1	STATE OF NEW MEXICO ENERGY AND MINERALS DEPARTMENT OIL CONSERVATION DIVISION					
3	STATE LAND OFFICE BUILDING SANTA FE, NEW MEXICO					
4		23 April 1985				
5	COMMISSION HEARING					
6						
7						
8	IN THE M.	ATTER OF:	bu the Oil Correr	CACE		
9			by the Oil Conser- CASE n its own motion to 8224 and areal extent			
10		of aquifers potenti	ally vulnerable to			
11	contamination by the surface disposition of water produced in conjunction with the production of oil and gas in McKinley,					
12	Rio Arriba, Sandova Counties, New Mexic		1 and San Juan			
13	BEFORE:	Richard L. Stamets, Commissioner Ed Kel				
14		and an e o d t d	M OF HEADING			
15		TRANSCRIP	T OF HEARING			
16		APPEA	RANCES			
17						
18						
19			Name M. Distan			
20	For the Oil Conservation Division:		Marx M. Elmer Attorney at Law Energy and Minerals Department			
21			Santa Fe, New Mexico 87			
22						
23	For the Water Study Committee:		Jeff Taylor Attorney at Law Legal Counsel to the Division State Land Office Bldg.			
24						
25			Santa Fe, New Mexico 87	501		

1		2		
2	АРРЕА	RANCES		
3	For Giant Industries and Meridian Oil, Inc.:	W. Perry Pearce Attorney at Law MONTGOMERY & ANDREWS P. O. Box 2307		
4	Mellulan oll, inc			
5		Santa Fe, New Mexico 87504-2307		
6	For Tenneco and Four Corners Gas Producers,	W. Thomas Kellahin Attorney at Law		
7	Inc.	KELLAHIN & KELLAHIN P. O. Box 2265		
8	For EID:	Santa Fe, New Mexico 87501 Jennifer J. Pruett		
9		Attorney at Law P. O. Box 968		
10		Santa Fe, New Mexico 87504-0968		
11	For ARCO, AMOCO, Northwest Pipeline and	William F. Carr Attorney at Law		
12	Union Texas:	CAMPBELL & BLACK P. A. P. O. Box 2208		
13	For BCO, Inc.:	Santa Fe, New Mexico 87501 Ernest L. Padilla		
14	roi beo, me	Attorney at Law P. O. Box 2523		
15		Santa Fe, New Mexico 87501		
16				
17				
18				
19				
20				
21				
22				
23				
24				
25				

I

1		3
2		
3	INDEX	
4		
5	A. R. KENDRICK	
6	Direct Examination by Mr. Kellahin	6
7	Questions by Mr. Chavez	39
	Cross Examination by Mr. Taylor	47
8	Questions by Mr. Chavez	52
9	Cross Examination by Ms. Pruett	55
10	Cross Examination by Mr. Stamets	63
11	Redirect Examination by Mr. Kellahin	65
12	Recross Examination by Ms. Pruett	67
13	Cross Examination by Mr. Elmer	69
14	Cross Examination by Mr. Pearce	72
	Questions by Mr. Chavez	74
15		
16	RANDALL T. HICKS (Recalled)	
17	Cross Examination by Mr. Elmer	76
18	Recross Examination by Mr. Taylor	79
19	Recross Examination by Ms. Pruett	84
20	Redirect Examination by Mr. Kellahin	87
21		
22	DAVID BOYER	
23	Redirect Examination by Mr. Taylor	92
24		
25		

1		
1		
2		4
3		
4	INDEX CONT'D	
5	Decree Durningtion by Mr. Kallship	100
6	Recross Examination by Mr. Kellahin Recross Examination by Ms. Pruett	108 126
7	Questions by Mr. Chavez	133
8	Cross Examination by Mr. Carr	136
-		141
9	Cross Examination by Mr. Pearce	
10	Recross Examination by Mr. Stamets	
11	Cross Examination by Mr. Elmer	156
12		
13	ALBERTO ALEJANDRO GUTIERREZ	
	Direct Examination by Mr. Kellahin	158
14	Cross Examination by Ms. Pruett	186
15	Cross Examination by Mr. Taylor	196
16	Cross Examination by Mr. Stamets	214
17	Cross Examination by Mr. Elmer	216
18		
19	STATEMENT BY MR. GUTIERREZ	218
	STATEMENT BY MR. PEARCE	220
20	STATEMENT BY MR. CARR	225
21	STATEMENT BY MR. KELLAHIN	229
22	STATEMENT BY MS. PRUETT	236
23	STATEMENT BY MR. TAYLOR	236
24		
25		

		·
1		5
2		
3	EXHIBITS	
4		
5	Kendrick Exhibit One, Quadrangle	9
	Kendrick Exhibit Two, Plate I	11
6	Kendrick Exhibit Three, History	13
7	Kendrick Exhibit Four, Tabulation	14
8	Kendrick Exhibit Five, Correspondence	16
9	Kendrick Exhibit Six, Memorandum	19
10	Kendrick Exhibit Seven, Plat	20
11	Kendrick Exhibit Eight, Letters	21
12	Kendrick Exhibit Nine, Plat	22
1	Kendrick Exhibit Ten, Costs	29
13	Kendrick Exhibit Eleven, Alternate Solution	34
14	Kendrick Exhibit Twelve, Conclusions	38
15	Kendrick Exhibit Thirteen, Schematic	30
16		
17	Division Exhibit Eighteen, Aquifer Simulation	87
18		
19	Tenneco Exhibit Five, Computer Report	164
20		
21		
22		
23		
24		
25		

1 6 2 3 (Thereafter at the hour of 8:30 o'clock a.m. 4 on the 23rd day of April, 1985, the hearing was reconvened at which time the following 5 proceedings were had, to-wit:) 6 7 MR. STAMETS: The hearing will 8 please come to order. 9 Mr. Kellahin, do you have any 10 further witnesses? 11 MR. KELLAHIN: Yes, Mr. Chair-12 man, at this time we'll call Mr. Al Kendrick. Mr. Chairman, Mr. Kendrick's 13 exhibits are marked One through Thirteen. The original 14 marked set has been placed before you. Copies have circu-15 lated to all counsel, I believe. 16 I have got two sets left is 17 anyone cares to share those. 18 19 A. R. KENDRICK, 20 being called as a witness and being duly sworn upon his oath, testified as follows, to-wit: 21 22 DIRECT EXAMINATION 23 BY MR. KELLAHIN: 24 0 Mr. Kendrick, for the record would you 25 please state your name and occupation?

1 7 2 A. R. Kendrick, petroleum consultant. Α Mr. Kendrick, would you describe for the Q 3 your educational background in the field of oil record and 4 gas engineering? 5 Graduated from Texas Tech with a Bachelor Α 6 of Science in petroleum engineering with a geology minor. 7 0 In what year was that, sir? 8 1951. Α 9 0 Subsequent to graduation in 1951 would 10 you describe for us what has been your work experience in the field of oil and gas petroleum engineering? 11 After graduation and until July the lst Α 12 1955 I worked as a mudlogging engineer for a consulting of 13 firm out of Ft. Worth. 14 July the 1st, 1955, I went to work for 15 the State of New Mexico in the Oil Conservation Division Of-16 fice in Aztec as the District Engineer. 17 0 I'm sorry, what was that date again? 18 July 1, 1955. Α 19 0 Thank you. What period of time were you the District Supervisor for the Oil Conservation Division in 20 Aztec, commencing in '55? 21 Α I was not supervisor in 1955; was the en-22 gineer in 1955. 23 I was promoted to Supervisor in 1975 and 24 retired at the end of January, 1980. 25 Would you describe for the record briefly 0

1 8 2 what your duties were at the Oil Conservation Division Office in Aztec? 3 To help to supervise the development А of 4 the rules and regulations and to see that the operating com-5 panies abided by those rules and regulations. 6 Subsequent to retiring from the Oil Con-Q 7 servation Division, Mr. Kendrick, have you continued to be 8 employed in some capacity in the oil and gas industry in the 9 San Juan Basin? 10 Yes, sir. I've been consulting for a Δ number of companies in the San Juan Basin. 11 Q You're appearing today on behalf of what 12 company or what organization, Mr. Kendrick? 13 Four Corners Gas Producers Association. А 14 It's a composition of more than sixty of the smaller produc-15 ing individuals or companies in the San Juan Basin. 16 With regards to your employment by that 0 17 association, Mr. Kendrick, have you made a study of certain 18 of the issues with regards to the disposal of produced water into unlined surface pits in the vulnerable area of the San 19 Juan Basin? 20 Yes, sir. Α 21 MR. KELLAHIN: Mr. Chairman, we 22 tender at this time Mr. Al Kendrick as an expert petroleum 23 engineer. 24 MR. STAMETS: He is considered 25 qualified.

1 Q. 2 0 Mr. Kendrick, I'd like to direct your atfirst of all to the issue that has been discussed tention 3 here on various occasions during the course of this hearing 4 about the potential for the Manana Mary Wheeler Gas Well in 5 the Flora Vista area of the San Juan Basin to be a potential 6 source of hydrocarbon contamination to the groundwater in 7 that area. 8 With regards to that issue, sir, have you 9 made study of the facts as you have found them for this а 10 well? Yes, sir. A 11 0 Let me direct your attention to what is 12 marked as your Exhibit Number One, sir, and have you ident-13 ify that for us. 14 Exhibit Number One is a portion of A the 15 USGS Quadrangle for Flora Vista, New Mexico. The scale is 16 about two inches per mile. The squares on there represent 17 sections and from left to right I have identified the fol-18 lowing points by color code. Identified toward the left is a black dot 19 in the southeast quarter of Section 29. 20 That's on the far left bottom corner 0 of 21 the plat, is a black dot? 22 Yes, sir. Α 23 All right, sir, and that represents what? 0 24 Α That represents the B.M.N.S. Wyper No. 1 25 Well.

1 10 All right, sir, what type of well 2 Q is that? 3 That was a Farmington oil well. Α 4 0 All right, sir, and then as we move from 5 left to right on the plat? 6 Ă The green dot represents the J. Glenn 7 Turner Osborn No. 1 Well in the southwest guarter of Section 8 22. 9 And what kind of well are we looking 0 at there? 10 The Osborn No. 1 Well was the discovery Α 11 well in the Flora Vista Meseaverde Pool. 12 It's a Mesaverde gas well. 13 Q And as we continue from left to right on 14 the plat we see an area that's identified by a blue shaded 15 area and --16 Α The last --17 0 -- a blue well dot. 18 А That blue area represents the area where the Flora Vista Water Users Association have their water 19 wells. 20 All right, sir, and what is the blue dot? Q 21 The dark blue dot represents one of A the 22 water wells that casing is capped in that area. 23 All right, sir, and the red dot? 0 24 The red dot represents the Manana Α Gas 25 Company Mary Wheeler No. 1-E Well --

1 11 2 Q Okay. A -- in the southwest quarter of Section 3 23. 4 And then finally the yellow dot. 0 5 А The yellow dot represents the Monsanto 6 Chemical Company NWP Unit Well No. 1. 7 And what kind of well is that? 0 8 Α That was a Dakota-Mesaverde dual com-9 pleted gas well, which has now been plugged. 10 MR. STAMETS: Mr. Kellahin, I'm not sure that I've got the yellow dot on mine. What's the 11 location? 12 Southwest quarter of Section 23. A 13 MR. KELLAHIN: Yes, sir. 14 MR. STAMETS: We should have a 15 total of five colored wells on there? 16 A Yes, sir. 17 0 What's the purpose of this exhibit, Mr. 18 Kendrick? 19 This is to show the concentration of the Α area and I wish to make some remarks about each of these 20 items in my testimony. 21 0 All right. Let's turn to Exhibit Number 22 Two, if you please, and have you identify and describe that 23 exhibit. 24 Α Exhibit Number Two is a portion of Plate 25 from the USGS Professional Paper 676 by James E. Fassett Ι

1 12 Hinds. That paper is entitled "Geology and Fuel 2 and Jim S. Resources of the Fruitland Formation and Kirtland Shale of 3 the San Juan Basin, New Mexico and Colorado." 4 squares on this plat represent town-The 5 Township 30 North, Range 12 West, which is the area ships. 6 of interest in my testimony, is located between Farmington 7 and Aztec. 8 The Ojo Alamo outcrop shown on this map 9 is designated by the symbol Toa and is shown as a cross 10 hatched or diagonally striped pattern in the southwest portion of Township 30 North, Range 12 West. 11 bluff, or steeply dipping formation The 12 on the south side of the Animas River in the northeast quar-13 ter of Section 27 and the northwest quarter of Section 26, 14 shown on Exhibit One, is a bluff and that is the Ojo Alamo 15 sandstone bluff on the south edge of the San Juan River. 16 Water from this Ojo Alamo formation is 17 identified in the publications as containing sulfates to the 18 south and west of Farmington. 19 The Ojo Alamo outcrops on the west and south and east edges of the San Juan Basin. It does not 20 outcrop on the north edge of the Basin, so that the low 21 points in the Ojo Alamo outcrop are along the Animas and San 22 Juan River Valleys. Any percolation into the Ojo Alamo for-23 mation can only flush that portion that's higher than the 24 outcrops in those valleys because there is no outlet to the 25 The further north we go, the worse the water quality north.

1 13 2 in the Ojo Alamo formation. 0 For purposes of identifying the Manana 3 Mary Wheeler Well in relation to the Flora Vista water wells 4 in this area, what significance is the information contained 5 on Exhibit Number Two and what opinion do you draw from this 6 information? 7 Ojo Alamo outcrops and A The possibly 8 underneath the vallley fill where the Mary Wheeler exists 9 No. 1-E Well is drilled. 10 What is the significance to an operator 0 11 in terms of drilling a well such as such as Manana the Manana gas well through this Farmington sandstone deposit? 12 А The Farmington Sandstone would be in the 13 Kirtland Shale immediately below the Ojo Alamo and penetra-14 tion into the Kirtland Shale would subject the driller's 15 drilling into the Farmington Sandstone in this proximity. 16 The Farmington Sandstones are lenses or 17 sand bars in a deltaic type deposit and possibly contain 18 oil, gas, water, or any combination or nothing. 19 So any penetration below the Ojo Alamo formation might subject the driller of encountering the Far-20 mington Sandstone. 21 0 All right, sir, let's turn to Exhibit 22 Number Three, Kendrick, and have you identify and de-Mr. 23 scribe this exhibit. 24 Α Exhibit Number Three is a history of the 25 Farmington Oil Pool as presented in the Four Corners Wyper

1 14 Geological Society publication, Oil and Gas Fields of the 2 Four Corners Area - Volume III. 3 This oil well was identified on Exhibit 4 One with the black dot in the southwest guarter -- excuse 5 me, southeast quarter of Section 29. 6 This oil well was not a prolific pro-7 ducer, however, it was located about one mile south and 8 three miles west of the Flora Vista Water Users Associa-9 tion's water wells. This is the well that's identified on Ex-0 10 hibit Number One as the black dot. 11 Yes, sir. Α 12 All right, sir. 0 13 The significance of the outcrop map shown A 14 on Exhibit Two and of this history is to show that the Far-15 mington Sandstone does exist in this proximity. 16 0 All right, sir, let's go to Exhibit Num-17 ber Four. 18 А Exhibit Number Four is the tabulation of information I know from my own knowledge from having been 19 associated with the J. Glenn Turner Osborn No. 1 being dril-20 led in 1961. It's identified by the green dot in the south-21 west quarter of Section 22. It's about one mile west of the 22 Flora Vista Water Users' wells. 23 While the drilling contractor was out of 24 the hole to change bits, this well experienced a blowout 25 during the drilling operations. The total depth of the well

1 15 2 that time was into the Mesaverde formation and thus at the Flora Vista Mesaverde Gas Pool was discovered. 3 After the blowout was under control I 4 visited with the gentleman named McCoy, who lived in the 5 northeast guarter of Section 28. 6 When was this, Mr. Kendrick? 0 7 In 1961. Α 8 And at that point why would you visit that Õ 9 site? What was your employment? 10 I was with the Oil Conservation Division А and was investigating some reports of gas blowouts in the 11 area during the time that the well had blown out. 12 Q With regards to this well and the report 13 of a blowout, what did your investigation show you? 14 Α When I talked with Mr. McCoy he told me 15 that the cold weather had caused the frost crust on the 16 earth and the gas that broke through to the surface would 17 raise up bubbles of the sod to elevations that he depicted 18 be 1-1/2 to 2 feet above the normal level of the to swampy 19 area where his pasture was, and this frozen sod would rupture and the gas would vent to the atmosphere. 20 So that gas did break to the surface from 21 this gas blowout and could possibly have contaminated sev-22 eral water sands or, excuse me, gravel, river gravels or 23 in the river valley and left some entrapped sandbars gas 24 could possibly have lead to gas being present at that the 25 Flora Vista water wells.

1 16 2 0 Did you visit the site of the McCov Ranch and see indications of gas breaking through the surface? 3 Ά I did not see the indications of gas 4 breaking through the surface because the crisis had ended at 5 the time that I was there. 6 0 Did you make an investigation to deter-7 mine the extent at which the gas migrated in the shallow 8 soil areas beyond this immediate vicinity? 9 sir. The crisis had ended and the А NO. 10 valley did not become ignited that night so I didn't pursue it further. 11 0 You said the crisis was ended. How was 12 the difficulty remedied or how was accident prevented at 13 this well? 14 The blowout was brought under control and A 15 the source of the gas ceased and therefore the blowout in 16 the area had ceased. 17 \mathbf{O} What conclusion do you draw, Mr. Ken-18 drick, from the information that you have compiled in terms 19 of this incident at the Osborn Well? Α That this is a possible source for 20 natural gas that might have occurred at the Flora Vista 21 water well. 22 All right, sir. Let's direct your atten-0 23 tion now to Exhibit Number Five. 24 А Exhibit Number Five is a four-page exhi-25 bit. relates to the Monsanto Chemical Company NWP Unit It

1 17 Well No. 1, located in the southwest guarter of Section 23 2 and identified by the orange dot on Exhibit One. 3 This information consists of correspond- \cap 4 ence between you and what operator or individuals? 5 A I corresponded with Mr. J. T. Reagan of 6 the Monsanto Chemical Company in 1961 directing him to cause 7 a pit to be lined for the disposal of 50 to 100 barrels of 8 produced water per day, because this well was adjacent to 9 the Animas River and this was the only way to protect the 10 quality of water in the Animas River, was to require that that pit be lined. 11 We're looking now for Exhibit Number Five Q 12 at the well dot on Exhibit One that's identified with a yel-13 low dot? 14 А Yes. 15 While you were involved with the Oil Con-0 16 servation Division in Aztec, Mr. Kendrick, would you de-17 scribe for us what was the practice and policy of the Dis-18 trict with regards to potential groundwater contamnation by oil and gas operations? 19 Α Our policy at that time and prior to that 20 time was to attempt to protect the water from any contamina-21 tion from any source created by the oil industry. 22 What is the significance for this hearing 0 23 of the information contained on Exhibit Number Five and the 24 correspondence between you on behalf of the Division and 25 Monsanto Chemical Company?

1 18 A The first two pages of this letter 2 exchange is to show we were interested in protecting the qual-3 ity of the water in the river by requiring a lined pit to 4 contain the produced salt water. 5 0 Why had you reached the conclusion that 6 it was necessary to protect the groundwater from the pro-7 duced water from this well? 8 A By an oral conversation with Mr. Reagan 9 the water had the quality of about 80,000 parts that per 10 million total solids. All right, sir, and what action was taken 0 11 with regards to this well? 12 This well produced for А several more 13 in about 1976 there is the last two pages of years. Then 14 exhibit shows that an exchange of information between this 15 me and the operator of the well. 16 Charles Gholson, who is the field man for 17 the District advised me that the well was producing in 18 surges through an opening in the wellhead, which meant that the well had been temporarily abandoned but the well flowing 19 gas in surges indicated the possibility of water in the 20 wellbore. 21 So I wrote the operator and asked them to 22 either repair the well or plug it. 23 The last page of the report is the subse-24 quent report of plugging, so they did abandon the well and 25 plug it to prevent casing failure or further contamination,

1 19 2 if any existed. In terms of the relationship of this Mon-0 3 santo well to the Flora Vista water wells, is there any sig-4 nificance to draw from the relationship? 5 The Monsanto Well was upstream about some А 6 1700 feet from the -- from the Manana Gas Mary Wheeler No. 7 1-E Well. If there were a casing failure in the Monsanto 8 Chemical Well to cause it to fail to produce or to cease to 9 produce, a casing leak in this well could have charged the 10 river sands or provided a source of contamination for the ---Flora Vista water well. 11 All right, sir, let me direct your atten-0 12 tion to Exhibit Number Six, Mr. Kendrick, and have you iden-13 tify this exhibit. 14 Exhibit Number Six is a memorandum I re-Α 15 cently picked up in Frank Chavez' office. 16 This memorandum was issued February the 17 13th, 1961, and it's entitled "Stream Contamination." 18 This memorandum was issued within a month of the blowout of the Osborn Well but it did not mention 19 blowouts. It mentioned produced oil, excuse me, this men-20 tions drilling fluids and cautioned the operating company to 21 see that the drilling contractors confine their drilling 22 fluids to prevent water contamination. 23 At about the same time this memorandum 24 was issued our office was in the policy of having our summer 25 help to cruise the river valley areas to insure that all the

1 20 tanks had firewalls around them to contain any spills 2 and keep the spills from reaching the irrigation canals or the 3 rivers. 4 Let me direct your attention now, Ö Mr. 5 Kendrick, to your Exhibit Number Seven. 6 A Exhibit Number Seven is an enlargement of 7 the southwest guarter of Section 23, as shown on Exhibit 8 One. I drew this by hand and tried to scale this up to give 9 little more clarification of the area in the Flora Vista a Water Users water well area to let us look at that situation 10 a little closer. 11 0 All right, sir, would you orient us to 12 the plat attached to Exhibit Number Seven and again identify 13 for us what is indicated by each of the color coded dots? 14 A The color code is the same as on Exhibit 15 One. 16 The yellow in the northeast quarter o£ 17 this plat is the Monsanto Well. 18 The red dot is the Mary Wheeler Well. light blue dots reflect the Flora The 19 Vista Water Users' water wells. 20 And the dark blue dot reflects the capped 21 well at Flora Vista. 22 Have you made an investigation and study 0 23 of the circumstances surrounding the drilling of the Mary 24 Wheeler Well? 25 Yes, sir. A

1 21 2 0 Would you turn now to Exhibit Number Eight? 3 A Exhibit Number Eight relates to the Mary 4 Wheeler No. 1-E Well. It's located 892 feet from the south 5 line and 624 feet from the west line of Section 23. 6 It was spud January the 28th, 1980. 7 have attached letters from Mr. Curtis ĩ 8 J. Little and Mr. Ed Hartman that indicate that natural gas 9 was present during the drilling of this well before surface 10 casing was set at 225 feet. This indicates to me that natural gas was 11 present in the river valley fill before the gas well was 12 spud. In my opinion the alluvium was charged before the gas 13 well was spud. 14 I might quote from Mr. Little's letter, a 15 quote he has from his daily drilling report, which said, 16 show of gas outside casing. Stopped when cement circulated. 17 Pressure tested 500 pounds okay. 18 0 With regards to your investigation of the circumstances surrounding the Flora Vista water wells 19 and Manana gas well, have you made an attempt to determine the 20 the relative location of the various Flora Vista water wells 21 to the Manana gas well. 22 А Yes, sir. 23 Q Let's turn your attention now, sir, to 24 Exhibit Number Nine and to the plat that's attached the to 25 Exhibit Number Nine.

1 22 2 Α The plat is not attached to Exhibit Number Nine but in most cases it was submitted with the 3 packet of --4 First of all, start with --0 5 -- information. А 6 -- the plat and identify it so that 0 we 7 know what you're looking at when you start discussing it. 8 If you'll start, sir, in the upper right-9 hand corner where it says "Mary Wheeler 1-E", that is the 10 location of the Manana Mary Wheeler Gas Well? Ά That is the approximate location of 11 the gas well. 12 0 All right, sir, and the pit is what pit? 13 А Represents the green fiberglass pit in 14 the fenced area at the separators on the Mary Wheeler 1-E15 location. 16 And as we move to the south and west 0 17 would you identify for us a line above which is written the 18 numbers 112, and as we move to the southwest begin to identify for us what the significance is of the dots? 19 А The black line that runs from the south 20 corner of the pit to the southwest was started on the south-21 westernmost end. 22 I was curious about the footages between 23 some of the wells and drove down through there and the road-24 way drives past the black dot in the center of the page with 25 a "W" under it and some slash marks through the dot. That's

1 23 the abandoned water well of the Flora Vista Water Well Users 2 Group, or excuse me, the contaminated well. 3 roadway proceeds rather straight The to 4 and I went on down to where I thought I was the southwest 5 even with the black dot in the lower lefthand corner with a 6 "W" under it. That is a producing water well for the Flora 7 Vista Water Users Association. 8 It was producing on March the 27th when had a field inspection up there. It was producing last 9 we week when I was there. 10 I assumed I had turned a right angle cor-11 from that road and I measured a distance shown ner as 48 12 feet below that line. That's the distance from my position 13 at the edge of the road to the water well. 14 I then measured 49 feet from wellbore to 15 wellbore from the capped well to that water well. 16 Then I went back to the road --17 Q Identify the capped well for us now 50 we're not lost. 18 A All right, the capped well is the black 19 northeast of the producing water well dot to the in the 20 lower lefthand corner of the plat. The capped well is the 21 dot with the plus sign through it. 22 That is a capped water well? 0 23 Å Yes, that is a capped well drilled by the 24 Flora Vista Water Users Association. 25 I went back to the roadway and with a

1 24 2 steel tape measured along the roadway and at the point each I thought I was about at right angles to a point 3 time of interest I marked the ground and measured between those so ₫ that 50 feet from the starting point I thought I was even 5 with the capped water well. I measured 54 feet back to the 6 water well and then 41 feet further on I was even with Mr. 7 Boyer's Monitor Well No. 2, which was about 21 feet from the 8 edge of the roadway. 9 68 feet further up the roadway, about 23 10 feet off to the side was Mr. Boyer's Monitor Well No. 1. 11 Then about 122 feet up to the abandoned well. 27 feet further northeast and then turn back to the 12 northwest about 35 feet to Mr. Boyer's Monitor Well No. 3. 13 83 feet further I turned to the right 27 14 feet to Mr. Boyer's Well No. 5 and then about 112 feet more 15 to the pit. 16 did not attempt to measure I to Mr. 17 Boyer's Well No. 4 because it was out through some vegeta-18 tion and I could not determine its exact location. 19 When I plotted these from these numbers and drew the line from the water well in the lower lefthand 20 corner to the water well that has been contaminated, that is 21 the red line along there. 22 I want to make sure I know which one 0 ís 23 the water well that has evidence of contamination. 24 It's the one in the center of the А page 25 with the "W" and the slashed line from top to bottom through

1 25 2 the well. All right, sir, have you examined Q the 3 at that location where the contaminated water surface well 4 is? 5 A Yes. sir. The contaminated water well 6 has a concrete slab poured around it. After they abandoned 7 the well they did not put a cap on the well or cover it. 8 It's standing with the casing open. 9 Can you see the casing? 0 10 Α Yes, sir, the casing protrudes about six inches above the concrete. 11 Q Have you made a visual inspection of the 12 casing? 13 Α Yes, sir. I was quite surprised last 14 week when I looked in the hole to estimate the depth to the 15 water, when I noticed there is a hole in the side of that 16 casing about four feet down that's at least four feet -- ex-17 cuse me, at least four inches in diameter in the southwest 18 wall of that casing. I was kind of surprised to find a perfor-19 ation that shallow in a water well when the water level was 20 so much lower than that. 21 0 And could you make an approximation of 22 the water level in that well? 23 А The depth to water in the well was be-24 tween four and five feet. 25 upon your study of this 0 Based informa-

1 26 2 tion, Mr. Kendrick, can you give us the sequence or the chronology in which these various wells were drilled? 3 I talked to Richard Thurston of the Flora A 4 Vista Water Users Association and I talked to Frank Chavez 5 about this capped well. 6 Thurston told me that that was Mr. the 7 first well that the Flora Vista Water Users Association 8 Group drilled in that area. 9 Which one, the contaminated --0 10 No, sir, the --Α -- water well? Q 11 -- capped well down in the lower lefthand A 12 corner with the plus sign through it. 13 Ο All right, that's the first one drilled. 14 What's the next one drilled? 15 Α I'm not sure what the sequence of their 16 other wells were. 17 0 All right. 18 But this well was drilled to a depth of А 23 feet and abandoned because they had drilled into gooey 19 clay and stinking water, according to Mr. Thurston. 20 MS. PRUETT: Excuse me. Mr. 21 Chairman, I'm going to have to make a hearsay objection to 22 Thurston isn't here and we can't cross examine Mr. that. 23 him as to what exactly was found or why they capped that. 24 It seems to me the witness is 25 not entirely of what the dates of sequences are and not (not

1 27 2 understood). MR. KELLAHIN: I make my same 3 response to that objection as I did yesterday, Mr. Chairman. 4 MR. STAMETS: I think we'll al-5 low the witness to continue to answer these questions. If 6 the answer becomes critical we could always ask for a sworn 7 statement from Mr. Thurston. 8 In any event, we'll take the 9 evidence for what it's worth. 10 The information that you have derived 0 from Mr. Thurston is the capped water well was the first one 11 12 Yes, sir. A 13 0 -- drilled? 14 Yes, sir. Α 15 0 And that well was not placed on 16 production because it was contaminated? 17 Α They elected not to use it because they 18 drilled into gooey clay and stinking water. 19 0 All right. What is the next well drilled? 20 A I'm not sure of the sequence of other 21 water wells drilled by the Flora Vista Water Users 22 Association. 23 But prior to the time the Manana gas well 24 spud there were three Flora Vista water wells, three was 25 wells had been drilled before the gas well had been spud.

28 1 Kendrick, if the capped water well, 0 Mr. 2 the first one drilled, encounters gooey clay and stinking 3 and if that well is drilled prior to the Manana Mary water, 4 Wheeler gas well, can you draw any conclusions from that se-5 quence of events? 6 I can draw the conclusion that the Mary Δ 7 Wheeler definitely did not contaminate the well that was 8 that the water users people elected not to use, the one they welded the cap on. 9 Upon what basis do you reach that opin-0 10 ion? 11 It was drilled before the other well was Α 12 drilled and they abandoned it before the other well was 13 drilled. 14 0 Let me direct your attention, Mr. Ken-15 drick. to what your opinion is with regards to the reason-16 able probability that the use of the unlined surface pits by 17 the Manana Mary Wheeler Well would be the most likely source of contamination of the Flora Vista wells, based upon what 18 you've studied and learned. 19 The first report that I heard orally of Α 20 the contamination of one of the Flora Vista Water Users As-21 sociation's wells was that it had natural gas in it. 22 Then I learned that it was contaminated 23 by the pit, and as I remember from all my training in the 24 is lighter than air and air petroleum business, gas is 25 lighter than water, and if you pour gas and water in a pit,

1 29 2 the gas is going to go up. It's not going to burrow back into the ground and get itself pressurized enough to go into 3 the water. 4 So I don't believe that the contamination 5 of the water well was done by the pit at the Mary Wheeler 6 Well. 7 Q Let me turn your attention now, Mr. Ken-8 drick, to Exhibit Number Ten and from the perspective of you 9 as a consultant for the Four Corners Gas Producers Associa-10 tion, can you describe for us what would be the impact upon 11 your membership of an order issued by the Commission that would ban the use of unlined surface pits for produced water 12 and other ancillary unlined pits in the vulnerable area of 13 San Juan Basin? 14 Α The major companies can absorb some extra 15 cost in the operations of some of their wells by spreading 16 the cost of the average of the wells over some of the wells 17 that won't cover. 18 Small operators cannot do that, especial-19 ly those who only own a few wells. The cost of lining and maintaining 20 pits will reduce the ultimate recovery of natural gas from the 21 San Juan Basin by causing early abandonment from the low 22 volume wells. 23 The ratio of gas and water produced from 24 well does not reflect on the amount of gas left in a the 25 reservoir. The early abandonment of a well can leave a sub-

1 30 stantial amount of gas in the ground because we don't know 2 how much gas is left just because a wellbore is producing 3 water. 4 highest cost of lining the pits The mav 5 not be to the producers. It may be to the ultimate consumer 6 who will lose that amount of gas that's left in the ground 7 and it will not be economical to drill for the gas in the 8 future again. 9 Have you had an opportunity yet, Mr. Ken-0 10 drick, to complete a compilation of the total number of wells that might be impacted that are operated by members of 11 your association in the vulnerable area should the Division 12 ban the use of unlined surface pits? 13 A No, sir. 14 I'd like to skip over Exhibits Eleven and 0 15 Twelve at this moment and go to Exhibit Number Thirteen, 16 which is the schematic of the pit site. 17 Were you present in the earlier hearing 18 Mr. Kendrick, when Mr. Boyer showed a schemain this case, tic of pits in relation to oil and gas wells? 19 Α Yes, sir. 20 I show you what is marked as Exhibit Num-0 21 ber Thirteen and ask you to identify that exhibit. 22 This exhibit is a location plat prepared А 23 by the Tenneco Oil Exploration and Production, identified as 24 a typical gas well installation, San Juan Basin, New Mexico. 25 TAYLOR: MR. Excuse Mr. me,

1 31 2 Chairman, I don't have a copy of that exhibit. MR. KELLAHIN: Neither do I. 3 Let's put it on the --A 4 Ø Kendrick, how many years experience Mr. 5 you had in the oil and gas industry in the San Juan have 6 Basin? 7 A About thirty years. 8 0 And you have seen Mr. Boyer's drawing of 9 wellbore arrangment and the pit arrangements that he pre-10 sented earlier? Yes, sir. Ά 11 You've had an opportunity to review Exhi-Q 12 bit Number Thirteen? 13 Yes, sir. A 14 Would you describe for us which one Q more 15 closely typifies the typical gas well in the San Juan Basin 16 in the vulnerable area? 17 This Exhibit Number Thirteen would more A 18 likely typify a well in the San Juan Basin that produces gas 19 and liquids. 0 In reviewing Mr. Boyer's schematic of the 20 wellbore -- of the well site and the pit arrangements, would 21 you describe for us what he's done in that exhibit? 22 Mr. Boyer's exhibit? Α 23 Yes, sir, in terms of the numbers of pits Q 24 and their arrangements? 25 The exhibit presented by Mr. А Boyer de-

1 32 2 tailed every possible pit that one would encounter on a location; not necessarily required on that location but a type 3 pit for each type that would be designed for a of location 4 and including some of the pipeline pits. 5 0 In your years of experience, Mr. Ken-6 drick. how often would you encounter a well site that had a 7 configuration as shown on Mr. Boyer's schematic? 8 А I think that this would probably typify 9 more than half the wells --10 0 Excuse me, I didn't make myself clear. Ι 11 asked you in terms of Mr. Boyer's schematic for the pit arrangements for that exhibit how often would you encounter a 12 well site that had that kind of -- that volume of pits and 13 that arrangement of pits? 14 Α I've never seen a well that had that many 15 pits. 16 0 In terms of Exhibit Number Thirteen would 17 you describe for us what is the well arrangement and the 18 kinds of wells that that would be typical of? 19 Α This would be typical for most Dakota wells, most Mesaverde wells, some other wells, in that the 20 wellhead is shown to the upper left. It shows the flow line 21 to a separator, the separator pit to the north, or top part 22 of the page, electric line to a tank, a pit beside the tank 23 for the water draw, the gas line from the separator to the 24 dehydrator, discharge line from the dehydrator to the water 25 pit, a gas line from the dehydrator to the meter run.

1 33 A lot of the locations have the tanks 2 SO located so that the tank can be drained into the same pit 3 where the separator discharges, but this configuration would 4 probably match most of the wells, that is more than half of 5 the wells that produce gas and liquids in the San Juan 6 Basin. 7 0 Exhibit Number Thirteen identifies the 8 separator pit as a separator pit. During the course of the 9 hearing we've talked about a produced water pit. Which of 10 the pits indicated on Exhibit Number Thirteen would be the produced water pit? 11 A The separator pit. 12 0 Were you present at the earlier hearing 13 when there was testimony about the Duncan Oil Field and the 14 fact that the oil well, the Duncan Well 6-11, had a separa-15 tor that was buried in the ground? 16 A Yes, sir. 17 How often do you see a separator 0 atan 18 oil well buried below the ground? 19 A Very, very seldom. Q Would that be a typical utilization of 20 the separator and the oil well in the vulnerable area? 21 A No, sir. 22 0 With regards to the arrangement of the 23 pits at the typical gas well installation, Mr. Kendrick, is 24 it -- is it reasonably possible or is it accepted standard 25 practice to attempt to arrange the pits so that you use one

1 34 2 pit at a site as opposed to the three you've depicted here? No, sir. Traditionally the separator and Α 3 dehydrator are separated by a sufficient distance that uti-4 lization of one pit would not be economical. 5 What is the purpose of having the 0 6 multiple pits as opposed to having a single pit? 7 А Because the separators and dehydrators 8 quite often contain fireboxes, it is not adviseable to group 9 equipment around the pit so that one might that be 10 discharging gas in the same -- in a direction towards another unit which contained a firebox, and creating a 11 hazard so that the units have been separated sufficiently 12 far apart in an attempt to prevent any fires on locations. 13 Q Let me direct your attention now, sir, 14 back to Exhibit Number Eleven and to the issue that we have 15 been addressing here at the hearing, and that is whether or 16 not we should continue the use of the unlined pits for 17 volumes of produced water of 5 barrels a day or less. 18 Do you have any opinions with regards to how to write such an order or the factors that ought to 19 qo in such an order, based upon your years of experience not 20 only with the Oil Conservation Division but as a consulting 21 petroleum engineer? 22 sir. I would like to make some Α Yes, 23 points that I think might be utilized in an order requiring 24 the lining of pits. 25 The first item that I would recommend is

1 35 2 to line pits on an individual basis; not line all pits, but to line pits that need to be lined. 3 Require lining for pits for wells that 4 produce an excess of 5 barrels per day or more of water. 5 Allow exceptions when the operator or the 6 the pit demonstrates that the water being owner of dis-7 charged into that pit is below 10,000 parts per million to-8 tal solids. 9 Require lined pits for wells that produce 10 water less than 5 barrels per day that have a total dis-11 solved solids content equivalent to 5 barrels at 10,000 parts per million, or more. 12 This would eliminate a lot of paper work 13 of granting exceptions to a required lining order. It would 14 put the burden of proof on the operator of the well, not on 15 the regulatory agencies. It would tend to give some simpli-16 city to the rules in that the regulatory agency of the state 17 could be with the same, similar rule with the Federal 18 government and thereby simplify the regulations for pits 19 and not cause the operators the concern of trying to determine which set of rules which pit has to qualify under. 20 And if there is ever a question about the 21 volume or quantity or quality of water produced into a pit, 22 ask for a test and witness the test there. 23 Q One of the issues discussed yesterday af-24 ternoon was the possibility of setting up a pit registration 25 mechanism that included having the operators submit various

1 36 2 items of information to the Division. You've had an opportunity to think about 3 that question. Do you care to make any response about the 4 possibility of a pit registration system? 5 One of the remarks we got early on in the A 6 organization of the Water Study Committees and the research 7 we've been doing in the committee meetings was that the reg-8 ulatory agency for the state does not have sufficient per-9 sonnel or funding to go into a big program to regulate the 10 pits. When we start a pit registration situa-11 tion we immediately require people to process the applica-12 tions and thereby causing a load on the staff of the Oil 13 Conservation Division. 14 costs of obtaining samples for The all 15 the water produced at the quality that was asked for yester-16 day would be in the range of several hundred or a thousand 17 dollars per sample to be run. 18 If we go into a pit registration process 19 and we have a pit on the north side of the location and elect to move it to the south side, it's quite possible we'd 20 have to go through the same expense just to move a pit to 21 the other side of the location because of the required loca-22 tion and water analysis problems. 23 I think that the cost to the regulatory 24 agency and to the producers would be more than is warranted. 25 Did you participate on behalf of your as-0

1 37 2 sociation as a member of the short term Water Study Committee? 3 Yes, sir. A 4 Based upon your study and knowledge of 0 5 the San Juan Basin, Mr. Kendrick, have you received informa-6 tion to convince you as an expert that there is a documented 7 case in the San Juan Basin of groundwater contamination by 8 the utilization of unlined surface pits for the disposal of 9 produced water? 10 A No, sir. What conclusions do you reach based upon 11 0 yoru study, Mr. Kendrick? 12 have no evidence to date A Ne that any 13 water well has been contaminated in the San Juan Basin by 14 the improper disposal of produced water after more than for-15 fifty years of production of oil and gas in the ty or San 16 Juan Basin. 17 There has been some conjecture about the 18 contamination at Flora Vista but I don't think that the 19 people that made that charge considered the facts. I've shown some examples of what I think 20 are more realistic reasons for the Flora Vista water wells 21 have been contaminated but as a general rule water to pro-22 duced -- or as the water production of a well increases the 23 gas production decreases and the requirement of lining the 24 will hasten the date of abandonment, thereby leaving pits 25 gas in the ground.

1	38
2	The produced water in the San Juan Basin
3	historically has been of a whole lot better quality than the
4	water produced in the southeast part of New Mexico, where
5	there has been some crisis because of the high total dis-
	solved solids.
6	In the San Juan Basin that is not the
7	the water is not nearly of the poor quality that there is in
8	the southeast and I don't think the restraints in the San
9	Juan Basin should be based on the quality of water produced
10	in the southeastern part of New Mexico.
11	Q Do you have an opinion, Mr. Kendrick, as
12	to what ought to be done about the practice of allowing pro-
13	duced water to be disposed of in unlined surface pits at
14	rates of 5 barrels a day or less?
15	A Yes, sir.
	Q And what is that opinion?
16	A I think that the disposal of water in un-
17	lined pits should be continued until such time as someone
18	can show to us that a problem has been generated.
19	Q Are your comments and conclusions set
20	forth on your Exhibit Number Twelve?
21	A Yes, sir.
22	MR. KELLAHIN: At this time, Mr. Chairman, we move the introduction of Exhibits One
23	Mr. Chairman, we move the introduction of Exhibits One through Thirteen.
24	MR. STAMETS: Without objection
25	the exhibits will be admitted.

1 39 2 Are there questions of this witness? 3 Mr. Chavez. 4 5 QUESTIONS BY MR. CHAVEZ: 6 Kendrick, you've been employed as a Mr. 0 7 consultant in the San Juan Basin since your retirement at 8 the Oil Conservation Division. 9 Were you employed by Manana Gas at the 10 time the Mary Wheeler Well was drilled? Yes, sir. 11 Α Was a fiberglass pit installed there in-Q 12 stalled to prevent water pollution? 13 А Yes, sir. 14 Apparently it's worked according to 0 Mr. 15 Hicks' testimony. 16 I beg your pardon? Α 17 According to Mr. Hicks' testimony pre-0 18 viously would you say that this pit has functioned and prevented pollution from the produced water from the 19 Mary Wheeler No. 1? 20 A Ι don't think I heard that part of Mr. 21 Hicks' testimony that the pit prevented it. 22 Do you think that the pit has prevented 0 23 pollution, the fiberglass pit? 24 Α I'm not sure that the fiberglass pit pre-25 pollution because I don't know the quality of water vented

1 40 2 produced by the well so I don't know whether there was po1lution without the pit. 3 You've been personally on the site of the Q 4 Mary Wheeler No. 1, have you not, sir? 5 A Yes, sir. 6 Is there any petroleum products in that 0 7 fiberglass pit? 8 Yes, sir. А 9 there any other fiberglass pits 0 Are on 10 the Mary Wheeler property? Yes, sir. 11 Ά Q Would you describe them, what they are? 12 There is an abandoned pit sitting just to А 13 the downstream side of the fenced compound around the 11-14 that is an abandoned pit that was used quids tank in the 15 same position as where the present fiberglass lined pit is 16 installed. 17 Is there also a fiberglass pit or tank at 0 18 the tank drain at that location? 19 I'm not sure. Α 0 Are there any other fiberglass pits to 20 knowledge and belief on any other well in the vulneryour 21 able area? 22 I don't recall having seen one. A I don't 23 don't personally know of another fiberglass lined pit -- I 24 in the San Juan Basin. 25 installed I've heard that they've been

1 41 2 but I have not seen another fiberglass lined pit. Well, if I could stimulate your recollec-0 3 in the Cedar Hill area where Amoco has production on tion. 4 the McCoy Well, do recall if fiberglass pits have been in-5 stalled there along the river? 6 А I have not seen them. I don't know of 7 them. 8 0 Mr. Kendrick, has any pit, produced water 9 to your knowledge every introduced any petroleum propit, ducts as in benzene or even crude oil from the pit into the 10 ground, such as in the El Paso Lindsay "A" No. 1 Well along 11 the San Juan River or from any pit in the Cedar Hill area? 12 I don't know of -- about any benzene con-А 13 tamination. I have no equipment to test it. I have no ex-14 perience with that. 15 There was some liquids in a sandbar next 16 to an irrigation canal in the proximity of the Lindsay or 17 Archuleta Well along the San Juan River but I don't know 18 that it came from the pit or whether it came from a tank. 0 What was the distance those products 19 traveled from either the pit or the tank to that sandbar? 20 If it traveled from the tank, it was sit-А 21 ting on the sandbar. The distance would have been two or 22 three feet vertical and maybe as much as 50 feet laterally 23 underneath in the gravel bar. 24 Q And from the pit? 25 A There was no pit as far as I know under

1 42 2 that tank. At that time did you direct the operator 0 3 to take action to prevent the introduction of any more pro-₫ ducts from either the pit or the tank at that site? 5 Α The tank had already been removed from 6 the site so that was not necessary. 7 We did ask the operator of the nearby 8 wells and the pipeline operator, or pipeline company repre-9 sentatives to excavate a canal alongside of the water canal 10 and burn the petroleum product out of the sandbar. Did you ever conduct an investigation in 11 0 the Cedar Hill area where oil traveled from an unlined pit 12 thorugh the ground and was coming into the Animas River? 13 No, sir. А 14 Kendrick, I notice on your 0 Mr. Exhibit 15 Thirteen you don't show a blowdown pit and you said that re-16 presents about half the wells, Basin Dakota and Blanco Mesa-17 verde wells in the San Juan Basin. 18 About how many of those Blanco Mesaverde 19 and Basin Dakota wells have blowdown pits? A I don't recall very many having blowdown 20 Amoco's wells normally have blowdown pits but a lot pits. 21 of El Paso's wells and a lot of other operators do not main-22 tain a blowdown pit. 23 I notice also there's an absence 0 of a 24 drip pot beneath the meter run. Do you have some type of 25 figure as to how many meter runs have drip pots?

1 43 2 The information I have from the pipeline A companies is that if you install a separator, you being an 3 operator, if the operator installs a separator they do not Δ install a drip. 5 If the operator does not install a separ-6 ator, then they in self protection install a drip. 7 So therefore those Pictured Cliffs loca-0 8 tions that Mr. Hicks mentioned that do not have separators 9 would have a drip pot, is that correct? 10 Ã For the most part, yes. С Mr. Kendrick, in your examination of pro-11 duced water pits, what percentage of them had oil products 12 flowing on them or not? 13 Α In the Blanco Mesaverde Pool I would say 14 that most of the wells south and west of the axis of the 15 basin would have some amount from a trace to a full cover on 16 top of the water in the pit. 17 For those north and east of the axis of 18 the San Juan Basin, I would not expect any liquid petroleum 19 on the pit. the Basin Dakota Pool it varies with For 20 each location so that possibly half of the wells to three-21 quarters of the wells would have some amount of petroleum on 22 the pit, from a little to a lot. 23 0 Mr. Kendrick, in listening to the pre-24 vious testimony and from your own study you came to the con-25 clusion that a casing leak in the Monsanto Well could have

1 44 2 been a possible source of contamination at the Flora Vista site. 3 Would you conclude that perhaps there was 4 little degradation of petroleum products during -- in the 5 distance from the Monsanto Well to the Flora Vista Well? 6 If the well produced into a sandbar and Α 7 overwhelmed the bacteria and was trapped into a buried sand-8 bar, it's possible that there would have been little degra-9 dation for that 1700 feet of lateral movement. 10 Mr. Kendrick, was there ever any gas present in any of the water wells that were drilled, to your 11 recollection, in your talks with Mr. Thurston? 12 I did not inquire of him if natural gas Α 13 was present. 14 In the analyses you've seen of the water 0 15 produced at that site, do they show any natural gas? 16 I never saw natural gas at the water A 17 wells at Flora Vista. I was told that natural gas was a 18 contaminant when we started this study. If there was not any natural 19 0 gas would you conclude that perhaps the gas was a little bit deeper 20 than the depths of these water wells? 21 Α I would not have any basis to make that 22 determination. 23 According to the information I've learned 24 about the Manana Gas, Incorporated's Mary Wheeler No. 1-E, 25 was encountered somewhere between the surface qas and 225

1 45 2 feet of depth. That's all I know of it. Mr. Kendrick, you talked about the econo-0 3 mics of installing fiberglass lined pits, and yet Manana 4 which is a small operator, elected to install two, and Gas, 5 even replaced one when it turned out it was leaking. 6 Were those economics calculated on the 7 basis of that one well before those pits were installed? 8 A Yes, sir. 9 0 In your gualifications you said that you 10 to derive and administer regulations of the Oil Conhelped servation Division and you recommended a 5 barrel 11 per day limit for lining. 12 this 5 barrels per day of actual pro-Is 13 duction the average for a year production or a month, how 14 would you derive this figure of 5 barrels a day? 15 А I think it ought to be based on an aver-16 age monthly, total volume produced during an average month. 17 Ö If there was a restriction to 5 barrels 18 per day without lining, then that would restrict the produc-19 tion of a well which might have a higher allowable, what considerations would the operator have to take into ac-20 count? 21 Α I don't understand the restrictions on 22 the allowable. 23 C Well, if the operator wished to have an 24 unlined pit but exceeded 5 barrels of water per day, would 25 to consider the economics for the increase of he have gas

1 46 2 allowable under allowable conditions versus the cost of the pit before he made a decision whether or not to install 3 а lined pit? 4 Yes, sir, I think it would be the opera-A 5 tor's responsibility to make that decision. 6 At the close of your testimony you 0 said 7 the Division ought to show that there's been a problem, or a 8 problem's been generated before they should issue an order 9 that was so far reaching. 10 In your experience with oil and gas, helping to write regulations and administering them, 11 what type of prevention measures should the Oil Conservation Di-12 vision take to prevent problems from being generated? 13 Α I can't -- I can't equate to your gues-14 tion, Mr. Chavez. If I were to equate to it, I would relate 15 something to the effect that we know that 50,000 people die 16 in car wrecks each year so we shouldn't drive. 17 0 Are there any -- have you ever at the --18 have you ever helped to write any regulations that will prevent problems from occurring rather than wait until problems 19 have occurred? 20 I assume that over the years I sat in the А 21 conference with some. I don't know that I penned the exact 22 words to that effect. I probably sat in conference on this 23 memorandum that I showed as the exhibit dealing with pro-24 duced water. 25 MR. CHAVEZ: That's all the

1 47 2 questions I have. MR. STAMETS: Are there other 3 questions of this witness? 4 Mr. Taylor. 5 6 CROSS EXAMINATION 7 BY MR. TAYLOR: 8 Mr. Kendrick, these first few questions I 0 9 think are in relation to some of your exhibits you have. 10 To your knowledge were any samples taken from the first 23-foot well that you spoke of? I quess that 11 was the water well near the Flora Vista wells, I think? 12 Α I don't know whether any samples were 13 taken or what was done. I went to Mr. Chavez and asked him 14 about the capped water well at Flora Vista and asked him if 15 he had learned of it. He told me that he had talked to Mr. 16 Thurstonson and had gained some information. 17 I called Mr. Thurstonson and got the same 18 information relayed to me that Mr. Chavez had relayed to me, 19 plus he told me that it was the first well that they had drilled. 20 So Ι don't know whether they took any 21 samples or what their drilling problem was, but it was dril-22 led by the water group, not by an oil or gas company. 23 What was the gentleman's name that was 0 24 the head of the Flora Vista, Thurston? 25 Richard Thurstonson. A

1 48 2 In your conversations with Mr. Thurston-0 son, did he mention any contamination next to the gas well 3 that was discovered by his backhoe operator when he was dig-4 ging the new water well? 5 Α No, sir. 6 And the events have occurred subsequent 0 7 to the drilling of the contaminated well and the Mary Wheel-8 er Well that have caused contamination. 9 Α Yes, sir. 10 What kind of an event could that be? 0 11 A If the Ojo Alamo formation is exposed below the water well in the valley and any gas well on either 12 side of the river had experienced a casing failure and con-13 taminated the Ojo Alamo formation, it could have traveled to 14 the river valley and existed at that point from some point 15 not necessarily close to the gas -- to the water well. 16 Don't these theories of contamination 0 17 that rely on a well not nearby the Flora Vista Well essen-18 tially fly in the face of the theories of degradation, which 19 are essentially that no contamination will occur because those contaminants and other things will be degraded trying 20 to move to this well? 21 Well, the organics would be degraded un-Α 22 less they overwhelm the bacteria and the other forces but in 23 a period of time they seem to take control again. 24 Q Could the gooey clay and stinking water 25 that you referred to, I guess, in the drilling the first

1 49 2 Flora Vista well be due to decompensation -- decomposition of swamp organic products in the area? 3 Α Yes, sir. 4 In the blowout that occurred in 1961, 0 or 5 the blowout that occurred in 1961, had the gas migrated if 6 into the water sands, and you speculate that the Flora Vista 7 contamination was due to this blowout, in this example, too, 8 wouldn't you say that biodegradation did not play an import-9 ant part in breaking down those materials that showed up in 10 the well? Not necessarily because the biodegrada-Α 11 tion depends on oxygen being present and if the influx of 12 petroleum products into that sandbar utilized all of the ox-13 ygen in that sandbar, then that gas can stay there like it 14 in the gas reservoir for thousands and thousands does and 15 thousands of years. 16 Remember, the gas that we're producing 17 has been underground for many thousands of years so that 18 biodegradation does not devour every bit of organic material 19 that's below the surface. What evidence do you have that natural 0 20 is or has been present in the Plora Vista wells, or in gas 21 the well that was contaminated, let's say? 22 Α The only information I got was from a re-23 mark made at the time we started the water study and they 24 me that natural gas was in the Flora Vista water told well 25 this was part of the problem that generated the call to and

1 50 make the study in the area. 2 You, yourself, haven't made any analysis 0 3 seen any analysis of Flora Vista wells showing natural or 4 gas in those wells. 5 А The water analysis of the well would not 6 show that because when you pour the water into the vial the 7 gas is going to the atmosphere, so the gas is not going to 8 be showing in the water analysis. 9 There couldn't be any that would 0 be in 10 solution with the water? It would be such a trace amount that when Α 11 it reaches the room atmosphere it's going to -- or atmos-12 pheric temperature and pressure it's going to by its own 13 state of being gaseous will go into the gaseous stage and 14 escape out of the water. 15 Are you aware of any investigation \cap con-16 ducted around the Kanob wells or the El Paso dehydrator in 17 particular, was there any digging done around those areas to 18 investigate potential contamination in the pits? Α inquired of the El Paso Natural Com-Ι 19 pany. I was told that they did excavate around their dehy-20 drator pit but they found no contamination. 21 0 Do you have any analytical data to sup-22 port your theories on contamination of this Flora Vista well 23 other than speculation? When you say it could be this, it 24 could be that, do you have any proof that it was any one of 25 these things or are you just saying it could be any number

1 51 2 of things other than the Manana Well? I have no proof of the source but A I'm 3 showing that the speculation that the pits caused it is not 4 the only possible source of contamination. 5 So you're just adding some speculation or 0 6 hypotheticals of what could have happened. 7 A I'm offering what I think are more 8 reasonable solutions to the contamination instead of specu-9 lating on the pit. 10 When you discuss water quality with re- \cap gards to the TDS, do you feel there should be any concern 11 over water quality with respect to aromatic hydrocarbons? 12 Α No, sir, I think the testimony yesterday 13 showed that the aromatic hydrocarbons would have disappeared 14 and apparently it did not create any problem over a sus-15 tained distance. 16 So as far as you're concerned, benzene in 17 the water is no problem. 18 Ä That's correct. You mentioned that cases of contamination 0 19 should be shown before a ruling on pits is made. 20 you advocating a body count methodo-Are 21 logy with respect to water supplies, protecting fresh water 22 supplies, where we have to have so many cases of contamina-23 tion or so people that show up sick before there's any ac-24 tion taken? 25 Would you describe body count, please? 0

1 52 2 A Well, that's what I just did; so many cases of pollution or contamination in wells have to show up 3 or so many people get sick from drinking the water before 4 any action is taken? 5 0 I don't think that we need to have people 6 to die. I think all we have to have is evidence that conta-7 mination is there and we would make an investigation and de-8 termine the source as best we can, but because of one point 9 of contamination in the San Juan Basin, we can't compare 10 that to one automobile wreck and ban automobiles. But could we put seat belts in automo-11 Q biles, what could we do comparable to that in oil and gas 12 wells? 13 A Seat belts in automobiles does not stop 14 the automobiles from wrecking. 15 0 No, it doesn't, but doesn't that 16 doesn't it cut losses if there are wrecks? 17 A I'm not sure that it does. 18 Q Okay, that's all the questions I have. 19 MR. STAMETS: Are there other questions? 20 Mr. Chavez. 21 22 OUESTIONS BY MR. CHAVEZ: 23 0 Mr. Kendrick, Mr. Hicks and your testi-24 mony pretty well indicate that produced water from the 25 fiberglass pit, not positively, but probably would not cause

1 53 2 the pollution in the water well, is that your understanding? I don't know how you relate to Mr. Hicks' A 3 testimony but my testimony is that if there was natural gas 4 before the Manana Well was drilled in that same sandbar, 125 5 to 150 feet away from this contaminated well. 6 Q You say it's the same sandbar as the 7 water. 8 А In the valley fill. 9 However, even the evidence that Mr. Thur-0 10 stonson presented showed that there was a clay lens at 23 feet and the other wells are a bit shallower than that, 11 aren't they? 12 I don't know how deep the other wells Α 13 are. 14 Q So you don't know whether the other water 15 wells -- well, you don't really know that much it then, 16 about the other water wells, included the contaminated one. 17 Α That's true. 18 Q Mr. Kendrick, were there any unlined pits at the Mary Wheeler 1-E location? 19 Α When? 20 After the well was first put on produc-0 21 tion and before the pollution was found? 22 Α Yes, sir. 23 Which pits was that? 0 24 A The one at the tank. 25 Q Wasn't there also a dehydrator pit on

1 54 2 that location? A Yes, sir. 3 Was that lined? 0 4 I never saw a lining in it so I assume А 5 that it was not. 6 Kendrick, along with products from Q Mr. 7 the well itself that it could introduce in produced water, 8 aren't there other products put into the flow, such as qly-9 cols in the dehydrator unit that mix with produced water? 10 I assume that some glycol might have been Α discharged in the pit. I don't know that it was. 11 Would you describe glycol as an aromatic, 0 12 a volatile, or oil, or how would you describe glycol? 13 think glycol is an alcohol that's a А Ι 14 petroleum derivative. 15 Is it an oily substance? Q 16 Α I think so. 17 Q Have you ever seen any glycol in a hydra-18 tor pit? 19 Α Not to identify it as glycol, I have not. Without personally identifying 0 it, have 20 been told what was in a pit was glycol with some other you 21 condition that had migrated? 22 sir. I never discussed the contents A No. 23 of a pit at a dehydrator pit with any of the pipeline 24 operating people. 25 During your employment with Manana, did Q

1 55 2 the production separator ever malfunction and put oil into the hydrator such that it dumped oil into the unlined dehy-3 drator pit? 4 I do not know. Α 5 you think it would be possible that 0 Do 6 the oil and grease that was played into the sample from the 7 Flora Vista water well could have been crude oil or glycol? 8 I think it might be possible, yes, sir. Α 9 To the best of your knowledge does 0 the 10 glycol contain aromatics such as benzene and toluene? I do not know. 11 A That's all the questions I have. Q 12 MR. STAMETS: Ms. Pruett? 13 14 CROSS EXAMINATION 15 BY MS. PRUETT: 16 You stated, I believe, in your testimony 0 17 the Farmington sandstone layer contained oil, that gas, 18 water, or nothing. Is that correct? 19 Or any combination of the three. Α 0 Right, any combination. But it could be 20 nothing. 21 А That's true. 22 And you stated that the blowout could 0 23 have contaminated the sands and gravel in the river valley 24 which could have contaminated the Flora Vista Well. 25 Α Yes.

1 56 2 It also may not have. Q That's true. Α 3 Do you have any explanation for why this 0 4 well which experienced a blowout which is a mile to the west 5 of the contaminated well would have contaminated just that 6 one well, not any of the others in the area? 7 Mother Nature is a rather fickle A little 8 lady and does various things. 9 You also stated that the crisis at 0 this 10 blowout ended when the blowout itself was brought under control. Isn't water contamination of the Flora Vista Well a 11 continuing crisis? 12 I don't know. А 13 0 Did you read about that contamination at 14 the Flora Vista Well in the papers? 15 Α I read some conjecture about them, yes. 16 Did you ever go forward to either EID or 0 17 OCD to share with them the information that you had and 18 these possible explanations for the contamination? No, but neither did I hide from them. 19 A My record with the State of New Mexico is public; has been for 20 thirty years and I've never backed down from anybody asking 21 me a question. No one ever came to me and asked for any 22 information. 23 0 You testified that you learned that the 24 Flora Vista wells -- well was contaminated with natural gas. 25 you tell me who told you that or how you learned that Could

1 57 2 information? A No, that was more than a year ago and 3 someone said that there's natural gas in the well water at 4 Flora Vista and we have a water problem so we're going to 5 start studying the water. 6 Q I think you said that you later learned. 7 Where did you get that information? 8 I'm not sure whether the Oil Commission Α 9 Office in Aztec told me that the suspicion was about the 10 water pit or what the source of information is, but there it seems to me that I read some of that in the newspaper, that 11 three was conjecture that the produced water in the water 12 pit at the Manana well was the cause of the pollution. 13 Q But all of these things that you've 14 learned were, of course, suspicions or conjectures. 15 Δ I have not seen any evidence, have not 16 heard any evidence presented at this hearing, or in any of 17 our committee meetings to show that there has been any water 18 well in the San Juan Basin contaminated by any produced water from a pit. 19 0 Have you heard any evidence at this hear-20 ing or any place else pinning the definite cause of the pol-21 lution at the Flora Vista water well? 22 A No. 23 And your explanations contain an element 0 24 of conjecture also, don't they? 25 They are other possible sources of Α Yes.

2 | contamination.

1

3

4

5

6

Q Now if the alluvium was charged prior to the spudding of the Mary Wheeler Gas Well how do you explain the fact that the Flora Vista Users found odor-free wells in the alluvium at other locations?

A If you'll refer to the plat on my Exhibit Nine, the one that's got the black line and the red line on it, applying some arithmetic to the numbers. The numbers in red I did not testify to but the numbers 281, 222, and 285 are distances.

11 281 represents the distance from the left end of the black line to the confluence of the red and black lines in feet.

feet would then be the hypotenuse of 285 14 triangle from the black line and the red line and across а 15 the left end of those down there so that the distance from 16 the quote contaminated well in the center of the page to the 17 producing water well in the lower lefthand corner is about 285 feet, but the measured distance with a steel tape be-18 tween the water well in the lefthand corner and the capped 19 well is 49 feet. I measured that with one piece of tape so 20 that there; s not any conjecture on my part. That is the 21 distance between the centers of those wells, and one is con-22 taminated and one is not. I can't explain why. Like I say, 23 Mother Nature does some queer things.

24 Q Do you have any explanation for the fact
25 that after years of getting good water from this well all of

58

1 59 2 a sudden the Flora Vista Water Users discovered bad water in that well if the alluvium from the Mary Wheeler gas well had 3 been charged years and years and years before? 4 A Well, I've -- I've never heard any evi-5 that they got fresh water out of that well dence at any 6 time. There has been no evidence presented to show that 7 that well ever produced good, fresh water. 8 Q If some evidence were presented to you 9 hypothetically, how would you explain that? 10 А I'd probably explain it hypothetically, but --11 Q Then go ahead. 12 A But the -- there has been no evidence 13 showing that that well ever produced clean, fresh water. 14 Q Again I'll ask you, if you had evidence 15 showed that it did at one time produce clean, fresh that 16 water, how would you explain where it's suddenly going bad? 17 MR. STAMETS: Mr. Kendrick, be-18 fore you answer that question, let's make sure that you and Ms. Pruett are talking about the same well. 19 I believe Ms. Pruett is talking 20 about the well at the confluence of the red and black lines. 21 Is that the one you're talking about? 22 MS. PRUETT: I'm speaking about 23 the Flora Vista contaminated water well and --24 MR. STAMETS: Okay, you're 25 talking about --

1 60 2 MS. PRUETT: -- frankly, I'll have to admit I can't tell which one it is on this map. 3 MR. STAMETS: All right. There 4 are two wells which could be contaminated. There's the ini-5 tial well, which is -- has been referred to as the capped 6 well. 7 MS. PRUETT: The one that went 8 down and they -- I'm not speaking of that well. 9 MR. STAMETS: You're talking about the well which Mr. Kendrick has shown at the con-10 fluence of the red and black lines. 11 MS. PRUETT: Right, number 27. 12 MR. STAMETS: Okay. 13 А The 27 on there is the distance but with 14 15 MS. PRUETT: Okay. 16 -- the "W" in the middle of the page. Α 17 Right. 0 18 Α But if someone showed me that that well one time produced clean, fresh water and then started at 19 producing contaminated water, I have no way to identify 20 which of the possible sources of contamination would be re-21 sponsible. 22 Would that be consistent, however, with 0 23 the contamination from the alluvium? 24 It's possible. Α 25 In your Exhibit Eight you indicate that a Q

1 61 2 show of gas was found when surface casing was set on that well at the depth of 225 feet, and that the gas was sealed 3 off after the pipe was cemented. 4 isn't it true that the Flora But Vista 5 water wells are considerably shallower than 225 feet? 6 А I don't know how deep they are. 7 You don't know if they're 225 or 25? 0 8 That's true. А 9 mentioned in Exhibit Five that 0 You the 10 Monsanto unlined earthen pit that received produced water with a total dissolved solids of approximately 80,000 parts 11 per million. 12 Now far is this pit from the Flora Vista 13 Water Users contaminated well, that well that you show at 14 the confluence of the red and black lines? 15 А First let me make the statement that I 16 did not testify that they produced water into an unlined pit 17 of 80,000 parts per million. 18 I'm sorry. 0 19 Α They asked me how to dispose of it and I told them to line the pit, but the wellbore itself is appro-20 ximately 1700 feet, I think, from the Mary Wheeler Well and 21 so that would make it some 1900 feet from the quote contami-22 nated well. 23 But the Flora Vista well was not polluted 0 24 with TDS, was it? 25 I don't know. А

1 62 2 Again, if the earthen -- if the Monsanto 0 pit was the source of contamination at this Flora Vista 3 well, why did it only contaminate one well and why would it 4 produce a sudden contamination in the well? 5 Α I did not present any testimony showing 6 that the pit at the Monsanto well contaminated anything. Ĩ 7 showed that I asked that the pit be lined to prevent contam-8 ination of the river. 9 Was it lined? 0 10 Α I don't know, but if you'll look, you'll find my letter directing that it be lined if they disposed 11 it. 12 About --0 13 A The testimony I had about the Monsanto 14 well was that it was a possibility of casing failure which 15 might have contaminated the sandbars, but not the pit. 16 Okay. So again if there were a casing 17 failure I would ask you how you could -- why only one well 18 would be contaminated and not the rest of them. We have a well here 49 feet from one 19 A that's apparently contaminated and one that's not contami-20 nated and they're only 49 feet apart. 21 A well that's 2000 feet away might conta-22 minate one and not another. 23 have a question about your proposed 0 Ι 24 witnessed production test and analysis. 25 Produced water, the quantity of produced

1 63 2 water and its volume can fluctuate seasonly and over greater periods of time, can't it? 3 Yes, it can fluctuate daily. A 4 С When would you suggest that this witnes-5 sed production test be conducted so that it would be a re-6 presentative measure of the produced water for any given 7 time? 8 Α At the convenience of the Oil Conserva-9 tion Division witness. 10 0 Would you recommend a weekly average, a yearly average? 11 We take a test for 24 hours and determine А 12 how much oil a well produces in a day and the oil volume 13 varies from day to day. We take one test and assign an al-14 lowable to that well based on that test. 15 0 Okay, is that the kind of one day test 16 that you were suggesting in your exhibit? 17 Α I think that would be satisfactory, yes. 18 MS. PRUETT: I have no more questions. 19 20 CROSS EXAMINATION 21 BY MR. STAMETS: 22 Mr. Kendrick. O 23 A Yes, sir. 24 Yesterday we heard from Mr. Hicks that in 0 25 a11 likelihood the potential threat of contamination is

1 64 greater from liquid hydrocarbons than produced water in this 2 area and such liquid hydrocarbons can get out in pits as re-3 sults of upsets. ₫ If none of these pits in the vulnerable 5 are lined. how can the Commission be sure that hydroarea 6 carbons are not going to get into the -- onto the soil and 7 into the fresh water? 8 Ά Mr. Stamets, the -- no regulation that is 9 passed by this state can insure that. There is just no way 10 unless we leave all the oil in the ground. Would not the lined pit at the tank bat-11 tery provide additional insurance, though, against upset 12 causing hydrocarbons to get into the fresh water? 13 might if the pit were empty at А It the 14 If the pit was approximately full at time the upset came. 15 the time the upset came it would just run the pit over. 16 So the -- setting the pits would be some 17 measure of insurance, but it would not be a preventative. 18 2 Your proposal to measuring produced water 19 would be to do that once a year? А Well, if we ---20 Or a month? 0 21 A If we start out with a production of a 22 well and measured the amount of water there and determined 23 it was less than 5 barrels, if for any reason someone sus-24 pected that it was producing more than 5 barrels per day, if 25 it were an offset or a landowner, someone with an interest

1 65 in the production of that well or a regulatory agency repre-2 sentative asked for a test, then we would ask that the Oil 3 Conservation Division people witness the test. 4 In general what does the water production 0 5 do in the San Juan Basin, does it increase or decrease over 6 the life of the well? 7 A From well to well it changes. Some wells 8 produce more initially and tapers off, and some start with 9 no water production and get a little bit of production. but 10 the San Juan Basin does not have a water drive situation, that is bottom water coming up under the gas, so that 11 we don't have a great increase in the amount of water produc-12 tion in the type reservoirs that we have in the San Juan Ba-13 sin. 14 MR. STAMETS: Any other gues-15 tions of this witness? 16 Mr. Kellahin. 17 MR. KELLAHIN: Thank you, sir. 18 REDIRECT EXAMINATION 19 BY MR. KELLAHIN: 20 In response to some questions by Mr. Sta-0 21 mets, Mr. Kendrick, this hearing is set up to discuss 22 whether or not we should line pits for produced water. 23 Stamets has raised another question Mr. 24 for you to consider and asked whether or not we need to line 25 unlined pits to take care of product spills, upsets at the

1 66 2 separator, that would dump product into the pit, or are there in place now adequate regulations and rules of the Oil 3 Conservation Division that will take care of spills and up-4 sets? Do you have an opinion on that? 5 I think the rule that prohibits the stor-А 6 age of oil in open pits is as effective as a new rule which 7 says the same thing. 8 Based upon your years of experience 0 in 9 the San Juan Basin, Mr. Kendrick, what is the custom and 10 practice of the pumpers for the various operators to go out and visit the well sites? Do they do it daily, biweekly, 11 what is the frequency? 12 А The frequency depends on the individual 13 well in guestion. 14 Some wells need to be visited about once 15 a month just to see that it's still there. 16 Some wells need to be visited daily to 17 look at the producing problems. 18 Based upon your knowledge and experience 0 in the industry, Mr. Kendrick, do you believe that the oil 19 field operations, as well as the Oil Commission rules and 20 regulations now, are adequate to provide a contingency plan 21 to take care of spills and upsets, that will allow the pum-22 per to remove those things from the unlined pit, as opposed 23 to taking the step of having all those pits lined to protect 24 against upsets? 25 A Yes, sir. I think that the normal opera-

1 67 2 tional procedures would continue to solve the problem as it has in the past. 3 Thank you, sir, nothing further. 0 4 MR. STAMETS: Ms. Pruett. 5 6 RECROSS EXAMINATION 7 BY MS. PRUETT: 8 Would you tell us what those normal oper-0 9 ational procedures are for fielding upsets and leaks? 10 It depends on the company. It depends on Α the well. 11 Why don't you just choose one or Q the 12 other? I -- I don't know. 13 A Well, as a general rule, if a problem de-14 velops, we solve it, at the most expeditious manner. 15 0 How do you do that? Do you dig up all 16 the dirt in the pit to pick up any soil that may be contami-17 nated with petroleum products, or do you try and put some-18 thing in there that can neutralize the problem, or what method do you use? 19 А We pump it, salvage the oil out of a pit 20 but we do not make a policy of digging up the dirt and tak-21 ing it from one location to another location to lay it back 22 down on the ground. There's no place to put oily sand ex-23 cept back on the ground. 24 why move it from one location to So an-25 other and spend a bunch of unnecessary money and create a --

1 68 2 The same problem that you had at first. Q -- the same somewhere else and just spoil Α 3 two pieces of ground where one has suffered some damage. 4 Now those wells or those sites which are 0 5 only visited once a month, they could experience a signifi-6 cant accident over that month and you wouldn't -- the opera-7 tor would not have the opportunity to immediately deal with 8 it, would they? 9 Those wells that would be visited once A а 10 month would not be wells that produced liquids. Those wells that produce liquids have to be visited more often to insure 11 that an upset or a spill has not occurred. 12 Q Are all the wells that produce liquids 13 visited daily? 14 Α No. 15 0 Even if a problem were discovered as much 16 as twelve hours later, would all the produced liquids still 17 be in that pit or wouldn't there be a certain amount of hy-18 drocarbons that could already have entered the soil? 19 А There would be some hydrocarbons in the soil immediately. The soil is not impervious to hydrocar-20 bons for the most part. 21 Ū. So the operator could not recapture all 22 of the released hydrocarbons. They could recover a portion 23 and we don't know -- that portion would depend on each par-24 ticular case. 25 That's true. A

1 69 2 Okay, thank you. 0 MR. STAMETS: Mr. Pearce, did 3 you have a question? 4 5 CROSS EXAMINATION 6 BY MR. ELMER: 7 Q Would you please turn to Exhibit Number 8 Twelve? 9 Yes, sir. Α 10 Now you made certain economic assumptions 0 on Exhibit Number Twelve. I refer to your paragraph one, 11 two, three, four, where you stated the general rule of water 12 production of a well increases, the gas production and the 13 cash flow decreases, being perhaps a burden upon the opera-14 tor, and yet in response to another question you just stated 15 that the gas versus water ratio varies from well to well. 16 So which statement is correct? 17 Both, but in this instance identified on A 18 Exhibit Twelve, when a well starts producing water, when the water starts into the tubing string, then it forces a re-19 striction on the gas flow and thereby causes a reduction in 20 the gas volume. 21 \bigcirc Yes. But your reply to, I believe, Ms. 22 Pruett's previous question was in terms of when you measure 23 the water flow, you said, you indicated that it was on an 24 individual basis and it varied from well to well. 25 This statement indicates that towards to

1 70 2 the end of the life of a well, that you have an increase in the production of water. 3 So if -- if your previous statement is 4 such that the gas/water ratio varies from time to time, your 5 economic assumption is not necessarily true in conclusion 6 No. 12. 7 А As the well depletes, the pressure in the 8 reservoir depletes; therefore, there is less pressure to un-9 load the water. 10 If a well is gargling water this is a re-The water alone will striction on its ability to produce. 11 cause abandonment earlier than if the well produced just dry 12 gas. 13 If we add the cost of a pit on the fact 14 that the finances are already impaired by the liquid in the 15 wellbore causing producing problems, the well will be aban-16 doned earlier. 17 But when does this occur in terms of the 0 18 cycle of the well? Again I'm trying to reconcile the two 19 statements as to the -- when you measure the water flow. You indicated, sir, in previous testimony 20 with respect to the measurement of water that from well to 21 well it varied. 22 λ It does. 23 All right, so you can't necessarily state 0 24 that the -- close to the end of the life of a well that the 25 water will cause any loss of production.

1 71 2 Α That's true. All wells do not make water. 3 Q To my mind, sir, you still haven't 4 reconciled the two statements between Exhibit Number Twelve 5 and your previous response. 6 А Well, let me explain it this way. Some 7 wells make a great amount of water; some wells make no 8 water. 9 Those wells that do make water, the gas 10 production is impaired by the water in the wellbore. If the well does not make water, 11 then there will be no water production problems. 12 0 But that could be at the very beginning 13 of the cycle with economic oil. 14 That's true, from --A 15 And not at the end. Q 16 -- the beginning to the end. A 17 From the beginning to the end. 0 18 Yes, sir. А Thank you. 19 0 MR. STAMETS: Mr. Pearce. 20 MR. PEARCE: Very briefly, if I 21 may, sir. 22 23 24 25

1 72 2 CROSS EXAMINATION BY MR. PEARCE: 3 Mr. Kendrick, were you in attendance at 0 4 the hearing yesterday? 5 А Most of the day; not all the day. 6 Were you in attendance when Dr. Miller 0 7 testified about the occurrence of major spills of thousands 8 of gallons of gasoline which in his experience were the 9 types of events which overwhelmed micro-organism activity 10 relating to biodegradation? А Yes, sir. 11 Would you tell me, sir, your opinion of \mathcal{Q} 12 the average content of the separator? If the entire con-13 tents of a separator dumped, what volume of liquid are we 14 talking about? 15 A small separator the total volume of the Α 16 contents would range in the area of about a half a barrel. 17 In a large separator this might get to 18 ten barrels. 19 In a well which produces, let's say, five 0 barrels or less per day of water, what size separator tank 20 would you expect to find? 21 One that would hold about twenty or thir-Α 22 ty gallons. 23 Kendrick, during your time working Q Mr. 24 for the Oil Conservation Division and Commission, were you 25 aware of a rule which required that spills and leaks and

1 73 2 leaks be reported? Yes, sir. A 3 Q And were those events routinely reported? 4 Yes, sir, after the enactment of Α that 5 rule. 6 Do you recall when that rule was enacted? Q 7 Α Not precisely. 8 Q Could you give me a rough guess? I don't 9 know. 10 I'd say somewhere around 1970. A 0 I have before me, sir, a copy of Oil Con-11 servation Division Rule 116, entitled "Notification of Fire 12 Breaks, Leaks, Spills, and Blowouts". 13 If I may, sir, I'm going to read you the 14 -- a portion of the section of that rule which is entitled 15 "Content of Notification". 16 That section says in part, "A report 17 shall specify the nature and the quantity of the loss; also 18 the general conditions prevailing in the area, including 19 precipitation, temperature, and soil conditions. The report shall also detail the measures 20 that have been taken and are being taken to remedy the sit-21 uation reported." 22 In your employment with the Oil Conserva-23 tion Division during the time that rule was in effect, is it 24 your experience that those reports came in pereiodically and 25 reflected the required information?

1 74 2 Α Yes, sir. 0 Thank you, sir. No further questions. 3 MR. STAMETS: Any other ques-4 tions of this witness? 5 Mr. Chavez. 6 7 QUESTIONS BY MR. CHAVEZ: 8 Mr. 0 Kendrick, you testified as to the 9 economics but you haven't presented any data or calculations 10 on the economics of lined pits. 11 Because there is some guestion as to what the final requirements may be, should there be any pits, 12 it's kind of difficult to come up with some estimates, but 13 in your employment with Manana, could you tell us what the 14 economics were for installing the fiberglass pit at the Mary 15 Wheeler 1-E?16 Α Yes, sir. The pit cost \$2300 delivered 17 to the location from Amarillo and the backhoe operator 18 utilized about one day to install the pit. 19 Q What was the total cost of drilling the well, do you know? 20 Α I don't know. I never saw the AFE on it. 21 I do not know. 22 0 Do you know what the -- could you give me 23 a good estimate of what a Dakota well would have cost to 24 drill at that time in that area? 25 Α Probably in the range of \$250,000.

1 75 2 MR. CHAVEZ: That's all I have. MR. STAMETS: Any other gues-3 tions of the witness? 4 You may be excused. 5 Kellahin, do you have any Mr. 6 more witnesses? 7 MR. KELLAHIN: On behalf of my 8 clients I do not, Mr. Chairman. 9 MR. STAMETS: Any other oil 10 company witnesses? fifteen Let's take about a 11 minute recess. 12 13 (Thereupon a recess was taken.) 14 15 MR. STAMETS: The hearing will 16 please come to order. 17 I'd like to recall Mr. Hicks to 18 the stand for a couple of questions. 19 KELLAHIN: Point of proce-MR. dure, Mr. Chairman, we've rested our direct case. 20 I want to reserve the right to 21 recall witnesses that have previously testified as well as 22 additional rebuttal witnesses in the event there are wit-23 nesses from either the Division or the EID or someone else 24 on this issue. 25 We understand and MR. STAMETS:

1 76 2 that is reserved. MR. KELLAHIN: In addition, 3 sir, I'd like to make an objection for the record with re-4 gards to the potential of the Commission to consider the 5 lining of unlined pits as a contingency plan to solve some 6 difficulty that may or may not occur with regards to spills 7 and upsets. 8 We believe that an adequate 9 case on that issue can be developed to show that there is 10 not a need to line unlined pits to meet that contingency; however, the call of this case was to determine what to do 11 with produced water and we are not prepared today to discuss 12 contingency issues with regards to other potential sources 13 of contamination other than produced water. 14 that is to be a subject If of 15 consideration, we'd request that that be docketed as a sep-16 arate case. 17 MR. STAMETS: Mr. Elmer has a 18 guestion or two of Mr. Hicks. 19 CROSS EXAMINATION 20 BY MR. ELMER: 21 Hicks, when you were performing your 0 Mr. 22 study did you observed the amount of participation -- pre-23 cipitation, or measure the amount of precipitation that was 24 going into the pits at the time of the study? 25 Rainfall? A

1 77 2 0 Yes. No, that was not measured. A 3 Could that, do you know, if 0 All right. 4 in fact there was rainfall during the course of the study? 5 There was rainfall -- I don't -- can't A 6 testify as to how much -- on the day before we sampled the 7 Eaton site, and light rain during the day of the McCoy site. 8 0 To what extent have outside precipitation 9 have skewed your study in terms of the results? 10 A For those particular cases, the amount was -- results in terms of groudnwater monitoring or --11 0 The -- the groundwater; also the values 12 in parts per billion by the pit? 13 Α In terms of the groundwater monitoring 14 rainfall would not -- the previous rainfall the would not 15 skew that at all, in my opinion. 16 Okay. 0 17 A In terms of the -- the results that we 18 obtained from the pit samples themselves in all three cases the volume in the pit was considerable as compared to the 19 amount of rain that would have fallen in that previous day, 20 and the results, I believe, are fully accurate. 21 0 I see. With respect to the study, should 22 a series of studies be done taking into account that there 23 was or was not rain, because over a period of time you do 24 have the impact of rain. 25 you compare the amount of A If the rain

1 78 that would fall into a produced water pit as compared to the 2 amount of produced water, my opinion is that the volume of 3 rain would be insignificant compared to the produced water. 4 But if on a hypothetical situation, if Õ 5 you had a pit, let's say, had some heavy metals, and you 6 didn't have rain but evaporative, would the concentration of 7 the heavy metals increase? 8 А As you, if you were put -- yes. Yes. 9 And then if you would have Okay. rain 0 10 and a runoff, would a greater concentration then go into perhaps, you know, through an unlined pit would a greater 11 concentration then flow down into -- into the ground? 12 I can't testify to that. A11 I could Α 13 say, the metals would be increased in the pit. Whether they 14 would enter groundwater or not --15 0 Yes. 16 А -- I have no data to support or deny 17 that. 18 But if you had a high water table, Q you indicated, I think, that one pit was very -- that the water 19 table was very high, right? 20 The pit was indeed constructed into A the 21 water table. 22 So the potentiality of the heavy Yes. Ο 23 metals going right to the water table would be there. 24 A Well, in fact, yes, and it would be di-25 luted by the groundwater as it passed through the pit.

1 792 Q I have no further questions. MR. STAMETS: Mr. Taylor? 3 MR. TAYLOR: Mr. Chairman, I 4 have a couple of questions, if I might. 5 MR. STAMETS: Okay. 6 7 RECROSS EXAMINATION 8 BY MR. TAYLOR: 9 Mr. Hicks, when -- when was the period of 0 10 your study, were you testing the wells and drilling your monitor wells? 11 How about April 11th, 12th, and 13th. А 12 I've got my boss checking the calendar. 13 MR. BUYS: Yes. The first 14 if I might, was the 11th, work, 12th, and 13th of March. 15 That's when the wells were evaluated and the first wells, 16 monitoring wells were put in. 17 And then the subsequent week we performed А 18 our second set of sampling. MR. 19 BUYS: Second sampling, yes. 20 So March 11th, 12th, and 13th you started 0 21 evaluating the wells, the fifty or sixty wells you've talked 22 about and you also drilled your three monitor wells in that 23 period? 24 March 11th, 12th, and 13th was the eval-А 25 uation of twenty-one well sites, the selection of three well

1 80 2 sites, and the construction of monitoring wells and the sampling of, first sampling of pits. 3 And when was the -- I think you just re-0 4 ferred to a second sampling. When was that? 5 the А The second sampling was following 6 That date, I believe it was the following Monday or week. 7 8 MR. BUYS: It was a Monday. 9 Monday, around the 20th or Q so. You 10 stated yesterday that in your rate of water production, that that you used, that was provided by the companies, so -- or 11 that your -- I guess Tenneco provided to whatever wells you 12 were testing. 13 So the rate of water production that you 14 used was not necessarily reflected by the actual rate of 15 production at the time? 16 Well, actually, that's not the case, as I А 17 found out a half hour ago that the data we received -- that 18 we were provided with on the Eaton Well was in fact moni-19 tored by a flow counter device which would give an accurate representation of the fluid produced by the separator anđ 20 dumped into the pit. 21 0 Is it your understanding that more water 22 would be produced at a certain time of year from a well than 23 an other time of year? 24 Α I have no knowledge of that. 25 So your, what you're saying is that you Q

2 you're testing these wells during a period of March 11th, 12th, 13th, and subsequent to that a week later was the only 3 testing that you did and this was not a process of where you 4 tested water for several weeks or a month to determine if 5 contaminants were showing up, but it was essentially a one 6 two times testing procedure and you didn't find large or 7 amounts of the contaminants at that time, although some did 8 show up in the water supply, is that correct?

1

9 It is correct; however, I think it would Ά 10 be interesting to note that wells closer to the pit would obviously be more -- or would be more reflective of recent 11 disposal practices whereas wells further from the pit down 12 gradient would be reflective of past disposal practices due 13 to the velocity of groundwater movement, and therefore by 14 spacing wells out further from the pit you actually do get a 15 time sequence of potential contamination.

So the further wells away would actually be reflective of what has happened in the past. The closer wells would be reflective of what's happening in the recent past and the pit itself would be reflective of what's happening at that instant.

21 Q So essentially your testimony of a 5 barrel exemption is appropriate, is not based on what you would call large scale testing. It's testing over essentially one period at three limited locations.

A Three limited locations that are reflective of a much larger population and in fact are the worst

81

1 82 2 case scenario or what we believe to be the worst case scenario of those populations. That's correct. 3 How did you determine that the point from 4 which you were withdrawing water and testing it from the 5 monitor wells was the point at which fluids might migrate if 6 they were in the groundwater level? 7 Any leakage from a pit enters the ground-Α 8 from -- or enters the top, the uppermost portion water of 9 the groundwater water table. 10 We designed our monitor wells so that the 11 screened intervals would intercept the uppermost portion of this -- of the aquifer. 12 In many cases the screen -- in all cases 13 the screen was less than six inches below the top of the 14 water table. In some cases the screen was a couple of 15 inches above the top of the water table, and this is the ---16 the most vulnerable section of that aquifer. 17 0 But I thought you told me yesterday that 18 had not made any tests to determine the level of water you 19 in this area? How did you do this, from the monitor well, you just --20 There's --A 21 -- did this in the monitor wells? 0 22 There's three water level maps which doc-A 23 ument that we did in fact test the depth to water and in 24 fact surveyed in the elevations so that we would have accu-25 rate water level maps so that the depth to water and the --

1 83 2 was fully known. Additionally, in several of the sites we 3 put down an exploratory well before we even put in our moni-4 tor wells to determine what the depth to groundwater would 5 be so that we would be certain with respect to where the top 6 of the groundwater was. 7 MR. TAYLOR: That's all the 8 questions I have. Thank you. 9 Mr. Hicks may be MR. STAMETS: 10 excused. 11 MR. ELMER: May I ask him a question, sir? 12 MS. PRUETT: Chairman, I Mr. 13 have a question. 14 MR. KELLAHIN: Mr. Chairman, I 15 16 MR. STAMETS: Mr. Kellahin. 17 KELLAHIN: I need to know MR. 18 how to play the game, sir. 19 Are we going ot go round robin until this man's exhausted like he was yesterday, that's 20 fine. I need to get him a drink of water and we'll do this 21 some more. 22 But I thought we were having 23 questions of this witness from the chairman that would not 24 open this witness up to additional questions. 25 Having already undertaken that

1 84 task with Mr. Taylor, I have prepared a list of a number of 2 questions myself that we need to discuss. 3 Now I'll play by whatever rules 4 you want to play by but I need to know what the rules are. 5 MR. STAMETS: I can appreciate 6 your concern, Mr. Kellahin, and I agree with you totally. 7 We are dealing with very, this 8 morning, very potentially expensive issues and certainly Mr. 9 Hicks' testimony is to the crux of the issue, and much as I would like to hurry the thing along, I believe I will have 10 to allow some questions and certainly that would include any 11 that you would like to ask. 12 MR. KELLAHIN: Need a drink of 13 water, Randy? 14 MR. HICKS: I'm fine. 15 MR. STAMETS: Please be as 16 brief as possible. 17 MS. PRUETT: Surely. 18 RECROSS EXAMINATION 19 BY MS. PRUETT: 20 0 I think you just testified that you 21 didn't believe there was any rainfall effect in your study 22 and that one of the reasons was because the volume in the 23 pit was considerable when you did your studies. 24 What volume is that? 25 А The pit itself is approximately 10 x 10

1 85 2 The depth of water in each one of these pits was feet. а in one case, in two cases, and perhaps a foot and foot 3 а half in another case. A Rainfall of a tenth of an inch or less, I 5 don't know what occurred at the airport on that date, would 6 be insignificant, in my opinion, with respect to the benzene 7 concentrations that we're looking at. 8 We're talking about 3.5 milligrams per 9 A dilution calculation may be able to be done but it liter. 10 may reduce it to 3.3 or 3.2, but with regards to the result, it wouldn't change, in my opinion. 11 Will your well logs and your field sheets Q 12 that you're going to provide us reflect the volumes in the 13 pit of each of the 50 to 60 pits that you studied? 14 Yes, they do. A 15 Does the volume -- do the depths in 0 the 16 pits of one and 1-1/2 foot reflect a representative depth of 17 volume a pit over the vulnerable area of about 1200 in 18 wells? 19 No, they don't. A Are a number of those pits in the vulner 0 20 able area indeed -- to appear dry? 21 А Yes, they do. 22 You were just discussing your well 0 23 screens. If there were any kind of an oil film on the water 24 table would your well screen reflect that? 25 they would, Α because the wells were Yes,

1 86 totally drawn down during the sampling procedure. 2 Would the well screens reflect any vadose 0 3 zone spreading? 4 The groundwater monitoring wells monitor Α 5 In terms of spreading of contamination the saturated zone. 6 through the vadose zone, they would reflect it in that the 7 spreading would increase the amount of area that would be --8 that would affect groundwater. 9 you're saying that Mr. If Boyer should 10 redo his calculations with respect to four feet diameter and maybe make it sixteen feet, maybe the vadose zone will 11 spread out that much and we'll have more dilution and also 12 absorption and also volatilization, biodegradation. 13 The well screens that we put in monitor 14 the saturated zone. They would be affected by vadose zone 15 spreading in that sense. 16 Do you have any written statistical 0 an-17 alysis that you could provide us showing that your three 18 wells represent -- a representative sample of the 1200 to 1500 wells in the San Juan vulnerable area? 19 A statistical analysis, no. A 20 I believe you testified that you did not 0 21 -- this is my last one -- you did not personally conduct a 22 specific conductance test. 23 Did anyone else perform any? 24 The -- I'm not certain but I believe that Α 25 the -- we have conductance values from the some of second

1 87 set of sampling but I honestly don't know. If they exist, 2 you'll see them. 3 Would you check and make those available 0 4 to us? 5 Α Yes. 6 MR. STAMETS: Mr. Kellahin, did 7 you have some additional questions? 8 MR. KELLAHIN: If the Commis-9 sion please. 10 REDIRECT EXAMINATION 11 BY MR. KELLAHIN: 12 0 Mr. Hicks, do you have a calculator? 13 Sir, I'd like you to go through with me a 14 calculation with some assumptions I'm about to give you so 15 we can put a number on the rainfall that might impact a 16 typical pit in the vulnerable area. 17 I want you to tell us what is going to be the volume of water that will be added by rainfall to the 18 pit in relation to the total volume of produced water that 19 that pit would be subject to. 20 Let's start with the total produced water 21 at the Eaton site. Your prior testimony was we have four 22 gallons a day. 23 MR. BUYS: Barrels. 24 I'm sorry, four barrels a day. Would you Q 25 multiply that by 365 and give me what that number is?

1 88 2 Α I'd ask somebody in the audience to follow along on a piece of paper to insure that the calcula-3 tions are done correctly and the units are cancelled accord-4 ingly. 5 Four barrels times 42, we're dealing with 6 168 gallons per day. 7 We can do it in barrels. 0 8 Thank you. А 9 Four times 365, I can almost do that one. Q 10 Α Okay. 1460 barrels per year. All right. Let's go back and figure out 11 0 what the impact would be to the pit of the rainfall. If we 12 have a pit that is 15 feet by 15 feet and we put into that 13 pit gross rainfall without -- without evaporation taken into 14 consideration, in one year given an average rainfall of 15 eight inches, which is .66 feet per year. 16 Is the calculation 15 times 15 times .66? 17 Α Yeah, we'd have 14 -- I'm sorry -- 148.5 18 cubic feet of fluid. All right, let's trans -- let's convert 19 Q 148.5 cubic feet of fluid into gallons and then the into 20 barrels. 21 A I believe the conversion factor from feet 22 to gallons is 7.48. We come up with 1,110 gallons. Now if 23 we divide by 42 we'll determine the barrels, and we come up 24 with 26 barrels. 25 0 A year.

1 89 2 A year of rainfall. Α In your opinion is that a volume of rain-Q 3 impacted into the unlined pit that will change in any fall 4 way the conclusions you've reached based upon your study of 5 the groundwater at these three sites? 6 A I don't believe so. It's a small volume 7 compared to the volume produced. 8 My second and last area to discuss 0 with 9 you is one I think Mr. Taylor was addressing and I believe 10 point he was making is whether or not the study you did the in the ground monitoring at those three sites in March and 11 April of this year is a one-time look at the groundwater and 12 that if we came back today or next month or next year and 13 did the same thing we might see something different. 14 Ά Ι would find that very hard to believe 15 the values -- we looked at a site that had been because in 16 existence for twenty years. We looked at two sites that 17 been in existence for four years, and all three sites have 18 consistently came up with the same results. 19 I talked briefly about the spacing of wells and how that would in fact be a history of the poten-20 tial contamination. I don't believe if we came in and moni-21 tored for six months or a year or two years that we would 22 see any difference than what we saw during our sampling. 23 In regards to Ms. Pruett's question about 0 24 the reliability of the study in terms of its statistically 25 being accurate, can you provide us subsequent to the hearing

1 90 2 with the verification by Dr. Wall, the statistician, that the method of random sampling is one that is statistically 3 accurate and reliable? 4 A Yes, sir. 5 STAMETS: MR. The witness may 6 be excused. 7 MR. TAYLOR: Mr. Chairman, I'd 8 just like to bring up at this time in relation to Dr. Hicks 9 that we are --10 MR. HICKS: Am I excused? 11 MR. TAYLOR: -- requesting his field notes and chemical analysis data sheets and the tech-12 nicians from the Oil Conservation Division have requested 13 they be allowed to review these before we that make any 14 final submittals in this case. 15 I would request that you set up 16 some time schedule for us to do that. 17 STAMETS: MR. Will you make 18 those notes available to the Division staff (not under-19 stood)? MR. HICKS: I ask for a week 20 plus or minus a few days for preparation of those -- those 21 notes into an order that would be understandable with the 22 correlation of photographs and everything else so it would 23 fall into one package. 24 MR. TAYLOR: And we would re-25 quest that chemical analysis be supplied to us in total from

1 31 2 both labs. MR. STAMETS: Okay. Before the 3 hearing concludes today we will figure some sort of time 4 frame for any counsel's late submittals. 5 MR. **KELLAHIN:** Mr. Chairman, 6 might I suggest becaue we do seem to have a number of clean-7 up matters to trade information, that it might be helpful if 8 counsel meet subsequent to the hearing and submit to the 9 Commission a procedure or method of cooperation by which we 10 not only trade our information but we will obtain will information from the Oil Commission and others. 11 think it might be easier I to 12 let us do that outside of the hearing process, submit it to 13 you for approval, and go about it in that fashion. 14 That sounds good. MR. STAMETS: 15 About how much time do you think would be appropriate? 16 MR. KELLAHIN: I think within 17 ten days of the conclusion of the hearing we could trade the 18 actual documents. I think the preparation of the list could 19 be done within a few days after the hearing, depending upon what the persons' schedules are and the various lawyers. 20 MR. STAMETS: Are you talking 21 about sometime the week of May the 6th? 22 MR. KELLAHIN: Yes, sir, that 23 would be possible. 24 MR. STAMETS: Do you think 25 everybody needs to be there at one time, Mr. Kellahin?

1 92 2 MR. KELLAHIN: Perhaps not. I think Ms. Pruett comes from Albuquerque. Either we can do 3 this on the telephone or we can arrange a convenient time to ₫ get together. 5 STAMETS: MR. Let's try and 6 have it done on or before the 7th of May. 7 Mr. Taylor, you wanted Mr. 8 Boyer back? 9 MR. TAYLOR: Yes, Mr. Chairman. 10 I've got a few questions I want to ask him. 11 DAVID BOYER, 12 being recalled as a witness and being previously sworn upon 13 his oath, testified as follows, to-wit: 14 15 DIFECT EXAMINATION 16 BY MR. TAYLOR: 17 0 May I remind you that you have already 18 been sworn and are still under oath? Mr. Boyer, could you state for us 19 the status of OCD investigation into the Flora Vista water well 20 site situation? 21 Yes, Mr. Taylor. I wish -- I'm not sure Δ 22 of the exact dates but subsequent to the February 20th hear-23 ing and subsequent to the -- and again I don't have the 24 exact dates, but the OCD in cooperation with the EID went 25 began a more thorough investigation of the out and Flora

1 93 Vista situation. The -- what we did was we went out and in-2 stalled five monitoring wells out in that area and also took 3 samples of the wells and the -- the existing wells and the 4 water prior to installing the wells. 5 The status is such that we have no defin-6 itive conclusions yet because the wells need to be developed 7 before they are ready for sampling and there also needs to 8 be some additional work done around the wells themselves. 9 So at this time we are not making any definitive conclusions regarding the site and I consider 10 it work in progress. 11 0 Okay. In your simple dilution model that 12 you presented to us I believe in the February hearing, the 13 value -- you used a value of 14 parts per million concentra-14 tion of benzene. I believe that was in the pit. Do you be-15 lieve that --16 MR. KELLAHIN: I'm sorry, Mr. 17 Taylor, I couldn't hear you. Could you tell me what that 18 number was again? 0 14 part per million, I believe. 19 Α Well, the number I used in the February 20 hearing was a compilation of the information I had at that 21 time. I used 14 parts per million. We've had some testi-22 mony over the past few days about numbers in the pits and 23 numbers in the -- whether or not that number is a good one. 24 We have also -- we have seen that we have 25 produced water from some pits and dehydrators at rates that

1 94 2 exceed 14 per million, parts per million benzene. We've certainly had a -- when you have a discharge from a dehydra-3 tor of as little as 2 gallons per day, a lot of that is 4 somewhat, may be distillate which is higher than 14, much 5 higher than 14 milligrams per liter. 6 Baca previously stated that -- that Mr. 7 solutions of benzene in solution with water would have less 8 of a capacity to flash off than if it was just pure benzene, 9 so I think that number of 14 parts per million is -- is a 10 good one. We sampled stuff coming from the separator and we 11 certainly have higher numbers than that, so I'll stick with 14. 12 You just stated that this number of 14 0 13 parts per million was a compilation of data. Could you just 14 briefly tell us what that was from? Was that from various 15 -- is that an average? 16 ħ Well. that was the average I had at the 17 time that I took all the samples and then in the February --18 in the February values --From tests of --19 0 A Of produced water. Well, it was includ-20 ing the pits, right, and it had everything at that time. 21 Do you feel that Mr. Hicks values of ben-Q 22 zene concentrations are too conservative and if so, why? 23 Α In the pits, you mean, the numbers that 24 he put in the pits in his exhibit. 25 Let me get those numbers. The numbers --

1 95 2 ne used an average, or he showed an average of one of the pits of 3.83 and he had some lower numbers on -- on the 3 others. I think that the numbers in the pits may be -- may 4 Part of that is based on what I said be too conservative. 5 before, is that we have higher numbers of benzene coming out 6 and in some cases it goes directly into the ground, 7 especially if there is a little oil involved. In other 8 words, any distillate and water, very little oil, will 9 infiltrate quite quickly and not reflected by water standing 10 in the pits. 11 When there is water standing in the pits it is influenced by rainfall and we just went through a cal-12 culation where Mr. Hicks showed that, or attempted to show 13 that rainfall, that volume of rainfall or the concentra-14 tions, the final concentrations due to input from rainfall 15 were very low, or had very little effect on the situation. 16 On the contrary, I think that on any 17 given day when you're having a rainfall event and have a 18 small amount of water in the pit, it could be quite -- have 19 guite an impact. example, if you had four For to five 20 inches of snow fall on a pit or if you convert that to rain-21 fall, a half an inch of rain, and you get -- include the 22 runoff from any -- from the sides of the pit going in, and 23 you add that to six or eight inches of -- of standing pro-24 duced water, I think that can lower the -- the benzene con-25 centration in the -- or lower the concentration of pollut-

1 96 2 ants in the pit. For example, in Table I of Mr. Hicks' ex-3 hibit, I think that was Exhibit Number One, I believe, that 4 he prepared, he showed that there is one pit that had a con-5 centration of 10.2 milligrams per liter, and that was -- I 6 believe that to be more representative when you have stand-7 ing fluids out there, more representative than the average 8 of 3.58. 9 So I'm going to stick with the 14. Do you agree with Mr. Hicks' analysis 10 0 that his study of three monitor wells in essentially a one 11 time situation is enough to show that a 5 barrel exemption 12 is adequate to protect groundwater supply? 13 А Well, I think that the study shows that, 14 for the dates that he sampled and the locations again. he 15 sampled, those were the results he got. I think that there 16 is a wide variety of conditions in the San Juan Basin, in 17 the alluvial areas of the San Juan Basin, as I testified to 18 earlier, with a wide range of different hydraulic conductivities and aquifer conditions. 19 I also wonder about the measurement of 20 the gradient and the reversability of the gradient due to 21 seasonal variations from the river and other -- other 22 things. 23 So I would say that more than three would 24 be necessary. 25 I now show you exhibit -- what's 0 been

1 97 2 marked as Division's Exhibit Number Eighteen, and would ask you to explain that for us. 3 A Yes. I have copies available for the 4 Commission and also for persons in the audience. 5 I'll put a title on this. This is an 6 aguifer simulation using the random walk model. 7 At the April the 3rd hearing I was asked 8 Kellahin down there whether or not an aquifer model by Mr. 9 would provide a more realistic view of what may be happening 10 in the aquifer, more realistic than the simple dilution, and made the simple dilution calculations I was 11 when 1 usina just that, simple dilution to show that there may be a prob-12 lem from -- from these discharges. 13 In any event, since April 3rd I went and 14 used an aquifer simulation model and I'd like to discuss it 15 real briefly here. 16 This is called the Random Walk Solute 17 Transport Model. It takes the simple mixing model that I 18 showed at the February 20th hearing and adds the effects of 19 convection and dispersion and some of the chemical actions, such as retardation that were talked about by Mr. Schultz on 20 April the 3rd. 21 This particular model has been developed 22 by Thomas Prickett and others and is documented in the Illi-23 nois Water Survey Bulletin No. 65. It's a standard model 24 used by hydrologists to simulate solute transport or trans-25 port of contamination and pollutants in aquifers.

1	98
2	This particular, these particular simula-
3	tions were used were run on an IBM PC. Mr. Prickett of-
4	fers a short course in connection with the National Water
5	Well Association and the PC, and the computer program run on
6	the IBM PC was obtained through attendance at that short
	course.
7	The highlights of this particular program
8	are the groundwater flow solutions are formulated by finite
9	different methods using grids and nodes. Solute transport
10	uses mixing techniques and dispersion effects are simulated
11	using a random walk statistical method. All of this this
12	particular documentation is available and I have copies of
13	it in case anyone would be interested.
14	The program can simulate water two dimen-
15	sional flow in aquifers under artesian or water table condi-
16	tions. It provides for output plots of solute concentra-
	tion, distributions, and the effects of dispersion and dilu-
17	tion of waters at various concentrations can be shown by
18	taking a look at those graphical outputs.
19	And I'll just briefly go through the
20	package. It's what it is, I'm not going to go through
21	and discuss each one in detail but it's there for you to
22	take a look at.
23	My assumptions are given on the first
24	page. The first two columns list the assumptions, the same
25	assumptions that I gave in Table IV of my February 20th tes-
	timony, aquifer thickness, transmissivity.

1 99 The last column is a Flora Vista aquifer 2 characteristics that were obtained through a report that I 3 mentioned in my previous testimony on April the 3rd. 4 The log of those wells show a thickness 5 the area where the wells are completed of about 15 feet in 6 of aquifer thickness, saturated aquifer thickness. The 7 total depth of the wells is about 23 feet in that area. 8 Calculations show 100 feet per dav hydraulic as 9 conductivity. Transmissivity is calculated Erom the 10 thickness of the -- saturated thickness of the aquifer and hydraulic conductivity. 11 The dispersivity coefficients in the X 12 and Y direction are -- were -- are sort of averages for 13 have been published for alluvial numbers that type 14 alluvial type aquifers. These particular conditions, 15 numbers come from Tom Prickett's short course notes. 16 Regional flow was calculated as indicated 17 and using the information provided earlier, February 20th, 18 in the February 20th discussion. 19 The calculation of particle mass and pollutant lows are given on the next page and the final 20 concentration -- final concentrations are calculated giving 21 a calculated use in the equation shown at the bottom of page 22 number two. 23 And I'll just briefly run through these. 24 Each page provides the conditions. Each cover page provides 25 the conditions under which the model was run, the inputs for

1 100 2 The source sink on page one indicates the number of gallons per day flowing into the site, which is 5 3 barrels per day. 4 Simulation information and number of 5 particles is given at the bottom of page 1.1. 6 On page 1.2 an output plot for thirty 7 days of simulation at two -- at 210 gallons per day input 8 and a concentration of benzene at 14 milligrams per liter 9 are shown. 10 The simulation is given in parts per billion. 11 The New Mexico Water Quality Control 12 Commission limit for benzene concentration in groundwater is 13 20 parts per billion and as you can see, just after -- is 14 thirty days with 5 barrels per day input, the computer 15 simulation shows that you have numbers in excess of the 16 standard in a sort of an oval shaped plume to the right and 17 left of the injection point. The injection point in all 18 these plots is listed as 00; sometimes it's listed as having an I and sometimes it has an actual number. 19 You can follow on page 1.3 for 50 days. 20 On that first simulation the well was shut off or the 21 discharge was shut off at 50 days and the simulations for 22 one year and for two years follow on the subsequent pages, 23 showing how that even after two years the -- and for these 24 particular conditions your concentrations still exceed the 25 standard of 20 parts per billion.

1	101
2	
	Page 1.6 we have another simulation using
3	one barrel per day and a on page 1.7 after 30 days you
4	can see that the standards have been exceeded at some dis-
5	tance, 15 feet or so, away from the source.
6	At the end of one year the standard is
7	exceeded at 70 70 feet away from the source.
	At the end of two years you can see that
8	the standard is exceeded 120 feet away from the source in
9	the direction of the groundwater flow, which is from left to
10	right.
11	And I followed that on page with other
12	calculations on the first section labeled Section I. Those
13	particular calculations use a hydraulic conductivity of 187
14	gallons per day per square feet, which is equivalent to 25
	feet per day.
15	In Section II I chose the upper limit of
16	hydraulic conductivity as reported by a pump test and also
17	reported from the literature, and that would be 2500 feet
18	per day. That is a pure almost a pure gravel, very
19	little fines mixed in, very fast moving subsurface water.
20	You can find that in the subsurface for limited in
21	limited areas, that we have very good, very well sorted ma-
22	terials and gravels and cobbles.
23	The same simulation is shown on pages 2.2
	and 2.3 for 5 barrels per day. It shows that very rapid
24	movement of the pollutants away from the injection source,
25	it's very quickly, and at the end of a year you have pollut-

1	102
2	ant movement, well, at the end of a year you have pollutant
3	movement 600 - 700 feet away in excess of the standards, and
4	that's on page 2.4.
	At the end of two years you have movement
5	a couple of thousand feet away and you also have movement in
6	the horizontal direction, as well. That's on page 2.5.
7	On page 2.6 we talk the same simula-
8	tion is repeated for one barrel per day and the effects of
9	mixing and dilution become very apparent with the high con-
10	ductivity of 2500 feet per day.
11	As you can tell, you have fast movement
12	and lower concentrations. Again my feeling is that you
13	those numbers of 2500 feet per day are certainly reported in
14	the literature and that one particular pump test right next
	to the river showed the hydraulic conductivity of that of
15	that high value.
16	The final section, Section III, shows
17	some values from Flora Vista area, and that area is right
18	next to the river, too, and originally I expected to find
19	equally high values of hydraulic conductivity based on the
20	fact that it is right next to the river. The water levels
21	are influenced by recharge and discharge, some are seasonal
22	areas, and so on. However, the pumping tests that were done
23	as part of a or actually specific capacity tests that
24	were done as part of a study about the availability of water
	for additional well fields, showed contrary to having high
25	conductivity, it had about 100 feet per day, and I used that

(
1	103
2	number in my final simulation in Section III for concentra-
3	tions or for discharges 14 milligrams per liter and values
4	of discharge ranging from 5 barrels per day down to 2.5 gal-
5	lons per day.
	And the first set of simulations is for 5
6	barrels per day. At the end of sixty days you have concen-
7	trations scattered throughout the plotted area that are
8	about 30 times the health standard at 300 parts per billion.
9	Again the health standard is 10.
10	At the end of one year, according to the
11	simulation, you have the health standard exceeded at a dis-
12	tance of 250 feet away from the injection site.
13	At the end of two years you have the
	standard exceeded at 350 feet away in the direction of
14	groundwater flow, and at a distance of about, oh, 100 feet
15	either side of the or either side perpendicular to the
16	direction of groundwater flow.
17	And that's for 5 barrels per day.
18	The same simulation was recorded on page
19	3.7 for two years at one barrel per day and in that particu-
20	lar case I had the coordinates a little bit tighter and it
21	shows concentrations within 100 feet either side of the in-
22	jection point exceeding standards in the direction of flow.
	In some cases 10 to 100 times, yeah, 10 times the standard.
23	It was repeated again on page 3.8 and 3.9
24	for a half barrel per day, or 21 gallons per day, and that
25	one also shows exceedence of the standard of 10 parts per

1	104
2	billion as far as 250 feet away for 730 days of simulation.
3	Or two years.
4	And the last output shows 2.5 gallons per
5	day and after two years you get numbers over the area that
6	are less than the standard for benzene.
° 7	And I'd like to draw some conclusions
	from this simulation for two years of testing or two years
8	of computer simulation.
9	At low hydraulic conductivity conduct-
10	ivities of the area the simulations show benzene concentra-
11	tions exceeding the standard of 10 parts per billion in the
12	vicinity of the discharge point for all volume discharges.
13	High high hydraulic conductivity simu-
14	lations show benzene concentrations exceeding the standards
15	at all 5 barrels per day simulations. In other words, where
16	I simulated 5 barrels per day going into the ground, the
	standards were exceeded at all times, even with this very
17	high discharge rate, or flushing rate of the aquifer.
18	At lower volumes of discharge, half bar-
19	rel, one barrel per day, the average concentrations were
20	less than the standard in some of the simulations but you
21	may have some localized high concentrations within that
22	area.
23	At the Flora Vista, using the Flora Vista
24	aquifers values, and they were some real world aquifer
	values, it shows that benzene exceeds the standards as dis-
25	charges of a half barrel per day or greater, and approaches

-	
1	105
2	the standard of 10 parts per billion at 2.5 gallons per day
3	discharge.
4	In summary, I'd like to say that use of a
5	more sophisticated model, taking into account both the real
6	world aquifer parameters and some of the chemical informa-
7	tion presented by Mr. Schultz and others, shows contamina-
	tion still occurring at all levels of aquifer for all
8	levels of aquifer permeabilities in the area at discharge
9	levels of 5 barrels per day.
10	Contamination at discharge levels of a
11	half barrel per day were shown to exist in the computer sim-
12	ulations for all hydraulic conductivities inputted into the
13	computer except for those exceptionally high hydraulic con-
14	ductivities that I mentioned of 2500 feet per day.
15	Since hydraulic conductivity values can
	can vary widely over an area, due to geologic effects and
16	deposition, and such, my conclusions are that we still
17	should protect for lower discharge values by requiring that
18	that pits have linings.
19	And that concludes my and certainly we
20	should not let pits discharge at 5 barrels per day without
21	lining, based on these computer results.
22	Q Okay, Mr. Boyer, just to summarize your
23	testimony here, what you've done here is use what you call a
24	random walk model and just
25	MR. KELLAHIN: Mr. Chairman, I
23	object to counsel summarizing the witness' testimony.

1 106 2 That's improper and I object to it. MR. STAMETS: Okay. Will you 3 ask the witness to summarize his testimony, please? 4 I believe the MR. KELLAHIN: 5 witness has just summarized his testimony, Mr. Chairman. 6 MR. STAMETS: Are you satisfied 7 with your summary, Mr. Boyer? 8 А Yes. 9 0 Mr. Boyer, was your -- when you did this 10 modeling, you simply used the same assumptions as with your 11 previous simple mixing model. A Yes, and I used the same -- same assump-12 tions with the exception of the Flora Vista values, which 13 were not included in the simple mixing model because I 14 didn't have those available. 15 I also included as part of my assumptions 16 additional values that -- from the literature and from Mr. 17 Schultz' testimony on retardation factors for benzene. 18 And basically does the use of this Q more 19 complex random walk model support your findings in your earlier modeling? 20 Yes, generally it does. It shows that --A 21 if there are any differences from the earlier modeling, is 22 that the effects of dispersion and dilution, as would be ex-23 pected using a complex model, have an effect on diluting 24 some of the -- some of the benzene values that are close to 25 the standard. In other words, as you get further away from,

1 107 2 as you get further away from the source of the pit, those -those numbers or those mechanical effects act on the concen-3 tration numbers to give lower concentration values. 4 However, the effects of dispersion are 5 not so great as to eliminate a health hazard with the con-6 centrations. 7 0 Thank you. 8 MR. TAYLOR: I have no more 9 questions. 10 MR. STAMETS: I presume that there will be some questions of Mr. Boyer? Correct. 11 MR. KELLAHIN: Absolutely. 12 MR. STAMETS: Would you like to 13 consider this over the lunch hour and then start about 1:00 14 o'clock? 15 MR. KELLAHIN: At the pleasure 16 of the Commission. 17 MR. STAMETS: Let's do it. 18 We'll recess till 1:00 o'clock. 19 (Thereupon the noon recess was taken.) 20 21 MR. STAMETS: The hearing will 22 please come to order. 23 Kellahin, you have Mr. some 24 guestions. 25 Yes, sir. MR. KELLAHIN: Thank

1 108 2 you. 3 RECROSS EXAMINATION 4 BY MR. KELLAHIN: 5 Q Mr. Boyer, I'd like to direct your 6 attention back to the status of your groundwater monitoring 7 study at the Flora Vista site. 8 I, sir, have also forgotten the specific 9 dates involved, but I believe that after the April 3rd 10 hearing in this case you were in the process of and 11 subsequently have obtained water samples from the various groundwater monitoring wells that you have placed in the 12 vicinity of the contaminated Flora Vista water well. Ís 13 that true? 14 That's not quite correct. We sampled the А 15 -- when we installed the monitoring wells we could not use a 16 hollow stem auger or other types of drilling equipment other 17 than a heavy duty rig because of the presence of large 18 cobbles and boulders. 19 So instead of that methodology we used a backhoe, since the water table was so low, to excavate the 20 pit and then put a steel drive point and a -- with a piece 21 of pipe attached to it. 22 Now the samples that we got were gotten 23 at the completion of the digging of the backhoe and before 24 the pipe was put in. 25 0 Mr. Kendrick identified for us on one of

1 109 2 his exhibits earlier this morning, I believe some five sites around the Flora Vista contaminated water well. Were there 3 in fact five sites? 4 A We put in five drive points and casing 5 points. 6 Q Have you had an opportunity to look at 7 Kendrick's schematic and does that reasonably within a Mr. 8 few feet show the location of these points? 9 Yes. A 10 0 Have you taken samples from each of those five points at some time prior to today? 11 Α Not from the points. As I said, we 12 sampled the dug pit but not the --not the points. 13 All right. Q 14 A Because we did not finish developing the 15 wells so that they could -- monitoring wells so that they 16 could be sampled. 17 We've got samples, then, \mathcal{Q} from the pits 18 the backhoe dug --А Right. 19 -- at the same locations, then, where you 0 20 will or now or later put the drive points in. 21 Right. A 22 C All right. Did you take -- did you, in 23 terms of having the ground -- the backhoe dig the ground at 24 these five points, did you take care to use a clean backhoe 25 and all those kinds of things that Mr. Hicks did in his

1 110 2 work? We steam cleaned the bucket each --3 A Yes. each time in between digging the pits. 4 And I assume that the sampling technique 0 5 the same that you have applied yourself to the samples is 6 that were discussed in a prior hearing and you did all those 7 things consistent with the standards of your profession? 8 Α Yes. 9 \bigcirc And have you subsequently, then, had the 10 submitted to a qualified laboratory and had them samples analyzed for concentrations of benzene? 11 A Yes. 12 And what were the results of those ana-0 13 lyses with regards to the benzene concentrations? 14 From that one grab sample at the time A we 15 dug the pits for the drive points and monitoring wells, 16 there were no detectable benzene levels in the results. 17 0 When we discussed what the methodology is 18 of an hydrologist to go about studying a site of potential 19 contamination we discussed three different levels of investigation. 20 We previously talked about taking certain 21 hydraulic parameters, making some assumptions, and doing a 22 simple dilution calculation. Do you recall that? 23 We talked about the next level of inves-24 tigation would be to take information that you used in the 25 dilution calculation and use a little more sophisticated

1 11 2 mathematical models such as the random walk computer. Α Yes. 3 0 And talked about that. And you agreed 4 with me, I believe, that the final and last step in making a 5 groundwater study would be to go out and actually monitor 6 the groundwater with pits like you've described at Flora 7 Vista, that kind of process --8 А Right. 9 Q -- that you and Mr. Hicks have conducted. 10 I believe you agreed with us that in And terms of investigating groundwater contamination, that if we 11 apply the same rationale that the EID did in terms of ap-12 proving discharge permits, that as an applicant came before 13 EID with a simple dilution calculation that did not bust 14 standards, using agreed upon assumptions, then we could 15 grant a permit. 16 Α Right. 17 And we found that if the simple dilution 0 18 calculation still showed that we busted the benzene standthat we could go to a more sophisticated mathematical 19 ard, model and use the random walk and see what happens. 20 Agreed? 21 A Uh-huh. 22 A11 right. We found if the Q computer 23 modeling of the site shows that you did not bust the stand-24 ards, then we could approve the permit. 25 Α Right.

1 112 2 0 And if we showed that the computer modof the site showed that it busted the eling standard, 3 we could go and actually conduct groundwater monitoring and 4 have site specific data, actual information to show us 5 whether we are posing a risk to the groundwater. 6 Α That's correct. 7 0 All right. And if the groundwater moni-8 done by you or someone else is correct and accurate toring 9 and shows no levels of contamination in excess of the stand-10 ard, then we could get the permit. Α Yes. 11 All right. You've commenced on a process Q 12 of developing information on that second level by using ran-13 dom walk, have you not? 14 Yes, sir. А 15 0 The random walk mathematical process has 16 been conducted on how many different sites by you, sir? 17 Α On how many different sites? 18 Yes, sir. 0 It was run on the information and the --19 A using the assumptions that were presented in the February 20 3rd hearing plus the information, aquifer parameters on the 21 Flora Vista, so it used -- I ran it with several sets of 22 aquifer parameters based on a range of values both from the 23 literature and also based on actual site numbers that I came 24 up with. 25 I had -- the only site, I guess you could

1 113 2 say, the only, site specific information I've run it for is the Flora Vista area where I use the information that was 3 gathered from a hydrologic study to get the actual aguifer 4 parameters and thickness at that site. 5 I didn't ask my question very well 0 but 6 that's the answer I was trying to elicit from you, is that 7 you're using the hydraulic data for the Flora Vista site so 8 that you can model with random walk what the computer will 9 project in the way of contamination at Flora Vista. 10 Α Okay. Q All right, is that right? 11 Uh-huh. Α 12 Q Okay. In using the random walk, what 13 were the source term parameters that you used in running any 14 one of the three computer runs that you've discusser ear-15 lier? 16 Α What were the source terms? 17 Q Yes, sir, in terms of volume and concen-18 tration that you put -- plugged into the computer? A Okay. The -- as discussed on that third 19 ran it using different -- different volumes section, I in 20 barrels per day or gallons per day, five gallons per day, 21 one gallon per day, a half gallon per day -- excuse me, 22 let's try that again. 23 Five barrels per day, one barrel per day, 24 a half barrel per day, and 2.5 gallons per day. 25 Now, the concentration that I ran that at

1 114 2 I used the same concentration, 14 milligrams was 14. per liter benzene, for everything in all those runs. 3 Do you have, sir, a copy of Tenneco's Ex-0 4 hibit Number Four out of Mr. Hicks' book? He refers to that 5 as Table I, do you have a copy --6 Α Yes. 7 -- of that? Q 8 All right, sir. 9 MR. KELLAHIN: Mr. Chairman, I'll give you an extra copy of Table I for your reference. 10 0 In running the computer model, then, you 11 used a benzene concentration of 14 milligrams per liter. 12 Α Yes, the same level that I used in the 13 February 3rd simple dilution mixing. 14 Mr. Hicks has prepared and 0 All right. 15 compiled for us on Table I information from the OCD field 16 data identifying wells and indicating on the tabulation 17 whether it's an analysis of the benzene concentration from 18 the separator or from the pit and he's put it on the table. Α Yes. 19 Do you have any disagreement with the ac-0 20 curacy of the information on that table? 21 I don't have any. We have not yet No. Δ 22 seen the information from the Geoscience Consultants but 23 other than that, I'm personally familiar with the results of 24 the table. 25 I meant to exclude, sir, the Geoscience 0

1 115 2 Consultants data and look at that portion of the table as it only reflects the OCD data. 3 А Right. 4 0 All right. When we actually measure 5 actually sample the pit water and have that analyzed, we 6 have an average of 3.58 milligrams per liter based upon the 7 sampling of one, two, three, four, five, six wells, I be-8 lieve. 9 Α Yes. 0 All right, and we look at the Flora Vista 10 sample, the third one from the top, and it shows a pit sam-11 ple of 3.2 milligrams per liter. 12 Α All right. 13 0 Have you plugged into random walk a ben-14 concentration using 3.2 milligrams per liter to zene see 15 what will happen to the standard? 16 No, I did not model at that level. A 17 0 Have you attempted to use any of the 18 field data from the Flora Vista well, including the analysis of the pit water or any of the groundwater monitoring re-19 sults that you've obtained from Flora Vista in order to cal-20 ibrate your computer? 21 I haven't, and I might add the pur-No, A 22 pose of using the Flora Vista numbers was for reasons of 23 comparison between the number of 25 feet per day hydraulic 24 conductivity and 2500 feet per day hydraulic conductivity. 25 am -- was not attempting to model any I

1 116 2 contamination movement at Flora Vista. I was attempting instead to show what would happen with those aquifer parame-3 ters of -- Flora Vista aquifer parameters and a concentra-4 tion of 14 milligrams per liter. 5 By no means am I attempting to provide a 6 model of movement, or any alleged movement from the pit. I 7 was just using those numbers because they were numbers that 8 became available as I was looking at the record -- or record 9 of the file at Flora Vista. 10 0 Would it be acceptable methodology for a hyrdrologist to take the field data that you have developed 11 from the Flora Vista site and use that information to cali-12 the random walk sampling or computer runs for that brate 13 site? 14 If you were, again, if you were A at-15 tempting to model the movement at Flora Vista, yes, certain-16 ly should. You could use as much of the data as you have in 17 any model. 18 Again, that is not my -- was not my purpose in putting data in for Flora Vista. 19 I was just using the Flora Vista data again to provide what I felt were real-20 istic aquifer parameters in between the range that I gave 21 originally, that Mr. Hicks has given in his testimony. 22 You'll have to help me understand, 0 Mr. 23 Boyer, I'm having trouble here. 24 If we've got actual field data that shows 25 an absence of contamination of groundwater from a suspected

1 117 of an unlined pit, using the volumes we have in 2 Flora use and the actual groundwater monitoring shows no con-Vista, 3 tamination, why would you not want to take that data, plug 4 it into the computer, and use that to determine whether or 5 not you can predict contamination for other wells that have 6 not been subject to groundwater monitoring? 7 I'm -- I'm a little bit not understanding Α 8 what you're asking here. 9 The monitor wells we dug have not yet 10 been developed and have not yet been completed sufficiently to get samples from them. 11 The data from some testing that was done 12 1981 as to the aquifer parameters was used to come in up 13 with some simulations using 14 milligrams per liter. 14 Now I did not run a model using 3.2 mil-15 ligrams per liter, but that, I could easily have done that. 16 At the time, again, I was using just the average values of 17 concentrations that I had from the February 3rd hearing and 18 to make this model for -- strictly for possibly interpretive purposes as to compare the output from this model, the ran-19 dom walk model, with the simple dilution calculations. 20 And I did that and again I was not in-21 tending to try to model this, the Flora Vista. If I did, I 22 think I would have gone in and put in the pumping wells, for 23 example, Flora Vista wells; the well field produces a cer-24 tain capacity per day. That could have been entered into 25 the model very easily.

1 118 2 The model could have been oriented directly to the groundwater flow region in there. 3 Once we come up with the numbers for gradient we could throw those 4 in there, and there are a lot of things that could go into 5 the model if I intended to use the model for modeling Flora 6 Vista. 7 And I didn't. I just was making an in-8 terpretation of -- of aguifer parameters from the site and I 9 did not intend to model the contamination. That was not the 10 purpose. 0 We have water samples and analysis from 11 the Flora Vista sites that show after you analyze them that 12 we do not have concentrations of benzene in excess of the 13 standard. 14 Α Right. 15 Do you expect that information to change 0 16 once we put the drive points in and take additional samples? 17 have no way of knowing at this time. А 1 18 The wells need to be pumped. They need to be developed. 19 You know, I just don't know. The study has not yet gone to It is very preliminary. The results I took at completion. 20 the time I took the samples have been reported and show no 21 contamination, at least in those wells, at the time they 22 were taken. 23 the study is going to show when we What 24 get to going and completing it is something else again. Ι 25 cannot speculate right now.

1 119 2 Why weren't these monitoring wells devel-0 oped immediately at the time the backhoe dug out the pits 3 for you? 4 Because the back -- because when we A put 5 the earth back into the backhoc -- into the pit, some of the 6 water and some of the fines went into the wells. The back-7 is not the usual way to put in monitoring wells. It hoe 8 was just that this case we needed -- we -- in the absence of 9 having a heavy rig that could break through the boulders 10 that were in some cases up to a foot in diameter, a backhoe 11 was the most expedient way to do it. When the wells have been properly devel-12 oped and purged, I think that they will provide additional 13 data. 14 I have nothing further, you know, in the 15 way of factual information to offer at this time. 16 Can you use, I'm not sure you have 0 and 17 let me ask you this about the computermodeling, can you use 18 the computer modeling, the random walk, upon which to base a 19 study to determine whether or not we ought to have the continued use of the unlined pits, subjecting them to 5 barrels 20 a day or less, can you use that to predict something in the 21 vulnerable area? 22 I think -- I think it -- I Yes. think A 23 within the limitations of the model, as I've discussed, it 24 be very useful. Certainly is a much better tool than can 25 going out and looking at a site and saying you don't have

1 120 2 any contamination. It provides known mathematical and physical laws and combines them together to provide some idea of 3 what can happen when you add a certain volume of contami-4 nants in certain concentrations. 5 You haven't reached the level of your 0 6 studies that have done that yet. 7 A I have done that -- I have done that for 8 generalized ranges of values. 9 Now, again you're talking, if you're 10 talking about site specific things at Flora Vista, there was no attempt to model the situation at Flora Vista just to use 11 the aquifer parameters that were available from a report. 12 Hicks used an aquifer parameter from Mr. 13 Bill Stone's report. 14 Again, this -- there has not been, or at 15 least not as readily available, a wide range of transmis-16 sivity and hydraulic conductivity values in the literature 17 for this area. 18 You know, both Mr. Hicks and myself, and of the study committee, are using what members is 19 other available, plus what is available from textbooks to come up 20 with the range of values. That is why I'm not trying to 21 base conclusions on just one hydraulic conductivity value 22 and one aquifer thickness. You've got to look at a range of 23 expected values and I have done that. 24 the methodology such that you would Is 25 take the random walk computer and take for those well types,

1 121 2 say represented by the Flora Vista site, take that actual field data and plug it back into the computer model or cali-3 brate the computer model based upon that data and then make 4 some computer runs after you've calibrated the model? 5 Α Yeah, certainly we could do that. 6 And after that's done, then you now have 0 7 fine tuned or sensitized the computer with actual data that 8 you can then use to develop some projections about how the 9 other pits and other wells of this type are going to handle 10 the produced water that's put in those pits. 11 A You're talking about -- you're talking about domestic water wells and the effect of the domestic 12 water wells on the -- on the pits? Is that what you're --13 0 I didn't do that very well. What I'm 14 talking about is once we have calibrated the computer model 15 with the Flora Vista data. 16 For the Flora Vista site? Ά 17 Yes, sir. Q 18 А Okay. 19 Q Then we take out the literature, you guys and you find wells that are like the Flora do what you do, 20 Vista site, you find them on paper. They have the same gen-21 eral hydrology parameters. You've got the large cobbles and 22 you've got all those kind of things. All right. 23 Α Okay. 24 All right, you can take the calibrated Q 25 then, use the volume of water at site X that has the model,

1 122 2 same general kinds of hydrologic parameters, run the model again on that site, and see it it will bust standards with-3 out having to go to groundwater monitoring at that other 4 site. 5 Α Oh, I see what you're -- where you're 6 going. 7 0 I want to use the model for somthing. We 8 built it, let's do something with it. 9 Ά Okay. I think that -- I think that one 10 of the things that are inputs to the model or in any study, if you go out and you take a look at your gradient, 11 you qo out and take a look at your -- what your individual monitor-12 ing wells show, and because of the, if the model is specifi-13 cally calibrated for the Flora Vista site, you have the -14 you have the water levels in the monitor well to put in. 15 You have the elevations. You have the pumping data from the 16 community system, and everything else, then you can use that 17 model to make predictions based on pages in the pumping of 18 the community system, possible entrance of pollutants, or 19 anything else. model has been calibrated for The that 20 particular site using those particular configurations of 21 wells and distances, and if you had transmissivities for 22 each particular well you could put that in there, and every-23 thing else. It would be very site specific. 24 When you do a general aquifer model for 25 anything from an individual site to an individual -- to а

1 123 2 it is a very site specific type of thing that will basin. tell you for pumping at 200 feet away from this well and a 3 pit over here, and so on and so forth, it is -- when you get ₫ that information, the T and the S's, and you put that into 5 the computer, that is specific information that has been 6 generated for one particular well and one particular site. 7 and then you can run the model varying all those different 8 conditions. 9 You cannot take that same model with 10 those same wells and lift it wholesale to another site. You can use the same aquifer parameters if they're similar, and 11 do it that way, but you can't -- because every site is dif-12 ferent, you cannot, you know, just move a calibrated model, 13 say, on a certain grid of a couple hundred yards, and move 14 it to another site. It just -- you cannot do that. 15 All right, let's assume that within the 0 16 vulnerable area we have well types like the Flora Vista in 17 which we have aguifer parameters that are similar or identi-18 cal to such a degree that you're comfortable. 19 Α Uh-huh. All right, then in terms of running the 0 20 runs to predict what's going to happen at another computer 21 well, the factor that we change would be the source term. 22 If everything is -- if you're -- if А Yes. 23 can make an assumption that at one particular unlined you 24 pit your saturated hydraulic conductivity is a certain 25 certain value, then the rest of it, and you know the approx2 imate thickness of the water table, then the rest of it is 3 -- you can, you know, put into the computer along with concentration and make some predictions.

1

And so if we want to make some predic- \mathbf{O} 5 about what is happening at another well of the Flora tions 6 Vista type somewhere else in the vulnerable area, we don't 7 have to go out in the ground and start drilling monitoring 8 wells and taking an analysis from those samples in order to 9 come up with some reasonable projection about what will happen at that site? 10

A Yes, that is correct. That's why we do the -- the whole purpose is to come up whether you have a site where you have a concern with possible groundwater contamination or you have a site where you have no --no worries about it, based on the types of discharges we're talking about.

16 Q Just a moment. I think I understand but
17 I want to make sure it's clear on how we calibrate the ran18 dom walk for the Flora Vista data.

If we have all the hydraulic parameters 19 that we can agree upon for Flora Vista, and we have the ac-20 tual groundwater monitoring and we find from the monitoring 21 that we either cannot detect benzene or that at wells some 22 near the pit we have got a certain magnitude of point ben-23 zene concentration, and let's assume that it's within the 24 standard, can you take that information and back calculate 25 benzene concentration or the source term that you plug the

124

1 125 2 into the random walk so that you can make the computer simulate and repeat what the groundwater monitoring is going to 3 tell you around that site? 4 A I'm not sure if that is a capability of 5 that particular model or not. There are computer models 6 that -- that you can, you know, plug in your head and con-7 centration data and come back and -- and come up with other 8 numbers. 9 I'm not that familiar with -- with the 10 details of the main frame version of random walk as to whether or not you can indeed back out of initial conditions 11 or if you can just move forward. I'm not that sure about 12 that. 13 Well. let's assume either we can do 0 it 14 with random walk or outside of the program you as a hydrolo-15 gist could back out the concentrations and then plug in a 16 source term that's accurate based upon field data into the 17 computer. 18 A Yeah, there might be models that could do 19 that, yeah. And that's entirely acceptable as a hy-0 20 drologist in order to calibrate the model. 21 Α Right. 22 At this point in your study, Mr. Q Boyer, 23 you have what I will call an uncalibrated computer run on 24 Flora Vista type wells. 25 A I have a -- I have a model that is more

1 126 complex than the simple mixing model that will show what the 2 effect of certain -- the input of certain aquifer parameters 3 and certain concentrations will have on an idealized aquifer 4 and that is as much as I am trying to -- or saying about it 5 right now. 6 I'm saying that you can get a feel or an 7 idea of what contamination will do, how fast it will move, 8 what the concentrations will be, based on these physical 9 laws and the physical parameters of input. 10 I am not trying to, as I stated earlier, make a model of Flora Vista's particular situation. 11 0 We've not taken the model and using the 12 data developed from the field, field water, groundwater 13 quality data, that we've got either Flora Vista or one of 14 these other sites Mr. Hicks talked about some, you have not 15 yet done the calibration of your model to take that field 16 data into consideration. 17 NO. Α No. 18 Q Thank you, sir. MR. STAMETS: Ms. Pruett. 19 20 CROSS EXAMINATION 21 BY MS. PRUETT: 22 I think at one point there was some con-0 23 fusion, I believe, at least in my mind, I thought I heard 24 two different numbers for New Mexico water quality standards 25 on benzene. 20 parts per million or --

1 127 2 Α No, 10. 0 Okay. I just wanted to get 3 that straight. 4 I believe Mr. Kendrick stated in his tes-5 timony that he doesn't know of any way to test for natural 6 gas in water. 7 Have you ever done those sorts of tests 8 yourself? 9 А Yes. 10 0 What methods have you used? There's a method called the head 11 Α space test and it uses the same -- the same 40 milliliter vials 12 that we use to collect aromatic purgables in, and what you 13 you take a sample and instead of filling it up like do is, 14 you would do for aromatic purgables, you leave it about half 15 filled and then the State Lab will run a syringe in there 16 and take a sample and record it and guess microliters, or 17 microliter per liters, or something like that. 18 that a commonly used and 0 Is accepted method for testing for natural gas? 19 Α Yes. 20 Q Okay. Regarding --21 Excuse me, natural gas in water. Α 22 In water. Regarding the Geosciences re-Q 23 port, did the fact that they didn't find any benzene contam-24 ination convince you that there are no other problems at 25 those sites?

1 128 2 Well, for the wells they sampled they did A not find benzene and some of my concerns regarding -- re-3 garding that were brought out earlier, but also I haven't 4 seen any data presented for any of the other things that we 5 look for when we -- under the Water Quality regulations on 6 any of the other standards. 7 We haven't seen the information for TDS 8 or chlorides or sulfate, all of which are parameters of con-9 cern. 10 How long does it take to perform a speci-0 fic specimen test? 11 Α Thirty seconds. 12 Q Can you -- have other parameters such as 13 chlorides, TDS, and phenols been found in produced water? 14 A Well, we sampled -- we samples TDS and 15 chlorides and found that I would expect phenols to be also 16 in there. No, I have not analyzed any of my produced waters 17 for those samples. 18 I believe, however, some other samples were analyzed for produced waters, I mean for phenols, 19 the ones --20 Can you make any generalization about the 0 21 behavior, for example, of chlorides in relation to what 22 we've seen in the behavior of benzene with regard to travel 23 time or effects of attenuation? 24 Chloride is a very convervative parameter Α 25 as far as sampling goes because it moves essentially with

1 129 2 the groundwater. Very little -- there's very little attenuation that you would expect from -- in chlorides, whereas 3 you might have attenuation of other inorganics or organics 4 in groundwater movement. 5 So any exemption based solely on benzene 0 6 data would fail to address any potential threat to ground-7 water posed by these many other contaminants, such as chlor-8 ides or TDS. 9 That's correct. Α 10 you believe that the three wells 0 Do studied by Geosciences are indeed representative of the 1200 11 or 1500 produced water pits in the San Juan vulnerable area? 12 Α Well, I believe that there a wide range 13 of conditions in the alluvial aquifers, as I mentioned in 14 some of my testimony about wide range of conductivies and so 15 on and so forth. 16 The information presented gives some 17 generalized estimates and I -- I would say that they aren't 18 representative. I think that you would need additional data 19 to determine what is representative. Thank you. Regarding the Flora 0 Vista 20 site, do you now deep the Flora Vista Water Association 21 Flora Vista Water Users Association wells were? 22 Α They're relatively shallow, at depths of 23 about 23 to 26 feet they run into some sort of a shale layer 24 that is at the bottom of the coarse alluvium in that area, 25 and they completed the wells to the top of the -- through

1 130 2 the alluvium and to the top of the shale. And how deep is the alluvium at that 0 3 that area? 4 A It's about 23 to 26 feet, at least in the 5 well records I've seen at the site. 6 0 Do you believe it's reasonable to con-7 clude that contamination from a deeper contaminated alluvium 8 of, say, 200 - 225 feet as presented by Mr. Kendrick, has 9 indeed contaminated that Flora Vista Water Users Association 10 well? Α At what depth? 11 The 225. 0 12 A If there were no other artificial path-13 I would find it difficult to believe that there could ways, 14 be contamination in that manner. 15 Why? 0 16 Α Well, again if there is a basis -- if 17 there is indeed a shale or confining layer, you get very 18 little movement through a confining layer, and the only way 19 you would get movement is if you had artificial penetration, such as other wells in the area that went all the way 20 through; such as oil and gas wells, for example. 21 Again, assuming that the Flora Vista 0 22 Water Users Association well is somewhere shallower than 25 23 - 23 feet, do you believe it's reasonable to conclude that 24 contamination from the blowout from the well to the west is 25 responsible for that contaminated well?

1 131 I would conclude that that would be very 2 Α unlikely. In between the -- in between the sites you have 3 other domestic wells that have -- that act on the aquifer or ₫ change the gradient. 5 The topographic gradient in that area is 6 opposite to the direction that the contamination would have 7 to flow to get into the Flora Vista well and the influence 8 of additional pumping wells, what also must be factored in 9 there is that they are much closer to -- to the -- where the 10 blown out, where the blown out well was, and it well is would seem to me that if there was contamination as a result 11 of the blowout, that it would be detected there instead of 12 in an up gradient well over a mile away. 13 Do you think it's more reasonable to con-0 14 clude that some sort of activity at the Mary Wheeler site 15 contaminated that well? 16 Some sort of activity, yes. Α 17 Now in order to model the Flora Vista 0 18 situation, as suggested by Mr. Kellahin, what sort of -what do you need to input historical data regarding the vol-19 ume of water as to the pit and concentration of benzene and 20 the period of time over which the water was added and before 21 -- do you have that general information available to you 22 now? 23 Again, that's not the type of infor-A No. 24 mation I desired because I wasn't attempting to model the 25 Flora Vista situation.

1 132 2 0 And could you in the absence of all that additional data, reasonably use the model to simulate what 3 we would expect to see at that site today? 4 In the absence of the data, yes, I could A 5 not -- I could not run a model without having some addition-6 al inputs to, you know, to, as we talked about later, to 7 calibrate it. 8 Again it just, my particular model just 9 gives a generalized idea of what would happen at some sites 10 for those particular aquifer parameters. 0 And in order to generalize the informa-11 tion from that model to other well sites, indeed you would 12 need to input significant amounts of other data --13 Yes. A 14 -- such as I've just suggested, C wouldn't 15 you? 16 A To make it -- to make it very specific 17 to other well sites, yes. 18 If, as I think, and I can't remember who 0 19 suggested today that perhaps a reasonable alternative to a small volume exemption was some sort of pit registration 20 what sorts of information and documentation would you form, 21 like to see provided on that form? 22 I think that probably that would require A 23 a considerable amount of thought on my part. I have not 24 gone into it and I'd like to sort of reserve making any com-25 ments on that just off the top of my head, because I think

1 133 2 it would be something that needs input from myself and other people on my staff. 3 Do you think you could put together some 0 4 sort of proposed list of what you'd like to see on that form 5 as (not understood)? 6 A Yes. 7 Q I have nothing further. 8 MR. STAMETS: Mr. Chavez. 9 10 QUESTIONS BY MR. CHAVEZ: 11 0 Mr. Boyer, in your conduct of the investigation of the pollution at the Flora Vista water well, did 12 you interview people and look through other records that may 13 not have been presented here as exhibits? 14 again, I have not examined all the A Well. 15 records but there were a number of other pits on the site, 16 and currently the produced water pit is the one that is 17 lined. 18 Is the dehydrator pit lined? 0 19 A There's a barrel. It's not lined as such. There's a barrel under the end of the pipe that 20 catches stuff. 21 0 In your investigation did you determine 22 when that barrel had been placed there? 23 Α I'm not aware of the date, no. 24 Had that barrel been placed there 0 prior 25 to or after the discovery of the pollution ìn the water

1 134 2 well? A I -- I'd have to go back to the records, 3 Chavez. I think at the time -- I think at the time --Mr. 4 I'd have to go back to the records to be sure but I think at 5 the time it was placed after the discovery. 6 If Mr. Hicks sampled the produced water Q 7 in that steel drum, what would he have found? 8 A I don't know. 9 0 Have you read, in your investigation and 10 all, have you read a report on produced water in the San 11 Juan Basin put out in a magazine called The Workbook? A I have read that, yes. 12 0 If that steel drum contained only glycol, 13 crude oil, or other discharges from the dehydrator and let's 14 say that steel drum wasn't placed there until after the pol-15 lution had been discovered, would you consider that may have 16 been a source for the grease and oil found in the water sam-17 ples of the Flora Vista water well? 18 А If I understand you correctly, if the 19 drum was not placed till after the pollution was discovered and prior to that time anything that went into the dehydra-20 tion pit was -- and the pit was unlined, could that have 21 been a source? Yes, it could have been. 22 Mr. Boyer, the type of soil that exists 0 23 at the Flora Vista site, if I were to scrape away some top-24 soil and dump a bucket of water on it, what would happen to 25 that water?

1 135 2 It would disappear quickly. A So therefore, perhaps water samples which Q 3 are standing in pits are not representative of the type of 4 water which would enter the surface of the soil at Flora 5 Vista, is that correct? 6 Α At the -- at any site I think if you had 7 a separator or dehydrator that did not put out much oil but 8 mainly water and maybe a little bit of distillate, and you 9 had a sandy area, that water would enter very quickly into 10 the subsurface. I'm not sure if I've answered your ques-11 tion but I'm not sure if I understood it. 12 Thank you. 0 13 MR. PEARCE: I really would ob-14 ject to that, Mr. Chairman, that's not allowed. 15 MR. KELLAHIN: Sir, objection. 16 MR. CARR: Mr. Chairman --17 MR. STAMETS: The objections 18 are sustained. Did you talk to anybody with the industry 19 0 or anybody in the Oil Division about remedies that were 20 taken at the Mary Wheeler well site after the pollution had 21 been discovered? 22 Α I've had some general conversations, 23 you know, very -- as to all of the intricacies and Frank, 24 I am not prepared to, you know, to go into a great such. 25 amount of detail but I wasn't expecting to get into great

1 136 2 detail at this particular time on the Flora Vista situation. There is a great amount of documentation 3 in the files in EID and also, I'm sure, in the OCD files, 4 that possibly would be of some use as far as trying to eli-5 cit all the different facts and circumstances and order of 6 circumstances on this particular incident. We've heard dif-7 ferent versions from different people today and I think that 8 if there was to be a great amount of reliance on it, it 9 should all be entered into the record as an exhibit that --10 so that everybody could ascertain all the different circumstances and facts and what has been done. 11 There's a lot of it that I am not that 12 personally familiar with and I have not read that closely as 13 to the circumstances that occurred back in 1981 and '82. 14 MR. CHAVEZ: That's all I have. 15 MR. STAMETS: Mr. Carr. 16 17 CROSS EXAMINATION 18 BY MR. CARR: 19 0 Mr. Boyer, I'm going to try and understand what you've done. 20 In terms of your computer work, if I un-21 derstand what you do, is you take certain data, you run them 22 through the computer using this random walk model. 23 Α You get it -- yes. 24 0 And from that you're reaching certain 25 conclusions about contaminants that exist in the fresh

1 137 2 water. Α The potential for contaminants to move 3 and exist, yes. 4 0 How many computer runs on random walk had 5 you performed prior to doing the ones that we've had pre-6 sented here today? 7 Personally I've never -- I have never run A 8 the random walk; however, it is a well documented model and 9 it's based on hydrologic principles which I'm very familiar 10 with. 0 And what you do, you take a certain field 11 data in this case that you drew from Flora Vista area. 12 Α In one, yes, I used that as well as some 13 other stuff. 14 0 Okay, and then you supply some general 15 mathematical figures and you work these through the com-16 puter. 17 Α Right, the computer works through them, 18 right. Q And what you've got at the 19 end isn't based on any one particular well. 20 А That's right. 21 And you have not run anything that shows 0 22 any one individual simulation from a well. 23 That is correct. Α 24 0 In other words, what you have is a simu-25 lation that you believe is of general application.

1 138 Α Yes, given those assumptions that were 2 set out in the first page of the exhibit. 3 But these assumptions and these conclu-0 4 sions don't actually show a real world situation as it hap-5 pens in any one particular well. 6 A It comes as close as you can get without 7 going out and sampling -- digging essentially concentric 8 circles around a particular well and sampling each point in 9 a grid. So is it your testimony that this data is Q 10 really a real world situation that you're depicting? 11 A I think -- I think, again, within the 12 limits of the numbers I've put in and with the assumptions 13 that have been made, it is real world. 14 Does this model take into account 0 the 15 methods of attenuation that we've discussed here before? 16 Α It takes into several methods, yes. 17 Does it take in biodegradation? 0 No. A 18 And is it your testimony that that 0 does 19 not occur in the real world? 20 I think that -- I think that I have tes-A 21 tified to the fact that biodegradation does occur and I have 22 also testified to the fact as to why I didn't believe it was 23 as significant as some of the other folks. 24 I also have testified to the fact that ---25 that this gives a model of -- based on physical estimates.

1 139 But it is your testimony that biodegrada-Q 2 tion does occur in the real world. 3 Yes, I admit it occurs in the real world. Α 4 And that your model did not take that in-0 5 to consideration. . 6 Yes. А 7 Now, you have focused your work on ben-Q 8 zene, have you not? 9 This particular, yes. These runs that A I've presented today I have run with benzene, yes. 10 And the reason for focusing on benzene is 0 11 as you testified in February, that that was the more impor-12 tant constituent now. 13 A Because the levels that we detected com-14 ing from the separator were orders of magnitude in excess of 15 our health standard, whereas, some of the other constituents 16 coming out were not so orders of magnitude. 17 So that was the primary thing --0 18 Yes. A -- that you were focusing on. Likewise, 0 19 that's why we focused on it because of what you said. 20 Now do you have any data whatsoever today 21 to present to this body concerning any problems, any conta-22 mination, concerning chlorides or TDS? 23 The data that I collected from the pro-Α 24 duced water samples shows that in some of the samples there 25 was high TDS and in some cases as high as 30,000, I believe,

1 140 2 TDS. In some samples it was -- it was a couple 3 of hundred. 4 0 In the samples that you're talking about 5 and that you have presented testimony on, these are samples 6 from the separator, not samples of groundwater. 7 The information -- okay, back in February Α 8 I presented and also at the subsequent April the 3rd hear-9 I presented the tables of the analyses from the ing, pro-10 duced water that showed some of these samples to have high TDS. 11 also presented historic information in I 12 the Aztec Quadrangle that listed TDS of some of the values 13 and the average for that alluvial area was 725 TDS. 14 Have you run the random walk on anything 0 15 other than benzene? 16 A Yes. 17 And I didn't hear all of your answer Q to 18 the last question. Were some of these samples that you took 19 and analyzed, were they from groundwater -- were they groundwater samples or just from the separator? 20 A Well, I have analyzed as part of my work, 21 and when I was up in that area I have analyzed or had ana-22 lyzed, several domestic water well samples from people that 23 were in the vulnerable area. 24 0 But the data you presented was from the 25 separator.

1 141 The data -- the data that I presented at Α 2 this exhibit, I mean this hearing, on my Table 8 through 12, 3 were from the separators and some pit sampling. 4 Thank you. 0 5 MR. PEARCE: Very briefly, if I 6 may, Mr. Chairman. 7 MR. STAMETS: Mr. Pearce. 8 9 CROSS EXAMINATION BY MR. PEARCE: 10 Mr. Boyer, could you walk through the 0 11 process that you used with the backhoe when you developed 12 the five monitoring locations around the Flora Vista well? 13 Α Well, as I stated before, we needed to 14 use a backhoe because previously EID had tried to use a hol-15 low stem auger and they couldn't do it, so we took the back-16 hoe and we took it down to the well site. 17 We had rented a portable steam cleaner to use and we in between and each site we took it, and took the 18 backhoe on down and -- and flushed it out thoroughly with 19 the hot water and steam coming from the steam cleaner and 20 then we took it back to the site and dug the ditch. 21 0 Okay, how deep was the ditch? 22 A I think it was -- maximum depth was about 23 eight feet or so. 24 0 And when you got it down to that level it 25 immediately filled with water, is that correct?

1 142 A Yes. 2 Indicating to you that you were below the Q 3 water table. 4 А Right. 5 0 And after water had gone into that ditch, 6 you snatched some sort of samples of it. 7 A Right. 8 How did you do that? 0 9 A The same way we sampled the others. We took a clean Mason jar on the end of a long pole 10 and immersed it in the water and pulled it out and then we immed-11 iately put it in the 40 liter vials and capped the vials. 12 0 In the process of a backhoe digging 13 holes, a backhoe does not use water the way a rotary rig 14 uses mud or liquids. 15 Α Right. 16 It's dry. Q 17 А Right. There's no water added to the trench dur-18 0 ing the digging, is there? 19 А No. 20 Q So far as you know, Mr. Boyer, would 21 coming in contact with the backhoe eliminate the prewater 22 sence of benzene? 23 A Would water coming into contact with the 24 backhoe eliminate the presence of benzene? 25 0 Yes, sir, if I take water with benzene in

1 143 2 it and pour it over a backhoe, will that eliminate the benzene? 3 A A backhoe is not a sorptive medium. No. 4 MR. PEARCE: I have nothing 5 further, Mr. Chairman. 6 7 RECROSS EXAMINATION 8 BY MR. STAMETS: 9 С Mr. Boyer. 10 А Yes, sir. Mr. Kendrick said he was in the oil and 0 11 gas business up there for forty years and no contamination 12 had been found up there. 13 Is there any significance to that in your 14 mind? 15 Α I think that the fact that they haven't 16 found it does not mean that it's not present. I think that 17 you have -- we were not charged for looking for contaminated 18 water wells as part of the study. We were charged with protecting water that had a potential for reasonable foresee-19 able use, and the fact that there has not been documented 20 contamination in water wells may be more a function of where 21 the water wells are placed in relation to the oil wells and 22 the hydraulic gradient and these other aguifer parameters 23 that we've talked about, more than the fact that they -- it 24 has not yet been found in the water wells. 25 So I would say that the fact that it has

2 not been found is not significant given the different hydro-3 logic actions that can occur once -- once water is disposed 4 of in the ground, or produced water is disposed of in the ground.

Q If one discounts the organics in the produced water, is the produced water in the San Juan Basin generally of better quality than that in the southeast?

8 A I would say generally yes. There are
9 high TDS and some of the samples, low TDS in some of the
10 samples. In most of the samples it exceeds 1000 milligrams
11 per liter, which is in the New Mexico Water Quality Control
12 Commission regulations for -- for groundwater.

If one takes this generally better quality water and puts it in a pit and the factors of dispersion, dilution, absorption, and all of that works on it, could that also not be the reason why we don't see polluted groundwater up there, that in fact the pit water is diluted, et cetera, to the point where it's noncontaminated, where the fresh water is noncontaminated?

19 A Yes, as I've testified, I think that 20 there are certainly areas up there where those processes are 21 very much acting on pollutants put into the groundwater, but 22 you also have variable situations and I don't know if you 23 could make a generalization to the same variables being pre-34 sent at the same level in every area.

In fact I would venture an opinion that

you could not.

25

1

6

7

144

1 145 2 NOW, Mr. Hicks presented evidence on 0 three sites that seemed to confirm the microbiological de-3 gradation diminution of benzene. Why should this Commission 4 not rely on Mr. Hicks' study or be convinced by Mr. Hicks' 5 study in reaching a decision in this case? 6 Well, as I just mentioned and stressed Α 7 and will stress again, is that Mr. Hicks' study conagain, 8 sisted of three individual pits and as I mentioned in some 9 of my -- or Mr. Taylor mentioned in some cross examining 10 questions, and also as I've mentioned, you have a lot of different conditions in the San Juan Basin, in the vulner-11 able area we're talking about. 12 You have -- you have a high potential for 13 discharge of the contaminants into the subsurface. You have 14 mechanisms for movement of those contaminants in different 15 directions, mainly down the hydraulic gradient. You also 16 have some attenuation mechanisms that act at various levels 17 at various times, some of which are delay and some of which 18 are removal. The actual, physical impact of each one of those at a particular site would be impossible to measure. 19 think that you must, the Commission I 20 must look at the -- the -- what -- what you are protecting 21 as part of a -- you must protect for the, in this case, what 22 is the most conservative case for these supplies. 23 think that the record as far as Ι clean 24 after a contamination case is both a hardship for the up 25 person whose well has been contaminated, if that happens,

1 146 2 also the general clean up of the area is -- is not and as effective as prevention beforehand, and again, the informa-3 tion I've presented shows a very reasonable and real poten-4 tial for a contamination of these waters and the fact that 5 three instances of investigation, does not remove, I think, 6 the -- that potential. 7 0 Mr. Hicks' Exhibit Number Three, he shows 8 let's see -- the Paine Gas Unit A 1-E Well, the -- well, 9 spud date 10-23-80, turn-on date 6-1-81. That well has been 10 on production pretty close to four years now. Uh-huh. Α 11 Q He shows the level of benzene, separator 12 level, at 53,218. 13 Uh-huh. А 14 And 40 feet away from the edge of the pit О 15 got less than 1 part per billion, or if you want to he's 16 measure to the center of that pit it's just 100 feet away. 17 All right. Α 18 Doesn't that seem to indicate that these 0 factors of volatilization and microbiological degradation of 19 benzene actually work? 20 Well, Mr. Stamets, I, again, I'd say that A 21 we have three -- we have three isolated well points placed 22 in the -- next to the swamp in this particular area. 23 I think that there are additional gues-24 tions that need to be asked as to maybe some of the charac-25 the bottom of the pit, some of these other teristics of

1 147 2 things, to make actual determination of whether or not that -- all these things that were presented as far as degrada-3 tion and so on and so forth were actually occurring. 4 don't think that -- I don't think, T 5 again, that you can rely on just the -- on three -- on three 6 samples taken at one time to do that. 7 Let me see if I understand your view 0 of 8 the problem, then. 9 Are you telling me that you believe that 10 just don't have enough actual experimental, empirical we evidence at this point to demonstrate that -- that the ben-11 zene is not a problem in the San Juan Basin? Is that --12 A I agree with that. I think -- I think we 13 not have enough experimental evidence to demonstrate do it 14 I think we have sufficient hydrologic is not a problem. 15 evidence to demonstrate that it is a very real and potential 16 problem. 17 But again, isn't that a hundred percent C 18 theoretical at this point? We have not measured benzene in the groundwater that had to get there from a pit. 19 Is that correct? 20 A We have not measured the benzene in the 21 groundwater? 22 0 That had to arrive in the groundwater 23 from a pit. 24 That is -- that is correct. A 25 So on that side we don't have a positive Q

1 148 2 measurement for benzene in groundwater. On the other side you're telling me we don't have enough measurement saving 3 that in fact benzene is not going to get into groundwater. 4 the net result of all of this that we Is 5 just don't have enough information to arrive at an informed 6 conclusion at this point relative to benzene? 7 No. sir. Relative to benzene alone? А 8 Yes. 0 9 А No. sir, I -- I think that -- I think 10 that given the health concerns of benzene and the toxicity of the contaminant, I think that -- that we do have a 11 enough evidence to -- to regulate disposition of waters that 12 contain it. 13 I think that as with a lot of regulatory 14 think you need to -- you don't need to look and things, I 15 have documented instances of contamination all over the map 16 before you begin the regulation. 17 You take a look at the information indi-18 cating what sort of potential it has to become a problem and 19 act in a reasonable manner in that way. Most of the evidence that we've heard at 0 20 hearing relates to benzene and toluene. Are there this 21 other organics in the produced water that we should be con-22 cerned about, or do you expect if there are that they will 23 react much in the same way that benzene and toluene do? 24 A Well, there are other organics in the 25 produced water, yes. We analyzed for ethylbenzene as well

1 149 as these other -- as well as the xylene. Ethylbenzene is a 2 parameter of concern and I understand that there may be some 3 -- there is developing some information as to possible 4 standard for ethylbenzene. 5 Ι think that also there are other types 6 of organic materials, we briefly refer to them polyneucle-7 aromatic hydrocarbons, stuff like that, I believe that's the 8 correct terminology, and I am not familiar and don't main-9 tain to be an expert on -- on their presence and movement. But benzene is a very mobile organic and 10 moves faster than most of the rest of them. So benzene. 11 being toxic and being very mobile is a prime one to be con-12 cerned when we do these modeling studies, and the results I 13 presented this morning also took into account Mr. Schultz' 14 retardation factor, which indicates some sorptive properties 15 of the soil, assuming a certain amount of organic carbon, 16 and even with that factor, then, it still showed contamina-17 tion in excess of standard for some of the simulation runs. 18 So I have factored in as much information as is available right now and without -- with all due re-19 spect to the gentleman that talked about biodegradation, it 20 is just now beginning to get attention and, you know, I'm 21 not sure that we can draw conclusions as to the viability of 22 that particular mechanism in all cases that we're dealing 23 with here. 24 If in the interest of gathering more data C 25 the Commission came up with a pit registration process, is

1 150 2 that the sort of thing that's -- would it be self-deciding that would eliminate a lot of work for the Division, a form 3 which would say I produced X barrels of water. If this vol-4 ume is over 5 barrels per day, you are prohibited from hav-5 ing an unlined pit. Ask for a lined pit. 6 Or, if the produced water is in excess of 7 some value TDS, again the form would say, you may not have 8 unlined pit. Go to lined pit. Get your \$2500 check out. 9 Is that a possibility? 10 Well, certainly -- certainly if the Com-A 11 mission decides that it wants a 5 barrel per day exemption, that certainly would make our job easy because there is not 12 too many pits that produce over that in this particular 13 area, but I think you could have certain conditions and re-14 quest that the operator provide information with the -- with 15 the notice that would make it sort of self -- puts it on 16 yourself processing; however, the field people and the 17 staff, environmental staff, would have to be able to verify 18 all the information put down on the pit, on the form regard-19 ing the pit. If such a process were used, would -- do C 20 you believe it would be necessary that the produced water be 21 examined for all of those parameters that are in the drink-22 ing water standards of the Water Quality Control Commission, 23 groundwater standards? 24 Α No. I think it -- I don't think produced 25 water would have to be looked at for all those numbers. I

1 151 mean for all those constituents. I think that you'd want to 2 take a look at your TDS and chloride sulfates; maybe some 3 other inorganic parameters of concern, and I think you'd 4 want to look at your -- at least right now I'd recommend 5 looking at the benzene and those organics associated them 6 with those; possibly others as we get more information as to 7 how important they are in health considerations. 8 0 Could you have such a list together by 9 May the 7th? 10 As to which standards we should look at? Ά Yes. Q 11 Yes, oh, yes. А 12 0 Now let me ask you about that. 13 Let's assume afor a moment that we have a 14 pit out there that receives one barrel per day and the TDS 15 level is 9,999. 16 Now, is that -- well, let's round it off, 17 let's say just a nice 10,000. It's easy to work with. 18 Should that be prohibited? Is that the prohibited level or should it be something that's double the 19 standard, four times the standard? Is there some level that 20 could be arrived at relative to TDS or some of these other 21 important contaminants that we could give as guidance? 22 Let's say, for example, on chlorides with 23 a drinking water level of 500 --24 Α Two --25 Is it 200? 0

1 152 2 It's 250 in the groundwater standards. A Okay, let's say then that your chlorides 0 3 four times that, or ten times that. are, well, Could a 4 figure like that be put down on this self-deciding pit req-5 istration form? Say if your chlorides exceed this level 6 you've got to have a lined pit? 7 A We're looking at the concentration and 8 the volume put into the pit. I think it gets back to the 9 same problems that we're having with small barrel exemp-10 tions. If you get your --Could some maximum amount of worked out? 11 0 Let's say that we decide on a -- just utilize now 5 barrels 12 a day, and what's the maximum amount of chlorides you would 13 like to see going in the groundwater at 5 barrels a day, 14 could that volume then be used regardless of Mr. Kendrick's 15 suggestion. That's the limit on chlorides whether you're 16 got one barrels a day or five barrels a day? 17 Α I think you've got to tie it to the vol-18 I think that if you had 5 barrels per day, depending umes. 19 where you're located, I think you're going to end up with --I think that's the point I'm getting at. 0 20 If you've got 5 barrels a day at 250, is that not going to 21 be the same as one barrel a day at 1000? 22 Yeah, right, right. If you decide to go Α 23 that methodology that there's a certain amount of pollutant 24 load per day that you feel is acceptable for discharge to 25 the groundwater, whether it be 5 pounds of chloride or some-

1 153 2 thing like that, if you make that determination, then certainly you could either do it concentraton times, 3 you know. you could have the different variable concentration and 4 quantity to equal that pollutant level. 5 0 Mr. Boyer, after listening to all the 6 evidence presented in this case, is there any small volume 7 exemption that you would be willing to recommend even on a 8 temporary basis at this point? Let's say for a period of 18 9 months while additional data is gathered? 10 Well, I think that one of the things that A 11 allayed some of my concerns was taking this random walk model and running it and taking a look at some numbers. 12 I think that the 5 barrels per day is 13 clearly exceeded. I think that there is some small volume, 14 possibly a half barrel, that I feel that -- I feel that I 15 could live with based on this results and just taking a look 16 at that, and coincidentally, that also happened to be the 17 Committee recommendation the first time around, a half bar-18 rel per day exemption and some minimum distance to ground-19 water, which all pits have to be lined. And I still have very many concerns over 20 5 barrels per day exemptions; however, after looking at the 21 computer models and hearing some of the other testimony, I 22 have less concerns about -- I was looking at 2.5 gallons per 23 I'm a little less concerned over that and on a temporday, 24 ary measure I'd be willing to support half barrel per day 25 and 10 feet to groundwater.

1 154 2 If Amoco and Tenneco, who 0 Okay. presented evidence relative to the pits, were willing to go in-3 to some sort of a cooperative program with the Oil Conserva-4 tion Division to develop more information, is that the sort 5 of thing that you believe you could do working with their 6 people? 7 Α Oh, yes. Yes, sir. 8 STAMETS: MR. Mr. Kellahin, 9 while we're on that subject, I believe you relayed to me 10 earlier today that the contract -- Mr. Hicks does not be-11 lieve the facilities that were installed earlier would be appropriate for a longer -- for a long term monitoring 12 study. 13 Would Amoco and Tenneco be willing to en-14 some sort of reasonable long term study with the gage is 15 Division in this matter? 16 MR. KELLAHIN: Mr. Chairman, my 17 client. as well as the other clients represented today by 18 outher counsel, I think have consistently maintained a reputation before the Commission to cooperate to the fullest ex-19 tent of their ability to see if we can solve the problem 20 once we've demonstrated that the problem exists. 21 I'm a little concerned about 22 committing my client to further expenditures in this case 23 when they've already assumed a significant expense in pre-24 paring today what I think is a solid, substantial case to 25 show that we don't have a problem with each pit area.

1 155 2 If, however, the Division wants our company to participate in additional studies, we'll be 3 happy to discuss that and see what levels of financing and staff effort we can commit to the project. 5 One of the things the Division 6 requested early, and it seems like a year ago, was the short 7 term study committee, and my clients and many of these other 8 clients in this room have actively participated in that ef-9 fort. 10 Now if this is to be a task as-11 signed to the short term study committee or to the long term study committee, I know that my company will continue to 12 participate as best they can. 13 The specific answer to the 14 question about whether the Paine, the Eaton, and McCoy sites 15 can now be used for continued sampling is that they cannot. 16 We have not policed the area, and cannot be assured of the 17 integrity of those well points. We in fact know that some 18 of them have been contaminated and some of them have been 19 removed and we'd have to drive new points. If we can agree upon, with our 20 hydrologist and Mr. Boyer, well sites under our control that 21 can be the subject of groundwater monitoring, I think we can 22 work that. 23 I'm sorry I can't be very spe-24 in my response to you, but we will cooperate in any cific 25 We have to get management approval for further way we can.

1 156 2 participation of money and staff, but we will do as we have done in the past, to contribute to study committees by the 3 Commission and to cooperate in any way we can to solve the 4 problem that the Commission perceives exists. 5 MR. STAMETS: Thank you, Mr. 6 Kellahin. 7 Are there questions of Mr. 8 Boyer? 9 MR. ELMER: I'd just like to 10 ask one question, please, Mr. Chairman. 11 CROSS EXAMINATION 12 BY MR. ELMER: 13 Boyer, taking the hypothetical pro-Q Mr. 14 gram that Mr. Stamets outlined, which I guess is self-regis-15 tration self-policing program, is that an effective program 16 to insure the integrity of the groundwater? 17 А It's hard for me to, you know, make a de-18 termination just based on, you know, the bare outline that 19 was looked at right today. I think that any -- however, I think that 20 any program would require a certain amount of spot checking 21 to make sure that -- that the self monitoring, or whatever, 22 self-reporting is being done correctly. 23 Q Thank you. 24 MR. STAMETS: Any other ques-25 tions of this witness?

1 157 2 He may be excused. there any other direct tes-IS 3 timony in this case? 4 MS. PRUETT: I don't have any 5 direct testimony but I want some clarification in the record 6 of the testimony in writing offered at one of the previous 7 hearings by Mr. Lorang of El Paso Natural Gas. 8 Since he hasn't been produced 9 as a witness I would ask that testimony be considered as an 10 unsworn statement rather than a sworn statement. MR. PEARCE: That's fine, Mr. 11 Chairman. 12 MR. STAMETS: All right, thank 13 you. 14 Mr. Kellahin. 15 MR. KELLAHIN: Mr. Chairman, in 16 response to Mr. Taylor's rebuttal witness, we also a surre-17 buttal witness that will confine his comments to the random 18 walk computer modeling that Mr. Boyer's done and we would like to forward with that witness. 19 Perhaps you might want to take 20 a short break but I anticipate that our next witness' testi-21 mony may take an hour and a half to address those issues 22 that are of most concern to us. So I know the day is run-23 ning out, but I want to give this witness an opportunity to 24 have a fair representation of his testimony. 25 STAMETS: Let's take about MR.

1 158 2 a fifteen minute recess. 3 (Thereupon a recess was taken.) 4 5 MR. STAMETS: Mr. Kellahin, do 6 you have a witness? 7 MR. KELLAHIN: Yes, sir. 8 Mr. Chairman, at this time we'd 9 like to call Alberto Gutierrez. 10 Mr. Gutierrez, I believe, is 11 sworn at the prior hearing. Let the record reflect that he is still under oath. He has taken his seat in the witness 12 chair. 13 14 ALBERTO ALEJANDRO GUTIERREZ, 15 being called as a witness and being duly sworn upon his 16 oath, testified as follows, to-wit: 17 18 DIRECT EXAMINATION 19 BY MR. KELLAHIN: 0 Mr. Gutierrez, for the record would you 20 please state your name and occupation? 21 Α Yes. My name is Alberto Alejandro 22 Gutierrez and I'm a professional geologist. I'm President 23 of Geoscience Consultants, Limited. 24 For the record, Mr. Gutierrez, would you 0 25 please describe for us your educational background, when and

1 159 2 where you obtained your degree? I did my undergraduate work Α Certainly. 3 at McGill (sic) University in Montreal and also at Univer-4 sity of Maryland in College Park; graduated in 1977 with a 5 BS in geomicrology from University of Maryland at College 6 Park, with honors, and then I then continued my studies at 7 the University of New Mexico, where I received a Master's 8 degree in 1980 in the field of geology with a specialization 9 in hydrology and both surface and near surface groundwater 10 hydrology. 0 Are you a member of any professional 11 organization in your field of experience? 12 A Yes. I'm a Certified Professional Geolo-13 gist with the American Institute of Professional Geologists. 14 I'm also a Registered Professional Geolo-15 gist in the State of Arizona. 16 Ι am also a member of numerous profes-17 sional organizations, such as the Geological Society of 18 America, the National Water Well Association, American Association of Petroleum Geologist, et cetera. 19 0 Would you describe for us what has been 20 your experience in the field of regulatory development and 21 implementation when it comes to matters such as groundwater? 22 А Certainly. In 1975, when I went from 23 McGill to the University of Maryland at College Park, one of 24 primary reasons for going there was to go to work for the 25 the United States Geological Survey at the same time as I

1 160 2 was completing my studies in undergraduate school, and that work consisted primarily of working on environmental impact 3 statements and regulatory development associated with the 4 National Environmental Policy Act. 5 in working on the development of Also, 6 Council Environmental Quality regulations and guidelines. 7 Primarily I have also worked in the pri-8 vate sector as a consultant to EPA and a number of other go-9 vernment agencies in policy issues and regulatory develop-10 ment. What was your Master's thesis 11 Q on. Mr. Gutierrez? 12 А I did my Master's thesis on the Near Sur-13 face Hydrology and Sediement Transport in the San Juan Basin 14 of New Mexico. 15 Ι spent two and a half years working up 16 there on a grant from the New Mexico Environ -- the New Mex-17 ico Energy and Minerals Department to look at hydrology of 18 strippable coal areas in the San Juan Basin from Chaco Can-19 yon north. Have you been involved in the preparation 0 20 the submittal of applications on behalf of individuals and 21 or companies to obtain discharge permit approval from the 22 EID of New Mexico? 23 Α Yes. As a consequence of my employment 24 with Geoscience Consultants, Limited, which is a firm that 25 consists of hydrogeologists, chemical and environmental en-

1 161 2 gineers that specialize in hazardous waste and waste related issues. 3 have a number of clients that we have We 4 not only prepared and submitted or are currently preparing 5 and submitting discharge plan applications for, but also for 6 а number of clients we're involved in actual clean-ups o£ 7 hazardous waste sites and contamination resulting from both 8 spills and leakages from the surface impoundments and other 9 industrial activities. 10 0 Did you participate as a geohydrologist on the Oil Conservation Division Short Term Water Study Com-11 mittee of the San Juan Basin? 12 Yes, I did. A 13 Have you had experience as a geohydrolo-0 14 in using the random walk simulation of produced water qist 15 disposal pits? 16 Α Yes, I -- well, let me qualify that by 17 have run random walk but not only produced saying, yes, I 18 water disposal pits but I've used it in many different applications to look at the potential impacts associated with 19 contaminants that have been discharged either onto the 20 ground or from the soil into the groundwater at various 21 types of sites. 22 MR. **KELLAHIN:** Mr. Chairman, 23 we tender Mr. Gutierrez as an expert geohydrologist. 24 MR. STAMETS: He is considered 25 qualified.

1 162 2 Mr. Gutierrez, I'd like you to direct 0 your attention back to the prior hearings in this case. Did 3 you attend the hearing we had in this case back in February 4 20th and again on March 3rd of this year? 5 Yes, sir, I attended both those hearings. A 6 And you're appearing today on behalf of Q 7 Tenneco Oil Company as an expert geohydrologist? 8 That's correct. Α 9 0 And pursuant to that employment as a con-10 sultant, have you made a study of produced water and disposal in the unlined pits in the vulnerable area and its po-11 tential impact upon groundwater in that area? 12 A Yes, sir. My firm, that would include 13 not only myself but also Mr. Hicks and a number of our other 14 staff have been involved in a study on the effects of pro-15 duced water, the potential effects of produced water on the 16 groundwater in the vulnerable area of the San Juan Basin. 17 Have you had an opportunity to review and 0 18 study not only Mr. Boyer's testimony but the exhibits he're 19 presented at the prior hearings? Yes, I've had an opportunity to review Α 20 his exhibits at the prior hearings and just briefly reviewed 21 his exhibit that he presented this afternoon, or this morn-22 ing. 23 Have you conducted on behalf of Tenneco a Q 24 walk simulation of produced water disposal pits of random 25 the vulnerable area of San Juan Basin, New Mexico?

A I have not only conducted a random walk
simulation but in effect we have conducted random walk simulations on a wide variety of cases in the San Juan Basin.
As a matter of fact, if we -- if you'd like to go to my exhibit, we can start going through some of those.
All right, sir, let's turn to -- first of

1

all, before we begin to discuss these figures and the information in the study itself, I'd like for you to give us some background, not only in the terms of the wells that you studied on behalf of Tenneco and Amoco, but the background and the methodology you will apply to addressing the potential contamination of groundwater by the use of unlined production pits.

As Mr. Boyer's testified, the random walk A 14 model developed by Thomas Prickett and others, and included 15 as Bulletin 65 of the State of Illinois Geological Survey 16 Report, is a model that has been used by a number of hydro-17 geologists, is well accepted in the hydrogeologic community 18 as a two-dimensional groundwater model that can be used to approximate the behavior of certain constituents 19 in the groundwater at various locations. 20

21 So basically, I won't go into that any 22 further other than to say that it is a well accepted model which has wide application possibilities.

Q In your opinion is it appropriate to ap ply random walk simulations to determine whether or not
 there are levels of contamination occurring in the ground-

153

1 164 2 water as projected by the computer when we're evaluating the impact of the unlined -- the use of unlined production pits? 3 Certainly it's applicable. I think that Α 4 the use of random walk as a method to simulate the potential 5 effects of contaminants that may reach the groundwater as a 6 result of disposal in an unlined pit is very useful and 7 gives a better approximation of reality than would a simple 8 dilution calculation. 9 I also think that even better yet, a 10 field calibrated model of random walk would go even further towards demonstrating a more realistic picture of what oc-11 curs. 12 You were present in the hearing room ear-0 13 lier this afternoon when Mr. Boyer testified about the fact 14 that he had not calibrated his random walk simulation. Did 15 you hear that testimony? 16 Α Yes, I did. 17 Would you tell us, then, what the mechan-0 18 are for calibration of random walk and the different isms 19 factors that go into calibrating random walk so that you assimilate and use the actual data derived from the ground-20 water monitoring and other sources that you apply in the 21 model? 22 Well, there are various methods of cali-Α 23 ony random walk, but any computer model brating, not of 24 groundwater. 25 Those methods would obviously include

1 165 2 gathering of field data from monitoring wells, not only head data but also concentration data, and comparing that to the 3 results that one obtains from running the model; also by in-4 putting estimated hydraulic conductivities and/or determined 5 hydraulic conductivities. 6 How -- what hydraulic conductivities were 0 7 used to calibrate your walk? 8 Okay. Basically, if I can go to that ex-A 9 hibit now. 10 All right, sir. Q If we look at Table 2 in my exhibit, 11 A you'll notice that it says Predicted Benzene Concentrations 12 in Ground from Random Walk --13 All right. 0 14 -- Simulations. Α 15 Table 2 is page four in my book. Is mine 0 16 different from yours? 17 No, it's page four in my book if you do A 18 not count the cover page. All right, sir, you want us to turn to 19 0 Table 2 of the Exhibit Number Four? 20 That's correct. А 21 0 All right, sir, I have that. What do we 22 do with it? 23 Basically if you'll look at several major Α 24 categories that were discussed in Mr. Hicks' testimony, 25 which we have broken out the sites which Mr. Hicks surveyed

1 166 in the field and estimated hydraulic properties by visiting 2 each one of these sites. 3 In addition you will note that under the 4 category of field calibration sites it shows three sites 5 that were used where actual groundwater -- or two sites, ex-6 cuse me, that were used where actual groundwater gradients 7 and concentrations were known, to calibrate the major, two 8 major categories which Mr. Hicks referred to in his testi-9 mony of the river valley flood plain and the valley side 10 slopes and side slopes and tributaries. 11 0 How do the hydraulic conductivity values that you used in applying the random walk analysis, how do 12 those compare to the ones used by Mr. Boyer? 13 Α have used hydraulic conductivity We 14 values that are within the same ranges as those that Mr. 15 Boyer has used and indeed we've even looked at hydraulic 16 conductivities below those which Mr. Boyer has used in his 17 calculations. 18 0 When you use the phrase "below" is that 19 Lesser in terms of transmissivity. Α 20 Would that be a more conservative or 0 a 21 more optimistic parameter? 22 A It would be more conservative in the 23 sense that it would tend to predict higher concentrations in 24 the immediate vicinity of the pits. 25 All right, sir, using then the informa-0

1 167 tion on Table 2, what then is the next thing you do to cali-2 brate your model? 3 Primarily, if you'll note what we А Okav. 4 did was with the category -- the sites that Mr. Hicks 5 visited, we fit them into the two categories that they logi-6 cally fell into as we started looking at the various charac-7 teristics, both in terms of the materials, the lithology, 8 and the hydraulic characteristics, and you'll note that for 9 the river flood plain we've included the San Juan River 10 broken those up into high, medium, cases and and low hydraulic conductivities with ranges of 10,000 gallons 11 per day per foot for the hydraulic -- high hydraulic conductiv-12 ity cases; 1000 to 5000 gallons per day per foot squared for 13 medium hydraulic conductivity cases; and 10 to 100 gallons 14 per day per foot squared for the low hydraulic conductivi-15 ties. 16 For the Animas River, following to the 17 page, you'll note that we did -- we observed only one next 18 high hydraulic conductivity case of the ones that were in-19 cluded in our random sample, which is included in there as the Marcotte No. 1. 20 medium or low hydraulic conductivity No 21 cases came up in our random sampling of the cases in the 22 Animas River. 23 the valley side slopes and tributa-For 24 ries we used again the same divisions in terms of high, med-25 ium, and low hydraulic conductivity.

1 168 2 Does that complete, then your recitation Q how you used the hydraulic conductivities to calibrate of 3 your model? ₫ Well. let me just go on. I just noticed Α 5 I have another two pages here of this table. 6 is that the bedrock mesas cases were One 7 excluded because the produced ground -- the produced water 8 could not really enter the groundwater since these cases 9 will lie on bedrock in terms of entering alluvial aquifers. 10 Secondly, te Pictured Cliffs cases there no simulations because basically those waters -- those 11 are wells tend not to produce water and not have produced gas 12 water pits associated with them. 13 Also, the next page shows well sites that 14 were visited for which hydraulic information was estimated 15 and collected but which were not part of the random sample. 16 In other words, were not selected by the random number 17 generator in order to be included in the study. 18 Basically, the ranges of those hydraulic 19 conductivities that I described were developed as Mr. Hicks described in this testimony. 20 I want to go through with you each of the 0 21 different components or parameters that you plug into random 22 walk and before we leave this parameter, which I'll simply 23 characterize as the hydraulic conductivity parameter, I want 24 to see what your testimony is with regards to the hydraulic 25 on the valley slopes and the river valleys, gradient data

1 169 2 and whether that is an optimistic or a conservative number in relation to the actual field data gathered by Mr. Hicks. 3 Well, let me address that in two ways. A 4 One by saying first that the field -- the sites were, we ac-5 tually had monitor wells installed in the groundwater and 6 where we measured depth to groundwater and had those sur-7 veyed by a surveyor. The gradient was determined exactly by 8 that mechanism. 9 \cap Let's take the McCoy Well. What was the 10 hydraulic gradient in the McCoy Well that was actually observed in the field? 11 Hydraulic gradient that was used for А the 12 McCoy Well determined from measurement of water levels in 13 the wells which were implaced at that site was .0076. 14 What was the hydraulic gradient used for Ω 15 the McCoy type simulation that you plugged into the compu-16 ter? 17 Mr. Gutierrez, is it not the Marcotte No. 18 1 entry on the second page of Table 2? 19 I am looking for -- I'd have to refer А back to the original computer run because my gradient 20 measured at the -- or shown on the figure in Mr. Hicks' tes-21 timony is .0076, and the gradient on my simulation is .004. 22 That could just be a typo. I'd have to refer to the origi-23 nal. 24 Q All right. With regards to the hydraulic 25 gradient used for the McCoy type computer runs, did you use

1 170 a number that was actually observed in the field or one that 2 was more conservative than the one actually measured in the 3 field? 4 Well, it's more conservative in the sense A 5 that the gradient is lesser and therefore the vertical -- I 6 mean the speed at which contaminants could travel, the velo-7 city would be lower, using a lower gradient for the same 8 transmissivity. 9 0 After we leave the hydraulic conductivities that go into your computer model, what did you use ìn 10 terms of the foot thickness of the zone? 11 We used the same thickness that Mr. Boyer Α 12 used in his initial calculations of 25 feet. 13 Q In terms of porosity, what number was 14 used for the porosity parameter? 15 A Again we used the same number which Was 16 used earlier, which was a porosity of 25 percent. 17 0 All right, sir, in terms of the parameter of the flow rate, how was that parameter developed and used? 18 Α Well, the flow rate is a function of the 19 hydraulic conductivity, the porosity, and the gradient, and 20 it's a function of hydraulic conductivity divided by the 21 porosity times the gradient, because it's the regional, what 22 is called the regional X flow or the velocity. 23 You'll note in all of the cases that we 24 regional X flow be a certain number; regional had Y flow 25 will be zero in all cases simply because we aligned the Х

axis according to the gradient direction.

1 171 Q Have you covered for us, Mr. Gutierrez, 2 all those parameters or elements by which you used to field 3 calibrate the random walk simulation of the operation of the 4 produced water in the unlined pits? 5 Α Well, frankly, I haven't really gotten 6 into that yet. 7 All right, sir, let's do that now. 0 8 A Let me just finish by -- the discussion 9 of the input parameters, by saying as Mr. Boyer has shown in his exhibit, as well as in ours, where you have a -- on page 10 one, Figure 1, just shows a typical input parameters for 11 random walk simulation. Let me emphasis that this is not 12 the parameters that we used in every case that we have. The 13 parameters that were used in each of the cases are written 14 in the -- on the bottom of each of the figures associated 15 with those. 16 But you'll note that the parameters in-17 clude transmissivity, which is a function of hydraulic con-18 ductivity in the saturated thickness. In all cases we used a saturated thick-19 ness of 25 feet. 20 Storage coefficient we used .1 in all 21 cases. 22 In hydraulic conductivity, obviously was 23 estimated in the field as Mr. Hicks described in his testi-24 mony. 25 Porosity, .25.

1 172 2 Longitudinal dispersivity of 10. Transverse dispersivity of 2. 3 Retardation coefficient of 1. You'll 4 note that in runs which Mr. -- at least from the brief look 5 that I got of the runs that Mr. Boyer ran, he used a retar-6 dation coefficient of 7, which -- and yet higher longitudi-7 nal and transverse dispersivity values. Those factors tend 8 to counterbalance each other and therefore with his retarda-9 tion coefficient and his higher dispersivity values we're at 10 about the same place as we are with our model. Regional X flow is calculated as I de-11 scribed before. 12 The source term we used the value of con-13 centration of benzene, and again we ran all these for ben-14 zene because of the fact that that parameter seemed to be 15 the parameter of greatest concern. The source term that we 16 used was 3500 ppb, or 3.5 milligrams per liter based on the 17 approximate average that we derived from looking at the data 18 on values in the pits. 19 We then used for a volume of water the actual volume which was produced at each one of the indivi-20 dual wells which we looked at. That would have been our 21 quote/unquote uncalibrated runs. 22 For the calibrated runs what we did was 23 say we had the McCoy site, which is typical of the type of 24 lithologies and materials which Mr. Hicks observed in the 25 river valley, river bottom areas.

1 173 2 used the Eaton site to represent We the types of materials and lithologic characteristics that were 3 observed in the valley side slopes and tributaries, and con-4 sequently used the actual values of benzene monitored in the 5 monitor wells at these two sites to determine what the ap-6 propriate source term would be since we did not have anv 7 clear quantification of what would happen to the benzene 8 concentration or the source term from the point when it left 9 the pit to the point where it entered the groundwater. 10 Hicks divided the well population in 0 Mr. vulnerable area into two major categories of wells. 11 the Have you attempted to calibrate your computer model to take 12 into consideration the field investigations and the 13 hydraulic parameters that Mr. Hicks attributes to each of 14 those types of well populations? 15 parameters which were well estab-A Our 16 at the sites which we did detailed field lished investiga-17 tions for, those hydraulic parameters we were -- had a high 18 level of confidence in, therefore we felt that the concen-19 trations which we observed during the actual monitoring were a response to the source term which actually was enter-20 groundwater and therefore for the McCoy ing the site we 21 looked at first what the effect would be of running the 22 model using the actual 3.5 milligrams per liter or 3500 pob 23 term that was average from the produced water anasource 24 in the pits and noted that the results of that model lyses 25 indicated good agreement with the observed concentrations in

1	1.74
2	the field without any alteration of the hydraulic parameters
3	or that source term.
4	However, if you'll note under the section
5	of my exhibit where we talk where it says Field Calibra-
6	tion Sites, I just was discussing the first site that we
7	looked at, the McCoy site.
8	If you'll look at the next one, which is
	labeled Case Number Eaton A 1-E, where it says uncalibrated,
9	you'll note that again we ran that model using a concentra-
10	tion of 3.5 milligrams per liter benzene and the predicted
11	concentrations in the groundwater, as you can see from the
12	contour map above, and in comparing that to the actual con-
13	centrations which were measured in the groundwater monitor
14	wells, the model grossly overpredicted what contamination
15	would occur in the aquifer.
16	We therefore
	Q Just a minute, Mr. Gutierrez, let's make
17	sure that we're following you. I want to make sure that
18	everybody has the uncalibrated Eaton A 1-E projection.
19	All right. You now have the Eaton type
20	you have the Eaton Well, which is the McCoy type popula-
21	tion?
22	A No, no, no.
23	Q I got that backwards.
24	A Yeah.
24 25	Q All right.
23	A The Eaton Well, which is characteristic

Г

1 175 of the population of wells that fall into the category of 2 valley side slopes and tributaries. 3 All right. We have an uncalibrated com-0 4 puter run on that Eaton site. 5 А That's correct. 6 Q The Eaton site had actual groundwater 7 monitoring data that Mr. Hicks developed. 8 Α That's correct. 9 Ô How did the actual groundwater study compare to the uncalibrated Eaton projection by the computer? 10 А As presented in Mr. Hicks exhibit, which 11 I believe is Tenneco Exhibit Four, --12 QThree. 13 A Three? Okay. Where you see in one of 14 his figures the benzene concentrations in the Eaton site, 15 you'll note that as Mr. Hicks presented, we had less than 16 detectable, i.e., less than one part per billion in Wells 1, 17 5, 4, and 6, 7, and -- excuse me. In Wells 1, 4, 6, 5, and 7, and we had a 18 concentration of 11 parts per billion in Well 2 and a con-19 centration of 7 parts per billion in Well 3, and you'll note 20 that on the run which is included in my exhibit as the 21 uncalibrated run for Eaton, in the area where these wells 22 are located the model predicted in excess of 19.8 parts per 23 billion. 24 All right, what conclusion do you draw О 25 from the fact that the computer uncalibrated predicts a

1 176 higher concentration of benzene than the actual groundwater 2 study that Mr. Hicks did at the Eaton site? 3 Since the hydraulic parameters at the A 4 site were well established, we concluded that in effect the 5 one real unknown which is what's been bantered about 6 throughout this hearing, is what happens to the organics 7 concentrations from the point where they leave the pit to 8 the point where they enter the groundwater. 9 Consequently, we felt that the model be calibrated in terms of what the source 10 needed to term was, what the concentration was that actually entered the 11 groundwater. 12 For the Eaton site well population all 0 13 the parameters that went into the computer, are you confi-14 dent that those were accurate and reliable except then for 15 the source term information? 16 Except, sir, for the source term that we A 17 estimated to be 3500 parts per billion, that's correct. I 18 was certain of -- the source term consists of two factors, volume and concentration. I was certain, or relatively cer-19 tain, of the volumes produced based on the information which 20 we received from Amoco about that volume of water produc-21 tion. 22 All right, sir, and as we flip to the 0 23 next page, then, we have the calibrated Eaton A 1-E computer 24 run. 25 That's right. Α

177 1 All right, what have you done in order to 0 2 generate this? 3 Basically it was an iterative process of А 4 running the model with lower and lower benzene concentration 5 inputs until we were able to achieve an approximate, or the 6 best approximation of the field data that we observed in the 7 monitor wells. 8 Once you had the computer model cali-0 9 brated with the actual field data, what conclusion did you draw about the levels of benzene detected by the computer in 10 its simulation as calibrated of the Eaton site? 11 Well, we felt that once we calibrated the А 12 source term that the computer adequately represented the ob-13 served groundwater concentrations in the monitor wells. 14 0 All right, sir. What then did vou use 15 the calibrated Eaton site random walk simulation for in de-16 termining how this applied to the other wells of similar 17 type in the vulnerable area? A Well, given the fact that Mr. Hicks had 18 gone out and looked at a number of sites in the valley side 19 slopes and tributary category, and those sites displayed 20 similar characteristics to what was observed at the Eaton 21 site where we had more detailed lithologic and hydrologic 22 information, we concluded that it was reasonable therefore, 23 based on the calibration of that model, to assume that the 24 mechanisms which have been discussed by Mr. Schultz. Mr. 25 Boyer, and Miller, and others, with respect to biodegrada

1 178 2 tion and others, were operating and even though we did not and could not quantify what those model -- I mean what those 3 actual mechanisms were, that there was something happening 4 to the benzene by the time it entered the groundwater and 5 therefore was reasonable to reduce the source term concen-6 trations based on that calibration -- field calibration. 7 Can you approximate for us the number of 0 8 computer simulations you've done for the Eaton type wells in 9 the vulnerable area? 10 I can give you the exact number. If A you'll refer to the table on -- it would be page five. It's 11 the second page of Table 2. 12 Okay, you will note that the -- there 13 were several cases included in there and I just almost got 14 confused here myself, so I want to bring this point out for 15 clarification. 16 The McCoy D 1-E that is listed in there 17 is not the same McCoy Well that we used for the river bottom 18 sites. So those cases which you see listed un-19 der valley side slopes and tributaries were the ones that 20 were run with Eaton calibrations as well as -- let's see 21 yes, that's correct. 22 What conclusion do you draw from running 0 23 the computer simulations of the Eaton type wells in these 24 vulnerable well populations in terms of exceeding or being 25 within the benzene standard?

179 1 Α Well, the conclusions based on runs that 2 performed were that the model given that calibration of we 3 the source term did not show a tendency to exceed the 4 groundwater standards and indeed predicted rather low con-5 centrations at distances both close and far away from those 6 pits. 7 TF I may mention one other thing that 8 would serve as a point of clarification. must be understood that the Tt random 9 walk model inputs contaminants into the groundwater by simu-10 lating the effect of an injection well, essentially, not --11 it does not account for any processes which would take place 12 in the unsaturated zone, and therefore, if you want to take 13 into account any processes that would take place in the un-14 saturated zone, you must adjust the source term which you 15 put into the groundwater. 16 Did you adjust your source term to take Q 17 into consideration the mechanisms of attenuation, such **3**5 the biodegradation terms? 18 We did by the mechanism which I described A 19 previously. 20 All right. 0 21 Α For the cases that resemble the Eaton 22 site. 23 For the cases which resemble the McCoy 24 there -- since the concentrations of benzene which we site, 25 observed to be the average in the pits were in effect in

these areas of higher transmissivities and in some of the 2 river bottom closer proximity to groundwater, we concluded 3 that these vadose zone processes would not be as prevalent Δ in those areas and indeed the models demonstrated that even 5 with that concentration of 3500 milligrams per liter, 3500 6 parts per billion, excuse me, going directly into the 7 groundwater in the method that I described that the model 8 puts them into, still did not result in exceedence of the 9 standards.

180

1

25

10 0 When we take Mr. Hicks' actual groundwater study of the Eaton site, take the computer model and 11 calibrate it, take into consideration the factors that would 12 be typical in the Eaton type wells, calibrate the model, and 13 run it, based upon similar wells in this type of well popu-14 lation. do you find wells that are going to exceed the 15 standard by the disposal of produced water at 5 barrels a 16 day or less in the unlined pits?

17 A Eased on -- okay, I didn't connect that
18 last part of the question, I'm sorry.

I want to know whether or not in applying 0 19 the computer calibrated model, using the Eaton data, and 20 having applied it to similar Eaton type wells in that popu-21 lation, whether or not you will find by using the program or 22 the computer, wells that if -- pits, if exposed to 5 barrels 23 a day of produced water or less, are going to exceed the 24 benzene standard for groundwater at those sites.

A No. Based on our simulation that would

81 1 not appear to be the case. 2 When we turn now to the McCoy type popu-0 3 lation, Mr. Hicks has got groundwater monitoring and actual 4 field data on the McCoy site, have you done computer work 5 and random walk simulations of that type of well? 6 Yes, we have. Ά 7 And have you calibrated your random walk Q 8 to take into consideration the actual data Mr. Hicks devel-9 oped for the McCoy site? Yes, we have, as per the method I A de-10 scribed before. 11 And have you simulated other types of 0 12 McCoy wells in the vulnerable area to determine whether the 13 computer will simulate a benzene level in the groundwater 14 that will exceed or be within the standard? 15 That's correct. Α 16 And did you find any computer simulated 0 17 runs in which the benzene standard was exceeded by the McCoy type well population? 18 Ά Not in the cases that we ran, no, sir. 19 In using -- when you did these computer 0 20 runs is there a range of values in the parameters used based 21 Hicks' field observations that would make any sigupon Mr. 22 nificant difference in the way you calibrated your model? 23 Well, I'd have to answer that by saying A 24 and for the reason that we considered cases which spanno, 25 ned a range of hydraulic parameters from 10 gallons per day

2 per square foot of hydraulic conductivity to as high as 3 10,000 gallons per day per foot squared of hydraulic conduc-4 tivity and the estimates, based on the Freeze and Cherry 5 table which -- of hydraulic conductivity based on lithology 6 and using that table would certainly be within one, two, 6 three, four, four orders of magnitude.

1

7

14

Q In using the computer simulations for any of these simulations that you ran, what were you using for the volume of produced water per day for each one of those computer runs? Were you using a simulated number or were you using actual numbers that had been reported to you?

12AWe've used the actual numbers which were13reported to us by Tenneco on Tenneco wells, by Amoco on
Amoco wells.

Q In terms of having the computer simulate various typs of wells in the vulnerable well population, were you using actual cases to show whether or not there is a large range of values in the well population? In other words, did -- did you use various volumes of water produced in the simulations?

20 A Yes, sir, volumes of water ranging from,
21 as I recall, four barrels per day to about, oh, you know,
21 hundredths of a barrel per day.

23 Q Did you -- did you use in the computer runs various hydraulic conductivities?

24AYes, I mentioned the range for those ear-25lier, 10 to 10,000.

1.82

1 183 And did you use various ranges in the hy-0 2 draulic gradients? 3 Yes, sir, based on actual measurements A 4 and based on conservative estimates taken from -- measure-5 ments taken from topographic maps. 6 And when we run all of these field cali-0 7 brated random walk simulations of what's happening in var-8 ious areas of the vulnerable area with this pits, do you 9 find any of them that bust standards on the benzene? Not of the runs that we did, sir, А 10 with the exception of the uncalibrated Eaton site. 11 And once the Eaton site is field cali-0 12 brated with actual data you find that that is within the 13 standard? 14 That's correct, with the exception A of 15 Well No. 2, which is very near the produced water pit and 16 exceeds the standard by one part per billion. 17 0 From your study of this area, Mr. Gutierrez, does this absence of the computer's ability to simulate 18 pollution, in other words, benzene concentrations above the 19 standard, does that surprise you as a hydrologist? 20 А No, not really, it doesn't surprise me. 21 Would you describe for us what conclu-0 22 sions that you can draw from having conducted the random 23 sampling, the use of the random walk simulation, on the var-24 ious well types within the vulnerable well populations? 25 Well, my conclusions, Mr. Kellahin, would A

1	184
2	not be based solely on the random walk runs which my firm
3	did, but rather have to consider all the evidence which has
4	been presented at this hearing, as well as the other parts
5	of our study, and that evidence would lead me to conclude
6	that within a wide range of hydraulic conductivities and a
° 7	wide range of volumes of produced water disposed of in un-
	lined pits, less than 5 barrels per day, we, one, do not see
8	any documented cases of groundwater contamination by the
9	parameter benzene that are attributed to produced water
10	pits, and furthermore, that the indications based on our
11	field studies, our groundwater monitoring at various loca-
12	tions and the subsequent attempt to broaden the base of the
13	investigation by looking at numerous actual well locations
14	and modeling them using the random walk simulation, that
15	it's not surprising to me that we haven't had those docu-
16	mented cases of contamination because the risk from those
17	low volumes to groundwater appears very small. Q Mr. Guttierez, you have participated in
18	the Oil Division's Short Term Water Study Committee?
	A That's correct.
19 19	Q You've conducted the calibrated random
20	walk sampling or simulations of produced water disposal pits
21	in the vulnerable area. Your firm has done actual ground-
22	water monitoring at sites in the vulnerable area.
23	The Commission is considering whether or
24	not to exempt small volume unlined pits in the vulnerable
25	area on a blanket basis of 5 barrels a day or less.

1 185 What is your recommendation on that issue 2 and how should the Commission draft an order on that point? 3 Well, I'm not quite sure I can answer the Α 4 second part of that question about how the Commission should 5 draft an order, but I certainly can say that based on the 6 work that we have done, based on the data which we've seen 7 presented, we feel that it would be unjustified and exces-8 sive to require that pits for volumes of less than 5 barrels 9 per day of produced water be lined or otherwise taken out of service. 10 Do -- as a geohydrologist with experience 0 11 in regulatory matters, do you see any purpose served by re-12 quiring the operator to file on a site by site or a well by 13 well basis in order to have small volume pits exempted? 14 Given the evidence that we've seen in the Α 15 hearing, I believe that really the more appropriate route to 16 take would be to handle the pits that, and/or sites, well 17 sites, that present a threat to the environment and a threat 18 to human health on a case by case basis rather than seeking to exempt a large number of sites that may indeed pose no 19 problem on a case by case basis. 20 Thank you. Q 21 MR. KELLAHIN: Mr. Chairman, we 22 move the introduction of Tenneco Exhibit Number Five. 23 MR. STAMETS: Without objection 24 the exhibit will be admitted. 25 Are there questions of this

1 186 witness? 2 Ms. Pruett. 3 4 CROSS EXAMINATION 5 BY MS. PRUETT: 6 0 Can you explain to me on your first page 7 where you give some of the numbers you've used, where you 8 got the figure of 250,000 gallons per day per foot squared, 9 which is 50 times larger than Mr. Boyer's figure of 4,675? Now if you'll look at -- well, 10 A I wish that you could show me Mr. Boyer's figures. I think I've 11 got his exhibits up here. 12 If you'll note on the very first page of 13 Boyer's exhibit, he has transmissivity ranges which Mr. 14 range from 4,675 gallons per day per foot, to 11,220 gallons 15 per day per foot, to 467,500 gallons per day per foot. 16 So I think that if you'll look at then at 17 ranges in conductivity that -- the ranges in transmisthe sivity that we have looked at in our study, using a satu-18 rated thickness of 25 feet, as did Mr. Boyer, for our high, 19 and we would come up with 250,000 gallons per day per foot, 20 and for our low end we would come up with 250 gallons per 21 day per foot. 22 Q Maybe I didn't quite make my question 23 clear. 24 Did you get these figures from pump 25 from literature, from field data, where did you get tests,

1 187 your actual numbers that you used? 2 Α Oh, for hydraulic conductivities? I was 3 -- oh, I thought you were asking me about transmissivity. 4 Transmissivity is a function of the hy-5 draulic conductivity in the saturated thickness. 6 hydraulic conductivity values were The 7 obtained from -- in the cases where -- let me speak first of 8 the cases where we actually did the field work, okay? 9 Those cases, those hydraulic conductivity values were estimated using Freeze and Cherry's chart 10 after we excavated in order to put in the groundwater monitoring 11 wells, in other words, based on grain size analyses. 12 Also. in the case of the McCoy Well, 13 which is very near the McMann No. 1 Well which Mr. Boyer has 14 given us the conductivity as 2500 feet per day, we used that 15 data. 16 We also used recovery data of the pits 17 when they dug below the groundwater, as well as recovery 18 from the individual well points as they were bailed to data evacuate them prior to sampling at both the Eaton and the 19 McCoy sites. 20 So, in answer to your question, the McCoy 21 site itself has both site specific information which we 22 gathered from observing the lithologic materials, as well as 23 extrapolation from the nearest available pump test performed 24 S. Geological Survey, and in fact, a reduction of by the U. 25 that value by almost a half for the hydraulic conductivity,

1 188 transmissivity, and at the Eaton site we used the methods 2 which I described previously. There were no pump tests 3 available in that area. It was again based on those types 4 of evidence. 5 For the other sites. as Mr. Hicks de-6 scribed in his testimony, it was derived by visual inspec-7 tion of the pit, the subsurface in the nearby areas on out-8 crops, other exposures, and on the use of that table that 9 relates grain size to hydraulic conductivity by Freeze and 10 Cherry. I hope you'll bear with me, because I'd 0 11 never heard of a random walk model before. 12 So transmissivity is based on hydraulic 13 conductivity and those values are based on a visual inspec-14 tion of grains at the site and applying that visual -- the 15 experience of his professional career, his visual analysis 16 as applied to that Freeze and Cherry chart. 17 In addition to the other sources of data А which I described earlier, yes. 18 And, let me clarify that hydraulic con-19 ductivity is the parameter that is estimated. Transmissiv-20 ity is calculated from multiplying that by the saturated 21 thickness. 22 So any weaknesses reflected in Mr. Hicks' 0 23 testimony, such as failure to account for snow melt and 24 rain, or the difficulty or unreliability of determining hy-25 draulic conductivity from the visual inspection, would all

1 189 weaknesses that would incorporated into the computer be 2 model. 3 Well, snowfall and rain have absolutely Α 4 no effect on hydraulic conductivity. 5 The inaccuracies that could be introduced 6 by visual estimation of hydraulic conductivity, I would find 7 very difficult to believe could exceed two orders of magni-8 tude, and indeed, you'll see that the simulations that we've 9 done span ranges of hydraulic conductivity from 10 to 10,000. 10 So really we're dealing with four orders 11 of magnitude in there. We've looked at cases that span that 12 entire range, so we feel that we've accounted for any poten-13 tial errors that would, you know, result from the visual es-14 timation of those parameters. 15 I'm not asking for you to say whether or Ω 16 not there are weaknesses. 17 I'm asking you if there are any weaknesses would they not also be incorporated into your computer 18 modeling in the hypothetical? 19 Well, I -- I can't even accept the fact Α 20 that there are any hypothetical weaknesses that are -- that 21 are -- that are caused by the inputs of rainfall and snow-22 fall on hydraulic conductivity. That's a physical impos-23 sibility. 24 If you're saying that if Mr. Hicks' esti-25 mate of transmissivity -- of hydraulic conductivity was off

1 190 2 by two orders of magnitude, would my transmissivity and my hydraulic conductivity in my model be off by two orders of 3 magnitude, yes, absolutely. 4 Looking at your -- your diagram for the 0 5 Eaton A 1-E uncalibrated model ---6 A Right. 7 0 -- which you said, I think you said 8 grossly overestimated the amount of benzene found, couldn't 9 an alternative explanation for that be that the samples taken at the site did not pick up actual contamination? 10 Isn't that a possible explanation for the 11 difference there? 12 A Okay, in other words you're saying that 13 -- let me see if I understand your question. 14 You're saying that if we had the ground-15 water monitor wells put in in a down gradient direction from 16 the pit and the samples that were collected from those wells 17 showed no benzene in them, that the model, if it predicted 18 higher concentrations, could still be right, even though we don't see it in the groundwater monitor wells? Is that what 19 you're saying? 20 0 Yes. 21 Well, if you ask me if it's possible, I'd Α 22 say anything is possible, but it's not probable. 23 And just so that I understand what 0 the 24 calibration procedure is, once you saw what the computer 25 predicted, which you felt was too high, rather than accept

1 191 bad news, you then went back and showed that this as vou 2 could run the computer model backward, starting with the re-3 sults that Mr. Hicks actually obtained in the field, is that 4 correct? 5 Well. I didn't take it as bad A news or 6 good news. I mean I took it as an uncalibrated computer 7 model and computer models typically, when it's possible, 8 will yield much better results when calibrated in the field. 9 As a matter of fact, in a -- it's typical 10 on many of the cleanups and contamination assessments that my firm has worked on, and in fact, one that they're working 11 on now for the EID, where there is specific demands made by 12 regulatory agencies to calibrate models using actual field 13 data in order to be able to accurately represent what is 14 going on in the subsurface. 15 So consequently, that's the procedure we 16 followed in calibration of the Eaton models. 17 Staying with the Eaton models, in 0 the calibrated model on the Eaton Well --18 Α Uh-huh. 19 0 -- comparing Mr. Hicks' field samples and 20 your models, what happened to the 7 and 11 reading in Mr. 21 Hicks' field samples? Why are the numbers shown on your 22 calibrated model two orders of magnitude under Mr. Hicks' 23 own field measurements? 24 you look at the kind of resolution A If 25 that the model has on the basis of what cell size is chosen

to accurately predict concentrations given the number of 2 particles which you use and the mass associated with those 3 particles, and at the same time you try and simulate a long 4 enough period of record that you can actually observe what's 5 going on at a certain distance away from the site, the reso-6 lution becomes quite difficult in when you're trying to pre-7 sent it graphically like this in the form of, you know, when 8 you're trying to show 300 by 400 feet, and therefore, what's 9 going on right at the immediate vicinity of the site, if you'll note the scale on here and the scale on these maps 10 are very, very different, and therefore, the kinds of con-11 centrations which were observed at the wells in the Eaton 12 site all fall within that .12 ppb level and at the locations 13 of those particular wells closely approximate the values 14 that we actually observed in the field. 15

1

25

Now, the Eaton A 1-E Well, as I recall 0 16 Mr. Hicks' testimony, was that the actual benzene reading at 17 the pit there was 3500 parts per billion, and my understanding is that on this, again, calibrated Eaton site chart, 18 what you did in effect was reduce that from 3500 parts per 19 billion to 20 parts per billion as your source term as a re-20 sult, I quess, of biodegradation and other attentuation 21 mechanisms operating, which you then fed into the computer 22 as an actual benzene concentration. 23

Why did you pick 20 parts per billion? 24 Why not 25 or 40 or 5 parts per billion?

A Well, as I described, it was an iterative

1 193 process and you keep reducing or increasing, depending on 2 what your field data show, the source -- in other words, 3 when you're trying to calibrate a model, okay, you take all 4 the parameters which you're relatively sure of, okay, and 5 you prioritize them. 6 You go, well, this one I know, 99 percent 7 confidence. 8 This one I know, 85 percent confidence. 9 And on and on and on, and then you alter the parameter with the lowest confidence interval in order 10 to be able to fit the observed data to it, because it's the 11 one that you have a least information about, and hađ the 12 least information about what the actual processes and what 13 the quantification of those processes are from the point 14 where the water that is in the pit at a concentration of 15 3.83 per liter, or actually 3,830 parts per billion, what 16 concentration would actually reach the groundwater by the 17 time it traveled the nine feet that it had to travel through 18 the unsaturated zone at the Eaton site to reach that. MR. STAMETS: Excuse me for in-19 terrupting, Ms. Pruett, but you indicated that on the cali-20 brated model we're talking about 20 parts per billion ben-21 zene, and the way I read the exhibit, it's 200ths of a part 22 per billion. 23 I have here the figure 0.02 ppb 24 benzene. 25 There's confusion some here.

1 194 Did you give me the wrong number or am I reading this incor-2 rectly? 3 MS. PRUETT: I think I gave it 4 incorrectly. 5 MR. STAMETS: Fine. 6 0 Is it true that a number of the --7 several of the numbers which you fed into the computer re-8 flect higher, could reflect a higher dilution factor than 9 did Mr. Boyer's calculations? A Only the range of hydraulic conductivi-10 ties that we used in our simulations actually can represent 11 much slower velocities than what Mr. Boyer's calculations 12 show, because if I can refer you to Mr. Boyer's lowest cal-13 culation -- I mean lowest assumed hydraulic conductivity, we 14 would be looking at 25 feet per day and there's some --15 there's conversion factors involved so you'll have to bear 16 with me for a second. 17 That our range of 10 gallons per day per foot squared would approximate that lowest conductivity 18 which he used in his model and therefore we feel that we've 19 covered the same range, really. 20 MR. STAMETS: Let me interrupt 21 one more time while we're talking about this modeling. 22 On the calibrated lower source 23 your benzene concentration, I presume that's what term, 24 you're talking about that's going into the pit, .02 ppb, and 25 you also show concentrations on there in the ground of .12.

1 195 A Yeah, yeah. That's a -- that'a typo. 2 That .02 is ppm. 3 MR. STAMETS: Ah ha! 4 Α It's 20 ppb. That's where that number 5 came from. 6 MR. STAMETS: Okay, so we need 7 to correct this exhibit then, with calibrated lower source 8 term for the Eaton A 1-E, and change that 0.002 to --9 Α 20. MR. STAMETS: -- 20. 10 Α Correct. 11 MR. STAMETS: A11 right, so 12 that means that when I corrected Ms. Pruett awhile ago, I 13 was wrong and she was right even though she was wrong when 14 she was doing it. 15 Α You were both right. It was our exhibit 16 that was incorrect. 17 MR. STAMETS: Very good. I'm certain that that will clarify the record. 18 0 Your regional X flow of 15 you compared 19 to Mr. Boyer's number zero. 20 Wouldn't that reflect a higher dilution 21 factor? 22 Well, if you compare 15 to zero, certain-Α 23 ly, but I mean, first of all, Mr. -- I don't think that Mr. 24 Boyer ever used a regional X flow of zero. 25 That would mean either that or the gra-

196 1 dient is nonexistent or -- or there's no hydraulic conducti-2 The regional X flow has to be greater than zero, and vity. 3 I need to emphasize that that Figure 1 does not reagain, 4 present the input parameters that we used for every one of 5 If you'll note, in some of the low hydraulic these cases. 6 conductivity cases, let's turn to, for example, the GCU 169 7 E or the Romero Gas Com A-l, you'll note that regional X 8 flow at the Romero, for example, is .02 feet per day. Regional X flow at the Ulibarri Gas Com 9 1-A is .16 feet per day. 10 Regional X flow at the GCU 169 is also 11 STAMETS: Any other ques-MR. 12 tions of this witness? 13 Mr. Taylor. 14 15 CROSS EXAMINATION 16 BY MR. TAYLOR: 0 Okay, first I think I have some questions 17 about your model. 18 A Okay. 19 Will you tell us what computer you used 0 20 to make your random walk runs? 21 IBM PC. A 22 0 Is that the same that Mr. Boyer used? 23 Well, I don't know if it's the Α Sure. 24 exact same configuration and memory, et cetera, et cetera, but it's the same general computer. 25

1 197 You did say you used an IBM PC. 0 2 That's correct. Α 3 Do you know if the IBM PC he 0 used âl-4 lowed calibration such as you performed? I assume you used 5 a (not understood) for this? 6 No, that's not correct. A 7 Oh, can you tell me how it worked, then? 0 8 Sure. As I described, what we did is we A 9 got -- first we said, okay, here's what we measured in the pit at Eaton. Okay, let's talk about Eaton because that's 10 the site that we were -- I think is in discussion. Is that 11 adequate? 12 Sure. 0 13 At the Eaton site we measured Α Okay. 14 3.whatever, 58 or 3.83 milligrams per liter, or anyway, ap-15 proximately 3500 or -- milligrams per -- 3500 parts per bil-16 lion. This is going to kill me this parts per billion and 17 milligrams per liter. But, we used that concentration on 18 the first go around just as Mr. Boyer used 14 milligrams per 19 liter. Okay. 20 We ran it through and we got a certain 21 result, which is demonstrated in the uncalibrated version of 22 that model. 23 Then, as I explained to EID's counsel, we 24 said, here's what we observed that the model predicts, what 25 do we see in the field? We see X concentrations that were

1 198 shown in Mr. Hicks' exhibit, and we did not really run the 2 model backwards. 3 So in answer to your question, there is 4 no mechanism of running that model backwards. 5 What you do is you reduce the source 6 terms by just saying, okay, instead of 3.5 I'll use .35 and 7 I'll run it through and see what I get. 8 then, say, then take a look at the And 9 result of that and you say, does this more closely approximate what I know to be the case based on my field informa-10 tion. 11 And if that still doesn't get you there, 12 or if it predicts too low a concentration, then you go back 13 and you estimate another point in between and that's what I 14 meant by iterative process. 15 So more or less, as you said, your 0 re-16 sults there would be dependent upon the accuracy of your 17 collection data in the field when you did the water testing 18 and the water sampling and then tested that for benzene --That's correct. Α 19 -- concentrations. Q 20 That's correct. A 21 Q And you said that the eventual calibrated 22 model that you used, you put in 20 parts per billion --23 That's correct. Α 24 -- benzene, and I assume that 0 that is 25 your estimation of the benzene that is -- as it is entering

1 199 the water level, concentration of benzene as it is entering 2 the water table. 3 Based on the field data that we have and Ά 4 the predictions that random walk makes of the distribution 5 of that contaminant. 6 Well, I assume that because you had 0 7 below what you detected around in your monitor wells levels 8 were not the levels as it was entering the groundwater. 9 When you have levels at the pit and then you're correcting your model for what you consider to be degradation between 10 the pit and some point in your groundwater? 11 That's right. That's right. Α 12 Now I see on Mr. Hicks' exhibit on the 0 13 Eaton A 1-E, I assume there were seven monitor wells at that 14 site because there are seven numbers there. 15 That's right. А 16 0 All of them show less than one as the 17 benzene concentration, except No. 3 and No. 2. I believe it's No. 7 and No. -- let 18 А No. me just -- I have to turn to that page myself. 19 I believe it's No. -- no, you're correct, 20 3 and No. 2. I'm sorry. It was 7 parts per bilit's No. 21 lion that No. 3 showed. 22 Okay. And you used 20 parts per million 0 23 in your -- in your model, and how does that reapparently 24 late to the various things here? Did you start with trying 25 to come up with an answer of what -- from your -- in cali-

200 1 brating your model to what showed up in the field, what an-2 swer are you trying to come up with, 1, 7, 11, as parts per 3 billion? 4 You're trying to simulate the distribu-Α 5 tion over that whole area. 6 If you took -- if you took these values 7 that Mr. Hicks has, or if you even looked at Mr. Boyer's --8 or look at Mr. Boyer's -- any one of his printouts in random The way that -- matter of fact, Mr. Boyer must have a 9 walk. more recent version of Prickett's model because his actually 10 outputs things in concentrations and ours took -- had to 11 take it a step further, but in any case, if you look at his, 12 it actually puts out what the concentration, predicted con-13 centration is at each one of those points. Okay? 14 Q A grid or something like that? 15 Α A grid, that's correct. I'm pointing to 16 one of the grids on Mr. Boyer's exhibit. Then what one would do in order to 17 represent that as one would represent any randomly 18 distributed or even non-randomly, any three dimensional or 19 two dimensional data, one would, say, contour that data to 20 determine, you know, what areas fall within what 21 concentrations, based on these results. 22 Well, consequently, you can do the same 23 thing based on the results of the water quality analyses to 24 give you a picture of what's going on in the areas in 25 between your monitor wells, so to speak. So in calibration

201 1 the model what you try and do is simulate that overall of 2 distribution of contaminants rather than -- well, not rather 3 than, but I mean in addition to what you would observe at 4 each one of those monitor wells. 5 Did I -- am I clear? 6 I don't know, but -- well, let me kind of 0 7 ask it again, because I'm not clear on it. 8 A Sure. What you were doing is calibrating your 9 0 model to what you thought was in the field. 10 That's right. А 11 And --0 12 Not what I thought; what I knew. Α 13 Well, you don't know because you didn't 0 14 -- you didn't dig up the whole area but you did monitor 15 wells and you calibrated that, calibrated your model with 16 what your monitor wells showed. 17 Α That's correct. What I'm trying to get at is how 0 your 18 confidence level is in this thing, how confident you are 19 your model is correct and that your field results that are 20 correct, and so I -- what I want to get at is that on Moni-21 tor Wells 3 and 2, the high --22 Uh-huh. A 23 -- levels of benzene. 0 how were those 24 taken into account in making your model? 25 Monitor No. 2 showed 11 parts per А Sure.

1	202
2	billion benzene; No. 3 showed 7 parts per billion benzene.
3	The way that's taken into account is by
4	looking at the results from the various iterations of random
5	walk with various source terms, and seeing which one best
6	fit the observed concentration.
° 7	In other words, what you're trying to do
	is replicate that concentration which you measured in the
8	field, make the model say it's 11 parts per billion here and
9	7 parts per billion there, you know, and it's of course to
10	the fact that you maybe don't have the well falling right on
11	a grid point in your period or, you know, those things can't
12	be helped, but in terms of my confidence interval, it's
13	really pretty good, and the reason being that if you look at
14	how many monitor wells are in this site which overall, you
15	know, we could fit in about a 200 or 200 foot square. Okay?
16	And you get seven monitor wells in there.
	To give you an example, for hazardous waste sites that are
17	regulated under the Resource Conservation and Recovery Act,
18	the Act requires that one monitor well be placed up gradient
19	and that three monitor wells be placed down gradient, and
20	that the results from the quarterly sampling of those wells
21	is sufficient to delineate whether there is indeed any
22	groundwater contamination that arises from that facility.
23	In this case we've got one, two, three,
24	let me see exactly where the down gradient direction is, we
25	have one, two, three, three, four wells, Nos. 2, 4, 6, and 3, which are directly down gradient of the produced water
-	al waren are arrearly annu dramtene of the broduced water

1	203
2	pit or the potential source, and I believe that that's
3	that if there was anything in the groundwater as indeed we
4	did detect at Wells No. 3 and No. 2, that we would have
5	picked it up.
6	In addition, let me mention that you have
	to notice that Well No. 3, it's kind of unusual that that
7	far away from the produced water pit it would also show the
8	concentration of 7 parts per billion, but if you'll note be-
9	tween the produced water pit and between Wells 4, 6, 4 and
10	6, which are down gradient from the produced water pit,
11	there's a blowdown pit, so that represents another potential
12	source that could account for the increased concentrations
13	in Well No. 3.
14	Q Okay, well, that was a question I had
15	later.
16	Are you positive enough that your gra-
	dients are correct, that assuming looking at this map that
17	the top of it is north, that there is no need to put any
18	any wells, any monitor wells to the south of the produced
19	water pit; at least just one to make sure that you didn't have some any of the contaminants going in that direction
20	because of the high number of No. 2?
21	A Well
22	Q It would seem rational to put a monitor
23	well to the south of that pit.
24	A Certainly, and if you'll look at a random
25	walk or any simulation, or even just a qualitative look at

2 the movement of contaminants in groundwater, they move by 3 primarily two processes; one advective or actually being 4 carried in the direction of the gradient by the groundwater, and dispersive, the actual chemical gradients and dispersion 5 that's caused by the substance in the groundwater.

1

6 If you look at those, the behavior of 7 those species, typically you may have some limited migra-8 tion in an up gradient direction from a particular source, but that is not the primary direction in which you would 9 have movement of contaminants, so therefore that's why you 10 typically put wells down gradient of a potential source to 11 try and detect a problem from that source. 12

Now, up gradient from the source you may want to put a monitor well to detect whether indeed there is other sources that are further up gradient that may have caused what you see rather than the source that you're really trying to narrow down, and in that case you probably wouldn't want to put that well outside of the sphere of influence of that dispersive mechanism beneath that source.

19 So my answer to you is that basically I
20 would anticipate to see the highest concentrations of any
21 contaminant that entered the groundwater in the area imme21 diately down gradient from the potential source rather than
22 in the area immediately up gradient from the potential
23 source.

24 Q Okay, but the reason I kind of wonder
25 about this is because it seems like Mr. Hicks, or someone

204

205 1 else, testified that movement of groundwater or things mov-2 ing through the soil, if often greater horizontally or kind 3 of out than it is --4 A Sure. 5 -- with the gradient. 0 6 Α Sure. But you've got to think that what 7 in here are monitor wells that sample the satuwe've got 8 rated zone. They don't sample the unsaturated zone. 9 So once the contaminants entered the groundwater, which is what we're concerned with here, is the 10 contamination of groundwater, they're going to move predomi-11 nantly in a down gradient direction. 12 0 Now, going on with this thing about gra-13 I think we talked to Mr. Hicks, and I'll just ask dients. 14 you the same question, relating mainly to the confidence 15 level of your -- both your monitoring and testing, relating 16 your model to your monitoring. 17 Sure. Α is the possibility that there is 0 What 18 seasonal reversal to the gradient and how does the gradient 19 measure to compare with total groundwater gradient, that is 20 the gradient that you ---21 А Sure. It -- I think that that's a very 22 good question. I think that that's a very, you know, fair 23 concern. They're in alluvial areas, you can have fluctua-24 tions in the gradient that are significant. 25 A11 I can say is at the point in time

1 206 measured the gradient at the locations when we where we 2 measured, the gradient very precisely to the tenth of a 3 foot, that it -- my confidence level is as high as it would 4 be in any case, that that was the gradient, and indeed I 5 could state without any qualification that that was the gra-6 dient at that point in time. 7 The fact that that gradient may have 8 shifted or something like that, that, I mean that is cer-9 tainly a possibility and furthermore, we know that there have -- there are fluctuations in groundwater elevations in 10 alluvial environments and that can cause a problem 11 But let me -- let me point you to just 12 one last thing in here. 13 TE you look at the gradient around the 14 produced water pit at the Eaton site, you can see that it's 15 slightly steeper away from the produced water pit. So I 16 think we're really looking at where you could have potential 17 contamination, the greatest potential contamination. 18 С Okay. Now relating to a guestion that I think we talked to Mr. Hicks about, which was the fact that 19 normally petroleum products float on water but think J 20 there's been a lot of testimony that benzene goes into solu-21 tion with water, and I was interested in finding with him 22 whether he -- or whether the sampling methods you a11 had 23 come with were intended to make sure that you up oot all24 the, you know, got the areas where it might be the highest 25 because benzene goes into solution with water and might be

1 207 lower than the top of those water tables. Are you confident 2 that your measurements of benzene are, you know, what you're 3 showing here are what would be the highest in the area when 4 you look at your model? 5 A Yeah, I'm very confident of that and I'll 6 tell you why. Two reasons. One, primarily, it's standard, 7 accepted practice and in fact required by regulatory demands 8 and by policy, that wells be screened in the uppermost por-9 tions of aquifers to try and detect groundwater contamina-10 tion, and that is indeed what we did at this site. Furthermore, in terms of what you're 11 trying to get at, what I perceive you're trying to get at is 12 did we miss something that maybe flowed under our screened 13 interval, or something like that. 14 In order for benzene which is in solution 15 to go -- to move in a down -- in a vertical sense, there's 16 going to be much less movement in the vertical sense than 17 there is in the horizontal sense, because typically most 18 aquifer materials have higher horizontal hydraulic conductivity than vertical hydraulic conductivities, and further-19 more, in the levels of benzene concentrations that we're 20 looking at in this area, there is no appreciable density 21 difference between water, groundwater that has no benzene in 22 it and groundwater that has 20 parts per billion benzene in 23 it that would cause there to be any significant movement 24 vertically in the -- of the contaminant. 25 What was the total number of system par-0

1 208 2 ticles in time increments that you used? The time -- that varied. A Okay. Okay, 3 and the reason why it varied is because we had varying 4 source terms and we wanted to maximize the total number of 5 particles that our computer could handle in its little num-6 ber crunching brain, and still produce some kind of a re-7 sult. 8 you'll look at the total simulation If 9 times, they range anywhere from a few hundred days to as much as eight years in terms of how long we carried out some 10 of these sites in attempting to, you know, approximate a 11 history of those wells. 12 In terms of the iterations, the intera-13 tive time steps, generally we used 30-day time steps, and 14 the reason being that we wanted to get a, you know, long 15 period of record or simulation for those. 16 In others we used as little as half a day 17 time step for the ones that we had -- that we wanted to look 18 at in more detail what was occurring over shorter periods of time, and also trying to simulate a continuous source rather 19 just putting in a slug of contaminants and then than dis-20 persing it and moving it for 30 days or any period of time, 21 you know. 22 So we tried -- the answer is basically we 23 tried various iteration times and various total numbers of 24 particles that represented different masses. 25 In general I'd say, you know, we were us-

1 109 2 ing in the range of 1000, 1000 to 1500 system particles, somewhere in that range, and iteration times of 30 days for 3 the most part, although in several cases we used shorter 4 ones. 5 Would you describe how you determined hy-Q 6 draulic -- hydraulic conductivities listed in Table 2 for 7 the wells? 8 Yeah, I think Mr. Hicks described that in А 9 nis testimony. He determined those. 10 Could you just basically outline 0 it again? 11 A Sure. 12 So I understand it. 0 13 Α Once again, if you'll refer to this table 14 Hicks' testimony, Figure C-1, Range of Values of Hyin Mr. 15 draulic Conductivity and Permeability, Freeze and Cherry, 16 1979, that table was used in conjunction with Mr. Hicks' ob-17 servations at the field and his completion of these field 18 forms and photographing the materials in the pit, around the pit and outcrops, and then relating that to this chart and 19 then reading across what the corresponding hydraulic conduc-20 tivity would be. 21 0 You state that the model, in calibrating 22 the model, grossly overestimated the contamination. How 23 certain are you that the concentration decrease actually 24 occurred? 25 А What concentration decrease?

1	210
2	
3	that between the calibrated and the uncalibrated.
4	A Well, I'm certain that
5	Q How certain are you, I suppose, the real
6	crux of the question, is how certain are you that that
7	the monitoring is accurate so that the concentration de-
	crease between your uncalibrated model and your calibrated
8	model is actual and not just something that you put into it
9	to try to reflect what you found in the field which might
10	not be what is really there?
11	A Well, I disagree with that. I mean, what
12	I found in the field is what is there.
13	We measured the concentration of benzene
14	in water samples that were taken according to a standard,
	accepted, EPA approved procedures for sampling organic con-
15	stituents, had them analyzed by two laboratories using EPA
16	certified methods and complete quality assurance and quality
17	control procedures, and therefore I have a high degree of
18	confidence in the benzene concentrations that were measured
19	at the monitor wells.
20	In terms of my level of confidence that
21	the source strength decreased, all I can say to that effect
	is that of the parameters that were inputs to the model at
22	those locations, the strength, i.e., the concentration of
23	contaminants that were actually reaching the groundwater was
24	the one factor that was most difficult to approximate and
25	had the lowest level of confidence.

21 1 Therefore that was the factor which we 2 felt most comfortable in adjusting in order to calibrate the 3 model. 4 We talked about this a little bit fur-C 5 ther, but how do you -- is the 7 parts per billion that we 6 see in Well No. 3, I think, do you think that's accounted 7 for solely because of the blowdown pit that's there, or 8 could there be other explanations? 9 Well. I find it -- I find it a little --Α 10 I mean that would be the most reasonable explanation given the data that we have. That's immediately adjacent and down 11 gradient of the blowdown pit and we have wells that are be-12 tween the blowdown pit and the produced water pit that had 13 -- that had come up essentially clean. 14 So, yes, that would be my most reasonable 15 assumption of that there is some increased source from the 16 blowdown pit. 17 I assume you did not model your random 0 walk for anything other than benzene. Didn't do any TDS or 18 19 A That's correct. 20 -- any other contaminants. Q 21 That's correct. Δ 22 I think that's all I have except that I'd 0 23 to get back to one point that we talked about that I like 24 really didn't get an answer, and that is what -- what per-25 cent confidence level do you have both in the fact that the

1 212 monitoring wells turned up accurately what is in that aqui-2 fer, not only where the wells are but at other areas in that 3 aquifer, other places on the grid that you might have on 4 vour Inot understood) and consequently, based upon your 5 confidence level on your monitoring, your confidence level 6 on your model for what you show. 7 have Okay. The confidence level that I А 8 on the analyses is -- you mean as high as I would have? I 9 mean there's no reasons to believe or even to speculate that the analyses may be incorrect. 10 I don't mean your confidence level 0 in 11 your analysis of your samples but in the fact that the moni-12 toring wells are showing everything that's there. 13 А Oh, okay. 14 Not selectively or it's not --0 15 Α It's really hard to put a percentage num-16 ber on it exactly, but I'd say, I mean it was in the range 17 of 90 percent plus, because they are screened in the uppermost portion of the aquifer as would be necessary to detect 18 the first potential contamination that would reach the aqui-19 fer. 20 my confidence level is extremely high So 21 on that the monitor wells are actually showing me what is in 22 that zone of the aquifer. 23 0 Do you agree that any -- any problem (not 24 understood) but the accuracy of your monitoring would re-25 flect on your model and make --

1 213 A On the calibration of the model, yes, I 2 would. Yes. 3 I'm supposed to ask you this. When I ask 0 4 you about confidence levels I speak in terms of statistical 5 calculations to give you a numerical confidence level. With 6 respect to the last two questions, did you perform such an 7 analysis? I assume it's more or less like when you have 8 your statistician come in and tell you what --9 A Yeah. Frankly, I'm not a statistician but I don't understand how one could perform a statistical 10 analysis to determine a confidence interval on whether your 11 groundwater monitor well was screened in the right portion 12 of the aquifer without, I mean, screening many different 13 monitor wells in many different zones and then I would still 14 find it very dubious, the results of that statistical analy-15 sis, because in fact you don't -- you can't really compare 16 sampling one portion of the aquifer with another. 17 I mean we sampled the portion of the aquifer that was most likely to demonstrate contamination. 18 0 But you do agree that if for some strange 19 reason contaminants were moving south of what we consider to 20 blowdown pit and you had no monitoring wells there be the 21 and therefore if there were concentrations of benzene or 22 other pollutants in that area, it affects your whole model. 23 A Yes. I would agree that what you say is 24 correct, that my model was be affected. However, I must 25 take exception because I cannot envision any, any hyrologic,

1 214 chemical, or other mechanism that would account for conta-2 minants to in effect sneak under my monitor wells and show 3 up, you know, at some point further than they are when 4 they're in the immediate vicinity of the potential source. 5 0 Thank you. 6 7 CROSS EXAMINATION 8 BY MR. STAMETS: 9 If we go to about the second page after 0 10 the calibrated lower source term sheet, we come to the GCU 202 Well. 11 Your benzene concentration is 3500. Is 12 that a measured concentration or an approximation or what? 13 Α No, sir. All, let me just answer that 14 not only for this one but for all of the cases. 15 All of those concentrations with the ex-16 ception of the calibrated concentration, were concentrations 17 that we arrived at that number of 3500 by looking at the 18 average concentration of benzene in the pits that was taken from the OCD and our available data on those analyses. 19 0 You're trying to find pits or produced 20 water that were close to the concentrations that you used in 21 the calibration model. 22 А No, I'm not sure I understand that. 23 0 Okay. 24 We ---A 25 Let me back up then. 0

1 215 Okay. A 2 When you're looking at the A 1-E, Q the 3 benzene concentration there was 3500. 4 A Right. 5 Is that why you tried to find other pits 0 6 with 3500? 7 No, sir. The reason why -- we didn't try А 8 to find any pits with any particular concentration. 9 What we did was take the data which was presented in Mr. Hicks' exhibit, and I believe is included 10 as, let's see, Table 1 in my exhibit, which shows the OCD 11 data on benzene concentrations measured from, directly from 12 the separators as well as measured in the pits, and you'll 13 note that the mean there was 3.58, and you know, in retro-14 spect maybe we should have used 3600, but we used 3500 for 15 that. 16 0 If I use 3500, the actual ppb at that 17 well could be different. 18 Oh, certainly, certainly. At that pit, А you mean? 19 0 Yes. 20 А Yes. What we did was take, since we 21 didn't have analyses from all these pits, what we did was 22 take the data which we did have analyses for, i.e., the 23 Bravo A 1-E, the Flora Vista No. 1, the Zachary, et cetera, 24 et cetera, and used the average from that. 25 I notice there are a few in here Q where

1 216 you used the figure 20. 2 That's right. A 3 0 And what was that based on? 4 That was based on the calibration of А 5 those sites according to the way, same way which we cali-6 brated the Eaton site, because they were similar lithologic 7 environments, and had similar hydraulic parameters. 8 0 Okay. 9 MR. STAMETS: Any other questions of this witness? 10 MR. ELMER: Just one. 11 MR. STAMETS: Mr. Elmer. 12 13 CROSS EXAMINATION 14 BY MR. ELMER: 15 Your -- you mentioned resource reclama-0 16 tion standards and comparing a number of wells --17 Α Uh-huh. 18 -- but your time period isn't -- is 0 not comparable in terms of you mentioned that under those stand-19 ards it's measured quarterly. 20 Α That's correct. 21 Õ In this case you just measured in a one 22 week period of time, correct? 23 Α Yeah, and with respect to the Resource 24 Conservation Recovery Act you typically measure those levels 25 quarterly for one year, and then you determine how often you

1 217 have to do that after that period of time. 2 Well, for purposes of your random walk 0 3 study, it was the data that was collected over the one week 4 period of time. 5 That's correct. What I was -- what I was А 6 trying to recheck there was more, not the frequency but the 7 number of wells that are required in a down gradient direc-8 tion. 9 Uh-huh, thank you. 0 10 MR. STAMETS: Any other questions of this witness? 11 He may be excused. 12 Ι presume no one has anything 13 else that they wish to offer in direct evidence. 14 Very good. 15 MR. CHAVEZ: I have -- would 16 ask for a clarification of one matter. 17 MR. CHAVEZ: I would like to --18 MR. GUTIERREZ: Should I leave or stay? 19 I believe he's MR. STAMETS: 20 going to ask to clarify something. 21 MR. CHAVEZ: Of you. 22 Mr. Stamets, you asked me ear-23 lier if I knew of any incidents where produced water had 24 polluted groundwater. Were you talking about a source of 25 drinking water or a particular water well used for drinking?

1 219 MR. STAMETS: Water well used 2 for drinking. 3 MR. CHAVEZ: Thank you. 4 MR. STAMETS: How about closing 5 statements? Who all wishes to make them and how many people 6 can limit them to five minutes? 7 Okay, if closing statements can 8 be limited to five minutes, we can take closing statements. 9 MR. PEARCE: Before we begin 10 with that, if I may, Mr. Chairman, when we began this, I said that in addition to appearing for Meridian Oil, Incor-11 porated, I was appearing on behalf of Giant Industries. 12 Giant Industries has prepared a 13 written statement for submission and has asked that the wit-14 ness who has -- must have run out of breathe by now, be al-15 lowed to summarize that statement orally into the record and 16 that we present copies of that. 17 I think that can be done even more quickly than --18 MR. GUTIERREZ: Less than one 19 minute. 20 MR. STAMETS: Very good. 21 MR. **GUTIERREZ:** Basically, I 22 sat on the Short Term Study Committee representing Giant In-23 dustries and assisting them in keeping track of how these 24 things were developing and tried by actively participating 25 in the process of developing some drafts, recommendations

1 219 for a draft order and which criteria should be considered in 2 developing such an order, and they really just want to say 3 that Giant strenously supports the January 18th recommenda-Δ tions of the Short Term Study Group on all the points in 5 which the committee was in agreement, and that includes the 6 definitions and prohibitions and exemptions which the com-7 mittee agreed on, and which are listed in the written state-8 ment, basically with respect to the delineation of the vul-9 nerable area and the exclusion of any pits that are already 10 governed by other statutes. And furthermore, that based on the analy-11 sis of the available data, that it is our opinion that a low 12 volume exemption within the vulnerable area of approximately 13 5 barrels per day should be permitted at the present time, 14 and that that opinion is based on the available data anđ 15 that -- and existing Federal practices. 16 Also that Giant will continue to partici-17 pate in the Long Term Study Committee, which will still exa-18 mine this question and that they look forward to continuing participation in the Long Term Committee and congratulate 19 the Division, Oil Conservation Division on their foresight 20 in involving all the intrested parties in the regulatory de-21 velopment process. 22 MR. STAMETS: Thank you. Mr. 23 Pearce, are you next? 24 MR. TAYLOR: May I have a ques-25

tion about the statement?

220 1 MR. STAMETS: No. 2 Mr. Pearce? 3 MR. PEARCE: May it please the 4 Commission, the Commission has now had four days of 5 testimony in this case. We've received into evidence a 6 substantial quantity of written material. 7 The first part of this case 8 dealt with those items which were agreed to in a committee 9 process. We believe that it is important that these agreed upon recommendations be affirmed by the Commission. 10 The great majority of the 11 record in this proceeding obviously relates to whether or 12 not produced water disposal pits in northwest New Mexico, 13 which receive five barrels per day, or less, need to be 14 lined in order to protect underground water. 15 During my opening statement on 16 April the 3rd, I indicated that I believed some additional 17 reality needed to be injected into this. That's been referenced several times since. 18 T indicated at that time that 19 discussion would not be amenable to easy mathematical our 20 description but that it was a discussion of mechanisms of 21 attenuation of pollution in produced water which were recog-22 nized by scientific, technicological and regulatory communi-23 ties. 24 fact the record shows In that 25 both the staff of the OCD and EID do recognize these mechan-

1 221 isms but they have opted for simple or more complex mathema-2 tical models which do not reflect actual test results rather 3 than grappling with much more complicated realities. Δ Let's look at the record for a 5 few minutes, if we can, to see what evidence most appropri-6 ately reflects these realities as it's been demonstrated in 7 these four days of hearing. 8 The OCD staff began this CASE 9 relying on a one dimensional flow model, which assumed discharge out the bottom of a produced water pit, the satura-10 tion of a perfect column, and the subsequent straight dis-11 charge into groundwater of all of the pollutants that were 12 contained in a separator. 13 The staff presented no evidence 14 that they had done any testing of a pit which demonstrated 15 The staff next talked about a much those characteristics. 16 more sophisticated model, a model which by its maker was ap-17 parently calibrated to describe in some terms the universe as a whole. 18 The OCD staff, the EID staff, 19 whoever was running those random walk calculations. and I 20 don't know if it was said in this setting, I missed it, but 21 whoever was running it did not attempt to take the universe 22 as a whole in the random walk model and make that random 23 walk model more appropriate to the San Juan Basin of New 24 Mexico, which is the only area we're talking about. 25 In contrast, the proponents of

1 222 the requested small volume exemption demonstrated that the 2 columnar flow model was overly simplified, that substantial 3 amounts of organic pollutants are eliminated by flash vola-4 tilization, volatilization from the pit, volatilization from 5 the subsurface environment, and biodegradation. 6 They also presented scientifi-7 cally reliable, supported testimony amounts of organic pol-8 lutants are delayed through travel along indirect flow paths 9 and sorption. The proponents of the small 10 volume exemption also have presented a model which has been 11 refined to reflect the area that we're talking about through 12 a representative selection of wells refined to deal with the 13 area we're specifically concerned with here today rather 14 than the universe as a whole, shows that pollution should 15 not be found and pollution has not been found. 16 That, I submit to the Commis-17 sion, is substantial evidence which goes to the question of whether or not this is a real problem. 18 The opponents of the small pit 19 exemption argue that even allowing produced water pits which 20 receive small amounts, allowing those will endanger under-21 The only case of pollution which they have ground water. 22 is the Flora Vista case, which since its coming discovered 23 to light in apparently 1981, has been subjected to serious 24 scrutiny by multiple regulatory agencies. Nobody has been 25 able to come into this room today and tell you that a small

1 223 volume pit caused that problem. After all those years of 2 looking at that problem, nobody can tell you that. 3 What that means is that we do 4 not have on record in this proceeding a single case in which 5 a small volume pit polluted a water well. 6 In contrast, the proponents of 7 small pit exemption presented historical information the 8 which indicates that other sources of pollution at Flora 9 Vista are much more likely to have caused the problem. The 10 proponents of the small pit exemption did actual field studies of statistically representative sample wells in the 11 vulnerable area and found the levels of contaminants 12 predicted by the two models relied upon by the OCD staff and 13 the EID staff were not there. The level of pollution 14 predicted by the models on which they relied have not been 15 found. They haven't found them and we haven't found them. 16 There's no evidence in this re-17 cord that those models are at all reliable. In fact, the 18 only substantial evidence in this record is that those models are not reliable. 19 During the course of this hear-20 ing two suggestions have been made for resolving the dilem-21 ma. 22 One suggestion is that some 23 sort of pit registration procedure be developed. 24 The other is a suggestion that 25 some extremely low level, a half a barrel a day, be allowed

1 224 for eighteen months pending further study. 2 I don't think the record in 3 this case will support either of those alternatives. Either 4 of those alternatives represents a substantial burden to in-5 It increases to no provable extent the reflection dustry. 6 of records of the OCD of any problem, any well that produced 7 more than half a barrel a day and less than five barrels a 8 day, would have to be lined or tanked. 9 If in fact the only substantial evidence in this record turns out to be correct, that money 10 would be lost. 11 If the Commission believes that 12 further study is necessary, I'd like to suggest that a 13 what's appropriate is to adopt the consensus recommendation 14 of that committee to allow for a period of eighteen months 15 that any well that produces five -- any pit that receives 16 five barrels per day or less be continued to be unlined. 17 There's no evidence that that's a problem. If at the end of 18 eighteen months the staff of the Oil Conservation Division or the En-19 vironmental Improvement Division have done additional field 20 work and can demonstrate with substantial evidence that 21 those are a problem, then I believe we need to have that 22 evidence in a record before any order is entered to which 23 parties have not agreed, 24 I'm not frankly sure that the 25 producers should have agreed to the five barrels, because we

1 225 haven't seen anything in this record other than a 2 letter written, I believe, in 1961 by Mr. Kendrick that a pit which 3 received between 50 and a hundred barrels a day of 80,000 4 parts water should be lined. 5 Well, I'm not sure that there's 6 a problem with a 25 barrel a day pit. It hasn't been demon-7 strated in this hearing. But, as I say, the industry is 8 willing to accept that because of its consistency with other 9 regulatory agencies. submit that the record 10 T in this proceeding contains no substantial evidence on which 11 this Commission can enter an order requiring the lining of 12 those pits with the resultant expenditure and waste of 13 natural resource, which is appropriate. 14 Thank you. 15 MR. STAMETS: Mr. Carr. 16 MR. CARR: Mr. Stamets, first I 17 have a written statement from ARCO Oil and Gas Company. 18 ARCO has participated in the preparation and financing of certain technical testimony presented here today. 19 I do not intend to read this 20 statement. I would ask it be included with the record as an 21 unsworn statement and I have copies for anyone who's inter-22 ested in that. 23 I also have а statement. a 24 brief statement that will less than five minutes for North-25 west Pipeline Corporation.

1 226 case, as you are This aware. 2 was called by the Oil Conservation Commission to define the 3 vertical and areal extent of the aquifers potentially vul-4 nerable to contamination by the surface disposition of water 5 produced in conjunction with the production of oil and gas 6 in certain counties in northwest New Mexico. 7 Even though this is the Commis-8 sion's case, and in view of the way the case has been 9 called, I presume that it as not been prejudged and that when we come before you in a proceeding of this nature, we 10 can expect you to render a decision based on the evidence 11 which is presented to you. 12 That being the case, the next 13 point which must be addressed in a proceeding of this 14 nature, who bears the burden of proof? In this case, as in 15 all cases, that burden falls on the applicant, on the staff 16 of the Oil Conservation Division and those who have joined 17 with them. And we submit to you, on 18 the record before you in this matter, they have failed to meet 19 that burden of proof, for they have simply shown no contami-20 nation. 21 Talk as they will about Flora 22 Vista, they simply have been unable to connect this or any 23 other contamination problem to the disposal of produced 24 water in any surface pit. 25 Boyer's comment I thought Mr.

1 227 today was particularly interesting on this point. He talked 2 about weighin the problems that this situation could pose to 3 various people in the area, and he stated, it will be, and I Δ quote, a hardship for those whose well is contaminated. And 5 then he said, if that happens. 6 I think right there you have an 7 admission that they cannot and have not shown that there is 8 any contamination which they can connect with surface dispo-9 sal of produced waters in the San Juan Basin. They have failed to carry their burden of proof. 10 Their effort to prove a poten-11 tial problem was been feeble, indeed. They've used inade-12 quate sampling techniques, outdaed concepts, and incomplete 13 information. 14 They've used models which they 15 have not calibrated to consider field data. In fact, they 16 have shown no real world problem. 17 The evidence of their failure 18 to carry the burden I think is underscored by today's last ditch effort to shift from benzene and toluene to chlorides 19 and total dissolved solids. 20 They're asking you to take the 21 most conservative case. Well, the most conservative case 22 would be to stop all human activity in the area, but the 23 reason they moved toward this is what they need to have you 24 is without proof protect against a problem which do thev 25 cannot show exists.

228 1 this record you should dis-On 2 miss this case. 3 Following the February 20, 1985 1 hearing some of us met and concluded that no matter what the 5 inadequacies of the other case might be, we were being asked 6 to come before you and prove the negative. We sat down and 7 got to work and we think that we have done a pretty good 8 job. 9 We've presented testimony which we submit is scientifically sound. We've given you a com-10 plete explanation of what's happening in the San Juan Basin. 11 We've reviewed six mechanisms of attenuation that work to 12 abate, in fact, to eliminate, the very thing that they're 13 concerned about. We've used laboratory work. We've used 14 the most sophisticated laboratory work available. We've 15 called the most respected experts around and they have tes-16 tified that their conclusions do work in the field and that 17 they have confirmed this with field samples. The other side, of 18 course, wants to scoff at biodegradation but when they do that, I 19 think they should come forward with an explanation of what's 20 happening in the real world, and they've failed to do that. 21 Recently environmental the 22 function of the Oil Conservation Commission has been empha-23 sized and it now stands on an equal footing with the tradi-24 tional functions of waste prevention and protection of cor-25 1 assume these still are equal functions relative rights.

1 229 that environmental advocates will be expected when they and 2 come before you to make the same showing as those who repre-3 sent the industry. If they are, we submit there's only one 4 case before you which is factually and technically adequate, 5 and that's the case presented by Tom Schultz, Gary Miller, 6 Randy Hicks, Al Kendrick, and Alberto Gutierrez. 7 On the record before you, you 8 should not enter an order defining any area as vulnerable 9 and susceptible to contamination in the San Juan Basin, but if you must, on this record certainly you cannot fall below 10 the five barrel per day small barrel exemption. If you go 11 beyond this, we state that you've further elevated the envi-12 ronmental function and that you've turned your back on the 13 traditional duties of this Commission. 14 MR. STAMETS: Mr. Kellahin. 15 MR. **KELLAHIN:** Thank you, Mr.

16 | Chairman.

17 have prepared for your I con-18 sideration a proposed order that is attached as Exhibit A to a memorandum on legal issues we think are important in order 19 frame the action the Oil Conservation Commission will to 20 take on this issue, and if you'll give me a moment, sir. 21 I'll distribute those copies. 22 MR. STAMETS: While you're

23 doing that, I would note that any other participant who
24 wishes to submit a proposed order may, is invited to do so.
25 MR. KELLAHIN: Mr. Chairman, I

1 230 have had the privilege and honor of appearing before the Cil 2 Conservation Commission and Division since early in 1972 and 3 this is the first case in which I have participated directly ₫ or one in which I am aware in the last thirteen years in 5 which members of the industry have been placed in an adver-6 sarial role with the staff members of the Division. 7 It is uncomfortable for me. Τ 8 it's uncomfortable for you. assume It's a difficult task 9 that you have to wear two hats and try to separate your function as Director from your duties and responsibilities 10 as Chairman of the Commission. Were this the typical case 11 with competing operators fighting over an unorthodox well 12 location or some other issue to address, then it's easy to 13 sit back and be objective about the proof that's been sub-14 mitted to you. 15 It's also difficult and a pro-16 blem for me to discuss the quality of the Oil Conservation 17 Division's case today because I have the greatest respect 18 and admiration for Mr. Boyer. I knew of his reputation before the Environmental Improvement Division. I know his re-19 putation as a competent and experienced hydrologist. 20 T also am an admirer of Mr. 21 Chavez. am a supporter of his willingness to undertake I 22 the resonsibilities of administering the Oil Conservation 23 Division in Aztec and I have set back and watched him prac-24 tice being a lawyer in the last four days of hearings and

for this case, and he's made some interesting points that I

_

25

231 1 think are important. 2 Setting aside those problems I 3 have about criticizing those people that I have to do busi-4 ness with on a daily basis, and on which my livelihood re-5 lies and my ability to pay the rent, I'm going to say some 6 things that I think need to be said. 7 It has been a great length of time before the Oil Conservation since the Oil Conservation 8 Division has entered an order that has been reversed by the 9 New Mexico Supreme Court. 10 Mr. Carr at that time, I think, 11 was Staff Attorney. He well knows what it takes in order to 12 prove a case at the Oil Conservation Division and Mr. Carr 13 holds the unique standing in this community as being the 14 last Commission lawyer reversed by the Supreme Court. 15 That was the Faskin case and remember it is a case very much like this 16 vou will case. The Division Examiner and Mr. Carr can correct me any time I 17 mess this up, the Division Examiner and the staff sat back 18 and listened to Mr. Faskin present a case. It was uncon-19 tested in terms of the record. 20 Mr. Faskin came in with his ex-21 pert and advocated under sworn testimony a particular posi-22 tion or request. I've long since forgotten what it was. 23 The Commission staff denied the 24 There was nothing in the record to show application. any reason by the staff or the Division to deny that order. 25 The

1 232 Supreme Court says, guys, you can't operate that way. 2 Tf you don't like what he's doing, if you don't believe it, put 3 the staff on, put some contrary evidence in the record, and 4 you judge the record as a whole. 5 That's not unlike the case we 6 have here today. I was thinking as I came back from lunch 7 and I crossed the Santa Fe River and was taking a moment to 8 look at water that is not frequently there. I found that 9 the Oil Conservation Division offices are directly up gra-10 dient from the Supreme Court Building and I maintain to you, that if we enter an order based upon this record, we sir, 11 are going to find contamination that goes downstream and is 12 going to be monitored and controlled and changed for you by 13 the New Mexico Supreme Court. 14 problem with this case The is 15 the burden of proof. There are numbers of instances in the 16 record in which the staff, either through Mr. Chavez, Mr. 17 Boyer, or Mr. Taylor, make references to a degree or stand-18 ard that sets us far up and above any standard applied to this type of situation by the Environmental Improvement Di-19 vision. 20 The testimony has been that New 21 Mexico, through the Environmental Improvement Division sets 22 forth some of the most stringent standards in this country 23 to control groundwater. 24 believe that the attitude of I 25 the staff in this case is one that sets us up with a stand

1 233 ard of proof that's impossible to meet, and you should not. 2 apply that standard to us. 3 It's typified on page 120 of 4 the transcript on January 20th. I'm sorry, February 20th. 5 Mr. Chavez' question: There-6 fore we're addressing only pollution that might occur from 7 oil and gas activities as a preventative measure, is that 8 correct? 9 Mr. Boyer's answer: That is right. 10 Now, that's not the degree of 11 proof required before the Division. That's not the standard 12 we have in our Supreme Court decisions on this type of hear-13 ing. We are not required to prove the negative. We are not 14 required to take every possible means to prevent contamina-15 tion because somebody suspects it might happen. 16 I think you remember how this 17 all started. I certainly remember it. 18 When it happened eighteen months ago, sixteen months ago, I was reminded of the story 19 of Chicken Little running through the barnyard screaming, 20 the sky is falling. 21 Chicken Little's gone. He 22 didn't testify here in any of these hearings but he has left 23 our barnyard in turmoil. We have been faced with arm waving 24 and all kinds of problems about unlined produced pits. 25 Gentlemen, Chicken Little is

234 1 not here and the sky didn't fall. 2 Tenneco Oil Company has devoted 3 a considerable amount of time, money, and effort to this 4 problem because it's important, not only for the Commission 5 to understand that they were willing to devote resources to 6 an environmental question as opposed to how much oil and gas 7 we can get out fo the ground, it's important for our own self-respect for you to know that we're environmentalists, 8 too. 9 Mr. Shuey and these others are 10 not the only environmentalists in New Mexico. Mr. Shuey 11 does not live in Farmington. We employ more than a hundred 12 people in this area. We spend millions of dollars every 13 We don't want our people contaminated, polluted year. 14 groundwater. We are good environmentalists. We're going to 15 stick here and we are going to study this problem until you're tired of studying it. But I'm telling you now on 16 this record with what we have you have no other choice but 17 to let those unlined pits using small five barrel a day vol-18 umes continue. There's no reason to go any further with 19 what we've done. 20 We have contributed Marty Buys 21 to the Short Term Study Committee. Marty has sat through 22 all the hearings. He has participated in that process. Ι 23 think that was an intelligent decision by the Commission in 24 terms of not only appointing a person of his quality and calibre to that committee but it was important to put together 25

1 235 study committee composed of industry people, of people 2 a that were concerned about the water, and stary it from that 3 point of view. 4 It was early on in that process 5 that Mr. Buys and other industry people volunteered and sug-6 gested to the other participants that they do the very study 7 that Mr. Hicks and Mr. Gutierrez have done. There were no 8 takers, sir, there were no takers. 9 Boyer and the OCD did not Mr. take that offer. We could have kept this in the form of a 10 study committee. We could have studied it until you're hap-11 py that we've examined every possible parameter. It did not 12 take that course of action. The study committee was stag-13 nated on the issue of a small volume exemption. We have 14 turned this into an adversarial case and we've gone about it 15 in that fashion. 16 We have proved, we have under-17 taken the task that the Short Term Study Committee was in-They refused, and we have spent the money, vited to take. 18 our own dollars, we've studied the problem and we've proved 19 there is no contamination. 20 Let's enter the order and go 21 about something else. 22 Thank you. 23 Thank you, MR. STAMETS: Mr. 24 Kellahin. I'm not certain that this is a unique situation. 25 It seems to me that some years ago when I was a staff member

1 236 proposing regulations for the Underground Injection Control 2 Program, I was probably accused of being Chicken Little at 3 the time, was beaten soundly about the head and shoulders, 4 and ultimately I think we arrived at some rules that are 5 workable and beneficial to the state. 6 Ms. Pruett, do you have a clos-7 ing statement? 8 MS. PRUETT: Well, I do, but 9 frankly, I'd rather submit it in writing when I've got the rest of the data in, if I may. 10 MR. STAMETS: You most certain-11 ly may. 12 Mr. Taylor. 13 MR. TAYLOR: Thank you. I'd 14 like to on behalf of the Division reserve our statement on 15 the findings until we've had a time to review further infor-16 mation from the industry. 17 I would, however, just like to 18 make a comment that, especially in response to the previous comments, that although this case has been somewhat adver-19 sarial, I think that it does not need to be either confron-20 tational or unpleasant for those of us who are doing it. 21 The Commission is here to find 22 the truth. The members of the Division are here to try to 23 enforce the laws. One of those laws is to protect fresh 24 water resources of this state, and the staff undertook to 25 present this case because it was their belief that unrequ-

237 1 lated dumping of produced water onto the ground or into un-2 lined pits could affect the health of the citizens. 3 Industry disagrees. They have 4 a right to disagree. They have a right to either put on 5 their case or not put on a case and the burden of proof 6 doesn't change if they don't put on a case. 7 It's still up to the applicant in these hearings to prove the case and we've either done 8 that or haven't and it's not -- it doesn't depend on whether 9 industry responds to our proposal as to whether that burden 10 is carried. 11 Money is a problem with OCD and 12 we have other problems in presenting these. Obviously we 13 couldn't run out and do a lot of testing but we are grateful 14 to industry for their cooperation in the Study Committee and 15 for their presentation of witnesses here, who we think tried to show us to the best of their ability what they think the 16 true situation is. The Division has done its best in doing 17 the same thing. 18 We're only, as I said, we're 19 only here to protect the health and resources of the State, 20 to preserve fresh water resources, and I think we all need 21 to cooperate in doing that and not get off into whether the 22 staff is out to get industry or not. 23 Certainly I don't have that 24 We're all professionals here. We're trying to do feeling. a good job and I think this hearing has proved that we can 25

238 1 do that very well and I just wish the Commission luck in 2 trying to come up with a conclusion. 3 Thank you. 4 Perhaps wishing MR. STAMETS: 5 us wisdom would be better than luck. 6 Before we conclude this case T 7 would like to publicly thank Marty Buys, who did chair the Short Term Study Committee, and all of those persons within 8 industry, within government, private citizens, who partici-9 pated in the valuable work of the committee. 10 Certainly this whole process, 11 even though it's gone on for four days would have been much 12 longer without the work of these people and we certainly 13 wish to thank all that participated. 14 Also before we conclude this, 15 I'd just like to announce that it is the intention of Commissioner Kelley and I to adopt an open meetings resolution 16 immediately after we take this case under advisement, which 17 would call for us to issue on a regular notice under Rule 18 1204, and by mailing copies of the dockets to any party who 19 chooses to be on the dockets list. 20 If there's nothing further, 21 then, in this case, one -- one final thing. 22 May the 7th is the date to have 23 the information together that's going to be all of 24 exchanged. long would everybody How like 25

in addition to that for any final comments? Another ten days? Two weeks? Is that acceptable to everyone? All right, it will --MR. TAYLOR: We have until May 7th to exchange the information? MR. STAMETS: Yes, and then it will be May the 23rd for any final submittals, any comments on the information to change hands. With that, then the case will be taken under advisement, and the hearing is adjourned. (Hearing concluded.)

1	240
2	
3	CERTIFICATE
4	
5	I, SALLY W. BOYD, C.S.R., DO HEREBY
6	CERTIFY that the foregoing Transcript of Hearing before the Oil Conservation Division was reported by me; that the said
7	transcript is a full, true, and correct record of the
8	hearing, prepared by me to the best of my ability.
9	nouring, propared by me to the best of my ability.
10	
11	Sulley W. Boyt CSR
12	served and and
13	
14	
15	
16	
17	
18	
19	•
20	
21	
22	
23	
24	
25	
43	

_