3345	
18.75	1108	3343	
19.75	1123	3342	
20. 75	1137	3340	
21.75	1149	3339	
22.75	1162	3338	
23.75	1174	3356	

TABLE VIII

Drawdown Test Late Transient Analysis

Hours	PSIG @ 8485	₽ 3330	₽ 3325	∲ 3320	∲ 3310	₽ 3300	} 3275
110015	1510 @ 0105						
6.7 5	3373	43	48	53	63	73	98
7.75	3370	40	45	50	60	70	95
8.75	3366	36	41	46	56	66	91
9.75	3361	31	36	41	51	61	86
10.75	3359	2 9	34	39	49	59	84
11.75	3361	31	36	41	51	61	86
12.75	3357	27	32	37	47	57	82
13.75	3352	22	27	32	42	52	77
14.75	3350	20	25	30	40	50	75
15.75	3349	19	24	29	39	49	74
16.75	3347	17	22	27	37	47	72
17.75	3345	15	20	25	35	45	70
18.75	3343	13	18	23	33	43	68
19.75	3342	12	17	22	32	42	67
20.75	3340	10	15	20	30	40	65
21.75	3339 _	9	14	19	29	39	64
22. 75	3338	8	13	18	28	, 38	63
23.75	3356	-	-	-	-	-	-

TABLE IX

Distance to Barrier (M & R 10.6, 10.7)

From Drawdown Test (Figure III)

- $t_x = 7.0$ hours
- $d = \sqrt{\frac{.000264 \times 50 \times 7.0}{1.78 \times .0409 \times .23 \times 2.6 \times 10^{-5}}} = 461$

From first Build Up Test (Figure I)

$$t_{\rm v} = 14$$
 hours

 $d = \sqrt{\frac{.000264 \times 41.3 \times 14}{1.78 \times .0409 \times .23} \times 2.6 \times 10^{-5}} = 592$

46 1320

Exhi	bi	t
------	----	---

ECONOMICS OF DRILLING, COMPLETION AND OPERATING COSTS South Empire Deep Unit (Wolfcamp) Eddy Co., New Mexico

1.	Drilling & Completion Costs	\$295,000/well	
2.	Oil Price	\$11.10/Bb1.	
3.	Gas Price	\$.23/mcf	
4.	GOR	1820 cf/Bb1.	
5.	Taxes (Severence, Ad Valorum, etc.)	6.5%	
6.	Revenue Interest	87.5% (min.) Max	
7.	Operating Cost/Bb1.	\$.05/Bb1. (min.)	
8.	Revenue/Bb1.	\$9.38	
9.	Barrels Oil to Payout	31,450	

10. Profit to Investment Ratio

Revenue/Bb1. x Reserves x Risk We11 Cost

For	80	Ac.	=	3.29
For	40	Ac.	=	1.64

sk 138,000 kles 138,000 kles per Dacre, 5% nisk fochor BEFORE EXAMINER NUTTER OIL CONSERVATION COMMISSION

EXHIBIT NO. 1

CASE N .. SZIZ