

#### Manzano Oil Corporation

P.O. Box 2107 Roswell, New Mexico 88202-2107 (505) 623-1996 FAX (505) 625-2620

July 13, 1993

Cuse 10796

State of New Mexico Energy, Minerals and Natural Resources Department Oil Conservation Commission Post Office Box 2088-87504 Santa Fe, New Mexico 87504

Mr. William J. Lemay, Director Attn:

Re: Emergency Order Manzano Oil Corporation's Neuhaus "14" Federal #2 660'FNL & 1650'FEL Section 14, T20S, R35E Lea County, New Mexico

1 1903 . 11 11

Dear Mr. Lemay:

Manzano Oil Corporation is currently attempting a completion in the Wolfcamp in the Neuhaus "14" Federal #2. The top of the Wolfcamp pay is 11,354' or -7676' subsea. Total net pay is 120'. A total of 50' will be perforated throughout the total net pay interval.

A drill stem test in this Wolfcamp interval resulted in gas to surface at 2000 MCFGPD on a 3/8" choke with surface pressure of 650 psi. Static bottom hole pressure on both the initial and final shut in pressures was 2128 psi.

The Manzano Neuhaus "14" Federal #2-is the direct south offset to the Marathon  $2e^{2}$ 0il Jordan "B" #1, 660'FSL & 1650'FEL of Section 11, T20S, R35E. The Jordan "B" Web carry #1 was completed in the Wolfcamp with 38' of perforated interval over a gross net pay of 60'. IPCAOF was 9108 MCFGPD with a GOR of 9900. The extrapolated bottom hole pressure was 3460 psi.

The Jordan "B" #1 began production in February 1992. Cumulative production as of May 1, 1993 is 2,180,628 MCFG, 228,053 barrels of condensate and 65,822 barrels of water. The average daily rate has been 5161 MCFGPD + 539 BCPD + 158 BWPD.

The top of the Wolfcamp pay in the Manzano Neuhaus "14" Federal #2 is 61' higher subsea from the Marathon Jordan "B" #1 and has twice the net pay, 120' versus 60'. The reservoir pressure on the Neuhaus line has been reduced some 1332 psi by production from the Marathon Jordan "B" #1.

5/2

State of New Mexico Energy, Minerals and Natural Resources Department Oil Conservation Commission July 13, 1993 Page Two

Not Since both wells are equal distance from the lease line, it is obvious that the Neuhaus is being drained by production from the Jordan and correlative rights are not being protected. Therefore, Manzano Oil Corporation requests an emergency order allowing the Neuhaus "14" Federal #2 to produce at one and one-half (1-1/2) the life time average daily rate of the Marathon Jordan "B" #1 until such time after a hearing to determine ratable take from each well to protect correlative rights.

10

Manzano requests that if there is any penalty applied to the Neuhaus production, that adjustments be applied after the hearing date which is scheduled for August 12, 1993.

Sincerely,

*Former Sach f* Kenneth Barbe, Jr.

KB:ar

4 Print Palander E.j Ripeline Ressore an an the second se

#### STATE OF NEW MEXICO

ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT

OIL CONSERVATION DIVISION

BRUCE KING GOVERNOR

ANITA LOCKWOOD CABINET SECRETARY July 21, 1993

POST OFFICE BOX 2088 STATE LAND OFFICE BUILDING SANTA FE, NEW MEXICO 87504 (505) 827-5800

Case 10796

Manzano Oil Corporation P. O. Box 2107 Roswell, New Mexico 88202-2107

Attention: Kenneth Barbe, Jr.

Re: Manzano Oil Corporation Newham "14" Federal No. 2 660' FNL and 1650' FEL Section 14, T20S, R35E Lea County, New Mexico

Gentlemen:

Your request to produce the subject well is approved as a testing allowable. You can produce the well to gather data for your hearing scheduled for August 12, 1993 but not beyond that date until an order has been issued in the case. Be advised that the gas produced as a testing allowable may have to be made up as a result of the hearing order.

The testing allowable will be 882 Mcf/D which is 1/3 of the calculated Absolute Open Flow of 2647 Mcf/D. This gas must be produced to a pipeline and cannot be vented.

Prior to producing the well you must submit a new C-102 showing the dedicated acreage and producing formation and obtain an approved C-104 from the OCD Hobbs district office.

At the conclusion of the testing period, you must submit a report to my attention, detailing the gas produced during this testing period.

Sincerely. William J. LeMay Director

cc: Robert Unger, Marathon

## ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT

OIL CONSERVATION DIVISION

BRUCE KING GOVERNOR

ANITA LOCKWOOD CABINET SECRETARY POST OFFICE BOX 2088 STATE LAND OFFICE BUILDING SANTA FE, NEW MEXICO 87504 (505) 827-5800

August 13, 1993

Manzano Oil Corporation P. O. Box 2107 Roswell, New Mexico 88202-2107

Attention: Kenneth Barbe, Jr.

Re: Manzano Oil Corporation Newham "14" Federal No. 2 660' FNL and 1650' FEL Section 14, T20S, R35E Lea County, New Mexico

Gentlemen:

Your request to produce the subject well has been approved as a testing allowable by correspondence dated July 21, 1993. You were allowed to produce the well to gather data for your hearing originally scheduled for August 12, 1993 but rescheduled for August 19, 1993. You were advised that the gas produced as a testing allowable may have to be made up as a result of the hearing order.

The testing allowable was 882 Mcf/D which was 1/3 of the calculated Absolute Open Flow of 2647 Mcf/D. This gas was to be produced into a pipeline and not vented. At the time you submitted your original CAOF you indicated that there was a problem with this measurement because of fluid in the hole. We are is receipt of your new test indicating a CAOF of 35,240 MCFGPD. Effective today you may produce up to 1/3 of this amount being 11,740 MCFGPD for testing purposes only. All other provisions of my July 21, 1993 letter to you remain in effect.

Sincerely, William J. LeMay, Director WJL/sl Robert Unger, Marathon cc:





# United States Department of the Interior

V CONCRETE R

BUREAU OF LAND MANAGEMENT Roswell District Office 1717 West Second Street Roswell, New Mexico 88201-2019

100 AU - AM 8 59

IN REPLY REFER TO:

3100.2 (065)

AUG 1 7 1993

Director, Oil Conservation Division New Mexico Energy, Minerals and Natural Resources Department P. O. Box 2088 State Land Office Building Santa Fe, New Mexico 87504

Dear Sir:

This letter provides comments from the Bureau of Land Management (BLM) regarding the disposition of case number 10796, which is scheduled for hearing on Thursday, August 19, 1993. This hearing concerns application by Manzano Oil Corporation for an unorthodox gas well location in section 14, T. 20 S., R. 35 E., Lea County, New Mexico. The affected well is on federal oil and gas lease NM-16835.

Manzano has recently completed the Neuhaus Federal "14" No. 2 well at 660'/FNL and 1650'/FEL within section 14. It is completed in the Wolfcamp formation, with perforations from 11,354 - 11,485 feet. It is currently producing at an allowable rate of 1/3 of the tested Absolute Open Flow. Manzano have determined that this Wolfcamp reservoir is limited in extent, and occurs within the NE/4 of section 14 and the SE/4 of section 11. Our geologic staff has examined maps prepared by Manzano that will be presented at the hearing and find that they are valid interpretations of the data presented. Most of the reservoir volume is mapped in section 14. Based on the maps presented, it appears that these two wells will fully develop the reservoir.

According to Manzano, the operators of the Jordan "B" No. 1 well at 660'/FSL and 1980'/FEL, section 11, plan to protest Manzano's application for unorthodox location and will seek to decrease the authorized allowable production. The Jordan "B" No. 1 is also producing from the Wolfcamp through perforations at 11,426 - 11,478; the net pay in the Jordan "B: No. 1 well is correlative with the net pay in the Neuhaus Federal "14" No. 2 well, but is considerably thinner. Manzano has shown us pressure transient data, radial flow data, and drainage encroachment maps based on greater than four per cent porosity which indicate that physical drainage of gas from Manzano's Federal lease has been occurring, and will continue to occur if the authorized allowable production is reduced.

The Federal Government, as lessor, has the responsibility of protecting the Public's royalty interests. We urge the Oil Conservation Division to allocate allowable production between these wells through some allocation schedule, cooperative plan, agreement, or designated allowable per well that will reflect actual reservoir parameters, including the estimated volume of the reservoir in place on each lease. Should you wish to discuss this further, please contact Jim Pettengill at (505) 627-0272.

.

Sincerely,

Arry Lergury Arry Lergury Jah Leslie M. Cone District Manager

. •

#### STATE OF NEW MEXICO



ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT

OIL CONSERVATION DIVISION

POST OFFICE BOX 2088

STATE LAND OFFICE BUILDING SANTA FE, NEW MEXICO 87504

(505) 827-5800

BRUCE KING GOVERNOR

ANITA LOCKWOOD CABINET SECRETARY

August 20, 1993

Manzano Oil Corporation c/o Campbell, Carr, Berge & Sheridan, P.A. P.O. Box 2208 Santa Fe, New Mexico 87504-2208

Attention: Mr. William F. Carr

Re: Neuhaus Federal Well No. 2 Section 14, T-20S, R-35E, NMPM

Dear Mr. Carr:

Please be advised that under the terms and conditions contained within my letter to Manzano Oil Corporation dated August 13, 1993, and, as directed by the Division Examiner at the conclusion of the hearing in Case No. 10796, the Neuhaus Federal Well No. 2 shall be <u>shut-in</u> until further notice of the Division, or until an order is issued approving the unorthodox well location.

Sincerely, William J. Director Lel λáγ,

WJL/dc

cc: Marathon Oil Co. c/o W. Thomas Kellahin



P.O. Box 2107 Roswell, New Mexico 88202-2107 (505) 623-1996 FAX (505) 625-2620

 $\mathcal{O}$ 

င္ထာ

August 20, 1993

State of New Mexico Oil Conservation Division P.O. Box 2088 Santa Fe, New Mexico 87504 Attn: Mr. Bill LeMay

Re: Neuhaus "14" Federal #2 Lea County, NM

Dear Mr. LeMay:

Enclosed is a detailed report of gas produced on the above referenced well as requested in your letter of July 21, 1993 and subsequent letter of August 13, 1993, whereby you stated that we submit a report to your attention detailing the gas produced during our testing period, which ended August 19, 1993, as stated in your letter.

With regards to condensate production, Manzano was also in compliance with the condensate allowable as authorized by Jerry Sexton on July 20, 1993 (see attached authorization). If you would like a detailed report of the condensate production, please do not hesitate to contact us.

If you have any questions or need anything further, please do not hesitate to give me a call. Thank you for your continued cooperation in this matter.

Sincerely,

Kon ber ho

Kenneth Barbe, Jr.

| Producti  | on Test Data   |  |
|-----------|----------------|--|
| Neuhaus " | 14" Federal #2 |  |
| Section 1 | 4, T20S, R35E  |  |
| Lea Count | y, New Mexico  |  |

.

|              | <u>Date</u>                                                                                                                                               |         | Gas Prod<br>MCF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Cum Gas<br>Prod<br><u>MCF</u>                                                                                                                                                                                                   | Cum<br>Allowable<br><u>882 MCFPD</u>                                                                                                                                          | Cum<br>Allowable<br><u>11,740 MCFPD</u>        |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
| 0pen<br>1993 | 8:00 p.m.<br>July 25<br>26<br>27<br>28<br>29<br>30<br>31<br>Aug 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17 | 7/24/93 | 3,178<br>3,240<br>3,178<br>3,104<br>3,120<br>3,135<br>3,193<br>3,227<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272<br>3,272 | 3,178<br>6,418<br>9,596<br>12,700<br>15,820<br>18,955<br>22,148<br>25,375<br>28,647<br>31,953<br>33,768<br>36,653<br>40,637<br>44,625<br>48,556<br>52,511<br>56,532<br>60,616<br>64,750<br>68,952<br>73,215<br>77,536<br>81,920 | 882<br>1,764<br>2,646<br>3,528<br>4,410<br>5,292<br>6,174<br>7,056<br>7,938<br>8,820<br>9,702<br>10,584<br>11,466<br>12,348<br>13,230<br>14,112<br>14,994<br>15,876<br>16,758 | 28,498<br>40,238<br>51,978<br>63,718<br>75,458 |
|              | 19                                                                                                                                                        |         | 4,896                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 91,481                                                                                                                                                                                                                          |                                                                                                                                                                               | 98,938                                         |

OIL CONSERVATION DIVISION

Hobbs, New Mexico 88240

DISTRICT OFFICE

July Thru December, 1993 NO. 1052L

## SUPPLEMENT TO THE OIL PRORATION SCHEDULE

DATE: 07/20/93

PURPOSE: CONDENSATE ALLOWABLE

Effective 07/14/93, a condensate allowable of

6000 barrels per month is hereby assigned to the MANZANO OIL CORP.,

NEUHAUS "14" FEDERAL, 2 - B, 14-20-35,

LEA UNDESIGNATED; WOLFCAMP (GAS) Pool.

| July Total      | 6000 | Barrels |  |
|-----------------|------|---------|--|
| August Total    | 6000 | Barrels |  |
| September Total | 6000 | Barrels |  |

OIL CONSERVATION DIVISION DISTRICT SUPERVISOR フェ

JS:nm

MANZANO OIL CORP.

KSV

GPM

- DISTRIBUTION: WHITE-OPERATOR, GREEN-TRANSPORTER, CANARY-OCC SANTA FE, PINK-OFFICE COPY, GOLDENROD-EXTRA COPY

- SIVISION Тŋ

Manzano Oil Corporation

ill 9 23

P.O. Box 2107 Roswell, New Mexico 88202-2107 (505) 623-1996 FAX (505) 625-2620

August 24, 1993

State of New Mexico Oil Conservation Division P.O. Box 2088 Santa Fe, New Mexico 87504

Attn: Mr. David Catanach

Re: Condensate Production Neuhaus "14" Federal #2 Lea County, New Mexico

Dear Mr. Catanach:

Pursuant to your request directed to Mr. Bill Carr regarding the condensate production from the Neuhaus "14" Federal #2, I have enclosed a detailed report of the production as was approved by the OCD. Manzano was originally granted a condensate allowable of 6,000 barrels for the months of July, August and September, respectively. After our corrected four point test was submitted, Manzano was granted a testing allowable of up to 11,740 MCFPD, which is reflected from August 13th to August 19th. On August 19th, the hearing date, the well was shut-in as was requested by Mr. LeMay's original letter in which an allowable was granted until the hearing date.

If you have any questions, please do not hesitate to call. Thank you for your prompt attention to this matter.

Sincerely,

Kenneth Barbe, Jr.

KB:ar

cc: Bill Carr

| Product  | tion | Test | : Data | 1  |
|----------|------|------|--------|----|
| Neuhaus  | "14" | Fed  | eral   | #2 |
| Section  | 14,  | T20S | , R35  | δE |
| Lea Cour | nty, | New  | Mexic  | o  |

.

| <u>Date</u>                                  | BCPD              | Cum<br>Condensate<br><u>Bbls</u> | Cum<br>Condensate<br>Allowable<br><u>@ 6000 B/M</u> | :<br>:<br>[  |
|----------------------------------------------|-------------------|----------------------------------|-----------------------------------------------------|--------------|
| Open 8:00 p.m. 7/24/93<br>1993 July 25<br>26 | 563               | 563                              |                                                     |              |
| 27 28                                        | 597<br>553        | 1,716                            |                                                     |              |
| 29<br>30                                     | 528<br>596        | 2,797                            |                                                     |              |
| · 31<br>Aug 1                                | 656<br>542        | 4,049<br>4,591                   | 6,000                                               |              |
| 23                                           | 619<br>539        | 5,210<br>5,749                   |                                                     |              |
| 4 5                                          | 412<br>SI         | 6,161<br>6,161                   |                                                     |              |
| 6<br>7                                       | 520<br>687        | 6,681<br>7,368                   |                                                     |              |
| 8<br>9<br>10                                 | 680<br>701<br>729 | 8,048<br>8,749<br>9,477          |                                                     |              |
| 11                                           | 643<br>579        | 10,120                           | 12 000                                              |              |
| 13                                           | 538<br>682        | 11,237                           | 12,000<br>G                                         | as Allowable |
| 15<br>16                                     | 633<br>570        | 12,552                           | 1                                                   | 1,740 MCFPD  |
| 17<br>18<br>19                               | 693<br>677<br>660 | 13,815<br>14,492<br>15,152       |                                                     |              |
| 17                                           | 000               | 13,132                           |                                                     |              |



1.1.1.0

Manzano Oil Corporation

P.O. Box 2107 Roswell, New Mexico 83202-2107 (505) 623-1996 FAX# (505)-625-2620

anuid antrach K.M.M.CO TO: 1 Mg a Charlen TRAME 8/24/93 . \_\_\_\_\_ DATE: NUMBER OF PAGES (including this cover sheet)  $\_$ **MESSAGE:** 

61

ŝ



## Manzano Oil Corporation

P.O. Box 2107 Roswell, New Mexico 88202-2107 (505) 623-1996 FAX (505) 625-2620

August 24, 1993

State of New Mexico Oil Conservation Division P.O. Box 2088 Santa Fe. New Mexico 87504

Attn: Mr. David Catanach

Re: Condensate Production Neuhaus "14" Federal #2 Lea County, New Mexico

Dear Mr. Catanach:

Pursuant to your request directed to Mr. Bill Carr regarding the condensate production from the Neuhaus "14" Federal #2, I have enclosed a detailed report of the production as was approved by the OCD. Manzano was originally granted a condensate allowable of 6,000 barrels for the months of July, August and September, respectively. After our corrected four point test was submitted, Manzano was granted a testing allowable of up to 11,740 MCFPD, which is reflected from August 13th to August 19th. On August 19th, the hearing date, the well was shut-in as was requested by Mr. LeMay's original letter in which an allowable was granted until the hearing date.

If you have any questions, please do not hesitate to call. Thank

Sincerely,

land Car

Kenneth Barbe, Jr.

KB;ar

cc: Bill Carr

8

-

Production Test Data Neuhaus "14" Federal #2 Section 14, T20S, R35E Lea County, New Mexico

|      | <u>Date</u> |      |         | BCPD        | Cum<br>Condensate<br><u>Bbls</u> | Cum<br>Condensat<br>Allowabl<br>@ 6000_B/ | :е<br>.е<br>/ <u>М</u> |
|------|-------------|------|---------|-------------|----------------------------------|-------------------------------------------|------------------------|
| Open | 8:00        | p.m. | 7/24/93 |             |                                  |                                           |                        |
| 1993 | July        | 25   |         | 563         | 563                              |                                           |                        |
|      |             | 26   |         | 556         | 1,119                            |                                           |                        |
|      |             | 27   |         | <b>59</b> 7 | 1,7 <b>1</b> 6                   |                                           |                        |
|      |             | 28   |         | 553         | 2,269                            |                                           |                        |
|      |             | 29   |         | 528         | 2,797                            |                                           |                        |
|      |             | 30   |         | 596         | 3,393                            |                                           |                        |
|      | Aug         | 1    |         | 542         | 4,591                            | r                                         |                        |
|      |             | 2    |         | 619         | 5,210                            |                                           |                        |
|      |             | 3    |         | 539         | 5.749                            |                                           |                        |
|      |             | 4    |         | 412         | 6,161                            |                                           |                        |
|      |             | 5    |         | SI          | 6.161                            |                                           |                        |
|      |             | 6    |         | 520         | 6.681                            |                                           |                        |
|      |             | 7    |         | 687         | 7.368                            |                                           |                        |
|      |             | 8    |         | 680         | 8,048                            |                                           |                        |
|      |             | 9    |         | 701         | 8,749                            |                                           |                        |
|      |             | 10   |         | 728         | 9,477                            |                                           |                        |
|      |             | 11   |         | 643         | 10,120                           |                                           |                        |
|      |             | 12   |         | 579         | 10,699                           | 12.000                                    |                        |
|      |             | 13   |         | 538         | 11,237                           | ,                                         | Gas Allowable          |
|      |             | 14   |         | <b>68</b> 2 | 11,919                           |                                           | Increased to           |
|      |             | 15   |         | 633         | 12,552                           |                                           | 11.740 MCFPD           |
|      |             | 16   |         | 570         | 13.122                           |                                           | ,, , , , ,             |
|      |             | 17   |         | 693         | 13,815                           |                                           |                        |
|      |             | 18   |         | 677         | 14 492                           |                                           |                        |
|      |             | 19   |         | 660         | 15,152                           |                                           |                        |
|      |             |      |         |             |                                  |                                           |                        |

.

-

## CAMPBELL, CARR, BERGE 8 SHERIDAN, PA.

LAWYERS

MICHAEL B. CAMPBELL WILLIAM F. CARR BRADFORD C. BERGE MARK F. SHERIDAN WILLIAM P. SLATTERY

PATRICIA A. MATTHEWS MICHAEL H. FELDEWERT DAVID B. LAWRENZ

JACK M. CAMPBELL OF COUNSEL

## **HAND-DELIVERED**

JEFFERSON PLACE SUITE I - 110 NORTH GUADALUPE POST OFFICE BOX 2208 SANTA FE, NEW MEXICO 87504-2208 TELEPHONE: (505) 988-4421 TELECOPIER: (505) 983-6043

September 7, 1993





Re: Case No 10796: Application of Manzano Oil Corporation for an Unorthodox Gas Well Location, Lea County, New Mexico

Dear Mr. Catanach:

Pursuant to your request of August 19, 1993, I am enclosing for your consideration the proposed Order of Manzano Oil Corporation in the above-referenced case.

If you need anything further from Manzano to proceed with your consideration of this application, please advise.

Very truly yours,

llau

WILLIAM F. CARR WFC:mlh Enclosure cc: Mr. Ken Barbe (w/enclosure) W. Thomas Kellahin, Esq. (w/enclosure)

## STATE OF NEW MEXICO ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT OIL CONSERVATION DIVISION

## IN THE MATTER OF THE HEARING CALLED BY THE OIL CONSERVATION DIVISION FOR THE PURPOSE OF CONSIDERING:

Case No. 10796 Order No. R-\_\_\_\_

APPLICATION OF MANZANO OIL CORPORATION FOR AN UNORTHODOX GAS WELL LOCATION, LEA COUNTY, NEW MEXICO.

## MANZANO OIL CORPORATION'S PROPOSED ORDER OF THE DIVISION

### **<u>BY THE DIVISION</u>**:

This cause came on for hearing at 1:00 p.m. on August 19, 1993, at Santa Fe, New Mexico, before Examiner David R. Catanach.

NOW, on this <u>day of September</u>, 1993, the Division Director, having considered the testimony, the record, and the recommendations of the Examiner, and being fully advised in the premises,

## FINDS THAT:

(1) Due public notice having been given as required by law, the Division has jurisdiction of this cause and the subject matter thereof.

(2) The applicant, Manzano Oil Corporation ("Manzano") seeks approval of an unorthodox gas well location 660 feet from the North line and 1650 feet from the East line (Unit B) of Section 14, Township 20 South, Range 35 East, NMPM, Lea County, New Mexico for its Neuhaus Federal Well No. 2 which has been drilled and completed in the Wolfcamp formation, Lea-Wolfcamp Pool. The E/2 of said Section 14 is dedicated to the well forming a standard 320-acre gas spacing and proration unit.

(3) At the time of the hearing, Marathon Oil Company ("Marathon"), a direct offset operator to the north of the subject acreage and operator of the standard 320-acre gas spacing and proration unit comprising the S/2 of Section 11, Township 20 South, Range 35 East, Lea-Wolfcamp Pool, appeared at these proceedings in objection to this application and tendered witnesses and offered evidence in support of its protest. The S/2 of said Section 11 is currently dedicated to Marathon's Jordan "B" Well No. 1 located 660 feet from the South line and 1980 feet from the East line of Section 11.

(4) Geological evidence presented by both parties indicates that the Lea-Wolfcamp Pool is a reservoir of limited extent which could be drained by either the Manzano Neuhaus Well or the Marathon Jordan "B" No. 1 Well. There are no other producing wells in this pool.

(5) The Marathon Jordan "B" No. 1 Well was drilled in 1984 and completed in the Morrow formation as a commercial producer. In 1991 the well was abandoned in the Morrow, plugged back and completed in the Wolfcamp formation, Lea-Wolfcamp Pool. It first produced from the Wolfcamp formation in January, 1992. The Marathon well produces at a rate of approximately 4000 mcf per day and through May, 1993 had cumulative gas production of more than 2.1 BCF and 221,500 barrels of condensate.

(6) The Manzano Neuhaus Federal No. 2 Well was originally proposed and permitted as an oil test at a standard oil well location for the Strawn formation. This area contains multiple zones with potential for commercial hydrocarbon production and the Wolfcamp production was a factor in selecting this location.

(7) The Manzano and Marathon wells are each set back 660 feet from the common spacing unit boundary between the wells. However, the Manzano well is at an unorthodox location under Division rules because it was unable to reach a voluntary agreement with the owner of the NW/4 of Section 14 for development of this acreage with the N/2 unit and, instead an E/2 spacing unit was dedicated to the well.

(8) The Manzano well was spud on June 3, 1992. After drilling into the Wolfcamp formation, a drill stem test was run which showed an excellent reservoir that had been partially drained. The well was drilled an additional 169 feet and then drilling ceased and the well was completed in the Wolfcamp formation because (a) drainage was occurring in the Wolfcamp (initial reservoir pressure of approximately 3600 pounds had declined to an initial pressure of 2,129 pounds in the Manzano well); (b) the wellbore was overbalanced by 3,300 pounds; (c) the reservoir had high permeability and had already undergone significant skin damage; (d) the well was taking fluid; and (e) continued drilling could cause extensive damage to the Wolfcamp reservoir.

(9) Manzano sought and was given permission by the Division Director to produce a temporary testing allowable pending a hearing to obtain approval of the well's location. Manzano was required to provide daily production data to the Division at the end of the temporary testing allowable period. This period ended on August 16, 1993 and the required data was provided to the Division on August 20 and 24, 1993.

(10) Both Manzano and Marathon presented geologic and engineering evidence in this case.

- (11) The geologic evidence presented by Manzano shows:
  - (a) the Wolfcamp formation in the Lea-Wolfcamp Pool is a carbonate buildup like the Osudo-Wolfcamp-Southwest Pool to the South which is a small localized pod feature which flanks off quickly;
  - (b) the Middle Wolfcamp pay interval thickens substantially from 63 feet in the Marathon well to 131 feet in the Manzano well. (Manzano Exhibit 2, Tr. p. 13).; and
  - (c) There is more than twice the pay zone in the Manzano well than in the Marathon well. [(a) clean dolomite porosity greater than 4%: 115 feet v. 39 feet. (Manzano Exhibits 2, 3 and 4, Tr. at 14, 18); (b) net porosity greater than 4%: 119 feet v. 62 feet. (Manzano Exhibits 2 and 5, Tr. at 15, 19); (c) net porosity feet in each well (no cut off): 11.6 feet v. 5.3 feet. (Manzano Exhibits 2 and 6, Tr. at 15, 20); and (d) net hydrocarbon feet in each well: 10.3 feet v. 4.6 feet. (Manzano Exhibits 2 and 7, Tr. at 15, 21)].
- (12) The geologic evidence presented by Marathon shows:
  - (a) the Wolfcamp formation in the Lea-Wolfcamp Pool is a debris flow deposit;
  - (b) that this formation extends to the north and includes the Jordan "B" No. 2 Well: an abandoned well in the Middle Wolfcamp located in Unit G of Section 11;
  - (c) there are 39 feet of clean porosity greater than 4% in the Marathon well and 90 feet in the Manzano well. (Marathon dropped 10 feet of pay within the main body of the pay interval and cut the lower 15 feet of clean dolomite porosity in the Manzano well even though the porosity logs show greater than 4% porosity and the resistivity log shows a profile which is indicative of reservoir quality rock in this section). (Marathon Exhibit 6, L. Gholston, Tr. at 91, 102-103).; and
  - (d) a thickening of the pay to the east of the Marathon well in the SE/4 of Section 11 based on broad contour spacing on the Marathon acreage, tight contour spacing on the Manzano acreage and no control points to support this interpretation. (Marathon Exhibit 6).

- (13) The engineering data presented by Manzano shows:
  - (a) there are approximately 9,942 net acre feet in this reservoir (Manzano Exhibit 10, D. Brown, Tr. at 53) which confirms the geologic interpretation of 10,070 acre feet. (Manzano Exhibit 12).
  - (b) the Manzano well would have to produce at a rate almost twice that of the Marathon well to prevent net drainage from the Manzano tract to the Marathon well. (Manzano Exhibit 11, Radial Flow Equation for Compressible Flow, Tr. at 46-47).;
  - (c) only 21% of the total reservoir acre feet are under the Marathon tract. If the wells produced at equal rates, 2,882 acre feet would be drained from the Manzano tract by the Marathon well and from this point forward, Marathon will produce 50% of the remaining recoverable reserves and 68% of the total recoverable reserves with only 21% of the total acre feet. (Manzano Exhibit 12, Drainage Encroachment Map, Tr. at 57-58).; and
  - (d) the drainage area from the Marathon well would extend 105 feet across the common lease line between the Manzano and Marathon wells if they produce at equal rates. (Manzano Exhibit 13, Calculated Drainage Area Boundary, Tr. at 60).

(14) Marathon's engineering witness contended the Manzano well has more than twice the deliverability of the Marathon well although data in the records of the Division filed by Marathon show the Marathon well has produced at an average maximum rate of 6,000 mcf per day, a rate comparable to that of the Manzano well and furthermore show Marathon is changing the tubing size in the well to increase its deliverability. Marathon then recommended that the Manzano well be penalized and permitted to produce at a rate equal to only 20% of its deliverability. (See, testimony of R. Tracy, Tr. at 124-125, Marathon Exhibits 9 through 16).

(15) Although there is general disagreement between the two parties regarding the exact shape and thickness of the overall reservoir characteristics, the evidence presented in this case by Manzano and Marathon is generally in agreement that:

(a) the Wolfcamp formation in the Lea-Wolfcamp Pool is a small localized geologic feature with the productive reservoir limited to the SE/4 of Section 11 and the NE/4 of Section 14, Township 20 South, Range 35 East. (Manzano Exhibits 4 through 7; Marathon Exhibit 6).;

- (b) the Manzano and Marathon wells are equal distance from the common spacing unit boundary between their spacing units;
- (c) the Manzano well is 60 feet structurally high to the Marathon well on the top of the Middle Wolfcamp pay interval;
- (d) the Middle Wolfcamp pay interval is more than twice as thick in the Manzano well as in the Marathon well; and
- (e) there is more than twice as much pay in the Manzano well as in the Marathon well.

(16) The evidence presented by both Manzano and Marathon is in agreement that if the Manzano well was at a standard location 1980 feet from the North line of Section 14 it would either be outside the reservoir or could not efficiently drain the reserves under the NE/4 of Section 14. (See, Testimony of M. Brown, Tr. at 40; Testimony of L. Gholston, Tr. at 100).

(17) The unorthodox well location of the Manzano Neuhaus Federal Well No. 2 is not only at a better geologic position than the nearest standard well location in the Lea-Wolfcamp Pool, it is necessary if Manzano is to be afforded the opportunity to produce its just and equitable share of the reserves underlying the NE/4 of Section 14 and therefore this well location should be approved.

(18) Whenever an unorthodox location is approved, the Division may take such action as will offset any advantage which the person securing the exception may obtain over other producers by reason of the unorthodox location. (See, Oil Conservation Division Rule 104G).

(19) Since the Manzano well is no closer than the Marathon well to the common boundary between the subject spacing units, since it would be at a standard set back from this boundary if a N/2 spacing unit could have been dedicated to the well, and since there is no drainage from the Marathon tract by the Manzano well, no advantage is gained on Marathon by reason of this unorthodox location.

(20) the Middle Wolfcamp formation in the Manzano Neuhaus Federal Well No. 2 is more than twice as thick and of better quality than this formation in the Marathon Jordan "B" No. 1 Well.

(21) The evidence demonstrates that drainage is occurring from underneath the Manzano acreage thereby making the Manzano well necessary to offset the drainage being caused by the Marathon well within the limited confines of this reservoir.

(22) A penalty in this instance is not required since the unorthodox location will not cause drainage of production from the Marathon acreage but will instead serve to capture production now being drained from the Manzano acreage by the Marathon Jordan "B" No. 1 Well and, furthermore, even without a penalty on the Manzano well, reserves will continue to be drained from the Manzano tract by the Marathon well.

## **IT IS THEREFORE ORDERED THAT:**

(1) The application of Manzano Oil Corporation for an unorthodox gas well location 660 feet from the North line and 1650 feet from the East line (Unit B) of Section 14, Township 20 South, Range 35 East, NMPM, Lea County, New Mexico is hereby approved for its Neuhaus Federal Well No. 2 which has been drilled and completed in the Wolfcamp formation, Lea-Wolfcamp Pool.

(2) The E/2 of said Section 14 shall be dedicated to the above-described well forming a standard 320-acre gas spacing and proration unit.

(3) No limitation or penalty on any gas production from the Middle Wolfcamp formation by this well shall be imposed.

(4) Jurisdiction is hereby retained for the entry of such further orders as the Division may deem necessary.

DONE at Santa Fe, New Mexico, on the day and year hereinabove designated.

STATE OF NEW MEXICO OIL CONSERVATION DIVISION

WILLIAM J. LeMAY Director

S E A L

## KELLAHIN AND KELLAHIN

W. THOMAS KELLAHIN\*

NEW MEXICO BOARD OF LEGAL SPECIALIZATION RECOGNIZED SPECIALIST IN THE AREA OF NATURAL RESOURCES-OIL AND GAS LAW ATTORNEYS AT LAW EL PATIO BUILDING 117 NORTH GUADALUPE POST OFFICE BOX 2265 SANTA FE, NEW MEXICO 87504-2265

TELEPHONE (505) 982-4285 TELEFAX (505) 982-2047

JASON KELLAHIN (RETIRED 1991)

September 9, 1993

HAND DELIVERED

David R. Catanach Oil Conservation Division 310 Old Santa Fe Trail Santa Fe, New Mexico 87501

CONSERVATION

Re: NMOCD Case 10796 Application of Manzano Oil Corporation for an Unorthodox Gas Well Location, Lea County, New Mexico

Dear Mr. Catanach:

On behalf of Marathon Oil Company, please find enclosed our proposed order for entry in this case which if adopted by the Division would impose an 80% penalty on the Manzano well. A copy of our proposed order has also been placed on the enclosed floppy disk using a Wordperfect program.

In addition, at the hearing held on August 19, 1993, you requested Marathon to submit its calculations of the affect of each of the various penalties discussed at the hearing. In response, I am enclosing a copy of Mr. Craig Kent's letter to me dated August 30, 1993 including all of his attachments to that letter.

Finally, there is some uncertainty of the pool designation for the pool. Our draft order and the docket refers to this as the Osudo-Wolfcamp Pool, while it may in fact be the Lea-Wolfcamp Pool.

Please let me know if you need anything further.

W. Thomas Kellahin

cc: William F. Carr, Esq. cc: Jerry Sexton-OCD cc: Dow Campbell, Esq (Marathon)

Mid-Continent Region Production United States



P.O. Box 552 Midland, TX 79702-0552 Telephone 915/682-1626

August 30, 1993

Mr. W. T. Kellahin Kellahin and Kellahin El Patio – 117 N. Guadalupe Santa Fe, New Mexico 87504-2265

Dear Mr. Kellahin,

Attached is the information requested by the hearing examiner from Marathon Oil Company regarding NMOCD Case No. 10976.

In reference to Marathon's exhibit number 6 , the net isopach map, the total volume of the pool was 6,328 acre-feet with 3,776 acre-feet in the South half of Section 6 and 2,331 acre-feet in the East half of Section 14. Attachment 1 is an illustration of Marathon's allowable calculation using acre-feet rather than surface acres. As you can see, the use of acre-feet in the calculation changes the allowable from 20% of deliverability to 21%.

Attachments 2 and 3 are PVT analyses performed on recombined fluid samples from the Jordan 'B' No. 1. Attachment 2 contains analyses performed by Core Laboratories in April, 1992 and again in June, 1992. The purpose of the tests were to determine the original state of the reservoir fluid and to confirm the dew point pressure measured on the first sample. As you will notice, the dew point pressure measured on both samples is greater than the reservoir pressure at the time the samples were taken. The cause of this anomaly is due to the fact that the reservoir had dropped below the dewpoint prior to testing and that free condensate was being produced. The additional condensate in the sample meant that the pressure of the sample had to be increased to a point above the then current reservoir pressure to cause all of the liquid to vaporize into the gas phase. Attachment 4 is a paper by Philip Moses of Core Laboratories which describes this phenomenon. Attachment 3 contains an analysis of the June, 1992 sample performed by Marathon. The purpose of the analysis was to confirm the dewpoint pressure reported by Core Laboratories and to determine the PVT properties of the reservoir fluid.

Attachments 5 and 6 are information regarding the reservoir pressure for the Jordan 'B' No. 2. Attachment 5 is a copy of the C-122 submitted by TXO on the initial completion of the Jordan 'B' No. 2 and supporting pressure data. As shown, the original reservoir pressure was 4,698 psig. Attachment 6 is a report from a static fluid level shot on the well in May, 1992. A fluid level was detected 2,941 feet from surface which corresponds to a bottom hole pressure of 3,867 psia using a liquid gradient of 0.455 psi/ft. This data was used to support out geologic model of the pool.

A subsidiary of USX Corporation

Mr. W. T. Kellahin Page No. 2

Attachment 7 contains information regarding recoveries for the Marathon Jordan 'B' No. 1 and the Manzano Neuhaus 14 Federal No. 2 at various allowables for the Manzano well. Figure 1 summarizes the recovery for each well at the various allowables and computes a relative share which represents the recovery of the Neuhaus No.2 compared to the Jordan 'B' No.1. You will notice that two scenarios are presented in Figure 1, one which represents the recovery for the wells if the existing 2-3/8" tubing in the Jordan 'B' No. 1 is left in place and a second which represents the recovery for the wells if 3-1/2" tubing is installed. It is Marathon's intention to install 3-1/2" tubing in the Jordan 'B' No.1 in the near future.

The method used to determine the recoveries of the wells utilizes material balance in the form of a P/Z plot and NODAL analysis. With the additional pressure data presented by Manzano at the hearing, it was necessary to modify Marathon's P/Z plot which was presented at that time. As shown on Figures 2 and 3, a revised OGIP of 6,381 MMCF was calculated which back calculates to a reservoir volume of 6,824 acre-feet. Using this data the following procedure was used to calculate recovery for the wells as shown on Figures 4-15:

- Based on actual daily production data from the Jordan 'B' No. 1 and estimated production from the Neuhaus 14 Federal No. 2 (3.5 MMCFD average from the date the well was connected to sales) the reservoir pressure on August 20 was estimated from the P/Z plot.
- 2. A series of decreasing reservoir pressures in 100 psi increments from 1957 psia was listed.
- 3. The corresponding Z factor for each pressure was entered into the table and the value of P/Z was calculated.
- 4. Using the P/Z plot the cumulative gas production at each value of P/Z was calculated.
- 5. The incremental gas production for each pressure step was then calculated.
- 6. For each reservoir pressure, a production rate was calculated for each well. Marathon's in-house NODAL analysis program was used to calculate the rates. Rates from the Jordan 'B' No. 1 were calculated using a Darcy flow model based on data from pressure buildup testing for the flow through the reservoir and Gray's correlation for flow through the tubing. Rates from the Neuhaus 14 Federal No. 2 were calculated using the back pressure equation and data from Manzano's August 3 Four-point test for flow through the reservoir and Gray's correlation for flow through the tubing. Both wells were assumed to produce with a flowing wellhead pressure of 250 psia initially. When the analysis indicated the well would no longer flow at those conditions it was assumed that 1-1/2" coiled tubing would be installed in the well and that flowing tubing pressure would be reduced to 150 psia.
- 7. The rates for the two wells were added to determine the total production rate from the reservoir.

Mr. W. T. Kellahin Page No. 3

- 8. The average rate for each pressure step was calculated and divided into the incremental gas production for the pressure step to determine the length of time for the pressure step.
- 9. Using a starting point of August 20, the incremental time for each pressure step was added to determine the date at which each pressure would occur.
- 10. The average rates for each well for each pressure step for each well were calculated and multiplied by the length of each pressure step and added to determine the total recovery for each well.
- 11. In the cases where the Neuhaus 14 Federal No. 2 was restricted, the well was allowed to produce at the designated fraction of its calculated deliverability against line pressure. The deliverability was recalculated approximately in August of each year and a new allowable was applied. If the calculated allowable was less than 500 mcfd the well was allowed to produce at full deliverability.

Figures 4 through 15 illustrate the calculations for each allowable scenario and the recovery information is summarized on Figure 1.

Should you have any questions, please contact me at (915) 682-1626, extension 8282.

Sincerely,

- xc:
- D. L. Campbell, w/Attachments

D. R. Petro, w/o Attachments

T. N. Tipton, w/o Attachments

R. W. Tracy, w/o Attachments

### STATE OF NEW MEXICO ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT OIL CONSERVATION DIVISION

IN THE MATTER OF THE HEARING CALLED BY THE OIL CONSERVATION DIVISION FOR THE PURPOSE OF CONSIDERING

> CASE NO. 10796 Order No. R-

APPLICATION OF MANZANO OIL CORPORATION FOR AN UNORTHODOX GAS WELL LOCATION, LEA COUNTRY, NEW MEXICO.

### MARATHON OIL COMPANY'S PROPOSED ORDER OF THE DIVISION

#### BY THE DIVISION:

This cause came on for hearing at 8:15 a.m. on August 12, 1993, and was continued to 1:00 p.m. on August 19, 1993 at Santa Fe, New Mexico, before Examiner David R. Catanach.

NOW, on this <u>day of September</u>, 1993, the Division Director, having considered the testimony, the record and the recommendations of the Examiner, and being fully advised in the premises, CASE NO. 10796 Order No. R-Page -2-

#### FINDS THAT:

(1) Due public notice having been given as required by law, the Division has jurisdiction of this cause and the subject matter thereof.

(2) The applicant, Manzano Oil Company ("Manzano"), seeks approval of an unorthodox gas well location for its Neuhaus Federal Well No 2 which has been drilled at an unorthodox gas well location 660 feet from the North and 1650 feet from the East line (Unit B) of Section 14, T2OS, R35E, NMPM, Lea County, New Mexico with an E/2 dedication for production from the Wolfcamp formation in the Osudo-Wolfcamp Gas Pool.

(3) Marathon Oil Company ("Marathon"), operator of the Jordan "B" No 1 Well located 660 feet from the South line and 1980 feet from the East line of Section 11, T2OS, R35E, NMPM, Lea County, New Mexico with a S/2 dedication, which is currently producing from the Wolfcamp formation in the Osudo-Wolfcamp Gas Pool, appeared at the hearing in opposition to the application.

(4) In December, 1991 Marathon's Jordan "B" No. 1 Well was recompleted as a Wolfcamp gas producer and as of August 19, 1993 had the capacity to produce 3,900 MCFPD.

(5) On January 21, 1993, Manzano filed an application for permit to drill its Sims State Well No.1 660 feet from the South and West lines of Section 12, T2OS, R35E, NMPM, Lea County New Mexico as a Strawn oil well on 40-acre statewide oil spacing to be drilled to a total depth of 12,100 feet.

(6) However, instead of drilling its Sims State Well No.1 to its proposed target in the Strawn, when the well reached the Wolfcamp formation at 11,532 feet (some 600 CASE NO. 10796 Order No. R-Page -3-

feet above the Strawn formation) it was determined that the Wolfcamp was not productive, and Manzano abandoned this well.

(7) The Sims State Well No.1 would have been the direct eastern offset to the Marathon Jordan B Well No 1.

(8) The closest established Strawn oil pool is some 7 miles to the west of this area while the nearest established Wolfcamp gas production is that operated by Marathon in the next section to the west.

(9) Having failed to obtain commercial Wolfcamp production in the Sims State Well No 1, Manzano then filed on April 20, 1993 an application for permit to drill its Neuhaus "14" Federal Well No 2 in the section immediately to the south of the Marathon Jordan "B" No 1 well.

(10) Again, rather than file for an unorthodox Wolfcamp gas well location, Manzano applied for a standard Strawn oil well location for its Neuhaus "14" Federal Well No 2 in Unit B of Section 14 to be drilled to a total depth of 12,400 feet.

(11) And again, rather than drill to the permitted depth in the Strawn oil pool, when Manzano reached the Wolfcamp gas formation, it discovered it had encountered gas production correlative to that being produced by Marathon and elected to complete the subject well in the Wolfcamp.

(12) Manzano's Neuhaus "14" Federal Well No. 2 was completed at an unorthodox well location some two-third's closer to Marathon's spacing unit than permitted by Division rules. CASE NO. 10796 Order No. R-Page -4-

(13) While Manzano recognized it would have to notify Marathon and obtain the Division's approval to produce the Wolfcamp formation after a hearing, Manzano sought an exparte emergency order from the Division's Director to allow the illegal well to produce.

(14) On July 21, 1993, the Division Director granted Manzano's request for a temporary testing allowable which authorized Manzano to produce the subject well at a rate of 882 MCF/D until August 12, 1993, the date of the hearing in this matter.

(15) At the hearing, Manzano testified that it had violated the Director's order letter of July 21, 1993 and had been producing the well at average rates in excess of 3,300 MCFPD.

(16) Thereafter, Manzano again sought and obtained an exparte order from the Division Director without notice either to Marathon or the Division Examiner, seeking this time to obtain a testing allowable based upon a new 4-point test which indicated the well's CAOF of 35,240 MCFGPD. On August 13, 1993, the Division Director issued an exparte order grating this request and approving production from August 13, 1993 to August 19, 1993 at a maximum daily rate of 11,740 MCFGPD.

(17) Manzano testified at the hearing that its well had been produced as high as 5,000 MCFPD and Marathon calculates this well to have a maximum capacity of 6,889 MCFPD. Thus the new testing allowable authorized by the Division Director did not in any way restrict the well's capacity to produce even though it was 1,320 feet closer to the Marathon spacing unit than allowed by Division rules. CASE NO. 10796 Order No. R-Page -5-

(18) Marathon provided expert engineering data which was uncontested by Manzano, that the new four-point test used by the Director to approve the testing allowable was absolutely unreliable and inaccurate. In addition, the 4 points at which pressure data was taken for the fourpoint test failed to comply with the testing procedures set forth in the Division's 4-point well testing manual because they were taken too close to each other.

(19) Based upon the foregoing, the Division issued a notice to Manzano dated August 19, 1993 directing that the illegal well be shut-in immediately and stay shut-in pending an order to be entered in this case.

(20) Manzano has failed to provide any evidence establishing that the testing allowables resulted in any necessary test data.

(21) The geologic interpretation of this Wolfcamp reservoir presented by Manzano contends that:

a) Manzano's Neuhaus well was located near the highest (-7609 feet) and near the thickest point (119 net feet) in this limited Wolfcamp reservoir;

b) Marathon's Jordan "B" Well No. 1 was located at the northwest edge of this limited reservoir with 39 feet of net pay and at -7630 feet on the structure;

c) Marathon's Jordan "B" No. 1 well was <u>NOT</u> in the same reservoir with the Marathon's Jordan "B" No. 2 Well to the north;

d) the size, shape and orientation of this Wolfcamp reservoir was such that Manzano's E/2 spacing unit had 7600 acre-feet and 140 productive acres, while CASE NO. 10796 Order No. R-Page -6-

e) Marathon's Jordan "B" No 1 well's spacing unit in the S/2 has only 2333 acre-feet and 58 productive acres.

(22) In opposition, Marathon presented a substantially different geologic interpretation of this reservoir contending that:

a) Manzano's Neuhaus well was located near the highest (-7513 feet) and near the thickest point (90 net feet) in this limited Wolfcamp reservoir;

b) Marathon's Jordan "B" Well No 1. was located to the north and west of the point of greatest reservoir thickness but well within this limited reservoir with 39 feet of net pay and at -7536 feet on structure.

c) Marathon's Jordan "B" Well No 2  $\underline{\rm IS}$  in the same reservoir as the Marathon's Jordan "B" Well No 1 to the south, and

(d) the reservoir extends farther north than mapped by Manzano with the point of greatest reservoir thickness shared between the two spacing units.

(23) Marathon's engineer concluded that:

a) the size, shape and orientation of this Wolfcamp reservoir was such that Manzano's E/2 of Section 14 spacing unit has 2,331 acre-feet and 72 net productive acres, while

b) Marathon's Jordan "B" No 1 well's spacing unit in the S/2 of Section 11 has 3,776 acre-feet and 123 net productive acres; and

c) the pool originally contained 6.4 BCF of gas with a total original reservoir volume of 6,250 acre-feet (later recalculated to 6,328 acre-feet) and now has 3.2 BCF of gas remaining to be produced. CASE NO. 10796 Order No. R-Page -7-

(24) The inclusion or exclusion of the Marathon's Jordan "B" Well No 2 from this Wolfcamp reservoir is the point of greatest dispute between the parties and affects one of the factors to be used in calculating a penalty for the Manzano well.

(25) By excluding Marathon's Jordan "B" Well No 2, Manzano's geologic interpretation allowed it to shift the entire reservoir farther south and more directly located over its spacing unit and still be consistent with their calculation of reservoir volume.

(26) By including Marathon's Jordan "B" Well No 2 in this same reservoir, Marathon's geologic interpretation locates the entire reservoir farther north and more directly located over its spacing unit and still provides a reservoir size which is consistent with their calculation of reservoir volume.

(27) Manzano's engineering evidence sought to validate the Manzano geology based upon Manzano's conclusion that the Jordan "B" Well No 2 was not in the same reservoir as the Jordan "B" Well No 1.

(28) Marathon's engineering witness provided uncontested evidence that the Jordan "B" Well No 2 was completed in 1985 with an initial pressure of 4700 psi; that when the Jordan "B" Well No. 1 was completed in 1991 its initial pressure was 3800 psi; that the Jordan "B" Well No 2 was the only well in the area which could have drained the reservoir and caused the pressure depletion measured in the Jordan "B" Well No 1; therefore these two wells are in fact in pressure communication and must be in the same reservoir. CASE NO. 10796 Order No. R-Page -8-

(29) Manzano's engineering witness had estimated the reservoir volume to be 9,942 acre feet based upon P/Z analysis using a Z factor for a dry gas reservoir.

(30) Marathon's engineering witness used the correct Z factor for a gas-condensate reservoir and calculated the same reservoir to have a volume of 6,250 acre feet based upon P/Z analysis.

(31) Marathon's engineering witness provided uncontroverted testimony that this was a gas-condensate reservoir and established that Manzano had used the wrong Z factor for its acre-feet calculation. Thus, while Manzano by co-incidence arrived at an accurate material balance calculation of original gas in place its volumetric calculation is in error because it used a Z factor for a dry gas reservoir.

(32) The Division finds that Marathon's understanding and interpretation is based upon more reliable data, (including PVT analysis), more accurately interprets the reservoir and correctly calculates the acre-feet underlying each spacing unit.

(33) Regardless of the geologic interpretation, both Manzano and Marathon are in agreement that Manzano could not have located a well capable of commercial production at a standard well location in its spacing unit.

(34) As a result of drilling at an unorthodox well location, Manzano has the opportunity to produce more than its fair share of the recoverable gas remaining in the reservoir and has violated Marathon's correlative rights. The unfair advantage Manzano has obtained over Marathon can be minimized by imposing a production limitation. CASE NO. 10796 Order No. R-Page -9-

(35) Marathon provided various possible penalty calculations to be imposed upon the Manzano well, the most appropriate being a deliverability adjusted penalty based upon the average of two factors: (1) deviation from a standard well location in the north/south direction; and (2) productive acreage underlying the E/2 of Section 14 relative to productive acreage underlying the S/2 of Section 11, and then reduced by a deliverability ratio of 2.3, all as shown as follows:

Factor 1 = 660 feet/1980 feet = 0.33333 Factor 2 = 72/123 = 0.58536

Average of Factors 1 & 2 /2 = 0.45935 and reduced by a deliverability adjustment of 2.3 which results in A 20 PERCENT ALLOWABLE FACTOR (0.19963)

(36) <u>Without</u> a deliverability adjustment, if Manzano is allowed to produce 46% of its calculated maximum capacity of 6,889 MCFPD or a maximum allowable rate of 3,169 MCFPD, then its well will recover 89% of its relative share compared to the Marathon well.

(37) Because there is a direct relationship between net pay and deliverability, a deliverability adjustment of 2.3 was calculated based upon the respective net pays of the Marathon and Manzano wells.

(38) The adoption of a 2.3 deliverability adjustment factor in the penalty will reduce Manzano's relative share over the Marathon well from 89 percent to 42 percent and is necessary to protect Marathon's correlative rights. CASE NO. 10796 Order No. R-Page -10-

(39) A production allowable of 20% of its capacity into the pipeline (penalty of 80%) still allows the Manzano well a maximum producing rate of 1,378 MCFPD.

(40) Marathon testified that it is physically impossible for Manzano's well with 2-7/8 inch tubing and with a reservoir pressure of 2128 psig to flow at a rate of 35,240 MCFPD. Therefore, a production allowable factor applied against the well's CAOF is meaningless in this case and therefore such a factor should be applied to the Manzano's ability to produce on a sustained basis under actual operating conditions into the pipeline.

(41) Approval of the unorthodox well location for production from the Wolfcamp formation in the Osudo-Wolfcamp Gas Pool, subject to a producing allowable factor of 20 percent, will afford the applicant the opportunity to recover its just and equitable share of the remaining gas in the pool underling the E/2 of Section 14, will protect Marathon's correlative rights and will otherwise prevent waste.

#### IT IS THEREFORE ORDERED THAT:

(1) The applicant, Manzano Oil Corporation, is hereby authorized to produce its Neuhaus "14" Federal No 2 Well at an unorthodox gas well location 660 feet from the North line and 1650 feet from the East line (Unit B) of Section 14, T2OS, R35E, NMPM, Lea County, New Mexico, in the Wolfcamp formation of the Osudo-Wolfcamp Gas Pool.
CASE NO. 10796 Order No. R-Page -11-

(2) The E/2 of Section 14 shall be dedicated to the subject well forming a standard 320-acre gas spacing and proration unit for said pool.

(3) The Neuhaus "14" Federal Well No 2 is hereby assigned a production limitation factor of 20 percent (80% penalty) to be applied against its current deliverability which has been calculated to be 6,889 MCFPD and which results in a maximum daily allowable of 1,378 MCFPD.

(4) This production limitation factor shall be applied against the well's ability to produce into the existing pipeline as determined by deliverability tests conducted on the well on an annual basis. The current deliverability has been calculated to be 6,889 MCFPD which shall be used as the well's deliverability until the next deliverability test which shall be conducted in August, 1994 and then every August thereafter. The well shall be allowed to produce at its penalized rate or 500 MCFPD which ever is greater.

(5) The penalized allowable set forth above shall be applied to the subject well from the date of first production. In the event the well has been overproduced its production limitation factor allowable on a monthly basis (30 days being a month) then and in that event, the well shall be shut-in until that over production has been made up with a portion of the next month's production allowable.

(6) Manzano shall provide the Division with accurate daily production volumes of gas, oil and water from date of initial production through August 19, 1993. CASE NO. 10796 Order No. R-Page -12-

•

(7) Jurisdiction of this cause is retained for the entry of such further orders as the Division may deem necessary.

DONE at Santa Fe, New Mexico, on the day and year hereinabove designated.

STATE OF NEW MEXICO OIL CONSERVATION DIVISION

WILLIAM J. LEMAY Director

SEAL

| 6,381 | 3,346    | 0.6586         | 2,128    | 2,577      |
|-------|----------|----------------|----------|------------|
| 5,841 | 5,314    | 0.6586         | 3,600    | 320        |
|       | 5,622    | 0.6759         | 3,800    | 0          |
| MMCF  | PSIA     |                | PSIA     | MMCF       |
|       |          |                |          | GAS PROD.  |
| OGIP  | P/Z      | Z              | PRESSURE | CUMULATIVE |
|       | ION DATA | E AND PRODUCTI | PRESSURI |            |

Figure 2

**P(|Z (PSI)** 

c



# JORDAN 'B' No.1

•

|            |              |           | PER WELL R       | ECOVERY AT VA | RIOUS ALLOWAB | Les (MCF)        |          |
|------------|--------------|-----------|------------------|---------------|---------------|------------------|----------|
| NEUHAUS 1- | 4 FED. No. 2 | JORDAN    | 'B' No. 1 2-3/8" | TUBING        | JORDAN        | 'B' No. 1 3-1/2" | TUBING   |
| ALLOV      | VABLE        | JORDAN    | NEUHAUS          | RELATIVE      | JORDAN        | NEUHAUS          | RELATIVE |
| %          | MCFD         | 'B' No. 1 | 14 FED. No. 2    | SHARE         | 'B' No. 1     | 14 FED. No. 2    | SHARE    |
| 100%       | 6,889        | 1,227,521 | 1,979,298        | 161%          | 1,433,657     | 1,773,161        | 124%     |
| 58%        | 3,996        | 1,374,563 | 1,832,255        | 133%          | 1,579,310     | 1,627,508        | 103%     |
| 46%        | 3,169        | 1,497,182 | 1,709,637        | 114%          | 1,696,898     | 1,509,921        | %68      |
| 33%        | 2,273        | 1,780,502 | 1,426,316        | 80%           | 1,942,707     | 1,264,111        | 65%      |
| 25%        | 1,722        | 1,949,487 | 1,257,331        | 64%           | 2,113,302     | 1,093,516        | 52%      |
| 20%        | 1,378        | 2,103,383 | 1,103,435        | 52%           | 2,262,468     | 944,350          | 42%      |

ATTACHMENT 7

•

| _      | _                                                                                                                                                                    | 00110/110 D 1101                                                                                                                                                                                                                                                                                                                      | i a eje i e ente                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2      | P/Z                                                                                                                                                                  | CUM. GAS                                                                                                                                                                                                                                                                                                                              | DELTA                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | JORDAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NEUHAUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TOTAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | AVERAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DELTA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | JORDAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NEUHAUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | JORDAN                                                  | NEUHAUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|        |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                       | CUM. GAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | RATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | AVG RATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | AVG RATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CUM. GAS                                                | CUM. GAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|        | PSIA                                                                                                                                                                 | MMCF                                                                                                                                                                                                                                                                                                                                  | MMCF                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MCFD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MCFD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MCFD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MCFD                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DAYS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MCFD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MCFD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MCF                                                     | MCF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0.6359 | 3346                                                                                                                                                                 | 2,575.156                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7/4/93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0.6389 | 3130                                                                                                                                                                 | 2,820.960                                                                                                                                                                                                                                                                                                                             | 245.804                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0.6339 | 3087                                                                                                                                                                 | 2,870.212                                                                                                                                                                                                                                                                                                                             | 49.252                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3,950                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6,889                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10,839                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8/20/93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 200,556                                                 | 94,500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.6447 | 2947                                                                                                                                                                 | 3,029.669                                                                                                                                                                                                                                                                                                                             | 208.710                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3,802                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6,641                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10,443                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10,641                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>E6/8/6</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3,876                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6,765                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 276,579                                                 | 227,187                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0.6506 | 2767                                                                                                                                                                 | 3,234.632                                                                                                                                                                                                                                                                                                                             | 204.963                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3,550                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6,231                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9,781                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10,112                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9/28/93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3,676                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6,436                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 351,089                                                 | 357,640                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0.6564 | 2590                                                                                                                                                                 | 3,435.947                                                                                                                                                                                                                                                                                                                             | 201.316                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3,299                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5,823                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9,122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9,452                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10/20/93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3,425                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6,027                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 424,030                                                 | 486,014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0.6623 | 2416                                                                                                                                                                 | 3,633.713                                                                                                                                                                                                                                                                                                                             | 197.765                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3,040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5,415                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8,455                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8,789                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11/11/93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3,170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5,619                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 495,352                                                 | 612,457                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0.6683 | 2244                                                                                                                                                                 | 3,828.827                                                                                                                                                                                                                                                                                                                             | 195.115                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2,782                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5,006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7,788                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8,122                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12/5/93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2,911                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5,211                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 565,288                                                 | 737,636                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0.6759 | 2071                                                                                                                                                                 | 4,025.853                                                                                                                                                                                                                                                                                                                             | 197.025                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2,525                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4,594                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7,119                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7,454                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1/1/94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2,654                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4,800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 635,430                                                 | 864,519                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0.6835 | 1902                                                                                                                                                                 | 4,218.496                                                                                                                                                                                                                                                                                                                             | 192.644                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2,258                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4,176                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6,434                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6,777                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1/29/94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2,392                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4,385                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 703,416                                                 | 989,177                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0.7018 | 1710                                                                                                                                                                 | 4,437.005                                                                                                                                                                                                                                                                                                                             | 218.509                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1,995                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3,753                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5,748                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6,091                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3/6/94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2,127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3,965                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 779,702                                                 | 1,131,399                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0.7267 | 1514                                                                                                                                                                 | 4,660.087                                                                                                                                                                                                                                                                                                                             | 223.082                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1,727                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3,320                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5,047                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5,398                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4/16/94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1,861                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3,537                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 856,618                                                 | 1,277,565                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0.7515 | 1331                                                                                                                                                                 | 4,868,416                                                                                                                                                                                                                                                                                                                             | 208.329                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1,461                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2,876                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4,337                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4,692                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5/31/94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1,594                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3,098                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 927,393                                                 | 1,415,119                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0.7764 | 1159                                                                                                                                                                 | 5,063.409                                                                                                                                                                                                                                                                                                                             | 194.993                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1,180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2,412                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3,592                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3,965                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7/19/94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1,321                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2,644                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 992,342                                                 | 1,545,163                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0.8012 | 866                                                                                                                                                                  | 5,246.306                                                                                                                                                                                                                                                                                                                             | 182.897                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 871                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1,913                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2,784                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3,188                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9/14/94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1,026                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2,163                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1,051,175                                               | 1,669,227                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0.8261 | 847                                                                                                                                                                  | 5,418.200                                                                                                                                                                                                                                                                                                                             | 171.893                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 422                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1,290                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1,712                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2,248                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11/30/94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 647                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1,602                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1,100,610                                               | 1,791,686                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0.8509 | 705                                                                                                                                                                  | 5,580.053                                                                                                                                                                                                                                                                                                                             | 161.854                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 316                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 308                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 624                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1,168                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 139                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4/17/95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 369                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 799                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,151,744                                               | 1,902,406                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0.8758 | 571                                                                                                                                                                  | 5,732.722                                                                                                                                                                                                                                                                                                                             | 152.668                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 175                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 335                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 480                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 318                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3/1/96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 238                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 242                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,227,521                                               | 1,979,298                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|        |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                         | 122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|        | Z<br>0.6359<br>0.6389<br>0.6538<br>0.6506<br>0.6566<br>0.6566<br>0.65683<br>0.65683<br>0.65683<br>0.6759<br>0.7515<br>0.7754<br>0.7754<br>0.7754<br>0.8261<br>0.8261 | Z P/Z<br>PSIA<br>0.6359 3346<br>0.6389 3130<br>0.6339 3087<br>0.6506 2767<br>0.6564 2590<br>0.6663 2947<br>0.6663 2947<br>0.6663 2947<br>0.6683 2244<br>0.6759 2071<br>0.6835 1902<br>0.7718 1710<br>0.7267 1514<br>0.7267 1514<br>0.7267 1514<br>0.7267 1514<br>0.7267 1514<br>0.7267 1519<br>0.8012 998<br>0.8261 847<br>0.8509 705 | Z P/Z CUM. GAS   PSIA MMCF   0.6359 3346 2,575.156   0.6389 3130 2,870.212   0.6447 2947 3,029.669   0.6564 2590 3,435.947   0.6564 2590 3,435.947   0.6563 2767 3,234.632   0.6564 2590 3,435.947   0.6563 27416 3,633.713   0.6683 22416 3,828.827   0.6683 2241 3,828.827   0.65759 2071 4,025.853   0.6835 1902 4,218.496   0.7018 1710 4,437.005   0.7267 1514 4,660.087   0.7764 1159 5,063.409   0.7764 1159 5,418.200   0.8261 847 5,418.200   0.8263 571 5,732.722 | Z P/Z CUM. GAS DELTA   V PSIA MMCF CUM. GAS   0.6359 3346 2,575.156 CUM. GAS   0.6389 3130 2,870.212 49.252   0.6339 3087 2,870.212 49.252   0.6447 2947 3,029.669 208.710   0.6564 2590 3,435.947 201.316   0.66633 2767 3,234.632 204.963   0.6564 2590 3,435.947 201.316   0.66833 22416 3,828.827 195.115   0.66833 2241 3,828.827 195.115   0.66835 1902 4,218.496 197.025   0.6835 1902 4,218.496 192.644   0.7764 1159 5,063.409 192.644   0.7764 1159 5,246.306 182.897   0.8012 998 5,246.306 182.897   0.8026 847 5,580.053 161.884   0.8758 571 5,732 | Z P/Z CUM. GAS DELTA JORDAN   1 PSIA MMCF CUM. GAS RATE   0.6359 3346 2,575.156 MMCF MCFD   0.6359 3346 2,870.212 49.252 3,950   0.6339 3087 2,870.212 49.252 3,950   0.6506 2767 3,234.632 204.963 3,950   0.6504 2590 3,435.947 201.316 3,239   0.6503 2241 3,633.713 197.765 3,040   0.6683 2244 3,828.827 195.115 2,782   0.66835 1902 4,218.496 197.025 2,525   0.6835 1902 4,218.496 192.644 2,258   0.7564 1531 4,868.416 208.329 1,461   0.7564 1531 4,868.406 218.509 1,277   0.7564 1531 4,868.406 208.329 1,461   0.7564 1539 5,246.306 182.897 | Z P/Z CUM. GAS DELTA JORDAN NEUHAUS    PSIA MMCF CUM. GAS RATE RATE   0.6359 3346 2,575.156 CUM. GAS RATE RATE   0.6359 3130 2,820.960 245.804 MCF MCFD MCFD   0.6339 3087 2,870.212 49.252 3,950 6,889   0.6447 2947 3,029.669 208.710 3,802 6,641   0.6663 2767 3,234.632 204.963 3,550 6,541   0.6663 2741 3,633.713 197.765 3,040 5,415   0.6673 2416 3,633.713 197.765 3,040 5,415   0.6683 2244 3,828.827 195.115 2,782 5,006   0.6875 1902 4,218.496 192.644 2,258 4,176   0.7515 1331 4,868.416 208.329 1,461 2,876   0.7564 1159 5,063.409 | Z P/Z CUM. GAS DELTA JORDAN NEUHAUS TOTAL    PSIA MMCF CUM. GAS RATE | Z PIZ CUM. GAS DELTA<br>CUM. GAS JORDAN NEUHAUS TOTAL AVERAGE   0.6359 3346 2,575,156 RATE <t< td=""><td>Z P/Z CUM. GAS DELTA JORDAN NEUHAUS TOTAL AVERAGE DELTA   0.6359 3346 2,575,156 CUM. GAS RATE TIME RATE RA</td><td>Z P/Z CUM. GAS DELTA JORDAN NEUHAUS TOTAL AVERAGE DELTA JORDAN   0.6339 93.44 MMCF CUM. GAS RATE 7/493 7/493 7/493 7/493 7/493 7/493 7/493 9/893 9/893</td><td>Z PIZ CUM. GAS DELTA JORDÁN NELHAUS TOTAL AVERAGE DELTA JORDÁN   PSIA PSIA MMCF CUM. GAS RATE RATE RATE RATE TIME VIG RATE AVIG RATE AVIG RATE TIME VIG RATE T</td><td><math display="block"> \begin{array}{c c c c c c c c c c c c c c c c c c c </math></td><td>Z P/Z CUM, GAS DETA JORDAN NEUHAUS TOTAL AVERAGE DETA DATE JORDAN NEUHAUS JORDAN JORDAN</td></t<> | Z P/Z CUM. GAS DELTA JORDAN NEUHAUS TOTAL AVERAGE DELTA   0.6359 3346 2,575,156 CUM. GAS RATE TIME RATE RA | Z P/Z CUM. GAS DELTA JORDAN NEUHAUS TOTAL AVERAGE DELTA JORDAN   0.6339 93.44 MMCF CUM. GAS RATE 7/493 7/493 7/493 7/493 7/493 7/493 7/493 9/893 9/893 | Z PIZ CUM. GAS DELTA JORDÁN NELHAUS TOTAL AVERAGE DELTA JORDÁN   PSIA PSIA MMCF CUM. GAS RATE RATE RATE RATE TIME VIG RATE AVIG RATE AVIG RATE TIME VIG RATE T | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $ | Z P/Z CUM, GAS DETA JORDAN NEUHAUS TOTAL AVERAGE DETA DATE JORDAN NEUHAUS JORDAN |

|          |        |      | JORDAN 'B' No. | 1 3-1/2" TUBING |        |         | NO PENALTY OF | N NEUHAUS 14 F | EDERAL No. 2 |          | 1        |          |           |           |
|----------|--------|------|----------------|-----------------|--------|---------|---------------|----------------|--------------|----------|----------|----------|-----------|-----------|
| PRESSURE | Z      | PIZ  | CUM. GAS       | DELTA           | JORDAN | NEUHAUS | TOTAL         | AVERAGE        | DELTA        | DATE     | JORDAN   | NEUHAUS  | JORDAN    | NEUHAUS   |
|          | at 90- |      |                | CUM. GAS        | RATE   | RATE    | RATE          | RATE           | TIME         |          | AVG RATE | AVG RATE | CUM. GAS  | CUM. GAS  |
| PSIA     |        | PSIA | MMCF           | MMCF            | MCFD   | MCFD    | MCFD          | MCFD           | DAYS         |          | MCFD     | MCFD     | MCF       | MCF       |
| 2128     | 0.6359 | 3346 | 2,575.156      |                 |        |         |               | -              |              | 7/4/93   |          |          |           |           |
| 2000     | 0.6389 | 3130 | 2,820.960      | 245.804         |        |         |               |                |              |          |          |          |           |           |
| 1957     | 0.6339 | 3087 | 2,870.212      | 49.252          | 5,671  | 6,889   | 12,560        |                |              | 8/20/93  |          |          | 200,556   | 94,500    |
| 1900     | 0.6447 | 2947 | 3,029.669      | 208.710         | 5,444  | 6,641   | 12,085        | 12,323         | 17           | 9/5/93   | 5,558    | 6,765    | 294,685   | 209,081   |
| 1800     | 0,6506 | 2767 | 3,234.632      | 204.963         | 5,047  | 6,231   | 11,278        | 11,682         | 81           | 9/23/93  | 5,246    | 6,436    | 386,722   | 322,006   |
| 1700     | 0.6564 | 2590 | 3,435.947      | 201.316         | 4,648  | 5,823   | 10,471        | 10,875         | 19           | 10/11/93 | 4,848    | 6,027    | 476,462   | 433,582   |
| 1600     | 0.6623 | 2416 | 3,633.713      | 197.765         | 4,247  | 5,415   | 9,662         | 10,067         | 20           | 10/31/93 | 4,448    | 5,619    | 563,837   | 543,972   |
| 1500     | 0.6683 | 2244 | 3,828.827      | 195.115         | 3,855  | 5,006   | 8,861         | 9,262          | 21           | 11/21/93 | 4,051    | 5,211    | 649,181   | 653,743   |
| 1400     | 0.6759 | 2071 | 4,025.853      | 197.025         | 3,454  | 4,594   | 8,048         | 8,455          | 23           | 12/15/93 | 3,655    | 4,800    | 734,346   | 765,600   |
| 1300     | 0.6835 | 1902 | 4,218.496      | 192.644         | 3,052  | 4,176   | 7,228         | 7,638          | 25           | 1/9/94   | 3,253    | 4,385    | 816,392   | 876,201   |
| 1200     | 0.7018 | 1710 | 4,437.005      | 218.509         | 2,647  | 3,753   | 6,400         | 6,814          | 32           | 2/10/94  | 2,850    | 3,965    | 907,769   | 1,003,333 |
| 1100     | 0.7267 | 1514 | 4,660.087      | 223.082         | 2,235  | 3,320   | 5,555         | 5,978          | 37           | 3/19/94  | 2,441    | 3,537    | 998,868   | 1,135,316 |
| 1000     | 0.7515 | 1331 | 4,868.416      | 208.329         | 1,808  | 2,876   | 4,684         | 5,120          | 41           | 4/29/94  | 2,022    | 3,098    | 1,081,129 | 1,261,383 |
| 006      | 0.7764 | 1159 | 5,063.409      | 194.993         | 1,317  | 2,412   | 3,729         | 4,207          | 46           | 6/14/94  | 1,563    | 2,644    | 1,153,559 | 1,383,946 |
| 008      | 0.8012 | 866  | 5,246.306      | 182.897         | 1,205  | 1,913   | 3,118         | 3,424          | 53           | 8/7/94   | 1,261    | 2,163    | 1,220,927 | 1,499,476 |
| 700      | 0.8261 | 847  | 5,418.200      | 171.893         | 878    | 1,290   | 2,168         | 2,643          | 65           | 10/11/94 | 1,042    | 1,602    | 1,288,663 | 1,603,633 |
| 600      | 0.8509 | 705  | 5,580.053      | 161.854         | 316    | 308     | 624           | 1,396          | 116          | 2/4/95   | 597      | 799      | 1,357,880 | 1,696,270 |
| 500      | 0.8758 | 571  | 5,732.722      | 152.668         | 160    | 175     | 335           | 480            | 318          | 12/19/95 | 238      | 242      | 1,433,657 | 1,773,161 |

|          |        |      | JORDAN 'B' No. | 1 2-3/8" TUBING |        |         | 20% ALLOWABI | E ON NEUHAUS | 14 FEDERAL No. | 2        |          |          |           |           |
|----------|--------|------|----------------|-----------------|--------|---------|--------------|--------------|----------------|----------|----------|----------|-----------|-----------|
| PRESSURE | Z      | P/Z  | CUM. GAS       | DELTA           | JORDAN | NEUHAUS | TOTAL        | AVERAGE      | DELTA          | DATE     | JORDAN   | NEUHAUS  | JORDAN    | NEUHAUS   |
|          |        |      |                | CUM. GAS        | RATE   | RATE    | RATE         | RATE         | TIME           |          | AVG RATE | AVG RATE | CUM. GAS  | CUM. GAS  |
| PSIA     |        | PSIA | MMCF           | MMCF            | MCFD   | MCFD    | MCFD         | MCFD         | DAYS           |          | MCFD     | MCFD     | MCF       | MCF       |
| 2128     | 0.6359 | 3346 | 2,575.156      |                 |        |         |              |              |                | 7 4 93   |          |          |           |           |
| 2000     | 0.6389 | 3130 | 2,820.960      | 245.804         |        |         |              |              |                |          |          |          |           |           |
| 1957     | 0.6339 | 3087 | 2,870.212      | 49.252          | 3,950  | 1,378   | 5,328        |              |                | 8/20/93  |          |          | 200,556   | 94,500    |
| 1900     | 0.6447 | 2947 | 3,029.669      | 208.710         | 3,802  | 1,378   | 5,180        | 5,254        | 40             | 9/28/93  | 3,876    | 1,378    | 354,526   | 149,240   |
| 1800     | 0.6506 | 2767 | 3,234.632      | 204.963         | 3,550  | 1,378   | 4,928        | 5,054        | 41             | 11/8/93  | 3,676    | 1,378    | 503,604   | 205,124   |
| 1700     | 0.6564 | 2590 | 3,435.947      | 201.316         | 3,299  | 1,378   | 4,677        | 4,803        | 42             | 12/20/93 | 3,425    | 1,378    | 647,156   | 262,888   |
| 1600     | 0.6623 | 2416 | 3,633.713      | 197.765         | 3,040  | 1,378   | 4,418        | 4,548        | 43             | 2/1/94   | 3,170    | 1,378    | 784,993   | 322,816   |
| 1500     | 0.6683 | 2244 | 3,828.827      | 195.115         | 2,782  | 1,378   | 4,160        | 4,289        | 45             | 3/19/94  | 2,911    | 1,378    | 917,420   | 385,503   |
| 1400     | 0.6759 | 2071 | 4,025.853      | 197.025         | 2,525  | 1,378   | 3,903        | 4,032        | 49             | 5/7/94   | 2,654    | 1,378    | 1,047,101 | 452,848   |
| 1300     | 0.6835 | 1902 | 4,218.496      | 192.644         | 2,258  | 1,378   | 3,636        | 3,770        | 51             | 6/27/94  | 2,392    | 1,378    | 1,169,320 | 523,272   |
| 1200     | 0.7018 | 1710 | 4,437.005      | 218.509         | 1,995  | 751     | 2,746        | 3,191        | 89             | 9/3/94   | 2,127    | 1,064    | 1,314,945 | 596,156   |
| 1100     | 0.7267 | 1514 | 4,660.087      | 223.082         | 1,727  | 751     | 2,478        | 2,612        | 85             | 11/28/94 | 1,861    | 751      | 1,473,899 | 660,284   |
| 1000     | 0.7515 | 1331 | 4,868.416      | 208.329         | 1,461  | 751     | 2,212        | 2,345        | 68             | 2/24/95  | 1,594    | 751      | 1,615,509 | 727,003   |
| 900      | 0.7764 | 1159 | 5,063.409      | 194.993         | 1,180  | 751     | 1,931        | 2,072        | 94             | 5/30/95  | 1,321    | 751      | 1,739,810 | 797,696   |
| 008      | 0.8012 | 866  | 5,246.306      | 182.897         | 871    | 500     | 1,371        | 1,651        | 111            | 9/17/95  | 1,026    | 626      | 1,853,414 | 866,988   |
| 700      | 0.8261 | 847  | 5,418.200      | 171.893         | 422    | 500     | 922          | 1,147        | 150            | 2/14/96  | 647      | 500      | 1,950,343 | 941,953   |
| 009      | 0.8509 | 705  | 5,580.053      | 161.854         | 316    | 308     | 624          | 773          | 209            | 9/11/96  | 369      | 404      | 2,027,606 | 1,026,544 |
| 500      | 0.8758 | 571  | 5,732.722      | 152.668         | 160    | 175     | 335          | 480          | 318            | 7/26/97  | 238      | 242      | 2,103,383 | 1,103,435 |

|          |        |      | JORDAN 'B' No. | 1 3-1/2" TUBING |        |         | 20% ALLOWABL | E ON NEUHAUS | 14 FEDERAL No. | 2        |          |          |           |          |
|----------|--------|------|----------------|-----------------|--------|---------|--------------|--------------|----------------|----------|----------|----------|-----------|----------|
| PRESSURE | Z      | PIZ  | CUM. GAS       | DELTA           | JORDAN | NEUHAUS | TOTAL        | AVERAGE      | DELTA          | DATE     | JORDAN   | NEUHAUS  | JORDAN    | NEUHAUS  |
|          |        |      |                | CUM. GAS        | RATE   | RATE    | RATE         | RATE         | TIME           |          | AVG RATE | AVG RATE | CUM. GAS  | CUM. GAS |
| PSIA     |        | PSIA | MMCF           | MMCF            | MCFD   | MCFD    | MCFD         | MCFD         | DAYS           |          | MCFD     | NCFD     | MCF       | MCF      |
| 2128     | 0.6359 | 3346 | 2,575.156      |                 |        |         |              |              |                | 7 4 93   |          |          |           | _        |
| 2000     | 0.6389 | 3130 | 2,820.960      | 245.804         |        |         |              |              |                |          |          |          |           |          |
| 1957     | 0.6339 | 3087 | 2,870.212      | 49.252          | 5,671  | 1,378   | 7,049        |              |                | 8/20/93  |          |          | 200,556   | 94,500   |
| 1900     | 0.6447 | 2947 | 3,029.669      | 208.710         | 5,444  | 1,378   | 6,822        | 6,936        | 30             | 9/19/93  | 5,558    | 1,378    | 367,798   | 135,968  |
| 1800     | 0.6506 | 2767 | 3,234.632      | 204.963         | 5,047  | 1,378   | 6,425        | 6,624        | 31             | 10/20/93 | 5,246    | 1,378    | 530,118   | 178,610  |
| 1700     | 0.6564 | 2590 | 3,435.947      | 201.316         | 4,648  | 1,378   | 6,026        | 6,226        | 32             | 11/21/93 | 4,848    | 1,378    | 686,873   | 223,171  |
| 1600     | 0.6623 | 2416 | 3,633.713      | 197.765         | 4,247  | 1,378   | 5,625        | 5,826        | 34             | 12/25/93 | 4,448    | 1,378    | 837,858   | 269,951  |
| .1500    | 0.6683 | 2244 | 3,828.827      | 195.115         | 3,855  | 1,378   | 5,233        | 5,429        | 36             | 1/30/94  | 4,051    | 1,378    | 983,448   | 319,476  |
| 1400     | 0.6759 | 2071 | 4,025.853      | 197.025         | 3,454  | 1,378   | 4,832        | 5,033        | 39             | 3/10/94  | 3,655    | 1,378    | 1,126,524 | 373,425  |
| 1300     | 0.6835 | 1902 | 4,218.496      | 192.644         | 3,052  | 1,378   | 4,430        | 4,631        | 42             | 4/21/94  | 3,253    | 1,378    | 1,261,844 | 430,748  |
| 1200     | 0.7018 | 1710 | 4,437.005      | 218.509         | 2,647  | 1,378   | 4,025        | 4,228        | 52             | 6/11/94  | 2,850    | 1,378    | 1,409,128 | 501,974  |
| 1100     | 0.7267 | 1514 | 4,660.087      | 223.082         | 2,235  | 664     | 2,899        | 3,462        | 64             | 8/15/94  | 2,441    | 1,021    | 1,566,419 | 567,764  |
| 1000     | 0.7515 | 1331 | 4,868.416      | 208.329         | 1,808  | 664     | 2,472        | 2,686        | 78             | 10/31/94 | 2,022    | 664      | 1,723,238 | 619,274  |
| 900      | 0.7764 | 1159 | 5,063.409      | 194.993         | 1,317  | 664     | 1,981        | 2,227        | 88             | 1/27/95  | 1,563    | 664      | 1,860,079 | 677,426  |
| 008      | 0.8012 | 866  | 5,246.306      | 182.897         | 1,205  | 664     | 1,869        | 1,925        | 95             | 5/2/95   | 1,261    | 664      | 1,979,889 | 740,514  |
| 700      | 0.8261 | 847  | 5,418.200      | 171.893         | 878    | 500     | 1,378        | 1,624        | 106            | 8/16/95  | 1,042    | 582      | 2,090,161 | 802,135  |
| 600      | 0.8509 | 705  | 5,580.053      | 161.854         | 316    | 308     | 624          | 1,001        | 162            | 1/24/96  | 597      | 404      | 2,186,691 | 867,459  |
| 500      | 0.8758 | 571  | 5,732.722      | 152.668         | 160    | 175     | 335          | 480          | 318            | 12/8/96  | 238      | 242      | 2,262,468 | 944,350  |

|          |        |      | JORDAN 'B' No. | 1 2-3/8" TUBING |        |         | 25% ALLOWABI | E ON NEUHAUS | 14 FEDERAL No. | 2        |            |          |           |    |
|----------|--------|------|----------------|-----------------|--------|---------|--------------|--------------|----------------|----------|------------|----------|-----------|----|
| PRESSURE | 2      | P/Z  | CUM. GAS       | DELTA           | JORDAN | NEUHAUS | TOTAL        | AVERAGE      | DELTA          | DATE     | JORDAN     | NEUHAUS  | JORDAN    | NE |
|          |        |      |                | CUM. GAS        | RATE   | RATE    | RATE         | RATE         | TIME           |          | AVG RATE   | AVG RATE | CUM. GAS  | S  |
| PSIA     |        | PSIA | MMCF           | MMCF            | MCFD   | MCFD    | MCFD         | MCFD         | DAYS           |          | MCFD       | MCFD     | MCF       |    |
| 2128     | 0.6359 | 3346 | 2,575.156      |                 |        |         |              |              |                | 7/4/93   |            |          |           |    |
| 2000     | 0.6389 | 3130 | 2,820.960      | 245.804         |        |         |              |              |                |          |            |          |           |    |
| 1957     | 0.6339 | 3087 | 2,870.212      | 49.252          | 3,950  | 1,722   | 5,672        |              |                | 8/20/93  |            |          | 200,556   |    |
| 1900     | 0.6447 | 2947 | 3,029.669      | 208.710         | 3,802  | 1,722   | 5,524        | 5,598        | 37             | 9/26/93  | 3,876      | 1,722    | 345,064   |    |
| 1800     | 0.6506 | 2767 | 3,234.632      | 204.963         | 3,550  | 1,722   | 5,272        | 5,398        | 86             | 11/3/93  | 3,676      | 1,722    | 484,643   |    |
| 1700     | 0.6564 | 2590 | 3,435.947      | 201.316         | 3,299  | 1,722   | 5,021        | 5,147        | 39             | 12/12/93 | 3,425      | 1,722    | 618,599   |    |
| 1600     | 0.6623 | 2416 | 3,633.713      | 197.765         | 3,040  | 1,722   | 4,762        | 4,892        | 40             | 1/21/94  | 3,170      | 1,722    | 746,743   |    |
| 1500     | 0.6683 | 2244 | 3,828.827      | 195.115         | 2,782  | 1,722   | 4,504        | 4,633        | 42             | 3/4/94   | 2,911      | 1,722    | 869,337   |    |
| 1400     | 0.6759 | 2071 | 4,025.853      | 197.025         | 2,525  | 1,722   | 4,247        | 4,376        | 45             | 4/18/94  | 2,654      | 1,722    | 988,822   |    |
| 1300     | 0.6835 | 1902 | 4,218.496      | 192.644         | 2,258  | 1,722   | 3,980        | 4,114        | 47             | 6/4/94   | 2,392      | 1,722    | 1,100,821 |    |
| 1200     | 0.7018 | 1710 | 4,437.005      | 218.509         | 1,995  | 1,722   | 3,717        | 3,849        | 57             | 7/31/94  | 2,127      | 1,722    | 1,221,558 |    |
| 1100     | 0.7267 | 1514 | 4,660.087      | 223.082         | 1,727  | 830     | 2,557        | 3,137        | 71             | 10/10/94 | 1,861      | 1,276    | 1,353,900 |    |
| 1000     | 0.7515 | 1331 | 4,868.416      | 208.329         | 1,461  | 830     | 2,291        | 2,424        | 98             | 1/4/95   | 1,594      | 830      | 1,490,895 |    |
| 900      | 0.7764 | 1159 | 5,063.409      | 194.993         | 1,180  | 830     | 2,010        | 2,151        | 16             | 4/5/95   | 1,321      | 830      | 1,610,629 |    |
| 800      | 0.8012 | 866  | 5,246.306      | 182.897         | 871    | 830     | 1,701        | 1,856        | 66             | 7/12/95  | 1,026      | 028      | 1,711,713 |    |
| 700      | 0.8261 | 847  | 5,418.200      | 171.893         | 422    | 500     | 922          | 1,312        | 131            | 11/20/95 | 647        | 665      | 1,796,448 |    |
| 600      | 0.8509 | 705  | 5,580.053      | 161.854         | 316    | 308     | 624          | 773          | 209            | 6/17/96  | <b>69E</b> | 404      | 1,873,710 |    |
| 500      | 0.8758 | 571  | 5,732.722      | 152.668         | 160    | 175     | 335          | 480          | 318            | 5/1/97   | 238        | 242      | 1,949,487 | _  |

.

| PRESSURE | 2      | <b>Z/d</b> | JORDAN 'B' No<br>CUM. GAS | . 1 3-1/2" TUBING | JORDAN | NEUHAUS | 25% ALLOWAB | AVERAGE | 14 FEDERAL No.<br>DELTA | 2<br>DATE | 5                | RDAN                   | RDAN NEUHAUS                 | RDAN NEUHAUS JORDAN                   |
|----------|--------|------------|---------------------------|-------------------|--------|---------|-------------|---------|-------------------------|-----------|------------------|------------------------|------------------------------|---------------------------------------|
|          |        |            |                           | CUM. GAS          | RATE   | RATE    | RATE        | RATE    |                         | TIME      | TIME             | TIME AVG RATE          | TIME AVG RATE AVG RATE       | TIME AVG RATE AVG RATE CUM. GAS       |
| PSIA     |        | PSIA       | MMCF                      | MMCF              | MCFD   | MCFD    | MCFD        | MCFD    |                         | DAYS      | DAYS             | DAYS MCFD              | DAYS MCFD MCFD               | DAYS MCFD MCFD MCF                    |
| 2128     | 0.6359 | 3346       | 2,575.156                 |                   |        |         |             |         |                         |           | 7/4/93           | 7/4/93                 | 7/4/93                       | 7/4/93                                |
| 2000     | 0.6389 | 3130       | 2,820.960                 | 245.804           |        |         |             |         |                         |           |                  |                        |                              |                                       |
| 1957     | 0.6339 | 3087       | 2,870.212                 | 49.252            | 5,671  | 1,722   | 262'1       |         |                         |           | 8/20/93          | 8/20/93                | 8/20/93                      | 8/20/93 200,556.                      |
| 1900     | 0.6447 | 2947       | 3,029.669                 | 208.710           | 5,444  | 1,722   | 7,166       | ۲,      | 280                     | 280 29    | 280 29 9/17/93   | 280 29 9/17/93 5,558   | 280 29 9/17/93 5,558 1,722   | 280 29 9/17/93 5,558 1,722 359,894    |
| 1800     | 0.6506 | 2767       | 3,234.632                 | 204.963           | 5,047  | 1,722   | 6,769       | 9       | 896,                    | ,968 29   | ,968 29 10/17/93 | ,968 29 10/17/93 5,246 | ,968 29 10/17/93 5,246 1,722 | ,968 29 10/17/93 5,246 1,722 514,201  |
| 1700     | 0.6564 | 2590       | 3,435.947                 | 201.316           | 4,648  | 1,722   | 6,370       | 9       | ,570                    | 570 31    | 570 31 11/16/93  | 570 31 11/16/93 4,848  | 570 31 11/16/93 4,848 1,722  | 570 31 11/16/93 4,848 1,722 662,748   |
| 1600     | 0.6623 | 2416       | 3,633.713                 | 197.765           | 4,247  | 1,722   | 696'5       | ,<br>G  | 170                     | 170 32    | 170 32 12/18/93  | 170 32 12/18/93 4,448  | 170 32 12/18/93 4,448 1,722  | 170 32 12/18/93 4,448 1,722 805,314   |
| 1500     | 0.6683 | 2244       | 3,828.827                 | 195.115           | 3,855  | 1,722   | 5,577       | 5       | ,773                    | ,773 34   | 773 34 1/21/94   | 773 34 1/21/94 4,051   | 773 34 1/21/94 4,051 1,722   | 773 34 1/21/94 4,051 1,722 942,229    |
| 1400     | 0.6759 | 2071       | 4,025.853                 | 197.025           | 3,454  | 1,722   | 5,176       | 5       | ,377                    | ,377 37   | 377 37 2/27/94   | 377 37 2/27/94 3,655   | 377 37 2/27/94 3,655 1,722   | 377 37 2/27/94 3,655 1,722 1,076,150  |
| 1300     | 0.6835 | 2061       | 4,218.496                 | 192.644           | 3,052  | 1,722   | 4,774       | 4,      | 975                     | 975 39    | 975 39 4/6/94    | 975 39 4/6/94 3,253    | 975 39 4/6/94 3,253 1,722    | 975 39 4/6/94 3,253 1,722 1,202,114   |
| 1200     | 0.7018 | 1710       | 4,437.005                 | 218.509           | 2,647  | 1,722   | 4,369       | 4       | ,572                    | ,572 48   | ,572 48 5/24/94  | 572 48 5/24/94 2,850   | ,572 48 5/24/94 2,850 1,722  | ,572 48 5/24/94 2,850 1,722 1,338,314 |
| 1100     | 0.7267 | 1514       | 4,660.087                 | 223.082           | 2,235  | 1,722   | 3,957       | 4       | ,163                    | ,163 54   | ,163 54 7/17/94  | ,163 54 7/17/94 2,441  | ,163 54 7/17/94 2,441 1,722  | ,163 54 7/17/94 2,441 1,722 1,469,120 |
| 1000     | 0.7515 | 1331       | 4,868.416                 | 208.329           | 1,808  | 720     | 2,528       | 3       | ,242                    | ,242 64   | ,242 64 9/19/94  | ,242 64 9/19/94 2,022  | ,242 64 9/19/94 2,022 1,221  | ,242 64 9/19/94 2,022 1,221 1,599,005 |
| 006      | 0.7764 | 1159       | 5,063.409                 | 194.993           | 1,317  | 720     | 2,037       | .2      | 282                     | 282 85    | 282 85 12/14/94  | 282 85 12/14/94 1,563  | 282 85 12/14/94 1,563 720    | 282 85 12/14/94 1,563 720 1,732,496   |
| 008      | 0.8012 | 866        | 5,246.306                 | 182.897           | 1,205  | 720     | 1,925       | 1,9     | 8                       | 981 92    | 981 92 3/16/95   | 981 92 3/16/95 1,261   | 981 92 3/16/95 1,261 720     | 981 92 3/16/95 1,261 720 1,848,919    |
| 700      | 0.8261 | 847        | 5,418.200                 | 171.893           | 878    | 720     | 1,598       | 1,7     | 62                      | 62 98     | 62 98 6/21/95    | 62 98 6/21/95 1,042    | 62 98 6/21/95 1,042 720      | 62 98 6/21/95 1,042 720 1,950,552     |
| 600      | 0.8509 | 705        | 5,580.053                 | 161.854           | 316    | 308     | 624         | 1.1     | Ξ                       | 11 146    | 11 146 11/14/95  | 11 146 11/14/95 597    | 11 146 11/14/95 597 514      | 11 146 11/14/95 597 514 2,037,525     |
| 500      | 0.8758 | 571        | 5,732.722                 | 152.668           | 160    | 175     | 335         | 48      | 30                      | 30 318    | 30 318 9/28/96   | 30 318 9/28/96 238     | 30 318 9/28/96 238 242       | 30 318 9/28/96 238 242 2,113,302      |

|          | -      |      | JORDAN 'B' No. | 1 2-3/8" TUBING |        |         | 33% ALLOWABLI | E ON NEUHAUS 1 | 14 FEDERAL No. | 2        |          |          |           |           |
|----------|--------|------|----------------|-----------------|--------|---------|---------------|----------------|----------------|----------|----------|----------|-----------|-----------|
| PRESSURE | 2      | P/Z  | CUM. GAS       | DELTA           | JORDAN | NEUHAUS | TOTAL         | AVERAGE        | DELTA          | DATE     | JORDAN   | NEUHAUS  | JORDAN    | NEUHAUS   |
|          |        |      |                | CUM. GAS        | RATE   | RATE    | RATE          | RATE           | TIME           |          | AVG RATE | AVG RATE | CUM. GAS  | CUM. GAS  |
| PSIA     |        | PSIA | MMCF           | MMCF            | MCFD   | MCFD    | MCFD          | MCFD           | DAYS           |          | MCFD     | MCFD     | MCF       | MCF       |
| 2128     | 0.6359 | 3346 | 2,575.156      |                 |        |         |               |                |                | 7/4/93   |          |          |           |           |
| 2000     | 0.6389 | 3130 | 2,820.960      | 245.804         |        |         |               |                |                |          |          |          |           |           |
| 1957     | 0.6339 | 3087 | 2,870.212      | 49.252          | 3,950  | 2,273   | 6,223         |                |                | 8/20/93  |          |          | 200,556   | 94,500    |
| 1900     | 0.6447 | 2947 | 3,029.669      | 208.710         | 3,802  | 2,273   | 6,075         | 6,149          | 34             | 9/22/93  | 3,876    | 2,273    | 332,115   | 171,650   |
| 1800     | 0.6506 | 2767 | 3,234.632      | 204.963         | 3,550  | 2,273   | 5,823         | 5,949          | 34             | 10/27/93 | 3,676    | 2,273    | 458,766   | 249,960   |
| 1700     | 0.6564 | 2590 | 3,435.947      | 201.316         | 3,299  | 2,273   | 5,572         | 5,698          | 35             | 12/1/93  | 3,425    | 2,273    | 579,767   | 330,277   |
| 1600     | 0.6623 | 2416 | 3,633.713      | 197.765         | 3,040  | 2,273   | 5,313         | 5,443          | 36             | 1/7/94   | 3,170    | 2,273    | 694,938   | 412,871   |
| 1500     | 0.6683 | 2244 | 3,828.827      | 195.115         | 2,782  | 2,273   | 5,055         | 5,184          | 38             | 2/13/94  | 2,911    | 2,273    | 804,502   | 498,422   |
| 1400     | 0.6759 | 2071 | 4,025.853      | 197.025         | 2,525  | 2,273   | 4,798         | 4,927          | 40             | 3/25/94  | 2,654    | 2,273    | 910,623   | 589,326   |
| 1300     | 0.6835 | 1902 | 4,218.496      | 192.644         | 2,258  | 2,273   | 4,531         | 4,665          | 41             | 5/5/94   | 2,392    | 2,273    | 1,009,392 | 683,201   |
| 1200     | 0.7018 | 1710 | 4,437.005      | 218.509         | 1,995  | 2,273   | 4,268         | 4,400          | 50             | 6/24/94  | 2,127    | 2,273    | 1,115,008 | 796,093   |
| 1100     | 0.7267 | 1514 | 4,660.087      | 223.082         | 1,727  | 1,096   | 2,823         | 3,545          | 63             | 8/26/94  | 1,861    | 1,684    | 1,232,108 | 902,075   |
| 1000     | 0.7515 | 1331 | 4,868.416      | 208.329         | 1,461  | 1,096   | 2,557         | 2,690          | 11             | 11/12/94 | 1,594    | 1,096    | 1,355,566 | 986,946   |
| 006      | 0.7764 | 1159 | 5,063.409      | 194.993         | 1,180  | 1,096   | 2,276         | 2,417          | 81             | 1/31/95  | 1,321    | 1,096    | 1,462,120 | 1,075,385 |
| 800      | 0.8012 | 866  | 5,246.306      | 182.897         | 871    | 1,096   | 1,967         | 2,122          | <b>86</b>      | 4/27/95  | 1,026    | 1,096    | 1,550,530 | 1,169,873 |
| 700      | 0.8261 | 847  | 5,418.200      | 171.893         | 422    | 500     | 922           | 1,445          | 119            | 8/24/95  | 647      | 798      | 1,627,462 | 1,264,834 |
| 600      | 0.8509 | 705  | 5,580.053      | 161.854         | 316    | 308     | 624           | 773            | 209            | 3/21/96  | 369      | 404      | 1,704,725 | 1,349,425 |
| 500      | 0.8758 | 571  | 5,732.722      | 152.668         | 160    | 175     | 335           | 480            | 318            | 2/2/97   | 238      | 242      | 1,780,502 | 1,426,316 |

.

|          |        |      | JORDAN 'B' No. | 1 3-1/2" TUBING |        |         | 33% ALLOWABI | E ON NEUHAUS | 14 FEDERAL No. : | 2        |          |          |           |           |
|----------|--------|------|----------------|-----------------|--------|---------|--------------|--------------|------------------|----------|----------|----------|-----------|-----------|
| PRESSURE | 2      | PIZ  | CUM. GAS       | DELTA           | JORDAN | NEUHAUS | TOTAL        | AVERAGE      | DELTA            | DATE     | JORDAN   | NEUHAUS  | JORDAN    | NEUHAUS   |
|          |        |      |                | CUM. GAS        | RATE   | RATE    | RATE         | RATE         | TIME             |          | AVG RATE | AVG RATE | CUM. GAS  | CUM. GAS  |
| PSIA     |        | PSIA | MMCF           | MMCF            | MCFD   | MCFD    | MCFD         | MCFD         | DAYS             |          | MCFD     | MCFD     | MCF       | MCF       |
| 2128     | 0.6359 | 3346 | 2,575.156      |                 |        |         |              |              |                  | 7/4/93   |          |          |           |           |
| 2000     | 0.6389 | 3130 | 2,820.960      | 245.804         |        |         |              |              |                  |          |          |          |           |           |
| 1957     | 0.6339 | 3087 | 2,870.212      | 49.252          | 5,671  | 2,273   | 7,944        |              |                  | 8/20/93  |          |          | 200,556   | 94,500    |
| 1900     | 0.6447 | 2947 | 3,029.669      | 208.710         | 5,444  | 2,273   | 7,717        | 7,831        | 27               | 9/15/93  | 5,558    | 2,273    | 348,682   | 155,083   |
| 1800     | 0.6506 | 2767 | 3,234.632      | 204.963         | 5,047  | 2,273   | 7,320        | 7,519        | 27               | 10/12/93 | 5,246    | 2,273    | 491,680   | 217,048   |
| 1700     | 0.6564 | 2590 | 3,435.947      | 201.316         | 4,648  | 2,273   | 6,921        | 7,121        | 28               | 11/10/93 | 4,848    | 2,273    | 628,732   | 281,312   |
| 1600     | 0.6623 | 2416 | 3,633.713      | 197.765         | 4,247  | 2,273   | 6,520        | 6,721        | 29               | 12/9/93  | 4,448    | 2,273    | 759,609   | 348,199   |
| 1500     | 0.6683 | 2244 | 3,828.827      | 195.115         | 3,855  | 2,273   | 6,128        | 6,324        | 31               | 1/9/94   | 4,051    | 2,273    | 884,595   | 418,328   |
| 1400     | 0.6759 | 2071 | 4,025.853      | 197.025         | 3,454  | 2,273   | 5,727        | 5,928        | 33               | 2/11/94  | 3,655    | 2,273    | 1,006,068 | 493,881   |
| 1300     | 0.6835 | 1902 | 4,218.496      | 192.644         | 3,052  | 2,273   | 5,325        | 5,526        | 35               | 3/18/94  | 3,253    | 2,273    | 1,119,472 | 573,121   |
| 1200     | 0.7018 | 1710 | 4,437.005      | 218.509         | 2,647  | 2,273   | 4,920        | 5,123        | 43               | 4/30/94  | 2,850    | 2,273    | 1,241,022 | 670,079   |
| 1100     | 0.7267 | 1514 | 4,660.087      | 223.082         | 2,235  | 2,273   | 4,508        | 4,714        | 47               | 6/16/94  | 2,441    | 2,273    | 1,356,538 | 777,648   |
| 1000     | 0.7515 | 1331 | 4,868.416      | 208.329         | 1,808  | 949     | 2,757        | 3,633        | 57               | 8/12/94  | 2,022    | 1,611    | 1,472,473 | 870,040   |
| 006      | 0.7764 | 1159 | 5,063.409      | 194.993         | 1,317  | 949     | 2,266        | 2,512        | 87               | 10/29/94 | 1,563    | 949      | 1,593,783 | 943,722   |
| 008      | 0.8012 | 866  | 5,246.306      | 182.897         | 1,205  | 949     | 2,154        | 2,210        | 83               | 1/20/95  | 1,261    | 949      | 1,698,142 | 1,022,260 |
| 700      | 0.8261 | 847  | 5,418.200      | 171.893         | 878    | 949     | 1,827        | 1,991        | 98               | 4/16/95  | 1,042    | 949      | 1,788,083 | 1,104,213 |
| 600      | 0.8509 | 705  | 5,580.053      | 161.854         | 316    | 308     | 624          | 1,226        | 132              | 8/26/95  | 597      | 629      | 1,866,930 | 1,187,220 |
| 500      | 0.8758 | 571  | 5,732.722      | 152.668         | 160    | 175     | 335          | 480          | 318              | 7/10/96  | 238      | 242      | 1,942,707 | 1,264,111 |

|          |        |      | JORDAN 'B' No. | 1 2-3/8" TUBING |        |         | 46% ALLOWABL | E ON NEUHAUS | 14 FEDERAL No. | 2        |          |          |           |           |
|----------|--------|------|----------------|-----------------|--------|---------|--------------|--------------|----------------|----------|----------|----------|-----------|-----------|
| PRESSURE | 2      | PIZ  | CUM. GAS       | DELTA           | JORDAN | NEUHAUS | TOTAL        | AVERAGE      | DELTA          | DATE     | JORDAN   | NEUHAUS  | JORDAN    | NEUHAUS   |
|          |        |      |                | CUM. GAS        | RATE   | RATE    | RATE         | RATE         | TIME           |          | AVG RATE | AVG RATE | CUM. GAS  | CUM. GAS  |
| PSIA     |        | PSIA | MMCF           | MMCF            | MCFD   | MCFD    | MCFD         | MCFD         | DAYS           |          | MCFD     | MCFD     | MCF       | MCF       |
| 2128     | 0.6359 | 3346 | 2,575.156      |                 |        |         |              |              |                | 7/4/93   |          |          |           |           |
| 2000     | 0.6389 | 3130 | 2,820.960      | 245.804         |        |         |              |              |                |          |          |          |           |           |
| 1957     | 0.6339 | 3087 | 2,870.212      | 49.252          | 3,950  | 3,169   | 7,119        |              |                | 8/20/93  |          |          | 200,556   | 94,500    |
| 1900     | 0.6447 | 2947 | 3,029.669      | 208.710         | 3,802  | 3,169   | 6,971        | 7,045        | 30             | 9/18/93  | 3,876    | 3,169    | 315,383   | 188,382   |
| 1800     | 0.6506 | 2767 | 3,234.632      | 204.963         | 3,550  | 3,169   | 6,719        | 6,845        | 30             | 10/18/93 | 3,676    | 3,169    | 425,455   | 283,273   |
| 1700     | 0.6564 | 2590 | 3,435.947      | 201.316         | 3,299  | 3,169   | 6,468        | 6,594        | 31             | 11/18/93 | 3,425    | 3,169    | 530,014   | 380,030   |
| 1600     | 0.6623 | 2416 | 3,633.713      | 197.765         | 3,040  | 3,169   | 6,209        | 6,339        | 31             | 12/19/93 | 3,170    | 3,169    | 628,904   | 478,905   |
| 1500     | 0.6683 | 2244 | 3,828.827      | 195.115         | 2,782  | 3,169   | 5,951        | 6,080        | 32             | 1/20/94  | 2,911    | 3,169    | 722,322   | 580,602   |
| 1400     | 0.6759 | 2071 | 4,025.853      | 197.025         | 2,525  | 3,169   | 5,694        | 5,823        | 34             | 2/23/94  | 2,654    | 3,169    | 812,112   | 687,837   |
| 1300     | 0.6835 | 1902 | 4,218.496      | 192.644         | 2,258  | 3,169   | 5,427        | 5,561        | 35             | 3/29/94  | 2,392    | 3,169    | 894,966   | 797,627   |
| 1200     | 0.7018 | 1710 | 4,437.005      | 218.509         | 1,995  | 3,169   | 5,164        | 5,296        | 41             | 5/10/94  | 2,127    | 3,169    | 982,712   | 928,389   |
| 1100     | 0.7267 | 1514 | 4,660.087      | 223.082         | 1,727  | 3,169   | 4,896        | 5,030        | 44             | 6/23/94  | 1,861    | 3,169    | 1,065,248 | 1,068,936 |
| 1000     | 0.7515 | 1331 | 4,868.416      | 208.329         | 1,461  | 2,876   | 4,337        | 4,617        | 45             | 8/7/94   | 1,594    | 3,023    | 1,137,180 | 1,205,332 |
| 006      | 0.7764 | 1159 | 5,063.409      | 194.993         | 1,180  | 1,110   | 2,290        | 3,313        | 59             | 10/5/94  | 1,321    | 1,993    | 1,214,895 | 1,322,611 |
| 008      | 0.8012 | 866  | 5,246.306      | 182.897         | 871    | 1,110   | 1,981        | 2,135        | <b>3</b> 8     | 12/30/94 | 1,026    | 1,110    | 1,302,735 | 1,417,668 |
| 700      | 0.8261 | 847  | 5,418.200      | 171.893         | 422    | 1,110   | 1,532        | 1,757        | 86             | 4/6/95   | 647      | 1,110    | 1,366,002 | 1,526,294 |
| 600      | 0.8509 | 705  | 5,580.053      | 161.854         | 316    | 308     | 624          | 1,078        | 150            | 9/4/95   | 369      | 709      | 1,421,405 | 1,632,745 |
| 500      | 0.8758 | 571  | 5,732.722      | 152.668         | 160    | 175     | 335          | 480          | 318            | 7/18/96  | 238      | 242      | 1,497,182 | 1,709,637 |

|          |        |      | JORDAN 'B' No. | 1 3-1/2" TUBING |        |         | 46% ALLOWABI | E ON NEUHAUS | 14 FEDERAL No. 2 |          |          |          |            | +        |
|----------|--------|------|----------------|-----------------|--------|---------|--------------|--------------|------------------|----------|----------|----------|------------|----------|
| PRESSURE | Z      | P/Z  | CUM. GAS       | DELTA           | JORDAN | NEUHAUS | TOTAL        | AVERAGE      | DELTA            | DATE     | JORDAN   | NEUHAUS  | ٦          | RDAN     |
|          |        |      |                | CUM. GAS        | RATE   | RATE    | RATE         | RATE         | TIME             |          | AVG RATE | AVG RATE | CUN        | A. GAS   |
| PSIA     |        | PSIA | MMCF           | MMCF            | MCFD   | MCFD    | MCFD         | MCFD         | DAYS             |          | MCFD     | MCFD     | _          | MCF      |
| 2128     | 0.6359 | 3346 | 2,575.156      |                 |        |         |              |              |                  | 7/4/93   |          |          |            |          |
| 2000     | 0.6389 | 3130 | 2,820.960      | 245.804         |        |         |              |              |                  |          |          |          |            |          |
| 1957     | 0.6339 | 3087 | 2,870.212      | 49.252          | 5,671  | 3,169   | 8,840        |              |                  | 8/20/93  |          |          |            | 200,556  |
| 1900     | 0.6447 | 2947 | 3,029.669      | 208.710         | 5,444  | 3,169   | 8,613        | 8,727        | 24               | 9/12/93  | 5,558    | 3,169    |            | 333,473  |
| 1800     | 0.6506 | 2767 | 3,234.632      | 204.963         | 5,047  | 3,169   | 8,216        | 8,415        | 24               | 10/7/93  | 5,246    | 3,169    |            | 461,245  |
| 1700     | 0.6564 | 2590 | 3,435.947      | 201.316         | 4,648  | 3,169   | 7,817        | 8,017        | 25               | 11/1/93  | 4,848    | 3,169    |            | 582,978  |
| 1600     | 0.6623 | 2416 | 3,633.713      | 197.765         | 4,247  | 3,169   | 7,416        | 7,617        | 26               | 11/27/93 | 4,448    | 3,169    |            | 698,459  |
| 1500     | 0.6683 | 2244 | 3,828.827      | 195.115         | 3,855  | 3,169   | 7,024        | 7,220        | 27               | 12/24/93 | 4,051    | 3,169    |            | 807,934  |
| 1400     | 0.6759 | 2071 | 4,025.853      | 197.025         | 3,454  | 3,169   | 6,623        | 6,824        | 29               | 1/22/94  | 3,655    | 3,169    |            | 913,456  |
| 1300     | 0.6835 | 1902 | 4,218.496      | 192.644         | 3,052  | 3,169   | 6,221        | 6,422        | 30               | 2/21/94  | 3,253    | 3,169    | <b>, 1</b> | 011,038  |
| 1200     | 0.7018 | 1710 | 4,437.005      | 218.509         | 2,647  | 3,169   | 5,816        | 6,019        | 36               | 3/29/94  | 2,850    | 3,169    | 1          | 114,492  |
| 1100     | 0.7267 | 1514 | 4,660.087      | 223.082         | 2,235  | 3,169   | 5,404        | 5,610        | 40               | 5/8/94   | 2,441    | 3,169    | <b>.</b>   | 211,559  |
| 1000     | 0.7515 | 1331 | 4,868.416      | 208.329         | 1,808  | 2,876   | 4,684        | 5,044        | 41               | 6/18/94  | 2,022    | 3,023    | 1,:        | 295,052  |
| 006      | 0.7764 | 1159 | 5,063.409      | 194.993         | 1,317  | 2,412   | 3,729        | 4,207        | 46               | 8/3/94   | 1,563    | 2,644    | :1         | 367,481  |
| 800      | 0.8012 | 866  | 5,246.306      | 182.897         | 1,205  | 088     | 2,085        | 2,907        | 63               | 10/5/94  | 1,261    | 1,646    | 1,4        | 146,819  |
| 700      | 0.8261 | 847  | 5,418.200      | 171.893         | 878    | 088     | 1,758        | 1,921        | 68               | 1/3/95   | 1,042    | 088      | 1.         | 39,990   |
| 009      | 0.8509 | 705  | 5,580.053      | 161.854         | 316    | 308     | 624          | 1,191        | 136              | 5/19/95  | 597      | 594      | 1,6        | 321, 121 |
| 500      | 0.8758 | 571  | 5,732.722      | 152.668         | 160    | 175     | 335          | 480          | 318              | 4/1/96   | 238      | 242      | <u></u>    | 368,36   |

-

|        |                                                                                                                                                                                                                        | JORDAN 'B' No.                                                                                                                                                                                                                                                               | 1 2-3/8" TUBING                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 58% ALLOWAB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | LE ON NEUHAUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 14 FEDERAL No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2      | PIZ                                                                                                                                                                                                                    | CUM. GAS                                                                                                                                                                                                                                                                     | DELTA                                                                                                                                                                                                                                                                                                                                                                                                                         | JORDAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NEUHAUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TOTAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | AVERAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DELTA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | JORDAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NEUHAUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | JORDAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NEUHAUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|        |                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                              | CUM. GAS                                                                                                                                                                                                                                                                                                                                                                                                                      | RATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AVG RATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | AVG RATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CUM. GAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CUM. GAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|        | PSIA                                                                                                                                                                                                                   | MMCF                                                                                                                                                                                                                                                                         | MMCF                                                                                                                                                                                                                                                                                                                                                                                                                          | MCFD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MCFD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MCFD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MCFD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DAYS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MCFD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MCFD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MCF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MCF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0.6359 | 3346                                                                                                                                                                                                                   | 2,575.156                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7/4/93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0.6389 | 3130                                                                                                                                                                                                                   | 2,820.960                                                                                                                                                                                                                                                                    | 245.804                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0.6339 | 3087                                                                                                                                                                                                                   | 2,870.212                                                                                                                                                                                                                                                                    | 49.252                                                                                                                                                                                                                                                                                                                                                                                                                        | 3,950                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3,996                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7,946                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8/20/93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 200,556                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 94,500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0.6447 | 2947                                                                                                                                                                                                                   | 3,029.669                                                                                                                                                                                                                                                                    | 208.710                                                                                                                                                                                                                                                                                                                                                                                                                       | 3,802                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3,996                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7,798                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7,872                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9/15/93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3,876                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3,996                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 303,320                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 200,446                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.6506 | 2767                                                                                                                                                                                                                   | 3,234.632                                                                                                                                                                                                                                                                    | 204.963                                                                                                                                                                                                                                                                                                                                                                                                                       | 3,550                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3,996                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7,546                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7,672                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10/12/93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3,676                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3,996                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 401,527                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 307,201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.6564 | 2590                                                                                                                                                                                                                   | 3,435.947                                                                                                                                                                                                                                                                    | 201.316                                                                                                                                                                                                                                                                                                                                                                                                                       | 3,299                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3,996                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7,295                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7,421                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11/8/93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3,425                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3,996                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 494,432                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 415,611                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.6623 | 2416                                                                                                                                                                                                                   | 3,633.713                                                                                                                                                                                                                                                                    | 197.765                                                                                                                                                                                                                                                                                                                                                                                                                       | 3,040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3,996                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7,036                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7,166                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12/5/93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3,170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3,996                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 581,909                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 525,900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.6683 | 2244                                                                                                                                                                                                                   | 3,828.827                                                                                                                                                                                                                                                                    | 195.115                                                                                                                                                                                                                                                                                                                                                                                                                       | 2,782                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3,996                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6,778                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6,907                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1/3/94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2,911                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3,996                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 664,142                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 638,782                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.6759 | 2071                                                                                                                                                                                                                   | 4,025.853                                                                                                                                                                                                                                                                    | 197.025                                                                                                                                                                                                                                                                                                                                                                                                                       | 2,525                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3,996                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6,521                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6,650                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2/1/94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2,654                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3,996                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 742,765                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 757,184                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.6835 | 1902                                                                                                                                                                                                                   | 4,218.496                                                                                                                                                                                                                                                                    | 192.644                                                                                                                                                                                                                                                                                                                                                                                                                       | 2,258                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3,996                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6,254                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6,388                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3/3/94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2,392                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3,996                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 814,892                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 877,701                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.7018 | 1710                                                                                                                                                                                                                   | 4,437.005                                                                                                                                                                                                                                                                    | 218.509                                                                                                                                                                                                                                                                                                                                                                                                                       | 1,995                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3,753                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5,748                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6,001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4/9/94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2,127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3,875                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 892,322                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,018,780                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.7267 | 1514                                                                                                                                                                                                                   | 4,660.087                                                                                                                                                                                                                                                                    | 223.082                                                                                                                                                                                                                                                                                                                                                                                                                       | 1,727                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3,320                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5,047                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5,398                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5/20/94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1,861                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3,537                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 969,238                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,164,945                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.7515 | 1331                                                                                                                                                                                                                   | 4,868.416                                                                                                                                                                                                                                                                    | 208.329                                                                                                                                                                                                                                                                                                                                                                                                                       | 1,461                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2,876                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4,337                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4,692                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7/4/94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,594                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3,098                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1,040,013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,302,499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.7764 | 1159                                                                                                                                                                                                                   | 5,063.409                                                                                                                                                                                                                                                                    | 194.993                                                                                                                                                                                                                                                                                                                                                                                                                       | 1,180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,399                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2,579                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3,458                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8/29/94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1,321                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2,137                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1,114,475                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,423,030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.8012 | 866                                                                                                                                                                                                                    | 5,246.306                                                                                                                                                                                                                                                                    | 182.897                                                                                                                                                                                                                                                                                                                                                                                                                       | 871                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1,399                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2,270                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2,424                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11/12/94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ·1,026                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1,399                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1,191,837                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,528,566                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.8261 | 847                                                                                                                                                                                                                    | 5,418.200                                                                                                                                                                                                                                                                    | 171.893                                                                                                                                                                                                                                                                                                                                                                                                                       | 422                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1,290                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1,712                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1,991                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2/7/95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 647                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,345                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1,247,652                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,644,644                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.8509 | 705                                                                                                                                                                                                                    | 5,580.053                                                                                                                                                                                                                                                                    | 161.854                                                                                                                                                                                                                                                                                                                                                                                                                       | 316                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 308                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 624                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1,168                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 139                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6/25/95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 369                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 799                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1,298,786                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,755,364                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.8758 | 571                                                                                                                                                                                                                    | 5,732.722                                                                                                                                                                                                                                                                    | 152.668                                                                                                                                                                                                                                                                                                                                                                                                                       | 160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 175                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 335                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 480                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 318                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5/9/96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 238                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 242                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1,374,563                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,832,255                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        | Z<br>0.6359<br>0.6359<br>0.6339<br>0.65389<br>0.65339<br>0.65339<br>0.6564<br>0.6564<br>0.6623<br>0.6623<br>0.6623<br>0.6759<br>0.6759<br>0.7018<br>0.7764<br>0.7764<br>0.7764<br>0.8012<br>0.8012<br>0.8759<br>0.8758 | Z P/Z<br>PSIA<br>0.6359 73346<br>0.6389 3130<br>0.6339 3087<br>0.6506 2767<br>0.6564 2590<br>0.6564 2590<br>0.6673 2416<br>0.6623 2416<br>0.66759 2071<br>0.6835 1902<br>0.7018 1710<br>0.7267 1514<br>0.7267 1514<br>0.7267 1514<br>0.7764 1159<br>0.8012 998<br>0.8758 571 | Z P/Z CUM. GAS   Z P/Z CUM. GAS   0.6359 3346 2,575.156   0.6339 3087 2,870.212   0.6339 3087 2,870.212   0.6447 2947 3,029.669   0.6564 2590 3,435.947   0.6623 2416 3,633.713   0.6683 2244 3,828.827   0.6683 2244 3,828.827   0.6759 2071 4,025.863   0.6835 1902 4,218.496   0.7018 1710 4,437.005   0.7515 1331 4,868.416   0.7515 1331 4,868.416   0.7764 1159 5,063.409   0.8012 998 5,246.306   0.8758 571 5,732.722 | Z P/Z CUM. GAS DELTA   Z P/Z CUM. GAS DELTA   0.6359 3346 2,575.156 CUM. GAS   0.6339 3130 2,870.212 49.252   0.6339 3087 2,870.212 49.252   0.6339 3087 2,870.212 49.252   0.6339 3087 2,870.212 49.252   0.6447 2947 3,029.669 208.710   0.6564 2590 3,435.947 201.316   0.6623 21416 3,633.713 197.765   0.6683 2241 3,828.827 195.115   0.6683 2241 3,828.827 195.115   0.6759 2071 4,025.863 197.025   0.6835 1902 4,218.496 192.644   0.7018 1710 4,437.005 218.509   0.7515 1331 4,868.416 208.329   0.7514 1331 4,868.416 208.329   0.8012 998 5,246.306 | Z P/Z CUM. GAS DELTA JORDAN 'B' No. 1 2.3/8" TUBING   Z P/Z CUM. GAS DELTA JORDAN   0.6359 3346 2,575.156 CUM. GAS RATE   0.6339 3087 2,870.212 49.252 3,950   0.6339 3087 2,870.212 49.252 3,960   0.6339 3087 2,870.212 49.252 3,960   0.6564 2947 3,029.669 208.710 3,802   0.6663 2767 3,234.632 204.963 3,550   0.6663 27416 3,633.713 197.765 3,040   0.6663 2241 3,828.827 195.115 2,782   0.66759 2071 4,025.863 197.025 2,525   0.6683 2244 3,828.827 195.115 2,782   0.6759 2071 4,025.863 197.025 2,525   0.6764 1514 4,660.087 223.082 1,727   0.7515 1331 4,868.416< | Z P/Z CUM. GAS DELTA JORDAN< 'B' No. 1 2.3/8" TUBING NEUHAUS   Z P/Z CUM. GAS DELTA JORDAN NEUHAUS RATE RATE   0.6359 3346 2,575.156 CUM. GAS RATE MCFD MCFD   0.6339 3130 2,820.960 245.804 MCFD MCFD   0.6339 3087 2,870.212 49.252 3,950 3,996   0.6506 2767 3,234.632 201.963 3,550 3,996   0.6623 2416 3,633.713 197.765 3,040 3,996   0.6623 2416 3,828.827 195.115 2,782 3,996   0.6623 244 3,828.827 195.115 2,782 3,996   0.6623 244 3,828.827 195.145 2,782 3,996   0.7018 1710 4,025.863 197.025 2,525 3,996   0.7567 1531 4,866.087 223.082 1,727 3,320 | Z PIZ CUM, GAS DELTA JORDAN B OELTA JORDAN Neurita S8% ALLOWAB   2 PIZ CUM, GAS DELTA JORDAN NEUHAUS TOTAL TOTAL   58% ALLOWAB CUM, GAS RATE | Z PIZ CUM. GAS DELTA JORDAN 'B' No. 1 2:3/8" TUBING S8% ALLOWABLE ON NEUHAUS TOTAL AVERAGE   A PIZ CUM. GAS DELTA JORDAN NEUHAUS TOTAL AVERAGE   0.6359 3346 2.575.156 CLM. GAS RATE RATE RATE RATE MCFD <td< td=""><td>Z P/Z CURLAN 'B' No. 1 2:3/8" TUBING SP8% ALLOWABLE ION NEUNUUS '14 FEDERAL No.   Z P/Z CUM. GAS DBET A JORDAN NETE RATE RATE RATE NALLOWABLE ION NEUNUS '14 FEDERAL No.   0.6339 3346 2,575.156 CUM. GAS RATE RATE RATE RATE RATE RATE RATE TIMAL AVERAGE DELTA   0.6339 3346 2,575.156 CUM. GAS 3,996 7,946 MCFD MCFD DAYS   0.6339 3087 2,870.212 49.252 3,950 3,996 7,946 7,947 2,947 3,029.669 2,087.10 3,996 7,546 7,527 2,77   0.6506 2767 3,245.62 204.963 3,550 3,996 7,295 7,217 2,72 27   0.6603 2041 3,633.713 197.765 3,049 3,996 6,521 6,650 29   0.6603 1902 4,218.49 197.025 2,525 3,996 6,254</td><td>Z PIZ CUM. GAS DORDAN&lt; IS vol. 12.318 TUBING Stay ALLWARLE (ON MICHAUS) 14 FLDEHAL No. 2   PIZ CUM. GAS DORDAN RATE RATE RATE RATE RATE TOTAL AVERAGE DOLTAN DATE   0.6359 3346 2.575.156 CUM. GAS RATE MCFD MCFD MCFD MCFD MCFD DATE 7/493   0.6359 3346 2.575.156 VALVAS 3.996 7.946 7.947 2.972 2.9193 3.996 7.946 7.972 2.77 91593   0.6369 3190 2.870.212 204.963 3.950 3.996 7.946 7.972 2.77 91593   0.6564 2.991 3.0238.827 195.115 2.782 3.996 7.936 7.165 2.89 1199.765 3.996 6.521 6.561 2.89 1199.795 1199.795 1199.93 1199.93 1199.93 3.996 6.524 6.307 2.8 1199.93 1199.94 3.996 6.5</td><td>Z P/Z CUMBAN* B*N. 1 2:3/8° TUBINS S9% ALLWARE FOR MEHANS 14 FEMERAN. 0. Z JORDAN* B*N. 12:3/8° TUBINS JORDAN NEWHANS TOTAL AVERAGE DELTA DATE JORDAN NEWHANS TOTAL RARE RATE NERA DATE JORDAN NERA NERA DATE JORDAN NERA NERA DETA DATE JORDAN NERA NERA ENTE TIME RATE TIME DATE JORDAN NGFD MCFD DATE JORDAN SUBAR AUS RATE AU</td><td>JURIDAR TWo, 12.316" TUBING NORDAR TWO, 12.316" TUBING NUMAREL OWN RUMAUS NUMAREL OWN RUMAUS DELTA DATE DATE DATE DATE DATE DATE AUG RATE AUG RATE</td><td>JORDAN F No. 1 2 3/0° TUBING SPR JORDAN F No. 1 2 3/0° TUBING SPR MURL NUMB 1 / EDERAL No. 2 JORDAN NUMAUXI 1 / EDERAL No. 2 JORDAN NUMAUXI 1 / EDERAL No. 2   PSIA PNA MMCF CUM, 6AS RATE RATE RATE RATE TTML VERAGE NUFBOAN NUCFD MCFD MCFD</td></td<> | Z P/Z CURLAN 'B' No. 1 2:3/8" TUBING SP8% ALLOWABLE ION NEUNUUS '14 FEDERAL No.   Z P/Z CUM. GAS DBET A JORDAN NETE RATE RATE RATE NALLOWABLE ION NEUNUS '14 FEDERAL No.   0.6339 3346 2,575.156 CUM. GAS RATE RATE RATE RATE RATE RATE RATE TIMAL AVERAGE DELTA   0.6339 3346 2,575.156 CUM. GAS 3,996 7,946 MCFD MCFD DAYS   0.6339 3087 2,870.212 49.252 3,950 3,996 7,946 7,947 2,947 3,029.669 2,087.10 3,996 7,546 7,527 2,77   0.6506 2767 3,245.62 204.963 3,550 3,996 7,295 7,217 2,72 27   0.6603 2041 3,633.713 197.765 3,049 3,996 6,521 6,650 29   0.6603 1902 4,218.49 197.025 2,525 3,996 6,254 | Z PIZ CUM. GAS DORDAN< IS vol. 12.318 TUBING Stay ALLWARLE (ON MICHAUS) 14 FLDEHAL No. 2   PIZ CUM. GAS DORDAN RATE RATE RATE RATE RATE TOTAL AVERAGE DOLTAN DATE   0.6359 3346 2.575.156 CUM. GAS RATE MCFD MCFD MCFD MCFD MCFD DATE 7/493   0.6359 3346 2.575.156 VALVAS 3.996 7.946 7.947 2.972 2.9193 3.996 7.946 7.972 2.77 91593   0.6369 3190 2.870.212 204.963 3.950 3.996 7.946 7.972 2.77 91593   0.6564 2.991 3.0238.827 195.115 2.782 3.996 7.936 7.165 2.89 1199.765 3.996 6.521 6.561 2.89 1199.795 1199.795 1199.93 1199.93 1199.93 3.996 6.524 6.307 2.8 1199.93 1199.94 3.996 6.5 | Z P/Z CUMBAN* B*N. 1 2:3/8° TUBINS S9% ALLWARE FOR MEHANS 14 FEMERAN. 0. Z JORDAN* B*N. 12:3/8° TUBINS JORDAN NEWHANS TOTAL AVERAGE DELTA DATE JORDAN NEWHANS TOTAL RARE RATE NERA DATE JORDAN NERA NERA DATE JORDAN NERA NERA DETA DATE JORDAN NERA NERA ENTE TIME RATE TIME DATE JORDAN NGFD MCFD DATE JORDAN SUBAR AUS RATE AU | JURIDAR TWo, 12.316" TUBING NORDAR TWO, 12.316" TUBING NUMAREL OWN RUMAUS NUMAREL OWN RUMAUS DELTA DATE DATE DATE DATE DATE DATE AUG RATE | JORDAN F No. 1 2 3/0° TUBING SPR JORDAN F No. 1 2 3/0° TUBING SPR MURL NUMB 1 / EDERAL No. 2 JORDAN NUMAUXI 1 / EDERAL No. 2 JORDAN NUMAUXI 1 / EDERAL No. 2   PSIA PNA MMCF CUM, 6AS RATE RATE RATE RATE TTML VERAGE NUFBOAN NUCFD MCFD |

| PRESSURE | 2      | PIZ  | CUM. GAS  | DELTA    | JORDAN | NEUHAUS | TOTAL | AVERAGE | DELTA | DATE     | JORDAN   | NEUHAUS  | JORDAN    | NEUHAUS   |
|----------|--------|------|-----------|----------|--------|---------|-------|---------|-------|----------|----------|----------|-----------|-----------|
|          |        |      |           | CUM. GAS | RATE   | RATE    | RATE  | RATE    | TIME  |          | AVG RATE | AVG RATE | CUM. GAS  | CUM. GAS  |
| PSIA     |        | PSIA | MMCF      | MMCF     | MCFD   | MCFD    | MCFD  | NCFD    | DAYS  |          | MCFD     | MCFD     | MCF       | MCF       |
| 2128     | 0.6359 | 3346 | 2,575.156 |          |        |         |       |         |       | 7/4/93   |          |          |           |           |
| 2000     | 0.6389 | 3130 | 2,820.960 | 245.804  |        |         |       | ,       |       |          |          |          |           |           |
| 1957     | 0.6339 | 3087 | 2,870.212 | 49.252   | 5,671  | 3,996   | 9,667 |         |       | 8/20/93  |          |          | 200,556   | 94,500    |
| 1900     | 0.6447 | 2947 | 3,029.669 | 208.710  | 5,444  | 966'E   | 9,440 | 9,554   | 22    | 9/10/93  | 5,558    | 3,996    | 321,967   | 181,798   |
| 1800     | 0.6506 | 2767 | 3,234.632 | 204.963  | 5,047  | 3,996   | 9,043 | 9,242   | 22    | 10/3/93  | 5,246    | 3,996    | 438,305   | 270,424   |
| 1700     | 0.6564 | 2590 | 3,435.947 | 201.316  | 4,648  | 3,996   | 8,644 | 8,844   | 23    | 10/25/93 | 4,848    | 3,996    | 548,654   | 361,389   |
| 1600     | 0.6623 | 2416 | 3,633.713 | 197.765  | 4,247  | 3,996   | 8,243 | 8,444   | 23    | 11/18/93 | 4,448    | 3,996    | 652,824   | 454,984   |
| 1500     | 0.6683 | 2244 | 3,828.827 | 195,115  | 3,855  | 3,996   | 7,851 | 8,047   | 24    | 12/12/93 | 4,051    | 3,996    | 751,049   | 551,875   |
| 1400     | 0.6759 | 2071 | 4,025.853 | 197.025  | 3,454  | 3,996   | 7,450 | 7,651   | 26    | 1/7/94   | 3,655    | 3,996    | 845,164   | 654,785   |
| 1300     | 0.6835 | 1902 | 4,218.496 | 192.644  | 3,052  | 3,996   | 7,048 | 7,249   | 27    | 2/2/94   | 3,253    | 3,996    | 931,613   | 760,980   |
| 1200     | 0.7018 | 1710 | 4,437.005 | 218.509  | 2,647  | 3,753   | 6,400 | 6,724   | 32    | 3/7/94   | 2,850    | 3,875    | 1,024,213 | 388,388   |
| 1100     | 0.7267 | 1514 | 4,660.087 | 223.082  | 2,235  | 3,320   | 5,555 | 5,978   | 37    | 4/13/94  | 2,441    | 3,537    | 1,115,312 | 1,018,872 |
| 1000     | 0.7515 | 1331 | 4,868.416 | 208.329  | 1,808  | 2,876   | 4,684 | 5,120   | 41    | 5/24/94  | 2,022    | 3,098    | 1,197,573 | 1,144,939 |
| 006      | 0.7764 | 1159 | 5,063.409 | 194.993  | 1,317  | 2,412   | 3,729 | 4,207   | 46    | 7/9/94   | 1,563    | 2,644    | 1,270,003 | 1,267,502 |
| 008      | 0.8012 | 866  | 5,246.306 | 182.897  | 1,205  | 1,110   | 2,315 | 3,022   | 61    | 9/8/94   | 1,261    | 1,761    | 1,346,327 | 1,374,076 |
| 700      | 0.8261 | 847  | 5,418.200 | 171.893  | 878    | 1,110   | 1,988 | 2,151   | 80    | 11/27/94 | 1,042    | 1,110    | 1,429,546 | 1,462,750 |
| 600      | 0.8509 | 705  | 5,580.053 | 161.854  | 316    | 308     | 624   | 1,306   | 124   | 3/31/95  | 597      | 709      | 1,503,533 | 1,550,617 |
| 500      | 0.8758 | 571  | 5,732.722 | 152.668  | 160    | 175     | 335   | 480     | 318   | 2/12/96  | 238      | 242      | 1,579,310 | 1,627,508 |



#### ATTACHMENT 2

Reservoir Fluid Study for

#### MARATHON OIL COMPANY Jordan 'B' #1

OSUDO Lea County, New Mexico

> RFLM 92037 12-Aug-92

A product of Core Laboratories a division of Western Atlas International, Inc.

The analysis, opinions or interpretations contained in this report are based upon observations and material supplied by the client for whose exclusive and confidential use this report has been made. The interpretations or opinions expressed represent the best judgement of Core Laboratories. Core Laboratories assumes no responsibility and makes no warranty or representations, express or implied, as to the productivity, proper operations, or profitableness however of any oil, gas, coal or other mineral, property, well or sand in connection with which such report is used or relied upon for any reason whatsoever.



# CORE LABORATORIES

12 August 1992

Marathon Oil Company 125 Missouri Ave Midland, Texas 79701

Attention: Mr. Shawn Posey

Subject:Reservoir Fluid StudyWell:Jordan 'B' #1File:RFLM 92037

Gentlemen :

Samples of separator liquid and vapor were collected from the subject well on 16 April 1992 and submitted to our Midland laboratory facilities for use in a condensate reservoir fluid study. A second sampling was performed on 17 June 1992.

It was requested by a Marathon representive not to continue the testing. The following report is the compositional and recombination results.

Should any questions arise or if we may be of further service in anyway, please do not hesitate to contact us.

Sincerely,

Tom Calman

Thomas R. Coleman Supervisor Reservoir Fluid Laboratory-Midland

#### LABORATORY PROCEDURES

#### RFLM 92037 12 August 1992

Duplicate samples of separator gas and separator liquid were received in our laboratory on 16 April 1992. As a quality check, the opening pressures of the separator gas cylinders were determined. In addition, the room temperature bubblepoint pressure of the separator liquid samples was measured. This information, summarized on page three of the report, indicated that the samples received in the laboratory closely represented reported field separator conditions.

The composition of the separator gas was determined using temperature programmed extended gas chromatography. The composition, together with the calculated properties of the separator gas, is presented on page four. The composition of the separator liquid was measured to an eicosanes plus fraction using the flash/chromatographic technique. This resulted in the composition listed on page five.

The reported gas production rate was corrected with the factors shown on page two. A shrinkage test was performed to determine the first stage liquid rate. Using the corrected gas/liquid ratio in conjunction with the compositions of the separator products, the reservoir fluid composition was calculated. This composition is presented on page six. The separator gas and separator liquid were physically recombined to the gas/liquid ratio and the resulting fluid was used to complete the remaining testing program.

A portion of the reservoir fluid was charged to a high pressure visual cell and thermally expanded to the reported reservoir temperature of 152 °F. After establishing thermal equilibrium, the fluid sample was subjected to a constant composition expansion. During the expansion, a dewpoint pressure was observed to occur at 5649 psig.

To ensure that the mix was made correctly a spike/flash routine was performed on the mix in order to compare its composition with the composition (page 6) used in the recombination of separator products. The results listed on page 7 show a good comparison between the two compositions.

A second set of samples were taken on 17 June 1992 in order to determine if the first set of samples were of good quality. Composition of the separator gas and liquid was determined and showed a good comparison to the first set of samples. These compositons are listed on pages 8 and 9.

Comparison of the reported reservoir pressure of approximately 3800 psig to the observed dewpoint of 5649 psig indicates either the reservoir fluid is saturated or the producing interval has a thin layer in which a light gravity oil is being produced with the gas.

# **General Well Information**

.

(Section 1)

.

RFLM 92037 12-Aug-92

#### MARATHON OIL COMPANY Jordan 'B' #1 RFLM 92037

#### General Well Information

| Company               | MARATHON OIL COMPANY   |
|-----------------------|------------------------|
| Well Name             | Jordan 'B' #1          |
| API Well Number       |                        |
| File Number           | RFLM 92037             |
| Date Sample Collected | 16-Apr-92              |
| Sample Type           | Separator              |
| Geographical Location | Lea County, New Mexico |
| Field                 | OSUDO                  |

#### Well Description

| Formation<br>Pool (or Zone)<br>Date Completed | Wolfcamp<br>*<br>* |    |
|-----------------------------------------------|--------------------|----|
| Elevation                                     | 11322              | ft |
| Producing Interval                            | 11426-11478        | ft |
| Total Depth                                   | 11617              | ft |
| Tubing Size                                   | 2 3/8              | in |
| Tubing Depth                                  | 11314              | ft |
| Casing Size                                   | *                  | in |
| Casing Depth                                  | *                  | ft |

#### Pressure Survey Data

#### Data from Original Discovery Well

| Date               | *    |      |
|--------------------|------|------|
| Reservoir Pressure | 3800 | psig |

#### **Data at Sample Collection**

| Date                         | 16-Apr-92 |      |
|------------------------------|-----------|------|
| Reservoir Pressure           | *         | psig |
| Reservoir Temperature        | 152       | ٩F   |
| Pressure Tool                | *         |      |
| Flowing Bottom-Hole Pressure | *         | psig |
| Flowing Tubing Pressure      | 1575      | psig |

\* Data not forwarded to Core Laboratories.

#### MARATHON OIL COMPANY Jordan 'B' #1 RFLM 92037

#### Production Data

#### Data from Original discovery Well

| Location                              | *      |              |
|---------------------------------------|--------|--------------|
| Date                                  | *      |              |
| Oil Gravity @ STP                     | *      | °API         |
| Separator Pressure                    | *      | psig         |
| Separator Temperature                 | *      | °F           |
| Production Rates                      |        |              |
| Gas                                   | *      | Mscf/D       |
| Liq <b>uid</b>                        | *      | STbbl/D      |
| Gas/Llquid Ratio                      | *      | scf/bbl      |
| Separator Conditions                  |        |              |
| Primary Separator Pressure            | 480    | psig         |
| Primary Separator Temperature         | 78     | ٩F           |
| Secondary Separator Pressure          | 88     | psig         |
| Secondary Separator Temperature       | 78     | ٩F           |
| Primary Separator Gas Production Rate | 5440   | Mscf/D       |
| Gas Factors -                         |        |              |
| Field Values:                         |        |              |
| Pressure Base                         | 15.025 | psia         |
| Temperature Base                      | 60     | ۴            |
| Compressibility Factor (Fpv)          | *      |              |
| Gas Gravity Factor (Fg)               | 1.1893 |              |
| Laboratory Values:                    |        |              |
| Pressure Base                         | 14.65  | psia         |
| Temperature Base                      | 60     | <del>۳</del> |
| Compressibility Factor (Fpv)          | 1.0513 |              |
| Gas Gravity Factor (Fg)               | 1.1986 |              |

| Primary Separator Liquid Rate              | *    | bbl/D at   | °F |
|--------------------------------------------|------|------------|----|
| Secondary Separator Liquid Rate            | *    | bbl/D at   | °F |
| Separator Gas / Separator Liquid Ratio     | *    | scf/bbl    |    |
| Separator Gas / Stock Tank Liquid Ratio    | 8774 | scf/bbl    |    |
| Stock Tank Liquid / Separator Gas Ratio    | *    | bbl/Mscf   |    |
| Separator Liquid / Stock Tank Liquid Ratio | *    | bbl/bbl at | ۴  |

\* Data not forwarded to Core Laboratories.

# Preliminary Quality Checks

#### (Section 2)

.

RFLM 92037 12-Aug-92

#### MARATHON OIL COMPANY Jordan 'B' #1 RFLM 92037

#### PRELIMINARY QUALITY CHECKS PERFORMED ON SAMPLES RECEIVED IN LABORATORY

|                 |          | Separa     | tor Gas  |              |                             |
|-----------------|----------|------------|----------|--------------|-----------------------------|
|                 | Sampling | Conditions | Laborato | ry Opening C | onditions                   |
| Cylinder Number | psig     | ۴          | psig     | ۴            | Liquid<br>Recovered<br>(cc) |
| K1 <b>8299</b>  | 480      | 78         | 440      | 70           | 0                           |
| *K24464         | 480      | 78         | 450      | 70           | 0                           |

|                 |          | Separato   | or Liquid  |             |                            |
|-----------------|----------|------------|------------|-------------|----------------------------|
|                 | Sampling | Conditions | Laboratory | Bubblepoint |                            |
| Cylinder Number | psig     | ۴          | psig       | ` °F        | Water<br>Recovered<br>(cc) |
| 95              | 480      | 78         | 450        | 65          | 0                          |
| *139            | 480      | 78         | 450        | 67          | 1                          |
| 6               | 480      | 78         | 445        | 67          | 0                          |

\* Used for recombination

.

.

.

# Wellstream Composition

(Section 3)

RFLM 92037 12-Aug-92

.

### MARATHON OIL COMPANY

Jordan 'B' #1

RFLM 92037

#### SEPARATOR GAS COMPOSITION

IN WELLSTREAM RECOMBINATION

| Component                                              | Molec                                 | GPM   | N4\4/                                          | Gas Cylinder Number                                                |                  |
|--------------------------------------------------------|---------------------------------------|-------|------------------------------------------------|--------------------------------------------------------------------|------------------|
|                                                        |                                       |       |                                                |                                                                    |                  |
| Hydrogen Sulfide<br>Carbon Dioxide<br>Nitrogen         | 0.00<br>0.32<br>1.25                  |       | 34.080<br>44.010<br>28.013                     | К18299:1                                                           |                  |
| Methane                                                | 81.00                                 |       | 16.043                                         | Sampling Conditions                                                |                  |
| Ethane<br>Propane<br>i-Butane<br>n-Butane<br>i-Pentane | 10.72<br>4.30<br>0.57<br>1.13<br>0.23 |       | 30.070<br>44.097<br>58.123<br>58.123<br>72 150 | Separator Pressure, psig<br>Separator Temperature, °F              | 480<br>78        |
| n-Pentane                                              | 0.24                                  |       | 72.150                                         | Field Data                                                         |                  |
| Heptanes<br>Octanes<br>Nonanes                         | 0.07<br>0.02<br>0.01                  |       | 100.200<br>114.230<br>128.270                  | Pressure Base, psig<br>Temperature Base, °F                        | 15.025<br>60     |
| i conantes                                             | 0.01                                  |       | 120.270                                        | Fg factor<br>Fpv factor                                            | 1.1987<br>1.0079 |
|                                                        |                                       |       |                                                | Field measured gas flow rate in Mscf/D<br>at 15.025 psia and 60 °F | 544(             |
|                                                        |                                       |       |                                                | Laboratory Data                                                    |                  |
|                                                        |                                       |       |                                                | Pressure Base, psig<br>Temperature Base, °F                        | 15.025<br>60     |
|                                                        |                                       |       |                                                | Fg factor<br>Fpv factor                                            | 1.1987<br>1.0079 |
|                                                        |                                       |       |                                                | Lab corrected gas flow rate in Mscf/D<br>at 15.025 psia and 60 °F  | 5,290.0          |
|                                                        |                                       |       |                                                | Total Gas Properties                                               |                  |
|                                                        |                                       |       |                                                | Calculated separator gas gravity                                   | 0.696            |
|                                                        |                                       |       |                                                | Gross heating value in Btu/scf                                     |                  |
|                                                        |                                       |       |                                                | at 15.025 psia and 60 °F                                           | 1194             |
|                                                        |                                       |       |                                                | Calculated Z (deviation) factor<br>at sampling conditions          | 0.945            |
| Totals                                                 | 100.00                                | 0.000 |                                                |                                                                    |                  |

#### MARATHON OIL COMPANY

Jordan 'B' #1 RFLM 92037

#### SEPARATOR LIQUID COMPOSITION

#### IN WELLSTREAM RECOMBINATION

|   |                  |        |              | Plus Fri        | actions   |                          |        |
|---|------------------|--------|--------------|-----------------|-----------|--------------------------|--------|
|   | Component        | Mol %  | Weight %     | Density         | Molecular | Liquid Cylinder Number   |        |
|   |                  |        | ,            |                 | Weight    |                          |        |
| I |                  |        | l            | gintee at our r | weight    | 001001                   |        |
| I | Hydrogen Sullide | 0.00   |              |                 |           | QC139:1                  |        |
|   | Carbon Dioxide   | 0.10   | 0.05         |                 |           |                          |        |
| ĺ | Nitrogen         | 0.05   | 0.02         |                 |           |                          |        |
| ľ | Methane          | 12.77  | 2.20         |                 |           | Sampling Conditions      |        |
|   | Ethane           | 8.07   | 2.61         |                 |           | , ,                      |        |
| ļ | Propane          | 9.34   | 4.43         |                 |           | Separator Pressure, psig | 480    |
| l | i-Butane         | 3.25   | 2.03         |                 |           | Separator Temperature °F | 78     |
| l | n-Butane         | 7.11   | 4.45         |                 |           |                          |        |
|   | i-Pentane        | 3.62   | 2.81         |                 |           |                          |        |
| l |                  | 0.02   | 2.01         |                 |           | Steel: Teel: Flew Date   |        |
|   | n-Pentane        | 4.64   | 3.60         |                 |           | Stock Tank Flow Hate     |        |
|   | Hexanes          | 6.55   | 6.07         |                 |           | (at 60 °F)               |        |
|   | Heptanes         | 9.23   | 9.95         |                 |           | 756.1 bbl/D              |        |
|   | Octanes          | 10.45  | 12.84        |                 |           |                          |        |
|   | Nonanes          | 6.22   | 8. <b>58</b> |                 |           | Separator Flow Rate      |        |
|   | Decanes          | 4.26   | 6.52         |                 |           | (at sampling conditions) |        |
| Į | Undecanes        | 2.93   | 4.92         |                 |           | 930.1 bbl/D              |        |
| I | Dodecanes        | 1.99   | 3.64         |                 |           |                          |        |
|   | Tridecanes       | 1.81   | 3. <b>59</b> |                 |           |                          |        |
|   | Tetradecanes     | 1.37   | 2.92         |                 |           | Total Liquid Properties  |        |
|   | Pentadecanes     | 1.12   | 2.56         |                 |           | (at sampling conditions) |        |
|   | Hexadecanes      | 0.79   | 1.92         |                 |           |                          |        |
|   | Heptadecanes     | 0.66   | 1 71         |                 |           | Semple Density, am/cc    | 0.6732 |
|   | Octadecanes      | 0.59   | 1.61         |                 |           | Sample Density, gilvee   | 0.0702 |
|   | Nonadacanes      | 0.49   | 1 41         |                 |           | Sample Molecular Weight  | 50.    |
|   | Ficosepee plue   | 2 50   | 0.56         | 0.0063          | 242       |                          |        |
|   | Cicosaries pius  | 2.59   | 9.00         | 0.9900          | 343.      |                          |        |
|   |                  |        |              |                 |           |                          |        |
|   |                  |        |              |                 |           |                          |        |
|   |                  |        |              |                 |           |                          |        |
|   |                  |        |              |                 |           |                          |        |
|   |                  |        |              |                 |           |                          |        |
|   |                  |        |              |                 |           |                          |        |
|   |                  |        |              |                 |           |                          |        |
|   |                  |        |              |                 |           |                          |        |
|   |                  |        |              |                 |           |                          |        |
|   |                  |        |              |                 |           |                          |        |
|   |                  |        |              |                 |           |                          |        |
|   |                  |        |              |                 |           |                          |        |
|   |                  |        |              |                 |           |                          |        |
|   |                  |        |              |                 |           |                          |        |
|   |                  |        |              |                 |           |                          |        |
|   |                  |        |              |                 |           |                          |        |
|   |                  |        |              |                 |           |                          |        |
|   |                  |        |              |                 |           |                          |        |
|   |                  |        |              |                 |           |                          |        |
|   |                  |        |              |                 |           |                          |        |
|   | Totals           | 100.00 | 100.00       |                 |           |                          |        |
| - |                  |        |              |                 |           |                          |        |

#### MARATHON OIL COMPANY

.

.

Jordan 'B' #1

RFLM 92037

#### **RESERVOIR FLUID COMPOSITION**

#### FROM RECOMBINED WELLSTREAM

|                   |        |       | Plus Fra       | actions   |                                         |     |
|-------------------|--------|-------|----------------|-----------|-----------------------------------------|-----|
| Component         | Mol %  | GPM   | Density        | Molecular |                                         |     |
| •                 |        |       | am/cc at 60 °F | Weight    |                                         |     |
| Lhudan an Sulfida | 0.00   | L     | gilter at or 1 | Worgin    | •                                       |     |
| Corbon Dioxide    | 0.00   |       |                |           |                                         |     |
| Nitrogen          | 1 11   |       |                |           |                                         |     |
| Nethana           | 73 93  |       |                |           |                                         |     |
| Mediane           | 12.00  |       |                |           |                                         |     |
| Ethane            | 10.40  | 2.860 |                |           | Sampling Conditions                     |     |
| Propane           | 4.90   | 1.182 |                |           |                                         |     |
| Hutane            | 0.89   | 0.186 |                |           | Separator Pressure, psig                | 480 |
| n-Butane          | 1.85   | 0.355 |                |           | Separator Temperature, °F               | 78  |
| Pentane           | 0.64   | 0.084 |                |           |                                         |     |
| n-Pentane         | 0.77   | 0.087 |                |           |                                         |     |
| Hexanes           | 0.91   | 0.054 |                |           |                                         |     |
| Heptanes          | 1.17   | 0.031 |                |           |                                         |     |
| Octanes           | 1.27   |       |                |           | Field measured                          |     |
| Nonanes           | 0.75   |       |                |           | Separator Gas / Stock Tank Liquid ratio |     |
| Decanes           | 0.51   |       |                |           | at sampling conditions                  |     |
|                   | 0.35   |       |                |           | 6.9965 MSCI/DDI                         |     |
|                   | 0.24   |       |                |           |                                         |     |
| Totecanes         | 0.22   |       |                |           | 1 also a superior of                    |     |
| Postadocanes      | 0.18   |       |                |           |                                         |     |
| Heredees          | 0.13   |       |                |           | Separator Gas / Separator Equidiratio   |     |
| Hexadecarios      | 0.09   |       |                |           | at sampling conditions                  |     |
| Octodocoles       | 0.08   |       |                |           | 6.9363 MSCI/001                         |     |
| Nonadecanes       | 0.07   |       |                |           |                                         |     |
| Ficosanas plus    | 0.31   |       | 0.9963         | 242       |                                         |     |
| Electrality pice  | 0.01   |       | 0.3300         | 545.      |                                         |     |
|                   |        |       |                |           |                                         |     |
|                   |        |       |                |           |                                         |     |
|                   |        |       |                |           |                                         |     |
|                   |        |       |                |           |                                         |     |
|                   |        |       |                |           |                                         |     |
|                   |        |       |                |           |                                         |     |
|                   |        |       |                |           |                                         |     |
|                   |        |       |                |           |                                         |     |
|                   |        |       |                |           |                                         |     |
|                   |        |       |                |           |                                         |     |
|                   |        |       |                |           |                                         |     |
|                   |        |       |                |           |                                         |     |
|                   |        |       |                |           |                                         |     |
|                   |        |       |                |           |                                         |     |
|                   |        |       |                |           |                                         |     |
|                   |        |       |                |           |                                         |     |
|                   |        |       |                |           |                                         |     |
|                   |        | •     |                |           |                                         |     |
|                   |        |       |                |           |                                         |     |
|                   | 100.00 |       |                |           |                                         |     |
| 1 Otals           | 100.00 | 4.839 |                |           |                                         |     |

#### **Marathon Oil**

#### Jordan 'B' #1

RFL 92037

#### Composition of Mix #1 From Spike Flash

(From Flash / Chromatographic Technique)

| Component.                            | Mol                    | Wt    | Density | GPM   | Vol   |
|---------------------------------------|------------------------|-------|---------|-------|-------|
| · · · · · · · · · · · · · · · · · · · | %                      | %     | (gm/cc) |       | %     |
|                                       |                        |       |         |       |       |
| Hydrogen Sulfide                      | 0.00                   |       |         |       |       |
| Carbon Dioxide                        | 0.29                   | 0.44  | 0.8172  |       | 0.23  |
| Nitrogen                              | 1.09                   | 1.07  | 0.8086  |       | 0.55  |
| Methane                               | 7 <b>3</b> .1 <b>7</b> | 41.14 | 0.2997  |       | 57.24 |
| Ethane                                | 10.35                  | 10.90 | 0.3558  | 2.753 | 12.78 |
| Propane                               | 5.00                   | 7.72  | 0.5065  | 1.370 | 6.36  |
| iso-Butane                            | 0.86                   | 1.76  | 0.5623  | 0.280 | 1.30  |
| n-Butane                              | 2.00                   | 4.06  | 0.5834  | 0.627 | 2.90  |
| iso-Pentane                           | 0.69                   | 1.74  | 0.6241  | 0.251 | 1.16  |
| n-Pentane                             | 0.85                   | 2.15  | 0.6305  | 0.306 | 1.42  |
| Hexanes                               | 0.92                   | 2.79  | 0.6630  | 0.376 | 1.75  |
| Heptanes                              | 0.93                   | 3.27  | 0.6875  | 0.427 | 1.98  |
| Octanes                               | 0.83                   | 3.34  | 0.7063  | 0.423 | 1.97  |
| Nonanes                               | 0.63                   | 2.82  | 0.7212  | 0.353 | 1.63  |
| Decanes                               | 0.50                   | 2.47  | 0.7335  |       | 1.40  |
| Undecanes                             | 0.37                   | 2.02  | 0.7442  |       | 1.13  |
| Dodecanes                             | 0.26                   | 1.56  | 0.7520  |       | 0.87  |
| Tridecanes                            | 0.25                   | 1.58  | 0.7600  |       | 0.87  |
| Tetradecanes                          | 0.18                   | 1.25  | 0.7663  |       | 0.68  |
| Pentadecanes                          | 0.15                   | 1.12  | 0.7723  |       | 0.61  |
| Hexadecanes                           | 0.11                   | 0.82  | 0.7758  |       | 0.44  |
| Heptadecanes                          | 0.09                   | 0.73  | 0.7803  |       | 0.39  |
| Octadecanes                           | 0.08                   | 0.68  | 0.7853  |       | 0.36  |
| Nonadecanes                           | 0.07                   | 0.60  | 0.7893  |       | 0.32  |
| Eicosanes plus                        | 0.33                   | 3.97  | 0.9939  |       | 1.66  |
|                                       |                        |       |         |       |       |

#### Sample Characteristics

| Total Sample Molecular Weight                      | 28. <b>6</b> |
|----------------------------------------------------|--------------|
| Theoretical Sample Density at 14.65 psia and 60 °F |              |
| in gm/scc                                          | 0.4170       |
| Gas Mol Fraction                                   | 0.9596       |
| Liquid Mol Fraction                                | 0.0404       |

#### **Properties of Heavy Fractions**

| Plus Fraction     | Mol<br>% | wt<br>% | Density<br>(gm/cc) | °API | MW  |
|-------------------|----------|---------|--------------------|------|-----|
|                   | <b>I</b> | *       |                    | •    |     |
| Hexanes Plus      | 5.70     | 29.02   | 0.7531             | 56.4 | 146 |
| Heptanes Plus     | 4.78     | 26.23   | 0.7642             | 53.7 | 157 |
| Decanes Plus      | 2.39     | 16.80   | 0.8026             | 44.8 | 202 |
| Undecanes Plus    | 1.89     | 14.33   | 0.8159             | 41.9 | 218 |
| Dodecanes Plus    | 1.52     | 12.31   | 0.8290             | 39.2 | 233 |
| Pentadecanes Plus | 0.83     | 7.92    | 0.8737             | 30.5 | 275 |
| Eicosanes Plus    | 0.33     | 3.97    | 0.9939             | 10.9 | 341 |
|                   |          |         |                    |      |     |
|                   |          |         |                    |      |     |
|                   |          |         |                    |      |     |
|                   |          |         |                    |      |     |

#### **Marathon Oil**

#### Jordan 'B' #1

RFL 92037

#### **Composition of Separator Gas-Second Sampling**

(From Chromatographic Technique)

| Component               | Moi %  | GPM   | MW               | Liq<br>Dens<br>(gm/cc) |
|-------------------------|--------|-------|------------------|------------------------|
| Hudrogen Sulfide        | 0.00   |       |                  |                        |
| Carbon Diovide          | 0.31   |       | 44.010           | 8172                   |
|                         | 1.00   |       | 00.012           | 0006                   |
|                         | 01 20  |       | 20.013           | .0000                  |
|                         | 10 70  | 0.004 | 10.040           | .2397                  |
|                         | 10.72  | 1 222 | 30.070           | .3336                  |
| Propane<br>inte Buttone | 4,33   | 1.223 | 44.09/<br>58.400 | .5065                  |
| iso-Butane              | 0.50   | .107  | 50.123           | .3023                  |
| n-Butane                | 1.14   | .367  | 58.123           | .5834                  |
| iso-Pentane             | 0.10   | .037  | 72.150           | .6241                  |
| n-Pentane               | 0.11   | .041  | 72.150           | .6305                  |
| Hexanes                 | 0.04   | .017  | 86.177           | .6630                  |
| Heptanes                | 0.05   | .024  | 100.20           | .6875                  |
| Octanes                 | 0.01   | .005  | 114.23           | .7063                  |
| Nonanes                 | Nil    |       |                  |                        |
| Decanes                 | 0.00   |       |                  |                        |
| Undecanes               | 0.00   |       |                  |                        |
|                         |        |       |                  |                        |
| Totals                  | 100.00 | 4.805 |                  |                        |

#### **Properties of Plus Fractions**

| Component     | Moi %        | MW    | Liq<br>Dens<br>(gm/cc) | API<br>Gravity |
|---------------|--------------|-------|------------------------|----------------|
| Heptanes plus | 0. <b>06</b> | 102.5 | 0.691                  | 50.5           |
|               |              |       |                        |                |

\* From: Standing, M.B., "Volumetric and Phase Behavior of Oil Field Hydrocarbon Systems", SPE (Dallas),1977, 8th Edition, Appendix II.

#### Sampling Conditions

490 psig 86 °F

#### Sample Characteristics

This is Core Lab sample number 210

| Critical Pressure (psia)             | 663.5  |
|--------------------------------------|--------|
| Critical Temperature (°R)            | 384.4  |
| Average Molecular Weight             | 19.90  |
| Calculated Gas Gravity (air = 1.000) | 0.687  |
| Gas Gravity                          |        |
| Factor, Fg                           | 1.2066 |
| Super Compressibility Factor, Fpv    |        |
| at sampling conditions               | 1.0451 |
| Gas Z-Factor                         |        |
| at sampling conditions *             | 0.916  |

#### at 15.025 psia and 60 °F

| Gross Heating Value |      |
|---------------------|------|
| (BTU/scf dry gas)   | 1198 |

•

#### Marathon Oil Company

Jordan 'B' #1

RFL 92037

#### Composition of Separator Liquid-Second Sampling

(From Flash / Chromatographic Technique)

| Component        | Mol   | Wt    | Density | GPM   | Vol   |
|------------------|-------|-------|---------|-------|-------|
|                  | %     | %     | (gm/cc) |       | %     |
|                  |       |       |         |       |       |
| Hydrogen Sulfide | 0.00  |       |         |       |       |
| Carbon Dioxide   | 0.11  | 0.05  | 0.8172  |       | 0.04  |
| Nitrogen         | 0.05  | 0.02  | 0.8086  |       | 0.01  |
| Methane          | 12.01 | 2.12  | 0.2997  |       | 4.69  |
| Ethane           | 7.62  | 2.52  | 0.3558  | 2.079 | 4.69  |
| Propane          | 8.74  | 4.23  | 0.5065  | 2.456 | 5.54  |
| iso-Butane       | 2.50  | 1.60  | 0.5623  | 0.834 | 1.88  |
| n-Butane         | 6.55  | 4.18  | 0.5834  | 2.106 | 4.75  |
| iso-Pentane      | 4.72  | 3.74  | 0.6241  | 1.762 | 3.98  |
| n-Pentane        | 4.13  | 3.28  | 0.6305  | 1.526 | 3.45  |
| Hexanes          | 7.65  | 7.24  | 0.6630  | 3.210 | 7.25  |
| Heptanes         | 10.42 | 11.47 | 0.6875  | 4.902 | 11.06 |
| Octanes          | 11.59 | 14.55 | 0.7063  | 6.051 | 13.68 |
| Nonanes          | 6.78  | 9.55  | 0.7212  |       | 8.78  |
| Decanes          | 4.56  | 7.14  | 0.7335  |       | 6.45  |
| Undecanes        | 3.05  | 5.24  | 0.7442  |       | 4.67  |
| Dodecanes        | 2.02  | 3.77  | 0.7520  |       | 3.32  |
| Tridecanes       | 1.79  | 3.62  | 0.7600  |       | 3.16  |
| Tetradecanes     | 1.31  | 2.85  | 0.7663  |       | 2.47  |
| Pentadecanes     | 1.04  | 2.43  | 0.7723  |       | 2.09  |
| Hexadecanes      | 0.71  | 1.72  | 0.7758  |       | 1.47  |
| Heptadecanes     | 0.57  | 1.48  | 0.7803  |       | 1.26  |
| Octadecanes      | 0.48  | 1.33  | 0.7853  |       | 1.12  |
| Nonadecanes      | 0.38  | 1.10  | 0.7893  |       | 0.93  |
| Eicosanes plus   | 1.22  | 4.77  | 0.9713  |       | 3.26  |

#### Sample Characteristics

| Total Sample Molecular Weight                       | 91.0   |
|-----------------------------------------------------|--------|
| Theoretical Sample Density at 15.025 psia and 60 °F |        |
| in gm/scc                                           | 0.6633 |
| Gas Mol Fraction                                    | 0.4207 |
| Liquid Mol Fraction                                 | 0.5793 |

#### **Properties of Heavy Fractions**

| Plus Fraction     | Mol<br>%                                                                                                                                  | Wt<br>%                                                                                                                                           | Density<br>(gm/cc)                                                                                                                                                                             | °API                                                                                                                                                                                                                                                                                       | MW                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                         |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Hevenee Plue      | 52 57                                                                                                                                     | 79.06                                                                                                                                             | 0.7316                                                                                                                                                                                         | 61.0                                                                                                                                                                                                                                                                                       | 133                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                         |
| Heotanes Plus     | 45.92                                                                                                                                     | 71.02                                                                                                                                             | 0.7394                                                                                                                                                                                         | 59.9                                                                                                                                                                                                                                                                                       | 141                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                         |
| Decanes Plus      | 17.13                                                                                                                                     | 35.45                                                                                                                                             | 0.7786                                                                                                                                                                                         | 50.2                                                                                                                                                                                                                                                                                       | 188                                                                                                                                                                                                                                                                                                                                                        | l                                                                                                                                                                                                                                                                                                       |
| Undecanes Plus    | 12.57                                                                                                                                     | 28.31                                                                                                                                             | 0.7909                                                                                                                                                                                         | 47.4                                                                                                                                                                                                                                                                                       | 205                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                         |
| Dodecanes Plus    | 9.52                                                                                                                                      | 23.07                                                                                                                                             | 0.8023                                                                                                                                                                                         | 44.9                                                                                                                                                                                                                                                                                       | 221                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                         |
| Pentadecanes Plus | 4.40                                                                                                                                      | 12. <b>83</b>                                                                                                                                     | 0.8408                                                                                                                                                                                         | 36.8                                                                                                                                                                                                                                                                                       | 266                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                         |
| Eicosanes Plus    | 1.22                                                                                                                                      | 4.77                                                                                                                                              | 0.9713                                                                                                                                                                                         | 14.2                                                                                                                                                                                                                                                                                       | 357                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                         |
|                   |                                                                                                                                           |                                                                                                                                                   |                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                         |
|                   |                                                                                                                                           |                                                                                                                                                   |                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                         |
|                   | Plus Fraction<br>Hexanes Plus<br>Heptanes Plus<br>Decanes Plus<br>Undecanes Plus<br>Dodecanes Plus<br>Pentadecanes Plus<br>Eicosanes Plus | Plus FractionMol%Hexanes Plus53.57Heptanes Plus45.92Decanes Plus17.13Undecanes Plus12.57Dodecanes Plus9.52Pentadecanes Plus4.40Eicosanes Plus1.22 | Plus FractionMol<br>%Wt<br>%Hexanes Plus53.5778.26Heptanes Plus45.9271.02Decanes Plus17.1335.45Undecanes Plus12.5728.31Dodecanes Plus9.5223.07Pentadecanes Plus4.4012.83Eicosanes Plus1.224.77 | Plus Fraction Mol<br>% Wt<br>(gm/cc)   Hexanes Plus 53.57 78.26 0.7316   Heptanes Plus 45.92 71.02 0.7394   Decanes Plus 17.13 35.45 0.7786   Undecanes Plus 12.57 28.31 0.7909   Dodecanes Plus 9.52 23.07 0.8023   Pentadecanes Plus 4.40 12.83 0.8408   Eicosanes Plus 1.22 4.77 0.9713 | Plus Fraction Mol<br>% Wt<br>% Density<br>(gm/cc) °API<br>(gm/cc)   Hexanes Plus 53.57 78.26 0.7316 61.9   Heptanes Plus 45.92 71.02 0.7394 59.9   Decanes Plus 17.13 35.45 0.7786 50.2   Undecanes Plus 12.57 28.31 0.7909 47.4   Dodecanes Plus 9.52 23.07 0.8023 44.9   Pentadecanes Plus 4.40 12.83 0.8408 36.8   Eicosanes Plus 1.22 4.77 0.9713 14.2 | Plus FractionMolWtDensity<br>(gm/cc)°APIMWHexanes Plus53.5778.260.731661.9133Heptanes Plus45.9271.020.739459.9141Decanes Plus17.1335.450.778650.2188Undecanes Plus12.5728.310.790947.4205Dodecanes Plus9.5223.070.802344.9221Pentadecanes Plus4.4012.830.840836.8266Eicosanes Plus1.224.770.971314.2357 |

ATTACHMENT 3

# Osudo Reservoir Fluid Study Jordan B No. 1 Well

by G.M. Ginley

Work done by: D.L. Burnham G.M. Ginley



Petroleum Technology Center

Project 22 97 016

# RESTRICTED

This is a RESTRICTED report. RESTRICTED means that the information contained herein is PROPRIETARY, CONFIDENTIAL PROPERTY of Marathon Oil Company and is restricted to use by those employees and consultants of Marathon Oil Company who need to know such information to further company business. Any unauthorized use or disclosure of this information is prohibited.

When you no longer have use for this report, or terminate employment with Marathon, it is to be returned to Technical Information, Marathon Oil Company, Petroleum Technology Center, P.O. Box 269, Littleton, Colorado 80160.

This is an unpublished work protected under the U.S. Copyright Act of 1976. All Rights Reserved. If this work becomes published, the following notice shall apply: ©1992 Marathon Oil Company.

## TABLE OF CONTENTS

-

.

| Table of Co  | ntentsi                                                                                       |
|--------------|-----------------------------------------------------------------------------------------------|
| Summary      |                                                                                               |
| Table 1      | Field Data for Reservoir Fluid Study 4                                                        |
| Table 2      | Separator Gas Composition                                                                     |
| Table 3      | Separator Liquid Composition                                                                  |
| Table 4      | GOR Determination7                                                                            |
| Table 5      | Second Stage Separator Liquid Flashed<br>to 12 psia and 90°F8                                 |
| Table 6      | Recombined Fluid Composition9                                                                 |
| Table 7      | Properties of Recombined Fluid                                                                |
| Table 8      | Pressure Volume Relations at 152°F<br>Constant Composition Expansion                          |
| Table 9      | Constant Volume Depletion Study at 152°F<br>Compositions of Produced Wellstreams-Mole Percent |
| Table 10     | Liquid Dropout<br>Constant Volume Depletion at 152°F                                          |
| Figure 1     | Schematic of Separator Scheme14                                                               |
| Figure 2     | Relative Volume                                                                               |
| Figure 3     | Compressibility Factor (z)16                                                                  |
| Figure 4     | Liquid Dropout Curve<br>Constant Composition Expansion17                                      |
| Figure 5     | Liquid Dropout Curves                                                                         |
| Distribution |                                                                                               |

#### Reservoir Fluid Study Jordan "B" No. 1 Well Osudo Reservoir Lea County, New Mexico

A reservoir fluid study was performed on first stage separator gas and liquid samples taken from the Jordan "B" No. 1 well. This report contains the following results:

- (1) Summary of sampling conditions.
- (2) Compositional analysis of the first stage separator gas and first stage separator liquid.
- (3) Discussion of field separator scheme and procedure used to calculate the first stage gas oil ratio.
- (4) Recombination of separator fluids.
- (5) Data obtained from a constant composition expansion (CCE) study of the recombined fluid.
- (6) Data obtained from a constant volume depletion (CVD) study of the recombined fluid.
- (7) Comparison between Core Laboratory data and PTC data.

#### Sampling Conditions

Separator gas and liquid samples were obtained from the subject well on June 17, 1992 by a representative of Core Laboratories. Reported field and sampling data are given in Table 1. This data is directly from S. M. Posey, Midland or from the Core Laboratory sampling documentation. Samples were received at PTC on June 25, 1992.

#### Analysis of Fluid Compositions

The compositions of the separator fluids were analyzed using gas chromatography. The molecular weights of components  $C_6 - C_{14}$  are the values reported by Katz and Firoozabadi<sup>1</sup> for general petroleum fractions. The molecular weight of the  $C_{15+}$  fraction is calculated using a three step procedure. First, the separator liquid is flashed to atmospheric conditions. Then we measure the molecular weight, specific gravity, and composition of the resulting liquid. The  $C_{15+}$  molecular weight is then calculated using the fluid composition and overall molecular weight. The specific gravity for each carbon number fraction is calculated using a constant Watson K factor of 11.920 for each frac-

<sup>&</sup>lt;sup>1</sup> Katz, D. L. and Firoozabadi, A., "Predicting Phase Behavior of Condensate/Crude-Oil Systems Using Methane Interaction Coefficients", J. Pet. Tech., November 1978, pp. 1649-1655.
tion. The value of the Watson K factor is picked so that the calculated specific gravity of the stabilized liquid matches the measured value. Table 2 shows the composition of the separator gas. The separator liquid composition is given through  $C_{15+}$  in Table 3.

# Calculation of First Stage Separator Gas Oil Ratio

Field measurements of the primary separator gas and liquid rates were not available. Instead measurements were obtained for the stock tank oil rate, combined gas rate from the three separators, and gas rate from the stock tank. A schematic diagram of the separator scheme is given in Figure 1. We flashed a sample of separator liquid to the low pressure separator conditions and then flashed the resulting liquid to stock tank conditions. Information obtained from the flash was combined with density and measured fluid compositions to obtain an actual primary gas oil ratio of 9217 scf primary separator gas/bbl primary separator liquid. Table 4 gives a summary of the data used to calculate the actual GOR. In performing these calculaitons, it was assumed that all of the fluid flowed through the 2 stage high pressure separator. S. M. Posey of Midland informed us that approximate 90% of the flow does go through this separator.

Second stage separator liquid was flashed to 12 psia and 90°F. Table 5 gives the properties of the resulting gas and liquid. The GOR reported in Table 5 varies from the field stock tank GOR. The actual field ratio was used in calculating the primary separator flow rates.

# **Recombination of First Stage Separator Fluids**

The separator gas and liquid were recombined with a target GOR of 9217 scf sep gas/bbl sep liquid. The actual GOR of the recombined fluid used by our lab in the phase behavior experiments were 9179 scf sep gas/bbl sep liquid. Table 6 contains the calculated composition of the recombined fluid used in the phase behavior experiments. Molecular weights and specific gravities of the plus fractions and the overall fluid are given in Table 7.

# Constant Composition Expansion

The recombined fluid was charged to the PVT cell at reservoir temperature (152°F) and 8428 psia. A constant composition expansion test was performed on the fluid. A visual dew point pressure of 7213 psia was observed. This was the first point at which the fluid remained "cloudy" after equilibration. At 6562 psia we first observed liquid droplets. The first measurable amount of liquid occurred at 5713 psia.

Pressure-Volume relations of the reservoir fluid obtained during the CCE are presented in Table 8. Figures 2 and 3 present the relative volume and compressibility of the fluid as a function of pressure. Figure 4 shows the liquid dropout curve. The liquid volume in this graph is expressed as a percent of the total volume at the current cell pressure. This fluid system exhibits a very long tail on the liquid dropout curve. There is a 1500 psi difference between the visual dew point pressure and the pressure at which we obtained a measurable amount of liquid. We chose to begin the constant volume depletion study at 5713 psia. Thus, the relative volume data in Table 8 are reported relative to the volume at the visual dew point of 7213 psia if necessary. The data presented in Figure 4 are shown as a percent of the total volume at the stated pressure.

## **Constant Volume Depletion**

After completion of the CCE, the fluid was repressurized to 5713 psia. The cell volume was increased until a pressure of 3912 psia was obtained. The fluids were equilibrated and volume measurements were obtained. Then enough gas was removed while maintaining 3912 psia pressure in the cell to return to the original volume at the dew point pressure (5713 psia). This procedure was repeated at 2514, 2012, 1013 and 512 psia. The weight of gas removed was recorded for each depletion step. The composition of the gas obtained at each pressure was measured by gas chromatography. Table 9 gives the measured gas compositions and calculated molecular weights, densities, and compressibility factors. Also stated in Table 9 is the cumulative production as a percent of the initial moles present. Table 10 gives the measured liquid volumes for the depletion steps as percent of the saturation volume. Figure 5 compares the liquid volumes present during the constant composition expansion and the constant volume depletion. The liquid volumes in this figure are expressed as a percent of the saturation volume.

# Comparison of PTC Data with Core Laboratory Data

At the start of our reservoir fluid study, there was some concern expressed about the dew point pressure of approximately 5600 psia obtained by Core Laboratories. Several possible sources of error were considered and Core Laboratories took a second set of samples and repeated the compositional analyses of the separator fluids. We obtained samples from the second sampling period. I had several discussions with T. Coleman and F. Vrla of Core Laboratories concerning GOR calculations and fluid compositions. The GOR calculated by Core Laboratories is consistent with the value we obtained from our measurements. The measured liquid composition is also comparable to our measured composition. Core Laboratories reported a dew point pressure of 5600 psia. This value was obtained with the first set of separator samples. This dew point value is consistent with the 5713 psia pressure at which we observed the first measurable amount of liquid. Core Laboratories did not measure the liquid dropout curve so it is impossible to compare the two studies any further.

# Table 1Field Data for Reservoir Fluid Study

# Well Record

WellJordan "B" No. 1FieldOsudoCountyLeaStateNew Mexico

۲

•

# Well Characteristics

| Formation                    | Wolfcamp             | )    |
|------------------------------|----------------------|------|
| Elevation                    | 11,322               | ft   |
| Total Depth                  | 11,617               | ft   |
| Producing Interval           | 11,426-11,478        | ft   |
| Tubing Size                  | 2 3/8" OD, 1.995" ID |      |
| Tubing Depth                 | 11,314               | ft   |
| Reservoir Temperature        | 153                  | °F   |
| Reservoir Pressure           | 3500                 | psig |
| Water Cut                    | 19                   | %    |
| Tubing Pressure (flowing)    | 1340                 | psig |
| Reservoir Pressure (flowing) | 3200                 | psig |
|                              |                      |      |

# Sampling Conditions

| Well Testing Company              | Core La     | boratories |          |
|-----------------------------------|-------------|------------|----------|
| Date Sampled                      |             | 6/17/92    |          |
| 2 stage Primary Separator Temp    | erature     | 86         | °F       |
| 2 stage Primary Separator Press   | ure         | 490        | psig     |
| 3 stage Primary Separator Temp    | erature     | 80         | °F       |
| 3 stage Primary Separator Press   | ure         | 400        | psig     |
| Low Pressure Separator Temperator | ature       | 76         | °F       |
| Low Pressure Separator Pressure   | e           | 150        | psig     |
| Gas Meter Temperature             |             | 68         | °F       |
| Gas Meter Pressure                |             | 95         | psig     |
| Metered Gas Rate                  |             | 6022       | Mscf/day |
| (Total of primary and secondary s | separator ( | gases)     |          |
| Stock Tank Temperature            |             | 90         | °F       |
| Stock Tank Oil Rate               |             | 534        | STB/day  |
| Stock Tank Water Rate             |             | 136        | bbl/day  |
| Stock Tank Gas Rate               |             | 175        | Mscf/day |
| Standard Pressure                 |             | 15.025     | psia     |
| Standard Temperature              |             | 60         | °F       |

|                | Mass    | Mole    | Molecular |
|----------------|---------|---------|-----------|
| Component      | Percent | Percent | Weight    |
| Nitrogen       | 1.573   | 1.133   | •         |
| Carbon Dioxide | 0.664   | 0.304   |           |
| Methane        | 64.422  | 81.171  |           |
| Ethane         | 15.703  | 10.517  |           |
| Propane        | 9.438   | 4.315   |           |
| iso-Butane     | 1.642   | 0.570   |           |
| n-Butane       | 3.388   | 1.176   |           |
| iso-Pentane    | 0.943   | 0.263   |           |
| n-Pentane      | 0.981   | 0.274   |           |
| Hexanes        | 0.655   | 0.157   | 84.00     |
| Heptanes       | 0.423   | 0.089   | 96.00     |
| Octanes        | 0.160   | 0.030   | 107.00    |
| Nonanes        | 0.008   | 0.001   | 121.00    |
| Total          | 100.00  | 100.00  |           |

# Table 2Separator Gas Composition

Molecular Weight20.160Gas Gravity0.6959

,

.

|                | Mass    | Mole    | Molecular | Specific |
|----------------|---------|---------|-----------|----------|
| Component      | Percent | Percent | Weight    | Gravity  |
| Nitrogen       | 0.00    | οοò     |           |          |
| Corbon Dievide | 0.00    | 0.00    |           |          |
|                | 0.00    | 12.00   |           |          |
|                | 2.19    | 13.35   |           |          |
| Einane         | 1.97    | 0.38    |           |          |
| Propane        | 3.40    | 7.50    |           |          |
| iso-Butane     | 1.41    | 2.36    |           |          |
| n-Butane       | 4.02    | 6.75    |           |          |
| iso-Pentane    | 2.68    | 3.61    |           |          |
| n-Pentane      | 3.56    | 4.80    |           |          |
| Hexanes        | 6.31    | 7.32    | 84.00     | 0.7102   |
| Heptanes       | 10.24   | 10.39   | 96.00     | 0.7293   |
| Octanes        | 13.05   | 11.88   | 107.00    | 0.7455   |
| Nonanes        | 8.44    | 6.79    | 121.00    | 0.7614   |
| Decanes        | 6.80    | 4.95    | 134.00    | 0.7756   |
| Undecanes      | 5.03    | 3.33    | 147.00    | 0.7880   |
| Dodecanes      | 4.14    | 2.51    | 161.00    | 0.7998   |
| Tridecanes     | 4.43    | 2.47    | 175.00    | 0.8102   |
| Tetradecanes   | 3.33    | 1.71    | 190.00    | 0.8204   |
| C15+           | 18.99   | 3.89    | 475.00    | 0.8522   |
| Total          | 100.00  | 100.00  |           |          |
| C6+            | 80 77   | 55 24   | 142 4     | 0 7710   |
| C7+            | 74 45   | 47 92   | 151 /     | 0.7710   |
| C12±           | 30 80   | 10 57   | 284.6     | 0.7710   |
| 0127           | 30.09   | 10.57   | 204.0     | 0.0300   |
| 010+           | 10.99   | 3.89    | 4/5.0     | 0.8522   |

.

# Table 3Separator Liquid Composition

. .

| Molecular Weight | 97.41  |
|------------------|--------|
| Specific Gravity | 0.7016 |

# Table 4GOR Determination

• •

| Reservoir                                          | Osudo            |                      |  |
|----------------------------------------------------|------------------|----------------------|--|
| Well                                               | Jordan "B" No. 1 |                      |  |
| Primary Separator pressure                         | 505              | psia                 |  |
| Primary Separator Temperature                      | 86               | °F                   |  |
| Pressure Base                                      | 15.025           | psia                 |  |
| Temperature Base                                   | 60               | °F                   |  |
| Primary Separator Gas                              |                  |                      |  |
| Fiow Rate (calculated)                             | 5908             | Mscf/day             |  |
| Lab Gas Compressibility Factor (z)                 | 1.1050           |                      |  |
| Lab Gas Gravity                                    | 0.8598           |                      |  |
| Molecular Weight                                   | 24.910           | g/mol                |  |
| Density                                            | 0.0311           | g/cm^3               |  |
| Density at standard conditions (ideal gas)         | 0.0671           | lb/scf               |  |
| Secondary Separator Gas                            |                  |                      |  |
| Lab Gas Compressibility Factor (z)                 | 0.9560           |                      |  |
| Flow Rate (measured from two stage flash)          | 114              | Mscf/day             |  |
| Primary Separator Liquid                           |                  |                      |  |
| Flow Rate (calculated)                             | 641.0            | sep bbl/day          |  |
| Density                                            | 44.88            | lb/ft^3              |  |
| Shrinkage Factor                                   | 0.8331           | STB/bbl              |  |
| (S. T. Liquid Volume @ 60 °F/Prim Sep Liq Volume @ | 86 °F)           |                      |  |
| Cos Oil Datis using calculated flow rates          | 0047             |                      |  |
| Gas OII Ratio using calculated flow rates          | 9217             | prim sep gas/bbl     |  |
| Gas Oil Ratio (g gas/g liquid)                     | 2.453            | g gas/g liquid       |  |
| Gas Oil Ratio of PTC Recombined Fluid              | 7429             | scf prim sep gas/bbl |  |
|                                                    | 1.977            | g gas/g liquid       |  |

# Table 5Second Stage Separator LiquidFlashed to 12 psia and 90 °F

•

.

| Gas Liquid Ratio       | = | 269  | scf/STB     |
|------------------------|---|------|-------------|
| Gravity of S.T. Liquid | = | 64.4 | °API @ 60°F |

# Stock Tank Gas Composition

|                | Mass    | Mole    | Molecular |
|----------------|---------|---------|-----------|
| Component      | Percent | Percent | Weight    |
| Nitrogen       | 0.000   | 0.000   | -         |
| Carbon Dioxide | 0.686   | 0.388   |           |
| Methane        | 40.324  | 62.778  |           |
| Ethane         | 24.868  | 20.580  |           |
| Propane        | 18.089  | 10.217  |           |
| iso-Butane     | 2.976   | 1.276   |           |
| n-Butane       | 6.175   | 2.648   |           |
| iso-Pentane    | 1.649   | 0.569   |           |
| n-Pentane      | 1.712   | 0.591   |           |
| C6+            | 3.521   | 0.953   | 92        |
| Total          | 100.00  | 100.00  |           |

| Molecular Weight | 24.91  |
|------------------|--------|
| Gas Gravity      | 0.8598 |

|                | Separator Gas | Separator Liquid | Recombined        | Recombined |
|----------------|---------------|------------------|-------------------|------------|
|                | Mass          | Mass             | Mass              | Mole       |
| Component      | Percent       | Percent          | Percent           | Percent    |
| Nitrogen       | 1.57          |                  | 1.04              | 1.03       |
| Carbon Dioxide | 0.66          |                  | 0.44              | 0.28       |
| Methane        | 64.42         | 2.19             | 43.52             | 74.75      |
| Ethane         | 15.70         | 1.97             | 11.09             | 10.13      |
| Propane        | 9.44          | 3.40             | 7.41              | 4.62       |
| iso-Butane     | 1. <b>64</b>  | 1.41             | 1.56              | 0.74       |
| n-Butane       | 3.39          | 4.02             | 3.60              | 1.70       |
| iso-Pentane    | 0.94          | 2.68             | 1.52              | 0.58       |
| n-Pentane      | 0.98          | 3.56             | 1.85              | 0.70       |
| Hexanes        | 0.65          | 6.31             | 2.56              | 0.84       |
| Heptanes       | 0.42          | 10.24            | 3.72              | 1.06       |
| Octanes        | 0.16          | 13.05            | 4.49              | 1.15       |
| Nonanes        | 0.01          | 8.44             | 2.84              | 0.64       |
| Decanes        |               | 6.80             | 2.28              | 0.47       |
| Undecanes      |               | 5.03             | 1.69              | 0.32       |
| Dodecanes      |               | 4.14             | 1.39              | 0.24       |
| Tridecanes     |               | 4.43             | 1.49              | 0.23       |
| Tetradecanes   |               | 3.33             | 1. <b>12</b>      | 0.16       |
| C15+           |               | 18.99            | 6.38              | 0.37       |
| Total          | 100.00        | 100.00           | 100.00            | 100.00     |
| C6+            |               |                  | 27.9 <del>6</del> | 5.49       |
| C7+            |               |                  | 25.40             | 4.65       |
| C12+           |               |                  | 10.38             | 1.00       |
| C15+           |               |                  | 6.38              | 0.37       |

# Table 6 Recombined Fluid Composition

.

-

# Table 7Properties of Recombined Fluid

.

|      | Molecular<br>Weight | Specific<br>Gravity |
|------|---------------------|---------------------|
| C6+  | 140.0               | 0.7802              |
| C7+  | 150.1               | 0.7873              |
| C12+ | 284.6               | 0.8357              |
| C15+ | 475.0               | 0.8522              |
|      |                     |                     |

Total Fluid 27.48

1

# Table 8Pressure-Volume Relations at 152°FConstant Composition Expansion

.

|           |              |                |                         | Liquid     |
|-----------|--------------|----------------|-------------------------|------------|
|           | Pressure     | Relative       | <b>Deviation Factor</b> | Volume     |
|           | (psia)       | Volume(1)      | Z                       | Percent(2) |
|           | 8428         | 0.8603         | 1.0603                  |            |
|           | 8212         | 0.8636         | 1.0372                  |            |
|           | 8020         | 0.8742         | 1.0254                  |            |
|           | 7813         | 0.8829         | 1.0088                  |            |
|           | 7612         | 0.8885         | 0.9891                  |            |
|           | 7414         | 0.8968         | 0.9723                  |            |
|           | 7213         | 0.9081         | 0.9579                  | Trace      |
|           | 7012         | 0.9170         | 0.9404                  | Trace      |
|           | 6812         | 0.9373         | 0.9337                  | Trace      |
|           | 6562         | 0.9469         | 0.9087                  | Тгасе      |
|           | 64 <b>64</b> | 0.9545         | 0.9023                  | Trace      |
|           | 6362         | 0.9585         | 0.8918                  | Тгасе      |
|           | 6212         | 0.9645         | 0.8762                  | Trace      |
|           | 6012         | 0.9 <b>768</b> | 0.8588                  | Trace      |
|           | 5813         | 0.9877         | 0.8397                  | Trace      |
| dew point | 5713         | 1.0000         | 0.8355                  | 0.01       |
|           | 5613         | 0.9954         | 0.8170                  | 0.12       |
|           | 5512         | 1.0036         | 0.8090                  | 0.09       |
|           | 5412         | 1.0166         | 0.8046                  | 0.21       |
|           | 5313         | 1.0322         | 0.8020                  | 0.30       |
|           | 5212         | 1.0355         | 0.7893                  | 0.42       |
|           | 5011         | 1.0481         | 0.7681                  | 0.65       |
|           | 4813         | 1.0730         | 0.7552                  | 1.06       |
|           | 4613         | 1.0962         | 0.7395                  | 1.44       |
|           | 4362         | 1.1297         | 0.7207                  | 1.99       |
|           | 3912         | 1.1915         | 0.6816                  | 3.42       |
|           | 3415         | 1.3073         | 0.6529                  | 5.08       |
|           | 2912         | 1.4871         | 0.6333                  | 7.04       |
|           | 2513         | 1.7094         | 0.6282                  | 7.37       |
|           | 2012         | 2.1690         | 0.6382                  | 6.85       |
|           | 1512         | 3.0181         | 0.6674                  | 4.87       |
|           | 1262         | 3.7192         | 0.6864                  | 3 83       |

(1) Relative Volume(Bt): V/Vsat is the total volume of fluid(oil and gas) at the indicated pressure per volume of saturated oil at the dew point pressure.

(2) Liquid Volume Percent is calculated as a percent of total volume at 152 °F and the indicated pressure.

•

.

| Pressure (psia)                                      | 3912    | 2514    | 2012    | 1013    | 512     |
|------------------------------------------------------|---------|---------|---------|---------|---------|
| Component                                            |         |         |         |         |         |
| Nitrogen                                             | 1.166   | 1.095   | 1.155   | 1.113   | 1.156   |
| Carbon Dioxide                                       | 0.198   | 0.170   | 0.135   | 0.125   | 0.128   |
| Methane                                              | 76.914  | 79.413  | 80.015  | 79.882  | 77.834  |
| Ethane                                               | 10.638  | 10.419  | 10.383  | 10.636  | 11.317  |
| Propane                                              | 5.180   | 4.907   | 4.616   | 4.733   | 5.584   |
| iso-Butane                                           | 0.793   | 0.683   | 0.654   | 0.651   | 0.779   |
| n-Butane                                             | 1.819   | 1.480   | 1.407   | 1.398   | 1.685   |
| iso-Pentane                                          | 0.594   | 0.421   | 0.393   | 0.368   | 0.441   |
| n-Pentane                                            | 0.735   | 0.480   | 0.443   | 0.412   | 0.482   |
| Hexanes                                              | 0.779   | 0.405   | 0.347   | 0.388   | 0.341   |
| Heptanes-Plus                                        | 1.184   | 0.527   | 0.453   | 0.293   | 0.253   |
| Total                                                | 100.000 | 100.000 | 100.000 | 100.000 | 100.000 |
| Hexanes-Plus                                         | 1.963   | 0.932   | 0.800   | 0.682   | 0.595   |
| Heptanes-Plus                                        | 1.184   | 0.527   | 0.453   | 0.293   | 0.253   |
| Molecular Weight:                                    |         |         |         |         |         |
| Total                                                | 22.5    | 21.2    | 20.9    | 20.8    | 21.3    |
| Hexanes-Plus                                         | 94      | 94      | 94      | 06      | 06      |
| Heptanes-Plus                                        | 101     | 101     | 101     | 66      | 67      |
| Compressibility                                      |         |         |         |         |         |
| Factor(z)                                            | 0.8387  | 0.7884  | 0.8004  | 0.8770  | 0.9315  |
| Density (g/cm3)                                      | 0.2559  | 0.1645  | 0.1280  | 0.0586  | 0.0286  |
| Cumulative moles produced<br>(percentage of initial) | 16.948  | 37.547  | 47.025  | 68.432  | 78.493  |

12

# Table 10Liquid DropoutConstant Volume Depletion at 152 °F

.

~

.

| Pressure | Liquid<br>Volume |
|----------|------------------|
| (psia)   | Percent          |
| 3912     | 5.00             |
| 2514     | 11.16            |
| 2012     | 11.45            |
| 1013     | 10.01            |
| 512      | 8.74             |



Figure 1















Liquid Dropout Curve Constant Composition Expansion









# DISTRIBUTION

- D.L. Burnham, PTC
- W. C. Chu, PTC
- J.R. Jargon, PTC
- T. G. Monger-McClure
- D. E. Kenyon
- C. T. Kent, Midland
- D. R. Petro, Midland
- S. M. Posey. Midland
- Central Files (22 97 016)

# ATTACHMENT 4



With more than 36 years of petroleum industry experience in mud logging, core analysis, and phase-behavior studies, Phillip L. Moses, reservoir fluid analysis manager at Core Laboratories Inc. in Dallas, develops new equipment and techniques for gas/liquid analyses and phase-relationship studies at elevated pressures and temperatures. He has directed phase-behavior studies from reservoirs in the U.S., Canada, South America, and Indonesia. A graduate of Texas A&M U. with a BS degree in physics, he has completed basic and advanced petroleum reservoir engineering courses at Texas A&M U. Moses has written several technical papers and has given phase-behavior lectures to numerous groups. He was a 1967–68 SPE Admissions Committee chairman.

# Engineering Applications of Phase Behavior of Crude Oil and Condensate Systems

Phillip L. Moses, SPE, Core Laboratories, Inc.

**Summary.** Fluid samples must be taken early in the life of a reservoir to obtain samples truly representative of the reservoir fluid. They should be taken only after a carefully planned well conditioning and testing program. When the PVT data obtained from these samples are used, care should be taken to adjust FVF's and gas/oil ratios (GOR's) for surface separator conditions.

#### Introduction

The proper development, engineering, and production of an oil or gas reservoir requires a considerable amount of planning. At the same time that plans are formulated to develop the field, plans should also be made for a data-gathering program to facilitate reservoir engineering months and even years into the future. This data-gathering plan should include a sufficient number and variety of electric logs and cores on key wells to describe the reservoir adequately. Electric logs and core analyses evaluate the reservoir rock. If reservoir engineering calculations are to be made to optimize production from a reservoir, including EOR, then the properties of the reservoir fluids must also be known. The properties of the reservoir water fall within narrow ranges and are seldom studied at reservoir pressures and temperatures. The properties of the reservoir water determined are normally confined to chemical analysis and possibly compatibility tests in cases of injection projects. This paper is concerned primarily with the study of the hydrocarbon fluids contained in a reservoir.

Coring and logging programs should continue throughout the development of a reservor. The data obtained from the last well drilled are as aluable as the data obtained from the first well. This is usually not the case for reservoir fluids. Samples representative of the original reservoir can be obtained only when the reservoir pressure is equal to or higher than the original bubblepoint or dewpoint.

Copyright 1988 Society of Petroleum Engineers-

Methods are available for extrapolating fluid data obtained after some pressure decline. Remember, however, that extrapolation is an educated man's word for guessing. Plans for obtaining reservoir fluid samples and analyses should be made early in the life of a reservoir. Reservoir fluid samples should be taken before significant reservoir pressure decline has been experienced.

### **Oil Reservoirs**

Oil reservoirs can be divided into two categories: ordinary oil reservoirs and near-critical reservoirs. The ordinary oil reservoirs are sometimes called black-oil reservoirs. This misnomer does not reflect the color of the reservoir fluids. It is meant only to distinguish them from near-critical oil reservoir fluids. The near-critical fluids will be discussed in subsequent paragraphs.

Ordinary oils are characterized by GOR's up to approximately 2,000 ft<sup>3</sup>/bbl [360 m<sup>3</sup>/m<sup>3</sup>], oil gravities up to 45°API [0.8 g/cm<sup>3</sup>], and FVF's of less than 2 bbl/bbl [2 m<sup>3</sup>/m<sup>3</sup>]. Remember that there is no sharp dividing line between an ordinary and a near-critical oil. Such factors as composition and reservoir temperature greatly influence the behavior of the reservoir fluid. It is often impossible to determine whether a fluid should be studied as a near-critical oil or as an ordinary oil until it is actually in the laboratory being observed.

We have two methods for sampling ordinary or noncritical oils: surface sampling and subsurface sampling. These methods were discussed by Reudelhuber<sup>1-3</sup> and are not covered in detail in this paper, but it should suffice to say that wells should be carefully conditioned before sampling. If wells are not conditioned properly and the samples are not representative of the reservoir fluid, then the resulting fluid study may yield invalid data. In subsurface sampling, well conditioning usually consists of a period of reduced flow followed by shut-in. In separator sampling, it is imperative that the well be stabilized, then tested for a sufficiently long period to determine the GOR accurately.

The reservoir fluid study on a noncritical oil should consist of five tests.

Pressure/Volume Relations. This is a constantcomposition expansion of the reservoir fluid at the reservoir temperature during which the bubblepoint is measured. Above the bubblepoint, the compressibility of the single-phase fluid is measured. Below the bubblepoint, the two-phase volume is measured as a function of pressure.

Differential Vaporization. This test measures the amount of gas in solution as a function of pressure and the resultant shrinkage of the oil as this gas is released from solution. Also measured are the properties of the evolved gas, including the specific gravity and deviation factor. The density of the oil phase is also measured as a function of pressure.

Viscosity. Viscosity, which is resistance to flow, should be measured as a function of pressure at reservoir temperature.

These three tests are all conducted at reservoir temperature, and the results describe the behavior of the reservoir fluid as it exists in the reservoir.

Separator Tests. One or more separator tests should be measured to determine the behavior of the reservoir fluid as it passes up the tubing, through the separator or separators, and finally into the stock tank. The FVF,  $B_o$ , and gas in solution,  $R_s$ , are measured during these tests. It is usually recommended that four of these tests be used to determine the optimum separator pressure, which is usually considered the separator pressure that results in the minimum FVF. At the same pressure, the stock-tank-oil gravity will be a maximum and the total evolved gas-i.e., the separator gas and the stock-tank gas-will be at a minimum. For most midcontinent crudes, this optimum separator pressure usually occurs in a range from about 90 to 120 psi [621 to 827 kPa]. Obviously, some field producing conditions do not allow the operation of the separator at optimum pressure. If the gas-gathering line in the field is at 1,000 psig [6895 kPa], the first-stage separator must be operated at this pressure or higher. Therefore, a second separator must be placed in the flow stream to achieve a near-optimum FVF. The optimum second-stage separator pressure may also be determined by the PVT laboratory either experimentally or through equilibrium ratio calculations with the reservoir fluid composition and computers.

As reservoir pressure is depleted and gas is evolved from solution within the reservoir, the FVF of the reservoir oil gradually becomes smaller. Ideally, the FVF of the reservoir oil should be measured as a function of reservoir pressure by placing a large sample of oil in a PVT cell and pressure-depleting by differential liberation at the reservoir temperature. At each of several pressure levels during this differential depletion, samples are removed and passed through a separator or separators at surface conditions, and the FVF and gas in solution are measured. Sufficient pressure levels should be studied to obtain the data to plot a curve of FVF and gas in solution as a function of reservoir pressure. This method, described by Dodson et al.,<sup>4</sup> is an excellent way to study noncritical oils and should be considered the preferred method. Unfortunately, most reservoir fluid studies contain only the separator data on the reservoir oil at its original bubblepoint. The reservoir fluid report does not contain a curve of FVF as a function of reservoir pressure, but only the FVF's at the bubblepoint. The FVF curve and gas-in-solution curve must be constructed with a correlation first described by Amyx et al.,<sup>5</sup> and later by Dake.<sup>6</sup> This correlation, the adjustment of the differential data to flash conditions, works reasonably well in most instances and is far superior to making no correction at all. Again, Dodson's method is superior.

It is my observation that 70 to 80% of reservoir engineers do not understand the conversion of differential data to flash data; consequently, the relative-oil-volume curve from the differential liberation is used instead of the flash-formation-factor curve. This can lead to errors of 10 to 20% or more in calculation of oil in place (OIP) and recoverable oil. An explanation of the conversion from differential to flash is presented in the Appendix.

Composition of the Reservoir Fluid. Most of the parameters measured in a reservoir fluid study can be calculated with some degree of accuracy from the composition. It is the most complete description of reservoir fluid that can be made. In the past, reservoir fluid compositions were usually measured to include separation of the components methane through hexane, with the heptanes and heavier components grouped as a single component reported with the average molecular weight and density. With the development of more sophisticated equations of state to calculate fluid properties, it was learned that a more complete description of the heavy components was necessary. It is now recommended that compositional analyses of the reservoir fluid include a separation of components through  $C_{10}$  as a minimum. The more sophisticated research laboratories now use equations of state that require compositions through  $C_{30}$  or higher.

### Near-Critical Olis

Near-critical oils have often been referred to as volatile oils. Volatile oil is not an apt description because virtually all reservoir fluids are volatile. What is really meant is that the reservoir fluid exhibits the properties of an oil existing in the reservoir at a temperature near its critical temperature. These properties include a high shrinkage immediately below the bubblepoint. In extreme cases, this shrinkage can be another as 45% of the hydrocarbon pore space within 10 psi [69 kPa] below the bubblepoint. GOR's are usually 2,000 to  $3.000 \text{ ft}^3$ /bbl [360 to 540 m<sup>3</sup>/m<sup>3</sup>], and the oil gravity is usually 40°API [0.83 g/cm<sup>3</sup>] or higher. Near-critical oils have FVF's of 2 or higher. The compositions of near-critical oils are usually characterized by 12.5 to 20 mol% heptanes plus. 35% or more of methane through hexanes, and the remainder ethane.

Near-critical oils were first discussed in the literature by Reudelhuber and Hinds<sup>7</sup> and by Jacoby and Berry.<sup>8</sup> Near-critical oils must be studied differently in the laboratory and by the reservoir engineer to arrive at an accurate prediction of reservoir performance. To understand this, it is necessary to consider that near-critical oils are borderline to very rich gas condensates on a phase diagram.

There is a fairly sharp dividing line between oils and condensates from a compositional standpoint. Reservoir fluids that contain heptanes and are heavier in concentrations of more than 12.5 mol% are almost always in the liquid phase in the reservoir. Those with less than 12.5 mol% are almost always in the gas phase in the reservoir. Oils have been observed with heptanes and heavier concentrations as low as 10% and condensates as high as 15.5%. These cases are rare, however, and usually have very high tank liquid gravities.

As mentioned, a near-critical oil undergoes a very high shrinkage as the pressure falls below the bubblepoint. This high shrinkage creates a high gas saturation in the pore space. Because of the gas/oil relative-permeability characteristics of most reservoir rocks, free gas achieves high mobility almost immediately below the bubblepoint. It is fortunate that this free gas is a rich gas condensate. Conventional volumetric material-balance techniques on ordinary oils make no provisions for treating this mobile gas as a retrograde condensate. Instead, the calculation procedures bring this free gas flowing in the reservoir to the surface as free gas and add it to the solution gas.

A properly performed reservoir fluid study on a near-critical oil furnishes the data that will enable the reservoir engineer to perform a compositional material balance. In this manner, he can account for production of retrograde condensate, as well as oil, from the reservoir. Reudelhuber and Hinds? reported that for the reservoir they studied, a compositional material-balance calculation procedure would predict a liquid recovery from the reservoir approximately four times higher than conventional volumetric material balance would. Jacoby and Berry<sup>8</sup> reported an approximately 2.5-fold increase for the reservoir they studied. Jacoby and Berry's study was done on a reservoir in north Louisiana that was discovered in late 1953. By conventional material-balance techniques, Jacoby and Berry predicted that 880,000 bbl  $[140 \times 10^3 \text{ m}^3]$  oil would be produced from the reservoir. By compositional material-balance techniques, they predicted that 2.2 million bbl  $[350 \times 10^3 \text{ m}^3]$  would be produced. By 1965 the field had been depleted, and Cordell and Ebert<sup>9</sup> presented

a case history. Actual recovery from the reservoir was 2.4 million bbl  $[382 \times 10^3 \text{ m}^3]$ . The excellent agreement between the actual performance and the predicted performance confirms the theory behind the compositional material-balance approach.

### **Retrograde Gas-Condensate Reservoirs**

A retrograde gas-condensate reservoir fluid is a hydrocarbon system that is totally gas in the reservoir. Upon pressure reduction, liquid condenses from the gas to form a free liquid phase in the reservoir. Retrograde condensate reservoirs are characterized by gas/liquid ratios of approximately 3.000 to 150,000 ft<sup>3</sup>/bbl [540 to  $27 \times 10^3$  m<sup>3</sup>]. Liquid gravities usually range from about 40 to  $60^{\circ}$  API [0.83 to 0.74 g/cm<sup>3</sup>], although condensate gravities as low as 29°API [0.88 g/cm<sup>3</sup>] have been reported.<sup>10</sup> Color alone is not a good indicator of whether a particular hydrocarbon liquid is condensate or oil. The 29°API [0.88-g/cm<sup>3</sup>] condensate was black. High-gravity condensates and oils can be water-white. We normally do not expect to see retrograde behavior at reservoir pressures below about 2.500 psi [17.2 MPa]. At these relatively low pressures, the condensate is usually very light in color and high in gravity. The lower gravities and darker colors observed in condensates are indicators of heavy hydrocarbons. High pressure is required to vaporize heavy hydrocarbons; consequently, a reservoir producing a dark condensate should be expected to have a high dewpoint.

Gas-condensate reservoirs are almost always sampled at the separator and recombined in the producing gas/liquid ratio. Oil wells are conditioned for subsurface sampling by a reduction in the flow rate for a period of time and then shut-in until static pressure has been achieved. If we were to attempt to condition a gas-condensate well in the same manner, we would find that the liquid condensate in the tubing would coalesce and fall to the bottom of the tubing when the well was shut in. A subsurface sample would then retrieve a sample of this liquid. The liquid would exhibit a bubblepoint rather than a retrograde dewpoint. The composition of the liquid would be totally different from the composition of the reservoir fluid.

To obtain samples for reservoir fluid analysis from a gas-condensate well, the well should ideally be produced at a rate equal to or slightly above the minimum stable rate. If, however, a well has been producing at a stable rate for some time and the rate is not excessive, then it is usually better to test at this rate than to adjust the rate to the minimum stable rate. The most important factor in a flow test is stabilization. This includes stable wellhead pressure, stable gas production, and stable liquid production. For a well producing with a subsurface flowing pressure below the dewpoint, the liquid saturations and compositions in the drainage area must also be stabilized. Once stabilization has been achieved, as a barrel of liquid condenses from the reservoir fluid in the vicinity of the wellbore, then another barrel of liquid must enter the wellbore. In this manner, the saturations and compositions in the vicinity of the

| Hy                                | drocarbon     | Analyses o   | f Produced    | Well Strea               | m. Mol%      |              |        |               |
|-----------------------------------|---------------|--------------|---------------|--------------------------|--------------|--------------|--------|---------------|
|                                   |               |              |               | R <b>eservoir</b><br>(ps | Pressure     |              |        |               |
| Component                         | 6.010         | 5.000        | 4.000         | 3.000                    | 2.100        | 1.200        | ~00    | 700*          |
| Carbon dioxide                    | 0.01          | 0.01         | 0.01          | 0.01                     | 0.01         | 0.01         | 0.01   | Trace         |
| Nitrogen                          | 0.11          | 0.12         | 0.12          | 0.13                     | 0.13         | 0.12         | 0.11   | 0.01          |
| Methane                           | 6 <b>8.93</b> | 70.69        | 73.60         | 76.60                    | 77 77        | 77.04        | 75.13  | 11.95         |
| Ethane                            | 8.63          | 8.67         | 8.72          | 8.82                     | 8. <b>96</b> | 9.37         | 9.82   | 4 10          |
| Propane                           | 5.34          | 5. <b>26</b> | 5.20          | 5.16                     | 5.16         | 5.44         | 5.90   | 4.80          |
| so-Butane                         | 1.15          | 1.10         | 1.05          | 1.01                     | 1.01         | 1.10         | 1 26   | 1.57          |
| n-Butane                          | 2.33          | 2.21         | 2.09          | 1.99                     | 1.98         | 2.15         | 2.45   | 3.75          |
| so-Pentane                        | 0.93          | 0.86         | 0.78          | 0.73                     | 0.72         | 0.77         | 0.87   | 2.15          |
| n-Pentane                         | 0.85          | 0.76         | 0. <b>70</b>  | 0.65                     | 0.63         | 0. <b>68</b> | 0.78   | 2.15          |
| lexanes                           | 1.73          | 1. <b>48</b> | 1.25          | 1.08                     | 1.01         | 1.07         | 1.25   | 6. <b>50</b>  |
| deptanes plus                     | 9. <b>99</b>  | 8.84         | 6.48          | 3. <b>82</b>             | 2.62         | 2.25         | 2.42   | 63. <b>02</b> |
|                                   | 100.00        | 100.00       | 100.00        | 100.00                   | 100.00       | 100.00       | 100.00 | 100.00        |
| Nolecular weight of heptanes plus | 158           | 146          | 134           | 123                      | 115          | 110          | 109    | 174           |
| Density of heptanes plus          | 0.827         | 0.817        | 0. <b>805</b> | 0.794                    | 0.784        | 0.779        | 0.778  | 0.837         |
| Deviation factor                  |               |              |               |                          |              |              |        |               |
| Equilibrium das                   | 1 140         | 1.015        | 0 897         | 0.853                    | 0 865        | 0 902        | 0.938  |               |
| Two-phase                         | 1.140         | 1.016        | 0.921         | 0.851                    | 0.799        | 0.722        | 0.612  |               |
| Nell stream produced              |               |              |               |                          |              |              |        |               |
| Cumulative percent of initial     | 0.000         | 6 624        | 17 478        | 32 927                   | 49 901       | 68 146       | 77 902 |               |

wellbore do not change. If the flowing rate is changed, 3 months may be required to restabilize the well. Once the well is stable, the gas and liquid production rates should be measured for 48 hours or more before sampling.

As is the case with oil reservoirs, gas-condensate reservoirs should be sampled early in their life, before significant pressure loss has occurred. Once reservoir pressure has declined below the original dewpoint, it is no longer possible to get samples that represent the original reservoir fluid. When the reservoir pressure falls below the retrograde dewpoint, liquid condensate forms from the reservoir fluid. Initially, there is no permeability to this liquid phase, and only the remaining reservoir gas flows to the wellbore. If we sample the well stream under these conditions by taking samples of separator gas and liquid and recombining them in the produced gas/liquid ratio, the dewpoint of the mixture should be expected to be the current reservoir pressure.

As reservoir pressure continues to fall, more and more retrograde liquid condenses in the formation: at some saturation point, this liquid will begin to flow and enter the wellbore. If the well is tested and sampled under these conditions, the resultant fluid after recombination would yield a dewpoint higher than the current reservoir pressure and could conceivably be higher than the original reservoir pressure. When the recombined reservoir fluid is examined at the current reservoir pressure, some free liquid will be found in the PVT cell. The amount of gas in the cell relative to the amount of liquid is usually interpreted as a measurement of the mobility ratio in the reservoir at the drainage boundary.

A reservoir fluid study on a condensate reservoir should include the composition of the separator gas.

separator liquid, and recombined reservoir fluid. In the past, these compositions were carried only through hexanes. with heptanes plus lumped together as one fraction. I recommend that these compositions be carried through decanes as a minimum, with the undecanes and heavier lumped together as a single fraction, to facilitate compositional modeling of gascondensate reservoirs. As indicated earlier, some of the more sophisticated major producing companies now request analyses to  $C_{30}$  and higher.

The reservoir fluid study should include a measurement of the retrograde dewpoint, the fluid compressibility above the dewpoint, and the gas and liquid volumes below the dewpoint during a constant-composition expansion.

Finally, the fluid study should consist of a simulated depletion. This depletion generally consists of a series of expansions and constant-pressure displacements of the reservoir fluid such that the volume of the cell remains constant at the termination of each displacement. This procedure is referred to as a constant-volume depletion. The reservoir gas produced during each constant-pressure displacement is charged to analytical equipment, and the composition and volume are determined. The deviation factor of the gas produced, the two-phase deviation factor of the hydrocarbons remaining in the cell, and the volume of liquid remaining in the cell should be measured at each of the depletion pressures. The two-phase deviation factor is not understood well by most reservoir engineers. The most popular form of material balance on a condensate reservoir is the P/Z-vs.-cumulativeproduction curve. The deviation factor used should be the deviation factor of all of the hydrocarbons remaining in the reservoir. This includes the

#### TABLE 2-CALCULATED RECOVERY DURING DEPLETION

|                                                                                                                   | Calculated Cumu                                 | lative Rec  | covery Dur              | ing Deplet              | ion                                             |                             |                          |                               |
|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-------------|-------------------------|-------------------------|-------------------------------------------------|-----------------------------|--------------------------|-------------------------------|
|                                                                                                                   |                                                 |             |                         | Reservoir<br>(ps        | Pressure<br>ig)                                 |                             |                          |                               |
| Cumulative Recovery per<br>MMscf of Original Fluid                                                                | Initial<br>in Place                             | 6.010       | 5.0 <b>00</b>           | 4,000                   | 3.0 <b>00</b>                                   | 2,100                       | 1,200                    | 700                           |
| Well Stream, Mscf                                                                                                 | 1,000                                           | 0           | 66.24                   | 174.78                  | 329.27                                          | 499.01                      | 681.46                   | 779.02                        |
| Normal Temperature Separation*<br>Stock-tank liquid, bbl<br>Primary-separator gas, Mscf<br>Second-stage gas, Mscf | 181.74<br>777.15<br>38.52                       | 0<br>0<br>0 | 10.08<br>53.18<br>2.26  | 21.83<br>145.16<br>5.17 | 31. <b>89</b><br>2 <b>83.78</b><br>8. <b>03</b> | 39.76<br>440.02<br>10.51    | 47.36<br>608.25<br>13.21 | 51 91<br>696.75<br>14.99      |
| Stock-tank gas, Mscf                                                                                              | 38.45                                           | 0           | 2. <b>29</b>            | 5. <b>38</b>            | 8.73                                            | 11.85                       | 15.51                    | 18.05                         |
| Total "Plant Products" in<br>Primary Separator Gas, gal<br>Ethane<br>Propane<br>Butanes (total)                   | 1.841<br>835<br>368                             | 0<br>0<br>0 | 126<br>58<br>26         | 344<br>163<br>73        | 674<br>331<br>155<br>73                         | 1,0 <b>50</b><br>526<br>256 | 1,474<br>749<br>374      | 1.709<br>873<br>441           |
| Total "Plant Products" in<br>Second-Stage Gas, gal<br>Ethane<br>Propage                                           | 204                                             | 0           | 12                      | 27                      | 42                                              | 55                          | 70                       | 80                            |
| Butanes (total)<br>Pentanes plus                                                                                  | 53                                              | 0           | 3<br>1                  | 8                       | 13<br>5                                         | 17<br>7                     | 23<br>10                 | 27<br>11                      |
| Total "Plant Products" in<br>Well Stream, gal                                                                     |                                                 |             |                         |                         |                                                 |                             |                          |                               |
| Ethane<br>Propane<br>Butanes (total)                                                                              | 2 <b>,295</b><br>1,4 <b>61</b><br>1,10 <b>4</b> | 0<br>0<br>0 | 15 <b>3</b><br>95<br>70 | 404<br>250<br>178       | 767<br>468<br>325                               | 1,171<br>707<br>486         | 1,626<br>979<br>674      | 1.8 <b>80</b><br>1,137<br>789 |
| Pentanes plus                                                                                                     | 7,352                                           | Ō           | 408                     | 890                     | 1,322                                           | 1,680                       | 2,037                    | 2.249                         |

Calculated Instantaneous Recovery During Depletion

|                                                |                   |        | Rese   | (psig) | sure          |        |        |
|------------------------------------------------|-------------------|--------|--------|--------|---------------|--------|--------|
|                                                | 6.010             | 5.000  | 4,000  | 3,000  | 2,100         | 1,200  | 700    |
| Normal Temperature Separation*                 |                   |        | ~~~~~  |        |               |        |        |
| Stock-tank liquid gravity, °API at 60°F        | 49.3              | 51.7   | 55.4   | 60.4   | 6 <b>4</b> .6 | 67.5   | 68.6   |
| Separator gas/well-stream ratio, Mscf/MMscf    |                   |        |        |        |               |        |        |
| Primary-separator gas only                     | 777.15            | 802.85 | 847.45 | 897.28 | 920.44        | 922.04 | 907.14 |
| Primary- and second-stage separator gases      | 815.67            | 837.04 | 874.26 | 915.77 | 935.04        | 936.84 | 925.38 |
| Separator-gas/stock-tank-liquid ratio, scf/STB |                   |        |        |        |               |        |        |
| Primary-separator gas only                     | 4,276             | 5.277  | 7,828  | 13,774 | 19.863        | 22,121 | 19,475 |
| Primary- and second-stage separator gases      | 4,488             | 5.502  | 8,076  | 14,058 | 20,178        | 22,476 | 19,867 |
| GPM from Smooth Well-Stream Compositions       |                   |        |        |        |               |        |        |
| Ethane plus                                    | 12.212            | 10.953 | 9.175  | 7.509  | 6.851         | 6.970  | 7.574  |
| Propane plus                                   | 9.917             | 8.648  | 6.856  | 5.164  | 4.469         | 4.479  | 4.963  |
| Butanes plus                                   | 8.45 <del>6</del> | 7.209  | 5.434  | 3.752  | 3.057         | 2.990  | 3.349  |
| Pentanes plus                                  | 7.352             | 6.158  | 4.437  | 2.800  | 2.108         | 1.959  | 2.17   |

remaining gas phase and the retrograde liquid. The two-phase deviation factor furnishes this information. On lean gas-condensate reservoirs, use of the wrong deviation factor will not result in serious error, but use of the wrong deviation factor on a richcondensate reservoir will cause serious errors and will generally lead to an understatement of reserves. Table 1 illustrates data typically measured during a depletion study.

The data measured during the depletion study are then used for a recovery calculation for a unit volume reservoir. The results of these calculations are illustrated in Table 2. The unit volume chosen was 1 MMcf  $[28 \times 10^3 \text{ m}^3]$  original reservoir fluid at the dewpoint pressure. Col. 1 in Table 2 illustrates the amount of stock-tank liquid, primary-separator gas, second-stage separator gas, stock-tank gas, etc., in place in this unit volume reservoir. The amount of stock-tank liquid in 1 MMcf [28×10<sup>3</sup> m<sup>3</sup>] reservoir fluid depends on the temperature and pressure of the separators at the surface. At this point, the reservoir fluid study can be tailored to a specific field condition by making the recovery calculations at the separator conditions used in the field. Because the data reported in Table 2 are the results of computer calculations, a variety of separator conditions can be investigated with a relatively small additional investment in computer time. Note that in Col. 1 of the example, 181.74 bbl [29 m<sup>3</sup>] of stock-tank liquid were initially in place in the unit volume reservoir. By the time the reservoir pressure had been depleted to 700 psig [4.8 MPa] (Col. 8), only 51.91 bbi 18:3 m<sup>3</sup> had been

produced. The difference between the initial in place and that produced at 700 psi [4.8 MPa] is 129.83 bbl  $[20.6 \text{ m}^3]$ . This amount remains in the reservoir at this pressure as retrograde loss or unproduced at this pressure. Similar figures are available for the primary-separator gas, second-stage gas, etc. (For a more detailed explanation of these recovery calculations, refer to Ref. 11.) The recovery calculations of the gas-condensate reservoir are made with the assumption that the retrograde liquid does not achieve mobility in the reservoir, which allows for a finite solution of a recovery calculation as opposed to the trial-and-error solution required for an oil reservoir where two phases flow. This assumption appears to be a good one for most gas-condensate reservoirs. Only the very rich gas-condensate reservoirs ever achieve sufficient liquid saturation to achieve liquid mobility in significant amounts. In cases where liquid mobility is significant, a compositional material-balance approach is required to predict reservoir performance.

#### Conclusions

The two basic methods of collecting reservoir fluid samples are subsurface and surface or separator samples. In either case, the reservoir must be sampled before a significant loss in pressure has been experienced, and great care must be taken in preparing a well for sampling. Both must be adhered to if representative samples are to be obtained.

The studies performed in the laboratory must recognize the character of the oil. For the laboratory personnel or the reservoir engineer to treat a nearcritical oil as an ordinary oil would grossly understate the producing potential of the field.

The reservoir engineer must make proper adjustments in fluid data to account for the differences in the flash and differential processes.

### Nomenciature

- $B_o$  = barrels of bubblepoint oil required to yield 1 STB [0.16 stock-tank m<sup>3</sup>] oil at 60°F [16°C], bbl/bbl [m<sup>3</sup>/m<sup>3</sup>]
- $B_{od}$  = barrels of oil at some reservoir pressure other than the bubblepoint pressure required to yield 1 bbl [0.16 m<sup>3</sup>] residual oil at 60°F [16°C] when differentially liberated to atmospheric pressure, bbl/bbl {m<sup>3</sup>/m<sup>3</sup>}
- $B_{odb}$  = barrels of bubblepoint oil required to yield 1 bbl [0.16 m<sup>3</sup>] residual oil at 60°F [16°C] when differentially liberated to atmospheric pressure, bbl/bbl [m<sup>3</sup>/m<sup>3</sup>]
- $B_{of}$  = barrels of oil at some reservoir pressure other than the bubblepoint pressure required to yield 1 STB [0.16 m<sup>3</sup>] at 60°F [16°C] when flashed through the separator to stock-tank conditions, bbl/bbl [m<sup>3</sup>/m<sup>3</sup>]
- $B_{ofb}$  = barrels of bubblepoint oil required to yield 1 STB [0.16 m<sup>3</sup>] at 60°F [16°C] when flashed through the

separator to stock-tank conditions. bbl/bbl  $[m^3/m^3]$ 

- $R_{sd}$  = cubic feet of gas in solution at any pressure less than the bubblepoint in 1 bbl [0.16 m<sup>3</sup>] residual oil when measured by differential liberation.  $tt^3/bbl$ [m<sup>3</sup>/m<sup>3</sup>]
- $R_{sdb}$  = cubic feet of gas in solution at the bubblepoint in 1 bbl [0.16 m<sup>3</sup>] residual oil when measured by differential liberation at reservoir temperature. ft<sup>3</sup>/bbl [m<sup>3</sup>/m<sup>3</sup>]
- $R_{sf}$  = cubic feet of separator and stock-tank gas in solution at any pressure less than the bubblepoint in 1 STB [0.16 m<sup>3</sup>], ft<sup>3</sup>/bbl [m<sup>3</sup>/m<sup>3</sup>]
- $R_{sfb}$  = cubic feet of separator and stock-tank gas in solution at the bubblepoint in 1 STB [0.16 m<sup>3</sup>], ft<sup>3</sup>/bbl [m<sup>3</sup>/m<sup>3</sup>]

#### References

- Reudelhuber, F.O.: "Separator Sampling of Gas-Condensate Reservoirs," Oil & Gas J. (June 21, 1954) 138-40.
- Reudelhuber, F.O.: "Better Separator Sampling of Crude Oil Reservoirs," Oil & Gas J. (Nov. 8, 1954) 181-83.
- Reudelhuber, F.O.: "Sampling Procedures for Oil Reservoir Fluids," JPT (Dec. 1957) 15-18.
- Dodson, C.R., Goodwill, D., and Mayer, E.H.: "Application of Laboratory PVT Data to Reservoir Engineering Problems," JPT (Dec. 1953) 287-298; Trans., AIME, 198.
- 5. Amyx, J.M., Bass, D.M., and Whiting, R.L.: Petroleum Reservoir Engineering (1978) 67-70.
- Dake, L.P.; Fundamentals of Reservoir Engineering (1978) 67-70.
   Reudelhuber, F.O. and Hinds, R.F.: "Compositional Material Balance Method for Prediction of Recovery from Volatile Oil Depletion Drive Reservoirs," JPT (Jan. 1957) 19-26; Trans., AIME, 210.
- Jacoby, R.H. and Berry, V.J. Jr.: "Method for Predicting Depletion Performance of a Reservoir Producing Volatile Crude Oil." JPT (Jan. 1957) 27-33; Trans., AIME, 210.
- Cordell, J.C. and Ebert, C.K.: "A Case History—Comparison of Predicted and Actual Performance of a Reservoir Producing Volatile Crude Oil," JPT (Nov. 1965) 1291-93.
- Kilgren, K.H.: "Phase Behavior of a High-Pressure Condensate Reservoir Fluid." JPT (Aug. 1966) 1001-05; Trans., AIME, 237.
- Moses, P.L.: "Consideration of Retrograde Loss in Determining the Optimum Economic Operation of a Gas Condensate Reservoir," 18th Southwestern Petroleum Short Course, Dept. of Petroleum Engineering, Texas Tech U. (April 1971).

#### Appendix—Toward a Better Understanding of the Differential Flash Process

Reservoir depletion and production consist of two separate processes or a combination of them: differential liberation of gas and flash liberation of gas. The differential liberation is defined as a process whereby gas is removed from oil as it is released from solution. By contrast, in a flash liberation of gas, all of the gas remains in contact with all of the oil until equilibrium between the two phases is attained.

Most people believe that the differential liberation process more nearly represents the process that occurs in an oil reservoir. Actually, the reservoir process is a combination of differential and flash. Immediately below the bubblepoint, while there is little or no-permeability to a gas phase, the process is

| Breesure | Solution GOB *  | Relative       |
|----------|-----------------|----------------|
| (psig)   | R <sub>sd</sub> | Volume. Bog ** |
| 2,620    | 854             | 1.600          |
| 2.350    | 763             | 1.554          |
| 2,100    | 684             | 1.515          |
| 1,850    | 612             | 1.479          |
| 1,600    | 544             | 1.445          |
| 1,350    | 479             | 1.412          |
| 1,100    | 416             | 1.382          |
| 850      | 354             | 1.351          |
| 600      | 292             | 1.320          |
| 350      | 223             | 1.283          |
| 159      | 157             | 1.244          |
| 0        | 0               | 1.075          |
|          | at 60°          | F= 1.000       |

Barrels of oil at indicated pressure and temperature per barrel of residual oil at 60°F



primarily a flash process. As the reservoir gas saturation reaches the critical saturation, gas begins to flow and is removed from the reservoir oil. This is a differential liberation of gas. Much of the gas, however, remains in the reservoir with the oil as pressure in the reservoir falls. This is a flash liberation of gas. So the reservoir process begins as a flash process and soon becomes a combination flash and differential process. As pressure continues to decline, more and more gas flows, bringing the process closer to a differential process. Once oil and gas enter the tubing, they flow together until they reach the separator. In the separator they are brought to equilibrium, and the gas and oil are separated. This is a flash separation.

The reservoir process is simulated in the laboratory by a differential liberation. The test is sometimes





referred to as a differential vaporization. The flash liberation is simulated in the laboratory with separator tests. It takes a marriage of the differential vaporization and separator tests to prepare the reservoir fluid data for engineering calculations.

In the laboratory, the differential liberation consists of a series—usually 10 to 15—of flash liberations. An infinite series of flash liberations is the equivalent of a true differential liberation. At each pressure level, gas is evolved and measured. The volume of oil remaining is also measured at each depletion pressure. This process is continued to atmospheric pressure. The oil remaining at atmospheric pressure is measured and converted to a volume at  $60^{\circ}F$  [ $16^{\circ}C$ ]. This final volume is referred to as the residual oil. The volume of oil at each of the higher pressures is divided by the volume of residual oil at  $60^{\circ}F$  [ $16^{\circ}C$ ].

| _ | the second se | the second s |               |                                                 |        |
|---|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------|-------------------------------------------------|--------|
|   |                                                                                                                 | TABL                                                                                                           | E A-2-SEPARAT | OR TESTS                                        |        |
|   | Separator<br>Pressure<br>(psig)                                                                                 | Temperature<br>(°F)                                                                                            | GOR. R        | Stock-<br>Tank Oil<br>Gravity<br>(°API at 60°F) | FVF. B |
| 1 | 50                                                                                                              | 75                                                                                                             | 737           |                                                 |        |
|   | to 0                                                                                                            | 75                                                                                                             | 41            | 40.5                                            | 1.481  |
|   |                                                                                                                 |                                                                                                                | 778           |                                                 |        |
|   | 100                                                                                                             | 75                                                                                                             | 67 <b>6</b>   |                                                 |        |
|   | to 0                                                                                                            | 75                                                                                                             | 92            | 40.7                                            | 1.474  |
|   |                                                                                                                 |                                                                                                                | 768           |                                                 |        |
|   | 200                                                                                                             | 75                                                                                                             | 602           |                                                 |        |
| } | to 0                                                                                                            | 75                                                                                                             | 178           | 40.4                                            | 1.483  |
|   |                                                                                                                 |                                                                                                                | 780           |                                                 |        |
|   | 300                                                                                                             | 75                                                                                                             | 5 <b>49</b>   |                                                 |        |
| i | to O                                                                                                            | 75                                                                                                             | 246           | 40.1                                            | 1.495  |
| Ì |                                                                                                                 |                                                                                                                | 795           |                                                 |        |

\*GOR in cubic feet of gas at 14.65 psis and 60°F per barrel of stock-tank oil at 60°F \*\*FVF is barrels of saturated oil at 2.620 psig and 220°F per barrel of stock-tank oil at 60°F



Table A-1 and Fig. A-1 illustrate these data. The volumes of gas evolved are also divided by the residual oil volume to calculate the solution GOR data in Table A-1 and Fig. A-2. These data are reported in this form by long-standing, but unfortunate, convention. The residual oil in the reservoir is never at 60°F [16°C] but always at reservoir temperature. Reporting these data relative to the residual oil at 60°F [16°C] gives the relative-oil-volume curve the appearance of an FVF curve, leading to its misuse in reservoir calculations. A better method of reporting these data is in the form of a shrinkage curve. We may convert the relative-oil-volume data in Fig. A-1 and Table A-1 to a shrinkage curve by dividing each



relative oil volume factor,  $B_{od}$ , by the relative oil volume factor at the bubblepoint,  $B_{odb}$ .

The shrinkage curve now has a value of 1 at the bubblepoint and a value of less than 1 at subsequent pressures below the bubblepoint, as in Fig. A-3. As pressure is reduced and gas is liberated, the oil shrinks. The shrinkage curve describes the volume of this original barrel of oil in the reservoir as pressure declines. It does not relate to a stock-tank barrel or surface barrel.

Journal of Permission \*

We now know the behavior of the oil in the eservoir as pressure declines. We must have a way of bringing this oil to the surface through separators and into a stock tank. This process is a flash process. Most reservoir fluid studies include one or more eparator tests to simulate this flash process. Table  $\lambda$ -2 is a typical example of a set of separator tests. During this test, the FVF is measured. The FVF is he volume of oil and dissolved gas entering a vellbore at reservoir pressure and temperature livided by the resulting stock-tank oil volume after it passes through a separator.

The FVF is  $B_o$ ; because separators result in a flash eparation, we should add a subscript,  $B_{of}$ . In most luid studies, these separator tests are measured only on the original oil at the bubblepoint. The FVF at the subblepoint is  $B_{off}$ . To make solution-gas-drive or other material-balance calculations, we need values of  $\beta_{of}$  at lower reservoir pressures. From a technical tandpoint, the ideal method for obtaining these data s to place a large sample of reservoir oil in a cell, reat it to reservoir temperature, and pressure-deplete t with a differential process to simulate reservoir iepletion. At some pressure a few hundred psi below he bubblepoint, a portion of the oil is removed from he cell and pumped through a separator to obtain the lash FVF,  $B_{of}$ , at the lower reservoir pressure. This hould be repeated at several progressively lower eservoir pressures until a complete curve of  $B_{of}$  vs. eservoir pressure has been obtained. These data are occasionally measured in this manner in the aboratory; this method, which is the best for btaining data, is sometimes called the Dodson nethod.<sup>4</sup> The process is time-consuming and consequently adds to the cost of a study. Most studies nclude only values of  $B_{ofb}$ , the FVF at the subblepoint. The values of  $B_{of}$  at lower pressures nust be obtained by other means. A method has been proposed for accomplishing this mathematically. 5,6 In essence, the method calls for multiplying the flash FVF at the bubblepoint,  $B_{ofb}$ , by the shrinkage actors at various reservoir pressures obtained earlier. The shrinkage factor was calculated by dividing the relative oil volume factors,  $B_{od}$ , by the relative oil volume factor at the bubblepoint,  $B_{odb}$ . If we combine both calculations, we can start with the differential-relative-volume curve and adjust it to separator or flash conditions by

$$B_o = B_{od} \frac{B_{ofb}}{B_{odb}}$$
(A-1)

This calculation is illustrated in Fig. A-4.

To perform material-balance calculations, we must also have the separator and stock-tank gas in solution as a function of reservoir pressure. These values are expressed as standard cubic feet per barrel and usually are designated  $R_{sf}$ . The separator tests give us this value at the bubblepoint,  $R_{sfb}$ . As pressure declines in the reservoir, gas is evolved from solution. The amount of gas remaining in solution in the oil is then somewhat less. The differential vaporization tells us how much gas was evolved from the oil in the reservoir:  $(R_{sdb} - R_{sd})$ , where  $R_{sdb}$  is the amount of gas in solution at the bubblepoint as measured by differential vaporization at the reservoir temperature and  $R_{sd}$  is the gas in solution at subsequent pressures.

The units of  $R_{sdb}$  and  $R_{sd}$  are standard cubic feet per barrel of residual oil. Because we must have the gas in solution in terms of standard cubic feet per barrel of stock-tank oil, this term must be converted to a stock-tank basis. If we divide  $(R_{sdb} - R_{sd})$  by  $B_{odb}$ , we have the gas evolved in terms of standard cubic feet per barrel of bubblepoint oil. If we then multiply by  $B_{ofb}$ , we will have the gas evolved in terms of standard cubic feet per barrel of stock-tank oil. This expression now is  $(R_{sdb} - R_{sd})(B_{ofb}/B_{odb})$ . The gas remaining in solution then is  $R_s = R_{sfb} - (R_{sdb} - R_{sd})(B_{ofb}/B_{odb})$  standard cubic feet per stocktank barrel. For every pressure studied during the differential liberation,  $R_s$  may be calculated from this equation. This calculation is illustrated in Fig. A-5.

It is a fairly common practice to use differential vaporization data for material-balance calculations. Values of  $B_{od}$  and  $R_{sd}$  are almost always higher than the corresponding values from separator tests; consequently, calculations of OIP and recoverable oil will usually be lower than is correct. The differential vaporization data should be converted to separator flash conditions before use in calculations. The methods presented in this paper are approximations. For more accurate data, consider the method proposed by Dodson *et al.*<sup>4</sup>

#### SI Metric Conversion Factors

| °API                 | 141.5/(131.5+          | °API) | = | g/cm <sup>3</sup> |
|----------------------|------------------------|-------|---|-------------------|
| bbl                  | × 1.589 873            | E-01  | = | m <sup>3</sup>    |
| ft <sup>3</sup>      | × 2.831 685            | E-02  | = | m <sup>3</sup>    |
| ft <sup>3</sup> /bbl | × 1.801 175            | E-01  | = | $m^3/m^3$         |
| °F                   | $(^{\circ}F - 32)/1.8$ |       | = | °C                |
| gal                  | × 3.785 412            | E-03  | = | m <sup>3</sup>    |
| psi                  | × 6.894 757            | E+00  | = | kPa               |

JPT

This paper is SPE 15835. Die te are den tive presentations that summarize the state of the art in an area of techni ing recent de in for rea na who are n xt 160 a in the too Wite zed as exp II. these articl ts in the m s provide references to more definitive work and present spec its only to ill et To inform the general re minio of m iogy. Purpi ni advanc A IN VERICUS ng. A solitbound anth iss: Dec. 1981-Dec. 1983, is available from SPE's Book Order Dect



ATTACHMENT 6

S.P.G.

### MARATHON OIL COMPANY HOBBS, NEW MEXICO OPERATIONS

\*168+ HOUR SHUT IN SONIC FLUID LEVEL REPORT

Date: 5/1/92

Field:Osudo / North WolfcampWell: Jordan "B" # 2

Fluid Level Data

Fluid Above Pump: 8448 Ft. Casing Pressure: 0 PSIG

Fluid Level Depth: 2941 Ft. Fluid Level Depth: 94 Jts.

Well Test Data Date: \*12/8/91 = latest available test

Produced:0 bo+150 bw=150 bbls.totalOper. @ Unknown0 "Gross SPMWith an:1.25 " Pump

Avail. gross pump displ.=0 Bbls. per dayPumping speed req. to prod. test volume =ERR Strokes per min.

Tubing Record DataDate:5/5/90Size:2-7/8"

Pump Depth:11389 Ft.Pump Depth:364 Jts.

Perfs: 11440'- 50' w/ Perforated tbg. nipple f/ 11487' - 11491'.

Tubing anchor @ 11392 Ft. 364 Joints from surface

Ave. Joint Length: 31.29 Ft.

Tested By: Greenough

Remarks: C640-285-120 Lufkin w/ sub = 0#, 8478 ROA 4 hole cranks & OARO
masters w/ OAS auxiliaries. Operating in the # 3 ( ") stroke
hole w/ an 8.5 x 10 Ajax.

\* Well has been shut in since 12/91.

| Jordanb2   | WELL NAME           |
|------------|---------------------|
| 05-01-1992 | DATE                |
| 11445      | FORMATION DEPTH(FT) |
| 11389      | PUMP DEPTH(FT)      |
| 31.29      | JOINT LENGTH(FT)    |
| .8         | GAS GRAVITY(SG)     |
|            | N28                 |
|            | C <b>02</b>         |
|            | H2S <b>%</b>        |
| 42         | OIL GRAVITY(API)    |
| 1.05       | WATER GRAVITY(SG)   |
| 90         | SURFACE TEMP(F)     |
| 170        | BOTTOMHOLE TEMP(F)  |
| 0          | BOPD                |
| 150        | BWPD                |
| PRODUCTNG  | CONDITION           |
| 15         | CASING(PSIG)        |
| 364        | # JOINTS            |
| 0          | dP                  |
| 10         | dT                  |
|            |                     |
|            | CASTNG(PSTG)        |
| 04         | # TOTNES            |
| 74         | # UOINIS            |

•

## ANALYZING WELL PERFORMANCE(1.2) ACOUSTIC BHP SOFTWARE BY ECHOMETER

# PRODUCING BHP PBHP= 50(PSIA) 100% LIQUID IN COLUMN LIQUID AT 11390 (FT) STATIC BHP SBHP= 3867(PSIA) OIL AT 2941 (FT) H20 AT 2941 (FT) VOGEL'S IPR CURVE 100% EFFICIENCY 0.0 MAX OIL RATE 150.4 MAX LIQ RATE

ATTACHMENT 5

.

# NEW MEXICO OIL CONSERVATION COMMSSION MULTIPOINT AND ONE POINT BACK PRESSURE TEST FOR GAS WELL

Form C-122 Revised 9-1-65

| Ту             | pe Test       |                   |         |                                       |                 |                                            |                             |                 |              | Test Date                                      |                                               | 1              | ···       |            |            |
|----------------|---------------|-------------------|---------|---------------------------------------|-----------------|--------------------------------------------|-----------------------------|-----------------|--------------|------------------------------------------------|-----------------------------------------------|----------------|-----------|------------|------------|
|                | Ĺ             | X Initic          | 11      |                                       | An              | nual                                       |                             | Spe             | ecial        |                                                |                                               |                |           |            |            |
| Co             | mpany         |                   |         |                                       |                 | Connectio                                  | d i                         |                 |              |                                                |                                               | <u>+</u>       |           |            |            |
| Т              | XO PROD       | UCTIO             | N CO.   |                                       |                 | то                                         | AIR                         |                 |              |                                                |                                               |                |           |            |            |
| Po             | SUDO WE       | ST                |         |                                       |                 | U General I<br>WO                          | LFCAMP                      |                 |              |                                                |                                               | Unit           |           |            |            |
| Co             | nuletion Dot  | e                 |         | Total Depth                           |                 |                                            | Plug Back                   | ( T'D           |              | Elevation                                      |                                               | Furmo          | t Loggo N |            |            |
| 6              |               |                   |         | 12 8                                  | 8/              |                                            | 110                         | 50              | ]            | Lioration                                      |                                               | Tama           |           | 1          |            |
|                | -24-85        | W1.               |         | ,0                                    | 04<br>ISet A    | <u></u>                                    |                             | 00              |              |                                                |                                               | Jord           | ian B     |            |            |
|                | 1.11          | 17#               |         | 4 892                                 | 12              | 884                                        | From                        | 11440           | . т <i>и</i> | 11445                                          |                                               | 2              |           |            |            |
| Th             | 25 SIZO       | WI.               |         | <u>a</u>                              | Set A           |                                            | Perforatio                  | 11440           |              | 11445                                          |                                               |                | Sec.      | Two        | Bue        |
| 2              | 7/8"          | 6 44              | 1       | 2 441                                 | 11              | 289                                        | From                        | 0               | DEM          | <b>G</b> NIDED                                 |                                               | C              | 1 1       | 200        | 255        |
| Tys            | e Well - Sine | ile - Bra         | denhead | 1-G.G. or G                           | .O. Mult        | iple                                       |                             | Packer S        | et At        | ENDED                                          |                                               | County         | 11        | 203        | 200        |
|                | TNCI F        |                   |         |                                       |                 | ·                                          |                             | 1               | 1 2 8 0      |                                                |                                               |                |           |            |            |
| E TO           | ducing Thru   |                   | Reserv  | ou Temp. •1                           | M               | ean Annua                                  | Temp. *F                    | Baro, Pr        | 1207         | 8                                              |                                               | State          |           |            | L          |
| T              | ubing         |                   | 1870    | 0 11442                               |                 | 609                                        |                             |                 | 1            | .a.<br>2 J                                     |                                               | NM             |           |            |            |
| <u> </u>       |               | н                 | 107     | Ga                                    |                 | CO 2                                       | 3 N o                       | <u> </u>        | * H-S        | J.Z                                            | VOI                                           | Meter          | Run       | Tape       |            |
| 1              | 1442          | 1147              | 42      | 7582                                  |                 | 1 507                                      | 7                           | 97              |              |                                                | - <u>-</u>                                    | 4.0            | 126       |            | lango      |
| <u> </u>       | 1776          | L. <u>+ 4.7</u> * | FI      | OW DAT                                | <br>A           | 1.507                                      | /                           |                 |              |                                                |                                               | ASING          |           |            | Durange    |
|                | Prover        |                   | Ortitce | Press.                                |                 | Diff.                                      | Temp.                       | Pres            | <b>.</b> .   | Temp                                           | Dra                                           | 88.            | Temo      | -1         | of         |
| NU.            | Line          | ^                 | Size    | p.s.i.g.                              | ļ               | h <sub>w</sub>                             | •F                          | p.s.1           | .q.          | •F                                             | p. s.                                         | i.g.           | • F       |            | Flow       |
| SI             |               |                   |         | +                                     |                 |                                            | 1                           | <u> </u>        |              | +                                              | PKR                                           |                | CHOKE     |            | 72 Hrs     |
| 1.             | 4 026         | x 2               | > 000   | / 1                                   |                 | 4                                          | 70°                         | 2380            |              | 75°                                            |                                               |                | 65/64     |            | 1 Hr       |
| 2.             | 4 026         | <u>x</u> 7        | > 000   | 41                                    |                 | 64                                         | 70°                         | 2310            |              | 75                                             |                                               |                | 8/64      |            | 1 Hr.      |
| З.             | 4 026         | x 7               | > 000   | 40                                    |                 | 25                                         | 70                          | 2090            |              | 75                                             |                                               |                | 16/64     |            | 1 Hr.      |
| 4              | 4.026         | x 2               | > .000  | 42                                    |                 | 41                                         | 70                          | 1950            |              | 75                                             |                                               |                | 11 3/4    |            | 1 Hr.      |
| 5.             | 4.020         |                   |         |                                       |                 |                                            |                             | - 1750          |              | <u>+ · · · · · · · · · · · · · · · · · · ·</u> |                                               |                | 11 37     |            |            |
|                |               |                   |         | · · · · · · · · · · · · · · · · · · · |                 | RATEO                                      | F FLOW                      | CALCUI          | ATIC         |                                                | <u> </u>                                      |                |           |            |            |
|                |               |                   | 1       |                                       |                 |                                            | Elor                        | Teen            | T            | Gravity                                        | - <u> </u>                                    |                | 1         |            |            |
|                | Coeffic       | cient             | -       |                                       | -               | Pressure                                   | F                           | actor           |              | Factor                                         | Co                                            | moresa.        | F         | late of    | Flow       |
| NO.            | (24 H         | our)              |         | * w m                                 | 1               | Pm                                         |                             | Ft.             |              | Fg                                             | Fac                                           | lor, Fpv       |           | Q, M       | cíd        |
| 1              | 10.81         | ·                 |         | 14.72                                 |                 | 54.2                                       | .99                         | 05              | 1.           | 149                                            | N                                             | IL             | 331       | .8         |            |
| 2.             | 19.81         |                   |         | 18.41                                 |                 | 54.2                                       | .99                         | 05              | 1.           | 149                                            | N                                             | IL             | 415       | .1         |            |
| 3.             | 19.81         |                   |         | 36.47                                 |                 | 54.2                                       | .99                         | 05              | 1.           | 149                                            | N                                             | IL             | 822       | .2         |            |
| 4.             | 19.81         |                   |         | 47.57                                 |                 | 54.2                                       | .99                         | 05              | 1.           | 149                                            | N                                             | IL             | - 107     | 2.5        |            |
| 5.             |               |                   |         |                                       |                 |                                            |                             |                 |              |                                                |                                               |                |           |            |            |
|                |               | Tam               |         | Ŧ                                     |                 | Gas                                        | Liquid Hy                   | drocarbon i     | Rotio _      | 6.                                             | .875                                          |                |           |            | Mc(/bbl.   |
| NO.            | 4             | 1 emp             |         | ч <del>г</del>                        |                 | A.P                                        | .I. Gravity                 | of Liquid       | Hydroc       | arbons                                         | 53.7                                          | @ 60°          |           |            |            |
| 1.             | .08           | 530               | )       | 1.31                                  | NIL             | Spe                                        | cific Gravit                | y Separato      | r Gas_       |                                                | .7582                                         |                | XXX       | (XX)       | XXXX       |
| 2.             | .08           | 530               | )       | 1.31                                  | NIL             | Spe                                        | cific Gravit                | y Flowing       | Fluid        | X                                              | xxxx                                          |                |           |            |            |
| 3.             | .08           | 530               | )       | 1.31                                  | NIL             | Crii                                       | lical Pressu                |                 |              | 674                                            |                                               | P.S.I.         | A.        |            | _ P.S.I.A. |
| 4.             | .08           | 530               | )       | 1.31                                  | NIL             | Crii                                       | lical Tempe                 | rature          |              | 405                                            |                                               |                | я         |            | R          |
| 5.             |               | 1                 |         |                                       |                 |                                            |                             |                 |              |                                                |                                               |                |           |            |            |
| P <sub>c</sub> | 4698          | Pc <sup>2</sup>   | 2207    | 1.2                                   |                 | <u> </u>                                   | P <sub>2</sub> <sup>2</sup> |                 | 220          | 71.2                                           | Г                                             | P <sup>2</sup> | _] n      | 941        | 8.9        |
| NО             | P,2           | Pw                |         | P <sub>w</sub> <sup>2</sup>           | $P_{c}^{2} - 1$ | $\mathbf{P}_{\mathbf{w}}^{\mathbf{z}}$ (1) | D2 1.7                      | , <sup>=</sup>  |              |                                                | (2)                                           | 2 02           | -  =-     |            |            |
| 1              |               | 448               | 33      | 20097.3                               | <u>1973</u>     | .9                                         | rc r₩                       |                 |              |                                                | ٬ ۲                                           | c" - W         | 1         |            |            |
| 2              |               | 435               | 50      | 18922.5                               | 3148            | .7                                         | г                           | ·               | ٦.           |                                                |                                               |                |           |            |            |
| 3              |               | 399               | 7       | 15976                                 | 6095            | <u>-2</u> AO                               | 1. Q -                      | Pc*             | _ "=         | 2513                                           | 3.8                                           |                |           |            |            |
| 4              |               | 335               | 57      | 12652.3                               | 9418            | .9                                         | L                           | $P_c^2 - R_w^2$ | 1            |                                                |                                               |                |           |            |            |
| 5              |               | <u> </u>          |         |                                       |                 |                                            |                             |                 | _            |                                                |                                               |                | <u> </u>  |            |            |
| Abs            | plute Open F  | 'low              | 2       | 514                                   |                 |                                            | Mcfd                        | e 15.025        | Angle        | e of Slope 🕀                                   | · <u>····</u> ······························· | 45°            | Slop      | , <u>1</u> | .000       |
| Her            |               | alcul             | ated    | from ki                               | nown            | Bottom                                     | Hole P                      | ressur          | es t         | aken wit                                       | h a K                                         | luster         | Gauge     |            |            |
| W.             | 11 made       | 16 Rh             | 10      | of                                    | ensat           | e duri                                     | ng test                     |                 |              |                                                |                                               |                |           |            |            |
|                | - 2 د موند    |                   |         |                                       |                 |                                            |                             |                 |              |                                                |                                               |                |           |            |            |
| App            | roved By Co   | mission           | :       | Conduc                                | ted By:         |                                            |                             | Calculate       | d By:        |                                                |                                               | Checked        | By:       |            |            |
|                |               |                   |         |                                       | R               | .W.                                        |                             |                 | J.           | D.                                             |                                               | J.D            |           |            |            |



Q = Mcf/Day

| TFCT DATE                        |             | 0 × 111                      | 1006        |             |          |        |    |    |             |          |             |          |            |          |
|----------------------------------|-------------|------------------------------|-------------|-------------|----------|--------|----|----|-------------|----------|-------------|----------|------------|----------|
| TEST DEPT                        | h:          | JULI 0 C0<br>11442 FEET      | C061 (1)    |             |          |        |    |    |             |          |             |          |            |          |
| ELEMENT N<br>RANGE:<br>CLOCK NO: | :0          | 34911<br>0-6000 PSI<br>20439 |             |             |          |        |    |    |             |          |             |          |            |          |
| RANGE :                          |             | 0-72 Hours                   |             |             |          |        |    |    |             |          |             |          |            |          |
| NOTE:                            | See tabulé  | ation of th                  | ues and pre | ssures on   | attached | sheet. |    |    |             |          |             |          |            |          |
|                                  |             |                              |             |             |          |        |    |    |             |          |             |          |            |          |
|                                  |             |                              |             |             |          |        |    |    |             |          |             |          |            |          |
|                                  |             |                              |             |             |          |        |    |    |             |          |             |          |            |          |
|                                  |             |                              |             |             |          |        |    |    |             |          |             |          |            |          |
|                                  |             |                              |             | TIME        | IN HOURS |        |    |    |             |          |             |          |            |          |
| 0                                | 8           | 16                           | 24          | 32          | 40       |        | 48 | 56 | 7           | 54       | 72          |          |            |          |
|                                  |             |                              |             | :<br>       |          |        | ;  |    | -           |          |             |          |            |          |
| 5050                             |             |                              |             |             |          |        |    |    |             |          |             |          |            |          |
|                                  |             |                              |             | <del></del> |          |        |    |    | -           |          |             |          |            |          |
| 4800                             | 1           |                              |             |             |          |        |    |    |             |          |             |          |            |          |
|                                  |             |                              |             |             |          |        |    |    |             |          |             |          |            |          |
| 4550 Rate I                      |             |                              |             | -           |          |        |    |    |             |          |             |          |            |          |
|                                  |             |                              |             |             |          |        |    |    |             |          | -+ ÷-       |          |            |          |
| 4300 Rate                        |             | -                            |             |             |          |        |    |    |             |          |             |          |            |          |
|                                  |             |                              |             |             |          |        |    |    |             |          |             |          |            |          |
| 4050 Rate BV                     | • • •       |                              |             |             |          |        |    | -  |             | JXI.     | PRODUCTION  | COMPARY  |            |          |
|                                  |             |                              |             |             |          |        |    |    |             | ,<br>T   | ORDAN "B" N | 0.2      |            |          |
| 3800                             |             |                              | +           |             |          |        | +  |    | BOTTOM      | HOLE PR  | ESSURE 4-PO | INT TEST | AND BOT"IG | N HOLE   |
|                                  |             | · · ·                        |             |             |          |        |    |    | PRESSUI     | KE BUILD | -UP TEST.   |          |            |          |
| 3550                             | <b>TE 4</b> | • •                          | -           |             |          | -      |    |    | N NHOP      | WEST     | ENGINEERING | 5 CO.    | HOBBS, NE  | W MEXICO |
|                                  |             |                              |             |             |          |        |    |    | Date: 7-12- | -85 Draw | n by bsm    | Scale as | show       |          |

XO PRODUCTION COMPANY ORDAN "B" NO. 2 SOTTOM HOLE PRESSURE 4-POINT TEST AND SOTTOM HOLE PRESSURE BUILD-UP TEST. ABULATION OF TIMES AND PRESSURES.

| 'EST DATE: | JULY 8-11, 1985            |
|------------|----------------------------|
| EST DEPTH: | 11,442 FEET                |
| LEMENT NO: | 34911 ( <b>0-6000</b> psi) |

| ATE                | TIME                                | CUM HRS./MIN.            | PSIG @ 11,442 FEET                                             |
|--------------------|-------------------------------------|--------------------------|----------------------------------------------------------------|
| -8-85              | 2:00 P.M.<br>2:30 P.M.<br>2:45 P.M. | 00 Hrs. 00 Min.<br>00 15 | 4698 gauge reached 11,442'<br>4698 Begin 4-Point Test.<br>4571 |
|                    | 3:00 P.M.                           | 00 30                    | 4526                                                           |
|                    | 3:15 P.M.                           | 00 45                    | 4495                                                           |
|                    | 3:30 P.M.                           | 01 00                    | 4483 End Rate I                                                |
|                    | 3:45 P.M.                           | 01 15                    | 4381                                                           |
|                    | 4:00 P.M.                           | 01 30                    | 4369                                                           |
|                    | 4:15 P.M.                           | 01 45                    | 4359                                                           |
|                    | 4:30 P.M.                           | 02 00                    | 4350 End Rate II                                               |
|                    | 4:45 P.M.                           | 02 15                    | 4133                                                           |
|                    | 5:00 P.M.                           | 02 30                    | 4079                                                           |
|                    | 5:15 P.M.                           | 02 45                    | 4045                                                           |
|                    | 5:30 P.M.                           | 03 00                    | 3997 End Rate III                                              |
|                    | 5:45 P.M.                           | 03 15                    | 3786                                                           |
|                    | 6:00 P.M.                           | 03 30                    | 3681                                                           |
|                    | 6:15 P.M.                           | 03 45                    | 3633                                                           |
|                    | 6:30 P.M.                           | 04 00                    | 3557 End Rate IV                                               |
| -8-85              | 6:30 P.M.                           | 00 Hrs. 00 Min.          | 3557 Shut-In, Begin Build-Up                                   |
|                    | 6:45 P.M.                           | 00 15                    | 3913                                                           |
|                    | 7:00 P.M.                           | 00 30                    | 3982                                                           |
|                    | 7:15 P.M.                           | 00 45                    | 4021                                                           |
|                    | 7:30 P.M.                           | 01 00                    | 4287                                                           |
|                    | 8:00 P.M.                           | 01 30                    | 4462                                                           |
|                    | 8:30 P.M.                           | 02 00                    | 4631                                                           |
|                    | 9:00 P.M.                           | 02 30                    | 4659                                                           |
|                    | 9:30 P.M.                           | 03 00                    | 4671                                                           |
|                    | 10:30 P.M.                          | 04 00                    | 4677                                                           |
| '-8-85             | 11:30 P.M.                          | 05 00                    | 4677                                                           |
| <sup>7</sup> -9-85 | 4:30 A.M.                           | 10 00                    | 4680                                                           |
|                    | 9:30 A.M.                           | 15 00                    | 4683                                                           |
| 7 <b>-9-85</b>     | 2:30 P.M.                           | 20 00                    | 4683                                                           |
| 7-10-85            | 12:30 A.M.                          | 30 00                    | 4683                                                           |
|                    | 10:30 A.M.                          | 40 00                    | 4683                                                           |
| 7-10-85            | 8:30 P.M.                           | 50 00                    | 4683                                                           |
| 7-11-85            | 6:30 A.M.                           | 60 00                    | 4683                                                           |
| 7-11-85            | 10:00 A.M.                          | 63 30                    | 4683 Gauge off bottom, end of tes                              |

TEST CONDUCTED BY:

JOHN WEST ENGINEERING CO.

| TEST DATE:       JULY 8 to 11, 1985         TEST DEPTH:       11,442 FEET         II.442 FEET       53217         ELEMENT NO:       53217         RANGE:       0-7100 PSI         CI OCK NO:       5-794. | RANGE: 0-72 Hours<br>NOTE: See tabulation of times and pressures on attached sheet. | TIME IN HOURS |      |       |      |       | Z Z TXO PRODUCTION COMPANY | JORDAN "B" NO. 2 | BOTTOM HOLE PRESSURE 4-POINT TEST AND BOTTOM HOLE PRESSURE BUILD-UP TEST. | A VEST ENGINEERING CO. HOBBS. NEW MEXICU |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------------|------|-------|------|-------|----------------------------|------------------|---------------------------------------------------------------------------|------------------------------------------|
|                                                                                                                                                                                                           |                                                                                     | c             | 5050 | 4 BOD | 4550 | .DI24 | AD50 RATE 2                | RATE 3           | 3800                                                                      | 3550                                     |

| TXO PRODUCTION CO<br>JORDAN "B" NO. 2<br>BOTTOM HOLE PRESS<br>BOTTOM HOLE PRESS<br>TABULATION OF TIM | DMAPNY<br>SURE 4-POINT TEST<br>SURE BUILD-UP TES<br>MES AND PRESSURES                                | AND<br>T.                                                                                                                                                                             | TEST CONDUCTED BY:<br>JOHN WEST ENGINEERING COMPANY                                                       |
|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| TEST DATE:<br>TEST DEPTH:<br>ELEMENT NO:<br>OPERATOR:                                                | JULY 8 to 11, 1<br>11,442 FEET<br>53217 (0-7100 P<br>R.W.                                            | 985<br>SI)                                                                                                                                                                            |                                                                                                           |
| DATE                                                                                                 | TIME                                                                                                 | CUM HRS./MIN.                                                                                                                                                                         | PSIG @ 11,442 FEET                                                                                        |
| 7-8-85                                                                                               | 2:00 P.M.<br>2:30 P.M.<br>2:45 P.M.<br>3:00 P.M.<br>3:15 P.M.<br>3:30 P.M.                           | 00 Hrs. 00 Min.<br>00 15<br>00 30<br>00 45<br>01 00                                                                                                                                   | 4691 gauge reached 11,442 Feet<br>4691 Shut-In, Begin Build-Up<br>4566<br>4520<br>4491<br>4477 End Rate I |
|                                                                                                      | 3:45 P.M.<br>4:00 P.M.<br>4:15 P.M.<br>4:30 P.M.                                                     | 0115013001450200                                                                                                                                                                      | 4376<br>4365<br>4354<br>4344 End Rate II                                                                  |
|                                                                                                      | 4:45 P.M.<br>5:00 P.M.<br>5:15 P.M.<br>5:30 P.M.                                                     | 0215023002450300                                                                                                                                                                      | 4129<br>4075<br>4039<br>3991 End Rate III                                                                 |
|                                                                                                      | 5:45 P.M.<br>6:00 P.M.<br>6:15 P.M.<br>6:30 P.M.                                                     | 03 15<br>03 30<br>03 45<br>04 00                                                                                                                                                      | 3780<br>3676<br>3626<br>3551 End Rate IV                                                                  |
|                                                                                                      | 6:30 P.M.<br>6:45 P.M.<br>7:00 P.M.<br>7:15 P.M.<br>7:30 P.M.<br>8:00 P.M.<br>8:30 P.M.<br>9:00 P.M. | 00 Hrs.       00 Min.         00       15         00       30         00       45         01       00         01       30         02       00         02       30         03       00 | 3551 Shut-In, Begin Build-Up<br>3909<br>3976<br>4014<br>4283<br>4455<br>4627<br>4656<br>4666              |
| 7-8-85<br>7-9-85<br>7-9-85<br>7-10-85                                                                | 10:30 P.M.<br>11:30 P.M.<br>4:30 A.M.<br>9:30 A.M.<br>2:30 P.M.<br>12:30 A.M.<br>10:30 A.M.          | 04       00         05       00         10       00         15       00         20       00         30       00         40       00                                                   | 4666<br>4666<br>4674<br>4677<br>4677<br>4677<br>4677                                                      |
| 7-10-85<br>7-11-85<br>7-11-85                                                                        | 8:30 P.M.<br>6:30 A.M.<br>10:00 A.M.                                                                 | 50         00           60         00           63         30                                                                                                                         | 4677<br>4677<br>4677 Gauge off bottom, end of test                                                        |



| LIENT:       | JOHN WEST ENGINEERING | ANALYSIS NUMBER: | 7527   |
|--------------|-----------------------|------------------|--------|
| ADDRESS:     | 412 N DAL PASO        | DATE OF RUN:     | 7 9 85 |
| DITY, STATE: | HOBBS NM 88240        | DATE SECURED:    | 7 8 85 |
|              |                       |                  |        |

AMPLE IDENT: TXO PRODUCING COMPANY - JORDAN 8-42 AMPLING PRESS: SAMPLING TEMP:70 DEG F

EMARKS: TRAP PRESSURE 42 #

\*\*\*\*\*\*\*\*\* GAS ANALYSIS \*\*\*\*\*\*\*\*

|                                                                                                                                 | M(<br>PE     | DLE<br>ERCENT                                                                            | G                          | AL/<br>CF                                     |              |
|---------------------------------------------------------------------------------------------------------------------------------|--------------|------------------------------------------------------------------------------------------|----------------------------|-----------------------------------------------|--------------|
| ITROGEN<br>ARBON DIOXIDE<br>IETHANE<br>THANE<br>ROPANE<br>SO-BUTANE<br>IORMAL BUTANE<br>SO-PENTANE<br>IORMAL PENTANE<br>IEXANES | j            | 0.797<br>1.507<br>74.728<br>12.805<br>6.312<br>0.912<br>1.839<br>0.384<br>0.388<br>0.328 | 3.<br>1.<br>Ø.<br>Ø.<br>Ø. | 415<br>733<br>298<br>578<br>141<br>140<br>135 |              |
| OTAL:                                                                                                                           | 10           | 30.000                                                                                   | 6.                         | . 440                                         |              |
| ROPANE GPM:<br>THANE GPM:                                                                                                       | 1.73<br>3.41 | BUTA<br>PENT                                                                             | NES GPM:<br>ANES PLUS      | GPM:                                          | 0.88<br>0.42 |
| PECIFIC GRAV                                                                                                                    | (CALC):      |                                                                                          | Ø.7582<br>21.96            |                                               |              |

| HV-BTU/CU FT | PRESSURE (PSIA) | WET  | DRY  |
|--------------|-----------------|------|------|
|              | 14.696          | 1254 | 1277 |
|              | 14.650          | 1251 | 1273 |
|              | 14.730          | 1257 | 1280 |
|              | 14.735          | 1258 | 1280 |
|              |                 |      |      |

DEANE SIMPSON
## STATE OF NEW MEXICO

## ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT

OIL CONSERVATION DIVISION



BRUCE KING GOVERNOR

ANITA LOCKWOOD CABINET SECRETARY



POST OFFICE BOX 2098 STATE LAND OFFICE BUILDING SANTA FE, NEW MEXICO 87504 (505) 827-5800

September 21, 1993

RE: CASE NO. 10796 Order No. R-9974

Mr. William F. Carr Campbell, Carr, Berge, and Sheridan Attorneys at Law Post Office Box 2208 Santa Fe, New Mexico 87504-2208

Dear Mr. Carr:

Enclosed herewith are two copies of the above-referenced Division order recently entered in the subject case.

Sincerely,

Florene

Florene Davidson OC Staff Specialist

Copy of order also sent to:

Hobbs OCD\_x\_\_\_\_ Artesia OCD\_x\_\_\_\_ Aztec OCD\_\_\_\_\_ Thomas Kellahin