	1
1	STATE OF NEW MEXICO
2	ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT
3	OIL CONSERVATION DIVISION
4	
5	IN THE MATTER OF THE HEARING)
6	DIVISION FOR THE PURPOSE OF)
7	ADDITCATION OF VATES DETROLEUM
8	CORPORATION OF TALLS THIROBLON)
9	
10	ORIGINAT _ 8 1994
11	ONIONAL
12	REPORTER'S TRANSCRIPT OF PROCEEDINGS
13	EXAMINER HEARING
14	BEFORE: DAVID R. CATANACH, Hearing Examiner
15	
16	May 26, 1994
17	Santa Fe, New Mexico
18	
19	
20	This matter came on for hearing before the Oil
21	Conservation Division on Thursday, May 26, 1994, at Morgan
22	Hall, State Land Office Building, 310 Old Santa Fe Trail,
23	Santa Fe, New Mexico, before Steven T. Brenner, Certified
24	Court Reporter No. 7 for the State of New Mexico.
25	* * *

	······································			
1		INDEX		
2				
3	May 26, 1994 Examiner Hearing			
4	CASE NO. 10,981			
5				PAGE
5	APPEARANCES			2
6	APPLICANT'S WITNESSES	5:		
7	MECCA MAURITSEN Direct Exam	nination by Mr. Cari	^	Д
8	Examination	h by Examiner Catana	ach	11
9	LESLIE MCKIEVER			
10	Direct Exam Examinatior	nination by Mr. Carı n by Examiner Catana	c ach	12 25
11	DADDTOK CUALTING			
	Direct Exam	nination by Mr. Carı	<u>-</u>	28
12	Examinatior	n by Examiner Catana	ach	49
13	REPORTER'S CERTIFICAT	ΓE		54
14		* * *		
15				
16		ЕХНІВІТЅ		
		Identified	Admitted	
17	Exhibit 1	8	10	
10	Exhibit 2	9	10	
10	Exhibit A	15	10	
19	Exhibit 5	16	25	
20	Exhibit 6	16	25	
	Exhibit 7	17	25	
21	Exhibit 8	18	25	
	Exhibit 9	18	25	
22	Exhibit 10	20	25	
23	Exhibit 11	20	25	
	Exhibit 12	20	25	
24	Exhibit 13	20	25	
	Exhibit 14	20	25	
25	Exhibit 15	20	25	

2

EXHIBITS (Continued) Identified Admitted Exhibit 16 Exhibit 17 Exhibit 18 Exhibit 19 Exhibit 20 Exhibit 21 Exhibit 22 Exhibit 23 Exhibit 24 Exhibit 25 Exhibit 26 Exhibit 27 Exhibit 28 * * * APPEARANCES FOR THE DIVISION: RAND L. CARROLL Attorney at Law Legal Counsel to the Division State Land Office Building Santa Fe, New Mexico 87504 FOR THE APPLICANT: CAMPBELL, CARR, BERGE & SHERIDAN, P.A. Suite 1 - 110 N. Guadalupe P.O. Box 2208 Santa Fe, New Mexico 87504-2208 By: WILLIAM F. CARR * * *

1	WHEREUPON, the following proceedings were had at
2	10:13 a.m.:
3	EXAMINER CATANACH: At this time we'll call Case
4	10,981.
5	MR. CARROLL: Application of Yates Petroleum
6	Corporation to amend Division Order No. R-9976 to expand
7	its pilot gas enhanced recovery project within portions of
8	the Pecos Slope-Abo Gas Pool, Chaves County, New Mexico.
9	EXAMINER CATANACH: Are there appearances in this
10	case?
11	MR. CARR: May it please the Examiner, my name is
12	William F. Carr with the Santa Fe law firm Campbell, Carr,
13	Berge and Sheridan.
14	I represent Yates Petroleum Corporation in this
15	case, and we have three witnesses.
16	EXAMINER CATANACH: Any additional appearances?
17	Will the three witnesses please stand to be sworn
18	in?
19	(Thereupon, the witnesses were sworn.)
20	MECCA MAURITSEN,
21	the witness herein, after having been first duly sworn upon
22	her oath, was examined and testified as follows:
23	DIRECT EXAMINATION
24	BY MR. CARR:
25	Q. Will you state your name for the record, please?

1	Α.	Mecca Mauritsen.
2	Q.	And where do you reside?
3	Α.	Artesia, New Mexico.
4	Q.	By whom are you employed and in what capacity?
5	Α.	I'm employed with Yates Petroleum Corporation as
6	a landman	
7	Q.	Ms. Mauritsen, have you previously testified
8	before th	is Division?
9	Α.	Yes.
10	Q.	At the time of that prior testimony were your
11	credentia	ls as an expert in petroleum land matters accepted
12	and made a	a matter of record?
13	Α.	Yes.
14	Q.	Are you familiar with the Application filed on
15	behalf of	Yates Petroleum Corporation in this case?
16	А.	Yes, I am.
17	Q.	And are you familiar with the status of the lands
18	in the Peo	cos Slope-Abo Gas Pool?
19	Α.	Yes.
20		MR. CARR: Are the witness's qualifications
21	acceptable	2?
22		EXAMINER CATANACH: They are.
23	Q.	(By Mr. Carr) Ms. Mauritsen, initially would you
24	summarize	for Mr. Catanach what Yates Petroleum Corporation
25	seeks with	n this Application?

1	A. We're seeking expansion of our gas enhanced
2	recovery project in the Pecos Slope-Abo Pool in Townships
3	5, 6 and 7 South, Ranges 25 and 26 East, for the drilling
4	of 20 wells to further test the Abo formation as a second
5	wells on the 160-acre spacing units.
6	We're wishing to gather data on the pool and
7	determine if additional wells if additional development
8	is necessary in the pool to efficiently and effectively
9	drain this portion of the Abo formation.
10	We're also seeking simultaneous dedication of
11	wells on each proration unit and authorization to produce
12	each well in the project area for a temporary period at
13	unrestricted rates for the remainder of the originally
14	approved two-year test period.
15	Q. Now, Ms. Mauritsen, this case, the first part of
16	this The first case involving this pilot project was
17	first heard in August of last year, was it not?
18	A. Yes, sir.
19	Q. And as a result of that hearing, authority was
20	granted for six wells in the Pecos Slope-Abo Gas Pool?
21	A. Yes, sir, it was.
22	Q. And authority was granted to produce those wells
23	at unrestricted rates and also simultaneously dedicate
24	those wells with existing wells on the proration unit?
25	A. Yes, sir, it was.

1	Q. What does Yates hope to demonstrate with this
2	pilot project?
3	A. There are a thousand wells on 160-acre unit pools
4	in this pool. There are 200 cases, we believe, where the
5	existing well is not draining the unit.
6	Our initial data from the six project wells was
7	encouraging but not conclusive. We feel we need to drill
8	additional wells throughout a more representative area of
9	the pool to provide the Division with more meaningful
10	conclusions in August of 1995. Therefore we have chosen 20
11	spacing units where we feel there's significant undrained
12	reservoir left.
13	Q. Now, August, 1995, is the time when pursuant to
14	the original order Yates is to report back to the Division
15	on the results of this pilot project?
16	A. Yes, sir.
17	Q. How were the drilling locations that we're
18	seeking approval of today, how were those locations
19	actually selected?
20	A. Okay, there's three criteria.
21	The location must have good sand thickness on our
22	geologic maps, the location must be outside the calculated
23	drainage areas of existing wells, and the location must be
24	between an on-trend of good cumulative production.
25	And all of these considerations will be reviewed

7

1	by our geological and engineering witnesses.
2	There were some unorthodox locations, but we
3	attempted to encroach only on Yates-operated tracts in
4	those cases.
5	Q. If this Application is approved and these wells
6	drilled, is it Yates' hope that additional data will be
7	obtained from which it can be determined if in fact
8	fieldwide rules should be established that permit for
9	additional drilling
10	A. Yes.
11	Q fieldwide?
12	A. Yes, sir.
13	Q. Let's go to what has been marked for
14	identification as Yates Petroleum Corporation Exhibit
15	Number 1. Would you identify that for the Examiner and
16	review it, please?
17	A. Yes, sir, it's a lease map of the original
18	project area and our expansion area. The Yates acreage is
19	shaded in yellow, and each of the subject proration units
20	is outlined.
21	The green outlines in Township 6 South, 25 East,
22	were our original six wells.
23	The red outlines are the new 20 proposed wells.
24	The existing wells are in red dots, the new wells
25	are blue, and all the offset operators are shown on the

1 lease map. Now, what is the area that you're asking be Q. 2 included within the proposed pilot project? 3 4 Α. The project area will be limited just to the 160-5 acre tracts as outlined. It's not a continuous project. 6 0. And that's how the first phase of this pilot 7 project, was approved? 8 Α. Yes, sir. Let's go now to Exhibit Number 2. Would you 9 Q. identify that for the Examiner? 10 This is just a table showing the well names of 11 Α. the new 20 wells, their spacing units, their section, 12 13 township and range, and their location by footages. Now, are each of the wells that are identified on 14 Q. Exhibit 2 either at standard locations or unorthodox 15 locations which only encroach on Yates-operated spacing 16 17 units? 18 Α. They all are except the very last one which is the Catterson SS Federal Number 7. It encroaches on a 19 20 tract operated by Merit Energy Company. It was moved for 21 topographical reasons and Merit has waived objection to 22 this location. 23 Is the purpose of this Application simply to Q. 24 enable Yates to produce these particular tracts at unrestricted rates? 25

9

1	A. No, our objective is to determine if the pool
2	rules should be changed to permit operators to drill
3	additional wells in part or all of this pool.
4	Q. Is Exhibit Number 3 an affidavit confirming that
5	notice has been provided in accordance with Division rules?
6	A. Yes, sir.
7	Q. To whom has notice been given?
8	A. It's provided to all operators in the Pecos
9	Slope-Abo Pool and all operators of an Abo well within one
10	mile of the pool.
11	Q. And what was the source of the names of these
12	operators?
13	A. That was provided to us by the Oil Conservation
14	Division.
15	Q. And you have indicated Yates will also call
16	geological and engineering witnesses to review the
17	technical portions of this case?
18	A. Yes, sir.
19	Q. Were Exhibits 1 through 3 either prepared by you
20	or compiled at your direction?
21	A. Yes.
22	MR. CARR: At this time, Mr. Catanach, we move
23	the admission of Yates Petroleum Corporation Exhibits 1
24	through 3.
25	EXAMINER CATANACH: Exhibits 1 through 3 will be

1	admitted as evidence.
2	MR. CARR: And that concludes my direct
3	examination of Mecca Mauritsen.
4	EXAMINATION
5	BY EXAMINER CATANACH:
6	Q. Ms. Mauritsen did you say, did you testify that
7	some of these wells are located at unorthodox locations?
8	A. Yes, some are unorthodox, yes, sir.
9	Q. How does Yates propose to get the approval for
10	the unorthodox locations?
11	A. We will have to come before another hearing to do
12	that, sir.
13	Q. Ms. Mauritsen, the acreage in yellow is 100
14	percent Yates acreage?
15	A. No, sir, it's either It's acreage Yates has an
16	interest in or operates.
17	Q. How does Yates handle the situation where you
18	have partners in a well? Do you seek to get their approval
19	to drill?
20	A. We have already sent AFEs out to all our
21	partners, and at this time 15 of the 20 are signed up a
22	hundred percent, and we have approximately another week
23	left in our 30-day notice, so not everyone has responded at
24	this time.
25	Q. Is all of this acreage that's not a hundred

11

1	percent Yates, is that all subject to operating agreements?
2	A. Yes, sir.
3	Q. Have you had any objection from any of your
4	partners about drilling a second well on a proration unit?
5	A. Not at this time. We've had some inquiries, but
6	we've had no objection at this time.
7	Q. The portion of your testimony concerning your
8	request to produce at unrestricted rates, that is for what
9	period of time?
10	A. Until the August, 1995, period that was allowed
11	us under the last hearing. There was a two-year period
12	given to us to do that on the first six.
13	Q. You testified that there may be possibly 200
14	cases where infill drilling may be appropriate in this
15	pool?
16	A. Yes, sir.
17	EXAMINER CATANACH: That's all the questions I
18	have of the witness at this point.
19	MR. CARR: At this time we call Leslie McKiever.
20	LESLIE MCKIEVER,
21	the witness herein, after having been first duly sworn upon
22	her oath, was examined and testified as follows:
23	DIRECT EXAMINATION
24	BY MR. CARR:
25	Q. Will you state your full name and place of

residence? 1 Yes, my name is Leslie McKiever. I reside in 2 Α. 3 Monticello, Arkansas. Q. How do you spell your last name? 4 5 Α. M-c-K-i-e-v-e-r. By whom are you employed? 6 Q. I'm employed by Yates Petroleum Corporation of 7 Α. 8 Artesia, New Mexico. And what is your current position with Yates Q. 9 Petroleum Corporation? 10 I am their southern division geologist. 11 Α. Have you previously testified before this 12 Q. Division and had your credentials as a petroleum geologist 13 accepted and made a matter of record? 14 15 Α. Yes, sir, they were. 16 Q. Have you been qualified an expert geologist before? 17 18 Α. Yes, sir. Are you familiar with the Application filed on 19 Q. behalf of Yates Petroleum Corporation in this case? 20 21 Yes, I am. Α. Have you made a geologic study of the portions of 22 Q. the Pecos Slope-Abo Gas Pool which is the subject of this 23 hearing? 24 25 Α. Yes, sir, I have.

1	MR. CARR: Are the witness's qualifications
2	acceptable?
3	EXAMINER CATANACH: They are.
4	Q. (By Mr. Carr) Initially, I think it might be
5	helpful if you could briefly describe the general
6	characteristics of the Abo formation in this area.
7	A. The Abo formation in the Pecos Slope field area
8	represents the distal end of a fluvial clastic wedge
9	deposited on the lower reaches of a meandering channel
10	system.
11	The multi-channel patterns are highly sinuous and
12	are often lenticular in nature, producing sandstones,
13	mostly channel point bar deposits, are very fine grain to
14	silty in texture, with porosities averaging 12 to 14
15	percent. Permeability is low, averaging .03 to .05
16	millidarcies.
17	Q. Generally what is the current status of the
18	development of this pool?
19	A. The Pecos Slope field is developed on 160 acres,
20	covers over 700 square miles. In excess of 1000 wells have
21	been drilled, with over 900 of those wells being completed
22	as gas producers.
23	Q. What have you attempted to determine with your
24	initial geologic study?
25	A. Yates is seeking to drill a second producing gas

14

1	well on 20 specific 160-acre spacing units in hopes of
2	finding significant amounts of undrained reservoir, that
3	is, incremental reserves that would otherwise not be
4	recovered.
5	In this effort, the geological scope has included
6	partitioning the Abo and the uniform and detailed sequences
7	that can be correlated consistently fieldwide and mapping
8	the sand packages within these sequences individually to
9	determine optimum areas of sand thickness, one of the three
10	criteria in choosing other proposed locations.
11	Other geological input has consisted of mapping
12	cumulative production from the field. Another tool to
13	determine the second-develop criteria, the location should
14	be between or on trend with significant cumulative gas
15	production.
16	My testimony will involve reviewing the
17	geological results of the six initial infill wells by the
18	method of cross-sections and introducing both cross-
19	sections and maps as evidence for the proposed second
20	infill phase.
21	Q. Could you go to what has been marked for
22	identification as Yates Exhibit Number 4 and identify this
23	for the Examiner?
24	A. Exhibit 4 is a map that highlights in red the
25	locations of the six wells drilled pursuant to Order Number

1	R-9976.
2	Labeled in green are the line of cross-sections
3	that were introduced at the August 12th, 1993, hearing as
4	part of the original application submitted by Yates.
5	The cross-sections have been revised to include
6	the actual drilled well logs, and appropriate geological
7	revisions have been made.
8	Q. Okay, let's go to Yates Exhibit Number 5, the
9	original cross-section as modified, A-A'.
10	A. Exhibit 5 shows the South Alkali "LK" Federal
11	Number 5, drilled on the same 160 spacing unit as the South
12	Alkali "LK" Federal Number 2, a well with a cumulative gas
13	production of over 1.5 BCF.
14	As illustrated, the South Alkali "LK" Number 5
15	encountered significant productive channel sandstones not
16	occurring in the well on the same proration unit.
17	This well, the most successful well of the
18	original pilot program, demonstrates the need to drill
19	additional wells to recover reserves that otherwise would
20	not be produced.
21	Q. All right, let's go to Exhibit 6, cross-section
22	C-C'.
23	A. Exhibit 6 illustrates the YPC Hobbs Federal
24	Number 3, a well location chosen to maximize the thickness
25	of one particular upper sand and to achieve a more optimum

1	position in this channel in respect to the original well
2	drilled in this proration unit.
3	Geologically, this well was successful, but the
4	actual production performance has been poor. The well is
5	an example of one particular instance where the infill well
6	is not economically viable, at least under today's current
7	gas market.
8	The explanation for this poor result may be at
9	least in part explained by the effects of drainage by
10	offset wells on other spacing units. Mr. Stallings will
11	address this in more detail, in later engineering
12	testimony.
13	This unique case, as much as any other,
14	illustrates the uncertainties of infill drilling that can
15	only be addressed by the drilling of additional pilot
16	program, rather than proceed prematurely with permanent
17	fieldwide rule change.
18	Q. This well was, however, successful from a
19	geological point of view?
20	A. From a geological point, it was.
21	Q. All right. Let's go to Exhibit Number 7, cross-
22	section E-E'. Would you review that for Mr. Catanach?
23	A. Exhibit 7 shows the Cleo "ANC" Com. Number 1.
24	This well represents the single geological
25	failure of the initial pilot project and clearly points out

1	the inherent risk involved with predicting the geometry of
2	meandering fluvial channels.
3	Even though this was an area with multiple
4	chances for pay sands, this particular wellbore failed to
5	find adequate sand thickness.
6	This well underscores the geological risk, and
7	unfortunately poor results of this nature will continue to
8	occur occasionally, even with infill development.
9	Q. All right. Let's go now to Exhibit 8, cross-
10	section F-F'.
11	A. Exhibit 8 shows the results of the Kilgore "SO"
12	Number 3 and represents an example wherein geology and
13	engineering predictions were right on target.
14	This well may ultimately recovery more gas
15	reserves than the original well drilled on this particular
16	160-acre spacing unit, and clearly it illustrates new
17	incremental gas reserves can be found in the Pecos Slope
18	field.
19	Q. And finally cross-section G-G', Yates Exhibit
20	Number 9.
21	A. Exhibit 9 denotes the results of the final two
22	gas completions of the initial pilot in Township 6 South,
23	Range 25 East.
24	The YPC Cottonwood Federal 3 again illustrates we
25	achieve our anticipated goals. Pay zones somewhat

	19
1	stratigraphically different from the original well, the YPC
2	Cottonwood Number 2, were encountered. Performance
3	predictions of this well is again expected to exceed the
4	initial well.
5	The last of the six wells to be shown, the Sacra
6	"SA" Com. Number 11, were perceived to be the most
7	geological risk well to be drilled. It did not find a much
8	hoped for lower channel sand, but did achieve adequate sand
9	thickness to be deemed a commercial success. The
10	producer's anticipated ultimate gas recovery is expected to
11	exceed three of the existing wells in this section.
12	Q. Now, Ms. McKiever, what is the significance of
13	this new information that's been obtained in the first part
14	of this pilot project?
15	A. Well, the data that we acquired from the six
16	wells presented here confirms our original premise that
17	there are significant variations in the channel sandstone
18	reservoirs.
19	Due to geological considerations, the very
20	depositional nature of fluvial meandering channel systems
21	and extremely low permeability of the sandstones deposited
22	show areas that are not being effectively drained on 160-
23	acre spacing in Township 6 South, Range 25 East, the very
24	heart of the Pecos Slope field.
25	The results of this infill pilot program are

1	extremely encouraging. New incremental reserves will now
2	be effectively recovered.
3	However, the program is not completely
4	conclusive. There is not enough available data at this
5	time to be derived from the limited scope of these six
6	wells to prudently determine and establish permanent
7	poolwide rules.
8	Q. The data you have, in fact, the new data is from
9	one township?
10	A. Yes, it is.
11	Q. Let's go to Yates Exhibit Number 10. Would you
12	identify that for Mr. Catanach?
13	A. Yates Exhibit 10 is a location map that shows the
14	recommended expansion area submitted for the second phase
15	of infill drilling and the 20 specific locations proposed
16	in this program. They are shown in red circles, encased in
17	blue rectangles.
18	Lines of cross-sections prepared to graphically
19	illustrate the anticipated results are shown in green.
20	They are labeled in alphabetical order from A-A' through
21	G-G'.
22	Q. Let's go now, and I would ask you to initially
23	identify Exhibits 11 through 17, and together explain these
24	to the Examiner.
25	A. Okay. Exhibits 11 through 17 are cross-sections

1	constructed through each of the 20 proposed locations.
2	If it would please the Commission, for brevity I
3	would like to discuss in detail Exhibit 14, labeled D-D',
4	which crosses six of the proposed locations. It is
5	representative of and consistent with all of the cross-
6	sections submitted here today.
7	Q. Let's go to Exhibit 14.
8	A. Exhibit 14, cross-section D-D', runs the length
9	of Township 7 South, Range 25 East, and, as mentioned
10	previously, crosses six of the proposed locations.
11	In the initial hearing last August we had
12	initially subdivided the Abo producing intervals into three
13	separate sequences of sedimentation, with multiple channels
14	occurring within those intervals.
15	To provide more detailed and uniform mapping
16	techniques, we have since divided the Abo producing zones
17	into five sedimentary packages, again with multiple channel
18	sequences occurring within the five divisions. They are
19	labeled, from shallower to deeper, Zone A, B, C Upper, C
20	Lower, and D. And as you can see, there are producing
21	intervals within each of these divisions.
22	Each of the six locations fit within the first
23	criteria that each location must have not only adequate but
24	good sand thickness.
25	The cross-sections, as a whole, provide the

1	proper and consistent framework for uniform and detailed
2	geological mapping fieldwide and also provide a good
3	baseline to evaluate the actual results of this proposed
4	pilot project against the anticipated results.
5	Q. Let's go now to Yates Exhibits 18 through 22.
6	Can you identify those?
7	A. Yates Exhibits 18 through 22 are a series of
8	isopach maps showing the pay sands' thicknesses within each
9	individual interval, as previously defined with the cross-
10	sections labeled Exhibit 11 through 17. They are labeled
11	Zone A, Zone B, Zone C, Zone Lower C, and Zone D.
12	The format of each map is similar with each of
13	the 20 locations marked by white well spots surrounded by a
14	blue rectangle.
15	Each of the maps is contoured on ten-foot
16	intervals, with Map D, Exhibit 22, being the only
17	exception. It is contoured in five-feet increments.
18	The colors grading from yellow to orange
19	highlight the thickest intervals. All of the proposed
20	locations are located to maximize the sand thickness in
21	more than one selected sand package.
22	Q. Let's go now to Exhibit Number 23, your
23	cumulative production map. Would you refer to that exhibit
24	and review the information on it for Mr. Catanach?
25	A. Yates Exhibit 23 is a cumulative production map

1	dated December 31st, 1993. Again, the proposed locations
2	are marked with white well spots in a blue rectangle.
3	This map shows the areas that have greater than
4	.5 BCF cumulative gas production.
5	The contours drawn in increments of a half a BCF
6	grade from yellow to orange. The orange represents areas
7	that wells have cumulative gas productions above or 1.5
8	BCF. A number of wells in this field have produced in
9	excess of 2 BCF.
10	The proposed well locations are situated in such
11	a manner as to be adjacent to and on trend with pre-
12	existing gas wells with substantial production. This was
13	the second criteria in choosing locations for the pilot.
14	Please note that all locations fall within areas
15	mapped in excess of .5 BCF. The exception to this rule is
16	the Papalote OI State Com. Number 5. This was not a change
17	or an omission of our stated criteria, but rather a problem
18	in the final drafting of this map.
19	Q. Okay. Anything further with Exhibit 23?
20	A. No.
21	Q. Could you summarize for the Examiner what you
22	believe your geologic study establishes about the Pecos
23	Slope-Abo Gas Pool?
24	A. This study represents a detailed, if not rather
25	exhaustive, geological effort to ensure and substantiate

1	that each of the proposed wells will encounter not only
2	adequate but good sand thickness, and the wells offset are
3	on trend with good Abo producing gas wells.
4	This geological effort provides a basis for and a
5	background for the engineering testimony to follow.
6	Q. These are the geological considerations for
7	placing each of these wells at the exact location that
8	you're proposing?
9	A. Yes, they are.
10	Q. In your professional opinion, is it the logical
11	next step should be taken to expand the pilot project as
12	you've recommended, and thereby move toward the development
13	of the fieldwide rules?
14	A. Based on my 13 years of experience working within
15	the Pecos Slope, this proposed 20-well expansion program is
16	the prudent and logical next step to acquire further data
17	and evaluate that data to provide a solid basis for sound
18	decision-making as to the proper future of infill drilling
19	practices. I believe that this program will prevent waste
20	and does not harm but does indeed protect correlative
21	rights.
22	Q. Ms. McKiever, were Exhibits 4 through 23 prepared
23	by you?
24	A. Yes, they were.
25	MR. CARR: At this time, Mr. Catanach, we move

1	the admission of Yates Petroleum Corporation Exhibits 4
2	through 23.
3	EXAMINER CATANACH: Exhibits 4 through 23 will be
4	admitted as evidence.
5	MR. CARR: That concludes my direct examination
6	of this witness.
7	EXAMINATION
8	BY EXAMINER CATANACH:
9	Q. Ms. McKiever, of the six wells that have been
10	drilled, how many did you say were geologic successes?
11	A. Five of the six wells.
12	Q. How do you define that as being successful
13	geologically?
14	A. That I predicted adequate sand thickness that the
15	well would produce at commercial rates.
16	Q. Geologically, tell me how the portion of the pool
17	that you plan to test with the new 20 wells, tell me how
18	that differs geologically with the portion of the pool that
19	you've already tested.
20	A. Geologically, it is not that much different.
21	The whole area is past fluvial channel
22	sandstones, and there are multiple pays in these fluvial
23	channel sandstones.
24	What we don't know is whether that Township 6
25	South, Range 25 East, is anomalous in respects to drainage.

25

1 Geologically, it is not exceptional. You mentioned that -- I believe on the first ο. 2 well, you mentioned the first well of the six, you 3 4 encountered sands that weren't present in the existing 5 well. Was that the only time that situation arose? There were variations of that throughout the 6 Α. 7 other wells, but that was probably the most significant illustration of that particular point. 8 Generally speaking, you probably encountered 9 Q. sands that were already -- that were present in the 10 existing well? 11 You would find sands that were present in the Α. 12 existing well and maybe one or two additional sands that 13 weren't present in the additional well. 14 These new proposed locations were chosen 15 Q. Okay. basically on the same criteria that the first six were 16 17 chosen on? 18 Α. Yes, they were. Ms. McKiever, do you feel that the 20 new wells 19 0. 20 will give you sufficient geologic information with which to 21 make a decision on the infill drilling of this pool? 22 Α. I believe they will. 23 They will definitely come a lot closer to making those decisions than, you know, limiting those decisions to 24 the original six wells. 25

26

1	Q. Geologically speaking, do you think that just
2	based on the information you've already obtained that you
3	cannot make a good judgment at this time?
4	A. I think that we're still going to find surprises
5	as to the actual size and shape and geometry of these
6	channel sandstones. I would rather not have any surprises
7	in these next 20 wells, but I can assure you I will have
8	one or two.
9	Q. If the geology isn't going to change all that
10	much within the pool, what additional information,
11	geologically speaking, might you gather to help you make a
12	decision?
13	A. Well, I think geologically we understand the
14	nature of the depositional environment, and it is still
15	rather difficult to map on individual channel sandstones.
16	We lump them together in the five intervals.
17	And ultimately I think that we can provide a lot
18	more detailed mapping and delineate particular channels,
19	locations of channels that may not be producing in a nearby
20	well or from the well on the same producing proration
21	unit.
22	EXAMINER CATANACH: I have no further questions,
23	Mr. Carr.
24	MR. CARR: Mr. Catanach, at this time we call
25	Darrick Stallings.

27

	28
1	DARRICK STALLINGS,
2	the witness herein, after having been first duly sworn upon
3	his oath, was examined and testified as follows:
4	DIRECT EXAMINATION
5	BY MR. CARR:
6	Q. Will you state your name for the record, please?
7	A. Darrick Stallings.
8	Q. Where do you reside?
9	A. In Artesia, New Mexico.
10	Q. By whom are you employed and in what capacity?
11	A. I'm employed by Yates Petroleum Corporation as a
12	petroleum engineer.
13	Q. Mr. Stallings, have you previously testified
14	before this Division and had your credentials as an expert
15	witness in petroleum engineering accepted and made a matter
16	of record?
17	A. Yes.
18	Q. In fact, you were the engineering witness who
19	testified in the August, 1993, hearing concerning the
20	initial phase of this pilot project?
21	A. That's correct.
22	Q. Are you familiar with the Application filed in
23	this case on behalf of Yates Petroleum Corporation?
24	A. Yes.
25	Q. Have you made an engineering study of the portion

1	of the Pecos Slope-Abo Gas Pool involved in this case?
2	A. Yes, I have.
3	MR. CARR: Are the witness's qualifications
4	acceptable?
5	EXAMINER CATANACH: They are.
6	Q. (By Mr. Carr) Mr. Stallings, initially could you
7	review for the Examiner how the initial six wells were
8	selected?
9	A. Yes, the six wells were selected as a result of
10	our initial phase of our evaluation of infill drilling
11	potential in the Pecos Slope-Abo.
12	When we began that initial phase of the
13	evaluation, we decided early on to limit the area of our
14	evaluation just because of the size and the number of wells
15	in the entire field.
16	We chose Township 6 South, 25 East, as our study
17	area for a few reasons, one because that is in the heart of
18	the field and it has some of the best producing wells in
19	the field.
20	Also, Yates Petroleum operates most of the wells
21	in that township, so that gives us a lot of detailed well
22	information, and we felt like we would minimize the problem
23	of encroaching on other operators.
24	We had also recently drilled At the time we
25	began the study, we had recently drilled several wells in

1	that township, regular spacing wells which provided us with
2	recent drilling and pressure data.
3	Q. Could you summarize from an engineering
4	perspective the results that have been obtained to date
5	from the phase-one portion of this pilot project?
6	A. Yes, we completed drilling the six wells that
7	were approved. Those wells were drilled in November and
8	December of last year, 1993. We measured initial
9	bottomhole pressure in each of those wells, and we now have
10	four to six months, depending on when the well was
11	completed, four to six months of production data from those
12	wells.
13	The results from those wells have been mixed, as
14	Leslie referred to, but we're encouraged by the results.
15	Only four of the six wells appear to be
16	economically successful. However, I estimate that those
17	six wells will recover 2.4 BCF of new reserves that would
18	not have been recovered by the original existing wells in
19	that area. We consider that to be very encouraging.
20	Q. What type data has Yates been attempting to
21	obtain from this pilot project?
22	A. In addition to the geologic data that was just
23	reviewed, we're primarily gathering initial pressure data
24	in the new wells and, of course, production data and
25	decline characteristics of these wells.

30

1	Q. What did your engineering study focus on?
2	A. I used those two last pieces of data, the
3	pressure data and the production data, to focus on the
4	drainage issue and trying to identify undrained portions of
5	the reservoir.
6	Q. Now, before we get into the details of your
7	presentation, could you just provide a general estimate of
8	what the expansion portion of this project is going to cost
9	in terms of up-front investment?
10	A. Yes, sir. We spent just under \$1.8 million to
11	drill the six wells late last year. That's an average cost
12	of about \$300,000 per well.
13	Those costs should be representative of the next
14	wells we drill, and therefore 20 wells will cost \$6
15	million.
16	Q. Now, Mr. Stallings, let's go to the exhibits
17	you've prepared. First let's go to Exhibits 24 through 26,
18	and if you could initially explain what these exhibits are
19	and what they're designed to show.
20	A. Okay, each of those three exhibits is the same
21	base map of Township 6 South, 25 East, which includes the
22	six pilot wells that we've drilled.
23	On each of these maps I've summarized a different
24	category of engineering data that we've gathered from these
25	wells, and I'll go over these.

31

1	But the first one is the bottomhole production
2	data, Exhibit 25 is the production-rate data, and then
3	Exhibit 26 is the estimated reserves data from these wells
4	and their offset wells.
5	I'd like to explain how each of these exhibits is
6	organized.
7	The new well has its well name labeled, and it is
8	shown as a red gas well symbol.
9	The offset four wells, the four nearest offsets,
10	are shown as green gas well symbols.
11	And I've outlined the proration unit where the
12	new well lies as a purple box.
13	Q. Okay, there's posted data on the exhibits?
14	A. That's correct. And in addition to that, I've
15	posted the data from the new wells in red numbers, and the
16	legend for each map will tell you what the units are in
17	those numbers. The offset well data is posted in green.
18	I've posted the data specifically for the
19	original well on the proration unit, and then out to the
20	side beside each proration unit I've posted the average
21	value for the four nearest offsets.
22	Q. Let's go now to just Yates Exhibit Number 24,
23	your bottomhole pressure data. Would you review the
24	information on this exhibit for Mr. Catanach?
25	A. Yes, sir, this summarizes the bottomhole pressure

1	data from the new wells, and it also includes current
2	bottomhole pressure data from the existing wells, the
3	nearest offsets.
4	The initial bottomhole pressure that we measured
5	in the new wells is shown in red in p.s.i. We measure
6	these pressures from a five-day pressure buildup test upon
7	initial completion of each of these wells.
8	The green numbers shown are the pressures for the
9	offset wells. Those pressures are static pressures that we
10	measured in November of 1993, roughly the same time we were
11	drilling these wells. We had an opportunity to measure
12	those pressures because there had been a fieldwide shut-in
13	of all wells for an extensive period of time, and we felt
14	like the static pressures were valid at that time.
15	Q. Generally what conclusions have you been able to
16	reach from your review of the information on this exhibit?
17	A. These pressures will show and I'll go through
18	these, but they'll show that in five of the six wells we
19	encountered reservoir pressure significantly higher in the
20	new well than what is the current reservoir pressure in the
21	existing wells.
22	As I go through these numbers, it will be helpful
23	to recognize that the original reservoir pressure in the
24	pool was 1125 p.s.i.
25	But what we find is that five of the six wells

1	again encountered higher reservoir pressure than the
2	offsets, but none of them encountered virgin reservoir
3	pressure. This is an indication of limited communication
4	with the offset wells, and I think that is explained by the
5	geology that Leslie just reviewed.
6	Again, this reservoir is made up of several sand
7	channels, and in a given well we'll vertically intersect
8	generally more than one of those. I think that some of
9	those channels are in communication with the offset wells,
10	and some of those channels are not. But yet we complete
11	all those channels together, and the pressure that we
12	measured was one pressure, which is actually an aggregate
13	of the individual pressures in those given channels.
14	The channels that are in communication with the
15	offset wells probably have a lower pressure than what we've
16	measured and shown here. And the channels that are not in
17	communication, we feel have a higher pressure than the
18	aggregate pressure and possibly are even at original
19	pressure.
20	Q. All right. Let's look at the individual wells,
21	now, if you would, that were included in the first phase of
22	this pilot project, and summarize generally the sort of
23	results you obtained.
24	A. All right. I think we'll show that, again, these
25	wells the pressures indicate that in most cases we

1 encountered new reserves.

2	I'd like to go through these well by well,
3	starting at the bottom of the plat down in Section 35.
4	The Sacra "SA" Com. Number 11 had an initial
5	reservoir pressure of 880 p.s.i. At the same time, the
6	existing well in that proration unit had a pressure of 291
7	p.s.i., and the average of the four offsetting wells in
8	that section is 309 p.s.i.
9	The fact that we have almost 900 p.s.i. in the
10	new well compared to 300 p.s.i. in the existing wells is an
11	indication that we have encountered a portion of the
12	reservoir that's not being drained by the original wells,
13	and therefore a significant portion of the reserves that
14	will be produced from this new well will be new reserves.
15	As we move If we could move on up the plat, up
16	into Sections 26 and 24, the next two wells I'd like to
17	discuss, the Cottonwood Federal Number 3 in Section 26,
18	Kilgore "SO" Number 3 in Section 24, have very similar
19	results.
20	Those two wells came in with approximately 900
21	p.s.i. reservoir pressure. At the same time, their offsets
22	are on the order of 300 p.s.i. reservoir pressure, again
23	indicating that these wells have encountered portions of
24	the reservoir not being drained by the existing wells and
25	that a portion of the reserves that they're going to

1	produce will be new, unique reserves.
2	Up in Section 11 is the Cleo "ANC" Com. Number 1.
3	This is one of the two economically unsuccessful wells that
4	we drilled. It had an initial reservoir pressure of 680
5	p.s.i., and its offsets had an average reservoir pressure
6	of 219 p.s.i.
7	I don't think this well was unsuccessful because
8	of the low reservoir pressure. Instead, I think the fact
9	that the new well came in with 700 p.s.i., as compared to
10	roughly 200 p.s.i. in the existing wells, is an indication
11	that again this well encountered a reservoir that was left
12	undrained by the existing wells.
13	As Leslie discussed, in this case, this well was
14	uneconomic because we encountered inadequate sand thickness
15	for an economic well. I think that in fact this well
16	Because the pay quality is poor and thin, this well would
17	be uneconomic even if we would have encountered it at
18	initial virgin reservoir pressure.
19	Moving up just north there into Section 1, the
20	South Alkali "LK" Number 5 had initial reservoir pressure
21	of 667 p.s.i., and its offsets average 237 p.s.i. This is
22	a similar pressure to the previous well we discussed, the
23	Cleo Number 1. But yet the South Alkali Number 5
24	encountered much better pay quality and sand thickness.
25	And that well is, in fact, producing as if it's going to be

1	the best well of these six that we've produced that we
2	drilled in this pilot.
3	The sixth well, the final well over in Section 8,
4	is the Hobbs Federal Number 3. This is the other
5	uneconomic or unsuccessful well that we drilled of the six.
6	It had initial reservoir pressure of 479 p.s.i., compared
7	to its offset wells averaging 249 p.s.i. at this time.
8	I think this well is basically uneconomic because
9	we drilled into a portion of the reservoir that's being
10	depleted by the offset wells. This well is producing, but
11	I don't think that a very large percentage of the gas it
12	recovers will be unique reserves.
13	This well points out the drainage risk involved
14	in infill drilling in this field, and it's obviously the
15	kind of well that we hope to avoid drilling in the future.
16	Q. Let's go now to your production rate data,
17	Exhibit 25. Would you review the information on this
18	exhibit for the Examiner?
19	A. This exhibit, the symbols are set up just like
20	the previous exhibit. The numbers posted here, in red I've
21	posted two production rates for the new wells. The top
22	number is the daily production rate in MCF per day for the
23	first month that that well was on line. The lower number
24	is the daily production rate at the most current data we
25	have as of April of 1994. For the offset wells, I have

1	shown their actual daily production in April of 1994.
2	Overall, this data is consistent with the
3	pressure data that I've just discussed in that the four
4	wells that appear to be economic and appear to be producing
5	significant new reserves, they are producing at much higher
6	rates than the existing wells surrounding them.
7	The reason that I included two numbers for the
8	new wells, the first month's production rate and the
9	current production rate, is to show an indication of how
10	these wells had declined early in their life. We're
11	watching the characteristic of decline of these wells
12	because we feel like that's going to be a indication of
13	depletion in the drainage area accessed by these new wells.
14	What I've found is that these wells are declining
15	very similarly to wells in the field that are drilled on
16	regular spacing.
17	In 1992, we drilled 20 wells in the Pecos Slope-
18	Abo, regular 160-acre locations. Those wells declined 41
19	percent from their first month's production rate to their
20	third month's production rate. By comparison, five of
21	these six wells have declined an average of 43 percent from
22	their first month to their third month. So I think that's
23	very similar to the way wells on regular spacing are
24	acting.
25	The exception to that is the South Alkali Number

1	5 up in Section 1. That well only declined ten percent in
2	its first three months, and again an indication of what a
3	good producing well that well appears to be.
4	I've seen no cases of steep, abnormally steep
5	declines in these wells, which indicates to me that the
6	drainage areas of these new wells have not been severely
7	depleted by the offset existing wells.
8	Q. All right. Let's go now and look at individual
9	well performance, if you could briefly review that.
10	A. Again, starting down in Section 35, the Sacra
11	"SA" Com. Number 11, I'll concentrate on the current
12	producing rate as compared to the offsets.
13	That well in April produced 230 MCF per day. Its
14	offset wells in that section averaged 23 MCF per day.
15	In this case, if we assume a per-well economic
16	limit rate of 15 MCF per day, it would follow that the
17	original wells in this section have very few remaining
18	reserves, because they're very near their economic limit
19	rate. Therefore, the reserves that the Sacra Number 11 are
20	going to recover will be mostly new reserves that would not
21	be recovered by the other wells.
22	Moving up the page, again, grouping the two wells
23	in Sections 24 and 26 together, these wells are producing
24	on the order of 350 MCF per day. At the same time, their
25	offsets are producing around 120 MCF per day. That

1	significant increase in production from the new wells
2	indicates to us that those wells have again encountered new
3	reserves that won't be drained by the original wells.
4	Up in Section 11, the Cleo Number 1 again is one
5	of the uneconomic wells that we drilled. That well is
6	producing 51 MCF per day in April, compared to 70 MCF a day
7	in the offset wells. I think that's explained because the
8	pay in that well is much thinner and poorer quality than
9	that in the offsets, and that's why it was such a geologic
10	surprise. But it just does not appear to have the pay
11	quality to produce significant reserves and pay out the
12	well.
13	The South Alkali Number 5 up in Section 1 is
14	producing 742 MCF per day, compared to a current rate of
15	110 MCF a day in the offset wells, indicating significant
16	new reserves to be recovered by that well.
17	And then over in the Section 8, the other
18	unsuccessful well we drilled, the Hobbs Fed Number 3, is
19	producing 39 MCF per day, compared to 52 MCF per day in the
20	four nearest offsets. This well, again, I think, just
21	accessed reserves that were already being drained by the
22	other wells and therefore did not result in a rate greater
23	than the previously existing wells.
24	Q. All right, let's go now to Yates Exhibit Number
25	26, the reserve data. Would you review that information?

1	A. Yes, sir. Again, this map is set up just like
2	the previous two. The numbers that I show here, I show two
3	numbers for the new wells, two reserve numbers.
4	The top number is total reserves, the entire
5	amount of reserves that we expect to produce through that
6	wellbore. That number has been calculated from decline-
7	curve analysis.
8	The second number are the unique reserves that we
9	expect to recover.
10	Q. What are unique reserves?
11	A. The unique reserves are the portion of the total
12	reserves that would not have been recovered by offset
13	wells. New reserves is another term we use.
14	For the offset wells, I have shown the remaining
15	reserves in those wells as of January of 1994. Those
16	reserves were calculated from decline-curve analysis
17	consistent with the way the new wells were evaluated.
18	I'd like to go into a little more detail about
19	the percent unique reserves. Again, the total reserves are
20	based on decline-curve analysis. That's an established
21	method of predicting reserves in the Pecos Slope-Abo field.
22	We've estimated what percentage of those reserves
23	are unique, based on the pressure data that we encountered,
24	and it's based on the premise that if we encounter virgin
25	pressure in an infill well, 100 percent of the reserves

1	that well will produce in its life will be new, unique
2	reserves.
3	Conversely, if we drill a well that is at exactly
4	the same pressure as its offset wells, zero percent of the
5	gas that well produces will be new reserves; it will just
6	be accelerating production of reserves that would have been
7	recovered by the existing wells.
8	Based on that pressure-to-unique-reserves
9	relationship, the reserves in these six wells range our
10	estimate ranges from about 30 percent in the Hobbs 3, which
11	is the lowest pressure that we measured, to 90 percent
12	unique reserves in some of the more successful wells.
13	The average Rather than going through all
14	these numbers, again, you can see the numbers there, Mr.
15	Examiner, the average reserves for the four successful
16	wells, the average unique reserves are 570 million cubic
17	feet. The average for the two unsuccessful wells is about
18	60 million cubic feet.
19	Q. Mr. Stallings, how do you characterize the
20	results you've obtained to date in the pilot project?
21	A. Well, the fact that we've found new reserves, I
22	consider that encouraging. I think that the results are
23	inconclusive to make a fieldwide judgment.
24	We have shown that at least in this part of the
25	field there are reserves that are remaining that will not

1	be drained by the existing wells. However, this is the
2	heart of the field, it's a relatively localized area, and
3	I'm just not sure that we have some question as to whether
4	these results can be extrapolated to a fieldwide basis.
5	That is why that we feel like it would be prudent
6	to drill additional wells to get additional data. I think
7	that if we were to wait two years for the pilot period to
8	expire, basically the only additional data we will gather
9	for these six wells will be their production data. And I
10	think with the mixed results that we've had, we will not be
11	able to make a conclusive and completely informed
12	recommendation, even in two years.
13	So we would like to proceed with additional
14	drilling to develop to gather additional data in a
15	broader area of the field to see if in fact our models and
16	our drainage theories and the hold and whether we could
17	find new reserves in a broader area of the field and
18	therefore make a more educated recommendation at the end of
19	the pilot period.
20	Q. And you're recommending that the pilot period not
21	be extended; you're working with the same two-year period
22	originally approved?
23	A. That's correct, we see no reason to recommend
24	extending the pilot period.
25	Q. Let's go to what has been marked Yates Exhibit

	44
1	27. Could you identify that, please?
2	A. I call this my drainage map. This map shows the
3	20 proposed locations as red dots. It shows the existing
4	wells in the area of those proposed wells, and it shows two
5	pieces of information about the existing wells.
6	The number posted by the well is the estimated
7	ultimate recovery from that well. That gives us another
8	indication of how good that well is, the wells in that area
9	are.
10	The green circles around each well represent the
11	calculated drainage areas of those wells. Those areas were
12	calculated with the volumetric equation for gas wells in a
13	depletion-drive gas reservoir. I went into detail last
14	August at the original hearing as to how that calculation
15	was done.
16	But we are able to use this map in conjunction
17	with the geology maps that were presented earlier to
18	identify portions of the reservoir that have been left
19	undrained by the existing wells.
20	Q. And so each of these wells would be outside
21	existing drainage areas?
22	A. You can see from where the wells are spotted that
23	that, in fact, is true, that the proposed wells do lie
24	outside the calculated drainage areas of the existing
25	wells.

	45
1	Q. But also in the area of good producers?
2	A. That's correct.
3	Q. All right, let's move to Yates Exhibit Number 28.
4	A. Okay.
5	Q. Would you identify this and explain how it
6	differs from the preceding exhibit?
7	A. Exhibit 28 is another drainage map; it looks very
8	similar to the previous map that I just showed. Again, the
9	prospects are shown in red. The estimated ultimate
10	recovery is posted beside each well those are exactly
11	the same numbers as were shown on the previous exhibit
12	and the calculated drainage areas around each well are
13	shown as circles.
14	The difference in this map and the previous map
15	is the method in which the drainage areas were calculated.
16	Whereas the previous map we used just the volumetric
17	equation to estimate drainage areas, we saw a need as a
18	result of the first six wells we drilled and the one
19	unsuccessful well that we drilled that appears to be
20	depleted, that maybe we need to refine our technique of
21	calculating drainage areas.
22	So another engineer in our company developed a
23	brand-new technique, completely independent of the
24	volumetric technique that was used on the previous map. He
25	did a reservoir simulation of Pecos Slope-Abo wells. He

1	matched that simulation, he history-matched it with actual
2	data from the field. He was then able to develop a set of
3	tight curves from which he can predict drainage areas for
4	all of the wells in the Pecos Slope-Abo field.
5	Again, this method does not include a lot of the
6	assumptions that were included in the volumetric
7	calculations, and so it's completely independent.
8	What I think is significant is, after we went
9	through that effort we find that in most of the cases if
10	you overlay these maps, that the calculated drainage areas
11	agree very closely with each other from the two different
12	techniques.
13	Again, on the second map with the yellow circles,
14	the proposed wells fall outside the drainage areas of the
15	existing wells.
16	Q. Mr. Stallings, what does Yates hope to learn from
17	the expansion of this pilot project? Or maybe a better way
18	to state that is, why are these 26 wells' totals needed?
19	A. Well, we've revised and refined our evaluation
20	techniques. We felt a need to do that as a result of the
21	mixed success that we had in the original six wells. We've
22	reviewed that we're now mapping in five sand packages,
23	rather than three sand packages, which was previously done.
24	We feel like this will give us a more detailed look at the
25	reservoir and better be able to predict geology.

1	But again, it's just a prediction. Now, we need
2	to test that technique against actual drilling to see how
3	well this prediction tool is.
4	We've also developed an additional way to
5	estimate drainage areas in the existing wells. We'd like
6	to test that against new wells, the data that we gather
7	from new wells.
8	We feel like that additional wells are needed to
9	cover a broader, more representative area of the field as a
10	whole. The original pilot, again, was concentrated in the
11	heart of the best producing part of the field. We hesitate
12	to recommend fieldwide changes or make fieldwide decisions
13	based on that localized area.
14	We feel like that this area covering four
15	additional townships will provide a more a better look
16	to make a fieldwide-basis decision.
17	Q. If this pilot project is expanded as you request,
18	is it your hopes that in August of 1995 you will be able to
19	make recommendations to this Division concerning changes in
20	the rules fieldwide?
21	A. We fully expect to be able to do that, yes, sir.
22	Q. Mr. Stallings, what does Yates project or
23	anticipate to be the additional reserves that can be
24	recovered if this effort is in fact successful and infill
25	drilling occurs in the pool?

1	A. I think Mecca mentioned earlier that we think
2	that on Yates' acreage alone there may be as many as 200
3	proration units that would benefit economically from an
4	additional well.
5	I think that the average reserves from those
6	wells may be on the order of half a BCF per well, that that
7	results in 100 BCF of remaining reserves in the field, and
8	we've just looked at our acreage portion of the field.
9	Q. And are these reserves reserves that otherwise
10	would not be recovered?
11	A. I think that's correct. I think that that would
12	be our incentive in doing that, would be if we feel like
13	there's reserves that will not be recovered by these
14	Q. And this program, therefore, would present waste
15	to that magnitude?
16	A. That's correct.
17	Q. Will correlative rights also be protected if this
18	Application is granted?
19	A. Yes.
20	Q. Were Exhibits 24 through 28 prepared by you?
21	A. Yes, sir.
22	MR. CARR: Mr. Catanach, at this time we move the
23	admission of Yates Exhibits 24 through 28.
24	EXAMINER CATANACH: Exhibits 24 through 28 will
25	be admitted as evidence.

1	MR. CARR: That concludes my direct examination
2	of Mr. Stallings.
3	EXAMINATION
4	BY EXAMINER CATANACH:
5	Q. Mr. Stallings, the geologist has testified
6	there's really not much geologic difference in the field,
7	and yet you emphasize the need to expand into a broader
8	area. Can you explain that reasoning?
9	A. My reasoning for that is, there may not be a
10	difference in the depositional environment or the other
11	geologic features as you spread across the field. There
12	certainly is a difference in the producing characteristics
13	of the wells in general. There are sweet spots in the
14	field.
15	The single best part of the field is where the
16	original pilot took place, and I think that we've shown
17	that there is remaining gas in that area. I'm just not
18	sure that you'd ever believe me if I came back and told you
19	that there's remaining gas over the whole field, just
20	because there's remaining gas in the best part of the
21	field, based on production data.
22	Q. What kind of different producing characteristics
23	are you talking about?
24	A. Well, those are summarized, and it's That is a
25	very general statement, but it's based on cumulative

49

1	production of wells, and those are posted on the last two
2	maps that we looked at, actual ultimate recoveries of those
3	wells.
4	They vary widely, granted, from well to well even
5	in a given area. But when we look very closely at the
6	data, we find that a high concentration of very good wells
7	is in Township 6 South, 25 East, and the wells are more
8	mixed, as you get away from that in all directions, as far
9	as the economics, the ultimate recovery of those wells.
10	I guess it's also of concern to me that even in
11	the heart of the field, we had mixed success. I would
12	certainly hope that in the future for an infill program a
13	two-thirds success rate I don't know if that's
14	acceptable for a fieldwide program, if it's good.
15	The economics for these six wells in aggregate
16	are marginally attractive, when you throw in the two
17	uneconomic wells.
18	I think that before we and other operators will
19	be encouraged to do a significant amount of infill
20	drilling, we'd need to be able to show better success and
21	better overall economics than we could show you as a result
22	of these six wells.
23	Q. Do you have a number as to what kind of unique
24	reserves you would drill a well to recover?
25	A. Yes, a rule of thumb we use is, the minimum

1	reserves, and therefore the minimum unique reserves,
2	required to make a well economic is about 400 million cubic
3	feet.
4	Our target for infill wells, our management has
5	said that the minimum target that we want to drill for is
6	500 million cubic feet. So that will provide us a
7	profitable well, with 400 million being the minimum
8	economic well we could drill. And I guess that's obviously
9	based on current gas prices.
10	Q. Why 20 additional wells, when you originally only
11	asked for six?
12	A. Twenty is not a magic number. I don't know that
13	20 is better than 25. We just feel that we need some
14	additional wells over a broader area of the field. Twenty
15	is a number that our management was willing to spend money
16	on. We're willing to spend the \$6 million to gather the
17	data from these wells.
18	Q. The area that you've got on Exhibit Number 27 or
19	28, what portion of the whole field does that area
20	represent?
21	A. I wished I had a map of the field limits to tell
22	you. I can tell you in rough terms that the south the
23	field extends south roughly to Range 28 no, Township 8,
24	excuse me. It goes as far north as Township 4. Township
25	25 is roughly the western edge of the field, and Township

1	26 is roughly the eastern edge of the field.
2	So we've shown the east and west limits, but
3	we've not shown the north and south limits on this map. Is
4	that a fair a general statement? I think that's
5	MS. McKIEVER: Twenty-four and 27.
6	THE WITNESS: Twenty-four and 27.
7	Q. (By Examiner Catanach) Is there a reason why
8	you're not expanding this pilot into other areas of the
9	pool besides I mean to even get a broader
10	A. Yeah
11	Q what might
12	A. The reason, quite frankly, is because we just
13	we didn't do the work and evaluate those areas.
14	There are a thousand wells out here, and the
15	detail work that we've done, we felt like this was a
16	representative area for a pilot, and we're saving the
17	fieldwide study. We felt like that time would be most
18	appropriately spent if the time comes when fieldwide rules
19	are adopted.
20	Q. What kind of additional engineering evidence do
21	you hope to gather to substantiate your or to support
22	your position?
23	A. More of the same. The pressure The initial
24	pressure and the production data, again, are the primary
25	engineering tools to evaluate depletion out here. So we'll

- -

use a similar analysis technique to the one I've described. 1 Again, we just feel like we want it over a broader, more 2 3 representative area of the field. 4 EXAMINER CATANACH: I have nothing further, Mr. 5 Carr. 6 MR. CARR: Mr. Catanach, that concludes our 7 presentation in this case. EXAMINER CATANACH: Okay. There being nothing 8 9 further in this case, Case 10,981 will be taken under 10 advisement. (Thereupon, these proceedings were concluded at 11 12 11:25 a.m.) 13 * * 14 15 16 17 18 I do hereby certify that the foregoing is 19 a complete record of the proceedings in the Examiner hearing of Case No 1099 20 heard by me on 17 Jay 26 1997 21 Examiner Oil Conservation Division 22 23 24 25

54 1 CERTIFICATE OF REPORTER 2 3 STATE OF NEW MEXICO)) ss. 4 COUNTY OF SANTA FE) 5 6 I, Steven T. Brenner, Certified Court Reporter 7 and Notary Public, HEREBY CERTIFY that the foregoing 8 transcript of proceedings before the Oil Conservation 9 Division was reported by me; that I transcribed my notes; 10 and that the foregoing is a true and accurate record of the 11 proceedings. 12 I FURTHER CERTIFY that I am not a relative or 13 employee of any of the parties or attorneys involved in this matter and that I have no personal interest in the 14 15 final disposition of this matter. 16 WITNESS MY HAND AND SEAL June 7th, 1994. 17 18 STEVEN T. BRENNER 19 CCR No. 7 20 21 My commission expires: October 14, 1994 22 23 24 25