	1
1	STATE OF NEW MEXICO
2	ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT
3	OIL CONSERVATION DIVISION
4	
5	IN THE MATTER OF THE HEARING) CALLED BY THE OIL CONSERVATION)
6	DIVISION FOR THE PURPOSE OF) CONSIDERING:) CASE NO. 10,870
7	APPLICATION OF POGO PRODUCING)
8	COMPANY)
9	,
10	ORIGINAL
11	
12	REPORTER'S TRANSCRIPT OF PROCEEDINGS
13	EXAMINER HEARING
14	BEFORE: DAVID R. CATANACH, Hearing Examiner
15	
16	January 20th, 1994 FEB 2 2 1994
17	Santa Fe, New Mexico
18	
19	
20	This matter came on for hearing before the Oil
21	Conservation Division on Thursday, January 20th, 1994, at
22	Morgan Hall, State Land Office Building, 310 Old Santa Fe
23	Trail, Santa Fe, New Mexico, before Steven T. Brenner,
24	Certified Court Reporter No. 7 for the State of New Mexico.
25	* * *

•

		2
1	INDEX	
2		
3	January 20th, 1994 Examiner Hearing	
4	CASE NO. 10,870	
5		PAGE
6	EXHIBITS	3
7	APPEARANCES	, 5
8	APPLICANT'S WITNESSES:	•
9	R. SCOTT MCDANIEL	
10	Direct Examination by Mr. Bruce	8
11	<u>GARY HOOSE</u> Direct Examination by Mr. Bruce	13
12	Examination by Examiner Catanach	25
13	MARK STOUFFER Direct Examination by Mr. Bruce	28
14	Cross-Examination by Mr. Kellahin Examination by Examiner Catanach	44 56
15	Redirect Examination by Mr. Bruce	59
16	<u>CHARLES R. VANORSDALE</u> Direct Examination by Mr. Bruce	60
17	Cross-Examination by Mr. Kellahin Examination by Examiner Catanach	67 76
18	MARK STOUFFER (Recalled)	70
19	Direct Examination by Mr. Bruce	77
20	Cross-Examination by Mr. Kellahin KAISER-FRANCIS WITNESSES:	81
21		
22	ALAN BENSON Direct Examination by Mr. Kellahin	84
23	Cross-Examination by Mr. Bruce	89
24	JIM WAKEFIELD Direct Examination by Mr. Kellahin	89
25	Cross-Examination by Mr. Bruce Examination by Examiner Catanach	116 122
25	-	

2

				<u> </u>
1	APPLICANT'S WITNESS:			
2	<u>GARY HOOSE</u> (Recalled) Direct Examinati		,	124
3	CLOSING STATEMENTS:	ton by Mr. Bruce	2	124
4				128
5	By Mr. Kellahin By Mr. Bruce			128
6	REPORTER'S CERTIFICATE			135
7	KEPOKIEK 5 CENTITICATE	* * *		193
8				
9				
10				
11	ΕX	нівітѕ		
12	Applicant's	Identified	Admitted	
13	Exhibit 1 Exhibit 2	9 11	13 13	
14	Exhibit 3 Exhibit 4	12 15	13 24	
15	Exhibit 5	16	24 24	
16	Exhibit 6 Exhibit 7	18 19	24 24	
17	Exhibit 8 Exhibit 9	19 19 21	24 24 24	
18	Exhibit 10	21	24	
19	Exhibit 11 Exhibit 12	22 29	24 44	
20	Exhibits 13A-B	30	44	
21	Exhibit 14 Exhibit 15	32 32	44 44	
22	Exhibit 16	33	44	
23	Exhibits 17A-K Exhibit 18	34 34	4 4 4 4	
24	Exhibit 19 Exhibit 20	38 40	44 44	
25				
i				

3

_			
1	ЕХНІВ	ITS (Contir	nued)
2	Applicant's	Identified	Admitted
3	Exhibit 21 Exhibit 22	41 42	44
4	Exhibit 23	61	66
5	Exhibit 24 Exhibit 25	62 62	66 66
5	EXHIBIC 25	52	00
6	Exhibit 26	62	66
_	Exhibit 27	62	66
7	Exhibit 28	62	66
	Exhibit 29	62	66
8	Exhibit 30	63	66
9	Exhibit 31	63	66
10	Exhibit 32	77	
11		* * *	
12			
13	Kaiser-Francis	Identified	Admitted
13	Exhibit 1	85	88
14	Exhibit 2	87	88
	Exhibit 3	99	116
15	Exhibit 4	99	116
	Exhibit 5	102	116
16	Exhibit 6	106	116
	Exhibit 7	107	116
17	Exhibit 8	109	116
	Exhibit 9	113	116
18	Exhibit 10	115	116
	Exhibit 11	116	116
19		* * *	
20			
21			
22			
23			
24			
25			
-			

4

1 APPEARANCES 2 FOR THE DIVISION: 3 ROBERT G. STOVALL 4 Attorney at Law Legal Counsel to the Division 5 State Land Office Building Santa Fe, New Mexico 87504 6 7 FOR THE APPLICANT AND SANTA FE ENERGY OPERATING PARTNERS, L.P.: 8 HINKLE, COX, EATON, COFFIELD & HENSLEY 9 218 Montezuma P.O. Box 2068 10 Santa Fe, New Mexico 87504-2068 By: JAMES G. BRUCE 11 12 FOR YATES PETROLEUM CORPORATION: 13 LOSEE, CARSON, HAAS & CARROLL, P.A. 300 American Home Building 14 Post Office Drawer 239 Artesia, New Mexico 88211-0239 15 By: ERNEST L. CARROLL 16 FOR KAISER-FRANCIS OIL COMPANY: 17 KELLAHIN & KELLAHIN 18 117 N. Guadalupe P.O. Box 2265 19 Santa Fe, New Mexico 87504-2265 By: W. THOMAS KELLAHIN 20 21 FOR MERIT ENERGY COMPANY: 22 Merit Energy Company 12221 Merit Drive, Suite 500 23 Dallas, Texas 75251 By: FRED DIEM 24 * * 25

5

	~
1	WHEREUPON, the following proceedings were had at
2	11:12 a.m.:
3	EXAMINER CATANACH: At this time we'll call Case
4	10,870.
5	MR. STOVALL: It's the Application of Pogo
6	Producing Company for special pool rules for the Los
7	Medanos-Delaware and West Sand Dunes-Delaware Pools, Eddy
8	County, New Mexico.
9	EXAMINER CATANACH: Are there appearances in
10	these cases?
11	MR. BRUCE: Mr. Examiner, Jim Bruce from the
12	Hinkle law firm of Santa Fe, representing the Applicant.
13	I would also like to enter an appearance on
14	behalf of Santa Fe Energy Operating Partners, L.P.
15	I have several witnesses from Pogo.
16	EXAMINER CATANACH: Additional appearances?
17	MR. CARROLL: Mr. Examiner, I'm Ernest Carroll of
18	the Artesia law firm of Losee, Carson, Haas and Carroll,
19	and I'm appearing today on behalf of Yates Petroleum
20	Corporation.
21	Yates Petroleum has no witnesses and does not
22	intend to examine any of the witnesses, but it is making
23	its appearance.
24	EXAMINER CATANACH: Okay. Additional
25	appearances?

	,
1	MR. KELLAHIN: Mr. Examiner, I'm Tom Kellahin of
2	the Santa Fe law firm of Kellahin and Kellahin, appearing
3	on behalf of Kaiser-Francis Oil Company, and I potentially
4	have two witnesses.
5	EXAMINER CATANACH: Additional appearances?
6	Okay, there being none
7	MR. STOVALL: Recess until whenever.
8	EXAMINER CATANACH: Okay, we'll go ahead and
9	recess at this point till about 12:30 or so.
10	(Thereupon, a recess was taken at 11:13 a.m.)
11	(The following proceedings had at 12:30 p.m.)
12	EXAMINER CATANACH: Okay, at this point we'll
13	call the hearing back to order, and I believe we've already
14	called for appearances in this case, Case 10,870, so at
15	this point in time I guess we need to swear the witnesses
16	in.
17	Let me do that.
18	MR. BRUCE: Okay, before we begin, Mr. Examiner,
19	I've been informed there's a gentleman here from American
20	Energy, and he'd like to enter his appearance.
21	EXAMINER CATANACH: Okay.
22	MR. DIEM: My name is Fred Diem. I'm general
23	counsel at Merit Energy Company.
24	EXAMINER CATANACH: I'm sorry, your last name,
25	sir?

1	MR. DIEM: Diem, D-i-e-m.
2	EXAMINER CATANACH: Merit Energy
3	MR. DIEM: Company, yes, M-e-r-i-t.
4	EXAMINER CATANACH: Okay. No witnesses?
5	MR. DIEM: No witnesses.
6	EXAMINER CATANACH: Can I get all the witnesses
7	to stand at this time to be sworn in?
8	(Thereupon, the witnesses were sworn.)
9	EXAMINER CATANACH: Mr. Bruce, you may proceed.
10	MR. BRUCE: Call Mr. McDaniel to the stand.
11	R. SCOTT MCDANIEL,
12	the witness herein, after having been first duly sworn upon
13	his oath, was examined and testified as follows:
14	DIRECT EXAMINATION
15	BY MR. BRUCE:
16	Q. Will you please state your name and city of
17	residence, please?
18	A. Yes, my name is Scott McDaniel, and I live in
19	Midland, Texas.
20	Q. Who do you work for and in what capacity?
21	A. I'm employed by Pogo Producing Company as a
22	landman.
23	Q. Have you previously testified before the Division
24	as a landman?
25	A. Yes, I have.

1	Q. And were your credentials accepted as a matter of
2	record?
3	A. Yes, they were.
4	Q. And are you familiar with the land matters
5	involved in this Application?
6	A. Yes, I am.
7	MR. BRUCE: All right, Mr. Examiner, I'd tender
8	Mr. McDaniel as an expert landman.
9	EXAMINER CATANACH: He is so qualified.
10	Q. (By Mr. Bruce) Briefly, Mr. McDaniel, what is it
11	that Pogo seeks in this case?
12	A. Pogo seeks an 8000-to-1 GOR in both the Los
13	Medanos-Delaware and the West Sand Dunes-Delaware Pools.
14	Q. What is the depth bracket allowable in both
15	pools?
16	A. The depth bracket allowable for both pools is
17	currently 187 barrels a day.
18	However, because of the 2000-to-1 GOR that
19	currently exists in both pools, many of the wells that are
20	located within the pool may be or have been restricted.
21	Q. Okay. Would you refer to Exhibit 1 and identify
22	it for the Examiner?
23	A. Yes, Exhibit 1, here to my left, is a plat on
24	which is shown the Los Medanos-Delaware Pool, there in red,
25	and the West Sand Dunes-Delaware Pool there in blue.

1	However, I might point out that it's my
2	understanding that some additional acreage has been added
3	to both pools recently. And the outline in green there,
4	the darker outline around it, represents the notice area
5	which extends out one mile from each of the pools.
6	But even with the additional acreage that has
7	been recently included in both pools, proper notice has
8	been given to all of the pertinent operators there.
9	Q. The recent additions to the pool boundaries would
10	require you to notify, if I'm correct, the people in
11	Section 6 in the northwest corner of this map; is that
12	correct?
13	A. Yes, that's correct.
14	Q. And then Section 10 in the southeast corner of
15	this map?
16	A. Yes, that's correct.
17	Q. Okay, and we'll get to that a little bit more in
18	a minute.
19	A. Okay.
20	Q. What are the discovery wells in those pools?
21	A. For the Los Medanos-Delaware Pool, the discovery
22	well was the Yates Madonna VA Well Number 1, which is
23	located in the northeast of the southwest of Section 16.
24	And the West Sand Dunes-Delaware Pool, the discovery well
25	is the Pogo-operated Mobil Federal Well Number 1, which is

1	located in the northwest of the southeast of Section 29.
2	Q. Okay, looking at Exhibit 1, does this identify
3	the operators or lessees within a mile of the pool and
4	within the pool boundaries?
5	A. Yes, it does. The operators that The
6	operators with the largest number of completed wells within
7	the pools are currently Pogo, Yates, Santa Fe and Merit.
8	Q. Okay. Now, did you give notice to all of the
9	people identified on Exhibit 1?
10	A. Yes, we did.
11	Q. And is Exhibit 2 your affidavit of notice
12	containing the letters and return receipts?
13	A. Yes, it is.
14	Q. Now, you mentioned these additional notice areas.
15	Who owns Section 6, 23 South, 31 East?
16	A. Section 6 is operated by Bass Enterprises.
17	Q. And you had given them notice regardless?
18	A. Yes, that's correct. Bass Enterprises operates
19	other acreage there within the notice area that's indicated
20	on the map.
21	Q. Okay. And then in Section 10 of Is it 24
22	South, 31 East?
23	A. That's correct.
24	Q. Who does that belong to?
25	A. Bettis, Boyle and Stovall out of Graham, Texas.

	12
1	Q. And you had given notice to them too?
2	A. That's correct.
3	Q. Do any operators in the pool support Pogo's
4	Application?
5	A. Yes, in fact, Exhibit 3 contains copies of the
6	various letters of support that we have obtained, and they
7	include all operators within both the pool and the notice
8	area, except for three, one of which was Enron, who
9	provided us with a letter stating that they do not object
10	to our 8000-to-1 GOR Application, another being Meridian,
11	who operates no wells within either of the pools, and they
12	have little or no data to evaluate the situation, and the
13	last being Kaiser-Francis.
14	Q. Okay. In this general area, your notice area,
15	what type of acreage do you have? Who owns it?
16	A. Primarily it's federal and state.
17	Q. Okay.
18	A. The majority of the acreage is in fact federal.
19	Q. What type of royalties do we have on the federal
20	leases?
21	A. The federal leases, some Well, in fact, the
22	majority of the federal leases in this area provide for a
23	step-scale royalty, which basically means that anything 50
24	barrels or less would provide for a royalty of 12 1/2
25	percent, and anything 400 barrels or more, 25 percent, and

	13
1	there's increments there in between.
2	Q. What At the depth bracket allowable for these
3	pools, 187 barrels a day, what is the royalty rate?
4	A. The royalty is 20 percent. That extends for a
5	production arrangement from 150 barrels a day up to 200
6	barrels a day.
7	Q. Were Exhibits 1 through 3 prepared by you or
8	compiled from company records?
9	A. Yes.
10	Q. And in your opinion is the granting of this
11	Application in the interests of conservation and the
12	prevention of waste?
13	A. Yes.
14	MR. BRUCE: Mr. Examiner, I would move the
15	admission of Exhibits 1 through 3.
16	EXAMINER CATANACH: Exhibits 1 through 3 will be
17	admitted as evidence.
18	Mr. Kellahin?
19	MR. KELLAHIN: No questions.
20	<u>GARY HOOSE</u> ,
21	the witness herein, after having been first duly sworn upon
22	his oath, was examined and testified as follows:
23	DIRECT EXAMINATION
24	BY MR. BRUCE:
25	Q. Would you please state your name for the record?

1	A. My name is Gary Hoose.
2	Q. Who do you work for and in what capacity?
3	A. I work for Pogo Producing Company as division
4	geologist in the Midland office.
5	Q. Have you previously testified before the Division
6	as a geologist?
7	A. I have.
8	Q. And were your credentials as an expert geologist
9	accepted as a matter of record?
10	A. They were.
11	Q. Are you familiar with the geology involved in
12	this Application?
13	A. I am.
14	Q. And your area of responsibility includes
15	southeast New Mexico?
16	A. Yes, it does.
17	MR. BRUCE: Mr. Examiner, I would tender Mr.
18	Hoose as an expert petroleum geologist.
19	EXAMINER CATANACH: Could you spell your last
20	name for me please?
21	THE WITNESS: H-0-0-s-e.
22	EXAMINER CATANACH: Mr. Hoose is considered
23	qualified.
24	Q. (By Mr. Bruce) Mr. Hoose, would you refer to
25	Pogo's Exhibit 4 and describe the interval that we're

	13
1	looking at in these two pools?
2	A. Exhibit 4 is a type log for the West Sand Dunes
3	area. It is the Pure Gold "D" Number 4 located in the
4	southwest of the southwest of Section 28 of 23 South, 31
5	East of Eddy County.
6	We've located at the intersection of two cross-
7	sections, which we'll be showing just a little bit later
8	here. Also, it's located in the thick trend of what we
9	consider to be the main Brushy Canyon Reservoir, as will
10	also be shown.
11	In this particular well and in the area, there's
12	approximately 3800 feet of Delaware Mountain Group section,
13	which is primarily sand and shale, though there are some
14	interbeds of lime and dolomite. The formations in the
15	Delaware Mountain Group in descending order are the Bell,
16	the Cherry and the Brushy Canyon.
17	In this particular well, the Bell Canyon is
18	located at 4160, Cherry Canyon 5062, Brushy 6365. And also
19	marked on this type log are the overlying basal anhydrite
20	at 3935 and the underlying Bone Spring formation at 7966.
21	We are in this hearing primarily concerned with
22	the Brushy Canyon formation. I would note that all three
23	of the Delaware formations are currently producing in the
24	field, with most of the production coming from the Brushy,
25	and we'll touch on that briefly from time to time during

	10
1	this hearing.
2	Q. Okay.
3	A. I'll move on, I think, to the Exhibit 5, if I
4	might, which is this east-west cross-section hanging here.
5	I will make mention that the next two exhibits are the most
6	cumbersome ones we have, so it ought to go a little more
7	smoothly after that.
8	If I might, this cross-section goes from the
9	lower part of the Cherry Canyon down to the upper part of
10	the Bone Spring, and one thing I would ask you to note is
11	that there are perforations here in this Pogo Mobil Federal
12	Number 7, in the bottom Cherry Canyon zone, and I'll refer
13	to that later, so you might just keep that in mind.
14	On this cross-section in the Brushy Canyon, we
15	have subdivided it, and this is based on regional
16	correlations of the entire New Mexico portion of the
17	Delaware Basin, subdivided it into seven units which we've
18	labeled A through G, A being at the bottom, and climbing up
19	through G at the top of the Brushy.
20	We are primarily concerned with the lowermost
21	Brushy Canyon, which is the A unit. Within that unit we
22	have further subdivided that into what we call the BC-1
23	through the BC-6, again with the BC-1 being at the bottom
24	part of that A sequence and the BC-6 being at the top.
25	And one further note on that. On these two

cross-sections which I'll show today, the BC-1 is not 1 labeled. We have not tried to split that out from the 2 BC-2. So on this exhibit and others that follow where it 3 4 just says BC-2, that is BC-1 and -2 lumped together. In this area, a lot of perforations are in that 5 BC-1/2 interval. That is one of the producing units. 6 We believe that the primary producing unit is in what we call 7 8 the BC 4, which overlies that unit. 9 You might notice that some of the wells have been perf'd in both the BC-2 and in the BC-4 and have been 10 frac'd. Other wells have just been perforated in the BC-2; 11 12 however, the frac designs have taken into account frac'ing 13 into the BC-4. So although they're perforated in the BC-2, the fracs have been designed to reach up into the BC-4, and 14 we expect in these wells that both the -4 and the -2 and 15 perhaps some of these other units are producing. 16 And I say 17 that because probably all of the BC-2 through the BC-6 are capable of production. 18 19 I mentioned a moment ago that these wells were 20 frac'd. All of the wells in the pools have been frac'd, 21 and it's necessary. I'm not aware of any Brushy Canyon 22 wells that are commercially productive that have not 23 required a frac to produce. 24 This is a fairly tight reservoir. It may be difficult to see. Certainly between some of these 25

	18
1	reservoir units the porosity is lacking, and there are very
2	It's a very tight section, even within what we consider
3	the main reservoir units. Permeability is not very high.
4	In fact, there are several things that are
5	restricting permeability. Laminations within the
6	formation, shale interbeds within the formation,
7	cementation varies from place to place within the
8	formation, and this can be seen in cores that have been
9	taken through the particular interval.
10	Q. Is the Lower Brushy Canyon continuous across
11	these two pools?
12	A. It is.
13	Q. Could we move on to your Exhibit 6?
14	A. Exhibit 6 is a north-south cross-section through
15	the area. I may mention that on both of the cross-sections
16	the red which has been colored in and the reservoirs and
17	it's only been colored in for the BC-2 and the BC-4 but
18	it represents those areas, those sections that have
19	porosity greater than 14 percent as seen on the density
20	log.
21	I do not suggest here that porosity lesser than
22	14 percent will not contribute. I merely show this to
23	illustrate where the thickest reservoir is, and in this
24	case the reservoir is thicker and better developed on the
25	north end with diminishing quality as we come down to the

1	south end.
2	Also, I might point out that the next couple of
3	exhibits which I show will be structure maps, and there
4	will be a structure map on the top of the BC-2 interval and
5	another structure map on the top of the BC-4 interval.
6	Q. Is there any geological basis to treat these two
7	pools separately?
8	A. There's not.
9	Q. Okay, let's move on to your Exhibit 7 and 8.
10	Just a second while we put those up, Mr. Examiner.
11	Go ahead, Mr. Hoose.
12	A. Okay, thank you. Exhibit 7 is the structure map
13	on the BC-2. Exhibit 8 is the structure map on the BC-4.
14	I would point out that they are essentially similar. Also
15	on each of the maps, the contour interval is 20 feet and
16	the lines of cross-section have been posted.
17	The other thing I might note is, development
18	continues in this area and so there are some logs which I
19	do not have.
20	Over in the Ingle Wells area, which is not the
21	subject of this hearing and discussion but is off to the
22	east, there are one or two logs that I don't have that are
23	not, therefore, posted on this map.
24	Similarly, at the very north end of Los Medanos
25	there may be a well or two that's been or several wells

1	that have been drilled in Section 9, in particular, I
2	believe, that I don't have logs for. And in the Quahada
3	Ridge field I know there are several logs that I don't
4	have.
5	However, I would point out that there's an
6	abundance of control on here and that with those logs I do
7	not expect the picture to change appreciably.
8	Further, in the main area of discussion and
9	interest today, from the north end of Sections 16 and 17 on
10	to the base of the map in the field areas, I believe I have
11	all of the logs for all of the wells drilled, and they're
12	all posted and all of the information from those is posted
13	on these maps.
14	The main points from the structure map, on both,
15	updip is to the west, downdip is to the east. The rate of
16	dip across here is generally less than or equal to one
17	degree across the area.
18	Prominent features include structural nose, east-
19	west structural nose coming across the mid-part of the map
20	here and across the two fields with a probable closure on
21	the west side of the Sand Dunes field.
22	Q. Okay. Have you seen any geological evidence of
23	an oil/water contact in these two pools?
24	A. I have not.
25	Q. Is there any log evidence of a gas cap?

1	A. Not that I'm aware of, no.
2	Q. Okay, let's get your Exhibits 9 and 10 put up and
3	discuss those, please.
4	A. Exhibit 9 is an isopach of the BC-4 interval.
5	This is net sand with a porosity, again, greater than 14
6	percent, based on the density. It corresponds to the
7	cross-sections that were hung moments ago.
8	Exhibit 10 is similarly an isopach of the BC-1
9	and -2 net sands with similar parameters. The sands are
10	again shown to be continuous north to south.
11	I will start with a discussion of Exhibit 10
12	first, being BC-1 and -2. This section was a little bit
13	difficult to map; there's room for varying interpretations.
14	I think the interpretation that I'm most comfortable with
15	and that's reasonable shows two main trends of sand, again
16	coming north to south with some sand in between those two
17	main trends. If I was to map this on a slightly lower
18	porosity cutoff, say 12 percent, the sands would be
19	continuous with no zero points, as far as I'm aware,
20	anywhere on the map.
21	The BC-4 was very easy to map, and it's very
22	consistent, down across the area shown in very thick
23	section to the north as we've seen on the cross-section a
24	few moments ago, thinning down as we come to the south.
25	And again, the type log was at the intersection of these

	22
1	two cross-sections.
2	Q. Now, you've got on the east side of each map
3	wells from the Ingle Wells-Delaware Pool. What zone does
4	that pool produce from?
5	A. On this map I have, again, only contoured the
6	areas of the fields in question. However, not only with
7	this Ingle Wells but with the Quahada Ridge area, I have
8	posted the isopach values. The sands that produce from the
9	Los Medanos-Sand Dunes areas are also the sands that
10	produce in Quahada Ridge, which is a fairly new field, and
11	in the Ingle Wells-Delaware field.
12	I don't know much about the GOR up in Quahada
13	Ridge. It's very new. We don't have a working interest
14	there, and I don't have information on that.
15	In the Ingle Wells field, we do have a working
16	interest; we're one of the primary operators there. Those
17	wells start out near the 2000-to-1 GOR. Similarly, they
18	have climbed up to 4000 to 5000-to-1 at this point. We
19	have not We don't consider this to be a problem in Ingle
20	Wells. Most of those wells are not top-allowable wells,
21	and as they stand, both the gas and oil volumes are within
22	legal limits.
23	Q. Okay. If you could put up your next exhibit,
24	Exhibit 11, and just briefly discuss the Cherry Canyon in
25	this pool.

1	A. I mentioned earlier that both the Bell and the
2	Cherry Canyon produced in these fields. This particular
3	map is mapped on the top of the lowermost Cherry Canyon
4	unit.
5	Really, all I want to do here is illustrate the
6	nature of the Bell and Cherry Canyon production, that this
7	green shaded area here is the best pod of Cherry or Bell
8	Canyon production that we could find, and it's limited in
9	extent. And that's really the point that I wanted to get
10	across here, is that while there are several wells that
11	will probably either are producing or may be capable of
12	producing from the Bell or Cherry, and while it may be
13	significant on an individual well basis, relative to the
14	field it's a very minor amount of production.
15	In this particular case and again, this is the
16	best one that we could find, and this is based on having
17	porosity in a well greater than ten feet of porosity
18	there were five wells in this pod, of which three of them
19	already are completed in the Cherry Canyon, which are
20	represented by these large orange dots. One of them had
21	shows in the Cherry and perhaps will be capable of
22	production, and the other one had no shows, and we think is
23	probably wet.
24	The reason I bring this up is, regardless of what
25	GOR we end up with after this hearing, we feel like the

1	current state rules should continue to apply wherein we
2	produce at our discretion Bell, Cherry, Brushy together.
3	Otherwise, I think it will be cumbersome and inefficient.
4	And as things stand, we're able to do so and we desire that
5	regardless of how this turns out that we would continue to
6	be able to do so.
7	Q. Is it common in the Delaware in southeast New
8	Mexico to produce from more than one Delaware zone?
9	A. Yes, absolutely.
10	Q. Were Exhibits 4 through 11 prepared by you?
11	A. They were.
12	Q. And in your opinion, is the granting of this
13	Application in the interests of conservation and the
14	prevention of waste?
15	A. It is.
16	MR. BRUCE: Pass the witness, Mr. Examiner.
17	EXAMINER CATANACH: Shall I admit the exhibits,
18	Mr. Bruce?
19	MR. BRUCE: Oh, thank you. Move the admission of
20	Pogo Exhibits 4 through 11.
21	EXAMINER CATANACH: Exhibits 4 through 11 will be
22	admitted as evidence.
23	Mr. Kellahin?
24	MR. KELLAHIN: No questions.
25	EXAMINER CATANACH: Hang on a second.

2
EXAMINATION
BY EXAMINER CATANACH:
Q. I just want to make sure I understand the nature
of the pool here. It's You've got seven different
intervals within the Brushy Canyon
A. Yes.
Q that you've identified?
A. That's correct.
Q. Within the seven intervals, you've broken down
the A interval into six additional intervals?
A. That's correct, and in this pool we are again
primarily concerned with the A, and that's what's open in
these various wells across the pool.
That's not to suggest that in perhaps one of the
upper intervals there might not be some additional
production, but I think it's going to fall in the nature of
the Bell and Cherry that it will be limited the vast
amount of production is coming from that lower A interval,
and again we believe that most of it is coming from that
BC-4 interval within the A unit.
Q. But there is probably production in other than
the A interval in the Brushy?
A. I would expect that in several wells and I
can't point to an example, but I could probably find one if
need be that there would be some additional behind-pipe

	26
1	zone that hasn't been opened.
2	Q. And on a fieldwide basis, the area you've
3	identified in green there is probably the best Bell or
4	Cherry Canyon producing
5	A. I think so. In those three wells that have been
6	completed there was a fairly thick section with good shows.
7	It was DST'd, recovered a fair amount of oil on the DST in
8	at least one well. And again, they're already producing
9	and contributing to production.
10	Q. And the BC-4 is, as you've said, probably the
11	main producing interval within the A zone?
12	A. That's correct, and that's based on the thickness
13	of the interval, the continuity across the area, the
14	relatively better reservoir quality within that zone.
15	Q. The BC-2 would be the next best producing
16	interval, in your opinion?
17	A. That is more difficult to answer. I would say
18	yes, but we frac'd these things and hooked them together.
19	There are other zones. The BC-5 has tested oil, we have
20	tested oil in it. I believe we have a test in the BC-6,
21	though I'm not as comfortable with my memory on that.
22	In any event, there are shows throughout that
23	entire A section. The 1 and 2, I would believe, are the
24	next best intervals, and again, I've lumped them together
25	as an interval.

1	Q. And you see no evidence to suggest that these two
2	pools are not or are two common sources of supply? I
3	mean, they're just one pool, in your opinion?
4	A. They're one, yes.
5	Q. There's no barrier of any kind to separate them?
6	A. No, not that I'm aware of, and I don't believe
7	that to be the case.
8	Q. Were they Well, I won't get into that.
9	Where did you say Or there's been some
10	testimony that the pool has been expanded since the maps
11	were drawn. You don't know anything about that?
12	A. I'm not familiar with that.
13	EXAMINER CATANACH: Okay, that's all right.
14	I believe that's all I have, Mr. Bruce.
15	MR. BRUCE: If you want to know the exact acreage
16	that's been added, Mr. McDaniel did check out and he has
17	the exact boundaries of the pool.
18	EXAMINER CATANACH: Okay, yeah, if he's got that,
19	why don't you leave me that information.
20	MR. McDANIEL: There's 23 South, 31 East. You
21	have the southeast quarter of Section 8.
22	EXAMINER CATANACH: Southeast quarter of Section
23	8, okay.
24	MR. McDANIEL: The northeast quarter of Section
25	16.

1EXAMINER CATANACH: 16.2MR. MCDANIEL: And then to the south and the west3you've got the Sand Dunes-Delaware Pool. In 24 South, 314East, we've added the southwest guarter of Section 33. Oh,5I'm sorry, that's still in 23-31.6Then in the south, the northwest guarter of7Section 4 and the east half of Section 5.8EXAMINER CATANACH: Thank you.9MARK STOUFFER,10the witness herein, after having been first duly sworn upon11his oath, was examined and testified as follows:12DIRECT EXAMINATION13BY MR. ERUCE:14Q. Would you please state your name and city of15residence?16A. Mark Stouffer, Houston, Texas.17Q. What is your occupation and who is your employer?18A. I'm a senior reservoir engineer for Pogo
 you've got the Sand Dunes-Delaware Pool. In 24 South, 31 East, we've added the southwest quarter of Section 33. Oh, I'm sorry, that's still in 23-31. Then in the south, the northwest quarter of Section 4 and the east half of Section 5. EXAMINER CATANACH: Thank you. <u>MARK STOUFFER</u>, the witness herein, after having been first duly sworn upon his oath, was examined and testified as follows: DIRECT EXAMINATION BY MR. BRUCE: Q. Would you please state your name and city of residence? A. Mark Stouffer, Houston, Texas. Q. What is your occupation and who is your employer?
 East, we've added the southwest quarter of Section 33. Oh, I'm sorry, that's still in 23-31. Then in the south, the northwest quarter of Section 4 and the east half of Section 5. EXAMINER CATANACH: Thank you. MARK STOUFFER, the witness herein, after having been first duly sworn upon his oath, was examined and testified as follows: DIRECT EXAMINATION BY MR. BRUCE: Q. Would you please state your name and city of residence? A. Mark Stouffer, Houston, Texas. Q. What is your occupation and who is your employer?
 J'm sorry, that's still in 23-31. Then in the south, the northwest quarter of Section 4 and the east half of Section 5. EXAMINER CATANACH: Thank you. <u>MARK STOUFFER</u>, the witness herein, after having been first duly sworn upon his oath, was examined and testified as follows: DIRECT EXAMINATION BY MR. BRUCE: Q. Would you please state your name and city of residence? A. Mark Stouffer, Houston, Texas. Q. What is your occupation and who is your employer?
 6 Then in the south, the northwest quarter of 7 Section 4 and the east half of Section 5. 8 EXAMINER CATANACH: Thank you. 9 <u>MARK STOUFFER</u>, 10 the witness herein, after having been first duly sworn upon 11 his oath, was examined and testified as follows: 12 DIRECT EXAMINATION 13 BY MR. BRUCE: 14 Q. Would you please state your name and city of 15 residence? 16 A. Mark Stouffer, Houston, Texas. 17 Q. What is your occupation and who is your employer?
 Section 4 and the east half of Section 5. EXAMINER CATANACH: Thank you. <u>MARK STOUFFER</u>, the witness herein, after having been first duly sworn upon his oath, was examined and testified as follows: DIRECT EXAMINATION BY MR. BRUCE: Q. Would you please state your name and city of residence? A. Mark Stouffer, Houston, Texas. Q. What is your occupation and who is your employer?
 EXAMINER CATANACH: Thank you. <u>MARK STOUFFER</u>, the witness herein, after having been first duly sworn upon his oath, was examined and testified as follows: DIRECT EXAMINATION BY MR. BRUCE: Q. Would you please state your name and city of residence? A. Mark Stouffer, Houston, Texas. Q. What is your occupation and who is your employer?
 MARK_STOUFFER, the witness herein, after having been first duly sworn upon his oath, was examined and testified as follows: DIRECT EXAMINATION BY MR. BRUCE: Q. Would you please state your name and city of residence? A. Mark Stouffer, Houston, Texas. Q. What is your occupation and who is your employer?
10 the witness herein, after having been first duly sworn upon 11 his oath, was examined and testified as follows: 12 DIRECT EXAMINATION 13 BY MR. BRUCE: 14 Q. Would you please state your name and city of 15 residence? 16 A. Mark Stouffer, Houston, Texas. 17 Q. What is your occupation and who is your employer?
11 his oath, was examined and testified as follows: 12 DIRECT EXAMINATION 13 BY MR. BRUCE: 14 Q. Would you please state your name and city of 15 residence? 16 A. Mark Stouffer, Houston, Texas. 17 Q. What is your occupation and who is your employer?
12DIRECT EXAMINATION13BY MR. BRUCE:14Q. Would you please state your name and city of15residence?16A. Mark Stouffer, Houston, Texas.17Q. What is your occupation and who is your employer?
 BY MR. BRUCE: Q. Would you please state your name and city of residence? A. Mark Stouffer, Houston, Texas. Q. What is your occupation and who is your employer?
 Q. Would you please state your name and city of residence? A. Mark Stouffer, Houston, Texas. Q. What is your occupation and who is your employer?
15 residence? 16 A. Mark Stouffer, Houston, Texas. 17 Q. What is your occupation and who is your employer?
 A. Mark Stouffer, Houston, Texas. Q. What is your occupation and who is your employer?
Q. What is your occupation and who is your employer?
18 A. I'm a senior reservoir engineer for Pogo
19 Producing Company.
20 Q. Have you previously testified before the
21 Division?
A. No, I have not.
23 Q. Would you please outline your educational and
24 employment background for the Examiner?
A. Yes, I have a BS in petroleum engineering from

,	
1	the University of Tulsa in 1983. I have a master's in
2	petroleum engineering from Texas A&M University in 1988.
3	I have three years' experience with Schlumberger
4	as a field engineer from 1983 through 1986. I had three and
5	a half years' experience with British Petroleum as a
6	drilling, reservoir and production engineer, from 1988
7	through 1991. I have two years' experience with Pogo as a
8	senior reservoir engineer, from January, 1992, through the
9	present.
10	I'm a registered professional engineer in the
11	State of Oklahoma, and my area of responsibility for Pogo
12	does include southeast New Mexico.
13	Q. And are you familiar with the engineering matters
14	related to these pools?
15	A. Yes, I am.
16	Q. And have you conducted an engineering study and
17	are you ready to present those results today?
18	A. Yes.
19	MR. BRUCE: Mr. Examiner, I would tender Mr.
20	Stouffer as an expert engineer.
21	EXAMINER CATANACH: Mr. Stouffer is so qualified.
22	Q. (By Mr. Bruce) Mr. Stouffer, first would you
23	identify Exhibit 12 and discuss the status of the wells in
24	the pool?
25	A. Okay, Exhibit 12 is a well information table for

1	the Sand Dunes West-Los Medanos fields. It lists the
2	sections with the wells in each section, the unit location,
3	the operator of each well, the date of first production
4	from the Delaware, the perforation interval, the interval
5	name, the initial GOR when the well was first completed,
6	the current GOR through September or in some cases August
7	of 1993, the current barrels of oil per month, the current
8	MCF of gas per month, and the cumulative production in
9	thousands of barrels.
10	There are 72 wells in the two fields combined.
11	Information on this table was taken from data and
12	information received directly from the operators in the
13	field.
14	Q. Okay. Have you detected an original gas cap in
15	this pool or these pools?
16	A. No, I have not.
17	Q. How did you make that determination? And I refer
18	you to your Exhibits 13A and 13B.
19	A. Exhibit 13A is a summary of PVT data taken from
20	the Pogo Pure Gold "D" 8 well, which is located in the
21	southeast of the southwest quarter of Section 28.
22	Exhibit 13B is a summary of PVT data from the
23	Kaiser-Francis Pure Gold "A" 2 well, which is located in
24	the southwest of the southwest of Section 21.
25	Both wells were sampled by Core Laboratories, and

1	both wells were sampled at approximately the same time,
2	early in 1993.
3	The Pure Gold "D" 8 well had a saturation
4	pressure which is in the second block down the page
5	saturation pressure of 3173 p.s.i. Based on a bottomhole
6	pressure buildup taken immediately after the PVT data was
7	taken, the reservoir pressure was 3175 and still building.
8	So the reservoir pressure was greater than the bubble-point
9	pressure.
10	The Pure Gold Number "A" 2 well on Exhibit 13B
11	again shows a saturation pressure of 3220 p.s.i., which is
12	in good agreement with the Pure Gold "D" 8, within 50
13	pounds, which is considered good agreement.
14	The Pure Gold "A" 2, based on an extrapolated
15	reservoir pressure from an 86-hour buildup following the
16	PVT data, had an initial reservoir pressure of 3292 p.s.i.
17	Since both wells in this initial reservoir
18	pressure is greater than the bubble-point pressure, there
19	will be no free gas present in the reservoir initially, and
20	therefore no original gas cap.
21	Q. Have you tested your conclusion with other well
22	data?
23	A. Yes, I have.
24	Q. Would you move on to your Exhibits 14 and 15 and
25	perhaps discuss those together?

A. Okay, Exhibit Number 14 is a structure map of the
BC-2 zone, which is the same structure map that our
geologist presented. The map has initial GORs plotted at
each well location. The GORs are color-coded, the pink
dots from 250 to 500 standard cubic feet per barrel, blue
dots 500 to 1500, and black dots 1500 greater than 1500.
As you can see, the GORs are scattered throughout
the plot or throughout the map, and there's no definable
trend relating the GOR to the structural position. If
there were an initial gas cap present, I would expect the
wells high on structure to have high GORs and the wells low
on structure to have low GORs, and that's not the case
here.
Q. And what does Exhibit 15 show?
A. Exhibit 15 is a plot of initial GOR versus
structure. This plot portrays the same information as
shown on this map, Exhibit 14.
Once again, you can see that the there's a
random scatter of the initial GORs. If there were an
initial gas cap present, I would expect high GORs on the
left side of the plot and low GORs on the right side of the
plot, and that's not the case here. The GORs trend more in
a horizontal direction.
Q. Okay. Have you detected a water drive in this
pool?

	33
1	A. No, I have not.
2	Based on the wells drilled to date, there is no
3	evidence of a downdip oil/water contact, as our geologist
4	discussed. Also based on bottomhole pressure data, there
5	is no evidence of pressure support, which you would expect
6	in a water drive.
7	For example, the initial reservoir pressure on
8	the Mobil Federal Number 1 in Section 29 which is the
9	discovery well, was 3274 p.s.i., and a recent pressure
10	taken on that well in November of 1993 shows a bottomhole
11	pressure of 1615 p.s.i. So there's no evidence of pressure
12	support.
13	Q. Have you determined the drive mechanism for this
14	pool?
15	A. Yes, I have. It's a solution gas drive
16	reservoir.
17	Q. What is the primary characteristic of that drive
18	mechanism?
19	A. Exhibit Number 16 is an excerpt from Slider's
20	reservoir engineering text. This figure shows the GOR
21	behavior for a solution gas drive reservoir.
22	As you can see, the GOR which is plotted on the Y
23	axis and cumulative production plotted on the X axis, the
24	GOR remains constant until the bubble-point is reached. At
25	this time, the GOR may actually decline slightly until the

	J4
1	critical gas saturation is reached. After that, the GOR
2	increases rapidly due to relative permeability effects.
3	And in late time, the GOR actually levels off and decreases
4	due to changes in formation volume factors.
5	Q. Does production from this pool or I should say
6	these two pools conform to Slider?
7	A. Yes, it does. Exhibit 17A through 17K are plots
8	of GOR versus cumulative production for the first Brushy
9	Canyon well in each section of the field. The first well
10	in each section was chosen, since there was more history
11	available. These plots are plotted in the same format as
12	the previous exhibit from Slider's text.
13	As you can see as you flip through those
14	exhibits, the majority of the wells have shown an
15	increasing GOR trend, which is indicative of a solution gas
16	drive reservoir.
17	Q. Now, if you would refer to Exhibit 18, are there
18	areas of the pool which have not yet shown a high GOR?
19	A. Yes, Exhibit 18, which I'll discuss in more
20	detail later, is a map of current GOR versus structure.
21	Sections 9, 16, 17, 20 and 21 have not yet shown high GORs,
22	above 2000 to 1.
23	Q. Okay. Well, let's look at these a little
24	differently here. Would you look first at Exhibits or
25	excuse me, Sections 20 and 21 and discuss the reasons in

1	your opinion for the low GORs in those two sections?
2	A. In Sections 20 and 21, all six wells have cum'd
3	less than 25,000 barrels. Also, Kaiser-Francis, the
4	operator of the sections, did not have the ability to test
5	the wells individually until December of 1993. This could
6	average a high-GOR well with a low-GOR well.
7	Q. Now, if you look at your move back to your
8	exhibit 17, 17H and $-I$, those are wells in Sections 20 and
9	21; is that correct?
10	A. That's correct.
11	Q. And they don't show the inclining GOR, do they?
12	A. No, they do not.
13	Q. What does the recent well data, the recent test
14	data on these wells show?
15	A. As I mentioned before, Kaiser-Francis the
16	operator of these wells, did not have the facilities to
17	individually test the wells until December. A few days
18	ago, we did receive some updated test data from Kaiser-
19	Francis that shows the Pure Gold "B" 4 well in Exhibit 17H
20	to have a 2600-to-1 GOR, and the Pure Gold "A" 2 well,
21	Exhibit Number 17I, shows to have a 2375 GOR.
22	If you were to plot these updated GORs on this
23	plot and again, I don't know what the actual cumulative
24	production is, but if you were to plot those new numbers
25	out to the right somewhere, both of these wells would show

50
the increase in GOR trends, as the other wells in the field
have.
Q. In your opinion, as these two wells accumulate
more production, another 10,000 to 15,000 barrels, will the
GOR continue to incline?
A. Yes. As a matter of fact, of the seven wells
that Kaiser-Francis operates in Section 20 and 21 at the
time of this exhibit preparation Well, excuse me, based
on the recent test data we acquired from Kaiser-Francis,
four of the seven wells are in excess of 2000 to 1.
Q. What about the north end of the pool, really the
Los Medanos Pool, Sections 9, 16 and 17? What is the
reason for the low GORs there?
A. Based on our isopach maps, the net pay is thicker
in the north portion of the field. This would lead to less
reservoir pressure drop for the same amount of production,
simply due to the larger reservoir volume.
Also, with the exception of two wells in Section
16, all the wells in 9, 16 and 17 have cum'd less than
20,000 barrels, and I would expect GORs in these sections
to increase with further production.
Q. The cutoff is generally around 20,000 or 25,000
when the GOR starts to increase?
A. That's right, that's what we've seen so far.
Also, as for the well in Section 16, which is

1	Exhibit 17K, the Medano VA State Number 3, this well is
2	completed in the Bell Canyon and maybe possibly several
3	other members of the Delaware. Therefore, I would not
4	expect it to show an increase, a high GOR, since those
5	other zones are probably a lower GOR.
6	Q. Have you detected a secondary gas cap in these
7	pools?
8	A. No, I have not. First of all, to have a
9	secondary gas cap, you need significant structural relief,
10	which does not occur in this case. The dip rate is
11	approximately one degree or less.
12	Secondly, this is a low-permeability reservoir,
13	and the wells require fracture simulation to flow. The
14	combination of no structural relief with the low
15	permeability rock matrix is not favorable to secondary gas
16	cap formation.
17	Q. Would you anticipate the only area of high
18	conductivity is around the wellbore?
19	A. Yes, I would.
20	Q. What data do you have to support your conclusion?
21	A. Exhibit Number 18, which I've talked about
22	earlier, is a structure map on the BC-2, with the current
23	GORs plotted as of September, 1993.
24	This map, again, shows there is no definable
25	trend towards high GORs on the top of the structure and low

1 GORs low on structure.

-	
2	For example, starting with the Yates well in the
3	southwest of the southwest of Section 32, this well right
4	here, if you follow around the structure between the 4580
5	contour and the 4560 contour, this area right here, follow
6	around structure, you'll see dots of every color, which
7	means that you have high, moderate and low GORs at the same
8	structural position around the structure.
9	Also starting with the Mobil Federal Number 8
10	well, which is this well here
11	Q. In Section 29?
12	A. In Section 29 if you head directly south
13	downstructure, follow this line of wells down, you go from
14	high to moderate to low to high and back to moderate. So
15	there's no trend to a decrease in GORs as you head
16	downstructure.
17	Starting with the Mobil Federal 8 again and
18	heading straight east downstructure, you go from high to
19	low to high to low to moderate. So there's no trend in
20	either direction towards high GORs high upstructure to low
21	GORs downstructure.
22	Q. Okay. What does Exhibit 19 show?
23	A. Exhibit 19 is a plot of the current gas-oil ratio
24	versus structure. This plot portrays the same information
25	as the map.

	59
1	Once again, the plot shows a random scattering of
2	GORs with no relation to structure.
3	If you'll notice the eight wells to the lower
4	right side of the plot which are deeper than 4520 feet
5	subsea, those eight wells have cum'd less than 20,000
6	barrels, and two of these wells are open in the Bell
7	Canyon. Therefore, the lower GORs shown by these wells are
8	not a function of structure but are a function of
9	cumulative production
10	Q. Okay.
11	A and I would expect these wells to increase
12	with further production.
13	Q. The GOR to increase?
14	A. The GORs.
15	Q. Yes. What is the permeability of this reservoir?
16	A. The permeability ranges from two to five
17	millidarcies, based on a combination of pressure buildup
18	data and core data.
19	Also, as our geologist stated, there are
20	laminations between and within the producing zones.
21	Q. What's the practical effect of this low
22	permeability?
23	A. Due to low permeability, the wells do require
24	fracture stimulation to produce. Once they are stimulated,
25	they flow at a high rate, due to a high-conductivity region

1	around the wellbore. I would therefore expect free gas in
2	the reservoir to be produced through this high-conductivity
3	region around the wellbore, rather than migrate updip
4	through a low-permeability rock matrix.
5	Q. Let's move on to a slightly different subject,
6	production from other Delaware zones. Could you refer to
7	your Exhibit 20 and discuss production from zones other
8	than the Brushy Canyon?
9	A. Yes, Exhibit 20 shows that there are three wells
10	that have Brushy Canyon and Cherry Canyon combined, two
11	wells that have Brushy Canyon and Bell Canyon combined, and
12	one well that has Brushy Canyon and Upper Bone Springs
13	combined.
14	Yates received a commingling order for the
15	Pauline ALB State Number 6 early in 1993.
16	The three wells that have the Brushy
17	Canyon/Cherry Canyon producing together, what I've done is
18	taken the before and after producing rates and come up with
19	an estimate of the contribution of each zone.
20	In the case of the Yates well with the Upper Bone
21	Springs commingled, this data, the 94 percent Brushy and 6
22	percent Bone Springs, is based on Yates's testimony from
23	their commingling order.
24	The two wells with the Brushy Canyon and the Bell
25	Canyon combined in Section 16, I had no data available on

1	those. I don't know if they were separately tested in the
2	Bell Canyon and the Brushy Canyon.
3	Q. Okay. What is the drive mechanism in the Bell
4	Canyon and the Cherry Canyon?
5	A. Based on the apparent limited areal extent of
6	these other zones, I would expect them to be solution gas
7	drive.
8	Q. Do they also appear to be tight?
9	A. Yes, they do.
10	Q. Do you favor the current rule allowing operators
11	to produce simultaneously from all Delaware zones?
12	A. Yes, I do. The ability to commingle zones
13	together is more efficient from a development standpoint.
14	It allows the operator to produce to a lower abandonment
15	pressure and abandonment rate. It also allows for
16	maintaining production rates with less administrative
17	requirements.
18	Q. Pogo has requested a higher GOR, which would
19	allow at least certain wells to produce at a higher rate
20	without curtailment. Will ultimate recovery be adversely
21	affected by the increased production rate?
22	A. No, not significantly, and I would like to show a
23	couple of exhibits to illustrate this.
24	Exhibit Number 21 is an excerpt from Craft and
25	Hawkins which is considered to be the standard reservoir

	42
1	engineering text by most practicing engineers. I won't
2	read it, but I will summarize each paragraph.
3	Paragraph one states that the recovery from
4	solution gas drive reservoirs is essentially independent of
5	production rate.
6	Paragraph two states that the GOR of a solution
7	gas drive reservoir is not a function of pressure or,
8	excuse me, is not a function <u>is</u> a function of pressure
9	and depletion and is not a function of producing rate.
10	This is the same principle as shown by Exhibit
11	16 from Slider's text.
12	Paragraph
13	Q. What Go ahead.
14	A. Excuse me. Paragraph 3 states that to have a
15	rate-sensitive reservoir, another drive mechanism must be
16	present, such as partial water drive or gravity
17	segregation. And we've shown that we have neither one of
18	those in effect here.
19	Q. Okay, and what about Exhibit 22?
20	A. Exhibit 22 is an equation from Slider's text.
21	This equation gives the GOR at any time for a solution gas
22	drive reservoir. I'll just explain the terms a little bit.
23	The R is the instantaneous gas/oil ratio at any
24	time during the life of the well.
25	R _s is the solution gas/oil ratio.

And the third term is a ratio of gas/oil 1 2 permeabilities, viscosities and formation volume factors. This term represents the flow of free gas in the reservoir. 3 The significance of this equation is that both 4 terms on the right-hand side of the equation are a function 5 of reservoir pressure or fluid saturation, which in turn 6 are functions of cumulative production. 7 None of these terms are a function of producing 8 Therefore, the GOR is independent of producing rate. 9 rate. What GOR does Pogo request? 10 Q. 8000 to 1. 11 Α. What do you base this on? 12 Q. Based on the individual well plots in Exhibits 13 Α. 14 17A through 17K, the GOR trend is increasing, and it's 15 currently at an average of about 4000 to 1. We believe the ultimate average poolwide will be approximately 8000 to 1. 16 Also, the GORs for other Delaware pools -- for 17 example, East Loving -- have been increased to 8000 to 18 19 10,000 to 1, which appears to be adequate. Were Exhibits 12 through 22 prepared by you or 20 0. under your direction? 21 Yes, they were. 22 Α. And in your opinion, is the granting of this 23 Q. Application in the interests of conservation, the 24 prevention of waste, and the protection of correlative 25

rights? 1 Α. Yes, it is. 2 3 MR. BRUCE: Mr. Examiner, I move the admission of 4 Exhibits 12 through 21. 5 This is all I have of Mr. Stouffer at this time. 6 He does have one final exhibit which is dependent upon our 7 final witness's testimony. I'd like to recall him for two three minutes right at the end. 8 EXAMINER CATANACH: Okay. Exhibits 12 through 21 9 will be admitted as evidence. 10 Mr. Kellahin? 11 12 MR. KELLAHIN: Yes, sir. 13 CROSS-EXAMINATION 14 BY MR. KELLAHIN: 15 Mark, do you say your last name "Stouffer", or is Q. it "Stouffer"? 16 "Stouffer". 17 Α. "Stouffer", with an "o"? 18 Q. Like the frozen foods. 19 Α. Yeah, okay. What are the two most important 20 Q. factors, Mr. Stouffer, that control or affect gas 21 recoveries in a solution gas drive reservoir? 22 Gas recoveries or oil recoveries? 23 Α. Q. Oil recoveries. 24 Oil recoveries? 25 Α.

44

1	Q. Yes, sir.
2	A. I would say permeability, porosity, pressures,
3	initial pressures, abandonment pressures, saturations,
4	economic limits, a variety of things.
5	Q. Of those, which are the most important?
6	A. In this particular case?
7	Q. Yes, sir.
8	A. I wouldn't say that any one is more particularly
9	important. I would say they all have the same effect,
10	basically.
11	Q. Would you turn to your Exhibit Number 12?
12	A. Yes, please.
13	Q. Does Exhibit Number 12 contain all the current
14	producing wells in either of these two pools?
15	A. It only contains the wells that were in the two
16	pools at the time of preparation, which is approximately
17	September, October of 1993, somewhere. There may have been
18	some wells drilled in the pool that are not on this
19	Exhibit.
20	Q. All right. The current pool rules, 40-acre
21	spacing, depth bracket oil allowables 187 barrels of oil a
22	day, you've got a 2000-to-1 gas/oil ratio limit, right?
23	A. That's correct.
24	Q. Using that basis, what is the maximum volume of
25	gas that you're allowed to produce from any of the oil

	46
1	wells?
2	A. That would be 187 times 2000, or 374 MCF per day.
3	Q. When we look at the distribution of the wells and
4	find a display that illustrates that, perhaps the one on
5	the board now what is that, 18?
6	A. Yes.
7	Q. 18, the one that's got the colored dots on it,
8	maybe that's the way to help us locate some of those.
9	Can you show me the wells, or is there a way to
10	look at Exhibit 12 and find the wells that are currently
11	subject to the limitation? In other words, they are being
12	restricted because they are exceeding the gas limitation
13	for that spacing unit?
14	A. Yes, if you look at Exhibit 12, what you can do
15	is go to the column for current MCF per month.
16	Q. Multiply by 30? Is that how you can do it?
17	A. Well, or divide by 30 to get the daily rates.
18	Q. Well, let's do the month. You've already got
19	months
20	A. Okay.
21	Q tabulated here.
22	A. Okay.
23	Q. So if we take 374 times 30, it gives you 11.22
24	million a month?
25	A. That's right.

1	Q. Okay. And if we look down that column, then, and
2	we find any of those wells that are exceeding 11.22 million
3	a month, those wells are being overproduced?
4	A. Yes, for that particular month.
5	Q. Okay. What have you been doing about the wells
6	that you operate that are exceeding the current 2000-to-1
7	gas/oil ratio?
8	A. We have not made an effort to curtail, as far as
9	I'm aware.
10	Q. Do you know which of your wells is the well that
11	is most overproduced of the current gas/oil ratio?
12	A. I'm sorry, I do not.
13	Q. Okay.
14	A. I don't have that information.
15	Q. This tabulation on Exhibit 12 would only show
16	It says current MCF per month. I guess I need to know what
17	month that refers to.
18	A. Okay, the current MCF per month corresponds to
19	the current date on the column two columns to the right.
20	So the current date, September, 1993, for Sections 28, 29
21	and, for example, Section 20 and 21, that current date
22	would be August, 1993. So there are three of those months
23	shown there.
24	Q. I don't have enough information on Exhibit 12 to
25	find out which of your wells is overproduced and how much

1	they are overproduced?
2	A. That's correct.
3	Q. Okay. The operation in the field for your wells,
4	is it such that you have measured and reported all gas
5	production from each of those wells?
6	A. Yes.
7	Q. Was there any gas flared from any of these wells
8	that wasn't measured?
9	A. I cannot answer that. I do not know if there was
10	gas vented or not.
11	Q. Okay. What reports are you working with to
12	generate a spreadsheet like this when we're concerned about
13	the accuracy of the gas numbers being used on the
14	spreadsheet?
15	A. All of the gas and oil rates were taken from
16	either C-115 data or data supplied furnished to me
17	directly by the operator of each section.
18	Q. You have a map that shows the initial GOR for the
19	wells. I think there was a color code.
20	A. Yes, there was.
21	Q. Do you have that display handy, that we might put
22	it up at the same time as we look at 18 so we can draw some
23	comparisons?
24	The PVT data, we've got two sources, two fluid
25	samples taken from two different wells. I think there was

1	one of your wells and one of Kaiser-Francis's wells?
2	A. That's correct.
3	Q. Have you examined that PVT data?
4	A. Yes, I have.
5	Q. Are you satisfied as an engineer that there are
6	no glitches in how that those fluids were analyzed and
7	processed and samples taken?
8	A. Yes, I am. I believe the Kaiser-Francis well was
9	sampled downhole. Our well was sampled at the surface and
10	recombined. However, as a quality-control check, the
11	bubble-point pressures on the two PVT studies are within 50
12	pounds, which I consider excellent agreement.
13	Q. What is the bubble-point pressure of the
14	reservoir?
15	A. The bubble-point pressure of the reservoir, based
16	on PVT data from these two wells, would be somewhere in the
17	range of 3173 to 3220.
18	Q. Okay. The initial reservoir pressure was what,
19	sir?
20	A. The initial reservoir pressure on the Pure Gold
21	"D" 8 was 3175. However, that was not an extrapolated
22	reservoir pressure, so I would consider it to be somewhat
23	higher than that.
24	The initial reservoir pressure, extrapolated
25	reservoir pressure from the Pure Gold "A" 2 was 3292 p.s.i.

	50
1	Q. Have we drawn down reservoir pressure in the
2	reservoir that now the wells are producing below the bubble
3	point?
4	A. It depends on the well and also the cumulative
5	production.
6	In, for example, the Mobil Federal Number 1 well,
7	which was the discovery well in the field, has produced
8	approximately 100,000 barrels, I would say we are without a
9	doubt below bubble point in that particular well.
10	Some of the other wells that are brand new may
11	not be below bubble point at this time, but it will happen
12	very quickly.
13	Q. Can you go to one of the displays and help me
14	find the Mobil Federal Number 1?
15	A. Yes.
16	Q. Show it so we're all clued in as to where that
17	is.
18	A. It's this well right here.
19	Q. It's the one in Section 29; you're in the
20	northwest of the southeast of 29?
21	A. That's correct.
22	Q. Okay. Stay there for just a second. When you
23	look south of that location in the same section, there is a
24	well with a black dot?
25	A. Yes.

			<u> </u>
1	Q.	Okay, what's that well name?	
2	Α.	That's the Mobil Federal Number 8.	
3	Q.	And if you'll look at the Mobil Federal Number	8
4	on displa	y number 18 just next to you	
5	Α.	Yes.	
6	Q.	it's got a black dot?	
7	Α.	Yes.	
8	Q.	Its producing current GOR is between 4000 and	
9	6000; is	that correct?	
10	Α.	That's correct.	
11	Q.	Look at the east of it. There's a red dot. Do)
12	you see t	hat?	
13	Α.	Yes.	
14	Q.	What's that well?	
15	Α.	That's the Mobil Federal Number 7.	
16	Q.	And it's less than 2000 to 1?	
17	Α.	That's correct.	
18	Q.	And then you continue east and we have another	
19	black dot	?	
20	Α.	Yes.	
21	Q.	And you continue east one more time, and we've	
22	got a red	dot?	
23	Α.	Pink.	
24	Q.	I'm sorry, pink?	
25	Α.	Yes, sir. Yes.	

	52
1	Q. What's the explanation as to why in 40-acre
2	offsets you get a well that's less than 2000 to 1, side by
3	side with one that's more than 4000 to 6000 to 1?
4	A. The explanation is that the GOR is a function of
5	cumulative production. Some of these wells have been
6	producing longer and therefore have produced more, so their
7	GORs would be higher. Other wells have come on more
8	recently and produced less, so their GORs may be less.
9	Q. Will that point hold true to all the wells in the
10	reservoir
11	A. As a general trend, yes.
12	Q that we can find in the older portions of the
13	pool, the well that has produced longer has a higher GOR?
14	A. I would say that's a good general statement.
15	Q. Okay. What is the vintage of the discovery well?
16	A. The discovery well was discovered, I believe, in
17	March of 1992.
18	Q. Okay. You've got what? Eighteen months of
19	production from that well now?
20	A. Approximately.
21	Q. Please return to your seat.
22	Have you done any kind of drainage studies, Mr.
23	Stouffer, to determine whether or not wells are having any
24	effect on the recoveries of their adjoining wells?
25	A. No, I have not.

1	Q. Have you done any type of engineering analysis to
2	determine what is the oil in place for any of the 40-acre
3	spacing units?
4	A. Yes, I've done some initial volumetrics.
5	Q. Have you taken the isopach that the geologist
6	prepared and done any further calculations, volumetric or
7	otherwise, to determine oil in place?
8	A. For a particular well or for the field?
9	Q. For either.
10	A. Well, I've not used the geologist's most recent
11	isopachs. I've used my log-derived porosity, water
12	saturation and net pay and used those numbers.
13	Q. Did you create your own ϕ h map?
14	A. No, I didn't.
15	Q. Do you have an estimate or an engineering
16	projection as to what percentage recovery you would
17	anticipate out of this reservoir?
18	A. Typical recovery efficiency for a solution gas
19	drive reservoir of this nature, I would say, would be in
20	the range of 10 to 12 percent.
21	Q. Do you know whether any of the wells that are in
22	the pool have already recovered their share of recoverable
23	oil from underneath their spacing unit?
24	A. No, I have not made any drainage studies, so I
25	cannot say that.

	54
1	Q. Have you made any pressure studies to see if
2	there's any pressure effect among the wells in any portion
3	of the reservoir?
4	A. No, I have not.
5	Q. Initial reservoir pressure is slightly over 3000
6	pounds?
7	A. Approximately 3300, yes.
8	Q. Okay. Do you have any newer wells in proximity
9	to some of the older producers to see if they were still
10	coming in close to original reservoir pressure or whether
11	they had been pressure-depleted by the prior well?
12	A. We may have some pressure data, but I Like I
13	say, I have not conducted a drainage study, I have not
14	compared pressures from one 40-acre unit to the next.
15	MR. KELLAHIN: Just a moment, Mr. Examiner.
16	EXAMINER CATANACH: Sure.
17	Q. (By Mr. Kellahin) Let's go to Exhibit 32 for a
18	minute, Mr. Stouffer.
19	A. Okay, we've not yet presented Exhibit 32.
20	Q. I'm way ahead of you then, I'm sorry. I thought
21	this was You saved that, didn't you?
22	MR. BRUCE: Yes.
23	MR. KELLAHIN: Okay, we'll come back to it.
24	Q. (By Mr. Kellahin) I've lost track of your
25	development on Pogo tracts. Are you fully developed for

55
40-acre within the reservoir? And when I say "reservoir",
I'm combining the two pools.
A. "Fully developed" to mean a well in each 40
throughout the section?
Q. Yes, sir, and I understand there's limitations on
the reservoir and where you're going to pick to drill
wells, but if you'll look at Section 32 it looks fully
developed. You get up into 29 and there's just a few
wells, and You know, the map speaks for itself.
In terms of your acreage position, do you have
further locations that you want to drill?
A. I do not decide which wells to drill and where.
Q. Okay.
A. That's a decision made by the geologist. I can
tell you that I know in Section 29 we do have some problems
with locations due to potash. Beyond that, I can't
speculate any further.
Q. Okay. The lack of development in 29 is a
condition other than something in the reservoir,
apparently?
A. Yes.
Q. It's a potash issue?
A. Yes.
Q. Have we drilled this reservoir in the wrong
spacing?

1	A. As I said before, I have not conducted drainage
2	studies, so I cannot say.
3	Q. Okay. It doesn't matter, we're committed to 40-
4	acre spacing. But I was curious as to whether or not in
5	hindsight we may have drilled this too densely.
6	A. I don't think I can make that statement at this
7	time.
8	MR. KELLAHIN: All right, sir, thank you. No
9	more questions.
10	EXAMINATION
11	BY EXAMINER CATANACH:
12	Q. Mr. Stouffer, is there any correlation between
13	GOR and what zone a well is producing from, or have you
14	examined that question?
15	A. All of the GORs that you see on both of these
16	plots, and all of the GORs that are used in the exhibits,
17	are wells producing primarily from the Brushy Canyon, which
18	would be the BC-2 and the BC-4 members.
19	We do believe that even though some wells have
20	only been perforated in the BC-2, that we with our
21	fracture stimulations, we are communicated upwards to the
22	BC-4. But I have not made a GOR breakdown by itself.
23	Q. Is there any possibility of an existence of just
24	a gas-bearing interval anywhere in that producing interval?
25	A. Not that I'm aware of, no.

1	Q. It's your opinion that GOR is strictly a function
2	of cumulative production?
3	A. Yes, it is.
4	Q. And you've cited numbers 20,000 to 25,000 barrels
5	of oil is the point where GOR begins to increase?
6	A. It's the point where, as you can see if you look
7	at Exhibits 17A through -K
8	For example, the Mobil Federal Number 1, the
9	first plot, begins to increase at about 30,000 barrels.
10	The Pure Gold "D" 2, the next plot, begins to
11	increase at about 25,000 barrels.
12	The next well, the Pauline State Number 4, begins
13	to increase at about 22,000 barrels.
14	So roughly 20,000 to 30,000 barrels, we start to
15	see an increase in GOR.
16	Q. On your Exhibit 17B, do you have an opinion as to
17	why that GOR dropped at about 40,000 barrels?
18	A. 17B?
19	Q. Yeah, Pure Gold "D" Number 2.
20	A. Okay. No, I do not have an explanation for that.
21	However, it does continue back up after that.
22	Q. Was it your testimony that the average GOR is
23	approximately 4000 to 1 at this point?
24	A. Yeah, that was an average number, more or less
25	taken from the wells in Sections 28, 29 and 32.

1	Q. Okay. So that's not the whole average, that's
2	just
3	A. No, that's not the entire field. By that I meant
4	the wells that are above the 2000 to 1, the average is
5	probably close to 4000 to 1.
6	Q. You don't know what the average poolwide is?
7	A. No, I don't, but it would probably be less than
8	4000 due to all the low-GOR wells in the north part of the
9	pool.
10	Q. How do you arrive at a proposed 8000-to-1 GOR?
11	A. The 8000 to 1 was based on similar Delaware
12	fields.
13	For example, East Loving-Delaware, which Pogo
14	Producing Company came to a similar GOR hearing earlier
15	this year.
16	It produces from the same stratigraphic
17	intervals, the same general producing characteristics as
18	the Sand Dune-Los Medanos, and we were granted an 8000-to-1
19	GOR in that pool. And we feel that due to similarities in
20	the two pools, that 8000 to 1 will be adequate.
21	Q. The GOR in this pool should at some point in time
22	peak out and then gradually start to decline somewhat?
23	A. Yes, I would expect to see that in the latter
24	portions of the field.
25	Q. There's no way to tell at this point in time what

1	that peak GOR would be?
2	A. Not at this time, no.
3	EXAMINER CATANACH: I think that's all I have of
4	the witness.
5	REDIRECT EXAMINATION
6	BY MR. BRUCE:
7	Q. I just have a brief follow-up question to
8	something Mr. Kellahin asked you, Mr. Stouffer, about
9	Pogo's development in the pool. 29 is essentially all
10	Pogo, isn't it?
11	A. That's Pogo-operated, yes.
12	Q. Pogo-operated?
13	A. Yes.
14	Q. And that is a lot of undeveloped acreage; is that
15	correct?
16	A. Yes, that's correct.
17	Q. And Pogo also has undeveloped has nonoperating
18	working interests, substantial working interests in
19	Sections 20 and 21?
20	A. Yes, we do.
21	Q. So there are a number of undeveloped units that
22	Pogo has in this pool yet?
23	A. Yes, there are.
24	MR. BRUCE: I have nothing further, Mr. Examiner.
25	EXAMINER CATANACH: The witness may be excused.

CHARLES R. VANORSDALE,
the witness herein, after having been first duly sworn upon
his oath, was examined and testified as follows:
DIRECT EXAMINATION
BY MR. BRUCE:
Q. Would you please state your name for the record?
A. Charles Vanorsdale.
Q. Where do you reside?
A. Midland, Texas.
Q. Who do you work for?
A. I work for T. Scott Hickman and Associates.
Q. What is your capacity there?
A. I'm senior evaluation engineer.
Q. What is your relationship to Pogo in this case?
A. Pogo asked me to develop a reservoir simulation
model to assess the impact that a higher GOR allowable
would have on the ultimate recovery of the Sand Dunes West
Delaware field.
Q. Have you previously testified before the Division
as an engineer?
A. Yes, I have.
Q. And have you had your credentials accepted as a
matter of record?
A. Yes.
Q. And are you familiar with your model and the

1	input from this pool into that model?
2	A. Yes.
3	MR. BRUCE: Mr. Examiner, I would tender Mr.
4	Vanorsdale as an expert engineer.
5	EXAMINER CATANACH: Mr. Vanorsdale is considered
6	qualified.
7	Q. (By Mr. Bruce) Would you please describe your
8	model? And I'll refer you to your Exhibit 23.
9	A. Yes, Exhibit 23 represents a five-well reservoir
10	model, which was constructed as a three-dimensional, three-
11	phase model using a state-of-the-art commercially available
12	simulator.
13	Five wells were selected to be representative of
14	the field and include some of the oldest producers in the
15	field. The Mobil Federal Number 1 is the discovery well
16	for the Sand Dunes West.
17	In addition to this particular grouping of wells,
18	I was concerned with the structural impact. The Mobil
19	Federal Number 1 and the Mobil Federal Number 8 are located
20	near the structural high of the reservoir. There has been
21	some concern in the past as to the possibility of secondary
22	gas cap formation due to structure, and so I wanted to
23	assess that likelihood in the reservoir simulation.
24	And if you'll notice on the model, there are two
25	zones represented, the BC-4 and the BC-2. I have those

61

separated by a barrier. The two zones, as has been 1 discussed already, are in communication due to hydraulic 2 I have incorporated that in my simulator. 3 fracturing. The BC-4 and the BC-2 are not in communication anywhere else in 4 the simulator except at the wellbore. 5 Additionally, you will also notice that around 6 7 each of those five wells there is a rather thin layer which represents a frac wing. We have incorporated the hydraulic 8 fracture around each wellbore to accommodate a rapid 9 pressure drop and fluid saturation change in order to make 10 11 the model accurate. 12 ο. Okay. Would you move on to Exhibit 24 and 13 discuss the parameters you used in your model briefly? Α. Exhibit 24 represents information which was 14 gathered across the field from PVT analysis, special core 15 analysis, some volumetric work, pressure buildup tests, and 16 17 core analysis primarily. The PVT data comes from primarily the Pure Gold 18 "D" 8, which is a well just east, offset east to my "D" 4, 19 Pure Gold "D" 4, which is in the reservoir model. 20 Some additional information came from the East 21 Loving-Delaware Pool, specifically gas and oil relative 22 permeability data, which was modified for this model. 23 Would you move on to your Exhibits 25 through 29 24 Q. and discuss actual production from the field in comparison 25

1	to your model?
2	A. Exhibit 25 represents the reservoir model's
3	attempt to match the actual cumulative oil and gas
4	production from the Mobil Federal Number 1. This
5	represents 19 months of production. The overall match is
6	excellent. The actual data is shown as a solid line. The
7	simulated results from my model are shown as a dashed line.
8	Likewise, Exhibit Number 26 is the same type of
9	information for the Mobil Federal Number 8. This
10	represents 12 months' worth of data, and I should point out
11	that all of these matches utilize data through the end of
12	September of 1993.
13	Q. What is Exhibit 30?
14	A. Exhibit 30 represents the composite for all five
15	wells in the model. And the overall results, as shown
16	here, indicate that the cumulative oil produced is within
17	five percent of the simulated cumulative oil produced. And
18	the cumulative gas produced in the field, five-well field,
19	is within six percent of the simulated results.
20	Q. Is that a good match?
21	A. This is considered an excellent match.
22	Q. Would you refer to your Exhibit 31 and discuss
23	for the Examiner what that exhibit shows?
24	A. Exhibit 31 represents the results of taking the
25	simulator's history match of those five wells and then,

1	assuming two different gas/oil ratio allowable scenarios,
2	forecasting what the ultimate recovery would be, in order
3	to assess the impact on overall reserve recovery.
4	The two cases presented assume 2000 to 1 GOR
5	versus the proposed 8000 to 1. The simulator forecast the
6	producing rates for the five wells down to a production
7	limit of ten stock tank barrels per day per well.
8	As you can see by comparing the two columns, the
9	oil recovery and the gas recovery are almost identical.
10	Likewise, the cumulative gas/oil ratio is almost
11	identical.
12	And finally, the oil recovery factor, as a
13	percent of the oil in place, as calculated by the
14	simulator, is likewise almost identical.
15	Q. Now, looking at the cumulative GOR, is that
16	different, 200 about a 200 difference between the two
17	figures, is that significant?
18	A. It's insignificant. No, it's about a 2.7 percent
19	difference between the two. In the event that a secondary
20	gas cap had formed, assuming an 8000 to 1 GOR allowable, we
21	would have anticipated the cumulative GOR to be
22	significantly higher than this.
23	Q. What about the recovery factor? What does that
24	indicate?
25	A. The magnitude of the recovery factor is something

	65
1	on the order of 11 percent in both cases. It is indicative
2	of a solution gas drive reservoir.
3	Had this been a gas cap expansion reservoir, the
4	recovery factors would have been significantly higher, as
5	pointed out in some statistical studies that have been done
6	in the past.
7	Q. Is there any additional evidence you have to
8	negate the formation of a secondary gas cap?
9	A. Yes, I have also monitored the gas saturation
10	throughout the five-well area, both vertically and areally,
11	to assess whether or not any significant gas migration has
12	taken place toward this structural high. In other words,
13	forming a secondary gas cap. This was not accomplished in
14	the model. There was no secondary gas cap forming. The
15	highest gas saturations that occurred were in the near-
16	wellbore area.
17	Q. How confident are you in your model?
18	A. I'm very confident in the model. I have modeled
19	the Delaware before for the East Loving-Delaware Pool and
20	presented the results in 1991 and again in 1993, again
21	representing the reservoir simulation.
22	I presented testimony which, in the 1993 hearing,
23	matched what I had forecast within about three or four
24	percent of the actual oil production rates and gas
25	production rates, and pressure history was within six

65

percent of the actual pressure data. 1 Additionally --2 Go ahead. Q. 3 Additionally, with respect to the validity of 4 Α. this model, there was a pressure buildup test taken on the 5 Mobil Federal Number 1 in late November, early December, a 6 14-day duration. The results of that pressure buildup 7 indicated a bottomhole pressure on the order of 1615 8 I verified the results in my model for the Mobil 9 pounds. Federal Number 1, and the bottomhole pressure predicted by 10 11 my model was 1633 pounds. 12 And that's a pretty good match? Q. 13 Α. That's an excellent match. Were Exhibits 23 through 31 prepared by you or 14 Q. 15 under your direction? Α. Yes. 16 And in your opinion, is the granting of this 17 Q. Application in the interests of conservation and the 18 prevention of waste? 19 20 Α. Yes. MR. BRUCE: Mr. Examiner, I would tender Pogo 21 22 Exhibits 23 through 31. EXAMINER CATANACH: Exhibits 23 through 31 will 23 be admitted as evidence. 24 Mr. Kellahin? 25

1 MR. KELLAHIN: Yes, sir. CROSS-EXAMINATION 2 BY MR. KELLAHIN: 3 You testified before the Division in that East 4 0. Loving Pool case, did you? 5 Yes, sir. 6 Α. Who was your client in that matter? Do you 7 0. 8 remember? 9 Α. Bird Creek. The East Loving Pool, I've lost track of where 10 0. that is in relation to this reservoir. Can you orient me 11 as to where we are to go to the East Loving Pool? 12 I do not know the specific mileage away. 13 Α. That was not a contested case before the 14 Q. 15 Division, was it, sir? 16 Α. Yes, it was. Who were the other parties involved? 17 0. Pogo was involved; the opponent was Oryx energy. 18 Α. The model simulation, the software, if you will, 19 0. the program used for the model, you didn't tell me what 20 that specifically was. What program did you use? 21 It's called Eclipse, and the software is through 22 Α. an outfit known as Intera, I-n-t-e-r-a. 23 24 Q. If my engineers want to try to duplicate our work effort, I'd like them to be able to use the -- a similar 25

67

	00
1	program. Is that a commercially available program?
2	A. Yes, sir.
3	Q. All right. Let me understand some of the
4	assumptions in the model, and perhaps the first page of the
5	Exhibit 23 serves that purpose.
6	The model will assume a reservoir of this size?
7	A. Yes, sir.
8	Q. When we get to the boundary of this container,
9	what does the model do? It assumes that's the reservoir
10	limit, does it not?
11	A. Yes, sir.
12	Q. All right. Is there Did you run any
13	simulation to determine what the ultimate recovery would be
14	for an individual well within the simulation?
15	A. There are Yes, we do have ultimate recoveries
16	on a per-well basis.
17	Q. Does the model assume the historical producing
18	chronology of the five wells in the model?
19	A. That's how we obtained the history match. That
20	gives us an indication as to the productivity of the
21	individual wells.
22	Q. Okay. So the model is programmed such that
23	whatever the first well was I don't think it matters,
24	but you've got five wells in your model. You'll take the
25	first well that is first producing?

1	A. Yes, sir.
2	Q. You will take that plot of production. Are you
3	trying to match historical production for the oil
4	production, or on all fluids?
5	A. I match all fluids on each well.
6	Q. Okay. And that's a part of what we see in the
7	run here, is an attempt to match the gas production and
8	then attempt to match the oil production; did I read that
9	right?
10	A. Well, not an attempt but an achievement at
11	matching the oil and gas production rate.
12	Q. Okay. Well, I don't want to quibble with you
13	over how close that line comes, but The input
14	parameters, reservoir pressure, we've got initial reservoir
15	pressure, 3300?
16	A. Yes.
17	Q. Bubble-point pressures from the PVT data?
18	A. Yes, sir.
19	Q. Where did the reservoir pressure come from?
20	A. The reservoir pressure came from a series of
21	buildup tests that were taken throughout the field at
22	various points in time. They are what we would call P*
23	values, which from pressure buildup data indicates the so-
24	called infinite reservoir.
25	Q. Had you attained P* in all the buildup data

that's utilized for the model? 1 What? 2 Α. Maybe I didn't say that right. Have you attained 3 Q. pressure that was stabilized? 4 Are you asking me if all of the pressure buildup 5 Α. tests achieved a stabilized pressure from which to obtain a 6 similar P*? 7 Bingo. Yes, sir. 8 ο. 9 Α. Okay. No, not all wells achieve the same P*. That's a function of the amount of time that each well 10 11 built up. How did you deal with that? 12 Q. Well, those wells were ignored. We had about 13 Α. three or four wells which had sufficient time to reach what 14 we call pseudo radial flow and then obtain a P* value. 15 All right. Which wells did you choose to 16 Q. 17 utilize? Let's see. Of course the Mobil Federal Number 1 18 Α. was the first well, and from that the P* value taken in 19 March, 1992, was about 3275 pounds. 20 The Pure Gold "A" 2 P* value, taken exactly one 21 22 year later, was 3292 pounds. And the Pure Gold "B" 4 P* value, taken in April 23 24 of 1993, was 3278 pounds. All certainly within the range that the tests 25

70

1	could have provided.
2	Q. Okay.
3	A. From that, I simply rounded to 3300 pounds.
4	Q. I'm looking for areas that you may differ with my
5	simulator engineer, and I want to understand where
6	parameter choices were made by you so that if he conducts a
7	similar simulation I at least know where yours came from.
8	All right?
9	A. (Nods)
10	Q. In order to get your history match, what
11	parameters did you have to adjust in order to make the
12	match?
13	A. Of course, gas/oil relative permeability was one.
14	As I have already mentioned, we took data from the East
15	Loving-Delaware Pool and had to make some corrections to
16	account for the relative liberation of gas with the
17	production of oil.
18	Q. Do you remember what relative permeability value
19	you used in order to attain the match that you were
20	satisfied with?
21	A. Well, relative permeability varies as a function
22	of the gas saturation, so I would have to provide that in
23	the form of a table.
24	MR. KELLAHIN: Okay. Mr. Bruce, would you do
25	that for me, is to give me the table so I have the relative

1 permeability values that were used in the simulation so that we can --2 3 MR. BRUCE: We'll do that. (By Mr. Kellahin) All right. 4 Q. Anything else that my engineer is going to need in order to check your work, 5 6 sir? 7 Well, there is a lot of information that is very Α. 8 specific to the individual wells. If we need to go into 9 this, there are such things as transmissibility multipliers around the wellbore, which approximates the conductivity 10 achieved by hydraulically fracturing the wellbore. 11 12 Additionally for each well and for each zone within the well, both the BC-2 and the BC-4, there are 13 14 values of productive capacity, KH, the product of 15 permeability times the net pay thickness, which has to be 16 incorporated. 17 Likewise, for each zone there is a skin factor 18 which needs to be incorporated. How did you then generate the KH? Did you 19 Q. utilize the Pogo geologic interpretations? 20 21 Α. It was derived both from pressure buildup tests and from data derived from core analysis. Again, there was 22 23 considerable adjustments necessary in order to obtain the match. 24 Are there any geologic interpretations that 25 Q.

72

1	you've relied on in order to run the simulation?
2	A. With respect to the vertical permeability, yes.
3	Due to the laminations within the Brushy Canyon, the
4	vertical permeability was reduced above and beyond the
5	horizontal permeability.
6	Q. Did you account for the fact that in the
7	reservoir these wells have to be frac'd or otherwise
8	stimulated in order to make them productive? That's going
9	to induce a fracture system, if you will, at least around
10	the near wellbore?
11	A. Yes, sir.
12	Q. And is that a component of the simulation?
13	A. Yes, sir.
14	Q. How many runs or separate adjustments did you
15	have to make in order to get a match that you were
16	satisfied with?
17	A. Well, that's a good question. I would say
18	that
19	Q. Did you get a unique match the first time?
20	A. No, no.
21	Q. Okay.
22	A. Not to this data, anyway.
23	Q. All right.
24	A. I would estimate that in order to obtain a match,
25	given the amount of individual zone contribution that had

	/4
1	to be taken into consideration, we're looking at on the
2	order of 50 to 75 simulation runs.
3	Q. Having achieved a match that's acceptable to you,
4	what then do you do with the simulation?
5	A. At that point, I forecast the production,
6	assuming the gas is restricted to the 2000-to-1 GOR, or to
7	the 8000-to-1 GOR allowable.
8	Q. That assumption is made at what point in time?
9	During the entire productive life of the wells in the
10	simulation?
11	A. Well, you can do it from the beginning or at any
12	point that you choose.
13	Q. Did you try to vary the point in time at which
14	you made the adjustment to 8000 to 1?
15	A. Well, originally, the data with which I was
16	working, which had been revised subsequently, did enable me
17	to make some runs which were at a different point in time
18	from which the results are displayed on my exhibits.
19	The results obtained using the old information at
20	a different point in time did not vary significantly from
21	the results that are shown on my Exhibit 31.
22	Q. Okay. I'd like to ask you, on the input
23	parameters, it's Exhibit 24, the initial solution GOR,
24	1130
25	A. Yes, sir.

	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
1	Q where did you get that number?
2	A. That came from PVT analyses.
3	Q. Do you happen to have Exhibit 13A and -B that the
4	previous witness used? We'll get you one if you don't have
5	it.
6	Do you have another one of those, Jim? Yeah,
7	there it is. Go ahead and look at these two.
8	A. Okay.
9	Q. On 13A that I've handed to you, there's a
10	solution GOR ratio of 1383. Do you see that number?
11	A. Yes, sir.
12	Q. If everything else in the model is the same and I
13	change that initial solution GOR you've got from 1130 to
14	1383, what happens to the end result of the run? Do you
15	know?
16	A. Well, I would imagine that the gas production
17	would increase slightly, but probably not without the
18	normal parameters of an excellent match.
19	Q. Okay. When we go to the next page, 13B, the
20	solution GOR for that well on PVT analysis was 1425?
21	A. Yes, sir.
22	Q. It's higher than the initial solution GOR you
23	used in the model? Give me a sense of what happens. If I
24	use a higher solution GOR than you did, what is going to be
25	the end result?

	///
1	A. Well, again, it could very well be that there
2	would be an increase in the overall gas recovery. However,
3	that might also necessitate my going back and changing the
4	gas/oil relative permeability data.
5	Q. Because now you've changed a component, it's
6	going to affect the match, and you're going to have to
7	adjust another parameter to bring the match back the
8	simulation line back to the historical line you're trying
9	to match?
10	A. Yes, that's the whole purpose behind simulation.
11	MR. KELLAHIN: Thank you, Mr. Examiner.
12	EXAMINATION
13	BY EXAMINER CATANACH:
14	Q. Just one question, Mr. Vanorsdale. In your
15	opinion, can you extrapolate the results of the model to
16	the whole reservoir?
17	A. Typically, the purpose of simulation is to take a
18	small area of the reservoir or a field and then extrapolate
19	the results to the entire field.
20	I would say that the results obtained from this
21	simulation would be representative of what the entire field
22	would do. In other words, should the entire field be
23	enabled to go to the 8000-to-1 GOR, the ultimate recovery
24	for the field would not be adversely affected.
25	EXAMINER CATANACH: Thank you.

1	Mr. Bruce?
2	MR. BRUCE: I don't have anything further from
3	Mr. Vanorsdale.
4	Like I said, I'd like to recall for a very brief
5	period of time Mr. Stouffer.
6	EXAMINER CATANACH: Okay.
7	MARK STOUFFER,
8	the witness herein, having been previously duly sworn upon
9	his oath, was examined and testified as follows:
10	DIRECT EXAMINATION
11	BY MR. BRUCE:
12	Q. Now, Mr. Stouffer, you've been listening to Mr.
13	Vanorsdale testify, and he on his final exhibit had a
14	had oil recovery and gas recovery under a couple of
15	different scenarios. Have you seen that exhibit?
16	A. Yes, I have.
17	Q. Let me hand it to you, just in case. And then
18	refer to your Exhibit 23, and could you just briefly
19	explain why you prepared this exhibit?
20	A. Refer to my Exhibit 23?
21	Q. Or 32, excuse me.
22	A. 32?
23	Q. Dyslexia here.
24	A. Okay, Exhibit 32 is a reserves and economic
25	comparison for the five-well model area at the 2000 versus

	//0
1	the 8000-to-1 GOR allowables. Mr. Vanorsdale's simulation
2	model was used to predict the recovery factors and the
3	production volumes in each case.
4	As you can see, the oil recovery, gas recovery,
5	cumulative GOR and oil recovery factor on his Exhibit
6	Number 31 are identical to the numbers that I used in my
7	comparison on Exhibit 32.
8	Q. Now, the 8000-to-1 GOR shows a slightly lower,
9	one or two percent, less oil recovery at 8000 to 1 GOR,
10	does it not?
11	A. Yes, it does. That difference is very small.
12	It's a minor difference. If you apply that .2-percent
13	difference to the original oil in place in the model area,
14	the five-well model area, the difference amounts to
15	approximately 2000 barrels per well. Considering these
16	wells in the model area have ultimate recoveries of
17	approximately 120,000 barrels per well, the 2000 compared
18	to the 120,000 is a relatively minor loss.
19	Q. But nonetheless, Pogo, like most operators,
20	doesn't want to cause waste, does it?
21	A. No, we certainly do not.
22	Q. And what does this exhibit show?
23	A. This exhibit shows the was intended to show
24	the economic benefit from the 8000-to-1 GOR versus the
25	2000-to-1 case. As you can see, the bottom three rows, the

1	8000-to-1 case, results in a two-year shorter well life,
2	8.3 years, as opposed to 10.3 years. So you can get your
3	reserves faster.
4	There's also a \$230,000 savings in operating
5	costs, and there's also a \$340,000 improvement in net
6	present value.
7	This translates to a benefit for the working
8	interest and the royalty owners due to the decreased cash
9	flow and high revenues received up front in the 8000-to-1
10	case.
11	So by going to the 8000-to-1, we're maximizing
12	the value of the assets for both the working interest
13	owners and the royalty owners.
14	Also, the small amount of oil not recovered by
15	the 8000-to-1 case could be recovered at a later date under
16	secondary recovery.
17	Q. Now, you mentioned operating costs before.
18	They're kind of steep in this field, aren't they?
19	A. From what I've seen on lease operating statements
20	on our wells, they average anywhere from \$3500 to \$4000 per
21	well per month.
22	Q. Thank you. And Now, Mr. McDaniel also
23	mentioned a sliding-scale royalty. Is there any benefit to
24	producing these wells at a higher rate for the royalty
25	owners?

1	A. Yes, I believe there is. Several of the leases
2	have the sliding-scale royalty. By having the 8000-to-1
3	GOR increase, the operators will be able to produce at top
4	allowable for a longer period of time without having to
5	curtail production. Therefore, the increased production
6	rates will translate to higher royalties.
7	For example, at top allowable, the royalty is 20
8	percent compared to 12 1/2 percent at less than 50 barrels
9	a day.
10	Q. Now, one final question. Mr. Kellahin had
11	referred Mr. Vanorsdale back to your Exhibits 13A and 13B.
12	Do you have any comment on the initial GORs or solution
13	A. Yes, I do. The Mr. Kellahin, I believe, asked
14	Mr. Vanorsdale what impact or what number where he got
15	the solution gas/oil ratio to use in his model. He said he
16	got it from the PVT data, which is correct.
17	If you'll look at Exhibit 13A, the number of 1130
18	that he used, if you look at the in the bottom box,
19	under "Separator Test Results", the total solution gas/oil
20	ratio of 1130 corresponds to what Mr. Vanorsdale used.
21	The other number in the box under "Differential
22	Vaporization Data" is a higher number. However, the more
23	accurate number to use in this case is the separator test
24	results, so he did use the correct number, based on the PVT
25	data.

1	MR. BRUCE: Thank you. Pass the witness, Mr.
1	
2	Examiner.
3	EXAMINER CATANACH: Mr. Kellahin?
4	CROSS-EXAMINATION
5	BY MR. KELLAHIN:
6	Q. Mr. Stouffer, you told me a recombined sample
7	based upon a surface sample, the 1130 is more accurate than
8	a bottomhole?
9	A. No, I did not say that.
10	Q. Did I misunderstand you?
11	A. I did not say that. What I said was, the
12	separator test results are more accurate to use in this
13	case. They are a flash process, which is more
14	representative of what we have going on at the separator,
15	as opposed to differential vaporization data, which will be
16	higher, since it's taken down to residual oil saturation or
17	residual dead oil.
18	Q. The Kaiser-Francis PVT data, how was that taken?
19	A. I believe that was taken by a bottomhole sample.
20	Q. Yeah. Isn't a bottomhole sample going to be a
21	better sample than this recombined effort at the surface?
22	A. No, I don't believe so.
23	Q. Why not?
24	A. Recombination is used commonly, and it's
25	considered just as accurate in many cases as bottomhole

1	data.
2	Q. Okay. Exhibit 32, is this an economic analysis
3	made for the five wells, or does this represent what is the
4	economic comparison for each of the wells in the five-well
5	simulation?
6	A. These results shown here are for the composite
7	five wells.
8	Q. Okay. When I look at the difference in the two
9	columns, about 338,000, and that's for the five wells
10	A. Yes, that's correct.
11	Q 67,000 per well?
12	A. I don't have a calculator, but I'll trust your
13	math.
14	Q. Okay. If you look back up here and we look at
15	2000 to 1, ultimate oil recovery is higher than it is under
16	the 8000 scenario, right?
17	A. That's correct.
18	Q. Okay.
19	A. However, it is a relatively insignificant
20	reduction in oil recovery.
21	Q. I can't figure out the last line, "Net Present
22	Value". What were you using for your oil price?
23	A. I utilized a price forecast that I generated on
24	my own, starting initially at \$15 per barrel, escalating at
25	four percent per year. I used a gas price at \$2 per MCF,

1 also escalating at four percent per year. For the life of --2 Q. For the life --3 Α. -- of the operation? 4 0. 5 Yes, sir. Α. Okay. The net, what did you take out to get a 6 Q. net? Did you take out royalties? 7 8 Α. Yes, I did. 9 Q. Okay, and you took out what? Taxes? Yes, this net present value number is after tax. 10 Α. What was the tax rate you took? 11 Q. I believe the corporate tax rate, using the 12 Α. economics model, is 28 percent. 13 Okay. The lease operating expenses, do you 14 Q. 15 remember what you started at? 16 Yes, they were \$3500 per month per well, also Α. escalated at four percent. 17 MR. KELLAHIN: Okay. All right, sir, thank you. 18 EXAMINER CATANACH: Anything further, Mr. Bruce? 19 20 MR. BRUCE: No, sir. And that finishes my case. EXAMINER CATANACH: Okay, the witness may be 21 22 excused. 23 Let's take a short break here and let Mr. 24 Kellahin get prepared. (Thereupon, a recess was taken at 2:28 p.m.) 25

(The following proceedings had at 2:38 p.m.) 1 EXAMINER CATANACH: Call the hearing back to 2 order at this time. 3 MR. KELLAHIN: Mr. Examiner, I have two witnesses 4 5 to present. Alan Benson is my first witness. He is a 6 petroleum geologist, Kaiser-Francis. 7 James Wakefield is my engineer, and he is the 8 second witness. 9 Call at this time Mr. Alan Benson. 10 ALAN BENSON, 11 the witness herein, after having been first duly sworn upon his oath, was examined and testified as follows: 12 DIRECT EXAMINATION 13 BY MR. KELLAHIN: 14 Mr. Benson, would you please state your name and 15 Q. occupation? 16 17 Α. Alan Benson. I'm a geological engineer. On prior occasions have you testified as a 18 Q. geologic expert before this Division? 19 20 Α. I have. 21 Pursuant to your employment as a geologist with 0. 22 your company, have you made a geologic study of the 23 reservoir that has been identified in this case? 24 Α. Yes, I have. MR. KELLAHIN: We tender Mr. Benson as an expert 25

	00
1	petroleum geologist.
2	EXAMINER CATANACH: Mr. Benson is so qualified.
3	Q. (By Mr. Kellahin) Mr. Benson, let me ask you,
4	sir, to turn to what we've marked as Kaiser-Francis Exhibit
5	Number 1 and have you identify that display for us.
6	A. Yes, that's a net sand I'm sorry, which one is
7	Is that the isopach or the cross-section?
8	Q. Well, mine is an isopach, but I may have been out
9	of order. I've got what you have.
10	A. Okay, that's what I
11	Q. All right, we're all looking at the same little
12	creature here.
13	A. Mine aren't marked.
14	Q. All right. If you'll help me mark it, that's
15	Exhibit 1, and that's your net sand isopach?
16	A. That's correct.
17	Q. All right, sir. Describe for us the interval
18	that you're mapping.
19	A. This is the Lower Brushy Can. sand of the
20	Delaware Mountain Group.
21	Q. Why would you have chosen to map that particular
22	member or interval of the pool?
23	A. This is the interval that's productive in this
24	field.
25	Q. How do you construct a map like this?

	00
1	A. You use well logs and obtain the feet of pay from
2	the well logs and then post those wells to a map. And then
3	based on your interpretation of the depositional
4	environment, you contour that map.
5	Q. Okay, it's difficult to find all the section
6	numbers on your display, but the Kaiser-Francis acreage, if
7	you'll look three sections down, see Section 19? And then
8	if you go east into Sections 20 and 21, that's
9	approximately where the Kaiser-Francis acreage is located?
10	A. Well, we operate those two sections, Sections 20
11	and 21. We also own nonoperating working interest in other
12	sections.
13	Q. All right, sir. Do you have an opinion as a
14	geologist whether or not this area, which currently is
15	being managed by the Division as two different pools, is in
16	fact one common source of supply?
17	A. It is one common source of supply.
18	Q. Have you reached any geologic conclusions with
19	regards to the distribution and continuity of the Brushy
20	Canyon member of the reservoir?
21	A. It's very continuous.
22	Q. When we look at the values on the isopach, what
23	cutoff value did you use?
24	A. I used a density porosity of 14 percent.
25	Q. With that criteria, and with the data available

1	for mapping, you have generated this map?
2	A. Yes, I have.
3	Q. And what conclusions do you reach?
4	A. That it's a continuous reservoir, all the way up
5	and down the extent of this map.
6	Q. If Pogo drills a well in the Brushy Canyon member
7	of the pool in any of their portions of the reservoir, is
8	that going to be the same Brushy Canyon interval that
9	Kaiser-Francis is producing or intends to produce?
10	A. Yes, it is.
11	Q. Do you see any breaks or separations between what
12	are now two separate pools?
13	A. No.
14	Q. Do you see any reason not to treat those as one
15	common, single source of supply?
16	A. No, sir, I do not.
17	Q. Let's turn to Exhibit 2, and I apologize for not
18	marking these, Mr. Examiner. I wasn't sure quite what the
19	sequence would be, but the cross-section is Number 2.
20	A. Correct.
21	Q. All right, sir, turn to that and first of all
22	tell us the reason for selecting these particular wells on
23	your north-south cross-section.
24	A. This is a north-south cross-section that runs the
25	entire length of the field. It's marked with an orange

	00
1	line on Exhibit 1. It's very similar to the cross-section
2	that's presented by Pogo.
3	The reason I chose these particular wells was
4	just that it made a nice line up and down the middle of the
5	field and the thickest part of the reservoir and showed off
6	the continuity of the reservoir, north and south, to a very
7	dramatic extent.
8	Q. Do you see any relationship to the pay thickness
9	for the Lower Brushy Canyon and the productivity of wells
10	that penetrate various portions of the pool?
11	A. I haven't examined any of the productivity of any
12	of the wells.
13	Q. All right. We can conclude and agree, then, with
14	the Pogo geologic presentation to the extent that in
15	principle you believe in one common source of supply, and
16	whatever rules are developed and adopted by the Division
17	ought to be applied throughout the pool?
18	A. Yes, I find the Pogo geologic presentation to be
19	very effective and that any rules adopted for one field
20	should be adopted for both.
21	MR. KELLAHIN: Okay, that concludes my
22	examination of Mr. Benson.
23	We move the introduction of his Exhibits 1 and 2.
24	EXAMINER CATANACH: Exhibits 1 and 2 will be
25	admitted as evidence.

1	MR. BRUCE: Very briefly, Mr. Examiner.
2	CROSS-EXAMINATION
3	BY MR. BRUCE:
4	Q. Mr. Benson, your Exhibit 1 is a map of the entire
5	what Pogo called the A interval, the Lower Brushy Canyon
6	zone?
7	A. I believe they called it BC-2 and BC-4.
8	Q. This is the BC-2 plus BC-4?
9	A. That's correct.
10	Q. Okay, I just wanted to clear that up.
11	And you're showing a continuous deposition on
12	this map. Does the continuous deposition mean continuous
13	permeability throughout that area?
14	A. In my opinion, yes.
15	MR. BRUCE: Nothing further.
16	EXAMINER CATANACH: I have no questions of the
17	witness. He may be excused.
18	MR. KELLAHIN: Call at this time Mr. Jim
19	Wakefield.
20	JIM_WAKEFIELD,
21	the witness herein, after having been first duly sworn upon
22	his oath, was examined and testified as follows:
23	DIRECT EXAMINATION
24	BY MR. KELLAHIN:
25	Q. All right, sir, are you all ready? Would you

89

1	please state your name and occupation?
2	A. My name is Jim Wakefield. I'm a petroleum
3	engineer with Kaiser-Francis Oil Company.
4	Q. Mr. Wakefield, on prior occasions have you
5	qualified as an expert petroleum engineer before the
6	Division?
7	A. I have.
8	Q. And pursuant to your employment in that capacity,
9	have you made an engineering study of what we're describing
10	here as the Delaware Pools, the Los Medanos and the West
11	Sand Dunes Pool in Eddy County, New Mexico?
12	A. Yes, sir, I have.
13	Q. What is the position of your company with regards
14	to Pogo's Application in this case?
15	A. We recommend that it be denied.
16	Q. Describe for us what is your activity in the
17	pool.
18	A. We are an operator of Sections 20 and 21. I
19	believe Pogo, from an early exhibit that showed a pink
20	portion and a green portion, with the pink, I guess, being
21	Los Medanos and the green or blue portion being the West
22	Sand Dunes-Delaware fields, and the interval in between
23	there was white in Sections 20 and 21, and then a little
24	part of it was blue.
25	Q. Have you made a study of the request that Pogo

1	has made to the Examiner to increase the GOR in these two
2	pools?
3	A. I have.
4	Q. Have you shared and exchanged data with Pogo
5	concerning information in this reservoir?
6	A. I have.
7	Q. Based upon that study, do you have an opinion as
8	to whether or not it is timely to increase the GOR in this
9	reservoir above the current 2000 to 1?
10	A. I believe it is not a timely event to have occur.
11	Q. Why, in your opinion, Mr. Wakefield, is it
12	premature to increase the GOR to 8000 to 1?
13	A. We have a very large reservoir being developed.
14	I say "being developed" because it's approximately six or
15	maybe as much as seven miles long in a north-south
16	direction, as evidenced by the many maps that have been
17	entered into exhibits here today, and as much as two miles
18	wide. There could be potentially as many as 170 wells
19	drilled in this reservoir. Presently there's somewhere
20	around 80. It's kind of a moving number as people move
21	rigs in and drill. Maybe a little bit less, maybe a little
22	more than that, but somewhere close to that number.
23	There are plans to drill a number of wells
24	currently. Kaiser-Francis, for instance, is planning to
25	drill additional wells, Pogo is drilling additional wells.

91

	92
1	Yates, I haven't heard their plans; I don't know what they
2	plan to do. I know that Santa Fe plans to drill additional
3	wells. Merit may be drilling some additional wells. So
4	it's an ongoing field development.
5	And what's interesting to look at, beyond just
6	the model studies and the numbers that are being quoted by
7	Pogo, is that this reservoir has had a huge amount of gas
8	in place.
9	The information obtained from PVT data indicates
10	that this reservoir is to the high end of being a black
11	oil. It's not a volatile oil; it's to the high end. It
12	shows an initial formation volume factor of about 1.75 in
13	the reservoir in terms of I mean Excuse me, I'm
14	getting confused here, ahead of myself.
15	Formation factor initial was 1.754 on the Kaiser-
16	Francis PVT data, which indicates a high-shrinkage oil. I
17	think they used a 1.5 in his model study.
18	The gas in solution in the reservoirs, in the
19	1425 range for our PVT data, indicates a huge amount of gas
20	in place. This is an energy factor in the reservoir, a
21	large energy factor, which will result in, we think,
22	significantly higher recoveries than Pogo is postulating at
23	11 percent. In fact, we think that out of the reservoir as
24	a total there may be as much as 20 million barrels of oil
25	and 130 BCF of gas produced. A significant reservoir, one

1	that, at this point in time, where we've only produced
2	maybe 1.7, 1.8 million barrels to date, it's too early in
3	the life of the reservoir to start tampering with
4	increasing gas/oil ratios, particularly with the variety of
5	gas/oil ratios present in the field today.
6	Q. Do you have an approximate volume for the
7	reservoir in terms of ultimate oil recovery from the entire
8	pool?
9	A. Somewhere around 20 million barrels, we think.
10	Q. And at this point in the life of the reservoir,
11	we've captured how many barrels of oil?
12	A. Approximately 1.7 million. And that's through, I
13	believe, about October 1st, maybe November 1st. I'd have
14	to go back and look.
15	Q. Have you examined the geology that Mr. Benson has
16	generated for this reservoir?
17	A. I have.
18	Q. And are you familiar with his information and
19	with the geologic data?
20	A. Yes, I am.
21	Q. What is your concern about allowing those older
22	wells in the pool to produce at a higher gas/oil ratio?
23	A. We have a The field has essentially been
24	developed in two different ways.
25	The southern edge of the field, if you take the

1	inner section or the dividing line between Sections 20 and
2	21 and 28 and 29, essentially that southern half has been
3	extensively developed and is outside of Section 29, is
4	on 40-acre spacing. As it extends to the south that's
5	still developing.
6	If you go to the north, due to a variety of
7	reasons, most of which is potash, and some just preference
8	by some of the operators in that area, it hasn't been
9	developed as rapidly. And as you saw from some of the
10	exhibits, the gas/oil ratios were quite different between
11	the north and the south.
12	And at this point in time with still additional
13	development being planned, particularly in sections 20 and
14	21 where we cannot drill or are prohibited from drilling
15	straight holes and have to drill either directionally or
16	perhaps even horizontally, I guess, to develop our lease
17	under the potash, it seems inappropriate to not only
18	continue the current gas production in excess of the state-
19	mandated allowables, but to ask for an increased gas
20	allowable which allows them to further reduce pressure and
21	create a pressure sink in the south end of the field that
22	potentially could drain through the numerous fractures.
23	All these wells have been fracture-treated.
24	There are high-permeability conduits that exist through the
25	core analysis you can see them could easily create a

1	conduit from the north to the south and drain gas from the
2	south end to the north end pardon me, from the north end
3	to the south end, due to the pressure sink, which would in
4	fact reduce recoveries, particularly for Section 20 and 21
5	where we're not able to develop and compete on a well-to-
6	well basis.
7	Q. In a solution gas drive reservoir, there is only
8	so much energy to drive the oil production that's within
9	the reservoir?
10	A. That's correct, the
11	Q. When you look at a solution gas drive reservoir
12	as an engineer, what are the most important factors for you
13	that affect ultimate recovery?
14	A. The two factors that are most important are
15	pressure and oil/gas ratio.
16	Q. Why are those important?
17	A. Because they drive everything else. Everything
18	else in the equation for recovery is a function of PVT.
19	The only variables are pressure and gas/oil ratio.
20	And if you drain off pressure, i.e., by either
21	being late in the development, and the field has good perm.
22	and is in excellent communication, then you drain off
23	pressure. And if you're late in developing, you have lower
24	reserves.
25	If you permit gas to be drained off through high-

1	perm. sections or in other ways produced, then you again
2	have reduced recoveries in areas of the field.
3	Q. Give us a perspective, if you will, about the
4	engineering presentation that looked at Craft and Hawkins
5	or any of the other published treatises on the concept that
6	ultimate oil recovery from a solution gas drive reservoir
7	is not a function of rate.
8	Did I say that right?
9	A. Say it again.
10	Q. All right. Pogo commented a while ago on the
11	fact that they had concluded it was a solution gas drive
12	reservoir.
13	A. I agree with that.
14	Q. All right, and that it did not matter in terms of
15	ultimate recovery that we produced the oil at any
16	limitation. In other words, lower rates of oil recovery is
17	not going to increase ultimate oil?
18	A. Actually, what my opinion of that is, based on my
19	understanding of the reservoir mechanisms involved, is that
20	given the fact that Kaiser-Francis is in an area of the
21	field that is being prohibited from being developed,
22	essentially in a competitive manner, we are going to, by
23	increasing the gas/oil ratio, be subject to drainage of
24	pressure, pressure that is very precious to us in the
25	recovery of hydrocarbons in our lease.

1	It's an issue more, in my opinion, of equities
2	across and correlative rights across lease lines.
3	Q. I asked the Pogo engineer if he had any pressure
4	information between or among wells so we could examine with
5	him this drainage issue. He said he had not done that
6	work.
7	Have you done any kind of work like that to talk
8	about drainage?
9	A. I have done some of that. There's very few
10	pressures that actually give you an accurate determination
11	of the current reservoir pressure. There's maybe three or
12	four wells, maybe five in total, that actually gives a good
13	snapshot view of what's happening in the reservoir.
14	If we had better pressure data, then the question
15	that we have to answer here about harm to the reservoir and
16	ultimate recovery would be much easier. Because you don't
17	have that information, it makes it much more difficult.
18	Q. When you look at the field as a total, have you
19	examined whether or not the field as a total is up against
20	or exceeding the gas/oil ratio of 2000 to 1?
21	A. It's not. The south end, because of its more
22	rapid development, its high competition for reserves, I
23	believe are interfering with each other, first of all, to a
24	large extent. I think that that is creating a high gas
25	saturation in that area of the field. That is causing your

	98
1	high gas/oil ratios.
2	If you look at the field as a whole, the field as
3	a whole does not need an increased gas/oil ratio. We are
4	well under the limit for the number of wells we have,
5	versus the amount of gas that can be produced on a field
6	basis.
7	What we have a problem with is that
8	inappropriately, at least in my opinion, and for state-
9	mandated gas allowables, we have a number of leases that
10	are producing in excess of the state gas/oil ratio.
11	Q. Does the current 2000-to-1 GOR for the wells in
12	the pool serve as a useful conservation means by which to
13	limit the gas and the energy withdrawal from the reservoir?
14	A. Yes, it does. Again, we have a significant
15	amount of gas in the reservoir. The equities with respect
16	to gas are equally important, in our opinion, as it is for
17	the oil.
18	Q. Do you have an opinion as to whether or not it is
19	a more efficient use of that drive mechanism in the
20	reservoir to restrict the high-GOR wells until the entire
21	field exceeds the GOR?
22	A. I don't know that I would go that far. I would
23	say it would be in the interests of conservation, in the
24	interest of equities to maintain the current GOR until the
25	field is developed.

1	Q. Let's look at your Exhibit Number 3; it's
2	captioned "PVT Data". Describe for us what you're showing
3	here.
4	A. I believe this data has already been entered into
5	testimony through Pogo. It's just a comparison on a line-
6	by-line basis of the information from the PVT analysis.
7	Q. Did you prepare a tabulation of bottomhole
8	pressures?
9	A. Yes, I did.
10	Q. I'm marking that as Exhibit Number 4. Would you
11	turn to that now, Mr. Wakefield?
12	A. Okay.
13	Q. Describe for us what you're showing here.
14	A. This is a list of all the known bottomhole
15	pressures available to me at this time. There may be some
16	taken by Yates, but they and my questioning of their
17	personnel didn't have any to give me. Enron operated the
18	wells that Merit now operates. They had no bottomhole
19	pressure data. Perhaps Yates has taken some recently I
20	don't know about, but this is I tried to make the
21	universe of known bottomhole pressures.
22	Q. To what purpose have you utilized this
23	information?
24	A. What I was trying to do was to find the initial
25	bottomhole pressure in conjunction with the PVT data to

	100
1	determine at what point the reservoir went through bubble
2	point and what the current reservoir pressure in the field
3	is.
4	Q. What is your opinion on those issues?
5	A. My opinion is that the DST data on the Mobil Fed
6	29 Number 7 indicated a DST pressure of 3570, and I think
7	that's probably pretty close to the initial bottomhole
8	pressure of the reservoir. That was taken 9-92, and it
9	could be lower than the original, because at 3-92 the Mobil
10	Fed 29 began producing. I'm not sure what the effect would
11	be in total for that.
12	The Pure Gold 4 well I think it should be Pure
13	Gold "D" Number 4 on 10-16-92 had a DST of 3430.
14	And then on 3-26-93 the Pure Gold "A" Number 2
15	well had a bottomhole pressure that was built up adequately
16	to extrapolate to a P* of 3292, as testified earlier.
17	And the Pure Gold "A" Number 4 well, we ran a
18	what's called a V-tool by Halliburton, which is essentially
19	a DST-type mechanism, which measured about 3328 pounds,
20	bottomhole pressure, which is fairly close in agreement to
21	the Pure Gold "A" Number 2 pressure.
22	And then more recently, there was three pressures
23	taken.
24	11-26-93, the Mobil Fed 29 was shut in for 335
25	hours and measured a final pressure of 1613. It had not

1	built up adequately to be extrapolatable to a P*.
2	The Pure Gold "A" Number 3 well, when it was
3	drilled on 11-30-93, had a bottomhole pressure of 2762.
4	And then the Pure Gold "B" Number 4 had a
5	bottomhole pressure measured most recently of 1447 pounds
6	after 117 hours. Again, it was still in the transition
7	period, and we could not translate that to a bottomhole
8	pressure.
9	The point being, the last three pressures, is
10	that there's a gross difference between wells that are
11	producing at or close to their capability versus wells that
12	are being drilled in offsetting 40-acre spacing units, and
13	that new well, being the "A" 3, has seen significant
14	pressure depletion, i.e., drainage.
15	The bubble point of 3220 and the PVT data that
16	Kaiser-Francis obtained in the Pure Gold "A" Number 2 well
17	will indicate that shortly after 3-26 or 5-18, somewhere,
18	probably the summer of 1993, the reservoir went through a
19	bubble point, at least in those areas of the field where
20	they're developed.
21	Q. What in your opinion is the solution gas/oil
22	ratio for the reservoir initially?
23	A. The Producing through the flash process, as
24	was testified, was probably 1240, 1130 to 1240, depending
25	on which of the PVT data you look at. However, for

1	purposes of estimating the gas in place you would use the
2	flash liberation, which is the 1425 or I think it's the
3	1280 number from the PVT data.
4	Q. Put the pressure information in perspective for
5	us. What concerns are you expressing with regards to the
6	pressure information that you now have?
7	A. This pressure data indicates to me, at least the
8	last three points in particular, that the areas in Sections
9	20 and 21 that we haven't been able to drill yet are being
10	drained, that there's a pressure sink existing to the south
11	which is significant, and in terms of a 1000-p.s.i.
12	differential pressure.
13	That pressure sink, in our opinion, due to the
14	way we view the core analysis and the way we view the way
15	the well's been fracture-treated, provide a conduit that
16	can permit gas to migrate from the north to the south with
17	this kind of pressure differential.
18	Q. Let's turn to your Exhibit Number 5. It's the
19	illustration that's got the color code on it.
20	A. Uh-huh.
21	Q. Identify that for us.
22	A. This is very similar to the There was two,
23	actually two exhibits proposed by or presented by Pogo,
24	one showing the initial GORs on an isopach map or I
25	guess it was a structure map, actually and one with

1 current GORs on the same structure map.

-	Current Goks on the same structure map.
2	The intent of their exhibit was to show that it
3	doesn't really matter where you're at in the reservoir; GOR
4	is a function of something else besides the wells after the
5	test and with respect to its structural position.
6	And I think it was alluded to that in their
7	opinion it was a function of the amount of production
8	recovered to date, and at each individual well, not
9	necessarily its relationship to when the well was drilled
10	or anything, just total number of barrels produced.
11	In other words, you've got a well that was
12	drilled today and made 25,000 barrels a month, and it had
13	the same GOR as one that produced for five months and had
14	that.
15	Q. Is there a relationship that you see where the
16	older wells in fact have higher GORs?
17	A. I haven't studied it from that viewpoint to that
18	extent, to make that determination.
19	What I have seen, though, is that, essentially,
20	as I said before, the field is a north-south development
21	situation. To the north in Sections 20 and 21, up in 2, 8,
22	9, 17 and 16, those wells developing later have a
23	significantly lower GOR. The wells to the south have a
24	significantly higher GOR. That GOR difference is a result
25	of reservoir pressure.

	104
1	Depletion at those wells Some of those wells
2	are thin. You can play games with the thinness of the
3	well. You could play games with the number of feet of pay
4	in one zone versus another, things like that, or
5	permeability difference, if you knew the permeability. In
6	fact, we don't, because we only have two cores that
7	actually tell us what the permeability is, and they're
8	all they are offset wells. So we don't have a spread of
9	data to give us a confidence level to really predict what
10	permeabilities are.
11	But the indication is that you have a much In
12	the pressure and the GOR performance, you have an
13	indication that the southern half is experiencing very high
14	GORs at pressure depletion, and the north doesn't have that
15	same pressure depletion. Therefore, it's at a higher GOR
16	pardon me, a lower GOR.
17	Q. If the PVT data tells you that the solution GOR
18	is in the 1400-to-1 range, and if the rules currently allow
19	you to produce at 2000 to 1, there's a 600-MCF
20	differential. That's simply going to be free gas, isn't
21	it?
22	A. I'm not sure I can answer the question the way
23	you asked it.
24	Q. All right, I'll
25	A. The solution gas/oil ratio has to do with the

1	amount of gas in the reservoir and the initial producing
2	gas/oil ratio.
3	When you look at this field, and particularly
4	early time at this field, you don't see the 1400 or 1100
5	gas/oil ratio because a lot of the gas is flared, if you
6	look at the production data in the available production
7	books.
8	Now, some of the operators have kept records, I'm
9	sure, what the gas flared has been during those early times
10	and have reconstructed, as Pogo did recently. I received a
11	packet of information that changed all of their gas rates
12	back to the time they began producing, which I assume they
13	went back and tried to add in all the gas that flared.
14	And when you do that, you should see initial
15	gas/oil ratios in the terms of the 1000 or 1100 standard
16	cubic feet per barrel, predicted by PVT. I haven't had
17	time to examine the documents today that have been
18	presented, to look at that, but I'm sure that they're
19	probably going to show something like that.
20	You would not expect wells drilled in this
21	reservoir to have GORs initially in excess of about 1200 or
22	1300. If they do, then they probably mis-measured the gas,
23	I would think. They didn't share it properly between
24	wells, et cetera.
25	At later times when wells are drilled,

105

	100
1	particularly in areas of development such as 32 and the
2	south half of 29 and the east half of 28, the newer wells
3	should come in if they're being drained, they should
4	come in at higher gas/oil ratios, and I think that they
5	did. We're seeing that, I think, in the newer wells. But
6	I haven't made it a direct examination to point those out.
7	The key point again, as far as what I'm trying to
8	show here with this exhibit, is just that there's a
9	difference in development of the field, which is the main
10	cause of the gas/oil ratio difference and the pressure-
11	depletion difference, and and that's it.
12	Q. Okay. Let's turn now to Exhibit 6. It's
13	captioned "Gas/Oil Ratio Comparison".
14	A. All right.
15	Q. What have you prepared here, Mr. Wakefield?
16	A. This essentially is the data that went into the
17	prior exhibit. And what I did was, just in case there was
18	a question someone had about low rates versus high rates,
19	we could attempt to address that. I don't really think
20	it's important to go into all that at this time. It's just
21	simply the data that goes into there.
22	Q. All right, sir.
23	A. And it shows More important, it shows that the
24	data for the north end, which was test data from Santa Fe
25	primarily, and then from Kaiser-Francis, is newer data,

	10/
1	therefore at a later point in time in the reservoir than
2	the data from the south end, which is actual production
3	data supplied from operators on the C-115s.
4	The point being, is that if you have November
5	data that's showing a lower GOR in the north, the GORs will
6	actually be higher for the same point in time for the wells
7	to the south. If you were to move them one month further,
8	you would expect their GORs to go up.
9	So that the exhibit the prior exhibit, Exhibit
10	Number 5, would then show even higher GORs in the south
11	end, if you were to hit the same point in time.
12	Q. Have you examined the reported information to
13	attempt to identify what leases or what wells were going to
14	be the direct beneficiaries of any GOR increase if the
15	Division should increase the GOR?
16	A. I have.
17	Q. Let's turn to Exhibit 7. It's a spreadsheet.
18	First column it says "Operator", and then the second one it
19	says "Lease Name".
20	A. Yes.
21	Q. All right, what are you preparing here?
22	A. This is a tabulation of the number of wells on
23	those leases in these two fields during the month of
24	September, 1993, and the reported oil and gas production.
25	The next That takes care of the first three

107

	108
1	columns. The next column is gas/oil ratio and MCF per
2	barrel versus In other words, standard cubic feet per
3	barrel would be instead of 1.29, it would be 1290. It
4	depends on how you're going to look at that.
5	The next column, then, should be the 2000-to-1
6	GOR gas allowable in MCF a month.
7	And then finally the last column would be a
8	comparison of the allowable versus the amount of gas
9	produced in that month. And the obvious thing, it draws
10	your eyes that there's two leases that are produced in
11	excess of their allowable during the month of September
12	or at least reported on C-115s.
13	Q. Show me how to read it. For example, the first
14	line, it says "Yates", they've got eight wells
15	A. Yates operates the Medano VA State well, state
16	lease. They have eight wells that month reported.
17	Q. They would have been eight
18	A. Oil production was 17,101 barrels, gas production
19	21,096, gas/oil ratio of 1.29 MCF per barrel. Their gas
20	allowable was 89,760 MCF. They actually had room to
21	produce another 67,764 MCF for the month.
22	Q. That's what I want to draw your attention to.
23	What's the 67,000 number in relation to the allowable?
24	A. That's the difference between the allowable and
25	the actual production.

1	Q. All right. They under-used their allowable for
2	gas, if you will, by 67,000?
3	A. Yes, that's right.
4	Q. They got that much left to
5	A. To produce as a lease.
6	Q. All right. And you read down, and then we get to
7	a couple of the lines where the number is in parentheses?
8	A. Right. For instance, the Merit Sundance Federal
9	was the largest overproducer. It produced 150,907 MCF for
10	the month, 5 million a day. And essentially that's 2
11	million a day over its gas allowable or 72,367 MCF for the
12	month.
13	The only other lease was the Pogo Pure Gold "D"
14	Federal, which has ten wells on it and produced over its
15	allowable some 10,163 MCF.
16	Q. Two operators in the reservoir over-producing
17	their allowable?
18	A. Yes.
19	Q. Okay, let's turn now to the spreadsheet. The
20	caption says "Kaiser-Francis Oil Company Operated".
21	A. Okay.
22	Q. What is this?
23	A. This is a snapshot view of two things. First,
24	the top part, Kaiser-Francis's operating properties, Pure
25	Gold "A" and "B" lease. We have three wells on the "A"

	110
1	lease, four on the "B" lease.
2	It is an attempt to show the individual test data
3	that we have on those wells for the most current month.
4	And then we show they're below it, the December lease
5	average production, it's off the gauge sheets, it's not
6	reported on C-115s yet.
7	And as you go across the line it will show that,
8	you know, we had for the Pure Gold "A" lease, the Number
9	2, 3 and 4 wells, the gas/oil ratio varied from 1.8 to 2.7
10	MCF per barrel, and that the Pure Gold "B" lease, the 3, 4,
11	5 and 6, varied from 1.16 to 2.6.
12	The absolute gas/oil ratio from the produced oil
13	and gas for the December average would be 2.433 MCF per
14	barrel for the Pure Gold "A" lease and 2.223 for the Pure
15	Gold "B" lease.
16	The Number 3 well wasn't on much that month, and
17	it's a new well. But these are and there's no This
18	isn't an attempt to allocate the production for a well
19	during those months; it's just a statement of what the
20	individual tests said, and we don't I don't have the
21	data on here that shows the number of wells produced or
22	what you would allocate to an individual well.
23	Then as you come across the column it says
24	"Monthly Oil Allowable" for the oil and the gas.
25	Then it says "Additional Gas to Produce (MCF per

1	day)". For the Pure Gold "A" lease we could have produced
2	436 MCF more per day, and for the Pure Gold "B" lease we
3	could have produced 431 MCF more per day, which translates
4	to about 13 million more per month on those two leases.
5	The bottom half of this exhibit, it says "Pogo
6	Operated". Again, this is October production from Pogo's
7	most recent amended C-115s. And what this shows is three
8	leases.
9	The Pure Gold "D" lease, which is located in
10	Section 28 immediately south of the Pure Gold "A" lease,
11	have nine wells currently producing on that lease.
12	And these production numbers are exactly the
13	numbers that they report on their C-115A, which shows if
14	assuming that they have allocated this properly based on
15	well tests, would give you a snapshot view of October for
16	the Pure Gold "D" lease, which shows a variation in
17	allowable from roughly 3 MCF per barrel up to 5.2.
18	Q. Again, the numbers in parentheses represent
19	overproduction?
20	A. And as you come to the right, past the
21	allowables, you come to "Gas Allowable, over/under (MCF per
22	month)", and then the next column, "over/under (MCF per
23	day)".
24	And you can see that on the lease, if you take
25	the absolute allowable for each well, that of the nine

	116
1	wells, all but three were over their allowable, for a total
2	of 32,492 MCF for the month. On a daily basis, that's a
3	million cubic feet per day.
4	Q. Okay. And
5	A. And then you go to the Mobil Federal lease where
6	they have four wells currently producing, similar analysis,
7	similar situations here.
8	One of those wells does not produce over its
9	mandated allowable, the other three do. They produced a
10	total of 26,984 MCF for the month above their allowable, or
11	899 MCF per day.
12	And then finally the Federal 29 lease has 353 MCF
13	a day left to be produced to get to their allowable.
14	If you
15	Q. That's not a running total; this is just the
16	month of October?
17	A. Yeah, just for the month of October.
18	If you were to go back and then compare Exhibit 7
19	and 8 and look at the snapshot views of September and
20	October for the Pure Gold "D" lease, the rate of production
21	of gas increased significantly between September and
22	October.
23	Which is the point of their hearing here, is that
24	they want an allowable to allow them to continue to produce
25	at rates above the 2000-to-1 limit for the lease. And

they're not really asking for -- When they talk about the 1 2000-to-1 or a 4000-to-1 or 8000-to-1 GOR limit, they're 2 not talking about it versus the actual production of the 3 4 well; they're talking about it as an allowable. And 5 there's a big difference in that. 6 I agree that the reservoir should be expected to 7 see significantly higher GORs with time. It's a solution qas drive reservoir. 8 The difference is that I don't believe the field 9 needs an increase in gas/oil ratio allowable because the 10 11 field is producing well below the mandated state allowables. 12 Have you made a study to determine whether there 13 Q. is any other analogies between what you expect to see in 14 this reservoir and what has occurred over the life of other 15 16 Delaware pools? 17 Α. Yes, I have. 18 Q. Let me direct your attention to Exhibit Number 9. It's a plot of production. 19 This is a --20 Α. At the very top, Jim, it says "Summary Loving-21 Q. Delaware Summary". 22 Right. I believe this is the East Loving-23 Α. Delaware field. 24 25 Q. Okay.

1	A. There's about 114 wells in this summary. I've
2	highlighted in red the gas production, history of the
3	lease, and the purple dots are the gas/oil ratio. And then
4	the black line in between that is the oil production.
5	And if you'll notice, that the gas increases very
6	rapidly, and as the oil hits a peak in the first half of
7	1991, the gas also hits a peak. The peak for the oil is
8	about 160,000 150,000, 160,000 barrels per month. And
9	the peak for the gas is between 450,000 and 500,000 MCF per
10	month.
11	And the gas continues on a very flat type of
12	profile. The last two months I haven't been able to
13	determine what they've done there. I don't believe they've
14	drilled any new wells. If they have, I haven't been able
15	to find them, because I'm not sure what the last two months
16	are.
17	But with 114 wells, the field gas allowable here
18	is about 900 I believe 920,000 MCF per month on a two-
19	to-one [<i>sic</i>] GOR allowable. So their well Here they
20	are, three years into the field, four years into the field,
21	based on the predictive data that was presented earlier by
22	Slider and the performance they expected, and it's matching
23	quite well.
24	The gas/oil ratio is increasing, and beginning
25	to taper off and level, the rate of increase is decreasing.

1 The oil production is declining about 30 percent for the 2 field, and the gas has been very flat.	9
2 field, and the gas has been very flat.	
3 Again, the field performance doesn't require a	1
4 gas/oil ratio increase.	
5 Q. Let's turn and see what's happening in our	
6 reservoir. If you'll look at Exhibit 10, what have you	
7 plotted, and what do you conclude from this plot?	
8 A. Exhibit 10 shows again, the red being the g	jas,
9 the oil being the black, and the gas/oil ratio being the	9
10 purple. We're very early in the life of the field. We	are
11 at probably the peak production. I say "probably" becau	ise
12 we have a lot of wells left to drill and there may be a	
13 double peak here, in which case, you know, potentially	
14 we'll go even above the peak month of two-hundred-and-	
15 about-twenty-five-thousand barrels per month.	
16 The gas allowable from Exhibit 7 says that the	2
17 gas allowable will be 762,000 MMCF per month. Well, the	ıt
18 point, the last production point here on the gas, is only	-У
19 560 million. So we have a difference of 560 200	
20 million That's about 7 million cubic feet of gas per	day
21 that's left for the field to produce, and we don't need	an
22 increased gas/oil ratio. Increased gas/oil ratio here	
23 would only be for a few leases which would benefit by	
24 recovering additional gas from other leases that aren't	
25 developed.	

	110
1	Q. Let me have you turn to your last exhibit,
2	Exhibit 11. Identify this for the
3	A. Exhibit 11 is just a compilation of the
4	production points on Exhibit Number 10. It's just
5	presented so the numbers will be plain to people.
6	Q. In conclusion, then, Mr. Wakefield, what is your
7	recommendation to the Examiner?
8	A. Our recommendation to the Examiner is that the
9	Application be denied. At the very best, it should be
10	delayed for at least six months to a year and then
11	reconsidered with hopefully better production additional
12	production data and some additional pressure data.
13	It's our opinion that if we're right, there's no
14	decrease in ultimate recovery from the field. If they're
15	wrong, there is.
16	MR. KELLAHIN: That concludes my examination of
17	Mr. Wakefield.
18	We move the introduction of his Exhibits 3
19	through 11.
20	EXAMINER CATANACH: Exhibits 3 through 11 will be
21	admitted as evidence.
22	CROSS-EXAMINATION
23	BY MR. BRUCE:
24	Q. Mr. Wakefield, if you could turn to your Exhibit
25	5, the plat

		· · · · · · · · · · · · · · · · · · ·
1	А.	Okay.
2	Q.	I believe you said that you own interest and
3	operate s	ections 20 and 21; is that correct?
4	А.	Yes, sir.
5	Q.	Do you own any interest in Section 17?
6	А.	Yes, we do.
7	Q.	South half of Section 17?
8	А.	And the north half.
9	Q.	And the north half. Do you own any interest in
10	Section 2	8?
11	Α.	Yes, sir, we do.
12	Q.	Okay. Now, what about your interests, especially
13	in 20 and	21? When did you acquire those? When did
14	Kaiser-Fr	ancis acquire those?
15	Α.	In the early Eighties.
16	Q.	So you've had them about a decade?
17	А.	Roughly.
18	Q.	And why didn't you start developing them sooner?
19	Α.	Developing what?
20	Q.	Your leases.
21	Α.	Our leases For Delaware, I assume you mean?
22	Q.	Yes.
23	Α.	We hadn't pursued Delaware because we were not
24	offset by	anyone and had not cataloged it as anything but
25	possible]	pay behind pipe.

1	Q. Now, you're looking at Section 20, you're talking
2	about having your acreage drained, but if you look at
3	Section 20, there's really very little in Section 29 to the
4	south of you, immediately to the south of you, is there?
5	A. That's correct.
6	Q. And unfortunately, Pogo has had the same problem
7	as Kaiser-Francis on these potash issues, haven't they?
8	A. They have.
9	Q. You have in Section 20, in the southeast quarter,
10	four wells. Kaiser operates those wells, don't they?
11	A. Yes, sir.
12	Q. Who proposed those wells?
13	A. Enron.
14	Q. So you had to wait until a non-operator proposed
15	them before you drilled them?
16	A. Actually, we were ready to propose them and went
17	to drill other locations than what they proposed. They
18	submitted them before we could get them proposed.
19	Q. What about in Section 21?
20	A. Same thing.
21	Q. So basically, as I understand your position, you
22	don't dispute that this is a solution gas drive reservoir;
23	you're just saying we want time to develop our lease before
24	we seek an increased GOR?
25	A. That's correct.

1	Q. And so the people who drilled out here first and
2	took all the risks should be punished?
3	A. No, that's not what I said.
4	Q. Isn't that restricting their ability to produce?
5	A. No.
6	Q. Now, the solution gas is an energy factor, right?
7	A. Yes.
8	Q. Won't it be used as efficiently at 8000-to-1 GOR
9	as it is at 2000-to-1?
10	A. On an individual well basis.
11	Q. Do you expect most of these leases on your
12	Exhibit 5, over time, to exhibit increased GOR?
13	A. Yes.
14	Q. Now, you talked about a pressure sink. Do you
15	have any evidence of that?
16	A. Yes.
17	Q. What is the evidence?
18	A. We presented it earlier, on Exhibit Number 4 as
19	well as Exhibit Number 5.
20	Q. The decreased pressure on Kaiser's operated
21	leases, is that what you're talking about?
22	A. On Mobil Federal 29 and the Pure Gold "B" Number
23	4, both taken in one in November, one in January, versus
24	the Pure Gold "A" 3, which was taken in November.
25	Q. And if you had developed your leases quicker, you

<pre>1 wouldn't have that problem? 2 A. Of drainage? I assume you're saying t 3 Q. You wouldn't have this 4 A. What problem are you 5 Q. Pressure, you're talking about a press 6 A. Yes. 7 Q. One final issue. The closing argument 8 if Pogo is wrong, there will be a decrease in the 9 factor; is that correct? 10 A. That's correct.</pre>	ure sink. was that
Q. You wouldn't have this A. What problem are you Q. Pressure, you're talking about a press A. Yes. Q. One final issue. The closing argument if Pogo is wrong, there will be a decrease in the factor; is that correct?	ure sink. was that
 A. What problem are you Q. Pressure, you're talking about a press A. Yes. Q. One final issue. The closing argument if Pogo is wrong, there will be a decrease in the factor; is that correct? 	was that
 Q. Pressure, you're talking about a press A. Yes. Q. One final issue. The closing argument if Pogo is wrong, there will be a decrease in the factor; is that correct? 	was that
 A. Yes. Q. One final issue. The closing argument if Pogo is wrong, there will be a decrease in the factor; is that correct? 	was that
Q. One final issue. The closing argument if Pogo is wrong, there will be a decrease in the factor; is that correct?	
8 if Pogo is wrong, there will be a decrease in th 9 factor; is that correct?	
9 factor; is that correct?	e recovery
10 A. That's correct.	
11 Q. What is that based on?	
12 A. Just based on a simple statement that	if indeed
13 they are able to siphon gas from the north end to	o the south
14 end, i.e., through pressure conduit, the pressure	e sink,
15 high-permeability streaks and the fact that all	the wells
16 are fracture-treated, that we have a continuous :	reservoir,
17 that we would see reduced recoveries in Sections	20 and 21,
18 which would result in reduced recoveries for the	field.
19 Q. But not poolwide?	
20 A. Yeah, it would for fieldwide. If we have	ave reduced
21 oil recoveries, it's reduced oil recoveries for	the field.
22 You're not going to move the oil if you lose the	gas, if
23 you're losing pressure.	
Q. And you're saying there's high-permeab	ility
25 streaks which preferentially produce this gas?	

121
A. I'm saying that you have all the wells fracture-
treated, which puts all the zone in communication, and we
know from core analysis that we do have high-permeability
streaks, 10, 12 millidarcies versus an average of less than
2, that, once communicated, with a pressure sink of 1000
p.s.i., can easily transport gas from one end of the field
to the other.
Q. You don't agree that this is a low-permeability
reservoir?
A. I didn't say that. I agreed with your analysis
that the the average permeability is low, but there are
significantly higher perms available.
Q. Looking at your Exhibit 8, do you have any wells
that are now producing over the top gas allowable, on an
individual-well basis, not a lease basis?
A. In excess of 374 MCF per day, or in view of the
2000-to-1 GOR?
Q. What's that? I'm sorry, I wasn't
A. The gas allowables, 374 MCF per day? Is that
what you're asking?
Q. Correct.
A. We have no wells producing more than 374 MCF per
day. On Exhibit 8 we have test information on one-day
tests.
Q. Okay.

	122
1	A. I don't have information if the well produced the
2	next day or not, if it was built up or whatever. That's
3	just tests that were given to me by the field personnel.
4	Q. These permeability streaks you talked about, are
5	they continuous, all the wells?
6	A. I think they probably are. If you examine the
7	cross-sections that were presented by Pogo and by Mr.
8	Benson for Kaiser Francis, you'll see a very high
9	correlativeness between individual intervals throughout the
10	field.
11	MR. BRUCE: I don't have any further questions of
12	the witness, Mr. Examiner.
13	EXAMINER CATANACH: Just a couple.
14	EXAMINATION
15	BY EXAMINER CATANACH:
16	Q. What kind of time line do you see in developing
17	Sections 20 and 21 at this point?
18	A. We just recently received permission to drill ten
19	wells out of the 22 we'd like to drill in time, in Sections
20	20 and 21. Since we're dealing with a fairly new
21	technology, Pogo and I Pogo and us have both agreed that
22	we should drill at least one, see how it performs before we
23	jump off and drill all of them.
24	We're going to have another hearing in a very
25	short time to obtain permits for the remaining wells to be

1	drilled in those two sections, and would then be able to
2	kick off a program to hopefully complete all those wells
3	that need to be drilled by year end, 1994.
4	Q. So you believe that all those wells or
5	Sections 20 and 21 may be fully developed within the end of
6	the year?
7	A. I think so.
8	Q. Once those wells are developed, is it your
9	opinion that maybe then would be an appropriate time to
10	bump the GOR up?
11	A. I think it would be an appropriate time to come
12	back to this Commission and examine that, and if we can get
13	concurrence to do that, yes.
14	Q. How long would you In your opinion, how long
15	would you estimate that before the entire field is fully
16	developed?
17	A. I think by the end of this year, nearly everyone
18	will have drilled the meaningful wells. There will still
19	be wells drilled on the edges and to the far extents that
20	attempt to either extend the reservoir or make it wider
21	than it is.
22	But we're limited in doing some of that to the
23	east by potash pardon me, to the west by potash and
24	to the east. So I think that probably by year-end we'll
25	have most of the wells drilled. Santa Fe indicates they

have a large budget and are going to drill as many wells as
they can this year. We intend to drill, Pogo has agreed to
drill with us in Sections 20 and 21 to date. Merit is
drilling where they have opportunities.
I would anticipate development will be pretty
much complete by year end.
Q. Is it your testimony that you think that once you
get your wells drilled in Sections 20 and 21, at least
you'll be protected you'll be more protected than you
are now?
A. I think that we would be competitive.
EXAMINER CATANACH: Okay, I don't have anything
else.
Anything else? Mr. Bruce? Mr. Kellahin?
MR. KELLAHIN: Nothing, sir.
MR. BRUCE: I would like to ask, if I could, Mr.
Hoose one question.
EXAMINER CATANACH: Okay.
GARY HOOSE,
the witness herein, having been previously duly sworn upon
his oath, was examined and testified as follows:
EXAMINATION
BY MR BRUCE:
Q. Mr. Hoose, were you here listening to Mr.
Wakefield testify?

	125
1	A. Yes, I was.
2	Q. And did you hear him testify about these
3	permeability streaks he talked about?
4	A. Yes, I did.
5	Q. In your opinion, are these permeability streaks
6	What is your comment on them?
7	A. He mentioned that he thought they were continuous
8	from well to well, and I wondered at the time what he based
9	that on.
10	The cores that we have seen do not support that.
11	I understand why he would believe that there perhaps some
12	permeability streaks. I have some core-analysis reports
13	here. I do not have extra copies. Kaiser has these
14	reports in their possession as well as core photos and
15	other associated data.
16	I'll be discussing very briefly two intervals,
17	and you can follow along on any of the cross-sections that
18	you have.
19	The two wells that were referred to that had the
20	cores were the Kaiser-Francis Pure Gold "A" Number 2, and
21	the interval that I would refer to would be from
22	approximately 7760 down to approximately 7800 feet, and
23	that would be what was earlier referred to as the BC-4
24	section, which is again what we believe to be the major
25	contributing reservoir.

1 The similar section in the other well, which is the Pogo Mobil Fed Number 4 -- and these are, I believe, 2 diagonal offsets to each other; they're very close in 3 position -- the section in question there would be from 4 approximately 7726 down to perhaps 7754. 5 6 In each well there are porosities -- these are 7 cross-plot porosities, and this is rough, but 17 to 18 8 percent, perhaps, maximum. 9 In the Kaiser-Francis well, in that interval, there are indeed some reasonable porosity streaks in there. 10 And mind you, we're not talking about tremendous porosities 11 -- or permeabilities, excuse me. We're not talking about 12 13 tremendous perms. By way of example, many of the permeabilities we 14 see in the core data, be it sidewall cores or in plugs 15 taken from the full diameter core, are less than a 16 millidarcy of permeability. 17 18 In this particular well, being the Kaiser Pure 19 Gold "A" Number 2, they had in that interval some very 20 reasonable perms by comparison. The highest one was 15.6 21 millidarcies horizontal perm. That was far and away the 22 highest one. I might even question that one particular data point. Sometimes in the way these things are tested 23 or if they've been fractured or something in handling, you 24 might get a little bit higher, but perhaps that is a 25

,	
1	correct point also.
2	There are several permeabilities of in the
3	at least two in the seven-to-eight-millidarcy range,
4	another handful of them in the two-to-five. We're not
5	talking about very high permeabilities, even in the high-
6	perm streak.
7	In the corresponding section, in the Pogo well,
8	by contrast, and this is Mind you, both of these wells
9	are in the thick trend of the reservoir and they're very
10	near to each other. The corresponding sections are in
11	general less than a millidarcy. In fact, an average looks
12	to be about .5 to .6 millidarcies.
13	I would say that I see two of them here and
14	these samples are taken every foot in these cores. I see
15	two of them slightly over one millidarcy, 1.12, and 1.24.
16	And towards the bottom and actually below the interval that
17	I had mentioned earlier, down at 7768.4 and 7769.6, there's
18	a presumably corresponding to a little bit better
19	porosity a 2.8 and a 2.05.
20	The point being that even in wells that are very
21	close to each other where we have the best data, which are
22	both in the thick portion of the reservoir, we do not see
23	it as a continuation of permeability streaks. And I expect
24	that, yes, there may be perm streaks in the field, but from
25	what we know, they would be discontinuous.

	120
1	MR. BRUCE: Thank you.
2	EXAMINER CATANACH: Any cross, Mr. Kellahin?
3	MR. KELLAHIN: No, sir.
4	EXAMINER CATANACH: The witness may be excused.
5	Gentlemen, would you like to give brief closing
6	statements?
7	MR. KELLAHIN: Oh, sure, why not?
8	(Off the record)
9	MR. KELLAHIN: Mr. Examiner, I'd like your
10	permission to prepare for and submit to you a draft order
11	in this case. But in addition to that, I'd like to share
12	some of my comments and concerns with you.
13	We have a reasonably new Delaware Pool. The
14	conservation rules of the State have established a limiting
15	GOR for that pool. Those were the rules, and those were
16	the procedures that all operators are required to abide by.
17	Pogo has violated the gas withdrawals. The
18	spreadsheet shows significant overproduction. And rather
19	than get into compliance and figure out how to make up this
20	overproduction, they race in here and ask you to give them
21	a special favor. They want to increase the GOR and thereby
22	excuse themselves from taking more than their share of the
23	gas-drive energy out of this reservoir.
24	We have done dozens and dozens and dozens of
25	cases like this, Mr. Examiner, and almost always the

1	applicant is in Pogo's position. They come before you
2	because they have a high-capacity oil well, and they don't
3	want to live with the depth bracket allowable, and they
4	want to take their share and their neighbor's share. Or
5	they come in here and the GOR is restricting their
6	production, and instead of complying and letting the more
7	efficient wells produce and recover their share of the oil
8	in the reservoir, Pogo and others ask for special
9	treatment.
10	That's not how we practice conservation law in
11	this state. This Division has consistently denied
12	increases in gas/oil ratio unless there is unanimous
13	consent of all operators in the pool to make an increase.
14	You can search all the Delaware GOR cases. The only time
15	you'll see an increase is when everybody unanimously asks
16	for that increase.
17	You see the GOR increase later in the life of the
18	reservoir, where everyone has exercised their correlative
19	rights and gotten their wells into production, and as you
20	see over time, the GOR increases for the pool.
21	But that's not the case here. The pool GOR is
22	well below the pool allowable. It is premature to change
23	the GOR for benefit of Pogo.
24	They have failed to prove their case, Mr.
25	Examiner. You and I and others have sit in here and

1 | listen to simulation by till we go nuts.

The simulator wants to rely on what the Division 2 3 did in the Bird Creek case. Well, that's Order Number R-9501-A. Well, it was a computer war. Bird Creek asked 4 5 to increase the East Loving-Delaware pool to 5000 to 1. The Commission said no. The Division said no. They didn't 6 7 I don't know what comfort they take out of citing aet it. that to you as an example, but that case represents a 8 finding by this Commission that the drive mechanism in that 9 Delaware pool was solution gas with no indication of 10 extensive gas cap, water influx, formation compaction or 11 connate water expansion. They said, I'm sorry, I don't 12 13 care if it's solution gas drive or not. You don't get the 14 increase.

What Pogo didn't prove to you today, because they 15 couldn't, they couldn't satisfy the fundamental obligation 16 to show that they're not impairing correlative rights. 17 They cannot tell you and they cannot show you that the 18 high-GOR wells are not affecting the offsetting wells. 19 Mr. 20 Wakefield's proof is to the contrary. They have no defense, no rebuttal. It's a slam-dunk, we win on that 21 22 issue.

The waste issue is suspect too. After all the fancy simulation, the end result is that in ten years you're going to get more oil out of the reservoir at 2000

1	to 1 than if you pump it up.
2	This is a case, Mr. Examiner, that's being begged
3	to be denied, and we ask that you do so. To grant it is to
4	give Pogo a special favor to the expense and to the
5	violation of the correlative rights of Kaiser-Francis.
6	EXAMINER CATANACH: Thank you, Mr. Kellahin.
7	Mr. Bruce?
8	MR. BRUCE: I don't understand Mr. Kellahin's
9	comments about the East Loving-Delaware. Oryx came in
10	here in that case, I believe, represented by Mr. Kellahin,
11	and it was asserted that there was a secondary gas cap.
12	That was the reason that was initially denied, the GOR was
13	initially denied in that case. Pogo did come in later and
14	prove that it was a solution gas drive reservoir and the
15	8000-to-1 GOR was granted.
16	I'm not quite sure what Mr. Kellahin is
17	advocating here. I think he's saying that any time a case
18	is opposed, it should be denied. I think that would have
19	far-reaching effects on every operator in the pool. Just
20	because someone doesn't agree with some data doesn't mean
21	that the opponent is right.
22	As a matter of fact, it's undisputed in this case
23	that there's a solution gas drive reservoir in the Los
24	Medanos and West Sand Dunes-Delaware Pool. GOR is only a
25	function of the amount of production. Waste will not occur

	132
1	if the GOR is increased.
2	Kaiser hasn't attacked any of Pogo's data.
3	Rather, they've come in here today to complain about
4	potential drainage.
5	However, as they admitted up here, they're the
6	last operator in the pool to start developing its acreage.
7	They've had their acreage since the early 1980s. Only now
8	they've started developing it. In fact, five of the six
9	Kaiser-Francis wells in Sections 20 and 21 were proposed by
10	non-operators. Kaiser didn't even want to drill them then,
11	apparently, until it was proposed by other people.
12	Now Pogo does sympathize; Yates is here, they
13	sympathize; most people sympathize with the potash problems
14	that Kaiser has had.
15	But Pogo has the same problem in section 29. If
16	you look at the map, there's hardly any wells there, and
17	that's a very excellent part of the pool. So it's not like
18	Pogo is totally unaffected by the inability to develop
19	acreage.
20	Furthermore, correlative rights is only the
21	opportunity you have to produce the reserves under your
22	acreage. Kaiser-Francis has not had its correlative rights
23	harmed. They should have gotten out of there a long time
24	ago, drilled the acreage. So I think correlative rights is
25	a red herring before the Division.

A feature of these Delaware pools is that they 1 usually have top-allowable wells with rapidly increasing 2 GORs early in the life of these wells. So if you need GOR 3 relief, you need it early in the life of the pool. Waiting 4 until more data is obtained, like Kaiser wants to do, is 5 unnecessary. There's already been a couple million barrels 6 produced. 7 8 And furthermore, who it's really harming is the 9 early investors in the pool, the people who went out there, drilled the initial wells, proved up the prospect, and 10 they're the ones being harmed. They're the ones with the 11 high-GOR wells, they're the ones who need the relief. 12 13 There's nothing wrong with that. It's benefitting everybody in the pool, to get the high GOR. 14 15 The evidence is clear that we have a solution gas 16 drive pool. Ultimate poolwide recovery will not be harmed by increasing the GOR. And as a result, we think the GOR 17 18 increase should be granted. We think there's enough data today to make it 19 permanent. We understand that in most cases the Division 20 makes these rules temporary. If you're going to make them 21 22 temporary, make them temporary for a year; there will be a 23 lot more data. The reservoir is not being harmed, 24 everybody will be taken care of. We think this Application should be granted. 25

1	EXAMINER CATANACH: Thank you, Mr. Bruce.
2	Would you like to submit a rough draft, as well
3	as
4	MR. BRUCE: Oh, I guess if Tom's willing to, I'd
5	better.
6	EXAMINER CATANACH: Mr. Diem, you didn't have a
7	statement or anything you'd like to contribute?
8	MR. DIEM: No, I have no statement, Mr. Examiner.
9	EXAMINER CATANACH: Thank you.
10	Okay, there being nothing further, this case will
11	be taken under advisement.
12	And this hearing is adjourned.
13	(Thereupon, these proceedings were concluded at
14	3:52 p.m.)
15	* * *
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	

	135
1	CERTIFICATE OF REPORTER
2	
3	STATE OF NEW MEXICO)
4) ss. County of Santa FE)
5	
6	I, Steven T. Brenner, Certified Court Reporter
7	and Notary Public, HEREBY CERTIFY that the foregoing
8	transcript of proceedings before the Oil Conservation
9	Division was reported by me; that I transcribed my notes;
10	and that the foregoing is a true and accurate record of the
11	proceedings.
12	I FURTHER CERTIFY that I am not a relative or
13	employee of any of the parties or attorneys involved in
14	this matter and that I have no personal interest in the
15	final disposition of this matter.
16	WITNESS MY HAND AND SEAL February 10th, 1994.
17 18	Elicit Filmen
10	STEVEN T. BRENNER CCR No. 7
20	CCR NO. 7
20	My commission expires: October 14, 1994
21	
23	I do hereby certify that the foregoing is a complete record of the proceedings is
24	the Examiner hearing of Case No. 10970 heard by me on anoung 20 1992
25	Sauch Catant, Examiner
	Oil Conservation Division

- -