HYDROLOGIC ASSESSMENT OF THE SALT LAKES AREA WESTERN LEA COUNTY, NEW MEXICO

by Geohydrology Associates, Inc.

for

Pollution Control, Inc. Lovington, New Mexico

4015 Carlisle, N.E. • Suite A • (505) 884-0580 Albuquerque, New Mexico 87107

PEFORE EXAMINER STAMETS CIL CONSERVATION DIVISED POTTO CONTROL EXHIBIT NO.	
CASE NO. 8292	-
Subvicted by	•
meaning Date	-

HYDROLOGIC ASSESSMENT OF THE SALT LAKES AREA

WESTERN LEA COUNTY, NEW MEXICO

for

Pollution Control, Inc. Lovington, New Mexico

by

Geohydrology Associates, Inc. Albuquerque, New Mexico.

T. E. Kelly

July 1984

CONTENTS

Page

INTRODUCTION	1
GEOLOGY OF THE PROJECT AREA	2
Geologic Structure	2
Dewey Lake Redbeds	15
Dockum Group, Undifferentiated (Triassic)	16
Alluvium and Playa Deposits	17
Ogallala Formation	17
GROUND-WATER MOVEMENT	19
WATER-QUALITY DATA	26
SITE SUITABILITY	27
CONCLUSIONS	30
REFERENCES	34
APPENDICES	36

ILLUSTRATIONS

Page

.

Figure	lMap of southern Lea County showing location of project area	3
	2Diagrammatic section of Laguna Gatuna showing geologic features	4
	3Water-table contour map in vicinity of Laguna Gatuna and other salt lakes	25
	4Detailed map of Laguna Gatuna showing location of Pollution Control, Inc., facilities	28
	5Plot of monthly disposal volumes at Laguna Gatuna during 1983-1084	31

PLATE

Salt Lakes area, western Lea County, prepared by Ed. L. Reed, consulting hydrologist, 2-69.

TABLES

HYDROLOGIC ASSESSMENT OF THE SALT LAKES AREA,

WESTERN LEA COUNTY, NEW MEXICO

Ъy

Geohydrology Associates, Inc.

In February 1969, Pollution Control, Inc., of Hobbs, New Mexico, requested that a hydrologic study be conducted in the vicinity of the salt lakes in western Lea County, New Mexico. The study was conducted by Ed L. Reed of Midland, Texas. The purpose of this study was to determine the suitability of Laguna Gatuna, Laguna Plata, and Laguna Tonto as sites for disposal of oil-field brine. The results of the work by Mr. Reed were presented on a single illustration (Plate 1), and his interpretations were largely contained in his testimony before the New Mexico Oil Conservation Commission. This testimony and cross examination were presented at the March 19, 1969, regular hearing of the Commission, Case No. 4047.

Approval of the application was granted by the Commission on April 16, 1969, as Order No. R-3725 (Appendix A).

In December 1983, Pollution Control, Inc., requested that Geohydrology Associates. Inc., of Albuquerque, New Mexico, review that original work of Mr. Reed and prepare an update of that work. The purpose of this study was (1) to provide documentation for expansion of the original disposal system, and (2) to request a variance in order to dispose of other oil field waste products in addition to brine.

The present study was based on a thorough literature and file search of existing data; it also drew heavily from earlier reports by Geohydrology Associates, Inc. (GAI) which were prepared for the Bureau of Land Management, the Sandia Corporation, and other clients. A field reconnaissance was made which included a visual inspection of the area of Ts. 19 and 20 S., Rs. 32 and 33 E. Well data was collected for a somewhat larger area (fig. 1). An analysis of these data and the resulting conclusions are presented in this report.

GEOLOGY OF THE PROJECT AREA

A number of studies of the geology of western Lea County have been made. These include the work by King (1942), Vine (1963), and Brokaw and others (1972). Studies related to water resources in the area include Hendrickson and Jones (1952), Nicholson and Clebsch (1961), and Geohydrology Associates, Inc. (1978, 1978a, 1979). Mercer and Gonzalez (1981) and Mercer (1983) evaluated the hydrologic conditions in the vicinity of the Waste Isolation Pilot Plant (WIPP) which is located only a few miles south of the project area.

There are three formations in the vicinity of the salt lakes and Laguna Gatuna that are directly concerned by this study. These are the Dewey Lake Redbeds, the Triassic deposits, and the surficial alluvial material (fig. 2). In addition, imported water from the Ogallala Formation is widely used in the project area.

Logs of test holes drilled in the area are included in Table 1.

Geologic Structure

The basic tectonic structure of the salt lakes area is a simple homoclinal dip of about 2° to the east which developed mainly in pre-Pliocene

Figure 1.--Map of southern Lea County showing location of project area (Nicholson and Clebsch, 1961, p. 8).

•

Figure 2.--Diagrammatic section of Laguna Gatuna showing geologic features.

Table 1.--Sample logs and descriptions of test holes in project area.

Top and Thickness figures are given in feet.

Well 19.21.29.32; drilled November 8, 1978.

Тор	Thickness	Description		
0 11	11 19	caliche, white, moderate to strong formation sand, brown-buff, unconsolidated aeolian, medium to fine rexture		
30 40	10 10	sand, buff, fine texture, weakly consolidated as above, but lighter in color and has some silty laminae, small caliche nodules		
50	10	shale, maroon, clayey, has greenish gray inclusions (elongated), concentrated along bedding, slightly moist		
60	10	as above, but fewer greenish inclusions and contains rounded limestone fragments (anhanitic, red)		
70	10	shale, varigated red-buff, very clayey, also has limestone fragments mentioned above		
80	10	limestone, crystalline (fine), mottled marcon to gray, has a few laminae of grayish-green, silty shale		
90	10	limestone, fine crystalline, silty, maroon, has some greenish gray silty shale laminae and some mincr clayey shale (red) laminae		
Tota	Total Depth - 100'			
Wet sediments encountered at 50' Bailing test - dry ? Casing perforated - 30-100' below LSD Footage subtotal - 2,610' Footage subtotal - 2,610' Dry, March 15, 1979				

Well 20.31.2.34; drilled November 13, 1978.

Тор	Thickness	Description
Λ	é	sand buff medium-fine texture (apolian)
5	6	calicho white medium formation
10	0	callele, while medium fine texture secondary
12	0	carbonate cement
20	10	shale, reddish brown, clavev
30	10	shale, hrown, silty, has a bed of green silty shale
40	10	shale reddish brown, silty
50	10	shale, brown silty, has greenish grav inclusions
60	10	shale marcon, silty, has clavey laminae, greenish
00	10	grav laminae
70	10	shale, brown, silty
30	15	shale, maroon-brown, silty
95	8	limestone, mottled gray-white, red, fine crystalline
103	7	shale, brown, clayey-silty greenish gray inclusions
110	20	shale, brown, clayey
130	10	as above, but with minor laminae of green silty shale
140	10	shale, reddish brown, silty-sandy, has a bed of
		green silty shale, slightly moist
150	10	sandstone, brown, medium-fine texture, calcareous cement
Total	Depth - 160'	
Measu	Bailing test - est Encountered moist Water level - 150' Irement: January 1	imates less than 1 gpm sediments - 145' below LSD below LSD 9. 1979: Water level - 137.0' below LSD

Well 20.31.17.33; drilled November 14, 1978.

Top	Thickness	Description
0	12	caliche, white-gray medium to strong formation
12		sand, brown, medium-fine texture, calcareous cement
21	11	shale, reddish brown silty
32		shale, brown, silty with clayey laminae
40	9	shale, brownish red, clayey, with silty laminae and greenish gray silty laminae
49	11	shale, brown, clayey, has greenish gray laminae and is fissile with micaceous partings
60	10	shale, reddish brown, clayey
70	18	shale, dark brown, very clayey, has chloritic partings, has laminae of green clayey shale
88	20	shale, brown, silty, has greenish gray inclusions
108	20	as above, but more clay
128	20	as above, but has laminae of greenish-gray silty- clayey shale
148	12	shale, reddish brown, silty, has clayey laminae
160	10	as above, but no clay
170	10	shale, brown, silty, has clayey laminae, has green clayey laminae, has fine crystalline gray anhydrite laminae
180	10	shale, reddish brown, silty has some green inclusions has some laminae of clear satin spar gypsum
190	10	shale, reddish brown, clayey, has some fine crystalline gray anhydrite
200	10	shale, reddish brown, silty, has greenish grav inclusions, has some thin clear satin spar gypsum
210	20	as above, but has some gray fine crystalline anhydrite
230	10	as above, but has some greenish gray inclusions and some clayey laminae

Total Depth - 240'

---- Am

Bailing results - estimates ½ gpm Casing perforations - 220-240' below LSD Measurement: March 1, 1979: Water level - 227.0' below LSD

Well 20.31.27.24; drilled November 1, 1978.

Тор	Thickness	Description
	_	
0	4	sand, brownish-buff, fine to medium
4	8	strong caliche formation forms thick continuous bed
12	16	sand, dark brown, medium texture, slightly calcareous from overlying carbonate mineralization
28	12	as above, but less calcareous and finer texture
40	11	shale, dark reddish brown, very clayey
51	10	sandstone, greenish gray, fine to medium texture, with a lens of very clavey green shale
61	10	as above, but with lenses of mottled brown and green fine sandstone
71	9	<pre>shale, reddish brown, texture mostly coarse silt but with lenses of very clayey brown shale</pre>
80	10	as above, but with no clavey lenses
90	20	shale, silty, reddish brown, minor clayev laminae
110	14	shale, brownish red, silty with clayey laminae
124	7	shale, reddish brown, clayey, slightly silty
131	10	shale, reddish brown, silty
141	9	shale, reddish brown, silty with some clayey laminae and some greenish gray silty laminae
Total	Depth - 150'	

Casing perforated - 130-150' below LSD Bailing test - 3-4' water in hole after casing placement-bailer removed it in 4 trips (producing less than 1 gpm) Measurement: February 28, 1979: Water level - 114' below LSD

÷

<u>Well 20.31.30.44</u>; drilled October 31, 1978.

Top	Thickness	Description
0	10	sand, caliche, very strong, constituting major
10	10	volume of sample, butt sandstone, reddish brown, calcareous, calcite
20	7	sandstone, fine to medium texture, mottled
27	21	non- calcareous
40	2	silty shale and greenish-white siltstone
40	ు స	shale, silty, bluish-green
51	8	resumes characteristics of silty sandstone, see above
28	11	dolomitic sandstone, silty, mottled brown to
70	10	greenish gray; thin lenses show vigorous effervescense
70	10	silt, readish brown, unconsolidated except minor
		color slightly calcareous
80	20	siltstone, reddish brown, slightly calcareous
••	-0	moderate consolidation
100	10	shale, red, silty, with some minor laminae of
		greenish gray shale (silty)
110	8	shale, mottled brown to gray, silty with notable
		laminae of dark reddish brown zones of very
110	17	clayey composition
175	1/	silt, reddish brown, very icosely consolidated
1.13	0 7	shale, Drown, Very Clayey
170	7	in cilt strata
150	50	shale, reddish brown, very clavey
200	10	shale, dark brown subequal amounts of silt and clay
		with some thin layers of green claystone
210	10	shale, brown, silty
220	10	as above, but containing minor lenses of green
220	10	siltstone
230	10	shale, brown, slity
240	20	as above, but with minor lenses of green stitutione shale reddish brown, clavey thin lenses of green
L	20	siltstone traces of satin spar dynsum concentrated
		in bedding (white to clear)
270	10	as above, but with traces of selinite gypsum (clear)
280	20	shale, reddish brown, clayey, laminae of satin
		spar gypsum, has a small number of limestone fragments
		(white)
300	8	shale, red, silty has thickish laminae of satin
		spar gypsum and minor amounts of greenish gray
208	12	shale brownish red clavey small amounts of greenish
500	10	grav anhvdrite
Total [Depth - 320'	
Ca	asing perforated	1 - 300-320' below LSD
Wa	ater standiny in	well upon completion - 3-4' (316' below LSD)
56	ailing test - ne	gligible
Measur	ement: February	/ 27, 1979: Water level - 228' below LSD

.....

Well 20.32.17.13; drilled November 8, 1978.

Top	Thickness	Description	
0	3	sand, fine buff-brown aeolian, 3" organics	
3	10	calcareous ooze, white (lacustrine)	
13	7.	as above, but with sand laminae, calcified (caliche)	
20	15	sandstone, brown, fine texture, loosely consolidated	
35	5	shale, brown, sandy, silty, has gypsum, selenite and fine crystalline (gray)	
40	10	shale, reddish brown, clayey with silt, has green clayey laminae	
50	10	shale, reddish brown, silty with clay, has green silty laminae	
60	23	as above, but reddish color	
83	7	shale, brown, silty, has greenish-gray silty laminae	
90	10	shale, brown, sand (fine)	
Tota	Depth - 100'		
Casing perforated - 20-40' below LSD Bailing test - estimates 15 gpm Encountered water at 18' below LSD Water very salty (maybe with potassium)			
Meas	urement: February	28, 1979; Water level - 9' below LSD	

.

.

Тор	Thickness	Description	
0	3	sand, brownish-buff, medium-fine texture (aeolian) 6" organic profile	
3	9	caliche, white, medium to strong formation	
12	18	<pre>sand, pinkish buff, medium-fine texture, calcareous cement</pre>	
30	10	<pre>shale, brown, clayey with laminae of greenish-gray medium crystalline, anhydrite</pre>	
40	20	shale, brown, silty	
60	10	<pre>shale, red-brown, silty, clayey, has minor amount thin laminae of green silty shale</pre>	
70	10	as above, but no green shale	
80	20	<pre>shale, red-brown, clayey with laminae of green clayey-silty shale</pre>	
100	10	as above, but no green shale	
110	30	shale, brown, silty	
140	10	shale, brown-silty, clayey, has laminae of gray silty shale	
150	10	shale, brown, clayey, has laminae of greenish gray silty shale	
160	10	shale, reddish brown, silty-clayey, has greenish gray inclusions, has small nodules of marcon limestone	
Tota] Depth - 170'		
Driller encountered water at 35' (probably perched brine from Laguna Toston) Casing perforated - 150-179' below LSD Bailing results - estimates 12-15 gpm Tastes fresh			
Meas	surement: February	28, 1979: Water level - 30' below LSD	

Well 20.32.22.33; drilled November 8, 1978.

Well 20.32.31.13;	drilled	November	8,	1978	
-------------------	---------	----------	----	------	--

Top	Thickness	Description
0	10	sand, buff medium to fine texture, moderate caliche formation
10	13	sand, brown-buff, fine to medium texture, leached carbonate
23	13	shale, reddish brown, silty with clayey laminae
36	4	shale, greenish gray, silty, sandy
40	30	shale, brown, silty-clayey shale, reddish brown
70	10	silty-clayey, has a bed of greenish-gray siltstone
80	20	shale, brown, clayey
100	20	as above, but more silt
120	30	shale, brown, clayey, interbedded with limestone, brown. fine crystalline
150	10	shale, brown, clayey-silty
160	10	as above, but reddish brown
170	10	shale, brown, silty-clayey, has zones of superior cementation along bedding, probably calcite
180	10	shale, brown, clayey, fairly cohesive from cementation
190	10	shale, brown, varigated clayey to silty, has greenish grav inclusions
200	20	shale, greenish to gray, silty, interbedded with brown silty shale
220	20	shale, reddish brown silty zones of calcite cementation along bedding
240	10	shale, reddish brown, clayey

Total Depth - 250'

Water level-drilled dry, never encountered moist sediments Casing perforated - 230-250' below LSD Bailing results - bailing showed about 8' water in hole (probably residual from drilling) - dry; DTW 135.12' March 15, 1979

<pre>sand, brown-buff, medium-fine texture (aeolian) has 3-6" of organics caliche, white, formed in sand, medium formation sand, brownish buff, medium-fine texture, sub- angular to rounded quartz grains as above, but has some pebbles (quartz) 6 mm in diameter</pre>
caliche, white, formed in sand, medium formation sand, brownish buff, medium-fine texture, sub- angular to rounded quartz grains as above, but has some pebbles (quartz) 6 mm in diameter
sand, brownish buff, medium-fine texture, sub- angular to rounded quartz grains as above, but has some pebbles (quartz) 6 mm in diameter
angular to rounded quartz grains as above, but has some pebbles (quartz) 6 mm in diameter
as above, but has some pebbles (quartz) 6 mm in diameter
as above, but pebbles increase in size to 1.5 cm
sand, reddish brown medium-fine small quartz pebbles
shale, red clayey
shale, red, clayey-silty, has laminae of greenish gray clayey shale and greenish gray inclusions
as above, but no inclusions green-gray laminae
shale, red, silty with clayey laminae
as above, but has greenish gray inclusions
shale, brownish-red, silty, clayey
shale, reddish brown, clayey, has greenish gray inclusions
as above, but silty .
shale, brown, clayey, has greenish gray inclusions
as above, but reddish brown and silty
shale, brown, silty, has same greenish gray inclusions
as above, but very loosely consolidated
shale, red, silty
as above, but has some clay, has greenish gray inclusions
gypsum, light gray, fine crystalline
shale, red, silty-clayey, has greenish gray inclusions
gypsum, white, aphanitic, has laminae of silty red shale
as above, but gypsum is light gray
above, but no shale
shale, light red, silty, has laminae of gypsum, light gray to white, fine crystalline, gypsum
as above, but redder in color (mixture of red clayey
mixture of red shale, silty-clayey, gypsum, soft dark gray, fine crystalline, also has selenite gypsum
in Small amounts
ing results - estimates more than 20 gpm ng perforated - 420-460' below LSD r level - 350' below LSD r tastes salty

Well 21.29.2.14; drilled November 16, 1978.

Measurement: March 1, 1979: Water level 273.0' below LSD

Table 1, concluded.

/-----

Well 21.31.3.22; drilled November 9, 1978.

Top	Thickness	Description
0 18	18 12	caliche, white, moderate to strong formation sand, brown-buff, medium-fine texture,
30	10	shale, buff-red, silty, calcareous laminae
40 50	10	shale, red, clayey with some silt shale, mottled red, greenish gray, has sandy
60	10	shale, brown, silty, with clayey laminae, has
70	10	shale, reddish, brown, silty, has good cement, some laminae (calcite) (these laminae are grav-red)
80	10	as above, but subequal amounts of silt and clay
90	10	shale, red, silty, and clayev laminae
100	20	shale, brownish red, silty, has laminae with calcite cement
120	10	as above, but more calcite zones (mineralized with crystalline calcite)
130	10	shale, brownish red, silty
140	10	as above, but has clavey laminae
150	10	shale, brownish red, silty, has calcite mineralized laminae
160	10	shale, red, clayey, has laminae of silty greenish gray shale
170	10	shale, reddish brown, silty
180	10	as above, but has laminae of greenish gray shale
190	10	shale, brownish red, subequal amounts of silt and clay, has greenish gray laminae, silty
Total	Depth - 200'	
I (I Measu	Driller encounter Casing perforated Bailing results - Water level on co Urement: Februar	red water at 150' below LSD 1 140-160' below LSD - estimates 8 gpm ompletion - 128' below LSD ry 28, 1979: Water level - 142' below LSD

time. It is superimposed on Permian and Delaware basins. The more complex surficial structure near Nash Draw exerts a more immediate effect on the hydrology of the area. This area is typified by collapse of the Rustler Formation and overlying beds due to solution within the Rustler and at the top of the Salado Formation. Beds of the Rustler generally dip toward the larger depressions (Vine, 1963). In addition, hydration of anhydrite to gpysum causes localized doming. Sinkholes and domes influence the direction of ground-water movement, which in turn controls the development of collapse structures.

It is possible that the salt lakes of Laguna Gatuna, Laguna Plata, Laguna Tonto, and Laguna Toston occupy collapse structures associated with a northeastward extension of the "brine aquifer". Robinson and Lang (1938) described the "brine aquifer" as an important conduit of natural brine beneath Nash Draw. However, recent work at the WIPP site has shown that ". . . along the eastern side, the boundary is very irregular and in places extends farther east than previously indicated by Robinson and Lang " (Mercer, 1983, p. 50). Likewise, these depressions are located in a geographic location very similar to other depressions, sinks, and collapse structures in southeastern New Mexico and west Texas (Anderson, 1981, fig. 2). A hydraulic connection between the "brine aquifer" and the salt lakes would explain the origin of the depressions and the presence of highly mineralized spring discharge along the boundary of Laguna Gatuna and Laguna Plata.

Dewey Lake Redbeds

The Dewey Lake Redbeds underlie all of the project area (Brokaw and others, 1972), but they have not been identified in surface exposures. These deposits consist entirely of siltstone and fine-grained sandstone. The reddish-orange

to reddish-brown sandstone and siltstone are thinly laminated with very small scale cross-laminae. Ripple marks are present in the upper part of the formation. No evaporite deposits have been reported in the Dewey Lake sequence which is locally 500 feet thick. Although the Redbeds are not generally considered to be an aquifer, it is possible that some wells located north and east of the salt lakes may produce small quantities of water from these deposits.

Dockum Group, Undifferentiated (Triassic)

The Dockum Group unconformably overlies the Dewey Lake Redbeds (Brokaw and others, 1972). In some areas this Group is divisible into the Santa Rosa Sandstone and the Chinle Formation; however, the distinction cannot be made in western Lea County because of lithologic similarities and poor exposures (Nicholson and Clebsch, 1961, p. 35). Reed simply referred to these deposits as "Triassic" (plate 1).

Coarse-grained clastic deposits in the Dockum Group are generally fine to coarse-grained sandstone with minor shale layers. Locally these deposits range from siltstone to conglomerate. Although red is the predominant color, white, gray, and greenish-gray sands are present. Red and green claystone may be present in the eastern part of the project area.

The Dockum Group is exposed at several locations around the perimeter of Laguna Gatuna. Some of these were originally mapped by Reed; others have subsequently been exposed by highway construction, particularly on the south and east sides of the playa.

According to Hendrickson and Jones (1952, p. 75), the Dockum Group and underlying Dewey Lake Redbeds produce water to wells in eastern Eddy County. Also, Reed (1969) assumed that most of the wells in the vicinity of the salt lakes produce from the Triassic rocks.

Alluvium and Playa Deposits

The surficial deposits are composed mostly of locally derived sediments, including reworked Dockum and fragments of caliche and gypsum. Dune sands are common in the northern part of the project area and along the boundaries of the salt lakes. The sand is fine to medium grained and unconsolidated; it is present throughout the area, but in most areas has been stabilized by mesquite and other vegetation.

Playa deposits generally consist of fine sand, silt, and clay that has been reworked by intermittent lakes that are present after heavy rainfall. The interior of Laguna Gatuna and Laguna Plata contain abundant gypsum crystals and other salt deposits.

There is no evidence that the alluvium or playa deposits are water bearing. According to Nicholson and Clebsch (1961, p. 59), ". . . there does not seem to be a continuous saturated zone in the thin cover of alluvium. . ." of western Lea County. They attribute this to the limited precipitation in the area, and to the permeability of the Dockum Group which underlies the alluvium.

Ogallala Formation

The Ogallala is the principal water-bearing formation in southeastern New Mexico and much of eastern Lea County. The western edge of the formation is locally known as The Caprock or Mescalero Ridge which is approximately 11 miles northeast of Laguna Gatuna (fig. 1). Although the Ogallala Formation is not present in the vicinity of salt lakes, water from the Formation is piped across the area by potash refineries located in Nash Draw.

As a concession for right-of-way for the pipelines, most ranch owners obtained the right to tap these water lines for normal ranching operations. The

Snyder Ranches have made extensive use of this water source north of Highway 62-180. According to Mr. Smith at the Bingham Ranch, all of the water used south of the highway is obtained from the Kerr-McGee pipeline. Consequently, many of the windmills in the area are no longer in use and have fallen into disrepair. Some of the wells in use during Reed's 1969 study are no longer serviceable.

Potable water was reported by Reed near Halfway in section 23, T. 20 S., R. 32 E., and also from two wells located in sections 17 and 18, T. 19 S., R. 33 E. However it should be noted that the wells at Halfway have been abandoned since the Reed report has been completed. The two wells in sections 17 and 18 are used only for stock watering.

In his testimony before the Oil Conservation Division, Case No. 4047 on March 19, 1969, Mr. Larry C. Squires stated that there was no fresh water in the vicinity of the salt lakes.

Although somewhat brackish water can be used for stock watering, most of the water near Laguna Gatuna would be classified as brine. Spring samples collected by Reed contained sulfate concentrations greater than 11,000 ppm (parts per million) and chloride concentrations greater than 7,400 ppm. One spring at Laguna Gatuna (Reed's No. 55) contained 37,979 ppm sulfate and 27,657 ppm chloride. A 1969 sample from the bed of the playa contained 125,000 ppm sulfate and 158,000 ppm chloride.

The origin of these brines in Laguna Gatuna are difficult to explain. Although potash refiners dispose of saturated brines in Williams' Sink, Laguna Plata, and Laguna Toston, the direction of ground-water flow would carry the potash waste away from Laguna Gatuna. Laguna Gatuna is more than 20 feet higher than Laguna Toston and at least 60 feet higher than Laguna Plata and Williams' Sink.

The regional flow systems in Nash Draw, west of the project area, have been described by numerous workers, including Robinson and Lang (1938), Cooper and Glanzman (1971), Brokaw and others (1972), and Geohydrology Assoc., Inc. (1978, 1982), and Mercer (1983). Most of these studies conclude that, with some local variation, the ground-water flow in the shallow aquifers is from north toward the south. Nash Draw is one of the major flow paths. Recharge areas are the sand dunes of Chaves and Lea Counties; ground-water discharges into the Pecos River along most of its length (Geohydrology Assoc., Inc., 1978, p. 16).

Data were collected from a variety of sources in order to determine the local flow systems in Ts. 19-20 S., Rs. 32-33 E. A number of test-hole logs and water levels were obtained from an earlier study (Geohydrology Assoc., Inc., 1979) and are included in Tables 1 and 2 of this report. Land-surfacing elevations were used at well-documented springs located at Laguna Gatuna and Laguna Plata. These data were used to construct the water-level contours shown in Figure 3. Existing contour maps from outside the area were used for control where appropriate.

Most of the water-level data in T. 20 S, which includes Laguna Gatuna and other playas, shows a well defined flow system. The highest water-level elevations are present south to Highway 62-180 and in the vicinity of Laguna Tonto. The 3425-foot contour defines this area. Ground-water movement away from this contour would be west-northwest towards Laguna Plata and Williams' Sink.

This flow system is within the Dockum Group. The alluvial sediments are quite thin, as described in the preceeding section of this report. The

foot; measured ckm=Dockum; tte	Remarks																							
ring system. Ven to nearest ot. Aslr=Rustler; I allons per minu	Date of Measurement	04/01/1	10/18/77	04/07/71	04/06/71	04/05/71	03/18/68	02/23/71	04/06/71	04/06/71	04/02/66	02/19/71	02/09/71	02/09/71	02/09/71	02/05/71	02/08/71	02/08/71	06/03/54	02/09/71	03/06/68	12/09/58	02/09/71	12/09/58
well-number pths are giv dth of a foo =Triassic; 1 ated; gpm=ga	Aquifer	Trcl		Trcl	Trcl	Trcl	0g11	Trcl	Trcl	Trc1	Qtal	Qtal	Qtal	0g11	Qtal	Qtal	Qtal	Qtal	Qtal	Qtal	Qtal	Trsc?	Qtal	Trsc
oduction for explanation o Depth to Water-Reported d to nearest tenth or hundr ernary; Ogl1=Ogallala; Trs plm=Capitan lime. ific Conductance; est=esti	Depth to Water(ft)	460.42	453.39	435.34	377.30	261.08	84.18	179.35	434.41	117.46	60.10	59.18	41.64	41.64	42.40	137.48	31.85	46.66	35.8	35.20	35.84	140+	45.65	177.4
	Depth of Well (feet)		480+	600	400	300	100	270.0				64	75	60					40.0		46.0		58	200.0
See Intro Well and J re given tal=Quate tiary; Cp .C.=Speci:	Altitude (feet)	3797	3795	3775	3731	3631	3793	3470	3763	3721	4015	4012	4005	3985	3986	4089	3968	3973	3965	3976	3976	3820	3881	3760
Location- depth of depths a depths a Aquifer-Q Trcl=Ter Remarks-S	ell Status	Windmill	Stock	Stock	Open cased hole	Domestic	Uncased open hole	Domestic	0il test	Windmill	Open cased hole	Domestic/Stock	Domestic	Stock	Irrigation	Windmill	Open cased hole	Open cased hole	None	Windmill	Stock	Stock	Open cased hole	None
<u>Exp1ar</u>	Location We	18.31. 1.44432	12.23	12.23144	14.22133	35.31324	18.32.16.22433	20.13311	22.32322	34.22241	18.33. 3.34133	3.343	10.23244	10.44211	11.4433	12.44211	13.13144	13.44244	14,111	14.1114	14,11140	19.142	23.23140	34.133

Table 2.--Records of wells in vicinity of Laguna Gatuna.

Location	Vell Status	Altitude (feet)	Depth of Well (feet)	Depth to Water (ft)	Aquifer	Date of Measurement	Remarks
18.34. 1.12222 2.223333 4.11124 8.23213	Industrial Industrial Open cased hole Windmill	3991 4009 4064 4042		79.70 98.03 126.78 104.20	0g11 0g11 0g11 0g11	03/06/61 02/04/71 02/04/71 02/04/71	
11.43212 12.42333 15.24130 18.413212	Industrial Industrial Windmill Open cased hole	4000 3982 4015 4076	211.0 204.0	110.78 111.01 103.28 143.30	0g11 0g11 0g11 0g11	02/23/71 02/19/71 02/05/71 02/05/71	
20.323323 20.323333 22.343	Windmill Domestic/Stock	4015 4020	111.0	98.92 100.19 109.92	0811 0811 0811	02/05/61 03/06/68 01/08/75	
25.13111 25.133232 27.33311 29.112.13 30.211224	Uncased shot hole Uncased shot hole Windmill Open cased hole Open cased hole	2 3977 3947 3994 3972 3955		94.88 97.16 110.42 60.40 44.03	Qtal Qtal Ogl1 Qtal Ogl1	03/09/61 03/09/66 02/05/71 02/05/71 02/05/71	
19.31.27.21144 27.23344 28.330 28.333 28.3332 28.3332 28.33433	Open cased hole Oil test Domestic Domestic/Stock Stock	3573 3573 3442 3442 3483	200.0 180	142.71 143 180 110.07 186.87 108.21	Trsc Dckm Trsc	02/01/71 02/01/71 11/29/48 12/14/77 12/15/77 02/01/71	Abandoned S.C. 2200 Abandoned
31.132 33.110 33.142	Abandoned Domestic/Stock	3397 3450 3455	4103 160 250	632.55 100.7 140	Cplm Dckm	05/ /73 11/29/48 09/30/59	North well of 3
19.32.8.200 31.110 34.421424 34.42322 36.100	Stock Community Community Domestic/Stock	3650 3518 3960 3959 3565	4190 575 575 485	365.3 651.25 252.49 252.27	Trsc Cplm Trsc Trsc Trsc	12/09/58 09/ /74 01/28/71 01/28/71	

---- --

continued.
_
\sim
Table

and a state of the	والمتحد والمحافظة			a specific actions a sufficient and a sufficiency and a sufficiency de la sufficience de la sufficience de la s			
Location W	ell Status	Altitude (feet)	Depth of Well (feet)	Depth to Water (ft)	Aquifer	Date of Measurement	Remarks
19.33.5.12322 17.11224 18.133223 26.244	Stock Stock Oil test Stock/Domestic	3710 3650 3635 3600	131.0 800 101	299+ 117.67 211.86 92.9	Trsc Trcl Trsc Qtal	12/09/58 01/28/71 01/28/71 07/01/54	Abandoned
19.34. 6.34143 9.114 16.33410 31.131	Stock windmill Stock Oil test Stock	37777 3790 3755 3625	33 66	234.71 28.6 243.91 58.6	Trsc? Qtal	03/18/68 06/03/54 03/19/68 11/17/65	Abandoned Abandoned Yield-6gpm est; Reported dry 01/12/71
20.31.13.42 13.440 15.130 16.24	Stock;abandoned Stock Stock Stock	3427 3450 3458 3458	32.5 70 ? 110.0	1.1 203.8 63.1 61.0	Dckm? Dckm? Dckm?	10/05/77 12/22/48 12/22/48 10/05/77	S.C. >8000; 70 ⁰ F Abandoned
20.32.1.322 18.233	Stock Industrial	3510 3450	30 400	21.8 89.2	Qtal Trsc	01/25/84 03/24/54	Water not potable
23.43312 24.33333 25.111 27.144 27.32322 27.32411	Commercial Windmill Windmill None Stock Stock	3555 3555 3555 3543 3530 3530	78 65 67.5 25 75	38.03 38.72 35.07 12.3 15.30 16.55	Trsc 0g11 0ta1 0g11 0g11	01/25/84 01/25/84 12/16/77 06/11/54 03/29/65 02/02/71	Abandoned Abandoned Unused
30.142 36.214 36.221	None Domestic Windmill Windmill	3530 3588 3588 3588	60 65 53.7	9.9 46.6 48.46 45.31	Qtal Qtal Qtal	06/11/54 06/06/55 01/25/84 12/16/77	Abandoned Abandoned; S.C. 2000

continued.	
2,	
Table	

Location W	ell Status	Altitude (feet)	Depth of Well (feet)	Depth to Water (ft)	Aquifer	Date of Measurement	Remarks
20.33. 4.43211	Used windmill Oil test	3556 3556	58 680	33.19 278.57	0g11 Trsc	03/19/68 02/02/71	Plugged 1/25/84
18.12322	Open hole	3520	2	249.88	Trsc	03/19/68	Abandoned
21.111	Windmill	3536	47.5	35.42	Trsc	01/25/84	Inoperative
24.122	Stock	3630	+004	300+	Trsc		
24.124113	Stock	3633	676	413.55	Trsc	02/03/71	Used
20.34. 4.44434	Stock	3635	200+	172.19	Trsc	02/03/71	
17.334	Stock	3635	200	140	Trsc	07/01/54	
22.22333	Stock	3656	250	214.98	Trsc	02/03/71	
22.223	Stock	3655	235		Trsc		
21.31. 2.221	Abandoned	3569	31.87	30.15		10/19/77	
1.331	Windmill	3310	0./05	158+ 158+	Rslr	03/17/76	s.c. 3200 s.c. 3200
111.01	TTTMMTM				1 + 0.1		
21.32. 6.11131	Stock	3597	55	44.04	0g11	02/03/71	Used windmill
21.33. 2.231	Domestic	3810	1150		Trsc		
2.24141	Domestic	3792	120	104.54	Trsc	11/16/65	Abandoned
2.24233	Open hole	3791	120	104.01	Trsc	11/16/65	Abandoned
2.42214	Open cased hole	3785	150	85.32	Trsc	02/04/71	
2.422334	Used windmill	3768	100	79.13	Trsc	11/16/65	
2.42233	Stock/Domestic	3768	102	83.20	Trsc	02/04/71	
2.442	Stock	3800		72.9	0g11	06/28/54	
11.11144	Stock	3820	195	144.52	0g11	02/04/71	
18.112	Stock	3900		143	0g11	06/21/54	
18.11410	Used windmill	3892	ŪŶĪ	148.43	$0_{8}11$	11/16/65	
18.12314	Used windmill	3855	123	117.50	0g11	02/04/71	

Table 2, concluded.

	lett status	Altitude (feet)	Deptn of well (feet)	Deptn Lo Water (ft)	Aquiter	Date of Measurement	Kemärks
322 443	Used windmill Used windmill	3666 3688	224	58.95 178.62	0g11 Trsc	02/04/71 02/04/71	
122	llsed windmill	3662		68.92	Trsc	02/10/71	
22	Stock	3705	120	105.8	0g11	06/30/54	
141	Stock	3706		105.64	0g11	02/10/71	Used windmill
4	Domestic	3655	335	200	Trsc	1943	
141	Open cased hole	3677	196	99.61	Trsc	02/10/71	
23	Industrial/Domest	:1c3660	220	150	0g11	1954	
10		3717		1151.96	Cplm	60 / 74	
22	Domestic	3655	125		Trsc?	02/10/71	
3141	Open cased hole	3677	196	99.61	Trsc	02/19/71	
33441	Used windmill	3641	92	64.45	0g11	02/04/71	

ground-water movement would occur through the more permeable zones in the Dockum deposits, and in particular through the Santa Rosa sandstone.

Laguna Gatuna and Laguna Plata are natural ground-water discharge areas. Both lakes have intermittent springs along their borders, indicating that the bed of each lake is below the natural water table. No springs have been found at Laguna Tonto.

A second flow system is indicated by some of the water levels in the area north of Laguna Plata in T. 19 S. These water levels seem to be associated with a deeper flow system, perhaps in the Rustler Formation. Anomalous depths also were reported for wells in section 24, T. 20 S., R. 33 E. and section 3, T. 21 S., R. 32 E.

Water-quality data indicate that a deep, brine flow system exists also. This is discussed in the following section of this report.

WATER-QUALITY DATA

Reed (1969) collected chemical data at 14 different sites (Appendix B). These included samples from wells, springs, and soil samples from playas. The electrical conductivity was measured at several sites also. From these data, Reed concluded that there was very little potable water in the region.

The concentration of brine cannot be attributed to contamination from oil wells located near Laguna Gatuna. Work by Reed has shown that a water sample from a nearby oil well contained only 2,250 ppm sulfate and 5,900 ppm chloride, considerably less than found in springs and the lake itself. Evaporation of fresh water runoff into the playa would result in an increase in salt concentration, however this could not explain the high mineralization in the springs at higher elevations than the lake bottom. Also, there is no known source of brine up-gradient (or southeast) of Laguna Gatuna.

In the preceding section describing Geologic Structure, the similarity of Laguna Gatuna with other collapse structures in the region was pointed out. If Laguna Gatuna and the other playas in the area are the result of collapsing strata, normal faulting would be a consequence. These fault zones would serve as conduits for highly mineralized water in the brine aquifer. This seems to be the most plausible explanation for brine in Laguna Tonto. Inasmuch as there are no springs discharging into that lake, and it has a relatively small drainage area from which surface drainage would enter, a deep-seated brine source with movement along fault zones could account for brine on the lake surface.

SITE SUITABILITY

As shown in Appendix A (page 4), the original authorization for disposal of oil-field brines was granted to Mr. Larry C. Squires for the use of Laguna Plata and Laguna Gatuna. The application to utilize Laguna Tonto was denied. Since that time Pollution Control, Inc., has operated at a facility constructed on the northwest side of Laguna Gatuna in the north half of section 18, T. 20 S., R. 32 E. (fig. 4). Mr. Squires is President of Pollution Control, Inc. An additional facility has now been proposed for the SW¹₂, SW¹₂ of section 17, T. 20 S., R. 32 E. on land currently held by the Snyder Ranches under Bureau of Land Management lease BL-745.

Laguna Gatuna is a natural playa which has a surface area of approximately 383 acres within the lowest closing contour. The elevation of the bed is about 3,495 feet above mean sea level; the upper perimeter of the playa is generally defined by the 3,510-foot contour. The total drainage area for Laguna Gatuna is less than two square miles. One tributary channel enters the playa from the west directly south of the Pollution Control facility. A shorter tributary

Figure 4.--Detailed map of Laguna Gatuna showing location of Pollution Control, Inc., facilities.

enters from the south in section 19. Assuming that only 10 percent of the annual precipitation enters the playa as runoff, Laguna Gatuna would entrap about 8,000 gallons of precipitation annually.

In most areas the steep-sided walls are covered by unconsolidated alluvium and slope wash; however there are at least five exposures of the Dockum Group. These unconsolidated sediments are composed primarily of hard reddish-brown shale and siltstone; thin laminae of very fine grained sandstone is locally present. Two exposures in sections 17 and 19 were developed by roadwork associated with Highway 62-180. These exposures show that the alluvial material is very thin; around the perimeter of the playa, the alluvial cover probably does not exceed five feet in thickness. Figure 2 is a generalized cross section of Laguna Gatuna.

The presence of well-defined springs and seeps on the rim of the playa established that Laguna Gatuna is a natural ground-water discharge point. However the springs probably fluctuate with seasonal temperatures. According to Mr. Steve Foster, Vice President of Pollution Control, Inc., the playa remains dry except during periods of heavy rainfall and runoff.

Evaporation studies have been conducted in Nash Draw to determine the loss of water from a brine solution exposed on a free water surface (Geohydrology Assoc., Inc., 1979, p. 71). These studies showed that the summer evaporation rate was 6.69 gpm (gallons per minute) per acre or 229 barrels per acre per day. The winter loss was 0.37 gpm per acre or about 13 barrels per acre per day. Inasmuch as Laguna Gatuna has a minimum surface area of 383 acres, the seasonal evaporation from the playa would be about 87,700 barrels per day during the summer and about 5,000 barrels per day during the winter.

These evaporation rates support the original estimate by Reed (1969, p. 30) that Laguna Gatuna has a disposal rate of 30,000 barrels per day. During the

winter of 1983-1984, Pollution Control, Inc., disposed of an average of about 50,000 barrels per month, and the playa remained totally dry throughout the period, according to Mr. Steve Foster. Also, the maximum disposal to date occurred in 1981 when disposal of 150,000 barrels per month was not uncommon (fig. 5, Table 3). This is less than 20 percent of the recommended maximum suggested by Reed and approved by the Oil Conservation Division.

During the recent field investigations conducted for this study, several wells measured in 1969 were again measured. A well located in the northwest corner of section 21, T. 20 S., R. 33 E., has shown a decline of 0.82 feet between 1969 and 1984. This well is located about one mile east of Laguna Gatuna. The water level in a well located in the northwest corner of section 25, T. 20 S., R. 32 E., declined 0.12 feet during the same period. This second well is located about one and a half miles southwest of the lake. The elevation of these water levels is higher than the elevation of Laguna Gatuna; nevertheless, this indicated that 15 years of operation by Pollution Control, Inc., has not affected the water table in the immediate vicinity of the disposal site.

CONCLUSIONS

1. Laguna Gatuna is a natural ground-water discharge point. The playa probably occupies a collapse structure associated with Nash Draw and others in the region. There is a thin blanket of alluvium covering the less permeable Dockum Group below.

2. The salt springs and brine associated with Laguna Gatuna are more highly mineralized than water collected from oil wells in the immediate area. There are no known salt deposits in the Dockum Group or in shallow deposits up-gradient from the playa. It is possible that the brine originates in the Rustler Formation at depth with the fault zones associated with collapse

Figure 5.--Plot of monthly disposal volumes at Laguna Gatuna during 1983-1984.

Month	Total Cumulative
January 1983	44,963 barrels
February	40,967
March	36,851
April	76,634
Мау	41,615
June	36,499
July	72,058
August	53,279
September	47,788
October	40,572
November	36,924
December	59,401
January 1984	33,521
February	40,777
March	52,119
April	44,720
Мау	42,623
June	51,200

Table 3.--Monthly discharges for 1983-1984 at Laguna Gatuna.

structures acting as the conduit to the surface.

3. Laguna Gatuna is a suitable disposal site for as much as 30,000 barrels of brine per day.

4. There is no evidence to show that 15 years of operation by Pollution Control, Inc., has adversely impacted the hydrologic system in the vicinity of Laguna Gatuna. Continued operation of the existing facilities will not endanger the pre-1969 conditions.

5. Laguna Gatuna is a satisfactory repository for solid oil-field waste products, such as drill cuttings and drilling mud. Oil-contaminated waste products should be contained by earthern structures in order to maintain the aesthetic quality of the playa.

6. The proposed facility in the SW4, SW4 of section 17, T. 20 S., R. 32 E. will not adversely impact the hydrologic conditions in Laguna Gatuna provided that the combined discharge from both sites does not exceed 30,000 barrels of brine per day.

REFERENCES

- Anderson, R. Y., 1981, Deep-seated salt dissolution in the Delaware Basin, Texas and New Mexico: New Mexico Geological Society Special Publication No. 10, p. 133-146.
- Brokaw, A. L., Jones, C. L., Cooley, M. E., and Hays, W. H., 1972, Geology and hydrology of the Carlsbad potash area, Eddy and Lea Counties, New Mexico: U. S. Geological Survey Open-File Report 4339-1.
- Geohydrology Associates, Inc., 1978, Collection of hydrologic data, Eastside Roswell Range EIS Area, New Mexico: consultant report prepared for the Bureau of Land Management, 97 p.
- , 1978a, Ground-water study related to proposed expansion of potash mining near Carlsbad, New Mexico: consultant report prepared for the Bureau of Land Management, 127 p.
- _____, 1979, Water-resources study of the Carlsbad potash area, New Mexico: consultant report prepared for the Bureau of Land Management, 91 p.
- _____, 1982, Hydrologic assessment, Laguna Tres area, Eddy County, New Mexico: consultant report prepared for B&E, Inc., Carlsbad, New Mexico, 11 p.
- Hendrickson, G. E. and Jones, R. S., 1952, Geology and ground-water resources of Eddy County, New Mexico: New Mexico Bureau of Mines and Mineral Resources Ground-Water Report 3, 169 p.
- King, P. B., 1942, Permian of west Texas and southeastern New Mexico, American Association of Petroleum Geologists Bulletin, v. 26, no. 4, p. 535-763.
- Mercer, J. W., 1983, Geohydrology of the proposed Waste Isolation Pilot Plant site, Los Medaños area, southeastern New Mexico: U. S. Geological Survey Water-Resources Investigative Report 83-4016, 113 p.
- Mercer, J. W. and Gonzalez, D. D., 1981, Geohydrology of the proposed Waste Isoloation Pilot Plant in southeastern New Mexico: New Mexico Geological Society Special Publication No. 10, p. 123-131.
- Nicholson, Alexander, Jr. and Clebsch, Alfred, Jr., 1961, Geology and groundwater conditions in southern Lea County, New Mexico: New Mexico Bureau of Mines and Mineral Resources Ground-Water Report 6, 123 p.
- Reed, E. L., 1969, Transcript of testimony in Case No. 4047 presented bofore the New Mexico Oil Conservation Commission on March 19, 1969, 99 p.

Robinson, T. W. and Lang, W. B., 1938, Geology and ground-water conditions of the Pecos River valley in the vicinity of Laguna Grande de la Sal, New Mexico: New Mexico State Engineer 12th and 13th Biennial Report, 1934-1938, p. 77-100.

Vine, J. D., 1963, Surface geology of the Nash Draw quadrangle, Eddy County, New Mexico: U. S. Geological Survey Bulletin 1141-B, p. B1-B46.

A P P E N D I X A

Order of the Oil Conservation Commission, No. R-3725, Case No. 4047, dated April 16, 1969.

BEFORE THE OIL CONSERVATION COMMISSION OF THE STATE OF NEW MEXICO

IN THE MATTER OF THE HEARING CALLED BY THE OIL CONSERVATION COMMISSION OF NEW MEXICO FOR THE PURPOSE OF CONSIDERING:

> CASE No. 4047 Order No. R-3725

APPLICATION OF LARRY C. SQUIRES FOR AN EXCEPTION TO ORDER NO. R-3221, AS AMENDED, LEA COUNTY, NEW MEXICO.

ORDER OF THE COMMISSION

BY THE COMMISSION:

This cause came on for hearing at 9 a.m. on March 19, 1969, at Santa Fe, New Mexico, before the Oil Conservation Commission of New Mexico, hereinafter referred to as the "Commission."

NOW, on this 16th day of April, 1969, the Commission, a quorum being present, having considered the testimony presented and the exhibits received at said hearing, and being fully advised in the premises,

FINDS:

(1) That due public notice having been given as required by law, the Commission has jurisdiction of this cause and the subject matter thereof.

(2) That effective January 1, 1969, Order (3) of Commission Order No. R-3221, as amended, prohibits in that area encompassed by Lea, Eddy, Chaves, and Roosevelt Counties, New Mexico, the disposal, subject to minor exceptions, of water produced in conjunction with the production of oil or gas, or both, on the surface of the ground, or in any pit, pond, lake, depression, draw, streambed, or arroyo, or in any watercourse, or in any other place or in any manner which would constitute a hazard to any fresh water supplies and said disposal has not previously been prohibited.

(3) That the aforesaid Order No. R-3221 was issued in order to afford reasonable protection against contamination of fresh

-2-CASE No. 4047 Order No. R-3725

water supplies designated by the State Engineer through disposal of water produced in conjunction with the production of oil or gas, or both, in unlined surface pits.

(4) That the State Engineer has designated, pursuant to Section 65-3-11 (15), N.M.S.A., 1953 Compilation, all underground water in the State of New Mexico containing 10,000 parts per million or less of dissolved solids as fresh water supplies to be afforded reasonable protection against contamination; except that said designation does not include any water for which there is no present or reasonably foreseeable beneficial use that would be impaired by contamination.

(5) That the applicant, Larry C. Squires, seeks an exception to the provisions of the aforesaid Order (3) to permit the disposal of water produced in conjunction with the production of oil or gas, or both, in three natural salt lakes located in Lea County, New Mexico, as follows:

> Laguna Plata, sometimes referred to as Laguna Grande, located in Sections 2, 3, 9, 10, and 11, Township 20 South, Range 32 East, NMPM;

Laguna Gatuna, sometimes referred to as Salt Lake, located in Sections 7, 17, 18, 19, and 20, Township 20 South, Range 33 East, NMPM;

Laguna Tonto, located in Sections 32 and 33, Township 19 South, Range 33 East, and Section 4, Township 20 South, Range 33 East, NMPM.

(6) That the subject lakes are situated within the confines of a synclinal feature.

(7) That the water in the aforesaid three lakes is not fresh water.

(8) That that portion of the Triassic red beds underlying said three lakes is virtually impermeable and therefore prevents seepage from said lakes into the sand stringers within said red beds which may contain fresh water.

(9) That as to sands that are in communication with said lakes, the evidence indicates that the major flow of surface and subsurface water within the boundaries of said synclinal feature is toward the subject lakes. -3-CASE No. 4047 Order No. R-3725

(10) That the evidence indicates that there is no leakage of water from said Laguna Plata and Laguna Gatuna into the adjoining formations.

(11) That the evidence indicates that there may be some leakage of water from said Laguna Tonto into the adjoining formations to the southeast, thence southwestward toward Laguna Gatuna.

(12) That the utilization of Laguna Plata and Laguna Gatuna for the disposal of water produced in conjunction with the production of oil or gas, or both, will not constitute a hazard to fresh water supplies that may exist in the vicinity of said lakes.

(13) That the utilization of Laguna Tonto for the disposal of water produced in conjunction with the production of oil or gas, or both, may constitute an additional threat of contamination of fresh water supplies as designated by the State Engineer existing to the southeast of said lake.

(14) That the evidence indicates that commercial deposits of sodium sulphate (Na $_2$ SO $_4$) may exist in and/or near the three subject lakes.

(15) That disposal of produced salt water into Laguna Plata and Laguna Gatuna will not interfere with the testing required to determine if there are commercial deposits of sodium sulphate in and/or near the said three lakes.

(16) That said disposal prior to actual mining operations will not impair the value of said sodium sulphate nor render its recovery more difficult.

(17) That this case should be reopened upon the motion of the Commission or any other interested party whenever tests have been conducted which indicate to a substantial degree that commercial deposits of sodium sulphate probably exist in and/or near the subject lakes, at which time all interested parties should be prepared to appear and show cause why continued disposal in said lakes should or should not be allowed.

(18) That the applicant should be authorized to utilize Laguna Plata and Laguna Gatuna for the disposal of water produced in conjunction with the production of oil or gas, or both. -4-CASE No. 4047 Order No: R-3725

(19) That the request of the applicant to utilize Laguna Tonto for the disposal of water produced in conjunction with the production of oil or gas, or both, should be <u>denied</u>.

IT IS THEREFORE ORDERED:

(1) That the applicant, Larry C. Squires, is hereby granted an exception to Order (3) of Commission Order No. R-3221, as amended, to dispose of water produced in conjunction with the production of oil or gas, or both, in two natural salt lakes located in Lea County, New Mexico, as follows:

> Laguna Plata, sometimes referred to as Laguna Grande, located in Sections 2, 3, 9, 10, and 11, Township 20 South, Range 32 East, NMPM;

> Laguna Gatuna, sometimes referred to as Salt Lake, located in Sections 7, 17, 18, 19, and 20, Township 20 South, Range 33 East, NMPM.

(2) That the application of Larry C. Squires to utilize Laguna Tonto, located in Sections 32 and 33, Township 19 South, Range 33 East, and Section 4, Township 20 South, Range 33 East, NMPM, Lea County, New Mexico, for the disposal of water produced in conjunction with the production of oil or gas, or both, is hereby <u>denied</u>.

(3) That the Commission may by administrative order rescind such authority whenever it reasonably appears to the Commission that such rescission would serve to protect fresh water supplies from contamination.

(4) That this case shall be reopened upon the motion of the Commission or any other interested party whenever tests have been conducted which indicate to a substantial degree that commercial deposits of sodium sulphate probably exist in and/or near the aforesaid lakes, at which time all interested parties should appear and show cause why continued disposal in said lakes should or should not be allowed.

(5) That the first person to determine to a substantial degree by tests that commercial deposits of sodium sulphate probably exist in and/or near said lakes shall so notify the Commission, setting forth in writing the supporting facts.

-5-CASE No. 4047 Order No. R-3725

whereupon the Commission shall give notification for the reopening of this case.

(6) That jurisdiction of this cause is retained for the entry of such further orders as the Commission may deem necessary.

DONE at Santa Fe, New Mexico, on the day and year hereinabove designated.

STATE OF NEW MEXICO OIL CONSERVATION COMMISSION

DAVID F. CARGO, Chairman

ALEX J. ARMIJO, Member

SEAL

A. L. PORTER, Jr., Member & Secretary

A P P E N D I X B

۰.

Chemical analyses of samples collected by Ed L. Read, February 1969.

SOL THWESTERN LABORATG JES FORT WORTH DALLAS HOUSTON MIDLAND BEAUMONT TEXARKANA

CONSULTING, ANALYTICAL CHEMISTS AND TESTING ENGINEERS

	Midland,	Texas	2-13-69	File No	<u>C-1902-R</u>	1
Report of tests on	Water		r			
То	Mr. Ed L.	Reeđ			Date Rec'd.	2-12-69
Received from	Mr. Ed L.	Reed				
Identification Marks	Lea Count; Reed, #16 WL 39.	y, New , Sec. 58'.	Mexico, Larry 25-T2OG, R32E	y Squires, E, from wa	sampled ste troug	by Joe h,

Chloride ----- 85 Sulfate ----- 82 Conductivity ----- 837 Micromhos/cm @ 25⁰ C.

Mg/L

Copies: 3cc Mr. Ed L. Reed

SOUTHWESTERN LABORATORIES

Lab. No. C-5120

Our letters and reports are for the exclusive use of the clients to whom they are addressed. The use of our names must receive our prior written approval. Our letters and reports apply only to the samples tested and are not necessarily indicative of the qualities of identical or similar products.

ORM NO. 130-8

SOUTHWESTERN LABORATURIES

FORT WORTH DALLAS HOUSTON MIDLAND BEAUMONT TEXARKANA

CONSULTING, ANALYTICAL CHEMISTS AND TESTING ENGINEERS

	Midland,	Texas	2-13-69	File No.	C-1902-R1	
Report of tests on	Water		,			
То	Mr. Ed L	. Reed			Date Rec'd.	2-12-69
Received from	Mr. Ed L	. Reed				
Identification Marks	Lea Coun Spring #	ty, New 3, just	Mexico, Lar: North of #2	ry Squires, , 200 ft., .	by Joe R at head w	eed, ater.

Mg/L

Chloride ----- 7446

Sulfate -----11755

Conductivity -----10,000 / Micromhos/cm @ 25° C.

Copies: 3cc Mr. Ed L. Reed

SOUTHWESTERN LABORATORIES

Jack

Lab. No. C-5124

Our letters and reports are for the exclusive use of the clients to whom they are addressed. The use of our names must receive our prior written approval. Our letters and reports apply only to the samples tested and are not necessarily indicative of the qualities of identical or similar products.

FORM NO. 130-8

SOU THWESTERN LABORATCATES

۰.

ŕ

÷

FORT WORTH DALLAS HOUSTON MIDLAND BEAUMONT TEXARKANA

CONSULTING, ANALYTICAL CHEMISTS AND TESTING ENGINEERS

	Midland,	Texas	2-13-69	File NoFile NoFil
Report of tests on	Water		ï	
То	Mr. Ed L	. Reed		Date Rec'd. 2-12-69
Received from	Mr. Ed L	. Reed		
Identification Mark	s Lea Coun Reed, Sp	ty, New ring ∦l,	Mexico, Larry SE end of La	y Squires, sampled by Joe aguna Plata at head water.

<u>Mg/L</u> Chloride ----- 8864 Sulfate ------11930 Conductivity ----- 10,000 / Micromhos/cm @ 25⁰ C.

Copies: 3cc Mr. Ed L. Reed

SOUTHWESTERN	LABO	RATOR	IES J
yock	Fr	13c	<u> </u>
V			

Lab. No. C-5122

Our letters and reports are for the exclusive use of the clients to whom they are addressed. The use of our names must receive our prior written approval. Our letters and reports apply only to the samples tested and are not necessarily indicative of the qualities of identical or similar products.

- ----

SOUTHWESTERN LABORATCKIES

÷16-14-16-1

FORT WORTH DALLAS HOUSTON MIDLAND BEAUMONT TEXARKANA

CONSULTING. ANALYTICAL CHEMISTS AND TESTING ENGINEERS

Midland, <u>Texas</u> 2-13-69 File No. C-1902-R1

Report of tests on	Water	
То	Mr. Ed L. Reed	Date Rec'd. 2-12-69
Received from	Mr. Ed L. Reed	
Identification Marks	Lea County, New Mexico, Larry Squires, Reed, Spring #2, due East of Laguna Pl	sampled by Joe ata at head water

<u>Mg/L</u> Chloride ----- 7446 Sulfate ----- 12743 Conductivity ----- 10,000 / Micromhos/cm @ 25° C.

Copies: 3cc Mr. Ed L. Reed

SOUTHWESTER	RN LA	BORA	TORIES
Oach	H	R.	7-
	, ,	$i \circ a$	
U			

Lab. No. C-5123

Our letters and reports are for the exclusive use of the clients to whom they are addressed. The use of our names must receive our prior written approval. Our letters and reports apply only to the samples tested and are not necessarily indicative of the qualities of identical or similar products.

SOUTHWESTERN LABORATC AIES

ŕ

÷

FORT WORTH DALLAS HOUSTON MIDLAND BEAUMONT TEXARKANA

CONSULTING. ANALYTICAL CHEMISTS AND TESTING ENGINEERS

	Midland,	Texas	2-13-69	File NoC-1902-R1	
Report of tests on	Water		I.		
То	Mr. Ed L.	Reed		Date Rec'd. 2-12-6	59
Received from	Mr. Ed L.	Reed			
Identification Marks	Lea Count Reed, Hal	:y, New L fway Ba	Mexico, Larry r, from tap,	Squires, sampled by Joe 2 wells, WL 42.5'.	•

Mg/L

Chloride		362
----------	--	-----

Sulfate ----- 309

Conductivity ----- 1861 Micromhos/cm @ 25° C.

Copies: 3cc Mr. Ed L. Reed

SOUTHWESTERN LABORATORIES

Jock

Lab. No. C-5121

Our letters and reports are for the exclusive use of the clients to whom they are addressed. The use of our names must receive our prior written approval. Our letters and reports apply only to the samples tested and are not necessarily indicative of the qualities of identical or similar products.

ORM NO. 130-8

SOUTHWESTERN LABORATCRIES

FORT WORTH DALLAS HOUSTON MIDLAND BEAUMONT TEXARKANA

CONSULTING, ANALYTICAL CHEMISTS AND TESTING ENGINEERS

	Mi	dland,	Texas	2-25-69	File NoC-	1902-R1	
Report of te	ests on	Water					
То		Mr. Ed L.	Reed		Da	ate Rec'd. 2-18	-69
Received fr	om	Mr. Ed L.	Reed				
Identificatio	on Marks	As Shown					
Lab. No.	<u>Sample</u>	Descriptio	on			Mg/L <u>Chloride</u>	Mg/L <u>Sulfate</u>
C-5151	No. 1-	A, Soil san	nple, N	end of Tonto			
	(1:1	extract)			******	48931	37698
2-5152	No. 2,	Spring, St	W Gatun	a, S of Highwa	ay	163105	24594
C-5153	No. 3,	South side	e of Ga	tuna		66660	29728
2-5154	No. 4,	Gatuna, in	n draw	N of Highway •		72333	24273
C-5155	No. 5,	Gatuna, N	W end a	t oil well, N	W of well		
	in R	avine				27657	37979
C-5156	No. 6,	Gatuna, N	Wend,	NE of oil well	L, ravine		
	flow	ing South				10992	13771
C-5157	No. 7,	Spring No	. 4, Pl	ata		7978	12643
C-5158	No. 1,	Salt crys	tals, T	onto (Moist):			
	Chlo	ride (Cl)	4.20%	by weight			
	Sulf	ate (SO4)	29.23%	by weight			
	_	Terrand Shifts					

----- No. 1-A --- No Sulfide or Sulfite detected.

Copies: 3cc Mr. Ed L. Reed

SOUTHWESTERN LABORATORIES

Jack H Ba

Lab. No.

Our letters and reports are for the exclusive use of the clients to whom they are addressed. The use of our names must receive our prior written approval. Our letters and reports apply only to the samples tested and are not necessarily indicative of the qualities of identical or similar products.