EVALUATION OF

WATERFLOOD REDEVELOPMENT PROJECT

SKELLY-PENROSE "B" UNIT

LEA COUNTY, NEW MEXICO

BEFORE	EXAMINER CATANACH
	NSERVATION DIVISION
<u> 0xy</u>	EXHISIT NO. 5
CASE NO	10771

T. SCOTT HICKMAN & ASSOCIATES, INC.

September 28, 1987

Sirgo-Collier, Inc. P. O. Box 3531 Midland, TX 79702

Home Savings Association P. O. Box 11023 Midland, TX 79712

Attention: Mr. Manny Sirgo

Attention: Mr. Mike Irons

Casa Energy P. O. Box 11023 Midland, TX 79712

Attention: Mr. Alan Byars

Gentlemen:

Re: Waterflood Redevelopment Project Skelly-Penrose "B" Unit Lea County, New Mexico

In accordance with Messrs. Sirgo's, Byars' and Irons' request, we have evaluated the Proved crude oil and gas reserves as of September 15, 1987 attributed to additional development and re-establishing injection in the Skelly-Penrose "B" Unit, Lea County, New Mexico. The results of this study are discussed in the attached report as outlined in the Table of Contents. A summary of our evaluation to 100% working interest (75% net revenue interest) is as follows:

	Net Re Liquid (MBBL)	serves Gas (MMCF)	Future Undis- counted (M\$)	Net Revenue Discounted @ 10% (M\$)
Effective Date:		- September	15, 1987	
PDP Reserves	143	43	1,461	1,030
PUD Reserves: Phase I Phase II Phase III	564 456 259	169 137 <u>78</u>	9,129 6,058 3,415	4,524 2,758 <u>1,553</u>
Total PUD	1,279	384	18,602	8,835
Total Proved	1,422	427	20,063	9,865

EMPIRE PLAZA, SUITE 725 508 W. WALL MIDLAND, TEXAS 79701

01-1/01 (20)

Sirgo-Collier, Inc. Home Savings Association Casa Energy September 28, 1987 Page 2

Net oil and gas reserves are estimated quantities of crude oil, natural gas and natural gas liquid attributed to the composite revenue interests being evaluated after deduction of royalty and/or overriding royalty interests. The Society of Petroleum Evaluation Engineers' reserve definitions, as modified by use of assumed rather than existing economic conditions, were used to classify the reserves. Future net revenue was adjusted for capital expenditures, operating costs, interest reversions, ad valorem taxes and wellhead taxes (severance and windfall profit), but no consideration was given to Federal income taxes or any encumbrances that might exist against the evaluated interests.

Reserves were determined using industry-accepted methods including extrapolation of established performance trends, volumetric calculations, reservoir simulator solutions and analogy to similar producing projects. Where applicable, the evaluator's own experience was used to check the reasonableness of the results.

No attempt was made to quantify any reserves in the "Non-Proved" category. Additional reserve potential may exist in other portions of the unit. However, insufficient geological and/or engineering data exists at this time with which to make a determination sufficient for reserve assignment.

In the preparation of this report, we have reviewed for reasonableness, but accepted without independent verification information furnished by Sirgo-Collier, Inc. with respect to interest factors, current prices, operating costs, gas contracts, current production and various other data. The price and expense escalation scheme and prime discount rate are in accord with current industry expectations, but represent speculation that is subject to changes in economic conditions. The use of predicted rather than existing economic parameters affects both the cash flow projections by the difference in prices and expenses and also the reserve volumes by changing the economic limit at which production is terminated. The assumed pricing also has a major effect on the economic viability of non-developed potential and hence the volume of reserves that can be assigned to the non-producing categories.

No consideration was given to the existing debt burden, which would decrease the value of the producing interests. We are qualified to perform engineering evaluations and do not claim any expertise in accounting or legal matters. As is customary in the profession, no field inspection was made of the properties nor have we verified that all operations are in compliance with any states and/or Federal regulations that apply to them.

Initial oil prices were based on posted prices as of August 28, 1987 after adjusting for gravity and transportation. Oil pricing was held constant to December 31, 1987 then increased \$1/BBL in 1988. Starting

Sirgo-Collier, Inc. Home Savings Association Casa Energy September 28, 1987 Page 3

January 1, 1990, the pricing was escalated at 5% per annum to a maximum of \$35/BBL. The windfall profit tax was not applicable.

Starting gas prices were based on prevailing area prices as of June 1, 1987 and held constant to January 1, 1989. Starting January 1, 1989, the price was escalated at a rate to reach 65% parity with oil by January 1, 2001.

Lease operating expenses were estimated by Sirgo-Collier, Inc. based on anticipated operating conditions for each project phase. Expenses were held constant to January 1, 1989 then escalated at 5% per annum until the primary product reached the maximum price. No equipment salvage value or abandonment costs were included for the properties. The costs for drilling, workovers and re-establishing injection were developed by Sirgo-Collier. Inc. We have reviewed their estimates for reasonableness.

This study was performed using industry-accepted principles of engineering and evaluation that are predicated on established scientific concepts. However, the application of such principles involves extensive judgment and assumptions and is subject to changes in performance data, existing technical knowledge, economic conditions and/or statutory provisions. Unless otherwise noted, we have based our reserve projections on current operating methods and well densities. Consequently, our reserve estimates are furnished with the understanding that some revisions will probably be required in the future, particularly on new wells with little production history and for reserve categories other than Proved Developed Producing. The restriction of production by mechanical, regulatory or market conditions also introduces uncertainty into reserve estimates and projections.

This report is solely for the information of and assistance to Sirgo-Collier, Inc., Casa Energy and Home Savings Association in negotiating loans or credit and is not to be used, circulated, quoted or otherwise referred to for any other purpose without the express written consent of the undersigned except as required by law. Persons other than those to whom this report is addressed shall not be entitled to rely upon the report unless it is accompanied by such consent. Data utilized in this report will be maintained in our files and are available for your use.

Yours very truly,

T. SCOTT HICKMAN & ASSOCIATES, INC.

C. Don Hunter, P. E.

TABLE OF CONTENTS

Discussion

14

15

Introduction
Conclusions
Recommendations
Geology and Reservoir Properties
Review of Unit Performance
Reservoir Performance Prediction
Redevelopment Plan and Economics

Figure 1 Type Log 2 Structure Map 3 Net Pay Isopach 4 Oil Recovery Map 5 Production Summary 6 Injection Summary 7 Rate - Time Production Graph 8 Proposed Redevelopment Plan

Table	1	Geologic Summary - Penrose Sand Structure
	2	Performance Data - Total Penrose "B" Unit
	3	Individual Well Production and Ultimate Recovery
	4	Individual Well Injection Summary
	5	Simulation Model Parameters
	6	Simulation Model Depletion Results
	7	Proposed Investment Schedule
	8	Well Count Summary
	9	Summary of Economics
•	10	Total Proved Cash Flow Projection
•	11	Total Proved Developed Producing Cash Flow Projection
•	12	Total Proved Undeveloped Cash Flow Projection
•	13	Phase I Proved Undeveloped Cash Flow Projection

Phase II Proved Undeveloped Cash Flow Projection
Phase III Proved Undeveloped Cash Flow Projection

DISCUSSION

INTRODUCTION

The Skelly-Penrose "B" Unit is located in the Langlie Mattix Field of southeastern Lea County, New Mexico. The field produces from the Permian age Queen formation at a depth of approximately 3600'. The discovery well for the Unit area was the Skelly-Harrison "A" No. 1, which is now designated the Skelly-Penrose "B" Unit No. 34. Forty-acre development began in the 1930's with drilling continued through the 1950's. Early completion methods consisted of open hole completions stimulated by nitroglycerin. However, the majority of completions are cased holes stimulated by frac treatment.

At the time of unitization - July 1, 1965 - the Penrose "B" Unit was comprised of 63 wells encompassing 2612 acres. Waterflood operations were initiated during mid-1966 on 80-acre, 5-spot patterns. Ultimate primary oil recovery from the Unit has been 1775 MBBL. As of April 1, 1987, total oil production from the Unit was 3,310,156 barrels. Under the current mode of operation, ultimate secondary oil recovery is estimated at 1742 MBBL. The Unit is currently producing at 95 BOPD and 1099 BWPD from 29 active producers. Only 5 injectors are currently active. Approximately 191 MBBL of reserves remain under the current mode of operation. Unit performance is summarized by Table 2.

CONCLUSIONS

- 1. The Penrose sand formation of the Penrose "B" Unit appears to be geologically contiguous with that of adjoining properties.
- 2. Oil productive limits of this field are controlled primarily by stratigraphic influence.
- 3. Under current mode of operations, the Penrose "B" Unit is in the latter stages of depletion.
- 4. Ultimate primary oil production is estimated at 1775 MBBL.
- 5. Ultimate secondary oil recovery, under current mode of operation, is estimated at 1742 MBBL.
- 6. Oil recovery has varied greatly across the field due to variations in completion techniques, reservoir heterogeneity and water injection inefficiencies.
- 7. An estimated 1705 MBBL of Proved Undeveloped reserves are economically recoverable through infill drilling, rework and the re-establishment and expansion of water injection.

RECOMMENDATIONS

- 1. Proceed with 20-acre infill drilling, rework, re-establishment of water injection and initiation of 40-acre, 5-spot patterns in phases, as outlined in this report.
- 2. Development of each subsequent phase should be contingent upon the results of the preceding phase.
- 3. As sufficient well logs and core data become available, initiate a detail engineering study of the reservoir to maximize economic recovery.

GEOLOGY AND RESERVOIR PROPERTIES

The Skelly-Penrose "B" Unit produces from the Queen and Penrose formations of Permian age. The type log for the field is shown by Figure 1. Ten sand members have been identified and correlated across the field (Table 1). Average depth in the Langlie Mattix Field is approximately 3600'. The productive section consists of layered sand or sandy dolomite, interbedded with shale or non-porous dolomite. No quantitative well logs or cores were available with which to determine lithology. Determinations of depositional environment were beyond the scope of this study. The hydrocarbon accumulation was controlled primarily by stratigraphic factors. Porosity and permeability are apparently highly variable as demonstrated by individual well performance and simulation studies.

Structural position does not appear to be a major factor in defining the production characteristics of the reservoir with the exception of a suspected gas cap in the southern portion of the Unit (Figure 2). The Penrose "B" Unit appears geologically continuous with the Penrose "A" Unit, which adjoins the "B" Unit along the eastern boundary. A significant number of completions extend below -400' subsea with minimal water production reported during primary depletion.

No quantitative well logs or cores were available on the 63 wells in the Unit, although three wells were reported to have been cored. A modern log suite was available from the Penrose "A" Unit No. 66, which was used to approximate porosities and original water saturations for the Penrose sand in this area. This log analysis indicated that the "A" Unit Penrose sand formation was similar in stratigraphic and lithologic character to that of the West Dollarhide Queen Sand Unit (WDQSU). Based on a net pay porosity cutoff of 9% and neutron deflection versus porosity relationships derived from the WDQSU study, apparent net pay was derived from neutron log response. This preliminary estimate of net pay for the Penrose "B" Unit was mapped as shown on Figure 3.

REVIEW OF UNIT PERFORMANCE

The primary depletion mechanism is solution gas-drive with no apparent water influx. Ultimate primary recovery was determined by extrapolation of the individual well decline trends and is summarized

on Table 3 and Figure 4. This yields a total ultimate primary recovery from the Unit of 1775 MBBL.

The Unit became effective July 1, 1965 and water injection was initiated one year later (Figure 7). Oil production response occurred within six months and peaked in early 1971 at 500 BPD with final expansion of the 5-spot pattern. During this period, 37 producers and 26 injectors were active. Oil production had gradually declined to 120 BPD by 1982. The Unit is currently producing 95 BOPD, 30 MCFPD and 1099 BWPD from 29 active producers (Table 3 and Figure 5). During the peak injection years of 1970 through 1973, water injection averaged 7500 BWPD compared to the current 1300 BWPD (Table 4 and Figure 6).

As shown by Table 1, a limited number of Unit wells were also completed in the Queen sand. The Queen sand's contribution to overall performance cannot be broken out due to nonavailability of specific Queen sand interval test data. Unit wells Nos. 47 and 62 were initially completed as gas wells and No. 62 was subsequently converted to water injection. The lack of quantitative well logs in this southern portion of the Unit precluded an analysis of the effect of the apparent gas cap upon performance of the Unit.

Determination of secondary recovery was based on extrapolation of individual production decline trends, as shown on Table 3. Ultimate secondary oil recovery for the Unit is estimated to be 1742 MBBL, giving a secondary to primary ratio of 0.98:1. Average secondary oil recovery was 50 MBBL/well for the 35 producers. However, as reflected by the distribution of reserves on Figure 4, secondary oil response was highly erratic, ranging from 4 MBBL to 192 MBBL per producer. This extreme range is larger than can be accounted for by variation in individual well primary performance, which suggests inadequate injection coverage.

RESERVOIR PERFORMANCE PREDICTION

A reservoir simulator was utilized in an effort to 1) gauge the reasonableness of the preliminary net pay isopach, 2) obtain a more comprehensive understanding of reservoir performance and 3) help establish remaining reserve potential.

Reservoir simulation was done with PC-Boast, a three-dimensional, three-phase black oil simulator. PC-Boast can simulate oil and/or gas recovery by fluid expansion, displacement, gravity drainage and capillary imbibition mechanisms. The area for the model was chosen on the basis of relatively high net pay and good primary and secondary performance, which should afford the maximum opportunity for additional reserve recovery. The model area (Figure 3) was represented by a single layer of uniform thickness. Porosity was varied within each of the 72 model blocks to attempt to represent pore volume (Φ h) variations in apparent net pay, as shown by Figure 3.

Fluid properties as a function of pressure were derived from empirical correlations, in lieu of lab derived data. Relative permeability relationships were developed from empirical equations for the specified initial fluid saturations. The rock and fluid properties and initial fluid

saturation conditions are presented as Table 5. Individual well productivity index (PI) and pressure constraints were imposed to attempt to duplicate individual well rates and recoveries.

A reasonable history match was obtained in most cases for oil recoveries and oil producing rates. A consistent good match for GOR's could not be obtained, apparently due to gas production from Queen sand completions (Table 1). The lack of accurate fluid properties and relative permeability data would compound the GOR problem. Significantly lower water injection and water production volumes were derived by the model as compared to actual performance. Also, actual injection greatly exceeded water production (Table 2). This suggests inefficient water displacement, i.e., water injection displaced out of zone. Indication of poor injectivity profiles and premature water breakthrough further supports inefficient injection.

Although reasonable history matches were obtained under both primary and waterflood operations (Table 6), the primary objective of the simulation effort was to determine estimates for current oil saturation. The areal oil saturation distribution obtained was utilized as input for the simulator studies of infill drilling and more dense injection pattern spacing, i.e., 40-acre, 5-spot patterns.

REDEVELOPMENT PLAN AND ECONOMICS

A number of simulation runs were made to determine the incremental reserves potential, which could be achieved in the model area through selective infill drilling on 20-acre and 40-acre spacing, 5-spot injection patterns. The modeling results indicate that an additional 1.2 MMBBL of economic oil could be achieved from development of the model area alone.

The simulation results were utilized as a basis for determining infill well locations within the model area. Elsewhere, locations were assigned on the basis of net pay and historical performance. Production performance prediction was based on modeling results and ranged from 15 BOPD/well to 60 BOPD/well. Initial injection rates for the proposed well conversions range from 100 to 300 BWPD.

Proceeding with 20-acre infill drilling, reworking and re-establishing water injection in a phased procedure is recommended (Table 8 and Figure 8). Development of each subsequent phase will depend, to some degree, upon success of the preceding phase. As geological and engineering data becomes available (i.e., well logs, cores and production tests), plans for subsequent phases may require revision, refinement or expansion.

The total project as outlined by this evaluation (Table 8) requires the drilling of 26 producers, reworking 5 producers and conversion of 9 wells to water injection. All redevelopment costs were furnished by Sirgo-Collier, Inc. and were reviewed for reasonableness.

Phase I will require drilling of ten, 20-acre infill producers and re-establishing injection in the central portion of the Unit (Figure 8). Phase II will involve drilling eight, 20-acre infill producers, reworking 5

producers and conversion of 9 wells to water injection. This will establish 40-acre, 5-spot patterns within a portion of Section 5. Phase III will involve the drilling of 8 additional producers as 20-acre infill wells. The total capital cost of the project (Phases I through III) is estimated at \$4.8MM. Table 7 shows the investment schedule by phase as estimated by Sirgo-Collier, Inc. Table 8 is the projected well count under this plan.

Reserves ranged from 28 to 117 MBBL per well based on model simulation with initial rates ranging from 15 to 60 BOPD/well. Gas-oil ratios for individual wells were estimated to average 0.3 MCF/BBL.

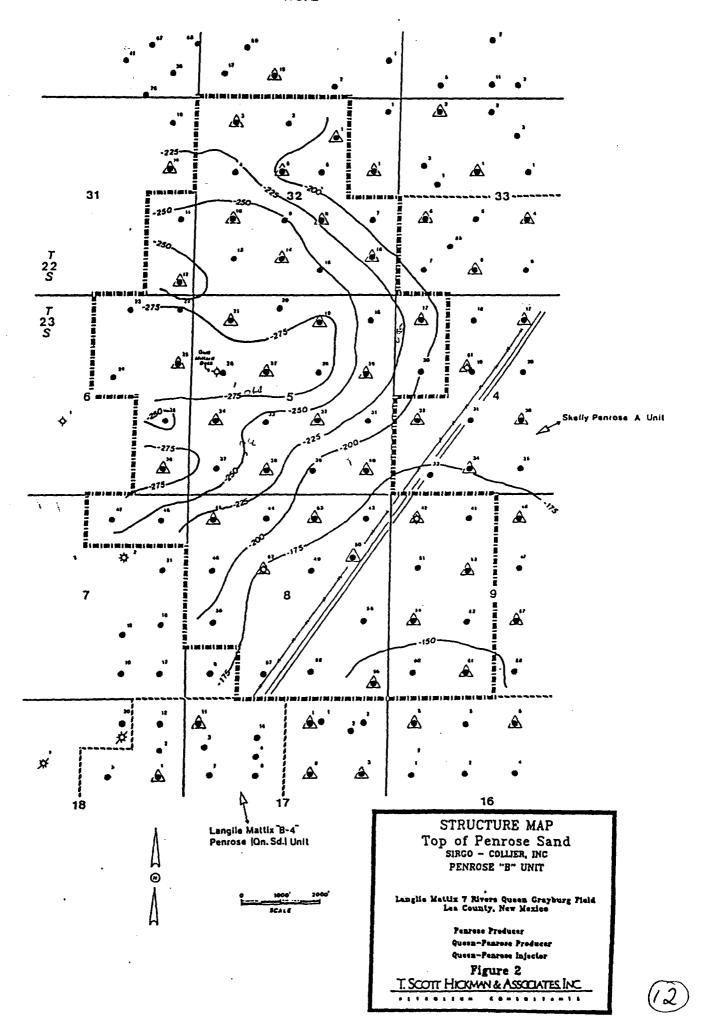
Initial oil prices were based on posted prices as of August 28, 1987 after adjusting for gravity and transportation. Oil pricing was held constant to December 31, 1987 then increased \$1/BBL for 1988. Starting January 1, 1990, the pricing was escalated at 5% per annum to a maximum of \$35/BBL. The windfall profit tax was not applicable.

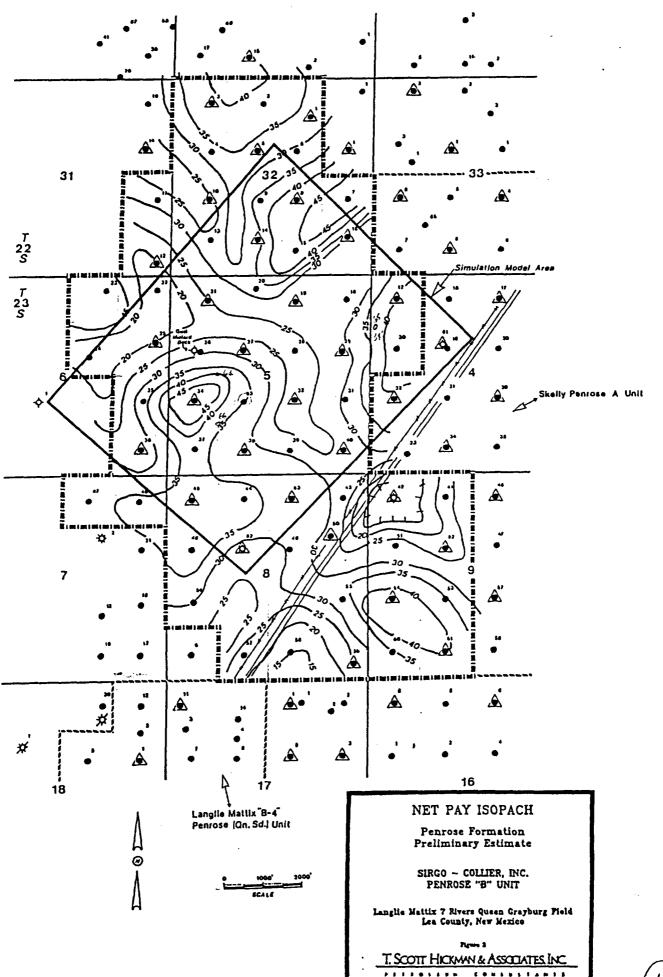
Starting gas prices were based on prevailing area prices as of June 1, 1987 and held constant to January 1, 1989. Starting January 1, 1989, the price was escalated at a rate to reach 65% parity with oil by January 1, 2001.

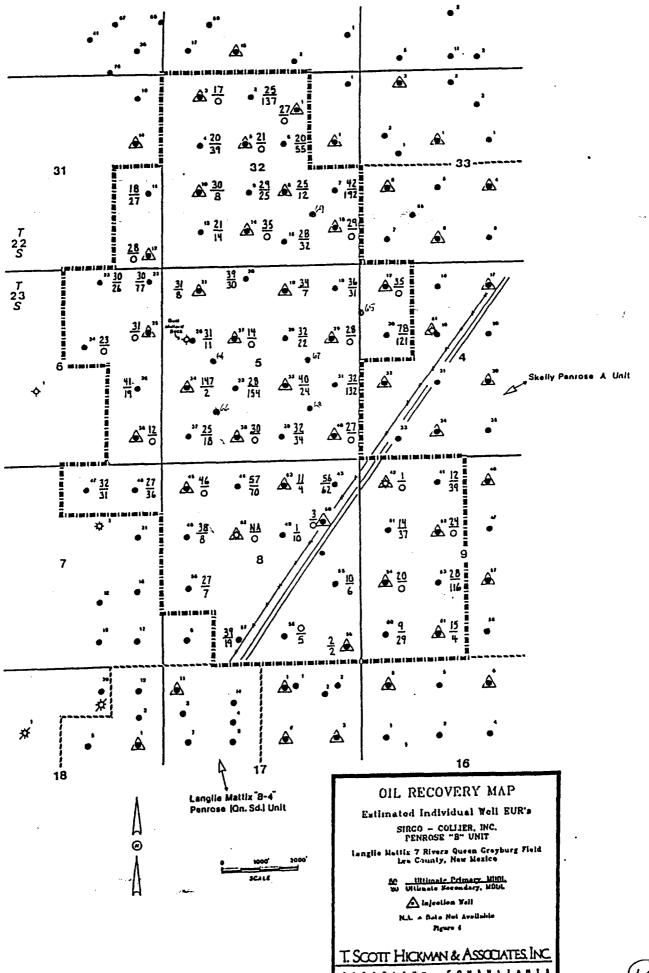
Lease operating expenses were estimated by Sirgo-Collier, Inc. based on anticipated operating conditions for each project phase utilizing company experience for similar projects. Expenses were held constant to January 1, 1989 then escalated at 5% per annum until the primary product reached the maximum price. The costs for drilling, workovers and reestablishing injection were developed by Sirgo-Collier, Inc. We have reviewed their estimates for reasonableness. No equipment salvage value or abandonment costs were included for the properties.

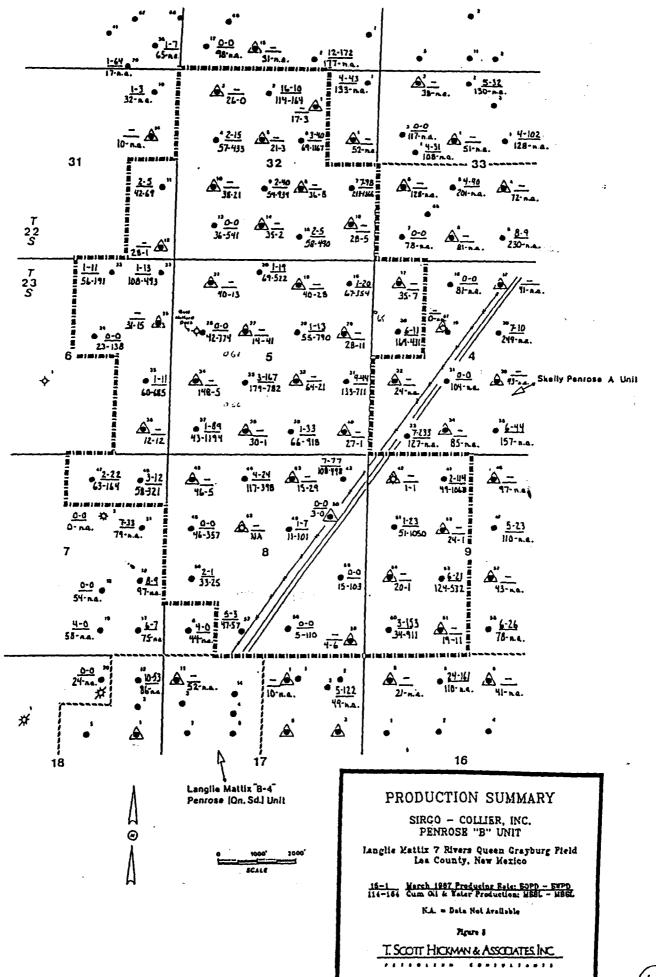
Project economics indicate that a capital investment of \$4.8MM will generate a 10% discounted future net revenue of \$8.8MM over 24 years giving a 71% rate of return and a 2.0 year payout. The investment cost does not include the initial acquisition cost. A summary of the reserves and economics for each phase and the total project is shown on Table 9. Tables 10, 11 and 12 show the economic summaries for Total Proved, Proved Developed Producing and Proved Undeveloped, respectively. Tables 13, 14 and 15 are Proved Undeveloped cash flows for Phases I, II and III.

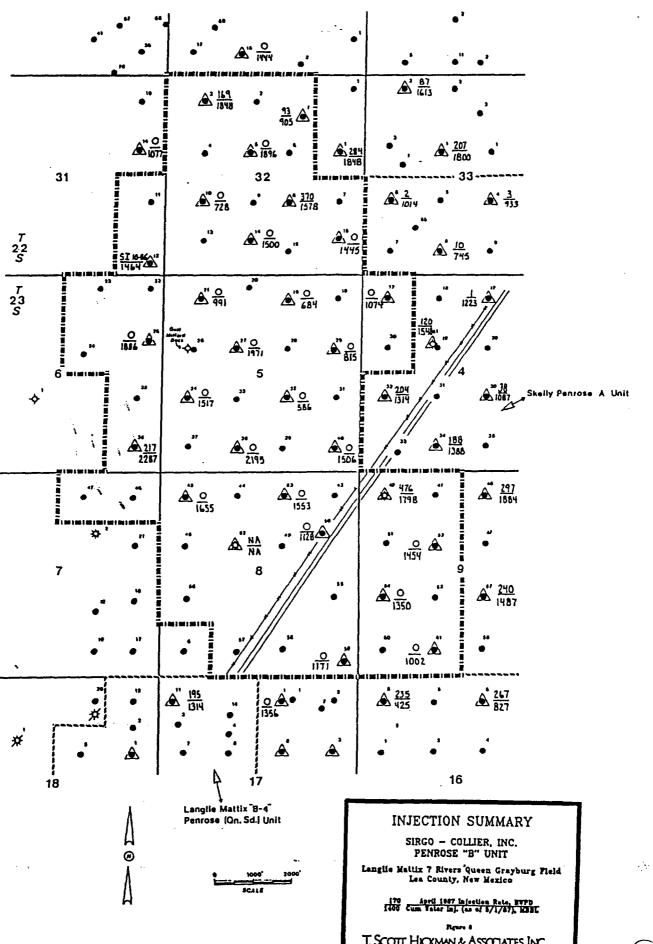
PENROSE "B" UNIT WELL NO. 52

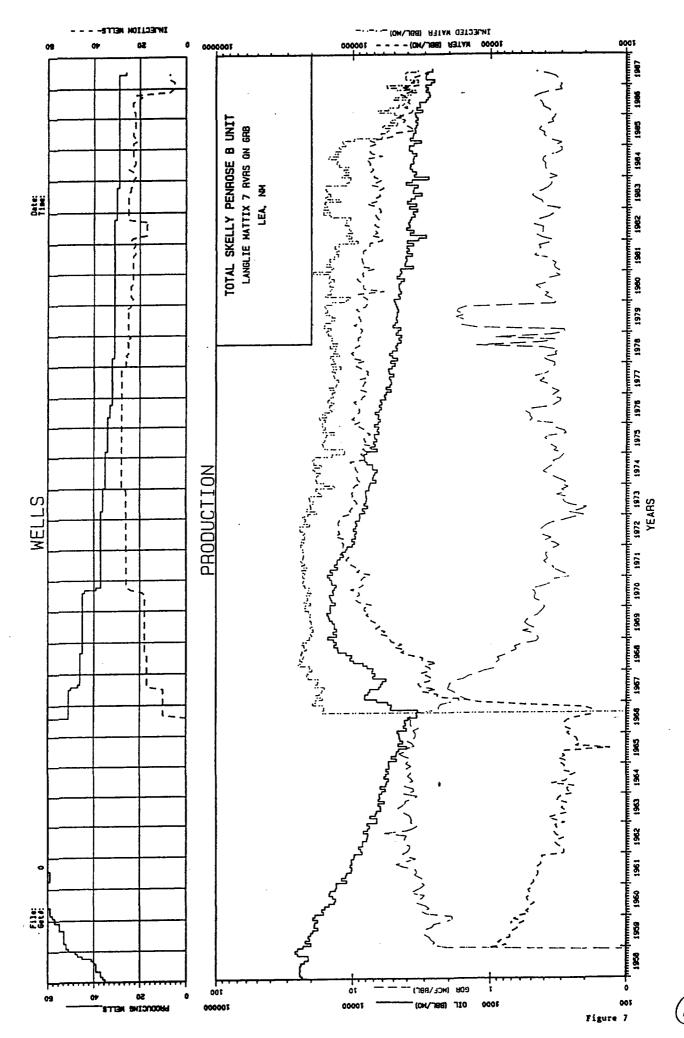

(Skelly Harrison B-5) 1900 FN & WL Sec. 9-T23S-R37E Lea County, N.M.


Figure 1


TYPE LOG


SIRGO-COLLIER, INC.


Penrose "B" Unit Langlie Mattix 7 Rivers Queen Grayburg Field Lea County, New Mexico



(16)

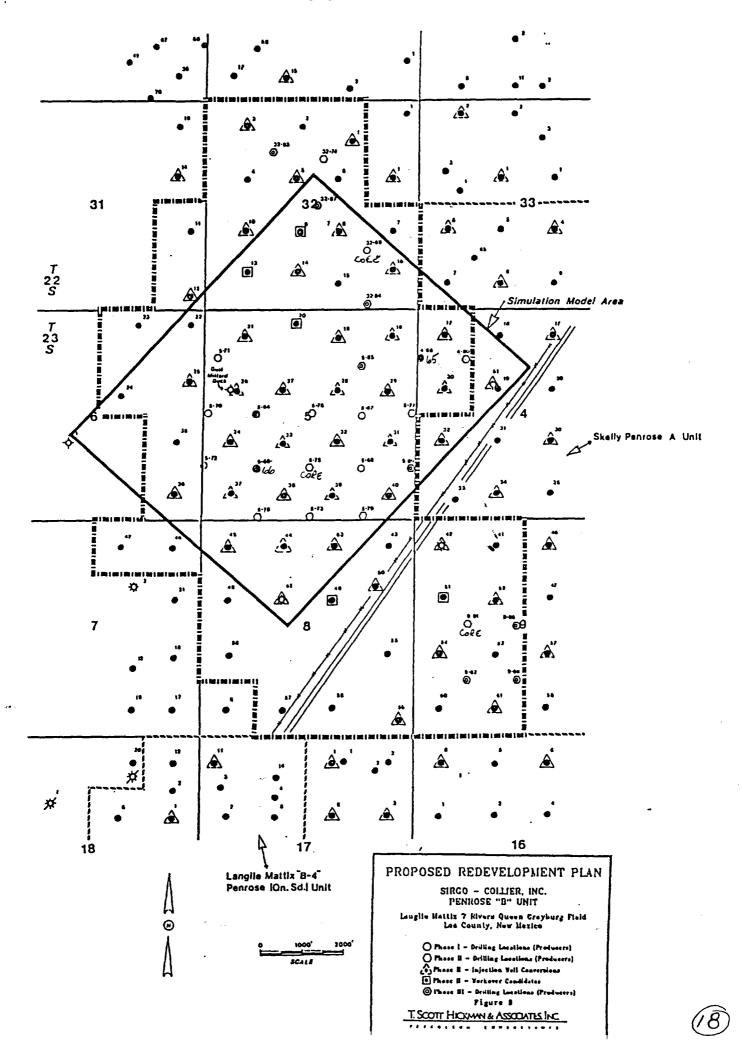


TABLE 1
CECLOSIC STRUCTURE SUPPORT
PENGOSE SAND
LANCLIE MATTIT
LEA COUNTY, NEW PETICO

,	BEHARYS													272 (rueby sand open)	
SUCE	COPP.		8	88	119	123	10%	101	%	8	118	8	109	272 (QU	
E ASSAN	_		3770	3750	3780	-382 3750	-411 3780	3770	3750	3800	-361 3710	-365 3710	-375	378	
			-382 3744	-367 3733	3775	-400 3768	-399 3768	-40 4 3761	-374	-374	-349 3698	-344	-370 3719	-409 3762	
COMPLETION	TOP BOTTOM (EEFT) (EEET)		-252 3614	-279 3645	-280 3654	-275 3843	-290 3659	9998	-278 3628	-241 35%	-73 3288	38 ±33	-261 3610	-137 34%	
	₩ q									٠.					
	30K		-385							-384 3733					
	9 20K		-361 3773		-3% 3768	-386 3754	3757		-389 3739	-359 3708	-329 3678	-38 36%	3705		
Ð	w 1		-337		-374 3750	3732	-377 3746	-383 3746	-368 3718	-337 3686	-312 3661	330 7,32	26. 28.	3700	
ON (FEE	20E		-325	3717	-362 3738	-345 3713	-355	-372 3729	-358 3708	-325 3674	3848	-316 3661	-324 3673	-38 28 28 28 28	
SIRSEA ELEVATION (FEET)	20KE 7	-	3867	-338 3704	33711	-38 88 88 88	-337 3706	-352 3709	88 3 88	-302 3651	-279 3628	36.45 36.40	-303 3652	-314	
SIRSEA	20NE 7	ζ.	-2%5 3657	-324	-326 3702	-310 3678	-377 36%	-339 3696	-327 3&77	% % % % % %	-264 3613	48.38 36.38	-294 3643	-302 3655	
	JOE -		-275 3437	3670	383	-289 3667	-307 3£76	-321 3678	-307	-269 3618	-243 3592	-265 3610	-275 3624	-281 3634	
	20E /		3819	-286 3652	-283 3659	-278 3646	-34 3666	-303	-283	-249 35%	-127 35%	-243 3588	360%	-265 3618	
	30E		-246 3608	-276 3842	-272 3848	-269 3637	-27 3848	3550	-278 3&28	-237 3586	-216 3565	25 28 28 28	35.5 33.5 33.5	-259 3612	
ļ	DOM.		04-57	06-57	10-57	01-58	02 ⁻ 58	09-57	7223	05-57	09-51	10-57	12-57	96-10	;
,	ELEV. OPERATOR-LEAST-HELL		3362 R.LONE-KING #3	3366 R.LOKE-KING #5	3376 R.LOKE-KING "B" #2	3368 R.LONE-KING "B" #3	3369 R.LOME-KING "B" #4	3357 R.LOME-KING "B" #1	3350 R.LOME-KING "B" &6	3349 R.LOME-KING #2	31 * 3349 SKELLY-HWRRISON B-3	3345 SÆLLY+HYRISON B-4	3349 SKELLY HAPRISON A-2	3353 SKELLY-HARRISON #1	
12	त्र इ		8	61	R	77	*	12	8	8	÷	g	ន	* ਲ	
=	LICATION	1ul	660 FK & EL	660 FNL & 1980 FEL	330 FM. & 2310 FM.	660 FM. & 990 FM.	1980 FM. & 990 FM.	1980 FIL & H.	1980 FIL & EL	2112 FK. & 660 FE.	1980 FSL & 660 FEL.	1980 FS & EL	1980 FSL & M.	1980 FS & H.	

GEOLOGIC STRUCTURE SUMMY PONOSE SANO LANGLIE MITTIX LEA COUNTY, NEW PEXICO

	17							O BOSTA	EVAT.	SIRSEA EI FUATION (FFFT)	£			9	COMPLETION	P 2	33085
INCATION	걸	EG.	DEFRATOR-L EASE-JED I	PER CONTROL	ZOK -	20NE .	20Æ 2	20K	20KE 1	20K	ا سا	lu i	201E 201E		BOTTON LEFETA		COMP. BENNANS
SEC 5 1235-137E																	
660 FSL & 1980 FM.	8	3343 S	3343 SKELY-HWRISON A-3	95-10	22- 2018	-248 3591	-265 3608	36.28 36.28	-291 3634	-317	-331	-321 3694		357	6 -341 9 3684	3720	165
1980 FN & 660 FEL	8	3038 S	3339 SKELY-HARRISON B-7	12-21	-197 3536	25 -205 3544	35.5 35.5	-245 3884	-254 3593	-217 3616	-288 3427	-313	-337 36.76	-215 354	5 -346 4 3685	3705	131 12/57 IPOT F-150 BOPD 1300 CF/8BL
ख र इ. १९९	\$		3334 SKELLY-HWRRISON B-6	11-57	-176 3510	-1% 3524	-206 3540	-23 3561	-236 3570	-259	-273 3607	-292 3626	-317 3651	-192 3526	2 -327 19 3861	9 76- 1	81
SEC 6 1725-137E																	
330 PM. & EL.	ង		3384 R.LOME-KING "B" #5	2	-28 3668	- 282 3678	-320 3704	-328 3712	-343 3727	3740	-375 3759	3769		-294 3678	14 -402 18 3786	2 -414 6 3798	801
330 FM. & 1650 FE.	ន		3390 R.LOKE-KING "B" #7	10-58	-297 3687	36%	3722	-347 3737	-362 3752	3772	3780			-2%3 3683	24 27,50 27,50 27,50	3 3800	110
2113 FIL & 1980 FEL	7		3392 R.LONE-KING "B" #8	07-51	36%	-317 3709	-340 3732	37.48	-370 3762	-384 3776				-308 3700	3804	2 -423 4 3815	
1788 FNL & 330 FDL	ĸ		3384 R.LONE-KING "B" 86	82-83	-288 3672	-301 36.95	-321 3705	-342 3726	-354 3738	-379 3763	3373			-293 TT-38	73 -409 77 3793	3 3800	116
1980 FSL & 660 FM.	8		3071 SUM-RICHARDS #1	98-30	-23 9									7 8	-185 -427 3556 3798	7 -427 8 3798	242 1/59 7 80PD 72MCFD(10048 CF/B) SALIC OH 3556-3798 ON SD OPEN
660 FSL & EL	ౙ		3365 SIM-RICHARDS 83	12-58	-283 3648	-297 3862	-315 3680	-338 3703	-350 3715	-370 3735	-381 3746			7 8	-164 -403 3529 3768	3 -415 8 3780	239 9/72 BP 3644 AS WIN 3529-3616 (QLED) & PDIROSE COMP/GNSD OPEN)
660 FM. & 1880 FSL			DONLE HARTHAN-KING 83													3430	
SEC 7 1238-ROTE												•					
7 PIL & E.	\$		3362 SIM-RICHARDS #2	12-54	25 % 38 42	-732 35.55	-257	-265 3627	-286 3648	-307	3882 3882	-342 3704		"ጸ	-244 -374 3606 3736	74 -408 35 3770	981

TABLE 1

CECLOGIC STRUCTURE SUPPORT PENROSE SAND LANGLIE MATTIX LEA COUNTY, NEW PEXICO

					LEEN SAND	OBOPD D DURING WF			D 250 HCFPD		OF INITIAL	HOPPO 15%	HCFPO	. 20 BOPO 50	
	RENORKS				310 LOGS NOT AVAILABLE (QUEEN SAND) OPEN)	(ON SD OPEN) IPOT F-100BOPD 155NCPD HIGH HZO PROD DURING WF			109 HIGH GOR-NOVS& 12 BOPD 250 NCPPD 20 BAPD	48 LOGS NOT AVAILABLE	269 (ON SD OPEN)NO REPORT OF INITIAL GAS RATES	44 1/62 RATE=11 BOPD 260 MCFPD 157 WC LOOS NA	17 8/61 RATE=2 BOPD 356 MCFPD	241 (ON SD OPEN)7/46 IPOT 20 BOPO 50 NCFPD NO WAT	
CROCKS	E 3.		2		3000	240 (0	123	124	86 ≅ %	48 L	597 197	*	17 8	241 (3	133
UT STREET	-		33.8		-388 3712	35. 888	3750	-3%2 3740	-38 36%	-373 3700	368	3694	-334	-316 3653	36.35 2535
i	夏日		-353 3732		-388 3712	-334 3680	-376 3725	-336 1888	85 ±38	35%	-365 3689	\$2 8 8	-284 3618	-316 3653	-273 3612
COMPLETION	10P B		3862		-78 3402	3440	-249 35%	-212 3560	₩ ₩	-215 3542	3 78	-135 3536	-267 3601	-75 3412	-141 3480
	20NE						3734	-365 3713	-301 3632		-314 3638				
	20KE .						-359 3708	38,98	3614		-293 3617		3633		
	30VE						-327 36.76	-314 3662	85 58 288 288		-270 3594		25 55 35 95		-752 3591
æ	u i		3736				-310 3659	-28 3847	-238 3569		-248 3572		-133 3866		\$ 58 18
TON (FEE	ZOE		-345 3724				-2% 3&47	-23 36,38	72- 2558		\$ \$		12 gg		215 200
SIBSEA PLEVATION (FFFT)	20KE		346				-287 3636	-270 3618	-212 3543		-215 3639		36.3		3535
SIRSEA	20KE		-328 3707	٠			-274 3623	35 28	-201 3532		-302 325		3630		-186 3525
	20KE 1		-318 3697				-263 3612	25- 25, 25, 25, 26, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27	-181 3512		-187 3511		± 88		-168 3507
	20K		-291 3670		•		25. 28. 28.	-23 ₄	-162 3493		-173 3497		-157 3491		-148 3487
	20KE 1		-268 3647				37.12	-210 3658	-151 3482		-161 3485		-152 3486		133
1	DOTE: 1		65-10		≨	9	08-57	75-60	35-11	98 - 58	02-48	79 88	02-56	07-46	3
	1843								13						
	OPERATOR-LEASE-LELL		# \$		=	# %	# 86	ERN #2	49 * 3331 BYRON-FLORA DAVIS 12	1 S	T #2	1/2	T #3	#	¥
	OPERAT		3379 Sun-Richerds #4		3324 GUE-DAVIS 81	44 * 3346 GOLDEN-FLORA \$1	45 & 3349 BLACK-REDFEW #1	3348 BLACK-REDFERN #2	ON-FLOR	3327 BYRON-DAVIS 11	55 + 3224 OLSON-CLIFT 42	3341 TP-CLIFT 85	3334 OLSON-OLIFT 113	3337 USCON-CLIFT #1	59 + 3339 OLSON-CLIFT M
	EEV.		¥55 €6		324 GUL	346 600	SAS BLA	345 A2	ISSI BYR	X327 BYR	3324 01.5	3341 TF	3334 067	3337 US	3339 OC
			¥		43	44 + 3	45 + 3	eg	+ 6 +	ន	8	38	25	8	\$
	를 로 									턴	_1	æ	đ	덛	
	LOCATION	SEC 7 TZS-ROTE	660 FNL & 1980 FEL	SEC 8 T235-R37E	TB 7 NJ 099	990 FN. & 1980 FM.	660 Pil. & IL	660 FM. & 1980 FM.	1780 FN. 1. EL	990 FSL & 1650 FE.	1980 FS. 660 FE.	1980 FSL 1, 660 FNL	660 FSL & 1980 FML	660 FS. & 1980 FE.	330 FSL & EL

Geologic Structure Sumbry Pomose Sand Langle Mitti Lea County, New Nextoo

LIN IS	<u> </u>	-	9	345	1	36	SIRSEA	SIBSEA ELEVATION (EEET) DAE 70NE 70NE 70NE 70NE	JOK LEE	ال	1	1	a la	7 4	12		GROSS
		OPERATOR-LEASE-LEIL	BEE.		4		•	•	:	¥ -	7 8 8			IOP BOLLIGA LEEEL) LEEELL	_		LEFET BENARYS
62 3337 BLACK-DAVIS #1	at Black-davis (=	11-51	3805	-176 3513	75 1 50	-219 33%	-23. 3573	-256 258 258	25. 25.55 35.55	-280 3617	-310 3647	-334 3671	-123 328	3680	3725	84 '57 GH 3596-3680 IPOT 1680HCFD HIW 7/67 SAME INTERVAL
63 3343 BLACK-DAVIS #2	H3 BLACK-DAVIS	æ	11-57	-1% 3542	-214 3657	-132 3578	-247 3590	-22 3600	3822	3640	-310 3653	-342 3585		3207	-319	-387 3730	155 CLEEN SAND OPEN
3342 TP-CLIFT #6	42 TP-CLIFT &6			-196 3538	35.48	-232	3601	-275 3617	-285 3627	3648	3670	-353 36.55				8 8 8 8 8 7	
41 * 3316 SKELLY-HWRRISON B-1	316 SKELY+1478(15	ON B-1	07-37											3390	-374 3690	-374	300 GH (OH 3390-3690) (GN SD OPEN)
42 + 3320 SKELLY-HWRISON B-2	320 SKELLY-HARRIS	XN B-2	08-37											-130 3450	-362 3682	-362	232 RE-SPUD ALIG 68 AS WIW 3586-34.18(GN SD NAY BE OPEN)
51 . 3319 SKELLY-HWR15ON B-8	319 SKELY-HWRTS	8-4 NO	12-57	-147 3466	-159 3478	-179 3498	-197 3516	-203 3528	12 SSS	-251 3570	-268	-2%2 3614		-161 3480	3823	-311 3630	143
52 3316 SKELLY ⁺ HWR15ON B-5	316 SKELLYTHARIS	S 7.	10-57	-165 3481	-176 3492	-194 3510	-213 3629	253	\$\$ 1 \$	30.72	-274 35%	-302 3618	25 838 888	-196 3512	-317 3633	85 2 88	121
53 3317 SKELY-HWRISON B-10	317 SABLY-HWRIS	ON B-10	85-58 83-58	-165 3482	-180 3497	-194 3511	-213 3530	35 ÷	-243 3560	35.73	-274 3591	-292 3609	353	-199 3516	-319 3636	-343	120
54 3225 SKELLY-HWRISON B-9	CCS SCELLY-HWRI	50N B-5	12-57	-151 3476	-163 3488	-181 3506	-201 3526	-213 3538	35. 38.	-247 3572	-588 3891	-2%2 3620	* •	-198	-311 3636	-320 3445	113
60 3332 SKELLY-HWRISON B-12	KOZ SKELLY-HWRI	SON P-12	03-60	-146 3478	-157 3489	-184 3516	3838	-215 3547	-232 384	-246 3578	-268 3600	-297 3829	. •	-294 3626	3636	36.70	01
61 3328 SKELLY-HARRISON B-11	2228 SKELLY-HARR	150N B-11	03-60	-146 3474	-157 3485	-179	32,80	-210 3538	8 78 8 73	-242 3570	3587	3613	36.3	-183 3511	-301 36.29	-372 3700	118
3301 SAVEDAN-HUGKES A-2 #7	3301 SAMEDAN-HUC	HES A-2 47		-167 3468	-176 3477	3503	12 Z	25. 26.	£ 58	-265 3567	-245 2853					-342 3843	-

CECLOSIC STRUCTURE SUMMRY
PENGOSE SAND
LANCLIE MATTIX
LEA COUNTY, NEW PEXICO

							``	CHECKS ELEVATION (CEET)	1 EVAT	25 25	E			_	COPPLETION		2 12 C	300E
LOCATION	로로	# E	V. 1	18 PP.	M -	20K	30K	20E	20K	NO. 4	ا سا	20Æ	20K	200	10P B0	투립	-	COMP. (FEET) REDIGNYS
SEC 9 1225-RDTE																		
NU.4 NU.4	,	ਲ •	* 3316 SKELLY-PENROSE A-46		4.58 2.73												-313	
660 FSL & 1980 FEL.		ਲ	3292 SAFEDAN-HJGRES B-2 #9		-153 3445	-163	-186 3478	3499	-219 3511	327	-247	3260	-2%5				-342 3634	
SEC 31 T225-H37E			w															
1980 FS. 1, 330 FE.	=		3400 DALPORT-KING A-2	6 5- 10	25 ± 25	-284 3864	-287 3687	-310 3710	322	-343 3743	-357 3757	-377 377	-3% 37%		3558 3558	-385 3782	-424 3824	124 RE-Entry 11/74 P-24bopd NA 3659-3810
330 FS & H.	12		3351 DALPORT-KING A-1	85-56	13 38 88	-251 3602	-269 3620	3640	-303 36.54	-317 3668	-33 484	-356 3707	-383 3734		-338 388	-440 3791	-447 37%	107
1980 FN. 1. 660 FE.		m	3400 HABLE-IM STATE H-14		-72 3636	25 ×28	-279 36.79	-292 3892	305	-328 3728	3750	-366 3766	-4 02				02 1 20	
50 FN & EL		(J	3396 HABLE-NA STATE H-19		-214 3610	-225 36.21	-252 3648	-265 3661	-284 3680	-306 3702	-314 3710	-328 3724	-357 3753				-288 3684	
SEC 22 1225-H3TE			•															
990 FIL & 1250 FE.	-		3369 OPERATORS SERV-COLE STATE 11	Q-39	356	3866	-218 3586	25 88 38 38 38 38	-243 3611	3632	-275 3843	-2% 3664	38,8		-1% 35%	-310 3678	-359 3727	81
660 PAL & 2310 FAL		8	3364 COMPASS-STATE 2-32	08-59	-210 3574	25 to	-240 3604	-262 3626	-270 3634	-2% 3654	-306 3670	-326 36%	3719	-374 3738	3570	-352 3716	3806	146
660 FIL & 990 FIL	i.a	m	3375 coppass-state 4-32	12-59	-211 3586	223	-245 3620	-267 3842	36.55	-2% 8%8	-308 3683	-327 3702	-351 3732		-219 3594	-334 3709	88 T	115 GLEEN SAND OPEN
1900 FNL & 990 FNL		··	3374 COMPASS-3-32	11-28	-231	-244 3618	-268 3642	-280 36.54	-291 3865	-318 3692	-32 9 3703	-346 3720	-376 3750	-393 3767	¥ 38	-375 3749	3820	
1980 FN, 1 2310 FN.		¥.	5 * 3372 COMPASS-STATE 1	12-48	320	-218 3590	-278 3650	-338 3710	-363 3735	33,23	\$ 7 \$6	7 % 7 %	-540 3912		-216 3588	3726	86 7 86 7	138 11/72 CONV WIN=3592-3653

TABLE 1

GEOLOGIC STRUCTURE SUMBRY
PENROSE SAND
LANGLIE MITTIX
LEA COUNTY, NEW PETICO

	ď									OT AVAILABLE				O L ON	
	BEHARKS									298 (OH SO OPEN) LOGS NOT AVAILABLE				182 Probable Cleen Sand Open	
8		'	5	82	8	<u> </u>	133	133	12	862	æ		126	182 P	
2			25 85 878	-32¢	3865	-412 3800	-577 3971	-612 4003	3791	8 K	3 25		-374 3728	3887	-32 36.78
			30, 30,	-30° 37.8°	-300 36.78	-390 3778	37%	-401 3772	-3% 3784	3,38	-283 36.58		-338	50, 58,	
COMPLETION	TOP BOTTON		-196 3566	-208 3578	25 58 36 -23	35. #	-772 3666	-269 3660	-211 3862	¥ ¥ 3€	38.10		-212 3566	-168 3505	
	3 9		-343 3713					38 7 38							
	30€ 9		-323		-382 3760	-394 3782	-3% 37%	9 5 7 8					-342 3696		33%
	₩ @		-297 3867	-310 3680	-348 3726	33.54	3760	-381 3772	-381 3766		-336 3711		-325 36.78		-314
í.	ZONE -		-278 3648	3660	-320 3698	-345 3733	-346 3740	-361 3752	-360 3745		-317 3692		36.50 36.50		-288 3612
10K (F	20KE		-266 3636	-288 3638	300-	-330 3718	3732	3735	-349 3734		3680		9 7 -		-274 35%
SIESEA FLEVATION (FEET)	30E		-245 3615	-244 3614	-292 3670	-313 3701	-316 3710	-321 3712	-327 3712		-286 3661		-318 3&72		% & % \ %
SIBSE/	20K		-236 3606	-242 3812	-278 3656	-302 3690	3700	-310 3701	-316 3701		-274 3849		-256 3610		-241 3565
	30E		-21 <i>7</i> 35 <i>87</i>	352	36.38	-282 3670	-287 3681	-288 3679	-297 3882		35,38		22- 23- 24- 25- 25- 25- 25- 25- 25- 25- 25- 25- 25		-219 3543
	20KE		-202	-202	-234 3812	-262 3650	-270 3664	-269 3660	-277 3862		3811		-216 3570		-1% 3520
] See		-194 3864	-195 3565	22 9g	3840	-260 3654	35 - 528 35 - 528	-270 3655		23 88		- 30 - 30 - 30 - 30 - 30 - 30 - 30 - 30		-188 3512
•	PATE.		10-58	926	11-58	95-10	87-88	16 82	09-57	85-38	01-57		05-57	6+10	
	OPERATOR-L EASE-LEI I		3370 O.BOURG-STATE A-5	3370 O.BOURG-KING #1	3378 O. BOURG-KING #3	3388 O. BOURG-STATE #2	3394 D. BOURG-STATE #3	13 # 3391 O.BOURG-STATE B-2	3365 R. FURR-STATE #1	15 * 3370 SKELY-KING 1	3375 O.BOURG-KING #2		3354 R.LOKE-KING 84	3337 R.LONE-KING BI	3224 SAFDAN-HURES A-1 46 (A-32)
	L EEV.		8	7 33	8	8	8	æ • e	æ ≖	\$ • 3	8 ≅		13	8	×
3	로덕							_					-		4
	INCATION	SEC 22 TZS-KOTE	1980 FIL & EL	1980 FS. & 660 FE.	1990 FS & EL	1980 FSL & 2310 FM.	1980 FSL & 990 FM.	990 FSL & M.	990 FSL & 2310 FM.	1980 FSL & 660 FM	990 FSL & 660 FEL	SEC 4 7235-H37E	660 FN & W.	1980 FNL & 660 FNL	1980 FS. & 660 FM.

GEOLOGIC STRUCTURE SURFARY PENROSE SAND LANGLIE MATTIT LEA COUNTY, NEW PEXICO

	P					3 035915	SIRSEA FI FUATION (FFFT)	(1111)				COMPLETION		70 2005 2005 2005	Solet	
5 3 2	HELL BLEV.	•	l	l	~	20K 20	20K 20K	ē.	w	102 104	,	2	1 15		8 1.	
LOCATION	NO. 1KB). DERBATOR-LEASE-LEDI	- DATE	1	4	4	•	•	4	٩	4	4	₫	TEET	_	EEED	BENNBYS
SEC 4 TZSS-ROTE																
S4/4 SE/4	3316 SKELY-PENROSE A-35	• • •	2002 -188		,									85 28 28 28		
Y/18 Y/18	+ 3312 S/ELLY-51P5 48 (A-33)	,	-173 3485											3652		

TABLE 2

PERFORMANCE DATA PENROSE "B" UNIT LEA COUNTY, NEW MEXICO

Total Completions: Prod	lucers	35
Inje	ectors	28
Ta	1-1	 63
10	tal .	63
Active Completions: Pro	ducers	29
Inj	ectors	5
т	otal	34
Unitized Area (Acres)		2,612.16
Average Spacing (Acres/W	ell)	41.46
Cumulative Oil Productio	n at April 1, 1987 (MBBL)	3310
Average Oil Cumulative P	er Hell (MBBL/Hell)	52.5
Current Oil Rate Per Pro	ducer - 29 Wells (BOPD/Well)	3.3
Ultimate Primary Oil Rec	overy (MBBL)	1,775
Average Oil Recovery Per	Well (MBBL/Well)	28.2
Ultimate Secondary Oil Ro	ecovery Under Current Operations (MBBL)	1,742
Average Oil Recovery Per	Well (MBBL/Well)	49.8
Ranse in Well Recoveries	(MBBL/Well)	5-192
Cumulative Gas Production	n at April 1, 1987 (MPMCF)	3,875
Cumulative GOR (MCF/BBL)		1.171
Current Gas Rate (MCFD/We	ell)	1.1
Current GOR (MCF/BBL)		0.320
Cumulative Water Product:	ion at April 1, 1987 (MBBL)	18,989
Cumulative WOR (Volume/Vo	olume)	5.7
Current HOR (Volume/BBL)		11.5
Cumulative Water Injection	on at April 1, 1987 (MBBL)	38,821
Cumulative Injection : Se	econdary Oil Recovery Ratio	22.3

TABLE 3

PRODUCTION AND ULTIMATE RECOVERY
SIRGO-COLLIER INC.
PENROSE "B" UNIT
LEA COUNTY, NEW MEXICO

UNIT	MARCH_ 187_PRODUCTION	CUM_PRO	DUCTION	4-1-87_			FUR	
MELL _NO_	OIL GAS WATER (BOPD) (NCED) (BWPD)	OIL _(MBBL)_	GAS (MMCF)	HATER (MBBL)_		PRIMARY (MRRL)	SECONDARY _(MBBL)	TOTAL (MBBL)
1	WIW CONV. DATE 08/66	26.822	173.551	0.000		26.822	0.000	26.822
2	15.8 0.8 9.5	113.571	117.889	163.834		25.075	136.996	162.071
3	WIN CONV. DATE 08/66	17.094	57.907	2.922		17.094	0.000	17.094
4	2.4 0.0 15.1	57.413	88.560	433.227		20.409	39.364	59.773
5	WIW CONV. DATE 08/66	20.642	57.287	2.624		20.642	0.000	20.642
6	3.2 0.8 39.5	69.155	82.309	1166.784		20,403	55.241	75.644
7	7.1 1.7 98.2	213.361	56.792	1266.503		42.482	192.329	234.811
8	WIN CONV. DATE 10/70	36.360	51.689	8.075		24.760	11.600	36.360
. 9	1.5 0.0 39.5	54.453	71.439	938.864		29.365	25.088	54.453
10	WIN CONV. DATE 09/70	38.151	60.883	21.069	•	30.108	8.043	38.151
11	2.4 3.4 4.8	42.446	61.359	69.055		18.094	26.722	44.806
12	HIN CONV. DATE 08/66	28.207	42.508	0.318		28.207	0.000	28.207
13	0.0 0.0 0.0	35.955	76.797	541.347		21.567	14.388	35.955
14	WIW CONV. DATE 08/66	35.449	43,263	2.585		35,449	0.000	35.449
15	2.4 0.0 4.8	58.340	10.344	490.364		27.807	32.284	60.091
16	WIN CONV. DATE 08/67	28.680	35,009	4.789		28.680	0.000	28.680
17	WIN CONV. DATE 07/67	35.380	47.990	7.156		35.380	0.000	35.380
18	1.3 0.0 19.9	66.843	81.684	354.218		36.120	30.723	66.843
19	HIN CONV. DATE 09/70	40.402	36.941	27.891		33.517	6.885	40.402
20	1.0 0.5 18.6	68.781	36.812	521.622		39.216	29.565	68.781

TABLE 3

PRODUCTION AND ULTIMATE RECOVERY
SIRGO-COLLIER INC.
PENROSE "B" UNIT

LEA COUNTY, NEW MEXICO

UNIT	MARCH_187_PRODUCTION	CUM_PRO	DUCTION	<u>4-1-97</u>		EUR_	
NO	OIL GAS WATER (BORD) (BCED) (BWRD)	TRBBFT OIF	GAS _(MMCE)_	WATER (MRBL)_	PRIMARY _(NBBL)_	SECONDARY _(MBBL)	TOTAL _(MBBL)_
21	WIW CONV. DATE 09/70	39.879	23.163	13.364	31.482	8.397	39.879
22	1.3 0.0 13.4	107.515	41.097	493.363	30.029	77.486	107.515
23	1.3 0.0 11.4	55.924	50.198	190.509	29.527	26.397	55.924
24	0.0 0.0 0.0	23.539	21.575	137.771	23.539	0.000	23.539
25	WIW CONV. DATE 08/66	31.300	37.121	15.390	31.300	0.000	31.300
26	0.0 0.0 0.0	41.956	38.685	773.909	31.087	10.869	41.956
27	WIN CONV. DATE 08/66	13.881	9.070	41.267	13.881	0.000	13.881
28	0.5 0.0 13.4	54.502	74.407	790.270	32.237	22.265	54.502
29	WIW CONV. DATE 08/67	28.179	27.599	10.511	28.179	0.000	28.179
30	6.3 0.8 11.0	169.037	80.637	431.490	77.629	121.295	198.924
31	9.4 0.6 43.9	132.947	76.208	710.782	31.963	131.626	163.589
32	WIN CONV. DATE 10/70	63.613	89.932	20.809	39.509	24.104	63.613
33	3.2 3.4 166.7	178.894	74.507	782.003	28.240	153.558	181.798
34	WIN CONV. DATE 09/70	148.575	31.305	4.819	146.869	1.706	148.575
35	0.5 0.6 10.6	59.902	46.054	684.827	40.969	18.933	59.902
36	WIN CONV. DATE 08/66	11.923	37.677	12.424	11.923	0.000	11.923
37	0.3 0.8 88.5	43.520	52.932	1193.605	25.543	17.977	43.520
38	WIN CONV. DATE 08/66	30.080	58.876	0.072	30.090	0.000	30.080
39	0.8 0.0 33.1	66.212	73.008	918.493	32.430	33.782	66.212
40	WIN CONV. DATE 08/67	27.056	58.896	0.085	27.056	0.000	27.056

TABLE 3

PRODUCTION AND ULTIMATE RECOVERY
SIRGO-COLLIER INC.
PENROSE "B" UNIT
LEA COUNTY, NEW MEXICO

UNIT	MARCH /87_PRODUCTION	CUM_PRODUCTION	<u>-9_4-1-87_</u>		FUR	
MELL _NO.	OIL GAS WATER (BORD) (MCED) (BWRD)	OIL GAS _(MBBL)(MMCE)_	WATER	PRIMARY _(MBBL)	SECONDARY	
41	2.4 0.0 113.8	49.332 44.284	1060.326	12.462	38.621	51.083
42	WIN CONV. DATE 09/67	0.099 111.866	0.093	0.099	0.000	0.099
43	7.1 1.2 77.3	107.796 17.845	497.882	56.137	62.126	118.263
44	3.9 0.0 24.4	117.295 12.646	393.297	57.246	69.679	126.925
45	WIN CONV. DATE 08/70	45.910 44.038	4.628	45.910	0.000	45.910
46	3.2 2.5 11.8	58.147 98.746	320.716	27.030	36.370	63.400
47	1.5 0.0 21.7	62.992 69.439	163.636	31.840	31.152	62.992
48	0.0 0.0 0.0	46.113 38.132	357.280	37.615	8.498	46.113
49	0.5 0.0 7.2	10.849 40.016	100.568	1.249	9.600	10.849
50	WIW CONV. DATE 08/66	3.083 0.000	0.000	3.083	0.000	3.083
51	1.0 0.8 23.2	51.013 62.453	1050.408	13.698	37.315	51.013
52	WIW CORV. DATE 07/67	23.397 69.631	0.470	23.897	0.000	23.897
53	5.5 0.0 20.5	124.839 152.328	531.553	27.792	115.923	143.715
54	WIW CONV. DATE 09/68	20.014 89.520	0.853	20.014	0.000	20.014
55	0.0 0.0 0.0	15.287 38.615	103.345	9.586	5.701	15.287
56	1.5 0.2 0.8	33.136 266.433	25.485	26.596	6.570	33.166
57	4.7 10.8 3.2	46.770 196.954	56.937	39.282	19.307	58.589
58	0.0 0.0 0.0	4.832 7.060	110.473	0.000	4.836	4.836
59	WIW CONV. DATE 04/73	4.345 24.335	5.902	2.016	2.329	4.345
60	3.2 1.6 153.3	34.087 89.514	911.193	8.823	28.690	37.513

PRODUCTION AND ULTIMATE RECOVERY
SIRGO-COLLIER INC.
PENROSE "B" UNIT

LEA COUNTY, NEW MEXICO

UNIT	MARCH		DUCTION	_a	M_PROI	NICTION_E	4-1-87			FUR	
WELL	OIL	GAS	WATER	01	IL.	GAS	WATER	Pf	RIMARY	SECONDARY	TOTAL
NO	TB06D7	(MCED)	TEMEDI	_(Mi	3BL)	TRACET _	(ABBL)-	ئــ	(MRRL)	_(MBBL)	_(MBBL)_
61	MIN CO	NV. DAT	TE 01/74	15	.137	82.545	10.737		15.238	3.899	19.137
62	WIN CO	NV. DAT	E 09/66	(.000	0.000	0.000		0.000	0.000	0.000
63	WIH CO	NV. DAT	E 09/70	15	. 244	24.692	29.117		11.016	4.228	15.244
*** Total **	+				-						
	95.2	30.5	1099.1	3310	.156 3	875.052	18988.909	17	75.288	1742.467	3517.755
				PRODUCERS	INJEC	IORS	IOIAL				
MARCH 1987 S	TATUS:	ACTI	VE	29		5	34				
		SHUT		6	2	3	29				
					-	-					
		TO	TAL	35	2	8	63				

NOTE: ULTIMATE RECOVERIES ARE BASED ON ESTIMATED ABANDONMENT OIL RATES. ACTUAL ULTIMATE OIL RECOVERIES ARE SUBJECT TO MINIMUM COMMERCIAL RATES IMPOSED BY ACTUAL PREVAILING ECONOMIC CONDITIONS.

TABLE 4

INJECTION SUMMARY
SIRGO-COLLIER, INC.
PENROSE "B" UNIT
LEA COUNTY, NEW MEXICO

UNIT	MARCH_198	7	CUM WATER INJECTION
HELL	WATER INJECTION	HP	€ 4-1-87
4	(BLPD)	(Psi)	(MBBLS)
01	52.4	1650	902743
03	149.8	1650	1843352
05	INACTIVE		1895528
08	320.2	1775	1568067
10	INACTIVE		728087
12	INACTIVE		1464354
14	INACTIVE		1499626
16	INACTIVE		1444523
17	INACTIVE		1074299
19	INACTIVE		683615
21	INACTIVE		991015
25	INACTIVE		1886149
27	INACTIVE		1971140
29	INACTIVE		815050
32	INACTIVE		585681
34	· INACTIVE		1517385
36	395.5	1725	2293149
38	INACTIVE		2194819
40	INACTIVE		1505760
42	415.0	1675	1786178
45	INACTIVE		1654722
50	INACTIVE		1127768
52	INACTIVE		· 1454485
54	INACTIVE		1349675
59	INACTIVE		1161547
61	INACTIVE		1001935
63	INACTIVE		1551924
TOTAL	1332.9		37952576

MARCH 1987 WELL STATUS:	ACTIVE	5
•	SHUT-IN	23
	TOTAL	28

TABLE 5

SIMULATION MODEL PARAMETERS PENROSE "B" UNIT LEA COUNTY, NEW MEXICO

Model Configuration

Number of Layers	Single-Layer
Layer Thickness (Feet)	20
Number of Blocks and Dimension/Block	72 € 933′ x 933′
Area/Block (Acres)	20
Size: X times Y (Feet)	8,397 x 7,464
Model Area (Acres)	1,438.8
Mid-Point Elevation (Feet)	3,600
Rock Properties	
Permeability Ranse (md)	0.5 - 50.0
Porosity Rande (1)	9 - 23
Fluid Properties	
Residual Oil Saturation, %	32.0
Immobile Water Saturation, %	34.0
Critical Gas Saturation, %	1.0
Oil Gravity, Degree API	37
Estimated Gas Gravity	0.8
Initial Bottom-Hole Pressure (Psia)	1,730
Initial Formation - Volume Factor	1.16
Oil Viscosity At Initial Bottom-Hole Pressure (cp)	1.97
Solution Gas-Oil Ratio (SCF/BBL)	300
Initial Oil Saturation, So (Decimal)	0.66
Initial Water Saturation, Sw (Decimal)	0.34
Initial Fluid Volume	
Gil-In-Place (MMSTB)	17.749
Water-In-Place (MMSTB)	11.255
Solution Gas-In-Place (BSCF)	5.246
Free Gas-In-Place (BSCF)	0.304
··· pp www and comment of	41441

TABLE 6

SIMULATION MODEL DEPLETION RESULTS PENROSE "B" UNIT LEA COUNTY, NEW MEXICO

	Model Results	Actual Results
ry Depletion		
Pressure (Psia)	637	Not Available
Average So (Decimal)	0.558	Not Available
Average Sw (Decimal)	0.350	Not Available
Average Sq (Decimal)	0.092	Not Available
Cumulative Oil (MBBL)	1,199	1,083
Primary Recovery (Percent of OOIP)	7.3	Not Available
Cumulative GOR (MCF/BBL)	1.964	1.066
Cumulative Water (MBBL)	62	216
Final Oil Rate (BPD)	73	63
Final GOR (MCF/BBL)	5.630	2.476
Final Water Rate (BWPD)	9	45
Producing Time (Years)	10.0	9.0
Number of Hells	34	34
f Waterflood (Current Operations)	*	١,
	· \	•
Pressure (Psia)	3,763	Not Available
Average So (Decimal)	0.514	Not Available
Average Sw (Decimal)	0.486	Not Available
Average Sq (Decimal)	0 .	Not Available
Cumulative Oil (MBBL)	1,952	2,070
Total Recovery (Percent of OOIP)	11.0	Not Available
Cumulative Secondary Oil (MBBL)	754	987
Secondary Oil (Percent of OOIP)	4.6	Not Available
Secondary/Primary (Ratio)	0.63	0.91
Cumulative GOR (MCF/BBL)	1.644	0.757
Cumulative Water (MBBL)	1,241	10,368
Cumulative WOR (Volume/Volume)	0.59*	5.01
Cumulative Injection (MBBL)	5,602*	27,355
Estimated Economic Floodout (Years)	26	29.5 @ 4/1/87
Number of Producers	16	16
Number of Injectors	, 18	18
HAMAEL AT THAEFIALD	10	10

a de la companya del companya de la companya de la companya del companya de la companya del la companya del la companya de la

^{*} Reflects effective injection, i. e., all injection restricted to confines of single layer.

TABLE 6

SIMULATION MODEL DEPLETION RESULTS PENROSE "B" UNIT LEA COUNTY, NEW MEXICO

	Model Results
Infill Drillins and 40-Acre, 5-Spot Injection Support	
Pressure (Psia)	2,977
Average So (Decimal)	0.469
Average Sw (Decimal)	0.531
Average Sq (Decimal)	0
Cumulative Oil (MBBL)	3,229
Total Recovery (Percent of OOIP)	18.2
Cumulative Secondary Oil (MBBL)	1,925
Secondary Dil (Percent of OOIP)	10.8
Secondary/Primary (Ratio)	1.48
Incremental Oil Recovery (MBBL)	1,277
Cumulative GOR (MCF/BBL)	1,155
Cumulative Water (MBBL)	13,420
Cumulative WOR (Volume/Volume)	4.02
Cumulative Injection (MBBL)	19,290
Cumulative Economic Floodout (Years)	40
Number of Producers	29
Number of Injectors	20 `

TABLE 7

PROPOSED INVESTMENT SCHEDULE
PENROSE "B" UNIT
LEA COUNTY, NEW MEXICO

		-	Gross Investment			
Phase	Date	Description	(H\$)_	_(8\$)		
I	October 1987	Drill 3 Producins Wells (1 Cored)	465.0			
•	November 1987	Drill 3 Producins Wells	450.0	**		
	•	Install Satellite Producing Facility	10.0			
		Install Injection Facility	120.0	•		
•	December 1987	Drill 3 Producins Wells	450.0			
		Install Satellite Producins Facility	10.0			
•	January 1988	Drill 1 Producins Well	150.0	,		
		Install Satellite Producing Facility	5.0			
	• .	Total Phase		1,660.0		
			×.	;		
11	January 1988	Drill 2 Producing Hells	300.0	A.		
	February 1988	Drill 3 Producing Hells	450.0	Ž,		
	5	Workover 5 Producing Wells	250.0	÷		
	•	Convert 9 Wells to Injection	337.5	3a.		
		Install Injection Facility Expansion	150.0	3		
	March 1988 🕓	Drill 3 Producing Wells	450.0			
		Total Phase		1,937.5		
Ш	April 1988	Drill 3 Producing Wells	450.0			
	May 1988	Drill 3 Producins Hells	450.0			
	June 1988	Drill 2 Producing Wells	300.0			
		Total Phase		1,200.0		
		Total Project		4,797.5		

TABLE 8

WELL COUNT SUMMARY
PENROSE "B" UNITLEA COUNTY, NEW MEXICO

		Producers			Injectors			Project_Total		
			In-			In-			In-	
Date	Phase	Active	Active	Intal	Active	Active	Iotal	Active	<u>Active</u>	Intal
Existins				·						
September 1987		29	6	35	. 5	23	28	34	29	63
Planned	٠.									
October 1987	Ţ	32	6 :	38	9	19	28	41	~. 25	66
	i T	35	6	41	13	- 15	28	48	21	
November 1987	1									69
December 1987	1	38	6	44	17	11	28	55	17;	72
January 1988	I	39	6 :	45	17	11	28	56 °	17	73
January 1988	II	41	6	47	17	11	28	58	17	75
February 1988	11	37	4	41	26	11	37	63	15	78
March 1988	II	40	Å	44	26	11	37	66	15	81
April 1988	III	43	4	47	26	11	37	69	15	84
May 1988	III	46	4	50	26	11	37	72	15	87
June 1988	111	48	4	52	26	11	37	74	15	89

Note: The projected active well count will be dependent upon success of each phase and as dictated by mechanical conditions and/or activation or de-activation of wells in the interest of more efficient operations.

4

TABLE 9

SUMMARY OF ECONOMICS PROJECT MATERFLOOD REDEVELOPMENT PENROSE "B" UNIT LEA COUNTY, NEW MEXICO

	Proved Developed		-	_		
	Producios	Phase I	Proved	. Undeveloped_		- .
Effective Date:						Total Proven
Gross Reserves:			Septemb	er 15, 1987 -		
Oil (MBBL)						
Gas (MMCF)	191	752	///			
	57	225	608	345	1,705	1 00.
Net Reserves:			183	103	511	1,896
Oil (MBBL)						568
Gas (MMCF)	143	564				
The same of	43	169	456	259	1,279	
Net Operating Revenues:		107	137	78	384	1,422
Oil (Ms)					304	427
Gas (M\$)	3,301	14,297				
545 (III)	71		11,506	6,485	22 200	
Total (Ms)		322	259	141	32,288	35,589
inter (UP)	3,372	14.440			722	793
Expenses:		14,619	11,765	6,626	22. 444	
	•				33,010	36,382
Wellhead Taxes (H\$)	252	1 001				
Operating Costs (M\$)	1,659	1,091	878	494	0	
Tak-1		2,739	2,891	1,517	2,463	2,715
Total (M\$)	1,911				7,147	8,804
•	17711	3,830	3,769	2,011		
Investments (M\$)				71011	9.610	11,521
	0	1,660	1,937	1.000		
Future Net Revenue:				1,200	4,797	4,797
Undiscounted (Ms)						1777
Discounted @ 10\$ (Ms)	1,461	9,129	6,058	_		
	1.030	4,524	2,758	3,415	18,602	20,063
Parout* (Years)			21738	1,553	8,835	_
	-	1.3	2.0			9,865
Annualized Rate of Return (%)			2.3	3.0	2.0	-
	-	100	51.0		2.0	~
rofit/Investment Ratio:			56.3	47.7	71.7	
Undiscounted			•		- 447	-
Discounted e 10%	~	6.5				
	-	3.8	4.1	3.9	4.9	
		-14	2.5	2.4	2.9	-

[#] Payout based on project effective date.

DATE: 08/31/87 TIME: 14:08.23

FILE: PEX CETS: 0

RESERVES AND ECONOMICS

PENRUSE "B"
ESCALATED CASE

AS OF SEPTEMBER 15, 1987

T. SCOTT HICKMAN & ASSOC PETROLEUM CONSULTANTS

	CROSS PR		KET PRO	DUCTION	ail	CAS	HET OPER	HF TAXES	MS MET OPER EXPENSES	CAPITAL		10.00 PCT CUM. DISC BTAX, NS
12-87	22. 421	6.728	16.816	5.047	18.40	1,40	316. 481		80. 474	1505.000	-1292. 820	-1275.257
12-88	252. 215	75.664	189.166	56.752			3749.277		443, 489	3292.500	-268.671	
12-89	229, 281	68.783	171.966	51.590			3502.760		473, 130	.000	2766.432	
12-90	188, 171	56, 454	141.133	42.346			3022.706		496.800	. 000	2299.114	2473.007
12-91	160.101	48.026	120.079	36.021			2703.963		482. 736	. 000	2018.640	3879.504
12-92	139.472	41.843	104. 607	31.387	23.17	1.66	2476. 488		506. 862		1784. 330	5009.721
12-93	123. 559	37.067	92.472	27.804			2306.410		532. 207	.000	1601.862	5932.121
12-94	110.855	33. 258	83.145	24.947	25.61	1.83	2175.267		558. 821	. 000	1454.096	6693.313
12-95	100. 454	30.132	75.342	22.601			2071.930		586. 750	. 000	1330.727	7326.595
12-96	91.778	27.535	68.838	20.654	28.30	2.02	1989.795	148.167	616. 098	. 000	1225.530	7856.795
12-97	84. 389	25. 317	63.295	18.991	29.74	2,12	1922.950	143, 043	646. 600	. 000	1133.307	8302, 537
12-98	73. 304	21, 992	54.980	16.498			1755.502		634. 302	. 000	990.744	8657.078
12-99	56, 464	16.938	42.351	12.708			1421.143	105.503	448. 183	. 000	867.457	8939.275
12- 0	48. 351	14.505	36, 265	10.883			1268.642	94.107	421, 313	.000	753.222	9161.847
12- 1	42, 113	12.634	31.587	. 9.478			1111.060	82.374	385. 167	. 000	643.519	9334.914
2 101	1722. 928	516.876	1292.242	387.707 2	24. 08	1.73	31794.374	2376. 453	7312. 932	4797.500	17307.489	9334.914
REM.	173.105	51.935	129.839	38.962 3	14.40	3.12	4588.113	339.374	1493. 545	. 000	2755.194	9865.042
TOTAL	1896. 033	568.811	1422.081	426.669 2	5.03	1.86	36382.487	2715.827	8806. 477	4797.500	20062.683	9865.042
CUH.	3339. 303	1003, 691		KET DIL RE	UEXUE:	(en) 2	•	35589.096		PRESENT HE	RTH PROFILI	
,		1		HET GAS RE					DISC	PH OF KET		PH DE NET
ULT.	5235, 336	1572.502		TOTAL RE	VEXUES	(ns)		36382.487	RATE	BTAX, MS	RATE	BTAX, MS
RTAY PA	TE DE RETIRA	(PCT)	83 54	PROJECT LI	FE (YE	(2SA		24, 232		20062.683	30.0	3549.760
	OUT YEARS		1. 86	DISCOUNT R	ATE (P	CT)		40.000		17077.937	35.0	2836.053
		012C)	1.99	GROSS DIL	WELL S			48		13682.306	40.0	2269.103
RTAX MET	THOME/THU	T21	5. 18	2022 CAS	WELLS			10.000 48 .000		11182.382	45.0	1809.371
BTAY MET	[MCDNE/IMUI	EST (DISC)	3. 14	GROSS DIL I GROSS GAS I GROSS HELLS	2			48		9865.042	50.0	1430.120
	Stramine State		J. . .		-			1	. 12. 0	8757.057	60.0	843.856
									15, 0	7396.381	70.0	414.734
									18.0		80.0	89.541
									20.0	5698.037	90.0	-163.603
									25. 0	4471.126	100.0	-364.921

DATE: 08/31/87 TIME: 14:08.23

FILE: PEX CET#: 0

RESERVES AND ECHHUNICS

PENROSE "B"
ESCALATED CASE

AS OF SEPTEMBER 15, 1987

T. SCUTT HICKMAN & ASSOC PETROLEUM CONSULTANTS

					PRICE							10.00 PCT
-EKD- MO-YR	CROSS PRODIL, MRBL	_	HET PRO DIL, MBSL			cas \$/M	REVENUES		HET OPER EXPENSES	COSTS. NS		CUM. DISC BTAX, MS
12-87	9. 169	2. 751	J. 877	2.063	18.40	1.40	129.425	9.744	71.050	.000	48. 631	
12-88	28.964	8.689	21.723		19.40		430.550	32.378	184. 800	.000	213, 372	245, 823
12-89	25. 489	7. 646	19.117		19.94		389.393	29.259	141.120	. 000	219.014	430, 468
12-90	22, 430	6.729	16.823	5.047	20.96	1.51	360.305	27.034	148.176	.000	185.095	572,330
12-91	19.739	5. 922	14.804	4.442	22.04	1.59	333.362	24. 976	116, 689	.000	191.697	705.896
12-92	17.369	5. 211	13.027		23.17		308.403	23.075	122. 523	. 000	162, 805	809.019
12-93	15. 286	4. 586	11.465	3.440			285.340	21.322	128. 649	. 000	135, 369	886.969
12-94	13. 451	4. 035	10.088	3.026	25. 61	1.83	263.924	19.697	135. 082	. 000	109.145	944.104
12-95	11. 837	3.551	11.878	2.663	26.92	1.93	244.147	18.200	141. 836	.000	84.111	984.132
12-96	10. 417	3.125	7.813	2.344	28.30	2.02	225.838	16.817	148. 928	.000	60.093	1010 ,130
12-97	9. 166	2. 750	ä. 875	2.063	29.74	2.12	208, 868	15.536	156. 374	. 000	36. 958	1024. 66 6
12-98	8.067	2. 420	á. 050	1.815	31.26	2.23	193.175	14. 355	164. 193	. 000	14.627	1029.896
12-99												
12- 0												
12- 1												
זמז 2	191. 384	57. 415	143.540	43.063	23.00	1.66	3372.730	252.393	1659.420	. 000	1460.917	1029.896
REM.	. 000	.000	.000	. 000	.00	.00	.000	.000	. 000	. 000	. 000	1029.896
TOTAL	191. 384	57.415	148.540	43.063	23.00	1.66	3372.730	252. 393	1659. 420	.000	1460.917	1029.896
CUN.	3339.303	1003. 691		KET DIL RI	EVEXUE	(#\$)		3301.444		-PRESENT NO		
•				NET CAS RE				71. 286	DISC	PH OF HET	012C	PH OF KET
ULT.	3530. 687	1061.106		TOTAL RE	EVEXUE	(45)		3372.730	RATE	BTAX, MS	RATE	BTAX, MS
BTAX RAT	TE OF RETURN	(PCT)	100.00	PROJECT LI	IFE (YE	EARS)		11.292	. 0	1460.917	30.0	632.917
	YOUT YEARS		. 00	DISCOUNT R				10.000	2.0	1351.838	35.0	577.290
	POUT YEARS (DISC)	. 00	CROSS OIL				29	5.0	1212.497	40.0	531.067
	I INCOME/INV		. 00	CROSS CAS	WELLS			.000	8.0	1096.609	45.0	492.159
	INCOME/INVE		. 00	CROSS HELL				29	10.0	1029.896	50.0	459.020
								•	12.0	970, 245	60.0	405.735
									15.0	891.959	70.0	364.888
									18.0	824.816	80.0	332. 653
									20. G	785.223	90.0	306.599
									25. 0	700.858	100.0	285.112

DATE: 08/31/87

TIME: 14:08.23 FILE: PEN CETO: 0

KEZEKAEZ, WHD ECUNUNIC2

PEXXISE "B"
ESCALATED CASE

AS OF SEPTEMBER 15, 1987

T. SCOTT HICKHAH & ASSOC PETROLEUM CONSULTANTS

					PRICES							10.00 PCT
MO-YR	GROSS PR			CAS, MMCF		cas \$/n	REVENUES		EXPENSES	COSTS, NS		CUM. DISC
12-87	13. 252	3. 977	9.939	2.984	18.40	1.40	187.056	14.083	9. 424	1505.000	-1341.451	-1323, 203
12-88	223. 2 51	66.975	167.443	50.235	19.40	1.40	3318.727	249.581	258. 689	3292.500	-482.043	~18 67,233
12-89	203. 792	61.137	152.849	45.855	19.94	1.44	3113.367	233. 939	332.010	.000	2547.418	280 . 430
12-90	165.741	49.725	124.310	37.299	20.96	1.51	2662.401	199.758	348. 624	. 000	2114.019	1900 . 677
12-91	140. 362	42.104	105.275	31.579	22.04	1.59	2370.601	177.611	366. 047	.000	1826.943	3173.608
12-92	122.103	36. 632	91.580	27.479	23.17	1.66	2168.085	162.221	384. 339	.000	1621.525	4200 . 702
12-93	108. 273	32.481	81.207	24.364	24.36	1.75	2021.070	151.019	403. 558	. 000	1466.493	5045 . 152
12-94	97. 404	29.223	73.057	21.921	25. 61	1.83	1911.343	142. 653	423. 739	. 000	1344. 951	5749 .209
12-95	88. 617	26.581	66.464	19.938	26.92	1.93		136.253	444. 914	. 000	1246.616	6342 . 463
12-96	81.361	24. 410	61.025	18.310	28.30	2.02	1763.957	131.350	467. 170	. 000	1165.437	6846 . 665
12-97	75. 223	22.567	56. 420	16.928	29.74	2.12	1714.082	127.507	490. 226	.000	1096.349	7277.871
12-98	65. 237	19.572	48.930	14.683			1562.327	116.101	470. 109	. 000	976.117	7627.182
12-99	56.464	16.938	42. 351	12.708			1421.143	105.503	448. 183	. 000	867. 457	7909 . 379
12- 0	48. 351	14.505	36.265	10.883			1268.642	94.107	421. 313	.000	753.222	8131.951
12- 1	42.113	12. 634	31.587	9.478	34. 40	2.58	1111.060	82.374	385. 167	. 000	643.519	83 05.018
s tot	1531. 544	459.461	1148.702	344.644	24. 22	1.74	28421.644	2124.060	5653. 512	4797.500	15846. 572	8305.018
ren.	173.105	51.935	129.839	38.962	34.40	3.12	4588.113	339.374	1493. 545	. 000	2755.194	8835.146
TOTAL	1704. 649	511.396	1278.541	383.606	25. 25	1.88	33009.757	2463, 434	7147. 057	4797.500	18601.766	8835.146
CUN.	. 000	. 000		NET DIL RI				32287.652		PRESENT N		
				HET GAS RI				722.105	DIZC	PH OF HET	DISC	PH DE KET
ULT.	1704. 649	511.396		TOTAL RE	EVEXUE	((H\$)		33009.757	RATE	BTAX, MS	RATE	BTAX, MS
BTAX RA	TE OF RETURN	(PCT)	7:1.70	PROJECT LI	FE (YE	EARS)		24.232	. 0	18601.766	30.0	2916.843
BTAX PA	YOUT YEARS		2. 01	DISCOUNT F	IATE (F	PCT)		10,000		15726.099	35.0	2258 . 763
BTAX PA	YOUT YEARS (DISC)	2.16	CROSS DIL	HELLS			19		12469.809	40.0	1738.036
BTAX NE	T INCOME/INV	EST	4, 88	CROSS CAS	HELLS			.000		10085.773	45.0	1317.212
BTAX NET	INCOME/INVI	EST (DISC)	2. 71	CROSS HELL	2.			, 19	10.0	8835.146	50.0	971.100
								•	12.0	7786.812	60.0	438.121
									15.0	6504.422	70.0	49.846
									18.0	5483.254	80.0	-243.112
									20.0	4912.814	90.0	-470.202
									25.0	3770.268	100.0	-650.033

DATE: 08/31/87 TIME: 14:08.23

FILE: PEX CET#: 0

RESERVES AND ECONOMICS

PENROSE "B"
ESCALATED CASE

AS DF SEPTEMBER 15, 1987

T. SCOTT HICKMAN & ASSOC PETROLEUM CONSULTANTS

					PRICES				115			10.00 PCT
			OIL, MEBL				REVENUES	HF TAXES	HET OPER EXPENSES	COSTS. HS		CUM. DISC BTAX, MS
12-87	13. 252	3.977	9.939	2.984	18, 40	1.40			9. 424	1505.000	-1341, 451	
12-88	112.600	33.778	84. 451	25.335				125.876	101.050	155.000	1291, 893	-132.353
12-89	84. 288	25. 288	63.218	18.967				96.757	107, 100	. 000	1083, 826	781.392
12-90	67.674	20. 301	50.758	15.227	20.96	1.51	1087.102		112.460		893.077	
12-91	56. 814	17.043	42.612	12.782	22.04	1.58	959.544	71.890	118. 080	. 000	769.574	2002 . 077
12-92	49, 118	14.735	36.839	11.053	23.17	1.66	872.133	65.255	123. 980		682.898	243 4. 6 3 2
12-93	43. 348	13.006	32.511	9.755	24.36	1.75	809.132	60, 459	130, 180	. 000	618.493	2790 . 778
12-94	38. 854	11. 656	25'. 143	8.743	25.61	1.83			136, 690	. 000	568.852	3088.561
12-95	35. 244	10.573	24.434	7.930	26. 92	1.93			143. 520	.000	529. <i>2</i> 32	3340 . 418
12-96	32. 283	9. 685	24. 215	7.265	28.30	2.02	699.946	52.121	150. 700	. 000	497.125	3555.48 8
12-97	29. 801	8.940	22.351	6.706	29.74	2.12	679.040	50.511	158. 240	. 000	470.289	3740.453
12-98	27. 691	8.308	20.770	6.232	31.26	2.23	663.182		166. 150	. 000	447.748	3900 , 543
12-99	24. 536	7. 360	18.404	5.521			617. 566		161. 329	. 000	410.390	4034, 011
12- 0	22. 601	6.781	16.952	5.088			593.026		164. 862	. 000	384.175	4147.532
12- 1	19. 985	5. 9 95	14.991	. 4.498	34, 40	2.58	527. 301	39.094	151. 327	.000	336.880	4238.095
101 2	658. 089	197.426	493.588	148.086	24.09	1.73	12145.922	907.829	1935. 0 9 2	1660.000	7643.001	4238,095
REN.	93. 320	27.997	69.995	21.003 3	34, 40	3.12	2473.298	182.952	804. 354	. 000	1485.992	4524. 578
TOTAL	751. 409	225. 423	563.583	169.089 2	25.37	1.91	14619.220	1090.781	2739. 446	1660.000	9128.993	4524, 578
CUN.	. 000	.000								ON THEESAN		
									DISC	PH DF NET		PH OF KET
ULT.	751. 409	225, 423		TOTAL RE	VEXUE:	(#\$)		14619.220	RATE	BTAX, MS	RATE	BTAX. NS
BTAX RAT	IE DE RETURN	(PCT)	100.00	PROJECT LI	FE (YE	EARS)		24. 232	. 0	9128.993	30.0	1801.730
	TOUT YEARS		1. 34	DISCOUNT R	ATE (F	CT)		10.000	2. 0	7757. 985	35.0	1496, 608
BTAX PAY	MUT YEARS (CROSS DIL	HELLS			10	5.0	6220.112	40.0	1252.934
	I IKCOMEZIKU	12 3	6. 50	CROSS CAS	HELLS			.000	8.0	5105.346	45.0	1053.843
BTAX NET	INCONENTAL	est (disc)	3. 77	CROSS CAS	2			, 10	10.0	4524.578		888.079
									12.0	4039.842	60.0	627.766
									15. O	3449.262	70.0	432.567
									18. Q	2980.442	80. O	280.755 159.320
									20. Q	2718.867	90.0	60.019
									25. 0	2194.710	100.0	OU. U1 7

DATE: 08/31/87

TIME: 14:08.23
FILE: PEN
CET#: 0

RESERVES AND ECONOMICS

PENROSE "B"
ESCALATED CASE

AS OF SEPTEMBER 15, 1987

T. SCOTT HICKMAN & ASSOC PETROLEUM CONSULTANTS

· · ·

					PRICES				MS			10.00 PCT
MO-YR		DDUCTION CAS, INCF	OIL, NEBL				REVENUES		HET OPER EXPERSES	COSTS, MS		BTAX, MS
12-87	. 000	. 000	.000	.000	. 00	.00	.000	.000	. 000	. 000	. 000	.000
12-88	81.561	24, 468	61.174	18.353			1212, 471		111. 443	1937.500	-927. 656	-932, 4 03
12-89	75. 320	22.596	54.492	16.948			1150.681	86.461	139. 230	.000	924.990	-152.566
12-90	60. 619	18.188	45, 464	13.643	20.96	1.51	973.725	73.058	146. 196	. 000	754.471	425.683
12-91	50. 959	15.285	38.220	11.465	22.04	1.59	860.646	64. 484	153. 503	.000	642.659	873.4 59
12-92	44. 084	13.226	33.064	9.920	23. 17	1.66	782.764	58.567	161.175	. 000	563.022	1230.084
12-93	38. 921	11.675	29.192	8.758	24. 36	1.75	726.527	54.288	169. 234	. 000	503.005	
12-94	34. 892	10.469	26.171	7.854	25. 61	1.83	684, 698	51.103	177. 697	. 000	455. 898	1758.383
12-95	31. 655	9. 498	23.741	7.124	26.92	1.93	652.890	48.668	186. 578	. 000	417. 644	195 7.136
12-96	28. 991	8.697	21.745	6.523	28. 30	2.02	628.546	46.803	195. 910	. 000	385. 833	2124.059
12-97	26.763	8.030	20.073	6.023	29.74	2.12	609.834	45.362	205. 710	.000	358.762	2265.162
12-98	21. 817	6. 544	14.363	4.911			522.471	38.826	187. 654	. 000	295. 991	2371.29 7
12-99	18. 153	5. 445	13.615	4.085	32, 85	2.34	456.868	33.916	174. 452	. 000	248.500	2452.069
12- 0	17.051	5.114	12.789	3.836			447.387	33, 189	183. 179	. 000	231.019	2520.334
12- 1	14. 611	4. 384	10.959	3.288	34, 40	2.58	385. 478	28.580	168.056	. 000	188.842	2571.111
10T 2	545. 397	163.617	409.062	122.731 2	4. 16	1.74	10094.986	754. 489	2360. 017	1937.500	5042. 980	2571.111
REN.	62. 935	19.882	47. 205	14.166 3	4. 40	3. 21	1669.267	123. 429	530. 886	. 000	1014.952	2757.597
TOTAL	608, 332	182. 499	456.267	136.897 2	5. 22	1.89	11764.253	877.918	2890. 903	1937.500	6057. 932	2757.597
CUM.	. 000	. 000		KET DIL RE	VEHUES	(NS)	1	L1505. 633		-PRESENT HO		
				KET GAS RE	VEXUES	(H\$)		258.620		PH OF HET	0120	PN OF KET
UCT.	608. 332	182.499		TOTAL RE	VENUES	(#\$)	1	11764, 253	RATE	BTAX, MS	RATE	BTAX. NS
BTAX RAT	E OF RETURN	(PCT)	56. 31	PROJECT LII OISCOURT RI GROSS DIL I	FE (YE	ARS)		23.182	. 0	6057.932	30.0	769.888
RTAX PAY	TUT YEARS		2, 30	OISCOURT R	ATE (P	CT)		10.000	2. 0	5079.771	35.0	547.697
BTAX PAY	DUT YEARS (1	(321)		CROSS DIL	MELLS			8 . 000 .	5.0	3979.114	40.0	371.789
	INCONESIMA	72	4. 13	PKU33 PN3 :	HELL 3				8.0	3177.277	45.0	229.690
BTAX NET	INCONENTAL	COSID) TE	2. 48	CROSS HELLS	5			. 8	10.0	2757.597	50. O	112.980
									12.0	2406.082	60.0	-66.082
									15.0	1976.132	70.0	-195.527
									18.0	1633.510	80.0	-292.199
									20. 0 26. 0	1441.925	90.0	-366.195 -423.918
									25.0	1057.596	100.0	-723.715

DATE: 08/31/87

TIME: 14:08.23 FILE: PEN GET#: 0

RESERVES AND ECONOMICS

PENROSE "B"
ESCALATED CASE

AS OF SEPTEMBER 15, 1987

T. SCUTT HICKMAN & ASSOC PETRILEUM CONSULTANTS

					PRICES		OPERATIONS,		#			10.00 PCT	
	CROSS PR	DDUCTION	KET PRO	CAS, MHCF		cas s/m	KET OPER REVEXUES		HET OPER EXPENSES	CAPITAL COSTS. MS		CUM. DISC BTAX, MS	
		*****									****		
12-87	. 000	. 000	.000	. 000			000.		. 000	.000	. 000		
12-88	29.090	8.729	21. 818	6.547			432, 437		46, 196	1200.000	-846, 280		
12-89	44. 184	13.253	33, 139	9.940			675.003		85. 680	. 000 . 000	538.602		
12-90	37.448	11. 236	28.088	8.429			601.574		89.968		466.471		
12-91	32. 589	9.776	24. 443	7.332	22.04	1.38	550. 411	41. 237	94. 464	.000	414.710	298 .072	
12-92	28.901	8. 671	21 677				513.188	38.399	99. 184		375. 605	535.986	
12-93	26.004	7.800	19.504	5.851	24.36	1.75	485.411	36.272	104. 144	.000	344. 995	734.645	
12-94	23. 658	7.098	17.743	5.324	25. 61	1.83	464.198	34, 645	109. 352	. 000	320. 201	902.265	
12-95	21.718	6. 512	16.289	4.884	26.92	1.93	447.948	33.392	114. 816	. 000	299.740	1044.909	
12-96	20.087	6.028	15.065	4.522	28.30	2.02	435. 465	32. 426	120. 560	. 000	282. 479	1167.118	
12-97	18. 65 9	5. 597	13.996	4.199	29.74	2.12	425, 208	31.634	126. 276	. 000	267.298	1272.256	
12-98	15.729	4.720	11 797	3.540			376.674	27.991	116. 305	. 000	232.378	1355.342	
12-99	13.773	4.133	10.332	3.102			346.709	25.740	112. 402	. 000	208, 567	1423. 299	
12- 0	8, 699	2.610	6.524	1.959			228, 229	16.929	73, 272	. 000	138.028	1464.085	
12- 1	7.517	2.255	5.637	1.692	34. 40	2.58	198.281	14.700	65. 784	. 000	117.797	1495.812	
s tot	328.058	98.418	246.052	73.827 2	24. 59	1.77	6180.736	461.742	1358, 403	1200.000	3160.591	1495.812	
REN.	16.850	5.056	12.639	3.793	34. 40	2.84	445, 548	32.993	158, 305	. 000	254. 250	1552.971	
TOTAL	344. 908	103.474	258, 691	77.620 2	25. 07	1.82	6 626. 284	494.735	1516. 708	1200.000	3414.841	1552.971	
CUH.	. 000	. 000						6485.075		-PRESENT NO	RTH PROFIL	[
									DISC	PH OF HET	DISC	PN DE NET	
ULT.	344. 908	103.474		TOTAL RE	VEXUES	(h\$)		6626.284	RATE	BTAX, M\$	RATE	BTAX, ns	
BTAX RAT	E OF RETURN	(PCT)	47, 65	PROJECT LI	FE (YE	(ARS)		17.298		3414.841		345 . 2 25	
BTAX PAY	OUT YEARS		2. 95	DISCOUNT R	RATE (PCT)			10.000		2888.343	35.0	214.458	
	DUT YEARS ((3210		CROSS DIL				8	5. 0	2270.583	40.0	113.313	
	INCOME/INV		3. 85					8 . 000 .	8.0	1803.150	45.0	33.679	
	INCOME/INVI	EST (DISC)	2. 38	CRUSS HELL	\$, 8	10.0	1552.971	50.0	-29.959	
								•	12.0	1340.888	60.0	-123.563	
									15. 0	1079.028	70.0	-187.194	
										869.302	80.0	-231.668	
										752.022	90.0	-263.327	
									25. 0	517.962	100.0	-286.134	