1	
1	STATE OF NEW MEXICO
2	ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT
3	OIL CONSERVATION DIVISION
4	
5	IN THE MATTER OF THE HEARING)
6	CALLED BY THE OIL CONSERVATION) DIVISION FOR THE PURPOSE OF)
7	CONSIDERING:) CASE NO. 10,994)
8	APPLICATION OF ENSERCH) EXPLORATION, INC.)
9	
10	ORIGINAL
11	
12	REPORTER'S TRANSCRIPT OF PROCEEDINGS
13	EXAMINER HEARING
14	BEFORE: JIM MORROW, Hearing Examiner
15	
16	July 21, 1994
17	Santa Fe, New Mexico
18	
19	
20	This matter came on for hearing before the Oil
21	Conservation Division on Thursday, July 21, 1994, at Morgan
22	Hall, State Land Office Building, 310 Old Santa Fe Trail,
23	Santa Fe, New Mexico, before Steven T. Brenner, Certified
24	Court Reporter No. 7 for the State of New Mexico.
25	* * *

1

1 INDEX 2 3 July 21, 1994 Examiner Hearing 4 CASE NO. 10,994 5 PAGE 6 STATEMENT BY MS. TRUJILLO 3 7 **REPORTER'S CERTIFICATE** 5 8 * * 9 10 APPEARANCES 11 12 FOR THE DIVISION: 13 RAND L. CARROLL 14 Attorney at Law Legal Counsel to the Division 15 State Land Office Building Santa Fe, New Mexico 87504 16 17 FOR THE APPLICANT: 18 CAMPBELL, CARR, BERGE & SHERIDAN, P.A. Suite 1 - 110 N. Guadalupe 19 P.O. Box 2208 20 Santa Fe, New Mexico 87504-2208 By: TANYA M. TRUJILLO 21 * * * 22 23 24 25

2

1 WHEREUPON, the following proceedings were had at 2 9:00 a.m.: EXAMINER MORROW: Call Case 10,994. 3 This case was heard two weeks ago [sic], and I 4 5 understand it was continued for the purpose of additional notice or re-advertisement. 6 7 So if there's no one here to appear and offer anything in this case, it will then be taken under 8 advisement. 9 MS. TRUJILLO: I'm sorry, Mr. Examiner, what case 10 number was that? 11 EXAMINER MORROW: 12 10,994. 13 MS. TRUJILLO: I do have something. 14 EXAMINER MORROW: Okay. 15 MR. CARROLL: That's the Application of Enserch 16 Exploration, Inc, for the assignment of a special depth 17 bracket oil allowable, Roosevelt County, New Mexico. MS. TRUJILLO: Mr. Examiner, my name is Tanya 18 Trujillo from the law firm Campbell, Carr, Berge and 19 Sheridan. 20 21 I enter an appearance today on behalf of the Applicant. 22 EXAMINER MORROW: Go ahead, Ms. Trujillo. 23 MS. TRUJILLO: Mr. Examiner, as evidenced, this 24 case was heard on June 23rd. It was continued at that time 25

3

	4
1	because it was discovered that one party, Bledsoe Petroleum
2	Corporation, was not given notice at that time.
3	Today I submit a supplemental affidavit signed by
4	William F. Carr, indicating that notice was provided to
5	Phillips Petroleum Corporation.
6	And at the June 23rd hearing Mr. Stogner, the
7	Hearing Examiner that day, requested that a proposed order
8	be submitted, and I submit a proposed order today.
9	MR. CARROLL: Ms. Trujillo, apparently you
10	haven't heard anything from Bledsoe?
11	MS. TRUJILLO: Oh, yes, they received They
12	received the notice.
13	MR. CARROLL: They signed for it, but haven't
14	contacted you?
15	MS. TRUJILLO: No, not to my knowledge.
16	EXAMINER MORROW: Anything further?
17	MS. TRUJILLO: No, nothing further.
18	EXAMINER MORROW: All right, Case 10,994 will be
19	taken under advisement.
20	(Thereupon, these proceedings were concluded at
21	9:03 a.m.)
22	<pre>* * * I do hereby certify that the foregoing is a complete record of the proceedings in</pre>
23	the Examiner hearing of Case No. 10944 heard by me of Lity 21 1994
24	All Examiner
25	Off Conservation Division
l	

4

CERTIFICATE OF REPORTER 1 2 STATE OF NEW MEXICO 3)) ss. 4 COUNTY OF SANTA FE) 5 I, Steven T. Brenner, Certified Court Reporter 6 and Notary Public, HEREBY CERTIFY that the foregoing 7 transcript of proceedings before the Oil Conservation 8 Division was reported by me; that I transcribed my notes; 9 and that the foregoing is a true and accurate record of the 10 proceedings. 11 I FURTHER CERTIFY that I am not a relative or 12 employee of any of the parties or attorneys involved in 13 this matter and that I have no personal interest in the 14 15 final disposition of this matter. WITNESS MY HAND AND SEAL July 22, 1994. 16 17 18 STEVEN T. BRENNER CCR No. 7 19 20 21 My commission expires: October 14, 1994 22 23 24 25

5

1	
1	STATE OF NEW MEXICO
2	ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT
3	OIL CONSERVATION DIVISION
4	
5	IN THE MATTER OF THE HEARING)
6	CALLED BY THE OIL CONSERVATION) DIVISION FOR THE PURPOSE OF) CONSIDERING:
7	CONSIDERING:) CASE NO. 10,994)
8	APPLICATION OF ENSERCH) EXPLORATION, INC.)
9	- <u></u> /
10	ORIGINAL
11	UNIGINAL
12	REPORTER'S TRANSCRIPT OF PROCEEDINGS
13	EXAMINER HEARING
14	BEFORE: MICHAEL E. STOGNER, Hearing Examiner
15	
16	June 23, 1994
17	Santa Fe, New Mexico 11 27 1994
18	
19	
20	This matter came on for hearing before the Oil
21	Conservation Division on Thursday, June 23, 1994, at Morgan
22	Hall, State Land Office Building, 310 Old Santa Fe Trail,
23	Santa Fe, New Mexico, before Steven T. Brenner, Certified
24	Court Reporter No. 7 for the State of New Mexico.
25	* * *

1

1	INDEX	
2	June 23, 1994 Examiner Hearing	
3	CASE NO. 10,994	
4	EXHIBITS	PAGE 3
5	APPEARANCES	4
6		4
7	OPENING STATEMENTS: By Mr. Carr	6
8	By Mr. Kellahin	7
9	APPLICANT'S WITNESSES:	
10	<u>GEORGE FAIGLE</u> Direct Examination by Mr. Carr	9
11	Cross-Examination by Mr. Kellahin Redirect Examination by Mr. Carr	16 28
	Examination by Examiner Stogner	28
12	RALPH B. TELFORD	
13	Direct Examination by Mr. Carr Cross-Examination by Mr. Kellahin	32 49
14	Redirect Examination by Mr. Carr Examination by Examiner Stogner	69 70
15	PHILLIPS WITNESSES:	
16	SCOTT C. BALKE	
17	Direct Examination by Mr. Kellahin	77
18	Cross-Examination by Mr. Carr Examination by Examiner Stogner	88 93
19	JACK PICKETT	
20	Direct Examination by Mr. Kellahin Cross-Examination by Mr. Carr	95 117
21	Examination by Examiner Stogner	129
22	CLOSING STATEMENTS: By Mr. Kellahin	131
23	By Mr. Carr	134
	REPORTER'S CERTIFICATE	139
24	* * *	
25		

2

-			
1		ЕХНІВІТЅ	
2			
3	APPLICANT'S:	Tiontified	
4		Identified	Admitted
	Exhibit 1	11	16
5	Exhibit 2	11	16
	Exhibit 3	12	16
6	Exhibit 4	13	16
	Exhibit 5	34	48
7	Exhibit 6	38	48
8	Exhibit 7	41	48
	Exhibit 8	42	48
9	Exhibit 9	44	48
10	Exhibit 10	45	48
	Exhibit 11	47	48
11	Exhibit 12	48	48
12		* * *	
13			
14	PHILLIPS:		
15		Identified	Admitted
	Exhibit 1	79	88
16	Exhibit 2	85	88
	Exhibit 3	86	88
17	Exhibit 4	98	117
	Exhibit 5	99	117
18			
10	Exhibit 6	101	117
19	Exhibit 7	101	
19			117
	Exhibit 8	105	117
20	Exhibit 9	108	117
1			
	Exhibit 10	110	117
21			
21	Exhibit 10 Exhibit 11	110	117 117
21 22			
	Exhibit 11	111	117
22	Exhibit 11	111 112	117
22 23	Exhibit 11	111 112	117

3

1	APPEARANCES
2	
3	FOR THE DIVISION:
4	RAND L. CARROLL
5	Attorney at Law Legal Counsel to the Division
6	State Land Office Building Santa Fe, New Mexico 87504
7	
8	FOR THE APPLICANT:
9	CAMPBELL, CARR, BERGE & SHERIDAN, P.A. Suite 1 - 110 N. Guadalupe
10	P.O. Box 2208 Santa Fe, New Mexico 87504-2208
11	By: WILLIAM F. CARR
12	
13	FOR PHILLIPS PETROLEUM COMPANY:
14	KELLAHIN & KELLAHIN 117 N. Guadalupe
15	P.O. Box 2265 Santa Fe, New Mexico 87504-2265
16	By: W. THOMAS KELLAHIN
17	* * *
18	
19	
20	
21	
22	
23	
24	
25	

WHEREUPON, the following proceedings were had at 1 2 1:05 p.m.: EXAMINER STOGNER: Hearing will come to order. 3 Call next case, Number 10,994. 4 MR. CARROLL: Application of Enserch Exploration, 5 Inc., for the assignment at a special depth bracket oil 6 7 allowable, Roosevelt County, New Mexico. EXAMINER STOGNER: Call for appearances. 8 May it please the Examiner, my name is 9 MR. CARR: William F. Carr with the Santa Fe law firm Campbell, Carr, 10 Berge and Sheridan. 11 I represent Enserch Exploration, Inc., and I have 12 13 two witnesses. 14 EXAMINER STOGNER: Any other appearances? 15 MR. KELLAHIN: Mr. Examiner, I'm Tom Kellahin of the Santa Fe law firm of Kellahin and Kellahin, appearing 16 on behalf of Phillips Petroleum Company in opposition to 17 the Applicant. 18 I have two witnesses to be sworn. 19 EXAMINER STOGNER: Any other appearances? 20 Will all the witnesses please stand to be sworn 21 at this time? 22 23 (Thereupon, the witnesses were sworn.) EXAMINER STOGNER: Mr. Carr? 24 May it please the Examiner, I have a 25 MR. CARR:

5

very brief opening statement. 1 As you are aware, this case involves an 2 Application filed by Enserch Exploration, Inc., by which we 3 are seeking authorization to increase the producing rates 4 from the South Peterson-Fusselman Pool in Roosevelt County, 5 New Mexico. 6 As you will see, there are only two operators in 7 the pool -- Enserch, Inc., and Phillips Petroleum 8 Company -- and the pool has been operated for almost 20 9 years on a checkerboard development pattern. 10 Back in 1978 Enserch came before the Division 11 and sought the adoption of special pool rules for this 12 That application was granted by Order Number R-5771, 13 pool. and 80-acre spacing was by that order established on a 14 permanent basis for the pool. This has resulted in a depth 15 bracket allowable for the pool of 267 barrels of oil per 16 day. This is a standard depth bracket allowable for 80-17 acre spacing. 18 Today we will present evidence that will show 19 that the operators have been able to operate wells in this 20 pool for the past 15 years under these rules, but we now 21 have reached the last stages in the development of this 22 reservoir, that the reservoir today is substantially 23 watered out, and we need to increase allowables if in fact 24 we are going to be able to increase our producing rate 25

	, , , , , , , , , , , , , , , , , , , ,
1	sufficiently to maximize the recovery of the remaining
2	reserves in this pool, thereby permitting waste. That's
3	what we will show.
4	I will call two witnesses. I will call a
5	geologist who will provide you with a general geological
6	picture of this reservoir, and then we will present
7	engineering testimony that will review production histories
8	on the wells that still produce from the pool and review
9	other engineering factors which dictate that if we are to
10	effectively produce this reservoir in its twilight years,
11	that in fact allowables must be increased and production
12	rates must now be accelerated, because if we do not, the
13	only result will be waste.
14	EXAMINER STOGNER: Mr. Carr.
15	Mr. Kellahin?
16	MR. KELLAHIN: Mr. Examiner, we're here in
17	opposition to the request.
18	As Mr. Carr explained to you, the pool was
19	originally developed by Enserch as a based on a farmout
20	arrangement with Phillips. The result of that farmout
21	arrangement was a checkerboard configuration in this pool.
22	You will see from the displays that many of the
23	spacing units are laydown 80-acre tracts within the
24	section, and with one oil well in each of those 80-acre
25	tracts.

	8
1	Order R-5771 established the rules and procedures
2	for the pool. Here's a copy of that order.
3	Phillips and Enserch have operated this pool for
4	some 16, 17 years with a depth bracket oil allowable of 267
5	barrels.
6	This is an active, water-drive reservoir. There
7	is a significant structural component.
8	There is only one well that has any conceivable
9	opportunity of benefiting from increasing the oil allowable
10	above the 267, and that is a well operated by Enserch at
11	the highest structural point of the reservoir.
12	These technical people have talked to each other.
13	Mr. Carr and I encouraged our clients to discuss this and
14	try to resolve it without requiring your judgment and
15	attention. The parties were unable to do so in this case.
16	It is our understanding that Enserch bases its
17	hypothesis that increasing the voidage of the reservoir at
18	this time will somehow increase ultimate recovery, and that
19	hypothesis is based upon a SPE paper from 1978.
20	It will be our testimony that regardless of what
21	that paper hypothecated, in this reservoir it didn't work,
22	it hasn't worked and it won't work.
23	What's going to happen, our witnesses will tell
24	you, is that by increasing the oil allowable, Enserch with
25	already the best well in the pool, with the best structural

3
advantage, is going to take the remaining oil that we would
produce from our wells.
In addition, we will tell you that this is
nothing more than rate acceleration, and by increasing the
oil rate you're simply giving them our oil and letting them
produce it faster.
We're opposed to this. Water encroachment, water
drive is still a significant factor in this well in this
pool. And that increasing the allowable at this point
serves no purpose but to benefit one operator with one well
at the expense of the other.
EXAMINER STOGNER: Thank you, Mr. Kellahin.
Mr. Carr, you may call your witnesses first.
MR. CARR: May it please the Examiner, at this
time we call George Faigle.
GEORGE FAIGLE,
the witness herein, after having been first duly sworn upon
his oath, was examined and testified as follows:
DIRECT EXAMINATION
BY MR. CARR:
Q. Will you state your name for the record, please?
A. George Faigle.
Q. Where do you reside?
A. Midland, Texas.
Q. By whom are you employed and in what capacity?

1	A. Enserch Exploration, development geologist.
2	Q. Have you previously testified before this
3	Division?
4	A. Yes.
5	Q. At the time of that testimony, were your
6	credentials as an expert petroleum geologist accepted and
7	made a matter of record?
8	A. Yes.
9	Q. In fact, that testimony was offered in a case
10	that involved this very same area; is that right?
11	A. That's right.
12	Q. Are you familiar with the Application filed in
13	this case on behalf of Enserch Exploration, Inc.?
14	A. Yes.
15	Q. And are you familiar with the South Peterson-
16	Fusselman Pool and the wells located therein?
17	A. Yes.
18	MR. CARR: Are Mr. Faigle's qualifications
19	acceptable?
20	EXAMINER STOGNER: Mr. Faigle is so qualified.
21	Q. (By Mr. Carr) Could you briefly state what
22	Enserch seeks with this Application?
23	A. Enserch seeks special pool rules for the South
24	Peterson-Fusselman Pool, special depth bracket allowable of
25	500 barrels of oil per day and permanent field rules.

1	Q. What are the current production limitations on
2	wells in this pool?
3	A. Statewide rules, GOR of 2000 to 1 and depth
4	bracket allowable.
5	Q. And what are the spacing requirements for the
6	pool?
7	A. Eighty acres.
8	Q. So it's a standard depth bracket allowable for
9	80-acre spacing?
10	A. Yes.
11	Q. Have you prepared certain exhibits for
12	presentation here today?
13	A. Yes.
14	Q. Could you identify what has been marked Enserch
15	Exhibit Number 1 and identify this for Mr. Stogner?
16	A. Exhibit Number 1 is a geographic location plat
17	for orientation only, the South Peterson-Fusselman Pool
18	being illustrated by the red dot.
19	Q. And other than just generally orienting us as to
20	the portion of the State involved, that's all this exhibit
21	is offered for?
22	A. That's correct.
23	Q. All right. Let's go to Exhibit Number 2.
24	Identify and review that, please.
25	A. Exhibit Number 2 is an orientation map. The red

outline indicates the remaining productive area. It also
shows the pool operators, Enserch and Phillips. All wells
within one mile of the Number 1 Lambirth are indicated by a
completion date.
Q. And that well is the well that's indicated with
the red arrow?
A. Right. The Number 1 Lambirth is the well
indicated with the large red arrow.
Q. Now, the area that you have indicated with the
circle on this Exhibit, that's not the pool boundaries but
just the acreage which you estimate now still productive in
the reservoir?
A. That outlines the are of the productive wells,
right.
Q. All right. Let's go to Enserch Exhibit Number 3.
Will you identify that, please?
A. Exhibit Number 3 is a structure map depicting the
configuration on the top of the Fusselman. It also
indicates the current Fusselman producers in red and the
cross-section trace in green.
Q. Was this exhibit prepared from the well-control
information, or did you also integrate any seismic data
into this?
A. Well control.
Q. And basically, this just gives you a structure

	1.2
1	map showing the top of the Fusselman in this area?
2	A. Correct.
3	Q. Let's go to the cross-section, Enserch Exhibit
4	Number 4, the trace for which is indicated on 3, and I
5	would ask you to review each of the wells on that exhibit
6	for Mr. Stogner.
7	A. Exhibit 4. This shows the Enserch well, the
8	second well in from the left, and the three Phillips wells
9	which are the offset producers. It shows the structural
10	position of these wells, it shows the perforated intervals
11	in these wells, the depth at which they were perforated and
12	the thickness of the perforated zone.
13	It also shows down at the bottom the subsea
14	depths of these perforations. Note that the base of the
15	subsea at the base of the perforations is the same in the
16	Enserch Number 1 and the Enserch and in the Phillips
17	Number 2-A.
18	Q. So in the Enserch well, the well that you're
19	primarily concerned about, and the immediate offsetting
20	Phillips well to the north, the bottom of the perforated
21	interval is identical?
22	A. Correct. Now, this Therefore a rising oil-
23	water contact would affect both wells equally. There would
24	be no advantage to either well.
25	Also, the cross-section shows the recent water

1	cuts in each well, and it illustrates that the pool has
2	essentially watered out.
3	Q. Are these the only wells now producing from the
4	reservoir?
5	A. The wells colored red are the only Fusselman
6	producers.
7	Q. Now, you have got You have indicated on this
8	the base of the Penn or the top of the Fusselman; is that
9	right?
10	A. Yes.
11	Q. Is that a fairly easy marker to pick throughout
12	this area?
13	A. I wouldn't call it easy. It's pickable. You
14	Q. Is it fair Is it a marker that as a geologist
15	you would not have substantial difficulty in locating?
16	A. No.
17	Q. No, you would not?
18	A. I would not have substantial difficulty in
19	locating it.
20	Q. Is the Enserch Lambirth Number 1 Well the highest
21	well structurally in this pool?
22	A. At the top of the Fusselman it is the highest
23	structural position.
24	Q. And yet it is open in an interval that
25	corresponds to the interval that's open in offsetting

14

	15
1	wells?
2	A. Yes, either equal to or lower than the open
3	interval in the offset production.
4	Q. Mr. Faigle, what general conclusions about this
5	reservoir have you been able to reach?
6	A. The South Peterson field has four remaining
7	productive wells. The reservoir is dolomite with fracture
8	and intercrystalline porosity.
9	Although the Number 1 Lambirth occupies the
10	highest structural position in the field, the base of the
11	perforations show that the Number 1 Lambirth has no
12	advantage over the Phillips wells, assuming a rising oil-
13	water contact.
14	However, this appears to be irrelevant, since the
15	main reservoir has watered out, as illustrated by the water
16	cuts in the range of 94 to 99 percent.
17	This concluded my part of the project, which was
18	to provide a current geologic picture to be used as a basis
19	for the engineer's reservoir study.
20	Q. Enserch will also be calling an engineering
21	witness?
22	A. Yes.
23	Q. Were Exhibits 1 through 4 prepared by you?
24	A. Yes.
25	MR. CARR: At this time, Mr. Stogner, we move the

1	admission into evidence of Enserch Exploration Exhibits 1
2	through 4.
3	EXAMINER STOGNER: Are there any objections?
4	MR. KELLAHIN: No objection.
5	EXAMINER STOGNER: Exhibits 1 through 4 will be
6	admitted into evidence.
7	MR. CARR: And that concludes my direct
8	examination of Mr. Faigle.
9	EXAMINER STOGNER: Mr. Kellahin, your witness.
10	CROSS-EXAMINATION
11	BY MR. KELLAHIN:
12	Q. Mr. Faigle, on Exhibit 3, the Fusselman
13	structure, are you mapping the top of the Fusselman
14	structure on that exhibit?
15	A. Yes.
16	Q. The top of the structure, the top of the
17	Fusselman, if you will, for structural mapping purposes,
18	can be found on the log of each of the four remaining
19	producing wells?
20	A. Yes.
21	Q. You don't have any trouble picking the top of the
22	Fusselman?
23	A. No.
24	Q. When we look at the structure map, when we look
25	at the top of the Fusselman, your Lambirth Number 1, is it

a minus 3320? Am I reading that correctly? 1 2 Α. Yes. And as we go north to the Phillips 2A Lambirth, 3 Q. that's a minus 3401? 4 Α. Yes. 5 Difference of about 81 feet? 6 Q. 7 Α. Yes. Okay. On the cross-section, your Exhibit Number 8 Q. 9 4, there are penciled in on my copy some water cuts. Do 10 you have that on your copy? 11 Α. Yes. When we look at the Phillips 2A Lambirth on the 12 Q. 13 bottom, it says 94-percent water cut? 14 Α. Yes. 15 What's the 1921? That's the total barrels of ο. fluids produced on a daily basis? 16 I don't see any 1921 on my Number 2A Lambirth. 17 Α. All right, sir. I have "1921 barrel fluid per 18 Q. day", a dash, and then it says "94'. Is yours done the 19 same way as mine? 20 I'm afraid you've got a work copy. 21 Α. Ah. Okay, good, I have an advantage over you 22 Q. 23 now. EXAMINER STOGNER: Let's make sure that we have 24 all Exhibit Number 4s. 25

17

1	MR. KELLAHIN: Yes, hang on just a minute.
2	Q. (By Mr. Kellahin) Is yours like mine?
3	A. No, sir, this is not the final edition.
4	MR. KELLAHIN: Okay, Mr. Carr has done me in.
5	MR. CARR: Mr. Examiner, I apologize to you and
6	Mr. Kellahin for that. I want you to know I did not write
7	those numbers in.
8	EXAMINER STOGNER: Can we borrow a Xerox machine?
9	MR. KELLAHIN: All right, hang on.
10	May I approach the witness again, Mr. Examiner,
11	and make sure he and I are looking at the same thing?
12	EXAMINER STOGNER: Sure, if Mr. Carr has no
13	problem with that.
14	MR. CARR: No problem.
15	MR. KELLAHIN: All right, sir. Check and make
16	sure Now I have what you have, right?
17	All right, he does.
18	Q. (By Mr. Kellahin) All right, back to my
19	question.
20	On the 2A Lambirth, it's the one on the far left
21	of the cross-section, the Phillips-operated well shown on
22	Exhibit 4, 94-percent water cut.
23	To arrive at that water cut, you're simply taking
24	total barrels of fluid produced per day?
25	A. It's for a month. The water cut is derived from

1	a monthly production figure.
2	Q. All right, you've got a monthly production figure
3	and you're taking total fluids produced, and you're
4	dividing by the total water produced?
5	A. Not exactly, I'm dividing into the total water
6	produced.
7	Q. Okay, and that would give you the 94 percent?
8	A. That gives me the percent water cut.
9	Q. So the numerator is the water, and the total
10	fluids is the denominator?
11	A. Yes.
12	Q. Okay. And this is for the month of December of
13	1993?
14	A. Yes.
15	Q. Do you have the equivalent water cut for the
16	Enserch 1 Lambirth for December of 1993?
17	A. No.
18	Q. Okay. When you look at May of 1994, the water
19	cut in the Lambirth well is 89 percent, right?
20	A. Yes.
21	Q. Lambirth Number 1 Enserch Well enjoys about 80
22	feet of structural advantage to the Phillips well at the
23	top of the structure?
24	A. On the top of the structure, not the reservoir.
25	Q. At the top of the structure.

1	As a geologist, do you see any geologic evidence
2	that does not support the conclusion that this is a water-
3	drive reservoir?
4	A. Repeat the question.
5	Q. Yes, sir. Everything that you see geologically
6	supports the conclusion that this is a water-drive
7	reservoir?
8	A. Yes.
9	Q. Wouldn't you think that the downstructure
10	Phillips well is going to have a higher water cut than the
11	Enserch well which is farther upstructure?
12	A. Yes, it does.
13	Q. And that's what we see, isn't it?
14	A. Yes.
15	Q. Now, how do we pick the bottom of the Fusselman
16	on this cross-section?
17	A. I don't. I assume the Fusselman is continuous
18	down through the top of the granite.
19	Q. What allows you to make that assumption?
20	A. Confusion about nomenclature.
21	Q. Okay. Anything else, other than confusion about
22	nomenclature?
23	A. Disagreement of the experts.
24	Q. Okay. The base of the Fusselman is truncated, is
25	it not?

1	A. No.
2	Q. The base of the Fusselman hasn't been eroded in
3	some of these wells?
4	A. No.
5	Q. How have you determined the base of the
6	Fusselman?
7	A. Top of the granite.
8	Q. Okay, and where on this display do I find that
9	represented, looking at Exhibit 4?
10	A. There is no correlation line indicating the top
11	of the granite, because several of the wells didn't get
12	there, so I couldn't make a continuous line.
13	On an individual well I can give you that figure
14	if it was penetrated.
15	Q. Tell me again why you've concluded there's no
16	advantage, even though the Enserch well is some 80 feet
17	higher structurally, at the top of the structure, than the
18	Phillips well.
19	A. We have the top of the structure, which is not
20	the top of the reservoir. It's tight rock at the top of
21	the Fusselman in the Number 1 Lambirth. We have to go 60
22	feet down into the Fusselman to encounter the top of the
23	reservoir. We find the top of the reservoir and perforate
24	an interval within the top of that reservoir.
25	Now, the bottom of that perforated interval is

1	the same subsea as the bottom of the perforated interval in
2	the Phillips 2A Lambirth well and, in fact, lower than the
3	bottom of the perforated interval in the 3A Lambirth and
4	the 1A Lambirth.
5	My contention is, since the bottom of the
6	perforations are the exact same subsea elevation, any
7	rising oil-water contact is going to encounter the wells at
8	the exact same time, and therefore there's no structural
9	advantage at the base of the perforations.
10	Q. When we look at the Enserch Lambirth 1, show me
11	what you think on that log is the top of the reservoir
12	that's being produced?
13	A. 7808.
14	Q. And that's the top of the red line?
15	A. Yes.
16	Q. Which is the equivalent of the perforation?
17	A. It's the top of the perforation.
18	Q. All right. Top of the perforation, in your
19	opinion, is the top of the oil reservoir in the Fusselman?
20	A. As we define it with a porosity cutoff.
21	Q. And what is your porosity cutoff?
22	A. I believe it was about ten percent in this well.
23	Q. All right. If we move over to the Phillips 2A
24	Lambirth, what's the footage on the log that shows me the
25	top of the oil reservoir on that log?

A. Well, I'm having a little trouble reading that.
It looks to be about 7832, the top of the red zone, plus or
minus a foot.
Q. All right. Am I correct in understanding your
conclusion that the Enserch Lambirth 1, the top of that oil
reservoir is at about 7808, and when we move over into the
Phillips well, the 2A Lambirth, the top of the oil
reservoir is at 7832?
A. Okay. No, wait a minute. Well Oh, yes, in
drilling depth, okay.
Q. I'm sorry?
A. In drilling depth, which does not account for
surface elevation. You have to switch to subsea if you
want to compare them.
Q. I'm trying to compare them, and I want to get the
equivalent footages in each well and have your opinion as
to what that depth is for the top of the oil.
A. Okay. If you will look For example, the
Phillips 2A well, if you'll look after the 7832-38, the
parentheses, minus 3418 to -24, this is the subsea depth of
the perforated interval.
Q. All right, minus 3407, is that equivalent to the
top of the oil?
A. Where did 3407 come from?
Q. Well, it's in the right-hand margin of that log

1 on my copy. 2 Α. I've got a 3401. All right, that's a "1" and not a "7"? 3 Q. That's the top of the Fusselman, not the top of 4 Α. the reservoir. 5 Q. All right, give me the top of the oil reservoir. 6 7 Α. In the Phillips 2A? Yes, sir. Q. 8 3418. 9 Α. All right, 3418. 10 Q. And when I go over on the Lambirth 1 Enserch 11 12 Well, give me that footage for the top of the oil 13 reservoir. 14 Α. 3380. 15 Q. Thirty-three-oh-eight? -- -eight-zero. 16 Α. 3380, all right. Okay, we've got a difference of 17 Q. 38 feet. 18 On the top of the perforations. 19 Α. And are you telling me the top of the perforation 20 Q. in each well is the equivalent of the top of the oil column 21 in the oil reservoir? 22 23 Α. Originally. 24 Okay, I want to find the top of the oil. Q. The oil is essentially gone. It's been watered 25 Α.

	25
1	out.
2	Q. Okay. So if I use minus 3380 as being the
3	highest point in your well that would have produced oil and
4	compare it to minus 3418 as you analyze it in the Phillips
5	well, that would be the top or the highest point in that
6	well in which oil could have or would have been produced?
7	A. Yes.
8	Q. Okay. You enjoy an advantage under that
9	interpretation of 38 feet?
10	A. The oil-water contact comes from the bottom
11	upward. It would encounter the bottom perforation before
12	the first. And since they are exactly the same, a rising
13	oil-water contact would meet the bottom perforation in each
14	well at the same time.
15	Q. Okay.
16	A. The top is irrelevant, when you're trying to
17	figure when the well is going to water out.
18	Q. Okay. If it's a bottom-water-drive reservoir,
19	water is coming up. When it hits the lowest perforation in
20	each well, is it watered out?
21	A. No, it starts to cut water.
22	Q. Oh, okay. No edge drive, no edge contribution of
23	water in the reservoir?
24	A. Not in my opinion.
25	Q. Okay. And so that is the basis by which you say

1 there's no advantage --Α. Yes. 2 -- between the Phillips well and the Enserch 3 Q. well --4 5 Α. Yes. -- is because the bottom perforations are 6 ο. 7 equivalent? Are equivalent subsea depth. 8 Α. 9 Q. And as the water rises, they're both exposed to the water at the same point? 10 Yes. 11 Α. Okay. Give me a porosity cutoff in the Lambirth 12 Q. 1 well. When we look at the bottom perforation in that 13 well, do we have any porosity above 10 percent? 14 Repeat the question. 15 Α. Yes, sir, I'm trying to see how much net pay 16 Q. above 10 percent you have in your Lambirth Number 1 Well. 17 I don't have that figure here. Α. 18 19 Q. Okay. It has to be cross-plotted. 20 Α. All right. Have you done it for the Phillips 2A 21 Q. Lambirth Well? 22 23 Α. No. 24 Q. Did you use any porosity cutoff for that well? 25 Ten percent. Α.

1	Q. All right. How about the other two wells? We've
2	got two more Phillips wells. You mentioned earlier that
3	there were four producing wells left in the pool. Did I
4	understand that right?
5	A. I believe there's five.
6	Q. Okay.
7	A. There's five producing wells.
8	Q. On Exhibit Number 2, those wells circled in red
9	are the remaining producing Fusselman wells?
10	A. Yes.
11	Q. Okay.
12	A. The Number 3 Lambirth has recently been
13	recompleted.
14	Q. Into what formation?
15	A. As a commingled Penn-Fusselman well.
16	Q. All right.
17	A. So it is now a Fusselman producer, commingled
18	with the Penn.
19	Q. Why was that done?
20	A. Economics.
21	Q. Fusselman by itself was no longer economic?
22	A. No.
23	Q. No, yes? Or no, no?
24	A. Yes, the Fusselman was no longer economic by
25	itself.

1	MR. KELLAHIN: Thank you, Mr. Examiner.
2	EXAMINER STOGNER: Mr. Carr, any redirect?
3	MR. CARR: One question.
4	REDIRECT EXAMINATION
5	BY MR. CARR:
6	Q. Mr. Faigle, you indicated you didn't see any
7	evidence of an edge water drive. Would an edge water
8	drive, as opposed to a bottom water drive, in your opinion,
9	make any difference on how the reservoir is performing?
10	A. Not anymore.
11	Q. And why not?
12	A. The wells have essentially watered out, as
13	illustrated by the current water cuts.
14	MR. CARR: That's all I have.
15	EXAMINER STOGNER: Thank you, Mr. Carr.
16	EXAMINATION
17	BY EXAMINER STOGNER:
18	Q. Mr. Faigle, was there any initial depth of the
19	oil-water contact in the Fusselman formation whenever the
20	zone or the pool was first discovered?
21	A. It's referred to in the literature as a minus
22	subsea 3450, approximately. People's opinions vary on
23	this, but this is about an average.
24	Q. When you say "literature", what more specific are
25	you referring to?

1	A. I believe Well, I can't cite the exact
2	literature, but the West Texas Geological Society publishes
3	field studies, Reservoirs International, Inc., published a
4	field study that was sold to the public, and various
5	speakers at noon luncheons have covered this topic.
6	Q. Has there been any evidence or Let me back up
7	a little bit.
8	I take it these wells are on I know you're a
9	geologist, but I take it that these wells that produce are
10	on pump?
11	A. Yes.
12	Q. Is there any evidence of coming, or should I be
13	asking the engineer this question?
14	A. You should be asking the engineer.
15	Q. Okay, I'll just refer back on that, then.
16	I want to make sure that I have the wells on
17	Exhibit Number 3 correct. This shows that there are
18	presently five wells producing?
19	A. Yes.
20	Q. One of them, you said, was being downhole
21	commingled, and which one was that one?
22	A. The Number 3 in the south half of the northeast
23	quarter of 31.
24	Q. And that was just a recent downhole commingling?
25	A. I believe it was in May.

1	Q. In May.
2	Now, you show a well marked in red down in
3	Section 10 to the south and to the west. Is that a
4	A. That well is also included in the South Peterson-
5	Fusselman Pool.
6	Q. But not within the same structure?
7	A. No, it's on a separate satellite structure.
8	Q. Now, would this be a sixth well within the pool,
9	and no others, or are there some other satellite producing
10	wells?
11	A. That's the extent of the Fusselman producers as
12	listed in the production books.
13	Q. Is it your opinion that the Fusselman is the
14	basement structure in this particular area, or is there
15	another basement structure before you get to the
16	Precambrian?
17	A. A basement structure?
18	Q. The bottom-most.
19	A. the Fusselman sits on top of the granite
20	basement. I don't know if that answers your question or
21	not.
22	Q. That's essentially it. You said that there was a
23	problem with nomenclature, and I can't
24	A. Yes.
25	Q visualize a problem the base of the

1	Fusselman as the Precambrian, or the granite in this
2	instance. I don't see
3	A. I chose
4	Q where there's a problem with the nomenclature.
5	A. Well
6	Q. What do you mean there's a problem with
7	nomenclature? Maybe you need to explain that to me.
8	A. Okay. I chose to use the nomenclature that the
9	Commission recognizes as this dolomite reservoir is
10	Fusselman. There have been published reports that claim
11	there's a Montoya section in here. There have been other
12	published reports that say there's an Upper Silurian
13	section in here.
14	The problem you run into is that it's all the
15	same lithology, basically, and there's no physical or
16	lithologic difference between them, and they cannot be
17	picked on log character. It's an alternate interpretation
18	of the same data.
19	Q. So this particular pool, being Fusselman,
20	includes from the top of the Fusselman down to the base of
21	the granite in this area?
22	A. To the top of the granite.
23	EXAMINER STOGNER: To the top of the granite, I'm
24	sorry.
25	I have no other questions of this witness at this

time? 1 Are there any other, either cross-examination or 2 redirect? 3 MR. CARR: No, sir. 4 EXAMINER STOGNER: Mr. Carroll? 5 6 MR. CARROLL: (Shakes head) 7 EXAMINER STOGNER: You may be excused. 8 Mr. Carr? 9 MR. CARR: At this time, Mr. Examiner, we would call Ralph Telford. 10 RALPH B. TELFORD, 11 the witness herein, after having been first duly sworn upon 12 his oath, was examined and testified as follows: 13 DIRECT EXAMINATION 14 BY MR. CARR: 15 Will you state your name for the record, please? 16 Q. 17 Ralph B. Telford. Α. And where do you reside? Q. 18 Midland, Texas. 19 Α. Mr. Telford, by whom are you employed, and what 20 Q. is your title with your company at this time? 21 I'm employed by Enserch Exploration in Midland, 22 Α. Texas, as a petroleum engineer I. 23 Have you previously testified before this 24 0. Division? 25

32

1	A. No, I have not.
2	Q. Could you briefly summarize your educational
3	background and then briefly review your work experience for
4	Mr. Stogner?
5	A. I graduated from Texas A&M University in December
6	of 1990. Immediately after graduation I went to work for
7	Enserch in Dallas. I did two years of reservoir simulation
8	while I was in Dallas.
9	After that, I moved to Midland where I worked in
10	the west Texas and New Mexico areas.
11	Q. And does the geographic area of your
12	responsibility include the South Peterson-Fusselman Pool
13	area?
14	A. Yes, it does.
15	Q. Are you familiar with the Application filed in
16	this case on behalf of Enserch?
17	A. Yes, I am.
18	Q. And are you familiar with the South Peterson-
19	Fusselman Pool and the wells that are located therein?
20	A. Yes, I am.
21	MR. CARR: Mr. Stogner, at this time we tender
22	Mr. Telford as an expert witness in petroleum engineering.
23	EXAMINER STOGNER: Are there any objections?
24	MR. KELLAHIN: No objection.
25	EXAMINER STOGNER: Mr. Telford, do you have any

	J+
1	relatives in Albuquerque?
2	THE WITNESS: No, I do not.
3	EXAMINER STOGNER: In that case, I'll accept your
4	credentials.
5	(Laughter)
6	Q. (By Mr. Carr) Initially, Mr. Telford, would you
7	explain why Enserch is seeking these special rules?
8	A. We would like to increase the ultimate recoveries
9	of the Lambirth Number 1 in the South Peterson-Fusselman
10	field.
11	Q. And to do that you have to increase the
12	allowable?
13	A. Yes.
14	Q. Okay. Let's go to what has been marked as
15	Enserch Exhibit Number 5. Would you first identify the
16	first page of this exhibit for Mr. Stogner?
17	A. What we have here is a stylized representation
18	that Mr. Faigle has created. The black line on the top is
19	the top of the Fusselman reservoir. The two lines in the
20	very middle is the Lambirth 1 wellbore. The horizontal
21	line across the middle of the structure is the original
22	oil-water contact.
23	You'll notice blue lines moving up and down the
24	structure. This is a representation of the fracturing
25	within the system. The blue dots are the water within the

1	matrix below the oil-water contact, and the green dots is
2	oil within the matrix above the oil-water contact.
3	Q. Now, did you work with Mr. Faigle in the
4	preparation of this exhibit?
5	A. Yes, I did.
6	Q. Tell us what "H.V.L. Concept" means in the
7	caption.
8	A. High-volume lift. This is something that was put
9	forward by Amoco in an SPE paper which I'll be addressing
10	shortly.
11	Q. Is this a diagrammatic representation of how
12	Enserch views the reservoir at this time?
13	A. This is how we view the reservoir at its
14	discovery. Currently Well, I take that back. This is
15	how we view it now.
16	Q. If we look at this diagrammatic sketch, the well
17	in the center is the Enserch Lambirth Number 1?
18	A. Yes.
19	Q. And that's the well that Mr. Faigle indicated was
20	at the highest part of the reservoir?
21	A. Yes.
22	Q. Let's go to the second page of this exhibit.
23	Could you identify this for Mr. Stogner?
24	A. This is part of a reservoir study performed by
25	Reservoirs International, Incorporated. The study was

35

1	performed in 1990. The data was supplied to them by both
2	Phillips and Enserch.
3	What we have here is a plot a cross-plot of
4	porosity and permeability. If you'll notice, there is a
5	permeability system in the 1-to01 millidarcy range, and
6	another system above 10 millidarcies, and less than 1000
7	millidarcies.
8	Q. If I look at this page, this is from a study.
9	Did you commission the study to be run on this reservoir?
10	A. No, we did not They came to us.
11	Q. And you supplied certain information to them?
12	A. Yes, we did.
13	Q. Did you supply core data?
14	A. Yes, we did.
15	Q. And other information?
16	A. And other information, yes.
17	Q. Were you also asked to pay for part of the study?
18	A. No, we were not.
19	Q. Has it subsequently been made public and
20	A. Yes.
21	Q for sale throughout the
22	A. Yes, it has, and we've purchased a copy.
23	Q. Basically, this is simply a cross-plot of core
24	permeability and
25	A. And porosity.

36

1	Q and porosity?
2	A. And what it shows is a dual-permeability system.
3	Q. If I look at the caption at the bottom, it talks
4	about the "Lower permeability samples are matrix dolomite;
5	higher values represent karst rubble." What is karst
6	rubble?
7	A. It tells me that we have a fracture system.
8	Q. Let's go to the next page in this exhibit. Would
9	you identify that, please?
10	A. This is another page from the study. It just
11	shows the dual porosity system again.
12	And if you'll notice the last sentence on the
13	caption, it says "Permeability variation of .94, indicating
14	a very heterogeneous distribution", i.e., fractures and a
15	matrix system. "This resulted in a premature water
16	breakthrough in the reservoir."
17	Q. Okay.
18	A. And this goes back to our representation on
19	Exhibit Number 5, showing the fracture system being watered
20	out.
21	Q. Okay, let's go to the last page of this exhibit.
22	Would you identify this, please?
23	A. This is a histogram showing the frequency of
24	permeability in core samples, arranged in classes defined
25	by the logarithm of the permeability.

Basically what we have is a bimodal distribution 1 where you have your low-permeability system, which is your 2 matrix, and your high-permeability system being your 3 fractures. Just more indication of fracturing. 4 What basically does Exhibit 5 and the attachments 5 Ο. show you? 6 That we have a dual-permeability system and that 7 Α. 8 the fracture system is watered out. 9 Q. What about the matrix? It is low permeability. 10 Α. Do you have an opinion as to where the remaining 11 Q. oil that's being produced in this reservoir is located? 12 Yes, I do. It's the matrix. 13 Α. Let's go from this to your Exhibit Number 6. 14 Q. First, identify what this is and review the code. 15 And then I'd like you to explain the information on this 16 exhibit for the Examiner. 17 Okay, what we have is a production plot of the 18 Α. Enserch Lambirth Number 1, the South Peterson-Fusselman 19 The green curve is oil production, the red curve is 20 Pool. gas production, the yellow curve is the GOR. 21 I'd like to note that the GOR is flat, which is 22 indicative of a water-drive reservoir. 23 Next we have a dark-blue curve, which is water 24 25 production, and the light-blue curve is the water cut.

1	Q. All right. Let's go to the oil production from
2	this reservoir. What does this tell you about the Lambirth
3	Number 1?
4	A. If you'll notice, from the inception of the well
5	until about 1986, the production was relatively flat. This
6	well was curtailed at the fieldwide allowable of 267
7	barrels a day. Also, the well was continuously pinched
8	back due to water production.
9	Q. And does that pinchback account for the decline
10	that we see from 19-, say, -85, forward?
11	A. Yes, it does.
12	Q. What was the initial potential for this well?
13	A. Over 550 barrels a day.
14	Q. So in fact what we do have is a curtailment in
15	the earlier
16	A. Yes.
17	Q portion of the well life?
18	A. Yes.
19	Q. All right. What happened to the oil production
20	in mid-to late 1993?
21	A. The well started to load up and die. We were
22	making 30 barrels a day. Water started becoming a problem,
23	so we put the well on beam pump.
24	Q. At that time, about what oil producing rate were
25	you experiencing from the well?

Once we put it on beam pump, it was about 60 1 Α. barrels a day. 2 Prior to that time it had been -- ? 3 0. 4 Α. Thirty. Okay. What happened when you put the beam pump 5 ο. on the well? 6 The oil production increased, but also so did the 7 Α. water production. We were experiencing anywhere from an 8 9 88- to an 80-percent water cut. And then what happened after that? 10 Q. After that we put the well on submersible pump. 11 Α. And when did that occur? 12 Q. That occurred the 1st of May. 13 Α. 1st of May of this year? 14 Q. 15 Of this year. Α. 16 Q. All right. If we look at Exhibit Number 6, the curves that show water cut and water production only appear 17 in the, oh, 1993 period on. 18 You indicated there was water production -- or 19 water-production problems were experienced prior to that 20 time? 21 22 Α. Yes. Why is that not shown on this exhibit? 23 ο. Okay, on the water cut, you'll notice that the 24 Α. 25 scale is from 70 percent to 100 percent. And when the well

1	would start to make water we would pinch it back, so you'd
2	only have a few days production of water, and it's not
3	going to show up on the plot. The minimum was 100 barrels
4	a day
5	Q. Now
6	A or a month.
7	Q before you put the submersible pump on the
8	well in May of this year, what producing rates were you
9	experiencing from the well?
10	A. Sixty barrels a day before we put it on
11	submersible pump.
12	Q. Okay. Now, let's go to the next exhibit, Exhibit
13	Number 7. Identify and review this for Mr. Stogner.
14	A. This is the test data, daily test data for the
15	Lambirth Number 1 after we put it on submersible pump.
16	Q. Now, you've been 30 barrels before this?
17	A. We've been 30 barrels, then 60 barrels, and then
18	we went to over 300 barrels a day initially. And it
19	dropped off to 250, 280.
20	Q. Okay. Generally review this for the Examiner.
21	A. Okay, the green curve, again, is oil production,
22	the dark blue curve is water production, and the light blue
23	curve is water cut.
24	You'll notice we produced the well at an average
25	rate of 250 to 275 barrels of oil a day. There is some

41

	12
1	spiky data to the plot, and that's due to electrical
2	problems and also due to lightning.
3	Later on, in June, you'll notice that the oil
4	production increased. We installed a larger submersible
5	pump in the well, and the oil production went up.
6	And the curious note is that the water cut
7	actually went down a little bit. We were slightly over 90
8	percent, and now we're at about 88 percent.
9	So oil production has increased and water cut has
10	decreased.
11	Q. What does this information on the Lambirth Number
12	1 tell you about what is required to effectively produce
13	this reservoir?
14	A. You've got to increase your drawdown pressures.
15	By increasing your drawdown pressures, you can recover more
16	oil from the matrix.
17	Q. And so by creating a pressure differential in the
18	formation, more of the hydrocarbons come out of the matrix
19	portion of the reservoir?
20	A. That is correct.
21	Q. Let's go now to what has been marked as Enserch
22	Exhibit Number 8. Would you identify this, please?
23	A. This is a production plot of the Phillips
24	Lambirth 1A in the South Peterson-Fusselman Pool. Again,
25	oil is green, gas is red, water production is dark blue,

1	and water cut is light blue.
2	Q. Okay. What does this show you about the Lambirth
3	1A?
4	A. The Lambirth 1A originally IP'd for over 600
5	barrels a day, and production declined, the well eventually
6	died, and then we placed it on beam pump. Immediately, the
7	water
8	Q. When did that occur, approximately?
9	A. In 1980 to 1981, it looks like.
10	Q. Okay. Then what happened?
11	A. Then, as I say, the water production increased,
12	the fractures watered out. This continued until, it looks
13	like, 1990.
14	You'll notice that the producing water cut was in
15	excess of 95 percent. They placed the well on submersible
16	pump, and water cut immediately dropped to below 90
17	percent.
18	Water cut was essentially flat for several months
19	and steadily increased until the well eventually was
20	watered out, and it is currently uneconomic.
21	Q. First part of the life, the production was coming
22	from the fracture system; is that right?
23	A. That is correct.
24	Q. When that declined, they went to the beam pump?
25	A. Beam pump.

1	Q. Later When that was no longer sufficient, a
2	submersible pump was put on the well?
3	A. And that increased the recoveries.
4	Q. And then what has happened since then?
5	A. They've watered the well out entirely. The
6	fracture system and the matrix is watered out.
7	Q. Okay. Let's go to Enserch Exhibit Number 9.
8	Identify and review that for the Examiner.
9	A. That is production plot of the Lambirth 2A in the
10	South Peterson-Fusselman Pool.
11	Q. This is the immediate north offset to the
12	Lambirth Number 1
13	A. Yes, it is.
14	Q your primary well?
15	A. Yes, it is.
16	Q. What does this exhibit show?
17	A. Basically the same thing we've seen on the
18	Phillips Lambirth 1A. The well produced flowing for
19	several years until it finally died.
20	They placed it on beam pump; water cut gradually
21	increased until they got to in excess of 95 percent again.
22	They placed the well on submersible pump; water
23	cut dropped to below 90 percent, stayed flat and started to
24	increase again.
25	Basically what we're seeing is that the

	43
1	originally they were producing water They were producing
2	oil from the fracture system; the fracture system watered
3	out.
4	They placed the well on submersible pump, and
5	then they started producing from the matrix.
6	Q. Generally, what conclusions can you reach from
7	this production information from these three wells in the
8	South Peterson-Fusselman Pool?
9	A. To increase recoveries and prevent waste, you
10	must increase the drawdown. If you don't, you will leave
11	oil behind in the matrix.
12	Q. Have you seen any water breakthrough or anything
13	as a result of this activity?
14	A. No, I do not.
15	Q. And why not?
16	A. Because the fractures were already watered out.
17	Q. Let's go to Enserch Exhibit Number 10. Would you
18	identify this for the Examiner?
19	A. This is an SPE paper written by Amoco in 1978.
20	Q. And how does this paper relate to this particular
21	Application?
22	A. This paper is what started me looking at the
23	South Peterson field and seeing if there was an application
24	here.
25	Q. Basically what does this paper show you?

	40
1	A. This paper shows I'll just jump straight to
2	the conclusions, is, number one, "High volume "
3	Q. They are on what? The fourth page
4	A. The fourth page
5	Q of the exhibit?
6	A yes.
7	"High volume lift installations in some West
8	Texas natural waterdrive reservoirs are successful in
9	increasing rate and ultimate recovery over that expected
10	with conventional lift methods", i.e. beam pumps.
11	Number 3, "Maximum benefit from high-volume lift
12	is achieved when installed on wells with producing water
13	cuts in excess of 70 percentand less than 95 percent."
14	And 4, "Concern over premature water breakthrough
15	and reduced ultimate recovery from application of high-
16	volume lift is unsubstantiated in most heterogeneous"
17	i.e., fractured "West Texas carbonate, oil-wet, natural
18	waterdrive reservoirs."
19	Q. How does your experience and the information,
20	production information, you've gathered on the wells in
21	this pool compare to the conclusions stated in this paper?
22	A. I see that there's a direct correlation.
23	Q. In fact, does your experience confirm these
24	conclusions?
25	A. Yes, they do.

1	Q. In your opinion, would approval of this
2	Application and the increased allowable and resulting
3	increased production rates from the Lambirth Number 1
4	result in the recovery of hydrocarbons that otherwise are
5	not going to be produced?
6	A. That is correct.
7	Q. In your opinion, will correlative rights be
8	impaired by the approval of this Application?
9	A. No, they will not.
10	Q. And why not?
11	A. Because the fracture system is already watered
12	out. That's the only thing that you could possibly affect.
13	Q. Could you identify for the Examiner what has been
14	marked as Enserch Exhibit Number 11?
15	A. This is a letter from the Energy, Minerals and
16	Natural Resources Department of the State of New Mexico,
17	signed by Jerry Sexton, authorizing Enserch to increase
18	their allowable temporarily until we have a hearing.
19	Q. And that's what resulted in the Application for
20	hearing being filed in this case?
21	A. That is correct.
22	Q. And at what rate are you now producing the
23	Lambirth Number 1K?
24	A. Approximately 331 barrels of oil a day.
25	Q. Following the entry of any order in this case,

1	you will coordinate the production from the Lambirth Number
2	1 to assure that the well is not in an overproduced status,
3	in accordance with existing OCD rules; is that correct?
4	A. That is correct.
5	Q. Is Exhibit Number 12 a copy of an affidavit
6	simply confirming that notice of this Application has been
7	provided to Phillips?
8	A. Yes, that is correct.
9	Q. Were Exhibits 1 through 12 either prepared I'm
10	sorry, 5 through 12 either prepared by you or compiled
11	under your direction?
12	A. Yes, they were.
13	Q. Can you testify as to the accuracy of the
14	exhibits?
15	A. Yes, I can.
16	MR. CARR: At this time, Mr. Stogner, we would
17	move the admission into evidence of Enserch Exhibits 5
18	through 12.
19	EXAMINER STOGNER: Are there any objections?
20	MR. KELLAHIN: No objection.
21	EXAMINER STOGNER: Exhibits 5 through 12 will be
22	admitted into evidence at this time.
23	MR. CARR: And I pass the witness.
24	EXAMINER STOGNER: Thank you, Mr. Carr.
25	Mr. Kellahin, your witness.

48

1	CROSS-EXAMINATION
2	BY MR. KELLAHIN:
3	Q. Have you attempted to quantify, Mr. Telford, the
4	original oil in place?
5	A. No, I have not.
6	Q. Have you attempted to quantify what portion of
7	oil production is attributable to being stored in the
8	fracture system, as opposed to matrix?
9	A. No, I have not.
10	Q. At what point did we stop producing oil out of
11	the matrix and start getting contribution at what point
12	did we stop producing oil out of the fracture system and
13	start getting matrix contribution?
14	A. You want to know when you're not making anything
15	out of the fractures and I can't give you that number.
16	Q. Okay.
17	A. I don't think there's anyone that can.
18	Q. Let's look at that last display where you plotted
19	production for me on one of the Phillips wells.
20	A. Which one?
21	Q. Bear with me for a second. I'll find it here.
22	It's Exhibit 9.
23	A. Exhibit 9, which would be
24	Q. Lambirth 2A.
25	A Lambirth 2A. Okay.

49

1	Q. Yes, sir. The hypothesis in the SPE paper is
2	that there are some reservoirs there was a Devonian
3	the case studies represented Ellenberger, Devonian
4	A and others.
5	Q and Strawn and others, I think they threw them
6	all in there. No specific study of a Fusselman reservoir,
7	was there?
8	A. That is correct.
9	Q. It said in the Ellenberger and the Devonian that
10	in some reservoirs this might work?
11	A. That is correct.
12	Q. All right. And the hypothesis was that at a
13	certain point in time you could put in high-volume
14	submersible lifting equipment and extract larger volumes of
15	fluids from the reservoir and thereby maybe increase
16	recovery?
17	A. That is correct.
18	Q. All right. When we look at the Lambirth 2A
19	A. Yes.
20	Q it says "installed submersible". Follow the
21	arrow.
22	A. Yes, I see it.
23	Q. That leads me down to, oh, January or February of
24	1991?
25	A. Okay.

ſ	
1	Q. All right? Am I reading this correctly?
2	A. You're reading this correctly.
3	Q. All right. They put the submersible in the well.
4	Do you know what the capacity of that submersible pump was
5	to lift total fluids?
6	A. No, I do not. That information has not been
7	supplied to me.
8	Q. Okay, but some kind of submersible pump went into
9	the wellbore?
10	A. Yes.
11	Q. What happens then to these production plots?
12	A. What do you mean, what happens then?
13	Q. Well, where do they go? What happens to the oil
14	rate versus the water rate?
15	A. Well, if you go to the oil rate, the oil rate is
16	increased.
17	Q. And the oil rate is the green line?
18	A. That is correct. The water rate also increases,
19	but the water cut goes down.
20	Q. And the water cut is the light
21	A light blue, which means you're making
22	proportionately more oil than you are water
23	Q. I'm with
24	A incrementally.
25	Q. Okay. So this thing takes a steep dive on the

1	A on the water cut.
2	Q water cut, and it gets a kick in the oil
3	recovery curve, goes up?
4	A. Yes, it does.
5	Q. All right. Now, move over to January January,
6	February of 1992. Do you see the point where the green
7	line starts on a decline again?
8	A. Uh-huh.
9	Q. Okay. And at the same point the water cut,
10	instead of going down, goes up?
11	A. Okay.
12	Q. What's happened?
13	A. I could not tell you.
14	Q. Okay.
15	A. But I do know that overall the producing water
16	cut is lower than it was before you ran a submersible.
17	Q. Do you think this example proves your hypothesis,
18	that if you put a submersible pump in the well, that we're
19	going to increase ultimate oil recovery?
20	A. I think if you use the Lambirth 2A, the Lambirth
21	1A, and what we've seen so far in the Lambirth 1, I do
22	believe it does do that.
23	Q. All right, let's look at the Lambirth 2A for a
24	moment.
25	A. Okay.

1	Q. That's the one we're looking at right now.
2	But for the difference between January of 1991
3	and January of 1992, where you have a climbing oil rate and
4	a dropping water rate, look beyond that, then, and you re-
5	establish an oil decline and an increasing water cut.
6	Right?
7	A. Yes, I'll agree with that. But you've still
8	recovered more oil.
9	Q. What tells you you've recovered more oil, as
10	opposed to simply accelerated the rate of recovery of the
11	existing oil?
12	A. Well, let's go back before we ran the submersible
13	and let's shoot a decline off of that.
14	Q. Okay.
15	A. Are you saying that if you extrapolated that out,
16	that you would have the same amount of oil as if you shot a
17	decline off of current production right now? That tells me
18	you've recovered more oil.
19	Q. Am I correct in understanding the key component
20	of this information is the difference between the January,
21	1991, and the January, 1992, interval, where we see the
22	steep decline in water cut and the increasing oil recovery,
23	based upon the installation of the submersible pump?
24	A. Could you restate your question? I'm not sure
25	what you're saying.

1	Q. All right, sir. The arrow shows the installation
2	of the submersible pump?
3	A. Yes, and the water cut goes down.
4	Q. And the oil rate goes up?
5	A. That is correct.
6	Q. All right, and you say that's directly
7	attributable to the installation of the submersible pump?
8	A. Yes, I am.
9	Q. We are lifting more total fluids, faster, out of
10	this wellbore, and that's helping total ultimate recovery?
11	A. Yes, you are. You're increasing your drawdown
12	and you're pulling more oil out of the matrix.
13	Q. Okay, and we can see that difference between
14	January of 1991 and January of 1992?
15	A. Yes.
16	Q. And you say that helps make your case?
17	A. Yes, I do.
18	Q. Okay. What if I tell you that you've got the
19	wrong date for the submersible pump? That in fact in this
20	well it was not installed until February of 1992?
21	A. Till February of 1992? Okay, that's fine. Look
22	at your oil. Your oil has gone up again.
23	Q. We look in February of 1992, my oil rate is going
24	down, and the water rates are climbing.
25	A. February of 1992. Is February a full month of

	55
1	production? It takes time to install this equipment. It
2	doesn't happen overnight.
3	Look at the following month. Your oil rate is
4	even higher than it was before.
5	Q. Mr. Telford, I asked you, sir, if it was of
6	significance to you that between January of 1991 and
7	January of 1992 the oil rate climbed and the water rate
8	dropped and that that effect was attributable to the
9	submersible pump, and you told me yes.
10	And I now tell you you've got the wrong date.
11	Doesn't support your conclusion if your date's wrong, does
12	it? Sir? That was a question.
13	A. Well, it looks to me like that the it could be
14	a possibly increase the pumping speed, or maybe a larger
15	pumping unit, increase the drawdown.
16	Q. You're the expert, sir. I don't know.
17	A. I'm not the expert on the operations of the
18	Phillips Lambirth 2A.
19	Q. Okay.
20	A. But it does look like that they increased their
21	drawdown, which would increase the oil production from the
22	matrix.
23	Q. All right, sir. Let's look at Exhibit Number 8.
24	Now, this is the Phillips Lambirth 1A.
25	A. 1A.

1	Q. Lead me through the display here at the point
2	where the submersible is installed. I need to get a
3	straightedge here. I'm guessing somewhere midway through
4	1989
5	A August.
6	Q. August of 1989? Something like that?
7	A. Is it 1989 or is it It looks like more like
8	it's 1990 to me.
9	Q. Okay. Installation of submersible pump is ?
10	Tell me your best
11	A. Best pick off the plot
12	Q. Yeah.
13	A is about August or September.
14	Q. Okay, of 1990?
15	A. Roughly.
16	Q. 1990?
17	A. Of 1990.
18	Q. All right. What we see at that point is, the
19	water cut takes a nose dive.
20	A. The water cut takes a nose dive.
21	Q. And the oil production takes a steep increase in
22	the plot?
23	A. Yes, it does.
24	Q. All right. And shortly thereafter and there's
25	some erratic nature to the plots, and I guess that's

1	attributable to how long these submersible pumps are
2	running for X number of days.
3	A. I can't tell you.
4	Q. Yeah. But something's happening in the field to
5	make that production erratic; that's not attributable to
6	the wellbore?
7	A. That's And if you'll notice, our production is
8	the same way. We've had problems with electricity and
9	other problems.
10	Q. All right. Help me as an You're the engineer.
11	Tell me where we re-establish a comfortable oil decline
12	curve, if you will, after the installation of the
13	submersible pump when we get that initial kick in oil
14	recovery, and then it starts going down again, doesn't it?
15	A. Yes, it does. It looks like about halfway
16	through 1991.
17	Q. It appears as that decline is steeper post-
18	installation of the submersible pump than it was pre-pump?
19	A. I wouldn't necessarily say that.
20	Q. All right. Now, let's go to your what? The
21	number Exhibit Number 7 is the
22	A the Lambirth 1.
23	Q Enserch Lambirth 1.
24	Let me get this exactly right, now. The sequence
25	of

1	A. Are you looking at the daily plot or the monthly
2	plot?
3	Q. I'm looking at the daily plot tests
4	A. Okay.
5	Q this plot test. And perhaps we should start
6	back one exhibit and go to 6.
7	A. Okay, that would be fine.
8	Q. All right, sir. Give me the data now. Prior to
9	1980-81, how was the well being produced?
10	A. Flowing.
11	Q. Okay.
12	A. The well flowed until September or October of
13	1993.
14	Q. All right. Now, I'm going to divide this in
15	steps. From 1980-81, somewhere in that period, then, you
16	put a beam pump on the well?
17	A. When did you say was the date again?
18	Q. Well, I thought you said somewhere between 1980
19	and 1981.
20	A. No, that is incorrect. It flowed from 1978 till
21	1993.
22	Q. All right. In 1993, then, you put what on the
23	well?
24	A. We put a beam pump.
25	Q. Okay. The capacity of that beam pump to lift

1	total flu	ids was what, sir?
2	А.	Approximately 450 barrels of fluid a day.
3	Q.	And you were getting at the end of that period
4	what? Ab	out 30 barrels of oil out of that number?
5	А.	Sixty.
6	Q.	Sixty, all right.
7	А.	We went from 30 barrels flowing Well,
8	actually,	the well was dying, and it went to 60 barrels a
9	day with	the beam pump.
10	Q.	When you were getting flowing 30 barrels of
11	oil a day	, were you also recovering water?
12	Α.	No, we were not. Well, small traces, and we'd
13	try to pi	nch it back to keep it from making water.
14	Q.	Okay.
15	Α.	And then eventually the well died.
16	Q.	Okay. And you put the beam pump on, then, in
17	1993?	
18	А.	That is correct.
19	Q.	And that stayed on until you put the first
20	submersib	le pump on?
21	А.	Yes.
22	Q.	At what point?
23	А.	In May of 1994, which would be the next plot.
24	Q.	All right, May of 1994.
25		So prior to May of 1994, we didn't have a

1	submersible pump in your well?
2	A. That is correct.
3	Q. Okay. Now we go to Exhibit 7. In May we have
4	the first of the submersible pumps. What was the capacity
5	of that configuration with the initial submersible pump to
6	lift total fluids?
7	A. It could move about three not quite 3000
8	barrels a fluid a day.
9	Q. Okay. With what resulting oil rate?
10	A. We were making approximately 270 to 280 a day.
11	Q. All right. So that puts you up there just over
12	the allowable?
13	A. Yes, it does.
14	Q. All right. At what point did you try any other
15	configuration in the well by I thought you said
16	increasing the size of the submersible pump?
17	A. Yes, we had some problems with the submersible.
18	We had to pull it out, and we re-ran a larger submersible.
19	And I'd like to state, the submersible we have in
20	the well right now, we have not purchased. It is a test
21	unit.
22	Q. I don't care
23	A. Well, it could get valid. This could be a point
24	later on. But this is a test unit in the well. We ran a
25	larger unit that is capable of 3500 barrels.

All right. So that's the incremental difference. 1 Q. We went from a pump that would do 3000 --2 Α. Not quite 3000. 3 Just shy of 3000 --4 Q. Just shy of --5 Α. -- to 3500? 6 Q. Uh-huh. 7 Α. All right. Now where do we find that on Exhibit 8 Q. Number 7? 9 If you'll look at about the 10th -- it looks like 10 Α. the 10th of June -- you'll notice how the oil has 11 increased. 12 All right, we've got a break in the data? 13 Q. 14 Α. Yes, a break in the data. 15 Q. And so about --If you'll -- The break in the data is when we 16 Α. 17 were changing everything out. All right. So on the 10th of June, now, we've 18 0. got the 3500-capacity pump in the well, and we're starting 19 to do it. All right. 20 21 Α. It's -- Yes. What is the ratio, if you will, or what is the 22 ο. oil production now when you use the 3500 submersible pump 23 that will do that capacity of fluids? 24 25 Α. The ratio --

Just --1 Q. The actual oil ratio has gone up. 2 Α. All right. 3 Q. The rate is now 350 to 360. It varies. 4 Α. 5 Okay. Q. And you'll also notice that the water cut before 6 Α. 7 we changed the pumps out was approximately 90 percent. Now it's 88 percent. 8 So water cut goes from 90 to 88? 9 Q. All right. It's decreased. We've increased our pressure 10 Α. drawdown --11 12 Q. Yes, sir. -- and we're recovering more oil. 13 Α. 14 Q. All right. And then we've terminated the test? 15 Α. The test is still going. This is just the most current data I had. 16 The data plot, it stops just short of the 25th? 17 Q. Yes, earlier this week. Α. 18 Okay. We don't yet have any tests on any of 19 Q. these wells to show that we have the ability to produce 500 20 21 barrels of oil a day? Could you restate your question? 22 Α. Well, I'll try to repeat it. 23 Q. 24 Α. Okay. Your allowable request is for 500 barrels of oil 25 Q.

a day allowable? 1 Α. That is correct. 2 Your best test will push 360? 3 Q. 4 Α. That is correct. 5 0. What are we going to do with the difference? Α. The difference is, our water facilities can only 6 7 handle 3000 barrels of water a day. Q. Uh-huh. 8 We are having a larger free-water knockout. Α. It's 9 10 been on order for a month and a half. And we've also had lots of problems with the 11 Roosevelt County Electric. They can't supply the voltage 12 13 that we need when we try running the pump at a higher We pull the voltage down, and it knocks the whole speed. 14 system out. 15 16 Q. Okay. 17 And the only way to see if we can do 500 barrels Α. 18 a day would be get a generator out there and another freewater knockout. We should have another free-water knockout 19 20 within two weeks. 21 And the Roosevelt County Electric is supposed to 22 have regulators on the line, which will supposedly smooth 23 the voltage, within the next week or two. 24 Q. All right. So our best test is 360, and that's all we can do right for now? 25

63

1	A. Well, according to IPR analysis it can do a lot
2	higher than that.
3	Q. When I look at your plot, Exhibit 7
4	A. Yes.
5	Q you responded to Mr. Carr that this caused you
6	to conclude you were increasing ultimate recovery?
7	A. On plot number 7?
8	Q. I thought you did.
9	A. Yes.
10	Q. This is it?
11	A. Yes. I'm showing that I've By increasing my
12	drawdown, I'm increasing my rate. I mean, I've decreased
13	my water cut.
14	Q. And how do we know that's nothing more than rate
15	acceleration for a short period of time, as opposed to
16	increasing ultimate oil recovery?
17	A. Because we're outrunning the fracture system,
18	we're carrying water out of the matrix that we wouldn't
19	otherwise be able to get.
20	Q. Do you have enough data to plot a decline, to
21	show your increasing ultimate recovery?
22	A. It looks pretty flat to me so far. According to
23	the SPE paper, it said the production would be flat for
24	several months and then tail off.
25	Q. Okay. Have you tried to quantify the additional

64

1	oil recovery?
2	A. Not yet.
3	Q. Tell me something about the Lambirth Number 1
4	Well. What is its total cumulative oil production to date?
5	A. To date is approximately 960,000 barrels of oil.
6	Q. Okay. It's the best producing oil well in the
7	pool, wasn't it?
8	A. Yes, it is.
9	Q. Okay. Have you tried to determine what area has
10	contributed oil reserves for a well to produce almost a
11	million barrels of oil?
12	A. I have tried, but I have not come up with a good
13	answer that I like yet, due to the heterogeneity of the
14	reservoir.
15	Q. Okay. Have you attempted to construct or make
16	either you or someone else in Enserch some kind of
17	reservoir-limits test, some kind of test of the well to see
18	how far out it's reaching into the reservoir?
19	A. No, we have not.
20	Q. All right. Do you think this well is affecting
21	the Phillips well?
22	A. No, I do not.
23	Q. What causes you to believe that that well is not
24	affecting the Phillips well?
25	A. If you'll look back at Exhibit Number Hold on

1	a second. It will be the production plot of the Enserch
2	Lambirth 1.
3	Q. Enserch Lambirth 1?
4	A. I'm not sure what exhibit that That's Exhibit
5	Number 6, it looks like.
6	Q. Yes, sir.
7	A. When Phillips installed their submersibles, did
8	you see any Is there any bobble in the oil production
9	rate? And they were moving large volumes of fluid.
10	Q. So that's your contention
11	A. That is my contention.
12	Q that these wells aren't in communication with
13	each other?
14	A. I did not say that.
15	Q. Okay.
16	A. I said that the Lambirth 1 will not affect the
17	two Phillips wells.
18	Q. Okay.
19	A. And I'd also like to point out, if I thought it
20	would, I wouldn't be trying to purchase the two Phillips
21	wells right now.
22	Q. Well, we think you're going to water us out. I'm
23	happy to sell them to you.
24	A. Well, we'd be glad to buy them.
25	Q. Okay.

1	A. As I say, if we thought we would hurt them, we
2	wouldn't want to buy them.
3	Q. All right. Any pressure data, pressure
4	information from the reservoir?
5	A. Yes.
6	Q. What kind of pressure data do you have?
7	A. bottoms.
8	Q. And what does it show you?
9	A. It shows a static reservoir pressure of 2520
10	p.s.i. at the top of the reservoir.
11	Q. Okay. What's happening to the reservoir pressure
12	over the life of the pool?
13	A. The reservoir pressure has decreased slightly.
14	Q. Indicative of a good, active water drive?
1 5	A. That is correct.
16	Q. We're getting pressure support from the water
17	influx?
18	A. We're also seeing that in your GOR.
19	Q. Okay. What kind of recovery factors do you think
20	we have in this pool?
21	A. Out of the fractures or out of the matrix?
22	Q. Beats me. Out of either.
23	A. Out of the fractures I would say it's fairly
24	high. Out of the matrix probably, unless we can increase
25	our drawdowns, fairly low.

1	Q. In terms of a percentage do you have a ratio or a
2	percentage?
3	A. No, I do not.
4	Q. Okay. If you haven't calculated the original oil
5	in place, how can you tell me a recovery factor?
6	A. I did not tell you a recovery factor.
7	Q. How can you tell me what portion is contributed
8	out of the fracture system?
9	A. I haven't told you what's out of the fracture
10	system either, but I would assume with a high-permeability
11	system you ought to have very high recoveries.
12	Q. All right. What, in your opinion, is the
13	percentage recovery factor attributed to the fracture
14	system?
15	A. I would say 70 to 75 percent.
16	Q. And the matrix?
17	A. Well, obviously it would be 30 to 25 percent.
18	Q. Do you see any other well in the pool besides the
19	Lambirth Enserch Number 1 that would have the opportunity
20	to do what you're proposing to do for this well?
21	A. The Lambirth 2A.
22	Q. Any other?
23	A. Possibly the Lambirth 8.
24	Q. The Lambirth 8?
25	A. It is temporarily abandoned.

Q.	Oh, that's the one up in Section 30?
А.	Yes.
	MR. KELLAHIN: Thank you, Mr. Examiner.
	EXAMINER STOGNER: Thank you, sir.
	Mr. Carr, any redirect?
	MR. CARR: Very briefly.
	REDIRECT EXAMINATION
BY MR. CA	RR:
Q.	Mr. Telford, if you don't go to this high-volume
lift meth	od of producing these wells, what's going to
happen to	them?
Α.	You're going to leave oil behind, waste oil.
Q.	Are you going to continue to produce the wells?
Α.	Pardon?
Q.	Will the wells continue to be produced?
Α.	Yes, they will.
Q.	For how long?
Α.	I haven't calculated that.
Q.	When you get to the end of that there will be, in
your opin	ion, reserves left in the ground?
Α.	Yes, I do.
Q.	You're asking for a 500-barrel-per-day special
allowable	?
Α.	Uh-huh.
Q.	Is that based on the maximum withdrawal possible
	A. BY MR. CA Q. lift meth happen to A. Q. A. Q. A. Q. A. Q. A. Q. A. Q. A. Q. A. Q. A. Q. A. Q. A. A. Q. A. A. Q. A. A. Q. A. A. A. A. A. A. A. A. A. A. A. A. A.

1 under your submersible pump? Is that what you're telling 2 us? The reason we went for the 500 barrels a day is Α. 3 the size of the casing. It's 5-1/2-inch. The most fluid 4 that we can move up a 5-1/2-inch casing with a submersible 5 pump is 5000 barrels a day. Assuming a 10-percent oil cut, 6 that would be 500 barrels of oil a day. 7 MR. CARR: Okay, that's all I have. Thank you, 8 9 sir. EXAMINATION 10 BY EXAMINER STOGNER: 11 So far, I've got three of these wells out here, 12 Q. three of the six, on submersible; is that correct? 13 14 Α. That is correct. 15 0. And the other three are on beam? 16 Yes, they are. Α. Two of those are Phillips submersibles and one 17 Q. Enserch submersible, right? 18 That is correct. 19 Α. Does Enserch plan to install -- Well, they 20 Q. probably would if this order is approved, I would assume. 21 Or let me ask it in this way: Are the other 22 Enserch wells good candidates for submersible pumping? 23 The Lambirth 3 is not. It's almost pumped off. 24 Α. The Lambirth 8 is a good candidate. 25

	· · · · · · · · · · · · · · · · · · ·
1	Q. Okay. Now, why isn't the Lambirth 3 a good one?
2	A. It's We have a fluid level that is about, I'd
3	say, 1500 foot over the pump. We're very close to pumping
4	it off.
5	Q. Can I use Exhibit Number 5 as an illustration of
6	what you're trying to tell me on that one?
7	A. Exhibit Number 5. Is that the
8	Q. That's the schematic drawing.
9	A. The schematic drawing. On the Lambirth 3?
10	Q. Yes.
11	A. Sure. We're making about 30 barrels of oil a day
12	and approximately 260 water, and it's my belief that the
13	reservoir rock at the 3 is not as good as it is at the
14	Enserch Lambirth 1 or the Phillips Lambirth 2A or 1A.
15	Q. So for all intents and purposes, that well is
16	watered out and would not benefit by the added allowable?
17	A. On the Lambirth 3?
18	Q. Right.
19	A. I don't think we could get over 267 a day on it.
20	The IPR analysis says we couldn't make that.
21	And also, since it is a commingled well, I
22	believe our maximum allowable oil rate is 100 barrels of
23	oil a day.
24	Q. How about the one in Section 10?
25	A. Which would be I don't have a map in front of

me. Can I borrow one real quick? Section 10. That's
You're talking about far to the southwest?
Q. Yes, sir.
A. That is not an Enserch well.
Q. But it is a South Peterson-Fusselman well, is it
not?
A. Yes, it is.
Q. Well, what's the higher allowable going to do to
it? I don't care if it's not your well or not.
A. I really couldn't tell you, because I'm not
familiar with this well.
Q. Do you know
A. If they have the high fluid level like our
Lambirth well does, they could recover more oil as well.
Q. But you didn't include this well in the study?
A. No, I did not.
Q. Any particular reason why?
A. The only data I have on it is production data.
And I
Q. Did you try to find other data in the well files
or
A. I didn't see didn't have any other data in the
well files. I went through all of our stuff and through
this data that George provided me.
Q. I'm sorry, who's George?

1	A. George Faigle.
2	Q. Oh. If one is going to do some kind of increase
3	such as that, do you feel it would be necessary to try to
4	get all information on all wells?
5	A. Yes, I do.
6	Q. But Enserch failed to obtain information on this
7	one.
8	Now, I was told I understood in the beginning
9	that Enserch and Phillips was the only two operators in
10	this pool. Now you're telling me there's a third?
11	A. It's not within a mile of the subject well.
12	Q. I'm Hold it, I thought this was poolwide. You
13	want it just for the well? Maybe I've got this wrong.
14	The Applicant says, Application of Enserch for a
15	special depth bracket oil allowable of 500 barrels a day
16	for the South Peterson-Fusselman Pool.
17	Is that not what Enserch wants?
18	A. That is correct, what Enserch wants.
19	Q. All right. Is this well in the pool or not? And
20	who operates it?
21	A. Bledsoe operates it.
22	Q. Bledsoe, okay. But no information was obtained,
23	or you didn't feel necessary to obtain it?
24	A. I was unable to obtain the information other than
25	production data.

73

Did you go to the Hobbs District Office and look 1 Q. in the well file? 2 No, sir, I did not. 3 Α. EXAMINER STOGNER: Mr. Carr, where's the 4 notification exhibit? Is that Number 12? 5 MR. CARR: It's the last exhibit, Mr. Stogner, 6 notification of --7 EXAMINER STOGNER: Do we have a problem there? 8 MR. CARR: Yes, sir. 9 EXAMINER STOGNER: So it will be necessary to re-10 advertise, or re-notify? 11 MR. CARR: Is that 10 of 6-33? 12 13 EXAMINER STOGNER: I'm sorry, what? 14 MR. CARR: Is that -- Township 10 South, 33 East; is that right? 15 MR. KELLAHIN: That's correct. 16 17 MR. CARR: Yes, and that's in the pool? MR. KELLAHIN: That's by definition, Mr. Stogner. 18 19 EXAMINER STOGNER: Yeah, that's 6 South, 33 East, 20 yes. 21 MR. CARR: That is within the defined boundaries. (By Examiner Stogner) Let me ask this question: 22 Q. In your Application you said certain wells in the Fusselman 23 formation in this pool can produce at rates as high as 500 24 25 barrels a day.

	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
1	What wells are capable of or were you
2	referring to?
3	A. The Enserch Lambirth 1.
4	Q. And which others?
5	A. That would be it.
6	Q. It implies plural, you're right. Certain wells,
7	and that's the only one that can.
8	A. But I do believe the Lambirth 2A could produce
9	probably over the allowable.
10	Q. The present allowable?
11	A. The present allowable of 267.
12	Q. Okay.
13	A. If pumped off.
14	Q. Okay, okay.
15	A. That's why I'm saying other wells could benefit
16	by this increase, not just the Lambirth 1. They couldn't
17	do the 500 a day, but they could probably make 267 a day.
18	Q. Let me ask a roundabout question here. As far as
19	the 2A goes, what do you think its maximum capability is,
20	given the electrical problems and the submersible pump and
21	all?
22	A. It's hard to say, because I don't have a fluid
23	level. If I knew what its producing fluid level was I
24	know it's not pumped off.
25	Q. But you feel it would be capable of producing

more than the present allowable? 1 Α. Yes. 2 By 10, 50, 60, 75 percent? 3 Q. Probably 15 to 20 percent at least. The problem 4 Α. is, I don't have the fluid level. 5 Okay. If the allowable in the pool was increased 6 Q. 7 by 15, 20, 25 percent, say, what would that do to the Number 1? 8 Would that benefit it, would it hurt it? 9 It would benefit it, but it wouldn't benefit it Α. 10 to the extent that, say, the 500 barrels of oil a day 11 would. 12 Okay, would it hurt it? 13 Q. 14 Α. I think you could possibly go behind, still, 15 because we still could not maximize our drawdowns. EXAMINER STOGNER: I have no other questions for 16 this witness. 17 Any other questions? 18 19 May be excused. Let's take about a five-, ten-minute break. 20 21 (Thereupon, a recess was taken at 2:39 p.m.) (The following proceedings had at 2:50 p.m.) 22 EXAMINER STOGNER: Hearing will come to order. 23 Let's see, I believe Mr. Kellahin? 24 Thank you, Mr. Examiner. 25 MR. KELLAHIN:

1	SCOTT C. BALKE,
2	the witness herein, after having been first duly sworn upon
3	his oath, was examined and testified as follows:
4	DIRECT EXAMINATION
5	BY MR. KELLAHIN:
6	Q. Mr. Balke, would you please state your name and
7	occupation, sir?
8	A. Scott C. Balke. I'm a petroleum geologist for
9	Phillips petroleum.
10	Q. Mr. Balke, on prior occasions you've qualified as
11	an expert petroleum geologist before this Division and
12	testified in that capacity?
13	A. Yes, I have.
14	Q. Have you as a geologist for your company made an
15	investigation of the South Peterson-Fusselman Pool?
16	A. Yes, we have.
17	Q. How long have you been involved in looking at the
18	Fusselman reservoir?
19	A. For about five years.
20	Q. So having the Enserch Application filed and being
21	given the responsibility to examine the geology was not a
22	new task for you?
23	A. That's correct.
24	Q. As part of your preparation for this case, did
25	you go back and review the geologic evidence that was
•	

77

1	contained in the Division records with regards to the
2	initial pool hearing in 1978, the subsequent hearing in
3	1979, and then the two waterflood cases that Enserch and
4	Phillips had against each other later on?
5	A. Yes, I did.
6	Q. In addition, have you prepared further exhibits
7	that provide additional information that wasn't known at
8	that time?
9	A. Yes, I have.
10	Q. Were you also present in the hearing room when
11	Mr. Faigle testified with regards to his geologic
12	conclusions about this site-specific area of the pool?
13	A. Yes, I was.
14	Q. And based upon all that, do you have now your own
15	conclusions and opinions?
16	A. Yes, I do.
17	MR. KELLAHIN: We tender Mr. Balke as an expert
18	petroleum geologist.
19	EXAMINER STOGNER: Any objections?
20	MR. CARR: No objection.
21	EXAMINER STOGNER: Mr. Balke is so qualified.
22	Q. (By Mr. Kellahin) Before we get into the
23	displays, give me your summary.
24	A. Well, after review of the South Peterson field,
25	to me my conclusions have been that it's a classic,

d
mate
ir
,
the
the
,
1.
f
1

1	the structural top for the Fusselman. There are some
2	differences here, which we'll get to in the cross-section,
3	but it's an erosional or it's an unconformable surface
4	that both Mr. Faigle and I are mapping off of. It just
5	depends on which high gamma-ray streak you want to map off
6	and what you're calling the top of the Fusselman. There's
7	the Therein lies the difference.
8	But what we have here is the Enserch Number 1
9	Well being structurally high to the other wells Mr. Faigle
10	had described as far as having any kind of reserve
11	potential left.
12	Q. All right. I'm going to show you Mr. Faigle's
13	Exhibit Number 3, in which he mapped off the top of the
14	Fusselman
15	A. Okay.
16	Q and you're also mapping off the top of the
17	Fusselman?
18	A. Yes, I am.
19	Q. Let me have you as the expert draw the
20	comparisons and point to any dissimilarities that are
21	relevant.
22	A. All right. Both Mr. Faigle and myself conclude
23	that the Number 1 Enserch well is the well highest on the
24	structure.
25	I took a more conservative view I guess

1	pessimistic for Phillips in this case for the Number 3
2	Well directly to the south. I just took a higher gamma-ray
3	streak than probably what Mr. Faigle had presented.
4	And as we work our way down, lower on the
5	structure, we see our Number 2 well and our Number 1A well
6	and Enserch Number 3 Well, all three being offstructure.
7	We both agree on that.
8	Many points Mr. Faigle and I do agree on,
9	geological concepts.
10	Q. All right. When we're looking at your Exhibit 1
11	and his Exhibit 3, when we're looking at the top of the
12	structure
13	A. Uh-huh.
14	Q is there any material difference in the
15	relationship of the two main wells, if you will, the
16	Enserch Number 1 and the Phillips 2A?
17	A. The significant difference is going to be the
18	structure. We're be looking at I believe I have a
19	difference of 69 feet, of a structural difference. Mr.
20	Faigle has 61 feet difference, a difference of
21	Q. I think he had 81.
22	A. Oh, he had 81? Excuse me, you're right, you're
23	correct. I was looking at his other one. Correct, he has
24	a higher structural difference than even what I had put
25	down.

Q. All right. You listened to my discussion with
Mr. Faigle about his cross-section?
A. Yes, sir.
Q. Let's go to that cross-section that he presented.
It's Exhibit Number 4.
A. Okay.
Q. Do you agree with Mr. Faigle's interpretation and
comments as he expressed them to me in response to my
questions for Exhibit 4?
A. We have some significant differences in how we
interpret these logs.
Q. Tell me the differences.
A. The initial difference is the concept of the
subsurface elevation on the bottom of the perforations. I
think when you compare both the resistivity, the gamma-ray
and certainly the porosity logs here, you'll see a higher
porosity on the Enserch Number 1 Lambirth at approximately
7808. There's a high-porosity portion right there, good,
solid gamma-ray, which corresponds to our Phillips 2A
Lambirth at about 78 7834, approximately. Those two
are the same reservoir.
Then, as you look at the Enserch Number 1
Lambirth, you lose all your porosity Excuse me, in our
Phillips you lose all your porosity. They still have
porosity and good reservoir development right there.

	83
1	I think you should be saying the top of the
2	reservoir equals the top of the reservoir in the Enserch
3	Well and correlate from top to top, not base to base.
4	Q. All right. Let me focus on that difference.
5	A. Okay.
6	Q. Mr. Faigle, in response to my question, says it
7	was of importance to him
8	A. Uh-huh.
9	Q in supporting his conclusion that both wells
10	were comparable in their competition for the oil because he
11	was keying off the bottom of the perforations.
12	A. That's correct.
13	Q. Okay?
14	A. Correct.
15	Q. You now tell me that the competition is occurring
16	at the top of the reservoir, in the top portions of the
17	perforations?
18	A. That is correct.
19	Q. Why the difference?
20	A. The And as Reservoir, Inc., also concluded in
21	their study that Mr. Faigle brought up, you have a lot of
22	significant karsting. Karsting development only takes
23	place in a structurally high position. All your
24	percolating waters and everything have to start at the top
25	and work their way down.

1	The bottom portions of the reservoir or the
2	bottom portions of this karsted event, will not occur on
3	structurally lower positions; it will only occur at the top
4	portion of it, because that's where all the waters and all
5	the secondary dissolution will take place.
6	So that's why you'll have to go top to top, from
7	reservoir to reservoir, well to well.
8	Q. When we look at the bottom portions of the
9	perforations in each well
10	A. Uh-huh.
11	Q the porosity values are so low, if I
12	understand you
13	A. That's correct.
14	Q that that is not the point at which these
15	wells are competing?
16	A. That's correct.
17	Q. All right. In conclusion, then, the competition
18	is taking place at the top of the reservoir, in the top
19	portions of the perforations?
20	A. That's correct.
21	Q. Can you give us a range of values in terms of
22	some type of porosity cutoffs?
23	A. We've played around with several different
24	porosity cutoffs. I feel comfortable with Mr. Faigle's
25	ten-percent porosity cutoff, and if we quickly look at the

1	Lambirth Number 1, a quick cross-plot, he's got several
2	from about 7830 on down, cross-plots less than ten percent
3	porosity. Under those cutoffs, you'd say that's not
4	reservoir, that's not pay.
5	Q. The wells are competing with each other at the
6	top of the reservoir, then, because of the geologic
7	characteristics?
8	A. Correct.
9	Q. Then will the well at the highest structural
10	position in the reservoir have an advantage?
11	A. Yes, it will.
12	Q. Let's turn to Exhibit Number 2, which is data
13	points in red
14	A. They're
15	Q and it's identified as a net-pay isopach
16	reservoir?
17	A. Correct?
18	Q. All right. Now, we haven't contoured the
19	isopach, but you've got some values?
20	A. Got some values, and a substantial number of
21	those values were after I re-checked them, came from the
22	permanent field rules hearing dated July, 1979, in which a
23	Thomas Brown with Enserch also came up with exact net pay
24	values that I have.
25	So I tried to agree with Enserch with what

1	Enserch has described as net pay previously.
2	Q. Okay. The two wells of greatest concern, I
3	think, to everybody are the Enserch 1 and the Phillips
4	Lambirth 2A?
5	A. Correct.
6	Q. All right. What values do you find for those two
7	wells, and what significance do you attach to those values?
8	A. The values for the Number 1 Enserch well are 44
9	foot of net pay; for the Phillips Number 2A it's 43. Very
10	similar values. However, the significance here is the
11	structural difference.
12	Q. All right. In some examples you would have a
13	material difference in net pay between the wells that might
14	explain the difference in ultimate recoveries or rate or
15	some other producing characteristic?
16	A. Correct.
17	Q. Here that's not a factor?
18	A. That is correct.
19	Q. Let's go to Exhibit 3. Identify and describe
20	that information for me.
21	A. This is production of the field current through
22	12 of 1993, again, which corresponds directly to a
23	structurally trapped water-drive reservoir where the wells
24	which are structurally highest benefit from ultimate
25	recoveries being higher. The higher on the structure

	67
1	you're going to be, the better your ultimate cumulative
2	production is going to be.
3	Q. Geologically, do you see any material difference
4	between the Phillips 2A and the Enserch Lambirth 1?
5	A. I agree with Mr. Faigle, they're both dolomite,
6	they both have fracture and matrix porosity, and they
7	should be both in communication with each other, the same
8	reservoir.
9	Q. I don't want to get into an engineering
10	discussion with you, but Mr. Telford described the notion
11	that we have a dual-porosity system here where you've got
12	the fracture system making contribution, and then you have
13	a matrix porosity system that's going to make its own
14	contribution.
15	A. (Nods)
16	Q. Geologically, give us your concept of this
17	reservoir.
18	A. There's been a significant amount of writing
19	recently, based upon karsting and how much significance the
20	fractures have, versus the matrix porosity.
21	This rock is no different than, say, this
22	building, where the matrix porosity are the rooms, the
23	fracture porosity is the conduits or the hallways.
24	Your rock volume is going to be greater within
25	your matrix, your fracture system essentially leading you

from getting out of one room into the hallway, possibly 1 outside, wherever it goes, or up the well. That's the 2 closest analogy that I could possibly use. 3 The volume of space or storage capacity of the 4 hydrocarbon within the fractures is significantly less than 5 what's going to be contributed through the storage capacity 6 7 of the matrix rock. So the bulk of your storage capacity or the bulk 8 9 of your hydrocarbons is going to be coming out of the 10 matrix rock and not your fractures. Fractures are only there for conduits. 11 MR. KELLAHIN: Thank you, Mr. Balke. 12 Mr. Examiner, at this time I would move the 13 introduction of Phillips Exhibits 1, 2 and 3. 14 EXAMINER STOGNER: Any objections? 15 MR. CARR: No objection. 16 EXAMINER STOGNER: Exhibits 1, 2 and 3 will be 17 admitted into evidence. 18 19 Mr. Carr, your witness. CROSS-EXAMINATION 20 BY MR. CARR: 21 Q. Mr. Balke, Let me make sure I understand what we 22 23 agree about first. You agree we've got a fractured reservoir? 24 There is fracture within this reservoir. 25 Α.

1	Q. We've got a dual-permeability system is that
2	right? I want to be sure I'm using the right terms in
3	the reservoir: one in the fractures, one in the matrix?
4	A. I think your controlling permeability is going to
5	be within your fractures. Your porosity is a function of
6	both the matrix porosity and the fractured porosity.
7	Q. You do agree, though, we've got a dual system?
8	A. Yes.
9	Q. And you've talked about the fractures being
10	primarily conduits in the reservoir; is that a fair
11	characterization of them?
12	A. Correct.
13	Q. And when you have two wells that are competing in
14	the reservoir for the reserves, isn't it natural to assume
15	that the competition is going to occur through these
16	fractures, through these conduits?
17	A. That's one possibility, that's correct.
18	Q. Do you see a direct contribution in the matrix in
19	this reservoir between the wells, the 1A I'm sorry, the
20	1 and the 2A? Our primary well, your primary well?
21	A. Contribution as far as ?
22	Q. Competition in the matrix in those two tracts?
23	Or is it primarily just through the fracture systems?
24	A. I think there's competition both in the matrix
25	and in the fractures.

1	Q. Now as you've studied this, have you taken into
2	consideration the high water cuts that you're getting?
3	A. Yes.
4	Q. Would I be wrong in saying that the fracture
5	system at this time is virtually watered out?
6	A. That is probably an assumption that's probably
7	correct.
8	Q. Now, that means that the conduits are virtually
9	watered out; isn't that right?
10	A. The storage capacity of the conduits are watered
11	out.
12	Q. If we're going to get the matrix, we've got to
13	the production out of the matrix, we've got to do something
14	to move that production to the wellbore; isn't that
15	correct?
16	A. That's correct.
17	Q. And if a fracture system is virtually watered
18	out, does it really make any difference which well is
19	higher
20	A. Yes, it does.
21	Q in the reservoir?
22	A. Yes, it does, because I think the bulk of your
23	production, your primary production is not just solely out
24	of your fractures; it was out of your matrix rock itself
25	from the very beginning.

1	Q.	And now we're looking at it today, we're trying
2	to capture	e, wouldn't you agree with me, matrix porosity, no
3	matter wha	it it was?
4	А.	Correct.
5	Q.	Mr. Kellahin asked Mr. Faigle about water drive.
6	You indica	ted this is a structural trap, the reservoir
7	drive mech	anism being a water drive.
8		Is it a bottom or an edge water drive?
9	Α.	I think that's more of an engineering question,
10	myself. E	But You know, I don't think I'll be able to
11	answer on	that one.
12	Q.	Basically, what we've got is your geologic
13	interpreta	tion based on well-control information, correct?
14	Α.	That's correct.
15	Q.	It's the same information that Mr. Faigle has
16	used?	
17	А.	That's correct.
18	Q.	We have a situation here where two geologists
19	have looke	d at the same information and come up with
20	differing	interpretations?
21	Α.	That's correct.
22	Q.	Not uncommon here?
23	Α.	Not uncommon, yes, that's correct.
24	Q.	When did you actually prepare this
25	interpreta	tion?

	52
1	A. The final interpretation was prepared here just a
2	couple months ago. But I've mapped it when I first This
3	was one of the initial fields that I mapped when I first
4	got out to the Permian Basin with Phillips, hired on, about
5	five years ago, and we were trying to see if there was any
6	kind of infill potential here, just basically getting a
7	more up-to-date field study.
8	Q. And in doing that, did you examine the structural
9	interpretations that had been prepared by Enserch and
10	Phillips geologists who had worked on this project before?
11	A. That's correct.
12	Q. And did you integrate that work into your
13	interpretation?
14	A. Initially, no, I wanted to come up with something
15	that was a little bit different, a little bit fresh.
16	But then I wanted to see Once I had my
17	interpretation finished up, I'd like to see how close I
18	how similar I was to everybody else.
19	Q. If we look at your Exhibit Number 1, it shows it
20	was It's got a date on it of 6-94. Is that the date it
21	was prepared, or was it the date of this hearing?
22	A. It was probably the date of when the draftsman
23	put it together.
24	Q. Were there any substantial changes made in it
25	recently?

1	A. I've made several different interpretations,
2	trying to define the reservoir. That is my best
3	interpretation.
4	Q. Were any changes made to the reservoir
5	interpretation between the Lambirth 1 and the Lambirth 2A
6	in, say, the last three or four weeks?
7	A. No.
8	MR. CARR: That's all I have.
9	EXAMINER STOGNER: Thank you, Mr. Carr.
10	Mr. Kellahin, any redirect?
11	MR. KELLAHIN: No questions.
12	EXAMINATION
13	BY EXAMINER STOGNER:
14	Q. Let me see if I've got you straight on the karst
15	development.
16	A. Uh-huh.
17	Q. You said the voids in this case are going to be
18	larger in the upper portion of the formation?
19	A. The karsting itself, through percolation of
20	water, dissolution of the dolomite itself, is going to take
21	place because it's just normal waters percolating through
22	on the structurally highest portion of the reservoir.
23	You'll have more dissolution at your upper points
24	and, as you work your way down, less dissolution down here,
25	simply because there hasn't been as much water percolating

1	through the structure. And thus, your permeability,
2	porosity, storage capacity is going to be smaller.
3	Q. Okay. With that in note, as water goes through a
4	matrix in some instances, would that water become more
5	acidic and then increase the capability of opening voids in
6	the lower portion?
7	A. It depends on what the pH was initially with the
8	water. I've not seen a great deal of reservoirs do that,
9	but so Probably from my experience, I don't.
10	Q. Okay. Or perhaps percolation upwards of
11	hydrocarbon such as hydrogen sulfide, would that also
12	increase if water was percolating down and the induction of
13	hydrogen sulfide was coming up?
14	A. Depends on how that hydrogen sulfide was being
15	produced, whether it's bacterial, whether it's being
16	produced right out of you know, in the reservoir itself,
17	or through if air got into the well itself. You can
18	produce hydrogen sulfide that way too. It just depends on
19	how
20	Q. I was thinking more of natural-occurring hydrogen
21	sulfide during the karst
22	A. During the karsting, during all the types, place,
23	time, table takes place, yes, you would probably see more
24	H ₂ S in the higher portions of your structure.
25	Q. But that would That could mean more uniform

1	karsting throughout the formation, or perhaps even larger
2	karsting, not necessarily so, in the lower portion?
3	A. Correct.
4	EXAMINER STOGNER: Old habits from my cave days.
5	Sorry.
6	I'll just mull over the geological information I
7	have.
8	Any other questions of this witness?
9	He may be excused.
10	MR. KELLAHIN: Call at this time, Mr. Examiner,
11	Jack Pickett.
12	JACK PICKETT,
13	the witness herein, after having been first duly sworn upon
14	his oath, was examined and testified as follows:
15	DIRECT EXAMINATION
16	BY MR. KELLAHIN:
17	Q. Mr. Pickett, would you please state your name and
18	occupation?
19	A. My name is Jack Pickett. I'm the reservoir
20	engineering supervisor for Phillips Petroleum Company out
21	of Odessa, Texas.
22	Q. What are your areas of responsibility as an
23	engineering supervisor for your company?
24	A. I have responsibilities for the whole Permian
25	Basin.

1	Q. Have you made an engineering study of the facts
2	of importance to you as an engineer concerning this
3	Application?
4	A. Yes.
5	Q. Prior to this case, were you involved in and
6	knowledgeable about Phillips' production in this pool?
7	A. Yes.
8	Q. Based upon your studies, have you reached certain
9	engineering answers and conclusions with regards to the
10	Enserch Application?
11	A. Yes.
12	MR. KELLAHIN: We tender Mr. Pickett as an expert
13	petroleum engineer.
14	EXAMINER STOGNER: Any objection?
15	MR. CARR: No objection.
16	EXAMINER STOGNER: So qualified.
17	Q. (By Mr. Kellahin) Mr. Picket, Enserch has
18	requested the Division Examiner approve for this pool an
19	increase in the oil allowable to 500 barrels of oil a day.
20	Do you have an opinion on that request?
21	A. I think it would damage Phillips.
22	Q. Why do you say that?
23	A. Basically they're updip. It's a water-drive
24	reservoir, and we're downdip, and it would bring water into
25	our downdip wells faster.

1	Q. Simple as that?
2	A. Yes.
3	Q. One of the contentions made by their engineering
4	witness, Mr. Telford, was that he was going to be able to
5	increase ultimate oil recovery from the reservoir?
6	A. Yes.
7	Q. Do you agree with that conclusion?
8	A. No, I do not.
9	Q. Why don't you agree?
10	A. We've tried essentially what they're saying
11	they're going to do by putting two subs in on our wells,
12	and it didn't work.
13	Q. The existing oil allowable is 267 barrels of oil
14	a day. The primary well that benefits from the increase
15	would be the Enserch well?
16	A. Yes, the only well that would benefit from any
17	increase.
18	Q. All right. Have you considered the option or the
19	alternative of how long you would like to continue with the
20	existing rules before any allowable increase or adjustment
21	is made?
22	A. Yes.
23	Q. And what have you concluded?
24	A. In three years, Phillips' wells will probably be
25	uneconomic, and at that time Enserch can do whatever they

1	like.
2	Q. Okay. Do you see any disadvantage as a reservoir
3	in postponing the allowable increase until you have reached
4	the economic limit of your Lambirth 2A well?
5	A. No, I do not.
6	Q. Under the current, existing rules by which these
7	two companies have competed for the last 16 years, which is
8	an allowable limit of 267 barrels of oil a day, have you
9	calculated and determined how much of the original oil in
10	place in the pool that Enserch has recovered out of their
11	Lambirth Number 1 Well?
12	A. Yes.
13	Q. And what is that number?
14	A. Forty percent of the oil in place.
15	Q. In the total pool?
16	A. Yes. Thirty-eight percent to date.
17	Q. Let's look at some of the specifics that got you
18	to those conclusions.
19	If you'll turn with me to Exhibit Number 4, let's
20	look first of all at the Phillips Lambirth A Number 3 Well.
21	This is the south offset to the Enserch Number 1. What
22	have you shown on this display?
23	A. This is a production plot for Phillips' Lambirth
24	A Number 3.
25	Q. Color code?

1	A. Yeah, the black curve is the oil in barrels per
2	day, the blue is the water in barrels per day, and the red
3	is the GOR.
4	Q. When we're looking for a determination of how
5	many of the producing wells in the pool be going to benefit
6	or have the opportunity to enjoy an allowable increase,
7	would this be one of those wells?
8	A. No, I don't think even Enserch would argue with
9	that because this is a low-productivity well. It makes
10	about 20 or 30 barrels a day, one barrel of water. It's in
11	a different type of rock than the rest of the reservoir;
12	it's in the lower-perm rock. And
13	Q. All right. We get 20 barrels of oil a day out of
14	this, and how much water?
15	A. One barrel.
16	Q. Okay. Let's look at Exhibit Number 5. Which
17	well is this?
18	A. This is again a production plot for Phillips'
19	Lambirth A Number 1, a little bit different presentation
20	than the prior curve. The black is the same, is oil in
21	barrels per day. The red is gas in MCF per day. And the
22	blue curve is the water-oil ratio, simply the water divided
23	by the oil production.
24	Q. All right. So I can draw this into perspective,
25	I'm going to show you Enserch Exhibit 8, which I'm going to

	100
1	hand to you, and let's use both your 5 and their 8 to talk
2	about the same well.
3	On the Lambirth A1, what in fact is the correct
4	date at which the submersible pump was installed?
5	A. October of 1992.
6	Q. And the date that was testified to by Mr.
7	Telford? What day was he using?
8	A. He's got something in 1990, middle of 1990 or
9	something like that.
10	Q. Does that error on his part in identifying the
11	date at which the submersible pump was installed in this
12	well have significance?
13	A. I think it totally negates all his testimony
14	about whether there was any increase in reserves when the
15	submersible pump was installed on the Lambirth A Number 1.
16	Q. Draw us through the analogy that causes you to
17	reach that conclusion.
18	A. If you'll note, the water-oil ratio curve, the
19	blue curve on Phillips Exhibit Number 5, before the
20	submersible pump was installed in October of 1992, you can
21	see it varies from in the prior year or two years,
22	between six and ten, with an average of about eight or
23	nine, the water-oil ratio.
24	After the submersible pump was installed in
25	October, 1992, you see almost an immediate increase in the

1	water-oil ratio to something like 15, peaks up as high as
2	40 or 50, and it currently is running about 50, 55, which
3	would You also see a rapid dropoff in the oil You see
4	an initial increase in the oil production. Later on, it
5	drops off within about six months, indicating that all we
6	really were doing is accelerating the oil that we were
7	going to get before anyway.
8	Q. Any doubt in your mind that that's what's
9	happening here in this well?
10	A. No.
11	Q. Has the pump been put in there long enough and
12	run a consistent period of time in which you can conclude
13	as a reservoir engineer that this is simply nothing more
14	than rate acceleration?
15	A. That's correct.
16	Q. All right. If the hypothesis in the 1979 SPE
17	paper is correct, then it doesn't work in this pool, does
18	it?
19	A. Not in this well.
20	Q. All right. Do you have another example of where
21	this was tried in this pool?
22	A. Yes, the next exhibit.
23	Q. Let's look at Number 6.
24	And while we're doing that, I want to give you
25	Mr. Telford's Exhibit it's his Exhibit Number 9. And

1	we're looking at your Exhibit Number 6.
2	Did Mr. Telford have the correct date at which
3	the submersible pump was installed in your well in this
4	A. No, he was incorrect on this well also. He shows
5	it to have occurred in about mid-1991, with the actual date
6	being February of 1992.
7	Q. Is that difference or is that error of
8	significance?
9	A. Yes, because just like the Lambirth A Number 1,
10	the data that he presented showing a decrease in water-
11	oil or in water cut, after the submersible pump was
12	installed, actually did not occur. And so there's no
13	evidence of any increased reserves, as he presented.
14	Q. When we plot on the data the correct point in
15	time when the submersible pump, in fact, was actually
16	installed of February, 1992, what does the data show you?
17	A. If you look at the There was a significant
18	increase in the oil production when a submersible pump was
19	installed in February of 1992.
20	And on the water-oil ratio curve it was running
21	about seven or eight before, and runs slightly higher after
22	the submersible pump was installed in February of 1992,
23	runs about eight or nine. And in about six months it's
24	well over ten.
25	Q. What's your conclusion about this well? Are we

1	increasing ultimate oil recovery in this well, or is this
2	simply rate acceleration?
3	A. From the way the production was It's fairly
4	erratic before the sub was installed; it goes up and down.
5	But you could probably say it was almost constant.
6	Afterwards, you've got a real good decline, so it
7	appears that all we have is rate acceleration, no new
8	reserves.
9	Q. Okay. Let's look at the next exhibit. It's your
10	Exhibit 7. It's on the Enserch Lambirth 1. And at the
11	same time I'm going to show you Mr. Telford's exhibit for
12	Enserch, which is marked Number 7. Number 6. Enserch
13	Exhibit Number 6, corresponds to your plot on exhibits.
14	Before we look at Mr. Telford's exhibit, let's
15	look at yours. Tell us what you see in the plot.
16	A. Basically, before the submersible was installed,
17	the same comments that Mr. Telford made are valid. It was
18	a top-allowable well until late 1985, 1986.
19	This is the best example in the field of the
20	water drive because of the constant GOR, fairly smooth
21	production data.
22	Q. Okay. Let's look at his Exhibit Number 6 now.
23	In response to my question he said that if his well was
24	affecting yours, with the increase in withdrawals now, then
25	correspondingly he should have seen a bump in his

	104
1	production when you put your submersible pump on.
2	That was paraphrasing his statement, but I think
3	it's accurate.
4	A. Yes.
5	Q. All right. Do you have an explanation as to why
6	there is not an apparent effect on the Enserch well when
7	you put the submersible on your 2A?
8	A. Basically because they're updip from us, so our
9	well would not affect their well.
10	Q. Simple as that?
11	A. Yes.
12	Q. All right.
13	A. In this time period that we've since we've had
14	our wells on submersible pump.
15	Q. Okay. Do you have a copy of Mr. Balke's
16	structure map?
17	A. Yes.
18	Q. All right, let's look at it. As a reservoir
19	engineer, tell me what you see in terms of these two wells
20	competing for the remaining oil in the pool within this
21	particular area.
22	A. I see their well being at the top of the
23	structure, pulling the hardest, having the most remaining
24	oil production, and for every barrel that they pull out
25	it's going to of fluid, it's going to cost water to

	105
1	encroach on all the downdip producers that are in the
2	water-drive area, pretty much the Phillips Lambirth A
3	Number 1 and Phillips Lambirth A Number 2.
4	Q. Is there any doubt in your mind as a reservoir
5	engineer that if the Examiner increases the allowable, it
6	will do so at the expense of your share of oil production?
7	A. No doubt at all.
8	Q. Okay. Let's look at your Exhibit Number 8.
9	Identify that tabulation of information for me.
10	A. This is simply the latest well tests that were
11	made available for the four wells in the area of interest.
12	Q. All right. We're looking at the far-right
13	column, we're dealing with water-oil ratios as opposed to
14	water cuts?
15	A. Yes, it's simply another way of stating the
16	production.
17	Q. All right. Let's look at the concept of the
18	water-oil ratio and have you tell me what those values are
19	for each of these four wells.
20	A. Okay. For Phillips' Lambirth A Number 1 the
21	current water-oil ratio is 51.
22	The Lambirth A Number 2, it's 17.
23	The Lambirth A Number 3, which has a very low
24	water cut or in the low water-oil ratio, but it's really
25	in a different type of rock and is not in the area of

1	concern.
2	And then the Enserch-operated Lambirth Number 1
3	has a water-oil ratio of eight. And what that tells me is
4	that the highest well has the lowest water-oil ratio.
5	Q. That's consistent with the positioning of these
6	wells in a water-drive reservoir, isn't it?
7	A. Yes.
8	Q. You would expect that the higher structural well
9	would have the lowest water-oil ratio?
10	A. Yes.
11	Q. All right. When we look at these values, as a
12	supervising engineer for your company, at what point in
13	that ratio do you then conclude, if you do at all, that the
14	well is no longer economic?
15	A. Generally, at about a water-oil ratio of 40 a
16	well is uneconomic.
17	In the case of the Lambirth A Number 1, it's
18	continued to produce until the submersible pump needs to go
19	down
20	Q. All right.
21	A and that's the only reason it's still
22	producing. If it needs any maintenance work, it will be
23	shut down.
24	Q. All right. The A1 is downstructure. It's really
25	beyond its economic limit. It will continue to produce

1	until there's a pump failure, and then you're done?
2	A. Right.
3	Q. Okay.
4	A. And there's still a significant difference,
5	though, in the water cut of the four producing wells in the
6	area of concern.
7	Q. Well, and that's what I want to focus your
8	attention on. The Lambirth A2 has got a water-oil ratio of
9	17?
10	A. Yes.
11	Q. And if your economic cutoff is 40, what does that
12	tell you?
13	A. It's got some life left.
14	Q. And your estimate of life a while ago was
15	something around three years?
16	A. Yes.
17	Q. Would you expect that to be watered out before
18	the Lambirth Number 1 operated by Enserch?
19	A. Yes.
20	Q. And it has a water-oil ratio of eight?
21	A. Yes.
22	Q. Okay. When we direct your attention to the
23	Enserch Lambirth 1, have you looked at that production?
24	A. Yes.
25	Q. Have you tried to determine what the volume of

1	production from that well means as you compare it to
2	production of other wells in the pool?
3	A. Yes, I have.
4	Q. Let's turn to your display. It's Exhibit Number
5	9. Describe for us what you've done.
6	A. This exhibit is entitled "Ensearch [sic] Lambirth
7	Number 1". It's had cumulative production to date of
8	953,000 barrels of oil, a little over a BCF of gas and
9	about 37,000 barrels of water.
10	That accounts for 38 percent of the total oil
11	production that has been produced from the South Peterson-
12	Fusselman field to date.
13	Q. All right. When we take total oil production
14	from the pool, where did you get that number? The total
15	oil production from the field or the pool is a
16	reported volume?
17	A. Yes, by the New Mexico Engineering Committee.
18	Q. All right. And you've determined that this
19	single well has produced 38 percent of the total pool's oil
20	production?
21	A. Yes.
22	Q. Okay. What's the next number?
23	A. The next number is the percentage of the acreage
24	and well count that the Lambirth Number 1 represents for
25	the total pool, eight percent.

1	Q. Okay. What's the next one?
2	A. Twenty-two percent is the simply the
3	percentage of the pay that our geologist, Scott Balke,
4	showed that the Lambirth Number 1 has in relation to the
5	rest of the wells in the pool. It has 22 percent of the
6	net oil pay.
7	Q. Okay. And the last one?
8	A. We Using that net oil pay map that Mr. Balke
9	prepared, I calculated that the 80-acre producing unit on
10	the Lambirth Number 1 has about 20 percent of the oil in
11	place on it.
12	Q. Under the current rules for 267 barrels of oil a
13	day, the well with 20 percent of the original oil in place
14	has already covered 38 percent of the total pool
15	production?
16	A. That's correct.
17	Q. What happens if the allowable's increased?
18	A. Their percentage will go up even more, of the
19	production.
20	Q. Where did the contribution come for production in
21	this well that's in excess of its share of the original oil
22	in place?
23	A. From the offsetting tracts.
24	Q. Have you tried to determine if there's an
25	engineering explanation for the production totals for this

1	Enserch well?
2	A. Yes.
3	Q. As part of your preparation in this case, did you
4	go back and review the prior transcripts of the Division
5	concerning the establishment of the pool rules?
6	A. Yes.
7	Q. And in the course of that investigation, did you
8	find engineering evidence that supported a reason for why
9	this well is doing so very well?
10	A. Yes.
11	Q. What did you find?
12	A. In the 1979 hearing to make the field rules
13	the temporary rules permanent for this field, a Mr. Leonard
14	Kersh with Enserch I believe he was presenting
15	engineering testimony.
16	Q. You're looking at Exhibit 10 now?
17	A. Yes.
18	Q. All right, sir. And page 21 of that transcript
19	and page 22 represent part of Mr. Kersh's testimony with
20	regards to engineering data for this well?
21	A. Yes, and if I'll just summarize the point that
22	he was making there, at the bottom of page 21 and then on
23	to the first page of 22, was that they ran Enserch had
24	conducted a reservoir-limits test and had determined that
25	their Enserch Lambirth Number 1 well was affecting 830

1	acres.
2	Q. The reservoir-limits test that Mr. Kersh had
3	presented on behalf of Enserch in this hearing resulted in
4	a drainage equivalent of 830 acres?
5	A. Yes.
6	Q. The test upon which he made that conclusion is
7	what type of test?
8	A. A reservoir-limits test.
9	Q. All right. Is this a pressure-buildup or a
10	pressure-drawdown or some other kind of test?
11	A. It's a type of pressure-drawdown test.
12	Q. Did you examine the information to satisfy
13	yourself that it appeared to be accurate and reliable in
14	terms of testing procedures?
15	A. Yes.
16	Q. Do you find any fault with how that was done or
17	how his presentation was made on that aspect?
18	A. No, it appears to be a correct interpretation.
19	Q. All right. Let's look at Exhibit 11. If you
20	look at simply a circle with this well at the center and
21	scribe an area that includes 830 acres
22	A. Yes.
23	Q what does it show you?
24	A. It shows its affecting almost the entire Section
25	31 and lots of other acreage.

1	Q. All right. At least theoretically, if you assume
2	radial drainage, then the Lambirth Well is going to be
3	affecting every well around it?
4	A. Yes.
5	Q. Have you tried to take this information and to
6	fit it within the size and the shape of the reservoir that
7	Mr. Balke has identified and presented to the Examiner?
8	A. Yes, it would actually be affecting a lot more of
9	the reservoir than this simple circle shows, because some
10	of the circle is drawn outside the pinchout to the south,
11	and so it actually affects almost the entire reservoir.
12	Q. So this one well by itself is going to affect all
13	the wells and has affected all the wells in its immediate
14	vicinity?
15	A. Yes.
16	Q. And if the allowable is increased, it will
17	continue to do so?
18	A. Yes.
19	Q. Have you tried to quantify the amount of
20	remaining recoverable oil that you still have an
21	opportunity to produce as long as the Examiner doesn't
22	change the rules for your Lambirth 2A well?
23	A. Yes.
24	Q. Let's look at Exhibit 12 and have you describe
25	that for me.

	113
1	A. Okay. I call this an economic limit plot for the
2	Lambirth A Number 2 Well. It's got the historical
3	production, the oil in green, the water-oil ratio in blue
4	and then the gas production in red.
5	I've extrapolated the oil production until a
6	water-oil ratio of about 40 was reached in early 1997,
7	which I think equates to about a 17.5-percent decline rate
8	on the oil and gives us a remaining life of the Lambirth A
9	Number 2 of about three years.
10	Q. Have you estimated the remaining recoverable oil
11	in terms of a volume
12	A. Yes, and that
13	Q that's available to this well?
14	A. Yes, and that would be about 89,000 barrels of
15	oil.
16	And this actually represents the minimum, because
17	the oil-production decline rate will probably increase when
18	the effects of the Enserch Lambirth Number 1 increased
19	withdrawals are shown.
20	Q. Let me direct your attention, Mr. Pickett, to the
21	Enserch Exhibit 7 which Mr. Telford introduced. It was the
22	tabulation of the May and June data from the two
23	submersible pumps on his Lambirth Number 1 Well.
24	He says he could look at that plot and he
25	concluded that he was seeing enough information to cause

1	him to conclude that that was going to be an increase in
2	ultimate oil recovery. That's what he said, wasn't it?
3	A. Yes.
4	Q. Do you agree?
5	A. No, I do not.
6	Q. What do you see?
7	A. It's too early to tell, really, in the I'm not
8	sure if this was actual production data or just test data,
9	and so I think he I believe he said it was test
10	data, which isn't as good as the actual production, the
11	monthly gauge reports, and also there just hasn't been
12	enough time to show up something significant.
13	Q. No doubt in your mind as a reservoir engineer
14	that that's not enough information to base any reasonable
15	engineering judgment?
16	A. Right.
17	Q. You can't calculate or estimate whether that's
18	rate recovery, accelerated or increasing ultimate oil
19	recovery?
20	A. Right.
21	Q. Can't do either one?
22	A. Right.
23	Q. One item we touched on briefly with Mr. Telford
24	is that the Enserch 1 certainly could produce up to 360 a
25	day, and that the Phillips 2A might have a chance to

114

1	produce something in excess of the current oil allowable.
2	A. Yes.
3	Q. What does that well do now?
4	A. Let me refer back, just a moment.
5	Q. Yes, sir.
6	A. About 115 barrels of oil a day and 1900 barrels
7	of water per day.
8	Q. So you're substantially below the current oil
9	allowable?
10	A. Yes.
11	Q. Is there anything you can do within the economic
12	limits of your remaining oil production so that you could
13	compete with the Enserch well if the Examiner chooses to
14	increase the oil rate?
15	A. we could shut in immediately our Lambirth A
16	Number 1 Well, and by doing that we could handle another
17	500 or 600 barrels of water through our SWD system. So
18	that would give us about a 30 percent we could see in the
19	Lambirth A Number 2 well, which might bring us up to 140,
20	145 barrels of oil per day.
21	Q. Okay. Do you have an engineering explanation as
22	to why the hypothesis in the SPE paper doesn't work in this
23	portion of this pool? What's happening?
24	A. Well, I think it's still Water drive is a
25	significant factor, both edge water and bottom water drive,

	110
1	probably, and that something somewhat of an inhibition
2	process is still going on where water is displacing oil
3	from the matrix, and that takes some time to do.
4	Q. What's your recommendation to the Examiner?
5	A. I would leave the field rules as is for about
6	three years, and then once the Phillips well goes
7	uneconomic in about three years we'd have no objection to
8	changing the allowable.
9	Q. Do you see any adverse consequences to Enserch if
10	this Application is denied?
11	A. No.
12	Q. If this Application is approved, do you see any
13	corresponding effect on Phillips?
14	A. Yes, I feel Phillips would lose oil.
15	Q. And as a reservoir engineer for your company
16	in fact, as an engineering supervisor, do you see
17	definitive evidence that would cause you to believe that
18	ultimate oil recovery is being increased if we increase the
19	withdrawal rates in this reservoir and jump the oil
20	allowables?
21	A. No, I see no evidence of that.
22	Q. What would you do with this Application?
23	A. Turn it down.
24	MR. KELLAHIN: All right, sir. Nothing further.
25	We move the introduction of exhibits which

1	
1	I've lost track of. It's 4 through 12, I believe.
2	EXAMINER STOGNER: Any objections?
3	MR. CARR: No objection.
4	EXAMINER STOGNER: Exhibits 4 through 12 will be
5	admitted into evidence.
6	Thank you, Mr. Kellahin.
7	Mr. Carr?
8	CROSS-EXAMINATION
9	BY MR. CARR:
10	Q. Mr. Pickett, you'd agree with me, would you not,
11	that this reservoir is nearing the end of its producing
12	life?
13	A. It's got a few more years left.
14	Q. Out of a 20-year life-span, we're down to perhaps
15	three?
16	A. I think the Enserch well should go on farther
17	than three.
18	Q. Would you agree with me that the reservoir is
19	substantially watered out at this point in time?
20	A. No.
21	Q. You would not? Water cuts don't tell you the
22	reservoir is substantially watered out?
23	A. I guess it depends on your definition of
24	"substantially watered out".
25	Q. Ninety-five percent water cut?

,	
1	A. Watered out, to me, is uneconomic, and there are
2	still economic wells left.
3	Q. So in determining whether or not the reservoir is
4	watered out, you don't look at the water cut?
5	A. That tells you if the well's economic or not.
6	Q. So just because we're over 95-percent water cut
7	on some of these wells, to you, doesn't say the reservoir
8	is substantially watered out? Just 100
9	A. It has watered out or is nearing watering out
10	Q. When we water out this reservoir, don't we really
11	water out the fracture system first?
12	A. I think it probably happens at the same time.
13	Q. Water out the matrix at the same time we water
14	out the fracture?
15	A. Yes.
16	Q. Now, do you have a in your opinion, a bottom
17	water drive or an edge water drive here?
18	A. Combination.
19	Q. So if we have a bottom water drive moving up in
20	the reservoir, it's watering out the matrix at the same
21	time it's watering out the fracture system?
22	A. Yes.
23	Q. So below If we have water in the fractures, is
24	it fair to assume that offsetting it in the matrix, we've
25	also watered that out?

1	A. Can you repeat that?
2	Q. I'm just trying to understand what you're saying.
3	I mean, if we have, say, a bottom water drive, as that
4	moves up
5	A. What kind of water drive?
6	Q. A bottom.
7	A. Oh, okay.
8	Q. As opposed to an edge.
9	A. Yes.
10	Q. But as the water contact comes up to the
11	reservoir, you're saying that we're watering out the
12	fractures at the same rate as the matrix?
13	A. Yes.
14	Q. Okay. When we look at the overall presentation
15	in this case, isn't Phillips' primary concern with its
16	Lambirth 2A well?
17	A. Yes.
18	Q. You're concerned about the potential damage to
19	that well?
20	A. Yes.
21	Q. When we look at like your Exhibit Number 4 on the
22	Lambirth A Number 3, that really is not providing us with
23	information that's meaningful to this hearing; it's outside
24	the fracture system we're talking about, is it not?
25	A. I think that was our point, was that this well

	120
1	was outside the area of concern.
2	Q. Now, you have also taken a look at the SPE paper
3	that has been discussed by Mr. Telford?
4	A. Yes, that's right.
5	Q. You don't think it applies in this reservoir?
6	A. We tried it, and it didn't work.
7	Q. If we go to your Exhibit Number 5 and the
8	testimony that you offered related thereto from Enserch
9	Exhibit Number 8, both of these relate to the Lambirth 1A?
10	A. Yes.
11	Q. You noted that on this exhibit Enserch had placed
12	the installation of the submersible pump at the wrong time?
13	A. Yes.
14	Q. In fact, it was installed in October of 1992, as
15	opposed to 1989, as shown on this exhibit?
16	A. Yes.
17	Q. If I look at this exhibit, in late 1989 there's a
18	substantial increase in the oil production and a
19	corresponding drop in the water cut. Do you see that?
20	A. Yes.
21	Q. Can you explain to me what happened that caused
22	that to occur?
23	A. No, I cannot.
24	Q. So that's just something that happened in just
25	the history of the producing well?

1	A. Yes.
2	Q. Do you know if there was a There was a beam
3	pump on the well at that time?
4	A. Yes.
5	Q. Do you have any information or pressure
6	information that would suggest that there was any change in
7	the way you were operating the well at that point in time?
8	A. We could have run fiberglass rods, acidize the
9	well, something like that. I don't recall.
10	Q. What would fiberglass rods do?
11	A. Increase the lift.
12	Q. If they increase the lift, would that also
13	increase the That would be also basically a high-volume
14	lift method, would it not?
15	A. On a slightly smaller scale it would.
16	Q. So at that point in time, if you put fiberglass
17	rods in the pool, you'd have increased the lift capacity,
18	and that would have shown the decrease in the water cut and
19	the increase in oil production?
20	A. If we did, and I have no knowledge that we did.
21	Q. Did you look to see?
22	A. Yes.
23	Q. And you don't know what you found?
24	A. I don't recall.
25	Q. If in fact that was the result of fiberglass

	144
1	rods, improving the lift capacity, wouldn't in fact we have
2	high-volume lift which resulted in increased oil and lower
3	water cut?
4	A. For a little while.
5	Q. Okay. We go on and then we come along and you
6	install a submersible pump in October of 1992?
7	A. Yes.
8	Q. Why did you do that then?
9	A. We did an engineering study of the field and saw
10	that that was the economic thing to do.
11	Q. Economic, as opposed to continuing with the beam
12	pump?
13	A. Yes, we could make money by putting in a sub.
14	Q. Were you trying to at that time increase your
15	lifting capacity in that well?
16	A. Yes.
17	Q. In fact, did you achieve that?
18	A. Yes.
19	Q. After installing that pump, didn't you receive
20	for a short time both an increase in the oil production and
21	a decrease in the water cut?
22	A. I believe we saw an increase in the oil
23	production, but I don't see a decrease in the water cut or
24	water-oil ratio.
25	Q. Last part of 1992 you don't see a drop in the

	123
1	water cut?
2	A. Not below what it was from before the sub.
3	Q. Wasn't it your testimony that by going to the
4	high-volume lift you weren't actually recovering any
5	additional oil?
6	A. Yes.
7	Q. You're not going to increase recovery, in your
8	opinion?
9	A. Ultimate recovery, yeah.
10	Q. If we look at just the exhibits, the production
11	history on the Lambirth 1A, and if the increase in 1989 was
12	because of fiberglass rods and a better lifting capacity,
13	haven't you actually changed the decline level for the
14	well, for the oil production? Don't you have a higher
15	decline or production level, against which you apply your
16	decline?
17	A. Yes, if that occurred.
18	Q. And if that occurred, wouldn't that be consistent
19	with the SPE study?
20	A. Well, I don't really see a change in the that
21	much of a change in the water-oil ratio.
22	Q. After December, 1990, you do see a higher
23	A. Well, let me
24	Q oil production rate do you not?
25	A. Yes, but it and it goes on a pretty good

1	decline.
2	Q. And that's a higher decline, even though it may
3	be at the same percent, than you were experiencing prior to
4	that time?
5	A. The production is very erratic before that date,
6	19
7	Q. Is it not also lower?
8	A. The production before?
9	Q. Before that date is it not consistently lower?
10	A. Yes.
11	Q. If we go to the exhibits on the Lambirth 2A,
12	again we have a wrong date for an installation of the
13	submersible pump, correct?
14	A. That's correct, you had Enserch had the wrong
15	date.
16	Q. Do you know where we got those dates?
17	A. I assume From Mr. Telford's testimony, he said
18	he was assuming it from the production plot.
19	Q. Okay. If we look at these exhibits, if we look
20	at the 2A and we go back to the point in time where Mr.
21	Telford has surmised that you installed this submersible
22	pump, at that time don't we see an increase in oil
23	production?
24	A. What is that time?
25	Q. If we go to, Mr. Pickett, Exhibit Number 9,

	125
1	Enserch Exhibit Number 9
2	A. I don't have a copy of that, I don't think.
3	Maybe I Yeah, I think I have Number 9.
4	Q. Okay. If you look at that exhibit, Mr. Pickett,
5	you can see a line that shows where Enserch surmised you
6	had installed this submersible pump. Do you see where the
7	arrow points?
8	A. Yes, to
9	Q. At that point
10	A about mid-1991?
11	Q. Yes, sir. At that point in time, don't we see an
12	increase in oil production and a corresponding drop in
13	water cut?
14	A. Yes.
15	Q. Was there, to your knowledge, any change in the
16	way you were operating this well that would have caused the
17	oil to increase at that time and the water cut to drop?
18	A. I have no knowledge of any operating changes.
19	Q. Did you check to determine if there were any at
20	that time?
21	A. Yes.
22	Q. Is this just a natural-occurring phenomenon, that
23	you would experience this in the reservoir?
24	A. It's not totally unexpected. I think you could
25	look at all the production plots. They're fairly erratic

	120
1	like that.
2	Q. And have you seen other examples where oil
3	production rates take a jump and then seem to start at a
4	new higher level, maintaining a decline rate?
5	A. Yes.
6	Q. That's common in your experience in this
7	reservoir?
8	A. Yes.
9	Q. If I understood your testimony it is, once the
10	Lambirth 2A is plugged or you cease producing it, then you
11	have no objection to what's done with the reservoir; is
12	that right?
13	A. That's right.
14	Q. Once you no longer have an interest, you don't
15	care?
16	A. That's right.
17	Q. Water cuts have been a problem in this reservoir
18	from the beginning, have they not, Mr. Pickett?
19	A. Yeah, water production has been a problem.
20	Q. And you required both of the primary operators
21	we don't know about Mr. Bledsoe, but both of the primary
22	operators to try and manage this water problem throughout
23	the producing life of the reservoir?
24	A. Yes.
25	Q. In that regard, has any thought been given to

126

1	prudent operating practices beyond this point, other than
2	just producing these wells until we our equipment fails
3	or they're no longer economic and just shutting them down?
4	Has Phillips looked at that in a broader sense, or have you
5	just looked at maintaining your production until you hit
6	these economic limits?
7	A. I'm not sure if I understand the question.
8	MR. KELLAHIN: Well, I'll object. It's
9	irrelevant.
10	MR. CARR: I think it's We're talking here
11	about a method to try to efficiently produce the reservoir
12	in its waning years. And we have testimony that says, we
13	have a couple of wells, when the equipment fails on one
14	we're through, when we hit the economic limit we're
15	through, and do what you want.
16	My question is legitimate. Have you looked at
17	this reservoir, in terms of managing it, other than just
18	producing your wells to economic limits and then goodbye?
19	That's an appropriate question, and he can say they have or
20	they have not.
21	EXAMINER STOGNER: This time I agree with Mr.
22	Carr, and since we are talking about the relevancy of
23	developing the pool to its potential, I'm going to override
24	your objection.
25	Mr. Carr?

1	Q. (By Mr. Carr) Do you understand my question, in
2	all of that?
3	A. Oh, yes. I think the answer is yes, we've looked
4	at managing the reservoir.
5	Q. Have you come up with anything other than just
6	producing it to these economic limits and then just
7	shutting it down?
8	A. We have a few other ideas in for the
9	reservoir.
10	Q. And are you was high-volume lift one of these?
11	A. When the Lambirth A Number 1 goes down, we'll
12	our thought is that we can increase the lift from the
13	Lambirth A Number 2.
14	Our SWD facilities are currently at 100 percent
15	of capacity, so we can't dispose of any more water at this
16	point. But when the Lambirth A Number 1 goes down, we
17	could dispose of more water and produce more fluid from the
18	Lambirth A Number 2.
19	Q. So when you can dispose of the water, you would
20	then consider additional high-volume lift on the A Number
21	2?
22	A. Yes.
23	Q. And that's dictated by water disposal, not
24	reservoir management?
25	A. I consider water disposal part of reservoir

management. 1 MR. CARR: I think that's all I have, Mr. 2 3 Pickett. Thank you. EXAMINER STOGNER: Thank you, Mr. Carr. 4 Mr. Kellahin, any redirect? 5 MR. KELLAHIN: No, sir. 6 EXAMINER STOGNER: Mr. Carroll, do you have any 7 8 questions? 9 MR. CARROLL: Nothing, Mr. Stogner. EXAMINATION 10 BY EXAMINER STOGNER: 11 I believe, Mr. Pickett, your testimony about the 12 ο. Lambirth Number 1 as far as increased production, any 13 increased production from anything above -- What is it? 14 267 barrels of oil per day or the present allowable? 15 16 Α. Yes. -- would essentially be from other acreage, as 17 ο. opposed to what is allowed them from their 80-acre drainage 18 or -- Does that make sense? 19 Yes, in a way. I mean, the oil they're producing 20 Α. right now is sort of at our expense, any oil they make, 21 since they're updip and we're downdip. But that's just a 22 23 built-in, I guess, advantage they have. 24 Q. And so anything above that, even one barrel, would be one additional from what would be acceptable with 25

129

	130
1	Phillips?
2	A. Yes.
3	Q. Does any of the Phillips wells, do you feel, have
4	any could they gain by an additional allowable or
5	increased production from its from the present
6	allowable?
7	A. No, we have the same 5-1/2-inch casing that Mr.
8	Telford testified his Lambirth Number 1 does, and we could
9	put the same size submersible pump in that they would want
10	to get their 500 barrels a day, but with our higher water
11	cut that doesn't even get us over 200 barrels a day,
12	putting in the largest submersible pump commercially
13	available at the moment, even if we had more SWD capacity.
14	EXAMINER STOGNER: I have no other questions for
15	Mr. Pickett at this time.
16	You may be excused.
17	Mr. Carr, do you have anything to present
18	further?
19	MR. CARR: No, sir.
20	EXAMINER STOGNER: Mr. Kellahin?
21	MR. KELLAHIN: That concludes the presentation of
22	our evidence.
23	I'm happy to submit a draft order or try to
24	summarize this for you. We're here at your please, and
25	whatever you desire us to do, we're happy to

EXAMINER STOGNER: Well, let's see. First things 1 first. 2 What about the additional notification, Mr. Carr? 3 How do you propose we handle that? 4 MR. CARR: May it please the Examiner, the case 5 will have to be continued to permit us to provide notice to 6 Bledsoe and any other operator in the Fusselman --7 EXAMINER STOGNER: And that would be continued --8 9 I don't necessarily see that it needs to be re-advertised. 10 MR. CARR: I don't think that it had to be, but we do have to provide notice by regular mail. 11 EXAMINER STOGNER: So this would be continued to 12 the -- What? July 21st? 13 MR. CARR: Yes, sir. 14 EXAMINER STOGNER: Okay. With that, I'd like to 15 see, yes, a rough draft order from each of you. 16 Would you care to make closing statements at this 17 time? 18 MR. KELLAHIN: Yes, sir. 19 EXAMINER STOGNER: Okay, Mr. Kellahin, I'll allow 20 you to go first, and then Mr. Carr. 21 MR. KELLAHIN: Just briefly, Mr. Examiner, we're 22 talking principally of two wells competing with each other, 23 the Phillips 2A and the Enserch Lambirth Number 1. 24 If you increase the oil allowable above what it 25

1	is now, if you do the 500 barrels a day, Mr. Pickett has
2	just told you that the configuration of his wellbore is
3	limited by the size, 5 1/2-inch. And so if he is to put
4	comparable lifting equipment in his well, that Mr. Telford
5	is doing, the Phillips well can't even make the current
6	allowable. What happens is the inequity between the
7	parties continues to broaden.
8	Enserch enjoys a natural advantage in the
9	reservoir about having the highest structural position.
10	They've already recovered 954,000 barrels of oil, which is
11	twice the percentage of oil in place in the reservoir that
12	was their share. It represents 38 percent of the total oil
13	produced in the entire pool.
14	They're getting greedy. They want more than
15	their share, and they want to take it from us.
16	It's not my burden to prove their case, and
17	they've failed to meet their burden.
18	Mr. Telford comes in with an SPE paper that has a
19	hypothetical issue that you can produce an oil reservoir
20	that has an active water drive by creating a pressure
21	drawdown in the reservoir and further bleed the matrix.
22	Mr. Pickett's tried it in the field, in this
23	pool, in this reservoir, in close proximity to the Enserch
24	well. He still can't make the current oil allowable. So
25	if there's any contribution, it certainly doesn't justify

	133
1	anything in excess of what we have now.
2	He says what he's seeing, as an experienced
3	reservoir engineering supervisor, is simply rate
4	acceleration. That's what those production-decline curves
5	show him.
6	With all due respect to Mr. Telford, I think he's
7	made a substantial and critical error in his conclusions,
8	particularly when he misplots the point in time where the
9	submersible pump is put on both of the Phillips wells. He
10	misplots it, misreads it, and comes to the wrong
11	conclusion.
12	In addition, if you look at his own well, he
13	hasn't proved his own case. What does that test show you?
14	It's not definitive of anything. It doesn't tell you if
15	that's improving ultimate oil recovery. He doesn't attempt
16	to quantify what additional oil recovery is going to take
17	place in that well. He can't even use 500 barrels a day.
18	He gets 360, and he wants more. Enough is enough.
19	Our testimony, which is undisputed, absolutely
20	unrefuted, is that we can wait until the Phillips well is
21	abandoned and Enserch can come back and get all the rest.
22	They're going to get it anyway. Let them postpone that so
23	they don't take it from us.
24	Their obligation is to prevent waste and to
25	protect correlative rights. They haven't made a waste

	134
1	case, and all they've done is validate our proof that
2	they're taking our oil. They enjoy a natural advantage.
3	Let's leave the rules the way they are, the way
4	they have been the last 16 years, and let's just finish
5	this out without making us contribute our oil for their
6	production.
7	There's not just a difference of opinion between
8	geologic experts. Mr. Carr wants to dismiss this as a
9	point of difference between two geologists looking at the
10	same data. Look at the data. Get Roy or somebody to look
11	at the logs with you. Look at the porosity values on those
12	two logs. You can come to your own conclusions.
13	Mr. Faigle is wrong. The point of the logs is,
14	the highest values are in the top of the reservoir. It's
15	nonsense to suggest that these wells are competing
16	equivalently at the lower portion of the reservoir.
17	Make your own analysis. Look at the data and
18	reach your own conclusions, and when you do, we think
19	you're going to agree with us: They have not met their
20	burden of proof, and the Application ought to be denied.
21	EXAMINER STOGNER: Thank you, Mr. Kellahin.
22	Mr. Carr?
23	MR. CARR: Mr. Stogner, Mr. Kellahin just stood
24	before you and said, Just let it run out. Let it run out,
25	and when we've gotten what we can, then let them do what

1	they want.
2	We come before you today because we're convinced
3	that other than just letting things run out when you get to
4	this point in the life of a reservoir, there comes a time
5	when you try and manage it, when you try and do what is
6	necessary to maximize your recovery from the reservoir.
7	And I will tell you that just letting it run out is not the
8	prudent way to operate a reservoir, nor, in my opinion, is
9	it consistent with what the Conservation Commission is
10	directed to do.
11	Enserch stands before you, yes, proposing to
12	increase allowables. And the reason is to maximize
13	ultimate recovery from the reservoir.
14	Mr. Kellahin says, Yes, Mr. Stogner, you look at
15	the evidence. Well, we agree on that. I'd like you to
16	look at the production curves, and when you see what
17	happens When we increased our lift capacity, we saw an
18	increase in oil, and we saw a drop in the water cut. And
19	you look at the other exhibits, and when it was either
20	through a beam pump or perhaps fiberglass rods or through a
21	submersible pump, you still have a still have a decline
22	curve, but it's at a higher level.
23	And what we are doing is extending the economic
24	life of the reservoir, and we will recover more oil. But
25	to do it, you've got to do it at an appropriate time. It's

Г

1	like a waterflood: You get to a point where it's too late
2	to effectively waterflood.
3	If you look at the SPE paper, which albeit
4	Phillips discounts, you do this before you have the 95-
5	percent water cut. And we are there, or nearly there. And
6	if we're going to do it three years, it's not just
7	something that is waited out for Phillips, waited out for
8	Phillips to finish off. It may be too late for some of
9	these necessary measures to effectively be implemented.
10	There are some things we don't have a dispute on.
11	It's late in the life of the reservoir. We've got a highly
12	fractured reservoir. The geological witness for Phillips
13	agrees with us that they're watered out. We don't know
14	what "watered out" means from an engineering point of view.
15	But the data shows that what we've got is really
16	three wells that are of significance: the Lambirth Number
17	1, our well; the 2A north of it, Phillips' well; and the
18	1A. And as we have looked at the producing lives and the
19	histories of these wells, we have seen, when you apply
20	high-volume lift, you get the result that the SPE paper
21	suggests we will. And Phillips says that's not true.
22	But even their expert engineering witness, when
23	he comes before you, Mr. Stogner, says, as soon as the
24	Number 1A is dead we're applying high-volume lift to the 2E
25	[sic]. That's what he told you. And the only logical

	13/
1	reason to do it is, you'll improve your recovery when you
2	do it.
3	So that's why we're before you, because we think
4	what they want to do later on their 2A needs to be done
5	reservoir-wide right now. That's why we've come here
6	before you here today.
7	They talk about reservoir damage. Mr. Kellahin
8	says, Oh, they've had a great well. Yeah, we do; we have
9	the discovery well. It remains the best well in the pool,
10	and it has produced a lot.
11	But correlative rights, by definition, doesn't
12	say, you go back and look at what we produced yesterday.
13	It requires that we go forward, cognizant of waste, to
14	effectively produce the reservoir and give everyone their
15	opportunity to produce their share.
16	We submit to you we have come before you with an
17	appropriate plan to manage this reservoir and to do it
18	today, and that if this Application is denied, it isn't
19	saying, come back later when nobody else cares; it's
20	saying, no, don't manage the reservoir, waste the reserves.
21	EXAMINER STOGNER: Thank you, Mr. Carr.
22	Anything else further in this case today?
23	Being none, this case will be continued to the
24	Examiner's hearing scheduled for July 21st. This extension
25	is due to notification requirements, and I don't believe it

1	will be necessary to take any additional testimony at that
2	time.
3	Between now and then, preferably around the week
4	of that 21st hearing, if I can get rough orders from both
5	of you I would appreciate that.
6	With that, hearing adjourned for today.
7	(Thereupon, these proceedings were concluded at
8	4:10 p.m.)
9	* * *
10	
11	
12	
13	
14	! do hereby certify that the foregoing to
15	a complete record of the proceeding in the Examiner hearing of Case 10994 heard by meron 23/ Juan 74
16	MIRT
17	Oil Conservation Division
18	
19	
20	
21	
22	
23	
24	
25	

139 CERTIFICATE OF REPORTER 1 2 3 STATE OF NEW MEXICO)) ss. COUNTY OF SANTA FE 4) 5 6 I, Steven T. Brenner, Certified Court Reporter 7 and Notary Public, HEREBY CERTIFY that the foregoing 8 transcript of proceedings before the Oil Conservation 9 Division was reported by me; that I transcribed my notes; 10 and that the foregoing is a true and accurate record of the 11 proceedings. 12 I FURTHER CERTIFY that I am not a relative or employee of any of the parties or attorneys involved in 13 14 this matter and that I have no personal interest in the 15 final disposition of this matter. WITNESS MY HAND AND SEAL July 2, 1994. 16 17 18 STEVEN T. BRENNER CCR No. 7 19 20 My commission expires: October 14, 1994 21 22 23 24 25

STATE OF NEW MEXICO

ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT

OIL CONSERVATION COMMISSION

)

)

))

IN THE MATTER OF THE HEARING CALLED BY THE OIL CONSERVATION COMMISSION FOR THE PURPOSE OF CONSIDERING:

CASE NO. 10,994

APPLICATION OF ENSERCH EXPLORATION, INC.

REPORTER'S TRANSCRIPT OF PROCEEDINGS

ORIGINAL

BEFORE: WILLIAM J. LEMAY, CHAIRMAN WILLIAM WEISS, COMMISSIONER GARY CARLSON, COMMISSIONER MAR _ 6 1995

Oil Conservation Division

February 24th, 1995

Santa Fe, New Mexico

This matter came on for hearing before the Oil

Conservation Commission on Friday, February 24th, 1995, at

the New Mexico Energy, Minerals and Natural Resources

Department, Porter Hall, 2040 South Pacheco, Santa Fe, New

Mexico, before Steven T. Brenner, Certified Court Reporter

No. 7 for the State of New Mexico.

* * *

INDEX

February 24th, 1995 Commission Hearing CASE NO. 10,994

EXHIBITS	PAGE 4
APPEARANCES	5
OPENING STATEMENTS:	
By Mr. Carr By Mr. Kallabin	7 11
By Mr. Kellahin	11
APPLICANT'S WITNESSES:	
<u>GEORGE FAIGLE</u> Direct Examination by Mr. Carr	14
Cross-Examination by Mr. Call Cross-Examination by Mr. Kellahin	21
Redirect Examination by Mr. Carr	38
Examination by Commissioner Weiss	39
Examination by commissioner weiss	55
RALPH B. TELFORD	
Direct Examination by Mr. Carr	40
Cross-Examination by Mr. Kellahin	54
Examination by Commissioner Weiss	61
Examination by Chairman LeMay	62
	02
MARK BURKETT	
Direct Examination by Mr. Carr	63
Cross-Examination by Mr. Kellahin	71
Redirect Examination by Mr. Carr	75
Examination by Commissioner Weiss	75
Examination by Chairman LeMay	77
(Continued)	

2

PHILLIPS WITNESSES:

SCOTT BALKE	
Direct Examination by Mr. Kellahin	82
Cross-Examination by Mr. Carr	102
Examination by Commissioner Weiss	111
Examination by Commissioner Carlson	111
Examination by Chairman LeMay	111
JACK_PICKETT	
Direct Examination by Mr. Kellahin	113
Cross-Examination by Mr. Carr	138
Examination by Commissioner Weiss	146
Examination by Commissioner Carlson	148
Examination by Chairman LeMay	150
CLOSING STATEMENTS:	
By Mr. Kellahin	151
By Mr. Carr	153
REPORTER'S CERTIFICATE	159
* * *	

			ЕХНІВІТЅ	
Enserch			Identified	Admitted
	Exhibit	1	16	21
	Exhibit		16	21
	Exhibit		17	21
	DAILDIC	5	17	21
	Exhibit	4	18	21
	Exhibit	5	19	21
	Exhibit		20	21
	211112020	0		
	Exhibit		43	54
	Exhibit	8	44	54
	Exhibit	9	46	54
	Exhibit	10	48	54
	Exhibit		40 49	54 54
	Exhibit		52	54
	EXILDIC	12	52	54
	Exhibit	13	64	71
	Exhibit	14	66	71
Phillips				
	Exhibit	1	98	102
	Exhibit	2	98	102
	Exhibit	3	89, 99	102
			•	
	Exhibit	4	93	102
	Exhibit	5	85	102
	Exhibit	6	121	138
		-	100	4.0.0
	Exhibit		123	138
	Exhibit		126	138
	Exhibit	9	127	138
	Exhibit	10	129	138
	Exhibit		129	138
	Exhibit		131	138
		1 -	100	
	Exhibit		133	138
	Exhibit		135	138
	Exhibit	15	135	138
			* * *	
				······································

APPEARANCES

FOR THE COMMISSION:

RAND L. CARROLL Attorney at Law Legal Counsel to the Division State Land Office Building Santa Fe, New Mexico 87504

FOR THE APPLICANT:

CAMPBELL, CARR, BERGE & SHERIDAN, P.A. Suite 1 - 110 N. Guadalupe P.O. Box 2208 Santa Fe, New Mexico 87504-2208 By: WILLIAM F. CARR

FOR PHILLIPS PETROLEUM COMPANY:

KELLAHIN & KELLAHIN 117 N. Guadalupe P.O. Box 2265 Santa Fe, New Mexico 87504-2265 By: W. THOMAS KELLAHIN

* * *

5

	0
1	WHEREUPON, the following proceedings were had at
2	9:00 a.m.:
3	CHAIRMAN LEMAY: Good morning, this is the Oil
4	Conservation Division [sic], and we're continuing our
5	hearing agenda from yesterday, and we shall now call Case
6	Number 10,994.
7	MR. CARROLL: Application of Enserch Exploration,
8	Inc., for the assignment of a special depth bracket oil
9	allowable, Roosevelt County, New Mexico.
10	CHAIRMAN LEMAY: Appearances in the case?
11	MR. CARR: May it please the Commission, my name
12	is William F. Carr with the Santa Fe law firm Campbell,
13	Carr, Berge and Sheridan.
14	We represent Enserch Exploration, Inc., and I
15	have three witnesses.
16	CHAIRMAN LEMAY: Thank you, Mr. Carr.
17	MR. KELLAHIN: Mr. Chairman, members of the
18	Commission, I'm Tom Kellahin of the Santa Fe law firm of
19	Kellahin and Kellahin, appearing today on behalf of
20	Phillips Petroleum Company in opposition to the Applicant,
21	and we have two witnesses to be sworn.
22	CHAIRMAN LEMAY: Thank you, Mr. Kellahin.
23	Would those about to give testimony stand, raise
24	your right hand?
25	(Thereupon, the witnesses were sworn.)

6

ſ	1
1	CHAIRMAN LEMAY: Okay, let's start.
2	MR. CARR: I have a brief opening statement.
3	CHAIRMAN LEMAY: Mr. Carr?
4	MR. CARR: May it please the Commission, Enserch
5	Exploration, Inc., is before you today seeking the adoption
6	of a special depth bracket allowable of 500 barrels of oil
7	per day for the South Peterson-Fusselman Pool in Roosevelt
8	County. This pool was established in July of 1978 as a
9	result of the discovery of oil in the Enserch Lambirth
10	Number 1 well.
11	At the same time the pool was established,
12	special pool rules were adopted on a temporary basis that
13	were later made permanent, providing for 80-acre spacing.
14	Since that time, this pool has been developed
15	basically by two operators, Enserch and Phillips. There is
16	another operator in the pool, Bledsoe, but they are
17	operating a well that isn't in the structural feature which
18	is the subject of today's hearing.
19	These two operators have developed the pool on a
20	checkerboard pattern. As we will show you, there is an
21	active water drive in the field, and we now find ourselves
22	at a point where there are approximately five wells that
23	remain capable of producing from the South Peterson-
24	Fusselman Pool.
25	This case is about the waste of oil. It's about

7

	°
1	how to maximize recovery of oil as we move to the last days
2	of this reservoir's producing life.
3	Enserch will call Mr. George Faigle, a geologist.
4	He will review for you the nature of the reservoir. He
5	will show you that what we have here is a fractured
6	reservoir with an active water drive. There is no oil-water
7	contact in the reservoir, because the fracture system at
8	this point in the reservoir's life is water-saturated.
9	As I mentioned a minute ago, there are only five
10	wells still capable of producing. The Lambirth Number 1,
11	the discovery well, was and remains the best well in the
12	pool. And we will show you that it is the best well in the
13	pool because of the quality of the rock from which it
14	produces and also because it is structurally the highest
15	well in the reservoir.
16	We will then call Ralph Telford, a petroleum
17	engineer, and he will review the history of the Lambirth
18	Number 1. He will show you that after years of reliable
19	top-allowable production, the well in late 1993 watered out
20	and Enserch was faced with what to do to try and return the
21	well to producing status.
22	And they discovered an SPE paper that talked
23	about the benefits that could be obtained from high-volume
24	lift, increasing the rates of withdrawal in a reservoir of
25	this nature. And this paper showed that if you would

1	accelerate production you could pull water out of the
2	fractures, and when you did that oil would flow from the
3	matrix.
4	All the conditions in the paper fit the South
5	Peterson-Fusselman Pool and the Lambirth Number 1 well, so
6	Enserch attempted to employ this technology on the well.
7	And we'll review with you what Enserch did: first rod
8	pumps, then a submersible pump, then a larger submersible
9	pump.
10	And we will show you that we achieved exactly
11	what the SPE paper suggested we could achieve: a well that
12	can produce over 500 barrels of oil a day with a reduced
13	water cut.
14	The reason we're here is that if we are to
15	continue to produce this well and obtain the benefits from
16	high-volume lift, we have to have a higher allowable for
17	the Lambirth Number 1.
18	If we don't get the higher allowable pursuant to
19	directions from this Division, the well is overproduced and
20	pursuant to your direction the well will have to be shut
21	in. And if we do, we will show you that we may in fact
22	lose the well.
23	And we can show you that if we are able to go
24	forward, we should be able to produce approximately 456,000
25	barrels of oil that otherwise will be lost.

	10
1	The case first came before the Division in June
2	of last year, and Phillips appeared at that time in
3	opposition to the Application, and the Application was
4	denied.
5	Finding 10 of that order denying the Application
6	stated that the Application was denied because at this time
7	there is insufficient data available to assume that an
8	increased allowable will prevent waste and protect
9	correlative rights.
10	At that time the Examiner was correct. We put
11	the well on pump in May, we came to hearing in June, and
12	the presentation was based on analogies to other wells in
13	the pool and basically limited data.
14	But since that time, we have nine months of
15	additional data, and we can show you that HVL works in this
16	reservoir, that it will prevent waste, that it will
17	substantially increase the recovery of oil from this
18	reservoir.
19	And then we will call Mark Burkett, a petroleum
20	engineer, who will address the correlative rights aspects
21	of this case, and he is going to show you that in fact
22	there will be no adverse effect on any other operator in
23	the pool, that correlative rights cannot be impaired.
24	And we will conclude by showing that if the
25	Application is not granted, there is no correlative-rights

1	issue, that almost 500,000 barrels of oil will be lost.
2	CHAIRMAN LEMAY: Thank you, Mr. Carr.
3	Mr. Kellahin?
4	MR. KELLAHIN: Thank you, Mr. Chairman.
5	This pool was developed based upon a farmout from
6	Phillips Petroleum Company to Enserch, and the discovery
7	well was drilled by Enserch back in 1978.
8	You'll see from the exhibits that there's an
9	interesting pattern to the spacing units. They are 80-acre
10	laydown spacing units, and it's checkerboarded.
11	As a result of the farmout, Phillips retained the
12	alternative 80-acre tracts. And so when you look at the
13	displays, you're going to see every other spacing unit, if
14	you will, developed by one operator versus the other.
15	The reservoir rules were developed in 1978, and
16	for some 17 years, now, this pool has been operated and
17	depleted based upon an oil allowable of 267 barrels of oil
18	a day.
19	There is a water component to the reservoir
20	that's of significance to you. I have before me, and I
21	will give you copies of, the order that Mr. Carr referred
22	to. It was an Examiner case held in June of last year.
23	And in November of 1994, then, on the third of November,
24	the Division entered the order denying the Application of
25	Enserch.

There were some fundamental issues of difference 1 between the parties back in June. Those fundamental 2 differences continue today. The additional information 3 developed since the last hearing does not change the 4 conclusions. 5 Despite the contentions of Mr. Carr, this is not 6 7 a waste case; it is our evidence and our expert opinion from our witnesses' belief that this is strictly a 8 correlative-rights case. 9 You will see when you look at the displays from 10 our witnesses that the Enserch Lambirth Number 1 well does 11 in fact enjoy a significant advantage over the closest well 12 13 operated by Phillips. 14 The Phillips well is the Lambirth 2 A well. The 15 Enserch well is the Enserch Lambirth 1 well. Both operators have used Lambirth in the naming of the wells. 16 Those are the two wells that you will see, and we will talk 17 about the most. 18 The advantage to Enserch is that they are 38 feet 19 higher in their perforations in the top of the reservoir, 20 21 and they have the opportunity to continue to produce their well so that it will drain the downstructure Phillips well. 22 And if you increase the oil allowable, you simply 23 increase the opportunity for Enserch to take from Phillips 24 25 Phillips' share of the remaining oil before Phillips has a

1 chance to produce it.

-	
2	It is our contention that after 17 years, we see
3	no reason to change the rules. We are well aware of the
4	SPE paper. We have studied that SPE paper in detail, and
5	our witnesses come to different conclusions than Mr. Carr.
6	We believe this is a correlative-rights case
7	because it's simply one operator utilizing a proposed
8	increase in oil withdrawals to take advantage of the
9	downstructure operator.
10	It will be our testimony that this is not a waste
11	case, that the increased rates of oil production in the
12	Enserch well don't result in increased ultimate pool oil
13	recovery. The increased recoveries attributable to
14	Enserch, our proof will show, are simply draining oil from
15	us that we would otherwise produce. The dispute then is
16	the dispute now. We believe none of the new information
17	changes any of the results that Mr. Stogner entered when he
18	decided this case back in November of 1994.
19	We believe at the conclusion of this hearing that
20	we hope you will agree with us that the correlative rights
21	of Phillips are impaired if you grant this Application, and
22	we would ask that you affirm the Examiner order and deny
23	the request of Enserch.
24	CHAIRMAN LEMAY: Thank you, Mr. Kellahin.
25	Mr. Carr, you may proceed.

1	MR. CARR: At this time, if it please the
2	Commission, we would call Mr. George Faigle.
3	GEORGE FAIGLE,
4	the witness herein, after having been first duly sworn upon
5	his oath, was examined and testified as follows:
6	DIRECT EXAMINATION
7	BY MR. CARR:
8	Q. Would you state your name for the record, please?
9	A. George Faigle.
10	Q. Where do you reside?
11	A. Midland, Texas.
12	Q. By whom are you employed?
13	A. Enserch Exploration.
14	Q. And what is your current position with Enserch?
15	A. Development geologist.
16	Q. Mr. Faigle, have you previously testified before
17	the Oil Conservation Commission?
18	A. Yes.
19	Q. At the time of that prior testimony, were your
20	credentials as an expert in petroleum geology accepted and
21	made a matter of record?
22	A. Yes.
23	Q. Are you familiar with the Application filed in
24	this case on behalf of Enserch?
25	A. Yes.

STEVEN T. BRENNER, CCR (505) 989-9317

	13
1	Q. Are you familiar with the rules for the South
2	Peterson-Fusselman Pool and the wells located therein?
3	A. Yes.
4	Q. Could you briefly summarize for the Commission
5	what Enserch seeks with this Application?
6	A. Enserch seeks amendment of the special pool rules
7	and regulations for the South Peterson-Fusselman Pool to
8	provide for a special depth bracket allowable of 500
9	barrels of oil per day.
10	Q. Initially could you summarize for the Commission
11	the current rules that govern development in this pool?
12	A. Eighty-acre spacing, designated well location
13	requirements being within 150 feet of the center of the
14	quarter quarter section.
15	Q. Now, those are the special pool rules; is that
16	correct?
17	A. Yes.
18	Q. And then what are the other statewide rules that
19	would come into play?
20	A. Okay, the statewide rules are depth bracket
21	allowable of 267 barrels of oil per day.
22	Q. For an 80-acre tract?
23	A. For an 80-acre tract.
24	Q. And what is the gas-oil ratio?
25	A. 2000 to 1.

	**
1	Q. And using these figures, what would the resulting
2	casinghead gas allowable be for the pool?
3	A. 534 MCF per day.
4	Q. Let's go to Exhibit Number 1, and I'd ask you to
5	identify that for the Commission.
6	A. Exhibit Number 1 is a small-scale orientation
7	plat which shows the location of the South Peterson-
8	Fusselman Pool as indicated by the green dot.
9	Q. And this is just generally shows where it is
10	located in regard to other reservoirs in eastern New
11	Mexico?
12	A. Yes.
13	Q. Let's go to Exhibit Number 2. Would you identify
14	and review that?
15	A. Exhibit 2 is a large-scale area map showing the
16	Fusselman producers in red dots and the pool operators,
17	being Enserch, Phillips and Bledsoe.
18	Note that the Phillips 1 A is shut in at this
19	time and that the Enserch Number 3 Lambirth Fusselman
20	production is commingled with the Pennsylvanian production
21	as of May of 1994. It also shows the completion dates of
22	surrounding wells and the Enserch lease position.
23	Q. And the five wells in the center of the exhibit
24	are basically the five wells that still do produce from the
25	Fusselman in the area?

	ـــــــــــــــــــــــــــــــــــــ
1	A. Yes, that's correct.
2	Q. And the arrow indicates the Lambirth Number 1?
3	A. Yes.
4	Q. Could you review the just generally, the
5	characteristics of that well?
6	A. Okay.
7	Q. It is the best well in the pool, is it not, Mr.
8	Faigle?
9	A. Yes, it's the highest well in the pool, and it's
10	the best well in the pool.
11	Q. Okay.
12	A. It's indicated by the red arrow, as we stated
13	previously.
14	Q. All right. Let's go to Exhibit Number 3. Will
15	you identify that, please?
16	A. Okay, Exhibit Number 3 is a structure map on the
17	lower paleozoic carbonate, which is the Fusselman in this
18	area. It was prepared from well control.
19	It shows the five Fusselman wells left in this
20	area. It also shows the Bledsoe well in Section 10; that's
21	in the lower left-hand corner. It's also a Fusselman
22	producer, which is interpreted to be on a separate
23	structural closure.
24	The structural position of the producing wells in
25	this pool shows the Number 1 Lambirth to be the

	10
1	structurally highest well in the pool.
2	Q. All right, let's now go to Exhibit Number 4.
3	Would you identify that, please?
4	A. Exhibit 4 is a type log illustrating the
5	Fusselman Pool. It was It is the log of the Number 1
6	Lambirth. It shows the area stratigraphic section being
7	Pennsylvanian, on top of Fusselman, on top of granite, and
8	it also shows the perforated interval in the Number 1
9	Lambirth.
10	Q. Could you generally describe for the Commission
11	the characteristics of the Fusselman formation in this
12	area?
13	A. Lithologywise, the Fusselman is dolomite, white
14	to light gray through light tan, finely to coarsely
15	crystalline to sucrosic. In the Number 1 Lambirth it was
16	178 feet thick, and the reservoir was encountered 60 feet
17	into the Fusselman.
18	Porosities are in the range of 20 percent. The
19	porosity is a bimodal system consisting of fractures and
20	intercrystalline matrix porosity.
21	Permeabilities are in the range the 500-
22	millidarcy range.
23	This is a water-drive reservoir. The trap is
24	basically a structural accumulation of oil, formed at an
25	angular unconformity where the Fusselman subcrops against

1 the Penn. 2 Q. Now, Mr. Faigle, you prepared a cross-section of the wells in the pool? 3 Yes, sir. 4 Α. Let's go to Enserch Exhibit Number 5 and review 5 0. that cross-section for the Commission. 6 7 Α. Okay, Exhibit 5 is a structural cross-section 8 showing the structural position of the Number 1 Lambirth 9 and the three offsetting Phillips wells. It also shows the perforated interval in each well. 10 Those perforations are indicated in green? 11 Q. In the green color. 12 Α. 13 And what does this tell you? Q. It -- The cross-section or the perforations? 14 Α. The cross- -- The perforations. 15 Q. That they vary slightly from well to well. 16 Α. The reservoir is found in different structural positions in 17 different wells. 18 Structurally, the Lambirth Number 1 is the 19 0. highest well in the pool, is it not? 20 21 Α. Yes. Does the cross-section show an oil-water contact? 22 Q. 23 Α. No, because the Fusselman pool is essentially 24 watered out, an oil-water contact is irrelevant at this time. 25

19

20
Q. Let's look at Exhibit Number 6, please. Could
you identify that?
A. This is a diagram of the high-volume lift concept
and a geologic interpretation of how the high-volume lift
theory applies to the Number 1 Lambirth.
It shows the dual-porosity system, fractures in
the matrix, it shows the original oil-water contact, it
shows that the oil in the fractures has been produced and
replaced by water; the field has watered out.
It shows incremental oil in the matrix porosity,
some of which can be covered by high-volume lift production
methods, the details of which will be discussed in the
engineering section.
Q. Basically, Mr. Faigle, what geologic conclusions
can you reach from your study of this pool?
A. The reservoir is a dolomite, which has a
heterogeneous bimodal porosity system consisting of both
fractures and intercrystalline matrix porosity.
The pool is a structural accumulation of oil with
the Number 1 Lambirth the highest well in the pool.
The main reservoir has watered out.
Q. And this geological interpretation is going to be
used as a basis for the Enserch engineering presentation;
is that correct?
A. Yes.

1	Q. Were Exhibits 1 through 6 prepared by you?
2	A. Yes.
3	MR. CARR: At this time we would move the
4	admission of Enserch Exhibits 1 through 6.
5	CHAIRMAN LEMAY: Without objection, Exhibits 1
6	through 6 will be admitted into evidence.
7	MR. CARR: And that concludes my direct
8	examination of Mr. Faigle.
9	CHAIRMAN LEMAY: Thank you, Mr. Carr.
10	Mr. Kellahin?
11	MR. KELLAHIN: Thank you, Mr. Chairman.
12	CROSS-EXAMINATION
13	BY MR. KELLAHIN:
14	Q. Mr. Faigle, sir, if you'll turn with me to your
15	Exhibit Number 3.
16	Did you bring with you, Mr. Faigle, a copy of the
17	Exhibit 3 that you introduced before Examiner Stogner back
18	in June of 1994?
19	A. No.
20	Q. Let me show you, Mr. Faigle, what was introduced
21	at that hearing and sponsored by you as Exhibit Number 3
22	and ask you if you recognize this exhibit.
23	A. Yes.
24	Q. Is that a true and accurate copy of the exhibit
25	that you introduced before Examiner Stogner back on June 23

1	of 1994?
2	A. Yes.
3	Q. On your Exhibit 3 from the Examiner hearing, Mr.
4	Faigle, you scribed a red line around some of the wells in
5	the pool that would include the Lambirth 1 and the Lambirth
6	2 A. Do you remember doing that, sir?
7	A. Repeat that, please.
8	Q. Yes, sir. On Exhibit 3 from the Examiner
9	hearing, you had scribed a red line on that exhibit. I'm
10	looking at the one from the Examiner hearing. You scribed
11	a red line around some of the wells, including your
12	Lambirth 1 and the Phillips Lambirth 2 A, did you not do
13	that, sir?
14	A. And several other wells.
15	Q. Yes, sir. You did that; is that not correct?
16	A. It essentially outlined the five producing
17	wells it encircled the five producing wells we see on
18	Exhibit 3, which is presented in this hearing.
19	Q. All right, sir. And your testimony at that time
20	is, that circle represented the remaining productive
21	acreage at that point in time in the reservoir, did it not?
22	A. No.
23	Q. On page 12 of that transcript, Mr. Faigle, did
24	Mr. Carr ask you and did you not answer Mr. Carr, saying,
25	"Now"

MR. CARR: Let's --1 2 MR. KELLAHIN: It's page 12, Mr. Carr. MR. CARR: Let me give the witness a copy. 3 It's page 12. 4 MR. KELLAHIN: 5 MR. CARR: What line are you at? 6 MR. KELLAHIN: I'm starting at line number 9, Mr. 7 Faigle. THE WITNESS: 8 Okay. 9 Q. (By Mr. Kellahin) Are you with me? 10 Α. Okay. 11 Q. It says, "QUESTION: Now, the area that you have indicated with the circle on this Exhibit, that's not the 12 pool boundaries but just the acreage which you estimate now 13 14 still productive in the reservoir? 15 "ANSWER: That outlines the are" -- I think 16 that's a typo; it should say "area" -- "of the productive 17 wells..." Right? Yes, that's what it says. 18 Α. All right. Was that scribed area intended to 19 Q. 20 represent the productive acreage left in the reservoir at 21 that time? 22 No, it was put on there to outline, to run a Α. 23 circle around the producing wells. 24 All right. The exhibit you've introduced today ο. 25 is substantially different than the Exhibit 3 from the June

1 hearing, is it not? It's different. I don't agree with 2 Α. "substantially". 3 All right. Why have you changed your display 4 Q. 5 from the one introduced in June? Re-evaluation of the data. 6 Α. 7 Have you changed the top marker point at which Q. you've contoured the structure? 8 9 Yes. Α. Okay. Exhibit 3 from the June hearing is on the 10 0. 11 top of the Fusselman, as you identified it back at that prior hearing, is it not? 12 That's correct. 13 Α. 14 0. All right. On Exhibit 3 for today's hearing, 15 what have you used as the top on which you have then contoured the structure? 16 17 The lower paleozoic carbonate. Α. All right, let's go to the type log that you're 18 Q. 19 introduced today and have you show us the difference. Now your question, Mr. Kellahin, was --20 Α. 21 Q. Yes, sir, you have changed the point at which you have drawn the structure map; am I understanding that 22 23 correctly? I have made some changes to the contoured 24 Α. 25 horizon.

Yes, sir. I want to look at the type log and 1 Q. find out where to find on the type log the points you've 2 used as the marker point to construct the new structure 3 4 map. It's the line between the words "base of 5 Α. Pennsylvanian" and "lower paleozoic carbonate" --6 All right. 7 Q. -- is the current contoured horizon. 8 Α. If we're looking at the structure map from the 9 0. June hearing, where on this type log would we find that 10 11 point? I'll have to make an assumption on that. 12 Α. I don't 13 recall exactly. I would assume it was around 7800 feet 14 drilling depth. 15 All right. What's the basis for changing the Q. point at which you've drawn the structure? 16 To alleviate some of the confusion it caused. 17 Α. All right. When we look at the Exhibit 3 today, 18 0. can you identify for us what in your opinion was the 19 original oil-water contact in the reservoir at a minus 20 subsea depth? 21 The original oil-water contact was in the 22 Α. vicinity of minus 3450 to minus 3440. 23 All right, sir. Let me take a copy of your 24 Q. 25 Exhibit 5 from today's hearing, which is the cross-section

	20
1	that you presented. I'm going to show you my copy, if I
2	may. If I might lay this in front of you, Mr. Faigle. If
3	you'll help me find
4	A. 3450.
5	MR. KELLAHIN: If you'll help me find on my copy
6	of your cross-section the point, minus 3450, that
7	represents the original oil-water contact in the reservoir,
8	I want to scribe a red line to show where that original
9	oil-water contact was, all right?
10	All right, sir. Thank you, Mr. Faigle.
11	MR. KELLAHIN: Mr. Chairman, at my request Mr.
12	Faigle has marked my copy of the log at the point with a
13	pencil on each log where he has identified the original
14	oil-water contact, and so that you'll be able to see that
15	I'm going to draw a red line that connects those points so
16	that there's a visual reference.
17	Q. (By Mr. Kellahin) When we look at the cross-
18	section, my copy, I've put on the easel, just so that we
19	could look at the same Exhibit at the same time, Mr.
20	Faigle, when we're looking at that cross-section and find
21	the Enserch Number 1 Lambirth well, the top perforation in
22	the Enserch well is at a subsea depth of what, sir?
23	A. Minus 3380.
24	Q. And does that top perforation represent, in your
25	opinion, the top of the original oil within the Fusselman

1	reservoir?
2	A. It could be interpreted to mean that.
3	Q. So if we were to perforate higher in your well,
4	we're not going to get any more oil production in the
5	Fusselman?
6	A. I can't be sure enough to say that. There might
7	be some minor amounts producible in the tighter parts of
8	the reservoir.
9	Q. All right. When we go over to the Phillips 2 A
10	Lambirth well, which is the first well on the left side of
11	the cross-section, what is the top perforation in their
12	well in a subsea depth?
13	A. Minus 3418.
14	Q. All right. The advantage in terms of that
15	relationship is about 38 feet in preference to the Enserch
16	well, is it not?
17	A. Correct.
18	Q. When we look at the cartoon, the Exhibit 6, the
19	schematic illustration of that you're depicting, you
20	have concluded that at this point in the depletion of the
21	reservoir, that the fractures have watered out?
22	A. Yes.
23	Q. All right. With the original oil-water contact
24	as we've described it on the cross-section, describe for us
25	geologically how you believe that water to have moved so

	28
1	that now all the fractures are filled with water.
2	A. A water table will usually A bottom-drive
3	water table will usually encroach from the bottom upward.
4	Q. Is it your opinion that this is a bottom-drive
5	bottom water drive reservoir?
6	A. Yes, it is.
7	Q. All right, upon what do you base that opinion?
8	A. Literature.
9	Q. Do you have any field data with regards to this
10	pool that supports that opinion?
11	A. This is more an engineering-type question, but I
12	believe we do have some data that would indicate this.
13	Q. All right. You as a geologist don't see any
14	geologic evidence to support whether or not it's a bottom
15	water drive as opposed to an edge water drive?
16	A. I see some evidence, yes.
17	Q. As a geologist?
18	A. Yes.
19	Q. All right. If your concept of the bottom water
20	drive is correct, then, would the water uniformly move
21	vertically in the reservoir as the wells deplete the
22	reservoir?
23	A. It would move generally It's not going to
24	come up on a perfectly flat, horizontal plane. The water
25	tables don't encroach that way. It would come up

1	erratically. Not extremely erratically, but it's not going
2	to come up as a horizontal plane, a flat, horizontal plane;
3	it's going to come up gradually.
4	Q. All right. As that bottom water drive encroaches
5	vertically into the oil column, if you will, what was the
6	first well to experience increased water cuts that could be
7	attributable to the migration vertically of that water?
8	A. Of the four wells on the cross-section?
9	Q. Yes, sir.
10	A. I would assume it would be the lowest structural
11	position. The well with the lowest structural position
12	would have the water cut first.
13	Q. All right. Describe for me your concept of the
14	reservoir between this fracture system and what you've
15	described as matrix oil.
16	And perhaps the Exhibit 6 is the display to look
17	at. You have illustrated the reservoir to be a combination
18	fracture and matrix porosity?
19	A. Yes.
20	Q. A dual-porosity system, if you will?
21	A. Bimodal porosity system.
22	Q. All right. Tell us why you have that belief.
23	A. Performance of the wells, literature, published
24	literature.
25	Q. As the water drive moves up, it encroaches into

1	the upper portion of the reservoir that originally had oil,
2	it is your conclusion that that water has filled up the
3	fracture system; is that not what this shows?
4	A. Yes.
5	Q. Okay. And at this point in the life of the
6	reservoir, where, then, is the remaining oil left to be
7	produced?
8	A. There may be some left in the fractures, small
9	amounts that we're talking about, one percent or in that
10	neighborhood. The oil remaining in the reservoir, we
11	believe, is in the matrix porosity.
12	Q. Describe for us why you have that belief.
13	A. Because the production characteristics of the
14	wells would indicate that the oil would be produced from
15	the fractures first since they have the greatest
16	permeability, and they would water out first.
17	Q. Mr. Carr mentioned that there were still five
18	wells left in the pool that continue to produce. You've
19	shown four on the cross-section. Where is the fifth?
20	And perhaps we could look at a locator map.
21	Exhibit 3 serves that purpose, I believe, if you'll look at
22	Exhibit 3.
23	A. The Fusselman producer not on the cross-section
24	is the Enserch Number 3 Lambirth.
25	Q. All right, it's the northeast offset to the well

with the red arrow? 1 Yes. 2 Α. Why has that well been excluded from the cross-3 Q. section? 4 It was my understanding of the problem, was Α. 5 between the Enserch Number 1 Lambirth and the offsetting 6 Phillips wells. 7 What is the status of the Enserch Lambirth 3 8 Q. well, the well that's excluded from the cross-section? 9 The Number 3 is producing commingled from the 10 Α. Pennsylvanian and the Fusselman. 11 Is it still producing oil, then, from the 12 **Q**. 13 Fusselman? We have to assume so. Being commingled, there's 14 Α. 15 no way I can qualify or disqualify which zone is producing the oil. 16 17 When was that well commingled, Mr. Faigle, ο. approximately? 18 May, 1994. 19 Α. At the time it was commingled, was it open in the 20 Q. 21 Fusselman? No, it was a Pennsylvanian producer that was Α. 22 recompleted commingled to Fusselman and the Pennsylvanian. 23 All right. So you had Pennsylvanian gas 24 0. 25 production or oil?

A. Oil.
Q. Pennsylvanian oil production in the well, and
then you went up and added the Fusselman?
A. We went down and
Q. I'm sorry.
Q recompleted in the Fusselman.
Q. All right.
A. The well was originally a Fusselman producer, low
oil volumes, high water volumes, which was produced for a
very short period of time in the Fusselman and then
recompleted to the Penn.
Q. At the time that the Fusselman was originally
abandoned in that well, what kind of oil-water rate did you
have?
A. I don't know.
Q. All right. Do you recall approximately when that
took place?
A. No.
Q. At this point is it fair to assume that there's
little if any contribution from the Fusselman in that
wellbore? That's a
A. No.
Q. We don't know?
A. No, I don't think it's fair to assume that
there's little or no contribution from the Fusselman in

32

that wellbore. 1 At this point there's no way to retrieve the data 2 Q. from that well to determine whether or not there's any oil 3 contribution from the Fusselman? 4 State that again, please. 5 Α. Because it's been commingled, there is no way to Q. 6 currently know what oil contribution is being made from the 7 Fusselman in that well? 8 We know what it was capable of before the 9 Α. Fusselman was abandoned the first time, and we assume that 10 11 when we went back there, we were in the neighborhood of 12 those volumes. 13 Q. And what rate was that again, sir? 14 Α. I do not know. 15 0. All right. Can you quantify or define for me, Mr. Faigle, how you're using the term "watered out"? 16 17 Α. When a well reaches water cuts of approximately 95 percent and also it's becoming marginally economic, it's 18 19 costing more to dispose of water and lift than we can make 20 a profit from the oil that the well produces, it's essentially -- it's economically watered out. 21 I'm not sure I understood the answer. You gave 22 Q. me two criteria. A water cut of 95 percent? 23 24 It varies. It depends on the volumes you're Α. lifting. 25

Q. All right. Separate that for a moment. You also
gave me an economic criterion.
A. Yes.
Q. You could have an economic criterion that made a
well unprofitable
A. Yes.
Q at less than 95-percent water cut, could you
not?
A. Sure.
Q. All right. Which of those two criteria are the
determining factor in your definition of "watered out"?
A. I would use them both.
Q. At what time in the productive life of the
reservoir did the fracture system, in you opinion, become
watered out?
A. Which well? It happened
Q. Well, all wells, now, in your opinion, have
watered out in the fracture system?
A. The fracture system has watered out.
Q. In all wells?
A. In all wells.
Q. At what point did that occur in your Enserch
Lambirth 1 well?
A. I don't know. The engineering section may be
able to help you with that answer.

1	Q. All right. Would you know the point in time
2	where the fracture system in any of these wells watered
3	out, by your definition?
4	A. It would depend on operating costs and things
5	that on an individual well basis you'd have to look at
6	it.
7	Q. Can you express an opinion as to when any of
8	these wells watered out in the fracture system?
9	A. A particular date, no, that would have to be an
10	engineering evaluation considering economics and volumes
11	and
12	Q. Was it your opinion before Examiner Stogner that
13	the increasing oil allowable that you've requested was not
14	going to be an advantage of Enserch over Phillips because
15	you believe the rising oil-water contact was going to
16	affect all wells approximately equally, because all of them
17	had a similar relationship as to their bottom perforations?
18	A. State that again, please.
19	Q. Yes, sir. If you'll look at the transcript,
20	maybe that's how to do this. Look at Exhibit the
21	transcript, and if you'll turn to page 13 with me, if
22	you'll look at line 18.
23	A. Page what? Thirteen?
24	Q. Yes, sir, line 18. Mr. Carr is asking you, "So
25	in the Enserch well, the well that you're primarily

1	concerned about, and the immediate offsetting Phillips well
2	to the north, the bottom of the perforated interval is
3	identical?
4	"ANSWER: Correct. Now, this Therefore a
5	rising oil-water contact would affect both wells equally.
6	There would be no advantage to either well."
7	Do you see that?
8	A. Yes.
9	Q. All right. Was it not your conclusion
10	geologically at the Examiner hearing that as a result of
11	the bottom water drive and the fact that the Enserch Number
12	1 well and the Phillips 2 A well had bottom perforations
13	that were approximately at correlative intervals in the
14	reservoir, that you could increase the oil allowable, and
15	you would have no advantage?
16	A. I don't understand what you're
17	Q. What part of my question do you not understand,
18	sir?
19	A. Well, could you break it down into pieces? Maybe
20	I can handle it better that way. I seem to be getting a
21	complex question, and I don't know how to answer it.
22	Q. All right. You have reached the opinion that
23	this is a bottom water drive reservoir, right?
24	A. Yes.
25	Q. All right. When you look at the perforations in

	37
1	the bottom of the Lambirth well for Phillips, the 1, if you
2	look at the cross-section
3	A. Yes.
4	Q do you see that?
5	A. Yes.
6	Q. All right. That bottom perforation is in what
7	relationship to the Enserch Number 1 well?
8	A. They have similar subsea depths at the bottom of
9	the perforations in each of those two wells.
10	Q. All right. Because that is so, and because you
11	concluded that this was a bottom water drive, you've also
12	concluded, did you not, sir, that there would be no
13	advantage to Enserch by increasing the oil rate, because
14	the increased rate would simply affect both wells equally
15	as the water moved vertically?
16	A. We were beyond that point in the where to
17	position The reservoir was already watered out at that
18	time. So at that time there would be no advantage, it was
19	too late for an advantage. We were speaking historically
20	about rising oil-water contacts. At the time of the
21	hearing, the oil-water contact was essentially at the top
22	of the reservoir by then, or very close to it.
23	Q. Okay.
24	A. The advantages you're looking for may have been
25	historical. They weren't current.

1	Q. All right. Do you see any remaining oil column,
2	then, in the matrix above the original oil-water contact?
3	A. Yes.
4	Q. Can you determine where that point is in the
5	matrix?
6	A. I'll have to make an assumption that there's
7	matrix oil available everywhere above the original oil-
8	water contact if you can get it out.
9	Q. All right. Does not, then, Enserch continue to
10	enjoy an advantage of some 38 feet in the perforations
11	between you and Phillips as you compete for the remaining
12	oil in the matrix?
13	A. There's no doubt about it, we have the highest
14	structural well in the best reservoir, I can't dispute
15	that.
16	MR. KELLAHIN: All right, sir.
17	Thank you, Mr. Chairman.
18	CHAIRMAN LEMAY: Thank you.
19	MR. CARR: Mr. Chairman, I'd like to
20	CHAIRMAN LEMAY: I'm sorry.
21	MR. CARR: and I'll be brief.
22	CHAIRMAN LEMAY: That's fine.
23	REDIRECT EXAMINATION
24	BY MR. CARR:
25	Q. Mr. Faigle, at the Examiner hearing there was

some confusion about the zone or the interval that you used 1 for constructing the structure map of this reservoir map; 2 is that not true? 3 Α. 4 Yes. And so to correct that what you did was, you went 5 0. and picked a marker that is the base of the Penn in a 6 clearly definable interval; is that not correct? 7 Correct. 8 Α. 9 ο. Isn't that what caused the difference between the structure map that was offered in June and the structure 10 map that is offered now? 11 Yes, it did. 12 Α. And by drawing a red line at the original oil-13 ο. water contact in this reservoir, hasn't Mr. Kellahin in 14 essence just taken your structure map, and it is a more 15 refined example of what the schematic is designed to show? 16 17 Α. Correct. MR. CARR: That's all I have. 18 CHAIRMAN LEMAY: Thank you. 19 Commissioner Weiss? 20 EXAMINATION 21 BY COMMISSIONER WEISS: 22 You said that it actually fractured the perm 500 23 Q. millidarcies. Did you measure that, or is that an 24 estimate? 25

A. That's a measured permeability from a well
performance test on the Number 1 Lambirth.
Q. So this is, I think, perhaps more an engineering
question, but the fractures were identified from the same
test?
A. We assumed, I believe, that there were fractures.
They're about the only thing that could give us a
permeability of that magnitude after looking at the
porosity on the logs.
COMMISSIONER WEISS: That's the only question I
have. Thank you.
CHAIRMAN LEMAY: Commissioner Carlson?
COMMISSIONER CARLSON: No questions.
CHAIRMAN LEMAY: I have no questions. Thank you.
MR. CARR: May it please the Commission, at this
time we would call Mr. Ralph Telford.
RALPH B. TELFORD,
the witness herein, after having been first duly sworn upon
his oath, was examined and testified as follows:
DIRECT EXAMINATION
BY MR. CARR:
Q. Would you state your name for the record, please?
A. Ralph Telford.
Q. Where do you reside?
A. Midland, Texas.

1	Q. By whom are you employed and in what capacity?
2	A. Enserch Exploration as a petroleum engineer.
3	Q. Have you previously testified before the
4	Commission?
5	A. Yes, I have.
6	Q. At the time of that prior testimony, were your
7	credentials as a petroleum engineer accepted and made a
8	matter of record?
9	A. Yes, they were.
10	Q. Does the geographic area of your responsibility
11	with Enserch include the Southeast Peterson-Fusselman Pool
12	area?
13	A. Yes, it does.
14	Q. Are you familiar with the wells completed and
15	producing from that pool?
16	A. Yes, I am.
17	Q. Are you familiar with the Application filed in
18	this case on behalf of Enserch?
19	A. Yes.
20	MR. CARR: Are the witness's qualifications
21	acceptable?
22	CHAIRMAN LEMAY: They're acceptable.
23	Q. (By Mr. Carr) Mr. Telford, could you review for
24	the Commission what it is Enserch is asking the Commission
25	to do in this matter?

1	A. We're looking for an assignment of a special
2	depth bracket allowable for the South Peterson-Fusselman
3	Pool of 500 barrels of oil per day to replace the current
4	depth bracket allowable for said pool of 267 barrels of oil
5	per day.
6	We want an assignment retroactive to June 1st,
7	1994, which is the date which Enserch's Application was
8	filed. And if we're not approved, the well is overproduced
9	and we'll have to shut it in.
10	Q. The reason for the retroactive request, that June
11	1st is the first day of the first month following the day
12	the Application was filed?
13	A. Yes.
14	Q. Initially, Mr. Telford, could you just summarize
15	the existing rules for the pool?
16	A. Pursuant to Order R-5771 as amended by Order
17	5771-A, special rules and regulations were adopted for this
18	pool which provided for 80-acre spacing and designated well
19	location requirements.
20	Statewide rules are 80-acre, depth bracket
21	allowable of 267 barrels of oil per day, a 2000-to-1 GOR
22	which resulted in a 534-MCF-per-day casinghead gas
23	allowable.
24	Q. All right. Now, those were the rules that were
25	in place in May of last year?

1	A. Yes.
2	Q. At that time you were experiencing problems with
3	the Lambirth Number 1 in terms of maintaining its
4	production levels?
5	A. Yes.
6	Q. And an Application was then filed with the Oil
7	Conservation Division?
8	A. Yes.
9	Q. Could you refer to Exhibit Number 7 and then just
10	very briefly review for the Commission the history of this
11	particular case?
12	A. Okay, in July 17th, 1978, the pool was
13	established and temporary pool rules were adopted providing
14	for 80-acre spacing and proration units. In August of 1979
15	the pool rules were adopted on a permanent basis.
16	In May of 1994 we installed a submersible pump on
17	the Lambirth 1. And May 9th of 1994, a special allowable
18	authorized for the Oil Conservation in the Hobbs District,
19	we received a letter from them.
20	And May 17th, 1994, Enserch filed Application for
21	a special depth bracket allowable.
22	On June 23rd, 1994, Enserch appeared before the
23	Commission, like we are today, to get the rules made
24	permanent. We had a continuance till July 21st.
25	And on November 3rd the we received the Order

1	R-5771-B denying the Application of Enserch.
2	On November 8th, Enserch filed for the
3	Application, for hearing de novo.
4	January 12th, the Oil Conservation Commission
5	hearing was continued, at the request of Enserch. Phillips
6	advised the Commission it had no objection to the
7	continuance.
8	And February 24th, today, we are here to settle
9	this whole thing.
10	Q. Now, Mr. Telford, identify what's been marked as
11	Enserch Exhibit 8, please.
12	A. It is the Oil Conservation Division Order
13	R-5771-B, dated November 3rd, 1994, which denied Enserch's
14	Application.
15	Q. Now, this is the Examiner Order, and the Order in
16	its findings sets forth the presentation of both the
17	parties; is that correct?
18	A. That is correct.
19	Q. Could you go to Finding Number 10 on page 4 and
20	just read that into the record, please?
21	A. It says, "At this time there is insufficient data
22	available to assure that increased oil allowable for the
23	South Peterson-Fusselman Pool will not result in the
24	impairment of other operators' and mineral-interests'
25	correlative rights in the pool and would not result in the

1	prevention of waste."
2	Q. If we look at the case history, Exhibit Number 7,
3	I believe you testified that you started experiencing the
4	increased production rate from the Lambirth Number 1 in
5	May?
6	A. That is correct.
7	Q. And it was on May the 9th that you approached the
8	Oil Conservation Division concerning this matter?
9	A. Yes.
10	Q. And then the matter came for hearing on June the
11	23rd?
12	A. That is correct.
13	Q. It was on June the 23rd, was it not, that the
14	actual evidence was presented in this matter?
15	A. Yes.
16	Q. So at that time you had less than two months'
17	information on the well?f
18	A. That is correct, and we were also experiencing
19	mechanical problems with the well at the time.
20	Q. At this point in time, has additional information
21	been obtained that addresses the concerns expressed by Mr.
22	Stogner in the Examiner Order?
23	A. Yes.
24	Q. Before we get into the actual information on the
25	SPE paper and on the well performance, could you review

	40
1	what it is exactly you're requesting and why that request
2	has to be made?
3	A. We're looking to increase the ultimate recoveries
4	from the Lambirth Number 1. To do that, we must increase
5	allowables from the pool.
6	The well currently produces in excess of the
7	allowable, and special allowable will improve economics and
8	increase this well's ultimate recovery. And this will also
9	will not impair the rights of any other operator in the
10	pool.
11	Q. Now, Mr. Burkett is going to be called to review
12	that last point
13	A. The correlative rights, yes.
14	Q correlative rights?
15	Let's go to Exhibit Number 9. Would you identify
16	that, please?
17	A. This is SPE paper 7463. This paper was written
18	in 1978 by Amoco, and basically the paper sets out a theory
19	that we find applicable to the Lambirth Number 1.
20	The paper has empirical data from 55 wells. It
21	shows an average increase of reserves of 350,000 barrels of
22	oil. The parameters are applicable to these type of wells.
23	The best candidates are in the Devonian reservoir. The
24	reservoir is heterogeneous and has a water drive, and the
25	wells are producing with less than a 95-percent water cut

_	
1	and greater than a 70-percent water cut.
2	Q. Now, do all of those parameters fit the South
3	Peterson-Fusselman Pool and the Lambirth Number 1?
4	A. Yes, they do.
5	Q. Were you the individual that came across this SPE
6	paper?
7	A. Yes.
8	Q. And when you saw that paper, were you the one who
9	concluded that perhaps this type of high-volume lift would
10	be something that could be tried on the Lambirth Number 1?
11	A. Yes.
12	Q. All right. Let's go back to Exhibit Number 6.
13	It's up on the easel above the cross-section.
14	Basically, using this, just summarize what your
15	understanding of the characteristics of this reservoir have
16	to be.
17	A. Basically, what we have is a dual-porosity
18	reservoir. You have the matrix and you have the fractures.
19	And currently the fracture system is watered out and the
20	remaining oil is in the matrix.
21	Q. Is that the kind of reservoir that was the
22	subject of this SPE paper?
23	A. Yes, it is.
24	Q. All right, let's look at the Lambirth Number 1
25	well, and I would direct your attention to Enserch Exhibit
1	

	48
1	Number 10, the production history. Could you review that
2	for the Commission?
3	A. Yes, the Lambirth 1 was the discovery well for
4	the pool. Production started in 1978.
5	You'll notice the green curve is oil production,
6	the red curve is gas production, the yellow curve is gas-
7	oil ratio, the dark blue curve is water production, and the
8	light blue curve is water cut.
9	You'll notice the well produced relatively flat
10	till 1986 when the well started making water. The well was
11	then pinched back to curtail this water production. This
12	pinching back was continued until 1993 when the well
13	essentially watered out and died.
14	Then a rod pump was installed, production
15	increased to 60 barrels of oil per day and water cuts were
16	in the 80- to 88-percent range.
17	In May of 1994 a submersible pump was installed.
18	Next, we need to go to exhibit
19	Q. If we look at the exhibit, the gas-oil ratio is
20	basically flat, is it not?
21	A. Flat, which is indicative of a water drive
22	reservoir.
23	Q. And this is the not only the discovery well,
24	but has been a top-allowable in the well
25	A. Yes.

	43
1	Q well in the field?
2	A. It is the best well in the field.
3	Q. All right. Let's go now to Enserch Exhibit
4	Number 11. Identify this, please.
5	A. Okay, what we have here is daily production for
6	the Lambirth 1. It starts in December of 1993.
7	The dark green curve is oil production, the dark
8	blue curve is water cut.
9	If you'll notice, in December until April the oil
10	production was relatively flat, slightly declining. It's
11	60 barrels a day.
12	In May we put our first submersible in the well,
13	denoted by the red line. Production then increased from 60
14	barrels a day to between 200 and 300 barrels a day. Also,
15	if you'll notice, the water cut went from about 86 percent
16	to 90 percent.
17	Later on, in August, we installed a larger
18	submersible as denoted by the next red line. Production
19	then increased to over 500 barrels of oil per day and water
20	cut decreased from 90 percent to a low of 84 percent. And
21	that's climbed to its current rate of between 86 and 87
22	percent.
23	Q. All right, Mr. Telford, when we look at Exhibit
24	Number 10, the production history on the Lambirth Number 1,
25	we have a well that basically fits the criteria in the SPE

paper?
A. That is correct.
Q. And we've already established we have a reservoir
that meets that criteria?
A. Uh-huh.
Q. Now, if we go to Exhibit Number 11, we can see
what happened as you attempted to employ these high-volume
lift techniques to the reservoir.
What does this production curve, Exhibit Number
11, tell you about the success of high-volume lift in this
reservoir?
A. Okay, what I've done, if you'll notice the light
dashed pink curve, that is a production decline shot for
the rod pump. It also shows remaining reserves of 31,000
barrels of oil.
Next up, I've shot a decline from the smaller
submersible. It showed a remaining reserves of 160,000
barrels of oil.
And finally, the dashed green curve shows
remaining reserves of 487,000 barrels.
So incremental reserves over the rod pump is
456,000 barrels and 327,000 barrels over using the small
submersible. And this is oil that would not be recovered
by any other well in the pool unless we keep the large
submersible in the well.

1	Q. So this Exhibit Number 11 shows that when you put
2	the submersible pumps on the well, in fact you got the
3	response that you were anticipating in accordance with the
4	SPE paper?
5	A. Yes, we It shows larger recoveries and also
6	the decreased water cuts.
7	Q. And basically what it shows when you then take
8	the new production curve and plot it out, that you will
9	recover ultimately almost 500,000 barrels of oil more with
10	the large submersible pump in the well than you would have
11	been able to with simply the rod pump?
12	A. That is correct.
13	Q. Now, Enserch obviously is recovering more oil
14	from the Lambirth Number 1 than any other well in the pool?
15	A. That is correct.
16	Q. And that's a result of these recovery techniques?
17	A. Yes, that's also due to better structure and
18	better quality rock and more oil underneath our tract.
19	Q. In your opinion, is it possible that this high-
20	volume lift technique could be applied to other wells in
21	the pool?
22	A. Yes.
23	Q. In fact, has it been?
24	A. Yes, it has.
25	Q. In what wells?

1	A. The Lambirth 1 A and the 2 A.
2	Q. Have the comparable results been obtained in
3	those other wells?
4	A. Not as good as the Lambirth 1 A.
5	Q. Do those other wells have comparable structure or
6	rock quality when you compare them to the Lambirth Number
7	1?
8	A. No, they do not.
9	Q. All right. Let's go to what has been marked
10	Enserch Exhibit Number 12. Could you identify and review
11	that, please?
12	A. Basically what we have here is a list of wells
13	that Enserch operates that have been lost to casing
14	failures in the South Peterson area.
15	If you'll notice, there's twelve wells in the
16	list. This represents 41 percent of the wells that we
17	operate in the area.
18	Due to losing these wells we've lost reserves of
19	460,000 barrels of oil and 478 million cubic feet of gas.
20	Q. The Lambirth Number 8 has been lost since the
21	hearing last June?
22	A. That is correct. That was one of the candidates
23	that we were looking to apply the high-volume lift to.
24	Q. And when did that casing collapse occur, casing
25	failure occur?

	55
1	A. September of 1994.
2	Q. If we look at Exhibit Number 12, this simply
3	shows that if you lose your well, you're unable to produce
4	your reserves?
5	A. That is correct.
6	Q. If we look and relate that back to Exhibit Number
7	11, what that shows is that by employing high-volume lift
8	you recover additional reserves that in fact are not going
9	to be achieved but left in the ground?
10	A. That is correct.
11	Q. If you're able to employ high-volume lift in a
12	timely fashion, you're going to get the benefit not only of
13	the technique, but you're hopefully going to have a well
14	that will enable you to recover these reserves?
15	A. Yes. I'd also like to point out that the
16	Lambirth Number 1 is the oldest well in the pool.
17	Q. Mr. Telford, in your opinion will approval of
18	this Application and the increase in the allowable permit
19	Enserch to produce the Lambirth Number 1 in a fashion that
20	will ultimately result in the prevention of waste of oil?
21	A. That is correct, yes.
22	Q. Will you be calling another witness, Mr. Burkett,
23	to review the correlative-rights aspects of this
24	Application?
25	A. Yes.

1	Q. Were Exhibits 7 through 12 prepared by you or
2	compiled at your direction?
3	A. Yes, they were.
4	MR. CARR: At this time, may it please the
5	Commission, we move the admission of Enserch Exhibits 7
6	through 12.
7	CHAIRMAN LEMAY: Without objection, Exhibits 7
8	through 12 will be admitted into the record.
9	MR. CARR: That concludes my direct examination
10	of this witness.
11	CHAIRMAN LEMAY: Thank you, Mr. Carr.
12	Mr. Kellahin?
13	CROSS-EXAMINATION
14	BY MR. KELLAHIN:
15	Q. Mr. Telford, if you'll find Exhibit 10 for me,
16	perhaps we can use that to illustrate my questions for you,
17	sir.
18	In terms of your chronology, when did you first
19	put in the first pump that had the ability to produce
20	sufficient fluids from your well so that you had the
21	opportunity to produce oil in excess of the daily oil
22	allowable of 267 barrels?
23	A. That would be May.
24	Q. That's the May of 1994
25	A. That's the small submersible.

1	Q. The highest rate of oil productivity on a daily
2	basis that you were able to achieve with that submersible
3	was what, sir?
4	A. That was slightly over 300, I believe. If I can
5	look
6	Q. I believe your
7	A. About 350.
8	Q. All right. Somewhere in the 330 to 350 range, I
9	believe, is what we talked about last June.
10	A. That is correct. Since then we've installed the
11	larger submersible.
12	Q. All right. From the point of time that you
13	exceeded the allowable, the 267, up until the date of the
14	hearing, there's a reference here to an authorization by
15	the Hobbs OCD
16	A. Yes.
17	Q to conduct a test, if you will
18	A. That is correct.
19	Q and exceed the oil allowable. All right? Is
20	that not correct?
21	A. That is correct.
22	Q. And you introduced a letter from Mr. Sexton back
23	in June describing for you the terms and conditions for
24	that test; is that not correct?
25	A. That is correct.

1	Q. I show you a copy of what was introduced as
2	Enserch Exhibit 11 to that Examiner hearing.
3	What were the conditions imposed upon Enserch for
4	producing in excess of the daily oil allowable?
5	A. That we file for a hearing within 20 days.
6	Q. All right, sir, and you did that?
7	A. Yes, we did.
8	Q. And the last paragraph of that letter says that
9	after the order is entered for that hearing, what then will
10	happen?
11	A. The well will have to be curtailed and the
12	overage made up.
13	Q. All right. From the hearing, July I'm sorry,
14	June 23rd, that was our evidentiary hearing?
15	A. Yes.
16	Q to the date of the Order, November 3rd of
17	1994, what did you do in terms of producing that well?
18	A. We installed the larger submersible pump and
19	gathered more data.
20	Q. Okay, the larger submersible pump was installed
21	approximately when, sir?
22	A. In August.
23	Q. Do you have a date in August?
24	A. The exact date? Not with me.
25	Q. All right, sir. In August of 1994, you went to a

1	larger submersible with what result?
2	A. With what result? Increased oil recoveries and
3	decreased water cut.
4	Q. Give us a general range of the oil rate on a
5	daily basis that you were producing.
6	A. Close to 600 barrels of oil a day.
7	Q. All right. How long were you able to sustain
8	producing at 600 barrels of oil a day?
9	A. Not very long.
10	Q. All right. You have production records on a
11	daily basis
12	A. Yes.
13	Q that would show us exactly how this was done?
14	A. Exhibit 11 shows that.
15	Q. We can pull it off of Exhibit 11?
16	A. Yes.
17	Q. All right. On November 3rd, then, what then did
18	you do with the well? After you got the Examiner order?
19	I assume you got it reasonably at some period of time after
20	November the 3rd.
21	A. We received it, I believe, on the 8th.
22	Q. All right. What then did you do?
23	A. We filed for a hearing de novo.
24	Q. All right. What did you do in terms of producing
25	the well?

A. We kept producing the well.
Q. At what rate, sir?
A. At its current rate, 500 barrels a day.
Q. Okay. Did you go back to Mr. Sexton and ask for
additional authority from him to produce in excess of what
the Examiner had required you to do as a result of the
November Order?
A. No, we did not. We assumed that since the case
was still pending we could still produce the well.
Q. Is there anything in Mr. Sexton's letter that
tells you you can do that?
A. No, there's not. But we have every intention of
shutting the well in if we lose today.
Q. From November 8th to the current period, can you
tell us what Let me ask you a different way.
What as of today is the current total
overproduction of oil on the well?
A. As of November, it's approximately three months'
worth of production. We'd have to shut in the well for
three months.
Q. As of November
A. As of November 1st, from November 1st to now,
three months' production.
Q. Can you I don't know if you have it with you
now, but you could calculate for us

1	A. Actually, I may have it with me right here.
2	Q. All right, sir, let's get an actual number.
3	A. Actually, I've got it over there. Can I get it
4	over here?
5	Q. Yes, sir.
6	A. The actual number as of November 1st through
7	January is 25,081 barrels.
8	Q. From November 1st to when, sir?
9	A. Through January.
10	Q. Through January of 1995?
11	A. Through January of 1995.
12	Q. All right. Prior to November 1st, what is the
13	overproduction?
14	A. I don't have those numbers handy.
15	Q. So the 25,000 is not a cumulative total
16	A. No, it is not.
17	Q of overproduction?
18	You keep production records on a daily basis,
19	though, so should the Commission require it, you can tell
20	the Commission exactly how much total overproduction is
21	attributable to this well at any given point in time?
22	A. That is correct, that will be no problem.
23	Q. When we look at the SPE paper, the criteria, if
24	you will, for having an opportunity to achieve increased
25	oil rate with a high-volume lift system within the

1	parameters of that paper was a water cut between 70 percent
2	and approximately 95 percent, if I remember the paper
3	correctly?
4	A. That is correct.
5	Q. All right. Did I hear you correctly in response
6	to Mr. Carr that that technique would have or could have
7	been available to any of the wells in this South Peterson-
8	Fusselman Pool if they were within that range?
9	A. That is correct, if they were within that range
10	and they had the correct reservoir characteristics.
11	Q. All right. Does the paper describe any
12	additional criteria in terms of reservoir characteristics?
13	A. Just a heterogeneous reservoir, preferably
14	Devonian.
15	Q. Does it give you any preference or criteria to
16	structural position?
17	A. I do not believe so, no.
18	Q. Does the paper qualify or alert the reader to the
19	issue of premature water breakthrough?
20	A. Yes, it does.
21	Q. And what does it say about that issue?
22	A. Well, let me read it to you.
23	Q. All right.
24	A. It says, if you'll look on page 4 of the paper,
25	"Concern over premature water breakthrough and reduced

1	ultimate recovery from application of high-volume lift is
2	unsubstantiated in most heterogeneous, west Texas
3	carbonate, oil-wet, natural waterdrive reservoirs."
4	Q. Did the paper discuss or attempt to study whether
5	or not the application of this technique would result in
6	increased ultimate recovery for the pool?
7	A. No, it did not.
8	Q. It was talking about the opportunity for an
9	individual well to increase its ultimate recovery?
10	A. Yes, but this could be applied to other wells,
11	not just one well.
12	Q. I understand, but the paper was making no
13	argument in terms of total reservoir recoveries in a waste
14	context?
15	A. No, it did not.
16	MR. KELLAHIN: All right. Thank you, Mr.
17	Chairman.
18	CHAIRMAN LEMAY: Thank you.
19	Commissioner Weiss?
20	EXAMINATION
21	BY COMMISSIONER WEISS:
22	Q. Is the well pumped off now?
23	A. No, sir, it is not. The fluid level is 1320 feet
24	from the surface. I wish we could pump it off.
25	Q. So the other wells are still flowing, I take it,

1 that are out there? They're on submersible as well. Well, the A 2 is 2 Α. 3 on submersible; our Number 3 is on rod pump. So they're all on artificial lift? 4 0. 5 Α. Yes. 6 COMMISSIONER WEISS: That's the only question I 7 have. Thank you. CHAIRMAN LEMAY: Commissioner Carlson? 8 9 COMMISSIONER CARLSON: No questions. EXAMINATION 10 BY CHAIRMAN LEMAY: 11 One question I have here on your Exhibit Number 12 Q. That's the --13 11. Daily production plot? 14 Α. Yeah, that's --15 Q. 16 Α. Okay. -- the detailed one. Was that well shut in, it 17 Q. looked like, through the month of April, 1994? 18 Yes, it was. We were waiting on electricity. 19 Α. But when you brought it back on, there was no 20 ο. 21 problem bringing it back on after having it shut in that 22 period of time? 23 Α. No, there was not. 24 CHAIRMAN LEMAY: Thank you, that's all I have. Do you want to take a break now, or -- Do you 25

1	have one more witness?
2	MR. CARR: I have one more witness.
3	CHAIRMAN LEMAY: Okay, let's go with him.
4	MR. CARR: All right. At this time we would call
5	Mr. Mark Burkett.
6	MARK BURKETT,
7	the witness herein, after having been first duly sworn upon
8	his oath, was examined and testified as follows:
9	DIRECT EXAMINATION
10	BY MR. CARR:
11	Q. Will you state your name for the record, please?
12	A. Mark Burkett.
13	Q. Where do you reside?
14	A. I reside in Midland, Texas.
15	Q. By whom are you employed?
16	A. Enserch Exploration.
17	Q. And what is your current position with Enserch?
18	A. I am the district petroleum engineer.
19	Q. Mr. Burkett, have you previously testified before
20	this Commission?
21	A. Yes, sir, I have.
22	Q. At the time of that prior testimony, were your
23	credentials as a petroleum engineer accepted and made a
24	matter of record?
25	A. Yes, they were.

1	Q. Are you familiar with the Application filed in
2	this case on behalf of Enserch?
3	A. Yes, sir.
4	Q. And are you familiar with the rules for the South
5	Peterson-Fusselman Pool and the wells located therein?
6	A. Yes, sir.
7	Q. I'd like to direct your attention to what has
8	been marked as Enserch Exhibit Number 13. Would you
9	identify that and then review the information on this
10	exhibit for the Commission?
11	A. Okay, Exhibit 13 is a as Mr. Telford testified
12	earlier, this is a pressure profile, or a calculated
13	pressure profile, of the pressure as a function of distance
14	away from the wellbore for the Lambirth Number 1.
15	As you can see on the X axis, we have a distance
16	from wellbore. It goes from zero to 1300 feet.
17	On the Y axis we have pressure, a wellbore
18	pressure, from 2300 to 2550.
19	The green line is the static reservoir pressure
20	that was determined from a pressure buildup test. The last
21	pressure buildup test we conducted on the Lambirth Number 1
22	was 2518 p.s.i.
23	Our last fluid level that Mr. Telford referred
24	to, 1320 feet, calculates to roughly a wellbore flowing
25	pressure of 2318 pounds, which would be the intercept of

	63
1	the Y axis with the blue curve. The blue curve would
2	represent pressure as you move away from the wellbore.
3	Now, this is a very simplified diagram; there
4	were a lot of assumptions built into it. It's based on a
5	very simple engineering calculation, Darcy's law. It
6	assumes steady-state flow, it assumes an impotent-acting
7	reservoir, only one well in the reservoir.
8	The KH or capacity was adjusted to take into
9	account water and to take into account the actual data that
10	we're seeing today, based on the fluid level. It assumes
11	constant permeability and no skin.
12	This is a real basic model, but what it's showing
13	is that most of the drawdown occurs in the first 150 feet.
14	It's also showing that we're only drawing down
15	the wellbore 200 pounds, so we're just barely drawing on
16	this reservoir. It's saying that we're unable to draw down
17	the reservoir, and this is with the current 500-barrel-per-
18	day production. So this is the current conditions, and
19	it's basically saying that we're unable to draw down this
20	reservoir even with the largest pump possible.
21	It's also showing it's a very prolific well, an
22	extremely prolific well.
23	One other thing to point out is, as we get to the
24	lease line, it's denoted by the dark line at about 660
25	feet. We see a pressure drawdown of about 31 p.s.i. at the

1	lease line.
2	Q. All right, Mr. Burkett, let's take now this
3	exhibit, put it aside and go to Exhibit Number 14.
4	Could you explain what you've done, how you've
5	constructed Exhibit Number 14 and its relationship to the
6	previous exhibit?
7	A. Okay, Exhibit 14 is really an extension of
8	Exhibit 13. Again, you can see the blue line. On the left
9	side of the page is the Lambirth Number 1. On the right
10	side of the page would be the Lambirth A 2.
11	Again, the X axis is the distance from the
12	Lambirth Number 1 well, the Enserch Lambirth Number 1.
13	The Y axis represents pressure and goes from 1700
14	pounds to 2600 pounds.
15	The lease line is shown at about 660 feet, so you
16	can see that it's equidistant.
17	Again, the same assumptions apply here: steady-
18	state flow, it's an impotent-acting reservoir. These are
19	based on single wells, only one well in the reservoir. And
20	that's a shortcoming of this exhibit, but it's done to
21	simplify the problem; we could have a real complicated
22	model here. We're just trying to simplify.
23	It assumes that the permeability is constant per
24	well, no skin. And it's Darcy's law, the most basic
25	reservoir engineering calculations.

	87
1	What it's showing, it's showing based on the
2	fluid level provided by Phillips, according to Phillips
3	they had shot a fluid level to their well on June 21st 1995
4	[sic] of 1830 feet from the surface, and we calculated a
5	bottomhole pressure of 1500 I'm sorry, of 2144 p.s.i.,
6	based on 1579 barrels of fluid withdrawn.
7	We matched the permeability with those
8	parameters, and with the latest data we have, using 3263
9	barrels of withdrawal, we calculated a bottomhole pressure
10	of 1743 p.s.i., which would be the intercept to the right
11	corner of the diagram.
12	So what this represents is Enserch's pressure
13	drawdown versus Phillips' pressure drawdown. It's showing
14	that Phillips is able to draw down the reservoir 773 p.s.i.
15	while Enserch is only able to draw their well down 200
16	p.s.i.
17	There are some shortcomings with the exhibit,
18	based on the assumptions. But what it's showing is that
19	It's showing a no-flow boundary way over on Enserch's
20	property. In fact, it's occurring at around a point of 165
21	feet from Enserch's well. And a no-flow boundary would be
22	if there were a drop of oil sitting at this distance, 165
23	feet from Enserch's well, it would not know whether to go
24	to Enserch's well or to Phillips' well.
25	What this exhibit shows is that Phillips is

1	draining Enserch's acreage, and it also shows that they
2	have an advantage of a drawdown practically four times
3	greater than what Enserch is enjoying.
4	Q. Mr. Burkett, what you've done is, you've taken
5	the information on Exhibit 13 and added the Lambirth Number
6	2 A, the Phillips well, to the exhibit?
7	A. Yes, sir.
8	Q. What you have been able to show here is that
9	within the limits of the information used, that in fact
10	there's a four times greater drawdown by the Phillips well
11	in the reservoir than what you've been able to achieve?
12	A. Yes, sir.
13	Q. And the information that you have on this exhibit
14	is what the kind of drawdown you're able to achieve
15	using the existing large submersible pump and under
16	existing well conditions?
17	A. That is correct.
18	Q. Now, if you model this reservoir, you could
19	obtain a more refined information or data on exactly what's
20	happening; is that not right?
21	A. That is correct. And we've played with different
22	parameters, we've adjusted the parameters, but the bottom
23	line is, the character of the curves are still the same.
24	And regardless of what we vary, in every case it reverts
25	back to the no-flow boundary being way over on Enserch's

	69
1	property.
2	Q. In other words, the data may change, but in your
3	opinion the conclusions would not?
4	A. That is correct, the conclusions will still be
5	the same, that Phillips has an advantage over Enserch, even
6	with our higher withdrawal rates.
7	Q. What conclusions have you reached, based on your
8	review of this reservoir, concerning the impact of granting
9	this Application on the correlative rights of interest
10	owners in the pool?
11	A. Correlative rights will not be damaged by
12	granting the special allowable. What we see is that
13	Phillips is enjoying a four-times greater drawdown.
14	They're drawing on a reservoir four times greater than
15	Enserch is capable of drawing on it, and that we see a net
16	drainage in the direction of Phillips.
17	Q. Is what you're proposing an effort to in fact
18	offset drainage with counter-drainage?
19	A. That is correct, to the extent that we can.
20	Q. And what additional increase and recovery are you
21	hoping to achieve?
22	A. We will only partly be able to counter the
23	drainage, and as Mr. Telford mentioned earlier, we should
24	see an increase of 456,000 barrels incremental.
25	This is based on two factors. One is the

	/0
1	stripping effect of moving more volumes of water through
2	the reservoir from the fractional flow curve.
3	And the other is the increased drawdown. As we
4	increase the pressure drawdown in the reservoir, we will
5	force the matrix to feed. We have a higher column than
6	Phillips does, so therefore we have more matrix oil than
7	Phillips does. But by increasing this drawdown, we should
8	get the matrix to feed into the fractures and therefore
9	increase recoveries, and that's what the theory says,
10	that's what we're seeing from our production data.
11	Q. How does the potential for a loss of casing
12	impact the correlative rights of Enserch in the pool?
13	A. Well, as Mr. Telford mentioned, we have lost 41
14	percent of our wells out there, we've lost 460,000 barrels
15	of reserves. And if we lose this wellbore, we will not be
16	able to compete or we will not have the opportunity to
17	produce our the reserves on Enserch's lease.
18	Q. Now, you see no adverse impact on the correlative
19	rights of Phillips; is that right?
20	A. None at all.
21	Q. What impact would there be on the correlative
22	rights of Enserch if in fact the Application is denied?
23	A. Phillips will still enjoy an advantage and
24	Enserch will not be able to compete with Phillips.
25	Basically, we'll be denied the opportunity to compete.

1 Q. Were Exhibits 13 and 14 prepared by you or under 2 your supervision? Yes, they were. 3 Α. MR. CARR: At this time we move the admission of 4 Enserch Exhibits 13 and 14. 5 CHAIRMAN LEMAY: Without objection, Exhibits 13 6 and 14 will be admitted into the record. 7 MR. CARR: And that concludes my direct 8 examination of Mr. Burkett. 9 CHAIRMAN LEMAY: Thank you, Mr. Carr. 10 Mr. Kellahin? 11 MR. KELLAHIN: Thank you, Mr. Chairman. 12 CROSS-EXAMINATION 13 BY MR. KELLAHIN: 14 15 0. I'm sorry, is your last name Burkett? Burkett, yes, sir. Α. 16 Burkett. 17 ο. Yes, sir. 18 Α. Mr. Burkett, describe for me again, sir, what is 19 Q. it that you do? 20 I am the district petroleum engineer. I'm over 21 Α. engineering operations for the west Texas district for 22 Enserch Exploration. My regional boundaries are the Rocky 23 Mountains, west Texas and New Mexico region. I'm 24 responsible for all engineering operations. 25

All right. Now, within the context of your 1 Q. work --2 3 Α. Yes, sir. -- are you applying reservoir engineering 4 Q. experience to this hearing? 5 6 Α. Yes, sir. All right. Do you also have in your capacity the 7 Q. production responsibilities that we would see with a normal 8 9 production engineer? Α. Yes, sir, we're responsible for production and 10 reservoir engineering, all production reservoir engineering 11 functions. 12 All right. You would be familiar, then, with how 13 ο. the Phillips 2 A well and your Number 1 well are 14 configured? 15 16 Α. Yes, sir. All right. Both those wells have 5-1/2-inch 17 Q. casing, I believe? 18 I'm not certain of theirs, but I am certain of 19 Α. ours, yes, sir. 20 Are you aware that both wells are using 21 Q. approximately the same size high-volume lift system? 22 I have heard that Phillips has installed a larger 23 Α. submersible pump. I've heard that, it's been hearsay. 24 All right. The rates of production on your well 25 Q.

72

1 that we've used in your model --Α. Yes, sir. 2 -- were you using 500 or 600 barrels of oil a 3 Q. day? 4 Those were based on the last test we had, which 5 Α. was -- actually, I used a -- I used 4403 barrels per day of 6 total fluid, and the permeability we used was a combination 7 of oil and water permeability. 8 9 Q. Okay. Let me see if I understand how you've constructed the model --10 11 Α. Okay. -- upon which you've based your conclusions. 12 0. Ι have seen that done, that this basic engineering model was 13 simply a depletion drive reservoir. 14 15 Α. Okay. Is that not what this is often used for? 16 0. Yes, it is. In fact, we varied it for a pseudo-17 Α. steady-state. But for this -- for trying to simplify the 18 model, we've gone back to a steady-state flow with a 19 20 constant pressure boundary at a half a mile. It's an arbitrary number. We varied it from 1320 to a mile. 21 We 22 played around with it. It still exhibits the same results, 23 regardless of what we use for RE, regardless of whether we 24 use pseudo-steady-state or steady state. the basic concept is still the same. 25

1	Q. All right. You're using a computer-assisted
2	program of some kind?
3	A. Yes, sir, a spreadsheet with simple Darcy's law.
4	Q. All right. This is not one of those
5	sophisticated reservoir simulations where you're putting in
6	these reservoir parameters and modeling the performance of
7	these two wells within a certain container?
8	A. No, sir.
9	Q. All right. This model does not have inputted
10	into it the geologic conclusions that Mr. Faigle has
11	described for us in terms of size, shape and structural
12	position?
13	A. Other than feet of pay, no, it does not.
14	Q. All right.
15	A. It's a very simplified model.
16	Q. When we look at this model then, what we're
17	looking at is a container of a certain horizontal
18	dimension, if you will?
19	A. Yes.
20	Q. What dimension did you use?
21	A. I used a drainage radius of 2640, one-half mile.
22	Q. And the model uses one well?
23	A. One well, yes, sir.
24	Q. And within that horizontal extent, you also have
25	a vertical component?

1 Α. Yes, sir. Within that container, then, the assumptions of 2 Q. the model are that they will have a certain uniform 3 porosity? 4 5 Yes, sir. Α. It assumes a certain uniform permeability? 6 Q. 7 That is correct. Α. It will make no differentiation as to structure? 8 Q. That is correct. 9 Α. It will not take into consideration whether or 10 Q. not this is a bottom water drive or an edge water drive 11 reservoir? 12 13 Α. That's right. 14 MR. KELLAHIN: All right, no further questions. 15 CHAIRMAN LEMAY: Thank you. I have one question. 16 MR. CARR: REDIRECT EXAMINATION 17 BY MR. CARR: 18 In this model, is porosity a factor? 19 0. No, it is not a factor. 20 Α. MR. CARR: That's all. 21 CHAIRMAN LEMAY: Commissioner Weiss? 22 EXAMINATION 23 BY COMMISSIONER WEISS: 24 What was the KH at both wells? 25 Q.

	70
1	A. We determined this with an iterative procedure,
2	it was trial and error. And in the Lambirth Number 1, I
3	used 208 millidarcies with 72 feet of pay.
4	Now, Mr. Faigle had reported a pressure buildup
5	test that was done in 1978 of 500 millidarcies. And that
6	is correct, that was a pressure buildup test done at that
7	time. It was based on 50 feet of pay instead of 72 feet of
8	pay. So the numbers are approximately correct.
9	My permeability or the permeability I've used
10	here is a combination of oil and water. That permeability
11	was calculated back when it was totally oil saturation. So
12	it's close.
13	On the Lambirth A 2 well, our iterative
14	calculations, we came up with 94 millidarcies and 30 feet
15	of pay. This is substantially higher than was reported
16	from core analysis, and I'm concerned that maybe core
17	analysis maybe they used plug cores instead of hole
18	cores, maybe. But it Had I used their lower number of
19	about three to four millidarcies, it would make the no-flow
20	boundary even further on our lease.
21	So I've just gone with what fits, just using the
22	data that fits.
23	Q. And is there any engineering evidence that that
24	supports the fractures?
25	A. Yes, sir, there was a study done by RPI that
-	

1	shows a permeability distribution, and they also showed a
2	bimodal distribution of fracture and matrix porosity.
3	Q. That was based on cores?
4	A. On cores, yes, sir.
5	Q. Very good.
6	A. And that was presented in the Examiner hearing
7	previously. We submitted that as an exhibit.
8	COMMISSIONER WEISS: Thank you, I have no other
9	questions.
10	CHAIRMAN LEMAY: Commissioner Carlson?
11	COMMISSIONER CARLSON: That's all right. He
12	covered it.
13	EXAMINATION
14	BY CHAIRMAN LEMAY:
15	Q. I probably should have asked this early on, but
16	I'll ask you because it's a question I had and didn't ask.
17	The Pennsylvanian oil and the Fusselman oil, are
18	they similar?
19	A. They're very similar.
20	Q. So it would be hard to differentiate between the
21	two?
22	A. It would be, yes, sir.
23	Q. Bear with me; I'm a geologist, not an engineer.
24	A. Okay.
25	Q. You have this drop of oil there, and depending on

	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
1	which way it's going to move, you've done that with
2	pressures.
3	A. Yes, sir.
4	Q. But with a water drive reservoir wouldn't that
5	drop of oil just stay there and you'd have the movement
6	from the bottom up of water so that The molecules aren't
7	going in either direction, but what you're trying to
8	control is the rate of water coming up the pay section,
9	aren't you?
10	A. That's right. According to how we see the
11	reservoir, this drop of oil would have to be in the matrix,
12	because the water has already moved above You know, it's
13	already watered everything out through the fracture system.
14	Q. Okay.
15	A. And so the pressure is pretty much equalized.
16	Q. Okay.
17	A. Now, when we increase when we install the
18	high-volume lift, we increase the drawdown, we're pulling
19	the water through the fractures. Well, finally we're
20	getting this little drop of oil to come from the matrix
21	into the fractures.
22	Phillips is doing it from their end, we're doing
23	it from our end, and that drop of oil would be at some
24	point, according to this model, on our lease, would be that
25	no-flow boundary where the drop of oil in the matrix would

	/9
1	come out into the fractures and have to decide which way to
2	go, whether to go to Phillips' well or our well.
3	Does that confuse you?
4	Q. Yeah, it does.
5	A. Okay.
6	Q. You're changing a water drive reservoir, then, to
7	a gas-solution-type drive reservoir? Or what happens with
8	the oil in the matrix that's coming into the fracture
9	system? Is it going to be influenced by some water that's
10	in the fracture system there or what?
11	A. It should be, and what we feel we're doing with
12	the high-volume lift is pulling so much water through the
13	fractures, and perhaps four or five pore volumes of water
14	through the fractures, that any matrix oil that seeps into
15	the fractures will ultimately end up in the wellbore.
16	And so the way we envision the model, as we
17	increase the drawdown or we pull harder on the fractures,
18	we're able to alleviate oil or move oil from the matrix
19	into the fractures.
20	Q. So your whole reservoir has become a different
21	mechanism; you're sucking the oil out of the matrix, rather
22	than letting the water move the oil up into the wellbore?
23	A. That's correct, yes, sir, that's correct.
24	In effect, it goes back to what Mr. Faigle was
25	talking about, about we've watered everything out. You

	80
1	know, we've watered out the fracture system. We still have
2	matrix oil in place.
3	You know, we have a higher amount of matrix oil
4	than does Phillips because we were located higher above the
5	oil-water contact. So while We have a lot more bypassed
6	oil than Phillips does, because we're located higher
7	structurally. And as we increase drawdowns then we should
8	recover more larger amounts of oil, because we have more
9	oil in the matrix system. So we should recover higher
10	volumes from high-volume lift.
11	Phillips has done this for about three years, and
12	they recovered a lot of oil, but they're not as high in the
13	column, so they haven't recovered as much as we should,
14	because we have a higher column, a higher matrix oil
15	column.
16	Q. Any idea of percentage of total oil in place in
17	the fractures and in the matrix?
18	A. I'm not aware of any, I'm not aware of any.
19	Q. Well, it looks like you've got a half a million
20	barrels left.
21	Do you know how much the well has produced
22	already?
23	A. With a million barrels, right, at a million
24	barrels. It's been a very, very good well.
25	Q. Yeah. So basically there's more oil in the
•	

	01
1	fractures, I guess, than in the matrix to start with, and
2	now you're working on the matrix, which is harder to get
3	out?
4	A. Probably it's going to be harder to get out.
5	We'll probably leave a lot of oil behind.
6	Q. How much, percentage of oil in place?
7	A. I haven't done any calculations on it, but the
8	drawdowns we're seeing most of our drawdowns occur in
9	the first 150 feet. So I think the bulk of our recoveries,
10	you know, come from that 150 feet. We feel like we'll
11	leave a lot of oil in place.
12	CHAIRMAN LEMAY: Take a break? Fifteen-minute
13	break?
14	(Thereupon, a recess was taken at 10:35 a.m.)
15	(The following proceedings had at 11:00 a.m.)
16	CHAIRMAN LEMAY: Does that complete your
17	MR. CARR: That concludes our presentation, Mr.
18	Chairman.
19	CHAIRMAN LEMAY: Thank you.
20	Mr. Kellahin?
21	MR. KELLAHIN: Thank you, Mr. Chairman.
22	We're going to present two witnesses to you.
23	Scott Balke is a petroleum geologist with Phillips. He
24	testified at the original Examiner hearing. I'm going to
25	call him first.

1 The second witness is Jack Pickett. Mr. Pickett is a petroleum engineer. In addition, he also testified 2 before Examiner Stogner. 3 At this time I'll ask Scott to take the witness 4 stand. 5 6 SCOTT BALKE, the witness herein, after having been first duly sworn upon 7 his oath, was examined and testified as follows: 8 9 DIRECT EXAMINATION 10 BY MR. KELLAHIN: For the record, would you please state your name 11 ο. 12 and occupation? 13 Α. Scott Balke, I'm a geologist for Phillips Petroleum. 14 On prior occasions, Mr. Balke, have you testified 15 Q. before the Oil Conservation Division in the capacity as an 16 expert in the area of petroleum geology? 17 Yes, I have. 18 Α. Summarize for us your education. 19 0. I got an undergraduate degree at the University 20 Α. of Colorado; a graduate degree, Oklahoma State University. 21 In what years, sir? 22 Q. Undergraduate degree was 1978 through 1982; 23 Α. graduate degree was 1982 to 1984. 24 Do you have geologic experience in southeastern 25 Q.

1	New Mexico, west Texas?
2	A. Yes, I do.
3	Q. Does that experience include the Fusselman
4	production that we've talked about this morning and what is
5	identified by the Division as the South Peterson-Fusselman
6	Pool?
7	A. Yes, it does.
8	Q. How did you first become familiar as a geologist
9	with that particular production?
10	A. Originally I was part of the RPI study. There
11	was a consortium of companies who did a Siluro-Devonian
12	study in west Texas, New Mexico.
13	Q. That RPI study was referenced by one of Mr.
14	Carr's witnesses a while ago. Describe for us what that
15	was.
16	A. The study was a group, it was a consulting group
17	out of Boulder, Colorado, that wanted to study the
18	particular characteristics of Siluro-Devonian throughout
19	the Permian Basin, and so each several of the oil
20	companies gave both money and cores and information to the
21	study so they could all collaborate the information and get
22	the best results from all the information available.
23	Q. What's the particular time frame for that RPI
24	study?
25	A. It started gosh, probably back in The

	84
1	original beginning work was probably back in 1988,
2	something like that. The conclusions took place probably
3	late 1989, something like that.
4	Q. Apart from contributing to that study effort, do
5	you have other independent involvement with the Fusselman
6	production in this pool?
7	A. Yes, my duties We're responsible for all
8	fields within New Mexico, and part of those were the South
9	Peterson field here.
10	Q. How many years of your professional geologic
11	experience includes your involvement with the Fusselman
12	Pool?
13	A. Close to six years.
14	Q. In addition, did you make a specific study of and
15	geologic conclusions and recommendations to Examiner
16	Stogner back in the June, 1994, hearing?
17	A. Yes, I did.
18	Q. Have you continued to study the geology involved
19	in this particular pool?
20	A. Yes, I have.
21	Q. And based upon that study, do you now have
22	certain geologic conclusions and opinions?
23	A. Yes, I do.
24	MR. KELLAHIN: We tender Mr. Balke as a
25	geologist.

1 MR. CARR: No objection. CHAIRMAN LEMAY: His qualifications are 2 acceptable. Balke, is it? 3 THE WITNESS: Yeah, B as in boy, a-l-k-e. 4 5 CHAIRMAN LEMAY: Thank you. (By Mr. Kellahin) Mr. Balke, what I think I'm Q. 6 7 going to do is take some of your exhibits out of order. Ι think I -- I don't want to surprise you, but I'd like to 8 take that cartoon that you have prepared so that we can 9 have you characterize the reservoir for us. 10 11 Α. Okay. 12 MR. KELLAHIN: Can you see that, Mr. Carr? 13 MR. CARR: No, if I can step over --14 MR. KELLAHIN: Now can you see it? 15 (By Mr. Kellahin) Let me direct your attention Q. to what we've marked as Phillips Exhibit Number 6, I 16 believe it is. 17 Α. Five. 18 I'm sorry, 5. What's the base display? 19 Q. What you're seeing here is very much --20 Α. I'm sorry, I asked you the wrong question. 21 Q. Looking -- Where did that display come from originally? 22 23 Α. Oh, excuse me. It came from Mr. Faigle's presentation back in June. 24 What then did you do to his characterization or 25 Q.

85

	86
1	representation of the reservoir?
2	A. I tried to implore [<i>sic</i>] our understanding of the
3	water drive mechanism of the reservoir and how it applies
4	to the geological framework.
5	Q. Let me divide this into sections for you, Mr.
6	Balke. If you would give us a characterization of the
7	Fusselman reservoir, what kind of rock are we looking at?
8	What's its deposition? Just give us a general summary
9	geologically of how you would characterize the reservoir.
10	A. The geological parameters I'm going to show came
11	from the core that we took in the Lambirth 2 A and the
12	geological work I did throughout the field.
13	I agree with Mr. Faigle that it is a fractured
14	dolomite reservoir, heterogenous, fracture with matrix
15	porosity. The porosity comes from both the fractures and
16	from the matrix intercrystalline porosity itself. The
17	key
18	Q. Do you subscribe to the theory that this
19	reservoir is a dual-permeability system?
20	A. Dual-permeability system, but with a significant
21	factor of being only fractures, being your core
22	permeability, I guess your primary permeability component.
23	Your fractures are going to be your conduits,
24	with your matrix porosity being your storage capacity.
25	Your fractures are going to be what's going to transport

1	the oil from both the fracture system and the matrix up
2	through the borehole.
3	Q. Characterize, then, the reservoir, please.
4	A. It's a highly fractured permeable reservoir where
5	your communication within your reservoir occurs throughout
6	the reservoir itself, throughout the Fusselman itself.
7	You Again, like I previously said, your
8	fractures are going to be your conduits. It's just like a
9	building with doorways and hallways. Your rooms are going
10	to be where the storage capacity is going to be, but to get
11	through the rooms outside, you've got to go through the
12	hallways, which are the fracture systems.
13	Q. What is the trapping mechanism by which the
14	hydrocarbons were accumulated and stored?
15	A. Structurally trapped and stored both within the
16	fractures and within the matrix porosity.
17	Q. Is there a water component to the reservoir?
18	A. Yes, there is.
19	Q. Do you have an opinion as to where the original
20	oil-water contact was in this reservoir?
21	A. The original oil-water contact is going to be
22	very similar with Mr. Faigle's.
23	Q. So you don't have any disagreement with him
24	A. Don't have any
25	Q as to the subsea depth at minus 3450?

87

88
A. No problems at all.
Q. Do you subscribe to the theory that this is an
active bottom water drive reservoir?
A. Not only an active bottom water reservoir
bottom drive reservoir, there's a key component, probably a
significant component of an edge water drive reservoir.
This is based upon geological maps and performance of the
wells.
Q. If we look at Mr. Faigle's cross-section that is
on the other display board, and if you'll look at the red
line that depicts the minus 3450 subsea location of the
original oil-water contact, describe for us why you as a
geologist do not agree that this is an exclusive bottom
water drive reservoir.
A. If Just like Mr. Faigle said, if you had had a
constant bottom drive reservoir, giving some slack and some
variances granted, you would see the water rise in each one
of these wells, you'd see the lower structural wells water
out or see at least water encroachment earlier than the
wells up on top.
And when I show you my structure map, I will show
you wells that watered out and produced a lot more,
significantly more water, with the same structural
elevation. So that proves that it can't be a single bottom
water drive, because you have the same subsea depth wells

	89
1	watering out at different times, significantly different
2	times, so it could not be a single bottom water drive.
3	Q. Can you give us an illustration of a comparison
4	between two wells
5	A. Uh-huh.
6	Q where you would have expected one well to have
7	substantially increased its water cut if in fact it was
8	being affected by water a bottom water drive mechanism?
9	A. Yes, sir, if you could look at my Exhibit Number
10	3, which is a structure map on the Fusselman itself, within
11	Section 31 there we have a Number 2 well, which is our
12	Enserch 2 A well, which is a subsea depth of minus 3419,
13	and the Number 1 well, which has a subsea depth of minus
14	3406. Actually, our Number 2 well is slightly structurally
15	lower than the Number 1 well there.
16	However, water and in fact the water or the
17	well became uneconomical because of water much earlier in
18	the Number 1 well than it did in the Number 2 well. Now,
19	if this was a strictly bottom water drive, that phenomenon
20	would not take place.
21	Q. When you compare the Enserch Number 1 Lambirth
22	with the Phillips A 2 Lambirth in terms of the approximate
23	time frame within which each of those wells began to
24	experience substantial increases in water cut, what's the
25	relationship and what did you see?

1	A. The Number 2 well should be encountering water
2	before the Number 1 well, and that's because it's
3	structurally lower. You have a complete fractured
4	reservoir right there, so they're in communication with
5	themselves. And you would see the Number 1 well, being
6	structurally higher, seeing water much later.
7	Q. And what happened?
8	A. That is the case.
9	Q. Describe for us, then, geologically what you see
10	to have occurred as we look at Exhibit 5, the cartoon.
11	A. Uh-huh.
12	Q. With the original oil-water contact as you see it
13	and with these wells and this geologic data, describe for
14	us what's happened.
15	A. Well, because this was a this fracture system
16	was not only fractured but it also had solution enhancement
17	done for diagenesis, you had significant communication
18	within the wells. And as the Number 1 well increased its
19	rate, and because of its structurally favorable position,
20	you're going to see water encroachment coming up at an
21	accelerated rate, especially if it's produced at a higher
22	rate, and will prematurely water out our Number 2 A
23	Lambirth.
24	Q. When you say "water coming up", can you describe
25	for us in what directions this water is encroaching?

1	A. It will come up from the edge, along with the
2	bottom, but it will also come up from the edge, because we
3	see, based upon our structure map and based upon our well
4	performance, that there's a strong edge water drive
5	component to it. So you'll see water coming up on the edge
6	of the reservoir itself.
7	Q. Have you also studied the structural relationship
8	between the Enserch Lambirth 1 and the Phillips Lambirth A
9	2 well?
10	A. Yes.
11	Q. What is your opinion about the vertical
12	difference in the top perforations between those two wells
13	in this pool?
14	A. The Number 1 Lambirth well will experience a
15	structurally favored position of about 38 feet,
16	approximately 38 feet, and that will give them a
17	significant structural advantage over our Number 2 well.
18	And that advantage, because of the structure and
19	because we're seeing that the fracture patterns are all
20	broken up so that the reservoir is in communication with
21	itself, will be a significant advantage for Enserch over
22	Phillips.
23	Q. Mr. Faigle subscribes to the proposition that at
24	this point in the reservoir, if there was an advantage
25	structurally, it simply no longer matters for remaining oil

	52
1	production because the fracture system is watered out.
2	Do you agree?
3	A. Well, I'd even kind of piggy-back on top of what
4	Mr. Burkett also said: It takes the matrix to feed into
5	the fractures to produce the oil. Your storage capacity is
6	in the frac excuse me, is in the matrix. And it's the
7	fractures that are going to be able to bring the oil to the
8	well itself.
9	So I don't agree with Mr. Faigle because I think
10	that your fractures are not watered out, they're just
11	carrying the remnant oil that they carry and also the oil
12	that's coming from the matrix.
13	Q. In your opinion, does the structural
14	differentiation between the two wells still matter in terms
15	of remaining depletion of the reservoir?
16	A. Significantly, without doubt.
17	Q. From a geologic perspective, will rate matter?
18	A. Yes, it will.
19	Q. In what way?
20	A. As you see, both on the diagrams and on this
21	structure map, you're having this reservoir being in
22	communication with itself, both There's no vertical
23	permeability barriers, there's no horizontal permeability
24	barriers. With the wells being higher up on the structure,
25	you'll have the advantage.

	20
1	Is that I think I've lost your question a
2	little bit, but maybe that answers it.
3	Q. Well, let me ask you a different way. If the
4	maximum oil rate is still 267 a day and continues the
5	historical level of that withdrawal rate, versus increasing
6	it to 500 barrels a day, does it matter?
7	A. Yes, it does. If you increase your rate, you
8	will have adverse effects on Phillips wells, on the
9	Phillips Well Number 2, to be specific. Increased rate
10	will increase the water into our well.
11	Q. When we look at the producing interval in the
12	reservoir above the original oil-water contact, do you see
13	variations in porosity as we move through the reservoir?
14	A. There are some variations. However, it's pretty
15	consistent at about 9.5 percent, the core analysis that was
16	done, but on the Number 2 well was hole-core analysis. But
17	the key component And we can get to it if I may?
18	Q. Yes, sir.
19	A. Go to Exhibit Number 5.
20	Q. I'm sorry, I think you're looking at 4.
21	A. Excuse me, you're right, 4.
22	Q. All right, we'll get it straight yet.
23	A. Okay.
24	Q. Four is RPI information from the study?
25	A. That's correct.

93

STEVEN T. BRENNER, CCR (505) 989-9317

	94
1	Q. Take a moment and identify each page, and then
2	let's go back and talk about what it means.
3	A. The first page is a cross-plot of core porosity
4	and permeability in the Phillips Lambirth A Number 2.
5	The second page identifies the distribution of
6	core permeability from samples. So you've got core
7	permeability versus the percent, where it's at.
8	What I want to show from both of these is, one,
9	yes, there is a heterogenetic relationship in permeability.
10	However, when you compare porosity as on the first page,
11	porosity compared with permeability, you see not a direct
12	relationship at all.
13	Porosity stays pretty consistent through there,
14	about 9.5 percent. However, permeability can range from
15	being a moderate-permeable rock to a very high-permeable
16	rock. And it's a very high-permeable rock that makes this
17	reservoir a very in communication with each other.
18	Q. When we look at the first page of Exhibit 4, the
19	figure 9.110, specifically what are we looking at?
20	A. Looking at
21	Q. The first page of this exhibit.
22	A. Yes.
23	Q. What is that?
24	A. That's just, again, a correlation between
25	porosity, core porosity, and core permeability within the

	25
1	Lambirth A Number 2, and showing zones of both moderate
2	porosity or moderate permeability and high permeability
3	within a essentially the same permeable rock, around 9.5
4	percent.
5	Q. How is that of any importance to us in whether we
6	change the rate of oil withdrawals from the pool?
7	A. The key component here is permeability. We know
8	it has high permeability. So if you change the rate,
9	you're going to have adverse effects on wells that are
10	structurally low to the one that's on high, the highest
11	structural well. It will have an adverse effect on the
12	Lambirth 2 A.
13	Q. Page 2 of Exhibit 4, it's figure 9.111.
14	Specifically, what are we looking at here?
15	A. You're looking at essentially the core
16	permeability of the rock itself, and what we're seeing is
17	that the permeability just another correlation of the
18	permeability variation.
19	It shows that it is a heterogeneous has
20	heterogeneous distribution, and RPI's conclusions were that
21	this resulted in premature water breakthrough in the
22	reservoir, could allow for that.
23	Q. Put that last sentence in some kind of geologic
24	context for us so we can see its significance as we address
25	how these two wells compete for the remaining oil.

1	A. What we saw was, this reservoir was not atypical
2	from any other carbonate reservoir within the Permian
3	Basin. You had highly permeable rock. You know, if you
4	had too fast of expulsion of the fluids themselves,
5	specifically the oil, you could have premature breakthrough
6	of the water through the into the borehole, which I
7	mean, it's a direct relationship to what Enserch is
8	proposing here. If you increase the rate too fast, you
9	have bypassed oil.
10	Q. How does the fact that in your opinion there is
11	an edge drive water component to the reservoir fit within
12	the context of the potential for premature water
13	breakthrough in the reservoir?
14	A. Okay, you're going to have increase of water
15	coming up from the edge. And along with the strong
16	Because of the strong water drive, you're going to have
17	premature water breakthrough because it is very highly
18	permeable, and you'll have increased water within certain
19	downdip wells.
20	Q. When you look at the porosity characteristics in
21	the log for the Enserch Lambirth 1 well A copy of that
22	is on the display board. When you look at the lower
23	perforations within that section versus the higher
24	perforations, is there any distinguishable difference in
25	ranges of porosity?

A. Yes, there are. There's Where they perforated
was in the higher permeable or excuse me, higher
porosity zones. And then where they didn't perforate was
in the lower porosity zones.
Q. In the lower porosity zones, what range of
porosity values do you find in their well above the oil-
water contact?
A. Probably an average porosity of, say, around ten
percent.
Q. And as we move up into the area of the reservoir
that they did perforate, what kind of porosity value are
you finding?
A. Probably a low of a cross-plot porosity of, say,
12 percent, to a high of close to 18, 20 percent, somewhere
around that range.
Q. When you read across and correlate those points
to the porosity values on your 2 A well, what kind of
porosity value do you have?
A. Cross-plot porosity of approximately 12 percent.
Q. Is there a material difference in terms of
porosity values, then, between the two wells?
A. Yes, there is.
Q. Okay, with the advantage lying where?
A. The advantage lying with the Enserch Number 1
well.

	98
1	Q. Let me go back and have you identify those
2	exhibits that we haven't specifically addressed.
3	If you'll look at Exhibit 1 and for the record
4	describe and identify that display.
5	A. Exhibit 1 is a base map of the South Peterson
6	field itself, and Section 31 gives you the wells in
7	question, specifically the Enserch well, which is located
8	in the northeast of the southwest quarter; the Phillips 2 A
9	well, which is located in the southeast of the northwest
10	quarter of Section 31. And each well has its well number
11	and operator number above it.
12	Q. How did we end up, just for historical
13	information, in this checkerboarded fashion, Mr. Balke?
14	A. It was Phillips' farmouts, and Phillips gave a
15	farmout on a checkerboard-type arrangement. Therefore, if
16	Enserch which in this case they did, they were
17	successful in their initial well, we would have offsetting
18	to locations to develop ourselves.
19	Q. Exhibit 2, you don't have to describe it in
20	detail, but just tell us what it shows and the point of
21	time at which you tabulated the production data.
22	A. Production data was current through 12 of 1993.
23	The Enserch Well Number at that time had done just a little
24	bit below a million barrels of oil. Our Number 2 A well
25	had done approximately 410,000, 411,000 barrels of oil.

1	And you'll see the production around each of the other
2	wells also.
3	Q. All right, let's go back then to Exhibit 3, which
4	is your structure map, and let's spend a few minutes on
5	this. This represents your work product, does it not?
6	A. That's correct.
7	Q. When we look at the trapping mechanism in the
8	reservoir, describe for us how you've illustrated that.
9	A. The trap within this reservoir is structural.
10	The structure experienced both fracturing and subareal
11	exposure, with truncation of the Fusselman directly below.
12	That wavy line right there shows the erosional and
13	conforming pinchout.
14	And near the pinchout, you'll see some of the
15	wells that well performance isn't quite as good. This is
16	because of their location to the pinchout with clay infill
17	within some of the fractures themselves.
18	Q. When we look at the point on which you're
19	contouring, it is what, sir?
20	A. What I consider the top of the Fusselman.
21	Q. All right. Is there a log or some point that you
22	can show us on another display that will give the
23	Commission a reference to where that is?
24	A. We could use Enserch's cross-section right here.
25	I have no debate with where they're calling the top, the

	100
1	in this case they're calling it the lower paleozoic
2	carbonate; I call it the top of the Fusselman. Basically
3	the base of the Penn.
4	Q. I'm going to hand you Mr. Faigle's Exhibit 3 on
5	which he has prepared his cross-section.
6	There are obvious differences between your
7	structure map and his structure map. Would you explain to
8	us what those differences are?
9	A. Okay, just a second, let me just check his
10	numbers.
11	I believe the difference is, he's picking it
12	The significant difference is, I guess, the Number 1 well,
13	I've got it a little bit deeper. He's picking it a little
14	higher, looking more into the porosity range or, I guess,
15	deeper into the rock itself.
16	But both of us show a structural high up on the
17	Number 1 with truncation to the south, and both Enserch
18	wells and Phillips wells around the Number 1 being
19	structurally lower.
20	Q. With those general points of agreement, is there
21	any material difference in terms of the contouring
22	conclusions, whether you choose Mr. Faigle's style or your
23	style of identifying the reservoir structure?
24	A. None whatsoever. Both of us have the Enserch
25	Number 1 well being structurally high and the Phillips

	101
1	well, the 2 A Lambirth, being structurally low.
2	Q. If you'll look at your structure map, then, can
3	you use that to illustrate what we would have expected to
4	happen to this group of wells had this reservoir been an
5	exclusively bottom-drive reservoir?
6	A. If we look at Mr. Faigle's exhibit here, you
7	would see that the Lambirth 2 A, the Lambirth Number 3
8	Enserch, and the Lambirth Number 3, and the Phillips 1 A
9	Lambirth, would essentially have and barring some
10	differences would have watered out essentially all at
11	the same time, approximately the same time.
12	Yes, there's going to be some variances there,
13	but they'll be relatively minor. But you'd see each one of
14	those wells becoming uncommercial, uneconomic at about the
15	same time.
16	Q. And did that happen?
17	A. No, it did not.
18	Q. Based upon your work, your study, having heard
19	their presentation, summarize for us your geologic
20	conclusions and your concerns within the context of this
21	particular case.
22	A. My conclusions are, and very similar to Mr.
23	Faigle's in many ways, is that it is a highly fractured
24	dolomite reservoir, heterogeneous, the fractures being
25	highly permeable, some oil being left remaining within the

	102
1	matrix itself and possibly within the fractures.
2	Because of diagenesis, subareal exposure and
3	solution enhancement, this is a very highly permeable
4	reservoir with no vertical or horizontal permeability
5	barriers within this reservoir.
6	My concerns are for Phillips that, Enserch being
7	highest on the structure, Phillips having wells on the
8	lower on the structure, particularly the Number 2 A
9	Lambirth, will see water encroachment considerably earlier
10	and will be detrimentally affected by Enserch's proposal
11	here to increase rate.
12	Increasing rate will have adverse effects on
13	Phillips' wells, because you'll have water coming earlier.
14	MR. KELLAHIN: That concludes my examination of
15	Mr. Balke.
16	We move the introduction of his Exhibits 1
17	through 5.
18	CHAIRMAN LEMAY: 1 through 5 will be admitted
19	without objection.
20	And your witness, Mr. Carr.
21	MR. CARR: Thank you, Mr. LeMay.
22	CROSS-EXAMINATION
23	BY MR. CARR:
24	Q. Mr. Balke, several things we're in agreement on.
25	We do agree we've got a dual-porosity system or a bimodal

	105
1	system in the reservoir?
2	A. In process, correct.
3	Q. And we Is it fair to understand that the
4	fractures are the primary conduits for the movement of the
5	oil to the wellbore?
6	A. That's correct.
7	Q. In your opinion, is there much oil left in those
8	fracture systems at this time?
9	A. That's probably more of a for Mr. Pickett to
10	address, but I would think there is significant oil still
11	left to be remaining.
12	Q. Should I address questions about where remaining
13	oil would be, matrix versus fracture system, to Mr.
14	Pickett?
15	A. That would be fine, or however you would like.
16	Q. Do you have an opinion as to whether or not the
17	bulk of the oil to be recovered is within the matrix?
18	A. I think your matrix is probably your storage
19	facility, and your and the remaining oil, in my opinion,
20	probably would be in the matrix.
21	Q. And is it fair to say that to get that oil out of
22	the matrix you have to have something in the reservoir to
23	cause it to move, like a pressure differential; is that not
24	true?
25	A. I'll leave that one for Mr. Pickett.

1	Q. Now, if I understood your testimony, you agreed
2	that this is a water bottom drive, but there is also a side
3	water drive component in it; is that correct?
4	A. That is correct, a significant, probably the
5	pronouncement [sic] of the edge water drive, correct.
6	Q. If we look at the cartoon you have presented,
7	this is not really designed to be an accurate
8	representation of what's occurring in the reservoir, is it?
9	A. I think it's a conceptual model of what's
10	occurring in the reservoir.
11	Q. Now, it basically, if we look at it, it shows the
12	water contact. Is that that blue line that runs across it?
13	Is that an oil-water contact in the reservoir?
14	A. I would say that's where you have an approximate
15	commercial line. I think your oil-water contact could be
16	significantly higher, but that line will probably be where
17	you have so much water that your wells become uneconomical
18	to produce.
19	Q. If we have a well like the Lambirth Number 1 that
20	has a 90-percent-plus water cut, it would be logical to
21	expect that there would be some substantial water in the
22	reservoir above that line; is that not fair to say?
23	A. Fair to say.
24	Q. If we look at this cartoon, and if we had just a
25	bottom water drive reservoir, in fact, we would see an oil-

1	water contact that would be actually the reverse of what
2	we've got here; isn't that right?
3	The wells that were producing would be pulling
4	the water pulling on the aquifer and pulling it up,
5	not So you would have it actually rising in the center,
6	not dropping, if it were just a bottom water drive; isn't
7	that correct?
8	A. That would be correct.
9	Q. And in fact, the wells that were pulling the most
10	would be coning water up into those wellbores?
11	A. That would be correct.
12	Q. But you're not seeing that here in a
13	predominantly bottom water drive reservoir. What this
14	shows is effect the what occurs with a side water
15	drive; isn't that right?
16	A. Correct.
17	Q. And yet it is fair to say that the dominant
18	reservoir drive mechanism is a bottom water drive?
19	A. I would say that's not what I my geological
20	parameters or my geological conclusions came to, but I
21	would again defer that with Mr. Pickett.
22	Q. So you're not telling us what kind of a water
23	drive we have in the reservoir?
24	A. I think our conclusions, from my geological
25	conclusions, say that it's a component of both edge water

1	and bottom water drive, and I'd say that a significant
2	contribution is probably edge water, based upon what I see
3	in my structure map and well performance.
4	Q. And my question is, this cartoon does not show
5	the effect of bottom water drive; it shows edge water
6	drive?
7	A. It does show bottom water drive, because you do
8	have the bottom portion of the blue coming up from the
9	original oil-water contact. It just shows a more
10	significant edge water drive than just a strict bottom
11	water drive.
12	Q. And this doesn't, in fact, really show any of the
13	effect of a bottom water drive, or we'd see this line
14	coning up into the wells that are pulling on the aquifer?
15	A. Well, what you're dealing with what you're
16	specifically saying is where the original oil-water contact
17	is. That's not what I'm showing here. The blue is not an
18	oil-water contact, but where my economic perhaps an
19	economic water contact may be.
20	Q. And it doesn't show the effect of pulling, the
21	wells that are producing the hardest, it doesn't show the
22	effect that has on this bottom line?
23	A. That is a conceptual diagram with what I'm seeing
24	off of my structure map itself.
25	Q. Rate certainly matters, you testified, in the way

	107
1	these wells are produced?
2	A. Correct.
3	Q. And the rate at which the wells are produced
4	i.e., the Lambirth, the Phillips the Enserch wells
5	produced, you testified, would have an impact on the
6	Enserch well; isn't that what you testified?
7	I'm sorry, the Enserch well's rate of production
8	would have impact on the Phillips well?
9	A. Yes.
10	Q. All right. If I could remember who everybody
11	was, it would be easier.
12	A. Right.
13	Q. All right. Isn't that because of the drawdown
14	effect on the reservoir by producing these wells? If we
15	produce our well faster, there would be a greater drawdown?
16	A. When we get to specifically speaking about
17	drawdown, again, I would defer to Mr. Pickett.
18	But in a geological sense, I would say that what
19	I'm seeing here, based upon my structure and well
20	performance, is not a single bottom water drive.
21	Q. And so you're not testifying about the effect of
22	the drawdown on from our well on the Phillips well?
23	A. What I'm testifying here is saying that it's not
24	a strict bottom water drive reservoir, that the reservoir
25	is fractured and in communication with each other and has

no barriers, and from a geological perspective, based upon 1 my geological evidence and well performance, that we'd be 2 adversely affected by increasing the rate by Enserch. 3 And the increased rate, the adverse effect of the 4 0. increased rate comes from what? Pressure drawdown? 5 Increasing the water in a lateral sense into our 6 Α. 7 wellbore. And it would also increase the water in a 8 ο. vertical sense, coming up into the reservoir, would it not? 9 There will be some significant increase from the 10 Α. bottom, correct, but I think your major component would be 11 12 from the side. 13 0. We looked at the reservoir, and I believe you testified looking at exhibits from the study that you 14 participated in, and you concluded that the higher 15 permeabilities in the reservoir would in fact cause higher 16 drawdowns. Did you testify to that? 17 I didn't say higher drawdowns. I said that the Α. 18 higher permeability within the rock would pose no 19 communication -- or -- exactly, communication barriers 20 between the rocks. I see nothing in there. They should be 21 all in communication with each other, based upon these 22 23 higher permeabilities. And so you looked at the fact that they're in 24 Q. communication with each other. Did you take that the next 25

	109
1	step and talk about the impact withdrawals from one well
2	would have on the other, or is that again something for Mr.
3	Pickett?
4	A. I will defer that to Mr. Pickett. However No,
5	I'll just defer that to Mr. Pickett. He can explain that,
6	hopefully, a little bit better than me.
7	Q. We look at the permeabilities from the study, and
8	if I look at the second page of your study it shows a
9	permeability, I believe, for your Lambirth 2 A of 3.8
10	millidarcies; is that right?
11	A. That's correct.
12	Q. And you would agree with me that the permeability
13	in the offsetting Enserch well is 500 millidarcies?
14	A. That was determined based upon a totally
15	different parameter. We're looking at core permeabilities
16	right here. Your test gave well-performance
17	permeabilities.
18	Q. Do you have well-performance permeabilities on
19	the Lambirth A Number 2?
20	A. I again will give that one to Mr. Pickett. All I
21	can really concerned with what I know as far as geology
22	in the reservoir.
23	Q. When we look at the time frame within which the
24	various wells in the reservoir have watered out, do you
25	have a definition for me of what watering out actually

means?
A. For us it would be when it became uncommercial to
produce. Our lifting costs would be more than what our
revenue would be from the oil.
Q. So it would have an economic component and I
guess a water component, as Mr. Faigle testified?
A. No, ours would be strictly an economic
Q. A strictly economic. Did the And that is when
you totally terminate producing the well; is that when you
consider a well to have watered out?
A. Yes.
Q. Has your 2 A watered out at any time?
A. I'm not aware of such.
Q. The 1 A, in your opinion, has not watered out?
A. The 1 A has not watered out?
Q. Yes.
A. We have ceased producing our Number 1 A.
Q. It has watered out?
A. To the best of my understanding, it is, but again
I would like defer that one to Mr. Pickett.
MR. CARR: That's all I have.
One other question No, I'm sorry, I'll ask
that to Mr. Pickett.
MR. KELLAHIN: No, sir.
CHAIRMAN LEMAY: Commissioner Weiss?

	111
1	EXAMINATION
2	BY COMMISSIONER WEISS:
3	Q. On Exhibit 4, there's quite a range I guess
4	these are all horizontal permeabilities, huh?
5	A. That's correct.
6	Q. All right. Do you suppose that the range of the
7	vertical permeabilities is similar?
8	A. I would be expecting something like it, to be
9	very similar.
10	COMMISSIONER WEISS: That's all the questions I
11	have. Thank you.
12	CHAIRMAN LEMAY: Commissioner Carlson?
13	EXAMINATION
14	BY COMMISSIONER CARLSON:
15	Q. When did the Phillips 1 A well quit producing?
16	A. We shut it in, I believe, November of this last,
17	past year.
18	Q. And the 2 A well is still producing?
19	A. That's correct.
20	COMMISSIONER CARLSON: That's all I have.
21	EXAMINATION
22	BY CHAIRMAN LEMAY:
23	Q. Mr. Balke, what about the 3 A? That's a well
24	that confuses me. It's higher than the 2 A, and yet it's
25	produced less oil. Is it still producing?

1	A. 3 A, is this
2	Q. 3 A Lambirth, the one south of the Number 1.
3	A. Okay, that is currently producing, that's
4	correct.
5	Q. It is not as good a well as the 2 A, even though
6	it is structurally higher?
7	A. Mr. Pickett will present the production on that,
8	but it does not produce water, it produces around 20
9	barrels of oil a day.
10	What we see from our analysis is that you
11	probably had a lot of infilling of clay and other
12	precipitants within the fracture system due to its
13	proximity to the truncation there to the south.
14	Q. So you might expect that well wouldn't react with
15	your model of having being an excellent reservoir,
16	having high permeability both vertically and horizontally
17	and excellent communication-type
18	A. Correct.
19	Q characteristics?
20	A. And as you pointed out, it is structurally
21	higher. That's why it's not seeing the water that all the
22	other wells are seeing also.
23	CHAIRMAN LEMAY: Okay, that's all I have. Thank
24	you.
25	MR. KELLAHIN: You can leave the displays there,

1	Scott. Take the one you need and
2	Mr. Chairman, I've called Jack Pickett to the
3	stand.
4	JACK PICKETT,
5	the witness herein, after having been first duly sworn upon
6	his oath, was examined and testified as follows:
7	DIRECT EXAMINATION
8	BY MR. KELLAHIN:
9	Q. For the record, Mr. Pickett, please state your
10	name and occupation.
11	A. My name is Jack Pickett, reservoir engineering
12	supervisor for Phillips Petroleum, located in Odessa,
13	Texas.
14	Q. What is it that you do as a reservoir engineering
15	supervisor for your company?
16	A. I supervise other reservoir engineers and then
17	conduct some reservoir engineering studies on my own.
18	Q. Is this an area, when we look at the South
19	Peterson-Fusselman Pool, that is within your expertise both
20	as an engineer supervisor, as well as a reservoir that you
21	have studied as an engineer?
22	A. Yes, I worked on the South Peterson Fusselman
23	field in the early Eighties as an area engineer, and for
24	about three years. And then I've been in my current
25	position for about seven years, with responsibilities for

1	the whole Permian Basin and essentially in New Mexico.
2	Q. So your involvement in this pool with regards to
3	your production is simply not triggered by Enserch's
4	Application?
5	A. That's correct.
6	Q. You've got historical knowledge, separate and
7	apart from your activities in this case?
8	A. Yes.
9	Q. Did you testify before Examiner Stogner as an
10	expert in reservoir engineering in this case?
11	A. Yes.
12	Q. And have you continued to study the issue of
13	increasing the oil allowable for this pool?
14	A. Yes.
15	MR. KELLAHIN: I tender Mr. Pickett as an expert
16	reservoir engineer.
17	CHAIRMAN LEMAY: His qualifications are
18	acceptable.
19	Q. (By Mr. Kellahin) Mr. Pickett, if the Commission
20	were to grant Enserch's Application to increase the pool
21	allowable for the pool, how many wells would benefit by
22	that increase?
23	A. One. Just the Enserch Lambirth Number 1 is the
24	only well capable of taking advantage of that increase.
25	Q. Let me start where I left off with Mr. Balke.

	115
1	Let's look at Exhibit 5. It's the cartoon that's on the
2	foam board.
3	As a reservoir engineer, describe for us what you
4	see within Mr. Balke's geologic context as to how the
5	reservoir has been depleted when we use the original oil-
6	water contact of minus 3450. What's happened as the wells
7	produce the fluids from the pool?
8	A. As the wells have been producing, you can see a
9	lot of edge water or premature water encroachment from the
10	sides, wells that shouldn't have watered out if it was
11	purely a bottom water drive mechanism, watering out before
12	they should have.
13	Q. All right. Are there illustrations to prove that
14	conclusion?
15	A. Yes, I'll have several illustrations.
16	Q. At this point in time, is it still appropriate,
17	in your opinion, to maintain the consistency of keeping the
18	oil rate at 267 barrels of oil a day as the two operators
19	compete for the remaining oil?
20	A. Certainly no higher.
21	Q. And why do you say that?
22	A. The Phillips well will be damaged if The
23	function of the water encroachment into the Phillips wells
24	is a function of how much oil Enserch is pulling out of
25	theirs.

	110
1	Q. When we look at the opportunity to compete for
2	the remaining oil in the pool, how many wells are truly
3	involved in that competition?
4	A. Three.
5	Q. All right. Identify for us the three wells that
6	still remain to compete.
7	A. The Phillips Lambirth A Number 2, the Phillips
8	Lambirth A Number 3, and the Enserch Lambirth Number 1
9	wells.
10	Q. Let's look at how you have exercised that
11	opportunity to compete. If you'll look at the Phillips 2 A
12	Lambirth well, how is that well currently configured for
13	production?
14	A. We've got the largest submersible pump in it that
15	we can put in 5-1/2-inch casing.
16	Q. And approximately how many total fluid barrels
17	are you able to produce?
18	A. We're making about 150 barrels of oil and 1500
19	barrels of water.
20	Q. All right. Are you familiar with the SPE paper
21	that's been discussed by Enserch in the hearing?
22	A. Yes, I've read it several times.
23	Q. All right. When we look at the criteria for
24	accomplishing some opportunity of success with a high-
25	volume lift, have you tried that system in this reservoir?

1A. Yes, Phillips has effectively tried that on two2wells, and it did not work on either one.3Q. Were you able to try that opportunity within the4parameters of the SPE paper where you were dealing with5water cuts of between 70 and 95 percent?6A. Yes, both our wells that we installed submersible7pumps on had water cuts within that range, and we saw no8extra oil as a result of installing submersible pumps, no9increased reserves or decrease in water-oil ratio.10Q. As you study information since the last hearing,11do you reach any different conclusion about the adverse12impact on Phillips' correlative rights if this Application13is approved?14A. No, same now as it was then.15Q. Based upon that data, do you have an opinion as16to whether or not approval of this Application will17increase ultimate oil recovery from the entire pool?18A. I see no information that would indicate19increasing the allowable will increase the ultimate20Q. From the pool?21Q. From the pool?22A. From the pool?23Q. Do you see any information to tell you that the24Enserch well has improved its ultimate recovery versus25simply accelerated the recovery of the same volume?		
 Q. Were you able to try that opportunity within the parameters of the SPE paper where you were dealing with water cuts of between 70 and 95 percent? A. Yes, both our wells that we installed submersible pumps on had water cuts within that range, and we saw no extra oil as a result of installing submersible pumps, no increased reserves or decrease in water-oil ratio. Q. As you study information since the last hearing, do you reach any different conclusion about the adverse impact on Phillips' correlative rights if this Application is approved? A. No, same now as it was then. Q. Based upon that data, do you have an opinion as to whether or not approval of this Application will increase ultimate oil recovery from the entire pool? A. I see no information that would indicate increasing the allowable will increase the ultimate recovery. Q. From the pool? Q. Do you see any information to tell you that the 	1	A. Yes, Phillips has effectively tried that on two
 parameters of the SPE paper where you were dealing with water cuts of between 70 and 95 percent? A. Yes, both our wells that we installed submersible pumps on had water cuts within that range, and we saw no extra oil as a result of installing submersible pumps, no increased reserves or decrease in water-oil ratio. Q. As you study information since the last hearing, do you reach any different conclusion about the adverse impact on Phillips' correlative rights if this Application is approved? A. No, same now as it was then. Q. Based upon that data, do you have an opinion as to whether or not approval of this Application will increase ultimate oil recovery from the entire pool? A. I see no information that would indicate increasing the allowable will increase the ultimate recovery. Q. From the pool? A. From the pool. Q. Do you see any information to tell you that the 	2	wells, and it did not work on either one.
 water cuts of between 70 and 95 percent? A. Yes, both our wells that we installed submersible pumps on had water cuts within that range, and we saw no extra oil as a result of installing submersible pumps, no increased reserves or decrease in water-oil ratio. Q. As you study information since the last hearing, do you reach any different conclusion about the adverse impact on Phillips' correlative rights if this Application is approved? A. No, same now as it was then. Q. Based upon that data, do you have an opinion as to whether or not approval of this Application will increase ultimate oil recovery from the entire pool? A. I see no information that would indicate increasing the allowable will increase the ultimate recovery. Q. From the pool? A. From the pool. Q. Do you see any information to tell you that the 	3	Q. Were you able to try that opportunity within the
 A. Yes, both our wells that we installed submersible pumps on had water cuts within that range, and we saw no extra oil as a result of installing submersible pumps, no increased reserves or decrease in water-oil ratio. Q. As you study information since the last hearing, do you reach any different conclusion about the adverse impact on Phillips' correlative rights if this Application is approved? A. No, same now as it was then. Q. Based upon that data, do you have an opinion as to whether or not approval of this Application will increase ultimate oil recovery from the entire pool? A. I see no information that would indicate increasing the allowable will increase the ultimate recovery. Q. From the pool? A. From the pool. Q. Do you see any information to tell you that the 	4	parameters of the SPE paper where you were dealing with
pumps on had water cuts within that range, and we saw no extra oil as a result of installing submersible pumps, no increased reserves or decrease in water-oil ratio. Q. As you study information since the last hearing, do you reach any different conclusion about the adverse impact on Phillips' correlative rights if this Application is approved? A. No, same now as it was then. Q. Based upon that data, do you have an opinion as to whether or not approval of this Application will increase ultimate oil recovery from the entire pool? A. I see no information that would indicate increasing the allowable will increase the ultimate recovery. Q. From the pool? A. From the pool? Q. Do you see any information to tell you that the Enserch well has improved its ultimate recovery versus	5	water cuts of between 70 and 95 percent?
 extra oil as a result of installing submersible pumps, no increased reserves or decrease in water-oil ratio. Q. As you study information since the last hearing, do you reach any different conclusion about the adverse impact on Phillips' correlative rights if this Application is approved? A. No, same now as it was then. Q. Based upon that data, do you have an opinion as to whether or not approval of this Application will increase ultimate oil recovery from the entire pool? A. I see no information that would indicate increasing the allowable will increase the ultimate recovery. Q. From the pool? A. From the pool. Q. Do you see any information to tell you that the 	6	A. Yes, both our wells that we installed submersible
 9 increased reserves or decrease in water-oil ratio. Q. As you study information since the last hearing, do you reach any different conclusion about the adverse impact on Phillips' correlative rights if this Application is approved? A. No, same now as it was then. Q. Based upon that data, do you have an opinion as to whether or not approval of this Application will increase ultimate oil recovery from the entire pool? A. I see no information that would indicate increasing the allowable will increase the ultimate recovery. Q. From the pool? A. From the pool. Q. Do you see any information to tell you that the Enserch well has improved its ultimate recovery versus 	7	pumps on had water cuts within that range, and we saw no
 Q. As you study information since the last hearing, do you reach any different conclusion about the adverse impact on Phillips' correlative rights if this Application is approved? A. No, same now as it was then. Q. Based upon that data, do you have an opinion as to whether or not approval of this Application will increase ultimate oil recovery from the entire pool? A. I see no information that would indicate increasing the allowable will increase the ultimate recovery. Q. From the pool? A. From the pool. Q. Do you see any information to tell you that the Enserch well has improved its ultimate recovery versus 	8	extra oil as a result of installing submersible pumps, no
 do you reach any different conclusion about the adverse impact on Phillips' correlative rights if this Application is approved? A. No, same now as it was then. Q. Based upon that data, do you have an opinion as to whether or not approval of this Application will increase ultimate oil recovery from the entire pool? A. I see no information that would indicate increasing the allowable will increase the ultimate recovery. Q. From the pool? A. From the pool. Q. Do you see any information to tell you that the Enserch well has improved its ultimate recovery versus 	9	increased reserves or decrease in water-oil ratio.
 impact on Phillips' correlative rights if this Application is approved? A. No, same now as it was then. Q. Based upon that data, do you have an opinion as to whether or not approval of this Application will increase ultimate oil recovery from the entire pool? A. I see no information that would indicate increasing the allowable will increase the ultimate recovery. Q. From the pool? A. From the pool. Q. Do you see any information to tell you that the Enserch well has improved its ultimate recovery versus 	10	Q. As you study information since the last hearing,
 is approved? A. No, same now as it was then. Q. Based upon that data, do you have an opinion as to whether or not approval of this Application will increase ultimate oil recovery from the entire pool? A. I see no information that would indicate increasing the allowable will increase the ultimate recovery. Q. From the pool? A. From the pool. Q. Do you see any information to tell you that the Enserch well has improved its ultimate recovery versus 	11	do you reach any different conclusion about the adverse
14A. No, same now as it was then.15Q. Based upon that data, do you have an opinion as16to whether or not approval of this Application will17increase ultimate oil recovery from the entire pool?18A. I see no information that would indicate19increasing the allowable will increase the ultimate20recovery.21Q. From the pool?22A. From the pool.23Q. Do you see any information to tell you that the24Enserch well has improved its ultimate recovery versus	12	impact on Phillips' correlative rights if this Application
 Q. Based upon that data, do you have an opinion as to whether or not approval of this Application will increase ultimate oil recovery from the entire pool? A. I see no information that would indicate increasing the allowable will increase the ultimate recovery. Q. From the pool? A. From the pool. Q. Do you see any information to tell you that the Enserch well has improved its ultimate recovery versus 	13	is approved?
 to whether or not approval of this Application will increase ultimate oil recovery from the entire pool? A. I see no information that would indicate increasing the allowable will increase the ultimate recovery. Q. From the pool? A. From the pool. Q. Do you see any information to tell you that the Enserch well has improved its ultimate recovery versus 	14	A. No, same now as it was then.
 increase ultimate oil recovery from the entire pool? A. I see no information that would indicate increasing the allowable will increase the ultimate recovery. Q. From the pool? A. From the pool. Q. Do you see any information to tell you that the Enserch well has improved its ultimate recovery versus 	15	Q. Based upon that data, do you have an opinion as
 A. I see no information that would indicate increasing the allowable will increase the ultimate recovery. Q. From the pool? A. From the pool. Q. Do you see any information to tell you that the Enserch well has improved its ultimate recovery versus 	16	to whether or not approval of this Application will
 19 increasing the allowable will increase the ultimate 20 recovery. 21 Q. From the pool? 22 A. From the pool. 23 Q. Do you see any information to tell you that the 24 Enserch well has improved its ultimate recovery versus 	17	increase ultimate oil recovery from the entire pool?
 20 recovery. 21 Q. From the pool? 22 A. From the pool. 23 Q. Do you see any information to tell you that the 24 Enserch well has improved its ultimate recovery versus 	18	A. I see no information that would indicate
 Q. From the pool? A. From the pool. Q. Do you see any information to tell you that the Enserch well has improved its ultimate recovery versus 	19	increasing the allowable will increase the ultimate
 A. From the pool. Q. Do you see any information to tell you that the Enserch well has improved its ultimate recovery versus 	20	recovery.
23 Q. Do you see any information to tell you that the 24 Enserch well has improved its ultimate recovery versus	21	Q. From the pool?
24 Enserch well has improved its ultimate recovery versus	22	A. From the pool.
	23	Q. Do you see any information to tell you that the
25 simply accelerated the recovery of the same volume?	24	Enserch well has improved its ultimate recovery versus
	25	simply accelerated the recovery of the same volume?

117

	110
1	A. It's hard to say with a short time period, but it
2	is probably recovering some more reserves, but at Phillips'
3	expense.
4	Q. Why do you say that?
5	A. Because it's drawing water in from the sides and
6	watering out Phillips' wells earlier, reducing our reserves
7	and increasing Enserch's reserves.
8	Q. If we keep the oil rate the same, what does that
9	preserve for Phillips that you don't have if the rates
10	increased?
11	A. An opportunity to recover our reserves.
12	Q. You listened to Mr. Burkett's model example of
13	the fact that the advantage is to you
14	A. Yes, sir.
15	Q despite the fact that your well is
16	downstructure, producing less oil and may have less quality
17	in terms of reservoir characteristics?
18	A. Yes, I heard that testimony.
19	Q. And what's your opinion?
20	A. I think it's just the opposite, that Enserch has
21	the advantage and that Phillips does not have an advantage.
22	Q. What's the flaws, as you see it from a reservoir
23	engineering perspective, in Mr. Burkett's conclusions?
24	A. Basically, his claim was that Phillips the 2 A
25	well was affecting Enserch's well more because we had a
•	

	119
1	greater pressure drawdown, but that's because of the lower
2	permeability.
3	And if you draw that same kind of reasoning out,
4	you go down to if the well had very low permeability, it
5	was only making, say, one barrel of fluid a day, that would
6	even be more of a drawdown, even more of an effect.
7	So it kind of seems backwards to me that the
8	lower permeability that our well has, the more we affect
9	Enserch, that does not seem correct.
10	Q. All right, when we look at the opportunity for
11	success under the hypothetical in the SPE paper, is that
12	conditioned on the pressure drawdown that you're able to
13	achieve in the reservoir in that specific well?
14	A. I believe it touches on that, that it could be a
15	function of the drawdown pressure.
16	Q. When you look at the other two wells that you
17	tried the high-lift system in
18	A. Yes.
19	Q and could not increase the oil productivity,
20	which two wells did you try that in?
21	A. In the Lambirth A Number 1 and in the Lambirth A
22	Number 2.
23	Q. Were you able to achieve a level of pressure
24	drawdown in each of those wells that should have, if the
25	paper were correct, improved?

A. Yes, far beyond what Enserch has drawn their well
down, and enough that inasmuch as they call talk
about it in the SPE paper.
Q. All right. And you were not able to achieve the
kinds of results that were hypothecated by the paper?
A. Correct.
Q. What do we do, if anything, about this issue of
water breakthrough, premature water breakthrough in the
reservoir? Is that an issue for you as a reservoir
engineer in this pool?
A. Yes.
Q. Why?
A. You have to be concerned about the rates of
withdrawals from updip wells, lowering the reserves of the
downdip wells.
Q. Let me put this to you a different way. We often
talk to this Commission about a reservoir being rate-
sensitive or not rate-sensitive.
A. Oh, yes.
Q. In the context of this case, is this reservoir
going to be sensitive to rates of fluid withdrawals?
A. No.
Q. All right. What we are concerned with, though,
is the opportunity for the movement of the oil within the
reservoir?

	121
1	A. Yes.
2	Q. So it's a correlative-rights issue, as opposed to
3	a waste issue?
4	A. Correct.
5	Q. Let's turn to your exhibit. Your first exhibit
6	is Number 6?
7	A. Right.
8	Q. What are we looking at?
9	A. This is a production plot of Phillips' Lambirth A
10	Number 3 well. It's located one well location south of the
11	Enserch Lambirth Number 1 well.
12	The oil production is the black line, the water
13	production is the blue line the gas production or GOR
14	is the red line.
15	The well is currently making, now, about 22
16	barrels of oil a day, little or no water, with a GOR of
17	around 1000.
18	Q. Your perfs in this well are higher structurally
19	than the perfs in your 2 A well?
20	A. Yes.
21	Q. All right. And this is structurally higher in
22	the reservoir, as shown in Mr. Balke's structure map?
23	A. Yes.
24	Q. It produces zero water and what? Twenty-nine
25	barrels of oil in November of 1994?

	122
1	A. Twenty-two to 30.
2	Q. All right, and it's currently still producing
3	oil?
4	A. Yes.
5	Q. How do you explain this well's performance?
6	A. Well, if you look at the I don't know what you
7	call it. It's fairly inconsistent oil production over the
8	history of the life, but essentially it's flat production
9	for the entire history of the well. I kind of call it non-
10	declining oil production.
11	And what's also interesting to note is, the gas
12	is still at about the same level it was originally.
13	What I infer from this information is that this
14	well has got lower productivity than some of the more
15	prolific wells in the field, but it's receiving the
16	pressure support from the aquifer and the water-drive
17	mechanism in the field.
18	Q. Could this well potentially be affected adversely
19	if the oil rate is increased?
20	A. This well probably would not be affected.
21	Q. Let's look to those wells that may be.
22	A. Okay, the One other thing to note on this is
23	that the perforations in this well match up with the top
24	half of the perforations in the Enserch Lambirth Number 1
25	well, which Enserch has said has watered out, yet this well

	123
1	makes very little water.
2	Q. All right, you find evidence it's in the same
3	reservoir?
4	A. Yes.
5	Q. You find some pressure support for that well?
6	A. Yes. And
7	Q. If it was a true solution drive reservoir and not
8	in communication with the main reservoir, then that
9	shouldn't happen?
10	A. Right.
11	Q. So it's getting some support, and it's in the
12	same common source of supply?
13	A. That's right. And making very little water
14	compared to the other well, especially like the Enserch
15	Lambirth Number 1 well, this is one of the first
16	indications that we have of the edge water drive mechanism
17	in the field.
18	Q. Let's turn to Exhibit 7. Identify this one for
19	me, Mr. Pickett, and then describe for me what it shows.
20	A. This is a production plot of the Phillips
21	Lambirth A Number 1 well. Black on this one is oil per
22	day, the red is the water per day, and the blue is the
23	water-oil ratio.
24	What I'd like to point out is, when the
25	submersible pump was installed in this well in October of

	124
1	1992, indicated on the exhibit.
2	Q. All right, at that point what's the approximate
3	water cut?
4	A. About 87-, 88-percent water cut, or oil-water
5	ratio in about the seven to eight range.
6	Q. All right. And it's within the range of the
7	parameters of the SPE paper for a candidate for high-lift
8	volume success?
9	A. That's right.
10	Q. All right, what happened?
11	A. We installed a submersible pump, and immediately
12	thereafter the water-oil ratio started rising, indicating
13	that we're not recovering any new reserves, the oil
14	production goes up indicating it's an acceleration of
15	production, but with the water-oil ratio increasing, no new
16	reserves.
17	Q. By October of 1994, what's your water cut?
18	A. About 98 percent.
19	Q. And what did you do?
20	A. We shut the well in soon thereafter.
21	Q. So what does this tell you about the use of the
22	high-lift volume system for this well?
23	A. You can accelerate reserves, but we didn't add
24	any new reserves.
25	Q. When we look at the perforations' relationship in

1	the A 1 w	well to the perfs in the Enserch well, which one
2	has the h	igher perfs?
3		I didn't say that very well, Jack.
4	А.	Yeah.
5	Q.	Let me try again.
6		The Phillips Lambirth 1 A
7	Α.	Yes.
8	Q.	its lowest perfs are higher than the lowest
9	perfs in	the Enserch Lambirth 1, are they not?
10	Α.	Can you say that one more time?
11	Q.	Yes, sir. If you'll look at the cross-section
12	А.	Okay.
13	Q.	and it's a little far for me to see, but it
14	appears,	if the Phillips 1 A, its lowest perf
15	Α.	The one on the far right?
16	Q.	Yes, sir.
17	Α.	Yes.
18	Q.	are slightly higher than the Enserch 1 A perfs
19	in the lo	wer portion?
20	Α.	Yes.
21	Q.	Except this well is experiencing a higher water
22	cut?	
23	Α.	That's right.
24	Q.	What does that tell you?
25	Α.	Edge water drive.

	120
1	Q. All right, let's go to Exhibit 8. What's this?
2	A. This is a Phillips well test report which
3	contains the three producing Lambirth A wells.
4	Q. What do you want us to see on this display?
5	A. The Lambirth A Number 1 well, which is the
6	There's a partial well test for an unnamed well at the top,
7	a Keystone well, and the third one down is the Lambirth A
8	Well Number 1, the one we just talked about putting a
9	submersible pump on.
10	What I wanted to show on this one is, on the far
11	right, the fluid level of 6460 feet, which is 4000 or 5000
12	feet below what Enserch said they drew down their Lambirth
13	Number 1 currently, and it's well below where our Lambirth
14	A Number 2 is being drawn down right now.
15	The important thing about this one is, this well
16	with the submersible pump was drawn down 2000 pounds, far
17	more than any of the other two wells.
18	If one of the wells in the field was going to see
19	the effect that is talked about in the SPE paper, this is
20	the well that should have shown it. This one was pulled
21	down harder than any of the other wells, yet we saw no
22	effect, no positive effect, on the water-oil ratio of the
23	water cut by installing a submersible pump.
24	Q. Does the SPE paper talk about adding pool
25	reserves recovered?

	12/
1	A. No, it never mentions whether the reserves from a
2	pool or a reservoir are increased. It only talks about
3	individual wells.
4	Q. Exhibit 9, identify and describe that for us.
5	A. This is a production plot for the Phillips
6	Lambirth A Number 2 well. Oil is the black line, water in
7	red, and water-oil ratio in blue.
8	What I want to show on this one again is when we
9	installed the submersible pump in February of 1992 on this
10	well, the water cut was in the 86- to 88-percent range, our
11	water-oil ratio in the 6 to 7 to 8 range, before the pump
12	was installed, well within the SPE guidelines.
13	We put the pump in, the oil rate goes up, the
14	water-oil ratio stays about the same, and then in a few
15	months starts going up.
16	What I conclude from this is that, again, it was
17	an acceleration project. We're not getting any new
18	reserves, we didn't see any positive effect on the water-
19	oil ratio from installing the submersible pump.
20	Q. Have you correctly depicted the point in the
21	production profile of this well for the installation of the
22	submersible pump?
23	A. Yes.
24	Q. And when we look at that point, what do we see?
25	A. The oil production going up and no change in the

	120
1	water-oil ratio immediately thereafter.
2	Q. Where do you get the information on when the
3	submersible pump was installed? Is that from your own
4	records?
5	A. Yes, Phillips well files.
6	Q. Is this information accurate and correct
7	A. Yes.
8	Q as you've displayed it here?
9	A. Yes.
10	Q. Did you and Mr. Telford back at the Examiner
11	hearing have a difference of opinion with regards to what
12	was happening in relationship to the installation of this
13	pump?
14	A. Yes.
15	Q. He had shown the installation at a different
16	point on the plot of this production profile for this well,
17	had he not?
18	A. That's correct.
19	Q. And where had he put it?
20	A. At some point earlier, I don't recall where.
21	Q. All right. And you have gone back and rechecked,
22	then, and you're satisfied that you have put this on the
23	correct point
24	A. Yes.
25	Q of the production profile?

1	A. Yes.
2	Q. There's no opportunity for dispute on that issue
3	at this hearing?
4	A. Right.
5	Q. Let's look at Exhibit 10. What is that?
6	A. This is a production plot for the Enserch
7	Lambirth Number 1 well, oil in the black, the red is the
8	GOR, and blue is the water production.
9	What I want to point out on this one is that
10	essentially this well came on water-free, in 1978 it
11	produced a little bit of water, in 1985 we're showing 10 or
12	20 barrels of water per day for a year or so ago, and then
13	it produced essentially water-free again until 1993.
14	Q. But you're already producing water in what?
15	1980, in the A 2?
16	A. Yes, in the If we go to the next Exhibit,
17	compare the two
18	Q. Oh, am I ahead of you?
19	A. No.
20	Q. All right, let's do that. Let's compare the 10
21	and the 11 so that we can look at the Enserch 1, which is
22	Exhibit 10, to the Phillips Lambirth A 2, which is Exhibit
23	11.
24	A. Yeah, I'd just like to make a comparison of these
25	two wells. Bear in mind, they're perforated. The bottom

perforation in both these wells is at the same subsea
depth.
And the Phillips well started making water almost
from the very start. When the Lambirth the Enserch well
makes its first water in 1985, 10 or 20 barrels of water
per day, the Phillips well in 1985 is already up to 400 or
500 barrels of water per day.
This is another This is strong evidence of our
edge water drive.
Q. Do you subscribe to the theory that the fractures
are being depleted of oil and are now fully depleted of
oil?
A. No.
Q. Why not?
A. The fractures have to be the conduit to bring the
oil into the wellbore. The oil is not going to feed
directly from the matrix to the wellbore. All the oil has
to go through the fractures.
Q. All right. Continue then, with Exhibit 11. What
else do we see?
A. Just comparison, that in 1992 or 1993 the
Phillips well is up to 1000 barrels of water per day;
Enserch is still water-free up to that point.
Q. All right. When we look at November of 1994
A. Okay.

1	Q Mr. Burkett is telling me his well is
2	producing about 600 barrels of oil a day, and I don't know
3	what the corresponding water is, but they are lifting a
4	significant amount of reservoir fluids?
5	A. Right.
6	Q. When did you shut in the Phillips Lambirth 1 A?
7	A. In about November of late October or early
8	November of 1994.
9	Q. Any relationship?
10	A. We feel that the increased withdrawals from the
11	Enserch Lambirth Number 1 probably did contribute to us
12	having to shut the Lambirth A Number 1 in when we did. It
13	probably would have gone on longer if that wouldn't have
14	happened.
15	Q. Let's look at Exhibit 12. Identify and describe
16	what you're showing.
17	A. This is a plot of the water-oil ratio from two of
18	the Phillips wells, the Lambirth A Number 1 and the
19	Phillips Lambirth A Number 2 well.
20	What's interesting about this plot is that
21	whether you look at the top perforation or the bottom
22	perforation, the Lambirth A Number 1 is higher than the
23	Lambirth A Number 2. I think it's 12 feet above The
24	Number 1 well is 12 feet above at the top and about 8 or 10
25	feet at the bottom perforation.

	132
1	There was a some lower perfs open in the
2	Lambirth A Number 1, but they were shut off in about 1982.
3	So the Number A Number 1 is higher than the
4	Lambirth A Number 2 in both the top and bottom
5	perforations, yet for the entire producing history of these
6	two wells, the Lambirth A Number 1 has had a higher water
7	cut, higher water-oil ratio, except for a brief six- or
8	seven-month period in 1991. For the other 95 percent of
9	the well's predicted life, the A 1 has had a higher cut
10	than the A Number 2. More evidence of the edge water drive
11	mechanism.
12	Q. Have you now addressed, or in part of your study
13	did you address the recoveries that Enserch has already
14	obtained from the Lambirth Number 1 well?
15	A. Yes.
16	Q. At the point in time that you did your
17	calculation, what was the total cumulative recovery you
18	were utilizing from the Lambirth well?
19	A. About 980,000, 950,000 barrels of oil.
20	Q. Mr. Burkett with his testimony has argued for the
21	proposition that their well is not going to affect your
22	well at higher range. Has Enserch provided testimony in
23	the past before the Division that is evidence that leads to
24	a contrary conclusion?
25	A. Yes.

1Q. Let me direct your attention to what you've2marked as Exhibit 13. We're looking at the portion of a3transcript4A. I'm missing half of mine.5Q. Are you?6A. Yeah.7CHAIRMAN LEMAY: I just have one page.8THE WITNESS: I've got the second page. Maybe9that's all I need.10MR. KELLAHIN: Well, I'm not sure, let me hang11on.12COMMISSIONER WEISS: We have different13MR. KELLAHIN: I think what's happened is that14these old Yeah, there's two pages to this, aren't there?15THE WITNESS: Yes.16MR. KELLAHIN: Well, how did we cleverly do that?17We need both pages, don't we?18With your permission, Mr. Chairman, I'm going to19hand the exhibit, the two pages, and I'm going to at the20conclusion I would like to submit the full authentication21from the transcript that will have both pages, and I will23same references as the witness.24CHAIRMAN LEMAY: Okay, thank you.25Q. (By Mr. Kellahin) All right, Mr. Pickett, I've		155
 transcript A. I'm missing half of mine. Q. Are you? A. Yeah. CHAIRMAN LEMAY: I just have one page. THE WITNESS: I've got the second page. Maybe that's all I need. MR. KELLAHIN: Well, I'm not sure, let me hang on. COMMISSIONER WEISS: We have different MR. KELLAHIN: I think what's happened is that these old Yeah, there's two pages to this, aren't there? THE WITNESS: Yes. MR. KELLAHIN: Well, how did we cleverly do that? We need both pages, don't we? With your permission, Mr. Chairman, I'm going to hand the exhibit, the two pages, and I'm going to at the conclusion I would like to submit the full authentication from the transcript that will have both pages, and I will hand you my single copy of that now so that you'll have the same references as the witness. CHAIRMAN LEMAY: Okay, thank you. 	1	Q. Let me direct your attention to what you've
 A. I'm missing half of mine. Q. Are you? A. Yeah. CHAIRMAN LEMAY: I just have one page. THE WITNESS: I've got the second page. Maybe that's all I need. MR. KELLAHIN: Well, I'm not sure, let me hang on. COMMISSIONER WEISS: We have different MR. KELLAHIN: I think what's happened is that these old Yeah, there's two pages to this, aren't there? THE WITNESS: Yes. MR. KELLAHIN: Well, how did we cleverly do that? We need both pages, don't we? With your permission, Mr. Chairman, I'm going to hand the exhibit, the two pages, and I'm going to at the conclusion I would like to submit the full authentication from the transcript that will have both pages, and I will hand you my single copy of that now so that you'll have the same references as the witness. CHAIRMAN LEMAY: Okay, thank you. 	2	marked as Exhibit 13. We're looking at the portion of a
 Q. Are you? A. Yeah. CHAIRMAN LEMAY: I just have one page. THE WITNESS: I've got the second page. Maybe that's all I need. MR. KELLAHIN: Well, I'm not sure, let me hang on. COMMISSIONER WEISS: We have different MR. KELLAHIN: I think what's happened is that these old Yeah, there's two pages to this, aren't there? THE WITNESS: Yes. MR. KELLAHIN: Well, how did we cleverly do that? We need both pages, don't we? With your permission, Mr. Chairman, I'm going to hand the exhibit, the two pages, and I'm going to at the conclusion I would like to submit the full authentication from the transcript that will have both pages, and I will hand you my single copy of that now so that you'll have the same references as the witness. CHAIRMAN LEMAY: Okay, thank you. 	3	transcript
 A. Yeah. CHAIRMAN LEMAY: I just have one page. THE WITNESS: I've got the second page. Maybe that's all I need. MR. KELLAHIN: Well, I'm not sure, let me hang on. COMMISSIONER WEISS: We have different MR. KELLAHIN: I think what's happened is that these old Yeah, there's two pages to this, aren't there? THE WITNESS: Yes. MR. KELLAHIN: Well, how did we cleverly do that? We need both pages, don't we? With your permission, Mr. Chairman, I'm going to hand the exhibit, the two pages, and I'm going to at the conclusion I would like to submit the full authentication from the transcript that will have both pages, and I will hand you my single copy of that now so that you'll have the same references as the witness. CHAIRMAN LEMAY: Okay, thank you. 	4	A. I'm missing half of mine.
 CHAIRMAN LEMAY: I just have one page. THE WITNESS: I've got the second page. Maybe that's all I need. MR. KELLAHIN: Well, I'm not sure, let me hang on. COMMISSIONER WEISS: We have different MR. KELLAHIN: I think what's happened is that these old Yeah, there's two pages to this, aren't there? THE WITNESS: Yes. MR. KELLAHIN: Well, how did we cleverly do that? We need both pages, don't we? With your permission, Mr. Chairman, I'm going to hand the exhibit, the two pages, and I'm going to at the conclusion I would like to submit the full authentication from the transcript that will have both pages, and I will hand you my single copy of that now so that you'll have the same references as the witness. CHAIRMAN LEMAY: Okay, thank you. 	5	Q. Are you?
 THE WITNESS: I've got the second page. Maybe that's all I need. MR. KELLAHIN: Well, I'm not sure, let me hang on. COMMISSIONER WEISS: We have different MR. KELLAHIN: I think what's happened is that these old Yeah, there's two pages to this, aren't there? THE WITNESS: Yes. MR. KELLAHIN: Well, how did we cleverly do that? We need both pages, don't we? With your permission, Mr. Chairman, I'm going to hand the exhibit, the two pages, and I'm going to at the conclusion I would like to submit the full authentication from the transcript that will have both pages, and I will hand you my single copy of that now so that you'll have the same references as the witness. CHAIRMAN LEMAY: Okay, thank you. 	6	A. Yeah.
9 that's all I need. 10 MR. KELLAHIN: Well, I'm not sure, let me hang 11 on. 12 COMMISSIONER WEISS: We have different 13 MR. KELLAHIN: I think what's happened is that 14 these old Yeah, there's two pages to this, aren't there? 15 THE WITNESS: Yes. 16 MR. KELLAHIN: Well, how did we cleverly do that? 17 We need both pages, don't we? 18 With your permission, Mr. Chairman, I'm going to 19 hand the exhibit, the two pages, and I'm going to at the 20 conclusion I would like to submit the full authentication 21 from the transcript that will have both pages, and I will 22 hand you my single copy of that now so that you'll have the 23 same references as the witness. 24 CHAIRMAN LEMAY: Okay, thank you.	7	CHAIRMAN LEMAY: I just have one page.
 MR. KELLAHIN: Well, I'm not sure, let me hang on. COMMISSIONER WEISS: We have different MR. KELLAHIN: I think what's happened is that these old Yeah, there's two pages to this, aren't there? THE WITNESS: Yes. MR. KELLAHIN: Well, how did we cleverly do that? We need both pages, don't we? With your permission, Mr. Chairman, I'm going to hand the exhibit, the two pages, and I'm going to at the conclusion I would like to submit the full authentication from the transcript that will have both pages, and I will hand you my single copy of that now so that you'll have the same references as the witness. CHAIRMAN LEMAY: Okay, thank you. 	8	THE WITNESS: I've got the second page. Maybe
on. COMMISSIONER WEISS: We have different MR. KELLAHIN: I think what's happened is that these old Yeah, there's two pages to this, aren't there? THE WITNESS: Yes. MR. KELLAHIN: Well, how did we cleverly do that? We need both pages, don't we? With your permission, Mr. Chairman, I'm going to hand the exhibit, the two pages, and I'm going to at the conclusion I would like to submit the full authentication from the transcript that will have both pages, and I will hand you my single copy of that now so that you'll have the same references as the witness. CHAIRMAN LEMAY: Okay, thank you.	9	that's all I need.
 12 COMMISSIONER WEISS: We have different 13 MR. KELLAHIN: I think what's happened is that 14 these old Yeah, there's two pages to this, aren't there? 15 THE WITNESS: Yes. 16 MR. KELLAHIN: Well, how did we cleverly do that? 17 We need both pages, don't we? 18 With your permission, Mr. Chairman, I'm going to 19 hand the exhibit, the two pages, and I'm going to at the 20 conclusion I would like to submit the full authentication 21 from the transcript that will have both pages, and I will 22 hand you my single copy of that now so that you'll have the 23 same references as the witness. 24 CHAIRMAN LEMAY: Okay, thank you. 	10	MR. KELLAHIN: Well, I'm not sure, let me hang
 MR. KELLAHIN: I think what's happened is that these old Yeah, there's two pages to this, aren't there? THE WITNESS: Yes. MR. KELLAHIN: Well, how did we cleverly do that? We need both pages, don't we? With your permission, Mr. Chairman, I'm going to hand the exhibit, the two pages, and I'm going to at the conclusion I would like to submit the full authentication from the transcript that will have both pages, and I will hand you my single copy of that now so that you'll have the same references as the witness. CHAIRMAN LEMAY: Okay, thank you. 	11	on.
14 these old Yeah, there's two pages to this, aren't there? 15 THE WITNESS: Yes. 16 MR. KELLAHIN: Well, how did we cleverly do that? 17 We need both pages, don't we? 18 With your permission, Mr. Chairman, I'm going to 19 hand the exhibit, the two pages, and I'm going to at the 20 conclusion I would like to submit the full authentication 21 from the transcript that will have both pages, and I will 22 hand you my single copy of that now so that you'll have the 23 same references as the witness. 24 CHAIRMAN LEMAY: Okay, thank you.	12	COMMISSIONER WEISS: We have different
 THE WITNESS: Yes. MR. KELLAHIN: Well, how did we cleverly do that? We need both pages, don't we? With your permission, Mr. Chairman, I'm going to hand the exhibit, the two pages, and I'm going to at the conclusion I would like to submit the full authentication from the transcript that will have both pages, and I will hand you my single copy of that now so that you'll have the same references as the witness. CHAIRMAN LEMAY: Okay, thank you. 	13	MR. KELLAHIN: I think what's happened is that
 MR. KELLAHIN: Well, how did we cleverly do that? We need both pages, don't we? With your permission, Mr. Chairman, I'm going to hand the exhibit, the two pages, and I'm going to at the conclusion I would like to submit the full authentication from the transcript that will have both pages, and I will hand you my single copy of that now so that you'll have the same references as the witness. CHAIRMAN LEMAY: Okay, thank you. 	14	these old Yeah, there's two pages to this, aren't there?
We need both pages, don't we? With your permission, Mr. Chairman, I'm going to hand the exhibit, the two pages, and I'm going to at the conclusion I would like to submit the full authentication from the transcript that will have both pages, and I will hand you my single copy of that now so that you'll have the same references as the witness. CHAIRMAN LEMAY: Okay, thank you.	15	THE WITNESS: Yes.
With your permission, Mr. Chairman, I'm going to hand the exhibit, the two pages, and I'm going to at the conclusion I would like to submit the full authentication from the transcript that will have both pages, and I will hand you my single copy of that now so that you'll have the same references as the witness. CHAIRMAN LEMAY: Okay, thank you.	16	MR. KELLAHIN: Well, how did we cleverly do that?
19 hand the exhibit, the two pages, and I'm going to at the 20 conclusion I would like to submit the full authentication 21 from the transcript that will have both pages, and I will 22 hand you my single copy of that now so that you'll have the 23 same references as the witness. 24 CHAIRMAN LEMAY: Okay, thank you.	17	We need both pages, don't we?
20 conclusion I would like to submit the full authentication 21 from the transcript that will have both pages, and I will 22 hand you my single copy of that now so that you'll have the 23 same references as the witness. 24 CHAIRMAN LEMAY: Okay, thank you.	18	With your permission, Mr. Chairman, I'm going to
21 from the transcript that will have both pages, and I will 22 hand you my single copy of that now so that you'll have the 23 same references as the witness. 24 CHAIRMAN LEMAY: Okay, thank you.	19	hand the exhibit, the two pages, and I'm going to at the
22 hand you my single copy of that now so that you'll have the 23 same references as the witness. 24 CHAIRMAN LEMAY: Okay, thank you.	20	conclusion I would like to submit the full authentication
 23 same references as the witness. 24 CHAIRMAN LEMAY: Okay, thank you. 	21	from the transcript that will have both pages, and I will
24 CHAIRMAN LEMAY: Okay, thank you.	22	hand you my single copy of that now so that you'll have the
	23	same references as the witness.
25 Q. (By Mr. Kellahin) All right, Mr. Pickett, I've	24	CHAIRMAN LEMAY: Okay, thank you.
	25	Q. (By Mr. Kellahin) All right, Mr. Pickett, I've

1	provided you with copies of pages 21 and 22 from that
2	Examiner hearing in which an Enserch engineer I believe
3	it was Mr. Leonard Kersh
4	A. Yes.
5	Q was testifying for his company with regards to
6	information that you have thought relevant and have
7	utilized. What was the point of what he was doing?
8	A. This is testimony from the previous hearing on
9	this field to increase the spacing from 40 to 80 acres, and
10	the Enserch engineer is testifying about a drawdown test or
11	reservoir-limits test that they did.
12	And I'll just go to the conclusion of their test,
13	was that the Enserch Lambirth Number 1 well was affecting
14	830 acres, or approximately 830 acres.
15	Q. All right. When you take that information, what
16	does it tell you within the context of your reservoir study
17	and Mr. Balke's geology about the opportunity to have the
18	Enserch well adversely affect your opportunity for
19	remaining oil recovery if the rate is increased?
20	A. I guess it's a combination of them being
21	structurally high and having good productivity. They're
22	able to affect production for a very wide area and draw the
23	oil out a lot faster than some of the other wells can.
24	Q. Have you tried to visualize or represent, at
25	least in a hypothetical way, on Exhibit 14 an area that

1	would include the 830 acres that Mr. Kersh had testified
	would include the 850 acres that Mr. Kersh had testified
2	about being affected by the drawdown test?
3	A. Yes, we just drew an 830-acre are with the
4	Lambirth Number 1 Well at the center, just to show
5	graphically depict what that 830 acres looks like and how
6	it essentially encompasses the entire productive portion of
7	the field at the present.
8	Q. And that's Exhibit 14?
9	A. That's right.
10	Q. And if you were to change the shape so it matched
11	the contours of the geology, it would encompass the entire
12	remaining area of production in the pool?
13	A. Yes, because of the faulting to the south or the
14	pinchout to the south, the reservoir is really not present
15	where I've got the circle drawn, but
16	Q. Let me direct your attention to the final
17	exhibit, which is Exhibit 15. Does this represent your
18	conclusions as a result of work product that you have
19	completed using the disciplines of a reservoir engineer?
20	A. Yes.
21	Q. Describe for us what you wanted to find out, the
22	method you used, and the results.
23	A. Okay. the production numbers this is for the
24	Enserch Lambirth Number 1 well they're probably about
25	four or five months short now, but it probably is up to a

	136
1	million barrels or so now. But at the time this study was
2	done, at the middle of last year, the Enserch well had
3	cum'd 953,000 barrels of oil, 554 million cubic feet of gas
4	and 37,000 barrels of water.
5	Q. When we look at the total oil in the pool, what
6	percentage of the total oil has Enserch already recovered
7	from the well?
8	A. Enserch has recovered 38 percent of all the oil
9	production from the South Peterson-Fusselman field.
10	Q. What's eight percent mean?
11	A. Eight percent is that one out twelve, or there's
12	been 12 wells producing or something on that order.
13	Essentially, they've got one out of 12 or 13 wells,
14	whatever one-eighth or eight percent works out to be.
15	But the point of that is just, they've recovered
16	38 percent of the oil from only eight percent of the wells
17	there.
18	Q. All right. What's the next item? What's 22
19	percent?
20	A. Looked at the percentage of the oil pay that they
21	have in their well and compared to the total from all the
22	other wells, and they had 22 percent of the net oil pay.
2 3	Q. They had 22 percent of the net oil pay?
24	A. Just in on a footage basis.
2 5	Q. And yet they've already recovered 38 percent of

136

	137
1	the total oil in the pool?
2	A. Yes. And took those net oil pays, which
3	provided by geology, and just assumed that footage for 80
4	acres, and then took the average porosity from each well
5	and came up with the oil in place.
6	Q. That's a volumetric type of calculation?
7	A. Exactly.
8	Q. And of the original oil in place, then, they have
9	recovered, by your calculation, 20 percent?
10	A. Well, they have 20 percent of the original oil in
11	place under their tract.
12	Q. I misspoke.
13	A. Right.
14	Q. For their 80-acre tract, based upon the
15	calculation, they would have 20 percent of the original oil
16	in place?
17	A. Right.
18	Q. And already, as of What's the date of
19	A. The middle of 1994.
20	Q the middle of 1994, they've got 38 percent of
21	the total oil in the pool?
22	A. Yes.
23	Q. What's that tell you about correlative rights?
24	A. We probably have some reserves moved off our
25	oil moved off the Phillips leases onto the Lambirth,

Enserch Lambirth Number 1 well. 1 And what happens if the rate is almost doubled? Q. 2 That situation is aggravated, we lose more Α. 3 4 reserves. What would you like this Commission to do? 5 Q. Not grant the Enserch request. 6 Α. 7 MR. KELLAHIN: That concludes my examination. We move the introduction of Exhibits 6 through 8 9 15. 10 CHAIRMAN LEMAY: Without objection, Exhibits 6 11 through 13 or 14 will be --MR. KELLAHIN: 15, sir. 12 13 CHAIRMAN LEMAY: -- 15, I'm sorry, will be admitted into the record. 14 Mr. Carr? 15 MR. CARR: Mr. LeMay. 16 CROSS-EXAMINATION 17 BY MR. CARR: 18 Mr. Pickett, if we stay with Exhibit Number 15, I 19 0. understand your testimony from this exhibit to be that 20 somehow the correlative rights of Phillips have been 21 impaired by the way the Lambirth Number 1 is produced? 22 You could assume that. 23 Α. Is that what you're saying, that correlative 24 Q. 25 rights have been impaired?

A. I guess they could have been.
Q. Do you understand that in New Mexico correlative
rights is defined as the opportunity to produce your fair
share of the gas?
A. Yes.
Q. And do you understand you're not guaranteed
anything when you drill a well but an opportunity to
produce your share?
A. Right, rule of capture.
Q. You're not telling us that in the past you've not
had an opportunity to produce the gas from your wells?
This Commission has not denied you that opportunity?
A. Right.
Q. And the oil?
A. Right.
Q. And so what we're here today is, we're looking at
what's left, where it is and how we produce what's left;
isn't that fair to say?
A. Right.
Q. And we're looking at the opportunity to produce
what we have today?
A. Right.
Q. And in that context, what is produced in the past
isn't relevant to what our opportunity is today to produce
our fair share?

	140
1	A. Right.
2	Q. And so if we produced 90 percent in the past,
3	we're still looking at what we've got left and what we have
4	before us as of today and our opportunity to produce that?
5	A. Yes.
6	Q. Now, I gather from your testimony that you
7	disagree with Mr. Burkett's conclusions about the impact
8	that of the Phillips Number 2 A well on the Enserch
9	Number 1?
10	A. Yes, I disagree with his conclusions.
11	Q. Have you done any modeling of the reservoir?
12	A. No.
1 3	Q. Have you attempted to calculate the impact that
14	two wells might have on each other?
15	A. No.
16	Q. You just don't like what Mr. Burkett has done?
17	A. I don't think in a water drive reservoir that his
18	calculation is relevant.
19	Q. But you have not made any calculation of your own
20	to try and establish the impact between the two wells?
21	A. Because I don't think a calculation would be
22	relevant.
23	Q. No calculation would be relevant?
24	A. As far as the pressure drawdown affecting updip
25	wells.

	141
1	Q. What we're talking about here is really drainage,
2	is it not, between the two wells, the Number 1 and the 2 A?
3	A. Yes.
4	Q. And drainage is really a factor of pressure, is
5	it not?
6	A. In fluid movement.
7	Q. And isn't fluid movement caused by pressure
8	differential?
9	A. Yes.
10	Q. So we're talking about pressure, are we not?
11	A. Yes.
12	Q. I believe you testified that and would agree
13	with us, that you're achieving a greater pressure drawdown
14	in the 2 A than we are in the Number 1?
15	A. I don't think I testified to that, but I think
16	that's correct.
17	Q. You attempted to
18	A. It may be about equal. I
19	Q. It might be about equal?
20	A. Yeah.
21	Q. You're not seeing a greater pressure drawdown in
22	your well than what Enserch has been able to achieve?
23	A. I believe both wells had fluid levels in the
24	1500-, 1800-foot range.
25	Q. What was the fluid level that you most recent

one in the Lambirth 2 A? 1 2 Α. I didn't talk about it, but it's at 1830 feet from the surface. 3 And then the Enserch Number 1, do you have a 4 0. 5 depth on that? Α. I think I wrote it down when somebody talked 6 about it. 7 ο. 1320? 8 9 Α. 1320, right. 10 Wouldn't that suggest to you that you have Q. greater pressure drawdown in your well than --11 12 Α. Yes, a --13 -- in the Enserch? Q. -- slightly greater pressure drawdown. 14 Α. I believe you told this Commission that you had 15 Q. attempted to install high-volume lift on wells, and you 16 haven't seen any real response. 17 We haven't seen an increase in reserves. Α. 18 All right, let's take a look at your Exhibit 19 Q. Number 9. This is the production history on the Lambirth 20 2 A. 21 22 Α. Okay. If we take a look at this well and we know where 23 Q. the submersible pump is installed in February of 1992 --24 Α. 25 Yes.

	145
1	Q if you calculate out the remaining reserves
2	for that well, you get a very dramatically different curve
3	than if you calculate the remaining reserves from that well
4	after the installation of the submersible pump; is that not
5	correct?
6	A. No, that's not correct.
7	Q. You don't see after the submersible pump a higher
8	curve to take that production curve on up than you do
9	before you installed the pump?
10	A. It has a higher decline rate afterwards, showing
1 1	its acceleration.
12	Q. Have you calculated those, taken those decline
13	curves on out?
14	A. Yes.
15	Q. And you don't see any increase whatsoever?
16	A. No.
17	Q. Any competent engineer could take this and
18	estimate for themselves the rate of decline, could they
19	not?
20	A. Yes, you could come up with several different,
21	but
22	Q. Several different engineers might reach several
23	different conclusions?
24	A. Right.
25	Q. But your conclusion is, no increase?

	111
1	A. Right.
2	Q. Okay. I believe you testified that the A 1 has
3	been shut in since the June hearing?
4	A. It was shut in, in November, and it I think
5	they've turned it on a couple times for, you know, like two
6	days in December and maybe two days in January, as sort of
7	an experiment to see if it would make any oil.
8	Q. Was it your testimony that you had to shut that
9	well in because of the increased production rate from the
10	Enserch Lambirth A Number 1?
11	A. It was my testimony, I believe, that it could
12	have caused us to shut it in
13	Q. Didn't you
14	A earlier than we have.
15	Q. And didn't you Excuse me.
16	Didn't you testify in June that the well was at
17	its economic limit, only producing until there was a pump
18	failure?
19	A. Yes.
20	Q. If we look at the production curve on the
21	Lambirth A Number 2, Exhibit Number 11
22	A. Okay.
23	Q same well, and again you installed the
24	submersible pump in February of 1992?
25	A. That is correct.

1	Q. Since that time you have seen high water cuts; is
2	that right? Water coning?
3	A. I don't believe we've seen any water coning.
4	Q. You've seen water in the well?
5	A. It's making water, yes.
6	Q. It was your conclusion it was from a side water
7	drive?
8	A. Primarily.
9	Q. This is the well you're pulling four times as
10	hard as the Enserch well?
11	A. No, I think the We're not pulling it four
12	times as hard, no.
13	Q. You're pulling it substantially harder, though,
14	you've got a greater drawdown in this well than the Enserch
15	well, we've just established that
16	A. We have a greater drawdown, but it's I don't
17	think it's that great.
18	Q. And because of the greater drawdown, you're
19	pulling harder on the reservoir than the offsetting well?
20	A. Right.
21	Q. And it's possible that you could be pulling some
22	water in with it because of the greater drawdown?
23	A. We're pulling in Yes, we're making more fluid.
24	Q. Now, I want to be sure I understood something
25	that I discussed a few moments ago with Mr. Balke. I think

1	his basic testimony was that we have are seeing, because
2	of high permeabilities, high drawdowns over big areas. Was
3	that what you understood his testimony to be?
4	A. No.
5	Q. Okay. Well, let me just be sure I understand
6	this.
7	Isn't it fair to say that in a reservoir of this
8	nature, when we are looking at pressure drawdowns,
9	generally speaking, the higher the permeability, the lower
10	the pressure drawdown?
11	A. For a given rate of fluid withdrawal, right.
12	MR. CARR: That's all I have, thank you.
13	CHAIRMAN LEMAY: Thank you, Mr. Carr.
14	Commissioner Weiss?
15	I'm sorry, did you want to
16	MR. KELLAHIN: No, sir.
17	CHAIRMAN LEMAY: I didn't think so.
18	Commissioner Weiss?
19	EXAMINATION
20	BY COMMISSIONER WEISS:
21	Q. I'm confused about premature water breakthrough.
22	These wells look like they all had premature water
23	breakthrough back in the 1980s; is that right?
24	A. With the exception of the Lambirth A Number 3 and
25	the Enserch Lambirth Number 1.

	147
1	Q. And then you commented I sort of got this.
2	And then let's just pick one of these. Your A 2 or A 3,
3	how would bottom water versus edge water drive how would
4	the performance here vary?
5	A. The Well, if you take a comparison between two
6	wells, the Lambirth A Number 1 and the Lambirth A Number 2,
7	one being ten feet higher than the other, the water cut
8	should be higher in the lower well, and it's the reverse.
9	Q. Wouldn't vertical permeability enter into that?
10	A. I think vertical permeability is part of it, yes,
11	is what causes the edge water drive, vertical permeability
12	being lower than the horizontal.
13	Q. We don't know that, though, do we?
14	A. Well, I think if you I think that's what's
15	going to cause the edge water drive.
16	Q. But given the fact that we don't know whether the
17	vertical permeability is any different than the horizontal,
18	I thought I heard
19	A. Well, if you start off, if you think you have
20	edge water drive, that's the only way I can explain edge
21	water drive, is the vertical permeability is lower than the
22	horizontal permeability.
23	Q. Okay. So the premise is that there's edge water
24	drive, therefore
25	A. Right.

Q.	there's very little vertical permeability?
Α.	Or Just lower than the horizontal.
Q.	Oh, and then one other thing. Does an increase
in the oil	cut mean increased recovery efficiency to you?
A.	Not always.
	COMMISSIONER WEISS: No more questions, thank
you.	
	CHAIRMAN LEMAY: Commissioner Carlson?
	EXAMINATION
BY COMMISS	IONER CARLSON:
Q. 1	What's the current allowable for the pool?
A. 2	267 barrels of oil a day.
Q.	And you could live with that?
A.	Actually, we'd like to have it reduced to 150,
which is t	he maximum our well could make.
Q. 1	But nobody's been able to make the allowable for
many years	until the Enserch Number 1 installed a
submersible	e pump; is that correct?
A. 1	Right.
Q. :	I'm looking at your Exhibit Number 11. I guess
the differ	ence between Well, you tell me what the
difference	is between your Exhibit Number 9 and your Number
11.	
A	The blue scale? Well, the black scale is the
same; both	are oil.
	A. Q. in the oil A. You. BY COMMISS Q. A. Q. A. Q. A. Q. A. Q. A. U. D. A. U. A. U. D. D. D. D. D. D. D. D. D. D. D. D. D.

	149
1	Q. Uh-huh.
2	A. In Number 9 we're plotting in the blue water-oil
3	ratio, and on Exhibit Number 11 the water it's just
4	it's the water production in barrels per day.
5	And the red scale on the Number 11 is GOR, and
6	the red scale on Number 9 is water
7	Q. Right.
8	A in barrels per day.
9	Q. And you don't think there's a marked increase in
10	production after the submersible pump was installed?
11	A. Oh, I agree that, yeah, the oil has definitely
12	gone up. But we think we're just accelerating the
13	reserves.
14	Q. You said the decline rate has increased; isn't
15	that what you said?
16	A. Yes. If you look previous to the submersible
17	pump and you know, I know the production is quite
18	erratic
19	Q. Uh-huh.
20	A but it's you know, varies, you know, varies
21	slightly declining. But then you do see a pretty
22	significant decline after the sub is installed.
23	Q. You're talking about, say What is that? The
24	latter half of 1994, something in there?
25	A. Phillips put a larger submersible pump on the

t a ere
ere
ere
nave.
per 1
ot
date
lo
: was
ble
У,

1 understand it, could bring in the edge water? It's definitely going to bring in -- You know, 2 Α. it's a function of how much oil is coming out. 3 And us making more oil, yes, is going to bring it 4 5 in faster. And then Enserch pulling it out is going to make 6 it come up faster. Both would contribute to it. 7 CHAIRMAN LEMAY: That's all the questions I have. 8 THE WITNESS: Okay. 9 CHAIRMAN LEMAY: Thank you. 10 MR. KELLAHIN: That completes my presentation of 11 12 Mr. --CHAIRMAN LEMAY: Do you want to sum it up, or 13 14 shall we just go with this? 15 MR. KELLAHIN: I want a short summary, if I might. 16 17 CHAIRMAN LEMAY: Sure. MR. CARR: He always does. But I get to go last 18 19 when he does this to me. 20 CHAIRMAN LEMAY: Okay. 21 MR. KELLAHIN: Mr. Chairman, members of the Commission, I have something that troubles me considerably, 22 23 and I want to share it with you. I'm not going to sit here and pretend as a lawyer 24 to explain to you technical people how to handle the 25

	152
1	geology or the engineering. But I will tell you something
2	that I am an expert in, and that is my serious concern that
3	this Applicant has disregarded and disobeyed an order of
4	this Division.
5	There is a comprehensive policy in writing from
6	the Director that Examiner orders are effective until
7	replaced or modified by this Commission. It is known by
8	all lawyers that practice before this agency.
9	I am concerned that this Applicant goes to the
10	District and gets permission for a test allowable,
11	contingent upon the results of the hearing, in which
12	Supervisor Sexton told them that after the Order was
13	entered they were going to have to come in and account for
14	the overproduction.
15	If they didn't like the Examiner Order in
16	November, there is a comprehensive system where you ask the
17	Examiner Order to be stayed. They didn't do that, they
18	didn't ask for it, they didn't even call Mr. Sexton.
19	What do they do? They produce and continue to
20	produce, not at 500 barrels of oil a day, but at 600
21	barrels of oil a day. Where is the accountability for the
22	disregard of the orders of this Division? I can't remember
23	an example of an applicant ever doing this before.
24	Their explanation? We'll just shut in and make
25	it up, it doesn't matter.

1	It does matter. It matters to Mr. Pickett and it
2	matters to Mr. Balke. If their hypothesis is correct, that
3	increased withdrawals are going to more quickly water out
4	their well, shutting Enserch in now has lost us an
5	opportunity for oil recovery in the Phillips well that we
6	cannot achieve again. The point in time is gone. And to
7	suggest that they can be accountable by shutting it in now
8	after ignoring the rule for months misses the point.
9	And you're the experts in the technical area, but
10	I'll tell you, I am seriously concerned that an Applicant
11	can come and do this. Shame on them.
12	CHAIRMAN LEMAY: Mr. Carr, would you like to sum
13	up?
14	MR. CARR: That was the summary?
15	MR. KELLAHIN: Yes, sir.
16	MR. CARR: Mr. LeMay, I would agree with Mr.
17	Kellahin that we're not engineers and geologists. I would
18	point out in response to what Mr. Kellahin said in closing
19	that I'm also troubled, but I'm troubled by a lawyer whose
20	expertise is in the law, who makes a closing based on
21	nothing that's put in the record.
22	We didn't hear any concern expressed by the
23	operators of the wells in the pool, we didn't go into the
24	details of what was or was not communicated with Mr.
25	Sexton, and I would entrust you to look at the file,

	154
1	entrust this to you, look at the letter, and the letter
2	says that this allowable level is not established on a
3	permanent basis, that we will shut in, and I would submit
4	to you, we're in compliance.
5	But I think that in fact to wait until the game
6	is over to raise this is nothing more than after the fact
7	trying to attack an order and a proceeding on grounds that
8	really were never raised before, and it's nothing but an
9	effort to deflect your attention from what's really before
10	you.
11	I would point out that one time at a presentation
12	when you and I were both on the panel, Chairman LeMay, I
13	got in trouble with you and others for asking what was
14	wrong with having the best well in the pool. Today I'm
15	before you with people who have just that, who've been
16	trying to figure out what to do with it. And we have come
17	before you with a technical presentation that we trust you
18	to evaluate and enter an order on the merits.
19	We have looked at the reservoir, we have shown
20	you we have a fractured reservoir, we have what is
21	basically a water-drive reservoir, a bottom water drive,
22	Phillips says with some edge water impact. We have at this
23	point in time, we believe, no oil-water contact because in
24	fact the reservoir is virtually watered out, at least the
25	fracture system.

We have differing opinions on what's going on in 1 the reservoir. I would direct your attention to Phillips' 2 Exhibit 5, and I trust you to determine whether or not 3 that's an accurate depiction of what's occurring when you 4 have the well that is on the extreme right of the exhibit 5 drawing down the reservoir, putting pressure on the aquifer 6 at four times the rate of the other well. 7 I will trust you to tell and decide whether or 8 not this is an accurate depiction of a predominantly bottom 9 water drive reservoir with an edge water drive component, 10 and if that blue line that they have placed on this exhibit 11 in fact shows how water would be migrating up into the 12 It totally disregards the bottom water drive 13 wells. 14 component of this whole problem, this whole question we're 15 wrestling with. We've come before you today, we've presented the 16 history of the Lambirth Number 1, we've given you an SPE 17 paper and we've shown you that when we went out and applied 18 this technology to this well we got the very, very results 19 that, according to this paper, we should have expected. 20 We've achieved exactly what they said we would, and we have 21 a well capable of producing in excess of 500 barrels of oil 22 a day, and that's why we need the higher allowable. 23 And we have told you that if we don't get it, we're not going to 24 defer but we think we will lose half a million barrels of 25

1

2	Now, Phillips has a different view. Phillips
3	comes in and they take Exhibit Number 9, and they say, We
4	see no you'll have to not honor my doodling on it but
5	they say, We see no impact, no benefit from high volume
6	lift. Mr. Pickett can look at this exhibit and he can plot
7	out remaining reserves, and he sees no difference.

8 But you see, that's why we come to a technical 9 Commission; you can do that too. And I submit to you, when 10 you plot the decline that that well was experiencing prior 11 to the installation of high-volume lift, you're going to 12 have a curve that is far below the curve that you will be 13 able to plot after high-volume lift was installed.

14 And I would also submit that if you honor this 15 data, in fact you will see that the curve is somewhat 16 flatter, not sharper, after high-volume lift was installed. 17 We see it, Phillips does not. But the fact is, in the final analysis, what's important is what you can see. 18 And we submit that -- and trust you to look at this and 19 determine whether or not in fact high-volume lift is 20 21 working in the reservoir.

The question of correlative rights is a difficult one. We come before you, we argue waste, they argue correlative rights. But we have attempted to show exactly what is happening.

1	Now, we admit that the kind of data and
2	information we use, the input factors need to be adjusted
3	and that there are shortcomings, comparing the drawdown in
4	their well with the drawdown in ours. But we have
5	testified that the conclusion is the same, and that is, it
6	isn't that we are going to be gaining an advantage on them,
7	but they will maintain, albeit to a lesser extent, the
8	advantage that they have enjoyed on us.
9	And it's not a question of ultimate recovery from
10	the well; it's what they are taking now, where that
11	pressure no-flow line happens to fall. And when you look
12	at the record and you look at the data, I think you can
13	clearly see that boundary falls on the Enserch tract.
14	The case is over, the record is before you. We
15	believe we have shown that if you grant the Application
16	there will be no negative impact on the correlative rights
17	of Phillips, that the correlative rights, the opportunity
18	afforded to Enserch to produce the reserves remaining in
19	the matrix, those will be impaired.
20	We further believe that the evidence is clear,
21	not only from what we have presented but from the Phillips
22	Exhibit Number 9, that high-volume lift works, and by
23	employing it in this reservoir we can recover a half a
24	million additional barrels of oil, oil that otherwise will
25	be lost.

	130
1	CHAIRMAN LEMAY: Thank you, gentlemen, thank you
2	for your presentations.
3	We'll take the case under advisement.
4	(Thereupon, these proceedings were concluded at
5	12:36 p.m.)
6	* * *
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	

_

CERTIFICATE OF REPORTER

STATE OF NEW MEXICO)) ss. COUNTY OF SANTA FE)

I, Steven T. Brenner, Certified Court Reporter and Notary Public, HEREBY CERTIFY that the foregoing transcript of proceedings before the Oil Conservation Commission was reported by me; that I transcribed my notes; and that the foregoing is a true and accurate record of the proceedings.

I FURTHER CERTIFY that I am not a relative or employee of any of the parties or attorneys involved in this matter and that I have no personal interest in the final disposition of this matter.

WITNESS MY HAND AND SEAL March 4th, 1995.

STEVEN T. BRENNER CCR No. 7

My commission expires: October 14, 1998

STATE OF NEW MEXICO ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT OIL CONSERVATION COMMISSION CASE NOS. (10,994), 11,579 0 COLICERVATION DAVID CONTINUED CASES ORIGINAL TRANSCRIPT OF PROCEEDINGS BEFORE: WILLIAM J. LEMAY, CHAIRMAN WILLIAM WEISS, COMMISSIONER JAMI BAILEY, COMMISSIONER January 16th, 1997 Santa Fe, New Mexico These matters came on for hearing before the Oil Conservation Commission, WILLIAM J. LEMAY, Chairman, on Thursday, January 16th, 1997, at the New Mexico Energy, Minerals and Natural Resources Department, Porter Hall, 2040 South Pacheco, Santa Fe, New Mexico, Steven T. Brenner, Certified Court Reporter No. 7 for the State of New Mexico. * * *

1

	2
1	WHEREUPON, the following proceedings were had at
2	9:02 a.m.:
3	CHAIRMAN LEMAY: Good morning. If you haven't
4	guessed, this is the Oil Conservation Commission. My name
5	is Bill LeMay, Chairman of the Commission. To my left is
6	Commissioner Bill Weiss, to my right Commissioner Jami
7	Bailey representing the Commissioner of Public Lands, State
8	of New Mexico. Lyn Hebert is our attorney, Florence [<i>sic</i>]
9	Davidson keeps us in line and does everything for all of
10	us.
11	So with that, I'd like to begin with Case Number
12	10,994, which is the Application of Phillips Petroleum to
13	reopen de novo Case Number 10,994, Roosevelt County, New
14	Mexico.
15	I understand there's a motion, Mr. Kellahin?
16	MR. KELLAHIN: Mr. Chairman, I'm Tom Kellahin of
17	the Santa Fe law firm of Kellahin and Kellahin, appearing
18	on behalf of Phillips Petroleum Company.
19	Mr. Carr is counsel for Enserch, and he and I
20	have agreed to ask permission to continue that matter until
21	the next docket on February 16th, I think it is.
22	CHAIRMAN LEMAY: 13th.
23	MR. KELLAHIN: 13th.
24	CHAIRMAN LEMAY: Thank you. It's always a great
25	day in the life of the Commission when Mr. Kellahin and Mr.

Carr concur on anything, so we shall certainly take that 1 one and continue it until the 13th. 2 3 4 CHAIRMAN LEMAY: Now call Case Number 11,579, 5 which is the Application of Pogo Producing Company for a 6 7 pressure maintenance project, Lea County, New Mexico. I understand that case was to be continued to the 8 April 10th Commission hearing. Is there anyone 9 representing those companies? Any objection to that 10 continuance? 11 12 If not, Case 11,579 will be continued to the 13 April 10th hearing. 14 15 CHAIRMAN LEMAY: We have some minutes of the 16 previous meeting. Is there a motion to accept these 17 minutes? 18 19 COMMISSIONER BAILEY: I move to accept the minutes. 20 CHAIRMAN LEMAY: Second? 21 COMMISSIONER WEISS: I second. 22 CHAIRMAN LEMAY: Thank you, the minutes will be 23 accepted and placed into the record. 24 25 * * *

3

	4
1	CHAIRMAN LEMAY: Just a little business before we
2	get into the cases.
3	The Commission is considering holding their
4	either April or May meeting in Roswell, so we're going to
5	take our show on the road. And we're not sure of the My
6	fellow Commissioners have to check their calendar as to
7	availability. It certainly wouldn't take more than one day
8	if we were down there, so
9	I think April is the preferred date, and if we
10	can do it, we'll do it. If not, May. Is there any comment
11	on that, plus or minus?
12	I see Mr. Carr shaking his head. He might not
13	even have a case, so it's not
14	MR. CARR: We follow you wherever you go.
15	MR. KELLAHIN: He usually doesn't have a case,
16	Mr. Chairman, and we'll go wherever you take us.
17	CHAIRMAN LEMAY: Okay, that will be our plan, and
18	certainly in February we will give you our firm dates on
19	that.
20	* * *
21	
22	CHAIRMAN LEMAY: The other thing is, just point
23	of information, don't forget the February 13th hearing is
24	our Industry/Public Speaks-Commission Listens, so please go
25	to your clients and tell them if they have an agenda, if

they're dissatisfied or they're satisfied or whatever comments they have, please bring those before us because it's their opportunity, certainly, to do so at that time. Also, of course, it's the proration hearing, which used to be a rather involved one, and now those things have gone pretty quick. So we will get a schedule out in the docket and entertain any suggestions for change on the proration schedule. That's for February. * * * (Thereupon, these proceedings were concluded at 9:05 a.m.) * * *

CERTIFICATE OF REPORTER

STATE OF NEW MEXICO)) ss. COUNTY OF SANTA FE)

I, Steven T. Brenner, Certified Court Reporter and Notary Public, HEREBY CERTIFY that the foregoing transcript of proceedings before the Oil Conservation Commission was reported by me; that I transcribed my notes; and that the foregoing is a true and accurate record of the proceedings.

I FURTHER CERTIFY that I am not a relative or employee of any of the parties or attorneys involved in this matter and that I have no personal interest in the final disposition of this matter.

WITNESS MY HAND AND SEAL January 18th, 1997.

STEVEN T. BRENNER CCR No. 7

My commission expires: October 14, 1998

6

STATE OF NEW MEXICO

ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT

OIL CONSERVATION COMMISSION

)

)

)

))

)

IN THE MATTER OF THE HEARING CALLED BY THE OIL CONSERVATION COMMISSION FOR THE PURPOSE OF CONSIDERING:

CASE NO. 10,994

APPLICATION OF ENSERCH EXPLORATION, INC.

REPORTER'S TRANSCRIPT OF PROCEEDINGS

COMMISSION HEARING

BEFORE: WILLIAM J. LEMAY, CHAIRMAN WILLIAM WEISS, COMMISSIONER GARY CARLSON, COMMISSIONER RECEIVED

MAR <u>6 1995</u>

Oil Conservation Division

February 24th, 1995

Santa Fe, New Mexico

This matter came on for hearing before the Oil

Conservation Commission on Friday, February 24th, 1995, at the New Mexico Energy, Minerals and Natural Resources Department, Porter Hall, 2040 South Pacheco, Santa Fe, New Mexico, before Steven T. Brenner, Certified Court Reporter No. 7 for the State of New Mexico.

* * *

INDEX

February 24th, 1995 Commission Hearing CASE NO. 10,994

EXHIBITS	PAGE 4
APPEARANCES	5
OPENING STATEMENTS:	
By Mr. Carr By Mr. Kellahin	7 11
APPLICANT'S WITNESSES:	
<u>GEORGE FAIGLE</u> Direct Examination by Mr. Carr Cross-Examination by Mr. Kellahin Redirect Examination by Mr. Carr Examination by Commissioner Weiss	14 21 38 39
<u>RALPH B. TELFORD</u> Direct Examination by Mr. Carr Cross-Examination by Mr. Kellahin Examination by Commissioner Weiss Examination by Chairman LeMay	40 54 61 62
<u>MARK BURKETT</u> Direct Examination by Mr. Carr Cross-Examination by Mr. Kellahin Redirect Examination by Mr. Carr Examination by Commissioner Weiss Examination by Chairman LeMay	63 71 75 75 77
(Continued)	

STEVEN T. BRENNER, CCR (505) 989-9317 2

	3
PHILLIPS WITNESSES:	
SCOTT BALKE	
Direct Examination by Mr. Kellahin	82
Cross-Examination by Mr. Carr	102
Examination by Commissioner Weiss	111
Examination by Commissioner Carlson	111
Examination by Chairman LeMay	111
JACK_PICKETT	
Direct Examination by Mr. Kellahin	113
Cross-Examination by Mr. Carr	138
Examination by Commissioner Weiss	146
Examination by Commissioner Carlson	148
Examination by Chairman LeMay	150
CLOSING STATEMENTS:	
By Mr. Kellahin	151
By Mr. Carr	151
by Mr. Call	100
REPORTER'S CERTIFICATE	159
* * *	

		EXHIBITS	
Enserch		Identified	Admitted
	Exhibit 1	16	21
	Exhibit 2	16	21
	Exhibit 3	10	21
	EXHIBIC J	Ξ,	21
	Exhibit 4	18	21
	Exhibit 5	19	21
	Exhibit 6	20	21
	2	20	
	Exhibit 7	43	54
	Exhibit 8	44	54
	Exhibit 9	46	54
			•••
	Exhibit 10	48	54
	Exhibit 11	. 49	54
	Exhibit 12	52	54
	Exhibit 13	64	71
	Exhibit 14	66	71
Phillips			
	Exhibit 1	98	102
	Exhibit 2	98	102
	Exhibit 3	8 9, 99	102
	Exhibit 4	93	102
	Exhibit 5	85	102
	Exhibit 6	121	138
	Exhibit 7	123	138
	Exhibit 8	126	138
	Exhibit 9	127	138
	Exhibit 10		138
	Exhibit 11		138
	Exhibit 12	131	138
	Duch it it as	* ^ ^	100
	Exhibit 13		138
	Exhibit 14		138
	Exhibit 15	135	138
		* * *	
		* * *	

APPEARANCES

FOR THE COMMISSION:

RAND L. CARROLL Attorney at Law Legal Counsel to the Division State Land Office Building Santa Fe, New Mexico 87504

FOR THE APPLICANT:

CAMPBELL, CARR, BERGE & SHERIDAN, P.A. Suite 1 - 110 N. Guadalupe P.O. Box 2208 Santa Fe, New Mexico 87504-2208 By: WILLIAM F. CARR

FOR PHILLIPS PETROLEUM COMPANY:

KELLAHIN & KELLAHIN 117 N. Guadalupe P.O. Box 2265 Santa Fe, New Mexico 87504-2265 By: W. THOMAS KELLAHIN

* * *

WHEREUPON, the following proceedings were had at 1 2 9:00 a.m.: CHAIRMAN LEMAY: Good morning, this is the Oil 3 Conservation Division [sic], and we're continuing our 4 hearing agenda from yesterday, and we shall now call Case 5 Number 10,994. 6 7 MR. CARROLL: Application of Enserch Exploration, Inc., for the assignment of a special depth bracket oil 8 allowable, Roosevelt County, New Mexico. 9 10 CHAIRMAN LEMAY: Appearances in the case? 11 MR. CARR: May it please the Commission, my name 12 is William F. Carr with the Santa Fe law firm Campbell, 13 Carr, Berge and Sheridan. We represent Enserch Exploration, Inc., and I 14 have three witnesses. 15 CHAIRMAN LEMAY: Thank you, Mr. Carr. 16 MR. KELLAHIN: Mr. Chairman, members of the 17 Commission, I'm Tom Kellahin of the Santa Fe law firm of 18 Kellahin and Kellahin, appearing today on behalf of 19 Phillips Petroleum Company in opposition to the Applicant, 20 and we have two witnesses to be sworn. 21 22 CHAIRMAN LEMAY: Thank you, Mr. Kellahin. 23 Would those about to give testimony stand, raise your right hand? 24 25 (Thereupon, the witnesses were sworn.)

6

Okay, let's start. 1 CHAIRMAN LEMAY: 2 MR. CARR: I have a brief opening statement. CHAIRMAN LEMAY: Mr. Carr? 3 MR. CARR: May it please the Commission, Enserch 4 5 Exploration, Inc., is before you today seeking the adoption of a special depth bracket allowable of 500 barrels of oil 6 per day for the South Peterson-Fusselman Pool in Roosevelt 7 County. This pool was established in July of 1978 as a 8 result of the discovery of oil in the Enserch Lambirth 9 Number 1 well. 10 At the same time the pool was established, 11 special pool rules were adopted on a temporary basis that 12 13 were later made permanent, providing for 80-acre spacing. Since that time, this pool has been developed 14 basically by two operators, Enserch and Phillips. There is 15 another operator in the pool, Bledsoe, but they are 16 17 operating a well that isn't in the structural feature which is the subject of today's hearing. 18 These two operators have developed the pool on a 19 checkerboard pattern. As we will show you, there is an 20 21 active water drive in the field, and we now find ourselves at a point where there are approximately five wells that 22 remain capable of producing from the South Peterson-23 Fusselman Pool. 24 25 This case is about the waste of oil. It's about

how to maximize recovery of oil as we move to the last days
 of this reservoir's producing life.

Enserch will call Mr. George Faigle, a geologist. He will review for you the nature of the reservoir. He will show you that what we have here is a fractured reservoir with an active water drive. There is no oil-water contact in the reservoir, because the fracture system at this point in the reservoir's life is water-saturated.

As I mentioned a minute ago, there are only five wells still capable of producing. The Lambirth Number 1, the discovery well, was and remains the best well in the pool. And we will show you that it is the best well in the pool because of the quality of the rock from which it produces and also because it is structurally the highest well in the reservoir.

We will then call Ralph Telford, a petroleum engineer, and he will review the history of the Lambirth Number 1. He will show you that after years of reliable top-allowable production, the well in late 1993 watered out and Enserch was faced with what to do to try and return the well to producing status.

And they discovered an SPE paper that talked about the benefits that could be obtained from high-volume lift, increasing the rates of withdrawal in a reservoir of this nature. And this paper showed that if you would

> STEVEN T. BRENNER, CCR (505) 989-9317

8

accelerate production you could pull water out of the fractures, and when you did that oil would flow from the matrix.

All the conditions in the paper fit the South Peterson-Fusselman Pool and the Lambirth Number 1 well, so Enserch attempted to employ this technology on the well. And we'll review with you what Enserch did: first rod pumps, then a submersible pump, then a larger submersible pump.

10 And we will show you that we achieved exactly 11 what the SPE paper suggested we could achieve: a well that 12 can produce over 500 barrels of oil a day with a reduced 13 water cut.

The reason we're here is that if we are to continue to produce this well and obtain the benefits from high-volume lift, we have to have a higher allowable for the Lambirth Number 1.

18 If we don't get the higher allowable pursuant to 19 directions from this Division, the well is overproduced and 20 pursuant to your direction the well will have to be shut 21 in. And if we do, we will show you that we may in fact 22 lose the well.

And we can show you that if we are able to go forward, we should be able to produce approximately 456,000 barrels of oil that otherwise will be lost.

The case first came before the Division in June 1 of last year, and Phillips appeared at that time in 2 opposition to the Application, and the Application was 3 denied. 4 Finding 10 of that order denying the Application 5 stated that the Application was denied because at this time 6 there is insufficient data available to assume that an 7 increased allowable will prevent waste and protect 8 correlative rights. 9 At that time the Examiner was correct. We put 10 the well on pump in May, we came to hearing in June, and 11 the presentation was based on analogies to other wells in 12 13 the pool and basically limited data. 14 But since that time, we have nine months of 15 additional data, and we can show you that HVL works in this reservoir, that it will prevent waste, that it will 16 substantially increase the recovery of oil from this 17 reservoir. 18 And then we will call Mark Burkett, a petroleum 19 engineer, who will address the correlative rights aspects 20 21 of this case, and he is going to show you that in fact there will be no adverse effect on any other operator in 22 the pool, that correlative rights cannot be impaired. 23 And we will conclude by showing that if the 24 Application is not granted, there is no correlative-rights 25

1	issue, that almost 500,000 barrels of oil will be lost.
2	CHAIRMAN LEMAY: Thank you, Mr. Carr.
3	Mr. Kellahin?
4	MR. KELLAHIN: Thank you, Mr. Chairman.
5	This pool was developed based upon a farmout from
6	Phillips Petroleum Company to Enserch, and the discovery
7	well was drilled by Enserch back in 1978.
8	You'll see from the exhibits that there's an
9	interesting pattern to the spacing units. They are 80-acre
10	laydown spacing units, and it's checkerboarded.
11	As a result of the farmout, Phillips retained the
12	alternative 80-acre tracts. And so when you look at the
13	displays, you're going to see every other spacing unit, if
14	you will, developed by one operator versus the other.
15	The reservoir rules were developed in 1978, and
16	for some 17 years, now, this pool has been operated and
17	depleted based upon an oil allowable of 267 barrels of oil
18	a day.
19	There is a water component to the reservoir
20	that's of significance to you. I have before me, and I
21	will give you copies of, the order that Mr. Carr referred
22	to. It was an Examiner case held in June of last year.
23	And in November of 1994, then, on the third of November,
24	the Division entered the order denying the Application of
25	Enserch.

There were some fundamental issues of difference 1 between the parties back in June. Those fundamental 2 differences continue today. The additional information 3 developed since the last hearing does not change the 4 5 conclusions. Despite the contentions of Mr. Carr, this is not 6 a waste case; it is our evidence and our expert opinion 7 8 from our witnesses' belief that this is strictly a correlative-rights case. 9 You will see when you look at the displays from 10

11 our witnesses that the Enserch Lambirth Number 1 well does 12 in fact enjoy a significant advantage over the closest well 13 operated by Phillips.

The Phillips well is the Lambirth 2 A well. The Enserch well is the Enserch Lambirth 1 well. Both operators have used Lambirth in the naming of the wells. Those are the two wells that you will see, and we will talk about the most.

19The advantage to Enserch is that they are 38 feet20higher in their perforations in the top of the reservoir,21and they have the opportunity to continue to produce their22well so that it will drain the downstructure Phillips well.23And if you increase the oil allowable, you simply24increase the opportunity for Enserch to take from Phillips25Phillips' share of the remaining oil before Phillips has a

1 chance to produce it.

-	
2	It is our contention that after 17 years, we see
3	no reason to change the rules. We are well aware of the
4	SPE paper. We have studied that SPE paper in detail, and
5	our witnesses come to different conclusions than Mr. Carr.
6	We believe this is a correlative-rights case
7	because it's simply one operator utilizing a proposed
8	increase in oil withdrawals to take advantage of the
9	downstructure operator.
10	It will be our testimony that this is not a waste
11	case, that the increased rates of oil production in the
12	Enserch well don't result in increased ultimate pool oil
13	recovery. The increased recoveries attributable to
14	Enserch, our proof will show, are simply draining oil from
15	us that we would otherwise produce. The dispute then is
16	the dispute now. We believe none of the new information
17	changes any of the results that Mr. Stogner entered when he
18	decided this case back in November of 1994.
19	We believe at the conclusion of this hearing that
20	we hope you will agree with us that the correlative rights
21	of Phillips are impaired if you grant this Application, and
22	we would ask that you affirm the Examiner order and deny
23	the request of Enserch.
24	CHAIRMAN LEMAY: Thank you, Mr. Kellahin.
25	Mr. Carr, you may proceed.

1	MR. CARR: At this time, if it please the
2	Commission, we would call Mr. George Faigle.
3	GEORGE FAIGLE,
4	the witness herein, after having been first duly sworn upon
5	his oath, was examined and testified as follows:
6	DIRECT EXAMINATION
7	BY MR. CARR:
8	Q. Would you state your name for the record, please?
9	A. George Faigle.
10	Q. Where do you reside?
11	A. Midland, Texas.
12	Q. By whom are you employed?
13	A. Enserch Exploration.
14	Q. And what is your current position with Enserch?
15	A. Development geologist.
16	Q. Mr. Faigle, have you previously testified before
17	the Oil Conservation Commission?
18	A. Yes.
19	Q. At the time of that prior testimony, were your
20	credentials as an expert in petroleum geology accepted and
21	made a matter of record?
22	A. Yes.
23	Q. Are you familiar with the Application filed in
24	this case on behalf of Enserch?
25	A. Yes.

Are you familiar with the rules for the South 1 0. 2 Peterson-Fusselman Pool and the wells located therein? 3 Α. Yes. 4 Q. Could you briefly summarize for the Commission 5 what Enserch seeks with this Application? Enserch seeks amendment of the special pool rules 6 Α. 7 and regulations for the South Peterson-Fusselman Pool to provide for a special depth bracket allowable of 500 8 barrels of oil per day. 9 Initially could you summarize for the Commission 10 Q. the current rules that govern development in this pool? 11 Eighty-acre spacing, designated well location 12 Α. requirements being within 150 feet of the center of the 13 14 quarter quarter section. 15 **Q**. Now, those are the special pool rules; is that correct? 16 17 Α. Yes. And then what are the other statewide rules that 18 Q. 19 would come into play? Okay, the statewide rules are depth bracket 20 Α. 21 allowable of 267 barrels of oil per day. For an 80-acre tract? 22 Q. 23 For an 80-acre tract. Α. 24 And what is the gas-oil ratio? Q. 25 2000 to 1. Α.

And using these figures, what would the resulting 1 Q. casinghead gas allowable be for the pool? 2 Α. 534 MCF per day. 3 Let's go to Exhibit Number 1, and I'd ask you to 4 0. identify that for the Commission. 5 Exhibit Number 1 is a small-scale orientation Α. 6 plat which shows the location of the South Peterson-7 Fusselman Pool as indicated by the green dot. 8 And this is just -- generally shows where it is 9 Q. located in regard to other reservoirs in eastern New 10 Mexico? 11 Α. Yes. 12 Let's go to Exhibit Number 2. Would you identify 13 Q. and review that? 14 Exhibit 2 is a large-scale area map showing the 15 Α. Fusselman producers in red dots and the pool operators, 16 17 being Enserch, Phillips and Bledsoe. Note that the Phillips 1 A is shut in at this 18 19 time and that the Enserch Number 3 Lambirth Fusselman production is commingled with the Pennsylvanian production 20 as of May of 1994. It also shows the completion dates of 21 surrounding wells and the Enserch lease position. 22 And the five wells in the center of the exhibit 23 ο. are basically the five wells that still do produce from the 24 Fusselman in the area? 25

1	A. Yes, that's correct.
2	Q. And the arrow indicates the Lambirth Number 1?
3	A. Yes.
4	Q. Could you review the just generally, the
5	characteristics of that well?
6	A. Okay.
7	Q. It is the best well in the pool, is it not, Mr.
8	Faigle?
9	A. Yes, it's the highest well in the pool, and it's
10	the best well in the pool.
11	Q. Okay.
12	A. It's indicated by the red arrow, as we stated
13	previously.
14	Q. All right. Let's go to Exhibit Number 3. Will
15	you identify that, please?
16	A. Okay, Exhibit Number 3 is a structure map on the
17	lower paleozoic carbonate, which is the Fusselman in this
18	area. It was prepared from well control.
19	It shows the five Fusselman wells left in this
20	area. It also shows the Bledsoe well in Section 10; that's
21	in the lower left-hand corner. It's also a Fusselman
22	producer, which is interpreted to be on a separate
23	structural closure.
24	The structural position of the producing wells in
25	this pool shows the Number 1 Lambirth to be the

1 structurally highest well in the pool. 2 Q. All right, let's now go to Exhibit Number 4. 3 Would you identify that, please? 4 Exhibit 4 is a type log illustrating the Α. 5 Fusselman Pool. It was -- It is the log of the Number 1 Lambirth. It shows the area stratigraphic section being 6 Pennsylvanian, on top of Fusselman, on top of granite, and 7 it also shows the perforated interval in the Number 1 8 9 Lambirth. Could you generally describe for the Commission 10 Q. the characteristics of the Fusselman formation in this 11 area? 12 Lithologywise, the Fusselman is dolomite, white 13 Α. to light gray through light tan, finely to coarsely 14 crystalline to sucrosic. In the Number 1 Lambirth it was 15 16 178 feet thick, and the reservoir was encountered 60 feet 17 into the Fusselman. Porosities are in the range of 20 percent. 18 The porosity is a bimodal system consisting of fractures and 19 intercrystalline matrix porosity. 20 21 Permeabilities are in the range -- the 500millidarcy range. 22 23 This is a water-drive reservoir. The trap is 24 basically a structural accumulation of oil, formed at an 25 angular unconformity where the Fusselman subcrops against

1	the Penn.
2	Q. Now, Mr. Faigle, you prepared a cross-section of
3	the wells in the pool?
4	A. Yes, sir.
5	Q. Let's go to Enserch Exhibit Number 5 and review
6	that cross-section for the Commission.
7	A. Okay, Exhibit 5 is a structural cross-section
8	showing the structural position of the Number 1 Lambirth
9	and the three offsetting Phillips wells. It also shows the
10	perforated interval in each well.
11	Q. Those perforations are indicated in green?
12	A. In the green color.
13	Q. And what does this tell you?
14	A. It The cross-section or the perforations?
15	Q. The cross The perforations.
16	A. That they vary slightly from well to well. The
17	reservoir is found in different structural positions in
18	different wells.
19	Q. Structurally, the Lambirth Number 1 is the
20	highest well in the pool, is it not?
21	A. Yes.
22	Q. Does the cross-section show an oil-water contact?
23	A. No, because the Fusselman pool is essentially
24	watered out, an oil-water contact is irrelevant at this
25	time.

Let's look at Exhibit Number 6, please. 1 Q. Could 2 you identify that? 3 Α. This is a diagram of the high-volume lift concept and a geologic interpretation of how the high-volume lift 4 5 theory applies to the Number 1 Lambirth. 6 It shows the dual-porosity system, fractures in the matrix, it shows the original oil-water contact, it 7 shows that the oil in the fractures has been produced and 8 replaced by water; the field has watered out. 9 It shows incremental oil in the matrix porosity, 10 some of which can be covered by high-volume lift production 11 methods, the details of which will be discussed in the 12 13 engineering section. Basically, Mr. Faigle, what geologic conclusions 14 Q. can you reach from your study of this pool? 15 The reservoir is a dolomite, which has a 16 Α. 17 heterogeneous bimodal porosity system consisting of both fractures and intercrystalline matrix porosity. 18 The pool is a structural accumulation of oil with 19 the Number 1 Lambirth the highest well in the pool. 20 The main reservoir has watered out. 21 And this geological interpretation is going to be 22 0. used as a basis for the Enserch engineering presentation; 23 is that correct? 24 25 Α. Yes.

Were Exhibits 1 through 6 prepared by you? 1 Q. 2 Α. Yes. 3 MR. CARR: At this time we would move the admission of Enserch Exhibits 1 through 6. 4 5 CHAIRMAN LEMAY: Without objection, Exhibits 1 through 6 will be admitted into evidence. 6 7 MR. CARR: And that concludes my direct examination of Mr. Faigle. 8 9 CHAIRMAN LEMAY: Thank you, Mr. Carr. Mr. Kellahin? 10 11 MR. KELLAHIN: Thank you, Mr. Chairman. 12 CROSS-EXAMINATION 13 BY MR. KELLAHIN: 14 Q. Mr. Faigle, sir, if you'll turn with me to your 15 Exhibit Number 3. Did you bring with you, Mr. Faigle, a copy of the 16 17 Exhibit 3 that you introduced before Examiner Stogner back in June of 1994? 18 19 Α. No. Let me show you, Mr. Faigle, what was introduced 20 Q. 21 at that hearing and sponsored by you as Exhibit Number 3 and ask you if you recognize this exhibit. 22 23 Yes. Α. Is that a true and accurate copy of the exhibit 24 Q. 25 that you introduced before Examiner Stogner back on June 23

1	of 1994?
2	A. Yes.
3	Q. On your Exhibit 3 from the Examiner hearing, Mr.
4	Faigle, you scribed a red line around some of the wells in
5	the pool that would include the Lambirth 1 and the Lambirth
6	2 A. Do you remember doing that, sir?
7	A. Repeat that, please.
8	Q. Yes, sir. On Exhibit 3 from the Examiner
9	hearing, you had scribed a red line on that exhibit. I'm
10	looking at the one from the Examiner hearing. You scribed
11	a red line around some of the wells, including your
12	Lambirth 1 and the Phillips Lambirth 2 A, did you not do
13	that, sir?
14	A. And several other wells.
15	Q. Yes, sir. You did that; is that not correct?
16	A. It essentially outlined the five producing
17	wells it encircled the five producing wells we see on
18	Exhibit 3, which is presented in this hearing.
19	Q. All right, sir. And your testimony at that time
20	is, that circle represented the remaining productive
21	acreage at that point in time in the reservoir, did it not?
2 2	A. No.
23	Q. On page 12 of that transcript, Mr. Faigle, did
24	Mr. Carr ask you and did you not answer Mr. Carr, saying,
25	"Now"

1 MR. CARR: Let's --MR. KELLAHIN: It's page 12, Mr. Carr. 2 MR. CARR: Let me give the witness a copy. 3 MR. KELLAHIN: It's page 12. 4 MR. CARR: What line are you at? 5 6 MR. KELLAHIN: I'm starting at line number 9, Mr. Faigle. 7 8 THE WITNESS: Okay. 9 (By Mr. Kellahin) Are you with me? Q. Okay. 10 Α. It says, "QUESTION: Now, the area that you have 11 Q. indicated with the circle on this Exhibit, that's not the 12 pool boundaries but just the acreage which you estimate now 13 still productive in the reservoir? 14 "ANSWER: That outlines the are" -- I think 15 that's a typo; it should say "area" -- "of the productive 16 17 wells..." Right? Yes, that's what it says. 18 Α. 19 Q. All right. Was that scribed area intended to 20 represent the productive acreage left in the reservoir at 21 that time? No, it was put on there to outline, to run a 22 Α. circle around the producing wells. 23 All right. The exhibit you've introduced today 24 Q. 25 is substantially different than the Exhibit 3 from the June

1 hearing, is it not? 2 Α. It's different. I don't agree with "substantially". 3 All right. Why have you changed your display 4 Q. from the one introduced in June? 5 Re-evaluation of the data. 6 Α. 7 Have you changed the top marker point at which Q. 8 you've contoured the structure? 9 Α. Yes. Okay. Exhibit 3 from the June hearing is on the 10 Q. top of the Fusselman, as you identified it back at that 11 12 prior hearing, is it not? 13 Α. That's correct. All right. On Exhibit 3 for today's hearing, 14 Q. 15 what have you used as the top on which you have then contoured the structure? 16 17 The lower paleozoic carbonate. Α. All right, let's go to the type log that you're 18 Q. 19 introduced today and have you show us the difference. 20 Α. Now your question, Mr. Kellahin, was --21 Q. Yes, sir, you have changed the point at which you 22 have drawn the structure map; am I understanding that 23 correctly? 24 I have made some changes to the contoured Α. 25 horizon.

Yes, sir. I want to look at the type log and 1 0. find out where to find on the type log the points you've 2 used as the marker point to construct the new structure 3 4 map. 5 Α. It's the line between the words "base of 6 Pennsylvanian" and "lower paleozoic carbonate" --7 All right. Q. -- is the current contoured horizon. 8 Α. If we're looking at the structure map from the 9 Q. June hearing, where on this type log would we find that 10 point? 11 I'll have to make an assumption on that. I don't 12 Α. recall exactly. I would assume it was around 7800 feet 13 drilling depth. 14 All right. What's the basis for changing the 15 0. point at which you've drawn the structure? 16 To alleviate some of the confusion it caused. 17 Α. All right. When we look at the Exhibit 3 today, 18 Q. 19 can you identify for us what in your opinion was the 20 original oil-water contact in the reservoir at a minus 21 subsea depth? Α. The original oil-water contact was in the 22 vicinity of minus 3450 to minus 3440. 23 All right, sir. Let me take a copy of your 24 Q. Exhibit 5 from today's hearing, which is the cross-section 25

1	that you presented. I'm going to show you my copy, if I
2	may. If I might lay this in front of you, Mr. Faigle. If
3	you'll help me find
4	A. 3450.
5	MR. KELLAHIN: If you'll help me find on my copy
6	of your cross-section the point, minus 3450, that
7	represents the original oil-water contact in the reservoir,
8	I want to scribe a red line to show where that original
9	oil-water contact was, all right?
10	All right, sir. Thank you, Mr. Faigle.
11	MR. KELLAHIN: Mr. Chairman, at my request Mr.
12	Faigle has marked my copy of the log at the point with a
13	pencil on each log where he has identified the original
14	oil-water contact, and so that you'll be able to see that
15	I'm going to draw a red line that connects those points so
16	that there's a visual reference.
17	Q. (By Mr. Kellahin) When we look at the cross-
18	section, my copy, I've put on the easel, just so that we
19	could look at the same Exhibit at the same time, Mr.
20	Faigle, when we're looking at that cross-section and find
21	the Enserch Number 1 Lambirth well, the top perforation in
22	the Enserch well is at a subsea depth of what, sir?
23	A. Minus 3380.
24	Q. And does that top perforation represent, in your
25	opinion, the top of the original oil within the Fusselman

1	reservoir?
2	A. It could be interpreted to mean that.
3	Q. So if we were to perforate higher in your well,
4	we're not going to get any more oil production in the
5	Fusselman?
6	A. I can't be sure enough to say that. There might
7	be some minor amounts producible in the tighter parts of
8	the reservoir.
9	Q. All right. When we go over to the Phillips 2 A
10	Lambirth well, which is the first well on the left side of
11	the cross-section, what is the top perforation in their
12	well in a subsea depth?
13	A. Minus 3418.
14	Q. All right. The advantage in terms of that
15	relationship is about 38 feet in preference to the Enserch
16	well, is it not?
17	A. Correct.
18	Q. When we look at the cartoon, the Exhibit 6, the
19	schematic illustration of that you're depicting, you
20	have concluded that at this point in the depletion of the
21	reservoir, that the fractures have watered out?
22	A. Yes.
23	Q. All right. With the original oil-water contact
24	as we've described it on the cross-section, describe for us
25	geologically how you believe that water to have moved so

1	that now all the fractures are filled with water.
2	A. A water table will usually A bottom-drive
3	water table will usually encroach from the bottom upward.
4	Q. Is it your opinion that this is a bottom-drive
5	bottom water drive reservoir?
6	A. Yes, it is.
7	Q. All right, upon what do you base that opinion?
8	A. Literature.
9	Q. Do you have any field data with regards to this
10	pool that supports that opinion?
11	A. This is more an engineering-type question, but I
12	believe we do have some data that would indicate this.
13	Q. All right. You as a geologist don't see any
14	geologic evidence to support whether or not it's a bottom
15	water drive as opposed to an edge water drive?
16	A. I see some evidence, yes.
17	Q. As a geologist?
18	A. Yes.
19	Q. All right. If your concept of the bottom water
20	drive is correct, then, would the water uniformly move
21	vertically in the reservoir as the wells deplete the
22	reservoir?
23	A. It would move generally It's not going to
24	come up on a perfectly flat, horizontal plane. The water
25	tables don't encroach that way. It would come up

1	erratically. Not extremely erratically, but it's not going
2	to come up as a horizontal plane, a flat, horizontal plane;
3	it's going to come up gradually.
4	Q. All right. As that bottom water drive encroaches
5	vertically into the oil column, if you will, what was the
6	first well to experience increased water cuts that could be
7	attributable to the migration vertically of that water?
8	A. Of the four wells on the cross-section?
9	Q. Yes, sir.
10	A. I would assume it would be the lowest structural
11	position. The well with the lowest structural position
12	would have the water cut first.
13	Q. All right. Describe for me your concept of the
14	reservoir between this fracture system and what you've
15	described as matrix oil.
16	And perhaps the Exhibit 6 is the display to look
17	at. You have illustrated the reservoir to be a combination
18	fracture and matrix porosity?
19	A. Yes.
20	Q. A dual-porosity system, if you will?
21	A. Bimodal porosity system.
22	Q. All right. Tell us why you have that belief.
23	A. Performance of the wells, literature, published
24	literature.
25	Q. As the water drive moves up, it encroaches into

1	the upper portion of the reservoir that originally had oil,
2	it is your conclusion that that water has filled up the
3	fracture system; is that not what this shows?
4	A. Yes.
5	Q. Okay. And at this point in the life of the
6	reservoir, where, then, is the remaining oil left to be
7	produced?
8	A. There may be some left in the fractures, small
9	amounts that we're talking about, one percent or in that
10	neighborhood. The oil remaining in the reservoir, we
11	believe, is in the matrix porosity.
12	Q. Describe for us why you have that belief.
13	A. Because the production characteristics of the
14	wells would indicate that the oil would be produced from
15	the fractures first since they have the greatest
16	permeability, and they would water out first.
17	Q. Mr. Carr mentioned that there were still five
18	wells left in the pool that continue to produce. You've
19	shown four on the cross-section. Where is the fifth?
20	And perhaps we could look at a locator map.
21	Exhibit 3 serves that purpose, I believe, if you'll look at
22	Exhibit 3.
23	A. The Fusselman producer not on the cross-section
24	is the Enserch Number 3 Lambirth.
25	Q. All right, it's the northeast offset to the well

1	with the red arrow?
2	A. Yes.
3	Q. Why has that well been excluded from the cross-
4	section?
5	A. It was my understanding of the problem, was
6	between the Enserch Number 1 Lambirth and the offsetting
7	Phillips wells.
8	Q. What is the status of the Enserch Lambirth 3
9	well, the well that's excluded from the cross-section?
10	A. The Number 3 is producing commingled from the
11	Pennsylvanian and the Fusselman.
12	Q. Is it still producing oil, then, from the
13	Fusselman?
14	A. We have to assume so. Being commingled, there's
15	no way I can qualify or disqualify which zone is producing
16	the oil.
17	Q. When was that well commingled, Mr. Faigle,
18	approximately?
19	A. May, 1994.
20	Q. At the time it was commingled, was it open in the
21	Fusselman?
22	A. No, it was a Pennsylvanian producer that was
23	recompleted commingled to Fusselman and the Pennsylvanian.
24	Q. All right. So you had Pennsylvanian gas
25	production or oil?

 A. Oil. Q. Pennsylvanian oil production in the well, and then you went up and added the Fusselman? A. We went down and Q. I'm sorry. Q recompleted in the Fusselman. Q. All right. A. The well was originally a Fusselman producer, low oil volumes, high water volumes, which was produced for a very short period of time in the Fusselman and then recompleted to the Penn. Q. At the time that the Fusselman was originally abandoned in that well, what kind of oil-water rate did you have? A. I don't know. Q. All right. Do you recall approximately when that took place? A. No. Q. At this point is it fair to assume that there's little if any contribution from the Fusselman in that wellbore? That's a A. No, I don't know? A. No, I don't think it's fair to assume that 		JZ
 then you went up and added the Fusselman? A. We went down and Q. I'm sorry. Q recompleted in the Fusselman. Q. All right. A. The well was originally a Fusselman producer, low oil volumes, high water volumes, which was produced for a very short period of time in the Fusselman and then recompleted to the Penn. Q. At the time that the Fusselman was originally abandoned in that well, what kind of oil-water rate did you have? A. I don't know. Q. All right. Do you recall approximately when that took place? A. No. Q. At this point is it fair to assume that there's little if any contribution from the Fusselman in that wellbore? That's a A. No. Q. We don't know? A. No, I don't think it's fair to assume that 	1	A. Oil.
 A. We went down and Q. I'm sorry. Q recompleted in the Fusselman. Q. All right. A. The well was originally a Fusselman producer, low oil volumes, high water volumes, which was produced for a very short period of time in the Fusselman and then recompleted to the Penn. Q. At the time that the Fusselman was originally abandoned in that well, what kind of oil-water rate did you have? A. I don't know. Q. All right. Do you recall approximately when that took place? A. No. Q. At this point is it fair to assume that there's little if any contribution from the Fusselman in that wellbore? That's a A. No. Q. We don't know? A. No, I don't think it's fair to assume that 	2	Q. Pennsylvanian oil production in the well, and
 Q. I'm sorry. Q recompleted in the Fusselman. Q. All right. A. The well was originally a Fusselman producer, low oil volumes, high water volumes, which was produced for a very short period of time in the Fusselman and then recompleted to the Penn. Q. At the time that the Fusselman was originally abandoned in that well, what kind of oil-water rate did you have? A. I don't know. Q. All right. Do you recall approximately when that took place? A. No. Q. At this point is it fair to assume that there's little if any contribution from the Fusselman in that wellbore? That's a A. No. Q. We don't know? A. No, I don't think it's fair to assume that 	3	then you went up and added the Fusselman?
 Q recompleted in the Fusselman. Q. All right. A. The well was originally a Fusselman producer, low oil volumes, high water volumes, which was produced for a very short period of time in the Fusselman and then recompleted to the Penn. Q. At the time that the Fusselman was originally abandoned in that well, what kind of oil-water rate did you have? A. I don't know. Q. All right. Do you recall approximately when that took place? A. No. Q. At this point is it fair to assume that there's little if any contribution from the Fusselman in that wellbore? That's a A. No. Q. We don't know? A. No, I don't think it's fair to assume that 	4	A. We went down and
 Q. All right. A. The well was originally a Fusselman producer, low oil volumes, high water volumes, which was produced for a very short period of time in the Fusselman and then recompleted to the Penn. Q. At the time that the Fusselman was originally abandoned in that well, what kind of oil-water rate did you have? A. I don't know. Q. All right. Do you recall approximately when that took place? A. No. Q. At this point is it fair to assume that there's little if any contribution from the Fusselman in that wellbore? That's a A. No. Q. We don't know? A. No, I don't think it's fair to assume that 	5	Q. I'm sorry.
 A. The well was originally a Fusselman producer, low oil volumes, high water volumes, which was produced for a very short period of time in the Fusselman and then recompleted to the Penn. Q. At the time that the Fusselman was originally abandoned in that well, what kind of oil-water rate did you have? A. I don't know. Q. All right. Do you recall approximately when that took place? A. No. Q. At this point is it fair to assume that there's little if any contribution from the Fusselman in that wellbore? That's a A. No. Q. We don't know? A. No, I don't think it's fair to assume that 	6	Q recompleted in the Fusselman.
 oil volumes, high water volumes, which was produced for a very short period of time in the Fusselman and then recompleted to the Penn. Q. At the time that the Fusselman was originally abandoned in that well, what kind of oil-water rate did you have? A. I don't know. Q. All right. Do you recall approximately when that took place? A. No. Q. At this point is it fair to assume that there's little if any contribution from the Fusselman in that wellbore? That's a A. No. Q. We don't know? A. No, I don't think it's fair to assume that 	7	Q. All right.
10 very short period of time in the Fusselman and then 11 recompleted to the Penn. 12 Q. At the time that the Fusselman was originally 13 abandoned in that well, what kind of oil-water rate did you 14 have? 15 A. I don't know. 16 Q. All right. Do you recall approximately when that 17 took place? 18 A. No. 19 Q. At this point is it fair to assume that there's 10 little if any contribution from the Fusselman in that 21 wellbore? That's a 22 A. No. 23 Q. We don't know? 24 A. No, I don't think it's fair to assume that	8	A. The well was originally a Fusselman producer, low
11 recompleted to the Penn. 12 Q. At the time that the Fusselman was originally 13 abandoned in that well, what kind of oil-water rate did you 14 have? 15 A. I don't know. 16 Q. All right. Do you recall approximately when that 17 took place? 18 A. No. 19 Q. At this point is it fair to assume that there's 10 little if any contribution from the Fusselman in that 21 wellbore? That's a 22 A. No. 23 Q. We don't know? 24 A. No, I don't think it's fair to assume that	9	oil volumes, high water volumes, which was produced for a
 Q. At the time that the Fusselman was originally abandoned in that well, what kind of oil-water rate did you have? A. I don't know. Q. All right. Do you recall approximately when that took place? A. No. Q. At this point is it fair to assume that there's little if any contribution from the Fusselman in that wellbore? That's a A. No. Q. We don't know? A. No, I don't think it's fair to assume that 	10	very short period of time in the Fusselman and then
 abandoned in that well, what kind of oil-water rate did you have? A. I don't know. Q. All right. Do you recall approximately when that took place? A. No. Q. At this point is it fair to assume that there's little if any contribution from the Fusselman in that wellbore? That's a A. No. Q. We don't know? A. No, I don't think it's fair to assume that 	11	recompleted to the Penn.
 have? A. I don't know. Q. All right. Do you recall approximately when that took place? A. No. Q. At this point is it fair to assume that there's little if any contribution from the Fusselman in that wellbore? That's a A. No. Q. We don't know? A. No, I don't think it's fair to assume that 	12	Q. At the time that the Fusselman was originally
 A. I don't know. Q. All right. Do you recall approximately when that took place? A. No. Q. At this point is it fair to assume that there's little if any contribution from the Fusselman in that wellbore? That's a A. No. Q. We don't know? A. No, I don't think it's fair to assume that 	13	abandoned in that well, what kind of oil-water rate did you
 Q. All right. Do you recall approximately when that took place? A. No. Q. At this point is it fair to assume that there's little if any contribution from the Fusselman in that wellbore? That's a A. No. Q. We don't know? A. No, I don't think it's fair to assume that 	14	have?
17 took place? 18 A. No. 19 Q. At this point is it fair to assume that there's 10 little if any contribution from the Fusselman in that 21 wellbore? That's a 22 A. No. 23 Q. We don't know? 24 A. No, I don't think it's fair to assume that	15	A. I don't know.
 A. No. Q. At this point is it fair to assume that there's little if any contribution from the Fusselman in that wellbore? That's a A. No. Q. We don't know? A. No, I don't think it's fair to assume that 	16	Q. All right. Do you recall approximately when that
 Q. At this point is it fair to assume that there's little if any contribution from the Fusselman in that wellbore? That's a A. No. Q. We don't know? A. No, I don't think it's fair to assume that 	17	took place?
20 little if any contribution from the Fusselman in that 21 wellbore? That's a 22 A. No. 23 Q. We don't know? 24 A. No, I don't think it's fair to assume that	18	A. No.
<pre>21 wellbore? That's a 22 A. No. 23 Q. We don't know? 24 A. No, I don't think it's fair to assume that</pre>	19	Q. At this point is it fair to assume that there's
 A. No. Q. We don't know? A. No, I don't think it's fair to assume that 	20	little if any contribution from the Fusselman in that
 Q. We don't know? A. No, I don't think it's fair to assume that 	21	wellbore? That's a
A. No, I don't think it's fair to assume that	22	A. No.
	23	Q. We don't know?
25 there's little or no contribution from the Fusselman in	24	A. No, I don't think it's fair to assume that
	25	there's little or no contribution from the Fusselman in

that wellbore. 1 At this point there's no way to retrieve the data 2 0. 3 from that well to determine whether or not there's any oil contribution from the Fusselman? 4 5 Α. State that again, please. 6 Q. Because it's been commingled, there is no way to 7 currently know what oil contribution is being made from the Fusselman in that well? 8 9 Α. We know what it was capable of before the Fusselman was abandoned the first time, and we assume that 10 when we went back there, we were in the neighborhood of 11 those volumes. 12 And what rate was that again, sir? 13 Q. I do not know. 14 Α. All right. Can you quantify or define for me, 15 Q. Mr. Faigle, how you're using the term "watered out"? 16 When a well reaches water cuts of approximately 17 Α. 95 percent and also it's becoming marginally economic, it's 18 19 costing more to dispose of water and lift than we can make a profit from the oil that the well produces, it's 20 essentially -- it's economically watered out. 21 I'm not sure I understood the answer. You gave Q. 22 me two criteria. A water cut of 95 percent? 23 It varies. It depends on the volumes you're 24 Α. 25 lifting.

Q. All right. Separate that for a moment. You also
gave me an economic criterion.
A. Yes.
Q. You could have an economic criterion that made a
well unprofitable
A. Yes.
Q at less than 95-percent water cut, could you
not?
A. Sure.
Q. All right. Which of those two criteria are the
determining factor in your definition of "watered out"?
A. I would use them both.
Q. At what time in the productive life of the
reservoir did the fracture system, in you opinion, become
watered out?
A. Which well? It happened
Q. Well, all wells, now, in your opinion, have
watered out in the fracture system?
A. The fracture system has watered out.
Q. In all wells?
A. In all wells.
Q. At what point did that occur in your Enserch
Lambirth 1 well?
A. I don't know. The engineering section may be
able to help you with that answer.

1	Q. All right. Would you know the point in time
2	where the fracture system in any of these wells watered
3	out, by your definition?
4	A. It would depend on operating costs and things
5	that on an individual well basis you'd have to look at
6	it.
7	Q. Can you express an opinion as to when any of
8	these wells watered out in the fracture system?
9	A. A particular date, no, that would have to be an
10	engineering evaluation considering economics and volumes
11	and
12	Q. Was it your opinion before Examiner Stogner that
13	the increasing oil allowable that you've requested was not
14	going to be an advantage of Enserch over Phillips because
15	you believe the rising oil-water contact was going to
16	affect all wells approximately equally, because all of them
17	had a similar relationship as to their bottom perforations?
18	A. State that again, please.
19	Q. Yes, sir. If you'll look at the transcript,
20	maybe that's how to do this. Look at Exhibit the
21	transcript, and if you'll turn to page 13 with me, if
22	you'll look at line 18.
23	A. Page what? Thirteen?
24	Q. Yes, sir, line 18. Mr. Carr is asking you, "So
25	in the Enserch well, the well that you're primarily

1	concerned about, and the immediate offsetting Phillips well
2	to the north, the bottom of the perforated interval is
3	identical?
4	"ANSWER: Correct. Now, this Therefore a
5	rising oil-water contact would affect both wells equally.
6	There would be no advantage to either well."
7	Do you see that?
8	A. Yes.
9	Q. All right. Was it not your conclusion
10	geologically at the Examiner hearing that as a result of
11	the bottom water drive and the fact that the Enserch Number
12	1 well and the Phillips 2 A well had bottom perforations
13	that were approximately at correlative intervals in the
14	reservoir, that you could increase the oil allowable, and
15	you would have no advantage?
16	A. I don't understand what you're
17	Q. What part of my question do you not understand,
18	sir?
19	A. Well, could you break it down into pieces? Maybe
20	I can handle it better that way. I seem to be getting a
21	complex question, and I don't know how to answer it.
22	Q. All right. You have reached the opinion that
23	this is a bottom water drive reservoir, right?
24	A. Yes.
25	Q. All right. When you look at the perforations in

 the bottom of the Lambirth well look at the cross-section A. Yes. 	for Phillips, the 1, if you
3 A. Yes.	
4 Q do you see that?	
5 A. Yes.	
6 Q. All right. That bott	om perforation is in what
7 relationship to the Enserch Num	ber 1 well?
8 A. They have similar sub	sea depths at the bottom of
9 the perforations in each of the	se two wells.
10 Q. All right. Because t	hat is so, and because you
11 concluded that this was a botto	om water drive, you've also
12 concluded, did you not, sir, th	at there would be no
13 advantage to Enserch by increas	ing the oil rate, because
14 the increased rate would simply	affect both wells equally
15 as the water moved vertically?	
16 A. We were beyond that p	point in the where to
17 position The reservoir was a	lready watered out at that
18 time. So at that time there we	ould be no advantage, it was
19 too late for an advantage. We	were speaking historically
20 about rising oil-water contacts	. At the time of the
21 hearing, the oil-water contact	was essentially at the top
22 of the reservoir by then, or ve	ery close to it.
23 Q. Okay.	
24 A. The advantages you're	e looking for may have been
25 historical. They weren't curre	ent.

1	Q. All right. Do you see any remaining oil column,
2	then, in the matrix above the original oil-water contact?
3	A. Yes.
4	Q. Can you determine where that point is in the
5	matrix?
6	A. I'll have to make an assumption that there's
7	matrix oil available everywhere above the original oil-
8	water contact if you can get it out.
9	Q. All right. Does not, then, Enserch continue to
10	enjoy an advantage of some 38 feet in the perforations
11	between you and Phillips as you compete for the remaining
12	oil in the matrix?
13	A. There's no doubt about it, we have the highest
14	structural well in the best reservoir, I can't dispute
15	that.
16	MR. KELLAHIN: All right, sir.
17	Thank you, Mr. Chairman.
18	CHAIRMAN LEMAY: Thank you.
19	MR. CARR: Mr. Chairman, I'd like to
20	CHAIRMAN LEMAY: I'm sorry.
21	MR. CARR: and I'll be brief.
22	CHAIRMAN LEMAY: That's fine.
23	REDIRECT EXAMINATION
24	BY MR. CARR:
25	Q. Mr. Faigle, at the Examiner hearing there was

1	some confusion about the zone or the interval that you used
2	for constructing the structure map of this reservoir map;
3	is that not true?
4	A. Yes.
5	Q. And so to correct that what you did was, you went
6	and picked a marker that is the base of the Penn in a
7	clearly definable interval; is that not correct?
8	A. Correct.
9	Q. Isn't that what caused the difference between the
10	structure map that was offered in June and the structure
11	map that is offered now?
12	A. Yes, it did.
13	Q. And by drawing a red line at the original oil-
14	water contact in this reservoir, hasn't Mr. Kellahin in
15	essence just taken your structure map, and it is a more
16	refined example of what the schematic is designed to show?
17	A. Correct.
18	MR. CARR: That's all I have.
19	CHAIRMAN LEMAY: Thank you.
20	Commissioner Weiss?
21	EXAMINATION
22	BY COMMISSIONER WEISS:
23	Q. You said that it actually fractured the perm 500
24	millidarcies. Did you measure that, or is that an
25	estimate?

1	A. That's a measured permeability from a well
2	performance test on the Number 1 Lambirth.
3	Q. So this is, I think, perhaps more an engineering
4	question, but the fractures were identified from the same
5	test?
6	A. We assumed, I believe, that there were fractures.
7	They're about the only thing that could give us a
8	permeability of that magnitude after looking at the
9	porosity on the logs.
10	COMMISSIONER WEISS: That's the only question I
11	have. Thank you.
12	CHAIRMAN LEMAY: Commissioner Carlson?
13	COMMISSIONER CARLSON: No questions.
14	CHAIRMAN LEMAY: I have no questions. Thank you.
15	MR. CARR: May it please the Commission, at this
16	time we would call Mr. Ralph Telford.
17	RALPH B. TELFORD,
18	the witness herein, after having been first duly sworn upon
19	his oath, was examined and testified as follows:
20	DIRECT EXAMINATION
21	BY MR. CARR:
22	Q. Would you state your name for the record, please?
23	A. Ralph Telford.
24	Q. Where do you reside?
25	A. Midland, Texas.

1	Q. By whom are you employed and in what capacity?
2	A. Enserch Exploration as a petroleum engineer.
3	Q. Have you previously testified before the
4	Commission?
5	A. Yes, I have.
6	Q. At the time of that prior testimony, were your
7	credentials as a petroleum engineer accepted and made a
8	matter of record?
9	A. Yes, they were.
10	Q. Does the geographic area of your responsibility
11	with Enserch include the Southeast Peterson-Fusselman Pool
12	area?
13	A. Yes, it does.
14	Q. Are you familiar with the wells completed and
15	producing from that pool?
16	A. Yes, I am.
17	Q. Are you familiar with the Application filed in
18	this case on behalf of Enserch?
19	A. Yes.
20	MR. CARR: Are the witness's qualifications
21	acceptable?
22	CHAIRMAN LEMAY: They're acceptable.
23	Q. (By Mr. Carr) Mr. Telford, could you review for
24	the Commission what it is Enserch is asking the Commission
25	to do in this matter?

1	A. We're looking for an assignment of a special
2	depth bracket allowable for the South Peterson-Fusselman
3	Pool of 500 barrels of oil per day to replace the current
4	depth bracket allowable for said pool of 267 barrels of oil
5	per day.
6	We want an assignment retroactive to June 1st,
7	1994, which is the date which Enserch's Application was
8	filed. And if we're not approved, the well is overproduced
9	and we'll have to shut it in.
10	Q. The reason for the retroactive request, that June
11	1st is the first day of the first month following the day
12	the Application was filed?
13	A. Yes.
14	Q. Initially, Mr. Telford, could you just summarize
15	the existing rules for the pool?
16	A. Pursuant to Order R-5771 as amended by Order
17	5771-A, special rules and regulations were adopted for this
18	pool which provided for 80-acre spacing and designated well
19	location requirements.
20	Statewide rules are 80-acre, depth bracket
21	allowable of 267 barrels of oil per day, a 2000-to-1 GOR
22	which resulted in a 534-MCF-per-day casinghead gas
23	allowable.
24	Q. All right. Now, those were the rules that were
25	in place in May of last year?

1	A. Yes.
2	Q. At that time you were experiencing problems with
3	the Lambirth Number 1 in terms of maintaining its
4	production levels?
5	A. Yes.
6	Q. And an Application was then filed with the Oil
7	Conservation Division?
8	A. Yes.
9	Q. Could you refer to Exhibit Number 7 and then just
10	very briefly review for the Commission the history of this
11	particular case?
12	A. Okay, in July 17th, 1978, the pool was
13	established and temporary pool rules were adopted providing
14	for 80-acre spacing and proration units. In August of 1979
15	the pool rules were adopted on a permanent basis.
16	In May of 1994 we installed a submersible pump on
17	the Lambirth 1. And May 9th of 1994, a special allowable
18	authorized for the Oil Conservation in the Hobbs District,
19	we received a letter from them.
20	And May 17th, 1994, Enserch filed Application for
21	a special depth bracket allowable.
22	On June 23rd, 1994, Enserch appeared before the
23	Commission, like we are today, to get the rules made
24	permanent. We had a continuance till July 21st.
25	And on November 3rd the we received the Order

43

	•••
1	R-5771-B denying the Application of Enserch.
2	On November 8th, Enserch filed for the
3	Application, for hearing de novo.
4	January 12th, the Oil Conservation Commission
5	hearing was continued, at the request of Enserch. Phillips
6	advised the Commission it had no objection to the
7	continuance.
8	And February 24th, today, we are here to settle
9	this whole thing.
10	Q. Now, Mr. Telford, identify what's been marked as
11	Enserch Exhibit 8, please.
12	A. It is the Oil Conservation Division Order
13	R-5771-B, dated November 3rd, 1994, which denied Enserch's
14	Application.
15	Q. Now, this is the Examiner Order, and the Order in
16	its findings sets forth the presentation of both the
17	parties; is that correct?
18	A. That is correct.
19	Q. Could you go to Finding Number 10 on page 4 and
20	just read that into the record, please?
21	A. It says, "At this time there is insufficient data
22	available to assure that increased oil allowable for the
23	South Peterson-Fusselman Pool will not result in the
24	impairment of other operators' and mineral-interests'
25	correlative rights in the pool and would not result in the

1	prevention of waste."
2	Q. If we look at the case history, Exhibit Number 7,
3	I believe you testified that you started experiencing the
4	increased production rate from the Lambirth Number 1 in
5	May?
6	A. That is correct.
7	Q. And it was on May the 9th that you approached the
8	Oil Conservation Division concerning this matter?
9	A. Yes.
10	Q. And then the matter came for hearing on June the
11	23rd?
12	A. That is correct.
13	Q. It was on June the 23rd, was it not, that the
14	actual evidence was presented in this matter?
15	A. Yes.
16	Q. So at that time you had less than two months'
17	information on the well?f
18	A. That is correct, and we were also experiencing
19	mechanical problems with the well at the time.
20	Q. At this point in time, has additional information
21	been obtained that addresses the concerns expressed by Mr.
22	Stogner in the Examiner Order?
23	A. Yes.
24	Q. Before we get into the actual information on the
25	SPE paper and on the well performance, could you review

1	what it is exactly you're requesting and why that request
2	has to be made?
3	A. We're looking to increase the ultimate recoveries
4	from the Lambirth Number 1. To do that, we must increase
5	allowables from the pool.
6	The well currently produces in excess of the
7	allowable, and special allowable will improve economics and
8	increase this well's ultimate recovery. And this will also
9	will not impair the rights of any other operator in the
10	pool.
11	Q. Now, Mr. Burkett is going to be called to review
12	that last point
13	A. The correlative rights, yes.
14	Q correlative rights?
15	Let's go to Exhibit Number 9. Would you identify
16	that, please?
17	A. This is SPE paper 7463. This paper was written
18	in 1978 by Amoco, and basically the paper sets out a theory
19	that we find applicable to the Lambirth Number 1.
20	The paper has empirical data from 55 wells. It
21	shows an average increase of reserves of 350,000 barrels of
22	oil. The parameters are applicable to these type of wells.
23	The best candidates are in the Devonian reservoir. The
24	reservoir is heterogeneous and has a water drive, and the
25	wells are producing with less than a 95-percent water cut

1	and greater than a 70-percent water cut.
2	Q. Now, do all of those parameters fit the South
3	Peterson-Fusselman Pool and the Lambirth Number 1?
4	A. Yes, they do.
5	Q. Were you the individual that came across this SPE
6	paper?
7	A. Yes.
8	Q. And when you saw that paper, were you the one who
9	concluded that perhaps this type of high-volume lift would
10	be something that could be tried on the Lambirth Number 1?
11	A. Yes.
12	Q. All right. Let's go back to Exhibit Number 6.
13	It's up on the easel above the cross-section.
14	Basically, using this, just summarize what your
15	understanding of the characteristics of this reservoir have
16	to be.
17	A. Basically, what we have is a dual-porosity
18	reservoir. You have the matrix and you have the fractures.
19	And currently the fracture system is watered out and the
20	remaining oil is in the matrix.
21	Q. Is that the kind of reservoir that was the
22	subject of this SPE paper?
23	A. Yes, it is.
24	Q. All right, let's look at the Lambirth Number 1
25	well, and I would direct your attention to Enserch Exhibit

1	Number 10, the production history. Could you review that
2	for the Commission?
3	A. Yes, the Lambirth 1 was the discovery well for
4	the pool. Production started in 1978.
5	You'll notice the green curve is oil production,
6	the red curve is gas production, the yellow curve is gas-
7	oil ratio, the dark blue curve is water production, and the
8	light blue curve is water cut.
9	You'll notice the well produced relatively flat
10	till 1986 when the well started making water. The well was
11	then pinched back to curtail this water production. This
12	pinching back was continued until 1993 when the well
13	essentially watered out and died.
14	Then a rod pump was installed, production
15	increased to 60 barrels of oil per day and water cuts were
16	in the 80- to 88-percent range.
17	In May of 1994 a submersible pump was installed.
18	Next, we need to go to exhibit
19	Q. If we look at the exhibit, the gas-oil ratio is
20	basically flat, is it not?
21	A. Flat, which is indicative of a water drive
22	reservoir.
23	Q. And this is the not only the discovery well,
24	but has been a top-allowable in the well
25	A. Yes.

1	Q well in the field?
2	A. It is the best well in the field.
3	Q. All right. Let's go now to Enserch Exhibit
4	Number 11. Identify this, please.
5	A. Okay, what we have here is daily production for
6	the Lambirth 1. It starts in December of 1993.
7	The dark green curve is oil production, the dark
8	blue curve is water cut.
9	If you'll notice, in December until April the oil
10	production was relatively flat, slightly declining. It's
11	60 barrels a day.
12	In May we put our first submersible in the well,
13	denoted by the red line. Production then increased from 60
14	barrels a day to between 200 and 300 barrels a day. Also,
15	if you'll notice, the water cut went from about 86 percent
16	to 90 percent.
17	Later on, in August, we installed a larger
18	submersible as denoted by the next red line. Production
19	then increased to over 500 barrels of oil per day and water
20	cut decreased from 90 percent to a low of 84 percent. And
21	that's climbed to its current rate of between 86 and 87
22	percent.
23	Q. All right, Mr. Telford, when we look at Exhibit
24	Number 10, the production history on the Lambirth Number 1,
25	we have a well that basically fits the criteria in the SPE

1	paper?
2	A. That is correct.
3	Q. And we've already established we have a reservoir
4	that meets that criteria?
5	A. Uh-huh.
6	Q. Now, if we go to Exhibit Number 11, we can see
7	what happened as you attempted to employ these high-volume
8	lift techniques to the reservoir.
9	What does this production curve, Exhibit Number
10	11, tell you about the success of high-volume lift in this
11	reservoir?
12	A. Okay, what I've done, if you'll notice the light
13	dashed pink curve, that is a production decline shot for
14	the rod pump. It also shows remaining reserves of 31,000
15	barrels of oil.
16	Next up, I've shot a decline from the smaller
17	submersible. It showed a remaining reserves of 160,000
18	barrels of oil.
19	And finally, the dashed green curve shows
20	remaining reserves of 487,000 barrels.
21	So incremental reserves over the rod pump is
22	456,000 barrels and 327,000 barrels over using the small
23	submersible. And this is oil that would not be recovered
24	by any other well in the pool unless we keep the large
25	submersible in the well.

So this Exhibit Number 11 shows that when you put 1 Q. the submersible pumps on the well, in fact you got the 2 response that you were anticipating in accordance with the 3 SPE paper? 4 Yes, we -- It shows larger recoveries and also Α. 5 the decreased water cuts. 6 And basically what it shows when you then take 7 Q. the new production curve and plot it out, that you will 8 recover ultimately almost 500,000 barrels of oil more with 9 the large submersible pump in the well than you would have 10 been able to with simply the rod pump? 11 That is correct. 12 Α. Now, Enserch obviously is recovering more oil 13 Q. 14 from the Lambirth Number 1 than any other well in the pool? 15 Α. That is correct. And that's a result of these recovery techniques? 16 ο. Yes, that's also due to better structure and 17 Α. better quality rock and more oil underneath our tract. 18 19 In your opinion, is it possible that this high-Q. volume lift technique could be applied to other wells in 20 the pool? 21 Α. Yes. 22 In fact, has it been? 23 Q. Yes, it has. 24 Α. In what wells? 25 Q.

51

The Lambirth 1 A and the 2 A. Α. 1 2 Have the -- comparable results been obtained in 0. those other wells? 3 Not as good as the Lambirth 1 A. 4 Α. 5 0. Do those other wells have comparable structure or 6 rock quality when you compare them to the Lambirth Number 7 1? No, they do not. 8 Α. All right. Let's go to what has been marked 9 Q. Enserch Exhibit Number 12. Could you identify and review 10 11 that, please? 12 Basically what we have here is a list of wells Α. 13 that Enserch operates that have been lost to casing failures in the South Peterson area. 14 If you'll notice, there's twelve wells in the 15 This represents 41 percent of the wells that we 16 list. 17 operate in the area. Due to losing these wells we've lost reserves of 18 460,000 barrels of oil and 478 million cubic feet of gas. 19 The Lambirth Number 8 has been lost since the 20 Q. 21 hearing last June? 22 Α. That is correct. That was one of the candidates 23 that we were looking to apply the high-volume lift to. 24 And when did that casing collapse occur, casing Q. 25 failure occur?

1	A. September of 1994.
2	Q. If we look at Exhibit Number 12, this simply
3	shows that if you lose your well, you're unable to produce
4	your reserves?
5	A. That is correct.
6	Q. If we look and relate that back to Exhibit Number
7	11, what that shows is that by employing high-volume lift
8	you recover additional reserves that in fact are not going
9	to be achieved but left in the ground?
10	A. That is correct.
11	Q. If you're able to employ high-volume lift in a
12	timely fashion, you're going to get the benefit not only of
13	the technique, but you're hopefully going to have a well
14	that will enable you to recover these reserves?
15	A. Yes. I'd also like to point out that the
16	Lambirth Number 1 is the oldest well in the pool.
17	Q. Mr. Telford, in your opinion will approval of
18	this Application and the increase in the allowable permit
19	Enserch to produce the Lambirth Number 1 in a fashion that
20	will ultimately result in the prevention of waste of oil?
21	A. That is correct, yes.
22	Q. Will you be calling another witness, Mr. Burkett,
23	to review the correlative-rights aspects of this
24	Application?
25	A. Yes.

r

1	
1	Q. Were Exhibits 7 through 12 prepared by you or
2	compiled at your direction?
3	A. Yes, they were.
4	MR. CARR: At this time, may it please the
5	Commission, we move the admission of Enserch Exhibits 7
6	through 12.
7	CHAIRMAN LEMAY: Without objection, Exhibits 7
8	through 12 will be admitted into the record.
9	MR. CARR: That concludes my direct examination
10	of this witness.
11	CHAIRMAN LEMAY: Thank you, Mr. Carr.
12	Mr. Kellahin?
13	CROSS-EXAMINATION
14	BY MR. KELLAHIN:
15	Q. Mr. Telford, if you'll find Exhibit 10 for me,
16	perhaps we can use that to illustrate my questions for you,
17	sir.
18	In terms of your chronology, when did you first
19	put in the first pump that had the ability to produce
20	sufficient fluids from your well so that you had the
21	opportunity to produce oil in excess of the daily oil
22	allowable of 267 barrels?
23	A. That would be May.
24	Q. That's the May of 1994
25	A. That's the small submersible.

1	Q. The highest rate of oil productivity on a daily
2	basis that you were able to achieve with that submersible
3	was what, sir?
4	A. That was slightly over 300, I believe. If I can
5	look
6	Q. I believe your
7	A. About 350.
8	Q. All right. Somewhere in the 330 to 350 range, I
9	believe, is what we talked about last June.
10	A. That is correct. Since then we've installed the
11	larger submersible.
12	Q. All right. From the point of time that you
13	exceeded the allowable, the 267, up until the date of the
14	hearing, there's a reference here to an authorization by
15	the Hobbs OCD
16	A. Yes.
17	Q to conduct a test, if you will
18	A. That is correct.
19	Q and exceed the oil allowable. All right? Is
20	that not correct?
21	A. That is correct.
22	Q. And you introduced a letter from Mr. Sexton back
23	in June describing for you the terms and conditions for
24	that test; is that not correct?
25	A. That is correct.

Q. I show you a copy of what was introduced as
Enserch Exhibit 11 to that Examiner hearing.
What were the conditions imposed upon Enserch for
producing in excess of the daily oil allowable?
A. That we file for a hearing within 20 days.
Q. All right, sir, and you did that?
A. Yes, we did.
Q. And the last paragraph of that letter says that
after the order is entered for that hearing, what then will
happen?
A. The well will have to be curtailed and the
overage made up.
Q. All right. From the hearing, July I'm sorry,
June 23rd, that was our evidentiary hearing?
A. Yes.
Q to the date of the Order, November 3rd of
1994, what did you do in terms of producing that well?
A. We installed the larger submersible pump and
gathered more data.
Q. Okay, the larger submersible pump was installed
approximately when, sir?
A. In August.
Q. Do you have a date in August?
A. The exact date? Not with me.
Q. All right, sir. In August of 1994, you went to a

larger submersible with what result? 1 With what result? Increased oil recoveries and 2 Α. 3 decreased water cut. Give us a general range of the oil rate on a 4 0. 5 daily basis that you were producing. 6 Α. Close to 600 barrels of oil a day. 7 All right. How long were you able to sustain Q. producing at 600 barrels of oil a day? 8 9 Not very long. Α. All right. You have production records on a 10 Q. 11 daily basis --12 Α. Yes. -- that would show us exactly how this was done? 13 Q. Exhibit 11 shows that. 14 Α. We can pull it off of Exhibit 11? 15 Q. Yes. 16 Α. 17 All right. On November 3rd, then, what then did 0. you do with the well? After you got the Examiner order? 18 19 I assume you got it reasonably at some period of time after 20 November the 3rd. 21 We received it, I believe, on the 8th. Α. All right. What then did you do? 22 Q. 23 We filed for a hearing de novo. Α. 24 All right. What did you do in terms of producing Q. 25 the well?

1	A. We kept producing the well.
2	Q. At what rate, sir?
3	A. At its current rate, 500 barrels a day.
4	Q. Okay. Did you go back to Mr. Sexton and ask for
5	additional authority from him to produce in excess of what
6	the Examiner had required you to do as a result of the
7	November Order?
8	A. No, we did not. We assumed that since the case
9	was still pending we could still produce the well.
10	Q. Is there anything in Mr. Sexton's letter that
11	tells you you can do that?
12	A. No, there's not. But we have every intention of
13	shutting the well in if we lose today.
14	Q. From November 8th to the current period, can you
15	tell us what Let me ask you a different way.
16	What as of today is the current total
17	overproduction of oil on the well?
18	A. As of November, it's approximately three months'
19	worth of production. We'd have to shut in the well for
20	three months.
21	Q. As of November
22	A. As of November 1st, from November 1st to now,
23	three months' production.
24	Q. Can you I don't know if you have it with you
25	now, but you could calculate for us

1	A. Actually, I may have it with me right here.
2	Q. All right, sir, let's get an actual number.
3	A. Actually, I've got it over there. Can I get it
4	over here?
5	Q. Yes, sir.
6	A. The actual number as of November 1st through
7	January is 25,081 barrels.
8	Q. From November 1st to when, sir?
9	A. Through January.
10	Q. Through January of 1995?
11	A. Through January of 1995.
12	Q. All right. Prior to November 1st, what is the
13	overproduction?
14	A. I don't have those numbers handy.
15	Q. So the 25,000 is not a cumulative total
16	A. No, it is not.
17	Q of overproduction?
18	You keep production records on a daily basis,
19	though, so should the Commission require it, you can tell
20	the Commission exactly how much total overproduction is
21	attributable to this well at any given point in time?
22	A. That is correct, that will be no problem.
23	Q. When we look at the SPE paper, the criteria, if
24	you will, for having an opportunity to achieve increased
25	oil rate with a high-volume lift system within the

parameters of that paper was a water cut between 70 percent 1 2 and approximately 95 percent, if I remember the paper 3 correctly? That is correct. 4 Α. 5 All right. Did I hear you correctly in response Q. to Mr. Carr that that technique would have or could have 6 been available to any of the wells in this South Peterson-7 Fusselman Pool if they were within that range? 8 That is correct, if they were within that range 9 Α. and they had the correct reservoir characteristics. 10 All right. Does the paper describe any 11 ο. additional criteria in terms of reservoir characteristics? 12 13 Α. Just a heterogeneous reservoir, preferably Devonian. 14 15 Q. Does it give you any preference or criteria to structural position? 16 I do not believe so, no. 17 Α. Does the paper qualify or alert the reader to the 18 Q. issue of premature water breakthrough? 19 Yes, it does. 20 Α. 21 And what does it say about that issue? Q. Well, let me read it to you. 22 Α. 23 All right. Q. It says, if you'll look on page 4 of the paper, 24 Α. "Concern over premature water breakthrough and reduced 25

ultimate recovery from application of high-volume lift is 1 unsubstantiated in most heterogeneous, west Texas 2 carbonate, oil-wet, natural waterdrive reservoirs." 3 Did the paper discuss or attempt to study whether 4 0. 5 or not the application of this technique would result in 6 increased ultimate recovery for the pool? 7 Α. No, it did not. It was talking about the opportunity for an 8 0. 9 individual well to increase its ultimate recovery? Yes, but this could be applied to other wells, 10 Α. not just one well. 11 I understand, but the paper was making no 12 0. argument in terms of total reservoir recoveries in a waste 13 context? 14 15 Α. No, it did not. MR. KELLAHIN: All right. Thank you, Mr. 16 Chairman. 17 18 CHAIRMAN LEMAY: Thank you. Commissioner Weiss? 19 EXAMINATION 20 BY COMMISSIONER WEISS: 21 22 0. Is the well pumped off now? No, sir, it is not. The fluid level is 1320 feet 23 Α. from the surface. I wish we could pump it off. 24 25 Q. So the other wells are still flowing, I take it,

1	that are out there?
2	A. They're on submersible as well. Well, the A 2 is
3	on submersible; our Number 3 is on rod pump.
4	Q. So they're all on artificial lift?
5	A. Yes.
6	COMMISSIONER WEISS: That's the only question I
7	have. Thank you.
8	CHAIRMAN LEMAY: Commissioner Carlson?
9	COMMISSIONER CARLSON: No questions.
10	EXAMINATION
11	BY CHAIRMAN LEMAY:
12	Q. One question I have here on your Exhibit Number
13	11. That's the
14	A. Daily production plot?
15	Q. Yeah, that's
16	A. Okay.
17	Q the detailed one. Was that well shut in, it
18	looked like, through the month of April, 1994?
19	A. Yes, it was. We were waiting on electricity.
20	Q. But when you brought it back on, there was no
21	problem bringing it back on after having it shut in that
22	period of time?
23	A. No, there was not.
24	CHAIRMAN LEMAY: Thank you, that's all I have.
25	Do you want to take a break now, or Do you

,	
1	have one more witness?
2	MR. CARR: I have one more witness.
3	CHAIRMAN LEMAY: Okay, let's go with him.
4	MR. CARR: All right. At this time we would call
5	Mr. Mark Burkett.
6	MARK BURKETT,
7	the witness herein, after having been first duly sworn upon
8	his oath, was examined and testified as follows:
9	DIRECT EXAMINATION
10	BY MR. CARR:
11	Q. Will you state your name for the record, please?
12	A. Mark Burkett.
13	Q. Where do you reside?
14	A. I reside in Midland, Texas.
15	Q. By whom are you employed?
16	A. Enserch Exploration.
17	Q. And what is your current position with Enserch?
18	A. I am the district petroleum engineer.
19	Q. Mr. Burkett, have you previously testified before
20	this Commission?
21	A. Y es , sir, I have.
22	Q. At the time of that prior testimony, were your
23	credentials as a petroleum engineer accepted and made a
24	matter of record?
25	A. Yes, they were.

1	Q. Are you familiar with the Application filed in
2	this case on behalf of Enserch?
3	A. Yes, sir.
4	Q. And are you familiar with the rules for the South
5	Peterson-Fusselman Pool and the wells located therein?
6	A. Yes, sir.
7	Q. I'd like to direct your attention to what has
8	been marked as Enserch Exhibit Number 13. Would you
9	identify that and then review the information on this
10	exhibit for the Commission?
11	A. Okay, Exhibit 13 is a as Mr. Telford testified
12	earlier, this is a pressure profile, or a calculated
13	pressure profile, of the pressure as a function of distance
14	away from the wellbore for the Lambirth Number 1.
15	As you can see on the X axis, we have a distance
16	from wellbore. It goes from zero to 1300 feet.
17	On the Y axis we have pressure, a wellbore
18	pressure, from 2300 to 2550.
19	The green line is the static reservoir pressure
20	that was determined from a pressure buildup test. The last
21	pressure buildup test we conducted on the Lambirth Number 1
22	was 2518 p.s.i.
23	Our last fluid level that Mr. Telford referred
24	to, 1320 feet, calculates to roughly a wellbore flowing
25	pressure of 2318 pounds, which would be the intercept of

1	the Y axis with the blue curve. The blue curve would
2	represent pressure as you move away from the wellbore.
3	Now, this is a very simplified diagram; there
4	were a lot of assumptions built into it. It's based on a
5	very simple engineering calculation, Darcy's law. It
6	assumes steady-state flow, it assumes an impotent-acting
7	reservoir, only one well in the reservoir.
8	The KH or capacity was adjusted to take into
9	account water and to take into account the actual data that
10	we're seeing today, based on the fluid level. It assumes
11	constant permeability and no skin.
12	This is a real basic model, but what it's showing
13	is that most of the drawdown occurs in the first 150 feet.
14	It's also showing that we're only drawing down
15	the wellbore 200 pounds, so we're just barely drawing on
16	this reservoir. It's saying that we're unable to draw down
17	the reservoir, and this is with the current 500-barrel-per-
18	day production. So this is the current conditions, and
19	it's basically saying that we're unable to draw down this
20	reservoir even with the largest pump possible.
21	It's also showing it's a very prolific well, an
22	extremely prolific well.
23	One other thing to point out is, as we get to the
24	lease line, it's denoted by the dark line at about 660
25	feet. We see a pressure drawdown of about 31 p.s.i. at the

1	lease line.
2	Q. All right, Mr. Burkett, let's take now this
3	exhibit, put it aside and go to Exhibit Number 14.
4	Could you explain what you've done, how you've
5	constructed Exhibit Number 14 and its relationship to the
6	previous exhibit?
7	A. Okay, Exhibit 14 is really an extension of
8	Exhibit 13. Again, you can see the blue line. On the left
9	side of the page is the Lambirth Number 1. On the right
10	side of the page would be the Lambirth A 2.
11	Again, the X axis is the distance from the
12	Lambirth Number 1 well, the Enserch Lambirth Number 1.
13	The Y axis represents pressure and goes from 1700
14	pounds to 2600 pounds.
15	The lease line is shown at about 660 feet, so you
16	can see that it's equidistant.
17	Again, the same assumptions apply here: steady-
18	state flow, it's an impotent-acting reservoir. These are
19	based on single wells, only one well in the reservoir. And
20	that's a shortcoming of this exhibit, but it's done to
21	simplify the problem; we could have a real complicated
22	model here. We're just trying to simplify.
23	It assumes that the permeability is constant per
24	well, no skin. And it's Darcy's law, the most basic
25	reservoir engineering calculations.

1	What it's showing, it's showing based on the
2	fluid level provided by Phillips, according to Phillips
3	they had shot a fluid level to their well on June 21st 1995
4	[sic] of 1830 feet from the surface, and we calculated a
5	bottomhole pressure of 1500 I'm sorry, of 2144 p.s.i.,
6	based on 1579 barrels of fluid withdrawn.
7	We matched the permeability with those
8	parameters, and with the latest data we have, using 3263
9	barrels of withdrawal, we calculated a bottomhole pressure
10	of 1743 p.s.i., which would be the intercept to the right
11	corner of the diagram.
12	So what this represents is Enserch's pressure
13	drawdown versus Phillips' pressure drawdown. It's showing
14	that Phillips is able to draw down the reservoir 773 p.s.i.
15	while Enserch is only able to draw their well down 200
16	p.s.i.
17	There are some shortcomings with the exhibit,
18	based on the assumptions. But what it's showing is that
19	It's showing a no-flow boundary way over on Enserch's
20	property. In fact, it's occurring at around a point of 165
21	feet from Enserch's well. And a no-flow boundary would be
22	if there were a drop of oil sitting at this distance, 165
23	feet from Enserch's well, it would not know whether to go
24	to Enserch's well or to Phillips' well.
25	What this exhibit shows is that Phillips is

1	draining Enserch's acreage, and it also shows that they
2	have an advantage of a drawdown practically four times
3	greater than what Enserch is enjoying.
4	Q. Mr. Burkett, what you've done is, you've taken
5	the information on Exhibit 13 and added the Lambirth Number
6	2 A, the Phillips well, to the exhibit?
7	A. Yes, sir.
8	Q. What you have been able to show here is that
9	within the limits of the information used, that in fact
10	there's a four times greater drawdown by the Phillips well
11	in the reservoir than what you've been able to achieve?
12	A. Yes, sir.
13	Q. And the information that you have on this exhibit
14	is what the kind of drawdown you're able to achieve
15	using the existing large submersible pump and under
16	existing well conditions?
17	A. That is correct.
18	Q. Now, if you model this reservoir, you could
19	obtain a more refined information or data on exactly what's
20	happening; is that not right?
21	A. That is correct. And we've played with different
22	parameters, we've adjusted the parameters, but the bottom
23	line is, the character of the curves are still the same.
24	And regardless of what we vary, in every case it reverts
25	back to the no-flow boundary being way over on Enserch's

1 property. In other words, the data may change, but in your 2 0. opinion the conclusions would not? 3 That is correct, the conclusions will still be 4 Α. 5 the same, that Phillips has an advantage over Enserch, even 6 with our higher withdrawal rates. 7 0. What conclusions have you reached, based on your review of this reservoir, concerning the impact of granting 8 this Application on the correlative rights of interest 9 10 owners in the pool? Correlative rights will not be damaged by 11 Α. 12 granting the special allowable. What we see is that Phillips is enjoying a four-times greater drawdown. 13 14 They're drawing on a reservoir four times greater than Enserch is capable of drawing on it, and that we see a net 15 drainage in the direction of Phillips. 16 17 Q. Is what you're proposing an effort to in fact offset drainage with counter-drainage? 18 That is correct, to the extent that we can. 19 Α. 20 Q. And what additional increase and recovery are you 21 hoping to achieve? 22 Α. We will only partly be able to counter the 23 drainage, and as Mr. Telford mentioned earlier, we should 24 see an increase of 456,000 barrels incremental. 25 This is based on two factors. One is the

1	stripping effect of moving more volumes of water through
2	the reservoir from the fractional flow curve.
3	And the other is the increased drawdown. As we
4	increase the pressure drawdown in the reservoir, we will
5	force the matrix to feed. We have a higher column than
6	Phillips does, so therefore we have more matrix oil than
7	Phillips does. But by increasing this drawdown, we should
8	get the matrix to feed into the fractures and therefore
9	increase recoveries, and that's what the theory says,
10	that's what we're seeing from our production data.
11	Q. How does the potential for a loss of casing
12	impact the correlative rights of Enserch in the pool?
13	A. Well, as Mr. Telford mentioned, we have lost 41
14	percent of our wells out there, we've lost 460,000 barrels
15	of reserves. And if we lose this wellbore, we will not be
16	able to compete or we will not have the opportunity to
17	produce our the reserves on Enserch's lease.
18	Q. Now, you see no adverse impact on the correlative
19	rights of Phillips; is that right?
20	A. None at all.
21	Q. What impact would there be on the correlative
22	rights of Enserch if in fact the Application is denied?
23	A. Phillips will still enjoy an advantage and
24	Enserch will not be able to compete with Phillips.
25	Basically, we'll be denied the opportunity to compete.

1 Were Exhibits 13 and 14 prepared by you or under Q. 2 your supervision? 3 Α. Yes, they were. 4 MR. CARR: At this time we move the admission of 5 Enserch Exhibits 13 and 14. 6 CHAIRMAN LEMAY: Without objection, Exhibits 13 7 and 14 will be admitted into the record. 8 MR. CARR: And that concludes my direct examination of Mr. Burkett. 9 10 CHAIRMAN LEMAY: Thank you, Mr. Carr. Mr. Kellahin? 11 12 MR. KELLAHIN: Thank you, Mr. Chairman. 13 CROSS-EXAMINATION BY MR. KELLAHIN: 14 15 Q. I'm sorry, is your last name Burkett? 16 Α. Burkett, yes, sir. 17 Burkett. Q. 18 Yes, sir. Α. Mr. Burkett, describe for me again, sir, what is 19 Q. it that you do? 20 I am the district petroleum engineer. 21 Α. I'm over engineering operations for the west Texas district for 22 Enserch Exploration. My regional boundaries are the Rocky 23 24 Mountains, west Texas and New Mexico region. I'm responsible for all engineering operations. 25

Q. All right. Now, within the context of your work	
A. Yes, sir.	
4 Q are you applying reservoir engineering	
5 experience to this hearing?	
6 A. Yes, sir.	
Q. All right. Do you also have in your capacit	y the
8 production responsibilities that we would see with a n	ormal
9 production engineer?	
10 A. Yes, sir, we're responsible for production a	nd
11 reservoir engineering, all production reservoir engine	ering
12 functions.	
Q. All right. You would be familiar, then, wit	h how
14 the Phillips 2 A well and your Number 1 well are	
15 configured?	
16 A. Yes, sir.	
Q. All right. Both those wells have 5-1/2-inch	
18 casing, I believe?	
A. I'm not certain of theirs, but I am certain	of
20 ours, yes, sir.	
21 Q. Are you aware that both wells are using	
22 approximately the same size high-volume lift system?	
23 A. I have heard that Phillips has installed a 1	arger
24 submersible pump. I've heard that, it's been hearsay.	
25 Q. All right. The rates of production on your	well

72

1	that we've used in your model
2	A. Yes, sir.
3	Q were you using 500 or 600 barrels of oil a
4	day?
5	A. Those were based on the last test we had, which
6	was actually, I used a I used 4403 barrels per day of
7	total fluid, and the permeability we used was a combination
8	of oil and water permeability.
9	Q. Okay. Let me see if I understand how you've
10	constructed the model
11	A. Okay.
12	Q upon which you've based your conclusions. I
13	have seen that done, that this basic engineering model was
14	simply a depletion drive reservoir.
15	A. Okay.
16	Q. Is that not what this is often used for?
17	A. Yes, it is. In fact, we varied it for a pseudo-
18	steady-state. But for this for trying to simplify the
19	model, we've gone back to a steady-state flow with a
20	constant pressure boundary at a half a mile. It's an
21	arbitrary number. We varied it from 1320 to a mile. We
22	played around with it. It still exhibits the same results,
23	regardless of what we use for RE, regardless of whether we
24	use pseudo-steady-state or steady state. the basic concept
25	is still the same.

You're using a computer-assisted 1 0. All right. 2 program of some kind? 3 Yes, sir, a spreadsheet with simple Darcy's law. Α. All right. This is not one of those 4 0. 5 sophisticated reservoir simulations where you're putting in 6 these reservoir parameters and modeling the performance of these two wells within a certain container? 7 8 Α. No, sir. All right. This model does not have inputted 9 Q. into it the geologic conclusions that Mr. Faigle has 10 11 described for us in terms of size, shape and structural 12 position? 13 Α. Other than feet of pay, no, it does not. 14 Q. All right. 15 Α. It's a very simplified model. 16 When we look at this model then, what we're Q. 17 looking at is a container of a certain horizontal 18 dimension, if you will? 19 Yes. Α. What dimension did you use? 20 Q. 21 I used a drainage radius of 2640, one-half mile. Α. And the model uses one well? 22 Q. 23 Α. One well, yes, sir. And within that horizontal extent, you also have 24 Q. 25 a vertical component?

1	A. Yes, sir.
2	Q. Within that container, then, the assumptions of
3	the model are that they will have a certain uniform
4	porosity?
5	A. Yes, sir.
6	Q. It assumes a certain uniform permeability?
7	A. That is correct.
8	Q. It will make no differentiation as to structure?
9	A. That is correct.
10	Q. It will not take into consideration whether or
11	not this is a bottom water drive or an edge water drive
12	reservoir?
13	A. That's right.
14	MR. KELLAHIN: All right, no further questions.
15	CHAIRMAN LEMAY: Thank you.
16	MR. CARR: I have one question.
17	REDIRECT EXAMINATION
18	BY MR. CARR:
19	Q. In this model, is porosity a factor?
20	A. No, it is not a factor.
21	MR. CARR: That's all.
22	CHAIRMAN LEMAY: Commissioner Weiss?
23	EXAMINATION
24	BY COMMISSIONER WEISS:
25	Q. What was the KH at both wells?

We determined this with an iterative procedure, 1 Α. it was trial and error. And in the Lambirth Number 1, I 2 used 208 millidarcies with 72 feet of pay. 3 Now, Mr. Faigle had reported a pressure buildup 4 5 test that was done in 1978 of 500 millidarcies. And that 6 is correct, that was a pressure buildup test done at that It was based on 50 feet of pay instead of 72 feet of 7 time. So the numbers are approximately correct. 8 pay. My permeability or the permeability I've used 9 here is a combination of oil and water. That permeability 10 was calculated back when it was totally oil saturation. 11 So it's close. 12 On the Lambirth A 2 well, our iterative 13 calculations, we came up with 94 millidarcies and 30 feet 14 This is substantially higher than was reported 15 of pay. from core analysis, and I'm concerned that maybe core 16 analysis -- maybe they used plug cores instead of hole 17 cores, maybe. But it -- Had I used their lower number of 18 19 about three to four millidarcies, it would make the no-flow 20 boundary even further on our lease. So I've just gone with what fits, just using the 21 data that fits. 22 And is there any engineering evidence that that 23 0. supports the fractures? 24 Yes, sir, there was a study done by RPI that 25 Α.

1	shows a permeability distribution, and they also showed a
2	bimodal distribution of fracture and matrix porosity.
3	Q. That was based on cores?
4	A. On cores, yes, sir.
5	Q. Very good.
6	A. And that was presented in the Examiner hearing
7	previously. We submitted that as an exhibit.
8	COMMISSIONER WEISS: Thank you, I have no other
9	questions.
10	CHAIRMAN LEMAY: Commissioner Carlson?
11	COMMISSIONER CARLSON: That's all right. He
12	covered it.
13	EXAMINATION
14	BY CHAIRMAN LEMAY:
15	Q. I probably should have asked this early on, but
16	I'll ask you because it's a question I had and didn't ask.
17	The Pennsylvanian oil and the Fusselman oil, are
18	they similar?
19	A. They're very similar.
20	Q. So it would be hard to differentiate between the
21	two?
22	A. It would be, yes, sir.
23	Q. Bear with me; I'm a geologist, not an engineer.
24	A. Okay.
25	Q. You have this drop of oil there, and depending on
1	

1	which way it's going to move, you've done that with
2	pressures.
3	A. Yes, sir.
4	Q. But with a water drive reservoir wouldn't that
5	drop of oil just stay there and you'd have the movement
6	from the bottom up of water so that The molecules aren't
7	going in either direction, but what you're trying to
8	control is the rate of water coming up the pay section,
9	aren't you?
10	A. That's right. According to how we see the
11	reservoir, this drop of oil would have to be in the matrix,
12	because the water has already moved above You know, it's
13	already watered everything out through the fracture system.
14	Q. Okay.
15	A. And so the pressure is pretty much equalized.
16	Q. Okay.
17	A. Now, when we increase when we install the
18	high-volume lift, we increase the drawdown, we're pulling
19	the water through the fractures. Well, finally we're
20	getting this little drop of oil to come from the matrix
21	into the fractures.
22	Phillips is doing it from their end, we're doing
23	it from our end, and that drop of oil would be at some
24	point, according to this model, on our lease, would be that
25	no-flow boundary where the drop of oil in the matrix would

	13
1	come out into the fractures and have to decide which way to
2	go, whether to go to Phillips' well or our well.
3	Does that confuse you?
4	Q. Yeah, it does.
5	A. Okay.
6	Q. You're changing a water drive reservoir, then, to
7	a gas-solution-type drive reservoir? Or what happens with
8	the oil in the matrix that's coming into the fracture
9	system? Is it going to be influenced by some water that's
10	in the fracture system there or what?
11	A. It should be, and what we feel we're doing with
12	the high-volume lift is pulling so much water through the
13	fractures, and perhaps four or five pore volumes of water
14	through the fractures, that any matrix oil that seeps into
15	the fractures will ultimately end up in the wellbore.
16	And so the way we envision the model, as we
17	increase the drawdown or we pull harder on the fractures,
18	we're able to alleviate oil or move oil from the matrix
19	into the fractures.
20	Q. So your whole reservoir has become a different
21	mechanism; you're sucking the oil out of the matrix, rather
22	than letting the water move the oil up into the wellbore?
23	A. That's correct, yes, sir, that's correct.
24	In effect, it goes back to what Mr. Faigle was
25	talking about, about we've watered everything out. You
1	

79

1 know, we've watered out the fracture system. We still have matrix oil in place. 2 You know, we have a higher amount of matrix oil 3 than does Phillips because we were located higher above the 4 5 oil-water contact. So while -- We have a lot more bypassed 6 oil than Phillips does, because we're located higher 7 structurally. And as we increase drawdowns then we should recover more -- larger amounts of oil, because we have more 8 oil in the matrix system. So we should recover higher 9 volumes from high-volume lift. 10 Phillips has done this for about three years, and 11 12 they recovered a lot of oil, but they're not as high in the column, so they haven't recovered as much as we should, 13 because we have a higher column, a higher matrix oil 14 column. 15 Any idea of percentage of total oil in place in 16 0. the fractures and in the matrix? 17 I'm not aware of any, I'm not aware of any. Α. 18 Well, it looks like you've got a half a million 19 Q. barrels left. 20 21 Do you know how much the well has produced already? 22 With a million barrels, right, at a million 23 Α. It's been a very, very good well. 24 barrels. 25 Yeah. So basically there's more oil in the Q.

1	fractures, I guess, than in the matrix to start with, and
2	now you're working on the matrix, which is harder to get
3	out?
4	A. Probably it's going to be harder to get out.
5	We'll probably leave a lot of oil behind.
6	Q. How much, percentage of oil in place?
7	A. I haven't done any calculations on it, but the
8	drawdowns we're seeing most of our drawdowns occur in
9	the first 150 feet. So I think the bulk of our recoveries,
10	you know, come from that 150 feet. We feel like we'll
11	leave a lot of oil in place.
12	CHAIRMAN LEMAY: Take a break? Fifteen-minute
13	break?
14	(Thereupon, a recess was taken at 10:35 a.m.)
15	(The following proceedings had at 11:00 a.m.)
16	CHAIRMAN LEMAY: Does that complete your
17	MR. CARR: That concludes our presentation, Mr.
18	Chairman.
19	CHAIRMAN LEMAY: Thank you.
20	Mr. Kellahin?
21	MR. KELLAHIN: Thank you, Mr. Chairman.
22	We're going to present two witnesses to you.
23	Scott Balke is a petroleum geologist with Phillips. He
24	testified at the original Examiner hearing. I'm going to
25	call him first.

1	The second witness is Jack Pickett. Mr. Pickett
2	is a petroleum engineer. In addition, he also testified
3	before Examiner Stogner.
4	At this time I'll ask Scott to take the witness
5	stand.
6	<u>SCOTT BALKE</u> ,
7	the witness herein, after having been first duly sworn upon
8	his oath, was examined and testified as follows:
9	DIRECT EXAMINATION
10	BY MR. KELLAHIN:
11	Q. For the record, would you please state your name
12	and occupation?
13	A. Scott Balke, I'm a geologist for Phillips
14	Petroleum.
15	Q. On prior occasions, Mr. Balke, have you testified
16	before the Oil Conservation Division in the capacity as an
17	expert in the area of petroleum geology?
18	A. Yes, I have.
19	Q. Summarize for us your education.
20	A. I got an undergraduate degree at the University
21	of Colorado; a graduate degree, Oklahoma State University.
22	Q. In what years, sir?
23	A. Undergraduate degree was 1978 through 1982;
24	graduate degree was 1982 to 1984.
25	Q. Do you have geologic experience in southeastern

1	New Mexico, west Texas?
2	A. Yes, I do.
3	Q. Does that experience include the Fusselman
4	production that we've talked about this morning and what is
5	identified by the Division as the South Peterson-Fusselman
6	Pool?
7	A. Yes, it does.
8	Q. How did you first become familiar as a geologist
9	with that particular production?
10	A. Originally I was part of the RPI study. There
11	was a consortium of companies who did a Siluro-Devonian
12	study in west Texas, New Mexico.
13	Q. That RPI study was referenced by one of Mr.
14	Carr's witnesses a while ago. Describe for us what that
15	was.
16	A. The study was a group, it was a consulting group
17	out of Boulder, Colorado, that wanted to study the
18	particular characteristics of Siluro-Devonian throughout
19	the Permian Basin, and so each several of the oil
20	companies gave both money and cores and information to the
21	study so they could all collaborate the information and get
22	the best results from all the information available.
23	Q. What's the particular time frame for that RPI
24	study?
25	A. It started gosh, probably back in The

1	original beginning work was probably back in 1988,
2	something like that. The conclusions took place probably
3	late 1989, something like that.
4	Q. Apart from contributing to that study effort, do
5	you have other independent involvement with the Fusselman
6	production in this pool?
7	A. Yes, my duties We're responsible for all
8	fields within New Mexico, and part of those were the South
9	Peterson field here.
10	Q. How many years of your professional geologic
11	experience includes your involvement with the Fusselman
12	Pool?
13	A. Close to six years.
14	Q. In addition, did you make a specific study of and
15	geologic conclusions and recommendations to Examiner
16	Stogner back in the June, 1994, hearing?
17	A. Yes, I did.
18	Q. Have you continued to study the geology involved
19	in this particular pool?
20	A. Yes, I have.
21	Q. And based upon that study, do you now have
22	certain geologic conclusions and opinions?
23	A. Yes, I do.
24	MR. KELLAHIN: We tender Mr. Balke as a
25	geologist.

1 MR. CARR: No objection. CHAIRMAN LEMAY: His qualifications are 2 3 acceptable. Balke, is it? 4 THE WITNESS: Yeah, B as in boy, a-l-k-e. CHAIRMAN LEMAY: Thank you. 5 (By Mr. Kellahin) Mr. Balke, what I think I'm 6 Q. 7 going to do is take some of your exhibits out of order. Ι think I -- I don't want to surprise you, but I'd like to 8 9 take that cartoon that you have prepared so that we can have you characterize the reservoir for us. 10 11 Α. Okay. MR. KELLAHIN: Can you see that, Mr. Carr? 12 13 MR. CARR: No, if I can step over --14 MR. KELLAHIN: Now can you see it? 15 Q. (By Mr. Kellahin) Let me direct your attention to what we've marked as Phillips Exhibit Number 6, I 16 17 believe it is. 18 Α. Five. 19 I'm sorry, 5. What's the base display? Q. What you're seeing here is very much --20 Α. 21 I'm sorry, I asked you the wrong question. Q. Looking -- Where did that display come from originally? 22 23 Oh, excuse me. It came from Mr. Faigle's Α. presentation back in June. 24 25 What then did you do to his characterization or Q.

1 representation of the reservoir? Α. I tried to implore [sic] our understanding of the 2 water drive mechanism of the reservoir and how it applies 3 to the geological framework. 4 Let me divide this into sections for you, Mr. 5 0. If you would give us a characterization of the 6 Balke. Fusselman reservoir, what kind of rock are we looking at? 7 8 What's its deposition? Just give us a general summary 9 geologically of how you would characterize the reservoir. Α. The geological parameters I'm going to show came 10 from the core that we took in the Lambirth 2 A and the 11 geological work I did throughout the field. 12 I agree with Mr. Faigle that it is a fractured 13 dolomite reservoir, heterogenous, fracture with matrix 14 porosity. The porosity comes from both the fractures and 15 from the matrix -- intercrystalline porosity itself. The 16 17 key --Do you subscribe to the theory that this 18 Q. reservoir is a dual-permeability system? 19 Dual-permeability system, but with a significant 20 Α. factor of being only fractures, being your core 21 permeability, I guess your primary permeability component. 22 23 Your fractures are going to be your conduits, 24 with your matrix porosity being your storage capacity. Your fractures are going to be what's going to transport 25

1	the oil from both the fracture system and the matrix up
2	through the borehole.
3	Q. Characterize, then, the reservoir, please.
4	A. It's a highly fractured permeable reservoir where
5	your communication within your reservoir occurs throughout
6	the reservoir itself, throughout the Fusselman itself.
7	You Again, like I previously said, your
8	fractures are going to be your conduits. It's just like a
9	building with doorways and hallways. Your rooms are going
10	to be where the storage capacity is going to be, but to get
11	through the rooms outside, you've got to go through the
12	hallways, which are the fracture systems.
13	Q. What is the trapping mechanism by which the
14	hydrocarbons were accumulated and stored?
15	A. Structurally trapped and stored both within the
16	fractures and within the matrix porosity.
17	Q. Is there a water component to the reservoir?
18	A. Yes, there is.
19	Q. Do you have an opinion as to where the original
20	oil-water contact was in this reservoir?
21	A. The original oil-water contact is going to be
22	very similar with Mr. Faigle's.
23	Q. So you don't have any disagreement with him
24	A. Don't have any
25	Q as to the subsea depth at minus 3450?

1 No problems at all. Α. 2 Do you subscribe to the theory that this is an Q. 3 active bottom water drive reservoir? Not only an active bottom water reservoir --4 Α. bottom drive reservoir, there's a key component, probably a 5 significant component of an edge water drive reservoir. 6 7 This is based upon geological maps and performance of the 8 wells. If we look at Mr. Faigle's cross-section that is 9 Q. 10 on the other display board, and if you'll look at the red line that depicts the minus 3450 subsea location of the 11 original oil-water contact, describe for us why you as a 12 geologist do not agree that this is an exclusive bottom 13 water drive reservoir. 14 15 Α. If -- Just like Mr. Faigle said, if you had had a constant bottom drive reservoir, giving some slack and some 16 variances granted, you would see the water rise in each one 17 of these wells, you'd see the lower structural wells water 18 out or see at least water encroachment earlier than the 19 20 wells up on top. 21 And when I show you my structure map, I will show 22 you wells that watered out and produced a lot more, 23 significantly more water, with the same structural 24 elevation. So that proves that it can't be a single bottom 25 water drive, because you have the same subsea depth wells

1	watering out at different times, significantly different
2	times, so it could not be a single bottom water drive.
3	Q. Can you give us an illustration of a comparison
4	between two wells
5	A. Uh-huh.
6	Q where you would have expected one well to have
7	substantially increased its water cut if in fact it was
8	being affected by water a bottom water drive mechanism?
9	A. Yes, sir, if you could look at my Exhibit Number
10	3, which is a structure map on the Fusselman itself, within
11	Section 31 there we have a Number 2 well, which is our
12	Enserch 2 A well, which is a subsea depth of minus 3419,
13	and the Number 1 well, which has a subsea depth of minus
14	3406. Actually, our Number 2 well is slightly structurally
15	lower than the Number 1 well there.
16	However, water and in fact the water or the
17	well became uneconomical because of water much earlier in
18	the Number 1 well than it did in the Number 2 well. Now,
19	if this was a strictly bottom water drive, that phenomenon
20	would not take place.
21	Q. When you compare the Enserch Number 1 Lambirth
22	with the Phillips A 2 Lambirth in terms of the approximate
23	time frame within which each of those wells began to
24	experience substantial increases in water cut, what's the
25	relationship and what did you see?

1 Α. The Number 2 well should be encountering water before the Number 1 well, and that's because it's 2 structurally lower. You have a complete fractured 3 4 reservoir right there, so they're in communication with 5 And you would see the Number 1 well, being themselves. structurally higher, seeing water much later. 6 7 And what happened? Q. Α. That is the case. 8 Describe for us, then, geologically what you see 9 Q. 10 to have occurred as we look at Exhibit 5, the cartoon. 11 Α. Uh-huh. 12 Q. With the original oil-water contact as you see it 13 and with these wells and this geologic data, describe for 14 us what's happened. 15 Well, because this was a -- this fracture system Α. 16 was not only fractured but it also had solution enhancement 17 done for diagenesis, you had significant communication within the wells. And as the Number 1 well increased its 18 rate, and because of its structurally favorable position, 19 20 you're going to see water encroachment coming up at an accelerated rate, especially if it's produced at a higher 21 rate, and will prematurely water out our Number 2 A 22 Lambirth. 23 24 When you say "water coming up", can you describe Q. 25 for us in what directions this water is encroaching?

1 Α. It will come up from the edge, along with the bottom, but it will also come up from the edge, because we 2 see, based upon our structure map and based upon our well 3 performance, that there's a strong edge water drive 4 component to it. So you'll see water coming up on the edge 5 of the reservoir itself. 6 7 Q. Have you also studied the structural relationship between the Enserch Lambirth 1 and the Phillips Lambirth A 8 2 well? 9 Α. Yes. 10 What is your opinion about the vertical 11 ο. difference in the top perforations between those two wells 12 in this pool? 13 14 Α. The Number 1 Lambirth well will experience a 15 structurally favored position of about 38 feet, approximately 38 feet, and that will give them a 16 significant structural advantage over our Number 2 well. 17 And that advantage, because of the structure and 18 because we're seeing that the fracture patterns are all 19 20 broken up so that the reservoir is in communication with 21 itself, will be a significant advantage for Enserch over Phillips. 22 Mr. Faigle subscribes to the proposition that at 23 0. this point in the reservoir, if there was an advantage 24 structurally, it simply no longer matters for remaining oil 25

1 production because the fracture system is watered out. Do you agree? 2 Well, I'd even kind of piggy-back on top of what Α. 3 Mr. Burkett also said: It takes the matrix to feed into 4 the fractures to produce the oil. Your storage capacity is 5 in the frac- -- excuse me, is in the matrix. And it's the 6 7 fractures that are going to be able to bring the oil to the well itself. 8 So I don't agree with Mr. Faigle because I think 9 that your fractures are not watered out, they're just 10 carrying the remnant oil that they carry and also the oil 11 that's coming from the matrix. 12 13 Q. In your opinion, does the structural 14 differentiation between the two wells still matter in terms 15 of remaining depletion of the reservoir? Significantly, without doubt. 16 Α. 17 From a geologic perspective, will rate matter? Q. Yes, it will. 18 Α. In what way? 19 Q. As you see, both on the diagrams and on this 20 Α. 21 structure map, you're having this reservoir being in communication with itself, both -- There's no vertical 22 permeability barriers, there's no horizontal permeability 23 barriers. With the wells being higher up on the structure, 24 you'll have the advantage. 25

asing
asing
asing
-
-
1
9
9
see
:?
etty
: was
But

	94
1	Q. Take a moment and identify each page, and then
2	let's go back and talk about what it means.
3	A. The first page is a cross-plot of core porosity
4	and permeability in the Phillips Lambirth A Number 2.
5	The second page identifies the distribution of
6	core permeability from samples. So you've got core
7	permeability versus the percent, where it's at.
8	What I want to show from both of these is, one,
9	yes, there is a heterogenetic relationship in permeability.
10	However, when you compare porosity as on the first page,
11	porosity compared with permeability, you see not a direct
12	relationship at all.
13	Porosity stays pretty consistent through there,
14	about 9.5 percent. However, permeability can range from
15	being a moderate-permeable rock to a very high-permeable
16	rock. And it's a very high-permeable rock that makes this
17	reservoir a very in communication with each other.
18	Q. When we look at the first page of Exhibit 4, the
19	figure 9.110, specifically what are we looking at?
20	A. Looking at
21	Q. The first page of this exhibit.
22	A. Yes.
23	Q. What is that?
24	A. That's just, again, a correlation between
25	porosity, core porosity, and core permeability within the

Lambirth A Number 2, and showing zones of both moderate 1 porosity -- or moderate permeability and high permeability 2 3 within a -- essentially the same permeable rock, around 9.5 4 percent. 5 ο. How is that of any importance to us in whether we 6 change the rate of oil withdrawals from the pool? 7 Α. The key component here is permeability. We know it has high permeability. So if you change the rate, 8 you're going to have adverse effects on wells that are 9 10 structurally low to the one that's on high, the highest structural well. It will have an adverse effect on the 11 Lambirth 2 A. 12 Q. Page 2 of Exhibit 4, it's figure 9.111. 13 Specifically, what are we looking at here? 14 You're looking at essentially the core 15 Α. permeability of the rock itself, and what we're seeing is 16 that the permeability -- just another correlation of the 17 permeability variation. 18 19 It shows that it is a heterogeneous -- has 20 heterogeneous distribution, and RPI's conclusions were that 21 this resulted in premature water breakthrough in the reservoir, could allow for that. 22 23 Q. Put that last sentence in some kind of geologic 24 context for us so we can see its significance as we address how these two wells compete for the remaining oil. 25

What we saw was, this reservoir was not atypical 1 Α. from any other carbonate reservoir within the Permian 2 Basin. You had highly permeable rock. You know, if you 3 had too fast of expulsion of the fluids themselves, 4 5 specifically the oil, you could have premature breakthrough 6 of the water through the -- into the borehole, which -- I 7 mean, it's a direct relationship to what Enserch is proposing here. If you increase the rate too fast, you 8 have bypassed oil. 9

Q. How does the fact that in your opinion there is
an edge drive water component to the reservoir fit within
the context of the potential for premature water
breakthrough in the reservoir?

A. Okay, you're going to have increase of water coming up from the edge. And along with the strong --Because of the strong water drive, you're going to have premature water breakthrough because it is very highly permeable, and you'll have increased water within certain downdip wells.

20 Q. When you look at the porosity characteristics in 21 the log for the Enserch Lambirth 1 well -- A copy of that 22 is on the display board. When you look at the lower 23 perforations within that section versus the higher 24 perforations, is there any distinguishable difference in 25 ranges of porosity?

1 Yes, there are. There's -- Where they perforated Α. 2 was in the higher permeable -- or excuse me, higher porosity zones. And then where they didn't perforate was 3 in the lower porosity zones. 4 0. In the lower porosity zones, what range of 5 porosity values do you find in their well above the oil-6 7 water contact? 8 Α. Probably an average porosity of, say, around ten 9 percent. 10 0. And as we move up into the area of the reservoir that they did perforate, what kind of porosity value are 11 you finding? 12 13 Α. Probably a low of a cross-plot porosity of, say, 14 12 percent, to a high of close to 18, 20 percent, somewhere 15 around that range. When you read across and correlate those points 16 0. 17 to the porosity values on your 2 A well, what kind of porosity value do you have? 18 Cross-plot porosity of approximately 12 percent. 19 Α. Is there a material difference in terms of 20 0. porosity values, then, between the two wells? 21 Α. Yes, there is. 22 Okay, with the advantage lying where? 23 Q. The advantage lying with the Enserch Number 1 24 Α. well. 25

1	Q. Let me go back and have you identify those
2	exhibits that we haven't specifically addressed.
3	If you'll look at Exhibit 1 and for the record
4	describe and identify that display.
5	A. Exhibit 1 is a base map of the South Peterson
6	field itself, and Section 31 gives you the wells in
7	question, specifically the Enserch well, which is located
8	in the northeast of the southwest quarter; the Phillips 2 A
9	well, which is located in the southeast of the northwest
10	quarter of Section 31. And each well has its well number
11	and operator number above it.
12	Q. How did we end up, just for historical
13	information, in this checkerboarded fashion, Mr. Balke?
14	A. It was Phillips' farmouts, and Phillips gave a
15	farmout on a checkerboard-type arrangement. Therefore, if
16	Enserch which in this case they did, they were
17	successful in their initial well, we would have offsetting
18	to locations to develop ourselves.
19	Q. Exhibit 2, you don't have to describe it in
20	detail, but just tell us what it shows and the point of
21	time at which you tabulated the production data.
22	A. Production data was current through 12 of 1993.
23	The Enserch Well Number at that time had done just a little
24	bit below a million barrels of oil. Our Number 2 A well
25	had done approximately 410,000, 411,000 barrels of oil.

1 And you'll see the production around each of the other 2 wells also. All right, let's go back then to Exhibit 3, which 3 Q. is your structure map, and let's spend a few minutes on 4 5 this. This represents your work product, does it not? That's correct. Α. 6 7 0. When we look at the trapping mechanism in the 8 reservoir, describe for us how you've illustrated that. 9 Α. The trap within this reservoir is structural. The structure experienced both fracturing and subareal 10 exposure, with truncation of the Fusselman directly below. 11 12 That wavy line right there shows the erosional and 13 conforming pinchout. And near the pinchout, you'll see some of the 14 wells that well performance isn't quite as good. This is 15 16 because of their location to the pinchout with clay infill within some of the fractures themselves. 17 18 0. When we look at the point on which you're contouring, it is what, sir? 19 What I consider the top of the Fusselman. 20 Α. All right. Is there a log or some point that you 21 Q. 22 can show us on another display that will give the 23 Commission a reference to where that is? 24 Α. We could use Enserch's cross-section right here. I have no debate with where they're calling the top, the --25

in this case they're calling it the lower paleozoic 1 carbonate; I call it the top of the Fusselman. 2 Basically the base of the Penn. 3 I'm going to hand you Mr. Faigle's Exhibit 3 on 4 ο. 5 which he has prepared his cross-section. There are obvious differences between your 6 7 structure map and his structure map. Would you explain to us what those differences are? 8 9 Α. Okay, just a second, let me just check his 10 numbers. 11 I believe the difference is, he's picking it --12 The significant difference is, I quess, the Number 1 well, 13 I've got it a little bit deeper. He's picking it a little higher, looking more into the porosity range or, I quess, 14 15 deeper into the rock itself. But both of us show a structural high up on the 16 Number 1 with truncation to the south, and both Enserch 17 18 wells and Phillips wells around the Number 1 being 19 structurally lower. 20 Q. With those general points of agreement, is there 21 any material difference in terms of the contouring 22 conclusions, whether you choose Mr. Faigle's style or your 23 style of identifying the reservoir structure? 24 Α. None whatsoever. Both of us have the Enserch 25 Number 1 well being structurally high and the Phillips

1	well, the 2 A Lambirth, being structurally low.
2	Q. If you'll look at your structure map, then, can
3	you use that to illustrate what we would have expected to
4	happen to this group of wells had this reservoir been an
5	exclusively bottom-drive reservoir?
6	A. If we look at Mr. Faigle's exhibit here, you
7	would see that the Lambirth 2 A, the Lambirth Number 3
8	Enserch, and the Lambirth Number 3, and the Phillips 1 A
9	Lambirth, would essentially have and barring some
10	differences would have watered out essentially all at
11	the same time, approximately the same time.
12	Yes, there's going to be some variances there,
13	but they'll be relatively minor. But you'd see each one of
14	those wells becoming uncommercial, uneconomic at about the
15	same time.
16	Q. And did that happen?
17	A. No, it did not.
18	Q. Based upon your work, your study, having heard
19	their presentation, summarize for us your geologic
20	conclusions and your concerns within the context of this
21	particular case.
22	A. My conclusions are, and very similar to Mr.
23	Faigle's in many ways, is that it is a highly fractured
24	dolomite reservoir, heterogeneous, the fractures being
25	highly permeable, some oil being left remaining within the

matrix itself and possibly within the fractures. 1 Because of diagenesis, subareal exposure and 2 3 solution enhancement, this is a very highly permeable reservoir with no vertical or horizontal permeability 4 5 barriers within this reservoir. 6 My concerns are for Phillips that, Enserch being 7 highest on the structure, Phillips having wells on the --8 lower on the structure, particularly the Number 2 A Lambirth, will see water encroachment considerably earlier 9 and will be detrimentally affected by Enserch's proposal 10 here to increase rate. 11 Increasing rate will have adverse effects on 12 13 Phillips' wells, because you'll have water coming earlier. MR. KELLAHIN: That concludes my examination of 14 Mr. Balke. 15 We move the introduction of his Exhibits 1 16 through 5. 17 18 CHAIRMAN LEMAY: 1 through 5 will be admitted 19 without objection. 20 And your witness, Mr. Carr. 21 MR. CARR: Thank you, Mr. LeMay. 22 CROSS-EXAMINATION BY MR. CARR: 23 Mr. Balke, several things we're in agreement on. 24 Q. We do agree we've got a dual-porosity system or a bimodal 25

1	system in the reservoir?
2	A. In process, correct.
3	Q. And we Is it fair to understand that the
4	fractures are the primary conduits for the movement of the
5	oil to the wellbore?
6	A. That's correct.
7	Q. In your opinion, is there much oil left in those
8	fracture systems at this time?
9	A. That's probably more of a for Mr. Pickett to
10	address, but I would think there is significant oil still
11	left to be remaining.
12	Q. Should I address questions about where remaining
13	oil would be, matrix versus fracture system, to Mr.
14	Pickett?
15	A. That would be fine, or however you would like.
16	Q. Do you have an opinion as to whether or not the
17	bulk of the oil to be recovered is within the matrix?
18	A. I think your matrix is probably your storage
19	facility, and your and the remaining oil, in my opinion,
20	probably would be in the matrix.
21	Q. And is it fair to say that to get that oil out of
22	the matrix you have to have something in the reservoir to
23	cause it to move, like a pressure differential; is that not
24	true?
25	A. I'll leave that one for Mr. Pickett.

1 ο. Now, if I understood your testimony, you agreed that this is a water bottom drive, but there is also a side 2 water drive component in it; is that correct? 3 That is correct, a significant, probably the 4 Α. pronouncement [sic] of the edge water drive, correct. 5 Q. If we look at the cartoon you have presented, 6 this is not really designed to be an accurate 7 representation of what's occurring in the reservoir, is it? 8 I think it's a conceptual model of what's Α. 9 occurring in the reservoir. 10 Now, it basically, if we look at it, it shows the 11 Q. water contact. Is that that blue line that runs across it? 12 Is that an oil-water contact in the reservoir? 13 14 Α. I would say that's where you have an approximate commercial line. I think your oil-water contact could be 15 significantly higher, but that line will probably be where 16 you have so much water that your wells become uneconomical 17 to produce. 18 If we have a well like the Lambirth Number 1 that Q. 19 has a 90-percent-plus water cut, it would be logical to 20 expect that there would be some substantial water in the 21 reservoir above that line; is that not fair to say? 22 Fair to say. 23 Α. If we look at this cartoon, and if we had just a 24 ο. bottom water drive reservoir, in fact, we would see an oil-25

water contact that would be actually the reverse of what 1 we've got here; isn't that right? 2 The wells that were producing would be pulling 3 the water -- pulling on the aquifer and pulling it up, 4 5 not -- So you would have it actually rising in the center, 6 not dropping, if it were just a bottom water drive; isn't that correct? 7 That would be correct. 8 Α. And in fact, the wells that were pulling the most 9 Q. 10 would be coning water up into those wellbores? Α. That would be correct. 11 But you're not seeing that here in a 12 Q. predominantly bottom water drive reservoir. What this 13 shows is effect -- the -- what occurs with a side water 14 drive; isn't that right? 15 Correct. 16 Α. 17 0. And yet it is fair to say that the dominant reservoir drive mechanism is a bottom water drive? 18 19 Α. I would say that's not what I -- my geological 20 parameters or my geological conclusions came to, but I would again defer that with Mr. Pickett. 21 So you're not telling us what kind of a water 22 Q. drive we have in the reservoir? 23 I think our conclusions, from my geological Α. 24 25 conclusions, say that it's a component of both edge water

1	and bottom water drive, and I'd say that a significant
2	contribution is probably edge water, based upon what I see
3	in my structure map and well performance.
4	Q. And my question is, this cartoon does not show
5	the effect of bottom water drive; it shows edge water
6	drive?
7	A. It does show bottom water drive, because you do
8	have the bottom portion of the blue coming up from the
9	original oil-water contact. It just shows a more
10	significant edge water drive than just a strict bottom
11	water drive.
12	Q. And this doesn't, in fact, really show any of the
13	effect of a bottom water drive, or we'd see this line
14	coning up into the wells that are pulling on the aquifer?
15	A. Well, what you're dealing with what you're
16	specifically saying is where the original oil-water contact
17	is. That's not what I'm showing here. The blue is not an
18	oil-water contact, but where my economic perhaps an
19	economic water contact may be.
20	Q. And it doesn't show the effect of pulling, the
21	wells that are producing the hardest, it doesn't show the
22	effect that has on this bottom line?
23	A. That is a conceptual diagram with what I'm seeing
24	off of my structure map itself.
25	Q. Rate certainly matters, you testified, in the way

1	these wells are produced?
2	A. Correct.
3	Q. And the rate at which the wells are produced
4	i.e., the Lambirth, the Phillips the Enserch wells
5	produced, you testified, would have an impact on the
6	Enserch well; isn't that what you testified?
7	I'm sorry, the Enserch well's rate of production
8	would have impact on the Phillips well?
9	A. Yes.
10	Q. All right. If I could remember who everybody
11	was, it would be easier.
12	A. Right.
13	Q. All right. Isn't that because of the drawdown
14	effect on the reservoir by producing these wells? If we
15	produce our well faster, there would be a greater drawdown?
16	A. When we get to specifically speaking about
17	drawdown, again, I would defer to Mr. Pickett.
18	But in a geological sense, I would say that what
19	I'm seeing here, based upon my structure and well
20	performance, is not a single bottom water drive.
21	Q. And so you're not testifying about the effect of
22	the drawdown on from our well on the Phillips well?
23	A. What I'm testifying here is saying that it's not
24	a strict bottom water drive reservoir, that the reservoir
25	is fractured and in communication with each other and has

no barriers, and from a geological perspective, based upon 1 my geological evidence and well performance, that we'd be 2 adversely affected by increasing the rate by Enserch. 3 And the increased rate, the adverse effect of the 4 0. increased rate comes from what? Pressure drawdown? 5 Increasing the water in a lateral sense into our 6 Α. 7 wellbore. And it would also increase the water in a 0. 8 vertical sense, coming up into the reservoir, would it not? 9 10 Α. There will be some significant increase from the bottom, correct, but I think your major component would be 11 12 from the side. We looked at the reservoir, and I believe you 13 ο. testified looking at exhibits from the study that you 14 participated in, and you concluded that the higher 15 permeabilities in the reservoir would in fact cause higher 16 drawdowns. Did you testify to that? 17 18 Α. I didn't say higher drawdowns. I said that the higher permeability within the rock would pose no 19 20 communication -- or -- exactly, communication barriers between the rocks. I see nothing in there. They should be 21 all in communication with each other, based upon these 22 23 higher permeabilities. And so you looked at the fact that they're in 24 Q. 25 communication with each other. Did you take that the next

1	step and talk about the impact withdrawals from one well
2	would have on the other, or is that again something for Mr.
3	Pickett?
4	A. I will defer that to Mr. Pickett. However No,
5	I'll just defer that to Mr. Pickett. He can explain that,
6	hopefully, a little bit better than me.
7	Q. We look at the permeabilities from the study, and
8	if I look at the second page of your study it shows a
9	permeability, I believe, for your Lambirth 2 A of 3.8
10	millidarcies; is that right?
11	A. That's correct.
12	Q. And you would agree with me that the permeability
13	in the offsetting Enserch well is 500 millidarcies?
14	A. That was determined based upon a totally
15	different parameter. We're looking at core permeabilities
16	right here. Your test gave well-performance
17	permeabilities.
18	Q. Do you have well-performance permeabilities on
19	the Lambirth A Number 2?
20	A. I again will give that one to Mr. Pickett. All I
21	can really concerned with what I know as far as geology
22	in the reservoir.
23	Q. When we look at the time frame within which the
24	various wells in the reservoir have watered out, do you
25	have a definition for me of what watering out actually

1	means?
2	A. For us it would be when it became uncommercial to
3	produce. Our lifting costs would be more than what our
4	revenue would be from the oil.
5	Q. So it would have an economic component and I
6	guess a water component, as Mr. Faigle testified?
7	A. No, ours would be strictly an economic
8	Q. A strictly economic. Did the And that is when
9	you totally terminate producing the well; is that when you
10	consider a well to have watered out?
11	A. Yes.
12	Q. Has your 2 A watered out at any time?
13	A. I'm not aware of such.
14	Q. The 1 A, in your opinion, has not watered out?
15	A. The 1 A has not watered out?
16	Q. Yes.
17	A. We have ceased producing our Number 1 A.
18	Q. It has watered out?
19	A. To the best of my understanding, it is, but again
20	I would like defer that one to Mr. Pickett.
21	MR. CARR: That's all I have.
22	One other question No, I'm sorry, I'll ask
23	that to Mr. Pickett.
24	MR. KELLAHIN: No, sir.
25	CHAIRMAN LEMAY: Commissioner Weiss?

1	EXAMINATION
2	BY COMMISSIONER WEISS:
3	Q. On Exhibit 4, there's quite a range I guess
4	these are all horizontal permeabilities, huh?
5	A. That's correct.
6	Q. All right. Do you suppose that the range of the
7	vertical permeabilities is similar?
8	A. I would be expecting something like it, to be
9	very similar.
10	COMMISSIONER WEISS: That's all the questions I
11	have. Thank you.
12	CHAIRMAN LEMAY: Commissioner Carlson?
13	EXAMINATION
14	BY COMMISSIONER CARLSON:
15	Q. When did the Phillips 1 A well quit producing?
16	A. We shut it in, I believe, November of this last,
17	past year.
18	Q. And the 2 A well is still producing?
19	A. That's correct.
20	COMMISSIONER CARLSON: That's all I have.
21	EXAMINATION
22	BY CHAIRMAN LEMAY:
23	Q. Mr. Balke, what about the 3 A? That's a well
24	that confuses me. It's higher than the 2 A, and yet it's
25	produced less oil. Is it still producing?

1	A. 3 A, is this
2	Q. 3 A Lambirth, the one south of the Number 1.
3	A. Okay, that is currently producing, that's
4	correct.
5	Q. It is not as good a well as the 2 A, even though
6	it is structurally higher?
7	A. Mr. Pickett will present the production on that,
8	but it does not produce water, it produces around 20
9	barrels of oil a day.
10	What we see from our analysis is that you
11	probably had a lot of infilling of clay and other
12	precipitants within the fracture system due to its
13	proximity to the truncation there to the south.
14	Q. So you might expect that well wouldn't react with
15	your model of having being an excellent reservoir,
16	having high permeability both vertically and horizontally
17	and excellent communication-type
18	A. Correct.
19	Q characteristics?
20	A. And as you pointed out, it is structurally
21	higher. That's why it's not seeing the water that all the
22	other wells are seeing also.
23	CHAIRMAN LEMAY: Okay, that's all I have. Thank
24	you.
25	MR. KELLAHIN: You can leave the displays there,

1	Scott. Take the one you need and
2	Mr. Chairman, I've called Jack Pickett to the
3	stand.
4	JACK PICKETT,
5	the witness herein, after having been first duly sworn upon
6	his oath, was examined and testified as follows:
7	DIRECT EXAMINATION
8	BY MR. KELLAHIN:
9	Q. For the record, Mr. Pickett, please state your
10	name and occupation.
11	A. My name is Jack Pickett, reservoir engineering
12	supervisor for Phillips Petroleum, located in Odessa,
13	Texas.
14	Q. What is it that you do as a reservoir engineering
15	supervisor for your company?
16	A. I supervise other reservoir engineers and then
17	conduct some reservoir engineering studies on my own.
18	Q. Is this an area, when we look at the South
19	Peterson-Fusselman Pool, that is within your expertise both
20	as an engineer supervisor, as well as a reservoir that you
21	have studied as an engineer?
22	A. Yes, I worked on the South Peterson Fusselman
23	field in the early Eighties as an area engineer, and for
24	about three years. And then I've been in my current
25	position for about seven years, with responsibilities for

the whole Permian Basin and -- essentially in New Mexico. 1 So your involvement in this pool with regards to 2 0. your production is simply not triggered by Enserch's 3 4 Application? That's correct. 5 Α. You've got historical knowledge, separate and 6 Q. 7 apart from your activities in this case? 8 Α. Yes. 9 Q. Did you testify before Examiner Stogner as an expert in reservoir engineering in this case? 10 Α. Yes. 11 12 Q. And have you continued to study the issue of increasing the oil allowable for this pool? 13 14 Α. Yes. MR. KELLAHIN: I tender Mr. Pickett as an expert 15 reservoir engineer. 16 CHAIRMAN LEMAY: His qualifications are 17 acceptable. 18 (By Mr. Kellahin) Mr. Pickett, if the Commission 19 Q. were to grant Enserch's Application to increase the pool 20 allowable for the pool, how many wells would benefit by 21 that increase? 22 Just the Enserch Lambirth Number 1 is the 23 Α. One. only well capable of taking advantage of that increase. 24 25 Q. Let me start where I left off with Mr. Balke.

1	Let's look at Exhibit 5. It's the cartoon that's on the
2	foam board.
3	As a reservoir engineer, describe for us what you
4	see within Mr. Balke's geologic context as to how the
5	reservoir has been depleted when we use the original oil-
6	water contact of minus 3450. What's happened as the wells
7	produce the fluids from the pool?
8	A. As the wells have been producing, you can see a
9	lot of edge water or premature water encroachment from the
10	sides, wells that shouldn't have watered out if it was
11	purely a bottom water drive mechanism, watering out before
12	they should have.
13	Q. All right. Are there illustrations to prove that
14	conclusion?
15	A. Yes, I'll have several illustrations.
16	Q. At this point in time, is it still appropriate,
17	in your opinion, to maintain the consistency of keeping the
18	oil rate at 267 barrels of oil a day as the two operators
19	compete for the remaining oil?
20	A. Certainly no higher.
21	Q. And why do you say that?
22	A. The Phillips well will be damaged if The
23	function of the water encroachment into the Phillips wells
24	is a function of how much oil Enserch is pulling out of
25	theirs.

1	Q. When we look at the opportunity to compete for
2	the remaining oil in the pool, how many wells are truly
3	involved in that competition?
4	A. Three.
5	Q. All right. Identify for us the three wells that
6	still remain to compete.
7	A. The Phillips Lambirth A Number 2, the Phillips
8	Lambirth A Number 3, and the Enserch Lambirth Number 1
9	wells.
10	Q. Let's look at how you have exercised that
11	opportunity to compete. If you'll look at the Phillips 2 A
12	Lambirth well, how is that well currently configured for
13	production?
14	A. We've got the largest submersible pump in it that
15	we can put in 5-1/2-inch casing.
16	Q. And approximately how many total fluid barrels
17	are you able to produce?
18	A. We're making about 150 barrels of oil and 1500
19	barrels of water.
20	Q. All right. Are you familiar with the SPE paper
21	that's been discussed by Enserch in the hearing?
22	A. Yes, I've read it several times.
23	Q. All right. When we look at the criteria for
24	accomplishing some opportunity of success with a high-
25	volume lift, have you tried that system in this reservoir?

 A. Yes, Phillips has effectively tried that on two wells, and it did not work on either one. Q. Were you able to try that opportunity within th parameters of the SPE paper where you were dealing with water cuts of between 70 and 95 percent? A. Yes, both our wells that we installed submersite 	e ole
Q. Were you able to try that opportunity within the parameters of the SPE paper where you were dealing with water cuts of between 70 and 95 percent? A. Yes, both our wells that we installed submersite	ole
 4 parameters of the SPE paper where you were dealing with 5 water cuts of between 70 and 95 percent? 6 A. Yes, both our wells that we installed submersite 	ole
 5 water cuts of between 70 and 95 percent? 6 A. Yes, both our wells that we installed submersize 	
6 A. Yes, both our wells that we installed submersik	
	1
7 pumps on had water cuts within that range, and we saw no	1
8 extra oil as a result of installing submersible pumps, no	
9 increased reserves or decrease in water-oil ratio.	
10 Q. As you study information since the last hearing	i ,
11 do you reach any different conclusion about the adverse	
12 impact on Phillips' correlative rights if this Applicatio	'n
13 is approved?	
14 A. No, same now as it was then.	,
Q. Based upon that data, do you have an opinion as	•
16 to whether or not approval of this Application will	
17 increase ultimate oil recovery from the entire pool?	
18 A. I see no information that would indicate	
19 increasing the allowable will increase the ultimate	
20 recovery.	
21 Q. From the pool?	
22 A. From the pool.	
23 Q. Do you see any information to tell you that the	
24 Enserch well has improved its ultimate recovery versus	
25 simply accelerated the recovery of the same volume?	

It's hard to say with a short time period, but it 1 Α. 2 is probably recovering some more reserves, but at Phillips' 3 expense. 4 Q. Why do you say that? 5 Α. Because it's drawing water in from the sides and watering out Phillips' wells earlier, reducing our reserves 6 7 and increasing Enserch's reserves. If we keep the oil rate the same, what does that 8 0. 9 preserve for Phillips that you don't have if the rates increased? 10 11 Α. An opportunity to recover our reserves. You listened to Mr. Burkett's model example of 12 0. the fact that the advantage is to you --13 14 Α. Yes, sir. -- despite the fact that your well is 15 Q. downstructure, producing less oil and may have less quality 16 in terms of reservoir characteristics? 17 Yes, I heard that testimony. 18 Α. 19 Q. And what's your opinion? 20 Α. I think it's just the opposite, that Enserch has 21 the advantage and that Phillips does not have an advantage. What's the flaws, as you see it from a reservoir 22 0. 23 engineering perspective, in Mr. Burkett's conclusions? 24 Α. Basically, his claim was that Phillips -- the 2 A well was affecting Enserch's well more because we had a 25

greater pressure drawdown, but that's because of the lower 1 2 permeability. And if you draw that same kind of reasoning out, 3 you go down to -- if the well had very low permeability, it 4 was only making, say, one barrel of fluid a day, that would 5 even be more of a drawdown, even more of an effect. 6 So it kind of seems backwards to me that the 7 lower permeability that our well has, the more we affect 8 Enserch, that does not seem correct. 9 All right, when we look at the opportunity for Q. 10 success under the hypothetical in the SPE paper, is that 11 conditioned on the pressure drawdown that you're able to 12 achieve in the reservoir in that specific well? 13 I believe it touches on that, that it could be a 14 Α. function of the drawdown pressure. 15 When you look at the other two wells that you 16 Q. tried the high-lift system in --17 18 Α. Yes. -- and could not increase the oil productivity, 19 0. which two wells did you try that in? 20 In the Lambirth A Number 1 and in the Lambirth A Α. 21 Number 2. 22 Were you able to achieve a level of pressure 23 Q. drawdown in each of those wells that should have, if the 24 25 paper were correct, improved?

1	
1	A. Yes, far beyond what Enserch has drawn their well
2	down, and enough that inasmuch as they call talk
3	about it in the SPE paper.
4	Q. All right. And you were not able to achieve the
5	kinds of results that were hypothecated by the paper?
6	A. Correct.
7	Q. What do we do, if anything, about this issue of
8	water breakthrough, premature water breakthrough in the
9	reservoir? Is that an issue for you as a reservoir
10	engineer in this pool?
11	A. Yes.
12	Q. Why?
13	A. You have to be concerned about the rates of
14	withdrawals from updip wells, lowering the reserves of the
15	downdip wells.
16	Q. Let me put this to you a different way. We often
17	talk to this Commission about a reservoir being rate-
18	sensitive or not rate-sensitive.
19	A. Oh, yes.
20	Q. In the context of this case, is this reservoir
21	going to be sensitive to rates of fluid withdrawals?
22	A. No.
23	Q. All right. What we are concerned with, though,
24	is the opportunity for the movement of the oil within the
25	reservoir?

-	
1	A. Yes.
2	Q. So it's a correlative-rights issue, as opposed to
3	a waste issue?
4	A. Correct.
5	Q. Let's turn to your exhibit. Your first exhibit
6	is Number 6?
7	A. Right.
8	Q. What are we looking at?
9	A. This is a production plot of Phillips' Lambirth A
10	Number 3 well. It's located one well location south of the
11	Enserch Lambirth Number 1 well.
12	The oil production is the black line, the water
13	production is the blue line the gas production or GOR
14	is the red line.
15	The well is currently making, now, about 22
16	barrels of oil a day, little or no water, with a GOR of
17	around 1000.
18	Q. Your perfs in this well are higher structurally
19	than the perfs in your 2 A well?
20	A. Yes.
21	Q. All right. And this is structurally higher in
22	the reservoir, as shown in Mr. Balke's structure map?
23	A. Yes.
24	Q. It produces zero water and what? Twenty-nine
25	barrels of oil in November of 1994?

1	A. Twenty-two to 30.
2	Q. All right, and it's currently still producing
3	oil?
4	A. Yes.
5	Q. How do you explain this well's performance?
6	A. Well, if you look at the I don't know what you
7	call it. It's fairly inconsistent oil production over the
8	history of the life, but essentially it's flat production
9	for the entire history of the well. I kind of call it non-
10	declining oil production.
11	And what's also interesting to note is, the gas
12	is still at about the same level it was originally.
13	What I infer from this information is that this
14	well has got lower productivity than some of the more
15	prolific wells in the field, but it's receiving the
16	pressure support from the aquifer and the water-drive
17	mechanism in the field.
18	Q. Could this well potentially be affected adversely
19	if the oil rate is increased?
20	A. This well probably would not be affected.
21	Q. Let's look to those wells that may be.
22	A. Okay, the One other thing to note on this is
23	that the perforations in this well match up with the top
24	half of the perforations in the Enserch Lambirth Number 1
25	well, which Enserch has said has watered out, yet this well

4	makag yany little yatar
1	makes very little water.
2	Q. All right, you find evidence it's in the same
3	reservoir?
4	A. Yes.
5	Q. You find some pressure support for that well?
6	A. Yes. And
7	Q. If it was a true solution drive reservoir and not
8	in communication with the main reservoir, then that
9	shouldn't happen?
10	A. Right.
11	Q. So it's getting some support, and it's in the
12	same common source of supply?
13	A. That's right. And making very little water
14	compared to the other well, especially like the Enserch
15	Lambirth Number 1 well, this is one of the first
16	indications that we have of the edge water drive mechanism
17	in the field.
18	Q. Let's turn to Exhibit 7. Identify this one for
19	me, Mr. Pickett, and then describe for me what it shows.
20	A. This is a production plot of the Phillips
21	Lambirth A Number 1 well. Black on this one is oil per
22	day, the red is the water per day, and the blue is the
23	water-oil ratio.
24	What I'd like to point out is, when the
25	submersible pump was installed in this well in October of

1	1992, indicated on the exhibit.
2	Q. All right, at that point what's the approximate
3	water cut?
4	A. About 87-, 88-percent water cut, or oil-water
5	ratio in about the seven to eight range.
6	Q. All right. And it's within the range of the
7	parameters of the SPE paper for a candidate for high-lift
8	volume success?
9	A. That's right.
10	Q. All right, what happened?
11	A. We installed a submersible pump, and immediately
12	thereafter the water-oil ratio started rising, indicating
13	that we're not recovering any new reserves, the oil
14	production goes up indicating it's an acceleration of
15	production, but with the water-oil ratio increasing, no new
16	reserves.
17	Q. By October of 1994, what's your water cut?
18	A. About 98 percent.
19	Q. And what did you do?
20	A. We shut the well in soon thereafter.
21	Q. So what does this tell you about the use of the
22	high-lift volume system for this well?
23	A. You can accelerate reserves, but we didn't add
24	any new reserves.
25	Q. When we look at the perforations' relationship in

-	+h- 3 1	well to the newfor in the Encourch well which one
1	LNE A I W	ell to the perfs in the Enserch well, which one
2	has the h	igher perfs?
3		I didn't say that very well, Jack.
4	Α.	Yeah.
5	Q.	Let me try again.
6		The Phillips Lambirth 1 A
7	Α.	Yes.
8	Q.	its lowest perfs are higher than the lowest
9	perfs in	the Enserch Lambirth 1, are they not?
10	Α.	Can you say that one more time?
11	Q.	Yes, sir. If you'll look at the cross-section
12	Α.	Okay.
13	Q.	and it's a little far for me to see, but it
14	appears,	if the Phillips 1 A, its lowest perf
15	Α.	The one on the far right?
16	Q.	Yes, sir.
17	Α.	Yes.
18	Q.	are slightly higher than the Enserch 1 A perfs
19	in the lo	wer portion?
20	Α.	Yes.
21	Q.	Except this well is experiencing a higher water
22	cut?	
23	Α.	That's right.
24	Q.	What does that tell you?
25	Α.	Edge water drive.

-	120
1	Q. All right, let's go to Exhibit 8. What's this?
2	A. This is a Phillips well test report which
3	contains the three producing Lambirth A wells.
4	Q. What do you want us to see on this display?
5	A. The Lambirth A Number 1 well, which is the
6	There's a partial well test for an unnamed well at the top,
7	a Keystone well, and the third one down is the Lambirth A
8	Well Number 1, the one we just talked about putting a
9	submersible pump on.
10	What I wanted to show on this one is, on the far
11	right, the fluid level of 6460 feet, which is 4000 or 5000
12	feet below what Enserch said they drew down their Lambirth
13	Number 1 currently, and it's well below where our Lambirth
14	A Number 2 is being drawn down right now.
15	The important thing about this one is, this well
16	with the submersible pump was drawn down 2000 pounds, far
17	more than any of the other two wells.
18	If one of the wells in the field was going to see
19	the effect that is talked about in the SPE paper, this is
20	the well that should have shown it. This one was pulled
21	down harder than any of the other wells, yet we saw no
22	effect, no positive effect, on the water-oil ratio of the
23	water cut by installing a submersible pump.
24	Q. Does the SPE paper talk about adding pool
25	reserves recovered?
•	

	12/
1	A. No, it never mentions whether the reserves from a
2	pool or a reservoir are increased. It only talks about
3	individual wells.
4	Q. Exhibit 9, identify and describe that for us.
5	A. This is a production plot for the Phillips
6	Lambirth A Number 2 well. Oil is the black line, water in
7	red, and water-oil ratio in blue.
8	What I want to show on this one again is when we
9	installed the submersible pump in February of 1992 on this
10	well, the water cut was in the 86- to 88-percent range, our
11	water-oil ratio in the 6 to 7 to 8 range, before the pump
12	was installed, well within the SPE guidelines.
13	We put the pump in, the oil rate goes up, the
14	water-oil ratio stays about the same, and then in a few
15	months starts going up.
16	What I conclude from this is that, again, it was
17	an acceleration project. We're not getting any new
18	reserves, we didn't see any positive effect on the water-
19	oil ratio from installing the submersible pump.
20	Q. Have you correctly depicted the point in the
21	production profile of this well for the installation of the
22	submersible pump?
23	A. Yes.
24	Q. And when we look at that point, what do we see?
25	A. The oil production going up and no change in the
1	

	120
1	water-oil ratio immediately thereafter.
2	Q. Where do you get the information on when the
3	submersible pump was installed? Is that from your own
4	records?
5	A. Yes, Phillips well files.
6	Q. Is this information accurate and correct
7	A. Yes.
8	Q as you've displayed it here?
9	A. Yes.
10	Q. Did you and Mr. Telford back at the Examiner
11	hearing have a difference of opinion with regards to what
12	was happening in relationship to the installation of this
13	pump?
14	A. Yes.
15	Q. He had shown the installation at a different
16	point on the plot of this production profile for this well,
17	had he not?
18	A. That's correct.
19	Q. And where had he put it?
20	A. At some point earlier, I don't recall where.
21	Q. All right. And you have gone back and rechecked,
22	then, and you're satisfied that you have put this on the
23	correct point
24	A. Yes.
25	Q of the production profile?

	129
1	A. Yes.
2	Q. There's no opportunity for dispute on that issue
3	at this hearing?
4	A. Right.
5	Q. Let's look at Exhibit 10. What is that?
6	A. This is a production plot for the Enserch
7	Lambirth Number 1 well, oil in the black, the red is the
8	GOR, and blue is the water production.
9	What I want to point out on this one is that
10	essentially this well came on water-free, in 1978 it
11	produced a little bit of water, in 1985 we're showing 10 or
12	20 barrels of water per day for a year or so ago, and then
13	it produced essentially water-free again until 1993.
14	Q. But you're already producing water in what?
15	1980, in the A 2?
16	A. Yes, in the If we go to the next Exhibit,
17	compare the two
18	Q. Oh, am I ahead of you?
19	A. No.
20	Q. All right, let's do that. Let's compare the 10
21	and the 11 so that we can look at the Enserch 1, which is
22	Exhibit 10, to the Phillips Lambirth A 2, which is Exhibit
23	11.
24	A. Yeah, I'd just like to make a comparison of these
25	two wells. Bear in mind, they're perforated. The bottom

1	perforation in both these wells is at the same subsea
2	depth.
3	And the Phillips well started making water almost
4	from the very start. When the Lambirth the Enserch well
5	makes its first water in 1985, 10 or 20 barrels of water
6	per day, the Phillips well in 1985 is already up to 400 or
7	500 barrels of water per day.
8	This is another This is strong evidence of our
9	edge water drive.
10	Q. Do you subscribe to the theory that the fractures
11	are being depleted of oil and are now fully depleted of
12	oil?
13	A. No.
14	Q. Why not?
15	A. The fractures have to be the conduit to bring the
16	oil into the wellbore. The oil is not going to feed
17	directly from the matrix to the wellbore. All the oil has
18	to go through the fractures.
19	Q. All right. Continue then, with Exhibit 11. What
20	else do we see?
21	A. Just comparison, that in 1992 or 1993 the
22	Phillips well is up to 1000 barrels of water per day;
23	Enserch is still water-free up to that point.
24	Q. All right. When we look at November of 1994
25	A. Okay.

1	Q Mr. Burkett is telling me his well is
2	producing about 600 barrels of oil a day, and I don't know
3	what the corresponding water is, but they are lifting a
4	significant amount of reservoir fluids?
5	A. Right.
6	Q. When did you shut in the Phillips Lambirth 1 A?
7	A. In about November of late October or early
8	November of 1994.
9	Q. Any relationship?
10	A. We feel that the increased withdrawals from the
11	Enserch Lambirth Number 1 probably did contribute to us
12	having to shut the Lambirth A Number 1 in when we did. It
13	probably would have gone on longer if that wouldn't have
14	happened.
15	Q. Let's look at Exhibit 12. Identify and describe
16	what you're showing.
17	A. This is a plot of the water-oil ratio from two of
18	the Phillips wells, the Lambirth A Number 1 and the
19	Phillips Lambirth A Number 2 well.
20	What's interesting about this plot is that
21	whether you look at the top perforation or the bottom
22	perforation, the Lambirth A Number 1 is higher than the
23	Lambirth A Number 2. I think it's 12 feet above The
24	Number 1 well is 12 feet above at the top and about 8 or 10
25	feet at the bottom perforation.

	132
1	There was a some lower perfs open in the
2	Lambirth A Number 1, but they were shut off in about 1982.
3	So the Number A Number 1 is higher than the
4	Lambirth A Number 2 in both the top and bottom
5	perforations, yet for the entire producing history of these
6	two wells, the Lambirth A Number 1 has had a higher water
7	cut, higher water-oil ratio, except for a brief six- or
8	seven-month period in 1991. For the other 95 percent of
9	the well's predicted life, the A 1 has had a higher cut
10	than the A Number 2. More evidence of the edge water drive
11	mechanism.
12	Q. Have you now addressed, or in part of your study
13	did you address the recoveries that Enserch has already
14	obtained from the Lambirth Number 1 well?
15	A. Yes.
16	Q. At the point in time that you did your
17	calculation, what was the total cumulative recovery you
18	were utilizing from the Lambirth well?
19	A. About 980,000, 950,000 barrels of oil.
20	Q. Mr. Burkett with his testimony has argued for the
21	proposition that their well is not going to affect your
22	well at higher range. Has Enserch provided testimony in
23	the past before the Division that is evidence that leads to
24	a contrary conclusion?
25	A. Yes.

-	135
1	Q. Let me direct your attention to what you've
2	marked as Exhibit 13. We're looking at the portion of a
3	transcript
4	A. I'm missing half of mine.
5	Q. Are you?
6	A. Yeah.
7	CHAIRMAN LEMAY: I just have one page.
8	THE WITNESS: I've got the second page. Maybe
9	that's all I need.
10	MR. KELLAHIN: Well, I'm not sure, let me hang
11	on.
12	COMMISSIONER WEISS: We have different
13	MR. KELLAHIN: I think what's happened is that
14	these old Yeah, there's two pages to this, aren't there?
15	THE WITNESS: Yes.
16	MR. KELLAHIN: Well, how did we cleverly do that?
17	We need both pages, don't we?
18	With your permission, Mr. Chairman, I'm going to
19	hand the exhibit, the two pages, and I'm going to at the
20	conclusion I would like to submit the full authentication
21	from the transcript that will have both pages, and I will
22	hand you my single copy of that now so that you'll have the
23	same references as the witness.
24	CHAIRMAN LEMAY: Okay, thank you.
25	Q. (By Mr. Kellahin) All right, Mr. Pickett, I've

	154
1	provided you with copies of pages 21 and 22 from that
2	Examiner hearing in which an Enserch engineer I believe
3	it was Mr. Leonard Kersh
4	A. Yes.
5	Q was testifying for his company with regards to
6	information that you have thought relevant and have
7	utilized. What was the point of what he was doing?
8	A. This is testimony from the previous hearing on
9	this field to increase the spacing from 40 to 80 acres, and
10	the Enserch engineer is testifying about a drawdown test or
11	reservoir-limits test that they did.
12	And I'll just go to the conclusion of their test,
13	was that the Enserch Lambirth Number 1 well was affecting
14	830 acres, or approximately 830 acres.
15	Q. All right. When you take that information, what
16	does it tell you within the context of your reservoir study
17	and Mr. Balke's geology about the opportunity to have the
18	Enserch well adversely affect your opportunity for
19	remaining oil recovery if the rate is increased?
20	A. I guess it's a combination of them being
21	structurally high and having good productivity. They're
22	able to affect production for a very wide area and draw the
23	oil out a lot faster than some of the other wells can.
24	Q. Have you tried to visualize or represent, at
25	least in a hypothetical way, on Exhibit 14 an area that

134

	133
1	would include the 830 acres that Mr. Kersh had testified
2	about being affected by the drawdown test?
3	A. Yes, we just drew an 830-acre are with the
4	Lambirth Number 1 Well at the center, just to show
5	graphically depict what that 830 acres looks like and how
6	it essentially encompasses the entire productive portion of
7	the field at the present.
8	Q. And that's Exhibit 14?
9	A. That's right.
10	Q. And if you were to change the shape so it matched
11	the contours of the geology, it would encompass the entire
12	remaining area of production in the pool?
13	A. Yes, because of the faulting to the south or the
14	pinchout to the south, the reservoir is really not present
15	where I've got the circle drawn, but
16	Q. Let me direct your attention to the final
17	exhibit, which is Exhibit 15. Does this represent your
18	conclusions as a result of work product that you have
19	completed using the disciplines of a reservoir engineer?
20	A. Yes.
21	Q. Describe for us what you wanted to find out, the
22	method you used, and the results.
23	A. Okay. the production numbers this is for the
24	Enserch Lambirth Number 1 well they're probably about
25	four or five months short now, but it probably is up to a

-	136
1	million barrels or so now. But at the time this study was
2	done, at the middle of last year, the Enserch well had
3	cum'd 953,000 barrels of oil, 554 million cubic feet of gas
4	and 37,000 barrels of water.
5	Q. When we look at the total oil in the pool, what
6	percentage of the total oil has Enserch already recovered
7	from the well?
8	A. Enserch has recovered 38 percent of all the oil
9	production from the South Peterson-Fusselman field.
10	Q. What's eight percent mean?
11	A. Eight percent is that one out twelve, or there's
12	been 12 wells producing or something on that order.
13	Essentially, they've got one out of 12 or 13 wells,
14	whatever one-eighth or eight percent works out to be.
15	But the point of that is just, they've recovered
16	38 percent of the oil from only eight percent of the wells
17	there.
18	Q. All right. What's the next item? What's 22
19	percent?
20	A. Looked at the percentage of the oil pay that they
21	have in their well and compared to the total from all the
22	other wells, and they had 22 percent of the net oil pay.
23	Q. They had 22 percent of the net oil pay?
24	A. Just in on a footage basis.
25	Q. And yet they've already recovered 38 percent of

	137
1	the total oil in the pool?
2	A. Yes. And took those net oil pays, which
3	provided by geology, and just assumed that footage for 80
4	acres, and then took the average porosity from each well
5	and came up with the oil in place.
6	Q. That's a volumetric type of calculation?
7	A. Exactly.
8	Q. And of the original oil in place, then, they have
9	recovered, by your calculation, 20 percent?
10	A. Well, they have 20 percent of the original oil in
11	place under their tract.
12	Q. I misspoke.
13	A. Right.
14	Q. For their 80-acre tract, based upon the
15	calculation, they would have 20 percent of the original oil
16	in place?
17	A. Right.
18	Q. And already, as of What's the date of
19	A. The middle of 1994.
20	Q the middle of 1994, they've got 38 percent of
21	the total oil in the pool?
22	A. Yes.
23	Q. What's that tell you about correlative rights?
24	A. We probably have some reserves moved off our
25	oil moved off the Phillips leases onto the Lambirth,

	130
1	Enserch Lambirth Number 1 well.
2	Q. And what happens if the rate is almost doubled?
3	A. That situation is aggravated, we lose more
4	reserves.
5	Q. What would you like this Commission to do?
6	A. Not grant the Enserch request.
7	MR. KELLAHIN: That concludes my examination.
8	We move the introduction of Exhibits 6 through
9	15.
10	CHAIRMAN LEMAY: Without objection, Exhibits 6
11	through 13 or 14 will be
12	MR. KELLAHIN: 15, sir.
13	CHAIRMAN LEMAY: 15, I'm sorry, will be
14	admitted into the record.
15	Mr. Carr?
16	MR. CARR: Mr. LeMay.
17	CROSS-EXAMINATION
18	BY MR. CARR:
19	Q. Mr. Pickett, if we stay with Exhibit Number 15, I
20	understand your testimony from this exhibit to be that
21	somehow the correlative rights of Phillips have been
22	impaired by the way the Lambirth Number 1 is produced?
23	A. You could assume that.
24	Q. Is that what you're saying, that correlative
25	rights have been impaired?

1	A. I guess they could have been.
2	Q. Do you understand that in New Mexico correlative
3	rights is defined as the opportunity to produce your fair
4	share of the gas?
5	A. Yes.
6	Q. And do you understand you're not guaranteed
7	anything when you drill a well but an opportunity to
8	produce your share?
9	A. Right, rule of capture.
10	Q. You're not telling us that in the past you've not
11	had an opportunity to produce the gas from your wells?
12	This Commission has not denied you that opportunity?
13	A. Right.
14	Q. And the oil?
15	A. Right.
16	Q. And so what we're here today is, we're looking at
17	what's left, where it is and how we produce what's left;
18	isn't that fair to say?
19	A. Right.
20	Q. And we're looking at the opportunity to produce
21	what we have today?
22	A. Right.
23	Q. And in that context, what is produced in the past
24	isn't relevant to what our opportunity is today to produce
25	our fair share?

	140
1	A. Right.
2	Q. And so if we produced 90 percent in the past,
3	we're still looking at what we've got left and what we have
4	before us as of today and our opportunity to produce that?
5	A. Yes.
6	Q. Now, I gather from your testimony that you
7	disagree with Mr. Burkett's conclusions about the impact
8	that of the Phillips Number 2 A well on the Enserch
9	Number 1?
10	A. Yes, I disagree with his conclusions.
11	Q. Have you done any modeling of the reservoir?
12	A. No.
13	Q. Have you attempted to calculate the impact that
14	two wells might have on each other?
15	A. No.
16	Q. You just don't like what Mr. Burkett has done?
17	A. I don't think in a water drive reservoir that his
18	calculation is relevant.
19	Q. But you have not made any calculation of your own
20	to try and establish the impact between the two wells?
21	A. Because I don't think a calculation would be
22	relevant.
23	Q. No calculation would be relevant?
24	A. As far as the pressure drawdown affecting updip
25	wells.

1	Q. What we're talking about here is really drainage,
2	is it not, between the two wells, the Number 1 and the 2 A?
3	A. Yes.
4	Q. And drainage is really a factor of pressure, is
5	it not?
6	A. In fluid movement.
7	Q. And isn't fluid movement caused by pressure
8	differential?
9	A. Yes.
10	Q. So we're talking about pressure, are we not?
11	A. Yes.
12	Q. I believe you testified that and would agree
13	with us, that you're achieving a greater pressure drawdown
14	in the 2 A than we are in the Number 1?
15	A. I don't think I testified to that, but I think
16	that's correct.
17	Q. You attempted to
18	A. It may be about equal. I
19	Q. It might be about equal?
20	A. Yeah.
21	Q. You're not seeing a greater pressure drawdown in
22	your well than what Enserch has been able to achieve?
23	A. I believe both wells had fluid levels in the
24	1500-, 1800-foot range.
25	Q. What was the fluid level that you most recent

one in the Lambirth 2 A? 1 I didn't talk about it, but it's at 1830 feet 2 Α. from the surface. 3 And then the Enserch Number 1, do you have a 4 0. 5 depth on that? I think I wrote it down when somebody talked Α. 6 about it. 7 1320? 8 0. 1320, right. 9 Α. Wouldn't that suggest to you that you have 10 Q. greater pressure drawdown in your well than --11 Yes, a --12 Α. -- in the Enserch? 13 Q. 14 Α. -- slightly greater pressure drawdown. 15 I believe you told this Commission that you had Q. attempted to install high-volume lift on wells, and you 16 haven't seen any real response. 17 We haven't seen an increase in reserves. 18 Α. 19 All right, let's take a look at your Exhibit Q. 20 Number 9. This is the production history on the Lambirth 2 A. 21 Α. Okay. 22 If we take a look at this well and we know where 23 Q. the submersible pump is installed in February of 1992 --24 25 Α. Yes.

1	Q if you calculate out the remaining reserves
2	for that well, you get a very dramatically different curve
3	than if you calculate the remaining reserves from that well
4	after the installation of the submersible pump; is that not
5	correct?
6	A. No, that's not correct.
7	Q. You don't see after the submersible pump a higher
8	curve to take that production curve on up than you do
9	before you installed the pump?
10	A. It has a higher decline rate afterwards, showing
11	its acceleration.
12	Q. Have you calculated those, taken those decline
13	curves on out?
14	A. Yes.
15	Q. And you don't see any increase whatsoever?
16	A. No.
17	Q. Any competent engineer could take this and
18	estimate for themselves the rate of decline, could they
19	not?
20	A. Yes, you could come up with several different,
21	but
22	Q. Several different engineers might reach several
23	different conclusions?
24	A. Right.
25	Q. But your conclusion is, no increase?

	144
1	A. Right.
2	Q. Okay. I believe you testified that the A 1 has
3	been shut in since the June hearing?
4	A. It was shut in, in November, and it I think
5	they've turned it on a couple times for, you know, like two
6	days in December and maybe two days in January, as sort of
7	an experiment to see if it would make any oil.
8	Q. Was it your testimony that you had to shut that
9	well in because of the increased production rate from the
10	Enserch Lambirth A Number 1?
11	A. It was my testimony, I believe, that it could
12	have caused us to shut it in
13	Q. Didn't you
14	A earlier than we have.
15	Q. And didn't you Excuse me.
16	Didn't you testify in June that the well was at
17	its economic limit, only producing until there was a pump
18	failure?
19	A. Yes.
20	Q. If we look at the production curve on the
21	Lambirth A Number 2, Exhibit Number 11
22	A. Okay.
23	Q same well, and again you installed the
24	submersible pump in February of 1992?
25	A. That is correct.

,	
1	Q. Since that time you have seen high water cuts; is
2	that right? Water coning?
3	A. I don't believe we've seen any water coning.
4	Q. You've seen water in the well?
5	A. It's making water, yes.
6	Q. It was your conclusion it was from a side water
7	drive?
8	A. Primarily.
9	Q. This is the well you're pulling four times as
10	hard as the Enserch well?
11	A. No, I think the We're not pulling it four
12	times as hard, no.
13	Q. You're pulling it substantially harder, though,
14	you've got a greater drawdown in this well than the Enserch
15	well, we've just established that
16	A. We have a greater drawdown, but it's I don't
17	think it's that great.
18	Q. And because of the greater drawdown, you're
19	pulling harder on the reservoir than the offsetting well?
20	A. Right.
21	Q. And it's possible that you could be pulling some
22	water in with it because of the greater drawdown?
23	A. We're pulling in Yes, we're making more fluid.
24	Q. Now, I want to be sure I understood something
25	that I discussed a few moments ago with Mr. Balke. I think

1	his basic testimony was that we have are seeing, because
2	of high permeabilities, high drawdowns over big areas. Was
3	that what you understood his testimony to be?
4	A. No.
5	Q. Okay. Well, let me just be sure I understand
6	this.
7	Isn't it fair to say that in a reservoir of this
8	nature, when we are looking at pressure drawdowns,
9	generally speaking, the higher the permeability, the lower
10	the pressure drawdown?
11	A. For a given rate of fluid withdrawal, right.
12	MR. CARR: That's all I have, thank you.
13	CHAIRMAN LEMAY: Thank you, Mr. Carr.
14	Commissioner Weiss?
15	I'm sorry, did you want to
16	MR. KELLAHIN: No, sir.
17	CHAIRMAN LEMAY: I didn't think so.
18	Commissioner Weiss?
19	EXAMINATION
20	BY COMMISSIONER WEISS:
21	Q. I'm confused about premature water breakthrough.
22	These wells look like they all had premature water
23	breakthrough back in the 1980s; is that right?
24	A. With the exception of the Lambirth A Number 3 and
25	the Enserch Lambirth Number 1.

	147
1	Q. And then you commented I sort of got this.
2	And then let's just pick one of these. Your A 2 or A 3,
3	how would bottom water versus edge water drive how would
4	the performance here vary?
5	A. The Well, if you take a comparison between two
6	wells, the Lambirth A Number 1 and the Lambirth A Number 2,
7	one being ten feet higher than the other, the water cut
8	should be higher in the lower well, and it's the reverse.
9	Q. Wouldn't vertical permeability enter into that?
10	A. I think vertical permeability is part of it, yes,
11	is what causes the edge water drive, vertical permeability
12	being lower than the horizontal.
13	Q. We don't know that, though, do we?
14	A. Well, I think if you I think that's what's
15	going to cause the edge water drive.
16	Q. But given the fact that we don't know whether the
17	vertical permeability is any different than the horizontal,
18	I thought I heard
19	A. Well, if you start off, if you think you have
20	edge water drive, that's the only way I can explain edge
21	water drive, is the vertical permeability is lower than the
22	horizontal permeability.
23	Q. Okay. So the premise is that there's edge water
24	drive, therefore
25	A. Right.

147

_	
1	Q there's very little vertical permeability?
2	A. Or Just lower than the horizontal.
3	Q. Oh, and then one other thing. Does an increase
4	in the oil cut mean increased recovery efficiency to you?
5	A. Not always.
6	COMMISSIONER WEISS: No more questions, thank
7	you.
8	CHAIRMAN LEMAY: Commissioner Carlson?
9	EXAMINATION
10	BY COMMISSIONER CARLSON:
11	Q. What's the current allowable for the pool?
12	A. 267 barrels of oil a day.
13	Q. And you could live with that?
14	A. Actually, we'd like to have it reduced to 150,
15	which is the maximum our well could make.
16	Q. But nobody's been able to make the allowable for
17	many years until the Enserch Number 1 installed a
18	submersible pump; is that correct?
19	A. Right.
20	Q. I'm looking at your Exhibit Number 11. I guess
21	the difference between Well, you tell me what the
22	difference is between your Exhibit Number 9 and your Number
23	11.
24	A. The blue scale? Well, the black scale is the
25	same; both are oil.
-	

	149
1	Q. Uh-huh.
2	A. In Number 9 we're plotting in the blue water-oil
3	ratio, and on Exhibit Number 11 the water it's just
4	it's the water production in barrels per day.
5	And the red scale on the Number 11 is GOR, and
6	the red scale on Number 9 is water
7	Q. Right.
8	A in barrels per day.
9	Q. And you don't think there's a marked increase in
10	production after the submersible pump was installed?
11	A. Oh, I agree that, yeah, the oil has definitely
12	gone up. But we think we're just accelerating the
13	reserves.
14	Q. You said the decline rate has increased; isn't
15	that what you said?
16	A. Yes. If you look previous to the submersible
17	pump and you know, I know the production is quite
18	erratic
19	Q. Uh-huh.
20	A but it's you know, varies, you know, varies
21	slightly declining. But then you do see a pretty
22	significant decline after the sub is installed.
23	Q. You're talking about, say What is that? The
24	latter half of 1994, something in there?
25	A. Phillips put a larger submersible pump on the

149

	100
1	Lambirth A Number 2, again in late 1994. That's what
2	causes the oil production to go up again there. We put a
3	bigger submersible pump in our well again then.
4	I probably should have marked that one on there
5	too.
6	COMMISSIONER CARLSON: I think that's all I have.
7	EXAMINATION
8	BY CHAIRMAN LEMAY:
9	Q. Just one question. Do you think that the
10	installation of a submersible pump on the Lambirth Number 1
11	by Enserch has affected your production to date?
12	A. Yes.
13	Q. In what way?
14	A. It's probably drawn in water or moving
15	the more water closer to us faster.
16	And I know that some of the plots maybe not
17	indicate it as much, but I know that in the but the date
18	is fairly erratic, and I think, you know, over a long
19	period of time, you'll see a more the water-oil ratio
20	going up, or our water cut going up even faster than it was
21	before.
22	Q. Do you think that's a higher a greater
23	significant factor than the fact that your own submersible
24	pumps have been pulling down the reservoir significantly,
25	or at least producing the pressure drawdown which, as I

understand it, could bring in the edge water? 1 It's definitely going to bring in -- You know, 2 Α. it's a function of how much oil is coming out. 3 And us making more oil, yes, is going to bring it 4 5 in faster. 6 And then Enserch pulling it out is going to make 7 it come up faster. Both would contribute to it. 8 CHAIRMAN LEMAY: That's all the questions I have. 9 THE WITNESS: Okay. Thank you. 10 CHAIRMAN LEMAY: MR. KELLAHIN: That completes my presentation of 11 12 Mr. --13 CHAIRMAN LEMAY: Do you want to sum it up, or shall we just go with this? 14 MR. KELLAHIN: I want a short summary, if I 15 might. 16 17 CHAIRMAN LEMAY: Sure. MR. CARR: He always does. But I get to go last 18 when he does this to me. 19 20 CHAIRMAN LEMAY: Okay. MR. KELLAHIN: Mr. Chairman, members of the 21 Commission, I have something that troubles me considerably, 22 and I want to share it with you. 23 I'm not going to sit here and pretend as a lawyer 24 to explain to you technical people how to handle the 25

	152
1	geology or the engineering. But I will tell you something
2	that I am an expert in, and that is my serious concern that
3	this Applicant has disregarded and disobeyed an order of
4	this Division.
5	There is a comprehensive policy in writing from
6	the Director that Examiner orders are effective until
7	replaced or modified by this Commission. It is known by
8	all lawyers that practice before this agency.
9	I am concerned that this Applicant goes to the
10	District and gets permission for a test allowable,
11	contingent upon the results of the hearing, in which
12	Supervisor Sexton told them that after the Order was
13	entered they were going to have to come in and account for
14	the overproduction.
15	If they didn't like the Examiner Order in
16	November, there is a comprehensive system where you ask the
17	Examiner Order to be stayed. They didn't do that, they
18	didn't ask for it, they didn't even call Mr. Sexton.
19	What do they do? They produce and continue to
20	produce, not at 500 barrels of oil a day, but at 600
21	barrels of oil a day. Where is the accountability for the
22	disregard of the orders of this Division? I can't remember
23	an example of an applicant ever doing this before.
24	Their explanation? We'll just shut in and make
25	it up, it doesn't matter.

1	It does matter. It matters to Mr. Pickett and it
2	matters to Mr. Balke. If their hypothesis is correct, that
3	increased withdrawals are going to more quickly water out
4	their well, shutting Enserch in now has lost us an
5	opportunity for oil recovery in the Phillips well that we
6	cannot achieve again. The point in time is gone. And to
7	suggest that they can be accountable by shutting it in now
8	after ignoring the rule for months misses the point.
9	And you're the experts in the technical area, but
10	I'll tell you, I am seriously concerned that an Applicant
11	can come and do this. Shame on them.
12	CHAIRMAN LEMAY: Mr. Carr, would you like to sum
13	up?
14	MR. CARR: That was the summary?
15	MR. KELLAHIN: Yes, sir.
16	MR. CARR: Mr. LeMay, I would agree with Mr.
17	Kellahin that we're not engineers and geologists. I would
18	point out in response to what Mr. Kellahin said in closing
19	that I'm also troubled, but I'm troubled by a lawyer whose
20	expertise is in the law, who makes a closing based on
21	nothing that's put in the record.
22	We didn't hear any concern expressed by the
23	operators of the wells in the pool, we didn't go into the
24	details of what was or was not communicated with Mr.
25	Sexton, and I would entrust you to look at the file,

÷

-	154
1	entrust this to you, look at the letter, and the letter
2	says that this allowable level is not established on a
3	permanent basis, that we will shut in, and I would submit
4	to you, we 're in compliance.
5	But I think that in fact to wait until the game
6	is over to raise this is nothing more than after the fact
7	trying to attack an order and a proceeding on grounds that
8	really were never raised before, and it's nothing but an
9	effort to deflect your attention from what's really before
10	you.
11	I would point out that one time at a presentation
12	when you and I were both on the panel, Chairman LeMay, I
13	got in trouble with you and others for asking what was
14	wrong with having the best well in the pool. Today I'm
15	before you with people who have just that, who've been
16	trying to figure out what to do with it. And we have come
17	before you with a technical presentation that we trust you
18	to evaluate and enter an order on the merits.
19	We have looked at the reservoir, we have shown
20	you we have a fractured reservoir, we have what is
21	basically a water-drive reservoir, a bottom water drive,
22	Phillips says with some edge water impact. We have at this
23	point in time, we believe, no oil-water contact because in
24	fact the reservoir is virtually watered out, at least the
25	fracture system.

We have differing opinions on what's going on in the reservoir. I would direct your attention to Phillips' Exhibit 5, and I trust you to determine whether or not that's an accurate depiction of what's occurring when you have the well that is on the extreme right of the exhibit drawing down the reservoir, putting pressure on the aquifer at four times the rate of the other well.

I will trust you to tell and decide whether or 8 not this is an accurate depiction of a predominantly bottom 9 water drive reservoir with an edge water drive component, 10 and if that blue line that they have placed on this exhibit 11 12 in fact shows how water would be migrating up into the It totally disregards the bottom water drive 13 wells. component of this whole problem, this whole question we're 14 wrestling with. 15

We've come before you today, we've presented the 16 history of the Lambirth Number 1, we've given you an SPE 17 paper and we've shown you that when we went out and applied 18 19 this technology to this well we got the very, very results 20 that, according to this paper, we should have expected. 21 We've achieved exactly what they said we would, and we have 22 a well capable of producing in excess of 500 barrels of oil a day, and that's why we need the higher allowable. And we 23 have told you that if we don't get it, we're not going to 24 25 defer but we think we will lose half a million barrels of

1 | oil.

1	oil.
2	Now, Phillips has a different view. Phillips
3	comes in and they take Exhibit Number 9, and they say, We
4	see no you'll have to not honor my doodling on it but
5	they say, We see no impact, no benefit from high volume
6	lift. Mr. Pickett can look at this exhibit and he can plot
7	out remaining reserves, and he sees no difference.
8	But you see, that's why we come to a technical
9	Commission; you can do that too. And I submit to you, when
10	you plot the decline that that well was experiencing prior
11	to the installation of high-volume lift, you're going to
12	have a curve that is far below the curve that you will be
13	able to plot after high-volume lift was installed.
14	And I would also submit that if you honor this
15	data, in fact you will see that the curve is somewhat
16	flatter, not sharper, after high-volume lift was installed.
17	We see it, Phillips does not. But the fact is, in the
18	final analysis, what's important is what you can see. And
19	we submit that and trust you to look at this and
20	determine whether or not in fact high-volume lift is
21	working in the reservoir.
22	The question of correlative rights is a difficult
23	one. We come before you, we argue waste, they argue
24	correlative rights. But we have attempted to show exactly

25 what is happening.

Now, we admit that the kind of data and 1 information we use, the input factors need to be adjusted 2 and that there are shortcomings, comparing the drawdown in 3 4 their well with the drawdown in ours. But we have 5 testified that the conclusion is the same, and that is, it 6 isn't that we are going to be gaining an advantage on them, 7 but they will maintain, albeit to a lesser extent, the 8 advantage that they have enjoyed on us. And it's not a question of ultimate recovery from 9 10 the well; it's what they are taking now, where that

11 pressure no-flow line happens to fall. And when you look 12 at the record and you look at the data, I think you can 13 clearly see that boundary falls on the Enserch tract.

The case is over, the record is before you. We believe we have shown that if you grant the Application there will be no negative impact on the correlative rights of Phillips, that the correlative rights, the opportunity afforded to Enserch to produce the reserves remaining in the matrix, those will be impaired.

We further believe that the evidence is clear, not only from what we have presented but from the Phillips Exhibit Number 9, that high-volume lift works, and by employing it in this reservoir we can recover a half a million additional barrels of oil, oil that otherwise will be lost.

1	CHAIRMAN LEMAY: Thank you, gentlemen, thank you
2	for your presentations.
3	We'll take the case under advisement.
4	(Thereupon, these proceedings were concluded at
5	12:36 p.m.)
6	* * *
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	

CERTIFICATE OF REPORTER

STATE OF NEW MEXICO)) ss. COUNTY OF SANTA FE)

I, Steven T. Brenner, Certified Court Reporter and Notary Public, HEREBY CERTIFY that the foregoing transcript of proceedings before the Oil Conservation Commission was reported by me; that I transcribed my notes; and that the foregoing is a true and accurate record of the proceedings.

I FURTHER CERTIFY that I am not a relative or employee of any of the parties or attorneys involved in this matter and that I have no personal interest in the final disposition of this matter.

WITNESS MY HAND AND SEAL March 4th, 1995.

STEVEN T. BRENNER CCR No. 7

My commission expires: October 14, 1998