BEFORE THE OIL CONSERVATION COMMISSION OF THE STATE OF NEW MEXICO

IN THE MATTER OF THE HEARING CALLED BY THE OIL CONSERVATION COMMISSION UPON ITS OWN MOTION TO CONSIDER AN ORDER PROHIBITING THE DISPOSAL OF OIL FIELD BRINES IN SURFACE PITS IN LEA, CHAVES, ROOSEVELT, AND EDDY COUNTIES, NEW MEXICO.

> CASE No. 3551 Order No. R-3221

ORDER OF THE COMMISSION

BY THE COMMISSION:

This cause came on for hearing at 9 a.m. on April 19, 1967, at Hobbs, New Mexico, before the Oil Conservation Commission of New Mexico, hereinafter referred to as the "Commission."

NOW, on this <u>lst</u> day of May, 1967, the Commission, a quorum being present, having considered the testimony presented and the exhibits received at said hearing, and being fully advised in the premises,

FINDS:

(1) That due public notice having been given as required by law, the Commission has jurisdiction of this cause and the subject matter thereof.

(2) That large amounts of water produced in conjunction with the production of oil or gas, or both, are being disposed of on the surface of the ground by means of unlined disposal pits located in Lea, Eddy, Chaves, and Roosevelt Counties, New Mexico.

(3) That said produced water contains high concentrations of chlorides.

(4) That fresh water supplies as designated by the state engineer exist in substantially all areas where there is surface pit disposal and in substantially all the area encompassed by Lea, Eddy, Chaves, and Roosevelt Counties, New Mexico.

(5) That the disposal of water produced in conjunction with the production of oil or gas, or both, on the surface of

-2-CASE No. 3551 Order No. R-3221

the ground, or in any pit, pond, lake, depression, draw, streambed, or arroyo, or in any watercourse, constitutes a hazard to existing fresh water supplies, as designated by the state engineer, in the vicinity of such disposal.

(6) That in order to afford reasonable protection against contamination of fresh water supplies as designated by the state engineer, the disposal of water produced in conjunction with the production of oil or gas, or both, on the surface of the ground, or in any pit, pond, lake, depression, draw, streambed, or arroyo, or in any watercourse, or in any other place or in any manner which will constitute a hazard to any fresh water supplies existing in Lea, Eddy, Chaves, and Roosevelt Counties, New Mexico, should be prohibited in said Counties.

(7) That the testimony indicates that the volume of water produced in conjunction with the production of oil or gas, or both, from the North Bagley-Upper Pennsylvanian, North Bagley-Middle Pennsylvanian, North Bagley-Lower Pennsylvanian, North Bagley-Wolfcamp, and Northeast Bagley-Wolfcamp Pools, Lea County, New Mexico, and being disposed of into unlined pits is so great as to constitute an imminent threat to fresh water supplies designated by the state engineer and the surface disposal of said water should, therefore, be prohibited after October 31, 1967, in the area encompassed by Lea, Eddy, Chaves, and Roosevelt Counties, New Mexico.

(8) That large amounts of water are produced in conjunction with the production of oil from active waterflood projects and active water pressure maintenance projects.

(9) That one or more injection wells are present in each waterflood project.

(10) That in order to afford reasonable protection against contamination of fresh water supplies designated by the state engineer, the surface disposal of water produced in conjunction with the production of oil from active waterflood projects and active water pressure maintenance projects should be prohibited after December 31, 1967, in the area encompassed by Lea, Eddy, Chaves, and Roosevelt Counties, New Mexico.

(11) That complete prohibition of surface disposal in Lea, Eddy, Chaves, and Roosevelt Counties, New Mexico, of water produced in conjunction with the production of oil or gas, or both, should be accomplished by December 31, 1968, unless specifically exempted. -3-CASE No. 3551 Order No. R-3221

(12) That the surface disposal in pits of not more than one barrel per day for each developed 40-acre tract served by said pits, but limited to a maximum of 16 barrels per day, is so insignificant as to present little hazard to finish water supplies and should be allowed in order to prevent saste caused by the premature abandonment of wells.

(13) That in order to prevent waste caused by the drowning out of oil or gas wells or burdensome delay or expenses, the District Supervisor of the appropriate District Office of the Commission should be empowered to authorize temporary disposal in surface pits for a period not to exceed 30 days for such contingencies as injection system failures and evaluation of wildcat wells.

IT IS THEREFORE ORDERED .

(1) That effective November 1, 1967, the dispond of water produced in conjunction with the production of oil or gas, or both, from the North Bagley-Upper Pennsylvanian, North Bagl y-Middle Pennsylvanian, North Bagley-Lower Pennsylvanian, North Bagley-Wolfcamp, and Northeast Bagley-Wolfcamp Pools, Lea County, New Mexico, or within one mile thereof, on the surface of the ground, or in any pit, pond, lake, depression, draw, streambed, or arroyo, or in any watercourse, or in any other place or in any manner which will constitute a hazard to any fresh water supplies, is hereby prohibited in that area encompassed by Lea, Eddy, Chaves, and Roosevelt Counties, New Mexico.

(2) That effective January 1, 1968, the disposal of water produced in conjunction with the production of oil from any waterflood project or water pressure maintenance projection the surface of the ground, or in any pit, pond, lake, depression, draw, streambed, or arroyo, or in any watercourse, or in any other place or in any manner which will constitute a hazard to any fresh water supplies is hereby prohibited in that area encompassed by Lea, Eddy, Chaves, and Roosevelt Counties, New Mexico.

(3) That effective January 1, 1969, the disposal of water produced in conjunction with the production of oil or gas, or both, on the surface of the ground, or in any pit, pond, lake, depression, draw, streambed, or arroyo, or in any watercourse, or in any other place or in any manner which will constitute a hazard to any fresh water supplies and said disposal has not -4-CASE No. 3551 Order No. R-3221

previously been prohibited by Orders Nos. (1) or (2) above, or by Order No. R-1224-A, or by Order No. R-2526, or by Order No. R-2788, or by Order No. R-3164, is hereby prohibited in that area encompassed by Lea, Eddy, Chaves, and Roosevelt Counties, New Mexico.

(4) That in those areas subject to the provisions of Orders Nos. (1) and (3) above, surface pits may be utilized for the disposal of a maximum of one barrel of produced water per day for each developed 40-acre tract served by said pits, provided however, that in no event shall said surface pit disposal exceed 16 barrels per day, and provided further, that this authorization shall not apply to those areas affected by Orders Nos. R-1224-A, R-2526, R-2788, or R-3164.

(5) That nothing contained in this order shall be construed as prohibiting the disposal of water produced in conjunction with the production of oil or gas, or both, in impervious lined pits presently in use, provided said pits were inspected and approved by a Commission representative prior to use, and for so long as said pits are properly maintained to ensure their continued imperviousness.

(6) That each unlined pit used for the disposal of water produced in conjunction with the production of oil or gas, or both, and not servicing a well exempt under the provisions of Order No. (4) above shall be filled, leveled, and compacted within six months after its use for the disposal of produced water is prohibited or by November 1, 1967, whichever date is later.

(7) That nothing contained in this order shall be construed as prohibiting the use and maintenance of mud pits or burn pits.

(8) That the District Supervisor of the approporate District Office of the Commission is hereby empowered to authorize temporary disposal in surface pits for a period not to exceed 30 days for such contingencies as injection system failures and evaluation of wildcat wells. Authority for said-disposal shall only be granted on an individual case basis and only after the volume and quality of the water produced and the proximity of fresh water supplies have been taken into consideration.

(9) That the provisions of this order are in addition to the provisions of Order No. R-1224-A, Order No. R-2526, Order

-5-CASE No. 3551 Order No. R-3221

.

No. R-2788, and Order No. R-3164 of the Commission and nothing herein contained shall be construed as abridging or altering in any manner the provisions of said orders.

(10) That jurisdiction of this cause is retained for the entry of such further orders as the Commission may deem necessary.

DONE at Santa Fe, New Mexico, on the day and year hereinabove designated.

STATE OF NEW MEXICO OIL CONSERVATION COMMISSION

DAVID F. CARGO, Chairman

GUYTON B. HAYS, Member

A. L. PORTER, Jr., Member & Secretary

SEAL

• ,

BEFORE THE OIL CONSERVATION COMMISSION OF THE STATE OF NEW MEXICO

IN THE MATTER OF THE HEARING CALLED BY THE OIL CONSERVATION COMMISSION UPON ITS OWN MOTION TO CONSIDER THE REVISION OF PARAGRAPH (1) OF ORDER NO. R-3221, TO PROVIDE THAT THE EF-FECTIVE DATE FOR THE PROHIBITION OF SURFACE DISPOSAL OF PRODUCED WATER FROM THE NORTH BAGLEY-UPPER PENNSYLVANIAN, NORTH BAGLEY-MIDDLE PENNSYLVANIAN, NORTH BAGLEY-LOWER PENNSYL-VANIAN, NORTH BAGLEY-WOLFCAMP, AND NORTHEAST BAGLEY-WOLFCAMP POOLS, LEA COUNTY, NEW MEXICO, OR WITHIN ONE MILE THEREOF, BE CHANGED FROM NOVEMBER 1, 1967, TO SOME EARLIER DATE.

> CASE No. 3644 Order No. R-3221-A

ORDER OF THE COMMISSION

BY THE COMMISSION:

This cause came on for hearing at 9 a.m. on August 30, 1967, at Santa Fe, New Mexico, before the Oil Conservation Commission of New Mexico, hereinafter referred to as the "Commission."

NOW, on this <u>31st</u> day of August, 1967, the Commission, a quorum being present, having considered the testimony presented and the exhibits received at said hearing, and being fully advised in the premises,

FINDS:

(1) That due public notice having been given as required by law, the Commission has jurisdiction of this cause and the subject matter thereof.

(2) That effective November 1, 1967, Order (1) of Order No. R-3221 forbids the disposal of water produced in conjunction with the production of oil or gas, or both, from the North Bagley-Upper Pennsylvanian, North Bagley-Middle Pennsylvanian, North Bagley-Lower Pennsylvanian, North Bagley-Wolfcamp, and Northeast Bagley-Wolfcamp Pools, Lea County, New Mexico, or within one mile thereof, on the surface of the ground, or in any pit, pond, lake, depression, draw, streambed, or arroyo, or in any watercourse, or in any other place or in any manner which will constitute a hazard to any fresh water supplies in that area encompassed by Lea, Eddy, Chaves, and Roosevelt Counties, New Mexico. -2-CASE No. 3644 Order No. R-3221-A

(3) That upon considering the evidence presented in Case No. 3551 which resulted in the issuance of Order No. R-3221, the Commission found the production of salt water in the North Bagley Field to be so great as to constitute an imminent threat to the fresh water supplies designated by the state engineer and found that it would be necessary to prohibit surface disposal of said salt water no later than November 1, 1967, in order to afford reasonable protection against contamination of said fresh water supplies.

(4) That the evidence presented in Case No. 3644 establishes that the volume of salt water being produced in conjunction with the production of oil or gas, or both, in the North Bagley Field greatly exceeds the volume of produced salt water anticipated by the Commission when it issued Order No. R-3221.

(5) That the evidence presented in Case No. 3644 establishes that the excessive amounts of water being produced in conjunction with the production of oil or gas, or both, in the North Bagley Field constitute an even more immediate threat to the fresh water supplies than anticipated by the Commission at the time Order No. R-3221 was issued.

(6) That the testimony presented in Case No. 3644 indicates that all salt water disposal systems in the North Bagley Area heretofore authorized by the Commission can be in operation by approximately the middle of October, 1967.

(7) That the aforesaid salt water disposal systems will be capable of handling all salt water being produced in the North Bagley Field in mid-October.

(8) That the prohibition of water produced in conjunction with the production of oil or gas, or both, in the North Bagley Field, or within one mile thereof, on the surface of the ground, or in any pit, pond, lake, depression, draw, streambed, or arroyo, or in any watercourse, or in any other place or in any manner which will constitute a hazard to any fresh water supplies on or after November 1, 1967, in the area encompassed by Lea, Eddy, Chaves, and Roosevelt Counties, New Mexico, will not afford reasonable protection against contamination of fresh water supplies designated by the state engineer.

(9) That in order to afford reasonable protection against contamination of fresh water supplies designated by the state engineer, Order (1) of Order No. R-3221 should be amended to

-3-CASE No. 3644 Order No. R-3221-A

prohibit the surface disposal of water produced in conjunction with the production of oil or gas, or both, in the North Bagley Field, or within one mile thereof, on or after October 16, 1967.

IT IS THEREFORE ORDERED:

(1) That Order (1) of Order No. R-3221, dated May 1, 1967, is hereby amended to read in its entirety as follows:

"(1) That effective October 16, 1967, the disposal of water produced in conjunction with the production of oil or gas, or both, from the North Bagley-Upper Pennsylvanian, North Bagley-Middle Pennsylvanian, North Bagley-Lower Pennsylvanian, North Bagley-Wolfcamp, and Northeast Bagley-Wolfcamp Pools, Lea County, New Mexico, or within one mile thereof, on the surface of the ground, or in any pit, pond, lake, depression, draw, streambed, or arroyo, or in any watercourse, or in any other place or in any manner which will constitute a hazard to any fresh water supplies, is hereby prohibited in that area encompassed by Lea, Eddy, Chaves, and Roosevelt Counties, New Mexico."

(2) That jurisdiction of this cause is retained for the entry of such further orders as the Commission may deem necessary.

DONE at Santa Fe, New Mexico, on the day and year hereinabove designated.

STATE OF NEW MEXICO OIL CONSERVATION COMMISSION

DAVID F. CARGO, Chairman

GUYTON B. HAYS, Member

SEAL

A. L. PORTER, Jr., Member & Secretary

esr/

BEFORE THE OIL CONSERVATION COMMISSION OF THE STATE OF NEW MEXICO

IN THE MATTER OF THE HEARING CALLED BY THE OIL CONSERVATION COMMISSION ON ITS OWN MOTION TO CONSIDER THE AMENDMENT OF ORDER NO. R-3221, THE COMMISSION'S SALT WATER DISPOSAL ORDER, TO PERMIT THE EXEMPTION OF CERTAIN PRESENTLY EXISTING AND FUTURE POOLS IN EDDY AND LEA COUNTIES, NEW MEXICO, FROM CERTAIN REQUIREMENTS OF SAID ORDER.

> CASE No. 3806 Order No. R-3221-B

ORDER OF THE COMMISSION

BY THE COMMISSION:

This cause came on for hearing at 9 a.m. on July 17, 1968, at Santa Fe, New Mexico, before the Oil Conservation Commission of New Mexico, hereinafter referred to as the "Commission."

NOW, on this 25th day of July, 1968, the Commission, a quorum being present, having considered the testimony presented and the exhibits received at said hearing, and being fully advised in the premises,

FINDS:

(1) That due public notice having been given as required by law, the Commission has jurisdiction of this cause and the subject matter thereof.

(2) That effective January 1, 1969, Order (3) of Commission Order No. R-3221, dated May 1, 1967, prohibits in that area encompassed by Lea, Eddy, Chaves, and Roosevelt Counties, New Mexico, the disposal, subject to minor exceptions, of water produced in conjunction with the production of oil or gas, or both, on the surface of the ground, or in any pit, pond, lake, depression, draw, streambed, or arroyo, or in any watercourse, or in any other place or in any manner which will constitute a hazard to any fresh water supplies and said disposal has not previously been prohibited. -2-CASE No. 3806 Order No. R-3221-B

(3) That within the area described as:

EDDY AND LEA COUNTIES, NEW MEXICO TOWNSHIP 19 SOUTH, RANGE 30 EAST, NMPM Sections 8 through 36 TOWNSHIP 20 SOUTH, RANGE 30 EAST, NMPM Sections 1 through 36 TOWNSHIP 20 SOUTH, RANGE 31 EAST, NMPM Sections 1 through 36 TOWNSHIP 20 SOUTH, RANGE 32 EAST, NMPM Sections 4 through 9; Sections 16 through 21; and Sections 28 through 33 TOWNSHIP 21 SOUTH, RANGE 29 EAST, NMPM Sections 1 through 36 TOWNSHIP 21 SOUTH, RANGE 30 EAST, NMPM Sections 1 through 36 TOWNSHIP 21 SOUTH, RANGE 31 EAST, NMPM Sections 1 through 36 TOWNSHIP 22 SOUTH, RANGE 29 EAST, NMPM Sections 1 through 36 TOWNSHIP 22 SOUTH, RANGE 30 EAST, NMPM Sections 1 through 36 TOWNSHIP 23 SOUTH, RANGE 29 EAST, NMPM Sections 1 through 3; Sections 10 through 15; Sections 22 through 27; and Sections 34 through 36 TOWNSHIP 23 SOUTH, RANGE 30 EAST, NMPM Sections 1 through 19

exist a number of oil and gas pools which produce varying amounts of salt water.

(4) That the major portions of Clayton Basin and North Draw, broad depressions caused by the slumping of the surface due to the

-3-CASE No. 3806 Order No. R-3221-B

removal of the underlying salt by solution, lie within the abovedescribed area.

(5) That the general direction of movement of both ground water and surface water in the subject area is toward and into said basins, thence southwest in Nash Draw toward Malaga Bend.

(6) That a substantial amount of water is produced in conjunction with the production of oil or gas, or both, by the oil and gas wells located in the above-described area.

(7) That said produced water is presently being disposed of in surface pits located in the above-described area.

(8) That a number of large surface ponds, or lakes, containing extremely high concentrations of chlorides are located in the above-described area.

(9) That in relation to said surface lakes, said disposal pits are inconsiderable in volume of water received and seepage underground.

(10) That the aforesaid disposal pits and surface lakes are located within the same surface and subsurface drainage system, as described in Finding (5) above.

(11) That the purpose of Order No. R-3221, to afford reasonable protection against contamination of fresh water supplies by surface disposal of produced water, would not be advanced by the enforcement of said order as to the above-described area.

IT IS THEREFORE ORDERED:

(1) That all oil and gas wells, both existing and prospective, located in the following-described area are hereby excepted from the provision of Order (3) of Order No. R-3221, to authorize the operators of said wells to dispose of water produced in conjunction with the production of oil or gas, or both, from said wells in unlined surface pits located in said following-described area until further order of the Commission:

> EDDY AND LEA COUNTIES, NEW MEXICO TOWNSHIP 19 SOUTH, RANGE 30 EAST, NMPM Sections 8 through 36

-4-CASE No. 3806 Order No. R-3221-B

> TOWNSHIP 20 SOUTH, RANGE 30 EAST, NMPM Sections 1 through 36

> TOWNSHIP 20 SOUTH, RANGE 31 EAST, NMPM Sections 1 through 36

TOWNSHIP 20 SOUTH, RANGE 32 EAST, NMPM Sections 4 through 9; Sections 16 through 21; and Sections 28 through 33

TOWNSHIP 21 SOUTH, RANGE 29 EAST, NMPM Sections 1 through 36

TOWNSHIP 21 SOUTH, RANGE 30 EAST, NMPM Sections 1 through 36

TOWNSHIP 21 SOUTH, RANGE 31 EAST, NMPM Sections 1 through 36

TOWNSHIP 22 SOUTH, RANGE 29 EAST, NMPM Sections 1 through 36

TOWNSHIP 22 SOUTH, RANGE 30 EAST, NMPM Sections 1 through 36

TOWNSHIP 23 SOUTH, RANGE 29 EAST, NMPM Sections 1 through 3; Sections 10 through 15; Sections 22 through 27; and Sections 34 through 36

TOWNSHIP 23 SOUTH, RANGE 30 EAST, NMPM Sections 1 through 19

(2) That the Commission may by administrative order rescind such authority as to any or all such wells whenever it reasonably appears to the Commission that such rescission would serve to afford reasonable protection against contamination of fresh water supplies.

(3) That jurisdiction of this cause is retained for the entry of such further orders as the Commission may deem necessary. -5-CASE NO. 3806 Order No. R-3221-B

-

DONE at Santa Fe, New Mexico, on the day and year hereinabove designated.

STATE OF NEW MEXICO OIL CONSERVATION COMMISSION

DAVID F. CARGO, Chairman GUYTON B. HAYS, Member A. L. PORTER, Jr., Member & Secretary

-

.

SEAL

BEFORE THE OIL CONSERVATION COMMISSION OF THE STATE OF NEW MEXICO

IN THE MATTER OF THE HEARING CALLED BY THE OIL CONSERVATION COMMISSION ON ITS OWN MOTION TO CONSIDER THE AMENDMENT OF ORDER NO. R-3221, THE COMMISSION'S SALT WATER DISPOSAL ORDER, TO PERMIT THE EXEMPTION OF CERTAIN PRESENTLY EXISTING AND FUTURE POOLS IN EDDY AND LEA COUNTIES, NEW MEXICO, FROM CERTAIN REQUIREMENTS OF SAID ORDER.

> CASE No. 3806 Order No. R-3221-B-1

NUNC PRO TUNC ORDER

BY THE COMMISSION:

It appearing to the Commission that due to clerical error, Order No. R-3221-B, dated July 25, 1968, does not correctly state the intended finding of the Commission in one particular,

IT IS THEREFORE ORDERED:

(1) That the phrase "North Draw" is hereby stricken from the first line of Finding (4) on Page 2 of Order No. R-3221-B, dated July 25, 1968, and the phrase "Nash Draw" is hereby substituted in lieu thereof.

(2) That this order shall be effective nunc pro tunc as of July 25, 1968.

DONE at Santa Fe, New Mexico, on this <u>13th</u> day of August, 1968.

STATE OF NEW MEXICO OIL CONSERVATION COMMISSION

DAVID F. CARGO, Chairman GUYTON B. HAYS, Member A. L. PORTER, Jr., Member & Secretary

SEAL

BEFORE THE OIL CONSERVATION COMMISSION OF THE STATE OF NEW MEXICO

IN THE MATTER OF THE HEARING CALLED BY THE OIL CONSERVATION COMMISSION ON ITS OWN MOTION TO CONSIDER THE AMENDMENT OF ORDER NO. R-3221, THE COMMISSION'S SALT WATER DISPOSAL ORDER.

> CASE No. 3807 Order No. R-3221-C

ORDER OF THE COMMISSION

BY THE COMMISSION:

This cause came on for hearing at 9 a.m. on July 17, 1968, at Santa Fe, New Mexico, before the Oil Conservation Commission of New Mexico, hereinafter referred to as the "Commission."

NOW, on this <u>10th</u> day of September, 1968, the Commission, a quorum being present, having considered the testimony presented and the exhibits received at said hearing, and being fully advised in the premises,

FINDS:

(1) That due public notice having been given as required by law, the Commission has jurisdiction of this cause and the subject matter thereof.

(2) That effective upon various dates, Orders (1), (2), and (3) of Commission Order No. R-3221, dated May 1, 1967, prohibits, in that area encompassed by Lea, Eddy, Chaves, and Roosevelt Counties, New Mexico, the disposal, subject to minor exceptions, of water produced in conjunction with the production of oil or gas, or both, on the surface of the ground, or in any pit, pond, lake, depression, draw, streambed, or arroyo, or in any watercourse, or in any other place or in any manner which will constitute a hazard to any fresh water supplies and said disposal has not previously been prohibited.

(3) That Order (4) of said Order No. R-3221 authorizes limited utilization of unlined surface pits in areas not affected by Orders Nos. R-1224-A, R-2526, R-2788, or R-3164. -2-CASE No. 3807 Order No. R-3221-C

(4) That Order (5) of said Order No. R-3221 authorizes utilization of certain impervious lined pits in use at the effective date of said order.

(5) That Order (8) of said Order No. R-3221 authorizes temporary disposal in surface pits during certain contingencies.

(6) That in order to provide more uniform provisions among the various salt water disposal orders of the Commission and to ease the administration of said orders, Order (4) of said Order No. R-3221 should be amended to also authorize, in those areas subject to Orders Nos. (1) and (3) of said Order No. R-3221, the utilization of unlined surface pits in those areas affected by Orders Nos. R-1224-A, R-2526, and R-3164 for the disposal of limited quantities of water.

(7) That the utilization of lined evaporation pits is feasible and in the interest of good conservation practices, provided they are properly designed, constructed, and maintained.

(8) That the utilization of properly designed, constructed, and maintained lined evaporation pits should be authorized in all areas subject to Order No. R-3221.

(9) That in order to prevent waste caused by burdensome delay or expenses upon operators of development wells, Order (8) of said Order No. R-3221 should be amended to also authorize temporary storage or disposal of water in surface pits during the evaluation of all newly completed wells.

IT IS THEREFORE ORDERED:

(1) That Order (4) of Order No. R-3221 is hereby amended to read in its entirety as follows:

"(4) That in those areas subject to the provisions of Orders Nos. (1) and (3) above, and in those areas affected by Orders Nos. R-1224-A, R-2526, and R-3164, surface pits may be utilized for the disposal of a maximum of one barrel of produced water per day for each developed 40-acre tract served by said pits, provided however, that in no event shall said surface pit disposal exceed 16 barrels per day, and provided further, that this authorization shall not apply to that area affected by Order No. R-2788." -3-CASE No. 3807 Order No. R-3221-C

(2) That Order (5) of Order No. R-3221 is hereby amended to read in its entirety as follows:

"(5) The use of lined evaporation pits in those areas affected by Orders Nos. (1), (2), and (3) above, and in those areas affected by Orders Nos. R-1224-A, R-2526, R-2788, and R-3164 is hereby pro-hibited except as follows:

"A. Continued disposal of water in impervious lined pits which were previously constructed pursuant to the provisions of Orders Nos. R-1224-A, R-2526, R-2788, and R-3164, and which were inspected and approved by a Commission representative prior to use, shall be permitted after October 10, 1968, only if the operator of any such lined pit shall have obtained a permit for such use from the appropriate district office of the Commission. The permit shall be applied for in accordance with the provisions of paragraph B-8 below and shall be valid only for so long as the pit is properly maintained to ensure its continued imperviousness.

"B. Under certain circumstances, the District Supervisor of the appropriate district office of the Commission may issue a permit authorizing the use of newly constructed lined pits for evaporation or storage of produced water.

ير مصدقا بالديان مولوموهورون ورا والدامية بعاليات بال

To qualify for and to sustain a permit authorizing the operator to utilize newly constructed lined evaporation pits:

- 1. The lease or leases served by the installation should have a settled or decreasing rate of water production.
- 2. The installation must provide adequate storage capacity to safely contain all water produced, taking into account those months during which evaporation rates are normally at their minimum and must provide at least 600 square feet of evaporative surface for each barrel (42 U.S. Gallons) of produced water to be placed in said pit on a daily average basis throughout the year.
- 3. The installation must provide a header pit, or other appropriate scheme, lined with a suitable oil-resistant material to trap any oil carried with the water, constructed and operated in a

-4-CASE No. 3807 Order No. R-3221-C

> manner to prevent said oil from reaching the evaporation pit, and the surface of the evaporation pit must be maintained free of oil.

4. Evaporation and header pits must be constructed with underlying gravel-filled sumps and laterals, or other suitable devices, for the detection of leakage; the Commission shall be given an opportunity to inspect same prior to being lined with an impervious material, at least 30 mils in thickness, which is resistant to hydrocarbons, salts, and aqueous acids and alkalis. The material must also be fungus- and rot-resistant and must be sun-resistant, or provision made to protect it from the sun.

- 5. Each lined pit installation shall be identified by a sign, posted on or near said installation which shall show the name of the lease, name of the operator, the location by quarter-quarter section, township and range, and the permit number of the permit authorizing the installation. In addition, the installation must be adequately fenced, with the corners securely braced, and the fence maintained in good repair.
- 6. Whenever there is evidence that leakage is occurring, the pit or pits must be emptied and repaired to the satisfaction of the Commission before disposal therein may be resumed.
- 7. Any salt remaining in a lined pit must, upon termination of use of said pit for disposal purposes, be disposed of in a manner that will afford reasonable protection against contamination of fresh water supplies, and the pit shall be filled, leveled, and compacted as soon as practicable after termination of such use.
- 8. Application for a permit to utilize a lined evaporation pit shall be in triplicate on a form prescribed by the Commission (a copy of which is attached hereto and made a part hereof as Exhibit "A") and shall be filed with and

-5-CASE No. 3807 Order No. R-3221-C

> approval obtained from the District Supervisor of the appropriate district office of the Commission prior to commencement of construction. Application forms and minimum specifications for the design and construction of lined evaporation pits are available at the district and Santa Fe offices of the Commission.

"C. The Commission may from time to time make such tests and require the furnishing of such evidence as it deems necessary to determine that any lined evaporation pit is maintained in satisfactory condition. The Commission may suspend or revoke by administrative order the permit authorizing a lined evaporation pit whenever it reasonably appears to the Commission that such suspension or revocation would serve to protect fresh water supplies from pollution."

(3) That Order (8) of Order No. R-3221 is hereby amended to read in its entirety as follows:

"(8) That the District Supervisor of the appropriate district office of the Commission is hereby empowered to authorize temporary storage or disposal in surface pits for a period not to exceed 30 days during such contingencies as injection system failures and evaluation of newly completed wells. Authority for said disposal shall only be granted on an individual case basis and only after the volume and quality of the water produced and the proximity of fresh water supplies have been taken into consideration. Any unlined pit used for temporary storage during an emergency must be emptied as soon as the emergency is ended."

(4) That Order (9) of Order No. R-3221 is hereby amended to read in its entirety as follows:

"(9) That subject to the provisions of Orders Nos. (4) and (5) above, the provisions of this order are in addition to the provisions of Orders Nos. R-1224-A, R-2526, R-2788, and R-3164 of the Commission and nothing herein contained shall be construed as abridging or altering in any manner the provisions of said orders."

-6-CASE No. 3807 Order No. R-3221-C

(5) That jurisdiction of this cause is retained for the entry of such further orders as the Commission may deem necessary.

DONE at Santa Fe, New Mexico, on the day and year hereinabove designated.

STATE OF NEW MEXICO OIL CONSERVATION COMMISSION DAVID F. CARGO, Chairman GUYTON B. HAYS, Member A. L. PORTER, Jr., Member & Secretary

SEAL

APPLICATION FOR PERMIT

PERMIT NO.

1. 5%

-

)

an an said a sa sa

. **Ч**

18. July 19 19 19

TO UTILIZE A LINED EVAPORATION PIT

Name of Operator
Address
Location of evaporation pit: Unit Letter SectionTownshipRange
Lease(s) which will be producing into pit
Pool(s) which will be producing into pit
Analysis of disposal water: Chloridesppm. Total dissolved solidsppm. (If more than one pool will be producing into pit, give water snalysis for each pool.)
Quantity of water to be disposed of into this pitbarrels per day.
Water production from these same wells six months agobpd. Three months agobpd (If more than one pool will be producing into pit, give water production data for each)
Method of hydrocarbon entrapment to be employed: Settling tankHeader pit
If settling tank is to be used, give size and number of barrels
If header pit is to be used, give dimensions and depth
Header pit lining meterial Thickness
Dimensions of Evaporation Pit ("A" and "B" on diagram)
Number of square feet contained in above
Cepth (Top of levee to floor of pit"D" on diagram)
Waterial to be used as linerThickness
Does manufacturer recommend protection of material from direct sunlight? YesNo
If yes, what means will be provided to so protect the material?
is material resistant to hydrocarbons? YesNoNO_NO
Is material resistant to acids and alkalis? YesNoNO_NO
is material resistant to selts? YesNoNO_NO
Is-material resistant to fungus? YesNoNoNo
Is material rot-resistant? YesNoNo
Will joints in material be fabricated in the field? YesNoNO_NO
If yes, describe method to be used in joining material
Attach manufacturer's brochure describing the qualities of the lining material.
Describe the leakage detection system to be used
I hereby certify that the information contained herein is true and complete to the best of my knowledge and belief, and further, that the subject evaporation pit and appurtenances, when installed, will be kept in good repair, and that all due diligence will be exercised in keeping the surface of the water free of oil and other debris.
NameDate
Approved by Title Date

Exhibit "A" Order No. R-3221-C

3

149.57

A

.

>

.

-

. 4.

Supreme Court Opinions, Chief Justice Federici ol. 23, No. 17, April 26, 1984 (Ct.App.1979). ustomer whose business, along with a Since the evidence conclusively har--umber of other persc Duke City - Sub. Opinion t of one of the ith Insurors not to ted rite for three year: the he agreement. Danz s on ad accepted the c vithin that per the estimony regardin; s to imilar transactio each that Danzer had ntry violated the Jun s so Insurors tendered also that breach, and re ment awarding compensa the lamages on its cour with refused. days ' Although Insur ntage breach of the June zer's matter was liti is of 15(b)(Repl.ramp...., Civ.P.R. 1981. provides that issues tried by express IT IS SO ORDERED. or implicit consent of the parties shall be treated as if they had been s/MARY C. WALTERS, Justice raised by the pleadings, and a failure to move to so amend "does not affect the WE CONCUR: result of the trial of these issues." s/WILLIAM RIORDAN, Justice See also Fidelity Nat. Bank v. Lobo s/HARRY E. STOWERS, Jr., Justice Hijo Corp., 92 N.M. 737, 594 P.2d 1193 From The New Mexico Supreme Court

DUKE CITY LUMBER COMPANY, Petitioner Petitioner,

versus

NEW MEXICO ENVIRONMENTAL IMPROVEMENT BOARD and NEW MEXICO ENVIRONMENTAL IMPROVEMENT DIVISION, Respondents.

No. 15078 (filed April 4, 1984)

ORIGINAL PROCEEDING ON CERTIORARI Administrative Appeal

JHN R. COONEY ARRY P. AUSHERMAN ODRALL, SPERLING, ROEHL, HARRIS SISK Ibuquerque, New Mexico

For Petitioner

PAUL BARDACKE, Attorney General HERBERT M. SILVERBERG, Assistant Attorney General For Board BRUCE S. GARBER WELDON L. MERRITT JANE C. COHEN. Assistant Attorneys General Santa Fe, New Mexico For Division

OF INDOM ILLIAM R. FUDERICI, Chief Justice. The opinion of this Court eretofore filed on November 23, 1983 ; withdrawn and the following opinion is substituted therefor.

Company, City Lumber Duke petitioner, applied to the New Mexico Environmental Improvement Board (Board) for a one year variance from Air

Supreme Court Opinions, Chief Justice Federici

Quality Control Regulation 402(A). The application was denied, and the denial was reviewed by the Court of Appeals. The court remanded "with instructions to the Board to conduct further proceedings to determine whether the wood smoke, in the volume being emitted from appellant's wigwam burner is 'injurious to health or safety.'" Duke City Lumber Co. v. New Mexico Environmental Improvement Board, 95 N.M. 401, 407, 622 P.2d 709, 715 (Ct.App.1980), cert. denied, 95 N.M. 426, 622 P.2d 1046 (1981) (emphasis added).

The Board held a second hearing and again denied the application for a variance. Duke City Lumber Company again appealed. The Court of Appeals, affirming the Board's second denial of the variance, held that a condition injurious to health or safety does not mean actual harm, but "only a condition that **tends** to cause harm to health or safety."

The Court of Appeals also upheld, but questioned, the current New Mexico standard of judicial review which is limited to substantial evidence in the record. We granted certiorari.

The questions presented are:

I. Whether judicial review of an Environmental Improvement Board decision should be limited to the current standard of substantial evidence in the record, or whether this Court should now adopt a "whole record review" standard.

II. Whether the showing by the Environmental Improvement Division that wood smoke from Duke City Lumber's woodwaste burner **tends** to cause harm is sufficient to constitute "emission . . . as may with reasonable probability injure human health," as required by NMSA 1978, Section 74-2-2(B) (Repl.Pamp.1983).

III. Whether there was competent evidence to support a finding that wood smoke from Duke City's woodwaste burner is injurious to health or safety.

I. Substantial Evidence Rule.

The Air Quality Control Act (Act), NMSA 1978, Sections 74-2-1 through 74-2-17 (Repl.Pamp.1983), specifically provides for judicial review of the Act. Section 74-2-9 states: "Any person to whom the board denies a variance, after a hearing, may appeal

Vol. 23, No. 17, April 26, 1984

to the court of appeals. All appeals shall be upon the record made at the hearing . . . " The Court of Appeals may set aside the Board's denial of a variance if it is found to be arbitrary, capricious or an abuse of discretion, not supported by substantial evidence in the record, or otherwise not in accordance with law. Id.

The separation of powers doctrine directs administrative agencies to their duty of implementing legislation. The Legislature grants agencies the discretion of promulgating rules and regulations which have the force of law. The agencies must also determine whether there has been compliance with administrative decisions, and this is an adjudication. Therefore, agencies exercise in part functions of all three branches of government. This requires a carefully defined standard of review by the courts.

Some statutes, such as the New Mexico Administrative Procedures Act, provide for review of agency actions on the "entire record." NMSA 1978. Section 12-8-22(A). Other statutes, such as the New Mexico Air Quality Control Act before us, do not contain the words "entire record" or "as a whole." NMSA 1978, Section 74-2-9 (Repl.Pamp.1983). Certainly, in cases arising under statutes that expressly require whole record review of administrative decisions, the New Mexico Supreme Court has applied it. Young v. Board of Pharmacy, 81 N.M. 5, 462 P.2d 139 (1969). Also, in certain cases, even without express statutory provision for whole record review, we have engaged in a review of the record as a whole. Ribera V. Employment Security Commission, 92 N.M. 694, 696, 594 P.2d 742, 744 (1979) (deciding "based upon all of the Transcontinental evidence"); Bus State System ٧. Corporation Commission, 67 N.M. 56, 60, 352 P.2d 245, 247-248 (1959) (reviewing "the testimony of the witnesses, considered as a whole"); Garrett Freight Lines V. State Corporation Commission, 63 N.M. 48, 312 P.2d 1061 (1957) (considering testimony presented by both sides).

When the Legislature does not specify either standard the courts in New Mexico have followed the rule of をすれるみ はまたいかい 日本 あいまち あんという こうかん ちゅうちゅう あいます 博士 うちょう ちょうちょう いいしょう いいしょう しょうしょう

F

Vol. 23, No. 17, April 26, 1984

substantial evidence in the record, requiring the reviewing court to determine whether the record contains substantial evidence to support the agency decision and to ignore evidence to the contrary. Substantial evidence "such relevant evidence is as а reasonable mind might accept as adequate to support a conclusion." State Corporation Rinker ν. Commission, 84 N.M. 626, 627, 506 P.2d 783, 784 (1973).

The United States Supreme Court addressed whole record review as early as 1951. It held that courts are to review and consider not only evidence in support of one party's contention to determine whether there was substantial evidence to support the agency finding, but courts are to look also to evidence which is contrary to the finding. The reviewing court would then decide agency's whether on balance, the decision was supported by substantial evidence. Universal Camera Corp. v. NLRB, 340 U.S. 474 (1951). The federal courts require administrative findings of fact to be supplemented by substantial evidence, and also that those findings be reviewed on the whole record. Committee for an Independent P-I v. Hearst Corp., 704 F.2d 467 (9th Cir.1983); United States Soil Conditioning v. NLRB, 606 F.2d 940 (10th Cir.1979).

The Court of Appeals was correct in applying to this case the more limited standard of review and ignoring all evidence unfavorable to the Board's decision. We have previously held that it is not proper for the Court of Appeals to change the standard of review, but their opinion properly addresses the shortcomings of this limited review and we agree with the Court of Appeals that it should be insofar as administrative changed, boards and agencies are concerned. See Alexander v. Delgado, 84 N.M. 717, 507 P.2d 778 (1973). New Mexico's present standard of review is not only outdated, but contrary to the rule followed by a majority of other jurisdictions and by the federal course. Limited by our prior opinions the Court of Appeals concluded that because Section 74-2-9 provides for reversal of the Board's denial of variance if found not to be supported

Supreme Court Opinions, Chief Justice Federici by substantial evidence in the record as opposed to substantial evidence in the record as a whole it was compelled to ignore strong evidence of medical effects of wood smoke and deficiencies in the air quality model which was before the Board. Not only does this interpretation shroud the judgment of the reviewing courts with imposed ignorance of enlightening evidence, but it also causes uneven treatment among those who seek review of the actions of administrative boards various and agencies.

We have continued to follow the rule that if there is substantial evidence in the record to support a finding, the reviewing court is bound thereby. Also, in deciding whether the finding has substantial support, the court must view evidence in the light most favorable to support the findings. and any evidence unfavorable to the finding will not be considered. Trujillo v. Romero, 82 N.M. 301, 481 P.2d 89 (1971); Tapia v. Panhandle Steel Erectors Company, 78 N.M. 86, 428 P.2d 625 (1967). This Court has said it will not weigh conflicting evidence or determine credibility of witnesses. Lujan ٧. Pendaries Properties, Inc., 96 N.M. 771, 635 P.2d 580 (1981); Worthey v. Sedillo Title Guaranty, Inc., 85 N.M. 339, 512 P.2d 667 (1973). We confirm this rule for the judicial review of orders and judgments of trial courts.

However, for administrative appeals we now expressly modify the substantial evidence rule as heretofore adopted by this Court and supplement it with the whole record standard for judicial review of findings of fact made by administrative agencies. A review of the whole record is clearly indicated in those cases where the administrative agency serves not only the as factfinder but also as the complainant and prosecutor. See 73A C.J.S., Public Administrative Law and Procedure Section 213 (1983).

The new standard which we have pronounced in this case has been previously considered and applied by this Court in New Mexico Human Services Dapartment V. Garcia, 94 N.M. 175, 608 P.2d 151 (1980), where we stated:

Whether the decision by HSD is

Supreme Court Opinions, Chief Justice Federici supported by substantial evidence in the [record as a] whole, is one of the standards for judicial review of administrative decisions by HSD as required by Section 27-3-4(F), N.M.S.A. 1978. The language employed in the statute does not abrogate the substantial evidence rule as that rule has existed in New Mexico. The language does point to the fact that the substantial evidence rule must be applied to the entire record and that segments of the record may not be ignored in applying the rule. The statute does not mean that upon judicial review of the findings by HSD, the Court may reweigh the evidence and reassign the preponderance of evidence. In order to determine whether the decision by HSD is supported by substantial evidence in the record as a whole, we must view the evidence in the light most favorable to the decision by HSD. While this rule is applicable to decisions of administrative boards and tribunals as well as to decisions of courts, it does not permit accepting part of the evidence and totally disregarding other convincing evidence in the record considered as a whole. Because of the minor departure from the customary substantial evidence rule in reviewing administrative decisions where the record as a whole must be considered, the reviewing court may act on other) convincing evidence in the record and may make its own findings based thereon. Id. at 176-177, 608 P.2d at 152-153 (emphasis added). II. Tends to Cause Harm. This case was originally remanded by the Court of Appeals to the agency

by the Court of Appeals to the agency solely to determine whether the wood smoke Duke City emitted was "injurious to health or safety." Duke City Lumber Co. v. New Mexico Environmental Improvement Board, 95 N.M. 401, 407, 622 P.2d 709, 715 (Ct. App.1980), cert. denied, 95 N.M. 426, 622 P.2d 1046 (1981).

The Air Quality Control Act defines air pollution as, "the emission . . . into the outdoor atmosphere of one or Vol. 23, No. 17, April 26, 1984 more air contaminants in such quantities and duration as may with reasonable probability injure human health . . . NMSA 1978, Section 74-2-2(B) (Repl.Pamp.1983).

The Board may grant a variance when compliance with air quality regulations will result in arbitrary and unreasonable taking of property or will impose an undue economic burden, and will not result in condition а injurious to health or safety. NMSA 1978, Section 74-2-8 (Repl.Pamp.1983). This definition does not permit the denial by the Board of a variance upon a mere showing that a condition "tends to cause harm." The Board has power under the New Mexico Air Quality Control Act to deny the variance when the air pollution that would result from granting a would variance with 'reasonable probability" injure health. The Legislature has provided the standard of reasonable probability, and this Court must adhere to it. The Board and the Court of Appeals erred by expanding the statutory definition of air pollution from emissions from a "reasonable probability" of injuring health to a condition which "tends to cause harm." The result we have reached under this Point II would be the same whether we applied the old substantial evidence test or the new whole record review standard.

HI. Sufficiency of the Evidence (Residuum Rule).

Administrative hearings in this case were conducted under relaxed rules of procedure to obtain information upon which to arrive at a definitive result. Town meeting-type hearings were held by the Board to solicit public participation regarding Duke City's request for a variance. Unsworn testimony of citizens and testimony of an Espanola physician was presented in support of the Board's decision that smoke from Duke City's mill would be injurious to health. Testimony by the physician was general rather than specific. He referred to and read from source material but he did not relate to or apply that material to the facts in this case. Lay witnesses and the doctor testified that smoke from the and burner caused asthma attacks irritation of eyes, nose and throat. Administrative The New Mexico

.

「「「「「「「」」」

Vol. 23. No. 17, April 26, 1984

Procedures Act provides that evidence) say be relied upon "if it is of a type commonly relied upon by reasonably? prudent men in the conduct of their affairs." NMSA 1978, Section 12-8-11(A). The standard for admissibility in an administrative hearing under this Act is therefore one of whether the evidence has any probative value. Rowever, New Mexico courts require that an administrative action be supported by some evidence that would he admissible in a jury trial. This has been referred to as the legal residuum rule. Young v. Board of Pharmacy, 81 N.M. 5, 462 P.2d 139 (1969). New Mexico has continued to require a residuum of competent evidence to support the findings of an administrative agency where a substantial right is at stake. v. Employment Security Trujillo Commission, 94 N.M. 343, 610 P.2d 747 (1980).

Our decision in this case to review the whole record does not negate the residuum rule. The substantial evidence rule and the whole record standard which we now adopt reaffirm the rule that some competent evidence is required to support an action by an administrative agency which affects a substantial right.

In this opinion we have not addressed the question of whether the Duke City burner emissions exceeded the NAAQS. Neither have we made a determination as to whether violation of this standard alone, or in Supreme Court Opinions, Chief Justice Federici

conjunction with medical evidence presented at trial, justifies denial of a variance. The agency decision on these questions should now be reviewed by the Court of Appeals, based upon the standard of review which we have pronounced in this opinion.

The Court of Appeals is reversed and the cause remanded to it for further proceedings consistent with this opinion.

IT IS SO ORDERED.

s/WILLIAM R. FEDERICI, Chief Justice

WE CONCUR: s/WILLIAM RIORDAN, Justice s/HARRY E. STOWERS, JR., Justice s/MARY C. WALTERS, Justice

DAN SOSA, JR., Senior Justice, dissenting.

DISSENT

DAN SOSA, JR., Senior Justice.

After rehearing was granted and the new majority opinion filed, I still cannot agree with the majority for the reason that the new standard announced allows this Court to substitute its judgment for the lower court or administrative body with impunity. I agree that the Court of Appeals should review the matter. To that extent, I favor this opinion over the previous opinion which merely reversed.

s/DAN SOSA, JR., Senior Justice

The Supreme Court of New Mexico

MANZANO INDUSTRIES, INC., Plaintiff-Appellant,

versus

EDWARD MATHIS, et al., Defendants-Appellees.

No. 15103 (filed April 4, 1984)

APPEAL FROM THE DISTRICT COURT OF DONA ANA COUNTY JAMES T. MARTIN, JR., District Judge

TOTET N SINGER POWELL New Mexico for Appellant

KENNETH L BEAL SAGE, BEAL, BRIDGFORTH & BEAL Las Cruces, New Mexico for Appellees

5.3

Transport of Organic Compounds Dissolved in Ground Water

by Joan M. Newsom

Abstract

Organic compounds, such as trichloroethylene (TCE) and chlorobenzene, that have been found in drinking water supplies are of public concern because they are possibly carcinogenic. These substances can now be routinely detected in trace amounts with gas chromatograph mass spectrometers. There are some polar organic compounds, which are not detectable individually by common methods and therefore little is known about them.

The transport of organic compounds is more difficult to predict than the flow of ground water because:

• Trace amounts of pollutants are difficult to measure

• Transport is complicated if the compound is partitioned into several phases

• The concentration of organics in ground water may vary due to aquifer heterogeneity and other hydrologic factors

• Reactions with other organic compounds and reactions with the aquifer material (such as adsorption) may affect the mobility of the organics

Biodegradation may also affect net transport.

Adsorption is a factor in the attenuation of non-polar organics in aquifers with significant organic content (>0.1 percent organic carbon). The organic material adsorbs the non-polar organic chemicals. The mobility of a pollutant in such an aquifer depends on at least two parameters: the levels of dissolved organic matter and the content of organic carbon in the aquifer material. The partition coefficient of the chemical pollutant between the aquifer and water is commonly calculated as a function of the organic content of the aquifer and the partition coefficient between octanol and water.

Field and laboratory results reported in the literature indicate that the following organic compounds may be biodegradable under aerobic conditions: alkyl benzenes and chlorobenzenes. Under anaerobic conditions halogenated aliphatics, alkyl benzenes, several pesticides and phenolic compounds may be biodegradable. Halogenated aliphatics appear not to degrade under aerobic conditions and non-chlorinated aromatics and chlorobenzenes appear not to degrade under anaerobic conditions. Alkyl benzenes biodegrade more rapidly than their halogenated counterparts.

Introduction

Pollution of ground water by organic compounds is an important area of public concern, and hydrogeologists are increasingly required to evaluate hydrocarbon contamination in the subsurface. The methods of analysis have improved in recent years such that concentrations of less than one microgram per liter (μ g/L) can be determined. The ability to measure more organic compounds, especially polar organics, will increase the number of different contaminants detectable in water.

Some of the organic compounds found in water are believed to be harmful in trace amounts. The health risks of the synthetic organics, however, are difficult to determine mainly because of the uncertainty in extrapolating the results of laboratory carcinogen tests on lab animals to humans. The health risks are not likely to become known very rapidly. References on health aspects of synthetic organics are found in Pearson (1982a, 1982b), and Merian and Zander (1982).

Man-made hydrocarbons are used in a wide range of industries and in household products. They are for the most part a product of technology used since the 1940s. Their solubility in non-polar substances and poor solubility in water account for their common and widespread use as degreasers. Trichloroethylene (TCE) is used, for example, to clean oil from industrial machines, to wash oils from airport runways, and to remove grease from clothes in dry cleaning.

Definitions

Hydrocarbon compounds, also called organic compounds, are composed of hydrogen and carbon. Aliphatic hydrocarbons are a group of hydrocarbons in which the carbon atoms are joined to form open chains. Aromatic hydrocarbons usually have structures that contain at least one benzene ring. <u>Monocyclic aromatics</u>, such as alkyl benzenes, have one ring. <u>Polynuclear hydrocarbons possess more than one ring</u>. This class of hydrocarbons can be divided into two groups. In the first, the rings are fused, which means at least two carbon atoms are shared between adjacent rings, e.g., naphthalene. In the second group, the aromatic rings are joined directly or through a chain of at least one carbon atom, e.g., biphenyl.

Many of the organic pollutants are halogenated;

that is, they contain halogen atoms in their molecular structure. Chlorine, bromine and fluorine are the most common halogens. Examples of halogenated aliphatics found in ground water include: trichloroethylene (C1CH:CC1₂, commonly abbreviated TCE), which contains two carbon atoms joined by a double bond: 1.1.1trichloroethane (CH₃CC1₃), which contains two carbon atoms joined by a single bond; and tetrachloroethylene (C1₂C: CC1₂, commonly abbreviated PCE), which contains two carbon atoms joined by a double bond. Trihalomethanes (THMs) are a subgroup of the halogenated aliphatics that contain three halogens in the methane (CH_{4}) molecular structure. Examples include chloroform or trichloromethane (CHC1₃), bromoform or tribromomethane (CHBr₃), and dibromochloromethane (CHBr₂C1). Halogenated aromatics found in ground water include: chlorobenezene $(C1C_6H_5)$, dichlorobenezene $(C1_2C_6H_4$, abbreviated in this paper. DCB), and trichlorobenzene ($C1_{3}C_{6}H_{3}$, abbreviated in this paper. TCB).

Hydrocarbon compounds can also be generally divided into polar and non-polar groups. Polar molecules are electrically neutral molecules with concentrations of negative charge in one part of the molecule and of positive charge in another, producing an electric dipole.

Occurrence of Organic Pollutants in Ground Water

The extent of ground water pollution by organic compounds is difficult to estimate both for a given aquifer and in general. Specific studies are difficult to compare because of variations in analytical sensitivity and differences among the compounds studied. Even for a given aquifer, the extent of ground water pollution by organic compounds can only be estimated because such a small fraction of the ground water is usually sampled.

There are many sources of organic pollution. Contaminants may reach the aquifer by way of precipitation. by seepage of pesticides and herbicides from the surface, from pollutants in sanitary landfills, waste storage ponds. polluted streams and lakes, and from accidentally or deliberately spilled material. Organic pollution is found both in industrial areas and in rural areas.

Man-made compounds pose a ground water pollution problem in industrialized countries. One or two percent of ground water supplies in the United States are polluted based on estimates of point sources, but only a fraction of these are contaminated primarily by organic pollutants (Pye and Patrick 1983). The compounds that occur most frequently in ground water in the United States are the trihalomethanes (THMs), which are the halogenated organics produced by chlorination of water containing humic materials (Bouwer et al. 1981). The problem of THMs, such as chloroform, has received considerable attention beginning in 1974 and the maximum contaminant level allowed by the EPA is 100 μ g/L total THMs (Cotruvo 1981).

The extent of ground water pollution by organics in the Netherlands was measured by sampling all 232 ground water pumping stations in the Netherlands between 1976 and 1978. The samples from 54 of the 232 locations, 25 percent of the locations, contained concentrations $>0.1 \mu g/L$ of chlorinated hydrocarbons with 1 or 2 carbons (e.g., TCE) (Zoeteman et al. 1981). The Netherlands is at the end of the Rhine River and receives pollutants from countries upstream. The compounds detected most frequently at concentrations greater than 0.01 μ g/L in Dutch ground water include: TCE (67 percent). chloroform (60 percent), tetrachloromethane (43 percent), PER (19 percent), and 1,1,1-trichloroethane (17 percent). These compounds are on the Environmental Protection Agency list of priority pollutants. The concentrations at higher levels (>10 μ g/L) could always be associated with a specific source. i.e., local waste dumping. Concentrations at low levels (0.01 to 0.1 μ g/L) may be due to volatile organics in rain water. Levels of substances such as chloroform and TCE are less than 1 μ g/L in rain water in the Netherlands.

Measurements of Organic Pollutants

Accurate measurements of the concentrations of organic pollutants in ground water are essential for understanding the behavior of the pollutants in aquifers. The problems of sampling an aquifer are especially severe for volatile organics, which are easily lost to the atmosphere (e.g., Pankow et al. 1984). Problems can arise from the type of well construction and the type of casing used. A study of the leaching of trace organics (0.5 ppb naphthalene and 0.5 ppb p-dichlorobenzene) into water from five common plastics used in well casing showed the following results: Teflon® (no leaching detected), nonglued PVC (0 to 0.1 ppb), Polyethylene (0.1 ppb), Polypropylene (0.5 ppb), glued PVC (0.5 ppb), and Tygon (1.0 ppb) (Curran and Tomson 1983)

Analytical results may be suspect because of the difficulty of analyzing water for trace concentrations of organics. In a comparison of analyses among certified private. state and university labs, large variations were reported even for relatively simple measurements of total dissolved solids (Keith et al. 1983). The following procedures were used to control the analytical precision and accuracy during an extensive investigation of a PCB spill site (Roberts, Cherry and Schwartz 1982). The concentrations of PCBs were determined by several analytical techniques. A standard with PCB concentrations similar to the samples being analyzed was run approximately every ten samples. Blanks were run during a switch from analysis of high PCB concentrations to low concentrations to ensure that the residual response of the system had returned to background levels.

The occurrence of some polar organic compounds in ground water has been much less studied than that of non-polar organic compounds. Very little is known about their health risk or their occurrence because they cannot be easily isolated and measured. The group parameter TOX (total organic halogen) provides a measure of the total amount of halogen in organic compounds and is determined by concentrating the organics by adsorption, and measuring halogen concentrations by titration, specific ion electrodes, or microcoulometer. TOX analyses are both relatively simple and quick compared to gas chromatography. The more polar, non-volatile and high molecular weight halogenated hydrocarbons presently can be detected by TOX and not by GC/MS (Jeckel and Roberts 1980). Field studies have shown that the TOX concentration is several times larger than the sum of halogenated organic compounds by gas chromatographic determination (Roberts, Schreiner and Hopkins 1982).

not in cesses

Advection and Dispersion

The mechanisms of advection and dispersion have an important control on the transport of organic pollutants. Total solute flow in porous media is composed of the portion that travels with the average ground water flow (advection) and the portion that deviates from the average ground water flow (dispersion). Dispersion causes a dilution of the solute concentration and a spreading of the contaminated area. Seen as a plot of concentration vs. the time to reach an observation point. dispersion causes the S-shaped breakthrough curve to broaden. The characteristic length of the porous medium, which is known as the dispersivity length, when multiplied with the ground water velocity, has been shown in the lab to yield the dispersion coefficient. This coefficient is used to determine the flux due to dispersive effects (Anderson 1979).

There are two types of dispersion: dispersion that occurs at the pore scale (microdispersion) and dispersion that occurs at the field scale due to aquifer heterogeneity (macrodispersion). Microdispersion is usually of not much significance for transport in relatively fast-flowing ground water. On the other hand, microdispersion and molecular diffusion are important in underground waste isolation site studies. Macrodispersion is significant due to the heterogeneity of the aquifer (e.g., Sudicky et al. 1983).

Lab dispersivity measurements do not agree with dispersivity measurements determined by field tracer tests because of scale factors. Lab measurements of dispersivity values for calculating microdispersion consist of determining breakthrough times at the outlet of cylindrical columns packed with porous media and then using the solute transport equation to determine dispersivity values. The field measurements of longitudinal dispersivity (in the direction of flow). which are on the order of 10 to 100m, are at least three orders of magnitude larger than lab measurements, 10⁻⁴ to 10⁻²m (Anderson 1979). Field tracer tests show that longitudinal dispersivity is not constant for a given aquifer, but increases as the distance between the injection and observation well is increased. At some point, dispersivity stops increasing. This increase in dispersivity with increased travel distance or travel time of the solute is referred to as the scale effect in the literature (e.g., Molz 1983; Sudicky et al. 1983).

The cause of the variable dispersivity is the heterogenity of the aquifer, leading to anisotropic distributions of horizontal hydraulic conductivity. Field data indicate that most compounds prefer to travel through more permeable pathways, such as through gravel lenses. The variation in concentration due to heterogeneity of the aquifer causes the distribution of the compound in a horizontal sense to sometimes deviate from the theoretical plume shape derived for homogeneous aquifer characteristics (e.g., Sudicky et al. 1983).

The problem of aquifer heterogeneity is as important on a vertical scale as on a horizontal scale. Field data have shown that when chemicals enter the aquifers do not mix to the full vertical extent of the ground water and are influenced by aquifer heterogeneities and density effects (Sudicky et al. 1983; Rea and Upchurch 1980; Schwartz et al. 1982). Even though some of the data in these studies are for ions and not organic compounds, one would expect the principles to apply. organic pollutants dissolved in wa comfiltrated from the Glatt River into the upper approximately 9m of a 20m thick Quaternary glaciofluvial valley fill aquifer composed of sand and gravel (Schwarzenbach et al. 1983). The contaminated water was detected several kilometers from the Glatt River in the upper half of the aquifer, while water in the lower half originated from less polluted sources. Monitoring of a PERspill in glacial deposits in Michigan showed that the PER (density = 1.62 g/cm^3 at 20 C), which was well below saturation, migrated downward as it traveled away from the source (Minsley 1983).

Adsorption

Most aquifers have less than 0.1 percent organic content. Quantitative relationships have not been well established between sorption and the controlling factors, although the specific surface area and the nature of the mineral surface influence the degree of sorption. Some adsorption of non-polar organic compounds was experimentally observed in columns containing materials that contain no organic carbon. such as clean sand, limestone and montmorillonite clay (Schwarzenbach and Westall 1981a). Sand and gravel aquifers are likely to contain insignificant amounts of organic matter, although this parameter is usually not measured. The aquifer near the Glatt River in Switzerland, for example, contains less than 0.1 percent organic content (Schwarzenbach et al. 1983). The retention of hexachlorobenzene, for example, was small between the aquifer next to the Glatt River and observation wells, which are up to 120m away from the river, despite the fact that hexachlorobenzene has a high log Kow of 6.06, and therefore, would be expected to be strongly retained in an aquifer with significant carbon content. The mobility of hexachlorobenzene indicates the low sorption capacity of sandy gravel aquifers with insignificant organic content (Schwarzenbach et al. 1983).

Aquifers comprised of deposits where former living matter is likely to have accumulated, such as from peat deposits, slow-moving streams, lakes or bogs, tend to have significant organic content. Studies have shown that at least 0.1 percent carbon content in the aquifer (0.001 g of organic carbon per gram sorbent) is needed for carbon adsorption to be significant (e.g., Schwarzenbach and Westall 1981a). Instead of solubility, the octanol:water partition coefficient (Kow) is often used as a measure of the partitioning of pollutants between water and organic phases. The Kow is the ratio of the concentration of a compound in octanol, a readily available alcohol that is relatively non-polar, to that in water. An inverse correlation between log Kow values (ranging between 1 and 6) and log solubility values, ranging between -3 to 5 in mg/L. has been found for non-polar organic compounds (Mackay 1980; Zoeteman et al. 1981). Kow values are also used to predict the partitioning behavior of compounds into soil that contains organic matter, as well as into the fat bodies of fish and other biota. Measured values of Kow can be found in: Chiou. Porter and Schmedding (1983); Banerjee, Yalkowsky and Valvani (1980): Kenaga and Goring (1980): and Hutzinger (1982): and estimated Kow values are found in Hansch and Leo (1979); and Leo, Hansch and Elkins (1971). In addition, chemical properties of organic compounds can be found in Verscheuren (1983), Hutzinger (1982, 1980), Weast and Astle (1982).

An example from California illustrates how the order of breakthrough of several organic compounds correlated with solubility and Kow such that the compounds that appear first have the highest solubility and lowest Kow. The order of appearance at an observation well 11m downstream from the injection well from first to last to appear was: chloride, chloroform, bromoform and dibromochloroform, 1,1,1-trichloroethane and chlorobenzene (Roberts, Schreiner and Hopkins 1982).

In another example from western Canada, TCB concentrations increased relative to that of PCB with depth as shown by the increase in the 1,2,4-TCB/PCB ratio from 0.02 in the surface fill to 0.19 in the underlying Regina clay (Roberts, Cherry and Schwartz 1982). The log Kow of 1,2,4-TCB is 4.05 (Leo, Hansch and Elkins 1971) while that of 2,4,5,2',4',5'-PCB is 6.72 (Schwarzenbach and Westall 1981a). The increased mobility of TCB is reflected by the lower Kow. Other indications of greater mobility are higher solubility, lower molecular weight and fewer chlorine atoms in the molecular structure in TCB compared with PCB.

Useful relationships have been found between the adsorption behavior of a pollutant and its Kow value and the organic content of an aquifer. Preliminary work indicates that the partitioning behavior of a pollutant and its residence time can be calculated for aquifers containing sufficient organic material. Karickhoff et al. (1979) demonstrated that the degree to which a compound is adsorbed in a soil, as measured by the partition coefficient (Kp), depends on the Kow and the "fraction organic content" (foc) of the soil by the relation:

$$Kp = 0.63 \text{ foc (Kow)}$$
(1)

The equation was developed by examining the adsorption of 10 organic pollutants, whose log Kow ranged from 2 to 6, in river and pond sediments whose foc ranged from 0.1 to 3.3 percent. This equation applies when the pollutant concentration is less than half of the solubility limit in water. Based on surface and aquifer sediments, whose foc is greater than 0.001, Schwarzenbach and Westall (1981a) derived a similar equation:

$$Kp = 3.2 \text{ foc } (Kow^{0.72})$$
 (2)

This equation is also valid only for low concentrations of the pollutant. Means et al. (1980) derived a similar equation for PAHs. Figure 1 illustrates the relationship described by Equation 2 for four chlorinated benzenes with different Kow coefficients. The equations establish the similar dependence of the parameters foc and Kow on the partition coefficient between soil containing organic matter and water. These equations apply only for non-polar substances in material with greater than 0.1 percent carbon. Kow provides a better estimate of sediment-water partitioning than does solubility, which gives at best an order of magnitude estimate of the partitioning behavior of a chemical in the organic fraction of the sediment medium (Karickhoff et al. 1979).

Schwarzenbach and Westall (1981a) found that more than 85 percent of the adsorption of the pollutants took place on particles of size less than 0.125mm (fine sand) and Karickhoff et al. (1979) observed that most of the adsorption took place on the particle fraction smaller than 0.05mm (silt or clay). More organic

Figure 1. The sorbent to water partition coefficient (Kp) as a function of organic carbon fraction (foc) for four chlorobenzenes (Schwarzenbach and Westall 1981b). Koc is the partition coefficient based on organic content and Koc = Kp/foc. The circled symbols indicate the sorbents on which the data were obtained: AS, activated sludge; 1, 4, sea sediments (coastal zone); 2, detritus; 3, 5, lake sediments; 6, 8, river sediments; 7, 9, 10, 11, 13, aquifer material.

compounds were sorbed on the finer particle size fraction of sediments than on the coarse fraction principally because of the higher organic content as well as the larger surface area. Differences in sorption between silt and clay fractions depend on differences in foc rather than in sediment size (Karickhoff et al. 1979). Organic compounds also partition onto dissolved organic matter, such as fulvic and humic acids, such as in organic-rich water in landfill leachates (Cherry et al. 1984).

A pollutant that is adsorbed travels slower than the water containing the pollutant. The travel time of the solute divided by the travel time of the fluid is known as the retardation factor or the relative residence time (tr), which based on Equation 1 is:

tr = 1 + 0.63 foc (Kow) ρ/ϵ

where

 ρ = average bulk density (g/cm³)

 $\epsilon =$ soil void fraction (unitless)

(Roberts, Reinhard and Valocchi 1982)

A comparison among trivatues, which are dimensionless, calculated from the equation and those derived from the field show that trivalues diverge for increasing values of Kow. The trivalues are 5 (field) and 6 (equation) for chloroforni: 36 (field) and 41 (equation) for chlorobenzene: and greater than 200 (field) and 140 (equation) for 1.4-DCB (McCarty et al. 1981). Kow values for these three compounds are 93, 692, and 2.400 respectively and the calculations are based on an average bulk density of $2 g/cm^3$, $\epsilon = 0.22$, and foc = 1 percent carbon (McCarty et al. 1981). Schwarzenbach et al. (1983) derived a similar equation but did not make a comparison with field results.

The common method of modeling the effects of sorption on solute transport is to assume that the solute and sorbent react in instant equilibrium, i.e., no kinetic effects, that the ratio of the sorbed solute to the solute dissolved in water is constant, i.e., linear isotherm, and that adsorption and desorption is a reversible process. The above equations are based on these assumptions.

Formulas for the calculation of limiting kinetic effects, non-linear isotherms and unequal sorption/desorption behavior are given in Miller and Weber (1984). Kinetic effects are important when the ground water velocity is too fast to allow equilibrium and the above equations are no longer valid. The ground water flow rate (approximately 0.014 cm/s) close to the Glatt River during storm water events was probably fast enough for kinetics to affect the transport of pollutants in the aquifer. Kinetic effects are also important when contaminants are newly introduced to a ground water system and when spike or plug contamination sources are appropriate. Under these conditions less material is sorbed onto the aquifer media and the material that is not sorbed travels farther. Kinetic effects were observed in column experiments when water containing chlorinated benzenes flowed through a column at a rate of 0.01 cm/s (Schwarzenbach and Westall 1981a, 1981b), which is well within the range of typical ground water velocities. The breakthrough times were faster than the breakthrough times of the same column experiment conducted at a velocity of less than 0.001 cm/s. The results of the column experiment at the slower rate (0.001 cm/s) matched those of an 18hour long equilibrium batch experiment indicating that sorption equilibrium occurred at the slower rate.

Although numerous studies have shown that trace levels of dissolved organic compounds follow linear isotherms, one exception are trace levels of PCBs (Cherry et al. 1984). Non-linear isotherms are most likely to occur when the concentration of the dissolved solute nears the solubility limit. For example, at low concentrations (well below the solubility limit) pesticides showed linear isotherms, but at high concentrations several organic pesticides have very non-linear isotherms (Cherry et al. 1984).

An important source of data on adsorption is the treatment of waste water by artificial recharge of an aquifer. The advantage of studies on waste water recharge is that the rate and length of time that a contaminant was injected or allowed to infiltrate into the aquifer is known, in contrast to most pollution studies.

In one study, approximately 92 percent of the organics were removed from the waste water (Tomson et al. 1979). The highest initial concentration was only 4.05 μ g/L and the range in final concentrations was between 0.1 to 1 μ g/L. Most removal rates for the 11

classes of compounds studied were between 90 to 100 percent, which included chloroaromatics and alkoxyaromatics, alkyl benzenes, naphthalenes, alcohols, ketones, indoles and indenes. Those groups whose removal rate was below 90 percent include the alkylphenols (85 percent), alkanes (71 percent), and chloroalkanes (70 percent) and phthalates (2 percent). The phthalates was the only group not to exhibit a dramatic decrease in concentration, and it was concluded the observed decline of only 2 percent was in error. A study of dune infiltration in northern Holland actually showed a dramatic increase in phthalate concentration (Piet et al. 1981). Perhaps PVC tubing contamination influenced the phthalate concentrations in both cases.

Adsorption and volatilization were thought to be the significant transport mechanisms for the pollutants studied by Tomson et al. (1981). Biodegradation had a minimal impact for two reasons: (1) The injected fluid was effluent from an activated sludge plant and compounds that easily biodegrade would not have been present. (2) Biodegradation does not occur for low pollutant concentrations. Tomson found that in the lab sewage bacteria reduced 2.3-dimethylnaphthalene from 1.3 mg/L to 40 μ g/L in one day and that there was no further degradation for several days.

Under equilibrium conditions the net ratio of the rates of adsorption and desorption do not change and the reaction is said to be reversible. Sorption was reversible in several column studies (Schwarzenbach and Westall 1981a; Karickhoff et al. 1979). The reversibility of the reactions indicated that the initial removal of the compounds from solution was due to sorption and not to other factors such as biodegradation, which would cause the amount removed to be greater than the amount desorbed. A study by Horzempa and Di Toro (1983), however, showed that sorption of PCBs is not readily reversible under field conditions. The amount of sorption correlated with sediment surface area and organic content. The sorption effects were not felt to be attributable to biodegradation because PCBs are not readily biodegraded.

The restoration of aquifers depends upon the ability to remove contaminants adsorbed onto the subsurface material. One method is to flush the aquifer via injection and extraction wells. If the ground water velocity is too fast for equilibrium to be established, the concentration of the pollutant in ground water will decrease below the equilibrium concentration. Once the flushing stops, equilibrium conditions may $become \, established \, and \, the \, concentration \, of \, dissolved$ pollutants may increase as desorption takes place. In such a case, the concentration of the pollutant at the extraction well decreases as the aquifer is flushed and then increases when the flushing is stopped. In addition to desorption during flushing as an important mechanism, the concentrations may also be affected by biodegradation rates of adsorbed, in-phase and dissolved pollutants.

Polar organics appear to be more mobile than nonpolar organics, as shown by a study in an aquifer with significant amounts of organic carbon because they are poorly retained in the organic material in the soil (Roberts, Schreiner and Hopkins 1982). Piet et al. (1981) also found that the polar compounds were not as well adsorbed as non-polar compounds in soil column experiments using 50cm-long columns of soil composed of peat and sand layers. Those non-polar chlorine organics that were retained include: nitrobenzene. nitrotoluene and chloronitrobenzene. Similarly, studies with granulated activated carbon (GAC) exhibit less adsorption of the polar organics than the non-polar organics.

-> Biodegradation

Biodegradation is the breakdown of chemical compounds by microorganisms and is controlled by such environmental parameters as temperature, pH, dissolved oxygen. Eh, salinity, nutrients, competing organisms, toxicity to organisms, and the concentrations of the organisms and compounds. Lab studies have shown that under steady-state conditions a pollutant must be present in concentrations of milligrams per liter to be broken down directly by microorganisms (McCarty et al. 1981). In a similar study it was found that the pollutant concentration must be at least 100 $\mu g/L$ to sustain a microbe population (Wilson and McNabb 1983). If the pollutant concentrations are not sufficiently high to sustain the microorganisms biodegradation will not occur (Kobayashi and Rittman 1982). Sewage bacteria reduced 2,3-dimethylnaphthalene from 1.3 mg/L to 40 μ g/L and no further reduction was observed for several days (Tomson et al. 1981). A lower limit for biodegradation of $10 \,\mu$ g/L has also been found by Wilson and McNabb (1983). Trace levels of a compound can sometimes be broken down as a secondary result of the breakdown of another compound, which is present at much higher concentrations (Rittmann et al. 1980; McCarty et al. 1979).

Biodegradation depends on essential metabolic requirements, such as oxygenated water for aerobic processes. Metabolism can deplete the oxygen or other metabolic requirements in ground water at pollutant concentrations greater than 1,000 to 10,000 μ g/L (Wilson and McNabb 1983). Thus, pollutants at high concentrations may be only partially degraded when oxygen is depleted.

Results of lab and field biodegradation studies under aerobic and anaerobic conditions for different classes of organic pollutants are presented below. Most of the priority pollutants have been shown to be biodegradable under laboratory conditions (Kobayashi and Rittman 1982). This does not, however, mean that these pollutants are necessarily biodegradable under field conditions. Aerobic conditions generally occur in the unsaturated zone and may be found below the water table at shallow depths as well as at great depths (Winograd and Robertson 1982).

Halogenated Aliphatics. Field and lab results show that several halogenated aliphatics may biodegrade slowly under anaerobic conditions, but not under aerobic conditions. CH₂Cl₂ does, however, degrade under aerobic conditions (R. Schwarzenbach, personal communication 1983). Halogenated aliphatics at low concentrations in treated waste water decreased in concentration when injected into a coastal aquifer in California (Roberts, Schreiner and Hopkins 1982). THMs degraded 10 times faster than the other halogenated aliphatics although the rate of anaerobic degradation was slow for both. The THMs concentration declined from $100\mu g/L$ to less than 0.1 μ g/L at a rate of 0.03 per day. The decline was attributed to anaerobic biodegradation and not adsorption because the sorption capacity of the aquifer was saturated before the injection experiment began. Batch culture tests in the lab supported the field results that THMs degrade at low concentrations under anaerobic conditions (Bouwer et al. 1981). Similarly the THM bromodichloromethane degraded slowly under anaerobic conditions of a shallow fluvial aquifer in Oklahoma (Wilson and Enfield 1983). Halogenated aliphatics that have been reported to biodegrade under anaerobic lab conditions include: TCE, trichlorethane, methyl chloride, chloroethane, dichlorobromoethane, vinylidiene chloride, PER, methylene chloride and the THMs chloroform, dibromochloromethane, bromodichloromethane (Kobayashi and Rittman 1982).

No degradation was observed in studies of several compounds under anaerobic conditions, but the rate of degradation may have been too slow to be detected during the period of investigation. Bouwer et al. (1981) observed THMs but not TCE or PER to biodegrade in batch culture tests in the lab under anaerobic conditions. Wilson et al. (1983) did not observe degradation below the water table for several aliphatics: 1,2dichloroethane, 1,1.2-trichlorethane, TCE or PER, but the period of study may not have been long enough to observe slow rates of degradation. Slow rates of degradation, therefore, cannot be ruled out. Similarly, Schwarzenbach et al. (1983) observed that TCE, PER, 1,1,1-trichloroethane. and hexachlorethane were persistent in the aquifer up to several kilometers away from the river, but the wide error bars on their figures may not rule out slow rates of degradation.

The decomposition of halogenated aliphatics under aerobic lab or field conditions has not been observed. No significant degradation of halogenated aliphatics (THMs, TCE, PER) was found under aerobic lab conditions (Bouwer et al. 1981: Bouwer and McCarty 1984). The persistance of chloroform, under aerobic conditions was reported in a study of ground water recharge, a study of chloroform passage through GAC columns, a study of bank filtration in Germany and a study of waste water percolation in soil columns (Bouwer et al. 1981). Wilson et al. (1983) in a field study in Oklahoma did not observe degradation of several halogenated aliphatics. 1,2-dichloroethane, 1.1,2-trichloroethane, TCE, or PER, above the water table.

Alkyl benzenes. Alkyl benzenes are known to degrade under aerobic conditions and may degrade under anaerobic conditions, Field observations show that toluene degraded rapidly in a shallow aquifer composed of flood-plain sediments in Oklahoma both above and below the water table (Wilson and Enfield 1979; Wilson et al. 1983). Schwarzenbach et al. (1983) observed a sharp decrease in non-halogenated compounds transported from the Glatt River to any of the ground water observation wells, the closest being 2.5m from the river. The alkyl benzenes included: toluene. 1.3-dimethyl benzene, and other 2 and 3 carbon benzene isomers. Aerobic respiration and nitrification occurred predominantly in the first few meters of infiltration, thus supporting the theory that the decrease in concentration was caused by biological processes under aerobic conditions. The biological processes that removed the organic compounds were efficient. considering the short residence time between the river and the closest well and the small retardation factors of the compounds. The decline was observed at different temperature throughout the year, including 5°C in winter. Alkyl benzenes degrade quicker than halogenated aromatics under aerobic conditions, probably because of the breaking of the halogen bond for halogenated aromatics is relatively slow.

Naphthalene and methyl-naphthalene also decreased in concentration but the decrease in

naphthalene, however, may be due to adsorption based on the results of Ehrlich et al. (1982). Ehrlich et al. (1982) observed that naphthalene did not biodegrade under anaerobic conditions. but was slightly sorbed. Bouwer and McCarty (1984) observed that several non-chlorinated aromatics are removed under aerobic but not anaerobic conditions.

Chlorobenzenes. Chlorobenzenes have been observed to degrade under aerobic but not anaerobic conditions (e.g., Bouwer and McCarty 1984). The chlorobenzenes, 1,4-DCB, 1,2,4-TCB and 1,2,3-TCB decomposed under aerobic conditions in the aquifer near the Glatt River, and are suggested to have degraded to chlorinated phenols and catechols (Schwarzenbach and Westall 1981b). The rate of decrease was slower than for the alkyl aromatics, perhaps because the breaking of the halogen bond slows the process (Schwarzenbach et al. 1983). Halogenated aromatics do not degrade under anaerobic conditions. The concentrations of 1.4-DCB did not decrease in July and August of 1979, 1980 and 1981 between the river and 5m from the river, as it did the rest of the year because conditions were anaerobic during these summer months and the compounds did not decompose. During the rest of the year the conditions were aerobic and the chlorobenzenes decomposed. Chlorobenzenes in another Swiss study persisted for at least seven years under anaerobic conditions (Giger and Schaffner 1981). Chlorobenzenes (1,4-DCB, 1,2,4-TCB and 1,2,3-TCB) decomposed above, but not below the water table in a shallow fluvial aquifer in Oklahoma (Wilson et al. 1983). The failure of chlorobenzene to decompose in autoclaved (i.e., sterilized) lab samples established microorganisms as the likely agent of destruction.

Pesticides. Lab studies on sewer sludge indicated that pesticides such as lindane degraded more quickly under active anaerobic lab conditions than under corresponding aerobic conditions, probably due to bacteria (Hill and McCarty 1967). DDT, for example, converted rapidly to DDD under anaerobic conditions, but persisted as DDT under aerobic conditions of several mg/L of dissolved oxygen. Similarly, more than 20 species of bacteria were found to reductively dechlorinate DDT under anaerobic conditions, whereas aerobic conditions apparently did not promote dechlorination (Kobayashi and Rittman 1982). Other pesticides that were dehalogenated under anaerobic conditions in lab culture tests include: toxaphane by bacteria, lindane by soil bacteria and parathion by bacteria (Kobayashi and Rittman 1982). These lab results indicate that pesticides are easier to break down under anaerobic than under aerobic conditions. The breakdown process is relatively easy once the halogen bond is broken.

Phenolic compounds have been shown to biodegrade under anaerobic conditions in an aquifer composed of glacial drift material in Minnesota (Ehrlich et al. 1982). Methane and CO_2 were formed by the anaerobic bacteria breaking down the phenolic compounds. Lab studies supported the field results, and also indicated that principally biodegradation and not sorption account for the decline in concentration (Ehrlich et al. 1982). Glass column experiments showed that chlorophenols can biodegrade under aerobic conditions (Zullei 1981).

Biodegradation is an appealing cleanup method because expensive cleanup methods could be avoided and the pollutant is destroyed rather than transferred to another part of the environment, such as to the atmosphere via air stripping. In some cases, however, the degradation products could be as toxic or worse than the original compound. Management of some of the parameters that affect biodegradation, such as nitrate supply, may allow biodegradation to occur in situ in the vadose zone or aquifer. Limitations include the difficulty of managing environmental parameters that promote biodegradation and the difficulty in maintaining biodegradation as environmental conditions change.

Geological Considerations

The detailed structure and mineralogic composition of aquifers is critical to the transport of pollutants. One example is a PCB spill in a glacial till area in western Canada (Schwartz et al. 1982; Roberts, Cherry and Schwartz 1982). Between 6,800 and 21,000 liters of transformer oil containing PCBs and chlorobenzenes were spilled at a transformer plant. The PCBs traveled mainly in-phase because of the low solubility of PCBs (0.05 mg/L). The laboratory-determined conductivities of the till zone, between 10^{-5} and 10^{-9} cm/s, are too low to explain the observed vertical migration. Vertical movement is primarily through fractures in the clay, silt and till units, as indicated by the high PCB concentrations measured on fracture surfaces. Tritium was also found along fracture surfaces and used to calculate the rate of solute migration. This rate is a minimum because, unlike PCBs, some of the small tritium atoms diffuse into the sedimentary units. The geological units also have a low organic content, 0.2 to 0.9 percent carbon, minimizing the role of organic carbon in absorbing the PCBs.

Conclusions and Recommendations

Although progress is being made in understanding how organic compounds travel in the subsurface, large gaps and unknown important parameters exist. Several recommendations are given below on areas that need research.

• Some polar organic compounds are not commonly detectable by present methods. They appear to be persistent in ground water, able to travel significant distances and be resistant to degradation. Perhaps the increased ability to identify these polar organics will provide a better understanding of this type of contamination. Group parameter methods, such as TOX, may be attractive compliments to the commonly used GC/MS method because of the lower cost and because the measurements include classes of compounds, e.g., polar halogenated organics in the case of TOX, which are not readily identifiable individually.

• In cases where the aquifer might contain sufficient carbon for adsorption to be significant, the empirical relationships that have been developed may be useful for determining the partitioning behavior of organic pollutants. Further study of the effect of grain size, organic content, solute concentrations, dissolved organic matter and other controls on adsorption will help clarify how solutes are transported.

• Some elements, such as N, S, or P-compounds, when injected into pollution plumes may promote microbial degradation. The field conditions under which biodegradation of different compounds is promoted is not well understood. The phase in which the pollutant biodegrades might also be considered, i.e., dissolved in water, in-phase, or adsorbed onto the matrix.

• More work is needed to determine how flushing of an aquifer via injection and extraction wells affects those pollutants sorbed onto aquifer or soil material. Travel of solutes in-phase during flushing, such as droplets within the water, may be an important mechanism.

Ground water flow models in porous media are useful for understanding a flow regime and for planning the placement of wells. Solute transport models assume constant dispersivity values and the solute is assumed to be dissolved, which in some cases may not be reasonable assumptions. Resolution problems with numerical models may occur in some cases, such as for modeling trace concentrations of a solute, high concentration gradients, or radial flow from a pulse on a rectangular grid. The mechanisms of adsorption and biodegradation are not well enough understood to model satisfactorily. The effects of such mechanisms will probably be lumped together in models because their effects will be difficult to separate in practice.

Although the technology may exist to clean up polluted ground water and pollution sites, the costs are often high. A water policy is needed to encourage prevention and set priorities for what should be cleaned up. The cost of cleanup can be several orders of magnitude larger than that of preventive measures. Monitoring of areas containing organic compounds has begun only recently, and as monitoring continues the understanding of solute transport will improve.

References

- Anderson. M.P. 1984. Movement of Contaminants in Groundwater: Groundwater Transport-Advection and Dispersion. Groundwater Contamination, National Academy Press, Washington, D.C. pp. 37-45.
- Anderson, M.P. 1979. Using Models to Simulate the Movement of Contaminants through Groundwater Flow Systems. CRC Critical Reviews in Environmental Control, v. 9, pp. 97-156.
- Banerjee, S., S.H. Yalkowsky and S.C. Valvani. 1980. Water Solubility and Octanol/Water Partition Coefficients of Organics. Limitations of the Solubility-Partition Coefficient Correlation. Env. Sci. Tech., v. 14, pp. 1227-1229.
- Bouwer, E.J. and P.L. McCarty. 1984. Modeling of Trace Organics Biotransformation in the Subsurface. Ground Water, v. 22, pp. 433-440.
- Bouwer, E.J., B.E. Rittmann, P.L. McCarty. 1981. Anaerobic Degradation of Halogenated 1- and 2- Carbon Organic Compounds. Env. Sci. Tech., v. 15, pp. 596-599.
- Cherry, J.A., R.W. Gillham and J.F. Barker. 1984. Contaminants in Groundwater: Chemical Processes. Groundwater Contamination, National Academy Press, Washington, D.C. pp. 46-64.
- Chiou, C.T., P.E. Porter and D.W. Schmedding. 1983. Partition Equilbria of Nonionic Organic Compounds between Soil Organic Matter and Water. Env. Sci. Tech., v. 17, pp. 227-230.
- Cotruvo, J.A. 1981. THMs in Drinking Water. Env. Sci. Tech., v. 15, pp. 268-274.
- Curran, C.E. and M.B. Tomson. 1983. Leaching of Trace Organics into Water from Five Common Plastics. Ground Water Monitoring Review, v. 3, pp. 68-71.
- Ehrlich, G.G., D.G. Goerlitz, E.M. Godsy and M.F. Hult. 1982. Degradation of Phenolic Contaminants in

Ground Water by Anaerobic Bacteria: St. Louis Park, Minnesota. Ground Water, v. 20. pp. 703-710.

- Giger, W. and R. Schwarzenbach. 1981. Quality of Groundwater. W. vanDuijvenbooden, P. Glasbergen and H. van Lelyveld, Eds., Studies in Env. Sci., v. 17, Elsevier Co., Netherlands.
- Horzempa, L.M. and D.M. Di Toro. 1983. The Extent of Reversibility of Polychlorinated Biphenyl Adsorption. Wat. Res., v. 17, pp. 851-859.
- Hutzinger, O. (Ed.). 1982. Anthropogenic Compounds (The Handbook of Environmental Chemistry, v. 3, pt. B). Springer-Verlag, Berlin. 210 pp.
- Hutzinger, O. (Ed.). 1980. Reactions and Processes (The Handbook of Environmental Chemistry, v. 2, pt. A), Springer-Verlag, Berlin.
- Jeckel, M.R. and P.V. Roberts. 1980. Total Organic Halogen as a Parameter for the Characterization of Reclaimed Waters: Measurement. Occurrence, Formation and Removal. Env. Sci. Tech., v. 14, pp. 970-975.
- Karickhoff, S.W., D.S. Brown and T.A. Scott. 1979. Sorption of Hydrophobic Pollutants on Natural Sediments. Wat. Res., v. 13, pp. 241-248.
- Keith, S.J., L.G. Wilson, H.R. Fitch and D.M. Esposito. 1983. Sources of Spatial-Temporal Variability in Ground Water Quality Data and Methods of Control. Ground Water Monitoring Review, v. 3, pp. 21-32.
- Kenaga, E.E. and C.A.I. Goring. 1980. Relationship Between Water Solubility, Soil Sorption, Octanol-Water Partitioning, and Concentrations if Chemicals in Biota. Aquatic Toxicology, J.G. Eaton, P.R. Parrish and A.C. Hendricks, Eds. pp. 78-115.
- Kobayashi, H. and R.E. Rittmann. 1982. Microbial Removal of Hazardous Organic Compounds. Env. Sci. Tech., v. 16, pp. 170A-183A.
- Leo, A., C. Hansch and D. Elkins. 1971. Partition Coefficients and Their Uses. Chem. Rev., v. 71, pp. 575.
- MacKay, D. 1980. Solubility, Partition Coefficients, Volatility and Evaporation Rates. Reactions and Processes (The Handbook of Environmental Chemistry, v. 2, pt. A). Springer-Verlag, Berlin, pp. 31-46.
- McCarty, P.L., M. Reinhard and B.E. Rittmann. 1981. Trace Organics in Groundwater. Env. Sci. Tech., v. 15, pp. 40-51.
- Means, J.C., S.G. Wood, J.J. Hassett and W.L. Banwart. 1980. Sorption of Polynuclear Aromatic Hydrocarbons by Sediments and Soils. Env. Sci. Tech., v. 14, pp. 1524-1528.
- Merian, E. and M. Zander. 1982. Volatile Aromatics. Anthropogenic Compounds (The Handbook of Environmental Chemistry, v. 3. pt. 8). O. Hutzinger, Ed. Springer-Verlag, Berlin, pp. 117-162.
- Miller, C.T. and W.J. Weber Jr. 1984. Modeling Organic Contaminant Partitioning in Ground Water Systems. Ground Water, v. 22, pp. 584-592.
- Minsley, B. Tetrachloroethylene Contamination of Groundwater in Kalamazoo. J. Amer. Water Works Assoc., v. 75, pp. 272-279.
- Molz, F.J., O. Guven and J.G. Melville. 1983. An Examination of Scale-Dependent Dispersion Coefficients. Ground Water, v. 21, pp. 715-725.
- Pankow, J.F., L.M. Isabelle, J.P. Hewetson and J.A. Cherry. 1984. A Syringe and Cartridge Method for Down-Hole Sampling for Trace Organics in Ground Water. Ground Water, v. 22, pp. 330-339.
- Pearson, C.R. 1982a. C₁ and C₂ Halocarbons. Anthropogenic Compounds (The Handbook of Environmental Chemistry, v. 3, pt. B). O. Hutzinger, Ed. Springer-Verlag, Berlin, pp. 69-88.

- Pearson, C.R. 1982b. Halogenated Aromatics. Anthropogenic Compounds (The Handbook of Environmental Chemistry, v. 3, pt. B). O. Hutzinger, Ed. Springer-Verlag, Berlin, pp. 89-116.
- Piet, G.J., C.H.F. Morra and H.A.M. DeKruijf. 1981. The Behavior of Organic Micropollutants During Passage Through the Soil. Quality of Groundwater, W. vanDuijvenbooden, P. Glasbergen and H. vanLelyveld, Eds. Studies in Env. Sci., v. 17, Elsevier Co., Netherlands, pp. 557-564.
- Pye, V.I. and R. Patrick. 1983. Ground Water Contamination in the United States. Science, v. 221, pp. 713-718.
- Rea, R.A. and S.B. Upchurch. 1980. Influence of Regolith Properties on Migration of Septic Tank Effluent. Ground Water, v. 18, pp. 118-125.
- Rittman, B.E., P.L. McCarty and P.V. Roberts. 1980. Trace-Organics in Biodegradation in Aquifer Recharge. Ground Water, v. 18, pp. 236-243.
- Roberts, J.R., J.A. Cherry and F.W. Schwartz. 1982. A Case Study of a Chemical Spill: Polychlorinated Biphenyls (PCBs) 1. History, Distribution and Surface Translocation. Wat. Resources Res., v. 18, pp. 525-534.
- Roberts, P.V., M. Reinhard and A.J. Valocchi. 1982. Movement of Organic Contaminants in Groundwater: Implications for Water Supply. J. Amer. Water Works Assoc., v. 74, pp. 408-413.
- Roberts, P.V., J. Schreiner and G.D. Hopkins. 1982. Field Study of Organic Water Quality Changes During Groundwater Recharge in the Palo Alto Baylands. Wat. Res., v. 16, pp. 1025-1035.
- Schwartz, F.W., J.A. Cherry and J.R. Roberts. 1982. A Case Study of a Chemical Spill: Polychlorinated Biphenyls (PCBs) 2. Hydrogeological Conditions and Contaminant Migration. Wat. Resources Res., v. 18, pp. 535-545.
- Schwarzenbach, R.P., W. Giger, E. Hoehn and J.K. Schneider. Behavior of Organic Compounds During Infiltration of River Water to Groundwater. Field Studies. Env. Sci. Tech., v. 17, pp. 472-479.
- Schwarzenbach, R.P. and J. Westall. 1981a. Transport of Nonpolar Organic Compounds from Surface Water to Groundwater. Laboratory Sorption Studies. Env. Sci. Tech., v. 15, pp. 1350-1367.
- Schwarzenbach, R.P. and J. Westall. 1981b. Transport of Nonpolar Organic Pollutants in a River Water-Groundwater Infiltration System: A Systematic Approach. Quality of Groundwater, W. vanDuijvenbooden, P. Glasbergen and H. van Lelyveld, Eds. Studies in Env. Sci., v. 17, Elsevier Co., Netherlands, pp. 569-574.
- Sudicky, E.A., J.A. Cherry and E.O. Frind. 1983. Migration of Contaminants in Groundwater at a Landfill:
 A Case Study, 4. A Natural-Gradient Dispersion Test. J. Hydrol., v. 63, pp. 81-108.
- Tomson, M.B., J. Dauchy, S. Hutchins, C. Curran, C.J. Cook and C.H. Ward. 1981. Groundwater Contamination by Trace Level Organics from a Rapid Infiltration Site. Wat. Res., v. 15, pp. 1109-1116.
- Verscheuren, K. 1983. Handbook of Environmental Data on Organic Chemicals. Van Nostrand Reinhold Co., New York, 1310 pp.
- Weast, R.C. and M.J. Arstle. 1982. Handbook on Chemistry and Physics. CRC Press Inc., Boca Raton, Florida.
- Wilson, J.T. and C.G. Enfield. 1983. Biological Transformation of Organic Pollutants in Groundwater. EOS. v. 64, no. 33, p. 505.

- Wilson, J.T. and C.G. Enfield. 1979. Transport of Organic Pollutants Through an Unsaturated Soil Profile. EOS, v. 60, no. 48, p. 825.
- Wilson, J.T., J.F. McNabb, D.L. Balkwill and W.C. Ghiorse, 1983. Enumeration and Characterization of Bacteria Indigenous to a Shallow Water-Table Aquifer. Ground Water, v. 21, pp. 134-142.
- Winograd, I.J. and F.N. Robertson, 1982. Deep Oxygenated Ground Water: Anomaly or Common Occurrence? Science, v. 216, pp. 1227-1230.
- Zoeteman, B.C.J., E. De Greef and F.J.J. Brinkmann. 1981. Persistency of Organic Contaminants in Groundwater, Lessons from Soil Pollution Incidents in the Netherlands. Quality of Groundwater, W. vanDuijvenbooden, P. Glasbergen and H. van Lelyveld, Eds. Studies in Env. Sci., v. 17, Elsevier Co., Netherlands, pp. 465-480.
- Zullei, N. 1981. Behaviour of Disinfectants (Chlorophenols) During Underground Passage. Quality of Groundwater. W. vanDuijvenbooden. P. Glasbergen and H. van Lelyveld. Eds. Studies in Env. Sci., v. 17, Elsevier Co., Netherlands, pp. 215-220.

Acknowledgments

The author thanks P. Geldner, G. Battermann, R. Schwarzenbach, and E. Hoehn for reviews; K. Zipfel and G. Bjornsen for financial support; and H. Newsom for editorial assistance.

Biographical Sketch

Joan M. Newsom completed a M.S. degree at the University of Arizona and worked for the city water department in Tucson, Arizona; Hargis and Montgomery in Tucson; and Bjornsen Consulting Engineers in Koblenz, West Germany. She is presently pursuing a Ph.D. in hydrology at New Mexico Institute of Mining and Technology (Department of Geoscience, Socorro, NM 87801).
Behavior of Organic Compounds during Infiltration of River Water to Groundwater. Field Studies

René P. Schwarzenbach,* Walter Giger, Eduard Hoehn,[†] and Jürg K. Schneider

Swiss Federal Institute for Water Resources and Water Pollution Control (EAWAG), CH-8600 Dübendorf, Switzerland

The behavior of organic micropollutants during infiltration of river water to groundwater has been studied at two field sites in Switzerland. In agreement with predictions from model calculations, persistent organic chemicals exhibiting octanol/water partition coefficients smaller than about 5000 moved rapidly with the infiltrating river water to the groundwater. The biological processes responsible for the "elimination" of various micropollutants (e.g., alkylated and chlorinated benzenes) occurred predominantly within the first few meters of infiltration. Alkylated benzenes were "eliminated" at faster rates than 1,4-dichlorobenzene. Anaerobic conditions in the aquifer near the river hindered the biological transformation of 1,4dichlorobenzene. Among the compounds that were found to be persistent under any conditions were chloroform, 1,1,1-trichloroethane, trichloroethylene, and tetrachloroethylene. With respect to such chemicals, bank filtration is ineffective as a first step in the treatment of river water for water supplies.

Since in many European countries a significant fraction of the groundwater is recharged through infiltration of river water (1, 2), the impact of river pollution on groundwater quality is of major concern. In addition, many waterworks use natural or artificial bank filtration as a first step in the treatment of river water for water supplies (3, 4). Therefore, the behavior of organic pollutants during infiltration is of great interest.

The transport and fate of organic pollutants in a river water-groundwater infiltration system is determined by several interacting processes, including advection, dispersion, (ad)sorption/desorption, hydrolysis, redox reactions, and biological transformations. In laboratory experiments, individual processes may be studied under controlled conditions (5, 6), and mathematical models may be developed to predict the effect of a particular process on the transport and fate of a compound in the environment (7, 8). However, comprehensive field investigations are needed to evaluate the applicability of laboratory studies and model calculations to natural systems.

To date, most of the field studies on natural river water-groundwater infiltration systems have been conducted with respect to the use of bank filtrate for public water supplies (e.g., ref 3). These studies have usually been confined to monitoring selected water constituents in the river and in groundwater wells near the region of infiltration. The temporal and spatial variations in concentration of organic compounds along the infiltration path have not been thoroughly investigated. Consequently, the results of such investigations provide only very limited insights into the behavior of individual compounds during infiltration.

In this paper, we report the results of two field studies aimed at investigating the transport and fate of organic micropollutants, including chlorinated hydrocarbons, alkylated benzenes, and chlorinated phenols during natural infiltration of river water to groundwater. In the near fields of two rivers, a network of observation wells was installed that allowed the contaminants in the infiltrating water to be traced from the river to the groundwater. The results of this 2-year field study contribute significantly to the limited field data on the behavior of trace organics in the groundwater environment (9-11).

Theoretical Section

Prediction of Retardation Factors for Hydrophobic Organic Compounds in the Ground. A rough estimate of the retention behavior of a given hydrophobic organic compound during infiltration may be obtained by treating transport through the river bed and in the aquifer in a first approximation as a one-dimensional process with constant flow in a homogeneous porous medium. Assuming that only the fine fraction of the aquifer material is relevant for sorption (5, 12) and assuming a linear sorption isotherm, an average retardation factor (R_{f}^2 = ratio of the residence time τ_z of the solute to the residence time τ_w of the water) can then be calculated for compound z for a given segment of the aquifer (e.g., ref 8):

$$R_f^{z} = \tau_z / \tau_w = 1 + f K_p^{z} \rho (1 - \epsilon) / \epsilon \tag{1}$$

where f = fraction of the aquifer material responsible for sorption (e.g., grain size range $\phi < 125 \ \mu m$; assumption: homogeneous distribution), $K_p^z =$ equilibrium partition coefficient of the compound z between water and the fine fraction of the aquifer material at a given location in the ground (cm³/g), $\rho =$ density of the aquifer material (g/ cm³), and $\epsilon =$ total porosity. As we have shown in a previous study (5), for the compounds reported here, the equilibrium partition coefficient, K_p^z , may be estimated from the organic carbon content of the fine fraction of the aquifer material, f_{oc} , and from the octanol/water partition coefficient of the compound, K_{ow}^z :

$$K_{\rm p}^{\ \rm z} = 3.2 f_{\rm oc} (K_{\rm ow}^{\ \rm z})^{0.72} \tag{2}$$

Similar relationships have been found for other types of compounds and natural sorbents (12, 13). Note that eq 2 is valid only for sorbents exhibiting organic carbon contents of greater than about 0.1% ($f_{oc} > 0.001$). For organic-poor sorbents, interactions of the chemical with the inorganic matrix of the sorbent may become important (5). Combining eq 1 and 2 yields

$$R_{\ell}^{z} = 1 + 3.2 ff_{oc} (K_{ow}^{z})^{0.72} \rho (1 - \epsilon) / \epsilon$$
(3)

Retardation factors calculated from eq 3 are valid only at sorption equilibria. At high groundwater-flow velocities, e.g., such as those encountered in the near field of a river during stormwater events (0.5 m/h; see ref 14), due to slow sorption kinetics, the compounds may be transported even faster than would be assumed from equilibrium considerations (5, 15). However, relationships such as eq 3 are very valuable for predicting the magnitude of the velocity at which a specific hydrophobic organic compound is transported in a given aquifer.

Experimental Section

Description of the Field Sites. The main field site of this investigation (field site I) is located in the lower

0013-936X/83/0917-0472\$01.50/0 © 1983 American Chemical Society

[†]Present address: Swiss Federal Institute for Reactor Research (EIR), CH-5303 Würenlingen, Switzerland.

Figure 1. Locations and layouts of the two field study sites: (a) lower Glatt Valley, Switzerland (field site I); (b) lower Aare Valley, Switzerland (field site II); (Φ = sampling locations).

Glatt Valley, Switzerland (see Figure 1). In this region, the River Glatt infiltrates over a distance of about 5 km into a quaternary fluvioglacial valley fill aquifer composed of layers of gravel and sand containing very little organic carbon (<0.1%). The River Glatt is a small, rather heavily polluted perialpine river which has been studied extensively (16, 17). The average discharge of the river is approximately 8 m³/s, of which 15-20% is effluent from a number of mechanical-biological sewage treatment plants. These treatment plants are the major source for organic micropollutants in the river. At the study site, permanent infiltration of the River Glatt through a saturated zone can be assumed.

Figure 1a gives a cross-sectional view of the study site on the right bank of the River Glatt. The groundwater flows beneath the river at an angle between 60 and 90° to the flow of the river. The results presented in this paper have been obtained primarly from measurements in wells G1-G4 (see Figure 1a). These wells gave access to freshly infiltrated water that stratified in the top layers of the aquifer. Some data from observation well G15, which is screened throughout the saturated thickness of the aquifer, will also be discussed. G15 is located in the center of the valley about 60 m downstream from G4. A detailed description of this field site is presented elsewhere (18).

To check the general validity of conclusions drawn from results obtained from the main field site, a second study was conducted on a different type of river system: River Aare in the lower Aare Valley (field site II; see Figure 1b). River Aare is a moderately polluted alpine river with an average flow of 550 m³/s in the study area. The aquifer into which the river loses water is of the same geological formation as the one in the lower Glatt Valley (19). At the study site, the River Aare infiltrates through a saturated zone. Figure 1b shows the network of observation wells that were installed on the left bank of the river. At this location the regional groundwater flows beneath the River Aare at an angle of between 45 and 90° to the flow direction of the river.

Groundwater Observation Wells. All wells were lined with hard PVC tubes. In laboratory experiments, the PVC material was found neither to contaminate the samples nor to (ad)sorb the organic water constituents of interest. For technical details, see Hoehn et al. (18).

Sample Collection and Analytical Program. Between May 1979 and Apr 1980 (field site I) and between Nov 1980 and Oct 1981 (field site II), a program was conducted to determine temporal and spatial variations in the water composition of the rivers and of the groundwater in the observation wells shown in Figure 1. Samples were collected at approximately monthly intervals. In addition to the trace organic compounds, a variety of other chemical parameters were determined, mainly to characterize the river water and the groundwater, as well as to study the biogeochemical processes occurring during infiltration. Results of these measurements are discussed elsewhere (20).

The groundwater was sampled by using a small underwater plunger pump as described by Käss (21). The small discharge rate of this pump, typically between 0.5 and 1 L/min, allowed sampling of the groundwater without causing a measurable drawdown of the groundwater level. For sampling the upper layer of the groundwater, the pump was usually placed 0.5 m below the groundwater Table I. Ranges of Retardation Factors (Lower Limit-Upper Limit) Calculated for Some Hydrophobic Organic Compounds Detected in the River Glatt

octanol/water	calc	d retardation factors ($(R_f)^{a,b}$
partition coeff (log K _{ow})	river sediment ^c (~0.1 m)	aquifer close to river bed ^d (<5 m)	aquifer far from river bed ^e (>5 m)
1.971	2.7-8	1.2-4	1-1.2
2.17	3.4-11	1.2-6	1-1.2
2.29 ^f	4-13	1.3-7	1-1.3
2.69	7-23	1.6-12	1-1.6
2.88 ^h	9-31	1.8-16	1-1.8
3.15/	13-48	2.2-24	1-2.2
3.30^{i}	16-62	2.5-31	1-2.5
3.38f	18-70	2.7-35	1 - 2.7
3.72*	32-123	4-62	1-4
6.06 ^f	1500-6000	150-3000	~10-150
	octanol/water partition coeff (log K _{ow}) 1.97 ^f 2.17 ^g 2.69 ^f 2.88 ^h 3.15 ^f 3.30 ⁱ 3.38 ^f 3.72 ^k 6.06 ^f	octanol/water partition coeffcalc $(\log K_{ow})$ river sediment ^c $(\log K_{ow})$ $(\sim 0.1 \text{ m})$ 1.97^{f} $2.7-8$ 2.17^{g} $3.4-11$ 2.29^{f} $4-13$ 2.69^{f} $7-23$ 2.88^{h} $9-31$ 3.15^{f} $13-48$ 3.30^{i} $16-62$ 3.38^{f} $18-70$ 3.72^{k} $32-123$ 6.06^{f} $1500-6000$	calcd retardation factors (calcd retardation factors (aquifer close to (log K_{ow})1.97 ^f 2.7-81.2-42.17 ^{gf} 3.4-111.2-62.29 ^f 4-131.3-72.69 ^f 7-231.6-122.88 ^h 9-311.8-163.15 ^f 13-482.2-243.30 ⁱ 16-622.5-313.38 ^f 18-702.7-353.72 ^k 32-1234-626.06 ^f 1500-6000150-3000

^a Equation 3; $\rho = 2.5$ g cm⁻³, $\epsilon = 0.2$. ^b Ranges in values for f and f_{oc} are based on experimental data (see ref 5 and 18). ^c $f_{oc} = 0.01-0.02$, f = 0.2-0.4. ^d $f_{oc} = 0.001-0.01$, f = 0.2-0.4. ^e $f_{oc} < 0.001$, f < 0.2. ^f Reference 39. ^e Reference 40. ^h Reference 41. ⁱ Reference 26. ^k Reference 42.

table. The water was pumped through stainless steel tubing (5 mm i.d.) into 1-L glass bottles. The bottles were filled completely and closed without headspace. The samples were stored at 4 °C within 6 h of collection and analyzed within 48 h.

Analytical Methods. Volatile organic compounds were concentrated from the water samples by the closedloop gaseous stripping/adsorption/elution procedure developed by Grob (22, 23). The water samples (typically 1 L) were stripped for 90 min at 30 °C, and the organic compounds were trapped by adsorption on a filter of 1.5 mg of activated charcoal. The filter was then extracted with 20 μ L of carbon disulfide (CS₂) and the extract analyzed by high-resolution glass capillary gas chromatography and, when necessary, by gas chromatography/mass spectrometry. The gas chromatographic equipment and parameters used have been described elsewhere (24).

Purgeable organochlorine compounds (POCl) were determined by the method described by Zürcher (25). The compounds were purged with oxygen from 1-L water samples for 30 min at 60 °C. The purged compounds were continuously combusted at 950 °C, and the resultant chloride was trapped and quantified by ion chromatography.

Pentachlorophenol was determined by a method based on the procedure described by Renberg and Lindström (26). The lipophilic phenols were extracted by percolating 0.5 L of the acidified water sample (pH 2) through a SepPak C₁₈ cartridge (Waters Inc., Milford, MA). The adsorbed phenols were eluted with 1.5 mL of acetone and acetylated by adding 50 μ L of acetic anhydride. The excess anhydride was then destroyed by adding 3 mL of 0.1 M aqueous K₂CO₃, and the acetylated phenols were extracted with 2 mL of pentane. The pentane extract was analyzed by glass capillary gas chromatography using electron capture detection. 2,4,6-Tribromophenol was used as internal standard.

 α - and γ -hexachlorocyclohexane and hexachlorobenzene were determined by the method of Müller (27). For all three compounds, the detection limit of the method used was 0.02 ng/L.

Dissolved Organic Carbon (DOC). Fractionation of the DOC was carried out with the method described by Schneider et al. (28). The DOC is operationally separated into three fractions: a "hydrophilic" fraction, an "acidic" fraction, and a "hydrophobic" fraction (see Figure 2). The fractionation is based on the retention of the organic constituents on a column (50 mm \times 4 mm) packed with octadecylsilica (LiChrosorb RP 18) and connected to an on-line DOC detector (29). The "hydrophilic" fraction 1

Figure 2. DOC fractionation by the method of Schneider et al. (28).

is not retained on the column at pH 2 (peak 1 in Figure 2). The "acidic" fraction 2 is retained at pH 2 but is eluted from the column at pH 8 (peak 2 in Figure 2). This fraction includes all fulvic acid type materials (28). The "lipophilic" fraction cannot be eluted from the column with water at any pH. Its concentration is calculated by sub-tracting fraction 1 and 2 from the total DOC, which is determined by passing the adsorption column (see peak T in Figure 2).

Results and Discussion

Field Site I. The names and octanol/water partition coefficients of some of the hydrophobic organic compounds found in the River Glatt are given in Table I. A more comprehensive inventory of the trace organics detected in this river has been published previously (17). The concentrations of individual compounds were usually between 0.01 and $2 \mu g/L$.

Figure 3 depicts the temperature values, the concentrations of two representative volatile organic compounds, and the concentrations of oxygen, ammonium, and dissolved organic carbon determined over the course of 1 year in the River Glatt and in the wells G2 and G3, located 5 and 14 m, respectively, from the river. The average concentrations of some water constituents in the River Glatt and in wells G1-G4 are presented in Table II and Figure 4.

On the basis of the results of tracer experiments (18) and from the temperature data presented in Figure 3a, it can be assumed that the residence time of the water between the river and the two wells G2 and G3 was usually in the order of hours to a few days (well G2) and days to a few weeks (well G3). Figure 3b shows that for tetrachloroethylene, large fluctuations in concentration were observed

Figure 3. Field site I: monthly determined values for temperature, tetrachloroethylene, 1,4-dichlorobenzene, dissolved oxygen (detection limit = 1 mg of O_2/L), ammonium, and DOC, in the River Glatt and in observation wells G2 and G3.

Figure 4. Field site I: average concentrations of selected organic micropollutants in the River Glatt and in the upper layers of the groundwater at various distances from the river (DL = detection limit).

in the River Glatt and in both observation wells, indicating a rapid response in the groundwater to concentration changes in the river. From the very similar average concentrations found for this compound in the river and in the groundwater in the top layers of the aquifer at different distances to the river (see Figure 4), one can conclude that tetrachloroethylene was not significantly affected by any elimination processes. The effect of the sorptive and dispersive processes, i.e., the attenuation of concentration

(L) tetrachlorocthylene, $\mu g/L$ $1,4$ -dichlorobenzene, $\mu g/L$ $1,3$ -dimethylbenzene, $\mu g/L$ pentachlorophenol, $\mu g/L$ (L) $\mu g/L$ $\mu g/L$ $\mu g/L$ $\mu g/L$ $\mu g/L$ $\mu g/L$ (7) 0.60 ± 0.70 $\{16\}$ 0.23 ± 0.25 $\{16\}$ 0.08 ± 0.005 $\{4\}$ (7) 0.60 ± 0.57 $\{16\}$ 0.17 ± 0.07 $\{9\}$ <0.02 $\{9\}$ 0.08 ± 0.005 $\{4\}$ (7) 0.63 ± 0.47 $\{16\}$ 0.03 ± 0.02 $\{16\}$ <0.02 $\{9\}$ 0.03 ± 0.02 $\{4\}$ (7) 0.55 ± 0.14 $\{9\}$ <0.02 $\{16\}$ <0.02 $\{9\}$ <0.02 $\{4\}$ (7) 0.25 ± 0.09 $\{12\}$ <0.005 $\{9\}$ <0.02 $\{16\}$ <0.02 $\{4\}$ (7) 0.25 ± 0.09 $\{12\}$ <0.015 $\{12\}$ <0.02 $\{12\}$ <0.02 $\{12\}$ (7) 0.24 ± 0.10 $\{12\}$ <0.005 $\{12\}$ <0.02 $\{12\}$ <0.02 $\{12\}$ (7) 0.20 ± 0.008 $\{12\}$ <0.005 $\{12\}$ <0.002 $\{12\}$ <0.002 $\{12\}$ (7) 0.20 ± 0.008 $\{12\}$ <0.005 $\{12\}$ <0.005 $\{12\}$ <0.005 $\{12\}$ (7) 0.20 ± 0.008 $\{12\}$ <0.005 $\{12\}$ <0.005 $\{12\}$ <0.005 $\{12\}$ (7) 0.20 ± 0.008 $\{12\}$ <0.005 $\{12\}$ <0.005 $\{12\}$ <0.005 $\{12\}$ (7) 0.008 </th <th>fre</th>	fre
$ \begin{bmatrix} 7\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\ $	P(DOC, mg/L μg c
$ \begin{cases} 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 0.63 \pm 0.57 \\ 16 \\ 0.63 \pm 0.57 \\ 16 \\ 0.05 \pm 0.04 \\ 16 \\ 0.03 \pm 0.02 \\ 16 \\ 0.03 \pm 0.02 \\ 16 \\ 0.03 \pm 0.02 \\ 16 \\ 0.02 \pm 0.04 \\ 16 \\ 0.05 \pm 0.03 \\ 12 \\ 0.02 \pm 0.02 \\ 12 \\ 0.05 \pm 0.03 \\ 12 \\ 0.05 \pm 0.03 \\ 12 \\ 0.005 \\ 0.005 \\ 12 \\ 0.005 \\ 0.005 \\ 12 \\ 0.005 \\ $	3.9 ± 0.7 {16} ⊈ 2.0 ± 4
$ \begin{cases} 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 0.55 \pm 0.14 \\ 0.55 \pm 0.14 \\ 9 \\ 0.55 \pm 0.14 \\ 9 \\ 0.025 \pm 0.09 \\ 112 \\ 0.025 \pm 0.09 \\ 112 \\ 0.005 \\ 0.005 \\ 112 \\ 0.005 \\ 112 \\ 0.005 \\ 112 \\ 0.005 \\ 0.005 \\ 112 \\ 0.005 \\ 0.005 \\ 112 \\ 0.005 \\ 0.005 \\ 112 \\ 0.005 \\ 0.005 \\ 112 \\ 0.005 \\ 0.005 \\ 0.005 \\ 112 \\ 0.005 $	3.0 ± 0.7 [9] 2.3 ± 1
$ \begin{cases} 7 \\ 7 \\ 7 \\ 0.55 \pm 0.14 \\ 9 \\ 0.55 \pm 0.14 \\ 9 \\ 0.55 \pm 0.14 \\ 9 \\ 0.024 \pm 0.12 \\ 12 \\ 0.025 \pm 0.09 \\ 12 \\ 0.001 \\ 12 \\ 0.005 \\ 12 \\ 0.005 \\ 12 \\ 0.005 \\ 12 \\ 0.005 \\ 12 \\ 0.005 \\ 12 \\ 0.005 \\ 12 \\ 0.005 \\ 12 \\ 0.005 \\ 12 \\ 0.005 \\ 12 \\ 0.005 \\ 12 \\ 0.005 \\ 12 \\ 0.002 \\ 12 \\ 0.005 \\ 12 \\ 0.002 \\ 12 \\ 0.005 \\ 12 \\ 0.002 \\ 12 \\ 0.005 \\ 12 \\ 0.002 \\ 12 \\ 0.005 \\ 12 \\ 0.002 \\ 12 \\ 0.002 \\ 12 \\ 0.002 \\ 12 \\ 0.002 \\ 12 \\ 0.002 \\ 12 \\ 0.002 \\ 12 \\ 0.002 \\ 12 \\ 0.002 \\ 12 \\ 0.002 \\ 12 \\ 0.002 \\ 12 \\ 0.005 \\ 12 \\ 0 \\ 0.005 \\ 12 \\ 0 \\ 0.005 \\ 12 \\ 0 \\ 0.005 \\ 12 \\ 0 \\ 0.005 \\ 12 \\ 0 \\ 0.005 \\ 12 \\ 0 \\ 0.005 \\ 12 \\ 0 \\ 0.005 \\ 0 \\ 0.005 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	2.8 ± 0.6 {16} 2.0 ± 1
(7) 0.55 ± 0.14 {9}< 0.005 {9}< 0.02 {9}< 0.02 {4}(7) 0.24 ± 0.12 {12} 0.035 ± 0.015 {12} 0.05 ± 0.03 {12}nd(7) 0.25 ± 0.09 {12} < 0.0115 {12} $< 0.025 \pm 0.03$ {12}nd(7) 0.24 ± 0.10 {12} < 0.005 {12} < 0.022 {12}nd(7) 0.20 ± 0.08 {12} < 0.005 {12} < 0.025 {12}nd(7) 0.20 ± 0.08 {12} < 0.005 {12} < 0.025 {12}nd(7) 0.20 ± 0.08 {12} < 0.005 {12} < 0.022 {12}nd(7) 0.20 ± 0.07 {12} < 0.005 {12} < 0.022 {12}ndneter), detection limit 0.1 µg of Cl/L. c Detection limit 0.01 µg/L. d Detection limit 0.005 µg/L.	$2.1 \pm 0.4 \{16\}$ 1.9 ± 0
$ \begin{bmatrix} 7 \\ 7 \\ 0.25 \pm 0.09 \\ 12 \\ 0.26 \pm 0.09 \\ 12 \\ 0.20 \pm 0.00 \\ 12 \\ 0.20 \pm 0.00 \\ 12 \\ 0.20 \pm 0.00 \\ 12 \\ 0.005 \pm 0.005 \\ 12 \\ 0.005 \\ 0.0$	$1.5 \pm 0.4 \{9\}$ $1.8 \pm 0.$
$7 \\ 7 \\ 0.25 \pm 0.09 \\ 12 \\ 7 \\ 0.20 \pm 0.08 \\ 12 \\ 7 \\ 0.20 \pm 0.07 \\ 12 \\ 0.20 \pm 0.07 \\ 12 \\ 0.005 \\ 0.005 \\ 0.$	0 7 7 0 2 1 0 1 6 7 0 0
$ \begin{cases} 7 \\ 7 \\ 7 \\ 0.20 \pm 0.08 \\ 12 \\ 0.20 \pm 0.07 \\ 12 \\ 0.20 \pm 0.07 \\ 12 \\ 0.20 \pm 0.07 \\ 12 \\ 0.005 \\ 12 \\ 0.005 \\ 12 \\ 0.005 \\ 12 \\ 0.005 \\ 12 \\ 0.005 \\ 12 \\ 0.005 \\ $	2.3 ± 0.0 [12] 1.0 ± 0.4 [12] 0.9 ± 0.6
$ \begin{cases} 7 \\ 7 \\ 0.20 \pm 0.08 \ \{12\} \\ 0.20 \pm 0.07 \ \{12\} \\ < 0.005 \ \{12\} \\ < 0.005 \ \{12\} \\ < 0.005 \ \{12\} \\ < 0.002 \ \{12\} \\ < 0.002 \ \{12\} \\ = 0.002 \ \{12\} \\ nd \\ n$	$0.8 \pm 0.4 \{12\}$ $0.8 \pm 0.$
$ \{7\} \qquad 0.20 \pm 0.07 \{12\} \qquad <0.005 \{12\} \qquad <0.02 \{12\} \qquad <0.02 \{12\} \qquad nd $ meter), detection limit 0.1 µg of Cl/L. ^c Detection limit 0.01 µg/L. ^d Detection limit 0.005 µg/L.	0.7 ± 0.4 12 0.7 ± 0.3
neter), detection limit 0.1 μ g of Cl/L. ^c Detection limit 0.01 μ g/L. ^d Detection limit 0.005 μ g/L.	$0.7 \pm 0.3 \{12\}$ $0.7 \pm 0.$
	hlorine compounds (group pare

fluctuations (see, e.g., ref 8), are reflected in the decreasing standard deviations observed with increasing flow distance (see Table II). Very similar results were found for chloroform, trichloroethylene (see Figure 4), and 1,1,1-trichloroethane.

The strong response in the groundwater to concentration changes in tetrachloroethylene in the River Glatt (Figure 3b) suggets that during infiltration this compound was not strongly retained in the ground. This finding is in agreement with the rather small average retardation factor predicted for tetrachloroethylene from eq 3 for this field site (see Table I and footnotes in Table I). It should be noted that for the aquifer in the near field of the River Glatt (<5 m; see Table I), the average retardation factors for the various compounds must be assumed to be closer to the indicated lower limits, since a sharp drop in the organic carbon content of the aquifer material occurs within a few meters distance from the river (18). Thus, at this field site, rapid transport in the ground can be expected for persistent organic compounds exhibiting octanol/water partition coefficients of smaller than about 5000 (see Table I). Unfortunately, because of the short residence time of the water between the river and the observation wells G2 and G3, no quantitative information on the actual retardation of the various compounds can be obtained from our data, since samples were taken only at monthly intervals.

Among the volatile organic compounds that were always present in the River Glatt but were almost never detected in any of the groundwater observation wells, were the aromatic hydrocarbons including toluene, various C_{2} - and C_3 -benzene isomers (e.g., 1,3-dimethylbenzene; see Table II and Figure 4), and naphthalene. Since under the conditions typical for the groundwater environment these aromatic hydrocarbons, as well as all other volatile organic compounds listed in Table I (e.g., 1,4-dichlorobenzene), do not undergo chemical reactions at significant rates, and since these compounds are also only weakly sorbed, any observed "elimination" during infiltration must be attributed to biological transformation and/or mineralization. Parts d-f of Figure 3 indicate that the major biologically mediated processes, i.e., aerobic respiration and nitrification, occurred predominantly within the first few meters of infiltration. Therefore, it could be expected that the biological "elimination" of xenobiotic compounds would also take place primarly in the near field of the river.

Although the volatile aromatic hydrocarbons are biodegradable under simulated groundwater conditions (30), it is interesting to note that they were always eliminated between the river and well G1. Thus, considering the short residence time of the water between the river and this well and the small retardation factors of the compounds, the biological processes responsible for their removal were quite efficient, even at temperatures as low as 5 °C.

The observed significant decrease in concentration of 1,4-dichlorobenzene with increasing distance to the river (see Figures 3b and 4, Table II) indicates that this compound was also affected by biological processes. However, compared with the aromatic hydrocarbons, 1,4-dichlorobenzene was "eliminated" at a much slower rate, such that it was still detected in well G3. In addition, in July and Aug 1979 (Figure 3c) and during several short-term investigations in July and Aug 1980 and 1981 (31), no decrease in the concentration of 1,4-dichlorobenzene was found between the River Glatt and well G2. These findings suggest that, considering the steep concentration gradients usually detected between the river and G2, 1,4-dichlorobenzene was not significantly eliminated during parts of the summer. Since denitrification and manganese reduction were also observed during this time of the year (20, 31), the persistence of 1,4-dichlorobenzene may be explained by the anoxic conditions that prevailed in parts of the aquifer near the river. This hypothesis is corroborated by other field observations (32) and by the results of laboratory experiments that suggest that halogenated benzenes are not biotransformed under anaerobic conditions (33). Whether, under aerobic conditions, 1,4-dichlorobenzene is completely mineralized or only transformed to products not detected by the analytical techniques used (e.g., to dichlorophenol and dichlorocatechol; see ref 34) is presently under investigation.

The results of the measurements of the group parameter "purgeable organochlorine compounds" (POCI; Table II, and Figure 4), which includes substances such as tetrachloroethylene and 1,4-dichlorobenzene, showed the same picture as the results of the single-component measurements: (i) the major "elimination" of volatile organochlorine compounds occurred predominantly within the first few meters of infiltration; (ii) for compounds not affected by any transformation processes, similar average concentrations were found throughout the upper layers of the aquifer.

From the few data obtained for pentachlorophenol (Table II), no final conclusions can be drawn as to whether or not this compound was "eliminated" during infiltration. At a pH of between 7.4 and 8, pentachlorophenol is present predominantly as phenolate anion ($pK_a = 4.75$). Thus, retardation factors of smaller than 50 in the near field of the river and smaller than 10 in the actual aquifer would be expected for this compound (35). The fact that the concentration of pentachlorophenol in well G3 was always below the detection limit could be an indication that this compound underwent some chemical and/or biological transformation reactions.

To date, only two sets of measurements have been conducted for α - and γ -hexachlorocyclohexane and for the highly lipophilic compound hexachlorobenzene. Although detected at very low concentrations, these compounds were found in the River Glatt and in all of the observation wells. The concentrations determined for α - and γ -hexachlorocyclohexane were 4 ng/L in the river, about 2 ng/L in the near field of the river (G2, G3), and less than 1 ng/L in G4. For hexachlorobenzene, very similar concentrations (between 0.1 and 0.2 ng/L) were found in the River Glatt and in all observation wells including G4. These findings demonstrate that, especially in aquifers composed of materials of low organic carbon content, even highly lipophilic compounds may be transported over long distances.

Field Site II. Compared to the River Glatt, the River Aare is a large river exhibiting much smaller short-term fluctuations in water composition (31). Also, in contrast to the field site in the lower Glatt Valley, the residence time of the water in the ground between the river and the observation wells (see Figure 1b) is generally much longer (in the order of weeks). This is evident from the temperature data shown in Figure 5a. Figure 5a also shows that very similar residence times can be assumed between the river and the two wells A1 and A3. Since a detailed investigation of the flow directions and velocities of the groundwater in the near field of the River Aare has not been conducted, it is not possible to give exact values for linear flow distances of the infiltrating water between the river and the wells. However, the results of the year-round study at this field site (see Figure 5 and Table II) can be qualitatively compared to those obtained in the lower Glatt Valley.

Figure 5. Field site II: monthly determined values for temperature, tetrachloroethylene, 1,4-dichlorobenzene, dissolved oxygen (detection limit \approx 1 mg of O₂/L), ammonium, and DOC, in the River Aare and In observation wells A1 and A3.

The data presented in Figure 5d-e show that the biologically mediated processes respiration and nitrification always occurred between the river and the wells A1 and A3. Reducing conditions were never observed in the groundwater at this field site. With respect to the organic micropollutants, all compounds exhibited behaviors similar to those observed at the Glatt site; that is, no elimination of tri- and tetrachloroethylene during infiltration, and degradation and/or transformation of the alkylbenzenes and 1,4-dichlorobenzene (see Figure 5b,c; Table II). It should be noted that the slightly lower average concentrations of tetrachloroethylene in A3 and A4 (see Table II) may be attributed to dilution of the infiltrated water with less polluted groundwater from other sources.

From the data shown in Figure 5b, it is possible to determine an average retardation factor for tetrachloroethylene. Figure 5b shows that significantly higher concentrations of this compound were observed in the river between Dec 1980 and Mar 1981. The response in the groundwater (i.e., in wells A1 and A3) to the high concentrations in the river was observed about 4 months later (τ_{tetra}) . Thus, when an average residence time (τ_{w}) of the water between the River Aare and A1 and A3 of approximately 3 weeks to 1 month is assumed (see Figure 5a), an average retardation factor $(\tau_{\text{tetra}}/\tau_w)$ of about 5 is obtained. This value is rather low when compared to the retardation factors determined by Roberts et al. (11) for compounds of similar lipophilicity in an aquifer in the Palo Alto Baylands (e.g., $R_f = 33$ for chlorobenzene). The result is, however, not surprising considering the much lower organic Table III. Average Concentrations of Total DOC and of the Three DOC Fractions Determined by the Method of Schneider et al. (28)

		disso	lved org mg o	anic carl of C/L	bon, ^ø
sampling location ^a	dist from river, m	total	frac- tion 1°	frac- tion 2 ^d	frac- tion 3 ^e
River Glatt	0	4.0	1.5	1.0	1.5
well G1	2.5	2.7	1.0	0.9	0.8
well G2	5	2.6	1.0	0.9	0.7
well G3	14	2.0	0.8	0.8	0.4
well G4	120	1.5	0.9	0.5	0.1

^a See Figure 1. ^b Average values from four measurements conducted between Sept 1979 and Dec 1979. ^c Hydrophilic at pH 2. ^d "Acidic" fraction: hydrophobic at pH 2, hydrophilic at pH 8. ^e Hydrophobic at pH 2 and pH 8.

carbon content of the aquifer materials at this field site as compared to the Palo Alto site, and it is consistent with predictions from model calculations for the very similar type of aquifer at the study site in the Glatt Valley (see Table I).

Behavior of Dissolved Organic Carbon (DOC) during Infiltration. Although this study focused on the behavior of individual organic micropollutants, a few remarks may be made on compositional changes in the bulk DOC during infiltration. Table III contains the average values for DOC and the three DOC fractions determined in the River Glatt and in wells G1-G4. During the first few meters of infiltration, the concentrations of the hydrophilic (fraction 1) and the hydrophobic fraction (fraction 3) of the DOC were significantly reduced. These reductions may be primarly attributed to microbial mineralization (20). The "acidic" fraction 2, which includes all fulvic acid type materials (28), was not significantly affected by these processes. With increasing distance from the river (G1 \rightarrow G4), the decrease in concentration of the "acidic" fraction might have been caused by the formation of insoluble complexes with metal ions (e.g., Ca^{2+}) and/or by adsorption onto clay minerals (36-38). Between G1 and G4, no significant changes in concentrations were observed in the hydrophilic fraction, whereas the lipophilic fraction was, to a great extent, removed and/or transformed into compounds appearing in one of the other fractions. It is not possible to identify the processes responsible for the removal of the lipophilic fraction of DOC from the available data.

Long-Range Effects of River Water Infiltration. Figure 6 shows the vertical concentration profiles of oxygen, DOC, and two persistent volatile organic compounds determined in well G15, which provides a representative picture of the water composition at various depths in the aquifer in the lower Glatt Valley (20). From the data in Figure 6 and from the results of the measurements of other parameters (20), it can be assumed that the upper half of the aquifer contained water that had predominantly been infiltrated from the River Glatt, whereas the water in the bottom half of the aquifer originated mostly from less polluted sources.

It is interesting to note that throughout the upper half of the aquifer, the concentrations of tri- and tetrachloroethylene were very similar to the average concentrations detected in the River Glatt (see Figure 4). Thus, when considering that the deeper layers of the upper half of the aquifer contained water that had been infiltrated from the river at distances of up to several kilometers from this well

Figure 6. Field site I: vertical concentration profiles of selected parameters in well G15: (---) = dissolved oxygen (O_2) ; (----) dissolved organic carbon (DOC); (---) trichloroethylene (tri); (--) tetrachloroethylene (tetra).

(18), these findings again clearly demonstrate the great mobility of such persistent compounds in these types of aquifers and hence their potential to contaminate large groundwater areas.

Summary and Conclusions

The transport and fate of organic pollutants, including various volatile organic compounds, during infiltration of river water to groundwater has been studied in year-round investigations at two different field sites in Switzerland. The most important results and conclusions of this field investigation follow.

(1) As predicted by model calculations, volatile organic compounds move rapidly with infiltrating water from rivers to groundwaters. If a river is permanently charged with such chemicals, large groundwater areas may be contaminated, unless the compounds are eliminated during infiltration by biological processes.

(2) Among the volatile organic compounds for which no evidence of biological transformation under any conditions was found were chloroform, 1,1,1-trichloroethane, trichloroethylene, and tetrachloroethylene. With respect to such persistent chemicals, bank filtration is ineffective as a first step in the treatment of river water for water supplies.

(3) The compounds for which biotransformation was observed (e.g., all alkylated C_1-C_4 -benzenes, naphthalene, the methylnaphthalenes, and 1,4-dichlorobenzene) were "eliminated" during infiltration to concentrations below their detection limits. Alkylated benzenes were always "eliminated" within the first few meters of infiltration, even at temperatures below 5 °C. The biotransformation of 1,4-dichlorobenzene occurred at a slower rate.

(4) There is strong evidence that certain organic micropollutants (e.g., 1,4-dichlorobenzene) were only biotransformed under aerobic conditions. The elimination of such compounds may therefore be hindered if anaerobic conditions prevail in the aquifer in the near field of a river.

(5) The retention of even highly lipophilic compounds such as hexachlorobenzene is rather small in aquifers composed of materials of low organic carbon content (i.e., $f_{\infty} < 0.001$).

The results of this study show that long-term field measurements are useful (i) to gain relevant insights into the behavior of organic micropollutants in a natural river water-groundwater infiltration system and (ii) to check the general validity of conclusions drawn from laboratory investigations.

Acknowledgments

We thank K. and G. Grob for supplying the glass capillary columns and R. Bromund, K. Grob, C. Jaques, H. U. Laubscher, C. Maeder, E. Molnar, C. Schaffner, Z. Vasilic, and F. Zürcher for experimental assistance. The determinations of α - and γ -hexachlorocyclohexane and hexachlorobenzene were kindly conducted by M. Müller, Swiss Federal Research Station, 8820 Wādenswil, Switzerland. We are indebted to P. Colberg, S. Emerson, W. Haag, and J. Westall for reviewing the manuscript. Valuable comments on this paper were made by W. Gujer, J. Hoigné, and A. J. B. Zehnder. We also thank W. Stumm and H. R. Wasmer for their continuous interest in this work.

Registry No. 1,4-Dichlorobenzene, 106-46-7; toluene, 108-88-3; 1,3-dimethylbenzene, 108-38-3; naphthalene, 91-20-3; hexachlorobenzene, 118-74-1; chloroform, 67-66-3; 1,1,1-trichloroethane, 71-55-6; trichloroethylene, 79-01-6; tetrachloroethylene, 127-18-4.

Literature Cited

- Federal Department of the Interior, in "Water Supply and Bank Filtration"; Bonn, Federal Republic of Germany, 1975.
 Trick F. Con Water March 1977, 57 202
- (2) Trueb, E. Gas, Wasser, Abwasser 1977, 57, 20.
- (3) Sontheimer, H. J. Am. Water Works Assoc. 1980, 72, 386.
- (4) Piet, G. J.; Zoeteman, B. C. J. J. Am. Water Works Assoc. 1980, 72, 400.
- (5) Schwarzenbach, R. P.; Westall, J. Environ. Sci. Technol. 1981, 15, 1360.
- (6) Bouwer, E. J.; Rittmann, B. E.; McCarty, P. L. Environ. Sci. Technol. 1981, 15, 596.
- (7) Rao, P. S. C.; Davidson, J. M. In "Environmental Impact of Nonpoint Source Pollution"; Overcash, M. R., Davidson, J. M., Eds.; Ann Arbor Science: Ann Arbor, MI, 1980; p 23.
- (8) Roberts, P. V.; Valocchi, A. J. Sci. Total Environ. 1981, 21, 161.
- (9) Zoeteman, B. C. J.; Harmsen, K.; Linders, J. B. H. J.; Morra, C. F. H.; Slooff, W. Chemosphere 1980, 10, 833.
- (10) McCarty, P. L.; Reinhard, M.; Rittmann, B. E. Environ. Sci. Technol. 1981, 15, 40.
- (11) Roberts, P. V.; Schreiner, J.; Hopkins, G. D. Water Res. 1982, 16, 1025.
- (12) Karickhoff, S. W.; Brown, D. S.; Scott, T. A. Water Res. 1979, 13, 241.
- (13) Briggs, G. G. J. Agric. Food Chem. 1981, 29, 1050.
- (14) Gujer, W.; Krejci, V.; Schwarzenbach, R. P.; Zobrist, J. Gas, Wasser, Abwasser 1982, 62, 298.
- (15) Van Genuchten, M. T.; Davidson, J. M.; Wierenga, P. J. Soil Sci. Soc. Am. Proc. 1974, 38, 29.
- (16) Zobrist, J.; Davis, J. S.; Hegi, H. R. Gas, Wasser, Abwasser 1976, 56, 97.
- (17) Zürcher, F.; Giger, W. Vom Wasser 1976, 47, 37.
- (18) Hoehn, E.; Zobrist, J.; Schwarzenbach, R. P., submitted for publication in *Gas, Wasser, Abwasser*.
- (19) Jäckli, H.; Ryf, W. Wasser, Energie, Luft 1978, 3, 53.
- (20) Zobrist, J.; Hoehn, E.; Schwarzenbach, R. P., to be submitted for publication in Water Resour. Res.
- (21) Käss, W. GWF, Gas- Wasserfach: Wasser/Abwasser 1978, 119, 81.
- (22) Grob, K. J. Chromatogr. 1973, 84, 255.
- (23) Grob, K.; Zürcher, F. J. Chromatogr. 1976, 117, 285.
- (24) Schwarzenbach, R. P.; Molnar-Kubica, E.; Giger, W.; Wakeham, S. G. Environ. Sci. Technol. 1979, 13, 1367.
- (25) Zürcher, F. In "Analysis of Organic Micropollutants in Water"; Bjørseth, A., Angeletti, G., Eds.; D. Reidel: Dordrecht, Holland, 1982; p 272.

- (26) Renberg, L.; Lindström, K. J. Chromatogr. 1981, 214, 327.
- (27) Müller, M. D. Chimia 1982, 36, 437.
- (28) Schneider, J. K.; Gloor, R.; Giger, W.; Schwarzenbach, R. P., to be submitted for publication in Water Res.
- (29) Gloor, R.; Leidner, H. Anal. Chem. 1979, 51, 645.
- (30) Kappeler, E.; Wuhrmann, K. Water Res. 1978, 12, 327.
 (31) Schwarzenbach, R. P.; Giger, W.; Hoehn, E.; Schneider, J.
- K., EAWAG, CH-8600 Dübendorf, unpublished data.
- (32) Giger, W.; Schaffner, C. Stud. Environ. Sci. 1981, 17, 517.
- (33) Marinucci, A. C.; Bartha, R. Appl. Environ. Microbiol. 1979, 38, 811.
- (34) Ballschmitter, K.; Scholz, Ch. Chemosphere 1980, 9, 457.
- (35) Schellenberg, K. H.; Schwarzenbach, R. P., to be submitted for publication in *Environ. Sci. Technol.*
- (36) Gjessing, E. T. In "Physical and Chemical Characteristics of Aquatic Humus"; Ann Arbor Science: Ann Arbor, MI, 1976.

- (37) Matthess, G.; Pekdeger, A. GWF, Gas- Wasserfach: Wasser/Abwasser 1980, 121, 214.
- (38) Davis, J. In "Contaminants and Sediments": Baker, R. A., Ed.; Ann Arbor Science: Ann Arbor, MI 1980; p 279.
- (39) Hansch, C.; Leo, A. In "Substituent Constants for Correlation Analysis in Chemistry and Biology"; Elsevier: Amsterdam, 1979.
- (40) Tute, M. S. Adv. Drug. Res. 1971, 6, 1.
- (41) Mackay, D.; Bobra, A.; Shin, W. Y.; Yalkowsky, S. H. Chemosphere 1980, 9, 701.
- (42) Kurihara, N.; Uchida, M.; Fujita, T.; Nakajima, M. Pestic. Biochem. Physiol. 1973, 2, 383.

Received for review November 19, 1982. Accepted March 3, 1983. This work was funded by the Swiss National Science Foundation (Nationales Forschungsprogramm Wasserhaushalt).

OH Radical Rate Constants and Photolysis Rates of α -Dicarbonyls

Christopher N. Plum, Eugenio Sanhueza,[†] Roger Atkinson, William P. L. Carter,^{*} and James N. Pitts, Jr.

Statewide Air Pollution Research Center, University of California, Riverside, California 92521

Photolysis rates of glyoxal, methylglyoxal, and biacetyl and OH radical reaction rate constants for glyoxal and methylglyoxal have been determined at 298 \pm 2 K in an environmental chamber, by using the photolysis of CH₃ONO-air mixtures to generate OH radicals. The OH radical rate constants obtained were $(1.15 \pm 0.04) \times 10^{-11}$ and $(1.73 \pm 0.13) \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ for glyoxal and methylglyoxal, respectively. The photolysis rates of glyoxal, methylglyoxal, and biacetyl increased throughout this series, and average quantum yields for the wavelength region \geq 290 nm of 0.029 ± 0.018, 0.107 ± 0.030, and 0.158 \pm 0.024 were derived for glyoxal, methylglyoxal, and biacetyl, respectively. In addition, upper limits to the rate constants for the reaction of O_3 with glyoxal and methylglyoxal of $<3 \times 10^{-21}$ and $<6 \times 10^{-21}$ cm³ molecule⁻¹ s⁻¹, respectively, were obtained at 298 \pm 2 K. These data will serve as needed input to chemical kinetic computer modeling studies of the aromatic hydrocarbons.

Introduction

The α -dicarbonyls glyoxal, methylglyoxal, and biacetyl are important ring-cleavage products in the NO_x-air photooxidations of the aromatic hydrocarbons (1-6), and the photolysis of methylglyoxal to radical species is postulated to lead to the observed photochemical reactivity of toluene and the higher aromatics (4, 6). In addition, methylglyoxal is postulated to be an intermediate product in the NO_x-air photooxidation of the naturally emitted hydrocarbon isoprene (7, 8). Under atmospheric conditions, these α -dicarbonyls, besides photolyzing, may also react with OH radicals or with O3. On the basis of the data for methylglyoxal (9, 10), their reactions with O_3 are expected to be negligible, as is the reaction of OH radicals with biacetyl (2). However, both glyoxal and methylglyoxal are expected to react rapidly with OH radicals with rate constants of $\sim (1-2) \times 10^{-11}$ cm³ molecule⁻¹ s⁻¹ at 298 K (4), although the only OH radical rate constant available for glyoxal or methylglyoxal is a recent value of (7.1 ± 1.6) $\times 10^{-12}$ cm³ molecule⁻¹ s⁻¹ at 297 K for methylglyoxal (11). In addition, the rates and products of the photolysis of these α -dicarbonyls under atmospheric conditions are not well-known (4, 6, 12), and hence there is clearly a need to investigate the atmospheric loss processes of these α -dicarbonyls in more detail.

In this work, rate constants for the reactions of OH radicals with glyoxal have been determined at 298 ± 2 K, relative to the rate constant for the reaction of OH radicals with cyclohexane, and the photolysis rates of glyoxal, methylglyoxal, and biacetyl have been determined in 1 atm of air in an environmental chamber. In addition, upper limits to the rate constants for the reaction of O₃ with glyoxal and methylglyoxal have been determined at 298 \pm 2 K.

Experimental Section

Photolysis and OH Radical Reactions. The technique for the determination of relative OH radical rate constants and of photolysis rates was essentially identical with those described previously (13, 14). Hydroxyl radicals were generated by the photolysis of methyl nitrite in air at ≥ 290 nm, at part-per-million concentrations:

$$CH_{3}ONO + h\nu \rightarrow CH_{3}O + NO$$
$$CH_{3}O + O_{2} \rightarrow HCHO + HO_{2}$$
$$HO_{2} + NO \rightarrow OH + NO_{2}$$

In order to minimize the formation of O_3 during these irradiations, NO was included in the reaction mixtures. In the presence of an α -dicarbonyl and a reference organic (cyclohexane), the OH radicals can, besides reacting with CH₃ONO, NO, NO₂, and the organic reaction products, react with these organics:

 $OH + dicarbonyls \rightarrow products$ (1)

$$OH + cyclohexane \rightarrow products$$
 (2)

Additionally, the α -dicarbonyls also photolyze:

dicarbonyl +
$$h\nu \rightarrow$$
 products (3)

Under the experimental conditions employed, reactions of the dicarbonyls and cyclohexane with $O(^{3}P)$ atoms and O_{3} were negligible, and since dilution due to sampling was also negligible (<0.2%), then

[†]Permanent address: IVIC Apartado 1827, Caracas 1010A, Venezuela.

Comon O maday Goo Com D Operator Monthly Report Not available: 1985 Feb + March

	7								550				374			120		
	AGE	ا ب	8										23					
цр	00	N OF OI	OTHER										32					
.15 E	1488	SITIO	TSP						PER				PER			PER		
ORM C-1	:soc. 46	DISPOS	TO TRANS.															
¥.	BUS. AS		BEG INV	<u></u>				<u> </u>	502	-			394			92		
			8						>				2>			2>		
		I OF GAS	OTHER						83				67 242			37 1		
		ITION	ГSР						EPG				5 L			EPG		
	.02	DISPOS	SOLD						8818			<u> </u>	5263			5320		
۲ ۲	, 741	<u>a</u> 1	x O D				31	11			31	59			E	<u></u>	31	
- О	, q	<u> </u>	ED A				17	84	10		73	66	72	_	58	58	31	ស្ត
22 22	TULSA		PRCDUC MCF				46	42	89		36	10	55		53	53	10	18
THLY	6 04 1	орисер	WATER BBLS.				Ŋ	·····-	LU L		15	44	5 C		40	40	ດ	M
	NUAKI ,	tquids PF	OIL BBLS.				39	Ø	48	.	12		12		53	58	<u>م</u>	~
го R 'S	i,	TOTAL LI	MOTTA DIL															
RAJ	16:	z	RES											_				
ш Д	30X 5	ECTIO	JME													.		
o	P O I	INI	גסרו															
		:	<u>x</u> υ				<u> </u>	<u>в</u>			<u>۳</u>	<u> </u>			L .		<u> </u>	<u> </u>
TATE OF NEW MEXICO	AMOCO PRODUCTION COMPANY	POOL NAME AND LEASE NAME	STATE LAND LEASE OR FEDERAL LEASE NO WELL NDUNIT LETTER-SECTWPRNG. (NEW MEXICO DATA ENTRY CODES)	*** GAS SECTION ***	BASIN-DAKDTA-GAS	MCCOY GAS COM /D/	001 H 28 30N 12W (018270 00000 71599 38455 00 DK 3	E001 E 28 30N 12W (018270 00000 71599 38455 00 DK 3	LEASE TOTAL	MCDANIEL GAS COM /B/	001 H 26 29N 10W (018270 00000 71599 38460 00 DK 3	E001 F 26 29N 10W (018270 00000 71599 38460 00 DK 3	LEASE TOTAL	MCGRADY GAS COM /C/	001 F 14 27N 12W (018270 00000 71599 67365 00 DK 3	LEASE TOTAL	MCGRADY, H B, /A/ NM- 35634 001 L 14 27N 12W (018270 00000 71599 38470 00 DK 3	002 E 23 27N 12W (018270 00000 71599 3847 0 00 DK 3
S.	PERATOR:		AMOCO ID			29055201	93925701	84236501		29057801	93669501	97597001		15272701	84227201		29055301 93453201	93453301

	₽	٠	٠	•	•	•	•	•	•	•	Ë		\$ (•	•	•	f	•	ŧ	¢	•	
	1376353	1656015 28371	410695	1932443 15492	254985 3646	1039862 14016	19242	903864 21762	48593	2529185 32468	399525 5238	1628366 12947	110533	2066188 14444	132519 660	237318 992	1441637 9778	698739 5874	2176042 16844	1989297 46065	291570 6987	
	27254 27254	47691	74718 689 689	53860 382 382	61090 901 29	21818 169	19242	7413 46	48593 677 8	44488 582	47506 557 106	42544 316	72904 452 153	37092 208	24811 24811 171 83	52415 220 152	18355 110 22	19267 148 32	66431 450 32	37371 583	73190 1371 12	
	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	92 92	663	3366 48 4	50 8 9 9 9	5456 83 83	3005	248		~	4025 1 2	5005 26	5 485 695	2398 10	2478 2478 18	61 85 12	1288 23	2006 17 3	5390 33	5521 143	12350 202 1	
	206 1 306 2 306 2	3774	3916 430 430	5057 20	5892 68 3	1682 1	1218	2 0	4	2067 26	2760	4169 30	4309 6	2174	2226 2226 10	4971 18 15	971 2	1412 21 3	5587 43 2	8727 176	13511 279 1	
	0117 0117	3427	4674 59	6372 38 38	689 96 564	1103	4311 88	50 -		2976	855 39	5462	4407 6	2935 20	2057 44	3936 15 15	1182	1562	5708 23	229	322 100 1	
	2051 2051	4856 1	10717 106	3660 35 35	6876 84 44	579	161 1		-44	5909 38	6290 77 8	3941 1495	6345 26 10	2765	1736 1736 8	4217 9 10	1148 14	1389 239 33	5922 40	557	2863 45 1	
	232 32 889 889	1 8558	13891 96	42864 42864	9225 146 6	17		344	1042 15 15	6265 159	10419 174 8	4242 11	8177 52 10	2596	1817 8	1508 133 17	106 1	1145 25	5086 33 4	65 1	- 2	
Politika National Angle National Angle National Angle National Angle National Nation	20 20 1 1268	1	1027	5451	10 6661 8 8	11		328 ;	1130 20 1	8056 99	1591	4280 34	7130 47 10	2453	1607 2	3744 23 15	1503	1609 3	5528 25 4	581	1983 14	
No. 91 No. 91 No. 91 No. 91 No. No. 91 No. 91 No. No. 91 No. 91 N	67 67 1858	20 1 4921	8199 120	801 2	728 2	17	06	357	15598 184 1	4 86 7 4 0	2174 168	7026 59	9978 65 10	3823 11	906 206 2054 B	3535 29 15	1370	1644 12	5333 31 2	65 ,		
Hand and a second secon	22481 22481 22481	21 6953	129 19322 133	2597	5852 139	1 550	2161 41	503	2308 25 1	- 7039 70	11 719 62 6	5 30 9 6 2	14191 14191 50	2832 2	18325 18325 152	5327 23 10	1582 15	1297 15 33	5229 40 2	1480 7	956 1	
	2164 2164	58 1 7753	31 1957 92	7865 67	62039 75	2222 13	29162 50	311 8	1330 13	3131	4 4 4 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4	184 5	34	3263	1535	6204 22 20	1552	1327 11 3	5057 45 4	4360 81	5044 185 185	
	2122 2122	111	993 20	7457	5760	2839 16	2261 66	1402 21	7471 114	2772	5 23 0 0	235	5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3696	20325 132 132	3507 13 11	1600	14 44 440 440 440	5835 50 3	3893 21	10723 185	
	3040 3040	178	2012	1753	1037	2906 25	2750 58	2061	19714 206	1361	290 16	265	1031 1031 1031 1031	3696	2559 22 6	4569 17 12	1444 10	1320 11 3	4 990 930 930	7122 68	14697 173	
1000 1000 1000 1000 1000 1000 1000 1000	25 25 25	5719 5719	92 1347	5189 53	6587 100	3436 25	333 103	1219	100	4-1 60	407 88 18	2094 9	7 141 141 20	4461 3	1868 20 7	4 710 113 123	3814 8	3056 17 3	6766 50	1774 187	10747 174 174	
رماندر یا 40 ماندر یا 44 ماند با 144 ماند با 144		NAT GAS	ULS IL	UILS UILS	ALSA ALSA	GAS ULL			N JE N	CA B	ALCA ALCA	U GAS OIL	NAL STAT	0M 6 01 L S	N D D D D D D D D D D D D D D D D D D D	MALSO	64 S 61 L		CAS VIC	U A S C A S C A S	UIL SH	
· · · · · · · · · · · · · · · · · · ·	13282 INTON 26282 7N104	A MCAUAMS C 1P 527NICW	18 527N10*	2K 527N10W	2F 527N10W	A MCADAMS D IKZUZ 7N IC A	1C2 C2 7N 10 M	262627N1CW	2J2C27NICM	CARTY GAS CDI 101629N11m	161 62 9N 11 m	COY GAS COM TH2 830N 12W	1E2836N12 -	DANIEL GAS CI 1H2629N1Cm	1F2629N10W	LF1427N12A	U MCGKAUY A 1L1427N124	2E2 32 7N 12m	LPL427NIZW(IDICZ7NICW	I MICZ 7N IOW	
		J	ш		ш	J	ш		ш	MC	ш	ЧС.	ц,	NC.	ш :	ີ້ ສີ	r	-		Ē	ш	

1381 Bom arketa

ļ

121652 18266 18266 18266 22477 22477 22477 22477 192217 192217 192217 192217 89727 89727 89727	35986
42690 1381 5008 13767 11245 11245 2662 15665 15665 15665 15665 15665 15665 15665 15665 15665 15665 15665 15665 15665 15665 15670 1570	15394
5207 1133 1173 1173 1173 1173 1173 1173 11	1 40
Z677 134 134 2311 2311 2966 12996 12996 12996 12996 12968 12968 12968 12968 12968 12968 12968 12968 12968 12968 12968 12968 12968 12968 1207 1207 1207 1207 1207 1207 1207 1207	8654 865
4003 2035 2035 2035 1667 1667 1667 12895 12895 12895 12895 12895 12895 12895 12895 12895 12895 12895 12895 12895 1285 1285 1285 1285 1285 1285 1285 128	961 888
2. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7	756
2924 2924 3325 3325 1122 12811 18811 12811 1247 1247 1245	
6022 571 571 571 571 5932 5099 330665 330666 330666 3306665 3306665 3306665 3100 1226 1793	
4859 9698 15821 15833 1002433 1008 125833 1008 12883 1008 1008 1008 1008 1008 1008 1008 1	1231
1613 203 203 1698 1698 1563 1563 1563 1563 1563 1505 1421 1421	1 659
1612 661 6612 2572 2572 2572 14589 155800 155800 155800 155800 155800 155800 155800 155800 155800 155800 155800 155800 155800 155800 155800 1558000 155800 155800 155800 155800 1558000 1558000 1558000 15580000000000	1773
6292 226 226 203 289 289 289 1260 1260 1260 1260 1260 1260 1260 1260	
, 4724 107 8922 8922 15695 120995 131999 131999 131999 1568 1569 1569 1569 1569 1569 1569 1569 1569	132
L A A C A A A A A A A A A A A A A A A A	101
LCARILLE 2833291 94 64 5 9 12 2833291 95 64 5 9 12 2201 92 220 85 4 64 5 9 12 2201 92 20 85 4 64 8 9 12 2201 92 20 85 4 64 8 12 211 62 60 85 4 64 8 12 212 62 60 85 4 64 8 12 212 62 60 85 4 64 8 12 212 62 60 85 4 64 8 12 22 25 28 81 10 64 8 12 25 28 81 10 64 8 11 12 62 60 10 10 10 10 10 10 10 10 10 10 10 10 10	DALADANI U GA
F 164 27 91 54 6A 5 1 201 1 993 3010 1 881 2790	E 163 4294 54 54 532 594 54 54 532 594 54 545 50 572 1612 1612 1613 485 50 572 1612 1613 485 50 571 50 572 1612 1613 485 50 571 50 571 50 572 1612 1613 593 571 50 571 50 571 50 571 50 571 50 561 53 505 50 571 100 572 163 53 593 51 515 163 51 509 51 510 100 572 1100 572 150 509 51 510 100 515 150 509 51 510 100 515 150 509 51 510 100 5100 5100 5100 510 100<

	HACKA LUA	5) FEB ========	M AR =======	APRIL	MAY ========	JUNE	JUL Y	AUG	SEPT	001	NON	DEC	1984 PR0
1 URNER HUGHES 1841 127N 94 645 196 527N 94 645	1325 588	1021 619	1139	1044 629	1087	1012	951 496	944 506	992 487	979 8970 8970	1036 506	1010	1248
VAUGHN 4J2926N 6m GAS	20¢	430	794	305	187	117	66E	607	469	467	473	787	542
942020N 64 645 1012320N 64 645 1152826N 64 645	1061	1914 1232	971 1297 639	19109 60500 00500	952 1268 772	1208 1208 1208	925 1261 781	906 1282 760	1172 120	1251	1435	1 8959 8935	11103 1590. 800.
1912826N 04 645	1059 PLUGG	ING APPR	UV ED 198	1022 34	785	983	666	992	871	0.70	1055	1372	1233
1962 726N 04 6AS 2012 726N 04 6AS 2012 720N 64 6AS	4 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	165 1916	649 805 1007	628 198 198	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	644 765 973	527 127 129	767 763 963	901 204 960	NN- 4 00 5 00 0	547 768 883	090 739 1315	683 9193 1194
2102626N 0H 6AS 2262926N 0H 6AS	0 20 20 20 20 20 20 20 20 20 20 20 20 20	328	1 00 00 00 00 00 00 00 00	1400	200 750 750 750	0415	330	3220	795 285 285	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	319	1971 1971 1971	1000
25422726N 04 645 2542826N 04 645 2662626N 04 645	1330 1330	12692 172 172	866 886 797	90 - 00 1000 1000	6000 600 600 600 600 600 600 600 600 60	810 870 870	- 4688 4688	7054 8704 7074	7996 7996 875	1401 1400 1400 1400 1400	90888 00888 08880 08880	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1007 1000 1000 1000
COMPANY TOTAL UIL GAS WAT	116542	115989	123088	124145	127697 8	124362	145433 145433	140946	124583	131834	123825	131859	1 53C30
ENERGY RESERVES GR	CUP INC			* * * * *	****	******	******	*****	******				
COMPANY TOTAL GAS	10501 5664 2710	1 41 6 4 5 8 4 5 8 2 5 1 8 2 3 9 7	140 491 2491 2491 2491	1026 1026 1233 2672	1 4493 1 4933 2 660 2 660	1087 5339 2626 2667	1191 1191 0550 3048	1153 1153 576 3018	1005 1005 436 659 2618	86888 36 m 36 N	10443 10443 4555 26655 2703	10950 2511 2647 2647	12394 2009 37586 2009 2009
ME, M. GALLAWAY				** ** * *	*******	*****	******	******	****				
UCELU 1012629N11W GAS	3072	1814	3200	3548	2959	3479	2988	3106	2600				2676
GETTY JIL CUMPANY				*****	*****	*****	******	******	****				
JUHN CHARLES	865	1255	1274	1343	702	6 69	768	851	173	888	883	398	1111
E 701327N 9W GAS 881327N 9W GAS	2415	2153 2064	2776 243	1690	1121 3042	1171 1383	2683 4763	2288 3421	1912 2902	2 3 8 3	2246	235C 348I	2490
GARFET A	310	2910	4054	2747	1995		2572	3601	2938	3.157	2775	2640	2963
GARRETT N	521	490	531	543	570	470	404	484	389	5 8 12	483	479	585
GARRET D	2560	2191	581	220	1684	116	1888	2002	1573	6181	1678	1641	1880
HANLEY A	1757	2365	1418	259	1517	1032	1887	1958	1957	1.304	1433	1358	1824
IF1829NIOM GAS HANLEY B	1829	1140	1258	640	2454	1807	1785	1688	1459	1621	1174	1099	1795
INIBZ9NIOM GAS Em hartman	1149	1079	1227	1116	1140	1092	1068	1055	968	158	850	872	1257
B M HUUCK	95	2205	1925	2310	1413	968	3734	2412	2079	2437	2261	2243	2407
JICARILLA C	2592	1895	208	906	3094	1952	2063	1930	1771	1944 1944	2084	1885	2217
9K2825N 5W 64S 10M2225N 5W 64S 11L2725N 5W 64S	255 525 240	400 900 900 900 900	493 264 264	315	287 352	266 371 337	233 349 345	228 368 339	222 348 291	226 333 471	241 302 402	204 292	317
1203325N 54 645 1383325N 54 645 1442725N 54 645	117	280	240	1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	2128	202 202	135	1020 5020 5020	19 19 19 19 19 19 19 19 19 19 19 19 19 1	2101	120 12 12 12 12 12 12 12 12 12 12 12 12 12	19-19 19-05 19-05	
1503425N 5H 6AS	707	2 0 4 2 0 4 2 0 4	0.50 Vmr 0.01	080 613	400 407 404 404	609 7	010 10	011 611 774	197		588		
1702825N 5N GAS	1001 14 01 14 021	100	2014	500 500 500	1200	487	268	7486	110	318 656	289	5 5 5 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	8410 8410
24F2725N 54 645	1202	50 50 50 70 70	808 1039	782	262 666	745	130	1012	718	748 844	699 006	1957	925
2712425N 5W 645 3212425N 5W 645 3212125N 5W 645	1077 863 414	105	1916 436 597	2714 1889 1361	1441 502 1299	3254 269 1373	3134 1822 906	1926 3027 1260	2115	2042 3017 825	5200 1013 829	282C 182C	1630
MAKSHALL A 761427N 9W 64S Mexico Federal N	174	+ 593	4914	3534	1916	1345	4123	3932	3472	942 9	3205		

																			i i								
				115	2645548 8229 525383	11/5	3511	2706720	310524 394	1173028	2021 1705 1705	238736	181100	602154 1253	407261 1248	1062315 355853481		1723095 8952	528574	769719 12369	24604 3021788	9059750	962298	1318744 4132	639061 19	4151 2007805	Telanini Shappini Thatting Dhatting Dhatting Telang Sharting Shart
			30680	339	53030	51 00046	157	67809 162	52453 48	240 13834	28963 156 21	8383	27667 72	16090 41	37621 92 40	12143045 20621		48352 283	6517 27 66	8624 221 87	63 493 153 153						
		and the second	0.450 0.450	NM	3874		œ.4	10090	8243 2	22 2222	1 6604 47 1	1245	4102	64	966	1510352		5135 44	877 2 6	798 48 84	6810 44						՝՝՝՝՝՝՝՝՝՝՝՝՝՝՝՝՝՝՝՝՝՝՝՝՝՝՝՝՝՝՝՝՝՝՝՝՝
		n CNV	3472	ŋm	5435	6802 6802	17	6116	7535	21 3 07 8	5034 33 1	1359	5 6 59 5			1218147 2126		4191	60 659 655	742 12	5544 142						1.1431 1.1431 1.1431 1.1431 1.1431
		001	4369	ñ	5620	6711 6711	24	10757	9716 14	20		784	5454			,117663]		3967 23	430 6	861 18 8	5258 14						Diense States States States
		SEPT	140	-1	2003	7626	67 7	1326 14	6068 9	14						012060 1	*****	3763 23	473 1 6	567 14 18	48038 4038 41	****	****				長期 の確心 の 毎年 日からま 毎日15日の日 毎日人は1月日日 毎日人は1月日日
		AUG	55		4029	4224	0M 1	8997 23	7200	1 6 32	41			2277	3472 524 52	772478 1007	******	3563	403 6	789 12	4755 14	****	*******				# # # # * * * * * * * * * * *
			3179	N	5094	5557	04	2434	870 2	3 2513	4858 16 1	144		1042	2792 8 2	937253 1347	******	2924 21	394 6	587 11 8	3905 14	*****	******				부 부 "Valit ት Nation ት ተጣ-13 ት Nate * ት
			2522	4	1757	2102	2					151	927 5			754821 1569	******	3747	6 6 4	689 20 8	4 901 14	* ** ** ** *:	******	•			
		M AY	2543	4	4029	4377	20- 4			503	2278 3 4	1015	2605 10	1616	3378 3378 5	792161 1740	******	3920 21	478 1	806 16 8	5204 88 8	***	*****				* * * * * * * * * * * *
		A PRIL ========	2290 2	t	a 2132	2914	4	3751 2	30608	36 1453	2766 17 7	1018	2592 13	2482 4	7117 118 18	3264 805825 1839	***	3993 26	561 3	574	5128 13	*****	****	Ń	٤Ĵ		** ** ** ** ** ** ** ** ** ** ** ** **
	EU GASI	NA. ========	5167		JVEU 197 3323	4130	r 4	9154	10 5449 12	44 30.75	5468 22 7	1168	3212 13	2851 6	6703 17 17	3858 995088 2099		4605 23	567 7 6	727 13	5899 14	VED 198		NËD 196	VED 196		13 131 14 -2013 14- 2019 10-101-14 10-101-14 10-11 11-14 11-11-14 11-1
1484	1 PK DK A1 5	F EB	2659 3	ر 1990 م	4237	5305	- 104	1711	5002	10 958	1914 18	1054	2856	2713 10	6 125 25 7	0 88240 1 844		4304 34	529 1 6	704 21	5537 6537	NG APPRO		NG APPRO	NG APPRO		61 61-647555 7-66555 7-05655 7-05655 7-05655 7-05555 7-05555 7-05555 7-05555 7-05555 7-05555 7-05555 7-05555 7-05555 7-05555 7-05555 7-05555 7-05555 7-05557 7-05557 7-05557 7-05557 7-05557 7-05557 7-05557 7-05557 7-05557 7-05557 7-05557 7-05557 7-05557 7-05557 7-05557 7-05557 7-05577 7-05577 7-05577 7-05577 7-05577 7-05577 7-055777 7-055777 7-055777 7-055777 7-0557777 7-0557777777777
	ESAVERUE	JAN	ico3 5	2	100017 5437	0374	V 7 4	4472	3812	50		445	1400	3060 20	7634	138953 1 15653 1	MPANY	4240 11	731 4 6	780	5751 5751 14	PLUGUI		PLUGGI	PLUGGI		17-19-1491 17-19-1491 1-11-19-159 1-1-1-19-159 1-1-1-19-159
	CUNTINUED BLANC. AL		Y 261332416m 15	VASALY FEUCKA."''	A IMBIBZNILM	Y 1C3 13 2N11, 41	WALLER MALLER	SAD WALVER AND	A IPLI32NILW 45	SADIE MEST MAT ILZIBINIZM CAS UTS	A ICZIJINIZH 645 UIC	I M2 43 2N 8M 445	ZACHRY CUM WAT	IH ZJONIZW GAS	A IC 233NI2W WAT	COMPANY TOTAL OIL VAS 1 WAY 1	THE SUPERICK JIL LUI BUNNY ET AL	ARSHAU SH CAS	4AIJZZN 94 445 UIL NAVAJU	162527N 9M JAS	CUMPANY TUTAL ULL Vas Adi	SUPRON ENERGY JAP HUNSAKER 282631N YA 245	TENNECO DIL LUNPANY	MESA VERUE DAT JAT	163632N 3A -45	LUMPANY TUTAL TAL	
		ð) (,,,,)	J	2007) (K. 44			J		<u>ن</u> و	•	J		• · · · ·	•	,	,	\$		۵	٠	٠		•	۲	

₽	1 1		٠	٠	•		•	F	۴	F	F	•		8	F	۴		×	•	i
2863708 8852 1065267	214117 214117 158281 158281	974304 1248 105857 400	1054407 2066 333	93138 153	535322 5476 251190 3210	855233 4702 391211 2368	174717 1432	42746 1480	4515977 12773 363335	41467 6918659 20697 1284192 2908	11758831 15126 219522	5720892	1569259 1569259 10688279	17940 3056233 1195	8582767 23127 1135468	5071693	592407	8571 812 15084 1183733	6847900 6847900	
36627 68611	42889 42889 230 99711 227	25680 2857 105857 400	27182 315	64363 87	18619 216 39296 254	17654 42 106425 455	38552 264	4007 250	8352 15 8652	67186 239 117448 346	202336 94 84045	39482	162072 281 52013	242402 41	28893 58836	21128	38001 4	215567 99 79767	29455 29455	
5241 8956 8956	1124 13691 13632	2805 13900 56	2044	18590	3352 16 327 56	1739 9916 32	1246	213	4352 6097	11995 3682 3682	17862 11 7167	5994	20868 30 7513	31268 31268	8430 2098	3301	25072	25162 10 3748	6027	
1736 5547	8223 8223 20254	1278 8435 69	2171	6266 13	1116 12 1647 25	1863 9844 49	3015 19	192 192	m m	4126 14175 33	18603 16 30878	5 6 6 6 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7	167 6	167	6 210	1811	2399	10949 17957	1102	
4134 97 <u>8</u> 2	16 7495 13674 13674	2102 17644 85	2121		540 9 837 4	1827 14024 59	3703 34	176 30		5489 18 20964 43	15603 10 19974	2695	10 300 1 8			1556	766	809 1 23693	2476	
4551 3895		1865 16054 60	2509		32 17	139 6958 40	904	1853 19		12556 82 26064 49	22682 8 5739	5904	19112 36 1419	23823 4		2650	2281 2	30694 28 4732	3544	
4274		1893 29395 130	2552	4544		920 9110 39	2301	165 16		6789 10 15003 51	17618 8	1011	14940 2325 2325	28714 16		1266	ı	22349 13 2500	3264	
2008 3561	1850	1960 20429	2847	1653	1133	1517 13 14080 14080	2167 26	198 35		870 11059 42	25665	8669	15653 16265 16265	27584 10		3372	343	32223 8 6491	1387	
3409 6590	6401 6401 11081 40	2002	1432		2778 23360 2338 30	977 5576 39	3644 15	190		2720 363	9933 5 1074	424	4924 3 2260	11786	2153 3742	1 196	254	8188 524	992	
215 2628	3267 7413 30	2559 2	1929		1897 16 4518 9	1454	4266 29	176		3303 12	8768 7 2128	2140	13407 35 3900	31783	3056 8613	1088	724	14394 13 2349	1735	
3682 7880	189 789 3207	2170	2358	6898 13	1774 1774 4335 17	1560 12692 35	4067 12	198	391 427	1808 2747 6	15444 14 39	1038	19666 40 15	10142	170 1028	8 4 J	51	10129 635	26	
8 4 02	5475 15468	2490 25	2157 TSTM	20552 14	2050 16 6143 21	2092 14568 42	4835 19	207	3606 10 2125	2102 1915 8	14803 NED 198	324	12295 44 18	15607	50 2831	3373	16	8580 543	14	
3011 11376	2269 14923	2377	2454 TSTM	5860	1927 36 5559 45	1830 1675 16	4008	218 20		3542 2058 4	13511 NG APPRC 953	251	10360 42 1412	29753	779 15028	411	265	15415 1 478	1130	
3476		2179	2608 31		2052 11 5563 30	1 766 7982 44	4396 48	221 31		15189 72 16116 81	21904 PLU661	10946	20980 31 16880	31775	14249 16286	5086	7 264	29475 12 16117	1758	
ANCHUCETA INIY320N 8M GAS A IF1936N 0M GAS	BASSETTB LE3330NIOW OAS M IL5330NIOM OAS M IL5330NIOM OAS	BLANCU CUNIN USAS 16 ZOUNIN GAS A IP 23UNIN GAS ULLO DIL	BLANCU CCM Z IK Z30NIIM GAS BUNCE CJM IGM GAS ICI 929NIOM GAS	CULDIKON CUM A M IF 230NIIW GAS DAUSON A	M ID 427N 8M GAS	ULAWSUN FEUERAL 102627N 8M GAS M 1N2627N 8W GAS 01L	EATON A E LB2529N11W GAS	EATUN CUM B 1P2529N11W GAS EL DOANSE	A 1P3529N 9W GAS	ZAZ030N 9W GAS UZC30N 9W GAS 01L	3M2 23CN 94 64S A 3U2 230N 94 64S B 312 230N 94 64S	4 LI 030N 9W 645	A 4CLC30N 9W 645 5A2230N 9W 6AS	A 5C223CN 9W UIL	6 M2 33 UN 94 445 01 L 4 6 U2 33 UN 94 445	782330N 9W 445 011	A 7F2336N 9M UAS	84143CN 94 64S UIL A 811430N 94 64S	941336N 94 011 245 011	

MESAVERDE 1984

İ

の語を

																										·····
•		f	ŧ	ŧ		ŧ	ŧ	*		•	*		•		ŧ	F	4	F	r	4	•	F	^ //	~	ŕ	₽ 5
FFFFF	1123	2792686 24959 346982	494892	6664 266491 2885	86398	101463	506939	44554 594450 594420	453384	597694 671 359264	481 764	219459	176703	39148 98	3180791 24150 4150621	3765	4280037	72632	3294114 25861 2525	16	990948 14748	628497 12499 65807 4149	2859640 17868 132030	394753	248770 248770	356928 307280 49
	252	53696 65301	18004	277 47846 676	0	22688 808	12033	35532 125 57386	72219	69485 72 74157	89291	70177 127	9614	18578	31029 307	S	17456	30483	19113 48 415	1	10046 61	19235 238 40974 2126	24134 24134 35340 212	55774	11 17	47754 87210 4
	ভূ⇒ स : कि च⁄ा सो ल्ल सन्दर्भ स्रोत	8911 7792 7792	24 1360	3431 99		1623 69	1127	3333 13 145	1861	14552 20101	7835	4329 15	111	4825 4	2234 103		959	2972	1636 277	*	666 68	236	2091 18 1946	1605	4597	3045 8284
	14 14 14	6030 6700 6700	523 1523	4268 73		1802	768	2340		16697 16 25177	10143	6087 7	26		2328 17		987	2663 18	1748	707	652 6	1899 5834 284	1647 1647 3092 20	686b	6852	1161 1911
		2422 2755	1794	- 30 4469 7		1604 16	972	3075 10		11582 6860	8563	754 <u>1</u>	n		2412		925	2705	1580	067	9 1 5 3	2617 35	1732 44 3116 34	1402	7596	4203 8171
	2 1 4	3644 14 6215	40 1433	4541 100		1828 49	964	3163 4 11448	11515	2	9066	7638	2		2428 12		840	2760 14	1579	000	861	2608 5005 265	2241	1025	1814	4343 8464
	90-00 4 47- 14 77-04 2-0	5466 89255 89255	1320	2996 2996 48		1843	1215	3543 11 10613	12412	•	14093	7559			2416		341	2166 20	1511	100	065	3277 40 2666	1698 2465 205 205 205	6602	8887	4834 7076
		4367 35 5916	08 1346	3460 5460		1968 98	1057	2736 31			8893	28 6846 17	•		2343 8		62	2125	1773	770	750	957 3311	2558 2558 4237 30	2997	4608	3087 4385
	• • • • • • • • • • • • • • •	5 44 8 3 3 8 3 8 8 3 8 3 8 3 8 3 8 8 3 8 8 3 8 8 3 8	1735	4 4 4 5 5 4 5 5		1791	1067	2766 13177	11094)		3255			2413 24			2704 18	1508 30,8	075	819	3832	2130 2130 2068 2068	1086	2346	2199
	#-1#100 #11103	7858 68 9919	1510	4 152 73		65 1611	1342	3652 4 15933	22013	;	ſ	5993	2 59 4	2056 1	2385 20		1887	3422 26	1506	C1C	865	1216 5153 333	2081 2623 2623	6537	11718	3663 5611
	41 41 11	5852 63 6110	1529	19 3960 37		1983 102	1461	3651 8 2308	7936	•			1794	3535 3	2565 12 25		3415	2440 20	1759	016	10 58	3258 41 7716	2336 2336 2980 13	2804	60103	5808 5808
	- 14 - 191 (17) - 19 - 191 - 191 - 191	3385 22 3740	20 1659	4379 61	TE 10/79	2069 91	734	3385 17 1523	5914 5	2429 85	11204	5 11 5 8	152] 2	226 <u>9</u> 2	3342 345 345	FE 12/82	2530	2530 15	2109	876	862 I	3074 38 7232	19 1867 3595 19	2862	3671	6692 9315 4
	(10783) - 10761 - 117	တ္လက္လ	20 1438	3750 50	PKOD. DA	2016	587	2948 13 4	4	11961 20 21967	15623	8407 8407	2248	3381 10	3422 15 ING APPRI	ROD. DA	2648	2062 20	1062	6 8 9	827 11	4-1-1	2252 66 4082	2857	3742	4733 9992
	∉ा॥ऽध अत्यक्षान्त ्राज्य	305 386	1357	3976 33	LAST I	2064	139	940 8 2235		12264 8 7	3629	7407	1320	251 <u>7</u>	2741 21 PLUGG1	LAST F	2862	1934 11	1116	1 1 5 5 7 5	848 i	86 221	1501 2871 2871	3645	10 8264	9354
		UUULET CURNELL A 10 129N12# 645 61 E 13 129N12# 645	DAMSUNA IN 427N 8W GAS	M IU +27N 8W 5AS	DAWSON FEDERAL 102627N 8M 645	M IN2627N BW GAS	1H 729N 8W 645	E 1P 729N 8H GAS 01L 2G 829N 8H GAS	E 21 829N 8W GAS	3AL 729N 8M 645 61L F 311 729N AM 645	4F 829N 8H 645	E 4N 829N 8W 645	5PI 829N BW GAS	E 5A1829N BW GAS	UELHI TAYLUK 541726N11M GAS 6K1726N11M GAS	E 6C1 726N11W GAS	LELATION DELAND	E IU 326NIIM GAS	DELATION CONTRACTOR	C 1J 420N11M 645 DRAFT	TIZ826NILW GAS	E 112828N 8M GAS E 112828N 8M GAS	EATON A IP2529N11 UAS E 182529N11 GAS	FIELDS IM2932N11W GAS	E 112932N11. GAS	E 282 43 2N II W GAS 262 93 2N II W GAS 01 L
<i>p -</i> h	\$ ^{n 4}																									

BASIN DAKOTA 1984

*

Making

GUTABY: JUDICO OIL CUMPA		AUNTH: JANUAPY , 1965 PAGE 30 UP July
5 5 7 7 7 7 7 7 7 7 7 7 7 7 	104601109 	LUD BARKES COLLON LE CAS TRANS O HAND TO TANS O HAND JUD PROJUD JAYS PORT D BLG. OF TRANS PORT O LAND OF DLD FRODO SELD TER OTHER E MONTH PORTER TER OTHER E MONTH
0ASI + [PAAULA] (DAAUTA) 1004. Aurel N., 1-00662	1	
L L & LON IIW F		1210-31
LLASE FOILAL DASLA LEAKSTAJ (DAKULA) DAYOLA		1210 1132 EPG 29 U 151 151
1 11 20 241 3n F	25 25	2275 28
11 1 28 23'1 8k F	463 463	9256-23
LEASE TOTAL	488 488	11531 11459 EPG 72 U 131 451 PEA 218
DASIN (DAKUTA) (DAKUTA) LAILA A		
CUMA. Auter Nu. 91-00745	4	
I P 25 298 IIM F IE 0 25 298 IIM F	68 65 6	· 1255 J1 J412 J1
10 F.1 S.C.1 1	45 95	4005 4791 6PG 74 U 203 145 PLA . 158
· · · · · · · · E L et al de P · · · · · · E L et al dé P · · · · · · PH - PH - PH - PH - PH - P	XUSED UFF LEASE JUSED UFF LEASE	LLIL CUDE LLIRCULATING OIL NAME : URSULA SULZBACH LLUSI
6Sums LH I Second MIL HI	G UAS LIFT LLUSL IMCE ESTI	5SEDIMUNIATION PUSITION: DISTRICT ADMINISTRATUR LEXPLAYATION ALIACH
1	ELXPLANATICN ATTACHED KRPRESS-PRESS MAINI	SIGNATURE: UATE:02/26/85
0.10.11 Miluci (1	VVIIIE0 UU	
	And a second secon	
	-	

DPLEATON'S MONTHEY REPORT

	LA -101AE L1 JULDS PAG	120010 "I SPU	ISTIUM UP GAS	DISPOSITION OF OL	1
1 LADE ANDE 5		матен. Корст, 645 Корст, Разат, 2475 (Выст, Смерт, 2800 SortD	C UTL UN BAK C UTL UN BAK TER UTHER E MUNTH PUR	(KLLS U FRANS NS- PUKI- TER TLR UTHER	L OIL UN J HAND J LNU UF
a atta . Damski Etbezat					
4 4 20 27N ak 1	22 22	18 1636			
EASE TUEN Ree Thesaverdel Imesaverdel Atom A	39 39	11269 11145	EPG 74 U 249	78 CST	210
1.410. Abrill Nu. 91-307454 L B 22 298 114 F	с, <i>б</i>	le 1631			
ट्रेकेडेन् मा ग्रित	9	1537 1485	EPG 52 U 71	37 PLA	40
AGU (MISAVLADE) (MESAVLADE) Alua Guel B Date: Agett NU: 93-0J0153					
9 ALLN 62 57 A	0E 0E	16 161			
ASE TUTAL <u>MELTAESAVENÉEL EMESAVEKDEL</u>	30 33	191 183	EPG 8 U 207		237
LUAAAL 1,14,23,234					
H 35-29N 9M F	3 8	8271 31			
A P. 31, 21,14 9 14 F		16 1065			
SIALUS COOF. V	GAS Ciu)E Distribute entration	LIL CUDE	A H12 GLT • 344 MA	сна тиасы	
1	•••••USED UFF LEASE	Lesselust	NAME : UKSULA	JUL L DALFI	
Gdis LIFT 6 Second LIN 6 I11 at AND JNED E	·····645 LIFT •••••EXPLANT COLFEEST ATTACHEL	SSLUHMENTATION <u>EEXPLANATION ATTA</u> D	PUSTITION : DISTRIC CH SIGNATURE:	T ADMINISTRATUR	126/85
U U SCENTINE U U SCENTINE U	••••••••••••••••••••••••••••••••••••••		PHUNE : (303) 7	.40-2590	

HEY FEPTRET COLDEADE BOLSS MCHTHEJANUARY FLORE 143 UF 	D DAYS DORT- D BEG. OF TRANS- PORT- D'END OF PRI'U SULD TER UTHER E MUNTH PURTER TER UTHER E MUNTH			63 JI 2323 EPG 40 U 9 9		CUDE CDIATING CIL NAME : UKSULA SULZBACH IMENTATION PUSTTION : LISTRICT ADMINISTRATJR LANATION ATTACH STONALUKE: USBJ 740-2590 PHONE : 13031 740-2590
UNTRY TO AND	rie u		ILKU (CHACKA) (CHACKA) DUALE COM	1 L L L ZJM 10W F 23 LLASE 10TAL	ILKU (CHACRA) (CHACRA) LAIUN A CUMA: AUFRE NU. 91-007+54 IE N 25 25N IIM F IE N 25 25N IIM F	Status cuotGas cuotGas cuotFrantituationContractContractFrantituationContractContractProventingNormalNormalianProventingContractContractProventingNormalianContractProventingContractCon

	NEM MEXICU UI OPERAT	L CONSERVALION COMMISSION DR*S MUNTHLY REFORT	FORM C-115-EDP	۰. ا
ANY: ILIANECO OTE COMPANY	ADDIAL55: P.U. BOX 3249 B	NGLEW000. COLCRADO 80155	MUNTH: FEBRUARY , 1985 PAGE 30 UF	
	MATER -101AL LIQUIDS PRODUCT	0)	UN 0F GAS UISPUSITION OF 011	
LEAST NAULT S U L SEC. TWP RNG T VOLUM	ALLUN MUNHLY ACTUAL 	0 PRODUCU VAYS POR 1 PRODUCU VAYS POR 1 MCFJ PROD SOLD TER	C OIL ON BARRELS C OIL UN NS 0 HAND TO FKANS 0 HAND T- D PEG.0F TRANS D FND D T- D PEG.0F TRANS D FND D T- D PEG.0F TRANS D FND D T- D PEG.0F TRANS PURT D END D	
WELLS				•
M (UAKUTA) (DAKUTA) Clet WM Acute NU 01-004401				T
MA. AGKEE NG. 91-000091 1 23 264 114 F		916 28		. •
ASE IDIAL N EDAKDIAJ EDAKDIAJ YDEN		916 891 EPG	25 U 151	• •
M 28 28N 8W F	39 39	3027 28		*
	216 216	0210 28 9543 9471 FPG	72 U 218 229 PER 400	
N (DAKDIA) (DAKDIA) IDN A				
MM. AGREE NO. 91-007454	12 12	401 20		
B 25 29N 11M F	17 17	1444 28		
ASF TITTAL	88 8.8	1935 1868 EPG	67 U 158 246	
SIAIUS COUL FFLOWING	CAS CODE XUSED OFF LEASE	CCIRCULATING UIL	NAME : URSULA SULZBACH	
Conception Conception	GGAS LIFT LLUST IME FALL	SSEULMENIATION FFXPIANATION ATTACH	POSITION : DISTRICT ADMINISTRATOR	
IIFAP ABANDUNED	EEXPLANATION AITACHED RREPRESS-PRESS MAINT		SIGNATURE: DATE:03/22/85	
0DISCONTINUE 0	VVENTED UUSED ON SF		PHONE : [303] 740-2590)
		LEGIBLE		

		M_MEXICU_UIL_C	ENSERVATION_COMMESSION S MONTHLY REPORT		F0RM_C+115+E0P	(
ANY: TUNNICU UTI COMPANY	AUDRE53+P+0.	7 BUX 3249 ENGL	.twoud. CotoRA00 30155	MUNIH:FEBRUARY	•1985 PAGE 46 UF	(
() [N A M [+ AGE NAME	WATER	ITOS PRUDUCED-		UN UF GAS UISP	051110N UF UIL	. (
U SEC TUP RNG 1 VOLUM	0 0 011 01 00 00 00 00 00 00 00 00 00 00	UAL LL WATER IDUCD PROUGD BLJ (BBL)	GAS TRAI PRUDUCD DAYS PUR (MCF.) PRUD SOLD TER	C UTE ON BARRELS U HAND TO T- D BEG.OF FRANS- UTHER E MONTH PORTER	C OIL UN TRANS O HAND PURT- D END OF IER OTHER E MONTH	(
MELLS						:
MSUN FEDERAL	~~~~~					1
1 N 26 27N 8W F	20	50	8047 28			ئ ر :
ASE TOTAL	. 60	60	9716 9649 EPG	67 U 210	270	
ALT (AESAVERDE) (MESAVERD VIUN A MMA AGREE NU. 91-001454	() / () / () / () / () / () / () / () /					
B 25 29N 11M F	16	16	1383 27			
<u>^ 75E 10174</u>	16	16	1383 1336 EPG	05 N 15	56	
JUO (MESAVERDE) (MESAVERD JUON COM B	E]					
JMM. AGREE NO. 93-000153					and a second	
P 25 29N LIM P	21	27	160 28			
ASE TUTAL	21	27	160 153 EPG	7 U 237 199	CST 65	
UCU TMESAVERDEJ TMESAVERD	6					
Н 32 29N 9M F	7	1	5058 28			
P 35 29N 9W F			4581 28			
STATUS CODE	V V V V V V V V V V V V V V V V V V V		ULL CODE	NAME : HRSHLA SHLZ	ACH	
PLANDING	GGAS LIFT	LING	•••LOST •••LOST •••SEDIMENIATION	PUSITION : DISTRICT AD	INISTRATOR	i
I I ABANDONED	EEXPLANATIUN A	TITACHED	••• EXPLANATION AITACH	SIGNATURE :	UATE:03/22/85	J
1	R REPRESS-PRESS V VENTED H USED ON ' SE			PHONE : (303) 740-2	06	.)
			- CIBLE			
				•		

	UPERATOR	ARMANTIN COMMISSION	· · · · · · · · · · · · · · · · · · ·
APATY: LLNAFCO ULL CUAPANY	ADDRESS: P.G. BUX 3249 ENGL	LEWJUD, CULORADO 80155 MONTH: FEBRUARY , 1985 PAGE 144 L	0F
JCL NAME WATCR	-101AL LIQUIDS PRODUCED-		
	MUNTHLY ACTUAL UIL UIL WATER	G CIL DN BARRELS C UIL GAS IRANS O HAND TO TRANS O HAN	L ()N NU
LL () A LL J SFC LAP ENG I VOLUME PRE- S DET S	ALLOW. PRODUCU PRUDUCO 55. (BBL) (BBL) (BBL)	PRODUCO DAYS PORT- U BEG.OF TRANS- PORT- D END LMCF) PRUU SULU TER OTHER E MUNTH PORTER TER OTHER E MUN	NTH
SUNCE COM			
LASE Lulai		2121 2085 EPG 36 U 9	10
-RU ICHACRAJ ICHACRA) -A10N A -DMM- AGREE NU- 91-007454			*
LE 8 25 29N LTH E	and the second	681 27	•
			•
LASE TUTAL		081 058 EPG 23 U	
PU (CHACRA) (CHACRA) Atom Firm R			*
UMM. AGREE NU. 91-002464			
P Z9 Z9N IIM P	and the second	1437 28	
EASE LUTAI		1437 1374 EPG 63 U	*
RD LURLNCE 124 & 124-E			
.F.M. 27.29N.9⊌.F.		2414 28	•
EASE TUTAL	· · ·	2414 2383 EPG 31 U	\$ \$
			}
STATUS CODE EELINAING X	GAS CODE -useu dee lease C	UIL CODE CIRCULATING DIL NAME : URSULA SULZBACH)
PPJMPING D	-USED FOR DRILLING L	•••••LOST •••••SEDIMENTATION = DISTRICT AUMINISTRATOR	
SSHULIN L	.LUST (MCF EST) E .EXPLANATION ATTACHED	•••••EXPLANATION ATTACH SIGNATURE: DATE:03/22/8	35
IINJECTION R	-REPRESS-PRESS MAINT -VENTED 	21217 PHONE : (303) 740-2590)
U••••			

IPANY: TENNECO OIL COMPANY	AATEK	P.0. BUX-3	249' ENGLI	EWUDD, COLORA	00 80155	ON UF GAS	1:HINOM	IARCH	-1985-PAGE	30 OF
LEASE NAME S IN I I I I I I I I I I I I I I I I I	ECTION MUNTHLY 01L PRESS, (BBL)	ACTUAL ACTUAL DIL PRUDUCUP	MATER RCDUCU-1 (08L)	GAS GAS PKUDUCD DAYS (MCF) PRUD	TRA TRA PUR SULU TER	NS T OTHER	C OLL ON O HAND D BEC.OF	BARRELS 10 1rans- Porter	TRANS PORT- TER OTHER	C DIL CN 0 HAND D END OF E MUNTH
wetes										
IN (DAKOTA) (DAKOTA)						and a second				
WMM. AGREE NU. 91-006691										
I 23 26N 11W F	3	3		1026 31						
EASE TUTAL	£ .	}		1 1 2 6	799 EPG	28	151 0			194
TN (DAKUTA) (DAKUTA) Ryden										
M 28 28N 8W F	36	36		2592 31						
E I 28 28N 8W F	66	66		1 6662						
EASE IUTAL	131	151		5151	5102 EPG	64	U 400	226	PER	305
IN (DAKOTA) (DAKOTA)										
ATUN A UMM. AGREE NU. 91-007454										
P 25 29N 11W F	39	39		1251 22						
IE B 25 29N 11H F	31	31		3360 26						
EASE TUTAL	07	10		1195	4553 EPG	58	U 246	122	GEC	194
	XUSED FOR	LEASE DRIELING		UIL CUDE CIRCULATIN	6 UIL	NAME	: URSU	ILA SULZE	IACH	
66AS LIFT 55HUT IN	GGAS LIFT LLUST IMCF		щ ц с	•••SEUIMENIAI	ION N-ATTACH	POSITIO	N : DIST	RICT ADM	IINISTRATOR	
IIEMP ABANDUNED IINJECTION DDISCONTINUED	L EXPLANALI R REPRESS-PI V VENTED	UN ALLACHE KESS MAINT				PHONE	KE: : (303	1) 740-25	UALE:04	CD / 47 / 4
	UUSED UN LI	EASE								
				シリ					· · · · · · · · · · · · · · · · · · ·	

MPANY: TENNECU OIL CUMPA	NY AUURESS	UPERAT :P.0. JUX 3249 E	UR'S MUNTHLY REPURT NGLENDOD, CULURADU 8	10155	HINOM	: MARCH	985 PAGE 97	0F
	WATER -TOTAL	LIGUIDS PRODUCE	S10	PUST FIUN	UF GAS	120dS10	110N OF 011	
LEASE HAME S LLU SEC TWP ANG T VOL	INJECTION	Y ACTUAL 01L MATER 	 6 а S 0 Р Р Р О О А У S С I (М С F I Р Р R G I S С II	TRANS PORT- D 1ER	0 HANU	N BARRELS 10 TR F TRANS- POI	ANS 0 HA BU	L UN ND DF
S WELLS								
ANCO (ME SAVERDE) (MESAVE DAWSUN FEDERAL	RDE)							
1 D 26 27N 8h F V			1422 31					
IM N 26 274 64 F	16	16	16 1168					
LEASE TOTAL Anco (Mesaverde) (Mesave	17 RDEJ	6 1	10399 103	125 EPG	012 U 21	18 C	ST	211
	4							
LE B 25 29N LIW F	31	31	1629 20					
.EASE TUTAL	31	31	1629 15	11 EPG	52 U 56	34		53
ANCU (MESAVERDE) (MESAVE ATCN CUM b COMM. AGREE NU. 93-00015	RDE) 3							
L P 25 29N 11M P	18	18	222 31					
.EASE TUTAL	18	18	222 2	14 EPG	8 U 65			83
STATUS CODE FFLOWING	GAS CUUE XUSED OFF	LEASE	01L CUDE CCIRCULATING 01	2	AME : UR	SULA SULZBACI	T	
PPUMPING GGAS LIFT SSHUI IN IIEMP ABANUUNED	DJSEU FOR GGAS LIFT LLOST (MCI EEXPLANAI	DRILLING F EST) IUN ATTACHED	LLUSI SSEUIMENTATION EEXPLANATION AT	TACH S	OSITION : DI Ignature:	STRICT ADMIN	ISTRATOR DATE:04/24/	85
IINJECTION DDISCONTINUED	KREPRESS-1 VVENIED UUSED ON 1	PRESS MAINI	I FGIBI		HONE : (3	031 140-2590		
]						

Ŷ

18 1 ÷.

¥

è

į

*

Ŧ

¢

ŧ

¥

۶.

UL NAME Lease name	INJECTION	JCE0	UN OF GAS DLSF	OSTTON OF OT	
U 55 1.0 DMC 1 VIII		LER GAS IRA NUCU PRODUCD DAYS POR NUCU PRODUCD DAYS FOUNTED	C- CIL ON BARREL ⁵ NS 0 HAND TO I=	TRANS PORI- TEP DTHEB	C OIL ON O HAND D END OF
WELLS					
) (CHACRA) (CHACRA) JCE CUM					
C 19 29N 10M F		1698 31			
(SE TOTAL		1698 EPG	40 U 10		10
I LCHACRAJ (CHACRA) UN A M. AGREE ND. 91-00741	54				
B 25 29N 11M F		803 20			
STATUS CODE	GAS CODE	OIL CODE			
F FLUMING P PUMPING	XUSED OFF LEASE DUSED FOR DRILLING	CLOST LLOST	NAME : URSULA SUL2	CHACH	
GGAS LIFT SSHUT IN	GGAS LIFT LLOST (MCF EST)	SSEDIMENTATION EEXPLANATION ATTACH	PUSITIUN : DISTRICT AD	MINISTRATOR	
IIEMP ABANDUNED IINJECTION DDTSCANTINGD	EEXPLANATIUN AITACHEU RKEPRESS-PRESS MAINI VVENTED		516NATURE: PHINE : 13033 740-7	1) A I E : 04 590	68/67/
	UUSED ON LEASE				

	ŧ	ŧ		1	+		F	ŧ	ŧ		1		+	i	ŕ	ŧ	•		r	£	ŧ	ł	,	f	ŕ	í	~
₽ 9 // 9 // 1 / (9 / (9 / (9 / (1 / ()	5409 91678 243	1965220 785	268413	424654 1983	1615778 10666	2075425 25090 175779	2321633	139206 139206 2630531	210177	3384234	1867	2038268 24939	230369	3113376 39831 138651	2177857	29098 141873 1023	1835C75 16234	B3216	1972141 20562 124728 12239	511895 3904 1 4 704	1819	208028	175274 343096 343096	4386 78509 1118	126089 1669	41926 598 255864	3167
9 - 3 9 - 549 9 - 649 9 - 645 7 - 645	19229 12	47578 60	91262	16353 2	70090 498	30478 294 36305	35387	33549 33549 13937	39635	606949 4943 4943	31701	22846 252	42789	44284 471 34037	36032	31736 1137	80502 405	29815	27213 186 2829 8	17540	136 34633	19630	127841 1088 41177	478 47801 520	16921 182	28765 307 37343	364
च्राग्री च भाष च ग च 1	1402	6089 1	11419 609	1318	665 43	3304 27 4174	6417	6307 337 1307	4592	8181 8181	3541	2683	6176	3015 1165 7834	6235	40 70 24	8953 56	2119	4008 267	1549 17 5671	88255	3080 280 280	8802 28 7031	5173 5173 28	5018 84	4334 1 1634	
	1296	4924	8853 109	1333	5567	3655 43 43	10539	3102 19 1789	5396	8157	6658 47	3046	7238	6368 13 3200	4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	4313 12	6858 20	2123	1033 13 267	01170 0111	2055	1726	9167 12330	177 7873 89	1159 15	993 2	
	1543	1619	2813	1575	6110	2101 24 5416	875	2222 20 1891	1844	11325	4628 30	3758	5738	1109	6211 6211	3523 8	7244	2160	162	1434 515 515	1570	667	7372 10293	9368 103 103	270	272	
9 40 9 6 9 6 9 7 9 7 9 7 9 7 9 7 9 7 9 7 9 7 9 7 9 7	1337	4400	5385 32	1416	5638 42	224	107	934 2339	1661	3276	44	534	1339	170 3386	1318	2219 20	5421	1802	486	1336 10	1498	2032	9177 165 966	9 11436 34		4761 5 8860	109
	1 700	7426 38	7979	1552	6090 55	809 1540		667	1997	580	2		1610	141	+ 4 100 100 100	1791	6236 24	2395	193	1469 30	2452	1877	13045	103	Q	2222 20 5982	54
	1430	2812 8	9427	1562	6404 48	2067		1877	966	41	47	1145	87	1759	500	656	8223 68	1661	2305 18 109	1918 12		1260	13757				
	1373		2695	1462	3121	1900	155	1395	2913	2620	464	619	536	298 2581	415	831	3418 20	2329	3155 22 261	11533 11							
	1842	4121	5215 39	1 60 7	4775	1 91 6 1 4 89 9	2526	1542	2711	2563 20	1982	1459	2 21 6 18	1 801 36 1 778	1171	1026	5196 15	2496	3236 26 431 3	1353 26		1915	11321 9677 9677	121 11496 171	1342	2274 15 13457	148
4444 44744 47744 47744 7744 7744 7744	2183	0313	10984	1351	1269	3249 3745	2191	3830 3830 1243	2320	6613 24	3262	2154	4039	5623 11 1725	1719	3951 255	7308	3112	3341 27 121	1592		463	8536 12 880	2442 85	2361	3147 19 3354	6
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2116	6271 7	13893	1267	6530 55	3031 49 3652	n 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3019 776	2683	3188	1110	2421 29	4054	2720 2954	2502 2502	1750	7040	3711	3070 28 206 1	1707 1 1020	17 17 17 17 17 17 17 17 17	1664	16280		2225 22	3330 72 4049	, , ,
e grand grand res res res res	2007	3146	11769 103	1078	5050	3961 352 3763		6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	4448	5387	3772	3032	3961	4 40 - 4 0 4 9 - 4 0 4 9 -	5164	3591 11	7893 61	4050	2909 122	116	5 251 5 251	3027	26968 214		2261	3622 632 4	
	1000	460	968	832	6271 43	4261 48 4695	5382	7146	5125	6363 6363 693	6161	1 995 39	5195	10273 5104	58085 58098 708	3635 2635 18	o712 32	1657	415 2047 2047	1568	4 17 7 3 3 3 3 8 4 7 8 4 7 8 4 7 8 7 8 7 8 7 8 7 8 7 8	6191 6191	3416		1779	3810 80 90 90 90 90 90	14
	E 4H3432NI2W GAL	NEMBERRY 5 IC3532N12m GAS UIL	E IM553ZNIZW GAS Newberry IIM	LG 53INI2W GAS	NUCHI 425NILW GAS Daled -	LICES AZANIUM GAS F IFSAZANIUM GAS	263 52 BN LOW GAS	E 203528NICW ULL UAS 3M2628NICW GAS	E 302628N10# 645	4M2 52 8N1JW GAS	E 402528NICW GAS	562528N10N 645	E 5E2520NICH GAS	663628Nilw 645 016 F 603628N10W 645	7K3628VIUW GAS	E 7J3o26NICW GAS UIL	TAH IL 325NIIM GAS UIL	PATTERSON 112630N 8W GAS	E INI929NICM GAS	IKI328N 6W GAS Jayayan Ju GAS	E 281326N 84 645	341.528N 8M 645 011	E 3C1528N 8M 645 444428N 8M 645	E 411428N 8M GAS	rkile Lum 442428N 8m GAS UIL	E 4F2428N 8M GAS Ull 5Pi128N 8M GAS	01 F

BASIN DAKOTA 1984

2			N N N							为代表的政治的		UN DE LA COMPANSIÓN DE LA C		
1142 65 8N 10W 64.5	1432	1007	824 525	1435	1605	962 1231	1793 1333	1485 1254	979 951	522	814 865	786	14710	3570 3570
I 4 4 5 5 5 8 8 1 0 W 6 4 5 5 5 5 6 5 8 N 10 W 6 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1930 2204	1961	0606	1186 5018 5790	1283 654 654	821 953 686	1244 5026 5449	3531 3470	2653 2258	2400 2400	2125 2397	2650	367395	4 0 1 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0
PAYNE A SHIDH 445 E IN1929NIDH 446		202	1372	1189	1383	191	1234	865	941	C1 1 0	1011	980	14374	87445
ROMERU CUM	1960	2274		•	5062	1718	2906	2456	1951	2143	1356	1350	22805	60353
E IMESCONTIN GAS	0010	 7 5	586	565	469	667	551	279	178	126	294	345	5235	24042
E LAJOZ JNION GA	919	1000	3653	2812	2169	2538	2551	2257	2162	1826	2145	2487	30802	103573
SULLIVAN FRAME COM 103629N 10W 645	6 2935	2516	748	ň	1469	495	2663	2299	2261	2124	2129	2274	21916	7667+
BRUCE SULLIVAN UN	5 80 3	2351	2	ι η	3 784	2384	3276	3242	2995	3257	2885	3786	33768	173754
VALUEZ A TANA A E 192429N11W GAL		171c		6	2822	151	3161	2604	2218	1754	1696	1610	21782	93605
VALUEZ COMTET CON 102429NIIN 645	5185	4014		œ	3763	1603	2779	1830	14	1332	4711	3786	35025	182431
CUMPANY TUTAL ULL	087	55681	55546	48495	50193	37747	79828	57403	51102	62062	54714	51115	674573	2616143
TURNER PRODUCTION (- 11			*****	*****	* * * * * * *	****	******	*****					
LIZGEN 7W GAS						782		F				254	1037	2 60 5
UNION IL XAS PETRULI	UM LODD	NUT TO B		* * * * * * *	*****	******	******	* * * * * * * *	***					
J. ZEZZUNIÓW GAS					367	4090	1462	853		2365	1647	1385	12169	07566
ANGEL PLAK	1070	1527	2012	2017	1895	1756	1096			3315	2040	2744	20803	145172
E 25F242 UNITA CAS	405	0911	321	205 1271	1186	432 1195	838			1762	404 1249	1174	1870 12294	74546
CUNGKESS CUNGKESS	C 67 1	7661	1248	106	1020	408	226	¢	472	612 683	1522	751	9684 9221	72041
E 5P342 UNITE CAS	1049	2377	1786	3273	2551	563	2484	1887	1592	1986	1292	2150	27063	122501
E 7F3420NIIN CAS BA3529NIIN CAS 9N2629NIIN CAS	1409	1907 1907 1907 1907 1907 1907 1907 1907	3414 1589 1926	2719 1645 2086	2245 1548 1881	2000 1579 1934	976 976 776 776 776 776 776 776 776 776	2140 1909 1909	12524	264 264 7384 7384	1964 2359 3016	1487	215279	283949 10045
GARLAND	1646	2962	2604	2089	3162	95051	C+22	7007	1671	386	1942	1056	14060	96152
JICARILLA J	205	1298	832	1392	906	1340	04			461	200		75.20	20101
E 613425N 5m 645	1751	389	114	183 299	49 250	171	538	349	463	104	416	476	5527	21464
MC LL ANAHAN A	16)	1475	1589	1472	1124	2206	1856	1728	1578	1806	2267	1833	20962	138750
NEW MEXILO B. CON	8781	101		169	5093	3990	6435	5685	4352	3367	5263	5438	45931	96284
REIU B E LIBIZENICA CAS ARBIZENICA CAS	2 9039	2831	2711 1804	3612 1732 2505	2340 1584 2402	2352 1524 2693	1110 1586 1845	2638 1545	1519	2554 1386 4105	3582 1329 2779	3040 1206 2557	29809 17802 28194	157986 89099 166338
SUMMIT CONCEAS	2105	2744	5795	1794	1267	1988	1537	691 1141	1736	535 1843	2201 1243	2046 1402	19844 15291	137362
NAD RILVOUCOUL	1 333	1272 1997	1440 1634	2035	1433	1153	481	11	628	1745	2753	2502	19193	140443
LITESSIZYNIUM GAS	2444	525	4682	5362	3057		5036	4897	2192	9709	6226	0653	52424	322221
E. LP3324NIIM GAS	2085	1187	1998	504	2823	2053	13		903	198	1393	1556	15313	71872
E 16P332 4NIGH GAS	1705	4176 1302	4875	4173	3014 916	1224	3025 1084 0484	4540 1362 789	5828 1178	6376 698 1594	6627 1197 1611	6035 859 2248	52434 12579 18601	171596 70002 167983
AND ROLLES IN THE PARTY	104	3980	1510 3490	1792 3144 3004	1951 2951	3144 3144	3271	2905 1929	2696 2120	2515	2329	2342	38559	175611
21K355 404 64 64 64 64 64 64 64 64 64 64 64 64 64	1000	1929 1588	1415 1415 1415	2031 2034	1346	1290	1159	1226 3506	1506	1432	1443	1368 2896 2896	16936 39547	130102
	400 10 10 10 10 10	5955 5955 6975 6975 6975 6975 6975 6975	2516 2013	2184	1901	2302	550 550	680	2894	2337	2261 2261	2158	22807	147254
	1 1 1 1			医椎间外体炎		1 1 1								

A SALES	10	*	(ľ	١	1	•	•			١		٠	4	•		•	٠	•	•	•	•	٠		•	• •
	6043804	185491	6835146	782354	5274367	4818 1849239	2344 UT	1251139	957.93 597.26	4100353	1265882	54080881 44206 524521	3871	5976	2809381 125	620909 1211	10829553	21376 842079	7737039 1737039 15144	1329244	632416 2678	26229 438	97985 7213	1888488 2958	987894 722 1733988	673494 2139	633181	943016 1831 98633 1168
	22771	133052	162465	46739	30521	144264	41 68652	102954	11762	53310	45821 11101 - 2	2052 54047	50 6 J 8	46623	23223	84995 231	83974	31404	354225	551005	11652 38	16800 237	24723 1633	10806 11	82180 26745 4	1523	34587 4	91244 142 45124 669
	5846	17949	18816	12675	1661	21903 3	0166	11148 11148 15	802	16760	1636 121331	6863 6863	1644	3267	2090	50.5	12977	2199			106	120	141	3803 20600		6966	3654 19025	355
	966	14822	15051	2230	3682	23619	2539	6259 8	905	125	71642	4383 7	3415	1214	3699	m i	+053 2053	040		916	1447	5		125	55 55 10		16551	
	77046	17475		2046	169Ru		5664	2020	050 1		129763	4208	11 2977	1703	2695	8020	1726			6101	1902	2801	10		228	なとちこ		
3309	0019	21000	14041	1194	16400	2.00	0 6 74 1 5 8 5 4	09			61119 5005	50 20 50 20	19 5294	2293	14969 14	12771	1437	67		103	1254	176			à C 59	5363	(1), 1, (1) (1), 4, (1) (1), (1), (1), (1), (1), (1), (1), (
2680 2680	18895	23130	346	7	21310	4765	8164	24 708		331	10568	3521	8055	2257	TSTM 3	3848	35 <u>1</u>	•		868	1072 18				851	839	1169	
6141	23979	23769	5726	6004	24671	6 7 68	11563	43 1009	-4	14245	42776 30 11388	5625	-141	2340	2308 1	10015	4343	•		135	508 21	9874 370			1145		4201 9	1782
1048			140	1197	8747	2824	5028	3 975	4		89464 88 353	5085	5686	2070	11 81 50	2558	163	2712	1 55	016	1 <i>5</i> 36 25	4351 119			1972 114	1123	212	3 020
123	1668	1692	60 J	2656	9023	5631	9202	30 1131	2089	2558	110033	4658	4668 4668	955	2274 34	4079	1552	6601 15	4773	303	155		1014	6096	4891 1530	2412	3480	6286 119
		2841	104	2730		2932	5217	£19	1 11859	12 4128	116428 276 1128	3771	136	1236	2323	1406	654	1211	1720 2	1628 18	2002 22		2144	12665	1247 307	1405	1582	7184
	1293	6568 ,	1013	1735	1542	2653	3272	4 1123	5460 5460	1864	106408 257	4889	2812	1687	6241 22	875	362	1987	1556	1593 20	2217 29		2092	15330	38	46L	534	6927 76
15	1873	11 743	559	1380		8070	5262	1135	8 9225	11 306	127375 277 277	6485	5914 30	2388	15322	1347	969 5	2288 4	1423	927	3117		1145	17048	84	2803	8¢9	10432 133
25	16889	19625	8346	0		9102	14936	48 1604	4 6792	9628	142816 262		5878	3031	12568 9	22025	6258 13	21223	20210	1047	1960 45	7157 296	605	10316	83 36 76	6314	13015 33	9138 218
36 430N 8m 645	A 31 430N 8W 645	411 23 UN 84 645	A 4P 530N 8M GAS	5N 930N 8H 645	A 50,930N CH 645	LINDA NYE 18203ún 3w 4AS	A 10203LN 8h JAS	PAYNE A UIL E Ini929níom váš	PRITCHARD ULL IM 133N 94 GAS	A 1F 130N 9W 645	2H 130N 9W GAS	SH3129W 8W GAS	A 3P31294 84 645	413125N 8H GAS	1 4+5129N 8M GAS	IBZIJON 9N GAS	IEZIJUN 94 GAS	2N175CN 9M 645	N 241730N 94 343 11001 F A	IA 927N 9W GAS	1 II 927N 94 GAS	TATE FOR ON GAS	LASCUN 9W CAS	TAFE 230N 54 645	ZMI033N 9M 64S ZMI033N 9M 64S ZC1650N 9W 9AS UIL	ALCULA B SALOJON 9W GAS	JPI DOCN SH CAS	SAU W2 NY JACUA

LINE BLANCO RESAVEROE (PRCKATED GAS)

Č.,

No. of Street, or

M/282/Aud2 1984

• • • • • • • • • • • • • • • • • • •		LEU FUL VARIANTION COMPLESTON PRÉATURES MARTINE E PART	
C. RANGE F. G. TUDIL COMPAG	Y	32.73 EUSERWOUD, LCLORADU 50155- MOUTHEJANUAGY , 1785 PAGE 71	71 65
	ATER TOTAL COLOR PR		
	ALLOR PRODUCE PRODUCE P	ALLK GAS IRANS U HAND IU IKANS U HAND IU IKANS U H JEGUUCO PESDUCD DAYS PORTE D'REG.UF TRANS PORTE D'H	DIL DN HANU FND DF
au. L S(v TuP FTb. T VULL 	Met Pre5s, (But) (FBL)	(DOL) (ACF) PROD SOLD LEA UTHER MUNTH PCRIER LEA UTHER EA	HINDW
UANDA (LANULA) (DANULA)			
PAH LU11. Aukil Nu. 90-004263			
1 L 1 254 114 F	52 52	15 1545	
<u> </u>	52 52	5531 5461 Ebc 40 N 133	132
UASTA (UARUTA) (DANUTA) I ATTEFSUU			
J M1. M0C (CZ 1 1		1916 31	
LEASE TUTAL		1916 1376 EPG 40 U	
UASIN LUANUTA) (UANLTA) PAYNL A			
L C 13 23N 10N F	72	3165 31	
11. N 19 29N 10W F		142 31	
רבאַצָּר וְטִוְאַר	12 12	3307 3227 EPG 80 U 230 160 CS1	16
ΒΑΣΙΝ (DANUTA) (DAKUTA) PK16F			
I K I3 26N 6n F	13 13	15 db 2	
(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		all find	
1FLL.146	XUSED UFF LEASE BUSED FER DALLING	CCIRCULATING UTL NAME : UKSULA SULZBACH	
0	6645 LIFT LLUS1 (MCF EST)	SEXPLANATION POSITION : DISTRICT ADMINISTRATOR	
1IMP ANANUUTUU 1INJELIUN	KKPLAVATION ATTACHI KKLPRESS-PRESS MALAI	D SIGNATURE: UNITE: UZIZE	68/77
••••••••••••••••••••••••••••••••••••••	VVINI P		
a debation of the second and			;

INJULTION TUTAL TLUE DISPUSITION OF GAS DISPUSITION OF GAS INJULTION TUTAL TLUE DISPUSITION OF GAS DISPUSITION OF GAS INJULTION	4 4 22067 28 71 11 114644 105138 506 5456 U 418	SAVLRDE1 01162 37 37 31 9134 31 81 81 13011 27	SAVLKUL) 113 113 22149 22085 5UG 64 U 276 25B PLA 136 3AVLKUL) 2 2 2 2 23149 22085 5UG 64 U 276 25B PLA 136 2 2 2 72 31	2 2 2 722 667 EPG 35 U 119 121 SAVEFUE1 A 31 31 14c06 29	CAS CODEUIL CUDEUIL CUDEXUSED UFF LEASELCIRCULATING UILNAMENRSULA SULZBACHDUSED LUK WAILINGLLUSILLUSIDOSITIANDISTRICT ADMINISTRATURDUSED LITSSEDLAE VTATIONDISTLANDISTRICT ADMINISTRATURLLEASELLAPLANATIONATTACHDISTLANUATL:02/2/165LLEPRLESS PAINTNELPRLESS PAINTPRUME13031 740-2590DUSED LINLUSED LEASEPRUME13031 740-2590
 V. J. L. V. M. /li>	udo mitió anuPi bari d'uni 68 F Lease Tufat	HLANCU (ALSAYLEDE) (MESAVLEDE) ATT, LIAUA LUAA, AUKLE AU, 91-001102 LUAA, AUKLE AU, 91-001102 L B 20 BUN AM F LA 0 20 BUN AM F	LEASE TUTAL BLANCU PAESAVERDET (MESAVERDE) PAYNE A PAYNE A IE N 19 29N 10W F	LEASE TETAL bLAUGU (MESAVERDE) PRITCHARD 1,1-4,2,2-A 1 4 1 500 9. F	51A105 COUL 1

	WALEK -TOTAL LTUTOS PREJUCTO-	DISPOSIC SAS -USPOSIC
L 451 4451 - 4451	ULLION	C DIL UN BARRELS C DIL TU TU TU TANU GAS
L SEC THE RAY T VIEU	ALLIN, PRUDUCJ PRUDUCJ AL PALSS, (BUL) (BBL) (BBL)	PEODUCU DAVS PCRT- D BEG-OF TRANS- POKT- D END O (ACF) PRUD SULU TER OTHER E MUNTH PURTER TER OTHER E MONTH
ALL LS U CHACEAJ (CHACKA) CKSEA 1,1A,GIE		
1, 34 24.4 9n F		557-31
ASE TUFAL U CUACKAL CHACRAL		557 523 EPG 34 U
b 33 29N 9h F		
151 111 AL ([CHACKA] (CHACRA)		2913 2876 EPG 37 U
N 19 29N 10M F		883 JI
δι τυτλί Γιάζκαι (снаска) Έλευ συμ		883 840 EPG 43 U
P 25 264 64 F		1695 31
• 1410, 400, • • • • • • • • • • • • • • • • • • •	<pre>Gas Cube xJstu uff LEASE JJstu uff LEASE JJstu uff LEASE GGas LIT LLUSI (MCF EST) LLUSI (MCF EST) LLUSE KLERESS-PALSS AAIAT VVENICU JJstu UN LEASI []</pre>	ULL CUDE ULL CUDE LUST LUST LUST LAPLANATION DIACH SIGNATURE: ULSTRICT AUMINISTRATOR SIGNATURE: ULSTRICT AUMINISTRATOR SIGNATURE: ULSTRICT AUMINISTRATOR SIGNATURE: ULSTRICT AUMINISTRATOR SIGNATURE: ULSTRICT AUMINISTRATOR DIAGE : ULSTRICT AUMINISTRATOR

A. A. A. L. A. A	Y: THATEO CHE COMPANY	ADDRESS: P.O. BOX 3249	ENGLEWDOU, COLORADO 80155	MGNIH: FEBRUARY . 1985 PAGE 7	1 0f
No. Second Matter Mat	L N A 4 C A St NAME	VATER -IUTAL LIQUIUS PRODU	ICED	UN UF GAS UISPOSITION UF UIL -	
0 0 <th>S</th> <th></th> <th>ER GAS IRAN</th> <th>C GIL ON BARRELS C O AS J HAND TO IRANS O F</th> <th>UIL UN</th>	S		ER GAS IRAN	C GIL ON BARRELS C O AS J HAND TO IRANS O F	UIL UN
11.5. (11.10. 05 65 7324 738 66 7324 738 66 73<	л А Хес Тир Радо Т УСЦЦИИ	ALLUW. PRODUCD PROD PRESS (BBL) (BBL) (BB	UCU PRODUCU DAYS PORT	T- D BEG.OF TRANS- PORT- D I DIHER E MONTH PORTER TER DIHER E	ENU OF MONTH
Indicational Longentary 65 1324 23 6 35 65 7324 733 23 Indicational 65 65 7324 733 6 732 73 73 Indicational 65 65 7324 733 6 73 73 Indicational 65 65 7324 1555 25 73 Indicational 65 73 1555 26 20 25 Indicational 10 1555 1556 26 25 Indicational 10 13 1555 26 25 Indicational 10 1 1555 25 255 Indicational 21 21 212 255 25 Indicational 21 21 212 25 255 Indicational 10 10 125 26 27 27 Indicational 21 21 212 25 25 25 Indicational 21 21 21 25 25 Indicational 21 21 21 21 21 Indicational 21 21 21 21 <	511				
if ICIAL 65 65 7324 7288 FPG 30 185 25 LOAMILIN LOAMIAN 65 65 7324 7288 FPG 30 185 25 LOAMILIN LOAMIAN 65 65 7324 7288 FPG 30 185 25 LOAMILIN LOAMIAN 65 65 7324 7288 FPG 30 185 25 LOAMIAN LOAMIAN 13 13 1585 1584 186 30 185 23 LOAMIAN LOAMIAN 13 21 21 212 260 72 97 17 LOAMIAN LOAMIAN 21 21 21 212 2650 670 72 97 17 LOAMUAN 21 21 21 212 2650 670 72 97 17 LOAMUAN 21 21 21 212 212 2650 670 72 17 LOAMUAN 21 21 21 21 21 97 17 LOAMUAN 21 21 21 21 21 27 12 LOAMUAN 21 21 21 21 17 17 <	(DAKDIA) (DAKDIA) + ACREE ND 94-004263				
a) 11,11,4 6,5 6,5 7,12,4 7,288 6,6 3,6 1,85 2,3 1,11,4 1,11,4 1,585 2,8 1,585 2,8 3,6 0 1,85 2,3 2,3 3,11 1,6 1,585 2,8 1,585 2,8 3,6 0 1,85 1,5 1,11,4 1,11 1,12,8 1,5,85 1,5,86 5,6 3,6 0 1,6 1,2 1,1,4 1,12,95 2,12 2,12 2,550 6,7 0,7 1,2 1,2 1,1,2,04 1,12,04 1,12 2,12 2,560 6,7 0,1 1,2 1,12,04 1,12 2,12 2,12 2,560 6,7 0,1 1,2 1,12,04 2,12 2,12 2,560 6,7 0,1 1,2 1,12,04 2,12 2,12 2,12 2,12 1,2 1,12,04 1,12,04 1,2 1,2 0,1 1,2 1,12,04 1,12 1,12 1,2 1,2 1,2 1,12,04 1,12 1,12 1,12 1,12 1,12 1,12,04 1,12 1,12 1,12 1,12 1,1	4 25N 11W F	9 29	1324 28		
Augual Lukunar Lukunar 1585 28 Augual Lakunar 1585 28 158 Augual Lakunar 1585 28 158 Lakunar Lakunar 1885 158 158 Lakunar Lakunar 1885 158 158 Lakunar Lakunar 1885 158 16 Lakunar Lakunar 11 21 212 28 Lakunar Lakunar Lakunar 21 212 28 Lakunar Lakunar Lakunar 21 21 21 Lakunar Lakunar Lakunar Lakunar 21 21 Lakunar Lakunar Lakunar Lakunar Lakunar	E LGTAL	65 65	7324 7288 EPG	36 U 185	250
20 30.10 9.4 1 1585 28 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 2 1 2 1 1 1 1 1 2 1 2 1 2 1 1 1 2 2 2 2 2 1 1 1 2 2 2 2 2 1 1 1 2 2 2 2 2 1 1 1 2 2 2 2 2 1 1 1 2 2 2 2 2 1 1 1 2 2 2 2 2 2 1 1 1 2 2 2 2 2 2 2 1 1 1 2 2 2 2 2 2 2 1 1 1 2 2 2 2 2 2 2 2 2 2 2 1 2	(UAKUTA) (DAKUTA) FRSUN				
I TOLAL I SAS I	20 30N 8M F	~~~~~	1585 28		
In sour in traverse 21 21 21 21 23 28 In sour low 21 21 21 23 28 In sour low 21 21 21 28 In sour low 27 21 212 28 In sour low 27 27 212 28 In sour low 27 27 212 28 In sour low 27 27 212 2650 676 72 12 In sour low 13 28 19 19 19 10 In sour low 19 19 19 1295 28 In sour low 19 19 1295 28 In sour low 19 19 1295 28 In sour low 13 284 1295 28 In sour low 19 19 129 12					
E A 21 21 21 21 21 21 21 21 21 21 21 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 21 23 23 21 23 23 21 23 21 23 21 21 23 21 21 21 21 21 21 21 21 23 23 23 23 23 23 23 23 23 23 23 24 24 24 25 28 24 25 28 24 25 26 26 72 0 72 23 23 24 25 25 26 26 72 0 27 27 26 26 26 72 0 72 23 23 24 25 25 26 26 72 0 27 25 26 26 26 10 27 10 27 10 25 25	TRAVITAL TRAVITAL				
19<20N 20 21 21 2510 28 10 27 21 212 28 11 10 27 27 27 21 212 2550 67 12 10 27 27 27 27 27 27 27 27 27 13 29V 6H 19 19 1295 28 13 29V 6H 19 19 1295 28 211 29V 6H 19 19 1295 28 211 29V 6H 19 1295 28 211 29V 6H 19 1295 28 211 20 19 1295 28 211 20 19 1295 28 211 20 19 1295 28 211 20 20 120 120 12 211 20 20 120 120 12 211 20 20 20 20 20 20 211 20 20 20 20 20 20 211 20 20 20 <td< td=""><td>- A</td><td></td><td></td><td></td><td></td></td<>	- A				
19 29N 10M F 6 212 28 1 101AL 21 21 21 21 21 21 12 10AKU1A) 21 21 21 21 21 21 1 1 10AKU1A) 21 21 21 21 21 21 21 1 1 11 23N BW F 19 19 19 19 19 1295 28 11 23N BW F 19 19 19 1295 28 28 11 23N BW F 19 19 1295 28 28 11 200 BW F 19 19 19 1295 28 11 200 BW F 19 1295 28 28 28 11 200 BW F 19 1295 28 28 28 11 200 BW F 19 1295 28 28 28 11 200 BW F 19 1295 28 28 28 11 200 BW F 19 1295 28 28 28 11 200 BW F 19 1295 28 28 28 11 200 BW F 19 1295 28 28 28 11 200 BW F 19 1295 28 28 28 11 200 BW F 19 28 28 28 11	19 29N 10W F	21 21	2510 28		
IDIAL 21 21 21 212 2650 EPG 12 97 12 IDAKULAI (DAKDIA) 11 23 21 212 2650 EPG 72 97 12 IDAKULAI (DAKDIA) 13 23 21 2122 2650 EPG 72 97 12 13 23 84 19 12 1295 28 12 12 12 13 23 84 19 1295 28 1295 28 12 <	19 29N 10M F	9	212 28		
13 ZBM BW F 19 19 1295 ZB 13 ZBM BW F 19 19 19 1295 ZB 511 ZBM BW F 19 19 1295 ZB 1295 ZB 511 ZBW BW F 19 19 1295 ZB 1295 ZB 511 ZBW BW F 19 1295 ZB 1295 ZB 511 ZBW BW F 19 1295 ZB 1295 ZB 511 ZBW BW F 0.01 CBOE 0.01 CBOE 0.01 CBOE 511 ZBW BW B	. 10TAL	27 27	2122 2650 EPG	72 U 97	124
13 ZBN BW F 19 19 19 19 1295 ZB STAUS CHI GAS CODE COLOR CODE 1295 ZB STAUS CHI GAS CODE COLOR CODE 011 CODE STAUS CHI COLOR CULATING UL NAME URSULA SULZBACH STAUS CHI COLOR DULLING COLOR CULATING UL NAME URSULA SULZBACH STAUDING ZUSED UFF LEASE CCIRCULATING UL NAME URSULA SULZBACH STAUDINED ZUSED UFF LEASE CCIRCULATING UL NAME URSULA SULZBACH STAUDINED ZUSED UFF LEASE CCIRCULATION ANA DISTRICT ADMINISTRATOR STAULET GUSED UFF LEASE SSEDIMENTATION POSITION DISTRICT ADMINISTRATOR STAULUST MANUNED EEXPLANATION PAGNE SIGNATURE UATE:03/22/85 STAULUNED VVENTED PHONE SIGNATURE DATE:03/22/85	(DAKUTA) (DAKOTA)				
STATUS CHNOAS CODEOIL CODEFLUNINGXUSED OFF LEASECCIRCULATING UILNAME: URSULA SULZBACH	13 29N 8W F	19 19	1295 28		
PUMPING District administrator Same of the state of the	51 A LUS - CHINE •••••FLOW I NG	XUSED OFF LEASE	011 CODE CCIRCULATING UIL	NAME : URSULA SULZBACH	
5HUL IN UNED EEXPLANATION ALLACH SILA EXPLANATION ALLACH SIGNATURE: UATE:03/22/85 DISCONTINUED EEXPLANATIUN ALLACHED SIGNATURE: UATE:03/22/85 DISCONTINUED VVENTED PHONE : (303) 740-2590	*****PUMPING	- DUSED FOR DRILLING GUAS LIFT	LLUST SSEDIMENTATION	POSITIUN : DISTRICT ADMINISTRATOR	
PHONE : (303) 740-2590	•••••THUT IN TRANDUNED	EEXPLANATION AITACHED	EEXPLANATION ALTACH	SIGNATURE : DATE:03/2	2185
	••••••••••••••••••••••••••••••••••••••			PHCNE : (303) 740-2590	

A.F. MART MART <th>L N A M E WATER -LUT HASE NAME S MUJECTION U T U ALLO U VE TAP ANG 1 VULUME PRESS (BB</th> <th></th> <th></th> <th></th> <th>11.7 01</th>	L N A M E WATER -LUT HASE NAME S MUJECTION U T U ALLO U VE TAP ANG 1 VULUME PRESS (BB				11.7 01
S	U SECTION OF A CONTRACT OF A C	TAL LIQUIDS PROD	00CED01SP(USTITUN OF GAS DISPUSITION OF L)][
W. F. F. Les M. 1. Multice Discention Fight Control Market Print, Print, Discrete Transmission, Control Market Print, Discrete Print, Discrete Transmission, Control Market Print, Discrete Transmission, Control Market Print, Discrete Print, Distructive Print, Discrete Print, Dis	U VICTURE ANG I VULUME PRESS. (BB	THLY ACTUAL	LER GAS	C UIL UN BARRELS INANS 11 HAND ID ID PUBLE D DECODE TOMO DUT	C CIL UN LI HAND
0 J 30H Br F 5 100/6 B 0 J 30H Br 5 5 100/6 B 0 J 30H Br 23 23 23 23 1 H 14/4 23 23 23 23 23 1 H 14/4 23 23 23 23 23 1 H 14/4 23 23 23 23 23 2 101/L 55 55 19809 18747 50 136 2 101/L 55 55 19809 18747 50 20 136 3 111/L 55 55 19809 18747 50 20 136 1 19 29 19 742 50 136 121 10 19 29 19 28 141 121 10 19 29 100 101/4 121 121 10 19 29 100 101/4 121 121 10 10 10 20 100 11 121 10 10 10 20 100 11 <t< td=""><td></td><td></td><td>NOCU PRUDUCU UATS</td><td>TER DIHER F MUNIH PORJER TER DIHER</td><td>E MONTH</td></t<>			NOCU PRUDUCU UATS	TER DIHER F MUNIH PORJER TER DIHER	E MONTH
0 9.30H 0m 5 5 14026 18 10 9.30H 0m 5 5 14026 18 10 1111AL 29 23 155 15 14026 10 10 10 10 10 16 16 11 10 10 10 10 16 16 11 10 10 10 10 16 16 10 10 10 10 16 16 16 10 10 10 10 16 16 16 10 10 10 16 17 16 16 10 10 10 16 16 16 16 10 10 10 17 16 16 16 10 10 16 16 16 16 16 11 10 16 16 16 16 16 11 10 16 18 16 16 16 11 10 1 16 16 16 16 11 10 1 16 16 16					
() 2) 301 B) F 5 5 10026 18 () () 24 24 50.043 82.664 50.0 4.80 () () () 24 24 50.04 82.664 50.0 4.80 () () () 24 24 1834 28 1834 18 () () 14 23 23 23 23 23 23 () 10 14 10 23 23 19 1834 50 196 () 10 14 23 23 23 23 23 23 23 () 10 14 23 23 23 19 1947 50 62 136 () () 26 5 18809 18747 50 62 136 () () 29 23 19809 18747 50 62 136 () () 196 19 19747 50 62 136 () () 19 28 763 14 121 () 19 10 1 12 </td <td>×+</td> <td></td> <td></td> <td></td> <td></td>	×+				
10.111.11.11.11.11.11.11.11.11.11.11.11.	U 9.30N 8W F	5 5	18026 18		
0. (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	åe tûldi.	29 24	86948 82460	14 SUG 4484 U 489	518
1 101 21 13 23 1884 26 31 111AL 55 55 18809 1874 506 62 136 31 11 29 10 57 55 18809 1874 506 62 136 31 11 29 10 5 55 18809 1874 506 62 136 11 19 29 798 28 761 50 136 11 19 29 798 28 761 50 136 11 19 29 798 28 761 50 126 11 19 9 708 761 31 121 11 10 11 4 708 761 50 11 18 10 9 70 708 761 50 11 19 10 10 10 10 50 10 10 19 10 10 100 20 10 10 11 19 10 10 20 100 10 50 10 10 10 10 10	ALTAVERUEL (MESAVERDEL +LINDA - Arver No. 01-001112				
10.1000 81 10025 28 10025 28 11.101AL 55 55 18809 18747 506 62 136 10.101AL 55 55 18809 18747 506 62 136 10.101AL 55 55 18809 18747 506 62 136 10.101AL 59 9 798 28 701 121 10.11 19 29 798 28 762 11 121 10.11 11.1-4,2,2-4 0 708 762 11 121 10.1011.11-4,2,2-4 0 708 762 10 121 10.1011.11-4,2,2-4 20 708 70 1045 24 10.11-4,2,2-4 20 1045 24 11 121 10.11-4,2,2-5 20 1045 24 11 121 10.11-4,2,2-5 20 1045 24 24 24 10.11-4,2,2-5 20 1045 24 24 24 10.11-4,2,2-5 20 1045 24 24 24 10.11-4,2,2-5 20 1045 24 24 24 10.10		23 23	7886 28		
31. 101 AL 55 55 18809 18747 SUG 62 U 136 0. (MESAVERDE1) 55 55 18809 18747 SUG 62 U 136 0. (MESAVERDE1) 7 9 9 798 28 761 EBG 31 LI 121 0. (MESAVERDE1) 10 7 9 9 798 761 EBG 31 LI 121 11.1 10.1 11.1 3.1 121 121 121 10.1 10.1 20 10.6 2 11.1 121 10.1 10.1 28 761 EBG 31 LI 121 10.1 28 761 EBG 28 31 LI 121 10.1 28 28 761 EBG 31 LI 121 10.1 28 28 761 EBG 31 LI 121 10.1 28 28 28 28 28 28 10.1 28 28 28 28 28			10075 28		
3F 101AL 55 55 18809 18747 50 62 136 NG ASAVERDE1 55 55 18809 18747 505 0 136 NG ASAVERDE1 9 9 798 28 101 121 NG ASAVERDE1 9 9 798 28 101 121 State 101 1 201 102 101 121 State 1 9 9 798 28 State 101 6 798 28 101 State 101 101 121 121 State 101 102 104 101 State 101 104 104 101 State 104 104 104 104 State 104 104 104 104 State 104 104 104 State 104 <					
1 19 29 198 28 1 19 29N 10M F 9 9 708 762 81 11 121 1 19 29N 10M F 9 9 708 762 81 121 1 10 11 4 708 762 81 121 1 11 4 708 762 81 121 1 11 4 708 762 81 121 1 11 4 768	SE TUTAL	55 55	18809 18741	7 SUG 62 U 136	191
1 19 29 9 9 798 28 64 114 9 9 708 762 29 10 64 114 9 9 708 762 20 1121 64 114 9 9 708 762 20 121 1014RD 11-4,2,2-A 20 11046 24 121 1014RD 11-4,2,2-A 20 11046 24 121 1014RD 11-4,2,2-A 29 20 11046 24 1014RD 11-4,2,2-A 29 20 11046 24 1014RD 11-4,2,2-A 29 20 11046 24 1014RD 1104 24 11046 24 121 1104 11046 24 11046 24 14 1104 11046 24 11046 14 14 1104 11046 11046 24 14 14 11046 24 11046 24 14 14 11046 24 11046 24 14 14 11046 24 24 24 24 24 11046	0 (MESAVERUE) (MESAVERDE) Ne a				
19 29N 10M F 9 9 798 28 11 10M 11 9 9 798 731 EDC 1 121 11 10M 11 11 12 798 731 EDC 31 U 121 11 10M 11 11 12 1006 24 11065 24 110 121 11 10M 11 10 10 10 121 101 121 11 10M 11 10 10 10 121 101 11 10M 11 10 10 10 121 11 10M 11 10 10 10 10 11 10 10 10 10 10 11 10 10 10 10 10 11 10 10 <t< td=""><td></td><td>• • • •</td><td></td><td></td><td></td></t<>		• • • •			
IL LIARD IL LAS VERDEL 20 708 77.EDC 31.U 121 IL LIARD I.1.1-A.2.2-A 20 11065 24 31.U 121 IL LIARD I.1.1-A.2.2-A 20 20 11065 24 24 IL LIARD I.1.1-A.2.2-A 20 20 24 24 24 I.1.1-A.2.2-A 20 20 11065 24 24 24 I.1.1-A.2.2-A 20 20 11065 24 24 24 I.1-A.2.2-A 20 20 24 24 24 24 I.1-A.2.2-A 20 2105 24 24 24 I.1-A.2.2-A 21 <	4 19 29N 10M F	6 6	198 28		
ICHARD 1.1-A.2.2-A ICHARD 1.1-A.2.2-A P 1 JON VI F 20 20 11045 24 1 JON VI F 20 20 11045 24 5.11US CHIE FFLOWING CHIE CAS CHIE FFLOWING CHIE CAS CHIE CCLICULATING ULL NAME : URSULA SUL2BACH FFLOWING CAS LIFT SEXEDIAMITIUN ATTACH POSITION : DISTRICT ADMINISTRATOR GEAS LIFT CEXPLANATION ATTACH POSITION : DISTRICT ADMINISTRATOR FFLOWINED EEXPLANATION ATTACH SIGNATURE: UNSULE: UNISTRATOR	8e-101M	a	708	7 EPG 31 U 121	OET
9 104 9 20 1066 24 51105 645 645 645 645 645 645 6 6 6 645 645 645 645 6 0 1066 0 1066 24 6 0 0 0 0 1056 6 0 10 0 10 10 6 0 10 0 10 10 6 0 10 10 10 10 6 0 10 10 10 10 6 0 10 10 10 10 1 0 10 10 10 10 1 0 10 10 10 10 1 0 10 10 10 10 1 0 10 10 10 10 1 0 10 10 10 10	r (mesaverde) (mesaverde) icharu l,1-a,2,2-a				
STATUS CONE GAS CIDE OLE CODE		20 20	11065 24		
\$INTUS CANEGAS CUDEGAS CUDEOIL CODEFFLOWINSXUSED UFF LEASECCIRCULATING UILNAME: URSULA SULZBACHPPUHIPINGDUSED FOR DRILLINGLLUSINAME: URSULA SULZBACHGGAS LIFTGGAS LIFTGGAS LIFTSSEDIMENIATIONPOSITIONDISTRICT ADMINISTRATORFFLMP ANANDUMEDEEXPLANATIUN ATTACHSSEDIMENIATIONPOSITIONDISTRICT ADMINISTRATORFFLMP ANANDUMEDEEXPLANATIONATTACHS.GNATUREDATF:C					
FFLOWING XUSED OFF LEASE CCIRCULATING UIL NAME URSULA SULZBACH PPUMPING DUSED FOR DRILLING LLUSI DUSED FOR DRILLING LLUSI GGAS LIFT GGAS LIFT GGAS LIFT DISTRICT ADMINISTRATOR FFUNP ANANDUNED EEXPLANATION POSITION : DISTRICT ADMINISTRATOR FTLMP ANANDUNED EEXPLANATION ATTACH DATFIC	914105-Conc	19£	<u>011- CODE</u>		
GGAS LIFT GGAS LIFT SSEDIMENIATION POSITION : DISTRICT ADMINISTRATOR STITCHING ADMINISTRATOR 1TLMP ANANDUNED EEXPLANATION ATTACHED SIGNATURE: DATE: DATE:C	FFLOWING XUSED 0	JFF LEASE For drilling	CCIRCULATING ULL	NAME : URSULA SULZBACH	
DATE:C SIGNATURE: DATE:C DATE:C DATE:C DATE:C DATE:C DATE:C	66AS LIFT 66AS LI	IFT LAGE ESTA	SSEDIMENIATION EEXPLANATION AIT	POSITION : DISTRICT ADMINISTRATOR	
	E E E E E E E E E E E E E E E E E E E	VATION ATTACHED		SIGNATURE: DATE:C	3/22/85
0015GUN11NUED VVENTED 740-2590				PHUNE : (303) 740-2590	

		UIL.CLASERVATIUM.LUAMISSIUN AIUR⁺S MONTHLY REPORT	FUI	RM. C-115-EDP
YNAPTAY: HANNEGO UIL COAPANY	A00RESS:P.0. BUX 3249	ENGLEWOOD, COLURADO 80155	MUNTH:FEBRUARY .1	385 PAGE 145 OF
	ATER TUTAL LIUUTUS PRUDU SCTTON	C EU	UN OF 6AS UI SPUST	110N UF 01L
	MUNIHLY ACTUAL DIL DIL WAT	ER GAS TRA	C ULL UN BARRELS NS O HAND TO TR	C ULL UN ANS ULHAND
AFL U A THU PAG I VOLUME	ALLON, PRODUCD PROD PPESS, [BBL] (BBL) (BB	UCU PRODUCD UAYS POR	I - U BEG-UF IRANS - PUI DTHER E MONIH PERIER TE	RI- U ENU UF R DIHFR F MONTH
TERN (CHACEA) (CHACEA)				
I LUELRCE 126 TOAK, CHACT				
24 N 23N 94 E		7626 18		
LEASE FOTAL		1626 1626 EPG		
JEERU (CHACRA) (CHACRA)				
LE G 34 29N 9M		1273 28		
LEASE TUITAL		1273 1242 EPG	ΠΕ	
.1580-10140841-10440841 .14685113-2-24-825				
- 21 B - 3-3 29N - 9N E		424 14		
LEASE TOTAL		424 407 EPG	17 U	
JIERO (CHACRA) (CHACRA) PAVNE A				
IE N 19 20N IOM F		971 2B		
			والمتعاوية المحافظ والمحافظ والمحافظ المحافظ المحافظ والمحافظ والمحافظ والمحافظ والمحافظ والمحافظ والمحافظ والمحافظ	
Ferrie CORE	CAS CODE XUSEU OFF LEASE	OLL CUDE CCIRCULATING UIL	NAME : URSULA SULZBAC	Ŧ
66AS L11 TA	G	S SEDIMENTATION E EXPLANATION ALTACH	PUSIFION : DISTRICT ADMIN	ISTRATUR
11EXP ABANDUNLU	EEXPLANATION ALLACHED		SIGNATURE:	UATE:U3/22/85
0015CcHEINUED	V • • • • VENTED		PHUNE : (303) 740-2530	
		T T T		

JLNAME FASE NAME	WATER			ULISUASIO	JN UF 6A5*				
LEADE NAME		AC TUAL			C 	OLL-ON BAR	RELS	C 011	0N
	011	01L WAT	LER GAS	IRAN	15 0	HAND T	D TRANS	D HAN	0
L SEC TWP RNG T VOL	JME PRESS. (BBL)	(BBL) (BB	L) (MCF) PRUD	SOLU TER	OTHER E	MUNIH POR	TER TER OT	THER E MUN	HI
vel L S									
TTERSUN									
ASE FOTAL			1916	1876 EPG	40 N				
V (MAKUTA) (DAKUTA) TNL A									
C 19 29N 10H F	37	37	3197 31						
N 19 29N 10W F	5	5	155 26						
ISE TUTAL	42	24	3352	3218 EPG	14 0	124			166
N LUAKUTAJ LUAKUTAJ LCE									
K 13 28N 8M F	9	9	1286 31						
U 13 28N 8W F	16	26	16 4242						
B 13 28N 8H F	64	64	16 8886						
A 15 28N 8W F	58	28	2002			•			
C 15 28N 8H F	63	63	6403 21						
A 14 28N 8W F	25	25	6219 23						
1 14 28N 8W F	45	45	3974 21						
STATUS CUDE	GAS CUDE		OIL CODE			-			
FFLOWING PPUMPING GGAS LIFT	XJSED OFF L UUSED FOR D GGAS LIFT	EASE RILLING	CCIRCULATING LLOST SSEDIMENTATI	DN DI	NAME PUSITION	: URSULA : DISTRIC	SULZBACH T ADMINISTRA	TUR	
SSHUT IN 1EMP ABANDUNED 1INJECTION	LLOST (MCF EEXPLANATIC RREPRESS-PR	EST) N ATTACHED ESS MAINT	EEXPLANATIUN	I ATTACH	SIGNATURE	••	DA	ITE:04/24/8	5
DDISCONTINUED	VVENTED	AÇF			PHONE	1:13031 2	40-2590		

JENAAL Fase name	HATER	IC EU=	12PUSTTU	4 OF GAS=	D15PUS111	10 JO NO	
	UIL OIL WAT	ER GAS	TRANS	C CIL UN	T BARRELS IO IRAN	S	C OIL UN D HAND
U L SEC TWP RNG T VULUM	E PRESS. (BBL) (BBL) (BE	UCD PRODUCD DAYS	CLD TER	- D BEG.01 OTHER E MUNIH	F TRANS PORT PORTER TER	OTHER	U END OF E MONTH
AELLS	P \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$						
JRE C & 20N 84 E		103 4					
1 430N 8W F		350					
H 5 30N 8H F		1 186					
P 5 30N 8M F		152 4					
N 9 30N 8W F		257 4		4			
0 9 30N 8M F		469 1					
ISE TUTAL		3206	3436 506	816 U U1			518
CU TMESAVERDEJ TMESAVERD LINDA M. AGREE NU. 91-DUII62							
B 20 304 84 F	_	424 5					
U 20 30N 8W F		5 +01					
ISE TOTAL		533	521 SUG	12 U 191			161
U (MESAVERDE) (MESAVERD NE A							
N 19 29N 10M F	2	759 25					
STATUS CODE FFLOMING PPUMPING GGAS LIF SSHUL IN TTEMP ABANDUNED LDISCUNTINUED	GAS CUDE XUSED OFF LEASE DUSED OFF LEASE DUSEU FOR DRILLING GLOST (MCF EST) LLOST (MCF EST) RVENTED VVENTED UUSED GN LEASE	UIL CODE CCIRCULATING LLUST SEXPLANATION EEXPLANATION	UIL N ATTACH	NAME : URS PUSTFIUN : URS SIGNATURE : 130 PHUNE : 130	SULA SULZBACH	IRAJUR -DATE:047	/24/85

L SEC TAP RNG T VUL	UIL ACTUAL UIL UIL WAT ALLUM. PRODUCD PRUD UME PRESS. (BBL) (BBL) (BB	LR GAS TRAI UCD PRODUCD DAYS TRAI L) (MCF) PRUD SULD TER	C OIL ON BARRELS C OIL ON NS 0 HAND TO IRANS 0 HAND NS 0 HAND TO IRANS 0 HAND T D BEG.OF TRANS PORT D ENO T D BEG.OF TRANS PORT D ENO T D BEG.OF TRANS OTHER E MONTH	
> MELLS			一种学家 化化学学 化化学学 化化学学 化化学学 化化学学 化化学学 化化学学 化	?
ERG (CHACRA) (CHACRA) JACKSUN 1,14,616				
LE G 34 29N 9M F ·		1916 25		7
נאני דטואן.		1916 1888 EPC	28 U	4
.KU (CHACRA) (CHACRA) JACKSON 2,24,62E				•
E 8 33 29N 9H F-		1927 8		7
FASE TUTAL		1927 1917 EPG	10 U	÷
RO (CHACRA) (CHACRA) AVNE A				<u>F</u>
LE N 19 29N 10M F		927 25	-	
EASE TUTAL		927	43 U	
NU ILHAUKAI ILHAUKAI				
P 25 26N 6W F		1657 31		
STATUS CODE	GAS CONF	ALL CLOF		
F PL (JW ING P PUMP ING	XUSED UFF LEASE DUSED FOR DRILLING	CCIRCULATING UIL LLUST	NAME : URSULA SUL2BACH	,
GGAS LIFT SSHUT IN I TEMB ADARED	GGAS LIFT LLUST (MCF EST) F EVENAUATTEN ATTATUEN	SSEDIMENIATION EEXPLANATION ATTACH	POSITION : DISTRICT ADMINISTRATOR	
IINJECTION UINJECTION	KREPRESS-PRESS MAINT VVENTED		PHUNE : 13031 140-2590	i
	UUSED ON LEASE			1

---- OPERATOR'S MONIHLY REPORT

CHAPTER III FIELD OPERATIONS

14-

RULE 3-100 POLLUTION ABATEMENT

RULE 3-101 PROHIBITION OF POLLUTION

(a) All operators, contractors, drillers, service companies, pipepulling and salvaging contractors, or other persons shall at all times conduct their operations and drill, equip, operate, produce, plug and abandon all wells drilled for oil or gas, service wells or exploratory wells (including seismic, core and stratigraphic holes) in a manner that will prevent pollution and the migration of oil, gas, salt water or other substance from one stratum into another, including any fresh water bearing formation. Pollution of surface or subsurface fresh water by deleterious substances used in connection with the exploration, drilling, producing, refining, transporting or processing of oil or gas is hereby prohibited.

المعقودية المتعاصين الم

(b) Sections 305, 306, 307 and 308 of Title 52, Oklahoma Statutes Annotated, governing the drilling, operation and plugging of oil and gas wells in workable coal beds are hereby adopted as rules of the Commission as fully as if set out verbatim herein.

RULE 3-102 ADMINISTRATION AND ENFORCEMENT OF RULES

The Manager of Pollution Abatement shall supervise and coordinate the administration and enforcement of these rules under the direction of the Director of Conservation and the Commission.

RULE 3-103 COOPERATION WITH OTHER AGENCIES

(a) These rules shall not be construed as modifying the rights, obligations or duties of any person under any law of this State, or under any order, rule or regulation of the Oklahoma Water Resources Board, State Department of Health, Oklahoma-Wildlife Conservation Commission, State Board of Agriculture, Department of Pollution Control, or any other agency of this State with respect to the pollution of fresh water.

(b) Whenever a written complaint against any person is filed with the Commission, alleging pollution as prohibited by Rule 3-101, the Manager of Pollution Abatement shall immediately initiate such action as may be necessary or appropriate to abate the pollution.

RULE 3-104 PITS AND TANKS

(a) Pits and tanks for drilling mud or deleterious substances used in the drilling, completion and recompletion of wells shall be constructed and maintained so as to prevent pollution of surface and subsurface fresh water.

(b) Deleterious fluids other than fresh water drilling fluids that were used in drilling or workover operations, which are displaced or produced in well completion or stimulation procedures such as from

ILLEGIBLE

fracturing, acidizing. swabbing, drill stem tests, and any other well stimulation process, shall be collected into a plastic lined pit of at least 30 mil, or metal tank and maintained separate from above-mentioned drilling fluids to allow for separate and legal disposal. (3-30-82)

RULE 3-105 SURFACE AND PRODUCTION CASING

(a) Owners, operators and drilling contractors shall comply with Rule 3-206, "Drilling and Casing Procedures" and Rule 3-301, "Approval of Enhanced Recovery Injection Wells or Disposal Wells". (3-16-81)

(b) In the event a rupture, break or opening occurs in the surface or production casing, the owner, operator or drilling contractor shall take immediate action to repair it, and shall report the occurence to the appropriate District Office or the Manager of Pollution Abatement.

RULE 3-106 FRACTURE AND ACIDIZING

In the completion of an oil, gas, injection, disposal or service well, where acidizing or fracture processes are used, no oil, gas or deleterious substances shall be permitted to pollute any surface and subsurface fresh water.

RULE 3-107 SWABBING AND BAILING

In swabbing, bailing or purging a well, all deleterious substances removed from the bore hole shall be placed in adequate pits or tanks, and no such substances shall be permitted to pollute any surface and subsurface fresh water.

RULE 3-108 PRODUCING OIL AND GAS WELLS

All wellhead connections, surface equipment and tank batteries shall be maintained at all times so as to prevent leakage of oil, gas, salt water or other deleterious substances.

RULE 3-109 OIL STORAGE

Oil storage tanks shall be constructed so as to prevent leakage; and dikes or walls, where necessary, shall be constructed so as to prevent oil or deleterious substances from polluting surface and sub-surface water.

RULE 3-110 USE OF EARTHEN PITS

RULE 3-110.1 USE OF ON-SITE EARTHEN PITS

(a) An earthen pit serving only the lease or unit on which it is located is defined as an on-site pit. An on-site earthen pit used for the handling, storage or disposal of any deleterious substance produced, obtained, or used in connection with the drilling or

operation of wells, shall be constructed of, or sealed with, an impervious material, and shall be used and operated at all times so as to prevent any escape of any deleterious substance. (4-2-81)

(b) No on-site earthen pit shall be constructed, enlarged, reconstructed, or used until the District Office has issued a written permit for its use and assigned a permit number. The operator shall file Form 1014, in triplicate, with the appropriate District Office. When approved, one copy will be returned to the operator as a permit which shall bear the permit number assigned. The operator shall post a waterproof sign bearing the name of the operator and the permit number within twenty-five (25) feet of the pit. (4-2-81)

(c) Every on-site earthen pit not having a permit and permit number shall be emptied and leveled. (4-2-81)

(d) Paragraph (b) and (c) above, shall not apply to:

dvj

(1) An emergency pit constructed solely to prevent escape of substances. Provided, an emergency pit shall not be constructed in pervious soil unless lined, and shall never be used for the storage of any substance. (4-2-81)

(2) A circulating, frac or reserve mud pit used in drilling, deepening, testing, reworking or plugging a well while such operations are in progress. Each reserve pit shall be leveled within twelve (12) months after drilling operations cease. One six-month extension may be granted by the District Manager for reasonable cause. Each circulating pit shall be emptied and leveled within sixty (60) days after the drilling operations cease. Each fracture pit shall be emptied and leveled within sixty (60) days after completion of fracture operations. Provided, however, upon application, notice and hearing, and not less than ten (10) days notice by restricted mail to the occupying owner or tenant of the land upon which the pit is located, and for good cause shown, reasonable extensions of the times set out above may be granted. (4-2-81)

(3) A burn pit used solely to burn waste oil 'or other flammable material. Provided, a burn pit shall never be used for storage of any substance. (4-2-81)

(e) Notice of construction of an on-site emergency pit or burn pit shall be filed, in triplicate, with the appropriate District Office on Form 1014. The appropriate District Office shall be notified in writing of each use of an emergency pit. (4-2-81)

(f) No on-site earthen pit shall be constructed or maintained so as to receive outside runoff water and the fluid level of each earthen pit shall be maintained at all times at least eighteen (18) vertical inches below the lowest point of the embankment. (3-30-81)

(g) The appropriate District Office shall be notified in writing whenever an on-site earthen pit is abandoned. (4-2-81)

RULE 3-110.2 USE OF OFF-SITE EARTHEN PITS

م معنی در در در معنی در در <mark>فکول در مع</mark>دی در در معنی معنی در معنی معنی در معنی معنی در معنی معنی در معنی در معنی

(a) Any earther pit not defined in Rule 3-110.1 is defined as an off-site earthen pit. An off-site earthen pit used for the handling, storage or disposal of any deleterious substance produced, obtained, or used in connection with the drilling or operation of wells, shall be constructed of, or sealed with, an impervious material, and shall be used and operated at all times so as to prevent any escape of any deleterious substance. (3-30-82)

(b) No off-site earthen pit shall be constructed, enlarged, reconstructed, or used until the District Office has issued a written permit for its use and assigned a permit number. The operator shall file Form 1014, in triplicate, with the appropriate District Office. When approved, one copy will be returned to the operator as a permit which shall bear the permit number assigned. The operator shall post a waterproof sign bearing the name of the operator and the permit number within twenty-five (25) feet of the pit. If Form 1014 is not approved by the appropriate District Office, or if a protest is received at the district level, the operator may file an application for hearing with the Commission, which shall be set for hearing. (4-2-81)

(c) Notice that an application has been filed with the Commission shall be published by the applicant in a newspaper of general circulation and published in the county in which the pit is located and not less than ten (10) days notice by restricted mail to the occupying owner or tenant of the land upon which the pit is located. The applicant shall file proof of publication prior to the hearing. (4-2-81)

(d) Every off-site earthen pit not having a permit and permit number shall be emptied and leveled. (4-2-81)

(e) Every off-site earthen pit shall be completely enclosed by a permanent woven wire fence of at least four (4) feet in height. (4-2-81)

(f) No off-site earthen pit shall be constructed or maintained so as to receive outside runoff water and the fluid level of each earthen pit shall be maintained at all times at least eighteen (18) vertical inches below the lowest point of the embankment. (3-30-82)

(g) The appropriate District Office shall be notified in writing whenever an off-site earthen pit is abandoned. (4-2-81)

(h) The provisions of Rule 3-110.2 shall not apply to an off-site reserve pit used for primary drilling operations. (4-2-81)

(i) Use of off-size earthen pits designed specifically for disposal of deleterious substances from more than one well size shall meet the additional following requirements: (3-30-82)

ILLEGIBLE

(1) No off-site earthen pit shall be constructed OT Maintained so as to receive outside runoff water and the fluid level in the off-site earthen pit shall be maintained at all times at least twenty-four (24) vertical inches below the lowest point of the embankment. (3-30-82) ****

- (2) No off-site earthen pit shall be constructed in the 100 year flood plain of any drainage basin. (3-30-82)
- (3) No off-site earthen pit shall contain fluids with a chloride content greater than 3500 MG/L. (3-30-82)
- (4) No off-site earthen pit shall contain a soil seal less than 12 inches thick with the co-efficient of permeability no greater than 10-⁷ cm/sec. If a Bentonite seal is to be used, the Bentonite shall be mixed to form the previously mentioned permeability requirement into the soil to a uniform depth of at least 6 inches. (3-30-82)
- (5) Two test borings shall be drilled to a minimum depth of 25' below the bottom of the earthen pit, and to be located outside of and near the low elevation side of the pit. The borings shall be submitted with the application to demonstrate the subsurface profile of the proposed pit. (3-30-82)
- (6) Any earthen pit that contains deleterious substances shall be lined so as to prevent contamination of the fresh water. The type of liner proposed shall be approved by the Commission's District Manager and Manager of Pollution Abatement. (3-30-82)
- (7) Written certification that the seal was provided and constructed in accordance with Commission-approved specifications shall be furnished by the supplier, project engineer, or independent soils laboratory. (3-30-82)
- (8) All off-size earthen pits shall be filled and leveled within one (1) year after abandonment. (3-30-82)
- (9) No abandoned mines or strip pits shall be used for disposal of oilfield waste unless the geology and hydrology demonstrate that such disposal will not contaminate the fresh water of the state. (3-30-82)
- (10) No off-site earthen pit shall contain deleterious substances unless the geology and hydrology demonstrate that such disposal will not contaminate the fresh water of the state. (3-30-81)

RULE 3-110.3 AGRICULTURAL USE OF CIL FIELD WASTE PROMIBITED

Any spreading and/or soil farming of oil field drilling waste shall be prohibited.

and a second
RULE 3-111 REFINING AND PROCESSING OF OIL AND GAS

المستحد والمعالية المستحد والمراجع والمتحد والمحاد والمحاد والمحاد والمحاد والمحاد والمحاد والمحاد والمحاد والم

(a) All deleterious substances obtained or used in the processing and refining of oil and gas shall be disposed of in a manner that will prevent the pollution of fresh water.

(b) Chemicals, gasolines, oils and other deleterious substances shall be stored, where necessary, in tanks or containers of a material and of a construction and in a manner that Will prevent the escaping, seepage, or draining of such liquids into any fresh water.

RULE 3-114 PROTECTION OF MUNICIPAL WATER SUPPLIES

The Commission, upon application of any municipality or other governmental subdivision, may enter an order establishing special field rules within a defined area to protect and preserve fresh water and fresh water supplies.

RULE 3-120 INSPECTION AND ENFORCEMENT

RULE 3-121 INFORMAL COMPLAINTS

If, upon information or inspection, it is found that an operator, processor, refiner, or transporter of oil or gas is violating any rule or order of the Commission or causing damage or pollution to any oil or gas formation, surface or underground fresh water, the Conservation Division shall cause an investigation to be made and shall file a written administrative complaint, in duplicate, on Form 1036, and one copy of Form 1036 shall be delivered or mailed to the operator. If, upon subsequent inspection it is determined that the operator has taken the corrective actions specified the complaint shall be dismissed; otherwise, formal application will be made to the Commission for an order shutting down the lease or well, and for any other appropriate remedy; pending the outcome of the final determination of the Commission on the formal application, any District Manager shall, after an on-site inspection, have the authority to shut down those operations where conditions appear obvious that surface or underground pollution is occurring. (4-2-81)

RULE 3-200 DRILLING AND DEVELOPMENT

RULE 3-201.1 OPERATORS AGREEMENT, FINANCIAL STATEMENT, ETC.

(a) Each person who drills or operates any well within the State of Oklahoma for the exploration, development or production of oil or gas, or as an injection or disposal well, shall furnish his agreement in writing to plug the well at the time and in the manner prescribed by the Rules and Regulations of the Commission and the laws of the State of Oklahoma. The agreement shall provide that if the Commission determines that he has neglected, failed or refused to plug any well in compliance with the Commission's Rules and Regulations, he will forfeit or pay to the State, through the

39

RAILEOAD COMMISSION OF TEXAS OIL AND CAS DRVISION AND THAN COMMINSION AND THAN THAN THAN THE AND THAN THAN THE AND THAN THAN THE AND THE AND THAN THE AND THE

NOTICE OF RULE ADDATION

The following is a copy of amenaed Statewide Rule 8 relating to <u>Hater</u> <u>Protection</u> (16 TAC 13.8) as amended by the Railroad Commission of Texas on March 5, 1964. These amendments will go into effect on May 1, 1984.

Legal Counsel Legal Counsel

of the well bore of a well being completed or worked over.

(5) Drilling fluid disposal pit -- Pit, other than a reserve pit, used

spent completion fluids, workover fluids, and drilling fluid, silt, debris, water, brime, oil scum, paraffin, or other materials which have been cleaned out

dispenal at a tidal disposal facility, or pit used for storage of saltwater or other oil and gas wastes prior to disposal at a disposal well or fluid injection well. In some cases one pit is both a collecting pit and a stimming pit.

(4) <u>Completion/workover pit</u> -- Pit used for storage or disposal of

displace hydrocarbons from an underground hydrocarbon storage facility.

(3) Collecting pit -- Pit used for storage of saltwater prior to

(2) Brine pit -- Pit used for storage of brine which is used to

burn pits.

otherwise:

section, shall have the following meanings, unless the context clearly indicates

(a) <u>Definitions</u>. The following words and terms, when used in this

for storage of basic sediment removed from a production vessel or from the bottom of an oil storage tank. Basic sediment pits were formerly referred to as

(1) <u>Basic sediment pit</u> -- Pit used in conjunction with a tank battery

for disposal of spent drilling fluid.

3

Drilling fluid storage pit -- Pit used for storage of drilling

An Equal Opportunity I

by a temporary shutdown of a disposal well or fluid injection well and/or

produced saltwater for Hamited period of time. Use of the pit is necessitated

(7) Emergency saltwater storage pit -- Pit used for storage of

among several leases.

fluid which is not currently being used but which will be used in future drilling operations. Drilling fluid storage pits are often centrally located Railroad Commission of Texas Oil and Gas Division

3.8. Hater Protection.

Page 1 of 21

Railroad Commission of Texas Oil and Gas Division

Page 2 of 21

associated equipment, by temporary overrice of soltwater storage tanks on a producing lease, or by a producing well loading up with formation fluids such that the well may die. Emergency saltwater storage pits may sometimes be referred to as emergency pits or blowdown pits.

(B) <u>flare pit</u> -- Pit which contains a flare and which is used for temporary storage of liquid hydrocarbons which are sent to the flare during equipment malfunction but which are not burned. A flare pit is used in conjunction with a gasoline plant, natural gas processing plant, pressure maintenance or repressurizing plant, tant battery, or a well.

(9) <u>Fresh makeup water pit</u> -- Pit used in conjunction with drilling rig for storage of water used to make up drilling fluid.

(10) Gs plant evaporation/retention pit -- Pit used for storage or disposal of cooling tower blowdown, water condensed from natural gas, and other wastewater generated at gasoline plants, natural gas processing plants, or pressure maintenance or repressurizing plants.

(11) <u>Mud circulation off</u> -- Pit used in conjunction with drilling rig for storage of drilling fluid currently being used in drilling operations.

(12) <u>Reserve pit</u> -- Pit used in conjunction with orilling rig for collecting spent drilling fluids; cuttings, sands, and silts; and wash water used for cleaning drill pipe and other equipment at the well site. Reserve pits are sometimes referred to as slush pits or mud pits.

(13) <u>Saltwater discosal pit</u> -- Pit used for disposal of produced saltwater.

(14) <u>Skimming pit</u> -- Pit used for skimming oil off saltwater prior to disposal of saltwater at a tidal disposal facility, disposal well, or fluid injection well.

Railroad Commission of Texas Otl and Gas Division

Page 3 of 21

(15) <u>Mashout pit</u> -- Pit located at truck yard, tank yard, or disposal facility for storage or disposal of oil and gas waste residue washed out of tructs, mobile tanks, or skid-munited tanks.

(16) <u>Mater condensate pit</u> -- Pit used in conjunction with a gas pipeline drip or gas compressor station for storage or disposal of fresh water condensed from natural gas.

(17) Generator -- Person who generates of and gas wastes.

(18) <u>Surrier</u> -- Person who transports oil and gas wastes generated by a generator. A carrier of another person's pil and gas wastes may be a generator of his own oil and gas wastes.

(19) <u>Receiver</u> -- Person who stores, handles, treats, reclaims, or disposes of oil and gas wastes generated by a generator. A receiver of another person's oil and gas wastes may be a generator of his own oil and gas wastes.

(20) <u>Director</u> -- Director of the Oil and Gas Division or his staff delegate designated in writing by the Director of the Oil and Gas Division or

the commission.

(21) <u>Person</u> -- Natural person, corporation, organization, government or governmental subdivision or agency, business trust, estate, trust, partnership, association, or any other legal entity.

(22) <u>Affected person</u> — Person who, as a result of the activity sought to be permitted, has suffered or may suffer actual injury or economic damage

other than as a member of the general public.

(23) To dewater -- To remove the free water.

(24) <u>To dispose</u> -- To engage in any act of disposal subject to regulation by the commission including, but not limited to, conducting, draining, discharging, emitting, throwing, releasing, depositing, burying, landfarming, or allowing to seep, or to cause or allow any such act of disposal.

.

Refirmed Commission of Texas Oil and Gas Division

Page 4 of 21

(25) <u>Landfarming</u> -- A waste management practice in which oil and gas mostes are mixed with or applied to the land surface in such a manner that the

wste will not migrate off the landfarmed area. (26) <u>Oil and gas wastes</u> -- Materials to be disposed of or reclaimed which have been generated in connection with activities associated with the esploration, development, and production of oil or gas or geothermal resources, or activities associated with underground storage of hydrocarbons. The term oil and gas wastes includes, but is not limited to, saltwater, other mineralized water, sludge, spent drilling fluids, cuttings, waste oil, spent completion fluids, and other liquid, semi-liquid, or solid waste material.

(27) <u>01 field fields</u> -- Fluids to be used or reused in connection with activities associated with the exploration, development, and production of oil or gas or geothermal resources, or activities associated with underground storage of hydrocarbons. The term oil field fluids includes, but is not limited to, drilling fluids, completion fluids, surfactants, and chemicals used to detoxify oil and gas wastes.

(28) <u>Polyution of surface or subsurface water</u> -- The alteration of the physical, thermal, chemical, or biological quality of, or the contamination of, any surface or subsurface water in the state that renders the water harmful, detrimintal, or injurious to humans, animal life, vegetation, or property, or to public health, safety, or welfare, or impairs the usefulness or the public health, tafety, or welfare, or reasonable purpose.

(29) <u>Surface or subsurface water</u> -- Groundwater, percolating or otherwise, suitable for <u>domestic</u> or livestock use, irrigation of crops, or industrial use, and lakes, bays, ponds, impounding reservoirs, springs, rivers, streams, creets, estuaries, marshes, inlets, canals, the Gulf of Mexico inside the territorial limits of the state, and all other bodies of surface water,

> Adiirodd Commission of Texas Oil and Gas Division

> > Page 5 of 21

natural or artificial, inland or coastal, fresh or salt, manigable or nonnavisable and including the body and basks of ill communications and the same of

nonnavigable, and including the beds and banks of all watercourses and booses of surface water, that are wholly or partially inside or bordering the state or inside the jurisdiction of the state.

(b) <u>Mo pollution</u>. We person conducting activities subject to regulation by the commission may cause or allow pollution of surface or subsurface water in the state.

(c) <u>Exploratory wells</u>. Any oil, gas, or geothermal resource well or well drilled for exploratory purposes shall be governed by the provisions of statewide or field rules which are applicable and perrain to the drilling. safety, casing, production, abandoning, and plugging of wells.

(d) Pollution control.

(1) <u>Prohibited disposal methods</u>. Except for those disposal methods authorized for certain wastes by paragraph (3) of this subsection or subsection (e) of this section, or disposal methods permitted pursuant to § 3.9 of this title (relating to Disposal Wells) or § 3.46 of this title (relating to Fluid Injection into Productive Reservoirs) (Bules 9 or 46), no person may dispose of any oil and gas wastes by any method without obtaining a permit to dispose of such wastes. The disposal methods prohibited by this paragraph include, but are not limited to, the unpermitted discharge of oil field brines, geothermal resource waters, other mineralized waters, or drilling fluids into any watercourse or drainageway, including any drainage ditch, dry creek, riowing creek, river, or any other body of surface water.

(2) <u>Prohibited pits</u>. No person may maintain or use any pit for storage of all or all products. Except as authorized by paragraph (4) of this subsection, no person may maintain or use any pit for storage of all field fluids, or for storage or disposal of all and gas wastes, without obtaining a 11 and bas Division

Sailroad Commission of Texas Oil and Gas Division

Page 6 of 21

backfill and compact the pit in the time and manner required by the director. a permitted manner or in a manner authorized by paragraph (3) of this Prior to backfilling the pit, the person maintaining or using the pit shall, in subsection nor permitted, then the person maintaining or using the pit shall maintenance of the pit is neither authorized by paragraph (4) or (7)(C) of this pits; and gas plant evaporation/retention pits. If, after the effective date of crilling fluid disposal pits (ather than reserve pits or slush pits); washout of such permit while using the pit, and if the person has permission of the subsection, dispose of all oil and gas wastes which are in the pit. fluids, or for storage or disposal of oil and gas wastes, and the use or this subsection, a person maintains or uses a pit for storage of oil field brine pits; drilling fluid storage pits (other than mud circulation pits); disposal pits; emergency saltwater storage pits; collecting pits; skimming pits; include, but are not limited to, the following types of pits: salbwater receiver to use the pit. The pits required by this paragraph to be permitted use a pit if a receiver has such a permit, if the person complies with the terms permit to maintain or use the pit. A person is not required to have a permit to

for cleaning drill pipe and other equipment at the well site.

(D) Other drilling fluid. A person may, without a permit, dispose

concentration of 3,000 milligrams per itter (mg/l) or less; and wash water used sands, and silts obtained while using water base drilling fluids with a chloride concentration of 3,000 milligrams per liter (mg/l) or less; drill cuttings, landfarming will occur: water base drilling fluids with a chloride person has the written permission of the surface owner of the tract where are disposed of on the same lease where they are generated, and provided the dispose of the following oil and gas wastes by landfarming, provided the wastes

ω 3 Authorized disposal methods.

other than disposal into surface mater of the state. pipeline drips or gas compressor stations, provided the disposal is by a method of fresh water which has been condensed from natural gas and collected at gas (A) Fresh water concensate. A person may, without a permit, dispose

disposal into surface water of the state. concrete, glass, wood, and wire, provided the disposal is by a method other than and essentially insoluble oil and gas wastes including, but not limited to, (8) Inert wastes. A person may, without a permit, dispose of inert

Railroad Commission of Texas Oil and Gas Division

(C) Low chloride drilling fluid. A person may, without a permit

Page 7 of 21

Railroad Commission of Texas Oil and Gas Division

Page 8 of 21

pits, flare pits, fresh makeup water pits, and water condensate pits on the following conditions: reserve pits, mud circulation pits, completion/workover pits, basic segiment (4) Authorized pits. A person may, without a permit, maintain or use

deposit or cause to be deposited into a reserve pit or mud circulation pit any (A) Reserve pits and mud circulation pits. A person shall not

oil field fluids or oil and gas wastes other than the following: (i) drilling fluids, whether fresh water base, saltwater base.

circulating drilling fluids; (if) drill cuttings, sands, and silts separated from (he

or oil base;

(iii) wash water used for cleaning drill pipe and other equipment

at the well site;

(iv) drill stem test fluids; and

(v) blowout preventer test fluids

(B) <u>Completion/workover pits</u>. A person shall not deposit or cause

materials cleaned out of the well bore of a well being completed or worked over. gas wastes other than spent completion fluids, workover fluids, and to be deposited into a completion/workover pit any oil field fluids or oil and (C) <u>Basic sediment pits</u>. A person shall not deposit or cause to be the

covered by a basic sediment pit shall not exceed 250 square feet. other than basic sediment removed from a production vessel or from the bottom of total capacity of a basic sediment pit shall not exceed 50 barrels. The area sediment pit, a person may not deposit oil or free saitwater in the pit. The an oil storage tank. Although a person may store basic sediment in a basic deposited into a basic sediment pit any oil field fluids or oil and gas wastes

by methods authorized by this paragraph shall not extend the time allowed for whose use or maintenance is authorized by paragraph [4] of this subsection. backfilling any reserve pit, mud circulation pit, or completion/workover pit (F) Effect on backfilling. A person's choice to dispose of a waste well being completed or worked over.

fluids, workover fluids, and the materials cleaned out of the well bore of a disposed of at the same well site where they are generated: spent completion pit, provided the mastes have been dematered, and provided the wastes are dispose of the following oil and gas wastes by burial in a completion/workover drilling fluids and wastes allowed to be landfarmed without a permit. chloride concentration in excess of 3,000 milligrams per liter (mg/l); and those while using oil base drilling fluids or water base drilling fluids with a (mg/1) but which have been dewatered; drill cuttings, samds, and silts obtained which had a chloride concentration in excess of 3,000 milligrams per liter of at the same well site where they are generated: water base drilling fluids of the following oil and gas wastes by burial, provided the wastes are disposed

Completion/workover pit wastes. A person may, without a permit,

Ē

wastes. year of cessation of drilling operations. pit according to the following schedule: pipeline drips or gas compressor stations. be deposited into a water condensate pit any oil field fluids or oil and gas be ceposited into a fresh makeup water pit any oil field fluids or oil and gas Satiroad Commission of Texas within one year of cessation of drilling operations. fluids with a chloride concentration of 6,100 milligrams per liter (mg/l) or pit, flare pit, or water concensate pit shall dewater, backfill, and compact the circulation pit, fresh makeup water pit, completion/workover pit, besic sediment wistes other than fresh water convolensed from natural gas and collected at gas Hiquid hydrocarbons in a flare pit for more than 48 hours at a time. hyprocarbons designed to go to the flare during upset conditions at the well, tank battery, or gas plant where the pit is located. A person shall not store into a flare pit any oil field fluids or oil and gas wastes other than the (E) Fresh makeup water pits. A person shall not deposit or cause to (G) Backfill requirements. (F) <u>water condensate puts</u>. A person shall not deposit or cause to e (i) A person who maintains or uses a reserve pit, mud Flare pits. A person shall not deposit or cause to be deposited

Reserve pits and mud circulation pits which contain

less and fresh makeup water pits shall be dewatered, backfilled, and compacted

(mg/l) shall be dewatered within 30 days and backfilled and compacted within one fluids with a chloride concentration in excess of 6,100 milligrams per liter (11) Reserve pits and mud circulation pits which contain

shall be dewatered within 30 days and backfilled and compacted with 120 days of (III) All completion/workover pits used when completing a well

Railroad Commission of Texas Oil and Gas Division

Page 9 of 21

Page 10 of 21

of completion of workover operations. well completion. All completion/workover pits used when working over a well shall be dewatered within 30 days and backfilled and compacted within 120 days

cessation of use of the pits. pits shall be dewatered, backfilled, and compacted within 120 days of final (IV) Basic sediment pits, flarm pits, and water condensate

particular section should be dewatered. section of the pit shall be considered a separate pit for determining when a (V) If a person constructs a sectioned reserve pit, each

backfilling the pit extends beyond the expiration date or transfer date of the lease covering the land where the pit is located. prescribed by clause (1) of this subparagraph (6), even if the time allowed for circulation pit, fresh makeup water pit, or completion/workover pit shall remain responsible for dewatering, backfilling, and compacting the pit within the time (ii) A person who maintains or uses a reserve pit, mud

oil and gas wastes. to escape from the pit or that the pit is being used for improper disposal of backfill the pit sponer than the time prescribed by clause (1) of this maintains a reserve pit, mud circulation pit, fresh makeup water pit, subparagraph (6) if the director determines that oil and gas wastes are likely completion/workover pit, basic sediment pit, flare pit, or water condensate pit (11) The director may require that a person who uses or

smaintaining or using the pit shall, in a permitted meanner or in a meanner whose use or maintenance is authorized by this paragraph (4), the person completion/workover pit, basic sediment pit, flare pit, or water condensate pit (iv) Prior to backfilling any reserve pit, mud circulation pit.

Railroad Commission of Texas Ott and Gas Division

Page 11 of 21

wastes which are in the pit. authorized by paragraph (3) of this subsection, dispose of all oil and ŝeĉ

(5) Responsibility for disposal.

permit. Any person who plans to utilize the services of a carriver or receiver handle, treat, reclaim, or dispose of such wastes but does not have such a a permit. No receiver may knowingly utilize the services of a second receiver reclaim, or dispose of oil and gas wastes. is under a duty to determine that the carrier or receiver has all permits to store, handle, treat, reclaim, or dispose of oil and gas wasters if the second store, handle, treat, reclaim, or dispose of such wastes but doess not have such permit. No generator or carrier may knowingly utilize the services of a carrier to transport oil and gas wastes if the second carrier is required by have such a permit. No carrier may knowingly utilize the services of a second required by the Oil and Gas Division to transport, store, "handle, treat. receiver is required by statute or commission rule to have a permit to store. the receiver is required by statute or commutssion rule to have a permut to receiver to store, handle, treat, reclaim, or dispose of oil and gas wostes if this rule to have a permit to transport such wastes but does mut have such a the services of a carrier to transport oil and gas wastes if the carrier is required by this rule to have a permit to transport such wastes but does not (A) <u>Permit required.</u> No generator or receiver may knowingly utilize

or any other person may improperly dispose of oil and gas wastles or cause or the improper disposal of oil and gas wastes if: allow the improper disposal of oil and gas wastes. A generator causes or allows Improper disposal prohibited. No generator, carrier, receiver,

the generator utilizes the services of a carrier or

receiver who improperly disposes of the wastes, and

Railroad Commission of Texas Otl and Gas Division

Page 12 of 21

Railroad Commission of Texas Oil and Gas Division

Page 13 of 21

Railroad Commission of Texas Oil and Gas Division

Page 14 of 21

of an incorporated city, town, or village. When one or more waterfront tracts deliver the required notice to the surface owners and the city clerk or other to the application should be filed with the commission within 15 days of the incorporated city, town, or village, the applicant shall give notice to the city within 1/2 mile of the discharge point lie within the corporate limits of an discharge point except for those waterfront tracts within the corporate limits or a bay, the applicant shall also give notice to the surface owner of each disposal is to be by discharge into a watercourse other than the Gulf of Mexico the county where the pit will be located or the disposal will take place. of the notice to be published. The notice shall be published once each week for by publishing notice of the application. The director shall determine the form name and address of one or more persons required by this subparagraph (C) to be that, after diligent efforts, the applicant has been unable to ascertain the to mail or deliver notice to members of that class. If the director determines should receive notice of the application, the director may require the applicant offset operators, adjacent surface owners, or an appropriate river authority. appilcation the director determines that another class of persons, such as delivered to the commission in Austin. If in connection with a particular appropriate official on or before the date the application is mailed or date the application is filed with the commission. The applicant shall mail or consist of a copy of the application together with a statement that any protest clerk or other appropriate official. Notice of the permit application shall waterfront tract between the discharge point and 1/2 mile downstream of the also give notice to the city clerk or other appropriate official. applicant shall file proof of publication with the commission in Austin. two consecutive meeks by the applicant in a newspaper of general circulation in notified, then the director may authorize the applicant to notify such persons When The

or delivered to the commission in Austin. A permit application shall be Austin. The applicant shall mail or deliver a copy of the application to the pit or to dispose of oil and gas wastes shall be filed with the commission in replacing liners.

thickness, procedures, for installing liners, and schedules for inspecting and/or mineralized waters will compain requirements relating to liner material, liner storage or disposal of oil field brines, geothermal resource waters, or other devices, and fences. However, a permit to maintain or use any lined pit for

(8) Application. An application for a permit to maintain or use a

inspecting and/or replacing liners, overflow warning devices, leak detection liner material, liner thickness, procedures for installing liners, schedules for including requirements relating to pit construction materials, dike design, concerning the design and constnuction of pits and disposal facilities,

will be located or upon which the disposal will take place lies within the corporate limits of an incorporated city, town, or village, the applicant shall or upon which the disposal will take place. When the tract upon which the pit application to the surface owner of the tract upon which the pit will be located subsurface water. (C) Notice. The applicant shall give notice of the permit

the waste of oil, gas, or geothermal resources or the pollution of surface or director deems necessary to show that issuance of the permit will not result in the commission with engineering, geological, or other information which the instructions on such form. The director may require the applicant to provide applicant shall make application on the prescribed form according to the commission in Austin. When a commission-prescribed application form exists, an considered filed with the commission on the date it is received by the appropriate district office on the same day the original application is mailed

Any pit would be physically isolazed by naturally occurring impervious barriers from of surrounding productive agracultural land nor pollution of surface or pit, for storage or disposal af all field brines, geothermal resource waters, or to maintain or use any unlimed pit, other than an emergency saltwater storage which the permittee shall be required to dewater, backfill, and compact the pit conditions under which the pit may be operated, including the conditions under surface and subsurface waters. A permit to maintain or use a pit will state the to prevent the waste of oil, yas, or geothermal resources and the pollution of issued pursuant to this paragraph will contain conditions reasonably necessary any oil and gas wastes whict unight escape or migrate from the pit. Permits area of the pit, or because the surface or subsurface water in the area of the the applicant has conclusively shown that use of the pit cannot cause pollution other mineralized waters may only be issued if the commission determines that geothermal resources or the pollbution of surface or subsurface water. A permit determines that the disposal will not result in the waste of oil, gas, or method, including disposal into a pit, may only be issued if the commission surface or subsurface waters. A permit to dispose of oil and gas wastes by any result in the waste of oil, ga≤, or geothermal resources or the pollution of the commission determines that the maintenance or use of such pit will not pit for storage of oil field fluids or oil and gas wastes may only be issued if take reasonable steps to prevent the improper disposal. subsurface water, either because there is no surface or subsurface water in the permits issued pursuance to this paragraph may (6) Permits. (A) Standards for permit issuance. A permit to maintain or use a contain requirements

carrier or receiver was likely to improperly dispose of the wastes and failed to

(11) the generator knew or reasonably should have known that the

Rattroad Comission of Texas Ott and Gas Division

Page 15 of 21

Railroad Commission of Texas Oil and Gas Division

Page 16 of 21

Ratiroad Commission of Texas Oil and Gas Division

Page 17 of 21

(G) Minor permits. If the director determines that an application

after the commission provides motice of hearing to all affected persons, or of an application has not received such notice within 15 days of the date an a hearing upon request. After hearing, the hearings examiner shall recommend a the director denies administrative approval, the applicant shall have a right to the commission, the director may administratively approve the application. If other persons or governmental entities, who express an interest in the interest, a hearing shall be bedd. A hearing on an application shall be held application. If the director determines that a hearing is in the public person notice of the application and an opportunity to file a protest to the action on the application until reasonable efforts have been made to give such application is filed with the commission, then the director shall not take a nearing shall be held on the application after the applicant requests a made to the commission within 15 mays of the date the application is filed, them final action by the commission. application in writing. If no protest from an affected person is received by hearing. If the director has reason to believe that a person entitled to notice (D) Protests and hearings. If a protest from an affected person is

hearing. A finding of any of the following facts shall constitute good cause: or terminated by the commission for good cause after nutice and opportunity for expire pursuant to paragraph (7) of this subsection, may be mudified, suspended, commission prior to the effective date of this subsection but which does not paragraph (7) of this subsection, or a permit which has been issued by the pursuant to this paragraph (6), or a renewal permit granted pursuant to (E) Modification, suspension, and termination. A permit granted

likely to occur as a result of the permitted operations; pollution of surface or subsurface water is occurring or is

> permit issuance process; permit or commission rules; (iv) the permittee misrepresented any material fact during the

is likely to occur as a result of the permitted operations;

(111) the permittee has violated the terms and conditions of the (11) waste of oil, gas, or geothermal resources is occurring or

commission during the permit issuance process; (v) the permittee failed to give the notice required by ş

esterially. permitted operations, or the information provided in the application has changed (vf) a material change of conditions has occurred in the

provisions of subperagraphs (A) - (E) of this paregraph. suspension, or termination of an emergency permit shall be governed by the this subparagraph (F) are to the contrary, the issuance, denial, modification, cause without notice and opportunity for hearing. Except when the provisions of may be modified, suspended, or terminated by the director at any time for good authorizing that activity. An emergency permit is valid for up to 30 days, but director may verbally authorize an activity before issuing a written permit director may issue an emergency penmit based upon a verbal application, or the application is not required. If warranted by the nature of the emergency, the filed with the commission in the appropriate district office. Notice of the permit to use or maintain a pit or to dispose of oil and gas wastes shall be the director may issue an emergency permit. An application for an energency gas, or geothermal resources or the pollution of surface or subsurface water. issuance of the permit will prevent or is likely to prevent the waste of all, (F) Emergency permits. If the director determines that expeditious

> dispose of only a minor amount of oil and gas waste, the director may issue a is for a permit to store only a minor amount of oil field fluids or to store or of subparagraphs (A) - (E) of this paragraph. suspension, or termination of a minor permit shall be governed by the provision: subparagraph (6) are to the contrary, the issuance, denial, modification. notice and opportunity for hearing. Except when the provisions of this suspended, or terminated by the director at any time for good cause without permit which is issued without notice of the application may be modified. application is not required. A minor permit is valid for 30 days, but a minor required by the director. The director may determine that notice of the the appropriate district office. Notice of the application shall be given as water. An application for a minor permit shall be filed with the commission in waste of sil, gas, or geothermal resources or pollution of surface or subsurface minor permit provided the permit does not authorize an activity which results in (7) Existing permits and pits.

will expire pursuant to this paragraph (7) include, but are not limited to, (d), shall remain in effect until modified, suspended, or terminated by the has been issued by the commission prior to the effective date of thiis subsection prior to the effective date of this subsection (d), shall expire 1480 days after waters, or other mineralized waters, which has been issued by the commission unlined pit for storage or disposal of oil field brines, geothermal resource commission pursuant to paragraph (b)(E) of this subsection. The permits which fluids or oil and gas wastes or to dispose of oil and gas wastes, which permit the effective date of this subsection. Every other permit to store oil field (A) Existing permits. Each permit to maintain or use a lined or

permits for the following types of pits: saltwater disposal pits, emergency

Railroad Commission of Texas Oil and Gas Division

Page 19 of 21

Railroad Commission of Texas Oil and Gas Division

Page 20 of 21

escape from the pit or that the pit is being used for improper disposal of oil subparagraph if the director determines that oil and gas wastes are likely to dewatered, backfilled, and compacted sooner than the time prescribed by this may require that pits required to be backfilled by this subparagraph be days after final commission action denying issuance of the permit. The director extend the time for dewatering, backfilling, and compacting the pit to up to 90

May 1, 1969). and gas wastes. (e) Pollution prevention (reference Order Number 20-59,200, effective

that person shall dewater, backfill, and compact the pit or rebuild the pit to meet the 50 barrel size limitation of paragraph (4)(C) of this subsection, then subsection, a person is maintaining or using a basic sediment pit which does not fluid storage pits, gas plant evaporation/retention pits, and washout pits. (C), include, but are not limited to, the following types of pits: drilling unpermitted pits, whose use or maintenance is authorized by this subparagraph

(D) Backfilling existing pits. If, as of the effective date of this

(1)-(4) (No change.)

(f) Saltwater haulers.

(1)-(2) (No change.)

(g) Record keeping.

producing the water shall keep, for a period of two years from the date of water lease where it is produced to an off-lease disposal facility, the person production, the following records: (1) Produced water. When produced water is hauled by truck from the

(A) identity of the property from which the produced water is

hauled; (B) identity of the commission-approved disposal facility to which

the produced water is delivered;

transporting the water from producing lease to disposal facility; and (C) name, address, and permit number (WHP No.) of saltwater hauler

(D) volume of produced water transported each day from producing

lease to disposal facility by saltwater hauler.

requirements of paragraph (1) of this subsection by retaining run tickets or (2) <u>Retention of run tickets</u>. A person may comply with the

such a permit to maintain or use a previously unpermitted pit, the director may period allowed by subparagraph (C) of this paragraph. If a person applies for the person applies for a permit to maintain or use the pit within the 180-day compact the pit within 270 days of the effective date of this subsection unless

be governed by the provisions of paragraph (6) of this subsection. effective date of this subsection. The issuance or denial of the permit shall considered timely if it is filed with the commission within 180 days of the sufficient application for a permuit to maintain or use such an existing but maintaining or using the pit may continue to maintain or use the pit for 180 permitted prior to the effective date of this subsection, then the person date of this subsection, a person is maintaining or using a pit, which is commission action denying the cermit. An application for a permit shall be unpermitted pit, then the person may continue to use the pit until final days after the effective date of this subsection. If a person makes timely and required by this subsection to be permitted but which was not required to be (C) Operating existing unpermitted pits. If, as of the effective F

then

using a pit, which is required by this subsection to be permitted but which was If, as of the effective date of this subsection, a person is maintaining or to up to 90 days after final commission action denying renewal of the permit. director may extend the time for dematering, backfilling, and compacting the pit permit to maintain or use a linest or unlined pit for storage or disposal of oil to subparagraph (8) of this paragraph. If a person applies for a renewal of a date of this subsection unless the person applies for a renewal permit pursuant waters, which pit was permitted prior to the effective date of this subsection, disposal of oil field brines, genthermal resource waters, or other mineralized subsection, is maintaining or using a lined or unlined pit for storage or of this subsection.' Any person who, as of the effective date of this comply with the 50 barrel size limitation within 180 days of the effective date

field brines, geothermal resource waters, or other mineralized waters, the

shall demater, backfill, and compact the pit within 270 days of the effective

not required to be permitted prior to the effective date of this subsection,

the person maintaining or using the pit shall dewater, backfill, and

permit issuance stated in paragraph (6)(A) of this subsection have been met. nearing is necessary. No renewal permit will be issued unless the standards for unless the applicant requests a hearing or the director determines that a of a permit. No hearing shall be held on an application for renewal of a permit required. The director may administratively approve an application for renewal of the effective date of this subsection. No nutice of the application is saltwater storage pits, skimming pits, and brine pits. renewal of a permit shall be filed with the commission in Austin within 180 days commission for renewal of the permit. If a person makes timely and sufficient commission action renewing or denying renewal of the permit. An application for subparagraph (A) of this paragraph, the permit shall not expire until final application for renewal of a permit, then, notwithstanding the provisions of expire pursuant to subparagraph (A) of this paragraph may apply to the (6) Renewal permits. Any person holding a permit scheduled to

Railroad Commission of Texas Oil and Gas Division

...

...

Page 18 of 21

Railroad Commission of Texas Oil and Gas Division

Page 21 of 21

paragraph (1). tickets or other billing information contain all the information required by other billing information created by the saltwater hauler, provided the run

required by this subsection (g) shall make the records available for examination file such records with the commission. hours. Upon request of the commission, the person keeping the records shall and copying by members and employees of the commission during reasonable working (3) Examination and reporting. The person keeping any records

manner provided in § 3.68 of this title (relating to Pipeline Connection and Sevenance) (Rule J3) for violation of this section. compliance for any oil, gas, or geothermal resource well may be revoked in the and any other statutes administered by the commission. The certificate of penalties and remedies specified in Title 3 of the Texas Natural Resources Code (h) <u>Penalties</u>. Violations of this section may subject a person to

,

New Application
Application for Renewal

RAILROAD COMMISSION OF TEXAS Oil and Gas Division

Oil and Gas Division Application for Permit to Maintain and Use a Pit Form H-11 May 1984 Comply with Instructions on Reverse Side

۱

Deperator's Name (As shown on Form P-5, Organization Report) 2. RRC Operator No. 3. RRC Dist. No. 4. County of pit site								
Operator's Address (Street, City, State and Zip Code)								
6. Name of Lease. Project or Facility of Pit Location	7. R	RC Oil Lease No. or 8. RRC Gas ID	No.					
9. Pit Location								
SectionBlockSurveyAbstract No. A-								
Location is miles (direction) from (nearest								
10. a. Is pit bottom below ground level?	11. Name and	Address of Surface Owne	er					
b. Artificial liner?								
Yes No								
c. If lined, equipped with a leak detection system?								
2. Are wastes or fluids from operations other than 13. Type of pit (refer to item F of instructions)								
your own?								
Yes No 15. a. Briefly explain the need for this pit:								
+ a. L escribe land use surrounding pit location:								
b. Is land surrounding pit location productive								
agricultural land?								
Yes No 6. Pit is 15. b. Type of waste or fluid:								
Proposed Existing 15. c. Chloride concentration: mg/1								
If existing, day constructed 17. Dikes								
18. Pit capacity (ba: -is) a. Height above ground level feet Width at base feet								
b. Are dikes designed to keep wastes or fluids in the pit? Yes No								
19. Inside pit dimensions two feet below top of dike c. Are dikes designed to keep stormwater runoff out of the pit? Yes No								
Length feet Width feet d. Source of Dike Material: Excavated from pit Adjacent borrow pit								
Depth: Off-site excavation (describe material):								
20. Westes or fluids are transported to pit by (check all that apply):								
Contract Hauler Applicant's truck Pipe Other								
21. a. Distance to nearest water well within one-mile of pit 21. b. Depth of this water well 22. Depth to shallowest fresh water feet Source of information: Source of information:								
feet feet feet feet measured/observed well owner electric log TDWR								
23. Fave you included all attachments required by the Instructions on the reverse side of this form?								
CERTIFICATE								
I declare under penalties prescribed in Sec. 91.143. Texas Natural Signature Resources Code, that I am authorized to make this report, that this								
report was prepared by me or under my supervision and direction. Name of Person (type or print) Title								
to the best of my knowledge. Telephone Date								
Area Code Number								
RRC DISTRICT USE ONLY								
Application Information Review								
Date inspected Location Liner Agricultural Land Dimensions								
Inspector Grade Construction Type Pit Capacity Dikes Waste Transport								
	Comments:							
DOC AUSTIN USE ONLY								
• RRC AUSTIN USE UNLY •								
Date received Pit code Pit type Permit no Permit date								

Instructions to Pit Application

Authority: Statewide Rule 8, Water Protection

A. File the application, including all attachments, with the Railroad Commission, Oil and Gas Division, P.O. Drawer 12967, Capitol Station, Austin, Texas 78711. On the same day file one copy of the application and its attachments with the appropriate District Office. This form is not required for a minor permit.

- **B.** Notify the surface owner of the land where the pit will be located by mailing or delivering a copy of the application form, both front and back, but excluding the attachments. If the land where the pit is proposed is within corporate limits, also notify the city clerk or other appropriate city official. If application is for renewal of an existing permit, notice is not required.
- C. Attach a plat showing the size of the lease or tract and the location of the pit within the lease or tract. Give approximate perpendicular distance to nearest intersecting lease/unit lines and section/survey lines. To avoid confusion, distinguish between the two sets of lines. Indicate scale on this plat.
- **D.** Attach a county highway map (scale: 1'' = 4 miles) showing the location of the pit. County highway maps are available from the Texas Department of Highways and Public Transportation. P. O. Box 5051. Attn: Map Distribution File D-10, Austin, TX 78763.
- E. If application is for renewal of a permit for an existing pit, attach a copy of your current authority to use the pit.
- F. Identify the type of pit in item 13 using one of the following as defined in Statewide Rule 8(a): Emergency Saltwater Storage Pit, Collecting Pit, Gas Plant Evaporation/Retention Pit, Brine Pit (located at underground hydrocarbon storage facilities only), Saltwater Disposal Pit, Skimming Pit, Washout Pit, Drilling Fluid Disposal Pit, Drilling Fluid Storage Pit, or other (specify in item 13 and explain in item 15a).
- G. Attach a drawing of two perpendicular, sectional views of the pit showing the pit bottom, sides, dikes and the natural grade. For an existing pit, dimensions below fluid level may be approximated. If the pit length and width are irregular, include a top view to show pit dimensions and dike widths. Indicate scale on all views.
- H. If pit is lined, attach data on liner material, thickness, and installation procedures.
- I. Attach an identification and description of the soil or subsoil that will make up the pit bottom and sides. The information shall describe the soil by typical name, appropriate proportion of grain sizes, texture, consistency, moisture condition, and other pertinent characteristics. (Example: clayey silt, slightly plastic, small percentage of fine sand, firm and dry in place.) Identify the source of soil information. Information on how to classify soils is available from the District Office or Austin Office upon request. If application is for renewal of a permit for an existing emergency saltwater storage pit or a lined pit with a leak detection system, this attachment is not required.
- J. If pit is equipped with a leak detection system, attach engineering design drawing of the pit and leak detection system.
- K. If lined pit is not equipped with a leak detection system, describe procedures for periodic maintenance and determining liner integrity, including any special monitoring.
- L. If pit is an emergency salt water storage pit, attach justification for pit size based on water production, lease water storage capacity, and anticipated well or equipment shut-down time.

Note: The Director of the Oil and Gas Division may require the applicant to provide the Commission with any additional engineering, geological, or other information which the Director deems necessary to show that issuance of the permit will not result in the waste of oil, gas, or geothermal resources or the pollution of surface or subsurface water.

Protests and hearings.

An affected person may file a protest to the application and request a hearing. Any protest to the application should be filed with the Commission in Austin within fifteen days of the date the application is filed with the Commission. Any such protest shall be made in writing and shall include (1) the name, mailing address, and phone number of the person making the protest; and (2) a brief description of how the protestant would be adversely affected by the granting of the permit. If the Commission determines that a valid protest has been received, or that a hearing would be in the public interest, a hearing will be held after the issuance of proper and timely notice of the hearing by the Commission. If no protest is received within fifteen (15) days of receipt of the application in Austin, the application may be processed administratively.