PVT DATA EAST LOVING DELAWARE FIELD EDDY COUNTY, NEW MEXICO

		10-20-89 rrasco 14 #1 4F-23S-28E	9-17-90 Pardue Farms #1 11P-23S-28E
	RESERVOIR PRESSURE	2892 PSIG	2375 PSIG
	BUBBLE POINT PRESSURE	2858 PSIG	2375 PSIG
	TEMPEFATURE	106°	115°
	OIL FCRMATION VOLUME FACTOR	1.543	1.525
	SOLUTION GOR	1108	983

OR 1/2 . EXERCIT NO. 3

Oryx Energy Company

NMOCD CASE NO. 10	226
FEBRUARY 21, 1991	
EXHIBIT NO	

February 19, 1990

BIRD CREEK RESOURCES, INC. 1412 S. Boston Suite 550 Tulsa, Oklahoma 74119

Attention: Mr. Bill Burks

Subject: Reservoir Fluid Study

Carrasco "14" #1

East Loving Delaware Field Eddy County, New Mexico

File: RFLM 89108

Gentlemen:

Duplicate separator oil and gas samples were collected from the subject well and were submitted to our Midland laboratory on October 20, 1989 for use in a reservoir fluid study. Presented in the following report are the results of this study as requested by Bird Creek Resources, Inc.

As a quality check, the room temperature saturation pressure of each separator oil sample was initially determined. At 70°F., separator oil samples, numbers one and two, were found to have bubble point pressures of 392 psig and 371 psig, respectively. These values were considered to be in good agreement with the sampling conditions and sample number one was selected for use in the reservoir fluid study.

The composition of the separator gas was determined by gas chromatography while the composition of the separator liquid was determined by spike/flash chromatographic technique. The composition of the separator products are reported on page four.

We were initially requested to recombine the separator products to a ratio of 1000 standard cubic feet of gas at 15.025 psia and 60°F. per barrel of stock tank oil at 60°F. The physical recombination was performed and the resulting fluid was placed into a high pressure windowed cell and thermally expanded to the reservoir temperature of 106°F. This fluid was found to have a bubble point pressure of 3270 psig at 106°F. This bubble point did not correlate with the reported reservoir pressure of 2892 psig, therefore, it was decided to recombine the separator

BIRD CREEK RESOURCES INC. Page 2

products to a ratio of 820 SCF/STB. The resulting fluid was used for the remainder of the study. The composition of the well stream material was calculated using the gas/oil ratio of 820 SCF/STB.

A small quantity of the reservoir fluid was charged to a high pressure windowed cell and thermally expanded to the reservoir temperature of 106°F. During a constant composition expansion at this temperature, the fluid was found to have a bubble point pressure of 2858 psig. The results of the pressure-volume measurements at reservoir temperature may be found on page seven.

When subjected to differential pressure depletion at the reservoir temperature. The fluid evolved a total of 1108 cubic feet cf gas at 15.025 psia and 60°F. per barrel of residual oil at 60°F. The resulting relative oil volume factor was 1.543 barrels of saturated fluid per barrel of residual oil. The oil density and the properties of the evolved gases were measured at each point during the differential pressure depletion and these data are included in the summary of the differential depletion data on page eight.

The viscosity of the reservoir fluid was measured over a wide range of pressures at 106°F. in a rolling ball viscosimeter. The viscosity of the fluid was found to vary from a minimum of 0.54 centipoise at the saturation pressure to a maximum of 2.59 centipoise at atmospheric pressure. The results of the viscosity measurements are tabulated on page fifteen.

One multi-stage separator test was performed at room temperature to measure gas-oil ratio, stock tank oil gravity, and formation volume factor. The results of the separator test can be found on page eleven.

For your convenience, differential data has been adjusted to separator conditions. The results can be found on page twelve.

Thank you for the opportunity to be of service to Bird Creek Resources, Inc. If you have any question or if we may be of further assistance in any way, please feel free to call upon us.

Very truly yours, CORE LABORATORIES, a division of WESTERN ATLAS INTERNATIONAL, INC.

Richard Hulme Supervisor Reservoir Fluid Lab

File RFLM 89108

BIRD CREEK RESOURCES, INC. Carrasco "14" #1 East Loving Delaware Field

Date Sampled: October 20, 1989 Eddy County, New Mexico

TABLE OF CONTENTS

	<u>Page</u>
Laboratory Procedures	i
Table of Contents	iii
Well Information	1
Summary of Reservoir Fluid PVT Data	2
Summary of Quality Control Data Samples	3
Composition of Reservoir Fluid Sample	4-5
Volumetric Data of Reservoir Fluid Sample	6
Pressure-Volume Relations Data	7
Differential Vaporization Data	8-10
Separator Test of Reservoir Fluid Sample	11
Summary of Adjusted Data-Differential Vaporization Adjusted to Surface Conditions	12-14
Viscosity Data	15-16
Nomenclature and Equations to Adjust Differential Vaporization to Surface Conditions	17

Page 1 of 17 File RFLM 89108 Carrasco "14" #1

FORMATION CHARACTERISTICS

Formation Name Delaware Date First Well Completed July 15, 1989 Original Reservoir Pressure 2892 psig @ 6130 ft. Original Produced Gas/Liquid Ratio 1071 SCF/Bbl Production Rate 480 Bbls/Day Separator Pressure and Temperature 160 psig 61°F. Liquid Gravity at 60°F. 42.5°API Datum 3117 ft. Subsea

WELL CHARACTERISTICS

Elevation 3013 ft. KB Total Depth 6420 ft. Producing Interval 6086-6190 ft. Tubing Size and Depth 2.875 In. to 5987 ft. Open Flow Potential N/A MMSCF/Day Last Reservoir Pressure 2892 psig @ 6130 ft. Date June 17, 1989 Reservoir Temperature 106°F. @ 6130 ft. Status of Well Producing Pressure Gauge Amerada bomb

SAMPLING CONDITIONS

Flowing Tubing Pressure N/A psig Flowing Bottom Hole Pressure N/A psig Primary Separator Pressure 437 psig Primary Separator Temperature 85°F. Secondary Separator Pressure 20 psig Secondary Separator Temperature 74°F. Field Stock Tank Liquid Gravity 42.5°API @ 60°F. Primary Separator Gas Production Rate N/A MSCF/Day 15.025 psia Pressure Base Temperature Base 60°F. Compressibility Factor (Fpv) 1.03975 Gas Gravity (Laboratory)
Gas Gravity Factor (Fg) 0.697 1.19779 Stock Tank Liquid Production Rate @ 60°F. N/A Bbls/Day Primary Separator Gas/Stock Tank Liquid Ratio 820 SCF/Bbl

Sampled by

Core Laboratories

REMARKS:

Page 2 of 17 File RFLM 89108 Carrasco "14" #1

SUMMARY OF RESERVOIR FLUID PVT DATA

Volumetric Data

Bubble point pressure (Pb) at 106°F. = 2858 psig

Thermal expansion of reservoir fluid at 5000 psig = V at 106°F. = 1.02259

V at 72°F.

Compressibility of reservoir fluid at 106° F.

from 4000 psig to 3500 psig = $12.91 \times 10^{-6} \text{ V/V/psi}$ from 3500 psig to 2858 psig = $13.40 \times 10^{-6} \text{ V/V/psi}$

Differential Vaporization Data

Solution gas/oil ratio at 2858 psig and 106°F. = 1108 standard cubic feet of gas at 15.025 psia and 60°F. per barrel of residual oil at 60°F.

Relative oil volume at 2858 psig and 106°F. = 1.543 barrels of oil per barrel of residual oil at 60°F.

Density of reservoir fluid at 2858 psig and 106°F. = 0.6641 gm/cc

<u>Viscosity Data</u>

Viscosity of reservoir fluid at 2858 psig and 105°F. = 0.54 centipoise

Separator Test Data

		GOR	Tank Oil Gravity
Separator Conditions 437 psig and 74°F. to	Bo(1)	<u>Rs(2)</u>	API at 60°F.
20 psig and 74°F. to			
0 psig and 74°F.	1.508	1039	43.5

- (1) Formation volume factor, barrels of oil at 2858 psig and 106°F. per barrel of stock tank oil at 60°F.
- (2) Total solution gas/oil ratio at 2858 psig and 106°F., total standard cubic feet of gas at 15.025 psia and 60°F. per barrel of stock tank oil at 60°F.

Page 3 of 17 File RFLM 89108 Carrasco "14" #1

SUMMARY OF QUALITY CONTROL DATA OF SEPARATOR LIQUID SAMPLES

Sampling Conditions Cylinder Pressure, Number PSIG		Temperature,	Laboratory <u>Bubble point</u> Pressure, <u>PSIG</u>	Temperature,
1*	437	85	392	70
2	437	85	371	70

^{*} Selected for use in study.

Page 4 of 17 File RFLM 89108 Carrasco "14" #1

HYDROCARBON ANALYSES OF SEPARATOR PRODUCTS AND CALCULATED WELL STREAM

	Separator Liquid,		Gas gal	mcf
	Mol	Separator	Gas /	Well Stream
<u>Comporent</u>	Percent	Mol Percent	GPM	Mol Percent
	- 1-11		<u> </u>	
Hydrogen Sulfide	0.00	0.00		0.00
Carbor Dioxide	0.12	0.46		0.29
Nitrogen	0.10	3.41		1.73
Methane	8.04	78.41		42.62
Ethane	7.05	11.79	3.216	9.38
Propane	10.21	4.39	1.234	7.35
iso-Butane	2.13	0.37	0.123	1.27
n-Butane	7.18	0.84	0.270	4.06
iso-Pentane	2.35	0.12	0.045	1.25
n-Pentane	3.00	0.12	0.044	1.58
Hexanes	11.45	0.06	0.024	5.85
Heptanes	7.85	0.02	0.009	4.00
Octanes	9.02	0.01	0.005	4.59
Nonanes	5.48	0.00	0.000	2.79
Decanes	4.07	0.00	0.000	2.07
Undecanes	3.21	0.00	0.000	1.63
Dodecanes	2.33	0.00	0.000	1.19
Tridecanes	2.23	0.00	0.000	1.13
Tetradecanes	1.93	0.00	0.000	0.98
Pentadecanes	1.84	0.00	0.000	0.94
Hexadecanes	1.41	0.00	0.000	0.72
Heptadecanes	1.10	0.00	0.000	0.56
Octadecanes	1.26	0.00	0.000	0.64
Nonadecanes	1.20	0.00	0.000	0.61
Eicosanes plus	5.44	0.00	0.000	2.77
_	100.00	100.00	4.970	100.00
		,		
Properties of Hepta	nes plus			
API Gravity @ 60°F		2		
Density, Gm/Cc @ 6			7395	0.838
Molecular Weight	21		105	214

Page 5 of 17 File RFLM 89108 Carrasco "14" #1

Calculated separator gas gravity (air=1.000) = 0.697 Calculated gross heating value for separator gas = 1190 BTU per cubic foot of dry gas @ 15.025 psia and 60°F.

Primary separator gas collected @ 437 psig and 85°F.
Primary separator liquid collected @ 437 psig and 85°F.

Primary separator gas/separator liquid ratio =717 SCF/Bbl @ 85°F. Primary separator liquid/stock tank liquid ratio = 1.1434 Bbls @ 85°F./Bbl @ 60°F.

PROPERTIES OF SEPARATOR LIQUID HEAVIER FRACTIONS

		Mol			Mol
	<u>Compon≥nt</u>	Percent	<u>Density</u>	<u>API</u>	<u>Weight</u>
C6	Hexanes plus	59.82	0.8227	40.3	189.
	Heptanes plus	48.37	0.8382	37.2	214.
	Undecames plus	21.95	0.8795	29.2	338.
	Pentadecanes plus	12.25	0.9028	25.1	475.
	Eicosanes plus	5.44	0.9266	21.1	527.

Sample Molecular Weight = 131.4

Page 6 of 17 File RFLM 89108 Carrasco "14" #1

VOLUMETRIC DATA OF RESERVOIR FLUID SAMPLE

Saturation pressure (bubble point pressure) = 2858 PSIG 106°F.

Specific volume at saturation pressure = 0.02412 ft ³/lb @ 106°F.

Thermal expansion @ 5000 PSIG = 1.02259 V @ 106°F./V @ 72°F.

Compressibility @ 106°F.:

From 5000 PSIG to 4500 PSIG = $10.21 \times 10^{-6} \text{ V/V/PSI}$ From 4500 PSIG to 4000 PSIG = $11.78 \times 10^{-6} \text{ V/V/PSI}$ From 4000 PSIG to 3500 PSIG = $12.91 \times 10^{-6} \text{ V/V/PSI}$ From 3500 PSIG to 2858 PSIG = $13.40 \times 10^{-6} \text{ V/V/PSI}$

Page 7 of 17 File RFLM 89108 Carrasco "14" #1

PRESSURE-VOLUME RELATIONS OF RESERVOIR FLUID AT 106°F.
(Constant Composition Expansion)

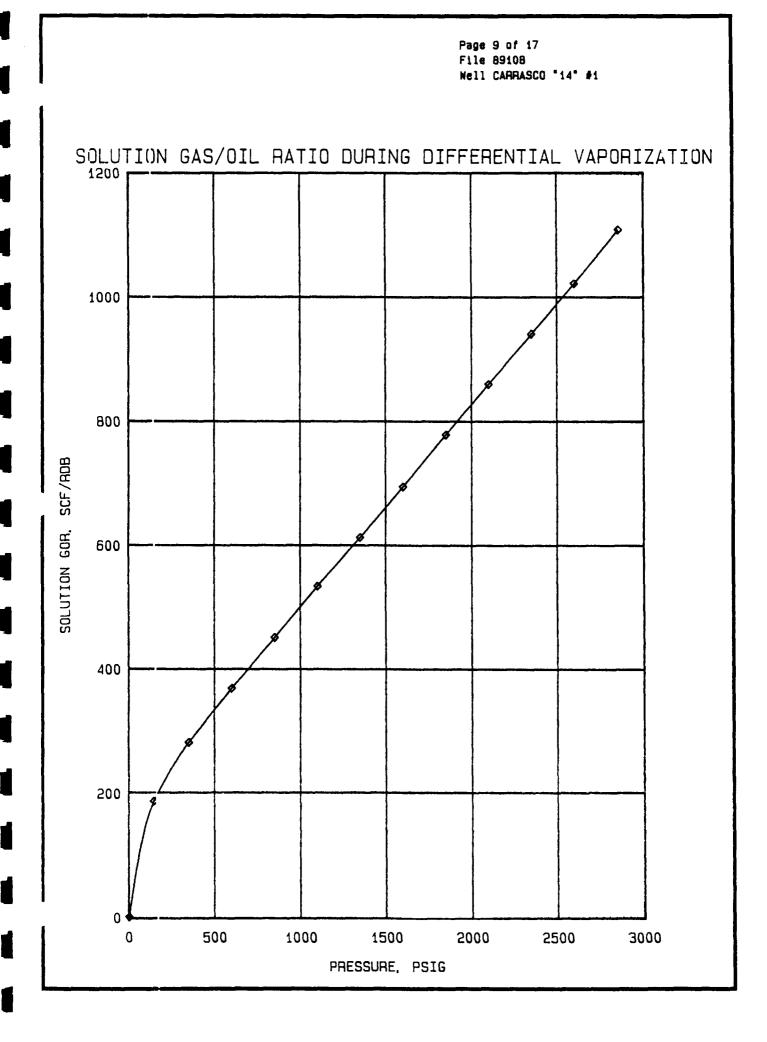
Pressure PSIG	Relative Volume(1)	Y <u>Function(2)</u>	Density <u>Gm/cc</u>
5000	0.9742		0.6817
4500	0.9792		0.6782
4000	0.9850		0.6742
3500	0.9914		0.6699
3000	0.9954		0.6672
3100	0.9967		0.6663
3000	0.9981		0.6654
2900	0.9994		0.6645
2858 Pb	1.0000		0.6641
2826	1.0029		
2801	1.0051		
2777	1.0072		
2753	1.0092		
2661	1.0185		
2490	1.0394	3.725	
2289	1.0712	3.471	
2090	1.1134	3.218	
1868	1.1780	2.954	
1658	1.2631	2.726	
1469	1.3691	2.536	
1292	1.5034	2.380	
1137	1.6663	2.242	
1019	1.8284	2.147	
925	1.9901	2.077	
752	2.4114	1.945	
586	3.0572	1.838	
390	4.1816	1.720	

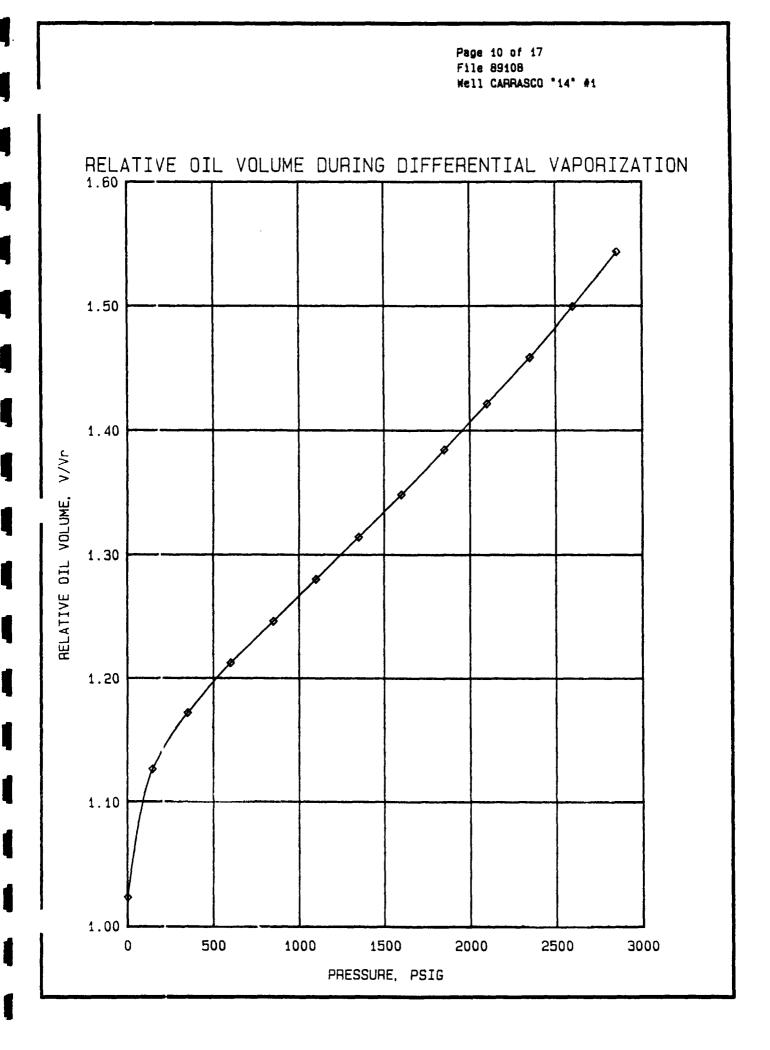
(1) Relative Volume: V/Vsat is barrels at indicated pressure/barrel at saturation pressure.

Carrasco "14" #1 Page 8 of 17 File RFIM 89108

DIFFERENTIAL VAPORIZATION AT 106°F

Incremental Gas Gravity		0.715	0.712	0.708	0.706	0.705	0.707	0.711	0.719	0.735	0.785	0.947	1.438
Gas Formation Volume Factor(4)		.0.00483	0.00535	0.00601	0.00691	0.00812	0.00980	0.01229	0.01624	0.02359	0.04131	0.09833	
Deviation Factor, Z		0.773	0.773	0.777	0.788	0.802	0.818	0.838	0.859	0.887	0.922	0.962	
oil Density, Gm/Cc	0.6641	0.6740	0.6833	0.6921	0.7017	0.7107	0.7201	0.7298	0.7398	0.7508	0.7620	0.7744	0.7941
Relative Total Volume(3)	1.543	1.574	1.619	1.687	1.790	1.947	2.180	2.539	3.149	4.321	7.256	17.273	
Relative Oil Volume, Bod(2)	1.543	1.499	1.458	1.421	1.384	1.348	1.314	1.280	1.246	1.212	1.171	1.126	1.023
Solution Gas/Oil Ratio,Rsd(1)	1108	1021	939	829	. 778	694	612	533	450	368	281	186	0
Pressure, psig	2858 Pb	2600	2350	2100	1850	1600	1350	1100	850	009	350	145	0


Gravity of Residual Oil = 42.5° API @ 60° F.


 $at 60^{\circ}F = 1.000$

- Oubic feet of gas at 15.025 psia and 60°F. per barrel of residual oil at 60°F.

 Barrels of oil at indicated pressure and temperature per barrel of residual oil at 60°F.

 Barrels of oil plus liberated gas at indicated pressure and temperature per barrel of residual oil at 60°F.
 - Oubic feet of gas at indicated pressure and temperature per cubic foot at 15.025 psia and 60°F.

Page 11 of 17 File RFIM 89108 Carrasco "14" #1

SEPARATOR TEST OF RESERVOIR FILLID SAMPLE

Specific Gravity of Flashed Gas	0.698	0.965	1.467	
Separator Volume Factor (4)	1.174	1.074	1.007	
Formation Volume Factor, Bofb(3)			1.508	
Stock Tank Gravity, °API @ 60°F			43.5	
Gas/Oil Ratio (2)	746	205	88	1 14
Gas/Oil Ratio (1)	636	190	87	Rsfb =
Separator Temperature, ° F	74	74 .	74	
Separator Pressure, PSI Gauge	437	√ × 3 8 £	∕	

Gas/Oil Ratio in cubic feet of gas @ 60°F. and 15.025 PSI absolute per barrel of oil @ indicated pressure and temperature.

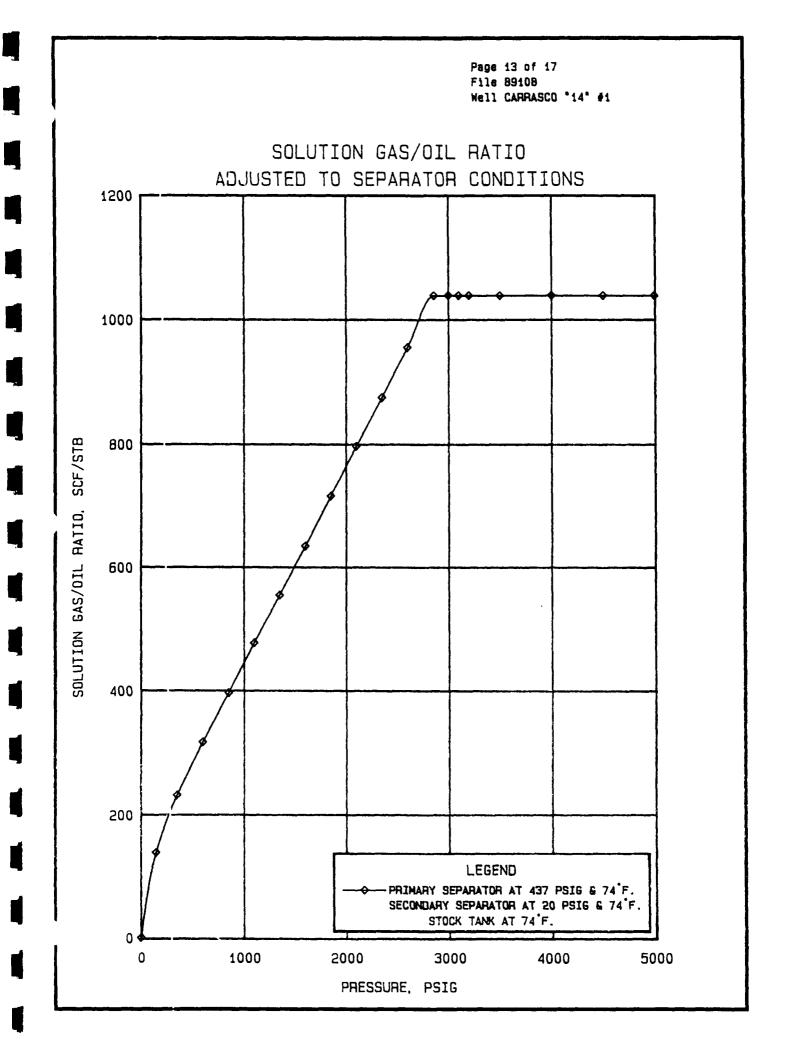
Gas/Oil Ratio in cubic feet of gas @ 60°F. and 15.025 PSI absolute per barrel of stock tank oil @ 60°F. Formation Volume Factor is barrels of saturated oil @ 2858 PSI gauge and 106°F. per barrel of stock tank oil 38

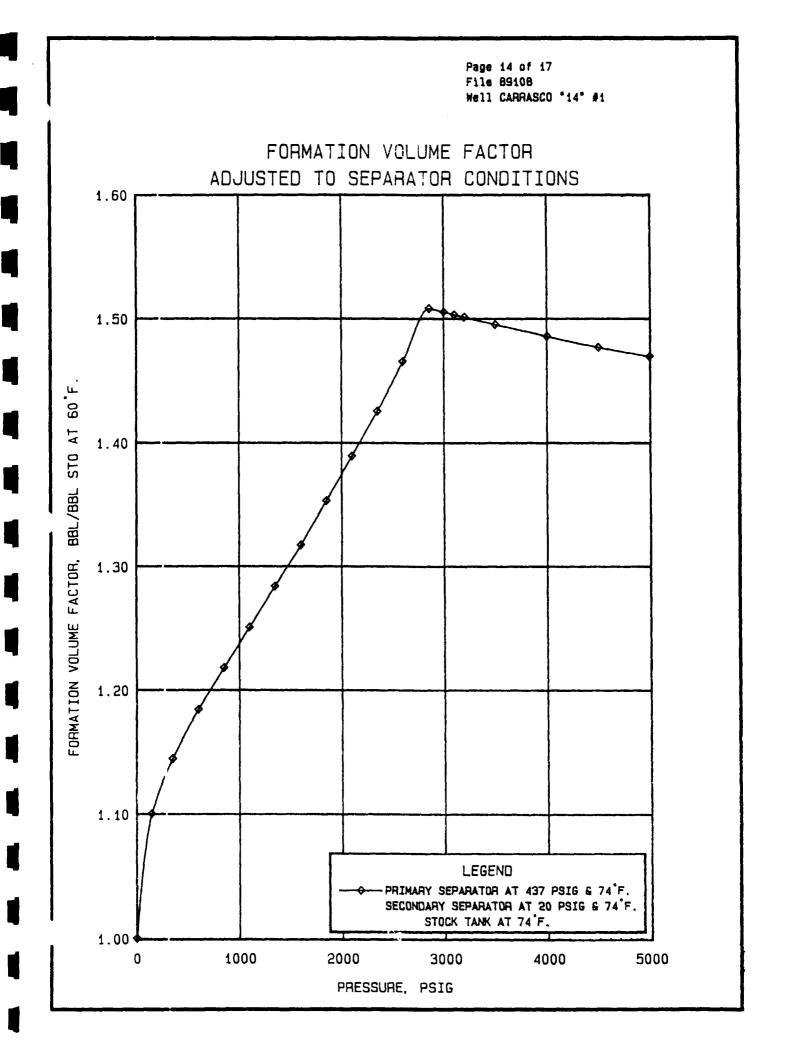
@ 60°F.

Separator Volume Factor is barrels of oil @ indicated pressure and temperature per barrel of stock tank oil @ 60°F. (4)

Page 12 of 17 File RFIM 89108 Carrasco "14" #1

DIFFERENTIAL VAPORIZATION DATA ADJUSTED TO SEPARATOR CONDITIONS*

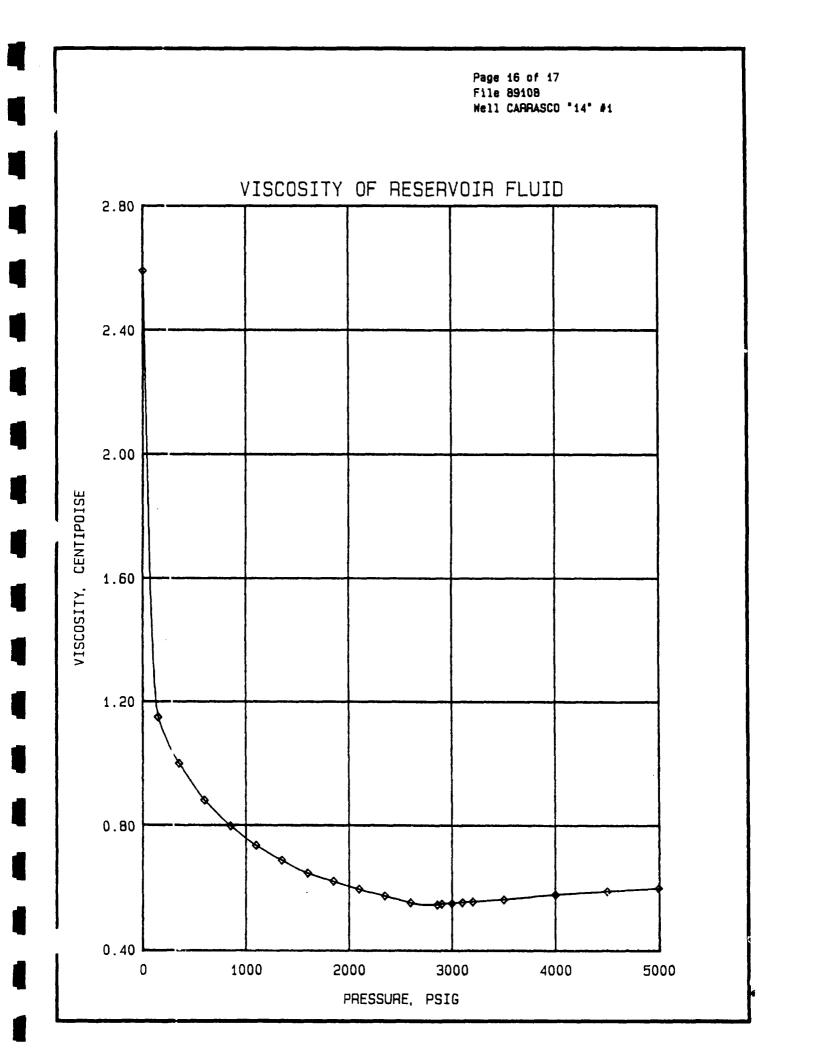

Pressure,	Solution Gas/Oil Ratio, Rs(1)	Formation Volume Factor, Bo(2)	Gas Formation Volume Factor, Bg(3)	Oil Density, gm/cc	Oil/Gas Viscosity Ratio
5000	1039	1.469		0.6817	
4500	1039	1.477		0.6782	
4000	1039	1.485		0.6742	
3500	1039	1.495		0.6699	
3200	1039	1.501		0.6672	
3100	1039	1.503		0.6663	
3000	1039	1.505		0.6654	
2858 Pb	1039	1.508		0.6641	
2600	954	1.465	0.00483	0.6740	26.0
2350	874	1.425	0.00535	0.6833	28.6
2100	796	1.389	0.00601	0.6921	32.2
1850	716	1.353	0.00691	0.7017	36.7
1600	634	1.317	0.00812	0.7107	41.4
1350	554	1.284	0.00980	0.7201	47.3
1100	477	1.251	0.01229	0.7298	53.3
850	396	1.218	0.01624	0.7398	62.0
600	316	1.184	0.02359	0.7508	72.7
350	231	1.144	0.04131	0.7620	87.7
145	138	1.100	0.09833	0.7744	110.6
0	0	1.000		0.7941	301.2


 $0.60^{\circ}F. = 1.000$

Gravity of Stock Tank Oil = 43.5°API @ 60°F.

*Separator Conditions: Separator at 437 psig and 74°F., Secondary Separator at 20 psig and 74°F., stock tank at 74°F.

- (1) Cubic feet of gas at 15.025 psia and 60°F. per barrel of stock tank oil at 60°F.
- (2) Barrels of oil at indicated pressure and $106^{\circ}F$, per barrel of stock tank oil at $60^{\circ}F$.
- (3) Cubic feet of gas at indicated pressure and 106°F. per cubic foot at 15.025 psia and 60°F.



Page 15 of 17 File RFLM 89108 Carrasco "14" #1

VISCOSITY DATA AT 106°F

Pressure,psig	Oil Viscosity Centipoise	Calculated Gas Viscosity, Centipoise	Oil/Gas Viscosity <u>Ratio</u>
5000	0.60		
4500	0.59		
4000	0.58		
3500	0.56		
3200	0.55		
3100	0.55	_	
3000	0.55	•	
2900	0.55		
2858 Pb	0.54		
2600	0.56 -	0.0215	26.0
2350	0.57	0.0199	28.6
2100	0.59	0.0183	32.2
1850	0.62	0.0169	36.7
1600	0.65	0.0157	41.4
1350	0.69	0.0146	47.3
1100	0.73	0.0137	53.3
850	0.80	0.0129	62.0
600	0.88	0.0121	72.7
350	1.00	0.0114	87.7
145	1.15	0.0104	110.6
0	2.59	0.0086	301.2

Page 17 of 17 File RFLM 89108 Carrasco "14" #1

NOMENCLATURE AND EQUATIONS TO ADJUST DIFFERENTIAL VAPORIZATION DATA TO SURFACE CONDITIONS

Pb = Bubble point pressure

Bo = Oil formation volume factor

Bofb = Formation volume factor from field conditions (or optimum) separator flash test.

Bob = Relative oil volume from differential vaporization test.

Bodb = Value of Bod at the bubble point pressure.

R.V. = Relative volume from pressure-volume relations test.

For Bo above the bubble point pressure:

 $Bo = R.V. \times Bofb$

For Bo below the bubble point pressure:

Bo = (Bod)(Bofb/Bodb)

Rs = Gas in solution, standard cubic feet per barrel of stock tank oil.

Rsfb = Sum of separator gas and the stock tank gas from field conditions (or optimum) separator flash test, standard cubic feet per barrel of stock tank oil.

Rsd = The gas in solution from the differential vaporization test.

Rsdb = !he value of Rsd at the bubble point pressure. .

Rs - Rsfb - [(Rsdb - Rsd)(Bofb/Bodbl)]

CORE LABORATORIES

October 26, 1990

Oryx Energy Company Technology Center P.O. Box 830936 Richardson, TX 75083-0936

Attention: Mr. Robert A. Skopec

Subject: Reservoir Fluid Study

Pardue Farm No. 1 Well

Loving Field

Eddy County, New Mexico

RFL 900381

Gentlemen:

Samples of primary separator gas and liquid were collected from the subject well by a representative of Core Laboratories on September 17, 1990. These samples were shipped to our laboratory in Carrollton, Texas for use in a reservoir fluid study. The results of this study are presented in the following report.

Thank you for the opportunity to perform this study for Orxy Energy Company. Should any questions arise or if we may be of further service in any way, please do not hes tate to contact us.

Sincerely,

James R. Fortner

Area Manager

Reservoir Fluid Analysis

James P. Fother

JRF:KWK:jlr

6 cc: Addressee

LABORATORY PROCEDURES

Oryx Energy Comapny Reservoir Fluid Study Pardue Farm No. 1 Well Loving Field Eddy County, New Mexico RFL 900381

As quality control checks, the laboratory temperature opening pressure of each separator gas and the laboratory temperature bubblepoint of each separator liquid sample were determined. These preliminary data are presented on page three.

In a high pressure, windowed cell, separator gas and liquid were physically recombined to a GOR of 1150 scf/separator barrel. The mixture was then pressurized into single-phase at 5000 psig and 115°F. The sample was expanded to 2375 psig, and the resulting gas cap was removed. This bubblepoint adjusted fluid was then used for the remainder of the testing program. The composition of the reservoir fluid was measured through eicosanes plus by a flash chromatographic procedure. The results of this extended compositional analysis, in terms of both mole percent and weight percent, are presented on page four.

A small quantity of the reservoir fluid was charged to a high pressure windowed cell and thermally expanded to the reservoir temperature of 115°F. During a constant composition expansion at this temperature, the fluid was found to have a bubblepoint pressure at 2375 psig. The results of the pressure-volume relation measurements at reservoir temperature may be found on pages five and six.

When subjected to differential pressure depletion at the reservoir temperature, the fluids evolved a total of 983 cubic feet of gas at 15.025 psia and 60°F per barrel of residual oil at 60°F. The resulting relative oil volume factor was 1.525 barrels of saturated fluid per barrel of residual oil at 60°F. The oil density and the properties of the evolved gases were measured at each point during the differential pressure depletion, and these data are included in the summary of the differential depletion data on page seven.

The viscosity of the reservoir fluid was measured over a wide range of pressures at 115°F in a rolling ball viscosimeter. The viscosity of the fluid was found to vary from a minimum of 0.427 centipoise at the saturation pressure to a maximum of 1.893 centipoises at atmospheric pressure. The results of the viscosity measurements are tabulated on page ten.

Two single-stage separator tests were performed to determine the formation volume factor, gas/oil ratio and stock tank oil gravity. One separator test was performed at field operating conditions and the other at the calculated optimum primary separator pressure and ambient temperature. The data are presented on page 12. The primary separator gas from each test was collected and analyzed through heptanes plus by routine gas chromatography and is presented on page 13. These data were used to adjust the differential vaporization data to surface conditions, and the resulting values are presented on pages 14 and 15.

CORE LABORATORIES

Company Oryx Energy Company	File	RFL 900381	
Well Pardue Farm No. 1	County_	Eddy	
Field <u>Loving</u>	State	New Mexico	

TABLE OF CONTENTS

	<u>Page</u>
Laboratory Procedures	i
Table of Contents	ii
Well Information	1
Summary of Reservoir Fluid Data	2
Summary of Samples	3
Reservoir Fluid Composition	4
Pressure-Volume Relations	5
Compressibility	6
Differential Vaporization	7-9
Viscosity	10,11
Separator Tests	12
Separator Test Gas Compositions	13
Adjusted Differential Vaporization Data	14,15
Nomenclature and Equations	16

Triviarial class opinions of interpretations contained in this report are based upon observations and material supplied by the clarator which will be and in this report has

Page_	_1	_of	<u> 16</u>		
File_	RFL 9003	381			
Well	Pardue	Farm	No.	1	

WELL INFORMATION

FORMATION CHARACTERISTICS

Formation	Delaware (Brushy Canyon)
Datum	6090 (-3114) ft ss
Date First Well Completed	
Original Reservoir Pressure	psig @ft
Original Produced Gas/Liquid Ratio	scf/bbl
Production Rate	B/D
Separator Conditions	psig and•F
Stock Tank Liquid Gravity	

WELL CHARACTERISTICS

Elevation	_2976ft
Total Depth	6200 ft
Producing Interval	6052-6128 ft
Tubing Size and Depth	<u>2-7/8</u> in. to 6004 ft
Productivity Index	B/D/psi @B/D
Reservoir (onditions:	,
Pressure	<u>2390</u> psig @ 6072_ft
Date	August 28, 1990
Temperature	115 °F @ 6200 ft
Status of Well	Flowing
Water Cut	<u>None</u> percent

SAMPLING CONDITIONS

Flowing Tuting Pressure	1375	psig
Flowing Bottomhole Pressure	p:	sig @ft
Primary Separator Conditions	410 ps	sig and 45 °F
Secondary Separator Conditions	ps	sig and*F
Stock Tank Temperature	80	•F
Field Stock Tank Liquid Gravity	41	°API @ 60°F
Primary Separator Gas Production Rate	560	Mscf/D
Standard Conditions	<u> 15.025</u>	_psia and 60°F
Stock Tank Liquid Production Data	<u> 262 </u>	/D @ <u>80</u> °F
Primary Separator Gas/Stock Tank Liquid	2137	scf/bbl
Sampled By	<u> Core Labora</u>	atories (KWK)
Date Sampled	<u>September</u>	17, 1990

Page_		of	16	<u> </u>	
File_	RFL 900	0381			
Well_	Pardue	Farm	No.	1	

SUMMARY OF RESERVOIR FLUID DATA

Volumetric Data

Bubblepoint pressure $(P_b) = 2375 \text{ psig at } 115^{\circ}F$

Thermal expansion at 5000 psig = $\frac{V \text{ at } 115^{\circ}F}{V \text{ at } 69^{\circ}F}$ = 1.02389

Differential Vaporization (DV) Data

Solution gas/oil ratio (R_{sdb}) at bubblepoint = 983 standard cubic feet of gas per barrel of residual oil at 60°F

Relative oil volume (B_{pdb}) at bubblepoint = 1.525 barrels of oil per barrel of residual oil at 60°F

Density of reservoir fluid at bubblepoint = 0.6604 gm/cc

Viscosity Data

Viscosity of reservoir fluid at bubblepoint = 0.427 centipoise

Separator Test Data

Separator Conditions	B _{ofb} (1)	R _{sfb} (2)	Tank Oil Gravity, *API at 60°F
410 psig at 45°F	1.525	986	43.9
110 psig at 67°F	1.500	958	44.3

Standard conditions = 15.025 psia and 60°F

⁽¹⁾ Formation volume factor, barrels of oil at bubblepoint per barrel of stock tank oil at 60°F.

⁽²⁾ Solution gas/oil ratio at bubblepoint, total standard cubic feet of gas per barrel of stock tank oil at $60^{\circ}F$

Page_		_of_	16	5	_
File_	RFL 900	381			_
Well	Pardue	Farm	No.	1	

SUMMARY OF SAMPLES

Separator Gas

	Separator Conditions		Laboratory Opening Conditions	
Cylinder	Pressure,	Temperature,	Pressure,	Temperature,
<u>Number</u>	psiq		psig	<u>•</u> F
193487D(1)	410	45	385	70
193523D	410	45	385	70

Separator Liquid

	Separator Conditions		<u>Laboratory Bubblepoint</u>	
Cylinder Number	Pressure, psig	Temperature, *F	Pressure,psig	Temperature,
2079 ₍₁₎ 2068	410 410	45 45	414 364	69 70

⁽¹⁾ Selected for analysis.

Page	4	_of_	16	5	
File_	RFL 900	381			
Well	Pardue	Farm	No.	1	

RESERVOIR FLUID COMPOSITION

<u>Component</u>	Mole <u>Percent</u>	Weight <u>Percent</u>	Molecular Weight(1)	Density, gm/cc at 60°F(1)
Hydrogen Sulfide Carbon Dioxide Nitrogen Methane Ethane Propane iso-Butane n-Butane iso-Pentane n-Pentane Hexanes Heptanes Octanes Nonanes Decanes Undecanes Tridecanes Tridecanes Tetradecanes Hexadecanes Hexadecanes Hexadecanes Heptadecanes Honadecanes Soctadecanes Nonadecanes Eicosanes p us	0.00 0.01 1.68 41.30 9.75 8.44 1.36 4.05 1.42 1.83 2.55 4.05 4.41 3.07 2.44 1.88 1.42 1.41 1.15 1.02 0.80 0.71 0.69 0.63 3.93 100.00	0.00 0.01 0.59 8.34 3.69 4.69 1.00 2.96 1.29 1.66 2.70 4.90 5.94 4.68 4.12 3.48 2.88 3.11 2.75 2.65 2.12 2.18 2.09 29.93 100.00	34.080 44.010 28.013 16.043 30.070 44.097 58.123 72.150 72.150 84 96 107 121 134 147 161 175 190 206 222 237 251 263 605(2)	0.80064 0.81720 0.80860 0.29970 0.35584 0.50648 0.56231 0.58343 0.62408 0.63049 0.685 0.722 0.745 0.764 0.778 0.789 0.800 0.811 0.822 0.832 0.832 0.832 0.832 0.857 0.912(2)
Properties of Fractions	(2)			
Heptanes plus Undecanes p'us Pentadecanes plus Eicosanes p'us	27.61 13.64 7.78 3.93	73.07 53.43 41.21 29.93	210 311 421 605	0.835 0.871 0.892 0.912
Molecular weight			79.40	

Assigned properties taken from literature.
 Calculated.

Page_	<u>_5</u> of	<u> 16 </u>
File_	RFL 900381	
Well	Pardue Farm	No. 1

PRESSURE-VOLUME RELATIONS AT 115°F (Constant Composition Expansion)

Pressure,psig	Relative Volume(1)	Y <u>Function(2)</u>	Density, gm/cc
5000	0.9699		0.6809
4500	0.9747		0.6775
4000	0.9800		0.6739
3500	0.9857		0.6700
3000	0.9918		0.6659
2700	0.9957		0.6633
2600 _	0.9970		0.6624
2500	0.9983		0.6615
2400	0.9997		0.6606
<u>2375</u> P _b	1.0000		0.6604
2369	1.0008	3.159	
2363	1.0016	3.153	
2354	1.0028	3.145	
2321	1.0074	3.114	
2285	1.0127	3.080	
2217	1.0235	3.018	
2101	1.0445	2.912	
1918	1.0856	2.762	
1716	1.1475	2.581	
1520	1.2302	2.419	
1343	1.3329	2.283	
1186	1.4584	2.160	
1060	1.5934	2.061	
809	2.0151	1.872	
609	2.6379	1.728	
436	3.6836	1.602	

⁽¹⁾ Volume at indicated pressure per volume at bubblepoint.
(2) Y Function = $(P_b - P)/[(P_{abs})(RV - 1)]$.

Page	6	_of_	16	5	_
File	RFL 90	0381			
Well	Pardue	Farm	No.	1	

COMPRESSIBILITY AT 115°F

From 5000 psig to 4500 psig = $9.97 \times 10^{-6} \text{ V/V/psi}$ From 4500 psig to 4000 psig = $10.73 \times 10^{-6} \text{ V/V/psi}$ From 4000 psig to 3500 psig = $11.54 \times 10^{-6} \text{ V/V/psi}$ From 3500 psig to 3000 psig = $12.27 \times 10^{-6} \text{ V/V/psi}$ From 3000 psig to 2500 psig = $13.11 \times 10^{-6} \text{ V/V/psi}$ From 2500 psig to 2375 psig = $13.64 \times 10^{-6} \text{ V/V/psi}$

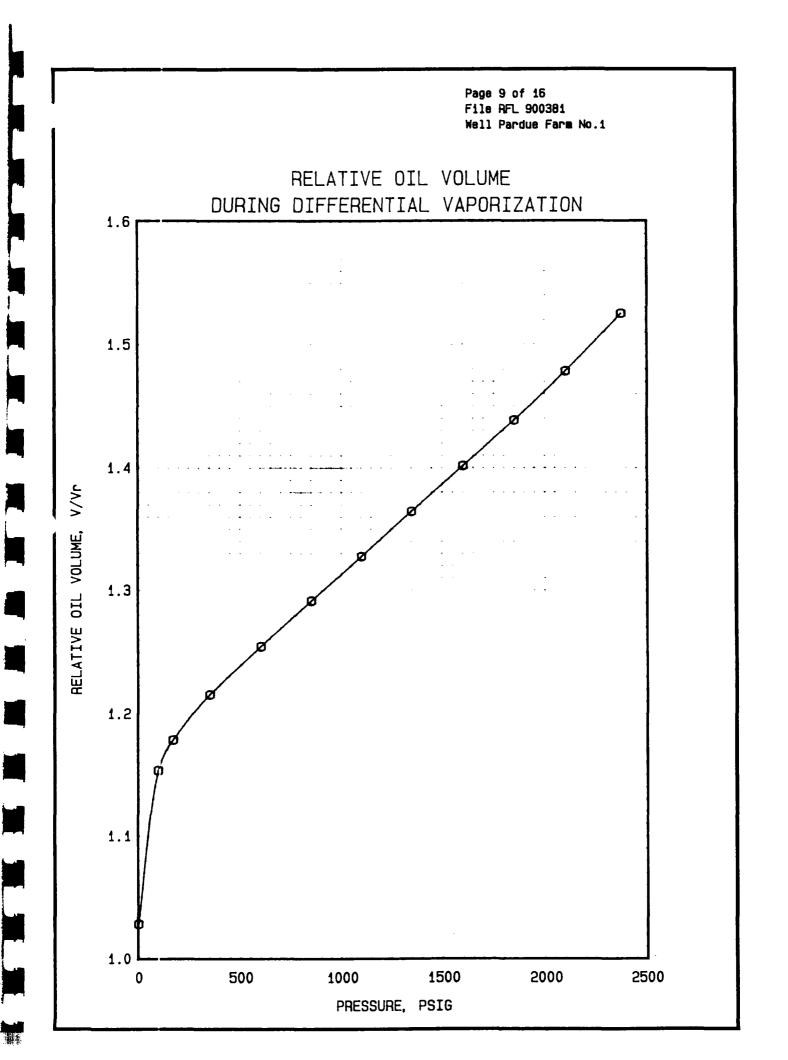
Well Pardue Farm No. 1 Page 7 of File_RFL 900381

DIFFERENTIAL VAPORIZATION AT 115°E

Incremental Gas Gravity	0.765	0.722	0.701	0.693	0.697	0.713	0.748	0.808	0.928	1.11	1.468	
Gas Formation Volume Factor(4)	0.00628	0.00729	0.00858	0.01043	0.01308	0.01731	0.02502	0.04338	0.08718	0.14612		
Deviation Factor Z	662.0	0.818	0.834	0.857	0.878	0.901	0.926	0.953	0.976	0.985		
Oil Density, gm/cc	0.6604	0.6783	0.6871	0.6964	0.7060	0.7158	0.7258	0.7362	0.7465	0.7531	0.7824	11
Relative Total Volume, B _{td(3)}	1.525	1.687	1.820	2.027	2.350	2.897	3.945	6.554	13.072	22.207		9.09 Ø
Relative Oil Volume, B _{od(2)}	1.525	1.438	1.401	1.364	1.327	1.291	1.254	1.215	1.178	1.153	1.030	F = 1.000
Solution Gas/Oil Ratio, R _{sd(1)}	983	791	708	626	544	462	379	292	217	174	0	@ 60°F =
Pressure, psig	2375 P _b	1850	1600	1350	1100	850	009	350	171	7.6	0	

Gravity of residual oil = 43.9*API @ 60*F

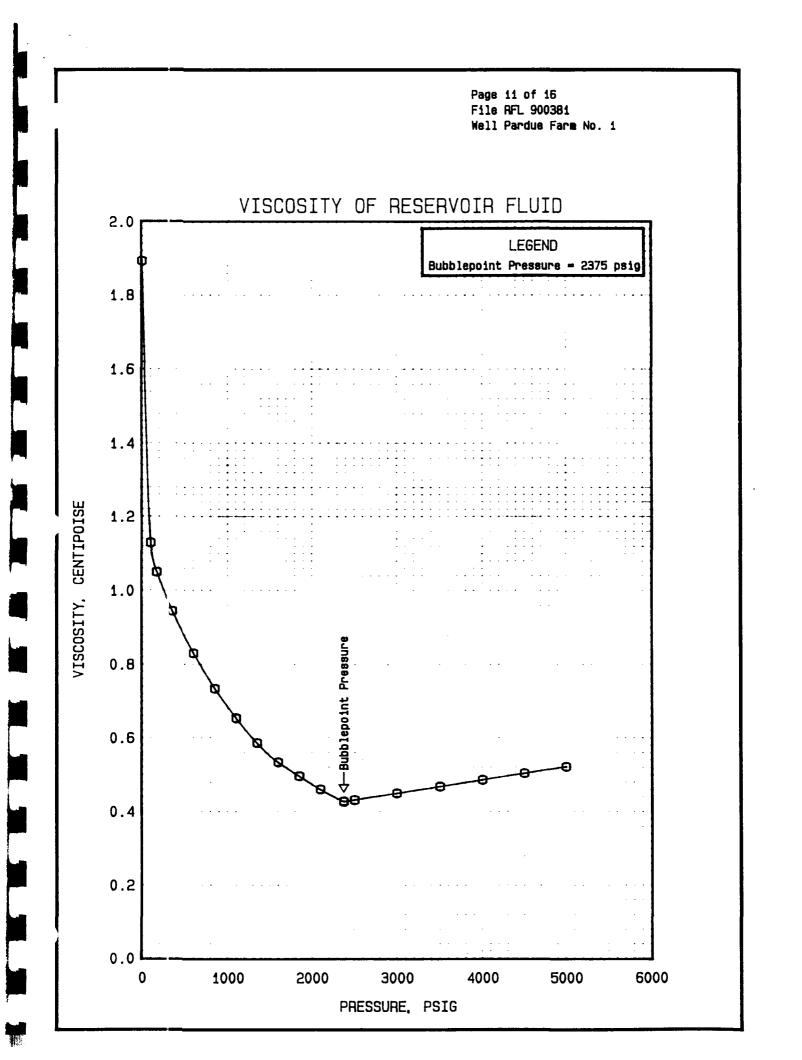
Molecular weight of residual oil = 183 gm/mole


Standard conditions = 15.025 psia and 60°F

Barrels of oil at indicated pressure per barrel of residual oil at $60^{\bullet} \mathrm{F}_{\cdot}$

Barrels of oil plus liberated gas at indicated pressure per barrel of residual oil at 60°F. Cubic feet of gas at indicated pressure per standard cubic foot.

Cubic feet of gas per barrel of residual oil at 60°F.
 Barrels of oil at indicated pressure per barrel of res
 Barrels of oil plus liberated gas at indicated pressure
 Cubic feet of gas at indicated pressure per standard cu


Page 8 of 16 File RFL 900381 Well Pardue Farm No.1 SOLUTION GAS/OIL RATIO DURING DIFFERENTIAL VAPORIZATION SOLUTION GOR, SCF/RDB PSIG PRESSURE,

Page	10	of	16	<u> </u>	
file_	RFL 90	00381			
Well	Pardue	Farm	No.	1	

VISCOSITY AT 115°F

Pressure,psig	Oil Viscosity, <u>centipoise</u>	Gas Viscosity, <u>centipoise</u>	Oil/Gas Viscosity <u>Ratio</u>
5000 4500 4000 3500 3000 2500 2375 2100 1850 1600 1350 1100 850 600 350 171	0.522 0.505 0.484 0.467 0.448 0.431 0.427 0.460 0.496 0.534 0.586 0.654 0.735 0.831 0.945 1.050 1.129	0.0185 0.0167 0.0155 0.0145 0.0136 0.0129 0.0122 0.0114 0.0107	24.84 29.70 34.51 40.42 47.90 56.98 68.11 82.89 98.13 114.04
0	1.893		

Page 12 of 16

File RFL 900381

Well Pardue Farm No. 1

SEPARATOR TESTS

Separa Condi psig	tions,	Gas/Liqu	uid Ratio	Stock Tank Liquid Gravity, *API at 60°F	Formation Volume Factor B _{ofb} (3)	Separator Volume Factor(4)	Gas Gravity
410 to	45	518	621			1.200	0.669*
0	68	363 R _{sft}	= <u>365</u> = 986	43.9	1.525	1.004	1.216
110	67	764	827			1.083	0.766*
to 0	69	131 R _{sft}	131 = 958	44.3	1.500	1.005	1.428

* Collected and analyzed in the laboratory.

Standard concitions = 15.025 psia and 60°F

- (1) Standard cubic feet of gas per barrel of liquid at indicated pressure and temperature.
- (2) Standard cubic feet of gas per barrel of stock tank liquid at 60°F.
- (3) Barrels of liquid at bubblepoint per barrel of stock tank liquid at 60°F.
- (4) Barrels of liquid at indicated pressured and temperature per barrel of stock tank liquid at 60°F.

Page_	<u>13</u> of_	<u> </u>
File_	RFL 900381	
Well	Pardue Fari	n No. 1

COMPOSITION OF SEPARATOR TEST GAS SAMPLES

	410 psig Mole	, 45°F	<u>110 psig.</u> Mole	67°F
<u>Component</u>	<u>Percent</u>	GPM	<u>Percent</u>	GPM
Hydrogen Sulfide Carbon Dioxide Nitrogen Methane Ethane Propane iso-Butane n-Butane iso-Pentane n-Pentane Hexanes Heptanes plus	0.00 0.01 3.96 81.77 9.64 3.50 0.27 0.60 0.10 0.09 0.05	2.630 0.984 0.090 0.193 0.037 0.033 0.020 0.005	0.00 0.05 3.06 71.74 13.84 7.93 0.76 1.78 0.30 0.30 0.13	3.701 2.185 0.249 0.561 0.110 0.109 0.050 0.049
neptales plus	100.00	3.992	$\frac{0.11}{100.00}$	7.014
Gas gravity (air=1.000):	0.669		0.766	
Gross heating value (Btu per cubic foot of dry gas at 15 025 psia and 60°F):	1149		1291	

Page 14 of 16

File RFL 900381

Well Pardue Farm No. 1

DIFFERENTIAL VAPORIZATION AT 115°F ADJUSTED TO SEPARATOR CONDITIONS

Pressure,	Gas/Oil Ratio, R _s (1)	Formation Volume Factor, B _o (2)	Oil Density, gm/cc	Gas Formation Volume Factor(3)	Oil/Gas Viscosity Ratio
5000	986	1.479	0.6809		
4500	986	1.486	0.6775		
4000	986	1.495	0.6739		
3500	986	1.503	0.6700		
3000	986	1.512	0.6659		
2500	986	1.522	0.6615		
<u>2375</u> P _b	986	1.525	0.6604		
2100	881	1.478	0.6696	0.00628	24.84
1850	794	1.438	0.6783	0.00729	29.70
1600	711	1.401	0.6871	0.00858	34.51
1350	629	1.364	0.6964	0.01043	40.42
1100	547	1.327	0.7060	0.01308	47.90
850	465	1.291	0.7158	0.01731	56.98
600	382	1.254	0.7258	0.02502	68.11
350	295	1.215	0.7362	0.04338	82.89
171	220	1.178	0.7465	0.08718	99.13
97	177	1.153	0.7531	0.14612	114.04

Separator Conditions:

Primary Separator

Stock Tank

410 psig at 45°F 0 psig at 68°F

Standard conditions = 15.025 psia and 60°F

⁽¹⁾ Standard cubic feet of gas per barrel of stock tank liquid at 60°F.

⁽²⁾ Barrels of oil per barrel of stock tank liquid at 60°F.

⁽³⁾ Cubic feet of gas at indicated pressure per standard cubic foot.

Page 15 of 16 File RFL 900381 Well Pardue Farm No. 1

DIFFERENTIAL VAPORIZATION AT 115°F ADJUSTED TO SEPARATOR CONDITIONS

Pressure, psig	Gas/Oil Ratio, R _s (1)	Formation Volume Factor, B _o (2)	Oil Density, gm/cc	Gas Formation Volume Factor(3)	Oil/Gas Viscosity Ratio
5000	958	1.455	0.6809		
4500	958	1.462	0.6775		
4000	958	1.470	0.6739		
3500	958	1.479	0.6700		
3000	958	1.488	0.6659		
2500	958	1.497	0.6615		
2375 P _b	958	1.500	0.6604		
2100	855	1.454	0.6696	0.00628	24.84
1850	769	1.414	0.6783	0.00729	29.70
1600	688	1.378	0.6871	0.00858	34.51
1350	607	1.342	0.6964	0.01043	40.42
1100	526	1.305	0.7060	0.01308	47.90
850	446	1.270	0.7158	0.01731	56.98
600	364	1.233	0.7258	0.02502	68.11
350	278	1.195	0.7362	0.04338	82.89
171	205	1.159	0.7465	0.08718	98.13
97	162	1.134	0.7531	0.14612	114.04

Separator Conditions:

Primary Separator Stock Tank

110 psig at 67°F 0 psig at 69°F

Standard conditions = 15.025 psia and 60°F

- (1) Standard public feet of gas per barrel of stock tank liquid at 60 F.
- (2) Barrels of oil per barrel of stock tank liquid at $60^{\circ}F$.
- (i) Cubic feet of gas at indicated pressure per standard cubic foot.

Page 16 of 16

File RFL 900381

Well Pardue Farm No. 1

NOMENCLATURE AND EQUATIONS

Symbols .

B_o Barrels at reservoir conditions per barrel of stock tank oil.

B_{od} Relative oil volume from differential vaporization test.

 B_{odb} B_{od} at bubblepoint pressure.

B_{ofb} Formation volume factor from separator test.

B_t Total (two-phase) formation volume factor.

 $B_{\rm td}$ Total formation volume factor from differential vaporization test.

P_{res} Reservoir pressure.

P_b Bubblepoint pressure.

R_s Standard cubic feet of gas per barrel of stock tank oil.

 $R_{\rm sd}$ Solution gas/oil ratio from differential vaporization test.

 R_{sdb} R_{sd} at bubblepoint pressure.

 R_{sfb} Sum of separator and stock tank gas/oil ratios from separator

test.

RV Relative volume from pressure-volume test.

Equations

For B_o at and above the bubblepoint pressure: $B_o = (RV)(B_{ofb})$

For B_o below the bubblepoint pressure: $B_o = (B_{od})(B_{ofb}/B_{odb})$

For R_s : $R_s = R_{sfb} - [(R_{sdb} - R_{sd})(B_{ofb}/B_{odb})]$

For B_t : $B_t = (B_{td})(B_{ofb}/B_{odb})$