STATE OF NEW MEXICO

ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT

OIL CONSERVATION DIVISION

)

)

)

))

)

)

IN THE MATTER OF THE HEARING CALLED BY THE OIL CONSERVATION DIVISION FOR THE PURPOSE OF CONSIDERING:

CASE NO. 10,530

JAN 3

CASE 10,530 BEING REOPENED PURSUANT TO THE PROVISIONS OF ORDER NOS. R-9722 AND R-9722-A

REPORTER'S TRANSCRIPT OF PROCEEDINGS

ORIGINAL

BEFORE: MICHAEL E. STOGNER, Hearing Examiner

January 19th, 1995

Santa Fe, New Mexico

This matter came on for hearing before the Oil Conservation Division on Thursday, January 19th, 1995, at the New Mexico Energy, Minerals and Natural Resources Department, Porter Hall, 2040 South Pacheco, Santa Fe, New Mexico, before Steven T. Brenner, Certified Court Reporter No. 7 for the State of New Mexico.

* * *

INDEX

January 19th, 1995 Examiner Hearing CASE NO. 10,530

PAGE **APPEARANCES** 3 **APPLICANT'S WITNESSES:** KEVIN WIDNER Direct Examination by Mr. Bruce 5 Examination by Mr. Kellahin 10 Redirect Examination by Mr. Bruce 23 Examination by Examiner Stogner 24 WILLIAM CROW Direct Examination by Mr. Bruce 25 Examination by Mr. Kellahin 28 Examination by Examiner Stogner 36 **REPORTER'S CERTIFICATE** 38 * * * EXHIBITS Identified Admitted Exhibit 1 7 10 Exhibit 2 27 26 Exhibit 3 27 27 * * *

2

APPEARAN	С	Ε	S	
----------	---	---	---	--

FOR THE DIVISION:

RAND L. CARROLL Attorney at Law Legal Counsel to the Division State Land Office Building Santa Fe, New Mexico 87504

FOR CHARLES B. GILLESPIE, JR.:

HINKLE, COX, EATON, COFFIELD & HENSLEY 218 Montezuma P.O. Box 2068 Santa Fe, New Mexico 87504-2068 By: JAMES G. BRUCE

FOR SNYDER RANCHES, INC., AND LARRY SQUIRES:

KELLAHIN & KELLAHIN 117 N. Guadalupe P.O. Box 2265 Santa Fe, New Mexico 87504-2265 By: W. THOMAS KELLAHIN

FOR DAVID PETROLEUM CORPORATION:

CAMPBELL, CARR, BERGE & SHERIDAN, P.A. Suite 1 - 110 N. Guadalupe P.O. Box 2208 Santa Fe, New Mexico 87504-2208 By: WILLIAM F. CARR

* * *

1	
1	WHEREUPON, the following proceedings were had at
2	8:38 a.m.:
3	EXAMINER STOGNER: At this time we'll call next
4	case, 10,530.
5	MR. CARROLL: In the matter of Case Number 10,530
6	being reopened pursuant to the provisions of Order Numbers
7	R-9722 and R-9722-A, which promulgated special rules and
8	regulations for the West Lovington-Strawn Pool including a
9	provision for 80-acre spacing.
10	EXAMINER STOGNER: At this time I'll call for
11	appearances.
12	MR. BRUCE: Mr. Examiner, Jim Bruce from the
13	Hinkle law firm in Santa Fe, representing Charles B.
14	Gillespie, Jr.
15	I have two witnesses to be sworn.
16	EXAMINER STOGNER: Call for any other
17	appearances.
18	MR. KELLAHIN: Mr. Examiner, I'm Tom Kellahin of
19	the Santa Fe law firm of Kellahin and Kellahin, appearing
20	today on behalf of Snyder Ranches, Inc., and Larry Squires.
21	Those parties are mineral interest owners within the area
22	that's subject to this special pool rules and regulations.
23	We do not propose to have a witness. We are here
24	in support of Mr. Bruce's client's continuation of 80-acre
25	spacing.

EXAMINER STOGNER: Thank you. 1 Any other 2 appearances? May it please the Examiner, my name is 3 MR. CARR: William F. Carr with the Santa Fe law firm Campbell, Carr, 4 5 Berge and Sheridan. We represent David Petroleum Corporation, a 6 7 working interest owner in the pool, and we likewise support the adoption on a permanent basis of 80-acre spacing rules. 8 We do not intend to call a witness. 9 10 EXAMINER STOGNER: Any other appearances in this 11 matter? 12 Mr. Bruce, you may continue -- or proceed, 13 rather. 14 MR. CARROLL: Swear the witnesses? 15 EXAMINER STOGNER: Oh, yeah, I'm sorry. Would 16 the witnesses please stand to be sworn at this time? (Thereupon, the witnesses were sworn.) 17 KEVIN WIDNER, 18 19 the witness herein, after having been first duly sworn upon his oath, was examined and testified as follows: 20 DIRECT EXAMINATION 21 BY MR. BRUCE: 22 Would you please state your name and city of 23 Q. residence for the record? 24 25 Yes, my name is Kevin Widner. I'm from Midland, Α.

5

1	Texas.
2	Q. Who do you work for and in what capacity?
3	A. I'm the production manager for Charles Gillespie,
4	Jr.
5	Q. Have you previously testified before the
6	Division?
7	A. No, I have not.
8	Q. Would you please outline for the Examiner your
9	educational and employment background?
10	A. I have a bachelor of science degree in petroleum
11	engineering from Texas A&M University in 1982.
12	I was employed with North American Royalties in
13	Midland, Texas, for 11 years, and I've been employed by Mr.
14	Charles Gillespie for the past year and a half.
15	Q. What are your duties for Mr. Gillespie?
16	A. I am the production manager in charge of the
17	operations.
18	Q. Okay. And your past experience has all been in
19	the Permian Basin?
20	A. Yes, it has.
21	Q. And are you familiar with the engineering matters
22	applicable to the West Lovington-Strawn Pool?
23	A. Yes.
24	Q. And have you prepared a package of exhibits for
25	presentation today on the with respect to the spacing of

1	this pool?
2	A. Yes, I have.
3	MR. BRUCE: Mr. Examiner, I tender Mr. Widner as
4	an expert petroleum engineer.
5	EXAMINER STOGNER: Mr. Widner is so qualified.
6	Q. (By Mr. Bruce) Mr. Widner, what is Mr.
7	Gillespie's recommendation regarding spacing for the pool?
8	A. That the current 80-acre ruling be made
9	permanent.
10	Q. Okay. If you would refer to your Exhibit 1,
11	which is a package of exhibits the pages have been
12	numbered would you turn to page 1 and describe the
13	contents of that page for the Examiner?
14	A. Page 1 is a brief history of the West Lovington-
15	Strawn field. It was discovered in May of 1992 by Charles
16	Gillespie.
17	There are currently nine producing wells within
18	the pool. They are on an 80-acre spacing.
19	The production, current production, is
20	approximately 24,000 barrels of oil and 38,000 MCF a month.
21	The cumulative production to date, as of January
22	1st, is approximately 1.2 million barrels of oil and 2.4
23	BCF.
24	The initial reservoir pressure of the field was
25	4392. The current reservoir pressure is 3384. And the

1	bubble-point pressure for the reservoir is calculated as
2	being 4130.
3	By a volumetric type of calculation, the original
4	oil in place was calculated at being approximately 12.5
5	million barrels.
6	Q. Now, you mentioned nine wells in the pool. Who
7	operates those wells?
8	A. Charles Gillespie, Jr.
9	Q. Would you please turn to page 2 and just briefly
10	identify what that shows?
11	A. Page 2 is a chronological history of the field,
12	the completion date and the potential of each well within
13	the field.
14	Q. Next move on to page 3 and discuss the pressure
15	data from this pool.
16	A. Page 3 is also a is in chronological order.
17	It shows the bottomhole pressure measurement of the
18	reservoir for individual wells, not necessarily in any
19	particular order but they are in chronological order, and
20	how that bottomhole pressure was obtained, whether by drill
21	stem test or bottomhole pressure buildup.
22	Q. And does this show a pretty continuous decline in
23	pressure in the pool?
24	A. Yes, it does, from the initial completion date of
25	the discovery well, the Hamilton Federal Number 1, in May

1	of 1992, as you can see, the pressure decreases with time
2	all the way down to our last pressure measurement in
3	January of 1995.
4	Q. What conclusion do you draw from this pressure
5	data?
6	A. That the entire pool, reservoir, is communicated.
7	Q. Now, would you please move on to page 4 and
8	discuss permeability in the pool?
9	A. Page 4 illustrates the calculated permeability to
10	oil for various wells and the type of test that to
11	obtain information for the permeability calculations.
12	Q. Are the permeability figures set forth on page 4
13	considered high for the Permian Basin?
14	A. Yes, they are.
15	Q. And does this permeability data also support the
16	need for maintaining 80-acre spacing?
17	A. Yes, it does.
18	Q. What are Exhibits or, excuse me, pages 5
19	through 22?
20	A. Pages 5 through 22 show a graphical and tabular
21	representation of the field's production history by total
22	field and by individual leases within the field.
23	Q. And that's just submitted for informational
24	purposes?
25	A. Correct.

1	Q. In your opinion, is the continuation of 80-acre
2	spacing in the interests of conservation and the prevention
3	of waste?
4	A. Yes, it is.
5	Q. And was Exhibit 1 prepared by you or under your
6	direction?
7	A. Yes, it was.
8	MR. BRUCE: Mr. Examiner, I move the admission of
9	Gillespie Exhibit Number 1.
10	EXAMINER STOGNER: Exhibit Number 1 will be
11	admitted into evidence at this time.
12	Mr. Kellahin I'm sorry, are you through, Mr.
13	Bruce?
14	MR. BRUCE: I'm through.
15	EXAMINER STOGNER: Mr. Kellahin, your witness.
16	MR. KELLAHIN: Thank you, Mr. Examiner.
17	EXAMINATION
18	BY MR. KELLAHIN:
19	Q. Mr. Wagner (<i>sic</i>), describe for me, sir, what it
20	is that you do for Mr. Gillespie as the production manager?
21	A. I'm in charge of all the field operations and
22	engineering done for Mr. Gillespie.
23	Q. Do your responsibilities as the production
24	manager include reservoir engineering aspects for the West
25	Lovington-Strawn Pool?

1	A. To a certain extent.
2	Q. To what extent is that, sir?
3	A. We have had an expert reservoir engineer do some
4	of the more difficult reservoir engineering calculations
5	that I do not have the capability of doing.
6	Q. Have your responsibilities as the production
7	manager included all of the production from the initial
8	data discovery back in May of 1992 for this pool?
9	A. No, sir, it does not.
10	Q. When did you first commence that responsibility?
11	A. In May of 1993.
12	Q. As part of your current responsibilities, have
13	you reviewed the historical production for this pool?
14	A. Yes, I have.
15	Q. Describe for me the reservoir, if you will, Mr.
16	Wagner. When the first well was discovered in the Strawn
17	Pool, what kind of reservoir are we dealing with?
18	A. It is a and I might want to let our geologist
19	answer that question, but it is a Strawn reservoir. It's
20	an algal-mound-type reef reservoir with typically have
21	very high permeability and typically are very small in this
22	area.
23	Q. When the reservoir was first discovered, the
24	initial reservoir pressure shown on page 1 of your exhibit
25	was about 4400 pounds, p.s.i.?

1 Α. Correct. And that is -- And how was that measure 2 Q. determined? 3 That initially was determined from a drill stem 4 Α. test, from when they drilled the original discovery well. 5 All right. In this reservoir prior to the first 6 Q. 7 withdrawals of hydrocarbons in the reservoir, what was the composition of the fluids and gases? 8 I don't quite understand your question. 9 Α. Was this initially a reservoir that was 10 ο. completely full of oil, with the gas in solution in that 11 oil? 12 It was a saturated reservoir. 13 Α. 14 Q. All right. At initial discovery, was there any 15 indication that there was any kind of gas cap in the 16 reservoir? No, sir, not that I'm aware of. 17 Α. Did you at initial discovery see any free gas in 18 ο. the reservoir? 19 No, sir. 20 Α. 21 ο. At initial discovery, was there a water component in the reservoir? 22 Not from the initial discovery, no, sir. 23 Α. The last entry on page 1 says an original oil in 24 ο. 25 place calculated volumetrically?

1	A. Uh-huh.
2	Q. To do that, an engineer has got to have a
3	geologist give him the size and the shape of that
4	container, do you not?
5	A. Correct.
6	Q. All right. How was this done for this pool?
7	A. I am not sure at this time how that number was
8	derived. I was not employed at that time.
9	Q. All right. That doesn't represent your work
10	A. No, sir
11	Q and you haven't studied it?
12	A it does not.
13	Q. How did you determine the bubble-point pressure?
14	How was that Not necessarily you, sir, but how was that
15	determined?
16	A. It was determined through what they call PVT
17	analysis of the reservoir fluids. Through various
18	laboratory work and information you calculate the bubble-
19	point pressure of the reservoir.
20	Q. Do you know what wells the fluid samples were
21	taken so that the PVT data could be analyzed?
22	A. Yes, sir, it was the Hamilton Federal Number 1.
23	Q. Did you have any other wells that you had PVT
24	data on?
25	A. No, sír.

1	Q. Did you see in the Hamilton well sample any
2	problems with the protocol on which that sample was taken
3	so that you would have a reliable sample to be analyzed?
4	A. At one time we did.
5	Q. What was that?
6	A. We Initially, it was felt that the samples
7	were not taken properly, they were taken off of a from
8	the tank battery at the wrong point.
9	We went back and did the analysis again, getting
10	these samples from a different spot within the tank
11	battery, and in fact did a third time, and came up with the
12	same bubble-point pressure, relatively close, twice.
13	Q. What's the degree of your engineering confidence,
14	then, in the reliability and accuracy of the bubble-point
15	pressure being 4130 p.s.i.?
16	A. It's fairly fairly good.
17	Q. Can you use that PVT data for anything else?
18	A. It's mainly used for bubble-point pressure
19	calculations.
20	Q. Can you use that to get yourself the initial oil
21	formation volume factor?
22	A. Yes, you can.
23	Q. Do you know what it is for this reservoir?
24	A. I Not off the top of my head, I do not know
25	that.

1	Q. Okay. But we could get it off that PVT study,
2	right?
3	A. Yes.
4	Q. And how about the current oil formation volume
5	factor? The same way, right?
6	A. Yes.
7	Q. What is the current reservoir pressure? It shows
8	on page 1 to be what, sir?
9	A. 3384.
10	Q. And how do you get that number?
11	A. That was derived from a bottomhole pressure
12	buildup in January of 1995.
13	Q. On which well?
14	A. The Hamilton Number 1, I believe. Yes. That is
15	a field average.
16	Q. You have recommended the continuation of 80-acre
17	spacing?
18	A. Yes.
19	Q. Do you see any pressure gradients in this
20	reservoir?
21	A. What do you mean by "pressure gradients"?
22	Q. Some type of barrier restriction, usually
23	impermeability?
24	A. We have not been able to calculate a barrier at
25	this time.

1	Q. All right. You see no indication that if I went
2	into this reservoir and took a current pressure,
3	bottomhole, it would be anything other than the current
4	3384 at any point in the reservoir?
5	A. No, sir.
6	Q. All right. So we could look at a well on the
7	fringe, we could look at a well in the middle, and we're
8	going to get the same pressure?
9	A. Yes, sir.
10	Q. That helps support 80-acre spacing, doesn't it?
11	A. Correct.
12	Q. What is the maximum oil allowable on 80-acre
13	spacing for this pool?
14	A. I believe it's 454 barrels a day, or 455.
15	MR. CROW: 445.
16	THE WITNESS: 445.
17	Q. (By Mr. Kellahin) 445, that means you're
18	A. Yes.
19	Q between 11,000 and 12,000 on 80-acre spacing?
20	A. Correct.
21	Q. Okay. Do you have wells that have the capacity
22	to produce 445 a day?
23	A. Yes, we do.
24	Q. Are you seeing any problem with producing wells
25	at that rate?

1	Α.	Current Well, we have not produced wells at
2	that rate	for some time.
3	Q.	Why not?
4	Α.	We are trying to maintain the reservoir pressure
5	at this t	ime, so we're in the process of unitizing the
6	field.	
7	Q.	Is there a gas cap present now in the reservoir?
8	Α.	That we cannot definitely say.
9	Q.	Are you having upstructure wells that have
10	increasin	g gas-oil ratios?
11	Α.	Yes, we are.
12	Q.	Which one are those?
13	Α.	The Speight Fee Number 1.
14	Q.	And that Speight Fee Number 1 is at the highest
15	point in	the structure of the pool, is it not?
16	Α.	Yes, it is.
17	Q.	And what is its current GOR?
18	Α.	It is approximately about 2200.
19	Q.	We've got a 2000-to-1 GOR in the pool?
20	Α.	Correct, in that particular well, not in the
21	total fie	ld.
22	Q.	As a production manager, are you concerned that
23	the withd	rawal rates of the wells are causing the
24	preferent	ial production of greater volumes of gas than
25	might be	prudent?

1	A. I don't quite understand the way you put that
2	question.
3	Q. Is the reservoir rate-sensitive to gas
4	withdrawal?
5	A. Yes, it is.
6	Q. Tell me how.
7	A. The By producing the wells at top allowable or
8	at 400 to 500 barrels a day, you are decreasing your
9	reservoir pressure.
10	As the reservoir pressure decreases, gas comes
11	out of solution, and you neither If you produce the
12	wells high enough, that gas will either go in the wellbore,
13	or if you produce the wells at a lower rate you get a
14	chance for the gas to create a gas cap within the
15	reservoir.
16	Q. We're going to leave oil behind, right? At
17	higher rates you're going to produce the gas in preference
18	to the oil, and you're going to get less oil per recovery
19	than you might otherwise at some lower rate?
20	A. Eventually.
21	Q. All right. Do you know what the approximate gas-
22	oil contact is in this reservoir at this point?
23	A. No, sir.
24	Q. Is there a water component in the reservoir now?
25	A. We feel there might be one.

Why do you feel that? 1 Q. Α. The law of calculations from the Wiley Fee, a 2 well up to the north, gave indication that there is a water 3 table. 4 Is this water that's migrating from below up into 5 0. the structure? 6 No, sir, we don't feel the water is mobile. 7 Α. The water is already in the reservoir, and 8 0. Okay. 9 the water is not recharging the reservoir? 10 Α. Correct. This is no -- We don't have a water-drive 11 ο. 12 component to the reservoir? 13 Α. No, not at all. 14 Q. Do you as the production manager have any 15 information with regards to what the current free gas saturation is in the oil zone? 16 17 No, sir, I do not. Α. How about the remaining oil saturation in this 18 Q. gas portion of the reservoir? 19 No, we do not, I do not. 20 Α. Other than the pressure information to show that 21 Q. withdrawals at one point in the reservoir are being seen or 22 affecting other portions of the reservoir --23 Uh-huh. 24 Α. 25 -- have you done any type of drainage Q.

1	calculations?
2	A. No, we have not at this time.
3	Q. Have you attempted to simulate the reservoir
4	performance of the wells by computer simulation?
5	A. Yes, we have.
6	Q. Okay. With what results, sir?
7	A. At one time not very accurate, but more recently
8	we have been able to fairly accurately predict the
9	performance of the reservoir as a pressure of the reservoir
10	versus production in that regard.
11	Q. Do you have a forecast as an engineer of what
12	percentage of the original oil in place you anticipate to
13	be recovered from the pool?
14	A. At this time we do.
15	Q. Do you have?
16	A. Yes.
17	Q. And what is it?
18	A. Well, I want to refrain that. We really do not
19	know at this time what a recovery factor might be due to
20	the way that we're trying to produce the reservoir.
21	We From our predictions it may vary anywhere
22	from 10 percent to 60 percent. At this time we just don't
23	know.
24	Q. Have you attempted to set up a criteria that will
25	tell you under different ways of operation what your

20

1	ultimate recovery percentage might be?
2	A. Yes.
3	Q. If it's on straight depletion as we have it now
4	with the 80-acre spacing from the absence of pressure
5	maintenance
6	A. Uh-huh.
7	Q what is that percentage?
8	A. It would be certainly much lower than 60 percent.
9	It might be somewhere in the 10-to-30-percent range.
10	Q. And if the pressure maintenance concept is
11	approved, what then do you expect to be the recovered
12	percentage?
13	A. We were hoping We don't really know, we can't
14	accurately predict that, but we were hoping anywhere from a
15	40- to 60-percent rate.
16	Q. In terms of management of the reservoir, give us
17	a quick summary of what you're at least conceptually
18	considering for the pressure maintenance project.
19	A. What we are considering is turning the Speight
20	Fee Number 1 into a gas injection well.
21	Q. Speight Fee is the one high in the structure?
22	A. Yes.
23	Q. That would be the gas injection well?
24	A. Correct.
25	Q. Why would you do that?

1	A. To try and create a gas cap for the reservoir.
2	Q. Maintains pressure?
3	A. Maintains pressure.
4	Q. Then what would you do?
5	A. And produce the remaining wells in the field, not
6	at a higher rate but at a rate of approximately again,
7	we're not sure right now, somewhere around a 150-barrel-a-
8	day range, probably, in order to allow time for gas that
9	does break out of solution to possibly help form a gas cap
10	also.
11	Q. In terms of further drilling in the pool, are
12	there plans, either current or in the future, for
13	additional wells?
14	A. Yes.
15	Q. And where will those wells be drilled?
16	A. Right now we are drilling a Snyder Number 2 well.
17	There will possibly also be a well up in the northern part
18	of the field and a well back in the northwest part of the
19	field.
20	Q. Where is the Snyder 2 well located?
21	A. Directly due south of the Snyder Number 1 well.
22	Q. It's in the southwest southwest of 34?
23	A. Correct.
24	Q. What's the purpose of that well?
25	A. As a continuing as a development well.

22

-

1	Q. What would be the purpose of additional drilling
2	on the north edge of the pool?
3	A. They would also be development wells drilled on
4	the flanks of the reservoir.
5	Q. Do you see any reason in this reservoir to go to
6	40-acre spacing?
7	A. No, sir.
8	Q. Those would be unnecessary wells, would they not?
9	A. Correct.
10	Q. Because current 80-acre spacing then would
11	provide an efficient number of wells that could drain
12	spacing units of that size?
13	A. Correct.
14	MR. KELLAHIN: Thank you, Mr. Examiner.
15	EXAMINER STOGNER: Thank you, Mr. Kellahin.
16	Mr. Carr?
17	MR. CARR: No questions.
18	EXAMINER STOGNER: Mr. Bruce, any redirect?
19	MR. BRUCE: Just a couple.
20	REDIRECT EXAMINATION
21	BY MR. BRUCE:
22	Q. Mr. Widner, you said the wells were choked back
23	at this time. What are they producing at?
24	A. Approximately 100 barrels a day each,
25	approximately.

1	Q. And perhaps You mentioned about three
2	additional development wells, and with that injection well
3	that, at least at this time, is what you see as necessary
4	for the full development of the field?
5	A. Correct.
6	MR. BRUCE: Nothing further, Mr. Examiner.
7	EXAMINATION
8	BY EXAMINER STOGNER:
9	Q. You said you had a choke-back of 100 barrels of
10	oil per day?
11	A. Yes, sir.
12	Q. How many wells are you having to choke back to
13	that
14	A. All nine wells.
15	Q. All nine wells?
16	A. Yes, sir.
17	Q. Would you give me a summary of what the
18	completion technique on these wells are?
19	A. These wells are perforated under balance. They
20	come in naturally. There is no stimulation whatsoever for
21	any of the wells.
22	Q. So the wellbore is just perforated?
23	A. Yes, sir.
24	EXAMINER STOGNER: Mr. Bruce, I can see now why
25	Mr. Nutter wanted to call this pool the Patience Pool.

1	I have no other questions of this witness. He
2	may be excused.
3	MR. BRUCE: Call Mr. Crow to the stand.
4	WILLIAM CROW,
5	the witness herein, after having been first duly sworn upon
6	his oath, was examined and testified as follows:
7	DIRECT EXAMINATION
8	BY MR. BRUCE:
9	Q. Will you please state your name for the record?
10	A. William Crow.
11	Q. And who do you work for and in what capacity?
12	A. Charles Gillespie, and I'm exploration manager.
13	EXAMINER STOGNER: Mr. Crow, you're going to have
14	to speak up a little bit. The acoustics in our new hearing
15	room is not up to par.
16	THE WITNESS: Okay. I'm exploration manager for
17	Charles Gillespie.
18	Q. (By Mr. Bruce) And by profession are you a
19	geologist?
20	A. I'm a geologist.
21	Q. Have you previously testified before the OCD as
22	an expert petroleum geologist?
23	A. Yes, sir. As a geologist, yes, yes, I have.
24	Q. And are you familiar with the geology involved in
25	the West Lovington-Strawn Pool?

1 Α. Yes, I am. 2 MR. BRUCE: Mr. Examiner, I tender Mr. Crow as an 3 expert geologist. EXAMINER STOGNER: Are there any objections? 4 5 MR. KELLAHIN: No, sir. EXAMINER STOGNER: Mr. Crow is so qualified. 6 7 (By Mr. Bruce) Mr. Crow, we've got two Q. geological exhibits, Exhibit Number 2, the structure map, 8 9 and Exhibit 3, the isopach. 10 Would you go through those briefly and discuss 11 the geology in this pool? 12 Α. Okay. Exhibit 2 is a structure map of the West 13 Lovington-Strawn Pool. It's contoured on top of the Strawn limestone, 14 15 and all it -- It's just a map of the area of the pool, and 16 it just shows regional dip to the north northeast, with a 17 slight structural nosing in a northwestward direction. And the Speight Number 1 well is the highest well 18 0. currently in the pool, is it not? 19 The Speight Number 1 well is the highest well in 20 Α. the pool as -- concerning porosity. Actually, the 21 Earnestine Number 1, which is due east of it, is the 22 highest well in the field for the top of the Strawn 23 formation. 24 Would you then move on to Exhibit 3 and discuss 25 Q.

1	the extent of the pool?
2	A. Okay, Exhibit 3 is a net porosity isopach of the
3	West Lovington-Strawn Pool.
4	It was mapped utilizing a three-percent porosity
5	cutoff with a PHI density porosity using an 85-percent
6	cutoff there.
7	Q. And the outlines of the pool have been pretty
8	well verified by your development and drilling of the pool,
9	have they not?
10	A. Yes, sir, with our nine wells that we've drilled,
11	and we were offset once to the west by Amerind, and then
12	there was well control to the east, and so there's pretty
13	good well control for this isopach map.
14	Q. In your opinion, is the continuation of 80-acre
15	spacing in this pool in the interests of conservation and
16	the prevention of waste?
17	A. Yes, it is.
18	Q. And were Exhibits 2 and 3 prepared by you?
19	A. Yes, they were.
20	MR. BRUCE: Mr. Examiner, I tender Exhibits 2 and
21	3.
22	EXAMINER STOGNER: Exhibits 2 and 3 will be
23	admitted into evidence at this time.
24	Mr. Kellahin, your witness.
25	MR. KELLAHIN: Thank you, Mr. Examiner.

27

1	EXAMINATION
2	BY MR. KELLAHIN:
3	Q. Mr. Crow, if you'll turn with me, sir, to Exhibit
4	3, it's the last one we were looking at. It's the net pay
5	porosity map.
6	A. Yes, sir.
7	Q. Describe for me, sir, why you have chosen to use
8	a three-percent porosity cutoff.
9	A. We cored two wells, we took a core out of the
10	Earnestine Number 2 well and out of the Hamilton Number 3
11	well, and upon analysis of that cored information and
12	compared to with the permeability and data from that, we
13	decided that oil would be moveable and would be productive
14	down to three-percent porosity.
15	Q. Sometimes in reservoirs the geologist has a range
16	from which to make a choice on porosity cutoff?
17	A. That is correct.
18	Q. If other geologists were to look at this, do you
19	think there's going to be a point of disagreement with you
20	individuals professionally on using three percent?
21	A. If they just If they didn't have the core
22	information, some geologists might want to use four
23	percent.
24	Q. The core information is more definitive and
25	therefore more accurate in determining a porosity cutoff

28

1	value for you?
2	A. It's information that, if it's available, would
3	be it's certainly another tool to utilize to determine
4	cutoff and what might be moveable.
5	Q. And a geologist like you that's looking to try to
6	determine that value as accurately as possible is going to
7	want the core data that's available?
8	A. If it's available, yes.
9	Q. All right, sir. Let's talk about the shape. I'm
10	looking at the area around the shape.
11	A. Uh-huh.
12	Q. I assume you derive that by taking all the
13	geologic information known to you in the area
14	A. Yes.
15	Q and then making some decisions about how to
16	define the shape?
17	A. Yes, sir.
18	Q. When we look at Section 34 in the east half,
19	there's the Bridge Culp Julia Number 2 well. Do you see
20	that?
21	A. Yes, sir.
22	Q. What's the basis for a zero value for that well?
23	A. The well From electric log calculations, the
24	well had zero porosity.
25	Q. Was there a drill stem test on that well?

1	A. I believe there was, yes, sir.
2	Q. And do you remember what it showed?
3	A. The well was tight, no permeability, and produced
4	no hydrocarbons, very little fluid.
5	Q. Pretty good control, then, for you as a geologist
6	to say that that zero line for the reservoir has got to be
7	some distance west of the Culp Julia Number 2?
8	A. Yes, sir.
9	Q. When we look at the northern boundary, what is
10	your control basis for determining where the zero line is
11	for the northern boundary of the pool?
12	A. The zero line depicted there to the north was
13	determined using 3-D seismic data interpretation.
14	Q. How did that help you determine where that zero
15	line was?
16	A. With seismic data, we feel we can depict the reef
17	and see the actual porosity, and we attempt as best we can
18	to follow that porosity signature out until it pinches out,
19	and that was where we determined the zero line was.
20	Q. All right. You can use the 3-D seismic
21	information to tell you when you're low enough on the
22	structure, you're beyond the porosity that will contribute
23	to production in the reservoir?
24	A. Yes, sir. The porosity, though, will pinch out
25	in all directions, regardless of structure. But you can,

1	from the seismic, determine the porosity pinchout and
2	structural position, yes, sir.
3	Q. Another geologist is not going to quibble with
4	you about how that was done?
5	A. It's When you get into seismic, it is
6	interpretive, and three different geophysicists might have
7	two or three different interpretations.
8	Q. Is the How well does the 3-D seismic
9	information correlate to the conventional log information
10	that you have as a geologist? Is
11	A. Very well, all the wells tie. Once we shot that
12	3-D survey, all the wells tie very well. And from modeling
13	those you can definitely determine where the porosity was
14	at and how thick it is.
15	Q. Did you have any mis-ties?
16	A. No, sir.
17	Q. Anything in there to give you a problem in
18	correlating the conventional geologic information back with
19	the 3-D seismic work?
20	A. No, sir.
21	Q. So we
22	A. The well is drilled out just pretty much like we
23	expected.
24	Q. Okay. So we got good control, in your opinion,
25	on what the northern boundary is?

Yes, sir. 1 Α. Show me the western boundary. How did you get 2 Q. 3 that boundary? Α. The western boundary, as far as toward the south 4 part where Amerind drilled their well, we have well control 5 That well was drilled, electric logs were 6 there. 7 interpreted and there was no porosity or reef in that well either. 8 Was there any drill stem tests on --9 Q. No, it was such a poor -- I wasn't on location, 10 Α. 11 but obviously they didn't get any shows or anything. They didn't --12 13 0. So poor they didn't even try? 14 Α. Yes, sir. 15 Pretty good control there in the southwest then? Q. 16 Α. Yes, sir. 17 Q. How did you then handle the western boundary north of the Amerind well? 18 With 3-D seismic, as we did --19 Α. 20 Q. Again? 21 Α. Uh-huh. 22 So the northern west boundary is seismically Q. 23 defined? 24 Α. Yes, sir. 25 All right. And the north boundary is seismically Q.

32

defined? 1 2 Α. Yes, sir. 3 And the southern boundary, how did you determine Q. the southern limits of the pool? 4 Again, it is seismically defined, and that is the 5 Α. back of the reef, and it's very steep, very abrupt, and 6 7 it's quite easy to detect. Mr. Wagner, in his presentation, gave us a 8 Q. 9 calculated original oil in place of 12.5 --10 Yes, sir. Α. -- million barrels of oil, volumetrically 11 Q. calculated? 12 13 Α. Yes, sir. 14 Q. All right. Did you assist in helping the 15 engineer determine a geologic map from which that volumetric calculation could be made? 16 17 Α. Yes, sir, to a point. These isopachs and 18 structure maps were used to create a hydrocarbon four-foot map, and then that hydrocarbon four-foot map was used by 19 the engineers to do the volumetrics. 20 21 If we took the net pay, this porosity map, Q. Exhibit 3 --22 23 Uh-huh. Α. 24 -- to what extent does it change to get you the Q. 25 phi h map?

33

The phi h map or the hydrocarbon four-feet map 1 Α. was determined by using a software package that has been 2 created by Geographics and Schlumberger together, and it's 3 4 called QLA2 software. It's a log-analysis program, and the log analysis was done by computer to calculate porosity, 5 6 cross-plot porosity, and do water saturation down to every 7 half foot, and then -- That's where these net feet numbers 8 come from. 9 And then from that -- The hydrocarbon four-foot 10 figure was given, and then it was just isopached in the same manner. And the only difference, really, is, once you 11 get north downstructure, you have to take into account the 12 area that calculates wet with water. 13 What's your degree of geologic confidence in the Q. 14 accuracy of the distribution of pore volume in the 15 reservoir using that process? 16 We feel very good, I feel very confident that 17 Α. it's going to drill out and -- the pool is mapped fairly 18 19 accurately. 20 0. From a geologic perspective, what's your opinion 21 about 80-acre spacing? I believe it's sufficient to drain the reservoir. 22 Α. 23 ο. Give us a quick summary of this Strawn algal mound in terms of its geologic characteristics. 24 The Strawn reef out in this area in Lovington and 25 Α.

1	Lea County is an algal mound. It's a mud-mound buildup,
2	where mud was trapped, as the reef was growing, in algal
-	matorial And then after sea levels dropped the algal
5	material. And then after sea revers dropped the argan
4	material was leached away out of the mud and created very
5	high vugular porosity and permeability.
6	Q. If you were to make a cross-section of wells
7	through the pay interval in the pool, would the log
8	signatures be similar when we look at the logs?
9	A. Yes, sir. One thing we do notice is flank wells
10	have lower porosity. In the crest of the reef where most
11	of the reef material was originally, you're going to have
12	you have higher porosity and more fractured.
13	Q. But you can use a three-percent porosity cutoff
14	and look at a cross-section and see continuity of the
15	reservoir
16	A. Yes, sir.
17	Q from well to well?
18	A. Yes, sir.
19	Q. Is this any different than the Shipp-Strawn and
20	the Casey-Strawn and these other algal-mound
21	A. No, sir.
22	0 pools down there?
23	A. No. sir. just a much larger
2.4	Q. Same kind of creature?
25	A of the same creature, yes, sir.

1	MR. KELLAHIN: Thank you, Mr. Examiner.
2	EXAMINER STOGNER: Thank you, Mr. Kellahin.
3	Mr. Carr, your witness.
4	MR. CARR: I have no questions.
5	EXAMINER STOGNER: Mr. Bruce, any redirect?
6	MR. BRUCE: No, sir.
7	EXAMINATION
8	BY EXAMINER STOGNER:
9	Q. Are there any other planned wellbores at this
10	time?
11	A. Planned wellbores?
12	Q. Yeah.
13	A. Yes, sir. Currently we're drilling a Snyder S
14	Com Number 2 in the southwest quarter of the southwest
15	quarter of Section 34.
16	We're working on getting a well started with some
17	of our working interest partners in the northwest quarter
18	of the northeast quarter of Section 33.
19	And those two wells Well, one is drilling now,
20	the Snyder well, and the well up in the northeast quarter
21	of 33, being the Klein Number 1 well, we hope will spud
22	within 30 days.
23	Q. And the discovery well was the Hamilton Federal
24	Number 1; is that correct?
25	A. Yes, sir.

1 EXAMINER STOGNER: I have no other questions of 2 Mr. Crow. Do you have anything? 3 MR. CARROLL: (Shakes head) 4 MR. BRUCE: Nothing further. 5 EXAMINER STOGNER: Any other questions of this 6 witness? 7 8 MR. KELLAHIN: No, sir. 9 EXAMINER STOGNER: He may be excused. Mr. Bruce, anything further in this case? 10 11 MR. BRUCE: No, sir. EXAMINER STOGNER: Does anybody else have 12 13 anything further in Case Number 10,530, the reopened 14 portion of it? 15 If not, then this case will be taken under advisement. 16 (Thereupon, these proceedings were concluded at 17 18 9:15 a.m.) 19 20 21 22 23 24 25

CERTIFICATE OF REPORTER

STATE OF NEW MEXICO)) ss. COUNTY OF SANTA FE)

I, Steven T. Brenner, Certified Court Reporter and Notary Public, HEREBY CERTIFY that the foregoing transcript of proceedings before the Oil Conservation Division was reported by me; that I transcribed my notes; and that the foregoing is a true and accurate record of the proceedings.

I FURTHER CERTIFY that I am not a relative or employee of any of the parties or attorneys involved in this matter and that I have no personal interest in the final disposition of this matter.

WITNESS MY HAND AND SEAL January 20th, 1995.

sulu

STEVEN T. BRENNER CCR No. 7

My commission expires: October 14, 1998 I do hereby certify that the foregoing is a complete record of the proceedings in the Examiner hearing of Lase to. 10530 (Reopened) bowary 1995. heard by me on ___, Examiner Oil Conservation Division

STEVEN T. BRENNER, CCR (505) 989-9317 38

"muc-