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MULTITANK MATERIAL BALANCE
AREAL DISTRIBUTION OF ORIGINAL OIL IN PLACE

AND PERMEABILITY- THICKNESS PRODUCT
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CONCLUSIONS BASED ON MATERIAL BALANCE CALCULATIONS

There is no flow barrier at the edge of the current pressure

maintenance area in the Canada Ojitos Unit

* Observed pressure drops in the field can be explained
by permeability variations rather than permeability

barriers



Effect of Pressure Maintenance and Allowable
On Cumilative Recovery From Gavilan

Effect of Pressure Maintenance

Current Oil and Gas Allowables (800 BOPD, 480 MCFPD for 640 acres)

Pressure Maintenance Starts 8/89

Case Ultimate Recovery, MSTB
No Pressure Maintenance 5,439
Pressure Maintenance 10,215

Effect of Allowables

Allowables changed from 7/88 to 8/89

Pressure Maintenance starts in 8/89, with current allowables
and gas injection credit

Allowables in Case (for 640 acres) Ultimate Recovery, MSTB
800 BOPD, 188 MCFPD gas 11,063
800 BOPD, 480 MCFPD gas 10,215
1280 BOPD, 2560 MCFPD gas 7,375



CONCLUSION BASED ON FUTURE PERFORMANCE PROJECTIONS

Ultimate recovery from Gavilan will be increased by minimizing oil and
gas withdrawals now, conserving reservoir energy for additional
recovery with pressure maintenance later.



RECOMMENDATIONS

* Maintain the West Puerto Chiguito - Gavilan
Boundary at its current position

* The lowest 0©0il rates and the minimum gas
production possible are desirable from a reservoir
standpoint because they will conserve reservoir
energy and can lead to improved recovery if a
pressure maintenance project is installed in Gavilan

* Gavilan Operators should be encouraged to
implement a pressure maintenance project tc improve
recovery from the reservoir
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REBUTTA, TESTIMONY
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REBUTTAL TESTIMONY
DUAL POROSITY RESERVOIR HYPOTHESIS

CORE DATA

* Average core data from the Mallon Davis Federal
#3-15 Well indicate a geometric mean matrix
permeability of less than 0.0164 md.

* Corrected for overburden pressure and water
saturation, the average matrix permeability is less
than 0.0000646 md.

- Jones and Owens correlation used to correct
permeability

* Not suprisingly, the cored well is a dry hole.
This matrix is not productive.

* Simulator results using observed matrix
rermeability indicates that only about 0.57% of the
0il in place in the matrix would flow to the
fractures even if there were no capillary forces
retaining the o©il in the matrix.
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CORE ANALYSIS DATA FOR DAVIS FEDERAL #3-15.
RIO ARRIRBA CO., NM

Depth, ft Fermeability, (md) Forosity, %

7085.6 G.0Q3 Z.00
70886.6 0,01 0.9
7088.5 Q.01 Z.8
7091.5 .08 Z.4
70956 G.01 2.4
71036 : O.01

7104.5 OL0Z R
7105.5 G. 08 .
T106.5 .01

7109.2 G.09

T112.7 0. 03 -

7113.5 O.01
7114.6 Q.01
7120.7 Q.03
7134.4 Q.04
7148.5 .01
7198.7 Q.01

AP N O R NE OO0 BN Do

7201.8 .03 .
7202.8 .01 .
7207.3 0.01 .
7210.5 0.01 .
7211.0 0.01 O
7215.5 Q.01 .S
T7262.9 0.01 LG
. T271.3 0.01 .

7274.8 Q.01
7297.6 0.01

D000 N

73024 .01

7313.4 0.01

331.4 Q.01 -
7335.2 Q.03 )
7337.4 Q.02 .

7338.7 Q.01

340.7 o 0,01
7341.8 0. 04
7342.8 0.02
7343.8 0.01
7350.7 0.01
7357.6 Q.01

Z58.4 0.01 .
7365.5 0,01 .
73674 0.01
T369.3 0.05 .

7376.4 .01
7368.7 0.02
7081.7 0.01
7082.7 .07

NOONMPO=INCU@DODUMDNO -

el T WY SR Y I OO IS S I O 0 i o J B 2 B % O [ 2 B 02 0 I S 5 L O B S S o B 0 IS S 0 BT 25 B 5 I S B O [ O A =

7084.7 0,02 .
7096.7 0.04 .
7098. 3 a.05 .
T117.3 Q.02 .

14

Geometric Mean = 0.0164

Permeability on 31 of 51 samples listed as 0.0l are actually <0.01 md.
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SIMULTATION OF TWO-PHASE DUAL POROSITY RESERVOIR BEHAVIOR

COMPARISON OF SUN AND MALLON ASSUMPTIONS AND RESULTS

MODEL PARAMETER

Reservoir Model
Matrix-Fracture Transer
Drainage Area, acres
Initial Pressure, psia
Net Pay, Ft

Fracture kh

Fracture HC Porosity, %

Interporosity Flow
Coeff.

DATA FOR SUN CASE

DATA FOR MALLON CASE

Dual Porosity
Unsteady State
640

1600

270

400 md-ft

0.439

6.46 x 10~10

Dual Porosity
Pseudosteady State
640

1600

270

400 md-ft

0.439

3.00 x 10-9

(Mallon Value Calculated from Sigma = 0.00004 = 1/Lz2)

Matrix Permeability, md
Storativity Ratio
Capillary Pressure

Relative Permeability

(Sun Matrix Rel. Perm.

(Mallon Rel. Perms.

Flowing BHP, psia

0.0000646
0.10
Zero
See Graphs

Data from Low Perm.

from Bergeson Report =

200

Matrix-to~Fracture Transfer 0.57

at abandonment
(10 BOPD), % 00IP
in matrix

16

0.00148

0.10

Zero

See Graphs
Sand/Silt)
ECLIPSE Data)
200

6.07
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REBUTTAL TESTIMONY
DUAL POROSITY RESERVOIR HYPOTHESIS

FIELD OBSERVATIONS

* Eight wells in a six-section area of Gavilan, amid
some of the best wells in the field, are nearing
depletion (map, production statistics attached).

- Despite the 1low pressure in the fractures
(about 1,000 psia below initial reservoir
pressure), matrix oil is not flowing in any
significant way into the fracture system. I1f
the matrix is not contributing now, why should
we believe that it will ever contribute?
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REBUTTAL TESTIMONY
DUAL POROSITY RESERUVOIR HYPOTHESIS
INFERENCES FROM PRESSURE BUILDUP TEST PLOT SHAPES

¢ The shape of the pressure buildup test plot for the mid-1987 test of
the Mobil Lindreth B-37? well is similar to the characteristic shapes of
buildup test plots from duatl porosity reservoirs.

¢ This shape, on the tests from one well, hardly “proves” the dual
porosity hypothesis.

- This shape is the esception, rather than the rule, and it is more
common in recent tests than in earlier tests.

- DOther phenomena--notably phase redistribution in the welibore
(gas rising to the top and liquid falling to the bottom of the
wellbore following shut-in)--can cause the same shape.

- Phase redistribution is clearly occurring in the field. Extreme
cases result in a pressure "hump,” which has virtually no other
causes. Pressure humps are present in several test piots
(graphs attached).

- The attached SPE paper points out the similarity in test plot

shapes for dual-porosity reservoirs and wells with phase
redistribution in the wellbore.
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ABSTRACT

In this paper, we present a model of the
complete characteristic transient response from a
composite reservoir including the effects of skin,
wellbors. storage and phase redistribution at the
well. We present six flow regimes and the combined
effects of wellbore storage and phase redistribu-
tion on pressure behavior in composite reservoirs.

Using an automatic history matching approach,
we analyzed three buildup tests and a pressure
falloff test. This method eliminated the serious

uniqueness problem associated with type curve
analysis. We demonstrate that incorrect reservoir
parameter estimates and 1incorrect production

performance predictions would result from the use
of any model that lacks the capabilities of the
model we present in this paper. We also demon-
strate possible misinterpretations of pressure data
that may result from not recognizing the presence
of phase redistribution in the buildup test data or
not recognizing the composite reservoir behavior.

INTRODUCTION

Numerous analytical models have been presented
in recent years to describe the prgsgure behavior
of composite reservoir systems. Composite
reservoirs are encountered in a wide variety of
reservoir situations. In a composite reservoir
there i1s a circular inner region with fluid and
rock properties different from those in the outer
region. Reservoirs damaged because of fluid
invasion during drilling or completion; stimulated
reservoirs; reservoirs being waterflooded or
undergoing insitu combustion are examples of the
reservoir types that can be described by a com-
posite reservoir model. The inner zone represents
the invaded or altered zone while the outer zone

References and illustrations at end of paper.

represents the uninvaded zonme. The two zones are
separated by a sharp radial discontinuity. This
idealized interface may be a permeability,
mobility, saturation or thermal discontinuity.

During the 1960's there was great interest i
the composite reservoir flow problem. Hurst
discussed in detail the "sand in series" problem
and presented formulas to describe unsteady state
pressure behavior of fluid movement through two
sands in serjes in a radial configuration. Loucks
and Guerrero presented a theoretical study of the
pressure distribution in an infinite composite
reservoir. They found that under certain
conditions the permeability in both zcnes as well
as the size of the inner zone can be determined
from presgure transient test data. Wattenbarger
and Ramey~ presented a finite difference solution
for the infinite composite reservoir. ther early
investigatorg include Merrill et al., . Clossmann
and Ratliff,” and Bixel and Van Poollen.

Recently Satman7 presented an analytical study
of interference in a composite reservoir which
accounts for wellhore storage and skin at the
active well. Brown presented a graphical approach
for calculating mobility of the altered and
unaltered zones,and the radius of the altered zome.
DaPrat et al.” presented an application of a
composite reservoir model to interpret falloff
tests in an insitu combustion project.

The major contribution of this paper 1is the
presentation of the combined effects of skin,
wellbore storage and phase segregation on pressure
transient tests in composite reservoir systems. Ve
also present the six flow regimes possible in a
finite composite reservoir and show how the
characteristic influence of wellbore storage and
phase segregation may case a misinterpretation of
pressure transient tests. The rate solution in a
composite model with an inner steady state skin is
also presented. This solution 1s wuseful for

247
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AN ANALYTICAL MODEL FOR COMPOSITE RESERVOIRS>PRODUCED

AT EITHER CONSTANT BOTTOMHOLE PRESSURE OR CONSTANT RATE

CONCLUSIONS

1.

 Systems,

We have demonstrated in this paper the danger
of misinterpretation that may result {from
applying an incomplete model to buildup test
data where pressure distortion caused by phase
redistribution is not large enough to show the
classical hump. The analysis of such buildup
data with techniques that do not account for
phase redistribution can lead to dincorrect
reservoir property estimates and incorrect
predictions of production.

We have applied an automatic history matching
technique and our new composite model to
analysis of buildup and falloff tests. This
technique is superior to available type curve
and semilog analysis methods because of the
reduction of the uniqueness problem, ability
to estimate many important reservoir
parameters and a correct representation of the
skin zone.

When the diffusivity of the inner zone of a
composite system is 1less than that of the
outer zone, as in a damaged system, the
pressure humps caused by phase redistribution
are both larger and last longer than when the
diffusivity of the inner zone is greater. The
presence of wellbore storage and phase redis-
tribution will usually mask the first semilog
straight 1line, thereby, in such damaged
rendering conventional semilog
analysis useless in evaluating the properties
of the inner zone. Such test data can be
analyzed with the model presented in this
paper.

When the distortion caused by phase redis-

tribution is not severe enough to cause a

hump, the characteristic shape of the pressure

behavior could be misinterpreted as that from

a dual porosity reservoir. The composite

reservoir behavior could also be misinter~

preted as an elffect caused by the Teservoir

drainage boundary. When such a characteristic

shape 1s displaved in a transient test, more

information should be sought about the reser-

voir geology, reservoir fluid phase behavior

and fluid properties before a model is chosen.

The transition flow regime of a composite
model lasts about 2-1/2 log cycles if the
diffusivity of the inner zone is greater than
that of the outer zone. When the diffusivity
of the inner zone is smaller, the transition
flow regime lasts approximately 1 log cycle.

NOMENCLATURE

Symbol

Meaning

B

aD

Formation volume factor, Rb/Mscf for gas
and RB/STB for oil

9¢n.
—— , dimensionless apparent
D wellbore storage coefficient

Q

2
D

Total compressibility, 1:os:l.a'_1

gef

Puhf

Pyt

0.894 Cs
s dimensionless wellbore
storage coefficient

c, h L
Wellbore storage coefficient, bbl/psi

Phase redistribution pressure parameter,
psi

kh C¢

TZTTETETrﬁ_ » dimensionless phase

redistribution parameter
Net pay thickness, ft

Modified Bessel function of the first
kind, zero order

Permeability, md

Modified Bessel's function of the second
kind, zero order

Fracture half length, ft

Pressure, psia

P
/ & dp, adjusted pressure, psia
P
o

oict

ky b (g pyg) dimension]
_‘_TZETEFT;;EY_ s dimensionless pressure
Initial reservoir pressure, psia

Phase redistribution pressure, psi

kh Py

_TZT_E_EITE— » dimensionless phase

redistribution pressure

Flowing pressure at point of gas entry,
psi

Flowing wellhead pressure, psi
Flowing wellbore pressure, psia

Flow rate, Mscf/D for gas, and b/d for
oil

Dimensionless radius, r/rw

Drainage radius, ft

Wellbore radius, ft

Laplace transform parameter (in the
Appendices); 1n text, skin factor,

dimensionless

Skin factor, dimensionless (in the
Appendices)

Time, hr

t(p) x bt Et’ adjusted time, hr
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REBUTTAL TESTIMONY
DUAL POROSITY RESERUGIR HYPOTHESIS
CONCLUSIONS

* Available core data indicates the matrix permeability is extremely
low.

* Reservoir simulation using availabie core data indicates that the
matrix will not contribute significantly to pool reserves.

¢ fictual field performance indicates no support from the matrig in
declining wells.

¢ The buildup curve shape on the Mobil Lindreth B-37 well does not

proue dual porosity behavior. Phase redistribution in the wellbore is 8
more likely explanation.
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MULTITANK MATERIAL BALANCE
AREAL DISTRIBUTION OF ORIGINAL OIL IN PLACE

\ . AND PERMEABILITY- THICKNESS PRODUCT ' /
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CONCLUSIONS BASED ON MATERIAI. BALANCE CALCULATIONS

There is no flow barrier at the edge of the current pressure

maintenance area in the Canada Ojitos Unit

* Observed pressure drops in the field can be explained
by permeability variations rather than permeability

barriers



Effect of Pressure Maintenance and Allowable
On Cumilative Recovery From Gavilan

Effect of Pressure Maintenance

Carrent 0il and Gas Allowables (800 BOPD, 480 MCFPD for 640 acres)

Pressure Maintenance Starts 8/89

Case Ultimate Recovery, MSTB
No Pressure Maintenance 5,439
Pressure Maintenance 10,215

Effect of Allowables

Allowables changed from 7/88 to 8/89

Pressure Maintenance starts in 8/89, with current allowables
and gas injection credit

Allowables in Case (for 640 acres) Ultimate Recovery, MSTB
800 BOPD, 188 MCFPD gas 11,063
800 BOPD, 480 MCIPD gas 10,215
1280 BOPD, 2560 MCFPD gas 7,375



CONCLUSION BASED ON FUTURE PERFORMANCE PROJECTIONS

Ultimate recovery from Gavilan will be increased by minimizing oil and
gas withdrawals now, conserving reservoir energy for additional
recovery with pressure maintenance later,



RECOMMENDATIONS

* Maintain the West Puerto Chigquito - Gavilan
Boundary at its current position

* The lowest o0il rates and the minimum gas
production possible are desirable from a reservoir
standpoint because they will conserve reservoir
energy and can lead to improved recovery i1if a
pressure maintenance project is installed in Gavilan

* Gavilan Operators should Dbe encouraged to
implement a pressure maintenance project to improve
recovery from the reservcir
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REBUTTAL TESTIMONY

HISTORICAL MIGRATION
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REBUTTAL TESTIMONY
DUAL POROSITY RESERVOIR HYPOTHESIS

CORE DATA

* Average core data from the Mallon Davis Federal
#3-15 Well indicate a geometric mean matrix
permeability of less than 0.0164 md.

* Corrected for overburden pressure and water
saturation, the average matrix permeability is less
than 0.0000646 md.

- Jones and Owens correlation used to correct
permeability

* Not suprisingly, the cored well is a dry hole.
This matrix is not productive.

* Simulator results using observed matrix
permeability indicates that only about 0.57% of the
0il 1in place in the matrix would flow to the
fractures even if there were no capillary forces
retaining the o0il in the matrix,

13



CORE AMALYSIS DATA FOR DAVIS FEDERAL #3-15.

RIO ARRIEBA CO., NM

7085.6
7086.6
70U88.5
J091.5
7O95.6
7103.6
7104.5
7105.5
710&6.9
7109.2
T112.7
7113.5
7114.6
7120.7
7134.4
7148.9S
7198.7
7201.8
7202.8
7207.3
7210.5
7211.0
7215.5
7262.9
. T271.3
7274.8
7297.6
7302.4
7313.4
7331.4

~Tre
FARS T un

7337 .4
7338.7
7340.7
7341.8
7342.8
7343%.8
7330.7
7357.6
358.4
T365.5
7E67.4
7I69.3
7376.4
7368.7
7081.7
7082.7
7084.7
T096.7
7098.3
7117.Z

Geometric Mean =

0.0164

G. Q3
.01
O.01
O.08
.01
O.01
[
Q.08
O.01
.05
O.03
.01
.01
Q.03
0.04
Q.01
0.01
Q.03
0,01
0,01
O.01
O.01
0.01
0.01
0.01
.01
0.01
0O.01
0.01
0. 01
Q.05
0.02
a.01
.01
0O.04
O, 02
O.01
0,01
Q.01
O.01
.01
a.01
O.05
0,01
0.0Z2
O.01
0.07
Q.02
0,04
G, 05

0,02
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SIMULTATION OF TWO-—-PHASE DUAL POROSITY RESERVOIR BEHAVIOR

COMPARISON OF SUN AND MALLON ASSUMPTIONS AND RESULTS

MODEL PARAMETER

Reservoir Model
Matrix-Fracture Transer
Drainage Area, acres
Initial Pressure, psia
Net Pay, Ft

Fracture kh

Fracture HC Porosity, %

Interporosity Flow
Coeff.

Matrix Permeability, md
Storativity Ratio
Capillary Pressure

Relative Permeability

(Sun Matrix Rel. Perm.

(Mallon Rel. Perms.

Flowing BHP, psia

DATA FOR SUN CASE

DATA FOR MALLON CASE

Dual Porosity
Unsteady State
640

1600

270

400 md-ft

0.439

6.46 x 1010

(Mallon Value Calculated from Sigma =

0.0000646
0.10
Zero

~ See Graphs

200

Matrix~to-Practure Transfer 0.57

at abandonment
(10 BOPD), % 0O0IP
in matrix

16

Dual Porosity
Pseudosteady State
640

1600

270

400 md-ft

0.439

3.00 x 10-9

0.00004 = 1/Lz2)

0.00148
0.10
Zero

See Graphs

Data from Low Perm. Sand/Silt)

from Bergeson Report - ECLIPSE Data)

200
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REBUTTAL TESTIMONY
DUAL POROSITY RESERVOIR HYPOTHESIS
FIELD OBSERVATIONS
* Eight wells in a six-section area of Gavilan, amid

some of the best wells in the field, are nearing
depletion (map, production statistics attached).

- Despite the 1low pressure in the fractures

(about 1,000 psia below initial reservoir
pressure), matrix o0il is not flowing in any
significant way into the fracture system., If

the matrix is not contributing now, why should
we believe that it will ever contribute?
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REBUTTAL TESTIMONY
DUARL POROSITY RESERUOIR HYPOTHESIS
INFERENCES FROM PRESSURE BUILDUP TEST PLOT SHAPES

o The shape of the pressure buildup test plot for the mid-1987 test of
the Mobil Lindreth B-37 well is similar to the characteristic shapes of
buildup test piots from dual porosity reseruvoirs.

¢ This shape, on the tests from one well, hardly "proves" the dual
porosity hypothesis.

This shape is the esception, rather than the rule, and it is more
common in recent tests than in earlier tests.

- Other phenomena--notably phase redistribution in the wellbore
(gas rising to the top and liquid falling to the bottom of the
wellbore following shut-in)--can cause the same shape.

- Phase redistribution is clearly occurring in the field, Extreme
cases result in a pressure "hump,” which has virtually no other
causes. Pressure humps are present in seuveral test plots
(graphs attached).

- The attached SPE paper points out the similarity in test plot

shapes for dual-porosity reservoirs and wells with phase
redistribution in the wellbore.
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ABSTRACT

In this paper, we present a model of the
complete characteristic transient response from a
composite reservoir including the effects of skin,
wellbore. storage and phase redistribution at the
well. We present six flow regimes and the combined
effects of wellbore storage and phase redistribu-
tion on pressure behavior in composite reservoirs.

Using an automatic history matching approach,
we analyzed three buildup tests and a pressure
falloff test. This method eliminated the serious
uniqueness problem associated with type curve
analysis. We demonstrate that incorrect reservoir
parameter estimates and incorrect production
performance predictions would result from the use
of any model that lacks the capabilities of the
model we present in this paper. We also demon-
strate possible misinterpretations of pressure data
that may result from not recognizing the presence
of phase redistribution in the buildup test data or
not recognizing the composite reservoir behavior.

INTRODUCTION

Numerous analytical models have been presented
in recent years to describe the prgsgure behavior
of composite reservoir systems. Composite
reservoirs are encountered in a wide variety of
reservolr situations. In a composite reservoir
there is a circular inner region with fluid and
rock properties different from those in the outer
region. Reservoirs damaged because of fluid
invasion during drilling or completion; stimulated
reservoirs; reservolrs being waterflooded or
undergoing insitu combustion are examples of the
reservoir types that can be described by a com-
posite reservoir model. The inner zone represents
the invaded or altered zone while the outer zone

References and illustrations at end of paper.

represents the uninvaded zone. The two zones are
separated by a sharp radial discontinuity. This
idealized interface may be a permeability,
mobility, saturation or thermal discontinuity.

During the 1960's there was great interest imn
the composite reservoir flow problem. Hurse*
discussed in detail the "sand in series” problem
and presented formulas to describe unsteady state
pressure behavior of fluid movement through two
sands in serjes in a radial configuration. Loucks
and Guerrero~ presented a theoretical study of the
pressure distribution in an dinfinite composite
reservoir. They found that under certain
conditions the permeability in both zones as well
as the size of the inner zone can be determined
from pressure transient test data. Wattenbarger
and Ramey~ presented a finite difference solution
for the infinite composite reservoir. ther early
investigatorg include Merrill et al., . Clossmann
and Ratliff,” and Bixel and Van Poollen.

Recently Satman7 presented an analytical study
of interference in a composite reservoir which

accounts for wellhore storage and skin at the
active well. Brown presented a graphical approach
for calculating mobility of the altered and

unaltered zones,and the radius of the altered zome.

DaPrat et al. presented an application of a
composite reservoir model to interpret falloff

tests in an insitu combustion project.

The major contribution of this paper is the
presentation of the combined effects of skin,
wellbore storage and phase segregation on pressure
transient tests in composite reservoir systems. We
also present the six flow regimes possible in a
finite composite reservoir and show how the
characteristic influence of wellbore storage and
phase segregation may case a misinterpretation of
pressure transient tests. The rate solution in a
composite model with an Iinner steady state skin is
also presented. This solution 1s wuseful for

247




102

+—Cyp5 100,53 =10

|
& o Cyp210,3x0 o
——CUR MODEL
- o FAIR'S SCLUTION
100 ! | ! ! 1 '
10! Teld 103 104 10° 108 107 108

to

Fig. 1 diagram of reservoir system. —* Fig. z_g ot loped (n this study with Fair’s solulion, m,/n; = 1.0, t,ir, =1, €5 1,000,
0 =20,

4CC
o FRACSIM
——ANLLYTICAL
1ot - e 380k
0
a
uw
&=
. 2 380
o 10% - [
e w, ? . ° < 2 9 o
~ 2 _© o0o Cosee
s zach ©.2c00xay
@
-l
o — OUR MODEL 2
o WATTEN SOLUTION = F-ToY B
102 ; ! L L 300 ! !
10° 102 10* 108 10® 100 10 102 10®
tp ADJUSTED TIME, hr
Fig. 3—C of solution ped in this study with Walttenbarger and Ramey’s solution, s= 5. C =1,000. Fig. 4—Compari: with simul; solution for gas well, pressure drawdown test, k,; =0.029, »; =0.0029,
i, =100,
103
104
100
80 103
E &
80 -
102
Q
o
40 |- [}
A 8 10!
0 L L L ! 1 ' 109 ] t 1 ' \
10+ o} 103 10% 107 0® oM 1072 10° 102 10* 0% 108
10 tD
Fig. 5—Flow fregimes In an infinite composite reservoir, n,/q; = 10, r,/r,, 2 500, 350, Cg =108, Cp =50, =10, Fig. 6-—Pressure low regimes in a linile composite reservoir, ny/ny = 1,000, r,/r, =100, Co =0, 3=5, Cp=0.

i 24

228



AN ANALYTICAL MODEL FOR COMPOSITE RESERVOIRSvPRODUCED

AT EITHER CONSTANT BOTTOMHOLE PRESSURE OR CONSTANT RATE

CONCLUSIONS

1.

We have demonstrated in this paper the danger
of misinterpretation that wmay result from
applying an incomplete model to buildup test
data where pressure distortion caused by phase
redistribution is not large enough to show the
classical hump. The analysis of such buildup
data with techniques that do not account for
phase redistribution can lead to incorrect
reservoir property estimates and incorrect
predictions of production.

We have applied an automatic history matching
technique and our new composite model to
analysis of bulldup and falloff tests. This
technique 1is superior to available type curve
and semilog analysis methods because of the
reduction of the uniqueness problem, ability
to estimate many important reservoir
parameters and a correct representation of the
skin zone.

When the diffusivity of the inner zone of a
composite system is less than that of the
outer zone, as in a damaged system, the
pressure humps caused by phase redistribution
are both larger and last longer than when the
diffusivity of the inner zone is greater. The
presence of wellbore storage and phase redis-
tribution will usually mask the first semilog
straight 1line, thereby, in such damaged
systems, rendering conventional semilog
analysis useless in evaluating the properties
of the inner zone. Such test data can be
analyzed with the model presented in this
paper.

When the distortion caused by phase redis-

tribution is not severe enough to cause a

hump, the characteristic shape of the pressure

behavior could be misinterpreted as that from

a dual porosity reservoir. The composite

reservolr behavior could also be misinter-

preted as an effect caused by the reservoir

drainage boundary. When such a characteristic

shape 1s displayed in a transient test, more

information should be sought about the reser-

voir geology, reservoir fluid phase behavior

and fluid properties before a model is chosen.

The transition flow regime of a composite
model lasts about 2-1/2 log cycles 1if the
diffusivity of the inner zone is greater than
that of the outer zone. When the diffusivity
of the inner zone is smaller, the transition
flow regime lasts approximately 1 log cycle.

NOMENCLATURE

Symbol

Meaning

B

ab

Formation volume factor, Rb/Mscf for gas
and RB/STB for oil

C¢D
o dimensionless apparent

1
E—-—-l'-
D D wellbore storage coefficient

Total compressibility, psiau1

éD

gef

Puht

Pot

0.894 Cs
, dimensionless wellbore

<, h L storage coefficient

Wellbore storage coefficient, bbl/psi

Phase redistribution pressure parameter,
psi

kh
€

TZT—§—ETTE— , dimensionless phase

redistribution parameter
Net pay thickness, ft

Modified Bessel function of the first
kind, zero order

Permeability, md

Modified Bessel's function of the second
kind, zero order

Fracture half length, ft
Pressure, psia

P

/ % dp, adjusted pressure, psia

Py

hoYif=a}

kp B (py- pyg) y onl
_——TZTTE—ETTE_ , dimensionless pressure
Initial reservoir pressure, psia

Phase redistribution pressure, psi

kh Py

141.2 quB dimensionless phase

redistribution pressure

Flowing pressure at point of gas entry,
psi

Flowing wellhead pressure, psi
Flowing wellbore pressure, psia

Flow rate, Mscf/D for gas, and b/d for
oil

Dimensionless radius, t/rw

Drainage radius, ft

Wellbore radius, ft

Laplace transform parameter {in the
Appendices); in text, skin factor,

dimensionless

Skin factor, dimensionless (in the
Appendices)

Time, hr

tlp) x 1 Et’ adjusted time, hr
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REBUTTAL TESTIMONY
DUAL POROSITY RESERVOIR HYPDTHESIS
CONCLUSIONS

¢ fluailable core data indicates the matrix permeability is extremely
low.

¢ Reservoir simulation using available core data indicates that the
matrix will not contribute significantly to pool reserves.

¢ Actual field performance indicates no support from the matris in
declining wells.

¢ The buildup curve shape on the Mabil Lindreth B-37 well does not

prouve dual porosity behavior. Phase redistribution in the welibore is a
more likely exdplanation.

28



