

Fig. 1 Schematic of Basic Televiewer Elements (From; Zemanek, J., et. al., 1970, Formation Evaluation by Inspection with the Borehole Televiewer; Geophysics, v. 35, no. 2, p. 255, fig. 1.)

Fig. 2 Isometric of natural fracture or bedding plane intersecting borehole at moderate dip angle, and corresponding BHTV log.

Fig. 3 Isometric of natural fracture or bedding plane intersecting borehole at steep dip angle, and corresponding BHTV log.

Fig. 4 Isometric of induced fracture entering the borehole at a moderate dip and bisecting it vertically. With corresponding BHTV log.

All figures, from: Zemanek, J., 1969, The Borehole Televiewer - A New Logging Concept for Fracture Location and Other Types of Borehole Inspection: Jour. of Petr. Tech., v. 21, pp. 762-774

Mobil

Mr. Le May

- CORE DATA EXHIBITS

BEFORE THE	
OIL CONSERV	ATION COMMISSION
Santa fle, Norralinaco	
8946 2950 Case No.9/134 9/14	
Submitted by	Mobil
Hearing Date	3-30-87

Photo 1

- Mobil Lindrith B Unit No. 38 Core B Zone 6691.5

End View

Photo 2

- Mobil Lindrith B Unit No. 38 Core B Zone 6698.5

End View

Photo 3A

- Mobil Lindrith B Unit No. 38 Core
- B Zone 6709.4
- Flourescence photomicro-
- graph approx. 300X
 Major vertical fracture face (left)
 and associated micro-fracturing and intergranular porosity.

Photo 3B

- Same view as above.Plain lightFlourescent epoxy is red.

Photo 4A

- No. 38 Core A Zone 6668.0

- Flourescence photo micrograph
 approx. 300X
 vertical microfracture with interconnected sheet pores and intergranular porosity

Photo 4B

- Same view as above
 Plain light
 Flourescent epoxy is red.

Photo 5A

- Mobil Lindrith B Unit

- No. 38 Core
 B Zone 6717.8
 Flourescent photo micrograph
 approx. 300X
 Sheet pores and intergranular
 porosity

Photo 5B

- Same view as above (slightly out of focus)
 Plain light
 Flourescent epoxy is red

Photo 6

- Mallon Cil Davis Fed. 3-15 core.
- B Zone 7167'(7161 log depth) Terratek Sample 7167, photo C
- approx. 100X
- calcareous cement (arrows)." separating transported grains from rock. Note minor amounts of porosity grain supported portions of laminated photomicrograph of vertical fracture "Blue-violet flourescence porosity transecting both muddy and

Photo 7

- Mallon Oil Davis Fed. 3-15 core.
- C Zone 7273'(7267' log depth) Terratek sample 7273, photo B
- approx. 100X
- revealing microporosity associated with kaolinitic pore fill." "Flourescence photomicrograph

Photo 8

- Mallon Oil Davis Fed. 3-15 core.
- Lower C Zone 7343'(7337' log depth)
 Terratek sample 7343, photo C
- approx. 100X
- "Flourescence micrograph of large open fracture typically responsible orange) and leak-off matrix norosity (orange)." presence of microfractures (yellow-Blue ultraviolet photo also reveals for most porosity in these rocks.

Photo 9

- Mallon Oil Davis Fed. 3-15 core.
- Lower C Zone 7343'(7337' log depth)
 Terratek sample 7343, photo D
- approx. 100X - "Green flourescence photomicrograph to-grain contacts have pulled away from one another. Alternatively, grains can pull away from cements (or overgrowths) due to rock strain." of pull-apart porosity where grain-

LINDRITH 8-38. LEFT OF LINE DENOTES FRACTURE PERM AREA OF LINDRITH 8-38 CORE

