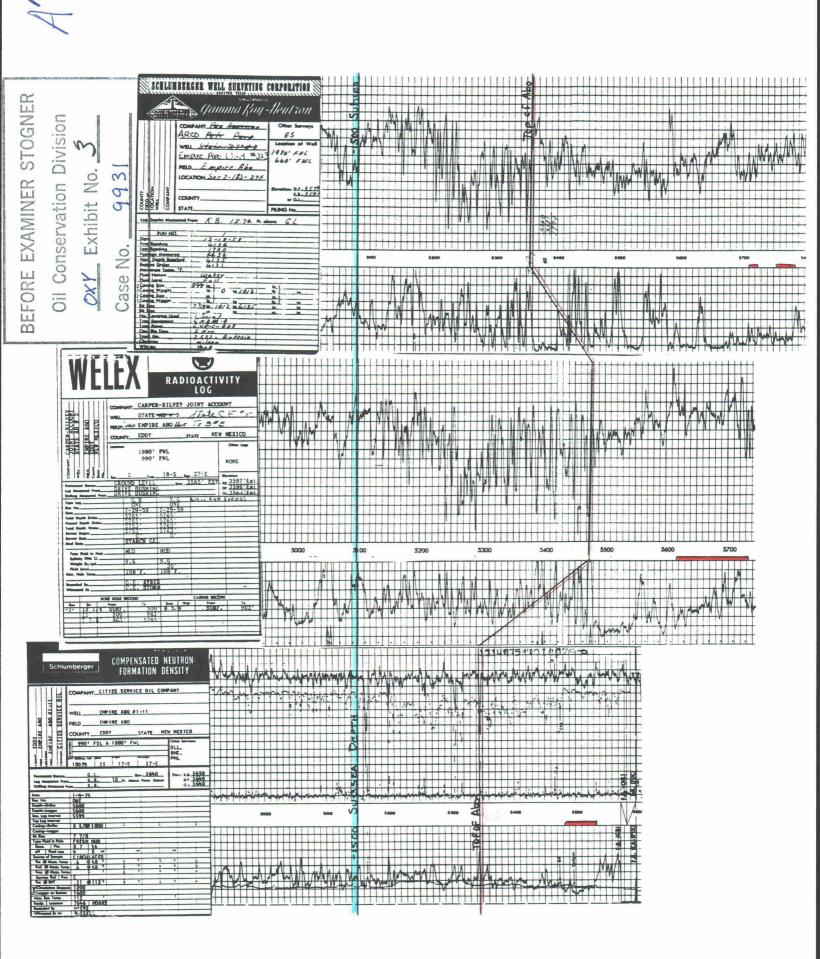
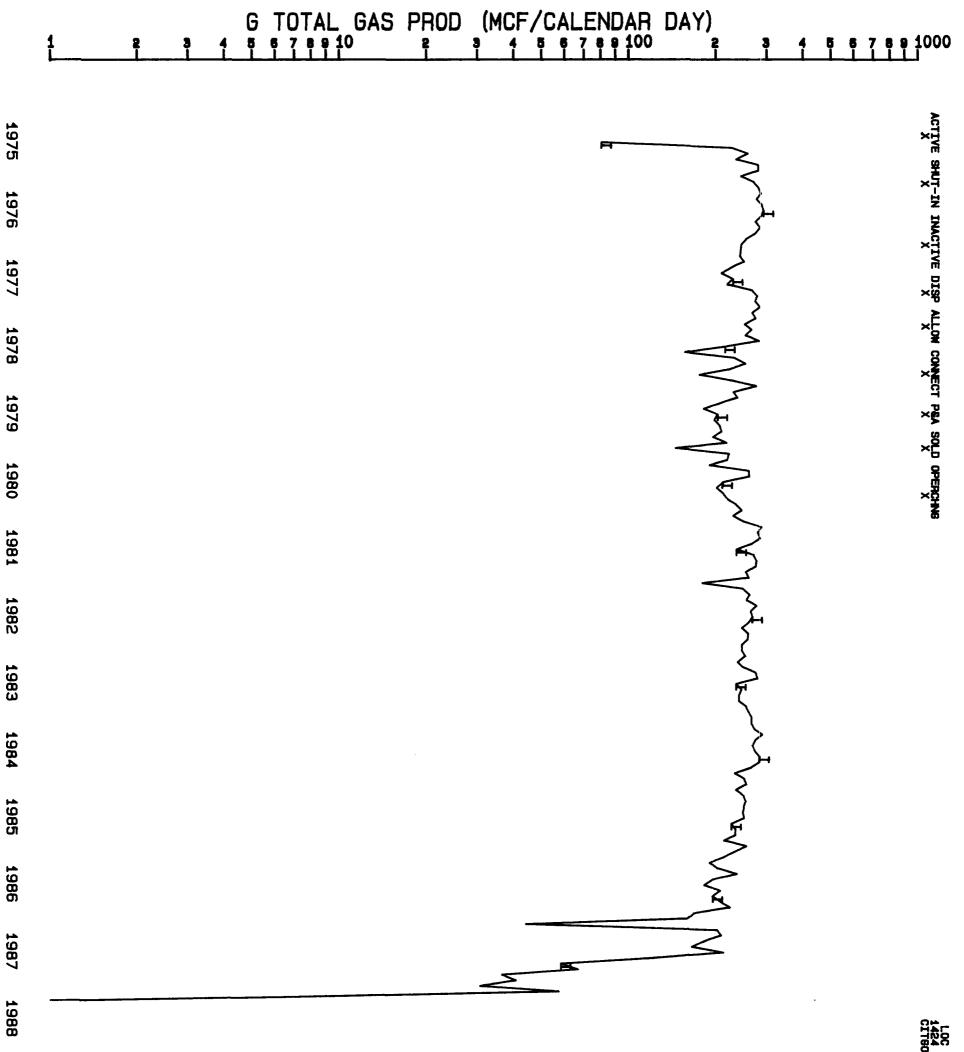


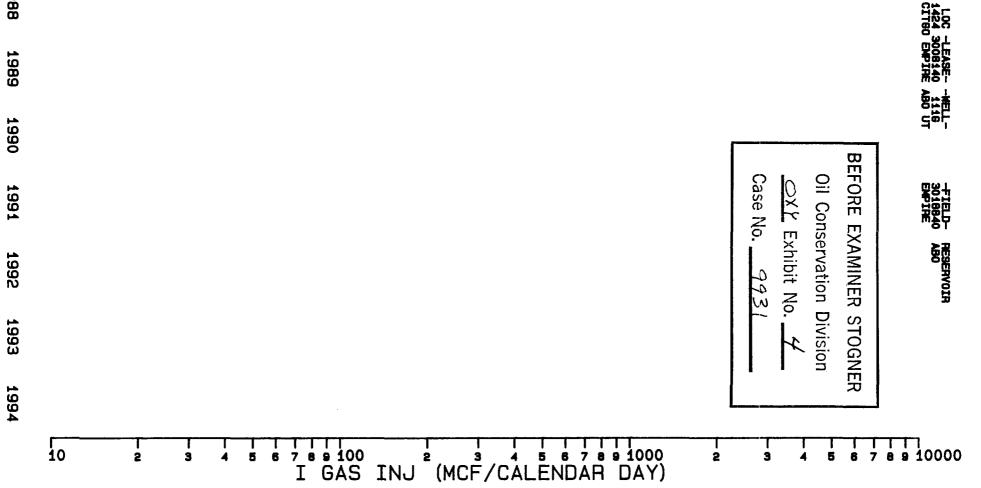
EMPIRE ABO UNIT Eddy County, New Mexico

PRODUCING WELL INACTIVE PRODUCING WELL

INACTIVE INJECTION WELL


Case No. 993 Oil Conservation Division OXY Exhibit No.


WELL STATUS


SCALE: 1":1500'

JUNE, 1990

EDDY CO., NEW MEXICO

smm 5/15/90			
YEAR	ONTHS - \$13,824/YEAR	\$1,152 • 12 MONTHS	ANNUALIZED LOSS
BBL - \$1,152/MONTH		64 BBL/MONTH+\$18.00/	ECONOMIC IMPACT
		64 BBL	LOSS
400,000 CF/BBL	23,036 MCF	58 BBL	ESTIMATED OIL RATE • 400,000 GOR
188,020 CF/BBL	23,036 MCF	122 BBL	MARCH 1990
GOR	GAS	OIL	
	05	WELL #305	
PRODUCTION	-	T OF REDUC	ECONOMIC IMPACT OF REDUCED OIL
Case No. <u>9931</u>	ABO UNIT	CITGO EMPIRE ABO UNIT	CITGO
BEFORE EXAMINER STOGNER Oil Conservation Division			

IF YIELDS RETURN TO 11-86 LEVELS WITH OFFSET INJECTION, OXY WILL LOSE 30% OF CURRENT NGL PRODUCTION [2.187/3.135 - 70%]	NGL YIELDS HAVE INCREASED 43%	JANUARY 1990	AUGUST 1988	NOVEMBER 1986	CITGO EMPIRE ABO UNIT ANALYSIS OF NATURAL GAS LIQUID PRO	
-86 LEVELS WITH WILL LOSE 30% UCTION 0%]	D 43% SINCE 11-86	3.135	2.564	DS GALLONS/MCF 2.187	NBO UNIT LIQUID PRODUCTION	BEFORE EXAMINER STOGNER

ug yang matrix titun titun ang

amm 5/14/90			
AENT	L GAS VALUE. PHILLIPS GAS STATEMENT	NGL SALES REPRESENT 31% OF TOTAL GAS VALUE. MARCH 1990 SALES VOLUMES FROM PHILLIPS GAS	NOTE: NGL SALES REPR BASIS: MARCH 1990 SAL
520	MONTHS = \$74,5	S \$6210 X 12	ANNUALIZED LOSS \$6210 X 12 MONTHS - \$74,520
10	\$ 6,210	27,660 GAL	LOSS
85	\$14,485	64,540 GAL	NOV. 1986 YIELD (70% OF CURRENT)
95	\$20,695	92,200 GAL	CURRENT YIELD
LUE	NGL VALUE	NGL VOLUME	
STION	ED NGL PRODUCTION	CT OF REDUCE	ECONOMIC IMPACT OF REDUCED NGL
<u>OXY</u> Exhibit No. 8 Case No. <u>9931</u>	F	CITGO EMPIRE ABO UNIT	CITG
BEFORE EXAMINER STOGNER Oil Conservation Division	BEF		

BEFORE EXAMINER STOGNER

Cil Conservation Division

OXY Exhibit No.

Case No. <u>993</u>/

BLOWDOWN EVALUATION EMPIRE ABO UNIT ABO RESERVOIR EDDY COUNTY, NEW MEXICO January, 1985

by Timothy J. Detmering ARCO Oil and Gas Company Midland, Texas

ARCO Oil and Gas Company

Permian District Post Office Box 1610 Midland, Texas 79702 Telephone 915 684 0149

Joe R. Hastings District Engineer — West

April 3, 1984

WORKING INTEREST OWNERS EMPIRE ABO UNIT

Gentlemen:

The following report documents our analysis of blowdown timing for the Empire Abo Unit. It is our recommendation, based on the information presented, that residue gas injection be continued to the year 1995. Basis for this recommendation is the optimizing of energy recovery and the maximizing of undiscounted cash flow. This recommendation does not, however, preclude reservoir blowdown at an earlier date should changes in market conditions and/or reservoir performance deem it more economical to do so. If you have any questions about any of the information presented in this report, please feel free to give me a call at (915)684-0149 or contact David Douglas at (915)684-0163.

Yours very truly,

Joe R. Hastings

JRH:sc Att.

TABLE OF CONTENTS

.

TABLE OF CONTENTS

Summary	1
Conclusions and Recommendation	3
Introduction	4
Field History and Geology	5
Performance Projections	10
Economic Evaluation	20
References	27
TABLES AND FIGURES	
Tables	
1 Economic Summary	2
2 Prices, Tax Rates, and Costs	2
3 Reservoir Data Summary	7
4 Economic Summary	21
5 Prices, Tax Rates, and Costs	21
6 Detail of Economics for Blowdown at 1/1/85	23
7 Detail of Economics for Blowdown at 1/1/90	24
8 Detail of Economics for Blowdown at 1/1/95	25
9 Detail of Economics for Blowdown at 1/1/03	26
Figures	
1 Unit Map	8
2 Unit Performance	9
3 Gas Reserves vs Blowdown Timing	12
4 NGL Reserves vs Blowdown Timing	13
5 Oil Reserves vs Blowdown Timing	14

6	Energy Recovery vs Blowdown Timing	15
7	Predicted Reservoir Performance for Blowdown at 1/1/85	16
8	Predicted Reservoir Performance for Blowdown at 1/1/90	17
9	Predicted Reservoir Performance for Blowdown at 1/1/95	18
10	Predicted Reservoir Performance for Blowdown at 1/1/03	19
11	Net Income vs Blowdown	22

APPENDIXES

A	Black Oil Numeric Simulator Description and Design
В	Discussion of Oil Rate and Reserve Forecasts
С	Black Oil Numeric Simulator History Match
D	Energy Balances

SUMMARY

SUMMARY

Recovery of energy from the Empire Abo Unit will be maximized by initiating residue gas sales in 1995. As a result of maximizing energy recovery, the working and royalty interest owners of the Empire Abo Unit will maximize their undiscounted net income. The impact of blowdown is summarized in Table 1, on page 2.

Blowdown Start Date	Unit Oil Reserves After 1/85 (MSTB)	Unit NGL Reserves After 1/85 (MSTB)	Unit Gas Reserves After 1/85 ¹ (MMSCF)	Undiscounted Net Income BFIT (MM\$)	Gross Energy Recovery (Trill. BTU)
1/85	7415	4527	82641	361	251
1/90	11350	5369	69244	399	268
1/95	13929	6292	52153	410	274
1/03	15663	7951	21406	357	264

TABLE 1. Evaluation of Blowdown Timing Based on Constant Operating and Overhead Costs, and Constant Product Prices.

Table 2. Prices, Tax Rates, and Costs Used in Economic Calculations.

Oil Prices Tier 1: Tier 2:	\$30.00/BBL, E \$30.00/BBL, E		
Gas Price:	\$2.90/MCF		
Propane:	\$0.22/ga1 \$0.35/ga1 \$0.52/ga1 \$0.63/ga1		
Production Tax Severance Emergency Ad Valorer	Tax: School Tax:	3.75% 3.15% 0.18%	
Windfall Profit Tier 1: Tier 2:	ts Tax Rates	70% 60%	
	s Injection: as Injection:	\$7020M/ye \$6468M/ye	
Overhead Costs	:	\$990M/yea	ar

1. Storage gas owned by Gas Company of New Mexico has been deducted from the Unit gas reserves (3.7 BCF).

CONCLUSIONS AND RECOMMENDATION

CONCLUSIONS

- 1. Energy recovery, which is the sum of the heating values of the recovered oil, natural gas liquids (NGL), and residue gas, is maximized by starting blowdown in 1995.
- 2. Continued residue gas injection until 1995 will allow the Empire Abo Unit to take advantage of the gravity drainage mechanism of the Empire Abo reservoir. Thus, the Unit will recover more oil reserves than it would by starting blowdown in 1985. The additional recovery is the result of allowing the thin oil column in the back-reef area to migrate downdip to the fore-reef area where the oil column is thicker and the oil can be economically and efficiently produced.
- 3. Continued residue gas injection until 1995 also enables the Unit to recover additional NGL reserves. The additional recovery is the result of lean gas sweeping the free gas in the gas cap and lean gas stripping NGL's out of the oil remaining in the gas cap.
- 4. In order to realize increased oil and NGL recoveries it is necessary to use residue gas for fuel. Fuel use, combined with venting, causes residue gas recovery to decrease with continued gas injection.
- 5. The impact of blowdown on present worth is a function of the discount rate used in the economic calculations. Undiscounted economics favor starting blowdown in 1995. As higher and higher discount rates are applied to the cash flows, the optimum blowdown start date moves toward 1985. At a discount rate of 7 percent or more the optimum blowdown start date is 1985.

RECOMMENDATION

Based on undiscounted economics and prevention of waste it is recommended that the Empire Abo Unit continue to inject residue gas until 1995, at which time residue gas sales should begin. INTRODUCTION

INTRODUCTION

This study was initiated to determine when residue gas sales should begin at the Empire Abo Unit. Currently, residue gas is injected into the gas cap to increase recoveries of oil and NGL's. Residue gas is a saleable product and the Unit is foregoing income from residue gas sales to realize more income from oil and NGL sales. Blowdown should begin when the value of the potential residue gas recovery exceeds the value of the oil and NGL recoveries that depend upon residue gas injection.

Two separate numeric simulation studies were conducted to analyze the impact of blowdown timing on oil, gas, and NGL rates and recoveries. ARCO's two-dimensional, multi-component simulator was used to predict the NGL content of the produced gas. This simulator is referred to as the compositional model in this report. ARCO's three-dimensional, three phase simulator was used to predict oil and gas production rates and recoveries. This simulator is referred to as the black oil model in this report.

Both models were required to analyze blowdown timing because of limitations inherent in each. The compositional model is specifically designed to calculate recoveries of individual reservoir fluid components. Thus, the compositional model can predict rates and recoveries of the NGL components - ethane, propane, butane, and gasoline. However, the complexity of the compositional model precludes the use of gas coning correlations. Because of the significant impact of gas coning on oil rates and recoveries at Empire Abo, gas coning correlations are necessary to accurately forecast oil production. Therefore, the black oil model, which includes gas coning correlations, was run to predict accurate oil rates and recoveries.

Gas production is accurately predicted by both simulators. The forecast calculated by the black oil model was used as a matter of convenience.

The setup and design of the compositional model is discussed in reference 4. The black oil model is discussed in reference 3 and Appendix A. Appendix C contains the results of the black oil model history match including plots comparing calculated versus actual well performances.

FIELD HISTORY AND GEOLOGY .

FIELD HISTORY AND GEOLOGY

History

The Empire Abo Field is located approximately 8 miles southeast of Artesia, in Eddy County, New Mexico. Development of the Abo reservoir began with the drilling of Amoco's Malco "A" No. 1 (Unit designation M-14) in November 1957. Drilling was rapid and extensive following this successful completion. The productive Abo reservoir in this field consists of 11,339 acres located in portions of Township 17 South, Ranges 27, 28, and 29 East, and Township 18 South, Ranges 27 and 28 East (Figure 1).

Approximately 97 percent of the reservoir was unitized into the ARCO operated Empire Abo Unit in October 1973 (Ref. 2). The intent of the unitization was to conserve reservoir energy by producing from the low GOR wells, thus minimizing free gas production. In this way the Unit has taken better advantage of the gravity drainage mechanism and has increased ultimate oil and NGL recoveries as compared to competitive, primary depletion.

An engineering study conducted in 1975 indicated ultimate oil recovery would be improved by selective infill drilling on 20 acre spacing. A subsequent study conducted in 1977 concluded further increases in oil recovery would result from selective infill drilling on 10 acre spacing (Ref. 3). A total of 160 infill wells were drilled as a result of these studies.

A voidage limit of 56,912 RVBPD was established by the New Mexico Oil Conservation Commission for the Empire Abo Unit to ensure controlled depletion of the reservoir. An engineering study completed in 1983 indicated removing this voidage limit, and replacing it with a gas production limit of 65 MMCFPD, would enable the Unit to operate more efficiently and recover additional oil and NGL reserves (Ref. 1). The gas production limit went into effect in May 1984.

Field performance is shown in Figure 2. Basic reservoir data is listed in Table 3.

Geology

The Empire Abo field produces from a transgressive, carbonate, barrier reef buildup of lower Leonardian (Permian) age. This reef is one of several in a long trend flanking the northern edge of the Delaware Basin. The reef grew from southwest to northeast. It is approximately $12\frac{1}{2}$ miles long and $1\frac{1}{2}$ miles wide. Parallel to the reef trend, the reef dips 1 degree from southwest to northeast. Perpendicular to this trend the reef dips sharply at 10 to 20 degrees from crest to fore-reef, or north to south. The average depth of the reef is 5800 feet and the thickness averages 300 feet.

The trapping mechanism at Empire Abo is both stratigraphic and structural. The reef dips below the oil water contact to the south and east. Permeability pinch outs to the north and west occur as a result of carbonate muds, green shales, and anhydrite inclusions.

Porosity development is erratic and cannot be correlated between wells. Development is the result of leaching of abundant detrital fossil fragments, dolomitization, and recrystallization. The most prolific porosity development is found in the reef core. There is no apparent intercrystalline porosity.

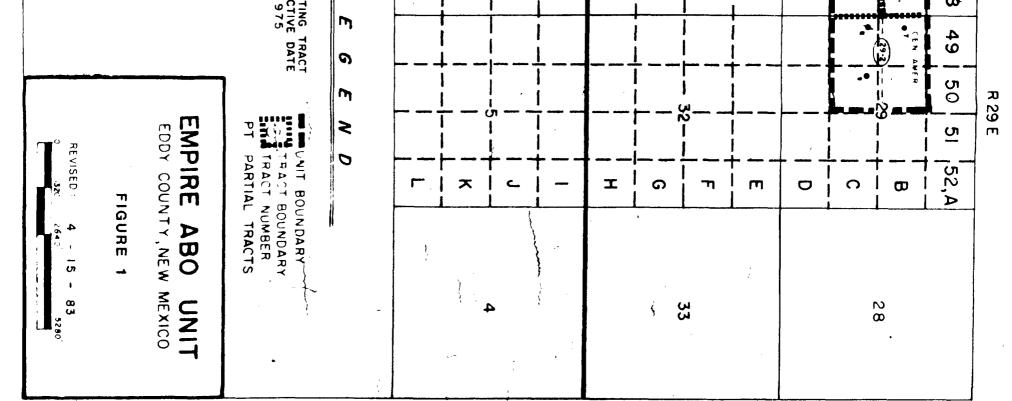
Vertical fracturing, which contributes to the gravity drainage mechanism of the reservoir, is apparently due to local slumping as well as large scale settling and some tectonic activity. Fracture orientation is generally 0 to 45 degrees from vertical and is parallel to the reef trend. These fractures apparently link up the erratic porosity development and provide excellent pressure communication in the reservoir. Table 3. Empire Abo Unit Reservoir Data Summary.

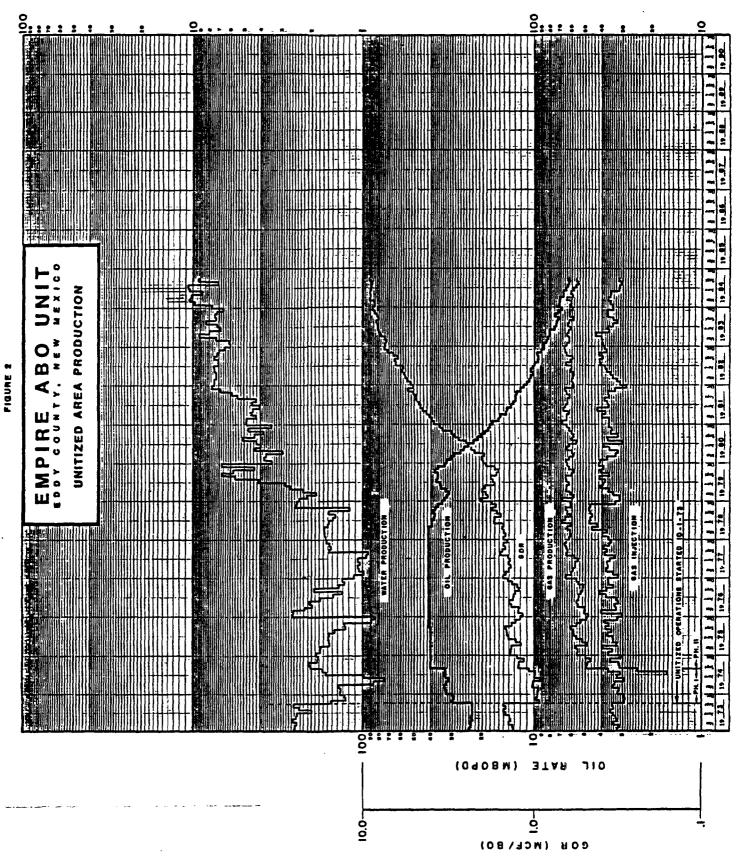
General

Discovery	November 1957
Well Status - October 1984	
Producers	228
Injectors	21
Shut-In	146
<u>Current Status</u> - October 1984	
Unit Allowable (BOPD)	6533
Oil Production (BOPD)	6373
Gas Production (MCFD)	61599
Producing GOR (CF/BO)	9665
Gas Injection (MCFD)	31699
Water Production (BWPD)	7761
Average Depth to Top of Reef, Feet	5767
Productive Acres	89 9 3

Formation

Type Rock	Vugular Dolomite
Average Net Pay Thickness, Feet	183
Average Porosity, % (Log Data)	6.4
Water Saturation, %, Main Reef	8.6
Original Gas Oil Contact, Feet Subsea	-1750
Original Water Oil Contact, Feet Subsea	-2665
Reservoir Mid-point, Feet Subsea	-2264


Reservoir Fluid


Original Reservoir Pressure, psi at -2264 (Pi)2359Original Bubble Point Pressure, psia at -2264 (Pbpi)2231Oil Formation Volume Factor at Pbpi, RVB/STB (Boi)1.606Gas Formation Volume Factor at Pbpi, RVB/SCF (Bgi)0.00098Gas in Solution at Pbpi, SCF/STBO (Rsi)1250Oil Viscosity at Pbpi, centipoise (µoi)0.387

Reservoir Volumetric Data

Original Oil-in-Place (MMSTBO)	383.2
Original Gas-in-Place (BCF)	483.4
Estimated Ultimate Recoveries (Total Reservoir)	
Oil (MMSTBO)	224.7
(% of OOIP)	58.6
Gas (BCF)	465.8
(% of OGIP)	96.4

								╹ ╋╺╍╺╍└		1			1	1	-		1	
			· · · (i]	<u>کې</u>	1		1		. <u> _</u>			,i 1	 		<u> </u> C		 ω
			· · · (i]	• •	1	+	+	 	 	 	↓ ┼	। ┥━- ━- · ĺ	 		 		
			•(1. 5 (5		E XXO	53(9) A 10		 		-	 	1	 		 	↓ ↓↓ ↓	 თ
<u>م</u>			‡ ~	\$∠≏_ I				ANOCO	 	 		י +	 +			 	 	μ
			ີມເມເມ ອ			1 1	•, ²) •	 				÷ــــــــــــــــــــــــــــــــــــ	∦ · 1 1	╹ ╋╌╺─╴ ─┤ ╏		{		
	******	1. T. C. M.		<u> </u>		 ;		- Marcine	◆; ••••••• •>, &	<u> </u>		<u> </u>		i I		— — 	 	
ī			C 	E *			• (بر ا	8 8:	 	 	 	 		 	1	ـــــــــــــــــــــــــــــــــــــ
	; 		un rur Š	• •			•	• • •					∔	• • •		L 	┟╴ _{──} ╶─┤ !	
	1	┝╼╌┓╽ ╵									26. A	4	; 	┣ 		 	·> 	
	⊾ !	⊢ − − 	-	+	ના <mark>કુ</mark> ગ્રેન્ટ્ર્સ્ટ્ર્				ALCO	(3)	010 - 1010	· · · · ·	+ 	/ 				 12
	' 				••••••							j	¥, 	- 		۱ 		13
	† 	(••••••••••••••••••••••••••••••••••••••		֛ׅׅׅׅׅׅׅׅׅׅ֢֢֢֢֢֢֢֢֢֢֬֬֬֬֬֠֠֠֬֬֬֬֬֬֬֬֬֬֬֬֬֬֬֬֬֬֬		۽ سيءَ ۽ م			┣ ┣ ┨	יי א	⊾ → → 	 	 	┣━━━━ ┃	4
- -		┝ 		† = ↓ ↓								∎	ភ្ 	 !		⊦`∂ 	♪ — 	5
<u> </u>	1 			•	••••••••••••••••••••••••••••••••••••••			•						 		 	 	6
				 	· 		1.		•				 			 		7
				 +	i . I z		-1	••• •••	ا ا •• ۽ ا ت ري- آ	 • 		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	l	 		 		<u></u>
ں 	; 			 	, 	 	◆.•. 				("),7-C,	ATES	, 	 		i i 	 	
	 		^	 	 					• <u>-</u>	A MA PC		┨ ┣━──┐┩	 		 		20
	 			 	 	 	<u> (1) (</u>	¥		۳۵ ۱۳۱۳ ۱۳۱۳	•- (2
	 			 +		↓ 	: ۽ (ڏ مسر			toma	(i) mmm					- C		22
]	 	Ⅰ ╋╼╶╤╼		•]• - -) • مسرس	• • • • • • • • • • • • • • • • • • •				I I	i i i i	23
	 			 	 	 	 {	╡ ┡╼╍╼╸		• 76	•, 	,	() () () () () () () () () () () () () (24
		 		 	1 +	↓ 		 				† - 3					 	25 2
Ţ	 			 +α 		- 		ـــــــــــــــــــــــــــــــــــــ	(<u>)</u> , , , , , , , , , , , , , , , , , , ,	(;;) , , , ,			ې پې			 	29	26 27
					 	L 		 † 	.	ې ور مې د سلرې		ة (٢) • • • • • • •		ີ ອີ ອິ ກາດກາ		L	 	7 28
				 	l	<u> </u>		 	·····,				Ē				 	8 29
 `	 		-	 	 	 	+	 				↓ <u> </u>	 					9 30
ā	 }	 		<u>ו</u> 	\$ \	} }	+ \ !	+ s			•••		ام ابر ابر ا		[{ {	8	
	∲ ,	╋╺ <u>─</u> ╴╺─ ╎ ╷	•		L 	╋ ┃ ┃	╋╴ ╺ │	+ 	-] /	() () () ()		+	⊥ • [◦] •	┝╺━╺ •₌		•	L 	- 32
۰.	• 	 		+ 	1	+ ··	+	1	• 	(********** 	•	••••••••••••••••••••••••••••••••••••••		A R CO	€ 	` 		33
		┲╼─── ' ━━────		┓╼╼╼ ╋╸═╴				+ 									N	μ 4 4
	 	 	 		。 │ ┤			 	 +	 		а а а а а а а а а а а а а а а а а а а	(۲ ۳ ۳			í J	35
<u>.</u>	 	╏ ┃ : ┃		 +	 	 	+	i (1	 					•_(5)			36
	 	 — —		 	 	 	·. +	Ⅰ ¥ }	۱ ۱	 		Ĭ.	٦		• <u> </u>	│ │• ╆ [┷] ╼	 	37
 1	 	 	↓	 :	i =	 		} +	 		 			••	•	• • • • 6		
	 	 	: +	 	 	 † — —	·	 +	 	1 上	 	€ 	+	•• ₋ ,,	•: 		• <u>•</u> 	39
	 	 		 +	<u> </u>	 	 	 	i I				•		• ? 5			40
	 	' ┣ !	 	 	 	 	+	। -{	¥	 †		 †		* 	3 	! • ⁼ └───── !	 	4 4
		 	 	<u> </u>	<u> </u> 	' +	+	• • • • • • • • • • • • • • • • • • • •	1 	 		 	-36 - I			i • 1	-2,	42 43
	 	- 		L	∔ ↓	 	+	┥ <u></u> ┥ ┥	∔ 	J I		; ;		 				3 44
	I		L	1	1			<u> </u>	<u> </u>		L	L				L		<u></u>
				Trade C	•	•	T I	1			ł	1			CONT	•	- ;	45
				OF SEPT. I		-	- , +- 	 			 	 	 				CONTINENTAL GEN AN	45 46

(O9WBM) JIAR RJTAW

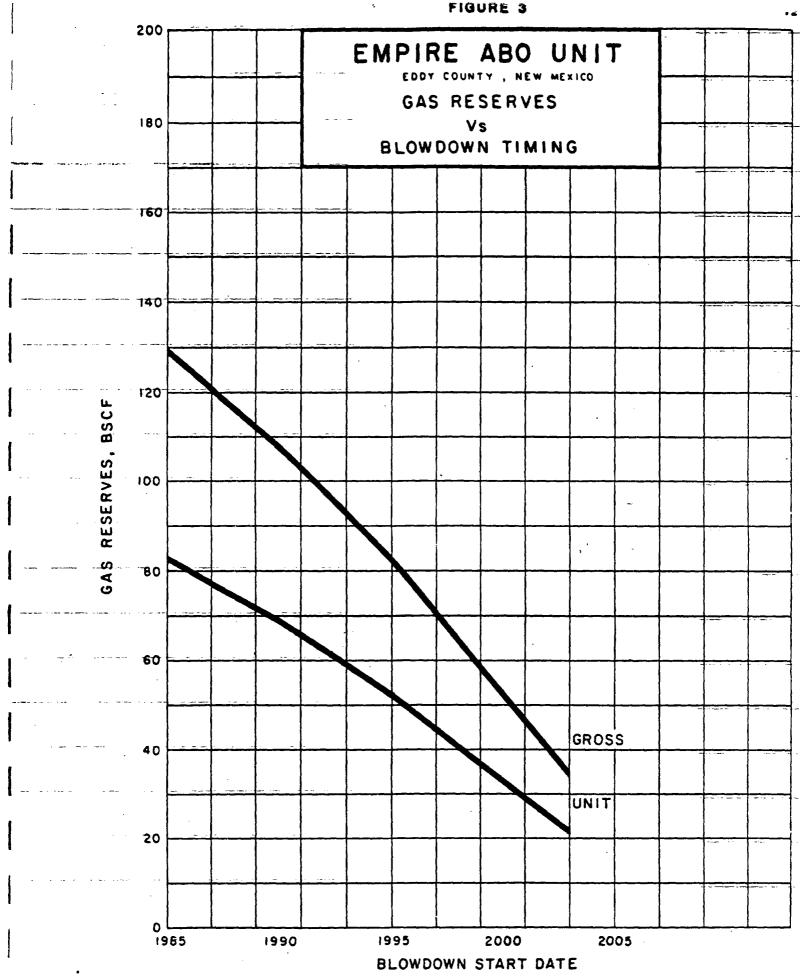
GAS RATE (MMCF/D)

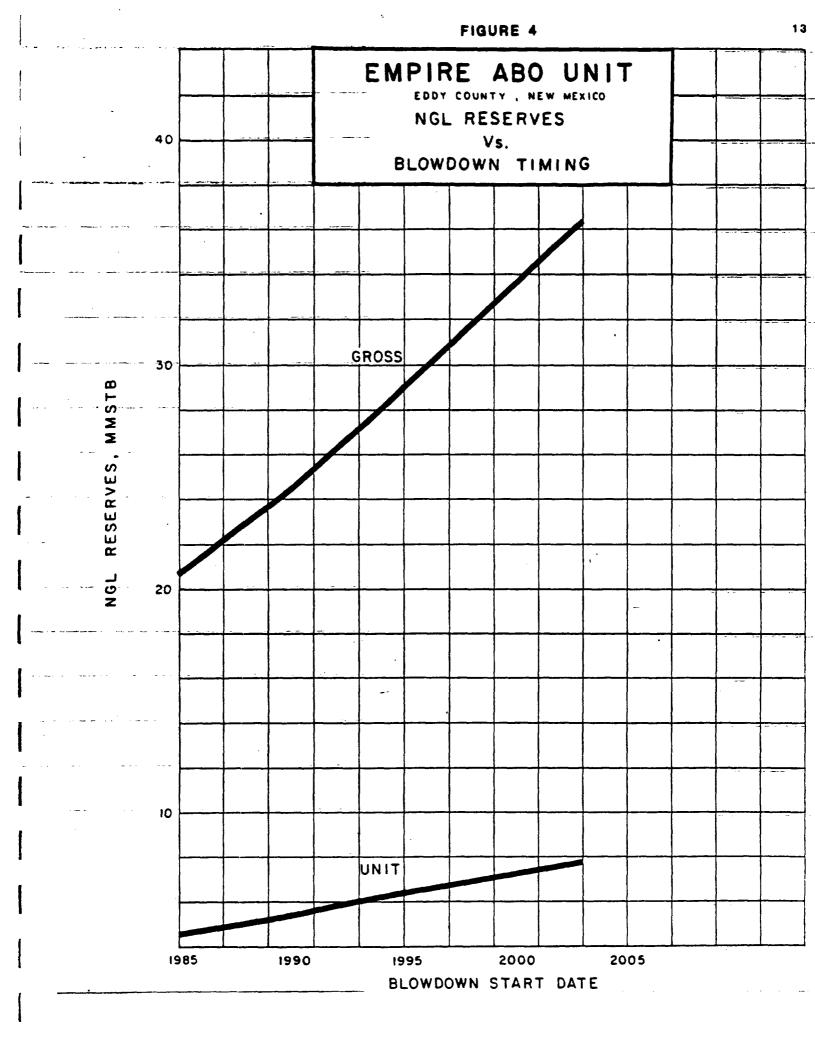
PERFORMANCE PROJECTIONS

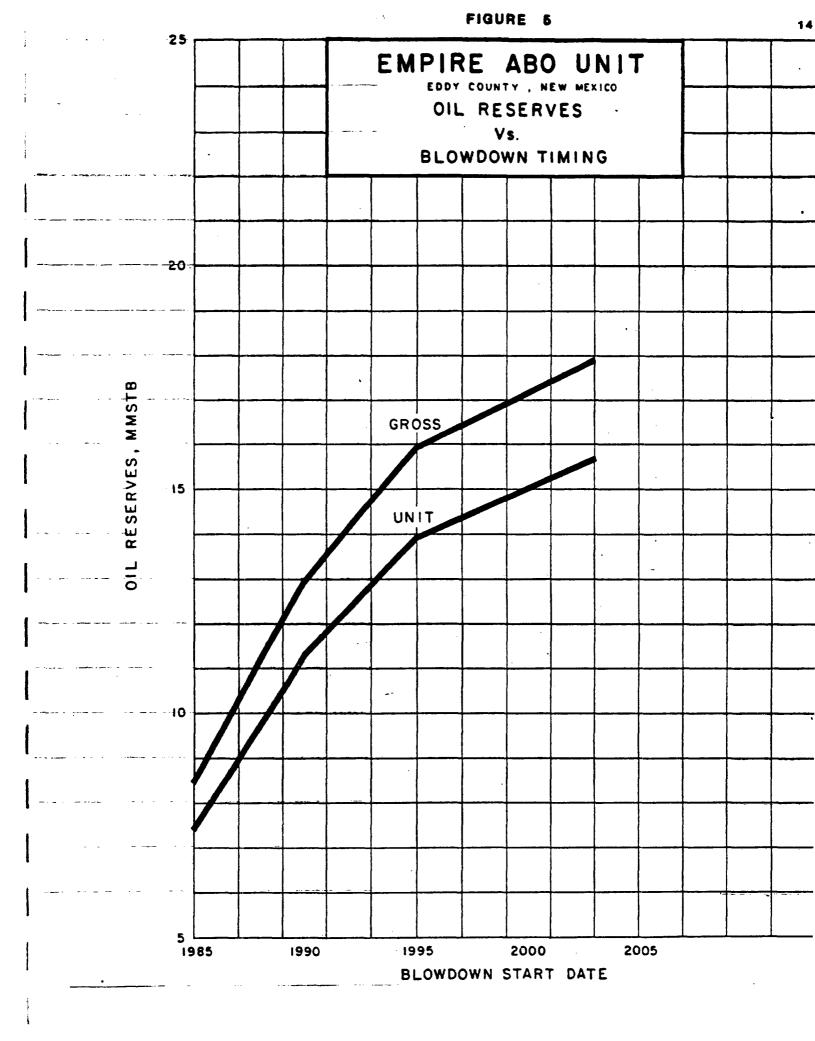
PERFORMANCE PROJECTIONS

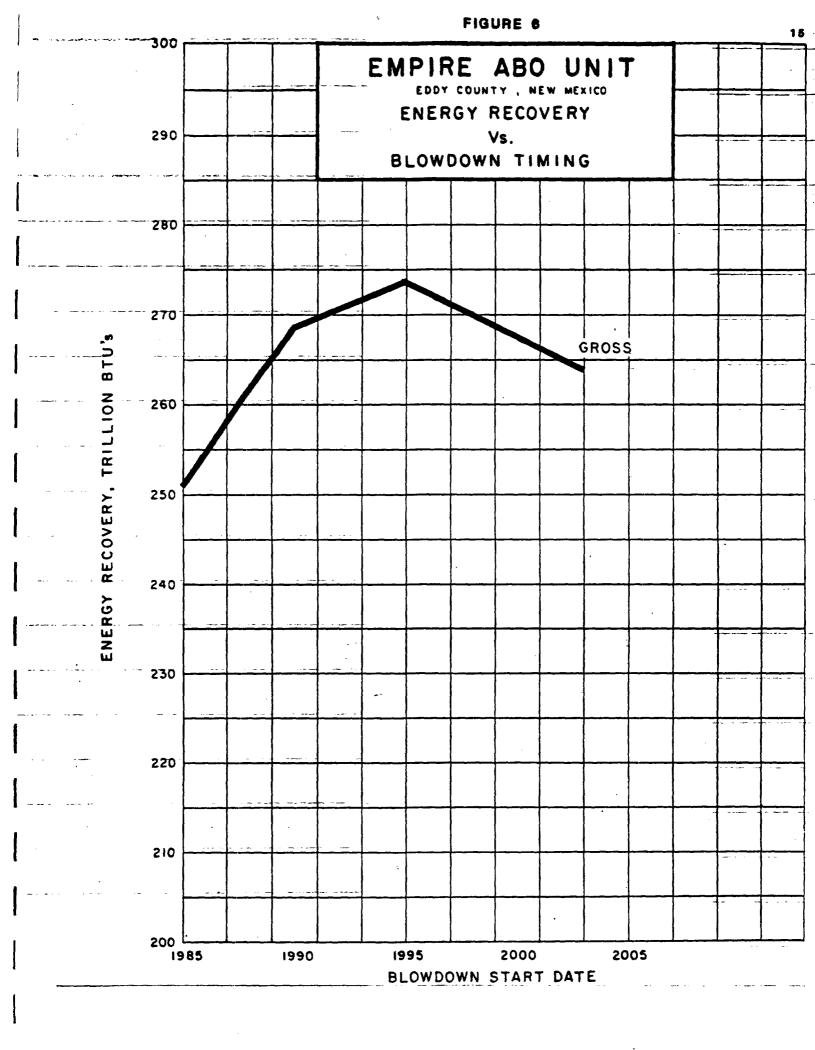
Projections were calculated for starting blowdown at 1/1/85, 1/1/90, 1/1/95, and at the economic limit of gas injection - 1/1/03. Computer time limitations prohibited calculating forecasts for starting blowdown at every year between 1/1/85 and 1/1/03. However, the recoveries of residue gas, NGL's, and oil appear to be continuous functions of blowdown timing (Figures 3 through 5). Therefore, recoveries for blowdown start dates other than 1/1/85, 1/1/90, 1/1/95, and 1/1/03 can be approximated by linear interpolation with no significant error.

As illustrated in Figures 3 through 5, starting blowdown immediately recovers the most residue gas and the least oil and NGL's. For every year that blowdown is delayed, residue gas recovery decreases, and oil and NGL recoveries increase. The curves labeled "Unit" in Figures 3 through 5 reflect a net oil interest of 87.5 percent, a net NGL interest of 21.875 percent, and a net residue gas interest of 65.625 percent.

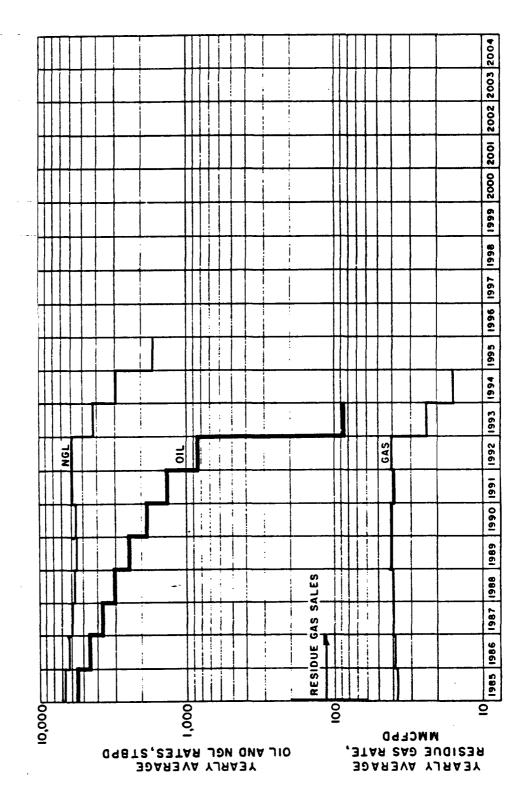

Starting blowdown in 1985 yields the highest residue gas recovery because fuel use is lowest for this case. The injection compressors are shut down immediately and the lives of the extraction plants are as short as possible.


NGL recovery increases with delayed blowdown because the injected lean gas strips more NGL's out of the oil in the gas cap and sweeps out more enriched gas.


Oil recovery increases with delayed blowdown because the reservoir pressure decline is slowed. Slower pressure decline has three effects: one, incrementally higher pressure differentials between the reservoir and the wellbores; two, lower oil viscosities; three, more oil migration from the back-reef, where the oil column is too thin to be produced, to the fore-reef, where the oil column is thicker and can be economically and efficiently produced. A more thorough explanation of the impact of blowdown on oil rates and reserves is found in Appendix B.


In order to compare the value of the residue gas lost to the value of the oil and NGL's gained by continued gas injection, it is useful to examine the energy recovery for each blowdown case studied. Energy recovery is calculated by multiplying the heating value of each product by its recovery. Thus, instead of making a comparison of BBLS of oil to MCF of gas, a comparison of BTU's of oil to BTU's of gas is made. This calculation determines which blowdown timing will recover the most energy and therefore minimize waste. This is an important criterion not only for the Unit but also for the State and Federal regulatory bodies that oversee the Unit's operations. Of the four cases simulated, starting blowdown in 1995 recovers the most energy (Figure 6). It is possible that starting blowdown either shortly before or shortly after 1995 will actually recover more energy than starting blowdown exactly in 1995. However, Figure 6 indicates that 1995 is a good approximation of the optimum blowdown start date in terms of energy recovery. Continuing to inject residue gas after 1995 would provide incremental recoveries of oil and NGL's as compared to starting blowdown in 1995. However, the energy expended through fuel use would be greater than the incremental energy recovered as oil and NGL's.

Complete projections of field performance are illustrated in Figures 7 through 10. A summary of the energy recoveries is found in Appendix D.



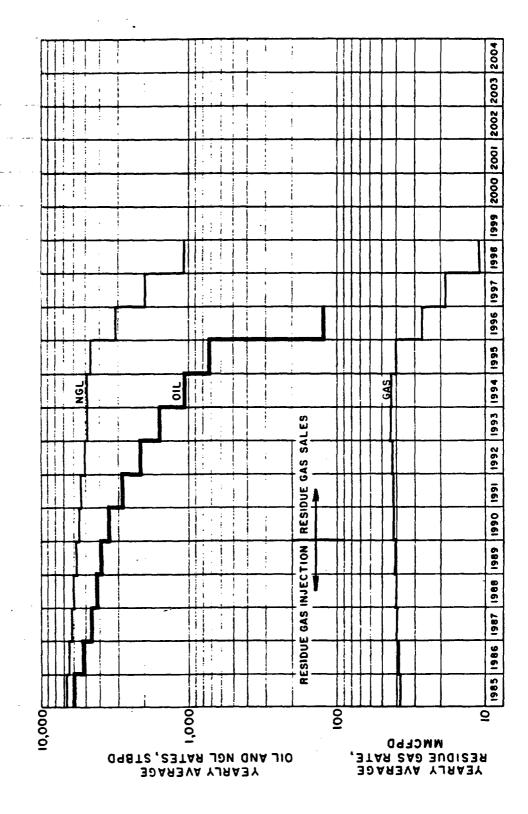
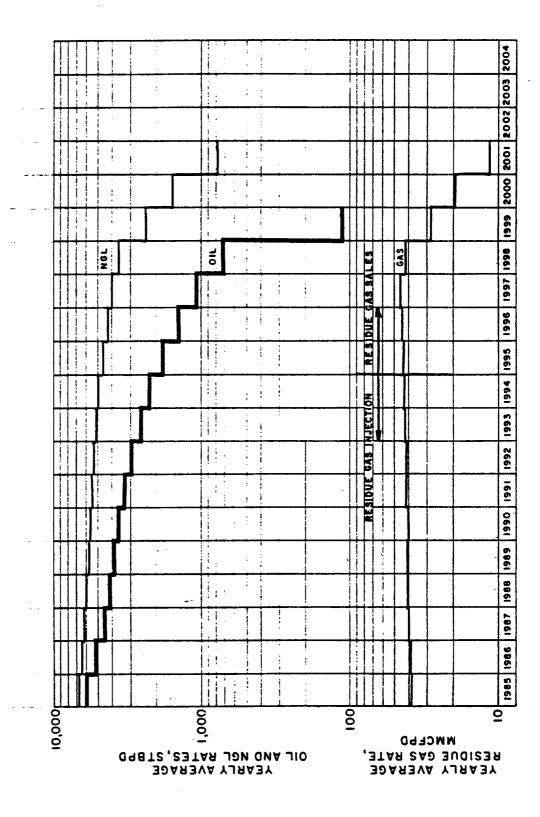
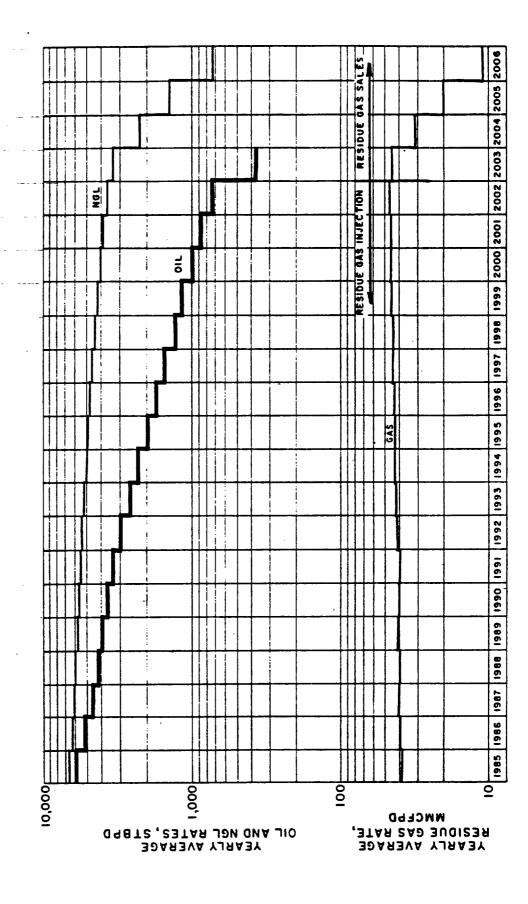


FIGURE 7 EMPIRE ABO UNIT EDDY COUNTY, NEW MEXICO PREDICTED RESERVOIR PERFORMANCE FOR BLOWDOWN AT 1-1-85



16

EMPIRE ABO UNIT EDDY COUNTY, NEW MEXICO PREDICTED RESERVOIR PERFORMANCE FOR BLOWDOWN AT 1-1-90


EMPIRE ABO UNIT EDDY COUNTY, NEW MEXICO PREDICTED RESERVOIR PERFORMANCE FOR BLOWDOWN AT 1-1-95

18

EMPIRE ABO UNIT EDDY COUNTY, NEW MEXICO

PREDICTED RESERVOIR PERFORMANCE FOR BLOWDOWN AT 1-1-03

ECONOMIC EVALUATION

ECONOMIC EVALUATION

As shown in Figure 11, the economics of blowdown depend upon the discount rate used in the calculations. This is to be expected since starting blowdown immediately would increase short-term income, and therefore would be advantageous at high discount rates, whereas delaying blowdown would increase long-term income, and therefore would be advantageous at low discount rates. The recommendation to start blowdown in 1995 is based on undiscounted economics and prevention of waste.

The BFIT economics were calculated assuming a 100 percent working interest, an 87.5 percent net oil interest, a 62.625 percent net gas interest, and a 21.875 percent net NGL interest. The present worth reference date is 1-1-85. A summary of the impact of blowdown timing is presented in Table 4. Table 5 lists the prices, tax rates, and costs used in the economic calculations. Detailed summaries of the economics are found on pages 21 though 24.

Gas Storage

The Unit and the Gas Company of New Mexico (GCONM) have an agreement whereby the Unit stores gas for GCONM. The return rate to GCONM is limited to 65 percent of the residue gas sales rate. It was assumed in the economic calculations that GCONM will take their gas back at the maximum permissible rate. The returnable gas volume was approximately 3.7 BCF in December 1984.

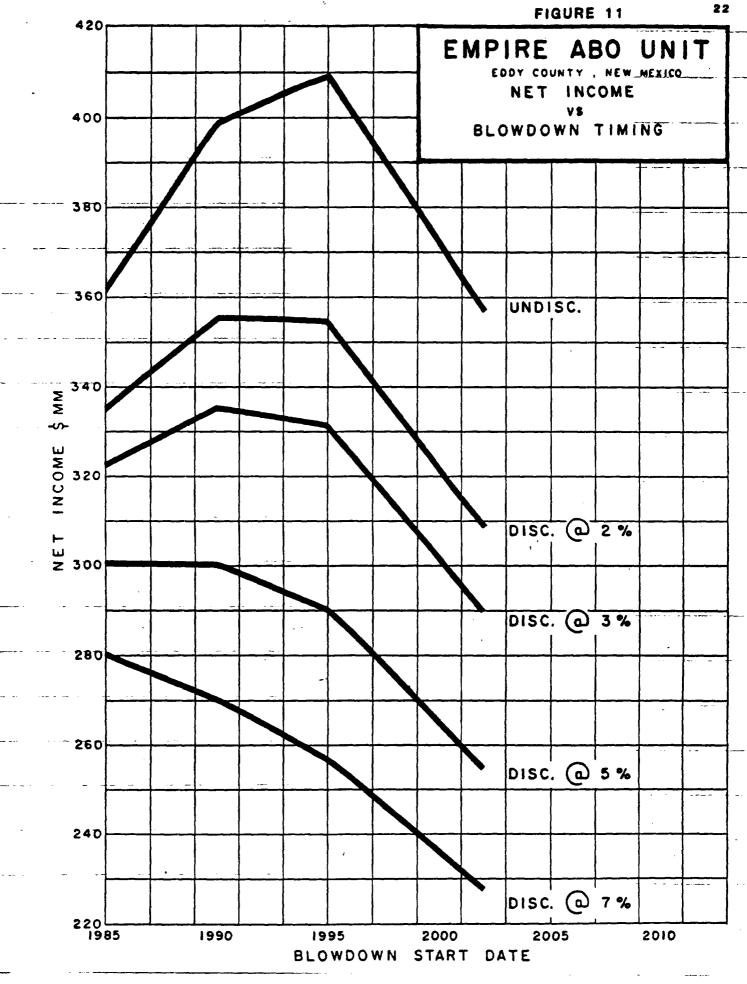

Blowdown Start Date	Unit Oil Reserves After 1/85 (MSTB)	Unit NGL Reserves After 1/85 (MSTB)	Unit Gas Reserves After 1/85 ¹ (MMSCF)	Undiscounted Net Income BFIT (MM\$)	Gross Energy Recovery (Trill. BTU)
1/85	7415	4527	82641	361	251
1/90	11350	5369	69244	399	268
1/95	13929	6292	52153	410	274
1/03	15663	7951	21406	357	264

TABLE 4. Evaluation of Blowdown Timing Based on Constant Operating and Overhead Costs, and Constant Product Prices.

Table 5. Prices, Tax Rates, and Costs Used in Economic Calculations.

	ices ier 1: ier 2:	\$30.00/BBL, \$30.00/BBL,			
Gas Pr	ice:	\$2.90/MCF			
Р В	thane: ropane: utane:	\$0.22/ga1 \$0.35/ga1 \$0.52/ga1 \$0.63/ga1			
S	tion Tax everance mergency d Valoren	Tax: School Tax:	3.7 3.1 0.1	.5%	
Т	11 Profit ier 1: ier 2:	s Tax Rates		/0% 50%	
W		; Injection: is Injection;		57020M/y 6468M/y	
Overhe	ad Costs:	:	\$	990M/ye	ar

^{1.} Storage gas owned by Gas Company of New Mexico has been deducted from the Unit gas reserves (3.7 BCF).

BFIT CASH FLOW (M\$)	51013 54189 54189 44722 42942 38386 34572 38372 34572 28475 12739 5571 5571 - 266 361243	
WINDFALL PROFITS TAX (M\$)	12684 10217 8389 6912 3427 2634 1521 1521 12 12 12	
0VH & 0PR COSTS (M\$)	7458 7458 7458 7458 7458 7458 7458 7458	
PRODUCTION TAXES (M\$)	5587 5642 5642 5644 4640 3806 3419 2863 1587 1023 <u>565</u> <u>38442</u>	
NET REVENUE (M\$)	76741 77506 69832 63731 58053 58053 58053 7757 14052 1757 528045	
GROSS NGL PRODUCTION (MSTB)	2475 2304 2178 2178 2085 2085 2085 2168 2159 1076 595 20697	
GROSS GAS SALES ¹ (MMCF)	10034 14235 14235 14710 14710 14710 14710 14734 14710 14434 12959 8553 5680 3148 3148	
GROSS GAS PRODUCTION (MMCF)	23725 2525 25	
GROSS 01L PRODUCTION (MSTB)	2026 1632 1340 1104 878 675 675 304 31 8474	
YEAR	1985 1986 1987 1988 1999 1992 1993 1994	

Storage gas owned by Gas Company of New Mexico has been deducted from gross gas sales (3.7 BCF)

:-

TABLE 6

EMPIRE ABO UNIT BLOWDOWN AT 1/1/1985 Detail of Economic Calculations

23

Í

BFIT CASH FLOW (M\$)	38378 32952 28970 26307 26307 24261 37707 44811 42722 39111 344 6205 6205 488 6205 398858
WINDFALL PROFITS TAX (M\$)	13460 11701 10430 9591 8953 7895 5166 1349 218 218 8763
OVH & OPR COSTS (M\$)	8010 8010 8010 8010 8010 7458 7458 7458 7458 7458 7458 7458 7458
PRODUCTION TAXES (M\$)	4699 4135 3447 3447 3237 4510 4510 1073 1073 1073 45130
NET REVENUE (M\$)	64547 56798 51132 47355 44461 57225 61944 55575 55575 39226 14736 14736 619923 619923
GROSS NGL PRODUCTION (MSTB)	2451 2451 2341 2244 2169 2107 1996 1996 1996 1833 1833 1733 1733 1733 24545 24545
GROSS GAS SALES ¹ (MMCF)	11220 15184 15421 15459 15459 14337 9625 6617 3910 107468
GROSS GAS PRODUCTION (MMCF)	23725 23755 237555 23755 23755 237555 237555 237555 237555 237555 237555 2375555 2375555 237555 2375555 2375555 2375555555555
GROSS 01L PRODUCTION (MSTB)	2150 1869 1666 1531 1261 1255 777 259 45 45 12970
YEAR	1985 1986 1987 1988 1998 1994 1995 1995 1995 1998

.

EMPIRE ABO UNIT BLOWDOWN AT 1/1/1990 Detail of Economic Calculations

TABLE 7

Storage gas owned by Gas Company of New Mexico has been deducted from gross gas sales (3.7 BCF) **ו**.

24

. . . .

ţ

ł

ł

	BFIT CASH FLOW (M\$)	38378 32952	28970	26307	24201	21540	21192	20397	17556	31771	38200	35248	29575	14150	6482	540	409755
	WINDFALL PROFITS TAX (M\$)	13460	10430	9591	8314 8314	6128	3009	360									71946
	OVH & OPR COSTS (M\$)	8010 8010	8010	8010	8010 8010	8010	8010	8010	8010	7458	7458	7458	7458	7458	7458	7458	132306
	PRODUCTION TAXES (M\$)	4699 4135	3722	3447	323/ 3028	2801	2529	2259	2007	3080	3585	3353	2908	1697	1095	628	48209
	NET REVENUE (M\$)	64547 56798	51132	47355	44401	38479	34740	31026	27573	42310	49243	46059	39940	23304	15034	8626	662215
	GROSS NGL PRODUCTION (MSTB)	2451 2341	2244	2169	2050	2001	1953	1900	1844	1690	1556	1459	1307	854	551	287	28764
חלינים	GROSS GAS SALES ¹ (MMCF)									12169	16183	16370	15310	10279	7053	4109	81473
	GROSS GAS PRODUCTION (MMCF)	23725 23725	23725	23725	23725	23725	23725	23725	23725	23725	23725	23725	21872	14684	9934	5707	
	GROSS 01L PRODUCTION (MSTB)	2150	1666	1531	1430 1328	1216	1080	946	822	664	518	394	259	45			15918
	YEAR	1985 1986	1987	1988	1990 1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	

TABLE 8

EMPIRE ABO UNIT BLOWDOWN AT 1/1/1995 Detail of Economic Calculations

25

-

Į

Storage gas owned by Gas Company of New Mexico has been deducted from gross gas sales (3.7 BCF) l.

BFIT CASH FLOW (M\$)	38378 32952	28970 26307	24261	22237	21540	21192	20397	17556	14882	12506	10393	8253	6686	5098	3792	2214	17645	14358	7050	201	356867
WINDFALL PROFITS TAX (M\$)	13460 11701	10430 9591	8953	8314	6128	3009	360														71946
0VH & 0PR COSTS (M\$)	8010 8010	8010 8010	8010	8010	8010	8010	8010	8010	8010	8010	8010	8010	8010	8010	8010	8010	7458	7458	7458	7458	174012
PRODUCTION TAXES (M\$)	4699 4135	3722 3447	3237	3028	2801	2529	2259	2007	1797	1611	1445	1277	1154	1029	927	803	1201	1713	1139	<u>601</u>	47331
NET REVENUE (M\$)	64547 56798	51132 47355	44461	41589	38479	34740	31026	27573	24689	22127	19848	17540	15850	14137	12729	11027	27074	23529	15648	8261	650155
GROSS NGL PRODUCTION (MSTB)	2451 2341	2244 2169	2107	2050	2001	1953	1900	1844	1786	1721	1660	1594	1530	1467	1 398	1327	1209	808	579	268	36347
GROSS GAS SALES1 (MMCF)																	12294	11015	7361	3900	34570
GROSS GAS PRODUCTION (MMCF)	23725 23725	23725 23225	23725	23725	23725	23725	23725	23725	23725	23725	23725	23725	23725	23725	23725	23725	22582	15424	10211	5399	
GROSS 01L PRODUCTION (MSTB)	2150 1869	1666	1430	1328	1216	1080	946	822	720	631	552	473	417	360	315	259	135				17900
YEAR	1985 1986	1987 1988	1989	1990	1661	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	

TABLE 9

EMPIRE ABO UNIT BLOWDOWN AT 1/1/2003 Detail of Economic Calculations

26

1.

REFERENCES

REFERENCES

- 1. Detmering, T.J., Improved Plan of Depletion Empire Abo Unit- Abo Reservoir, ARCO Oil and Gas Company, Midland Texas, April 1983.
- Field Management Study Abo Reservoir Empire Abo Pool, October 1970.
- 3. Foster, H.P., Engineering Study Empire Abo Unit Abo Reservoir, ARCO Oil and Gas Company, Midland Texas, November 1977.
- 4. Shumbera, D.A., A Compositional Study of Proposed Alternatives for Future Operation of Empire Abo, ARCO Oil and Gas Company, Dallas, Texas, August 1982.
- 5. Shumbera, D.A. and Staggs, H.M., Empire Abo Unit Performance Projection, ARCO Oil and Gas Company, Dallas, Texas, June 1984.

APPENDIX A

APPENDIX A

Black Oil Numeric Simulator Description and Design

Modeled Area

A representative slice (Figures A1 and A2) of the reservoir was modeled as opposed to modeling the entire reservoir due to manpower and computer time limitations. This slice is representative of the entire field with the exception of the extreme east and west ends. The east end has experienced a considerable amount of water influx while the west end appears to be a solution gas drive reservoir rather than a gravity drainage reservoir. The combined volume of these two portions of the reservoir is less than 10 percent of the total reservoir volume.

H.P. Foster modeled this same slice in 1977 to study the impact of infill drilling. The success of Foster's model study, as illustrated by the close agreement of his oil forecast and actual production (Figure A3), demonstrates the results of the slice model can be scaled up to provide forecasts of the entire field's performance. Unfortunately, all of Foster's projections assumed blowdown in 1985 and therefore it was necessary to make additional simulator runs to study the impact of blowdown at later dates.

The numeric reservoir simulator used for the cross-sectional slice model is ARCO's three-dimensional, three phase, unsteady state, compressible flow, semi-implicit model. This black oil model numerically solves the partial differential equations which describe simultaneous oil, gas, and water flow between reservoir segments in three dimensions.

Model Set Up And Data Preparation

For the numeric model to accurately predict future performance, it must be set up dimensionally to properly reflect fluid movement in the reservoir. The cross-sectional slice model is 6 rows wide (east to west), 22 layers in the vertical direction, and 18 columns from back-reef to fore-reef as shown in Figure A4. The six rows are each 330 ft wide for a total width of 1980 ft. The outside rows are used to reflect well drainage areas. Each The third layer in the vertical direction is 25 ft thick. dimension of the cells, in the back-reef to fore-reef direction. varies from 370 ft to 600 ft. The smaller cells are used in the down dip heart of the reef to give adequate definition of flow characteristics during projections while the larger cells are used in areas where fluid movement is slower or relatively unimportant. The cells are aligned parallel to the dip of the reef base to eliminate artificial impediments to north-south fluid movements and to adequately determine how well the fluid migrates to the down dip areas under different schemes of operation. The wells shown in Figure A4 are the actual field wells within the modeled area.

Porosity values were obtained by applying porosity index curves (Figure A5) to open hole neutron logs. These values formed the basis for volume calculations for the numeric model. Core data analysis indicates porosity varies as the log of permeability (Figure A6). Using this relationship, permeability values for each two foot interval of each well were calculated from the porosity values. These values were the basis for porosity and permeability maps of each individual layer in the model. Computer programs were used for sorting this digitized data to obtain gross and net pay, average porosity, and permeability values for any grouping desired. Isopach maps were made of each layer to determine pore volumes and permeabilities for each of the 2376 cells in the model.

Interstitial water saturations were based on the 1970 numeric model simulation and checked by analysis of logs obtained during the 20 acre infill drilling program. Fluid data relationships (Figure A7 and A8) are from a composite of analyses from five different wells which were selected to give good coverage of the reservoir.

Reservoir pressure data in the area of the slice is very good. At least two wells, and sometimes more, were tested during each annual BHP survey giving an adequate pressure history for the area. Oil, gas, and water production data are also good. The New Mexico Oil Conservation Commission requires annual tests with well production reported by months.

The gas oil relative permeability data (Figure A9) is the same as that used in the 1970 numeric simulation of the entire field.

Gas Coning

Because of the gas coning characteristics of the Empire Abo reservoir it is desireable to include the effects of gas coning by individual wells. This is especially true during the latter part of the history match and during the projections as the wells are being produced at high total fluid rates.

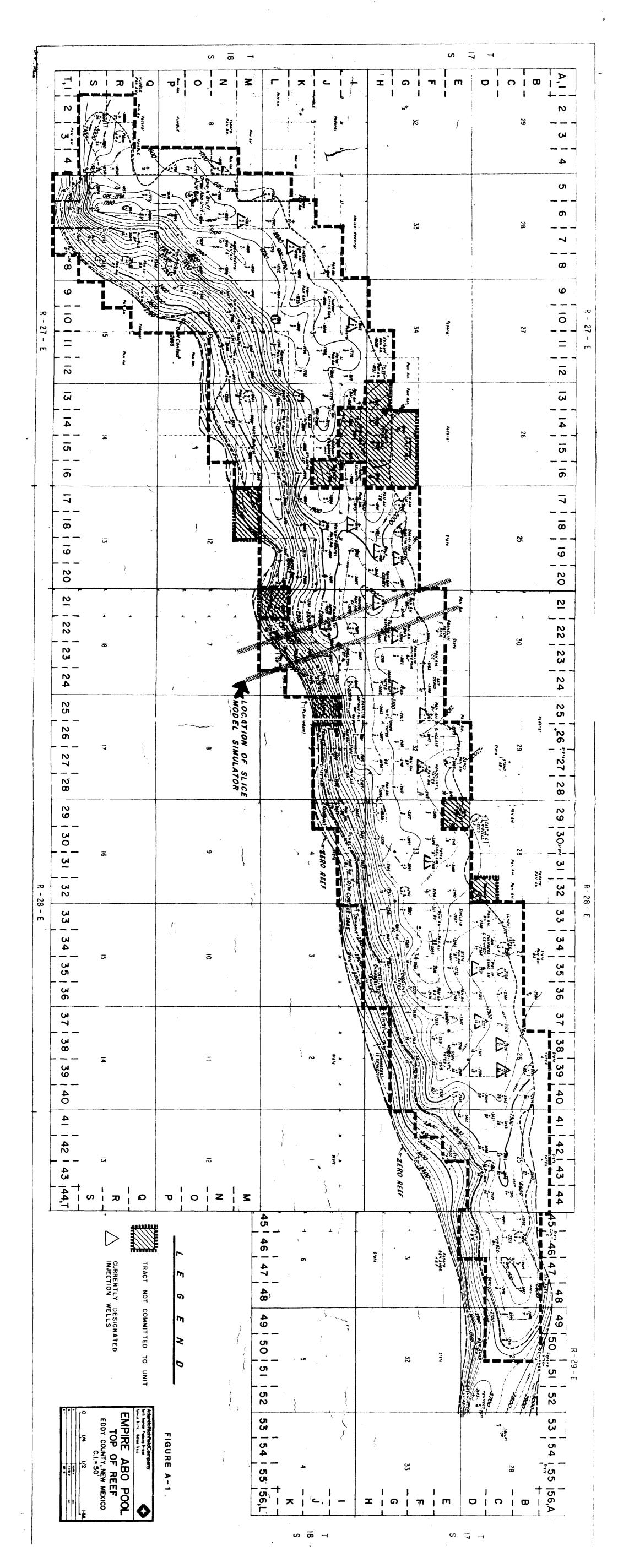
well performances are controlled in the three Individual dimensional model by correlations derived from simulations of individual type-wells with a two dimensional, R-Z (radialvertical), multi-phase, compressible flow simulator. Multiple projections were made at various reservoir producing rates to relate producing GOR to average oil saturation in the well cell columns. The characteristics of the R-Z Coning simulator closely approximate the column of cells for each well in the three dimensional simulator. These derived correlations were input into the slice model and used to control the performance of each well during its life (Figures A10-A12). The oil column height used in these correlations is analogous to the distance from the top of the perforated interval in the well cell column to the gas cap. It is based on the average oil saturation in this column.

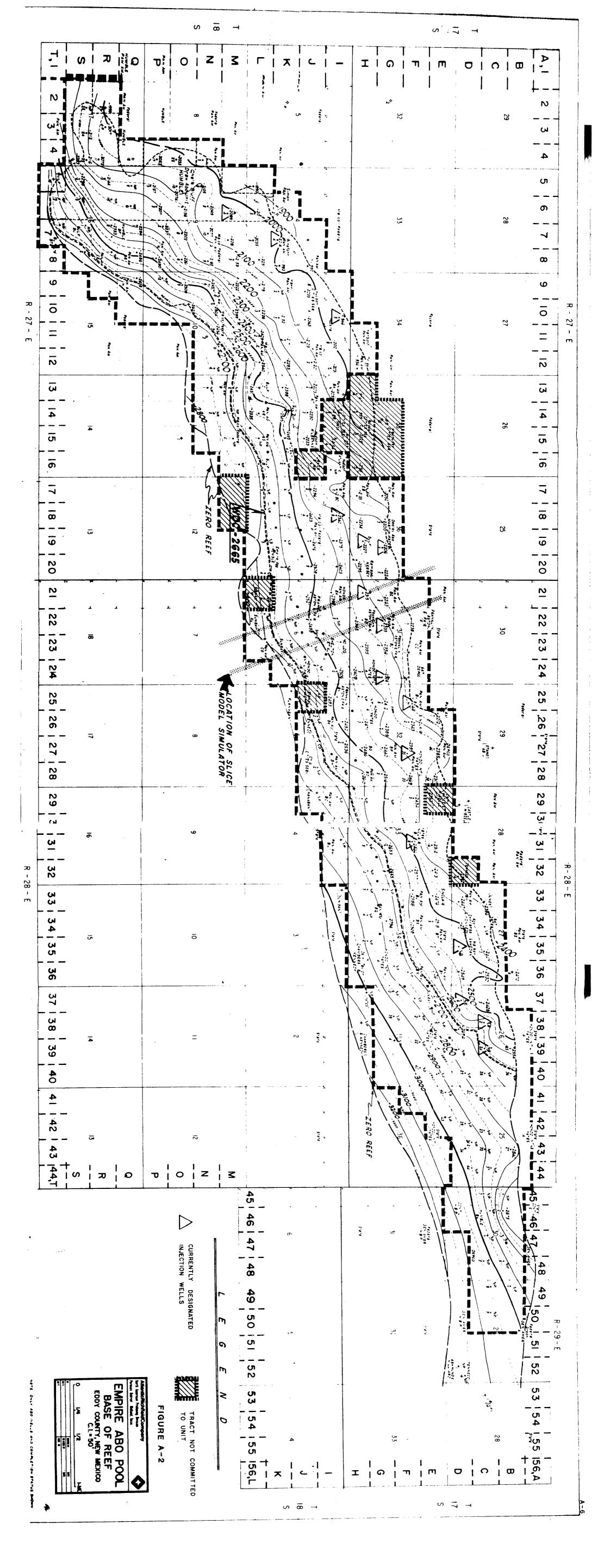
One well, the G-21, was not controlled in the slice model with a coning correlation. It was fractured during its early life and appeared to have a gas channel in the cement. It was controlled by producing the required amount of gas from a cell in the gas cap to match its producing history. The G-21 is a last row, back-reef producer and was shut-in during all projections.

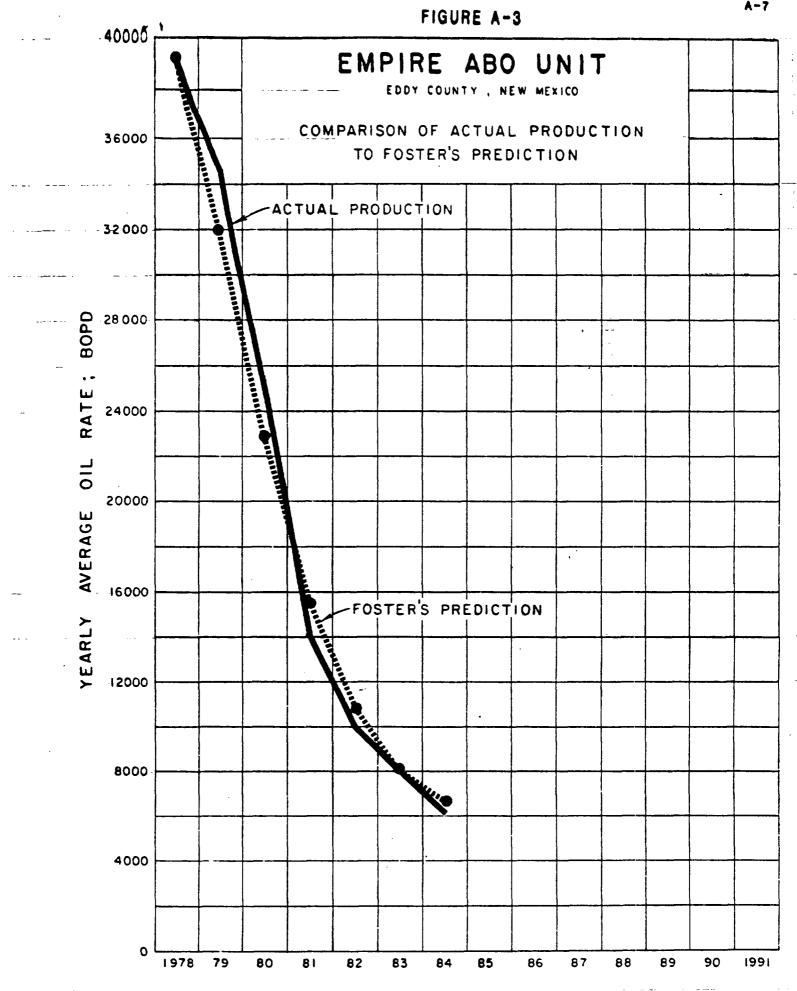
History Match

The history match obtained during the 1977 model study extended from 1959 to 1977. The seven years that have lapsed since this history match was completed had to be added in order to have the correct saturation and pressure distributions at the start of the forecasts. Furthermore, these seven years of additional history had to be added without changing the reservoir description so that the previous history match would not be altered. This was accomplished by adjusting only the coning correlations during the new history match period. Care was taken to ensure that these adjustments did not affect the producing wells prior to 1977.

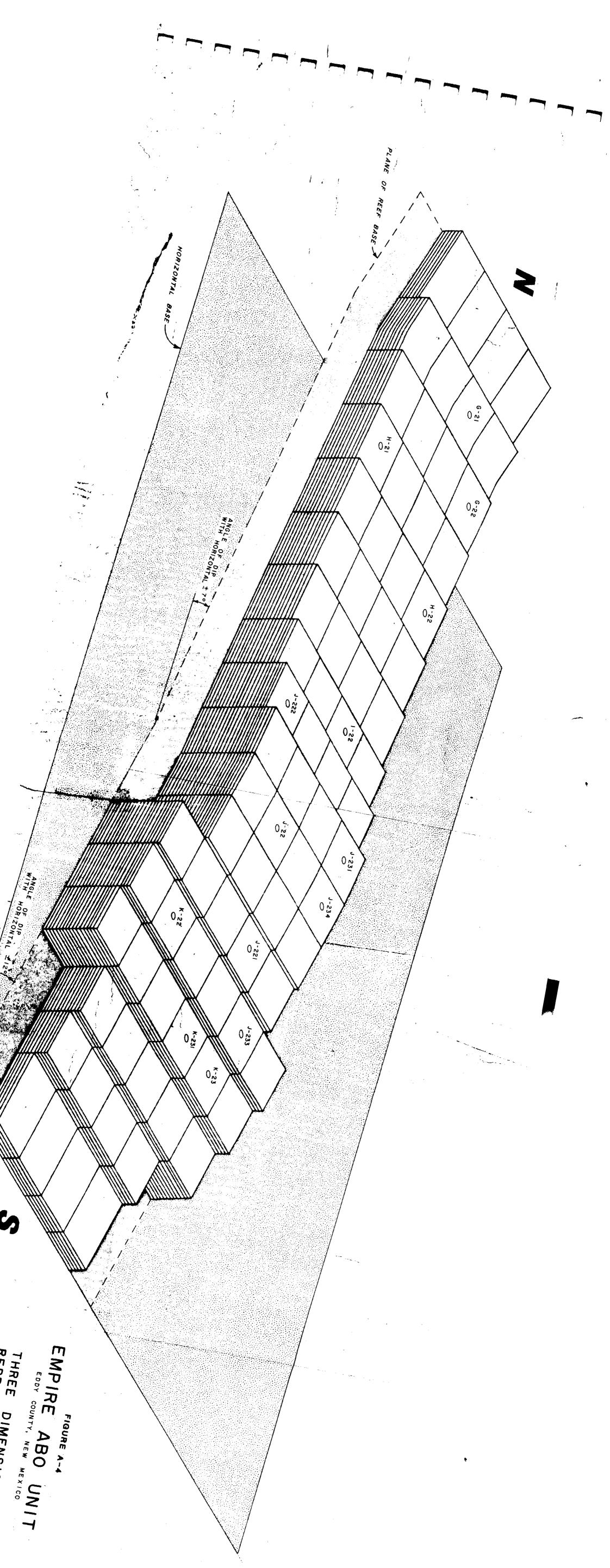
As in the 1977 history matching process, oil rates were input and the simulator calculated water and gas production rates. The coning correlations were adjusted after each trial run of the simulator to obtain a match of gas production rates for each well. Five infill wells were drilled in the slice area between 1977 and 1984: J-221, J-222, J-233, J-234, and K-231. These were included in the history match.

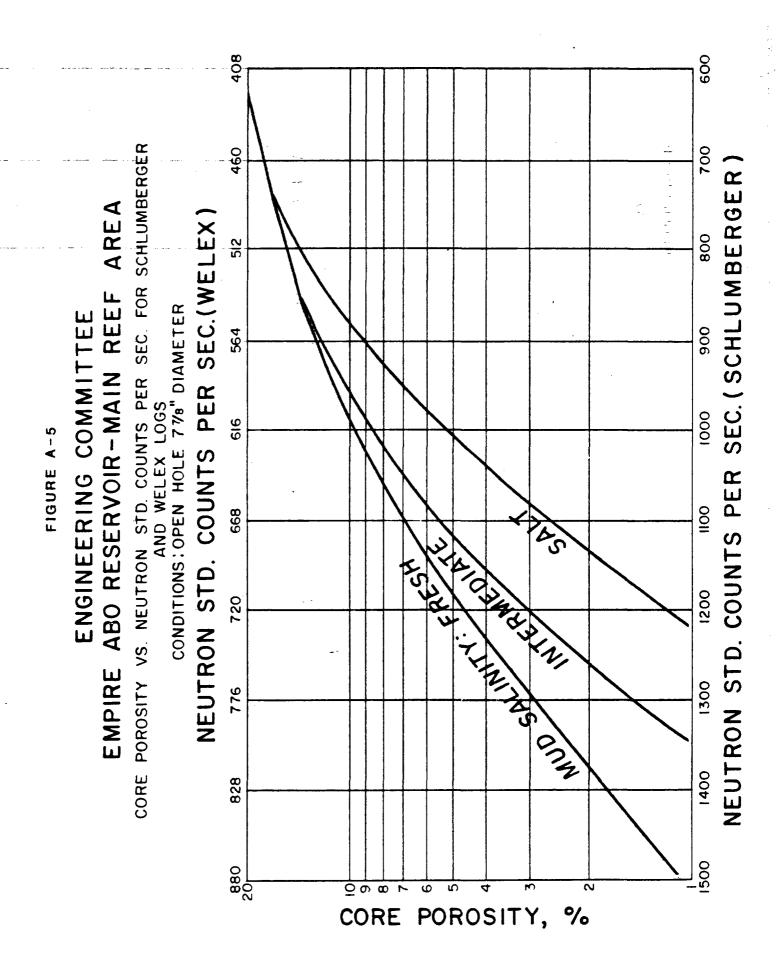

The results of the history match, including plots comparing actual well performances versus calculated performances, are presented in Appendix C. The black oil simulator matched individual well gas production rates, water production rates, and average reservoir pressures from 1959 to 1984.


Forecasts


During the forecasting period the produced gas rate was limited to a field rate of 67 MMCFPD. This rate is the sum of the Unit allowable and the average rate of non-participating tracts in the field. Inflow performance analysis indicates this field rate will be maintained until the reservoir pressure is reduced to approximately 200 psi. Reinjection was set at 58 percent of the produced gas rate based on past performance of the gas plants and forecasts of reinjection volumes calculated by the compositional model. A bottom hole pressure limit of 200 psi was set for each well to control production at low reservoir pressures. This replaces the productivity index used by Foster in his forecasts and more closely simulates actual constraints on production caused by wellbore hydraulics and surface equipment.

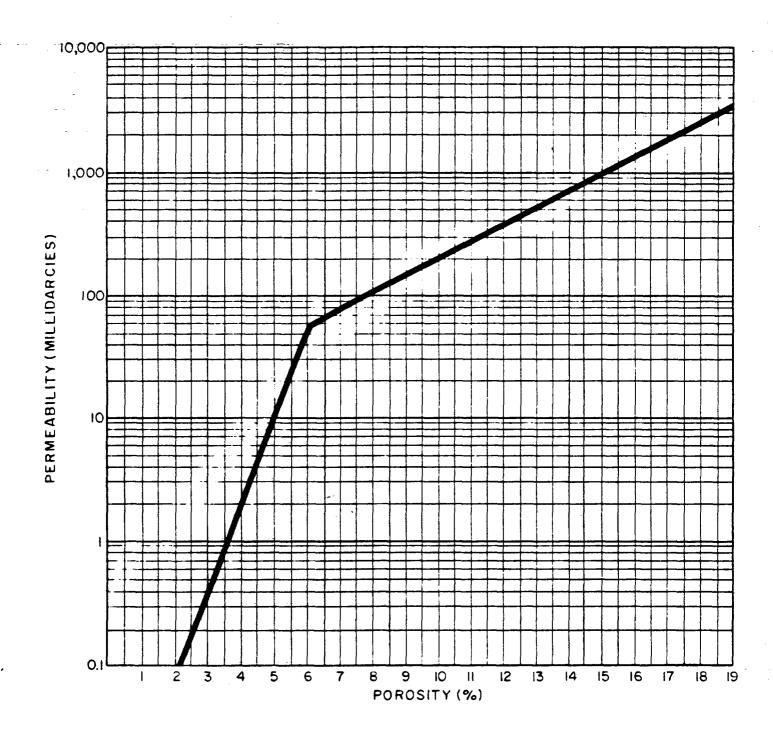
Scale Up

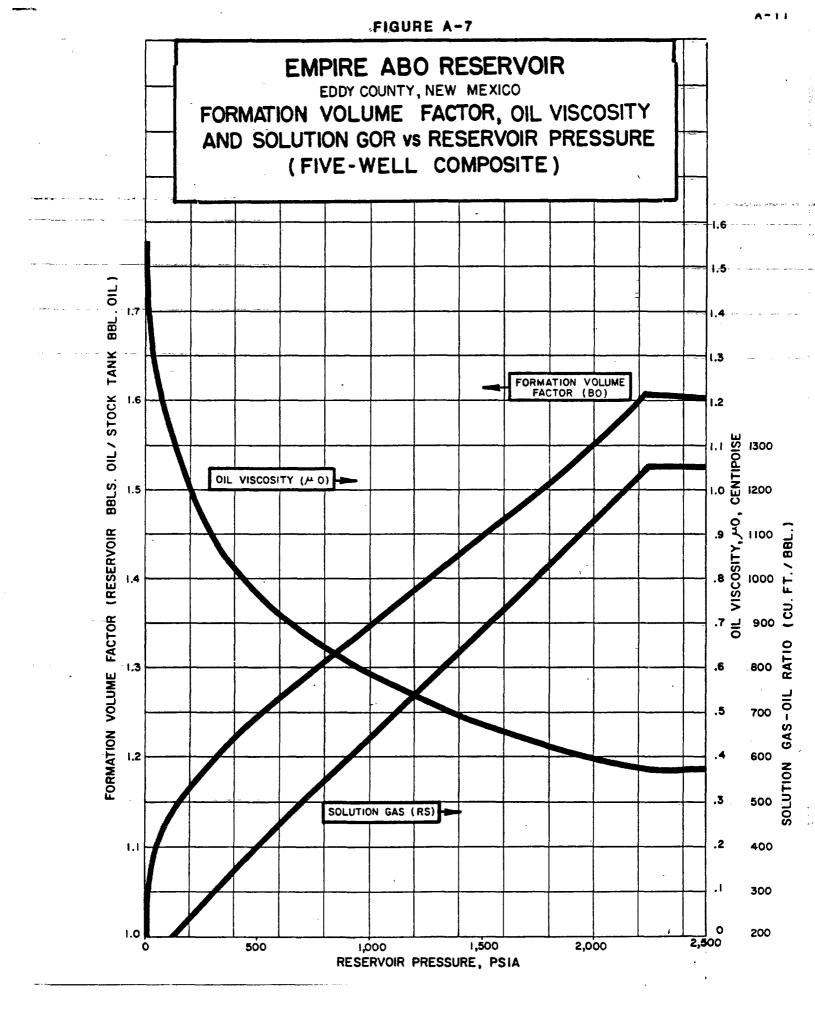

Examination of Figure A13 leads to the conclusion that the slice is representative of the field but that its oil decline is not synchronous with the actual field decline. Higher voidage rates in the slice during the mid-70's apparently caused gas coning to occur earlier in the slice than in the rest of the field. As a result, the slice oil decline is leading the field by approximately 2 years. Therefore, the oil forecasts for starting blowdown in 1985, 1990, 1995, and 2003 were calculated by starting blowdown in the simulator in 1983, 1988, 1993, and 2001, respectively. These forecasts were scaled up based on the ratio of the hydrocarbon pore volumes of the slice and the field. 1 1 1

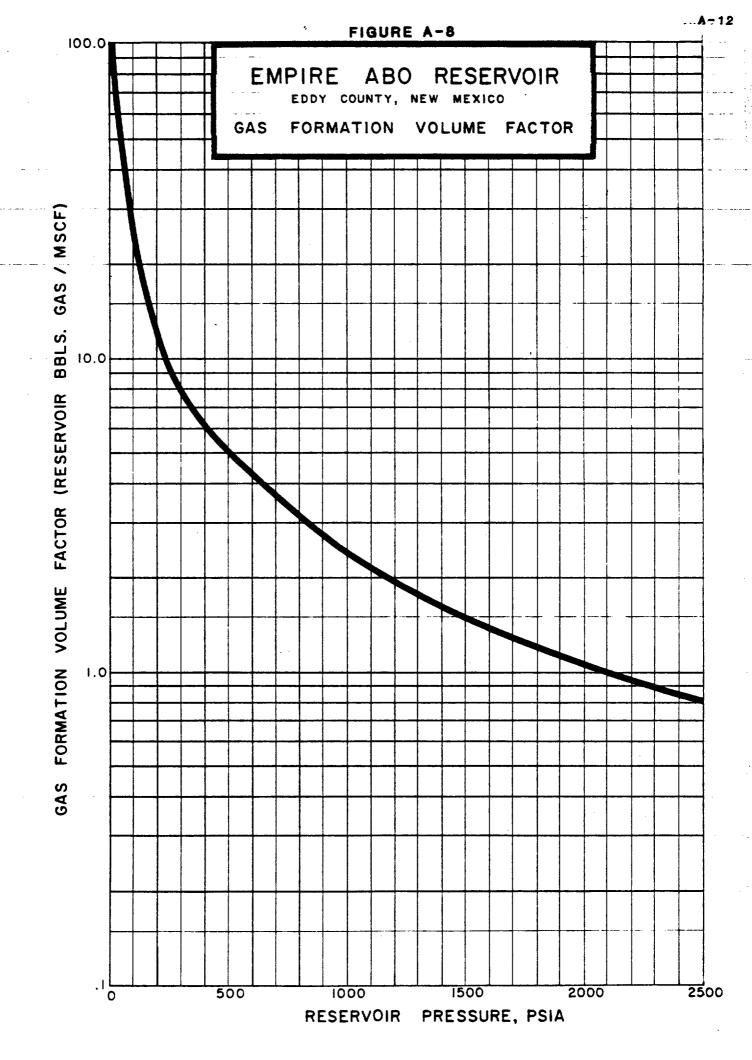


A-7

¥-8

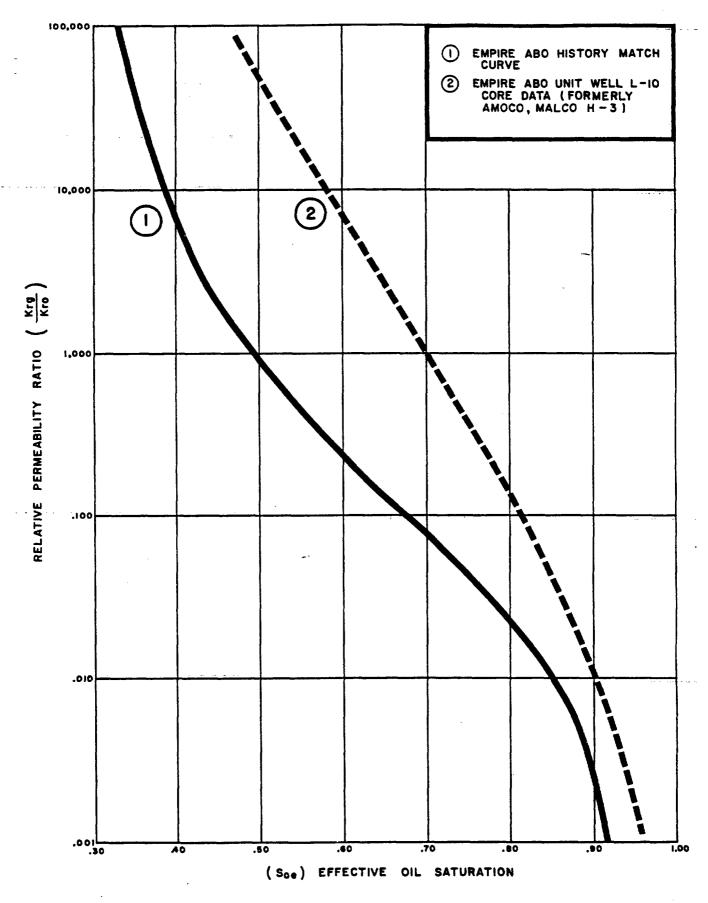

EMPIRE ABO UNIT


EDDY COUNTY, NEW MEXICO


CORE PERMEABILITY VS. POROSITY

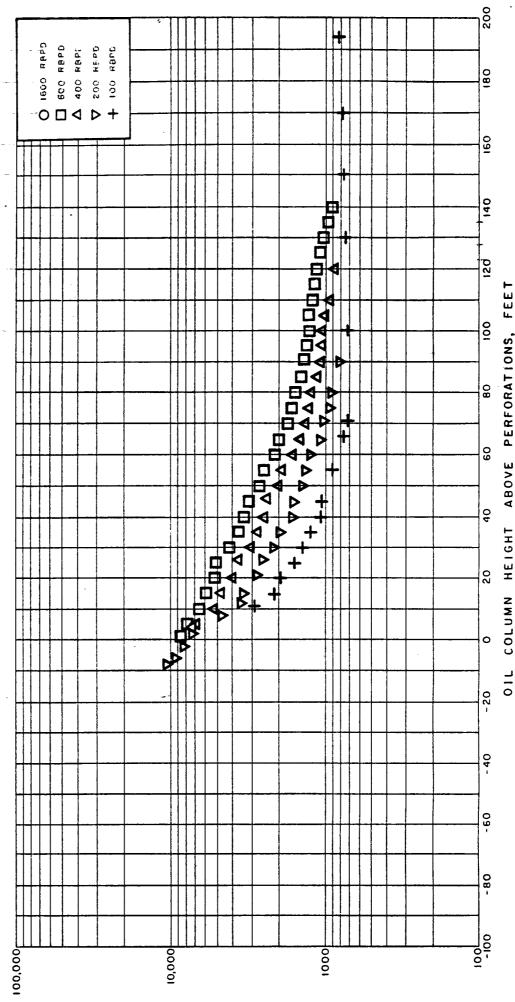
USING SORT BY POROSITY RANGES

-



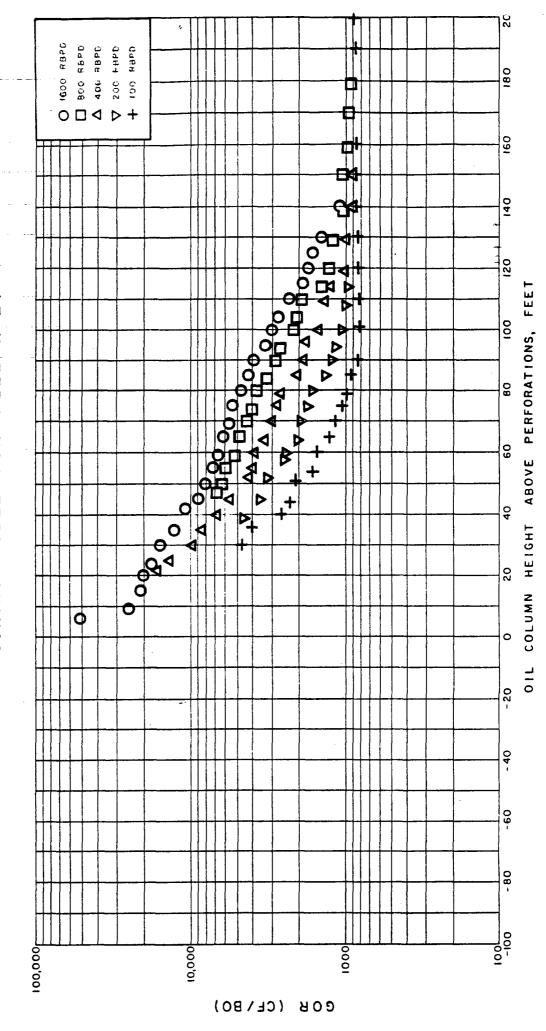
1.00

EMPIRE ABO UNIT


EDDY COUNTY, NEW MEXICO

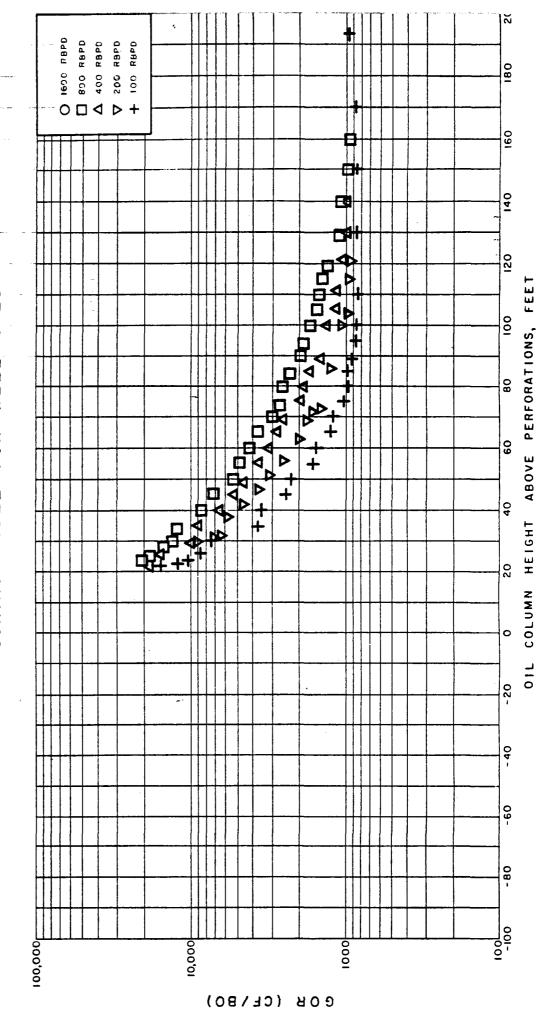
ABO RESERVOIR HISTORY-MATCH GAS-OIL RELATIVE PERMEABILITY CURVE

EMPIRE A-10 EMPIRE ABO UNIT

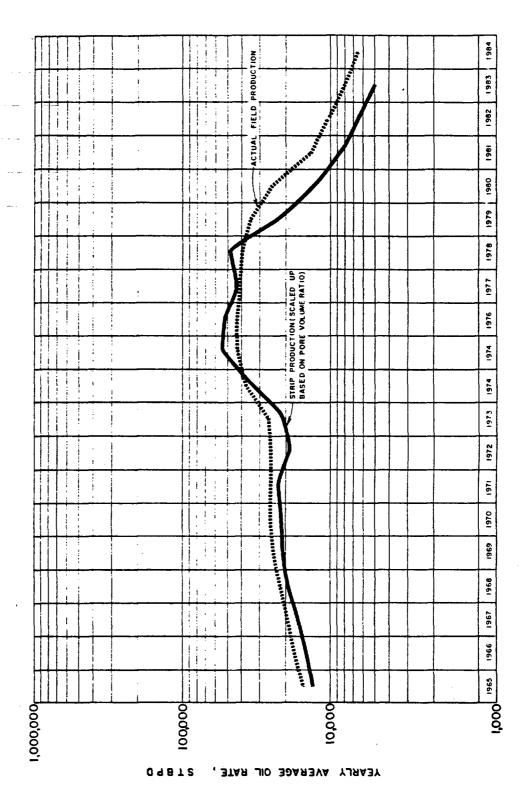

CONING CORRELATION CALCULATED BY RADIAL CONING MODEL FOR WELL K-23

(08/30) 809

EMPIRE ABO UNIT



. -


EMPIRE ABO UNIT

CONING CORRELATION CALCULATED BY RADIAL CONING MODEL FOR WELL G-25

EMPIRE ABO UNIT EDDY COUNTY, NEW MEXICO

COMPARISON OF STRIP AND FIELD OIL RATES

APPENDIX B

•

.

.

APPENDIX B

.

Discussion of Oil Rate and Reserve Forecasts

.

DISCUSSION OF OIL RATE AND RESERVE FORECASTS

The incremental oil reserves recovered by delaying blowdown are the result of extending the field life which allows additional migration of oil from the back-reef to the fore-reef. This is illustrated in figures B1 through B5 in which the gas cap, oil column and water column are mapped for one row of cells in the simulator. Figure B1 is the saturation distribution at the start of the oil rate forecasts which is 1/1/83 in the slice and represents 1/1/85 in the field. Figure B2 is the saturation distribution at the economic limit for starting blowdown in 1985. Approximately 50 ft of oil in the back-reef area (columns 3, 4, and 5) has migrated to the fore-reef area. Compare this to Figure B5 which is the saturation distribution at the economic limit for starting blowdown in 2003. Here the migration of oil is roughly three times that for starting blowdown in 1985.

The incremental oil rates obtained by continued gas injection are the result of slowing the pressure decline of the reservoir. Although the recovery mechanism at Empire Abo is gravity drainage, which is relatively independent of reservoir pressure, the production mechanism is fluid expansion, which is very sensitive to reservoir pressure. The effect of reservoir pressure on oil rates is most easily explained using Equation 1 which is an expression of Darcy's law for linear fluid flow in permeable beds:

where

Q₀ = Oil rate, BOPD, K₀ = Effective Oil Permiability, Darcies, △P = Pressure differential across the bed, psi, ℋ₀ = Oil viscosity, cp, and L = Length, ft. The pressure dependent terms in Equation 1 are $\triangle P$ and μo . Assuming the only significant difference in the four blowdown cases is reservoir pressure, the ratio of the oil rates for any two cases can be expressed as:

Using the oil rate forecast for starting blowdown in 2003, the oil rate forecasts for starting blowdown in 1985, 1990 and 1995 were calculated using Equation 2. If the differences in oil rates between the four cases are due entirely to the differences in reservoir pressures, then the forecasts calculated using Equation 2 should match the simulator calculated forecasts. The results of these calculations are illustrated in Figures B6 through B8. The agreement of the forecasts indicates the incremental oil rates obtained by delaying blowdown are due entirely to the incrementally higher reservoir pressures.

FIGURE B-1 EMPIRE ABO UNIT EDDY COUNTY, NEW MEXICO

SATURATIONS AT 1985

							17				
						9			nnn V		
	-			. <u>e</u>							
			14		in the second						
	13	2.6			1. A.				-		
12		10.13			Street,						
=				1000		1.1.1					
თ					1.383						
	8										
		7									
		9									
		5									
		4		2 2							
		3								+0-+	

FIGURE B-2

EMPIRE ABO UN EDDY COUNTY, NEW MEXICO

SATURATIONS AT 1995 FOR BLOWDOWN AT 1985

OIL SATURATION > 40 %		I	
OIL DRAINAGE FROM 1-1-85 TO 1-1-95		GAS SATURATION) 60%	GAS CAS
			\$0, +
			2
	11. S.		
	S.C. March		
	7 Defendence	4 5 6	3
	8		
	9 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		9 9

B--i4

FIGURE B-3

ŧ

EMPIRE ABO UNIT EDDY COUNTY, NEW MEXICO

								17				% 09 (NC	
						16						WATER SATIIRATION > 60 %	
			15									WATER	
		14		1.00									
<u>r</u>													-
2										1993		TO 1-1-98	
	147												2
		19. I					<u> </u>		×		 	FROM 1-1-85	07 (NC
о С					ľ						 	DRAINAGE	SATURATION) 40 %
											 	OIL D	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~											 		
				E E									
	9										 	) 60 %	
	£										 	GAS SATURATION ) 60%	
	4	er S										645 54	
	3						_				÷°°	1.100	

Ţ

FIGURE B-4

#### EMPIRE ABO UNIT EDDY COUNTY, NEW MEXICO

SATURATIONS AT 2001 FOR BLOWDOWN AT 1995

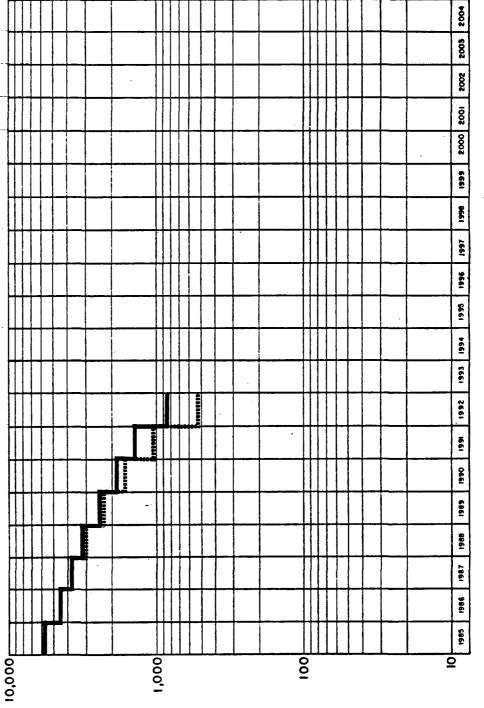
		5	T0 1-1-01	FROM 1-1-85		DRAINAGE	017 0			
							<u></u>	 		
			X							
Mar.				1				2		
			AV.		1					
					<b>\$</b>			T V		
15										
				Net.			ų.			
	4	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1								
									9	5
		б					8			
			2	=		6		 		
	2	4 4 5 5 5 6 7 7 7 7 7 7 7 7 7 7 7 7 7								

8-¹6

WITTER SATURATION 2 60 % 5 -മ 1 ŝ 4 P, OIL DRAINAGE FROM 1-1-85 TO 1-1-06 GAS SATURATION 2 60% G C) ្ខំខ្ល

FIGURE B-5

EMPIRE ABO UNIT EDDY COUNTY, NEW MEXICO SATURATIONS AT 2006 FOR BLOWDOWN AT 2003


B-7

OIL SATURATION 2 40 %

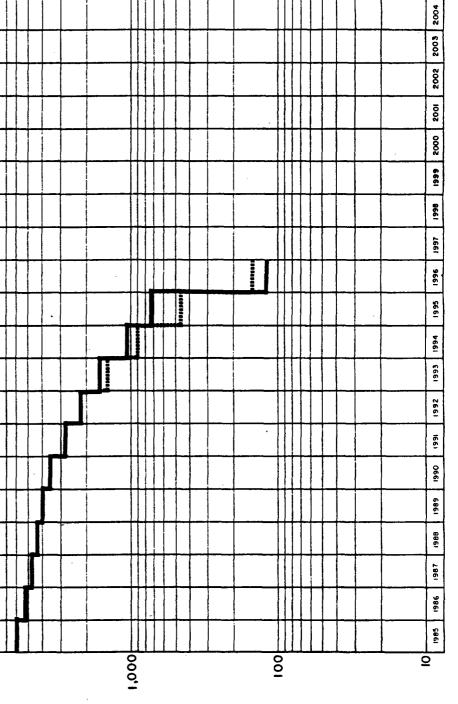
FIGURE B-6

EMPIRE ABO UNIT EDDY COUNTY, NEW MEXICO COMPARISON OF SIMULATOR FORECASTS TO FORCASTS CALCULATED USING EQUATION A2

BLOWDOWN AT 1/1/85



YEARLY AVERAGE OIL RATE, STBPD


B - 8

ESEBBEESESSES EQUATION A2

MAN NUMERIC SIMULATION

PRESENTED EQUATION A2

WUNERIC SIMULATION



TEARLY AVERAGE OIL RATE, STBPD

FIGURE B~7

EMPIRE ABO UNIT EDDY COUNTY, NEW MEXICO MDADISON OF SIMILATOR FORCE

COMPARISON OF SIMULATOR FORECASTS TO

FORCASTS CALCULATED USING EQUATION A2

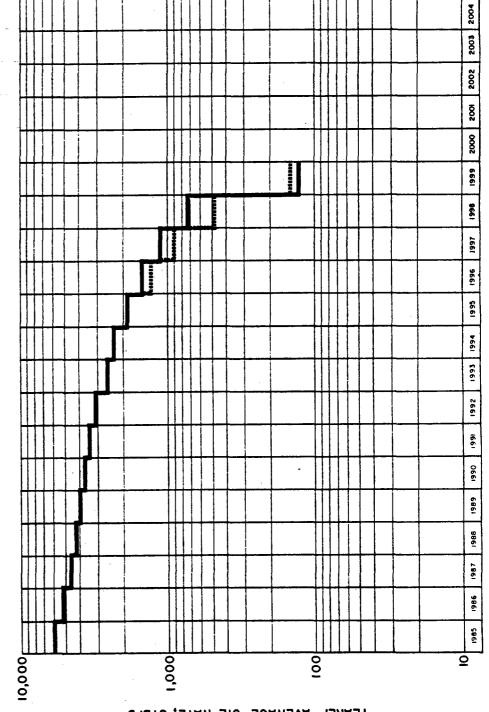
BLOWDOWN AT 1/1/90

10,000

. .

ETTERS EQUATION A2

NUMERIC SIMULATION




#### EMPIRE ABO UNIT EDDY COUNTY, NEW MEXICO

COMPARISON OF SIMULATOR FORECASTS TO

FORCASTS CALCULATED USING EQUATION A2

BLOWDOWN AT 1/1/95



YEARLY AVERAGE OIL RATE, STBPD

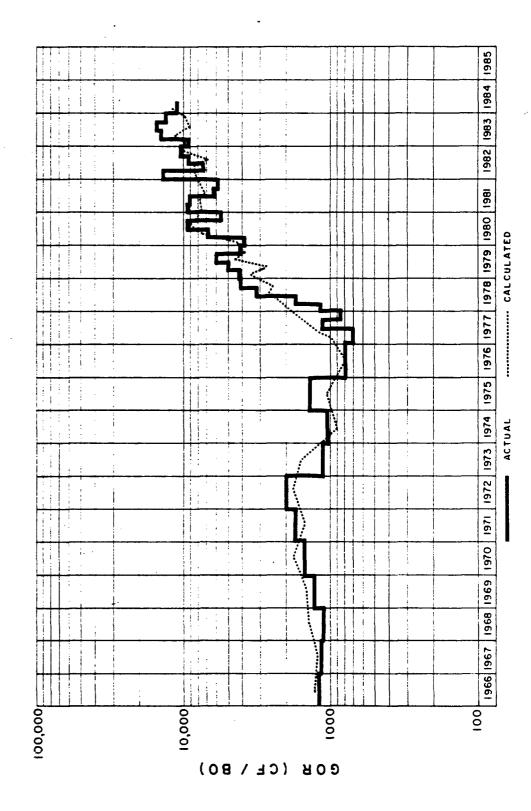
APPENDIX C

APPENDIX C

•

.

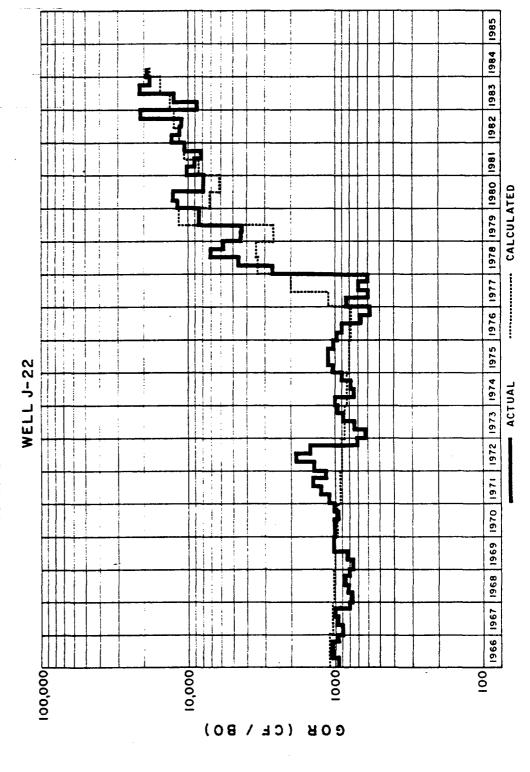
Black Oil Numeric Simulator History Match


#### TABLE C1 HISTORY MATCH RESULTS

Actual	Model	% Difference
5,959,309	5,959,309	None
11,853,407	11,326,669	-4.4
1,003	1,028	2.5
1,887,197	1,762,151	-6.6
966,476	1,001,867	3.7
1,590,347	1,561,049	-1.8
1,587,784	1,583,831	-0.3
783,200	646,498	-17.5
1,191,748	1,015,900	-14.8
24,662	10,835	-56.1
836,810	801,228	-4.3
392,735	446,310	13.6
826,495	754,031	-8.8
382,146	. 371,110	-2.9
451,068	454,988	0.9
932,739	916,871	-1.7
	5,959,309 11,853,407 1,003 1,887,197 966,476 1,590,347 1,587,784 783,200 1,191,748 24,662 836,810 392,735 826,495 382,146 451,068	5,959,3095,959,30911,853,40711,326,6691,0031,0281,887,1971,762,151966,4761,001,8671,590,3471,561,0491,587,7841,583,831783,200646,4981,191,7481,015,90024,66210,835836,810801,228392,735446,310826,495754,031382,146371,110451,068454,988

.

EMPIRE ABO UNIT EDDY COUNTY, NEW MEXICO

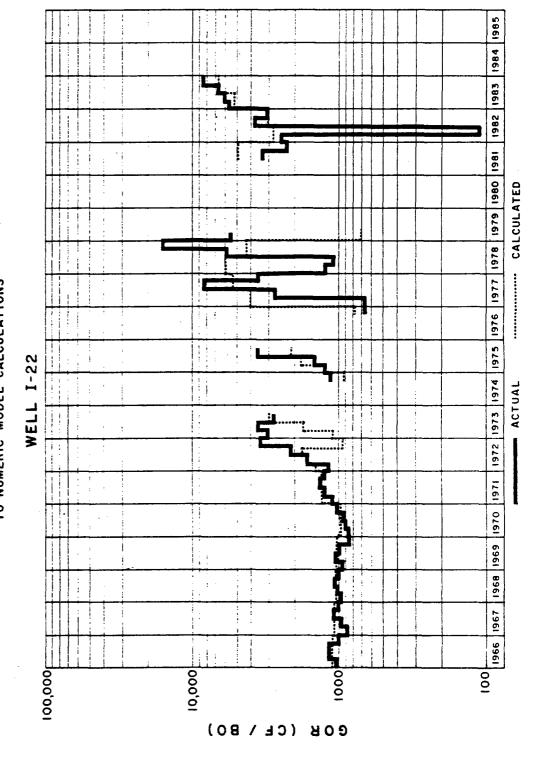

#### SLICE MODEL HISTORY · MATCH ACTUAL GOR FROM SLICE AREA COMPARED TO NUMERIC MODEL CALCULATIONS



C-2

EMPIRE ABO UNIT EDDY COUNTY, NEW MEXICO SLICE MODEL HISTORY MATCH

ACTUAL WELL PERFORMANCE COMPARED TO NUMERIC MODEL CALCULATIONS



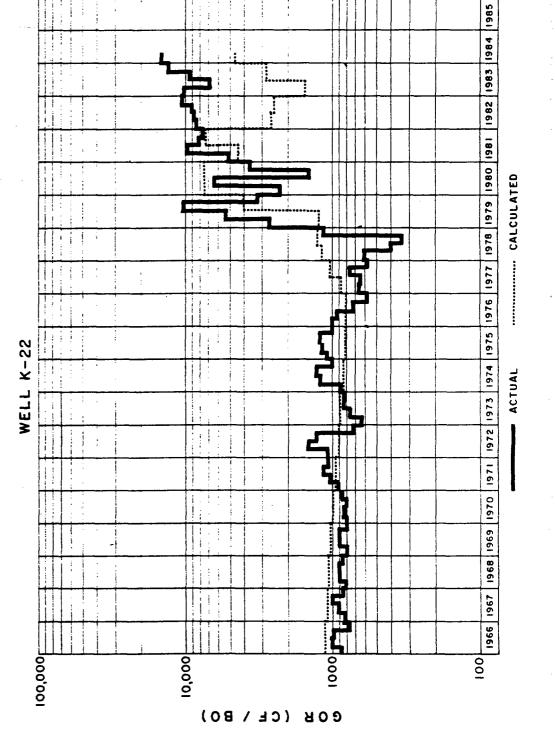

1.15

EMPIRE ABO UNIT EDDY COUNTY, NEW MEXICO

### SLICE MODEL HISTORY MATCH

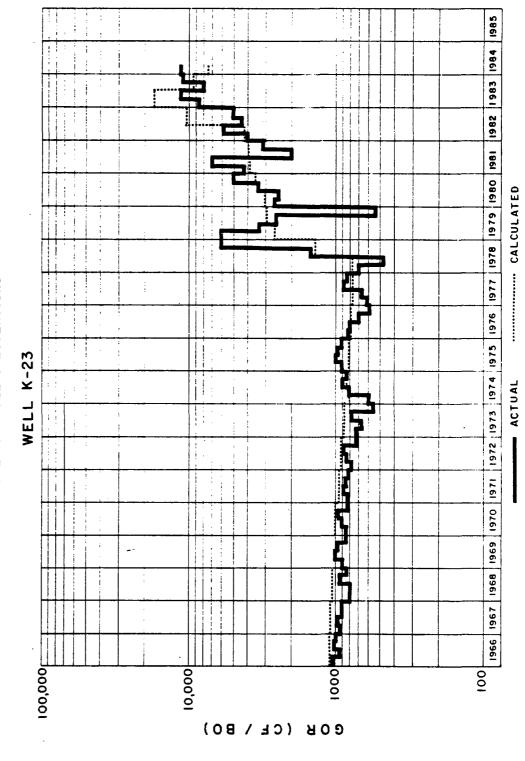
ACTUAL WELL PERFORMANCE COMPARED TO NUMERIC MODEL CALCULATIONS




C-4

UNIT EMPIRE ABO UNI' EDDY COUNTY, NEW MEXICO

ACTUAL WELL PERFORMANCE COMPARED SLICE MODEL HISTORY MATCH

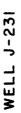

TO NUMERIC MODEL CALCULATIONS

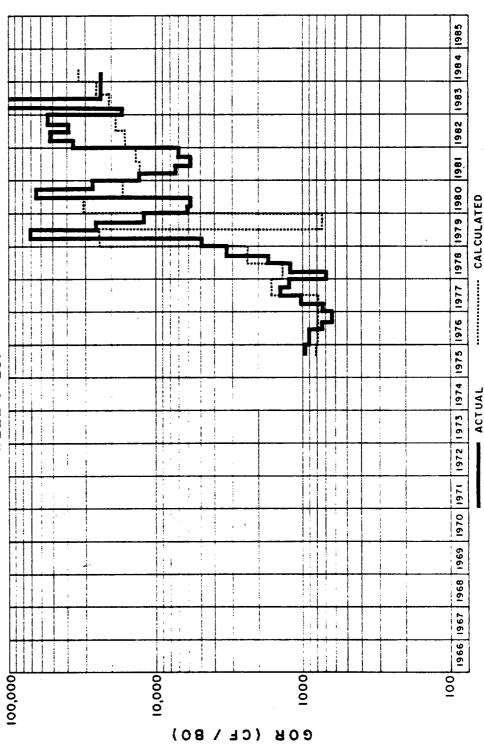
-



EMPIRE ABO UNIT EDDY COUNTY, NEW MEXICO SLICE MODEL HISTORY MATCH

ACTUAL WELL PERFORMANCE COMPARED TO NUMERIC MODEL CALCULATIONS ÷

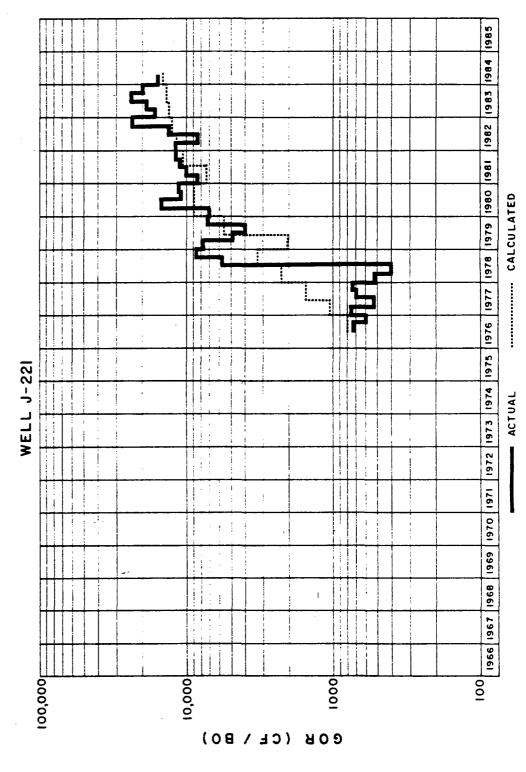




C-6

EMPIRE ABO UNIT EDDY COUNTY, NEW MEXICO

SLICE MODEL HISTORY MATCH ACTUAL WELL PERFORMANCE COMPARED

ACTUAL WELL PERFORMANCE COMPARED TO NUMERIC MODEL CALCULATIONS



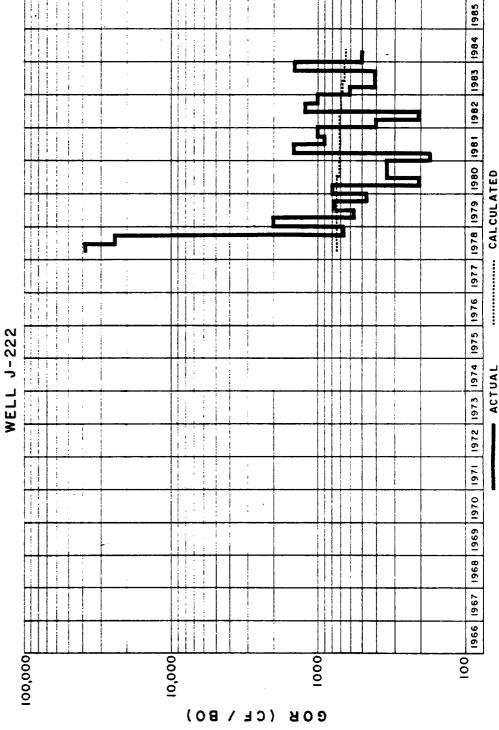



#### UNIT EMPIRE ABO UNI-EDDY COUNTY, NEW MEXICO

### SLICE MODEL HISTORY MATCH

ACTUAL WELL PERFORMANCE COMPARED TO NUMERIC MODEL CALCULATIONS




C-8

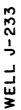
Products

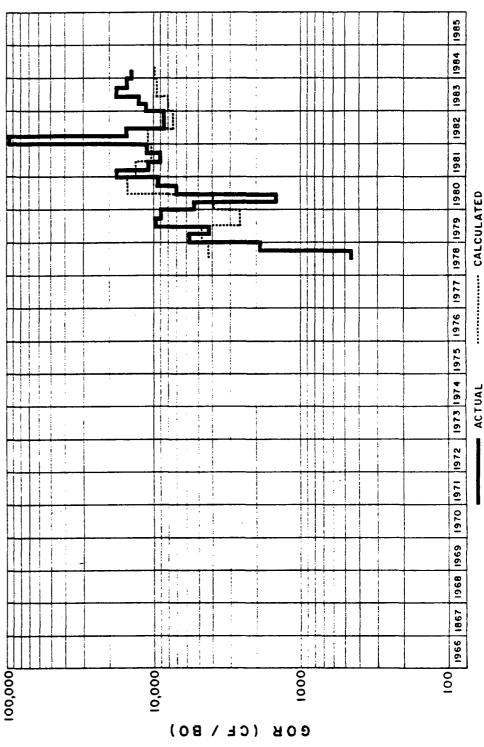
#### EMPIRE ABO UNIT EDDY COUNTY, NEW MEXICO

### SLICE MODEL HISTORY MATCH

# ACTUAL WELL PERFORMANCE COMPARED TO NUMERIC MODEL CALCULATIONS




. • .

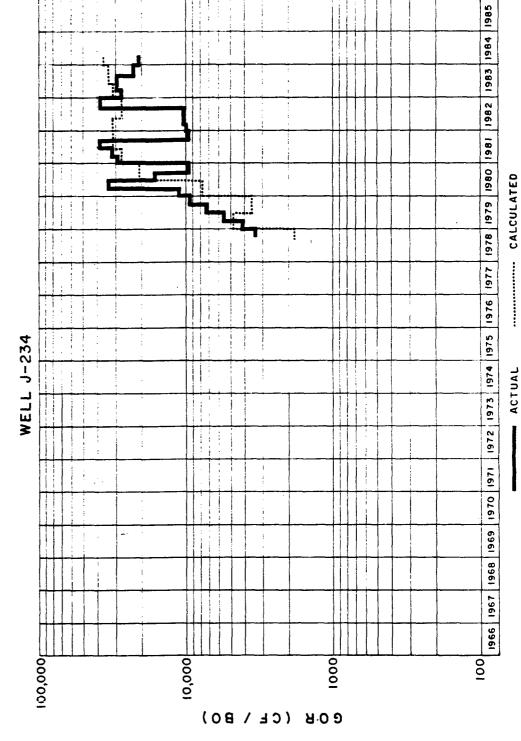

.

EMPIRE ABO UNIT EDDY COUNTY, NEW MEXICO

SLICE MODEL HISTORY MATCH

ACTUAL WELL PERFORMANCE COMPARED TO NUMERIC MODEL CALCULATIONS






Sec. Sec.

MPIRE ABO UNI EDDY COUNTY, NEW MEXICO FIGURE C-10 EMPIRE

SLICE MODEL HISTORY MATCH

ACTUAL WELL PERFORMANCE COMPARED TO NUMERIC MODEL CALCULATIONS

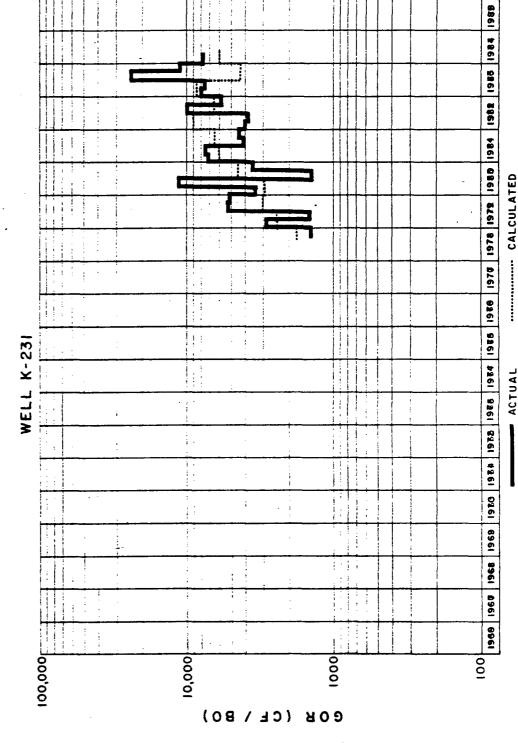


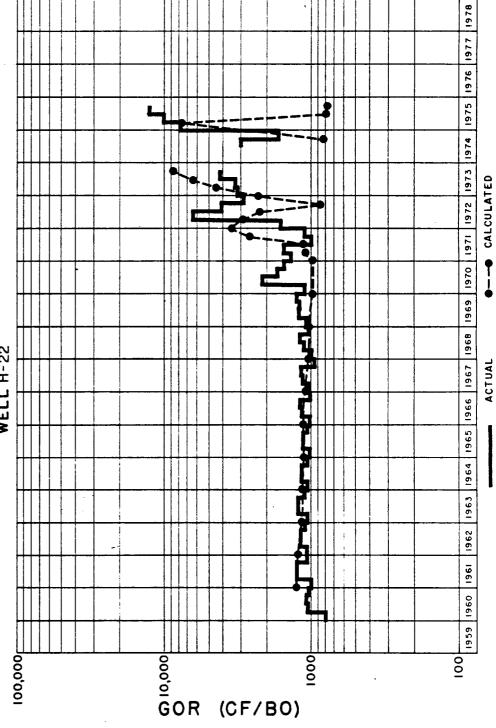
G-11

A State of the second s

EMPIRE ABO UNIT EDDY COUNTY, NEW MEXICO SLICE MODEL HISTORY MATCH

ACTUAL WELL PERFORMANCE COMPARED TO NUMERIC MODEL CALCULATIONS





FIGURE C-12 EMPIRE ABO UNIT EDDY COUNTY, NEW MEXICO

### SLICE MODEL HISTORY MATCH

# ACTUAL WELL PERFORMANCE COMPARED TO NUMERIC MODEL CALCULATIONS



ç




•

EMPIRE ABO UNIT EDDY COUNTY, NEW MEXICO FIGURE C-13

### SLICE MODEL HISTORY MATCH

ACTUAL WELL PERFORMANCE COMPARED TO NUMERIC MODEL CALCULATIONS





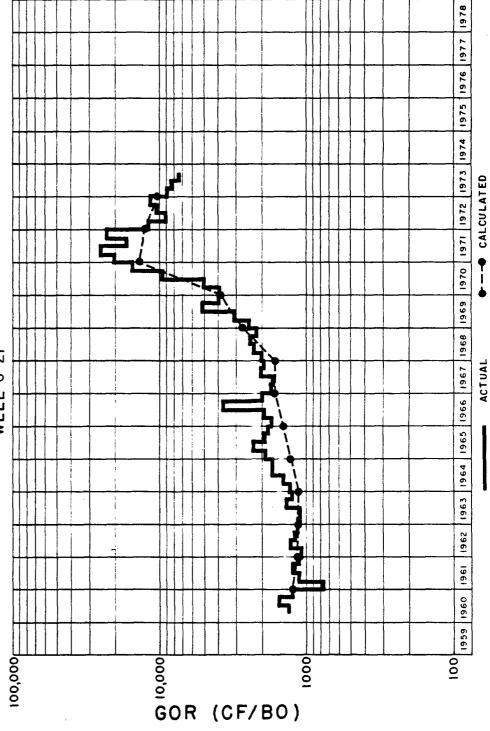

C-14

FIGURE C-14 EMPIRE ABO UNIT EDDY COUNTY, NEW MEXICO

### SLICE MODEL HISTORY MATCH

ACTUAL WELL PERFORMANCE COMPARED TO NUMERIC MODEL CALCULATIONS





G-15

APPENDIX D

-----

APPENDIX D

.

___

Energy Recoveries

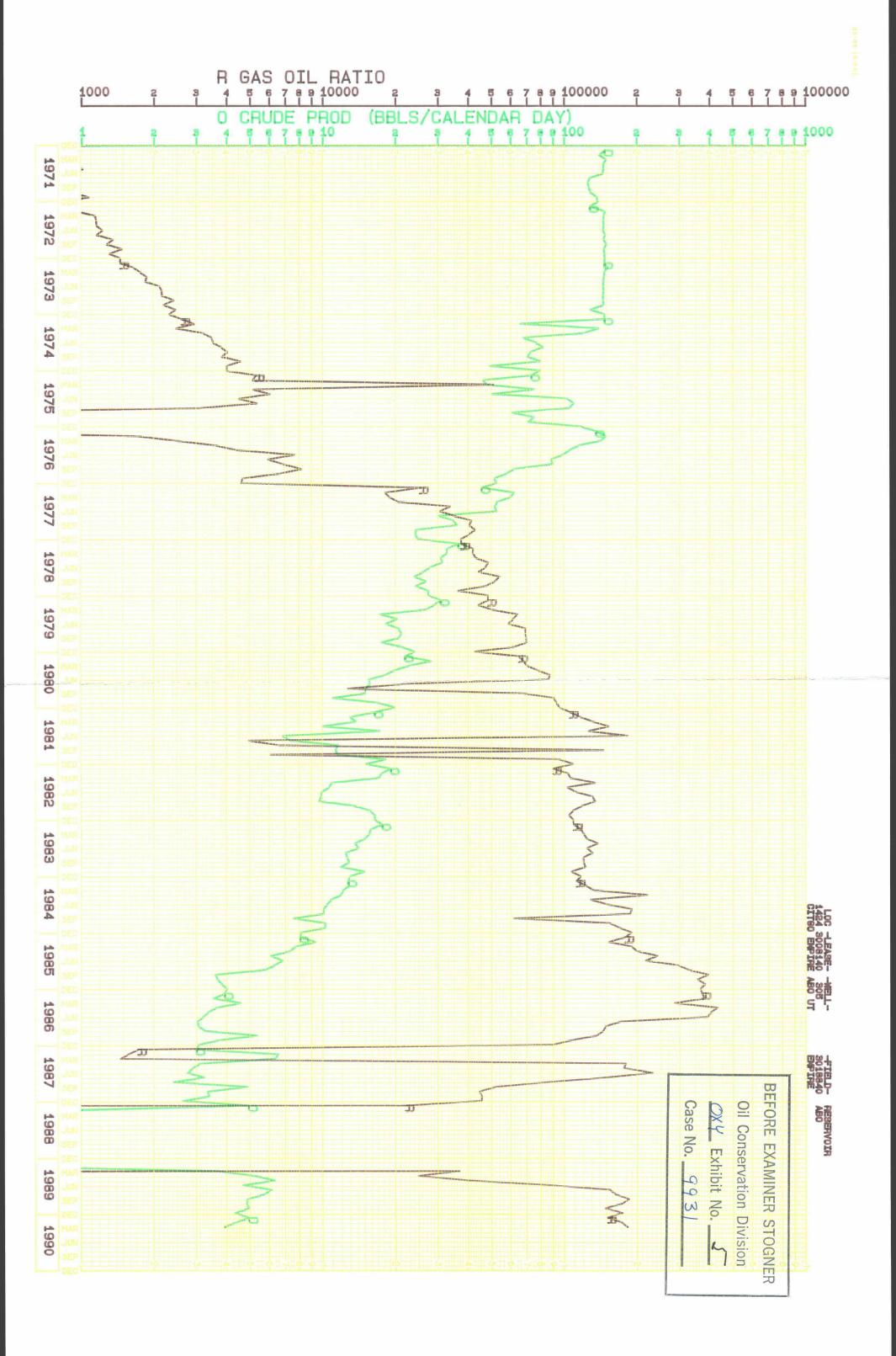
#### Energy Recoveries

Energy recovery is calculated by multiplying the remaining reserves of each product by its heating value. Table D1 lists the heating values of each product. Table D2 lists the energy recovery for the four blowdown cases studied.

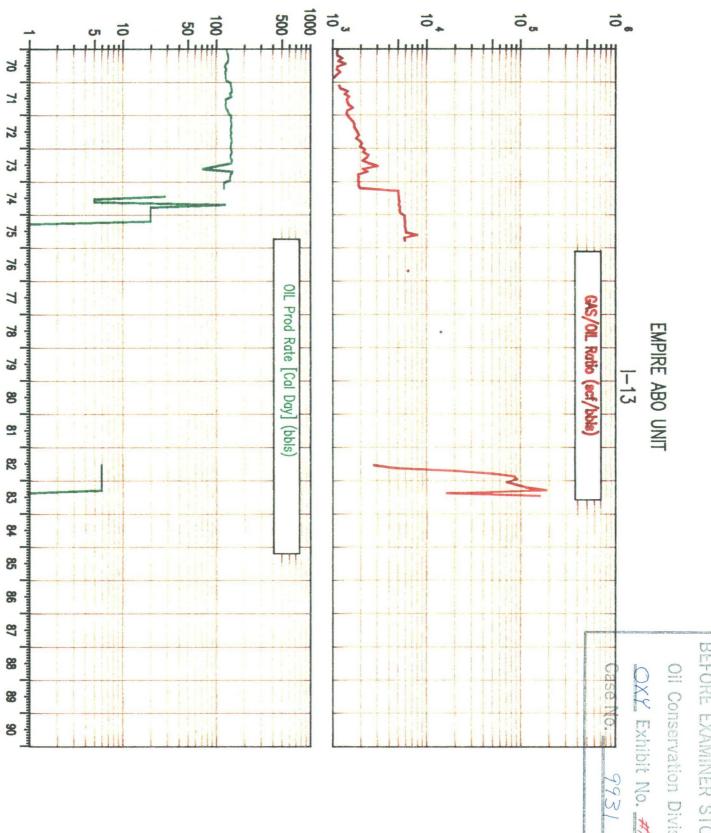
Table D1. Heating Values for Oil, NGL's, and Residue Gas.

Product	Heating Value	
Residue Gas	1,010,000 BTU/M	CF
Ethane	65,889 BTU/g	al
Propane	90,962 BTU/g	al
Butane	102,918 BTU/g	al
Gasoline	110,071 BTU/g	al
0i1	5,500,000 BTU/S	ТΒ

Recoveries.	
Energy	
TABLE D2.	


	Energy (MMMBTU)	38680	46435	38017	30182	12179	98450	263943
1/1/03	Volume (	38297 MCF	704748 Mgal	417943 Mgal	293266 Mgal	110649 Mgal	17900 MSTB	
5	Energy. (MMMBTU)	86002	37172	29945	23570	9436	87555	273680
1/1/95	Volume	85150 MCF	564156 Mgał	329201 Mgal	229020 Mgal	85728 Mgal	15919 MSTB	
06	Energy (MMMBTU)	112307	32315	25693	19806	7216	71335	268672
1/1/90	Volume	111195 MCF	490449 Mga]	282455 Mgal	192443 Mgal	65562 Mgal	12970 MSTB	
85	Energy (MMMBTU)	132925	27463	21871	16442	5750	46607	251058
1/1/85	Volume	131609 MCF	416806 Mgal	240444 Mgal	159758 Mgal	52541 Mga]	8474 MSTB	
Blowdown Start Date		Residue Gas	Ethane	Propane	Butane	Gasoline	0 i 1	

4


-

-

-







BEFORE EXAMINER STOGNER

**Oil Conservation Division** 

OXY Exhibit No. #10

ARCO Oil and Gas Company 🛛 🛟

Central District Post Office Box 1610 Midland Texas 79702 Telephone 915 688 5200 BEFORE EXAMINER STORMER Oil Conservation Division a OXY_ Exhibit No. _____ Case No. __993/____

CREED STOREST, NOT LIEL SHERAR JAK

May 21, 1990

TO: Working Interest Owners

RE: Empire Abo Unit Nos. G-24, F-27, F-31 Secs. 31, 32, 33 of T17S-R28E Eddy County, Texas AFE No. 915289

Dear Working Interest Owners:

Enclosed please find AFE No. 915289 for \$143,100 gross to workover wells F-27, G-24, and F-31 in the Empire Abo Unit. Justification from engineer, Gary Smallwood, and other supporting documentation is included for your information. ARCO respectfully requests your prompt approval of this work. To approve, please sign and return one (1) copy of the AFE to:

> ARCO Oil and Gas Company ATTN: Janet L. McCleery - MIO 394 P.O. Box 1610 Midland, Texas 79702

If you have questions, please don't hesitate to call me at 915 688-5544 or Gary Smallwood at 915 688-5359.

Sincerely,

Janes & Mc Cleary

Janet L. McCleery Operations Analyst Southwest District

Attachments

· .	Aliuu u	ت شابله	as Com	ouy 🦏		-						•
•.	Title		•								🗷 Origina	al authorization
	Empire A	bo Un	it Nos.	G-24, F-	-27, F	-31		<u></u>				
	Taraa Da					~					Economic	
		riora	tions; 5	queeze o	id per	ts.			State/county co	0e	AFE number	Not required
		32 8	33: 175	-28E Eddy	v Co.	NM		1	30-01		915	289
	Originated by/Departs		,		<u>,</u>	Distri	ct	····			Project or pro	gram identifier
			ineering				NW-C	entral		L40		
	Field name/Play name	-	hame			ł	play code	Book propert				
	Empire A	po	16.0.00			1	64185	<u> </u>	266 -01			
	Lease record number			to prod. payment undings			Organizatio	n coou	Co-owner opera	-	s)/Property code	
	- Pr		t authorizatio			ion for dr	illing	<u> </u>		Judget inf	ormation	<u> </u>
	New drilling		Developme		Rete			1 .	Amount	В	I code 2 Amou	
	Recompletio	n	Exploratory	, બંદ				453	52.550			
	X Workover		Other		Compine	-		Approve	d capital pro	ogram: b	udget year 1	9 N.A.
	Drill old well o		1	A1	Peserve	- 1818 -	%	🛛 🗆 Origir	nal budget		ved L.E.	Other:
	✓ Pn Oil only	Signature	Jective of dri	ling (definitio	n on reve	rse side)			uded in approve ir expenditure ci		🛛 Yes	
	Gas only		peer and/or Explo	ration grap				by Approve	d capital allocati		🗋 Yes	No No
	Oil/Gas	4	WITVE	polson	L			it no, amou capital to b	nt of additional e requested		\$	
	Component	1	Description a	nd justificatio	<u> </u>		/Sub		Gross am	ounts-in v	vhole dollars	only
	AFE No.(S)					Accour	nt codes	On hand	1 Cap	ital	Expense	Total
		Warl	overs				501		1		1/2 100	1/2 100
		WOLI	COVELS	- <u></u> -	- <u></u>	<u> </u>	501				143,100	143,100
									1	1		
					<u></u>					. 1	······	
			·	<del></del>		ļ						+
										c i		
				<u> </u>					· · · • • · · · · · · · · · · · · · · ·		····.	
	Other	Į	se side if more lin						·	1		
	Opns mgr	Operator	ee detail	on back	<u></u>	·	Gross lotan	s .	·····			······
			OGC		-				1		143.10	143,100
	Engineering	1		: .			Net A D G C	snare	·····			
	<u>.</u>	L	C interest dec		7! 2! 2			·			52,550	52,550
	Si Sudget	Present w	orth AFIT I Invest	Enciency AFIT	Rate of retu	10 - AFI -	Gross Range		veri Capi ^{Lower} peri Expi ^{Lower}		(Upper	204,000
	Ti Procedural				Chance fac	tor (%)	Requested Net		veri Capi Lowei		Upre-	
		1					Range Requested		peri Exp Jwe		793 Jupper	74,914
mgWE.753	D B Bapioration	Co-owne	approval signatu	10 1	1		Foreca (Net		rior year	Curre	ent year	Thereafter
ponse \$ 1		Date	dward Como	1 Beh	<u></u>	·	(ner	•/	_	• 		<u></u>
ponse # /	578	cl	ulaci	OXYUS	A INC.		Capital	S		s S		s
U	Land mgt	Estimated	start date		d completion	date		i		1		
51	· _ i i		5/90	6	6/90		Expense	e ; S		s 52	, 550	\$
•		oproval	s (check high	nest level requ	Date		Executive V	Aut		enditure li	mit table No.	- 123-1 Date
	× 24	h	/	E	,	190						i
	Vice President - O	30			Jate		President-A	A Cu				Date
		<u> </u>			<u> </u>		<u> </u>					
	Vice President-A O I	5 C			Date			tine Board		-		Date 1
	Senior Vice Presider	t-AOGC			Date		Board of Di					Date
	Ξ				•							
	President-A O G C				Date							Date
					<u> </u>		<u> -</u>					<u> </u>
	AH38-342-N		A	RCO Oil and	Gas Com	pany is a	Division o	t AtlanticR	ichfieldCom	pany		

×/-

	ion for Expenditure				<u> </u>	AFE	No.
omponent	Description and justifica	tion Gen/S				-In whole dollars	
AFE No.(S)		Account	codes Or	hand	Capital	Expense	Total
	G-24 Workover				<u>,,, _, _, _, _, _, _, _, _, _, _, _, _</u> ,	44,700	44,700
	F-27 Workover	· · ·			<u></u>	44,700	44,700
	F-31 Workover					53,700	53,700
						+	
					<u></u>		
		·					
		·····					
	<u></u>						
ste: Include an	y amounts shown on this page in to	itals on reverse side.					
Definition of objective of	Oil only: Refers to a well drilled wi primary Gas only: Irilling. Refers to a well drilled wi Oll and/or gas:		•				

Develop	reserves:
---------	-----------

Applies to wells drilled to develop new or additional proved reserves and attendant productive capacity. All exploratory wells plus development wells that meet the above criteria, fall in this classification. Rate: Applies to wells drilled to accelerate the production of existing proved reserves. Combination reserves and rates:

Applies to wells whose economic justification is partially based on additional reserves to be developed with attendant productive capacity added, and partially based on the accelerated recovery of existing developed proved reserves. For this classification, show the percent of the economic justification which is applicable to the rate portion of the well Definition of reason for drilling.

Secondary recovery: Applies to wells drilled in connection with a secondary recovery project. These may be infill wells, wells drilled to fill out flood patterns, or wells drilled to replace producers converted to injection or supply service.

**Replacement:** Applies to wells drilled to replace wells that have ceased to produce

Service:

Applies to wells drilled for the purpose of supporting production in an existing field such as gas, water, steam, and air injection; salt water disposal water supply for injection, observation, and injection for in-situ combustion; etc. Tertiary recovery:

Recovery tertiary reserves

ARC	O Oil a	and Gas C	ompany 🛟	:	5	5/7/90		Autho	orizati	on for E	xpenditure
Title			·······	· · · · · · · · · · · · · · · · · · ·			<u> </u>				authorization
Em	pire A	bo Unit No	os. G-24,	F-27, F	-31				* * • •	Revision	1#
										Economics	Z Required
Lo	wer Pe	rforations	; Squeeze	old per	fs.						Not required
Location							Sta	ile/county code		AFE number	10
			17S-28E Ed	dy Co.,				30-015		<u>1150</u>	87
•	o by/Departi				Distr		_		L40	Project or progr	am identifier
		d/Engineer	ing	<u> </u>	Eveld	NW~C	BOOK property		540		
					l	64185	643426				
	pire A		Subject to prod payme	nt   Well plan pl		Organizatio		-owner operator A	FE No.(S)	Property code	
			Other lundings	1		-	į				
~	P	urpose of autho			son for dr	illing		Budo	get infor	mation	
Nev	w drilling	Develo	opment	0% Rate	Pecover	v D Secondary Pecovery		nouni		ode 2 Amoun	r <u></u>
Rec	completio	n Explo	ratory	0/0 Develop Reserves	- Replace		453	52.550		ļ	
XWo	rkover	Other					Approved	capital progra	m: buc	toet vear 19	N.A.
Drill	I old well o	deeper			id - rate	%		I budget		-	
<u>~</u>	Pri		of drilling (defini	tion on reve	rse side)		-	ed in approved pro		🗆 Yes	
	only	Signature Dist Engineer and/o	r Exploration gr <b>gy</b> p					expenditure can be apital allocation	tunded	🗋 Yes	
	sonly	IAn	1. halso	$\sim$			If no, amount	of additional	-		
Oil	/Gas	- 4°					capital to be r		S		
	ponent No.(s)	V Descrip	tion and justifica	tion	1	/Sub nt codes		Gross amoun			
	100.(0)						On hand	Capital		Expense	Total
		Workover	F			9501				143,100	143,100 _
	·····		J					· · · · · · · · · · · · · · · · · · ·		143,100	145,100
											1 - 2
		; l		· · · · · · · · · · · · · · · · · · ·				+ 1	1		
		! !									
		1			1			1	4		1
		 •	······ —					•			
					1				ł		
	Other		nore lines are needed	<u> </u>	! ┿─────						
	<b>U</b>			. 1.					÷		
	Opns mgr	0	tail on bac	:к	<u> </u>	Gross totais		<u> </u>			·
		AOGC		÷						143.100	143,100
	End neering		· · · · · · · · · · · · · · · · · · ·			Net A D G C	share				
3		A O G.C. intere	st decimai 🕴 3.	6 7 2 2	1 7   8   C					52,550	52,550
Audits	Budger	Present worth AFIT	Invest Efficiency AFI	T Rate of retu	µm S AFIT	Gross Range		Cap: Lower		·Upper	
Au	·	4	i i	L		Requested			124,70		204,000
Cal .				Chance fac	:IOI (%)	Nei Range		Cap-Lower		133QU	7/ 01/
Fechnical /	D-	Co-owner approval	i Signature	<b>.</b>		Requested		ri Exp. Lower	45,79	13 jobber	74,914
Te	1	- Edua	J'Rein	l,		Forect (Net S		or year	Curren	t year	Thereafter
	Evaluation	Date	Company DXY	usa inc.		Capital	S	;	\$	s	
 :	Land mgt	Estimated start date 5/90	Estim	ated completion 6/90	dale	Expense	e ⁱ S		s 52,	550 s	<u></u>
		<u> </u>	k highest level re	·····		+	Auth	prized expendi		·····	123-1
<u></u>		ppiorals (clied	k inghest level ie	Date	1	Executive V	ce President				Date
ଛି 🚽	4U	tol		Shy	190	E					
I ce Pro	esisteni- 0	Gq	· · · · · · · · ·	Sate	<u> </u>	President-A	R Cu			••••••••••••••••••••••••••••••••••••••	Date
	1	]					<u> </u>				
Ver Pre	esident-A U	GC		Daie		Criairman o	tine Board				Date
			· · · · · · · · · · · · · · · · · · ·			↓ <u></u>	· · ·				<u></u>
Senior 1	vice Preside	ni-AOGC		Date		Board of Di	rectors				Date
						↓ <u> </u>					Date
				Date							*
				<u></u>		<u> </u>					······

4H38 362-N

•

.

.

ARCO Oil and Gas Company is a Division of AtlanticRichfieldCompany

e	ion for Expenditure			<u></u>	AFE	No.
Component		Gen/Sub		Gross Amounts	-in whole dollars	s only
Component AFE No.(s)	Description and justification	Account codes	On hand	Capital	Expense	Total
	G-24 Workover				44,700	44,700
	F-27 Workover				44,700	44,700
	F-31 Workover				53,700	53,700
	· · · · · · · · · · · · · · · · · · ·					
					-	
				<u></u>		

Definition of primary objective of drilling,	Oil only: Refers to a well drilled where primary objective is oil only or oil and casinghead gas. Gas only: Refers to a well drilled where primary objective is gas only or gas and condensate. Oil and/or gas: Refers to drilling in areas where primary objective is dual or uncertain.
Definition of reason for drilling,	Develop reserves: - Applies to wells drilled to develop new or additional proved reserves and attendant productive capacity. All exploratory wells plus development wells that meet the above criteria, tall in this classification. Rate: Applies to wells drilled to accelerate the production of existing proved reserves. Combination reserves and rates: Applies to wells whose economic justification is partially based on additional reserves to be developed with attendant productive capacity added, and partially based on the accelerated recovery of existing developed proved reserves. For this classification, show the percent of the economic justification which is applicable to the rate portion of the well Secondary recovery: Applies to wells crilled in connection with a secondary recovery project. These may be infill wells, wells drilled to fill out flood patterns, or weils drilled to replace producers converted to injection or supply service. Replacement: Applies to wells drilled to replace wells that have ceased to produce Service: Applies to wells drilled for the purpose of supporting production in an existing field such as gas, water, steam, and air injection; salt water disposal water supply for injection, observation, and injection for in-situ combustion; elc Tertiary recovery: Recovery tertiary reserves



Date: May 18, 1990

Subject: Empire Abo Unit Lowering Perforations Gas Injection Well Nos. F-27, F-31 and G-24 Eddy Co., New Mexico

From/Location:G. B. SmallwoodMIO-723Telephone:688-5359To/Location:J. A. NicholsonMIO-531

We recommend approval of the attached AFE for workover of the <u>three subject gas injection</u> wells in the Empire Abo Unit. AOGC operates the unit with a 36.7% working interest and a 31.6% oil NRI, 24.3% gas NRI and 8.07% NGL NRI. The total gross estimated cost of the three well perforating and squeezing program is \$143M with a net cost to ARCO of \$52.5M.

In 1984, Schumbera and Staggs completed the Empire Abo Unit Performance Projection. The projection emphasized the future of NGL performance to the unit. Two of the key findings of this projection were:

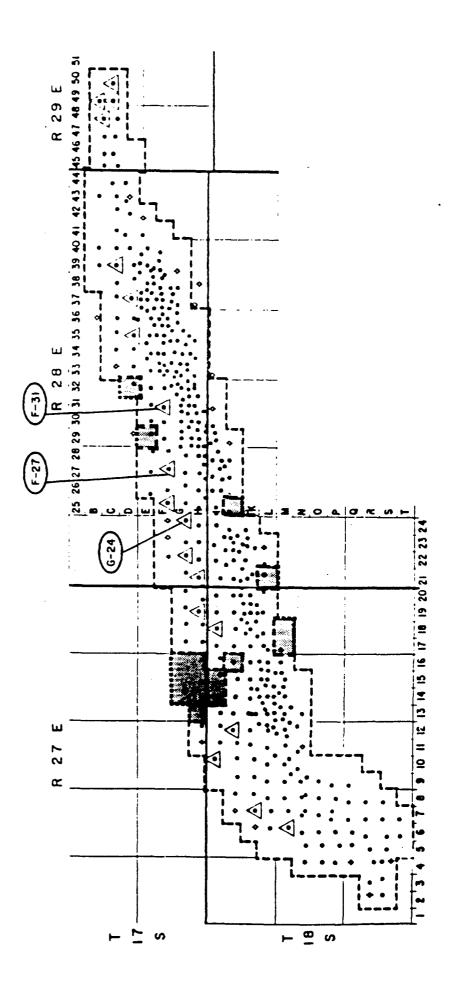
- 1. Half to three-quarters of the amount of each NGL component remaining in the year 1981 resides in the residual oil in the gas cap.
- 2. Most future NGL recovery can be attributed to contacting of residual oil with lean gas. Sweep efficiency will have an important effect.

Incremental reserves for this project are based on a comparison of the average NGL content of the entire Unit's produced gas(3.86 gal/mcf) with that of the target injection area. The target area has a NGL content of 5.25 gal/mcf. It was assumed that by moving injection gas to the area of higher NGL's that liquids would be recovered at the same rate as predicted for the field but at the higher starting point of 5.25 gal/mcf. We assumed that 3 MMCFPD per well would contact NGL's in the target area. The NGL's are recovered at the incremental rate of 1.315 gal/mcf. The rate reflects the plant's 93% overall recovery efficiency. These numbers are considered somewhat conservative since each injection well is likely to inject as much as 6 MMCFPD.

A review of the field's injection wells indicated that 45% of all injection gas had entered only 3 of the 16 gas injection wells, implying the obvious need to redistribute injection gas. Lowering the perforations in the three subject wells is consistent with our plan to redistribute gas and improve sweep efficiencies. We have attached a simple illustration showing the concept of improved sweep and NGL recovery as Figure 1B.

J. A. Nicholson, MIO-531 April 30, 1990 Page 2

We have reviewed the cost estimates to kill and squeeze the subject wells with the drilling department. We were concerned that it might be extra troublesome to kill these wells. They have been on gas injection for a long time and it seemed likely they would drink a lot of fluid. It appears there are sufficient funds to cover such a case. In addition we agreed to move the completion packer above the old perforations and run tailpipe below them. See the attached wellbore schematics. This should assure future mechanical integrity tests and help protect the squeeze job from matrix acid treatments of the new perforations.


The workover of Well F-27 and G-24 includes squeezing existing perforations and perforating deeper. The workover of Well F-31 includes squeezing existing perforations, drilling out a CIBP and repairing a highly probable casing leak.

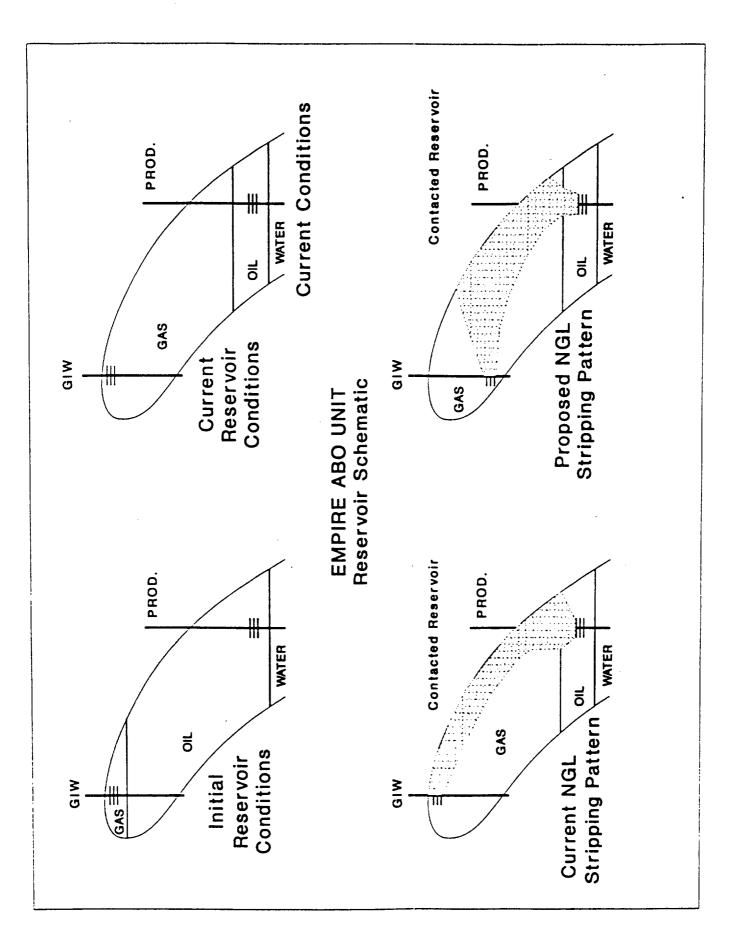
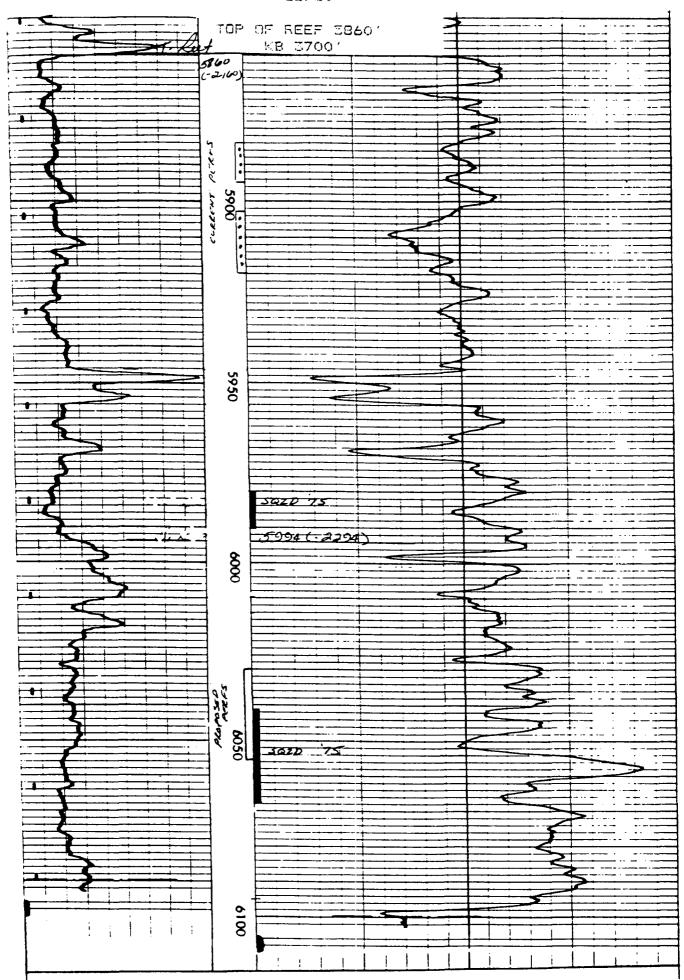
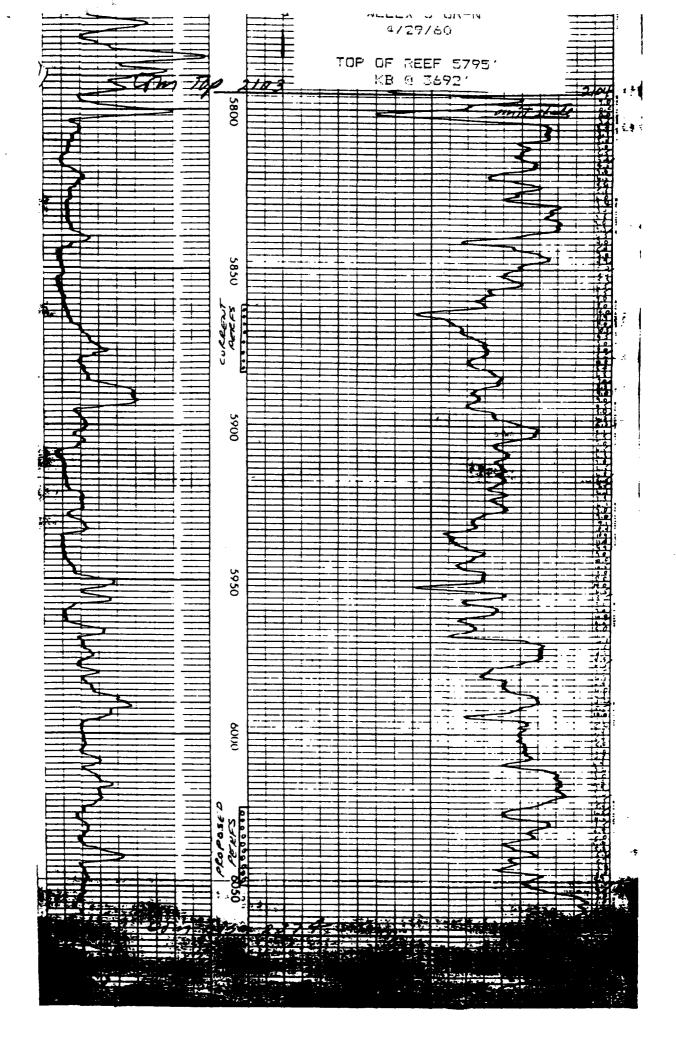
We recommend approval of the three proposed workovers.

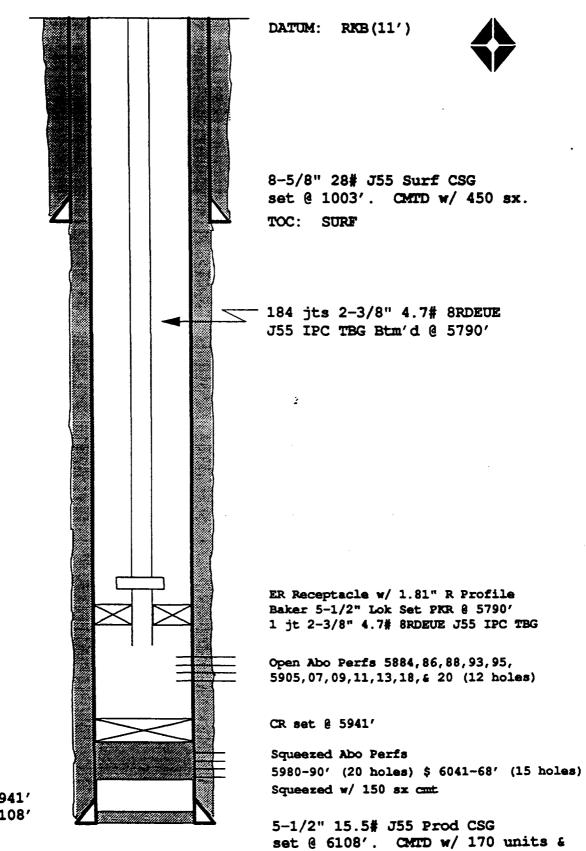
Yary & Small wood

Gary B. Smallwood Sr. Engineer

# Eddy County, New Mexico

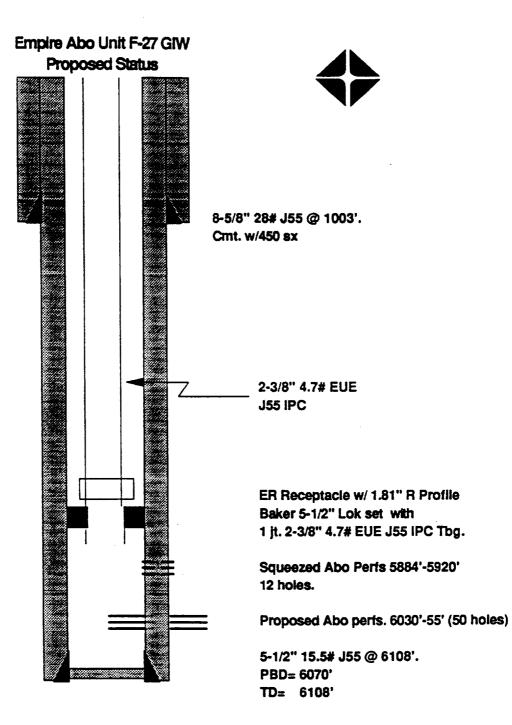


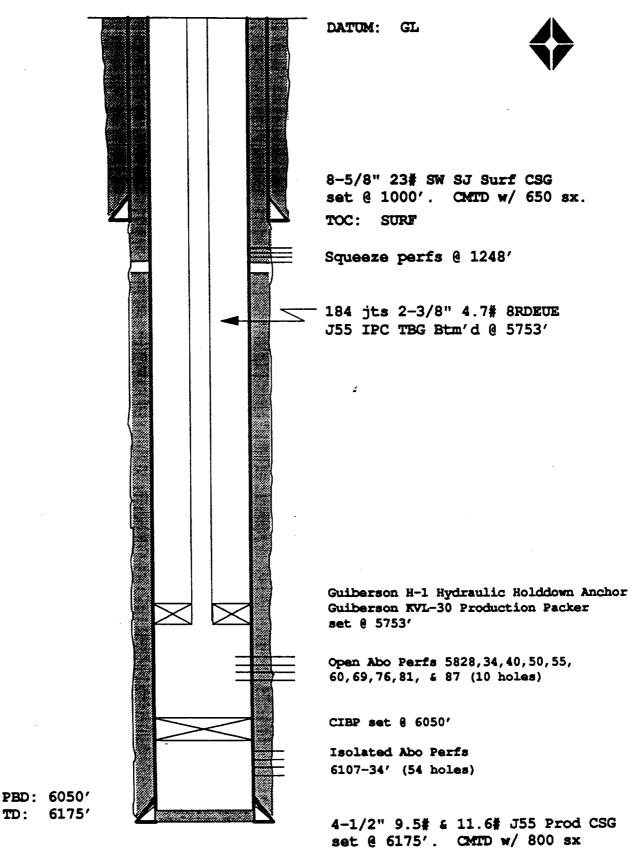


Figure 18

WELEX 10 98-9

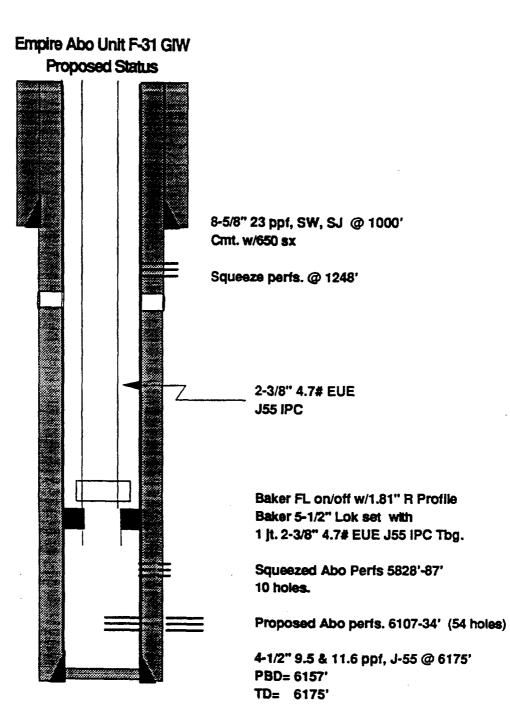
•

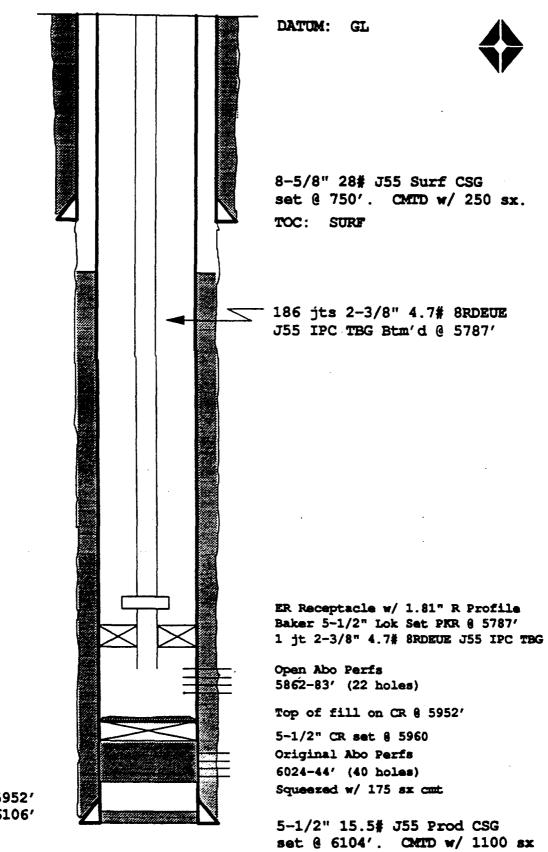




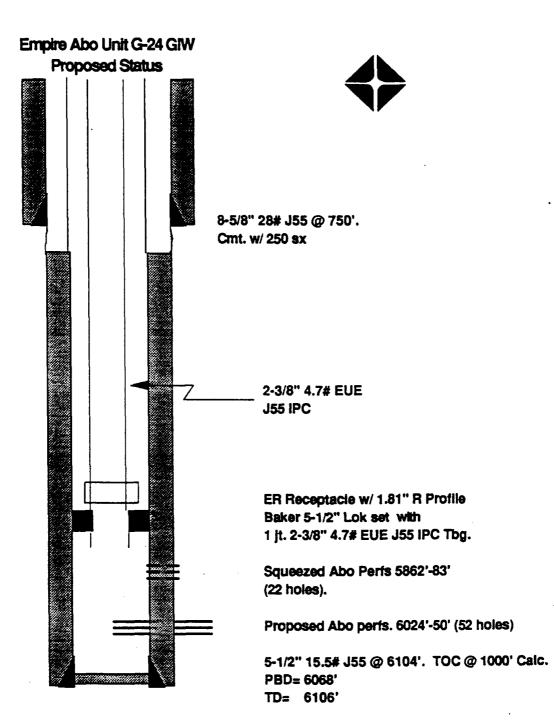

PBD: 5941' TD: 6108'

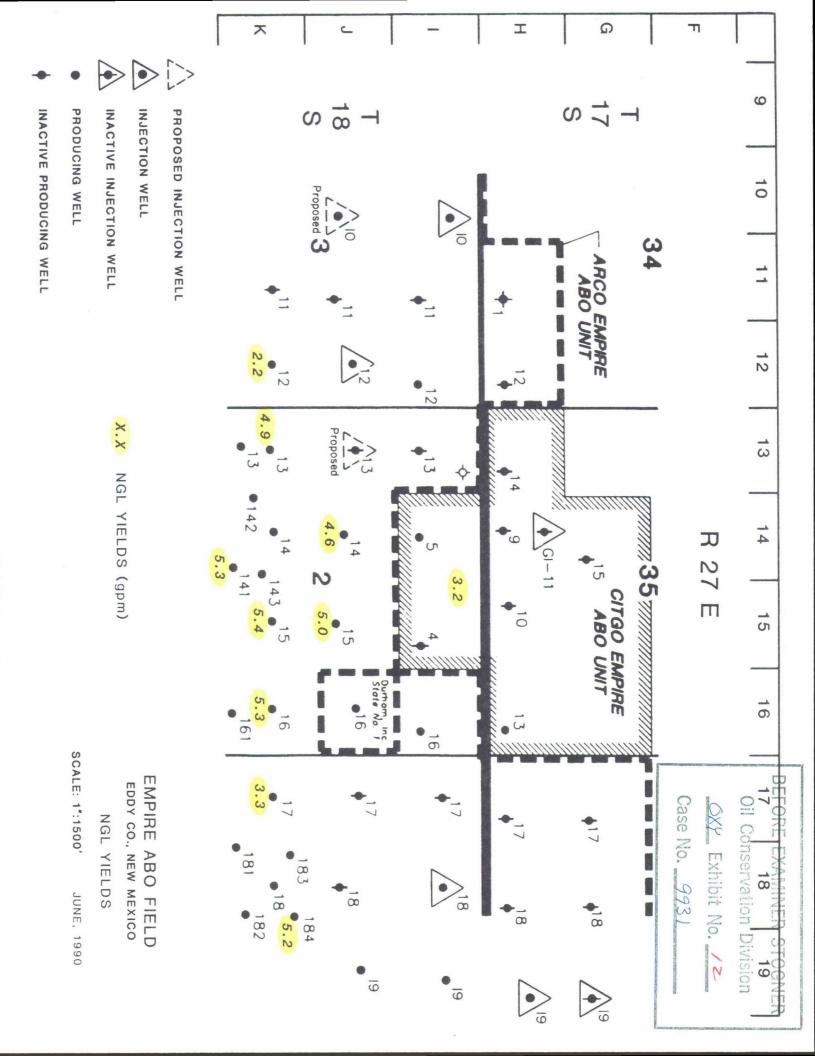

150 sx. TOC: Surf

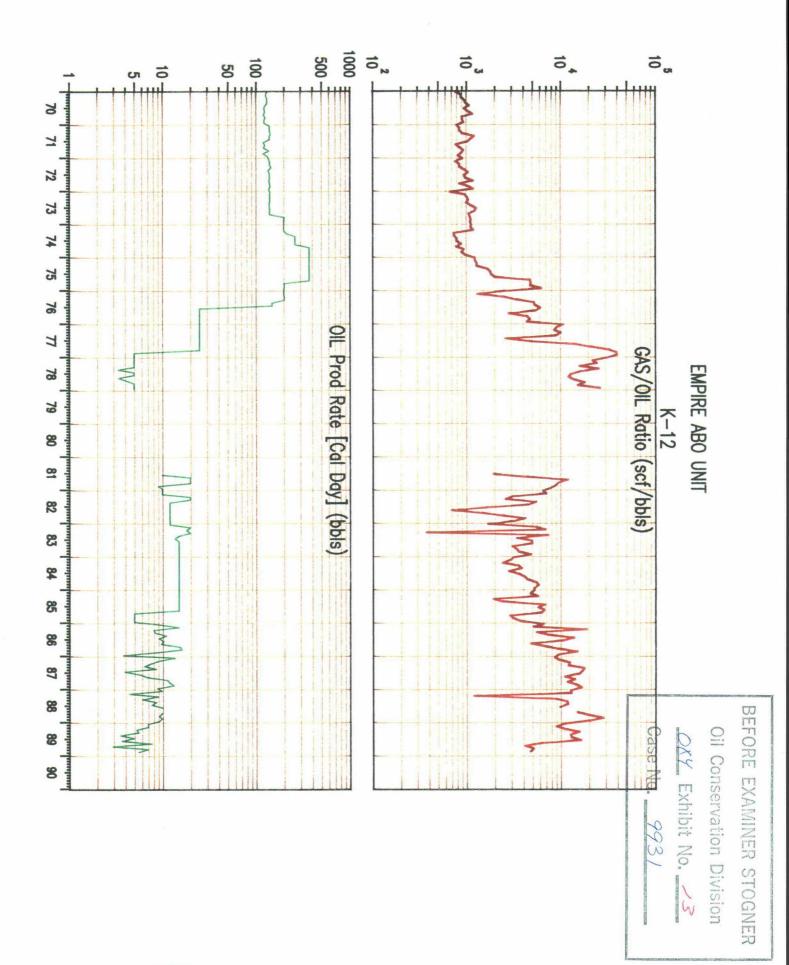


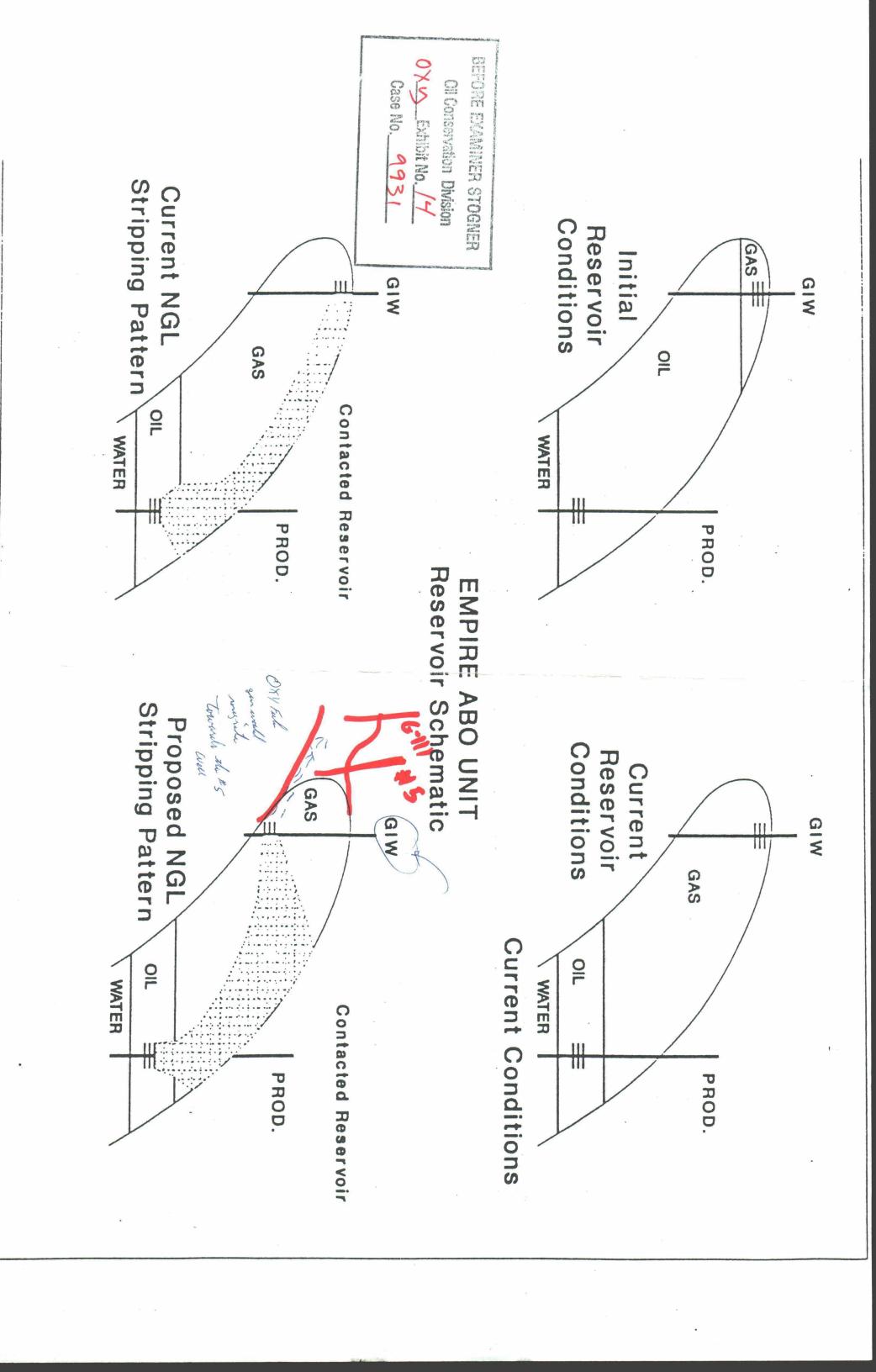

:

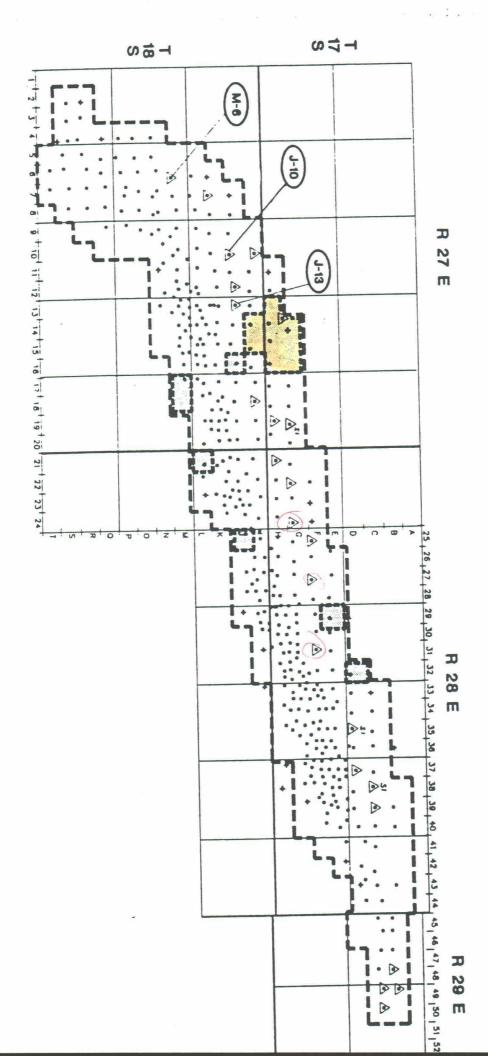



TOC: Surf

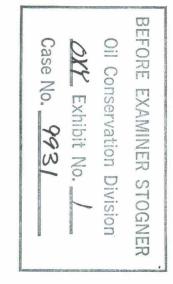


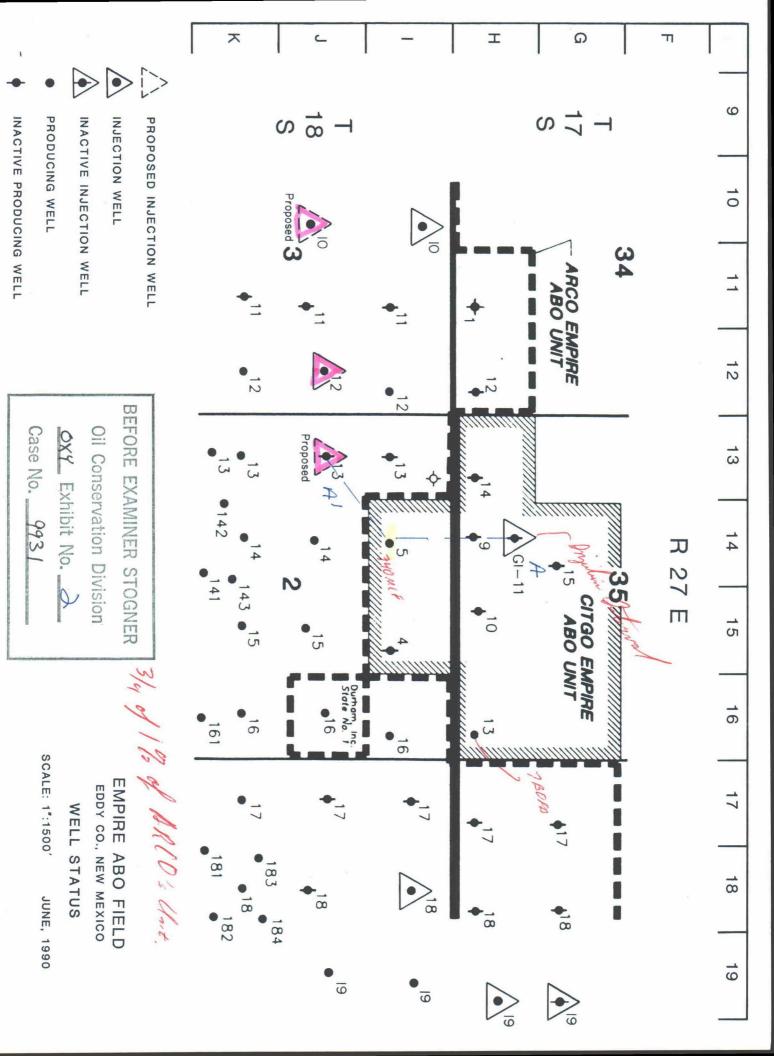



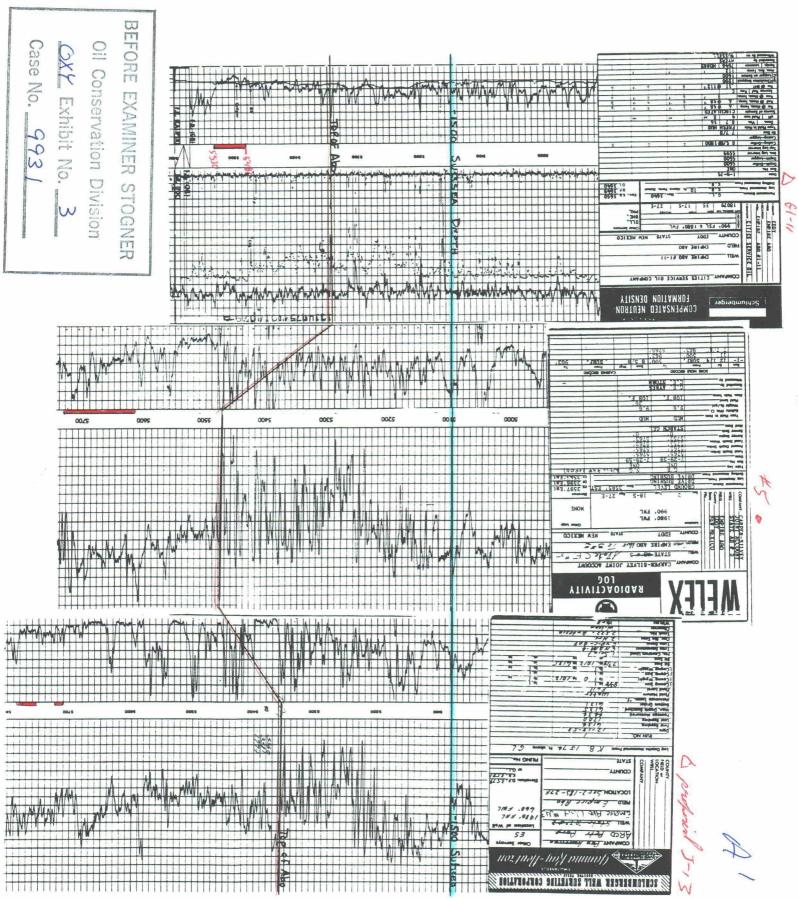


TOC: 1000' - Calculated


PBD: 5952' TD: 6106'

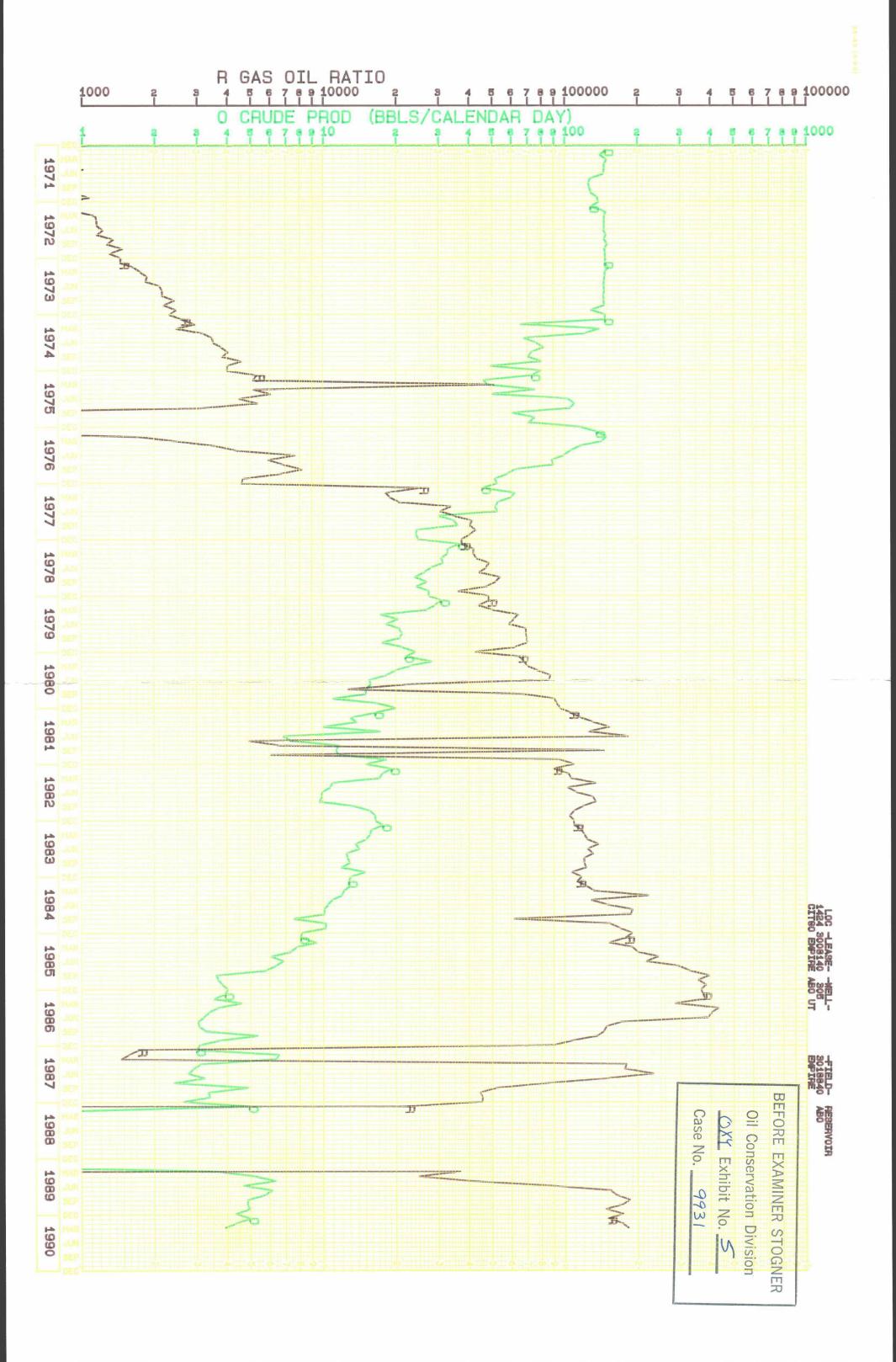


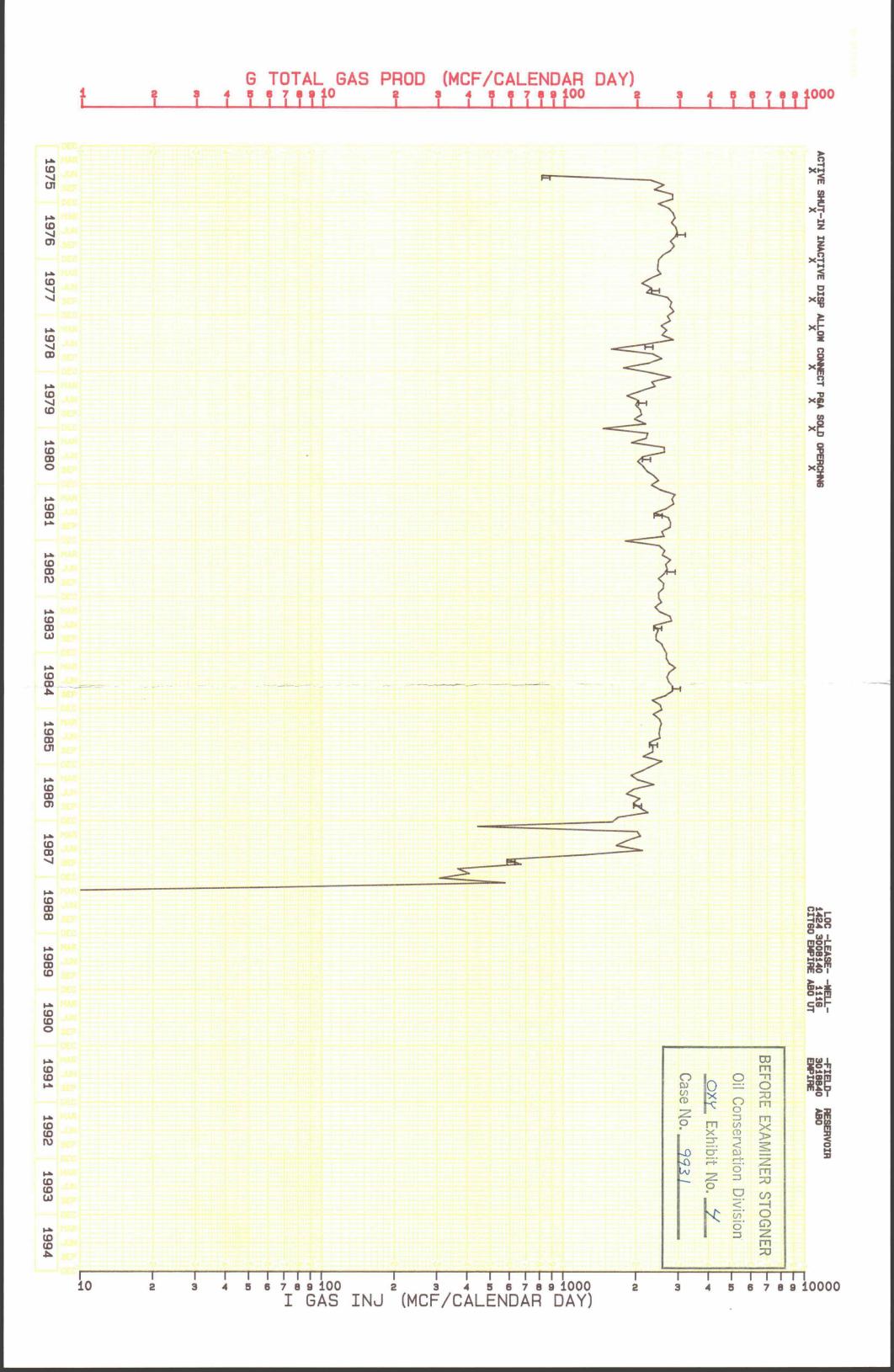






EMPIRE ABO UNIT Eddy County, New Mexico








P





			BEFORE EXAMINER STOGNER Oil Conservation Division	TOGNER vision
CITGO	EMPIRE	CITGO EMPIRE ABO UNIT	Case No. 7937	2
MIC IMPACT	<b>L</b> OF REDUC	ECONOMIC IMPACT OF REDUCED OIL PRODUCTION	DDUCTION	
	WELL #305	05		
	OIL	GAS	GOR	
MARCH 1990	122 BBL	23,036 MCF	188,020 CF/BBL	
ESTIMATED OIL RATE • 400,000 GOR	58 BBL	23,036 MCF	400,000 CF/BBL	
	64 BBL			
ECONOMIC IMPACT	64 BBL/MON	34 BBL/MONTH•\$18.00/BBL = \$1,152/MONTH	\$1,162/MONTH	
ANNUALIZED LOSS	\$1,152 • 12 M	\$1,152 • 12 MONTHS = \$13,824/YEAR	24/YEAR	
			smm 5/15/90	

BEFORE EXAMINER STOGNER Oil Conservation Division	CITGO EMPIRE ABO UNIT Case No. 993/ ANALYSIS OF NATURAL GAS LIQUID PRODUCTION		NOVEMBER 1986 2.187	AUGUST 1988 2.564	JANUARY 1990 3.135	NGL YIELDS HAVE INCREASED 43% SINCE 11-86	IF YIELDS RETURN TO 11-86 LEVELS WITH OFFSET INJECTION, OXY WILL LOSE 30% OF CURRENT NGL PRODUCTION [2.187/3.135 - 70%] Am 5/1/20
------------------------------------------------------	----------------------------------------------------------------------------------	--	---------------------	-------------------	--------------------	-------------------------------------------	--------------------------------------------------------------------------------------------------------------------------------------------

emm 6/14/00		
ALUE. S GAS STATEMENT	RESENT 31% OF TOTAL GAS VALUE. LES VOLUMES FROM PHILLIPS GAS STATEMENT	NOTE: NGL SALES REPRESENI BASIS: MARCH 1990 SALES VO
HS - \$74,520	ANNUALIZED LOSS \$6210 X 12 MONTHS - \$74,520	NNUALIZED LO
\$ 6,210	27,660 GAL \$ 6,21	ross
\$14,485	64,540 GAL	NOV. 1986 YIELD (70% OF CURRENT)
\$20,695	92,200 GAL \$20,69	CURRENT YIELD
NGL VALUE	NGL VOLUME NGL VAL	
JNIT Case No. 9731 Case No. 9731 iL PRODUCTION	Case No 24 ECONOMIC IMPACT OF REDUCED NGL PRODUCTION	CITC CITC ECONOMIC IMP/
$\simeq$ $\sim$ $\sim$	BEFOR Oil (	

BEFORE EXAMINER STOGNER
Oil Conservation Division
OXY Exhibit No. 2
Case No. <u>9931</u>

BLOWDOWN EVALUATION EMPIRE ABO UNIT ABO RESERVOIR EDDY COUNTY, NEW MEXICO January, 1985

by Timothy J. Detmering ARCO Oil and Gas Company Midland, Texas ARCO Oil and Gas Company Permian District Post Office Box 1610 Midland, Texas 79702 Telephone 915 684 0149



Joe R. Hastings District Engineer — West

April 3, 1984

WORKING INTEREST OWNERS EMPIRE ABO UNIT

Gentlemen:

The following report documents our analysis of blowdown timing for the Empire Abo Unit. It is our recommendation, based on the information presented, that residue gas injection be continued to the year 1995. Basis for this recommendation is the optimizing of energy recovery and the maximizing of undiscounted cash flow. This recommendation does not, however, preclude reservoir blowdown at an earlier date should changes in market conditions and/or reservoir performance deem it more economical to do so. If you have any questions about any of the information presented in this report, please feel free to give me a call at (915)684-0149 or contact David Douglas at (915)684-0163.

Yours very truly, Joe R. Hastings

JRH:sc Att. TABLE OF CONTENTS

# TABLE OF CONTENTS

Summar	^у	1
Conclu	usions and Recommendation	3
Introd	duction	4
Field	History and Geology	5
Perfor	mance Projections	10
Econom	nic Evaluation	20
Refere	ences	27
	TABLES AND FIGURES	
Tables	5	
1 E	Economic Summary	2
2 P	Prices, Tax Rates, and Costs	2
3 R	Reservoir Data Summary	7
4 E	Economic Summary	21
5 P	Prices, Tax Rates, and Costs	21
6 D	Detail of Economics for Blowdown at 1/1/85	23
7 D	Detail of Economics for Blowdown at 1/1/90	24
8 D	Detail of Economics for Blowdown at 1/1/95	25
9 D	Detail of Economics for Blowdown at 1/1/03	26
Figure	25	
1 U	Jnit Map	8
2 U	Jnit Performance	9
3 G	Gas Reserves vs Blowdown Timing	12
4 N	IGL Reserves vs Blowdown Timing	13
5 0	Dil Reserves vs Blowdown Timing	14

6	Energy Recovery vs Blowdown Timing	15
7	Predicted Reservoir Performance for Blowdown at 1/1/85	16
8	Predicted Reservoir Performance for Blowdown at 1/1/90	17
9	Predicted Reservoir Performance for Blowdown at 1/1/95	18
10	Predicted Reservoir Performance for Blowdown at 1/1/03	19
11	Net Income vs Blowdown	22

# APPENDIXES

A	Black Uil Numeric Simulator Description and Design
В	Discussion of Oil Rate and Reserve Forecasts
С	Black Oil Numeric Simulator History Match
D	Energy Balances

SUMMARY

# SUMMARY

Recovery of energy from the Empire Abo Unit will be maximized by initiating residue gas sales in 1995. As a result of maximizing energy recovery, the working and royalty interest owners of the Empire Abo Unit will maximize their undiscounted net income. The impact of blowdown is summarized in Table 1, on page 2.

Blowdown Start Date	Unit Oil Reserves After 1/85 (MSTB)	Unit NGL Reserves After 1/85 (MSTB)	Unit Gas Reserves After 1/85 ¹ (MMSCF)	Undiscounted Net Income BFIT (MM\$)	Gross Energy Recovery (Trill. BTU)
1/85	7415	4527	82641	361	251
1/90	11350	5369	69244	399	268
1/95	13929	6292	52153	410	274
1/03	15663	7951	21406	357	264

TABLE 1. Evaluation of Blowdown Timing Based on Constant Operating and Overhead Costs, and Constant Product Prices.

Table 2. Prices, Tax Rates, and Costs Used in Economic Calculations.

0il Prices \$30.00/BBL, Base Price: \$19.00/BBL Tier 1: Tier 2: \$30.00/BBL, Base Price: \$22.00/BBL Gas Price: \$2.90/MCF NGL Prices Ethane: \$0.22/gal Propane: \$0.35/gal Butane: \$0.52/gal Gasoline: \$0.63/gal Production Tax Rates 3.75% Severance Tax: Emergency School Tax: 3.15% Ad Valorem Tax: 0.18% Windfall Profits Tax Rates Tier 1: 70% Tier 2: 60% Operating Costs With Gas Injection: \$7020M/year Without Gas Injection: \$6468M/year Overhead Costs: \$990M/year

^{1.} Storage gas owned by Gas Company of New Mexico has been deducted from the Unit gas reserves (3.7 BCF).

CONCLUSIONS AND RECOMMENDATION

### CONCLUSIONS

- 1. Energy recovery, which is the sum of the heating values of the recovered oil, natural gas liquids (NGL), and residue gas, is maximized by starting blowdown in 1995.
- 2. Continued residue gas injection until 1995 will allow the Empire Abo Unit to take advantage of the gravity drainage mechanism of the Empire Abo reservoir. Thus, the Unit will recover more oil reserves than it would by starting blowdown in 1985. The additional recovery is the result of allowing the thin oil column in the back-reef area to migrate downdip to the fore-reef area where the oil column is thicker and the oil can be economically and efficiently produced.
- 3. Continued residue gas injection until 1995 also enables the Unit to recover additional NGL reserves. The additional recovery is the result of lean gas sweeping the free gas in the gas cap and lean gas stripping NGL's out of the oil remaining in the gas cap.
- 4. In order to realize increased oil and NGL recoveries it is necessary to use residue gas for fuel. Fuel use, combined with venting, causes residue gas recovery to decrease with continued gas injection.
- 5. The impact of blowdown on present worth is a function of the discount rate used in the economic calculations. Undiscounted economics favor starting blowdown in 1995. As higher and higher discount rates are applied to the cash flows, the optimum blowdown start date moves toward 1985. At a discount rate of 7 percent or more the optimum blowdown start date is 1985.

#### RECOMMENDATION

Based on undiscounted economics and prevention of waste it is recommended that the Empire Abo Unit continue to inject residue gas until 1995, at which time residue gas sales should begin. INTRODUCTION

#### INTRODUCTION

This study was initiated to determine when residue gas sales should begin at the Empire Abo Unit. Currently, residue gas is injected into the gas cap to increase recoveries of oil and NGL's. Residue gas is a saleable product and the Unit is foregoing income from residue gas sales to realize more income from oil and NGL sales. Blowdown should begin when the value of the potential residue gas recovery exceeds the value of the oil and NGL recoveries that depend upon residue gas injection.

Two separate numeric simulation studies were conducted to analyze the impact of blowdown timing on oil, gas, and NGL rates and recoveries. ARCO's two-dimensional, multi-component simulator was used to predict the NGL content of the produced gas. This simulator is referred to as the compositional model in this report. ARCO's three-dimensional, three phase simulator was used to predict oil and gas production rates and recoveries. This simulator is referred to as the black oil model in this report.

Both models were required to analyze blowdown timing because of limitations inherent in each. The compositional model is specifically designed to calculate recoveries of individual reservoir fluid components. Thus, the compositional model can predict rates and recoveries of the NGL components - ethane, propane, butane, and gasoline. However, the complexity of the compositional model precludes the use of gas coning correlations. Because of the significant impact of gas coning on oil rates and recoveries at Empire Abo, gas coning correlations are necessary to accurately forecast oil production. Therefore, the black oil model, which includes gas coning correlations, was run to predict accurate oil rates and recoveries.

Gas production is accurately predicted by both simulators. The forecast calculated by the black oil model was used as a matter of convenience.

The setup and design of the compositional model is discussed in reference 4. The black oil model is discussed in reference 3 and Appendix A. Appendix C contains the results of the black oil model history match including plots comparing calculated versus actual well performances.

FIELD HISTORY AND GEOLOGY

#### FIELD HISTORY AND GEOLOGY

#### History

The Empire Abo Field is located approximately 8 miles southeast of Artesia, in Eddy County, New Mexico. Development of the Abo reservoir began with the drilling of Amoco's Malco "A" No. 1 (Unit designation M-14) in November 1957. Drilling was rapid and extensive following this successful completion. The productive Abo reservoir in this field consists of 11,339 acres located in portions of Township 17 South, Ranges 27, 28, and 29 East, and Township 18 South, Ranges 27 and 28 East (Figure 1).

Approximately 97 percent of the reservoir was unitized into the ARCO operated Empire Abo Unit in October 1973 (Ref. 2). The intent of the unitization was to conserve reservoir energy by producing from the low GOR wells, thus minimizing free gas production. In this way the Unit has taken better advantage of the gravity drainage mechanism and has increased ultimate oil and NGL recoveries as compared to competitive, primary depletion.

An engineering study conducted in 1975 indicated ultimate oil recovery would be improved by selective infill drilling on 20 acre spacing. A subsequent study conducted in 1977 concluded further increases in oil recovery would result from selective infill drilling on 10 acre spacing (Ref. 3). A total of 160 infill wells were drilled as a result of these studies.

A voidage limit of 56,912 RVBPD was established by the New Mexico Oil Conservation Commission for the Empire Abo Unit to ensure controlled depletion of the reservoir. An engineering study completed in 1983 indicated removing this voidage limit, and replacing it with a gas production limit of 65 MMCFPD, would enable the Unit to operate more efficiently and recover additional oil and NGL reserves (Ref. 1). The gas production limit went into effect in May 1984.

Field performance is shown in Figure 2. Basic reservoir data is listed in Table 3.

#### Geology

The Empire Abo field produces from a transgressive, carbonate, barrier reef buildup of lower Leonardian (Permian) age. This reef is one of several in a long trend flanking the northern edge of the Delaware Basin. The reef grew from southwest to northeast. It is approximately  $12\frac{1}{2}$  miles long and  $1\frac{1}{2}$  miles wide. Parallel to the reef trend, the reef dips 1 degree from southwest to northeast. Perpendicular to this trend the reef dips sharply at 10 to 20 degrees from crest to fore-reef, or north to south. The average depth of the reef is 5800 feet and the thickness averages 300 feet.

The trapping mechanism at Empire Abo is both stratigraphic and structural. The reef dips below the oil water contact to the south and east. Permeability pinch outs to the north and west occur as a result of carbonate muds, green shales, and anhydrite inclusions.

Porosity development is erratic and cannot be correlated between wells. Development is the result of leaching of abundant detrital fossil fragments, dolomitization, and recrystallization. The most prolific porosity development is found in the reef core. There is no apparent intercrystalline porosity.

Vertical fracturing, which contributes to the gravity drainage mechanism of the reservoir, is apparently due to local slumping as well as large scale settling and some tectonic activity. Fracture orientation is generally 0 to 45 degrees from vertical and is parallel to the reef trend. These fractures apparently link up the erratic porosity development and provide excellent pressure communication in the reservoir. Table 3. Empire Abo Unit Reservoir Data Summary.

# General

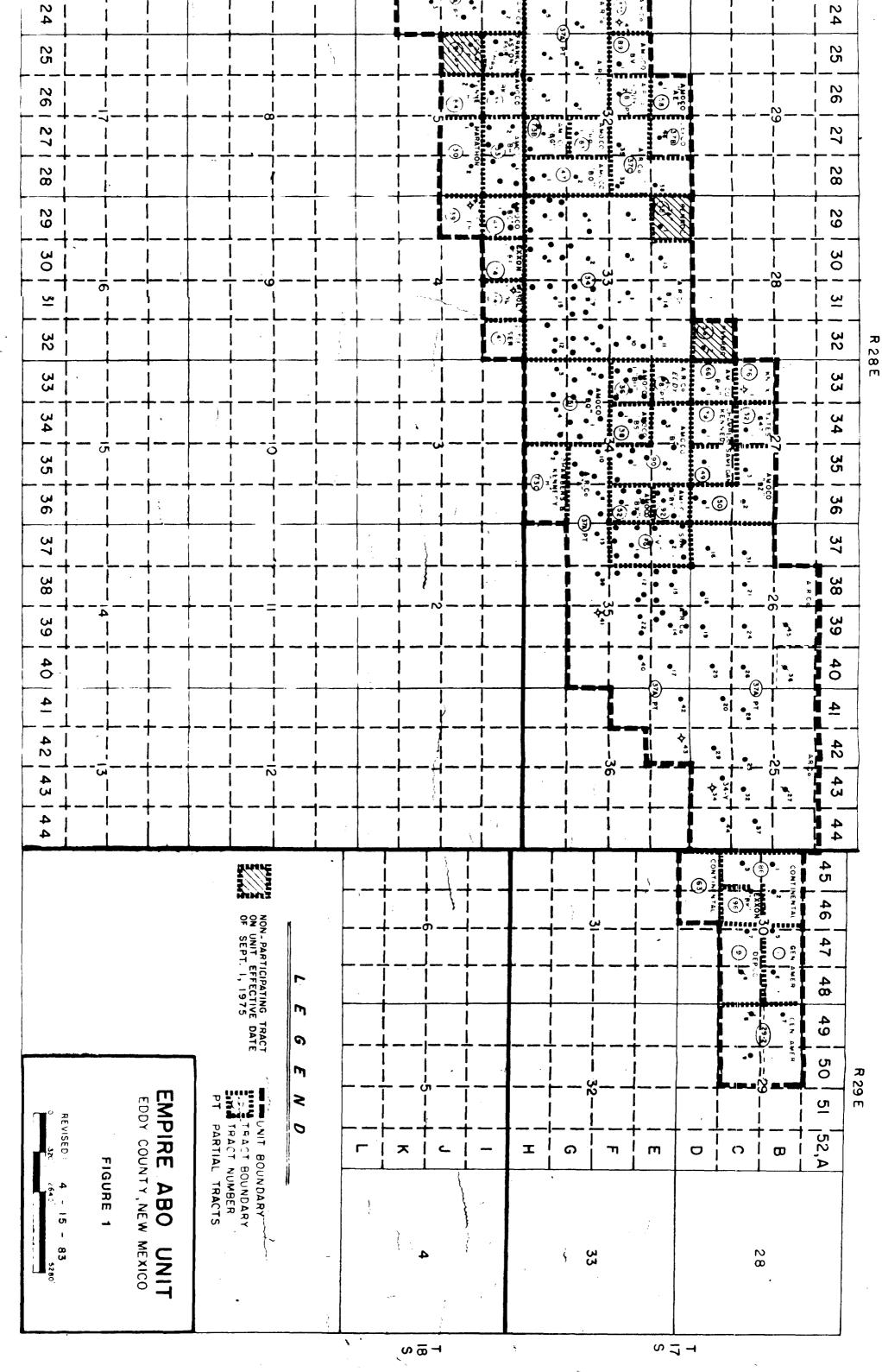
Discovery Well Status - October 1984	November 1957
Producers	228
Injectors	21
Shut-In	146
<u>Current Status</u> - October 1984	
Unit Allowable (BOPD)	6533
Oil Production (BOPD)	6373
Gas Production (MCFD)	61599
Producing GOR (CF/BO)	9665
Gas Injection (MCFD)	31699
Water Production (BWPD)	7761
Average Depth to Top of Reef, Feet	5767
Productive Acres	8993

# Formation

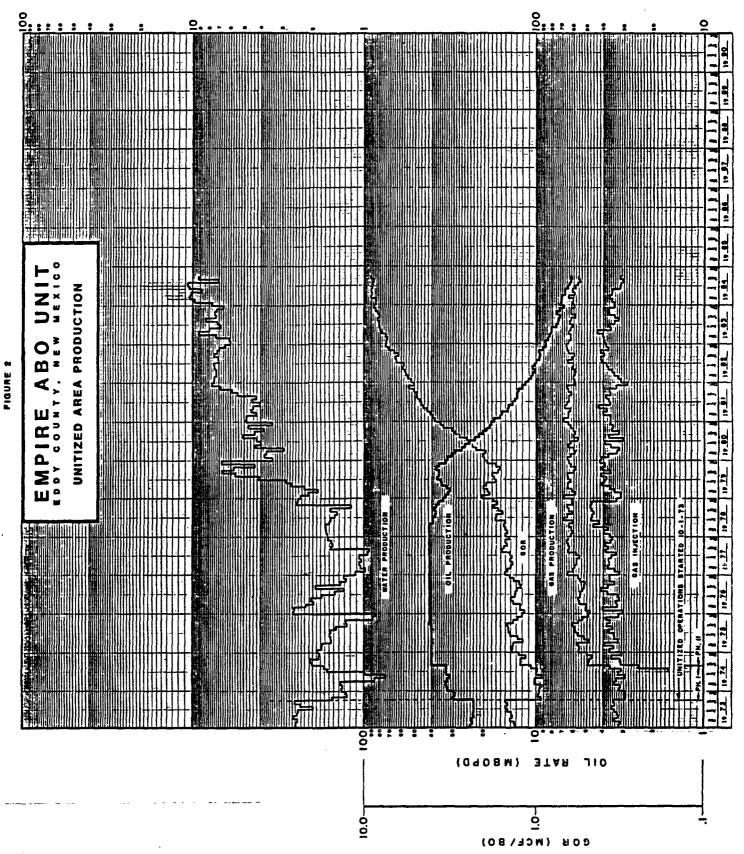
Type Rock	Vugular Dolomite
Average Net Pay Thickness, Feet	183
Average Porosity, % (Log Data)	6.4
Water Saturation, %, Main Reef	8.6
Original Gas Oil Contact, Feet Subsea	-1750
Original Water Oil Contact, Feet Subsea	-2665
Reservoir Mid-point, Feet Subsea	-2264

# Reservoir Fluid

Original Reservoir Pressure, psi at -2264 (Pi)2359Original Bubble Point Pressure, psia at -2264 (Pbpi)2231Oil Formation Volume Factor at Pbpi, RVB/STB (Boi)1.606Gas Formation Volume Factor at Pbpi, RVB/SCF (Bgi)0.00098Gas in Solution at Pbpi, SCF/STBO (Rsi)1250Oil Viscosity at Pbpi, centipoise (µoi)0.387


Reservoir Volumetric Data

Original Oil-in-Place (MMSTBO)	383.2
Original Gas-in-Place (BCF)	483.4
Estimated Ultimate Recoveries (Total Reservoir)	
Oil (MMSTBO)	224.7
(% of OOIP)	58.6
Gas (BCF)	465.8
(% of OGIP)	96.4


J T

					<u>ں</u>	₩ ₩							<u></u>		<u>ر م</u>	7 -				_
, <b>T</b>				ס			≤	F	<b>~</b>			I	ြ ြ	וד	ш	D	C		Α,-	
	(1) (1)	¹⁶ . م			• ·   	╊╼╴╼╸╺╼ ┃ ┃	   		1		   						   			
ω					;   !	00   	   		   				7∾ 				,   		ι 	
4	↔ •	•-	€XXON		EXXON	ن ن ن ن				 									4	
		82 13	0/ V 1. 2. X	•(4	) ब	•	E XXON	Аносо 9-1- 5-0-1- 5-0-1-	   			-	   						ں 	
91			С 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	•	•	•~	EXXON	[.) EXXON						•						
	1601 f	رگر ا	ы В с С Х С И	() () () () () () () () () () () () () (	•	-10 CC	ד ג בסי	•		<b>5</b> <b>4</b> <b>1</b>									~	
ω	(44.2) •	. CE	62 AMC- HH	(A) 	•		:3 •.	•	ן <b>ג</b> יי   <b>ג</b> יי	20) , 20) ,		,						   	ω	
9				-	•. /	PT •	• • • • •	• (		June Co	التي 10 م								9	
ō				228 228	*	•,		•	  •., e	AMOCO	} <b>, 6</b> 10 03		<u>ب</u>				2	 	ō	
=	I0						AMOCO	22) 122 122 122 122 122 122 122	.2) 2 ₽	Mal	ERAL	86. 4 N. 48010							=	ſ
2							A MOGO			<b>√</b> 37		101 C							12	
٤I						•_~(			•.•?)	(ع م (غر ۲									ω	
	[     					() () () () () () () () () () () () () (		е 		occ, B)			U						4	
5	4							2000 2010 2010		(C) (C) (C) (C) (C) (C) (C) (C) (C) (C)							r — o   	,   	5	
6											(K) b b c							   	6	
17								• • •	   				ÐįĘ		 			 	         	
õ	   	 	 		   			′•• ~			•		1000		 		 			_
9						)   		♦ <u>.</u> •.		TEDE A			ATES		   	 		! !		
20				•	1	 	I 	•.	land set of the set o		•	PANA PO	45. •5				   	   	. 20	
2	 		 	<b>_</b>		 			•••		رون ع دهم د ا	•_ (		() () () () () () () () () () () () () (			 	 	<u>N</u>	
22				=	   	   	   	ज्ञे <i>ह</i> े			•-	(3) (3)				   	   		22 	-+
23		 				J · ] 	•   			- ⁽¹⁾		<u>ه</u> ) •					 	   	23	
1	I	1			1	•	<b>I</b> 7 I		•	13-	1	[		· >	I	1	1	1 '	1	

R 27 E



m



### (O9W8M) JIAA AJIAW

GAS RATE (MMCF/D)

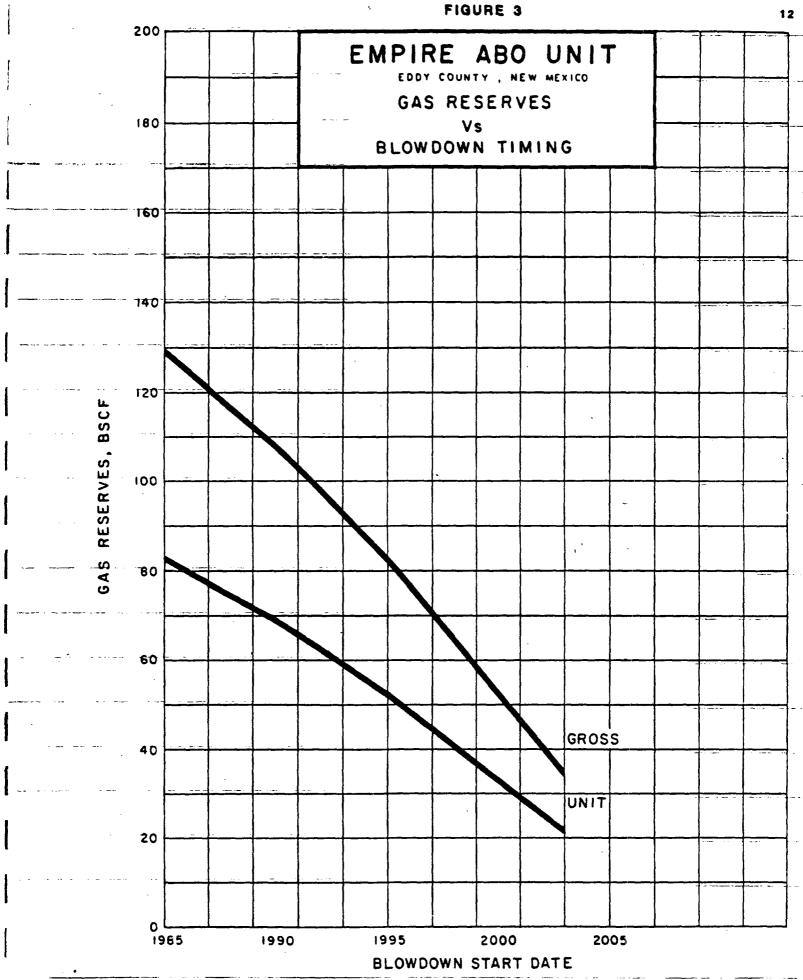
-

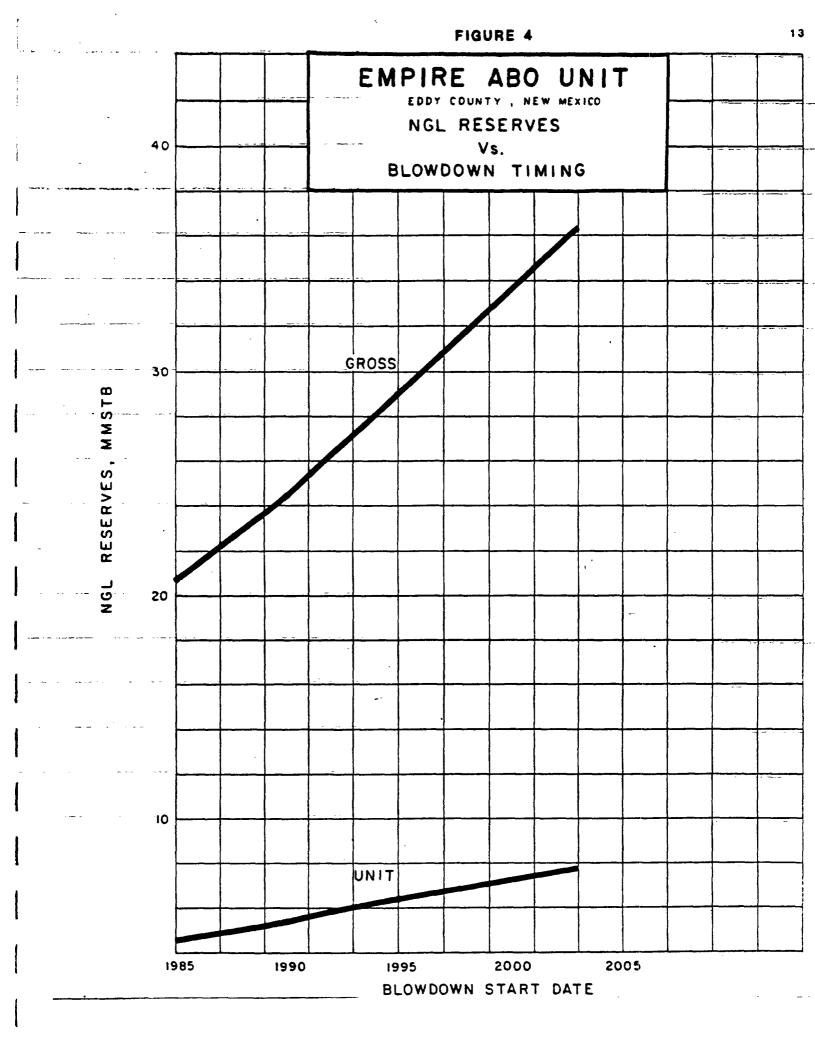
### PERFORMANCE PROJECTIONS

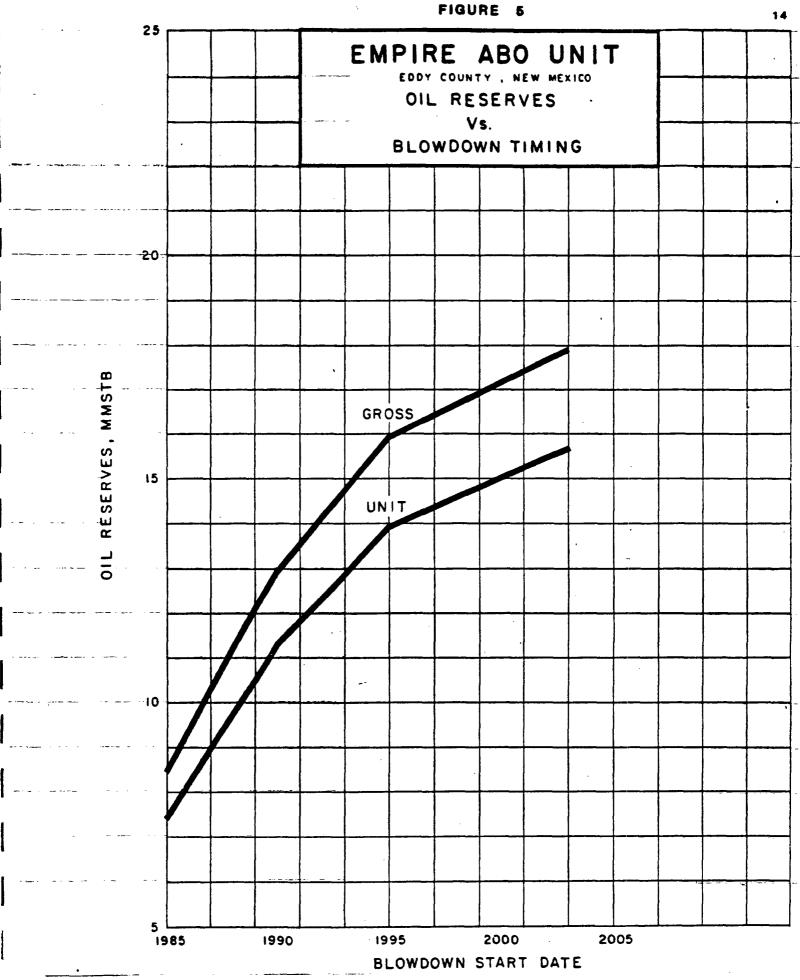
### PERFORMANCE PROJECTIONS

Projections were calculated for starting blowdown at 1/1/85, 1/1/90, 1/1/95, and at the economic limit of gas injection - 1/1/03. Computer time limitations prohibited calculating forecasts for starting blowdown at every year between 1/1/85 and 1/1/03. However, the recoveries of residue gas, NGL's, and oil appear to be continuous functions of blowdown timing (Figures 3 through 5). Therefore, recoveries for blowdown start dates other than 1/1/85, 1/1/90, 1/1/95, and 1/1/03 can be approximated by linear interpolation with no significant error.

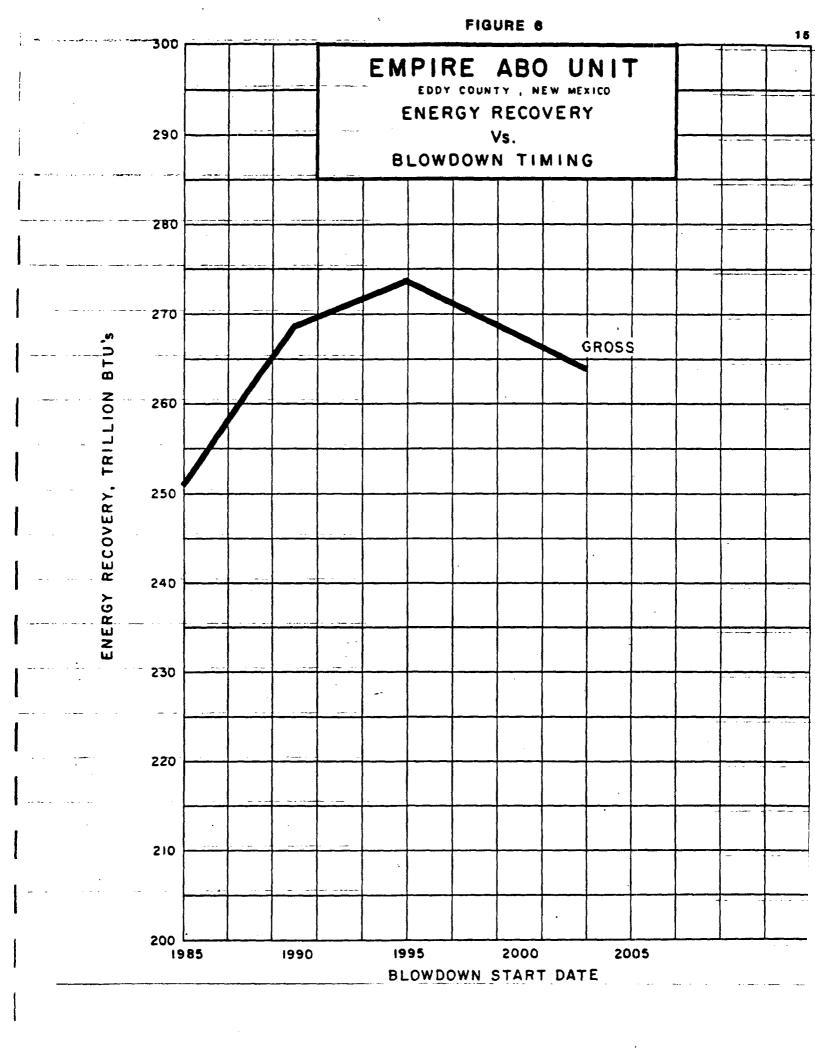
As illustrated in Figures 3 through 5, starting blowdown immediately recovers the most residue gas and the least oil and NGL's. For every year that blowdown is delayed, residue gas recovery decreases, and oil and NGL recoveries increase. The curves labeled "Unit" in Figures 3 through 5 reflect a net oil interest of 87.5 percent, a net NGL interest of 21.875 percent, and a net residue gas interest of 65.625 percent.


Starting blowdown in 1985 yields the highest residue gas recovery because fuel use is lowest for this case. The injection compressors are shut down immediately and the lives of the extraction plants are as short as possible.


NGL recovery increases with delayed blowdown because the injected lean gas strips more NGL's out of the oil in the gas cap and sweeps out more enriched gas.


Oil recovery increases with delayed blowdown because the reservoir pressure decline is slowed. Slower pressure decline has three effects: one, incrementally higher pressure differentials between the reservoir and the wellbores; two, lower oil viscosities; three, more oil migration from the back-reef, where the oil column is too thin to be produced, to the fore-reef, where the oil column is thicker and can be economically and efficiently produced. A more thorough explanation of the impact of blowdown on oil rates and reserves is found in Appendix B.

In order to compare the value of the residue gas lost to the value of the oil and NGL's gained by continued gas injection, it is useful to examine the energy recovery for each blowdown case studied. Energy recovery is calculated by multiplying the heating value of each product by its recovery. Thus, instead of making a comparison of BBLS of oil to MCF of gas, a comparison of BTU's of oil to BTU's of gas is made. This calculation determines which blowdown timing will recover the most energy and therefore minimize waste. This is an important criterion not only for the Unit but also for the State and Federal regulatory bodies that oversee the Unit's operations. Of the four cases simulated, starting blowdown in 1995 recovers the most energy (Figure 6). It is possible that starting blowdown either shortly before or shortly after 1995 will actually recover more energy than starting blowdown exactly in 1995. However, Figure 6 indicates that 1995 is a good approximation of the optimum blowdown start date in terms of energy recovery. Continuing to inject residue gas after 1995 would provide incremental recoveries of oil and NGL's as compared to starting blowdown in 1995. However, the energy expended through fuel use would be greater than the incremental energy recovered as oil and NGL's.


Complete projections of field performance are illustrated in Figures 7 through 10. A summary of the energy recoveries is found in Appendix D.







- -



# FIGURE 7 EMPIRE ABO UNIT EDDY COUNTY, NEW MEXICO PREDICTED RESERVOIR PERFORMANCE FOR BLOWDOWN AT I-I-85

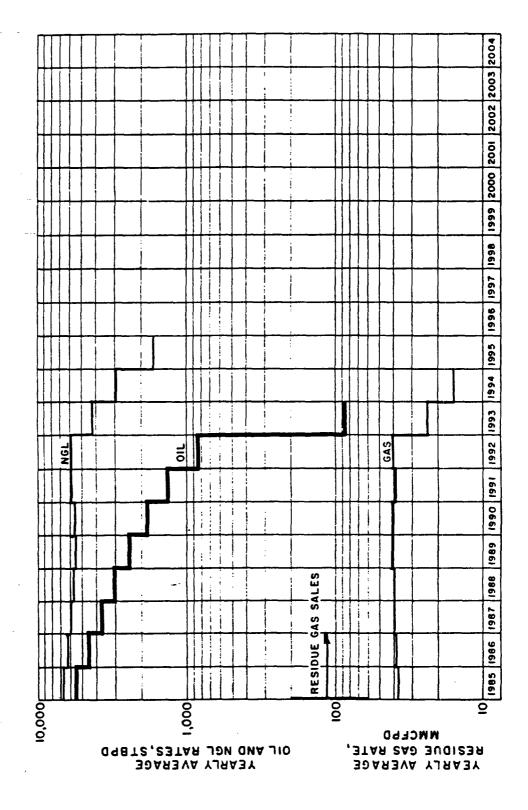
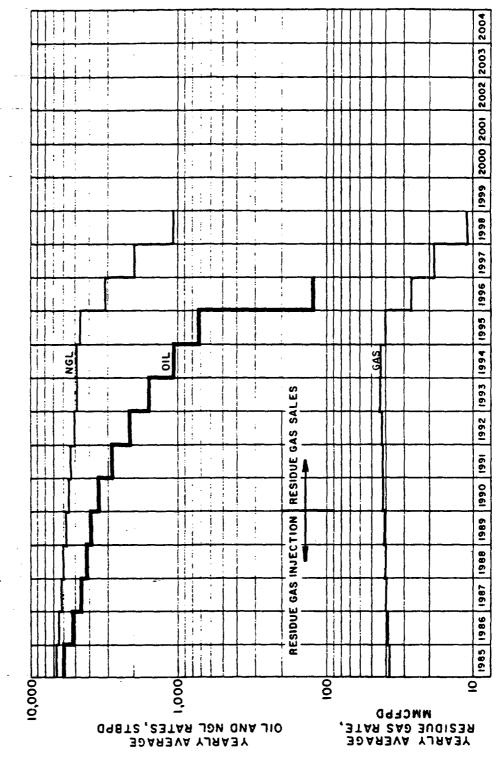




FIGURE 8

## EMPIRE ABO UNIT EDDY COUNTY, NEW MEXICO PREDICTED RESERVOIR PERFORMANCE FOR BLOWDOWN AT 1-1-90



•

FIGURE 9

## EMPIRE ABO UNIT EDDY COUNTY, NEW MEXICO PREDICTED RESERVOIR PERFORMANCE FOR BLOWDOWN AT 1-1-95

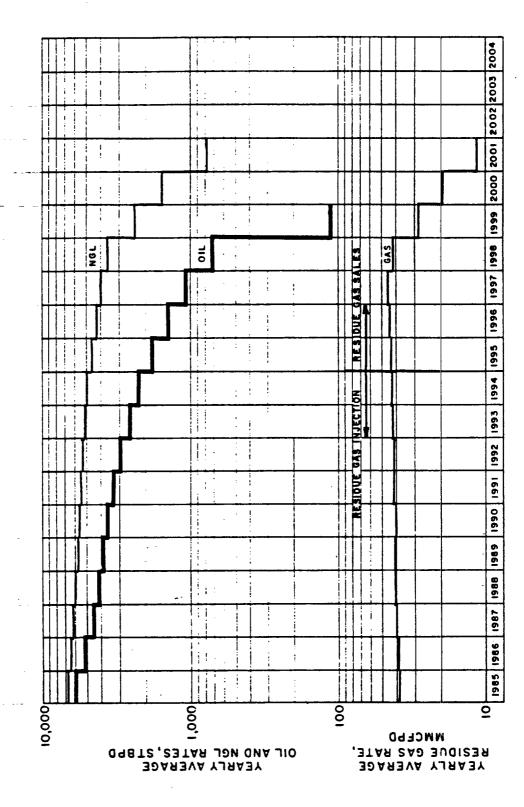
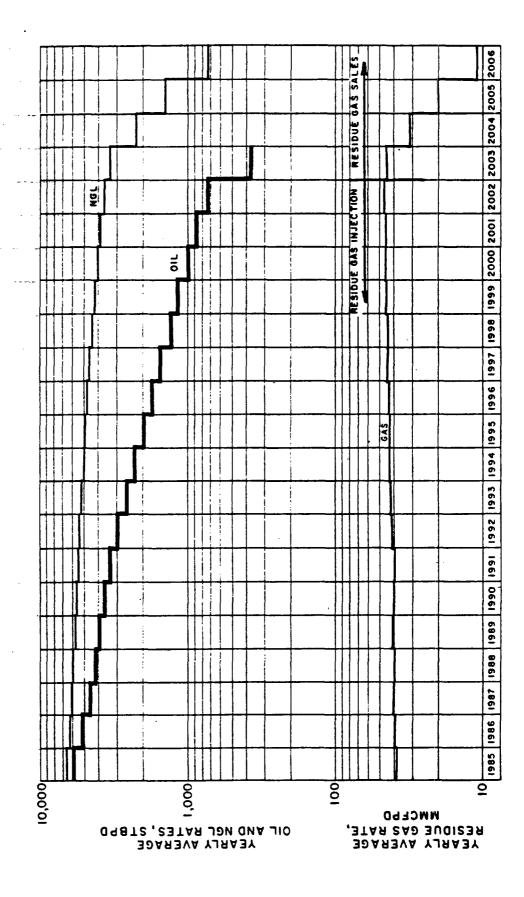




FIGURE 10

# EMPIRE ABO UNIT EDDY COUNTY, NEW MEXICO

# PREDICTED RESERVOIR PERFORMANCE FOR BLOWDOWN AT 1-1-03



### ECONOMIC EVALUATION

·

### ECONOMIC EVALUATION

As shown in Figure 11, the economics of blowdown depend upon the discount rate used in the calculations. This is to be expected since starting blowdown immediately would increase short-term income, and therefore would be advantageous at high discount rates, whereas delaying blowdown would increase long-term income, and therefore would be advantageous at low discount rates. The recommendation to start blowdown in 1995 is based on undiscounted economics and prevention of waste.

The BFIT economics were calculated assuming a 100 percent working interest, an 87.5 percent net oil interest, a 62.625 percent net gas interest, and a 21.875 percent net NGL interest. The present worth reference date is 1-1-85. A summary of the impact of blowdown timing is presented in Table 4. Table 5 lists the prices, tax rates, and costs used in the economic calculations. Detailed summaries of the economics are found on pages 21 though 24.

### Gas Storage

The Unit and the Gas Company of New Mexico (GCONM) have an agreement whereby the Unit stores gas for GCONM. The return rate to GCONM is limited to 65 percent of the residue gas sales rate. It was assumed in the economic calculations that GCONM will take their gas back at the maximum permissible rate. The returnable gas volume was approximately 3.7 BCF in December 1984.

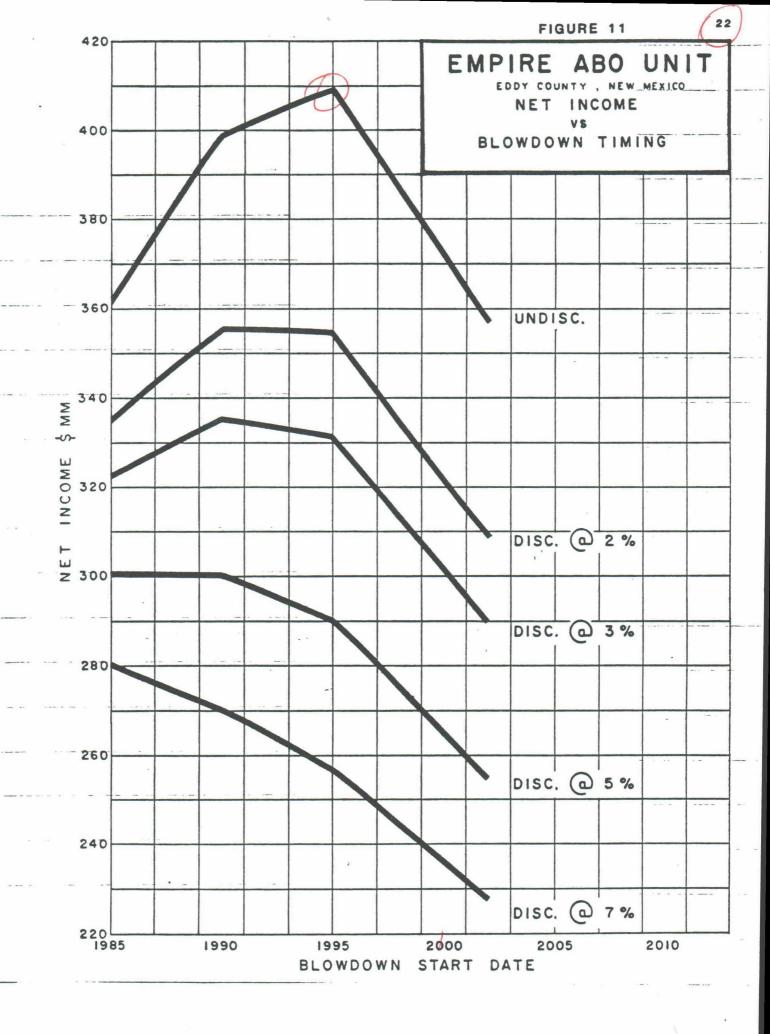

Blowdown Start Date	Unit Oil Reserves After 1/85 (MSTB)	Unit NGL Reserves After 1/85 (MSTB)	Unit Gas Reserves After 1/85 ¹ (MMSCF)	Undiscounted Net Income BFIT (MM\$)	Gross Energy Recovery (Trill. BTU)
1/85	7415	4527	82641	361	251
1/90	11350	5369	69244	399	268
1/95	13929	6292	52153	410	274
1/03	15663	7951	21406	357	264

TABLE 4. Evaluation of Blowdown Timing Based on Constant Operating and Overhead Costs, and Constant Product Prices.

Table 5. Prices, Tax Rates, and Costs Used in Economic Calculations.

0il Prices Tier 1: \$30.00/BBL, Tier 2: \$30.00/BBL,	Base Price: \$19.00/BBL Base Price: \$22.00/BBL
Gas Price: \$2.90/MCF	
NGL Prices Ethane: \$0.22/gal Propane: \$0.35/gal Butane: \$0.52/gal Gasoline: \$0.63/gal	
Production Tax Rates Severance Tax: Emergency School Tax: Ad Valorem Tax:	3.75% 3.15% 0.18%
Windfall Profits Tax Rates Tier 1: Tier 2:	70% 60%
Operating Costs With Gas Injection: Without Gas Injection:	\$7020M/year \$6468M/year
Overhead Costs:	\$990M/year

1. Storage gas owned by Gas Company of New Mexico has been deducted from the Unit gas reserves (3.7 BCF).



BFIT CASH FLOW (M\$)	51013	4890140 48901	44722	42942	38386	34572	28475	12739	5571	-266	361243
WINDFALL PROFITS TAX (M\$)	12684	8389	6912	3427	2634	1521	528	12			46324
0VH & 0PR COSTS (M\$)	7458	7458	7458	7458	7458	7458	7458	7458	7458	7458	82038
PRODUCTION TAXES (M\$)	5587 5542	5084 5084	4640	4226	3806	3419	2863	1587	1023	565	38442
NET REVENUE (M\$)	76741	000 / / 200 69832	63731	58053	52285	46970	39324	21795	14052	7757	528045
GROSS NGL PRODUCTION (MSTB)	2475	2178	2085	2046	2072	2168	2159	1539	1076	595	20697
GROSS GAS SALES ¹ (MMCF)	10034	14472	14710	14947	14710	14434	12959	8553	5680	3148	127938
GROSS GAS PRODUCTION (MMCF)	23725	23725	23725	23725	23725	23662	21965	14746	9965	5522	
GROSS OIL PRODUCTION (MSTB)	2026	1340	1104	878	675	484	304	31			8474
YEAR	1985	1987	1988	1989	1990	1991	1992	1993	1994	1995	

TABLE 6

### EMPIRE ABO UNIT BLOWDOWN AT 1/1/1985 Detail of Economic Calculations

Storage gas owned by Gas Company of New Mexico has been deducted from gross gas sales (3.7 BCF) 

:

BFIT CASH FLOW (M\$)	38378 32952	28970 26307	24261	37707	44811	42722	39111	34291	28912	13744	6205	488	398858
WINDFALL PROFITS TAX (M\$)	13460 11701	10430 9591	8953	7895	5166	1349	218						68763
OVH & OPR COSTS (M\$)	8010 8010	8010 8010	8010	7458	7458	7458	7458	7458	7458	7458	7458	7458	107172
PRODUCTION TAXES (M\$)	4699 4135	3722 3447	3237	4166	4510	4046	3674	3278	2856	1665	1073	624	45130
NET REVENUE (M\$)	64547 56798	51132 47355	44461	57225	61944	55575	50461	45027	39226	22866	14736	8570	619923
GROSS NGL PRODUCTION (MSTB)	2451 2341	2244 2169	2107	1996	1909	1833	1785	1773	1685	1123	732	397	24545
GROSS GAS SALES ¹ (MMCF)				11220	15184	15421	15659	15459	14337	9625	6617	3910	107468
GROSS GAS PRODUCTION (MMCF)	23725 23725	23725 23725	23725	23725	23725	23725	23725	23477	22057	14808	10026	5836	
GROSS 01L PRODUCTION (MSTB)	2150 1869	1666 1531	1430	1261	1025	777	574	383	259	45			12970
YEAR	1985 1986	1987 1988	1989	0661	1991	1992	1993	1994	1995	1996	1997	1998	

Storage gas owned by Gas Company of New Mexico has been deducted from gross gas sales (3.7 BCF)

...

TABLE 7

EMPIRE ABO UNIT BLOWDOWN AT 1/1/1990 Detail of Economic Calculations

	BFIT CASH FLOW (M\$)	38378 32952 28970 28970 28970 28970 24261 24261 24261 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192 21192	
	WINDFALL PROFITS TAX (M\$)	13460 11701 10430 9591 8953 8314 6128 3609 360 71946	
	0VH & 0PR COSTS (M\$)	8010 8010 8010 8010 8010 8010 8010 8010	
	PRODUCTION TAXES (M\$)	4699 4135 3722 3447 3237 3237 3237 3237 3247 2801 2259 2007 2529 2007 2529 2529 2529 2529 2007 2529 2007 2529 2007 2529 2007 2529 2007 2529 2007 2529 2607 2607 2607 2607 2607 2607 2607 2607	
	NET REVENUE (M\$)	64547 56798 56798 47355 47355 47355 41589 31026 31026 31026 49243 49243 49243 27573 42310 27573 42310 23304 15034 15034 15034	
	GROSS NGL PRODUCTION (MSTB)	2451 2451 2341 2244 2107 2107 2001 2001 1953 1960 1953 1960 1844 1844 1844 1855 1307 287 287 287 287	
	GROSS GAS SALES ¹ (MMCF)	12169 15310 15310 15310 10279 7053 4109	
	GROSS GAS PRODUCTION (MMCF)	23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23755 23755 23755 23755 23755 23755 23755 23755 23755 23755 23755 23755 23755 23755 23755 23755 23755 23755 23755	
	GROSS 01L PRODUCTION (MSTB)	2150 2150 1869 1666 1531 1430 1216 1216 1216 1216 1216 1216 1216 121	
	YEAR	1985 1986 1986 1988 1998 1999 1999 1999 1999	

TABLE 8

EMPIRE ABO UNIT BLOWDOWN AT 1/1/1995 Detail of Economic Calculations

25

Storage gas owned by Gas Company of New Mexico has been deducted from gross gas sales (3.7 BCF) 1.

BFIT CASH FLOW (M\$)	38378 32952 28970 26307 26307 24261 21540 21192 21192 21192 21192 21192 21192 21192 21192 17556 10393 8253 6686 5098 3792 5098 17645 18253 201 14358 7050 201
WINDFALL PROFITS TAX (M\$)	13460 11701 9591 8953 8314 6128 3009 360 71946
OVH & OPR COSTS (M\$)	8010 8010 8010 8010 8010 8010 8010 8010
PRODUCTION TAXES (M\$)	4699 4135 3722 3447 3237 3237 3237 3237 3237 3280 3237 2529 2529 1797 1611 1797 1611 1611 1797 1611 1797 1797
NET REVENUE (M\$)	64547 56798 51132 47355 44461 41589 38740 31026 31026 34740 31026 27573 27673 18889 17540 18848 17540 18848 17540 18848 17540 17540 15850 15850 15648 15648
GROSS NGL PRODUCTION (MSTB)	2451 2341 2244 2107 2107 2001 2001 1953 1960 1721 1721 1721 1721 1721 1721 1723 1398 1729 1327 1328 1327 1328 1329 1327 1328 1327 1328 1327 1328 1327 1328 1327 1328 1327 1328 1328 1328 1328 1328 1328 1328 1328
GROSS GAS SALES ¹ (MMCF)	1 2294 1 1015 7 361 34570
GROSS GAS PRODUCTION (MMCF)	23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23725 23755 23755 23755 23755 23755 23755 23755 23755 23755 23755 23755 23755 23755 23755 23755 23755 23755 23755 23755 23755 23755 23755 23755
GROSS GIL PRODUCTION (MSTB)	2150 1869 1531 1430 1328 1216 1328 1328 1328 1328 1328 1328 1328 1328
YEAR	1985 1986 1986 1988 1990 1996 1998 1998 1998 1998 2000 2001 2005 2003

TABLE 9

EMPIRE ABO UNIT BLOWDOWN AT 1/1/2003 Detail of Economic Calculations

26

### REFERENCES

### REFERENCES

- 1. Detmering, T.J., Improved Plan of Depletion Empire Abo Unit- Abo Reservoir, ARCO Oil and Gas Company, Midland Texas, April 1983.
- Field Management Study Abo Reservoir Empire Abo Pool, October 1970.
- 3. Foster, H.P., Engineering Study Empire Abo Unit Abo Reservoir, ARCO Oil and Gas Company, Midland Texas, November 1977.
- Shumbera, D.A., A Compositional Study of Proposed Alternatives for Future Operation of Empire Abo, ARCO Oil and Gas Company, Dallas, Texas, August 1982.
- 5. Shumbera, D.A. and Staggs, H.M., Empire Abo Unit Performance Projection, ARCO Oil and Gas Company, Dallas, Texas, June 1984.

APPENDIX A

### APPENDIX A

Black Oil Numeric Simulator Description and Design

### BLACK OIL NUMERIC SIMULATOR DESCRIPTION AND DESIGN

### Modeled Area

A representative slice (Figures A1 and A2) of the reservoir was modeled as opposed to modeling the entire reservoir due to manpower and computer time limitations. This slice is representative of the entire field with the exception of the extreme east and west ends. The east end has experienced a considerable amount of water influx while the west end appears to be a solution gas drive reservoir rather than a gravity drainage reservoir. The combined volume of these two portions of the reservoir is less than 10 percent of the total reservoir volume.

H.P. Foster modeled this same slice in 1977 to study the impact of infill drilling. The success of Foster's model study, as illustrated by the close agreement of his oil forecast and actual production (Figure A3), demonstrates the results of the slice model can be scaled up to provide forecasts of the entire field's performance. Unfortunately, all of Foster's projections assumed blowdown in 1985 and therefore it was necessary to make additional simulator runs to study the impact of blowdown at later dates.

The numeric reservoir simulator used for the cross-sectional slice model is ARCO's three-dimensional, three phase, unsteady state, compressible flow, semi-implicit model. This black oil model numerically solves the partial differential equations which describe simultaneous oil, gas, and water flow between reservoir segments in three dimensions.

### Model Set Up And Data Preparation

For the numeric model to accurately predict future performance, it must be set up dimensionally to properly reflect fluid movement in the reservoir. The cross-sectional slice model is 6 rows wide (east to west), 22 layers in the vertical direction, and 18 columns from back-reef to fore-reef as shown in Figure A4. The six rows are each 330 ft wide for a total width of 1980 ft. The outside rows are used to reflect well drainage areas. Each layer in the vertical direction is 25 ft thick. The third dimension of the cells, in the back-reef to fore-reef direction, varies from 370 ft to 600 ft. The smaller cells are used in the down dip heart of the reef to give adequate definition of flow characteristics during projections while the larger cells are used in areas where fluid movement is slower or relatively unimportant. The cells are aligned parallel to the dip of the reef base to eliminate artificial impediments to north-south fluid movements and to adequately determine how well the fluid migrates to the down dip areas under different schemes of operation. The wells shown in Figure A4 are the actual field wells within the modeled area.

Porosity values were obtained by applying porosity index curves (Figure A5) to open hole neutron logs. These values formed the basis for volume calculations for the numeric model. Core data analysis indicates porosity varies as the log of permeability (Figure A6). Using this relationship, permeability values for each two foot interval of each well were calculated from the porosity values. These values were the basis for porosity and permeability maps of each individual layer in the model. Computer programs were used for sorting this digitized data to obtain gross and net pay, average porosity, and permeability values for any grouping desired. Isopach maps were made of each layer to determine pore volumes and permeabilities for each of the 2376 cells in the model.

Interstitial water saturations were based on the 1970 numeric model simulation and checked by analysis of logs obtained during the 20 acre infill drilling program. Fluid data relationships (Figure A7 and A8) are from a composite of analyses from five different wells which were selected to give good coverage of the reservoir.

Reservoir pressure data in the area of the slice is very good. At least two wells, and sometimes more, were tested during each annual BHP survey giving an adequate pressure history for the area. Oil, gas, and water production data are also good. The New Mexico Oil Conservation Commission requires annual tests with well production reported by months.

The gas oil relative permeability data (Figure A9) is the same as that used in the 1970 numeric simulation of the entire field.

### Gas Coning

Because of the gas coning characteristics of the Empire Abo reservoir it is desireable to include the effects of gas coning by individual wells. This is especially true during the latter part of the history match and during the projections as the wells are being produced at high total fluid rates.

Individual well performances are controlled in the three dimensional model by correlations derived from simulations of individual type-wells with a two dimensional, R-Z (radialvertical), multi-phase, compressible flow simulator. Multiple projections were made at various reservoir producing rates to relate producing GOR to average oil saturation in the well cell columns. The characteristics of the R-Z Coning simulator closely approximate the column of cells for each well in the three dimensional simulator. These derived correlations were input into the slice model and used to control the performance of each well during its life (Figures A10-A12). The oil column height used in these correlations is analogous to the distance from the top of the perforated interval in the well cell column to the gas cap. It is based on the average oil saturation in this column.

One well, the G-21, was not controlled in the slice model with a coning correlation. It was fractured during its early life and appeared to have a gas channel in the cement. It was controlled by producing the required amount of gas from a cell in the gas cap to match its producing history. The G-21 is a last row, back-reef producer and was shut-in during all projections.

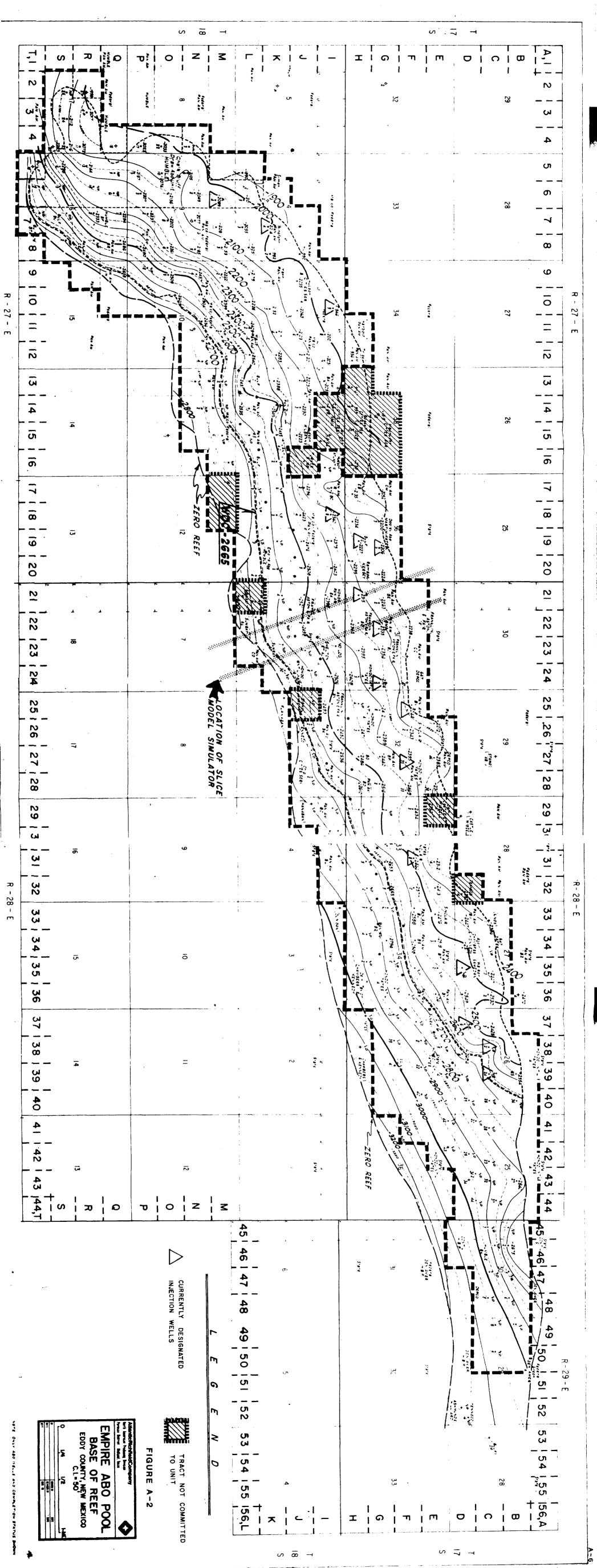
### History Match

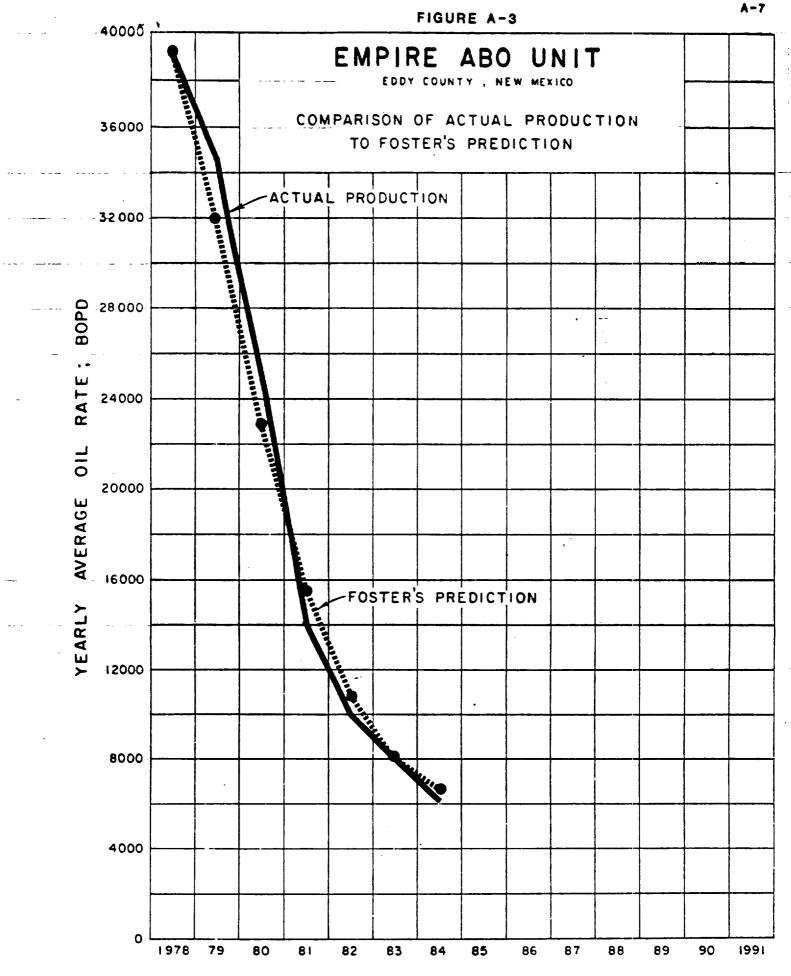
The history match obtained during the 1977 model study extended from 1959 to 1977. The seven years that have lapsed since this history match was completed had to be added in order to have the correct saturation and pressure distributions at the start of the forecasts. Furthermore, these seven years of additional history had to be added without changing the reservoir description so that the previous history match would not be altered. This was accomplished by adjusting only the coning correlations during the new history match period. Care was taken to ensure that these adjustments did not affect the producing wells prior to 1977.

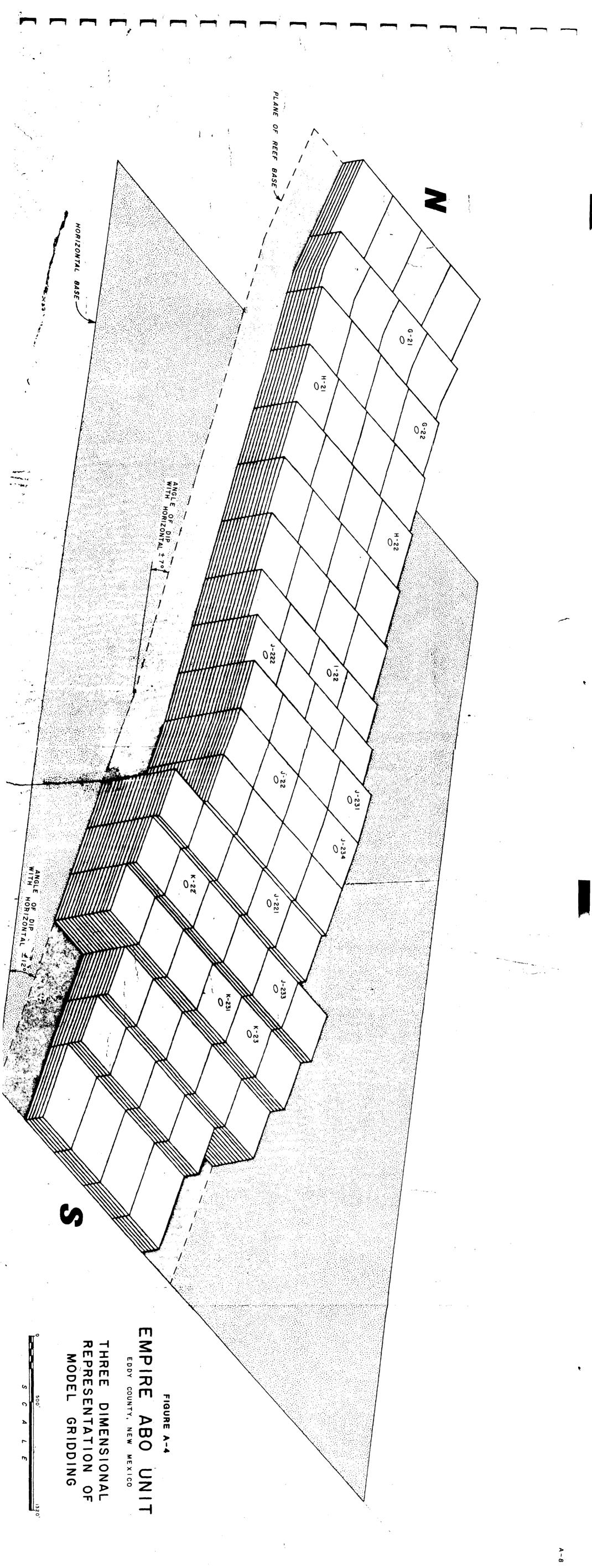
As in the 1977 history matching process, oil rates were input and the simulator calculated water and gas production rates. The coning correlations were adjusted after each trial run of the simulator to obtain a match of gas production rates for each well. Five infill wells were drilled in the slice area between 1977 and 1984: J-221, J-222, J-233, J-234, and K-231. These were included in the history match.

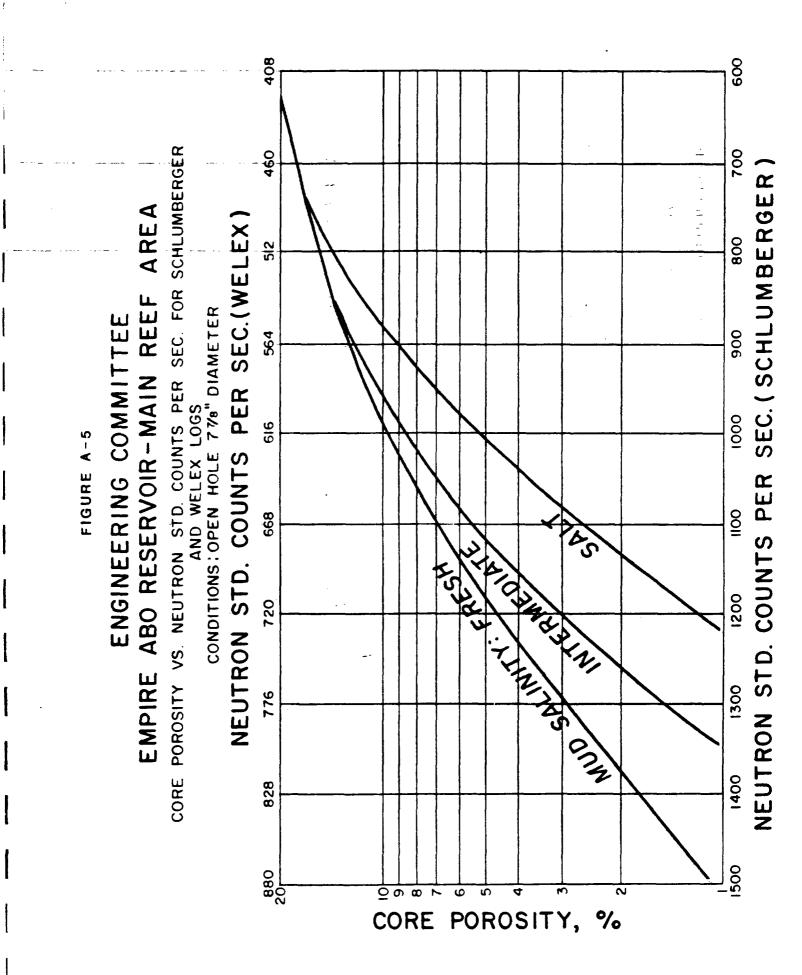

The results of the history match, including plots comparing actual well performances versus calculated performances, are presented in Appendix C. The black oil simulator matched individual well gas production rates, water production rates, and average reservoir pressures from 1959 to 1984.

### Forecasts


During the forecasting period the produced gas rate was limited to a field rate of 67 MMCFPD. This rate is the sum of the Unit allowable and the average rate of non-participating tracts in the field. Inflow performance analysis indicates this field rate will be maintained until the reservoir pressure is reduced to approximately 200 psi. Reinjection was set at 58 percent of the produced gas rate based on past performance of the gas plants and forecasts of reinjection volumes calculated by the compositional model. A bottom hole pressure limit of 200 psi was set for each well to control production at low reservoir pressures. This replaces the productivity index used by Foster in his forecasts and more closely simulates actual constraints on production caused by wellbore hydraulics and surface equipment.


### Scale Up


Examination of Figure A13 leads to the conclusion that the slice is representative of the field but that its oil decline is not synchronous with the actual field decline. Higher voidage rates in the slice during the mid-70's apparently caused gas coning to occur earlier in the slice than in the rest of the field. As a result, the slice oil decline is leading the field by approximately 2 years. Therefore, the oil forecasts for starting blowdown in 1985, 1990, 1995, and 2003 were calculated by starting blowdown in the simulator in 1983, 1988, 1993, and 2001, respectively. These forecasts were scaled up based on the ratio of the hydrocarbon pore volumes of the slice and the field.



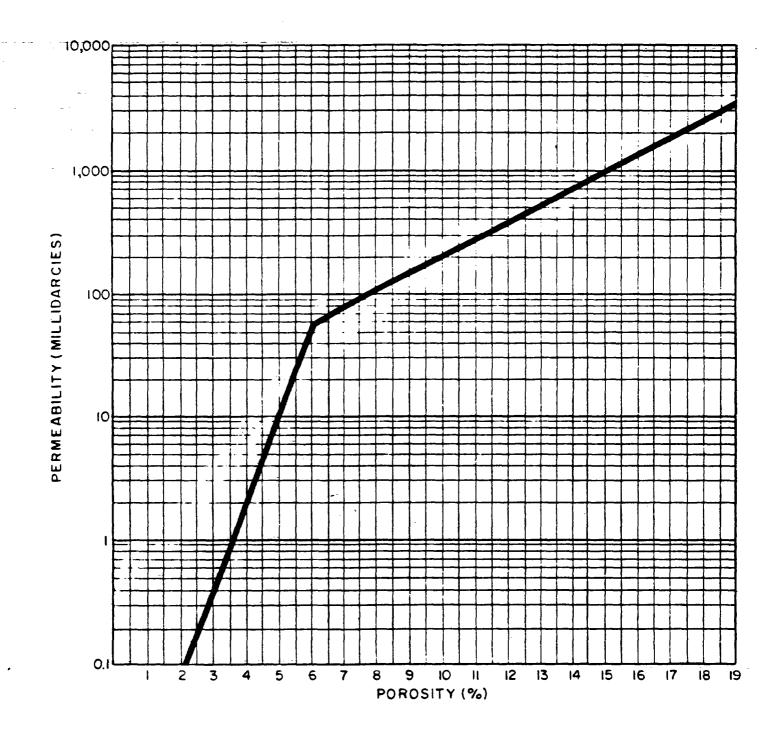

1 3 3










A-8

### EMPIRE ABO UNIT

EDDY COUNTY, NEW MEXICO

### CORE PERMEABILITY VS. POROSITY

USING SORT BY POROSITY RANGES





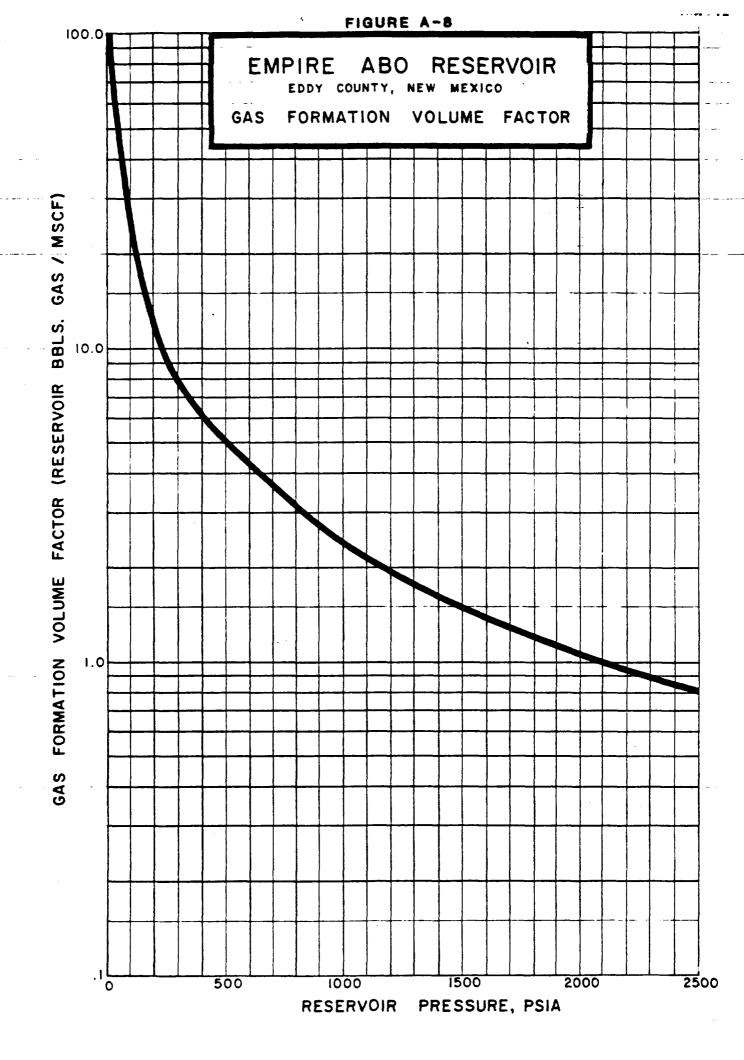



FIGURE A-9

EMPIRE ABO UNIT

EDDY COUNTY, NEW MEXICO

ABO RESERVOIR HISTORY-MATCH GAS-OIL RELATIVE PERMEABILITY CURVE

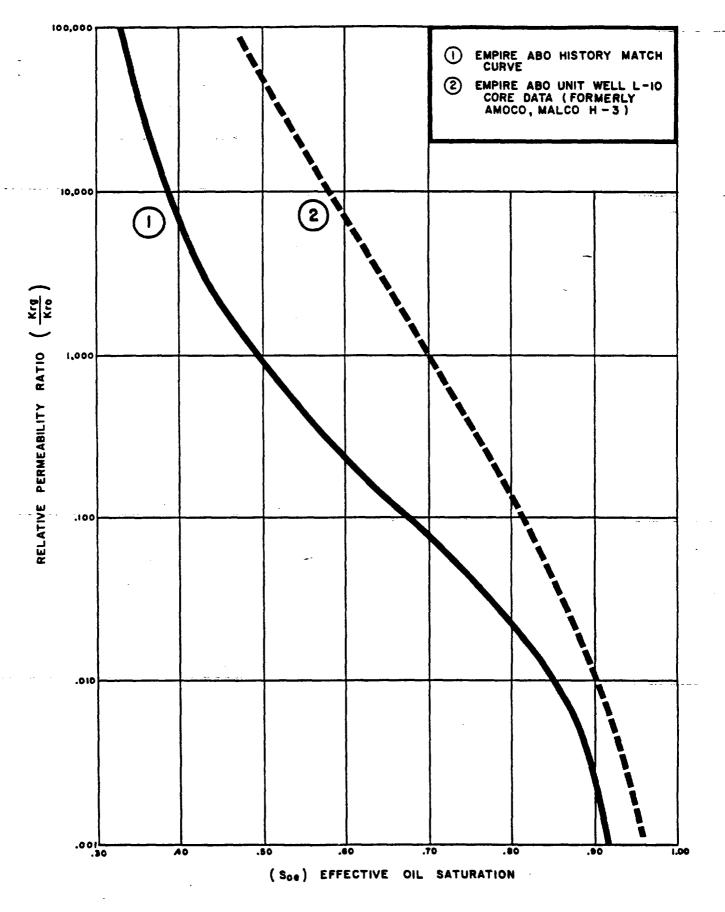



FIGURE A-10

EMPIRE ABO UNIT EDDY COUNTY, NEW MEXICO

## CONING CORRELATION CALCULATED BY RADIAL CONING MODEL FOR WELL K-23

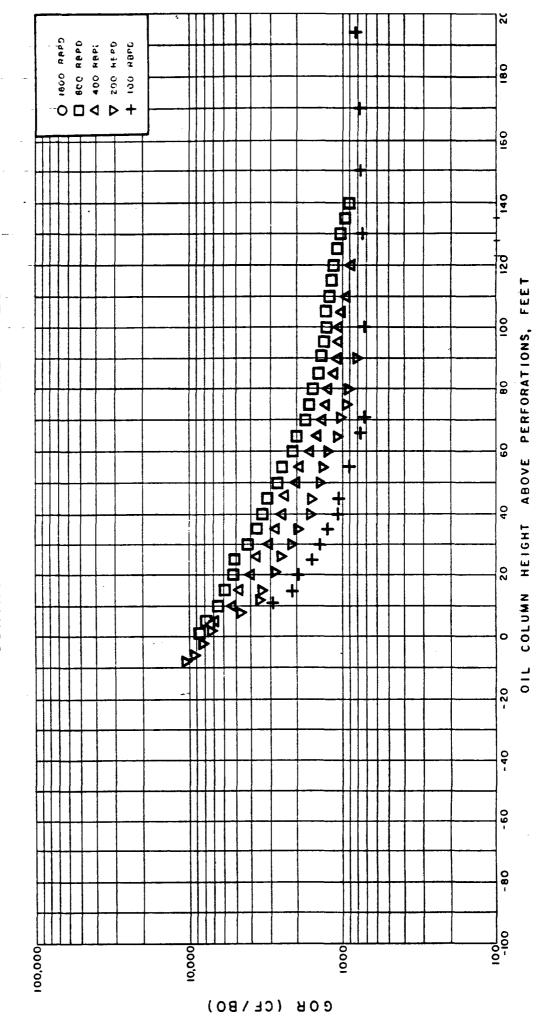
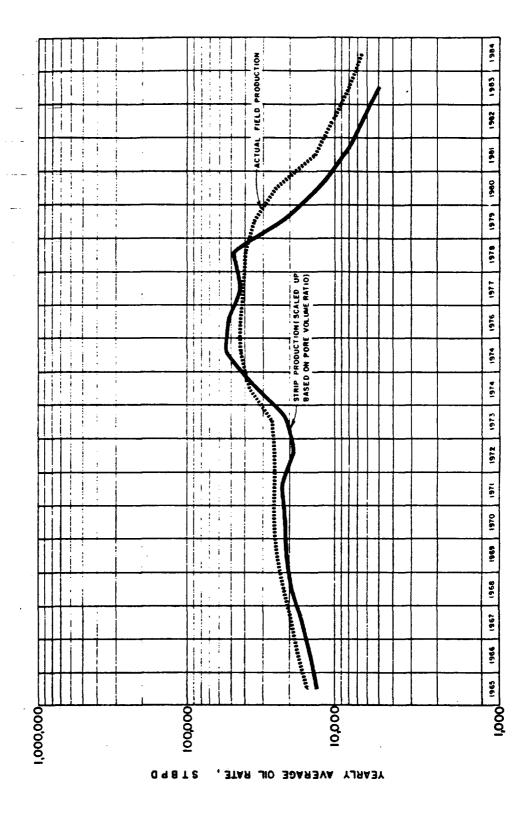




FIGURE A-13

#### EMPIRE ABO UNI' EDDY COUNTY, NEW MEXICO

COMPARISON OF STRIP AND

FIELD OIL RATES



APPENDIX B

#### APPENDIX B

#### Discussion of Oil Rate and Reserve Forecasts

#### DISCUSSION OF OIL RATE AND RESERVE FORECASTS

The incremental oil reserves recovered by delaying blowdown are the result of extending the field life which allows additional migration of oil from the back-reef to the fore-reef. This is illustrated in figures B1 through B5 in which the gas cap, oil column and water column are mapped for one row of cells in the simulator. Figure B1 is the saturation distribution at the start of the oil rate forecasts which is 1/1/83 in the slice and represents 1/1/85 in the field. Figure B2 is the saturation distribution at the economic limit for starting blowdown in 1985. Approximately 50 ft of oil in the back-reef area (columns 3, 4, and 5) has migrated to the fore-reef area. Compare this to Figure B5 which is the saturation distribution at the economic limit for starting blowdown in 2003. Here the migration of oil is roughly three times that for starting blowdown in 1985.

The incremental oil rates obtained by continued gas injection are the result of slowing the pressure decline of the reservoir. Although the recovery mechanism at Empire Abo is gravity drainage, which is relatively independent of reservoir pressure, the production mechanism is fluid expansion, which is very sensitive to reservoir pressure. The effect of reservoir pressure on oil rates is most easily explained using Equation 1 which is an expression of Darcy's law for linear fluid flow in permeable beds:

$$Q_0 = \frac{K_0 \Delta P}{\mu_0 L}, \qquad \dots \qquad (1)$$

where

Q₀ = Oil rate, BOPD, K₀ = Effective Oil Permiability, Darcies, △P = Pressure differential across the bed, psi, ℋ₀ = Oil viscosity, cp, and L = Length, ft. The pressure dependent terms in Equation 1 are  $\triangle P$  and  $\mu o$ . Assuming the only significant difference in the four blowdown cases is reservoir pressure, the ratio of the oil rates for any two cases can be expressed as:

$$Q_{01}/Q_{02} = (\Delta P/\mu_0)_1/(\Delta P/\mu_0)_2 \dots (2)$$

Using the oil rate forecast for starting blowdown in 2003, the oil rate forecasts for starting blowdown in 1985, 1990 and 1995 were calculated using Equation 2. If the differences in oil rates between the four cases are due entirely to the differences in reservoir pressures, then the forecasts calculated using Equation 2 should match the simulator calculated forecasts. The results of these calculations are illustrated in Figures B6 through B8. The agreement of the forecasts indicates the incremental oil rates obtained by delaying blowdown are due entirely to the incrementally higher reservoir pressures.

### EMPIRE ABO UNIT EDDY COUNTY, NEW MEXICO

S AT URATIONS AT 1985

							5		
	-					91			
	-			. 2					
	~~		14						
	5								
2									
6									
	8								
		7							
		6							
		5 2							
		4							
		3							÷°°+

-3 ٥

## EMPIRE ABO UNI EDDY COUNTY, NEW MEXICO

SATURATIONS AT 1995 FOR BLOWDOWN AT 1985

								17				0N ) 60 %	
		-					16					SATURATION > 60 %	
					15			1447 1447 1447	15 15 0 - 14 1			7 WATER	
				14 14									
		13										- <b>56</b> -	
	2											10 1-1	
	II II											FROM 1-1-85	2 40%
0												DRAINAGE FR	SATURATION 2 40%
	6											OIL DRA	OIL SAT
		8										STATE AND	
	•		7									4	
<u>-</u>			6									) 60 %	2
<u>.</u> .			5 1									GAS SATURATION > 60 %	
			4							 			
			3								+ °°+		

-----

## EMPIRE ABO UNIT EDDY COUNTY, NEW MEXICO

SATURATIONS AT 1998 FOR BLOWDOWN AT 1990

OIL DAINAGE FROM I-1-85 TO I-1-98	DRAINAGE FROM I-1-85 TO I-1 SATURATION 2 40 %	OIL DRAINAGE FROM I-I-BS TO I-I	OIL DRAINAGE FROM I-I-BS TO I-I	OIL DRAINAGE FROM I-I-B5 TO I-I
DRAINAGE FROM I-1-85 TO I-1 SATURATION 2 40 %	OIL SATURATION 2 40%	OIL SATURATION 2 40 %	OIL SATURATION 2 40 %	OIL SATURATION 2 40 %
DRAINAGE FROM I-1-85	OIL DRAINAGE FROM I-I-85	I DI SATURATION 2 40 %	Contraction 2 40 %	Contraction 2 40 %
DRAINAGE SATURATIO	OIL SATURATIO	OIL DRAINAGE	OIL DRAINAGE	OIL DRAINAGE
	01F	oir oir	oir	oir
		oir oir	oir oir	oir oir

0-0

-

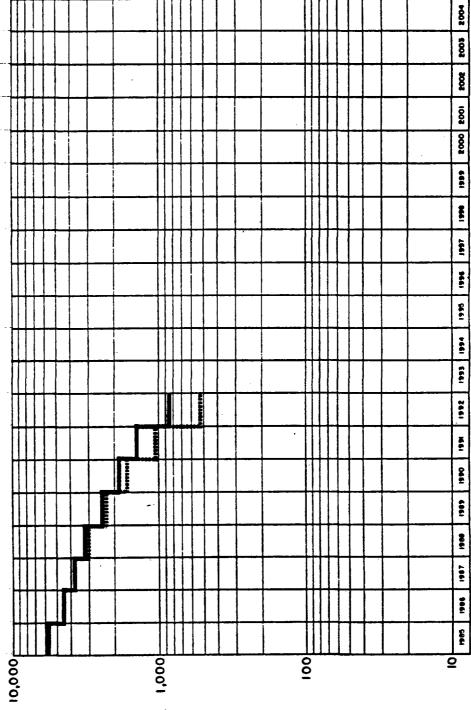
### EMPIRE ABO UNIT EDDY COUNTY, NEW MEXICO

SATURATIONS AT 2001 FOR BLOWDOWN AT 1995

						16				
				5						
		-	14 6. M. Selenk							
	n		1							
2										
								4		
Ø										
	B									
		7-								
		6								
		5								 
		4								
		3 400 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100					+			 ≠-°n2+

OIL SATURATION 2 40%

## EMPIRE ABO UNI EDDY COUNTY, NEW MEXICO


SATURATIONS AT 2006 FOR BLOWDOWN AT 2003

									17			N 2 60 %
	-						16					WATER SATURATION 2 60 %
	-			12				ンシンシン				WATER
	-		14					スシンシンシン				
	[]											90
2								12.12				TO 1-1-06
II III								1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1				M 1-1-85
												DRAINAGE FROM
6							م من					OIL DRAI
	-60						علی محمد می کار بر از این					
-		7					ビックシンション					<b>E</b> 2
		6 6				م من من من در سر من مرجعهم من من من						60 %
		5										URATION 2
		4			Same Same							GAS SATURATION 2 60%
		E Constant									+ °g -•	A CONTRACT

~ /

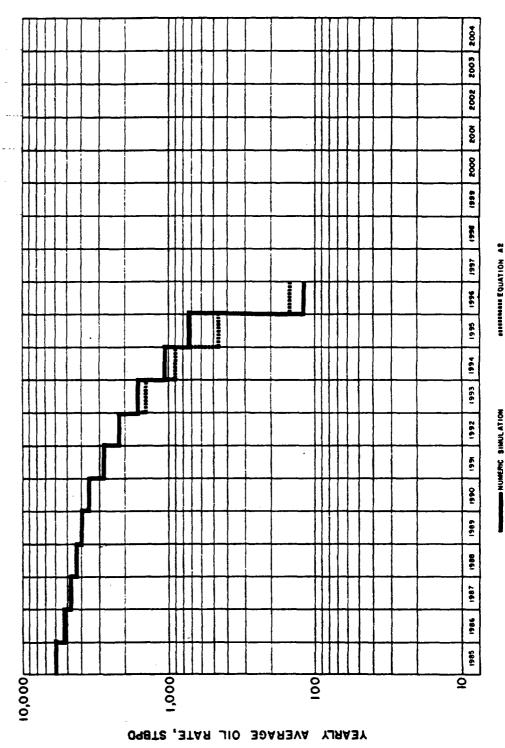
#### EMPIRE ABO UNIT EDDY COUNTY, NEW MEXICO

COMPARISON OF SIMULATOR FORECASTS TO FORCASTS CALCULATED USING EQUATION A2 BLOWDOWN AT 1/1/85



YEARLY AVERAGE OIL RATE, STBPD

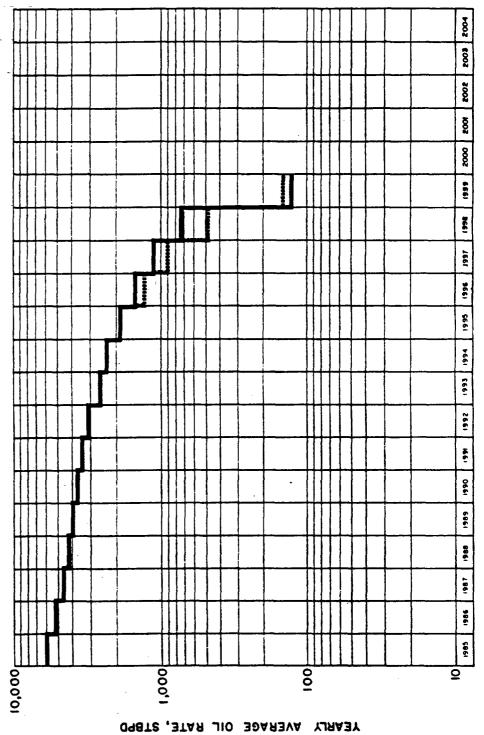
POTRESSESSES EQUATION A2


MERIC SIMULATION

### EMPIRE ABO UNIT EDDY COUNTY, NEW MEXICO

# COMPARISON OF SIMULATOR FORECASTS TO

# FORCASTS CALCULATED USING EQUATION A2


### BLOWDOWN AT 1/1/90



EMPIRE ABO UNIT EDDY COUNTY, NEW MEXICO COMPARISON OF SIMULATOR FORECASTS TO

FORCASTS CALCULATED USING EQUATION A2

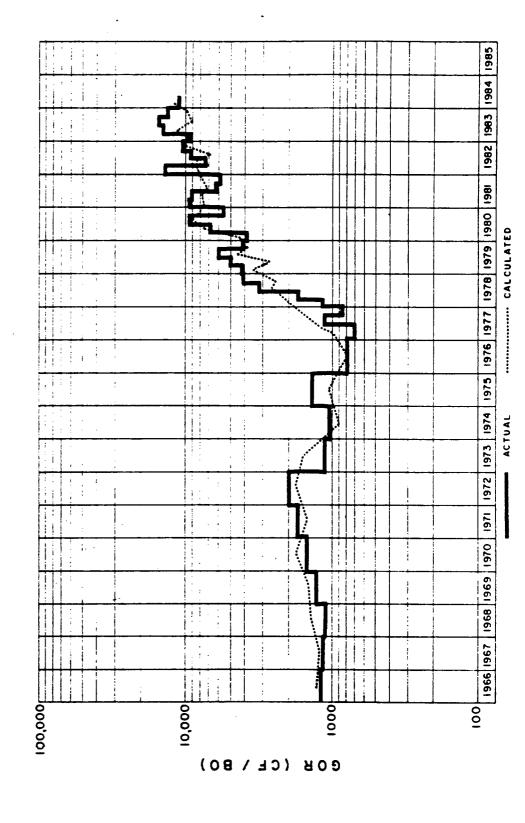
BLOWDOWN AT 1/1/95



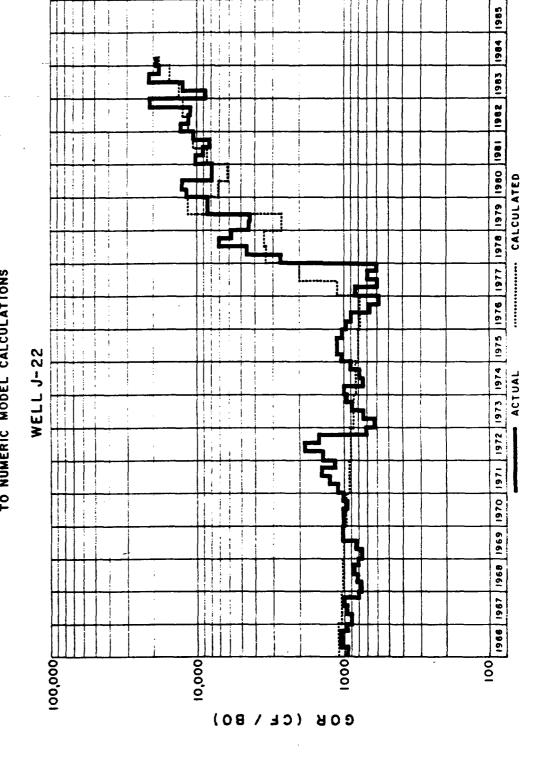
SSERVERS EQUATION A&

MUMERIC SIMULATION

APPENDIX C

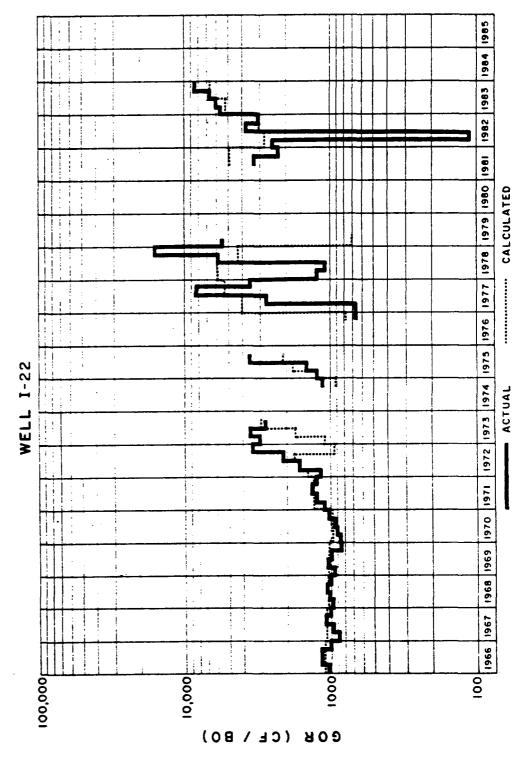

Black Oil Numeric Simulator History Match

#### TABLE C1 HISTORY MATCH RESULTS


	Actual	Model	% Difference
Gross Oil Production, STB	5,959,309	5,959,309	None
Gross Gas Production, MCF	11,853,407	11,326,669	-4.4
Average Reservoir Pressure, psi	1,003	1,028	2.5
Individual Well Gas Production, MCF			
J-22	1,887,197	1,762,151	-6.6
I-22	966,476	1,001,867	3.7
K-22	1,590,347	1,561,049	-1.8
K-23	1,587,784	1,583,831	-0.3
J-231	783,200	646,498	-17.5
J-221	1,191,748	1,015,900	-14.8
J-222	24,662	10,835	-56.1
J-233	836,810	801,228	-4.3
J-234	392,735	446,310	13.6
K-231	826,495	754,031	-8.8
H-22	382,146	371,110	-2.9
H-21	451,068	454,988	0.9
G-21	932,739	916,871	-1.7

### EMPIRE ABO UNIT EDDY COUNTY, NEW MEXICO

#### SLICE MODEL HISTORY . MATCH ACTUAL GOR FROM SLICE AREA COMPARED TO NUMERIC MODEL CALCULATIONS




EMPIRE ABO UNIT EDDY COUNTY, NEW MEXICO SLICE MODEL HISTORY MATCH



EMPIRE ABO UNIT EDDY COUNTY, NEW MEXICO

SLICE MODEL HISTORY MATCH



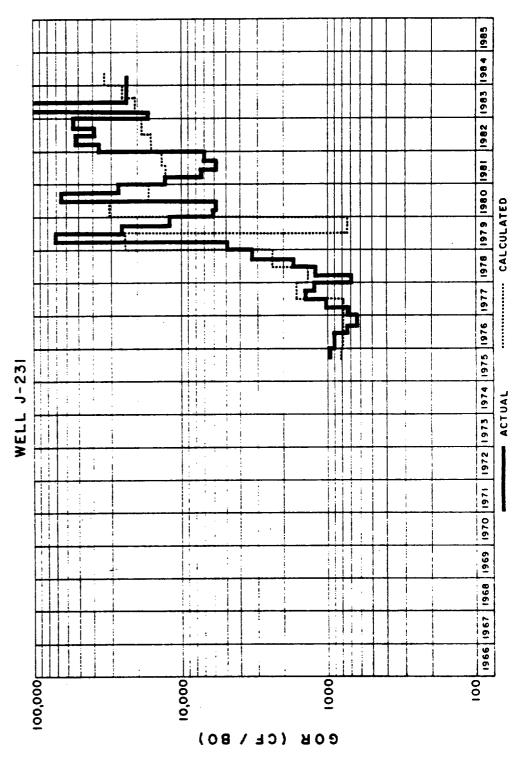

· |

### EMPIRE ABO UNIT EDDY COUNTY, NEW MEXICO

## SLICE MODEL HISTORY MATCH

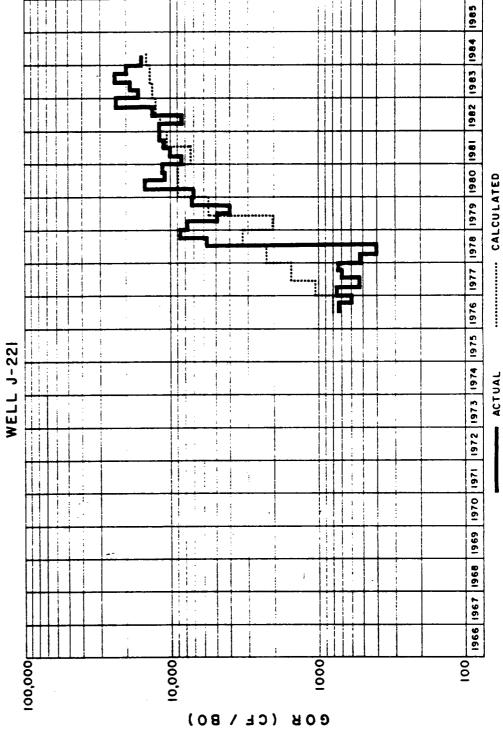
### ACTUAL WELL PERFORMANCE COMPARED To NUMERIC MODEL CALCULATIONS

### WELL K-22




CALCULATED

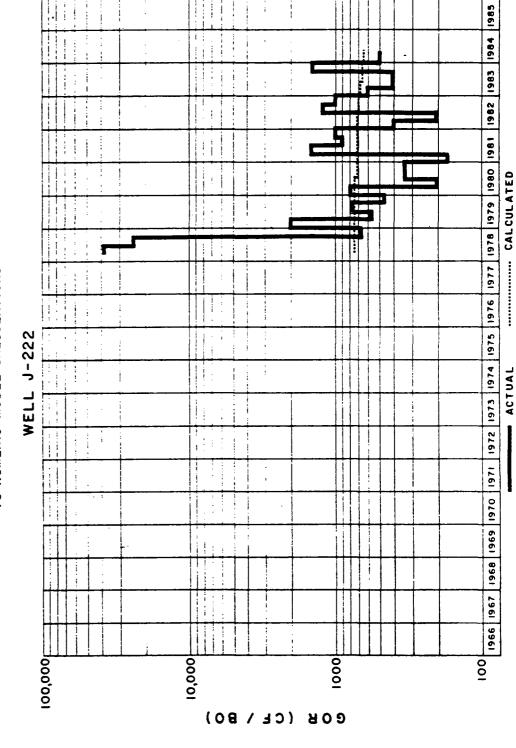
ACTUAL


### UNIT EMPIRE ABO UNI' EDDY COUNTY, NEW MEXICO

SLICE MODEL HISTORY MATCH



EMPIRE ABO UNIT EDDY COUNTY, NEW MEXICO SLICE MODEL HISTORY MATCH

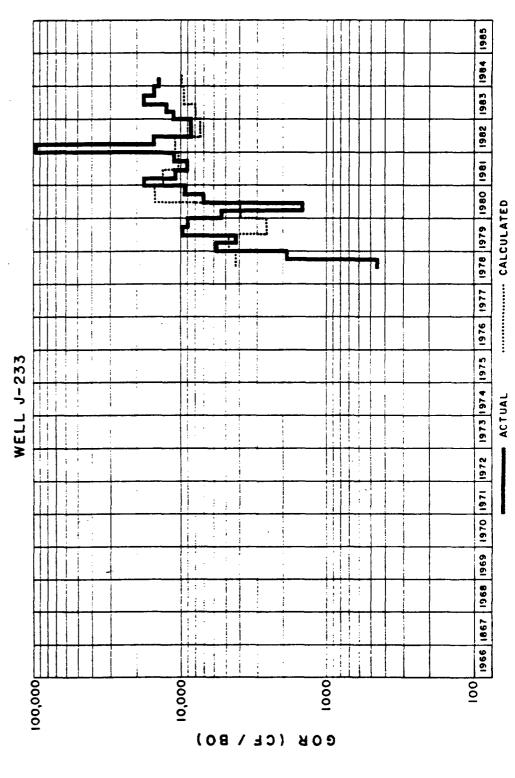

ACTUAL WELL PERFORMANCE COMPARED TO NUMERIC MODEL CALCULATIONS



ACTUAL

**UNIT** MPIRE ABO UNI EMPIRE

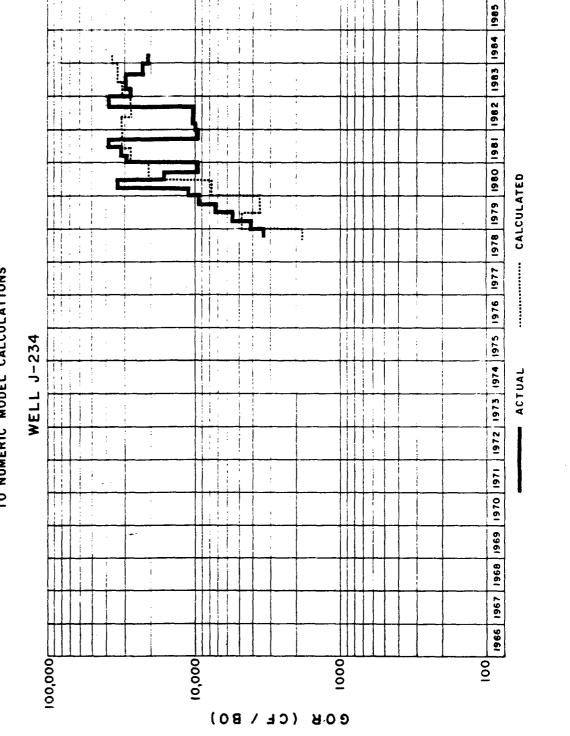
SLICE MODEL HISTORY MATCH




### EMPIRE ABO UNIT EDDY COUNTY, NEW MEXICO

SLICE MODEL HISTORY MATCH

# ACTUAL WELL PERFORMANCE COMPARED


TO NUMERIC MODEL CALCULATIONS

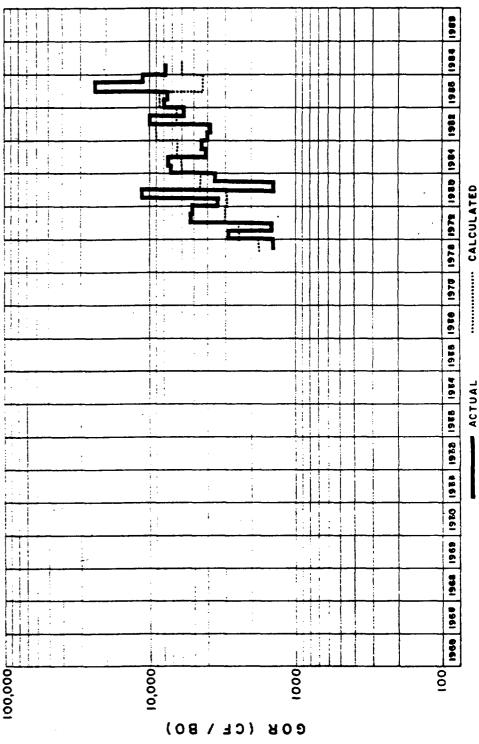


EMPIRE ABO UNIT EDDY COUNTY, NEW MEXICO

## SLICE MODEL HISTORY MATCH

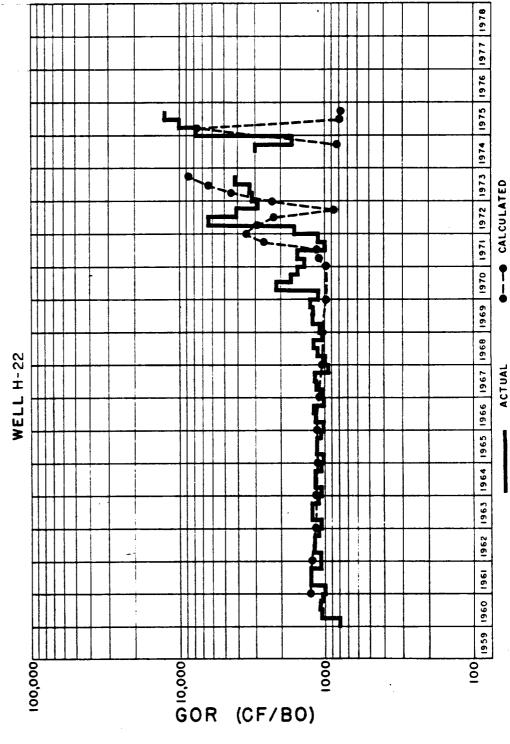
ACTUAL WELL PERFORMANCE COMPARED TO NUMERIC MODEL CALCULATIONS




i i

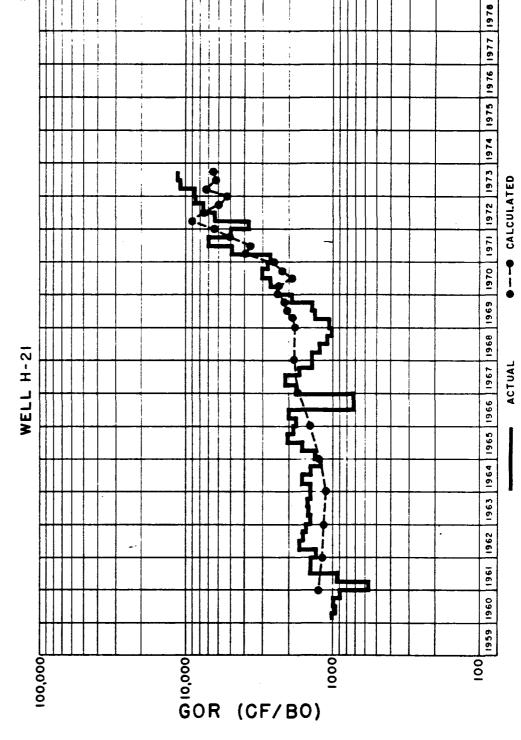
Ņ

### EMPIRE ABO UNI EDDY COUNTY, NEW MEXICO


# SLICE MODEL HISTORY MATCH



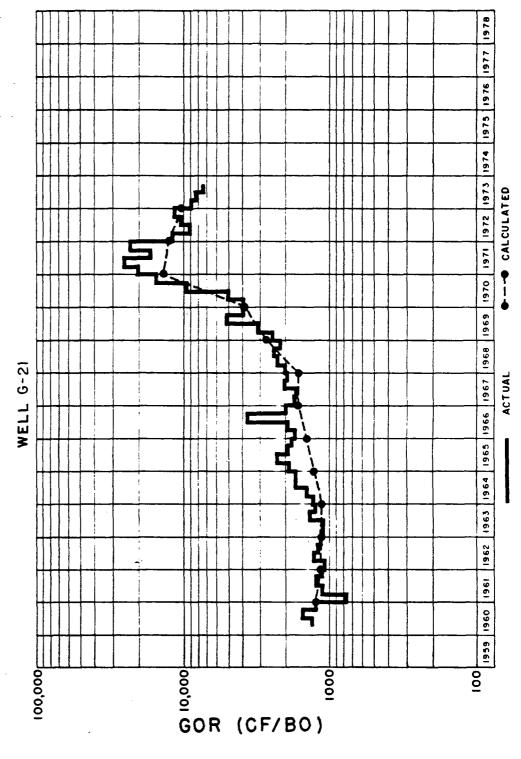



EMPIRE C-12 EMPIRE ABO UNIT EDDY COUNTY, NEW MEXICO

SLICE MODEL HISTORY MATCH



EMPIRE ABO UNI-EDDY COUNTY, NEW MEXICO


## SLICE MODEL HISTORY MATCH



EMPIRE C-14 EMPIRE ABO UNIT EDDY COUNTY, NEW MEXICO

1

SLICE MODEL HISTORY MATCH



APPENDIX D

i

#### Energy Recoveries

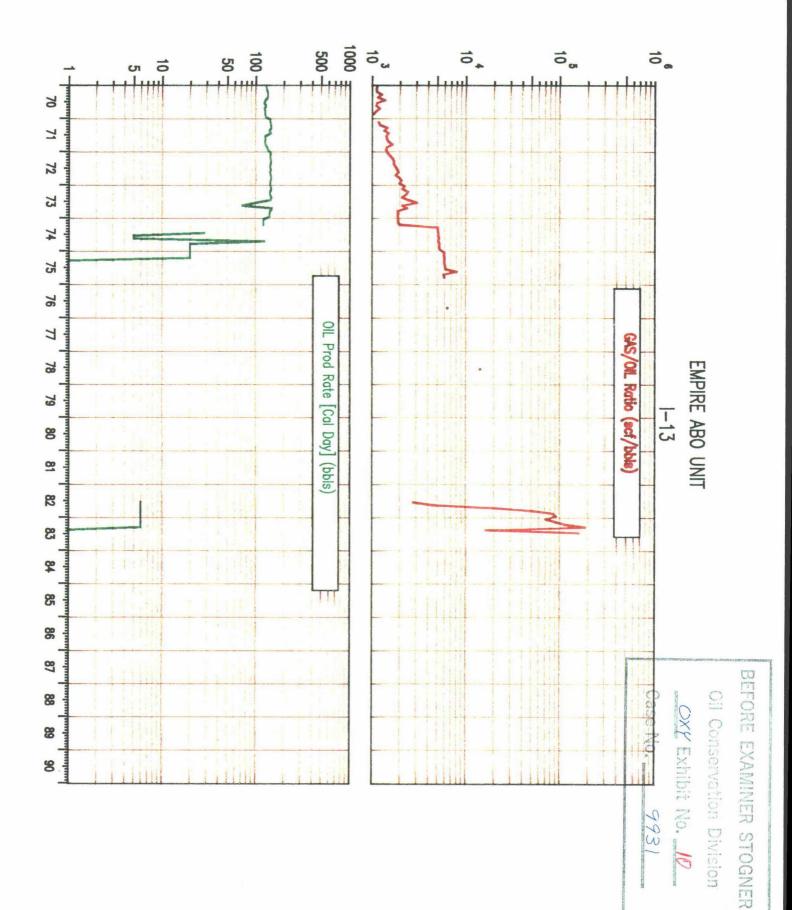

Energy recovery is calculated by multiplying the remaining reserves of each product by its heating value. Table D1 lists the heating values of each product. Table D2 lists the energy recovery for the four blowdown cases studied.

Table D1. Heating Values for Oil, NGL's, and Residue Gas.

Product	Heating	Value
Residue Gas	1,010,000	BTU/MCF
Ethane	65,889	BTU/gal
Propane	90,962	BTU/gal
Butane	102,918	BTU/gal
Gasoline	110,071	BTU/gal
0i1	5,500,000	BTU/STB

Energy Recoveries. TABLE D2.

Blowdown Start Date	Volume	1/1/85 Energy (MMBTU)	1/1/90 Volume	90 Energy (MMMBTU)	1/1/95 Volume (1	95 Energy (MMMBTU)	1/1/03 Volume (	D3 Energy (MMMBTU)
Residue Gas	131609 MCF	132925	111195 MCF	112307	85150 MCF	86002	38297 MCF	38680
Ethane	416806 Mgal	1 27463	490449 Mgal	32315	564156 Mgal	37172	704748 Mgal	46435
Propane	240444 Mgal	1 21871	282455 Mgal	25693	329201 Mgal	29945	417943 Mgal	38017
Butane	159758 Mgal	1 16442	192443 Mgal	19806	229020 Mgal	23570	293266 Mgal	30182
Gasoline	52541 Mgal	1 5750	65562 Mgal	7216	85728 Mgal	9436	110649 Mgal	12179
0 i 1	8474 MSTB	46607	12970 MSTB	21335	15919 MSTB	87555	17900 MSTB	98450
		251058		268672		273680		263943



ARCO Oil and Gas Company 🛟

Central District Post Office Box 1610 Vidland Texas 79702 Telephone 915 688 5200 BEFORE EXAMINER STOGNER

Oil Conservation Division

OXY Exhibit No. 1/

Case No. _____993/

May 21, 1990

TO: Working Interest Owners

RE: Empire Abo Unit Nos. G-24, F-27, F-31 Sécs. 31, 32, 33 of T17S-R28E Eddy County, Texas AFE No. 915289

Dear Working Interest Owners:

Enclosed please find AFE No. 915289 for \$143,100 gross to workover wells F-27, G-24, and F-31 in the Empire Abo Unit. Justification from engineer, Gary Smallwood, and other supporting documentation is included for your information. ARCO respectfully requests your prompt approval of this work. To approve, please sign and return one (1) copy of the AFE to:

> ARCO Oil and Gas Company ATTN: Janet L. McCleery - MIO 394 P.O. Box 1610 Midland, Texas 79702

If you have questions, please don't hesitate to call me at 915 688-5544 or Gary Smallwood at 915 688-5359.

Sincerely,

Janet & Mc Cleary

Janet L. McCleery Operations Analyst Southwest District

Attachments

Title					. т	17 F	21				••••	Origin	al authorization	
	Empire A		11C NC	<b>s.</b> <u>G</u> =2	4, r	-2/, F	- 31					+	Y 0	
	Lower Pe	erfora	ations	; Squee	ze o	ld per	fs.					Economic	S C Hequired	
Loca										State/county co	de	AFE number	40	
	Sec. 31,	, 32 8	÷ 33;	175-28E	Edd	y Co.,	NM			30-01	5	1915	289	
Orig	inated by/Depart	ment		• • • • • • • • • • • • • • • • • • •			De	strict				Project or pro	gram identifier	
	Smallwoo	od/Eng	gineer	ing				NW-C	entral		L40	_		
Field	name/Play nam	e/Prospec	Iname				Fie	rid/play code	Book prope					
	Empire A					• <u></u> · · · · ·		064185		266 -01				
Leas	e record number	r		Subject to prod other fundings	payment.	Well plan pi		Organizatio	n code	Co-owner opera	tor AFE No.1	a)/Property code	1	
					No	X Yes			<u>.                                    </u>	1			·····	
ř			of author	·		L	ion for		BI code 1	Amount	Budget info	code 2 Amou		
- H	New drilling			opment	<del>ة.</del> بە	Aate	Peco	very 🛄 *******	453	52.550				
	Recompletic Workover	2n	Exploi	atory	ġ <b>ł</b>	Develop Reserves	ment	Service		!				
LA	Drill old well of	tanaac					d	%	•	ed capital pro	-			
Ļ			Jective	of drilling (d	efinitio			·	-	inal budget				
ň	Oil only	Signature	<u> </u>						1 .	cluded in approve tar expenditure c		🛛 Yes	No	
	Gas only	Dist. Engi	A A	Exploration g	719.				by approv	ed capital allocati		🛛 Yes	D No	
	Oil/Gas	i L	bin	repo	son	L				unt of additional be requested		5		
 	component						G	en/Sub	• !	Gross am	ounts-in w	whole dollars only		
	FE No.(s)	V	Descrip	tion and jus	tificatio	n	Account codes		······		Capital Expe			
		1					i			1	i	· · · · · · · · · · · ·		
		Wor	kover	S			1	9501			!	143,100	143,100	
		 					l						_ <b> </b>	
		į									. }			
		ļ			·		İ		<b> </b>					
									1		1			
<u> </u>		<u> </u>							<b> </b>	·		<u> </u>		
	, jOther	Use rever	se side if n	ore lines are ni	reded									
		s	ee dei	tail on	hack				ļ	, , ,			:	
	Opns mgr				Udex		·	Gross totais	· · · · ·	······································		1	·· · · · · · · · · · · · · · · · · · ·	
	•		OGC			:						143,10	0 1 143,100	
~	Engineering		·					Net A D G C	share 1	· · · · · · · · · · ·				
÷				st decimal		7 2 2	7 8		· L			52,55	0 52,550	
dite	, gradder	Present v	vorth AFIT	Invest Efficience	LY AFIT	Rate of retu	irn 5 AFI'	Gross		weri Capi Lüwer		i Upper		
Au	L	4				Chance fac		Requested		peri Expi ^{Lowin}	124,7	Upper	204,000	
	AC AC	{				Conance rac		Range		weri Capi Lower	45,7		74 014	
-, .	S Exploration	Co-owne	r approval	s.gnature		i		Requested		operi Exp	45,1	93 10000	74,914	
SUL	70		51	IR	. [.	1		Foreci		Prior year	Curre	nt year	Thereafter	
078	Evaluation	Date	ulars	Company	CC U5/	SINC.		Capital	S	····	; s		s	
	Land mgt		5/90		Estimated	completion	date	Expense	e s	·	s 52,	550	s	
·	1 1	1												
ŝ		-oproval	IS (Check	highest lev	ei regu	Date	1	Executive V	AU ice President	Ihorized expe	moiture iif	ILL LADIE NO.	Jate Date	
ଛି	44	+	/	Ŀ	-	- 1	90						;	
10	President O	<u> 1 0 1</u>				<u> ] / [</u> Date	<u> </u>	President-A	A Cu				Date	
		]											,	
	President-A O (	6 C	···			Date		Chairman o	' the Buard	······	•	<u></u>	Date	
	<u></u>					1			••••••••••••••••••••••••••••••••••••••				•	
'ser	Nor Vice Presider	ni-A D G C				Date		Board of D	rectors				Date	
													Date	
-	sident-AOGC					Oate		-					~~·*	
	38-342-14									RichlieldCom				
						S RE L'AMB					n = N ¥			

	tion for Expenditure					_
					AFE	No.
mponent		Gen/Sub		Gross Amount	I-In whole dollars	s only
E No.(s)	Description and justification	Account codes	On hand	Capital	Expense	Total
	G-24 Workover				44,700	44,700
	F-27 Workover	•			44,700	44,700
	F-31 Workover				53,700	53,700
					-	· ·
				·		
		×				
	······································					
		:		······		
	······································		i	·		
			_			
: Include an Definition of objective of	y amounts shown on this page in totals of Oll only: Refers to a well drilled where p primary Gas only: drilling. Refers to a well drilled where p Oll and/or gas: Refers to drilling in areas wher	primary objective is oil only primary objective is gas only	y or gas and co			

Develop reserves:
Applies to wells drilled to develop new or additional proved reserves and attendant productive capacity. All exploratory wells plus
development wells that meet the above criteria, fall in this classification.
Rate:
Applies to wells drilled to accelerate the production of existing proved reserves
Combination reserves and rates:
Applies to wells whose economic justification is partially based on additional reserves to be developed with attendant productive capacity
and any anti-the based on the second and an all antiting developed around the for the plantification

added and partially based on the accelerated recovery of existing developed with attendant productive capacity added and partially based on the accelerated recovery of existing developed proved reserves. For this classification, show the percent of the economic justification which is applicable to the rate portion of the well Secondary recovery: Applies to wells drilled in connection with a secondary recovery project. These may be infill wells, wells drilled to fill out flood patterns, or wells drilled to replace producers converted to injection or supply service. Replacement: Applies to wells drilled to replace to converte to injection or supply service. Definition of reason for drilling. Applies to wells drilled to replace wells that have ceased to produce Applies to wells drilled for the purpose of supporting production in an existing field such as gas, water, steam, and air injection; salt water Applies to wells drilled for the purpose of supporting production in an existing field such as gas, water, steam, and air injection; salt water disposal, water supply for injection, observation, and injection for in-situ combustion; etc. Tertiary recovery: Recovery tertiary reserves

.

ARCO Oil	and Gas Company 🛟		5	/7/90		Authori	izatio	on for E	xpenditure	
Title								🗵 Origina	authorization	
Empire Abo Unit Nos. G-24, F-27, F-31							··· [		n#	
								Economics	X Required	
the second se	erforations; Squeeze o	ld perf	Es.						: 🗌 Not required	
Sec. 31, 32 & 33; 17S-28E Eddy Co., NM					State county code AFE number 9/5289				89	
Originated by/Depart			Distri	ct	······································			roject or prog	ram identifier	
	od/Engineering				entral		40			
Field name/Play nam			1		Book property (					
Empire A				64185 Organization	643426	6 -01 -owner operator AFE	Note	CONTRACTOR	. <u></u>	
Cease record number	other fundings	X Yes		Urganization	i code do	-owner operator Are	NU ISI/P	Topeny code		
	urpose of authorization		on lor dr	illing		Budgel	t inform	nation		
New drilling	Development %	Rate					91 co		1	
Recompletio	on Exploratory %	Develop Reserves	Aepiace-							
X Workover	Other				Approved	capital program:	bud	get year 19	N.A.	
Drill old well o		Reserve	rate	~~~		budget 🗋 Ap				
P	mary objective of drilling (definitio Signature	in on rever	rse side)			ed in approved progra		🗆 Yes	C No	
Oil only Gas only	Dist Engineer and/or Exploration group				by approved c	xpenditure can be fu apital allocation	nded	🗆 Yes	🗋 No	
Oil/Gas	6th upolson	L			if no, amount capital to be ri		s			
Component		,	Gen	/Sub	•	Gross amounts-	in who	le dollars d	only	
AFE No.(s)	V Description and justification	ו <b>הכ</b>		t codes	On hand	Capital	E	xpense	Total	
						1	i i			
	Workovers		9	501		1 1 	1	43,100	143,100	
		1								
		i				· •				
		ļ								
. <u></u>	· · · · · · · · · · · · · · · · · · ·					<u>،</u>	i			
						, 	İ			
							1			
Other	Use reverse side if more lines are needed				·····		i 			
	See detail on back						1			
Oprs mgr	Operator			Gross totais						
	AOGC	÷						143,100	143,100	
Ensineering	· · ·			Ver A D G C	share			52 550	52,550	
<u>.</u>	A O G C. interest decimal 3.6	7 2 2	·	l			<u> </u>	52,550		
	Present worth AFTI - Invest Ericiency AFTI	Rate of retui	m to AFI'	Gross 13: Lover: Capinower Range 43% Upper: Expinion 124, 7			4,70	100 Upper 204,000		
A Prosedural		Chance fact	01 (**)	Requested Net		Cap-ower	4,700	JDCE		
- SC	1			Range Requested			5,79	3 jupper	74,914	
Exploration	Co-owner approval signature	•		Foreca	ist   Driv	······································	urrent		Thereafter	
· · · · · · · · · · · · · · · · · · ·	- Edward Being			(Net S	5) :					
Evaluation	Date Company DXY US	à inc.		Capital	s	÷ 5		s		
Lans mai		d completion (	date	Expense	e ' S	Ś	52,5	50 . s		
	Approvals (check highest level requ	ured)		<u> </u>	Autho	rized expenditur	re limit	table No	123-1	
Centr.	1 1	Date	1	Eveculize V	ce President - 4				Jale	
× HV	tol		90	<u> </u>						
/ ce President OC	39	Date		President-A	RCU				Date	
Ver President-A O	у З с	Date		Chairman of	the Buard		. <u></u>	~- <u>-</u>	Date	
		1						1		
Senior vice President-AOGC Date					Board o' Directois Dale					
		·		<u> </u>						
Prinsident-A O G C		Date							Date	
				<u> </u>						

4438 362-14

• •

'. .

.

ARCO Oil and Gas Company is a Division of AtlanticRichfieldCompany

utnorizat	ion for Expenditure					1
e					AFE	No.
omponent	Description and justification	Gen/Sub			-In whole dollars	
AFE No.(S)		Account codes	On hand	Capital	Expense	Total
	G-24 Workover				44,700	44,700
	F-27 Workover				44,700	44,700
	F-31 Workover				53,700	53,700
						·
				······································		
	<u> </u>					
		<u>-</u>		<u></u>		
					1	 
				<u></u>		

Page

## Oil only:

Definition of primary objective of drilling.	Refers to a well drilled where primary objective is oil only or oil and casinghead gas. Gas only: Refers to a well drilled where primary objective is gas only or gas and condensate. Oil and/or gas: Refers to drilling in areas where primary objective is dual or uncertain.
Definition of reason for dritting.	Develop reserves: - Applies to wells drilled to develop new or additional proved reserves and attendant productive capacity. All exploratory wells plus development wells that meet the above criteria, fall in this classification Rate: Applies to wells drilled to accelerate the production of existing proved reserves Combination reserves and rates: Applies to wells whose economic justification is partially based on additional reserves to be developed with attendant productive capacity added, and partially based on the accelerated recovery of existing developed proved reserves. For this classification, show the percent of the economic justification which is applicable to the rate portion of the well Secondary recovery: Applies to wells drilled in connection with a secondary recovery project. These may be infill wells, wells drilled to fill out flood patterns, or weils drilled to replace producers converted to injection or supply service. Replacement: Applies to wells drilled to replace wells that have ceased to produce Service: Applies to wells drilled for the purpose of supporting production in an existing field such as gas, water, steam, and air injection; salt water disposal water supply for injection, observation, and injection for in-silu combustion; etc Tertiary recovery: Recovery tertiary reserves

•



Date: May 18, 1990

Subject: Empire Abo Unit Lowering Perforations Gas Injection Well Nos. F-27, F-31 and G-24 Eddy Co., New Mexico

From/Location:G. B. SmallwoodMIO-723Telephone:688-5359MIO-531

We recommend approval of the attached AFE for workover of the <u>three subject gas injection</u> wells in the Empire Abo Unit. AOGC operates the unit with a 36.7% working interest and a 31.6% oil NRI, 24.3% gas NRI and 8.07% NGL NRI. The total gross estimated cost of the three well perforating and squeezing program is \$143M with a net cost to ARCO of \$52.5M.

In 1984, Schumbera and Staggs completed the Empire Abo Unit Performance Projection. The projection emphasized the future of NGL performance to the unit. Two of the key findings of this projection were:

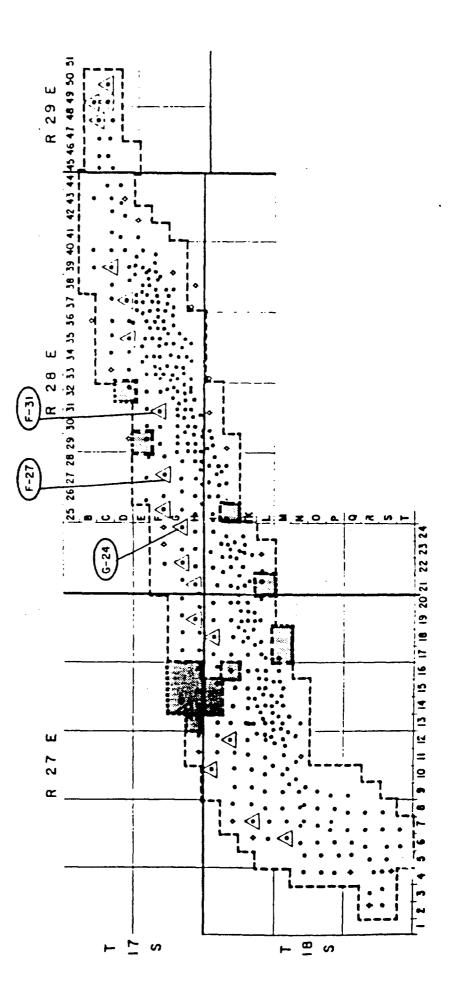
- 1. Half to three-quarters of the amount of each NGL component remaining in the year 1981 resides in the residual oil in the gas cap.
- 2. Most future NGL recovery can be attributed to contacting of residual oil with lean gas. Sweep efficiency will have an important effect.

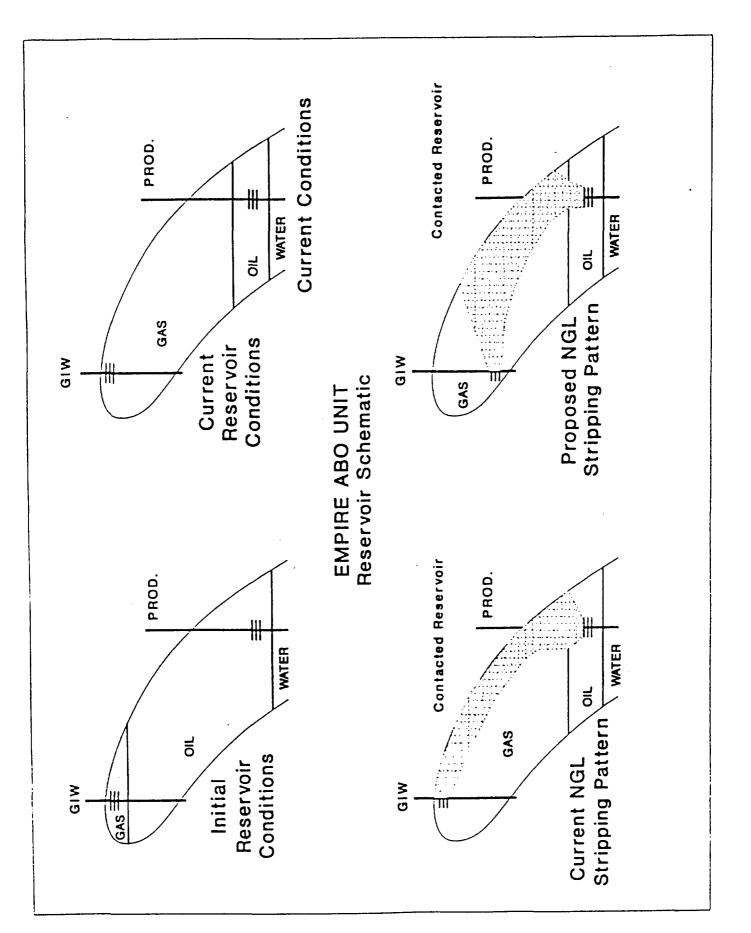
Incremental reserves for this project are based on a comparison of the average NGL content of the entire Unit's produced gas(3.86 gal/mcf) with that of the target injection area. The target area has a NGL content of 5.25 gal/mcf. It was assumed that by moving injection gas to the area of higher NGL's that liquids would be recovered at the same rate as predicted for the field but at the higher starting point of 5.25 gal/mcf. We assumed that 3 MMCFPD per well would contact NGL's in the target area. The NGL's are recovered at the incremental rate of 1.315 gal/mcf. The rate reflects the plant's 93% overall recovery efficiency. These numbers are considered somewhat conservative since each injection well is likely to inject as much as 6 MMCFPD.

A review of the field's injection wells indicated that 45% of all injection gas had entered only 3 of the 16 gas injection wells, implying the obvious need to redistribute injection gas. Lowering the perforations in the three subject wells is consistent with our plan to redistribute gas and improve sweep efficiencies. We have attached a simple illustration showing the concept of improved sweep and NGL recovery as Figure 1B.

J. A. Nicholson, MIO-531 April 30, 1990 Page 2

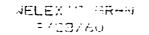
We have reviewed the cost estimates to kill and squeeze the subject wells with the drilling department. We were concerned that it might be extra troublesome to kill these wells. They have been on gas injection for a long time and it seemed likely they would drink a lot of fluid. It appears there are sufficient funds to cover such a case. In addition we agreed to move the completion packer above the old perforations and run tailpipe below them. See the attached wellbore schematics. This should assure future mechanical integrity tests and help protect the squeeze job from matrix acid treatments of the new perforations.


The workover of Well F-27 and G-24 includes squeezing existing perforations and perforating deeper. The workover of Well F-31 includes squeezing existing perforations, drilling out a CIBP and repairing a highly probable casing leak.


We recommend approval of the three proposed workovers.

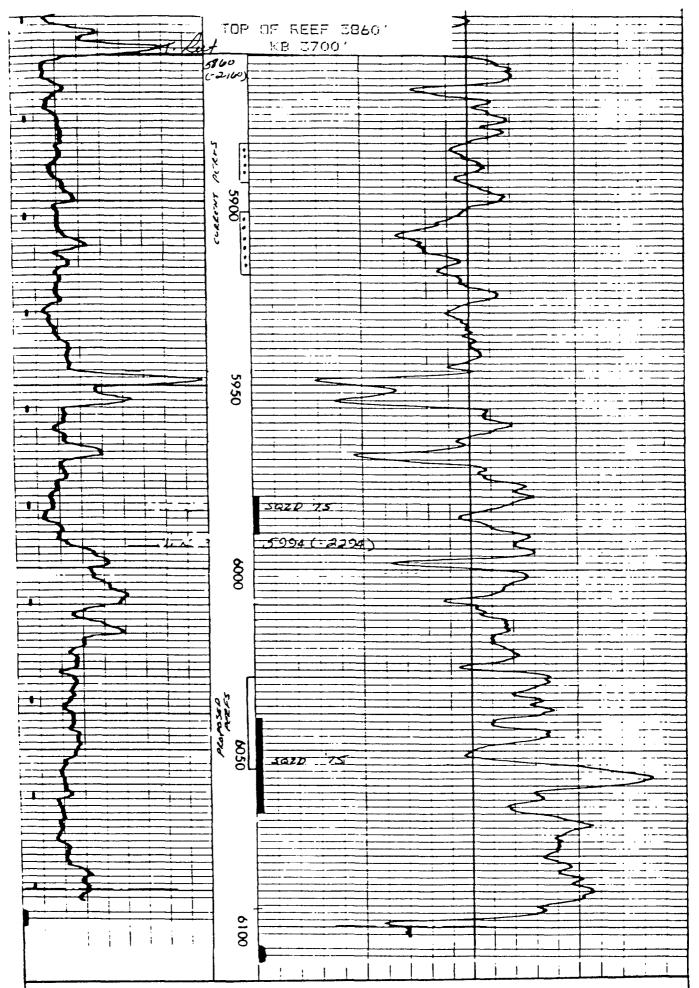
Yary & Small wood

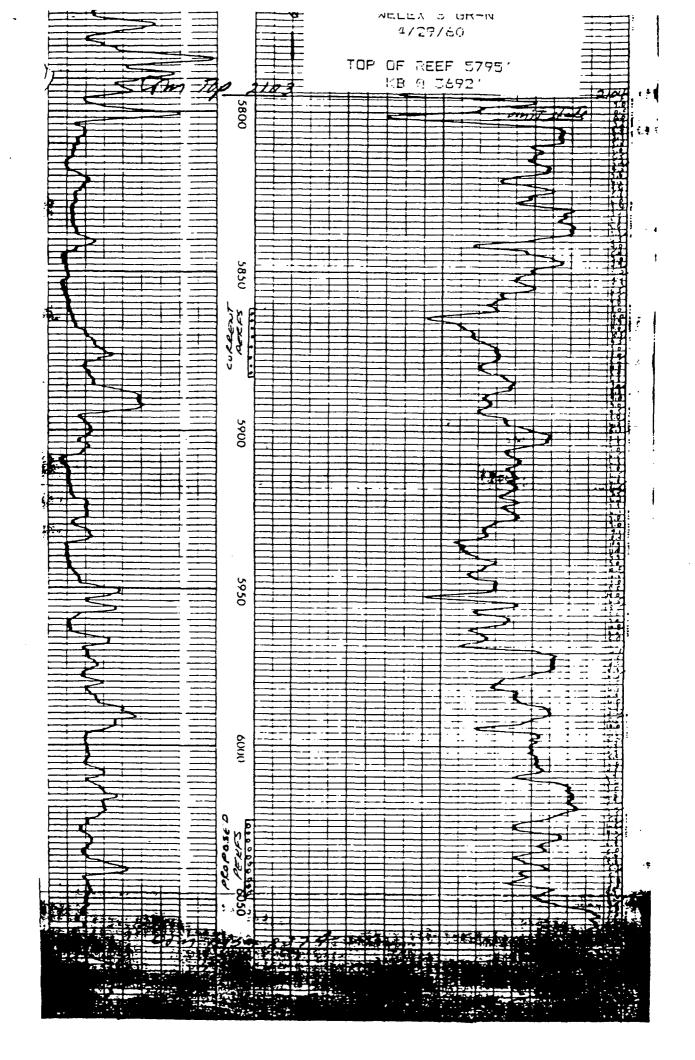
Gary B. Smallwood Sr. Engineer


## Eddy County, New Mexico

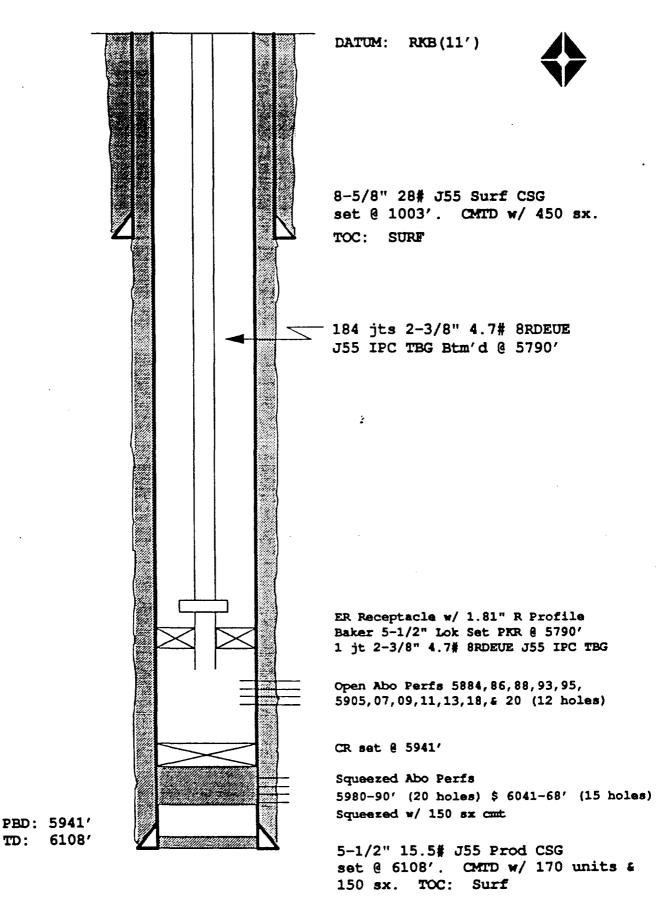


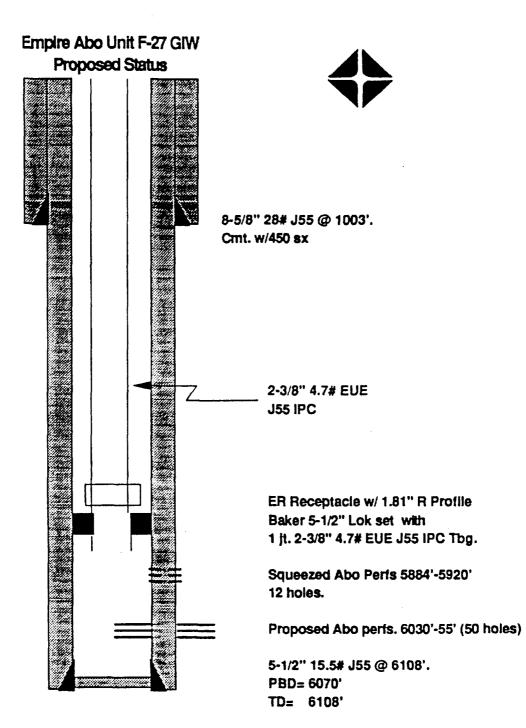



.


Figure 18




۰.

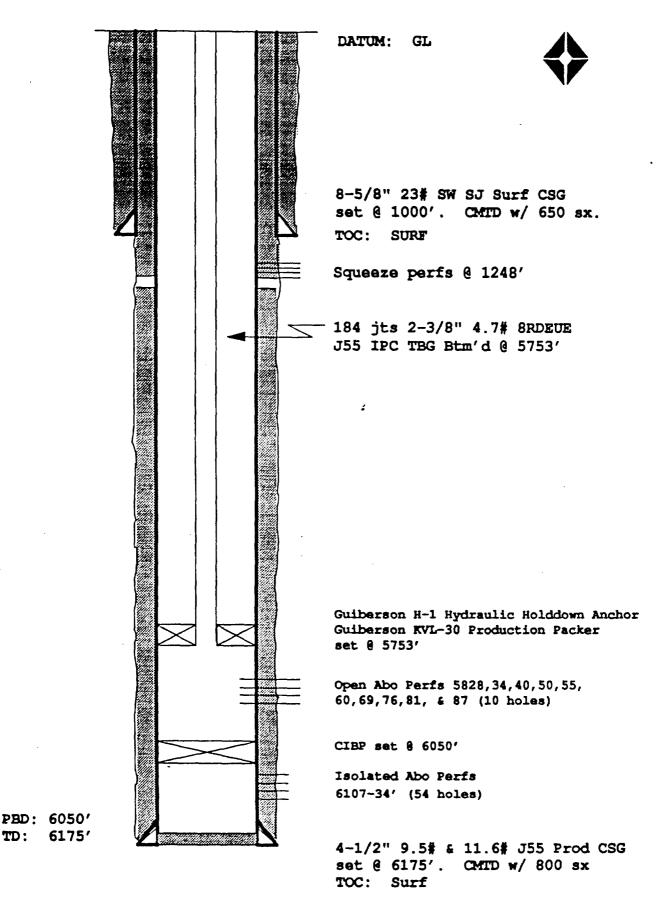

-

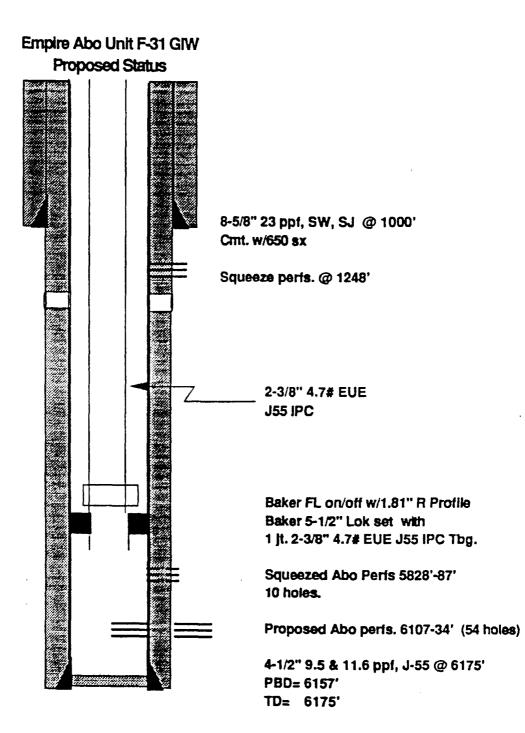


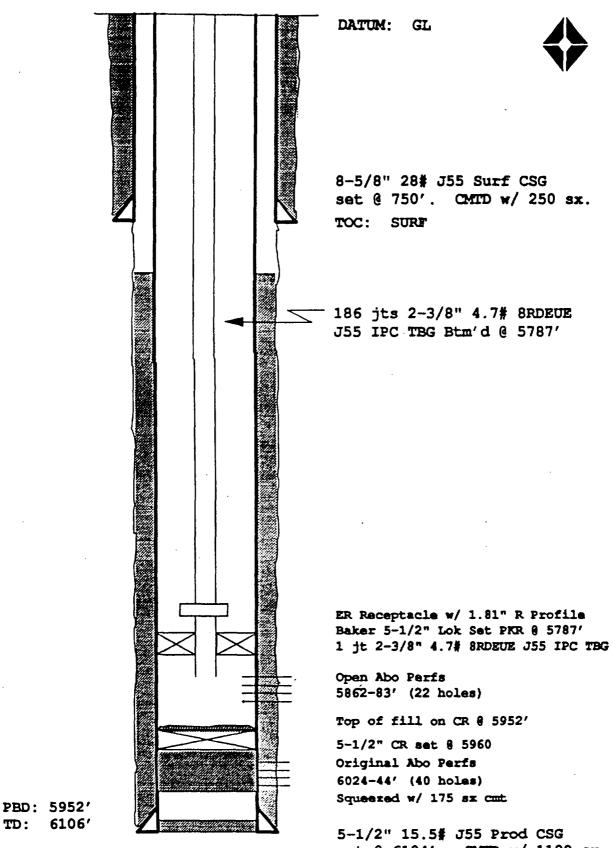


:

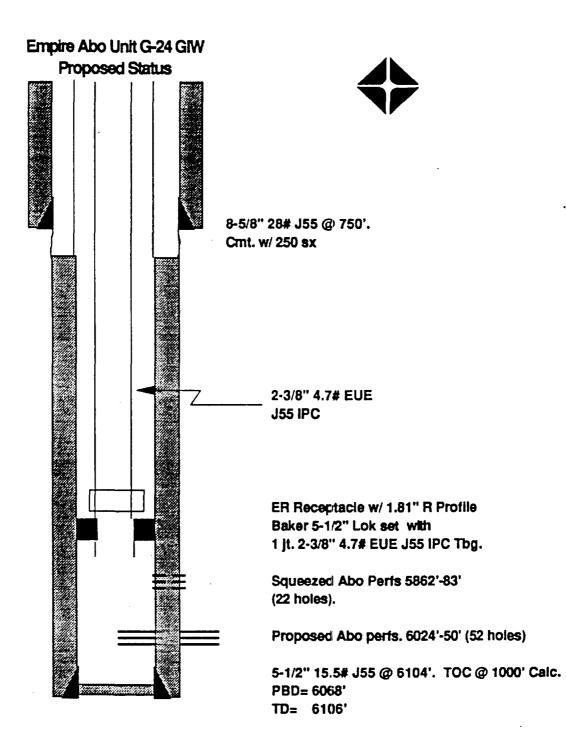


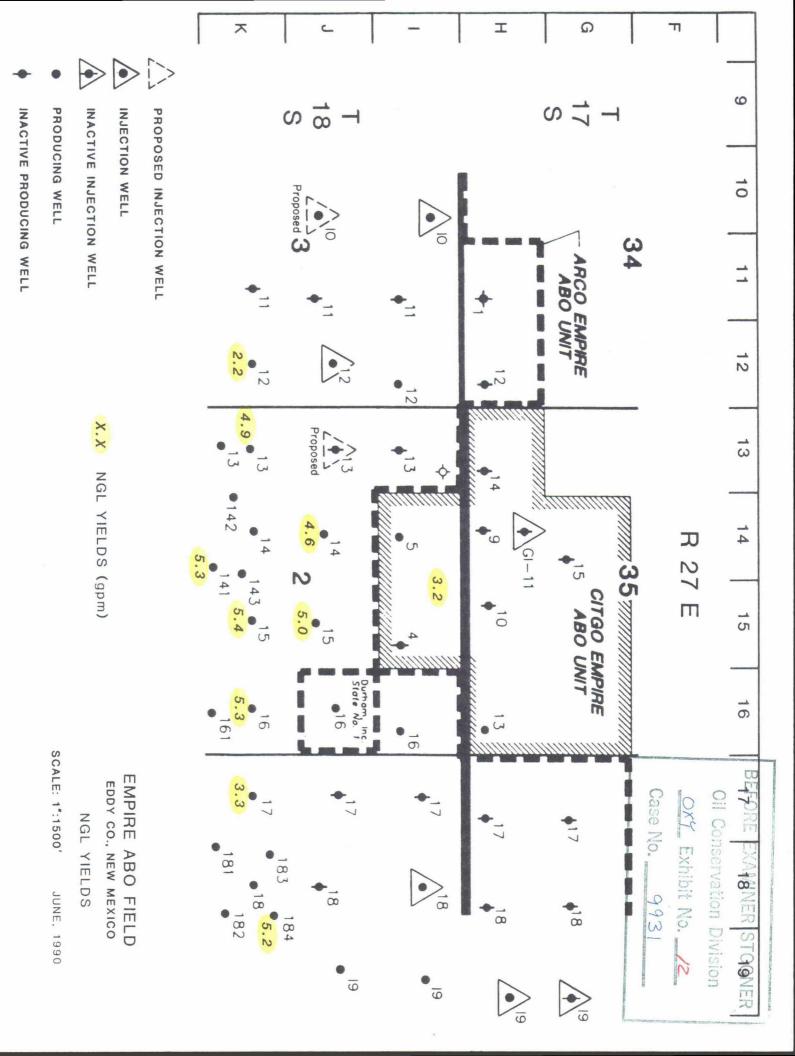


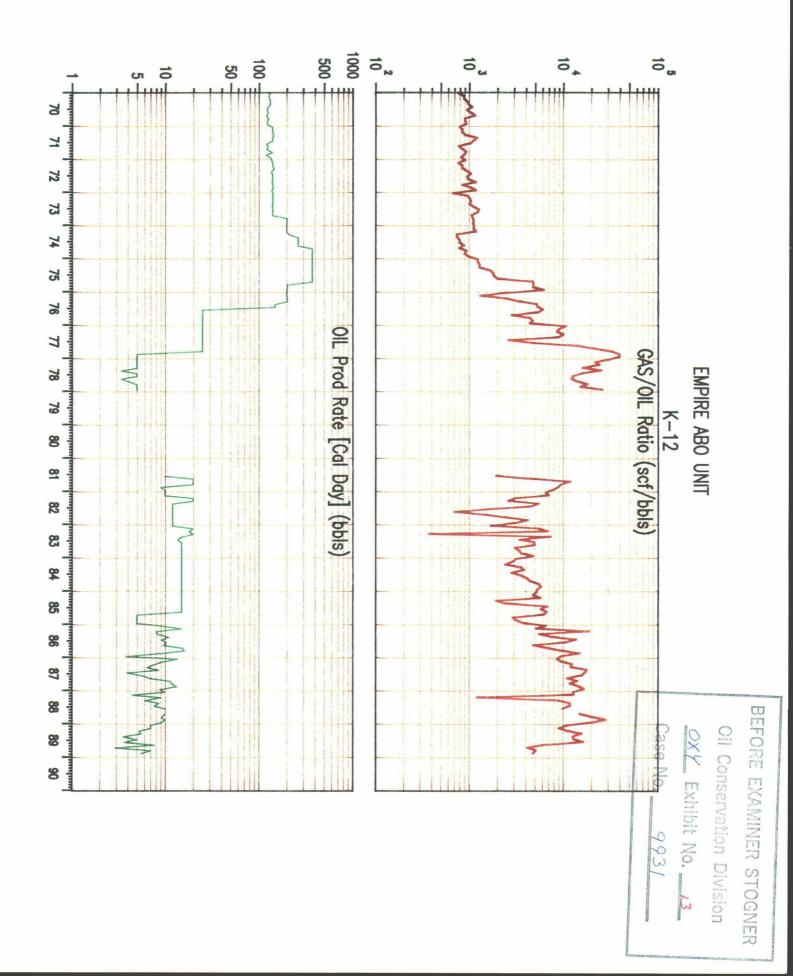


,

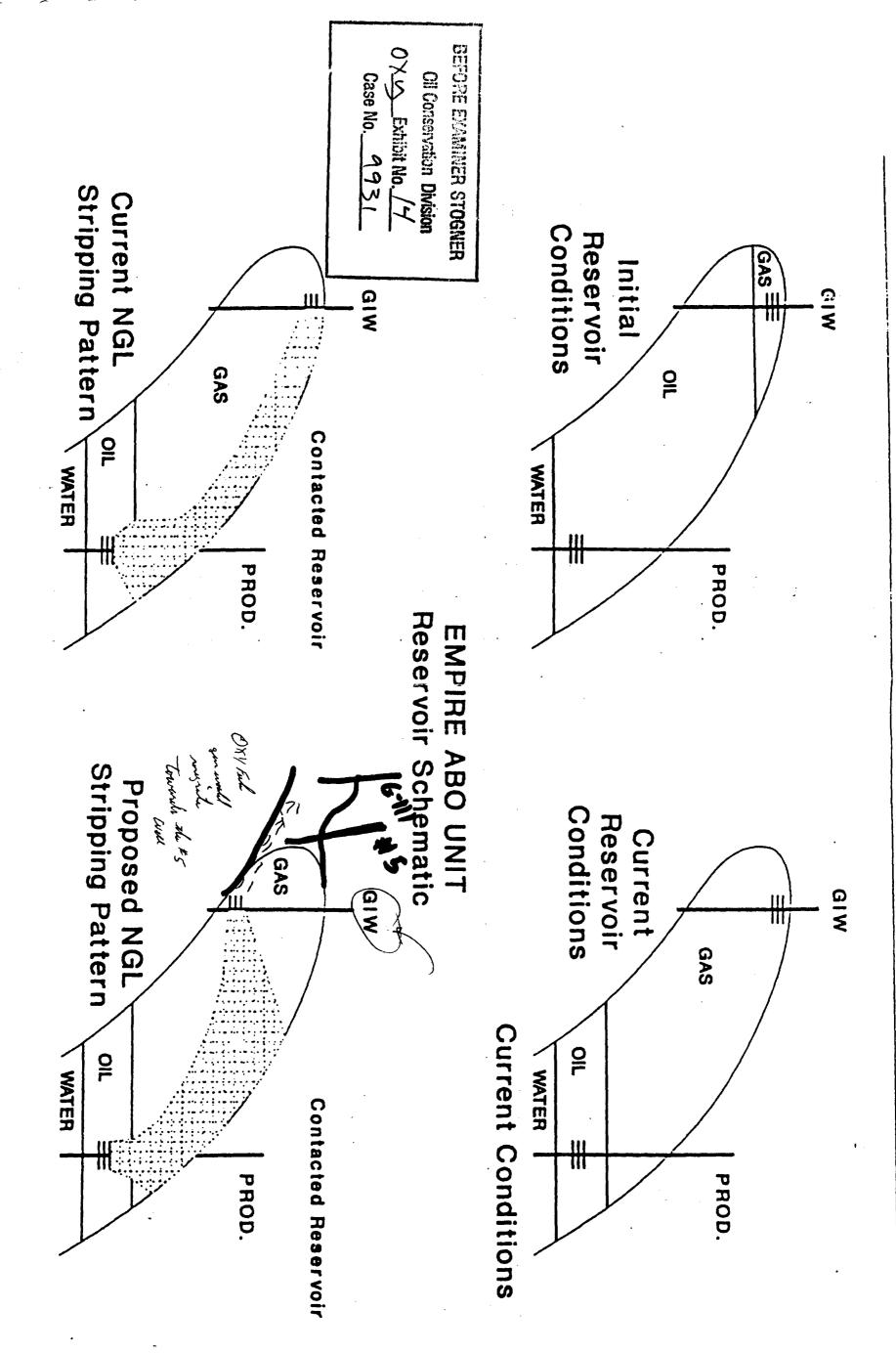

٠.

:


٠,




5-1/2" 15.5# J55 Prod CSG set @ 6104'. CMTD w/ 1100 sx TOC: 1000' - Calculated









#S551 UAST FETHER CONF UAS 0000 #S551 UAST FETHER CONF UAS 0000 DLF1 IJSYSH2, USER. VSAF.CATALOG SELECTED CPERATER(S) DLF1 IJSYSH2, USER. VSAF.CATALOG IAT, VSAF,CATELJSYSH2 DLF1 SYS011, OCO. MAST CP. DPEE., VSAM,CATELJSYSH2 DLF1 SYS010, OCO. MAST CP. DPEE., VSAM,CATELJSYSH2 DLF1 SYS010, OCO. MAST CP. DPEE., VSAM,CATELJSYSH2 DLF1 SYS008, TAPE.FILE. IEXTENT SYS008, TAPE.FILE. EXEC STAT1291, SIZE=64K