MAXIMUM POTENTIAL CROSS FLOW EXPOSURE

Exposure can be Quantified by the Quotient of Reserves "Lost" to Reserves Produced.

*Quotient Table

	% of Cross Flow "Lost" (Not Produced Back)		
	0%	30%	100%
% Time Shut In			
5%	0	. 0063	.0211
10%	0	.0133	.0444
15%	0	.0212	.0706
20%	0	.0300	.1000
25%	0	.0400	.1333

* For $\frac{(\text{Cross Flow Rate})}{(\text{Producing Rate})} = 0.4$

EXAMPLE CALCULATION

Using 20% shut in time and 30% Cross Flow "Lost" from above Quotient Table:

Quotient = $\frac{Reserves\ Lost}{Reserves\ Produced}$ = .0300

From Exhibit # 15, summary of all 4 wells:

Continued Operations Reserves = 149,772 Bbls Proposed Commingled Reserves = 208,602 Bbls (Assumes no Cross Flow)

The reserves for proposed commingling, adjusted for Potential Cross Flow, are:

Produced Reserves = 208,602 Bbls = 202,526 Bbls(1 + .0300)

• Recovery under proposed operations significantly exceeds recovery under continued operations, even when adjusted for potential cross flow.

> **EXXON CORP.** Exhibit No. 20____ Case No. 9398 & 9399

June 8, 1988 Docket