EVALUATION OF

1 webs

WATERFLOOD REDEVELOPMENT PROJECT

SKELLY-PENROSE "B" UNIT

LEA COUNTY, NEW MEXICO

Before the OIL CONSERVATION COMMISSION Santa Fe, New Mexico Case No. <u>10771</u> Exhibit No. <u>3</u> Submitted By: <u>0279</u> Hearing Date: _____ T. SCOTT HICKMAN & ASSOCIATES, INC.

PETROLEUM CONSULTANTS

September 28, 1987

Sirgo-Collier, Inc. P. O. Box 3531 Midland, TX 79702 Home Savings Association P. O. Box 11023 Midland, TX 79712

Attention: Mr. Mike Irons

Attention: Mr. Manny Sirgo

Casa Energy P. O. Box 11023 Midland, TX 79712

Attention: Mr. Alan Byars

Gentlemen:

Re: Waterflood Redevelopment Project Skelly-Penrose "B" Unit Lea County, New Mexico

In accordance with Messrs. Sirgo's, Byars' and Irons' request, we have evaluated the Proved crude oil and gas reserves as of September 15, 1987 attributed to additional development and re-establishing injection in the Skelly-Penrose "B" Unit, Lea County, New Mexico. The results of this study are discussed in the attached report as outlined in the Table of Contents. A summary of our evaluation to 100% working interest (75% net revenue interest) is as follows:

			Future	Net Revenue
	Net Rea	serves	Undis-	Discounted
	Liquid	Gas	counted	e 10\$
	(MBBL)	(MMCF)	<u>(M\$)</u>	(M\$)
Effective Date:		- September	15, 1987	
PDP Reserves	143	43	1,461	1,030
PUD Reserves:				
Phase I	564	169	9,129	4,524
Phase II	456	137	6,058	2,758
Phase III	259	_78	3,415	1,553
Total PUD	1,279	384	18,602	8,835
Total Proved	1,422	427	20,063	9,865

EMPIRE PLAZA, SUITE 725 508 W WALL MIDLAND, TEXAS 79701 Sirgo-Collier, Inc. Home Savings Association Casa Energy September 28, 1987 Page 2

Net oil and gas reserves are estimated quantities of crude oil, natural gas and natural gas liquid attributed to the composite revenue interests being evaluated after deduction of royalty and/or overriding royalty interests. The Society of Petroleum Evaluation Engineers' reserve definitions, as modified by use of assumed rather than existing economic conditions, were used to classify the reserves. Future net revenue was adjusted for capital expenditures, operating costs, interest reversions, ad valorem taxes and wellhead taxes (severance and windfall profit), but no consideration was given to Federal income taxes or any encumbrances that might exist against the evaluated interests.

Reserves were determined using industry-accepted methods including extrapolation of established performance trends, volumetric calculations, reservoir simulator solutions and analogy to similar producing projects. Where applicable, the evaluator's own experience was used to check the reasonableness of the results.

No attempt was made to quantify any reserves in the "Non-Proved" category. Additional reserve potential may exist in other portions of the unit. However, insufficient geological and/or engineering data exists at this time with which to make a determination sufficient for reserve assignment.

In the preparation of this report, we have reviewed for reasonableness, but accepted without independent verification information furnished by Sirgo-Collier, Inc. with respect to interest factors, current prices, operating costs, gas contracts, current production and various other data. The price and expense escalation scheme and prime discount rate are in accord with current industry expectations, but represent speculation that is subject to changes in economic conditions. The use of predicted rather than existing economic parameters affects both the cash flow projections by the difference in prices and expenses and also the reserve volumes by changing the economic limit at which production is terminated. The assumed pricing also has a major effect on the economic viability of non-developed potential and hence the volume of reserves that can be assigned to the non-producing categories.

No consideration was given to the existing debt burden, which would decrease the value of the producing interests. We are qualified to perform engineering evaluations and do not claim any expertise in accounting or legal matters. As is customary in the profession, no field inspection was made of the properties nor have we verified that all operations are in compliance with any states and/or Federal regulations that apply to them.

Initial oil prices were based on posted prices as of August 28, 1987 after adjusting for gravity and transportation. Oil pricing was held constant to December 31, 1987 then increased \$1/BBL in 1988. Starting Sirgo-Collier, Inc. Home Savings Association Casa Energy September 28, 1987 Page 3

January 1, 1990, the pricing was escalated at 5% per annum to a maximum of \$35/BBL. The windfall profit tax was not applicable.

Starting gas prices were based on prevailing area prices as of June 1, 1987 and held constant to January 1, 1989. Starting January 1, 1989, the price was escalated at a rate to reach 65% parity with oil by January 1, 2001.

Lease operating expenses were estimated by Sirgo-Collier, Inc. based on anticipated operating conditions for each project phase. Expenses were held constant to January 1, 1989 then escalated at 5% per annum until the primary product reached the maximum price. No equipment salvage value or abandonment costs were included for the properties. The costs for drilling, workovers and re-establishing injection were developed by Sirgo-Collier, Inc. We have reviewed their estimates for reasonableness.

This study was performed using industry-accepted principles of engineering and evaluation that are predicated on established scientific concepts. However, the application of such principles involves extensive judgment and assumptions and is subject to changes in performance data, existing technical knowledge, economic conditions and/or statutory provisions. Unless otherwise noted, we have based our reserve projections on current operating methods and well densities. Consequently, our reserve estimates are furnished with the understanding that some revisions will probably be required in the future, particularly on new wells with little production history and for reserve categories other than Proved Developed Producing. The restriction of production by mechanical, regulatory or market conditions also introduces uncertainty into reserve estimates and projections.

This report is solely for the information of and assistance to Sirgo-Collier, Inc., Casa Energy and Home Savings Association in negotiating loans or credit and is not to be used, circulated, quoted or otherwise referred to for any other purpose without the express written consent of the undersigned except as required by law. Persons other than those to whom this report is addressed shall not be entitled to rely upon the report unless it is accompanied by such consent. Data utilized in this report will be maintained in our files and are available for your use.

Yours very truly,

T. SCOTT HICKMAN & ASSOCIATES, INC.

C. Don Hunter, P. E.

par

TABLE OF CONTENTS

Discussion

Introduction Conclusions Recommendations Geology and Reservoir Properties Review of Unit Performance Reservoir Performance Prediction Redevelopment Plan and Economics

Figure 1 Type Log

- 2 Structure Map
- 3 Net Pay Isopach
- 4 Oil Recovery Map
- 5 Production Summary
- 6 Injection Summary
- 7 Rate Time Production Graph
- 8 Proposed Redevelopment Plan

Table 1Geologic Summary - Penrose Sand Structure

- 2 Performance Data Total Penrose "B" Unit
- 3 Individual Well Production and Ultimate Recovery
- 4 Individual Well Injection Summary
 - 5 Simulation Model Parameters
 - 6 Simulation Model Depletion Results
 - 7 Proposed Investment Schedule
 - 8 Well Count Summary
- 9 Summary of Economics
- 10 Total Proved Cash Flow Projection
- 11 Total Proved Developed Producing Cash Flow Projection
- 12 Total Proved Undeveloped Cash Flow Projection
- 13 Phase I Proved Undeveloped Cash Flow Projection
- 14 Phase II Proved Undeveloped Cash Flow Projection
- 15 Phase III Proved Undeveloped Cash Flow Projection

DISCUSSION

INTRODUCTION

• • •

The Skelly-Penrose "B" Unit is located in the Langlie Mattix Field of southeastern Lea County, New Mexico. The field produces from the Permian age Queen formation at a depth of approximately 3600'. The discovery well for the Unit area was the Skelly-Harrison "A" No. 1, which is now designated the Skelly-Penrose "B" Unit No. 34. Forty-acre development began in the 1930's with drilling continued through the 1950's. Early completion methods consisted of open hole completions stimulated by nitroglycerin. However, the majority of completions are cased holes stimulated by frac treatment.

At the time of unitization - July 1, 1965 - the Penrose "B" Unit was comprised of 63 wells encompassing 2612 acres. Waterflood operations were initiated during mid-1966 on 80-acre, 5-spot patterns. Ultimate primary oil recovery from the Unit has been 1775 MBBL. As of April 1, 1987, total oil production from the Unit was 3,310,156 barrels. Under the current mode of operation, ultimate secondary oil recovery is estimated at 1742 MBBL. The Unit is currently producing at 95 BOPD and 1099 BWPD from 29 active producers. Only 5 injectors are currently active. Approximately 191 MBBL of reserves remain under the current mode of operation. Unit performance is summarized by Table 2.

CONCLUSIONS

- 1. The Penrose sand formation of the Penrose "B" Unit appears to be geologically contiguous with that of adjoining properties.
- 2. Oil productive limits of this field are controlled primarily by stratigraphic influence.
- 3. Under current mode of operations, the Penrose "B" Unit is in the latter stages of depletion.
- 4. Ultimate primary oil production is estimated at 1775 MBBL.
- 5. Ultimate secondary oil recovery, under current mode of operation, is estimated at 1742 MBBL.
- 6. Oil recovery has varied greatly across the field due to variations in completion techniques, reservoir heterogeneity and water injection inefficiencies.
- 7. An estimated 1705 MBBL of Proved Undeveloped reserves are economically recoverable through infill drilling, rework and the re-establishment and expansion of water injection.

RECOMMENDATIONS

- 1. Proceed with 20-acre infill drilling, rework, re-establishment of water injection and initiation of 40-acre, 5-spot patterns in phases, as outlined in this report.
- 2. Development of each subsequent phase should be contingent upon the results of the preceding phase.
- 3. As sufficient well logs and core data become available, initiate a detail engineering study of the reservoir to maximize economic recovery.

GEOLOGY AND RESERVOIR PROPERTIES

The Skelly-Penrose "B" Unit produces from the Queen and Penrose formations of Permian age. The type log for the field is shown by Figure 1. Ten sand members have been identified and correlated across the field (Table 1). Average depth in the Langlie Mattix Field is approximately 3600'. The productive section consists of layered sand or sandy dolomite, interbedded with shale or non-porous dolomite. No quantitative well logs or cores were available with which to determine lithology. Determinations of depositional environment were beyond the scope of this study. The hydrocarbon accumulation was controlled primarily by stratigraphic factors. Porosity and permeability are apparently highly variable as demonstrated

Several count of a suspected gas cap in the southern portion of the Unit (Figure 2). Penrose "B" Unit appears geologically continuous with the Penrose "A" " which adjoins the "D" Unit of t Structural position does not appear to be a major factor in defining the production characteristics of the reservoir with the exception The Penrose "B" Unit appears geologically continuous with the Penrose "A" Unit, which adjoins the "B" Unit along the eastern boundary. A significant number of completions extend below -400' subsea with minimal water production reported during primary depletion.

> No quantitative well logs or cores were available on the 63 wells in the Unit, although three wells were reported to have been cored. A modern log suite was available from the Penrose "A" Unit No. 66, which was used to approximate porosities and original water saturations for the Penrose "A, NOT sand in this area. This log analysis indicated that the "A" Unit Penrose ° ß` sand formation was similar in stratigraphic and lithologic character to that of the West Dollarhide Queen Sand Unit (WDQSU). Based on a net pay porosity cutoff of 9% and neutron deflection versus porosity relationships derived from the WDQSU study, apparent net pay was derived from neutron log response. This preliminary estimate of net pay for the Penrose "B" Unit was mapped as shown on Figure 3.

REVIEW OF UNIT PERFORMANCE

The primary depletion mechanism is solution gas-drive with no apparent water influx. Ultimate primary recovery was determined by extrapolation of the individual well decline trends and is summarized

on Table 3 and Figure 4. This yields a total ultimate primary recovery from the Unit of 1775 MBBL.

The Unit became effective July 1, 1965 and water injection was initiated one year later (Figure 7). Oil production response occurred within six months and peaked in early 1971 at 500 BPD with final expansion of the 5-spot pattern. During this period, 37 producers and 26 injectors were active. Oil production had gradually declined to 120 BPD by 1982. The Unit is currently producing 95 BOPD, 30 MCFPD and 1099 BWPD from 29 active producers (Table 3 and Figure 5). During the peak injection years of 1970 through 1973, water injection averaged 7500 BWPD compared to the current 1300 BWPD (Table 4 and Figure 6).

As shown by Table 1, a limited number of Unit wells were also completed in the Queen sand. The Queen sand's contribution to overall performance cannot be broken out due to nonavailability of specific Queen sand interval test data. Unit wells Nos. 47^{47} and 62 were initially completed as gas wells and No. 62 was subsequently converted to water injection. The lack of quantitative well logs in this southern portion of the Unit precluded an analysis of the effect of the apparent gas cap upon performance of the Unit.

Determination of secondary recovery was based on extrapolation of individual production decline trends, as shown on Table 3. Ultimate secondary oil recovery for the Unit is estimated to be 1742 MBBL, giving a secondary to primary ratio of 0.98:1. Average secondary oil recovery was 50 MBBL/well for the 35 producers. However, as reflected by the distribution of reserves on Figure 4, secondary oil response was highly erratic, ranging from 4 MBBL to 192 MBBL per producer. This extreme range is larger than can be accounted for by variation in individual well primary performance, which suggests inadequate injection coverage.

RESERVOIR PERFORMANCE PREDICTION

A reservoir simulator was utilized in an effort to 1) gauge the reasonableness of the preliminary net pay isopach, 2) obtain a more comprehensive understanding of reservoir performance and 3) help establish remaining reserve potential.

Reservoir simulation was done with PC-Boast, a three-dimensional, three-phase black oil simulator. PC-Boast can simulate oil and/or gas recovery by fluid expansion, displacement, gravity drainage and capillary imbibition mechanisms. The area for the model was chosen on the basis of relatively high net pay and good primary and secondary performance, which should afford the maximum opportunity for additional reserve recovery. The model area (Figure 3) was represented by a single layer of uniform thickness. Porosity was varied within each of the 72 model blocks to attempt to represent pore volume (Φ h) variations in apparent net pay, as shown by Figure 3.

Fluid properties as a function of pressure were derived from empirical correlations, in lieu of lab derived data. Relative permeability relationships were developed from empirical equations for the specified initial fluid saturations. The rock and fluid properties and initial fluid saturation conditions are presented as Table 5. Individual well productivity index (PI) and pressure constraints were imposed to attempt to duplicate individual well rates and recoveries.

A reasonable history match was obtained in most cases for oil recoveries and oil producing rates. A consistent good match for GOR's could not be obtained, apparently due to gas production from Queen sand completions (Table 1). The lack of accurate fluid properties and relative permeability data would compound the GOR problem. Significantly lower water injection and water production volumes were derived by the model as compared to actual performance. Also, actual injection greatly exceeded water production (Table 2). This suggests inefficient water displacement, i.e., water injection displaced out of zone. Indication of poor injectivity profiles and premature water breakthrough further supports inefficient injection.

Although reasonable history matches were obtained under both primary and waterflood operations (Table 6), the primary objective of the simulation effort was to determine estimates for current oil saturation. The areal oil saturation distribution obtained was utilized as input for the simulator studies of infill drilling and more dense injection pattern spacing, i.e., 40-acre, 5-spot patterns.

REDEVELOPMENT PLAN AND ECONOMICS

A number of simulation runs were made to determine the incremental reserves potential, which could be achieved in the model area through selective infill drilling on 20-acre and 40-acre spacing, 5-spot injection patterns. The modeling results indicate that an additional 1.2 MMBBL of economic oil could be achieved from development of the model area alone.

The simulation results were utilized as a basis for determining infill well locations within the model area. Elsewhere, locations were assigned on the basis of net pay and historical performance. Production performance prediction was based on modeling results and ranged from 15 BOPD/well to 60 BOPD/well. Initial injection rates for the proposed well conversions range from 100 to 300 BWPD.

Proceeding with 20-acre infill drilling, reworking and re-establishing water injection in a phased procedure is recommended (Table 8 and Figure 8). Development of each subsequent phase will depend, to some degree, upon success of the preceding phase. As geological and engineering data becomes available (i.e., well logs, cores and production tests), plans for subsequent phases may require revision, refinement or expansion.

The total project as outlined by this evaluation (Table 8) requires the drilling of 26 producers, reworking 5 producers and conversion of 9 wells to water injection. All redevelopment costs were furnished by Sirgo-Collier, Inc. and were reviewed for reasonableness.

Phase I will require drilling of ten, 20-acre infill producers and re-establishing injection in the central portion of the Unit (Figure 8). Phase II will involve drilling eight, 20-acre infill producers, reworking 5 producers and conversion of 9 wells to water injection. This will establish 40-acre, 5-spot patterns within a portion of Section 5. Phase III will involve the drilling of 8 additional producers as 20-acre infill wells. The total capital cost of the project (Phases I through III) is estimated at \$4.8MM. Table 7 shows the investment schedule by phase as estimated by Sirgo-Collier, Inc. Table 8 is the projected well count under this plan.

Reserves ranged from 28 to 117 MBBL per well based on model simulation with initial rates ranging from 15 to 60 BOPD/well. Gas-oil ratios for individual wells were estimated to average 0.3 MCF/BBL.

• • • •

Initial oil prices were based on posted prices as of August 28, 1987 after adjusting for gravity and transportation. Oil pricing was held constant to December 31, 1987 then increased \$1/BBL for 1988. Starting January 1, 1990, the pricing was escalated at 5% per annum to a maximum of \$35/BBL. The windfall profit tax was not applicable.

Starting gas prices were based on prevailing area prices as of June 1, 1987 and held constant to January 1, 1989. Starting January 1, 1989, the price was escalated at a rate to reach 65% parity with oil by January 1, 2001.

Lease operating expenses were estimated by Sirgo-Collier, Inc. based on anticipated operating conditions for each project phase utilizing company experience for similar projects. Expenses were held constant to January 1, 1989 then escalated at 5% per annum until the primary product reached the maximum price. The costs for drilling, workovers and reestablishing injection were developed by Sirgo-Collier, Inc. We have reviewed their estimates for reasonableness. No equipment salvage value or abandonment costs were included for the properties.

Project economics indicate that a capital investment of \$4.8MM will generate a 10% discounted future net revenue of \$8.8MM over 24 years giving a 71% rate of return and a 2.0 year payout. The investment cost does not include the initial acquisition cost. A summary of the reserves and economics for each phase and the total project is shown on Table 9. Tables 10, 11 and 12 show the economic summaries for Total Proved, Proved Developed Producing and Proved Undeveloped, respectively. Tables 13, 14 and 15 are Proved Undeveloped cash flows for Phases I, II and III.

	r	
	PENROSE "B" L (Skelly H 1900 FN & WL Lea Cou	JNIT WELL NO. 52 Harrison B-5) Sec. 9-T23S-R37E Inty, N.M.
T/QUEEN		
T/PENROSE		
, INC.		
Unit een Grayburg Field Mexico SOCIATES, INC.	5	
ULTANTS	2.45 6. 10	

Figure 1

· · · · -

TYPE LOG

SIRGO-COLLIER

Penrose "B" L Langlie Mattix 7 Rivers Que Lea County, New

T. SCOTT HICKMAN & AS PETROLEUM

CON

· · · ·

• • •

R 37E

R 37E

.

R 37 E

124 3/58 1P01 P-105 160P0 9/5 07/880. **BENDERCS** 272 (QUEEN SMO OPEN) COMPLETION TO - DEPIA SUBSEA GAOSS TOP BOTTOM ELEV. COMP. - LEFELJ LEFELJ LEFELJ _ 118 119 2 50 2 \$ 8 ß 8 8 8 -111 31 1 1 -361 3710 -375 -372 1788 Ŧ -382 -399 -370 -382 3768 -36 192E -374 -374 616--34 -404 137.90 37.30 -367 525 97 198 -261 -137 3496 542 542 8.3 5. F 8 9 P 89 99 89 99 -278 ₩ 2005 177 នុំខ្ល 8 **8** ខ្លី ខ្លី ₩ q . ۲ 39.1 -384 -361 -325 3708 -329 3265 -363 -388 -33 37 39 122-386 ₩..... -386 -369 -374 -364 -377 3746 0¥/6 -33 -312 3675 HE-12-58 3700 ×, SIRSEA FLEVATION (FEFT) geologic structure summry Penkose sand -345 -372 -316 -324 -362 -355 55 87 9**7** 88 -32 LANGLIE MATTIX LEA COUNTY, NEN MEXICO 201E 201E 201E 52-1898 -351 32.52 3640 -303 3652 -305 -338 3711 88 -337 88 88 88 88 -302 -279 -314 66-298 -35 -35 -35 -326 -310 -327 88 988 -321 & 89 -264 82. 26.78 EFFE 3653 ¥, # -352 362 -303 -321 -269 -243 -265 -275 ¥2. 647-1998 -307 8 **3** 56 - <u>3</u>8 ie fe ğ -275 66 98 86 98 573 3068 3068 -265 3618 987 -282 -6198 82 **6**2 -218 -23 82 S 677-3660 ធុរីខ្ល -261 ¥. ¥: 8 -78 293 -259 ¥2 -212 242 -272 3648 17-17-18-នុន្ត -216 -2#6 3608 -278 3628 52 Sg -269 12 A -07-57 e Ha 69-51 8 8 8 10-21 01-28 02-58 10-57 12-57 01-36 04-57 06-57 8-51 19-50 OPERATOR-J FASE-LEIL 3353 SCELLY-HARRISON A-4 S-8 NOSINAMI-ATTEXS 6422 + 16 SAIS SKELLY-HWRISON B-4 3349 SYELLY-HARRISON A-2 3368 R.LONE-KING "B" 13 3369 R.LONE-KING "B" IN 2 3376 R.LONE-KING "B" #2 2357 R.LONE-KING "B" #1 18 NOSIBANH-ATTERS ESSE 3350 R.LONE-KING "B" 3349 R.LONE-KING #2 3362 R.LONE-KING #3 3366 R.LONE-KING #5 EFV. + 5 8 돌료석 2 3 8 ន g 8 18 5 ន 3 2112 FNL & 660 FEL 1980 FSL & 660 FEL 660 FIL & 1980 FEL 330 FNL & 2310 FNL 1980 FIL & 990 FIL 660 FNL 1 990 FNL 1 DCATION SEC 5 1255-4375 1980 FIL & EL 1980 FSL & UL 1980 FIL & H 1980 FS & EL 1980 FS & M. 640 FSL & M 660 FN & B.

TABLE 1

							TAB	1									
						CECL.CC	ic stru Penkos Langlie County,	CTURE SE E SAND MATTIX NEN NEN	11C0								
	1 INI						SIRGEA	ELEVAL	N LEFE	_				NOILL			
Incation	d d	ELEV. 1481. (PERATOR-J EASE-JEL)		۲	۲ Ng	Mager	8	81		б. е у	<u>Б</u> ш	No. 9		BOTTOM			RENARY'S
SEC 5 1228-RDFE																	
660 FSL & 1980 FNL	8	343 SIELLY-HARRISON A-3	01-58	-233	-248 3591	-265 3608	-285	-291 3634	-317 -	331 8.4 9.4	5		-736	-341	-377	105	
1980 FN & 660 FEL	8	2339 SKETY-HURRISON B-7	12-57	9838 191-	99 - 99	12 292	-245	15. 262	-277 -	87 F	25 36 -3	10	-215 3654	-346 3685	-366 3705	131 1	2/57 1P01 F-150 BOPD 1300 CF/BBL
ሌሪሶ FSL & EL	q	3334 SKEILY-HARRISON B-6	11-57	-176 3510	-190	-206	195	-236	- 229	573 80 33	8 7 5 3	21	-192	-327	-346 3680	8	
SEC 6 1235-437E																	
330 FIL & EL	я	3384 R.LONE-KING "B" #5	04-58	-284	-292 3676	-320 3704	-328 3712	-343 3727	- 356 -	33	S8 69		-29 3678	-402 3786	-414 3798	108	
300 FNL & 1650 FEL	3	3390 R.LONE-KING "B" #7	10-58	-297	-306 3696	372	-347	-362 3752	-382 -	88			-275	3793	-410 3800	110	
2113 PL & 1980 FE	34	3392 R.LOKE-KING "B" #8	07-51	-30K	-317 3709	-340 3732	-366 3748	-370 3762	-384 3776				370	3804	-423 3815	101	
1788 Pie. 4: 330 FD.	2	3384 R.LOME-KING "B" 46	8°-89	-288 3672	-301 3685	-321	-342 3726	-354	-379 -	86 E			-295	-409 	-416 3800	116	
1980 FSL & 660 FML	ĸ	3371 SUN-RICHARDS 01	06-36	-239									325	12 1 -	3798	242 1	1/59 7 BOPD 7240570(10048 05/8) 14240 04 3056-3798 04 50 0454
660 F3. & E1	న	2365 SUN-RICHARDS #3	12-58	-283 3648	-297 3662	-315 3680	-338 3703	-360	-370	381 146			-14 3252	50 T 60	-415 3780	5 6CZ)772 BP 3664 AS MIN 3529-3616 (Queen & Pennose comp/ons) open)
660 FN. & 1880 FS.		DOMLE HARTMAN-KING #3													9430		
SEC 7 1235-437E											•						
660 FIL & EL	\$	3362 SUN-RICHARDS #2	12-56	3268 326	87	-22-	-265 3627	-286 3649	3669	300	342		360	ACC- 1	3776 3776	13	

•

geologic Structure Summary Penacse Sand Langle Hattik Lea Cunity, Neu Neiloo .

	-	NIT						SURSEA	1 EVALLO	N (FFFT)				. 00	ET10N	EL SUIS	
1	LOCATION	급넣	LEV. OFFRATOR-JEASE-JELL	COMP.	JUE SOLE	2 COME	300	N N		й 20 Ш	ы В 20	ж 2014 Ш			BOTTOM	B.EV.	COPP. LEEEL) KENARKS
3	C 7 TZS-ROFE																
99	0 FN. & 1980 FD.	14	2379 SUM-RICHARDS #4	65-10	-268 3647	-291 162-	-318	-328 3707	-346 -	345 A 124 31	5			36 ³ 7	9 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	3790	70
33	C 8 1225-RJFE																
99	O FN & EL	\$	3324 OLLF-DAVIS #1	£										340	8 -368 2 3712	-388 3712	310 LOGS NOT AVAILABLE (OLEEN SAND) OPEN)
33	0 FNL & 1980 FNL	ŧ	11 VUIDEN LITON VIE	03-40										٩Ŧ	4 -334 0 3690	-3360	240 (on so open) 1701 F-1008070 155405790 High H20 Prod During NF
3	O FIL & M.	45 4	· 3349 BLACK-REDFERN 91	08-57	8- 158	73M 3562	-263 3612	-274 3623	-287	- 288 2647 - 3	310 659 A	21 -3	89 ¹⁹	র র দ	9 -376 8 3725	3750	127
Ż	0 FIL & 1980 FIL	84	3348 BLACK-AEDFERN N2	69-57	-210 3058	£2 52	-750 3638	90% 390%	-270	- 58 96,39 16,00	57 F	314 -3 562 -36	5 5 5 5 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	2 G 2 G 2 G	- 388 9 3684	-392	124
K I	80 FIL L EL	49 1	· 3331 BYRON-FLORA DAVIS #2	11-56	-151 3482	-162 3493	-181 3512	-201 2022	-212 3543	- 22.69	1 M 80 S 22 S	36 -7 26 29	°% 8≍	84 87 87	1 -300 2 3661	369	109 high cormovs, 12 bopd 250 hispd 20 bupd
8	0 FSL & 1650 FEL	8	19 SIADI-DUALE 19	95-80										ୁ ନ୍ ନ୍ଥ	5 -263 12 3590	-373	48 LOCS NOT AMPLIABLE
19	80 FSL 640 FEL	8	+ 3324 QLSON-CLIFT #2	02-48	-161 3465	-173 3497	-187 3511	-202	-215	- 29 20 20 20 20 20 20 20 20 20 20 20 20 20	248 - 572 3	270 -2 594 -34	5	18 28	368	3696	269 (on so opening report of initial cas rates
19.	780 FSL & 660 FML	ß	3341 TP-CLIFT #5	19-80										÷8	ភិរុទ្ត សុខ	989 980	44 1/62 Rate=11 BOPD 260 NGPD 152 NC LOOS NA
3	40 FSL & 1980 FML	21	3334 QLSON-CLIFT #3	02-56	-152 3486	-157 3491	-17 3509	-196	607- 306-	- 73 200 - 73 200 - 73	3	8 7 28 23	88	8 7	-29	366	17 8/61 RATE=2 BOPD 356 MCFPD
3	40 FSL & 1980 FEL	8	3337 USCON-CLIFT #1	07-46										- 8	-31(12 -31(-316	241 (GN 50 (PEN)7/46 [POI 20 80PD 50 MCFPD NO MAT
8	X) FSL & EL	8	• 3339 QLSON-CLIFT #4	97-60	-135 3474	-148 3487	-168 3507	-186 3525	-1%	-215 - 3654 3	567 3 567 3	22.22		7 R	11 -275 00 3612	147- 147- 147- 147- 147- 147- 147- 147-	132

TABLE 1

•

•

•

						LEA -	IC STRU PENKOS LANGLIE DOUNTY,	e sand E sand Mattix Nen nex	TICO II								
	T INI		1				SIRCEA	DEVALUE	N. (FEFT				8	NPLET 10 DEPTN		6 95	2
LICATION	로보	ELEV. OPERATOR-I EASE-HELL	COPP.	N .	JAK	30%		≂ 7 ₩	≈ ¥_	2 ° ¥	2 9 ¥	87 ¥	₽Щ ₩d				ee. Achadrys
SEC 8 1235-437E																	
1980 FIL & U.	3	10 SIAU-DUACK-DUALS 01	11-21	-168 3505	-176 3513	-207	-219	-234 3573	22 28	- 258 1595 -	280 - 617 3		- 1/9	236 -		888- 521	84 '57 (34 3596-3480 IPOT 1680MCFB VIV 7/67 SAVE INTERVAL
660 FN. & 1780 FE.	ន	3343 BLACK-DAVIS #2	11-57	-199 3542	-214	-737 2575	-247 3590	-257	-279	- 297 -		342	1 (7)	507	-319 1662	-387	135 QUEEN SAND OPEN
660 FS & M.		3342 TP-CLIFT 46		-196 3538	-206 3548	-732	-259	-275 3617	-265 3627	- 306 3648 3648	-328 -	8 8 8				-408 3750	
SEC 9 1228-R37E																	
660 FNL & 1980 FNL	• 14	1-8 NOSIBUH-ATTERS 9162 +	07-37										4-s	¥- 060	-374	-374 3690	300 CM (CH 3330-3690) (CM 20 CPCM)
660 FN & H.	42 +	• 3320 SKELLY HIMMISON B-2	08-37											8 <u>1</u> 3	585 2882	-362 3882	232 Re-Spud aug 48 as Nin 3586-3418(QM SD May be Open)
1980 FN. 4. 760 FN.	51	8-9 NOSIWAH-ATTEXS 6ICE "	12-57	-147	-159 3478	-179 3498	-197 3516	-202 3228	122-232	-21 22/0	-268	562		191-	-30H	-311	143
1980 FN. & N.	22	3-10 SUELY - HARRING B-5	10-57	-165 3481	-176 3492	-194	-213 3529	53 - 23 -	73 220	-27 2017	-274 3590	-302 3618	3638	-196	-317	3654 3654	121
1980 FSL & M.	8	3317 SKELLY HINRISON B-10	65- 5 8	-165 3482	-180	-194 3511	-213	83 - 83	-243	82- 2165	-274	222	363	-139	-319	-343	120
1980 FSL & 660 FML	3	6-8 NOSTRAHLATTAS SZCE	12-57	-151 3476	-163 3488	-181 3506	-201 3526	-213	-236	-217	-266	-295		-198	-311	-320 3645	113
660 FS & M.	8	3332 SKELLY HARRISON B-12	09-60	-146 3478	-157 3489	-184 3516	2020 2020 2020	-215 3647	82- 1900	-246 3578	-268 3600	-297		-294	-30 100 -	89. 29. 29.	10
660 FSL & 1980 FML	19	3338 SKETTY-HARRISON B-11	02-60	-146 3474	-157 3485	-179 3307	3528 3528	-210	82- 1900	-242	-226	-285 3613	363	2011 2011	-301	-372	118
1980 FS & E.		3301 SMEDNH-HUGHES A-2 17		-167 3468	-176 3477	-202 3503	ឆ្	82- 152	6 <u>1</u> 8	-266	-242 3243					36-31 36-31	

•

• . • .

							TAB										
						GEOLOG LEA	PENKOS PENKOS LANGLIE COUNTY,	ECTURE S RE SAND I MATTIX NEN NE	UPPORTY X1CO								
	INI		•				SUBSED	E EVALL	ON. LEFE	1			8	PLET 10N	≓ä3 	ອ ສ	8
LOCATION	로보	ELEV. DEERATOR-LEASE-HELL	RAFE.	×	- See	Market and a		풀니	~ ¥↓	~] ₩_	~ ₩		₩ L			89	e. ED BEDBBYS
365-9 1235-4375																	
N4/4 N1/4	-	916 SKELTY-PENNOSE A-46		-159 3475											т.	55 25	
660 FSL & 1980 FEL		3292 SAFEDAN HAUGRES B-2 #9		-153 3445	-163	-186 3478	-201	-219 3511	-232	-247 3539	-268 3560	-2%5			1.9	242	
SEC 31 1225-137E																	
1980 FQ. & 330 FD.	11	3400 DALPORT-KING A-2	01-29	-25	-264 3664	-287 3687	-310	22- 22: 21:	-343	-351	-371	-398 3798	т. <u></u>	2023 2023		121 12	124 RE-ENTRY 11/74 P-2480PD MI 3459-3810
330 FS & N.	12	3351 DALPORT-KING A-1	85-60	-23	-251	-269 3620	-289	-303	-317 3668	-333	-356 3707	-383	ĩơ	тж Seg	- 140 - 3	198 28	107
1980 F.N. & 640 FEL		3400 HARLE-NI STATE N-14		-73k 36.36	-254	-279 3679	-222 3692	- 305 3705	-328 3728	-350	-366 3766	-402 3802			IO	02 820 820	
640 FN & E.		3396 Humble-wn state m-19		-214 3610	-22- 3621	-252	-265 3661	-284	-306 3702	-314	-328 3724	-351			1.67	8 3	
SEC 32 1225-437E																	
990 FIL & 1250 FEL		3348 OPERATORS SERV-COLE STATE #1	м-59	302f - 188	9995 361-	-218 3586	23-732 38-03	-243 3611	-264	-275 3643	1998 -296	-322 36,90	1.02	3 T	310 - 678 -	826	118
660 FIL & 2310 FIL	3	3344 COMPASS-STATE 2-32	08-59	-210	81 M	-240 3604	-262 3626	-270 3634	-290 3654	-306 3670	-326 3690	- 305 -		306	352 - 716 -	806 112	146
660 FNL & 990 FNL	с	3375 Compass-State 4-32	12-59	-211 3586	52 58 52 58 52	-245 3620	-267 3642	3655	-273 3668	-308 3683	-327 3702	-357	i m	219 - 594 3	- 50 204	\$ <u>7</u> 88	115 QLEEN SAND OPEN
1900 FIL & 990 FIL	4	3374 COMPASS-3-32	11-59	-231	-244 3618	-268 3642	-280 3654	-291	-318 3692	-329	-346 3720	-376 -		- 50 808 -	375 -	910 820	11
1980 FAL & 2310 FAL	en	• 3372 COMPASS-STATE 1	12-48	-198 3570	-218 35%0	-278 3650	-338 3710	-363 3735	84 1 22	93 65 7 65	75 73 7 78 7 88	-540 3912	1 (7)	216 - 288 3	100	¥2 6	138 11/72 CONV W1N=3592-3653

•

· · ·

.

						1 1 1001030	ic struc Penrose Anglie Xounty,	cture su csand hattix neh nex	100 HINK								
			1				SIBSEAL	DEMIL				ļ ;	5 3 1	PLETION DEPIK		8	8.
LICATION	ਰੋਬ	ELEV. LCB1DPERATOR-LEASE-HELL				≈ 1 ≝	≂ ſ ≝ _	≈ ๆ ≝ "	≝│ ≝│	╕┩ ≝║	티어 보니		ĕ ≝ ∎			58	D BEPOBICS
SEC 32 1225-437E																	
1980 FIL & EL	-9	3370 D.BOURD-STATE A-5	10-56	161- 3264	-202	-217	236 366	-245 -245 -	- 266 -	278 - 648 3	33 ¥			8 % 8 %	17 8 	-	9
1980 FSL & 640 FEL	2	3370 0.BOURG-KING #1	95-60	-195 3665	-202 3572	22 22	-242 3612	-244	-268 -	- F 993 190	910 910		17 8 4	67 % 80 82	8 4 7 7 7 7 7	22	86
1990 FS & EL	œ	3378 D.BOURG-KING #3	11-58	52 - 52 386	-234	-260	-278	-2%2-	- 300 3678	200 200 200 200 200	348	6	1.9	58 83	កុស្ត ខេឌ	5 12	78
1980 FSL & 2310 FM.	6	3388 0. BOURG-STATE #2	95-10	3640	-262 3650	-282	-302	-313	3718	345	366 - 1754 -	394 782	്ത്	9 79 78 79	78 88	28	æ
1980 FSL & 990 FML	10	3394 O. BOURD-STATE #3	9 5-60	-260 3654	-270 3664	-287	-306	-316	3332	946- 946-	- 366 - 1760 -	396 790	1.4	4 E 23	58		32
990 FSL & M.	1 3 #	3391 O.BOURD-STATE B-2	10-58	852- 3949	-269 3660	-288	-310 3701	-321	-3 1	-361 -	- 381 -	410 - 301 - 3	123	1 K 693	49 58	28	33
990 FSL & 2310 FML	2	3385 R.FURR-STATE #1	09-57	-270 3655	-277 3662	-297	-316 3701	-327	- 349 101	-360	186		10	211 -3 142 -37	76 83	85	z
1980 FSL & 660 FML	15 4	3370 SKELLY-KING 1	8-3 3										e	42 -3 12 -3	88 88	88	98 (on st open) locs not available
990 FSL & &00 FEL	16	3375 0. BOURG-KING 12	01-57	53- 56	-236 861-	-22 3730	-274 3649	-286	56 36 36 36	-317	-336		10	33 7 232 232	88 377	នង	8
SEC 4 1225-127E																	
990 FN & M.	11	3354 R.LONE-KING 84	05-57	902- 3026	-216 3570	-736 35%	-256 3610	-318 3672	-286	-2%	-322-323	342 1696	1.65	36 Y	37	28	126
1980 FNL & 660 FNL	8	3337 R.LONE-KING #1	61-10										1.69	93 <u>5</u> 6	8 P	ର ଜ	82 Probale Olean Sand Open
1980 FSL & 660 FNL		3224 SMEDNH-HURES A-1 46 (A-32)		-188 3512	-1% 3520	-219 3543	-241 3665	12 12 12 12 12 12 12 12 12 12 12 12 12 1	-274 3598	-288 3612	-314	22 33			ግ ଅ	82	

. .

.

PERFORMANCE DATA PENROSE "B" UNIT LEA COUNTY, NEW MEXICO

Total Completions: Producers	35
Injectors	28
Total	63
Active Completions: Producers	29
Injectors	5
Total	34
Unitized Area (Acres)	2,612.16
Average Spacing (Acres/Well)	41.46
Cumulative Oil Production at April 1, 1987 (MBBL)	3310
Averase Oil Cumulative Per Hell (MBBL/Well)	52.5
Current Oil Rate Per Producer - 29 Wells (BOPD/Well)	3.3
Ultimate Primary Oil Recovery (MBBL)	1,775
Averase Oil Recovery Per Well (MBBL/Well)	28.2
Ultimate Secondary Oil Recovery Under Current Operations (MBBL)	1,742
Average Oil Recovery Per Well (MBBL/Well)	49.8
Ranse in Well Recoveries (MBBL/Well)	5-192
Cumulative Gas Production at April 1, 1987 (MMCF)	3,875
Cumulative GOR (MCF/BBL)	1.171
Current Gas Rate (MCFD/Well)	1.1
Current GOR (MCF/BBL)	0.320
Cumulative Water Production at April 1, 1987 (MBBL)	18,939
Cumulative WOR (Volume)	5.7
Current WOR (Volume/BBL)	11.5
Cumulative Water Injection at April 1, 1987 (MBBL)	38,821
Cumulative Injection : Secondary Oil Recovery Ratio	22.3

. . .

.

PRODUCTION AND ULTIMATE RECOVERY SIRGO-COLLIER INC. PENROSE "B" UNIT LEA COUNTY, NEW MEXICO

UNIT	MARCH_187_PRODUCTION		4=1=87	FIR
WELL	OIL GAS WATER	OIL GAS	WATER	PRIMARY SECONDARY TOTAL
NO.	(BOPD) (MCED) (BMPD)	(MBBL) (MMCE)_	(MBBL)_	(MBBL)(MBBL)(MBBL)
1	WIW CONV. DATE 08/66	26.822 173.551	0.000	26.822 0.000 26.822
2	15.8 0.8 9.5	113.571 117.889	163.834	25.075 136.996 162.071
3	WIW CONV. DATE 08/66	17.094 57.907	2.922	17.094 0.000 17.094
	24 00 15 1	57 410 00 540	800 007	20 400 20 2/4 50 772
7	2.4 0.0 13.1	3/1413 001300	733.227	20.409 37.364 37.773
5	WIN CONV. DATE 08/66	20.642 57.287	2.624	20,642 0,000 20,642
-				
6	3.2 0.8 39.5	69.155 82.309	1166.784	20.403 55.241 75.644
7	7.1 1.7 98.2	213.361 56.792	1266.503	42.482 192.329 234.811
_		AL ALA - FA 100		
8	WIW CUNV. DATE 10/70	36.360 51.689	8.0/5	24.760 11.600 36.360
0	15 00 295	54 452 71 429	070 044	20 245 25 000 54 452
,	1.5 0.0 55.5	J4.4JJ /1.4J/	700.004	27:303 23:000 34:433
10	WIW CONV. DATE 09/70	38.151 60.883	21.069	30.108 8.043 38.151
11	2.4 3.4 4.8	42.446 61.359	69.055	18.084 26.722 44.906
12	WIW CONV. DATE 08/66	28.207 42.508	0.318	28.207 0.000 28.207
10		0E 0EE 7/ 707	E44 047	
13	0.0 0.0 0.0	33.733 /8./9/	041.34/	21.567 14.388 35.955
14	UTH CONT DATE OR / 44	25 449 43 243	2 585	25 449 0 000 25 449
14	WIW CONV. DHIE 00/00	JJ:11/ 1J:20J	2.000	33.447 0.000 33.447
15	2.4 0.0 4.3	58.340 10.344	490.364	27.807 32.284 60.091
16	WIW CONV. DATE 08/67	28,680 35.009	4.789	28.680 0.000 28.680
			_	
17	WIW CONV. DATE 07/67	35.380 47.990	7.156	35.380 0.000 35.380
19	13 00 100	44 943 Q1 104	254 210	24 120 20 202 11 020
10	1.5 0.0 17.7	400.010 CT0.004	JJ7+210	30.120 30.723 88.843
19	WIN CONV. DATE 09/70	40.402 36.941	27.891	33.517 6.885 40.402
20	1.0 0.5 18.6	68.781 36.812	521.622	39.216 29.565 68.781

•

•

PRODUCTION AND ULTINATE RECOVERY SIRGO-COLLIER INC. PENROSE "B" UNIT LEA COUNTY, NEW MEXICO

UNIT	MARCH_187_PRODUCTION		DUCTION	<u>4-1-87</u>		EUR	
HELL	OIL GAS WATER	OIL (MEDI)	GAS	WATER	PRIMARY	SECONDARY	TUTAL
<u>ملالا</u> بر	TORENT TOPCOT TOWCOT	-1000-1-	_100.21_		_1000(.1_	_1050[]	
21	WIW CONV. DATE 09/70	39.879	23,163	13.364	31.482	8.397	39.879
22	1.3 0.0 13.4	107.515	41.097	493.363	30.029	77.486	107.515
23	1.3 0.0 11.4	55.924	50.198	190.509	29.527	26.397	55.924
24	0.0 0.0 0.0	23.539	21,575	137.771	23.539	0.000	23.539
25	WIW CONV. DATE 08/66	31.300	37.121	15.390	31.300	0.000	31.300
26	0.0 0.0 0.0	41.956	38.685	773.909	31.087	10.869	41.956
27	WIN CONV. DATE 08/66	13.881	9.070	41.267	13.981	0.000	13.881
28	0.5 0.0 13.4	54.502	74.407	790.270	32.237	22.265	54.502
29	WIW CONV. DATE 08/67	28.179	27.599	10.511	28.179	0.000	28.179
30	6.3 0.8 11.0	169.037	80.637	431.490	77.629	121.295	198.924
31	9.4 0.6 43.9	132.947	76.208	710.782	31.963	131.626	163.589
32	WIW CONV. DATE 10/70	63.613	89.932	20.809	39.509	24.104	63.613
33	3.2 3.4 166.7	178.894	74.507	782.003	28.240	153.558	181.798
34	WIN CONV. DATE 09/70	148.575	31.305	4.819	146.869	1.706	148.575
35	0.5 0.6 10.6	59.902	46.054	684.827	40.969	18.933	59.902
36	WIW CONV. DATE 08/66	11.923	37.677	12.424	11.923	0.000	11.923
37	0.3 0.8 88.5	43.520	52.932	1193.605	25.543	17.977	43.520
38	WIW CONV. DATE 08/66	30.080	58.876	0.072	30.090	0.000	30.080
39	0.8 0.0 33.1	66.212	73.008	918.493	32.430	33.782	66.212
40	WIW CONV. DATE 08/67	27.056	58.896	0.085	27.056	0.000	27.056

•

.

PRODUCTION AND ULTIMATE RECOVERY SIRGO-COLLIER INC. PENROSE "B" UNIT LEA COUNTY, NEW MEXICO

UNIT	MARCH_187_PROI	UCTION	CUM_PRO	DUCTION	4-1-87		EUR	
WELL	OTL GAS	WATER	OIL	GAS	WATER	PRIMARY	SECONDARY	TOTAL
NO.	(BOED) (NCED)	(8460)	_(MBBL)_	_(INCE)_	(MBBL)_	_(MBBL)_	_(MBBL)	_(MBBL)_
41	2.4 0.0	113.8	49.332	44.284	1060.326	12.462	38.621	51.083
42	WIW CONV. DATE	E 09/67	0.099	111.866	0.093	0.099	0.000	0.099
43	7.1 1.2	77.3	107.796	17.845	497.882	56.137	62.126	118.263
44	3.9 0.0	24.4	117.295	12.646	393.297	57.246	69.679	126.925
45	WIW CONV. DATE	08/70	45.910	44.038	4.628	45.910	0.000	45.910
46	3.2 2.5	11.8	58.147	98.746	320.716	27.030	36.370	63.400
47	1.5 0.0	21.7	62.992	69.439	163.636	31.840	31.152	62.992
48	0.0 0.0	0.0	46.113	38.132	357.280	37.615	8.498	46.113
49	0.5 0.0	7.2	10.849	40.016	100.568	1.249	9.600	10.849
50	WIW CONV. DATE	08/66	3.083	0.000	0.000	3.083	0.000	3.083
51	1.0 0.8	23.2	51.013	62.453	1050.403	13.698	37.315	51.013
52	WIW CONV. DATE	07/67	23.897	69.631	0.470	23.897	0.000	23.897
53	5.5 0.0	20.5	124.839	152.328	531.553	27.792	115.923	143.715
54	WIW CONV. DATE	09/63	20.014	89.520	0.853	20.014	0.000	20.014
55	0.0 0.0	0.0	15.287	38.615	103.345	9.586	5.701	15.287
56	1.5 0.2	0.8	33.136	266.433	25.485	26.596	6.570	33.166
57	4.7 10.8	3.2	46.770	196.954	56.937	39.282	19.307	58.589
58	0.0 0.0	0.0	4.832	7.060	110.473	0.000	4.836	4.836
59	WIN CONV. DATE	04/73	4.345	24.335	5.902	2.016	2.329	4.345
60	3.2 1.6	153.3	34.087	89.514	911.193	8.823	28.690	37.513

PRODUCTION AND ULTIMATE RECOVERY SIRGO-COLLIER INC. PENROSE "B" UNIT LEA COUNTY, NEW MEXICO

UNIT	MARCH_187_PRODUCTION	CUM_PRODUCTION_@_4~1~87	EUR
WELL	oil gas water (Ropd) (NCER) (Bupd)	OIL GAS WATER (MBBL) (NMCE) (MBBL)	PRIMARY SECONDARY TOTAL (MBBL) (MBBL) (MBBL)
61	WIW CONV. DATE 01/74	19.137 82.545 10.737	15.238 3.899 19.137
£2	WIW CONV. DATE 09/66	0.000 0.000 0.000	0.000 0.000 0.000
63	WIN CONV. DATE 09/70	15.244 24.692 29.117	11.016 4.228 15.244
### Total	***		
	95.2 30.5 1099.1	3310.156 3875.052 18988.909	1775.288 1742.467 3517.755

		PRODUCERS	INJECIORS	IOIAL
MARCH 1937 STATUS:	ACTIVE	29	5	34
	SHUT-IN	6	23	29
	TUTAL	35	28	63

•

.

NOTE: ULTIMATE RECOVERIES ARE BASED ON ESTIMATED ABANDONMENT OIL RATES. ACTUAL ULTIMATE OIL RECOVERIES ARE SUBJECT TO MINIMUM COMMERCIAL RATES IMPOSED BY ACTUAL PREVAILING ECONOMIC CONDITIONS.

.

TABLE 4

INJECTION SUMMARY SIRGO-COLLIER, INC. PENROSE "B" UNIT LEA COUNTY, NEW MEXICO

UNIT	MARCH 1987	CUM WATER INJECTION			
WELL	HATER INJECTION	WHP	€ 4-1-87		
_ 1	(BUPD)	<u>(Psi)</u>	(MBRLS)		
01	52.4	1650	902743		
03	149.8	1650	1843352		
05	INACTIVE		1895528		
08	320.2	1775	1568067		
10	INACTIVE		728087		
12	INACTIVE		1464354		
14	INACTIVE		1499626		
16	INACTIVE		1444523		
17	INACTIVE		1074299		
19	INACTIVE		683615		
21	INACTIVE		991015		
25	INACTIVE		1886149		
27	INACTIVE		1971140		
29	INACTIVE		815050		
32	INACTIVE		585681		
34	INACTIVE		1517385		
36	395.5	1725	2293149		
38	INACTIVE		2194819		
40	INACTIVE		1505760		
42	415.0	1675	1786179		
45	INACTIVE		1654722		
50	INACTIVE		1127768		
52	INACTIVE		454485		
54	INACTIVE		1349675		
59	INACTIVE		1161547		
61	INACTIVE		1001935		
63	INACTIVE		1551924		
total	1332.9		37952576		

MARCH 1987 WELL STATUS:	ACTIVE SHUT-IN	5 23
	TOTAL	28

SIMULATION MODEL PARAMETERS PENROSE "B" UNIT LEA COUNTY, NEW MEXICO

Model Configuration

•

Number of Layers	Single-Laver		
Laver Thickness (Feet)	20		
Number of Blocks and Dimension/Block	72 🖲 933' 🗙 933'		
Area/Block (Acres)	20		
Size: X times Y (Feet)	8,397 × 7,464		
Model Area (Acres)	1,438.8		
Mid-Point Elevation (Feet)	3,600		

Rock Properties

Permeability Ranse (md)	0.5 - 50.0
Porosity Ranse (%)	9 - 23

Fluid Properties

Residual Oil Saturation, %	32.0
Immobile Water Saturation, %	34.0
Critical Gas Saturation, X	1.0
Oil Gravity, Desree API	37
Estimated Gas Gravity	0.8
Initial Bottom-Hole Pressure (Psia)	1,730
Initial Formation - Volume Factor	1.16
Oil Viscosity At Initial Bottom-Hole Pressure (cp)	1.97
Solution Gas-Oil Ratio (SCF/BBL)	300
Initial Oil Saturation, So (Decimal)	0.66
Initial Water Saturation, Sw (Decimal)	0.34

Initial Fluid Volume

Oil-In-Place (MMSTB)	17.749
Water-In-Place (MMSTB)	- 11.255
Solution Gas-In-Place (BSCF)	5.246
Free Gas-In-Place (BSCF)	0.304

•

SIMULATION MODEL DEPLETION RESULTS PENROSE "B" UNIT LEA COUNTY, NEW MEXICO

	Mode 1		
	Besults	Actual_Results	
Primary Depletion			
Pressure (Psia)	637	Not Available	
Averase So (Decimal)	0.558	Not Available	
Average Sw (Decimal)	0.350	Not Available	
Average Sq (Decimal)	0.092	Not Available	
Cumulative Oil (MBBL)	1,198	1,083	
Primary Recovery (Percent of OOIP)	7.3	Not Available	
Cumulative GOR (MCF/BBL)	1.964	1.066	
Cumulative Water (MBBL)	62	216	
Final Oil Rate (BPD)	73	63	
Final GOR (MCF/BBL)	5.630	2.476	
Final Water Rate (BWPD)	9	45	
Producing Time (Years)	10.0	9.0	
Number of Wells	34	34	
Pressure (Psia)	3,763	Not Available	
Average So (Decimal)	0.514	Not Available	
Averase Sw (Decimal)	0.486	Not Available	
Averase S9 (Decimal)	0	Not Available	
Cumulative Oil (MBBL)	1,952	2,070	
Total Recovery (Percent of OOIP)	11.0	Not Available	
Cumulative Secondary Oil (MBBL)	754	987	
Secondary Dil (Percent of DOIP)	4.6	Not Available	
Secondary/Primary (Ratio)	0.63	0,91	
Cumulative GOR (MCF/BBL)	1.644	0.757	
Cumulative Water (MBBL)	1,241	10,368	
Cumulative WOR (Volume/Volume)	0.59#	5.01	
Cumulative Injection (MBBL)	5,602 *	27,355	
Estimated Economic Floodout (Years)	26	29.5 e 4/1/87	
Number of Producers	16	16	
Number of Injectors	18	18	

Reflects effective injection, i. e., all injection restricted to confines of single layer.

SINULATION MODEL DEPLETION RESULTS PENROSE "B" UNIT LEA COUNTY, NEW MEXICO

Mode1

Results

Infill Drillins and 40-Acre, 5-Spot Injection Support

• • • • • • • • •

.

Pressure (Psia)	2,977
Averase So (Decimal)	0.469
Average Sw (Decimal)	0.531
Averase Sq (Decimal)	0
Cumulative Oil (MBBL)	3,229
Total Recovery (Percent of OOIP)	18.2
Cumulative Secondary Oil (MBBL)	1,925
Secondary Oil (Percent of OOIP)	10.9
Secondary/Primary (Ratio)	1.48
Incremental Oil Recovery (MBBL)	1,277
Cumulative GOR (MCF/BBL)	1,155
Cumulative Water (MBBL)	13,420
Cumulative WOR (Volume/Volume)	4.02
Cumulative Injection (MBBL)	19,290
Cumulative Economic Floodout (Years)	40
Number of Producers	29
Number of Injectors	20

•

PROPOSED INVESTMENT SCHEDULE PENROSE "B" UNIT LEA COUNTY, NEW MEXICO

			<u> </u>		
Ebase	Date	Description	<u>(HS)</u>	<u>_(85)</u>	
I	October 1987	Drill 3 Producing Wells (1 Cored)	465.0		
	November 1987	Drill 3 Producins Hells	450.0		
		Install Satellite Producing Facility	10.0		
		Install Injection Facility	120.0		
	December 1987	Drill 3 Producing Wells	450.0		
		Install Satellite Producing Facility	10.0		
	January 1988	Drill 1 Producing Well	150.0		
		Install Satellite Producing Facility	5.0		
		Total Phase		1,660.0	
II	January 1988	Drill 2 Producin≰ Hells	300.0		
	February 1998	Drill 3 Producing Hells	450.0		
		Workover 5 Producing Wells	250.0		
		Convert 9 Wells to Injection	337.5		
		Install Injection Facility Expansion	150.0		
	March 1988	Drill 3 Producing Wells	450.0		
		Total Phase		1,937.5	
III	April 1988	Drill 3 Producins Hells	450.0		
	May 1988	Drill 3 Producing Wells	450.0		
	June 1988	Drill 2 Producins Wells	300.0		
		Total Phase		1,200.0	
		Total Project		4,797.5	

•

HELL COUNT SUMMARY PENROSE "B" UNIT LEA COUNTY, NEW MEXICO

	Producers		Injectors			Project Total				
			In-			1n-			1n-	
Date	Phase	Active	Active	Intal	Active	Active	Intal	Active	Active	Intal
Existins										
September 1987		29	6	35	5	23	28	34	29	63
Planned										
October 1987	I	32	6	39	9	19	28	41	25	66
November 1987	I	35	6	41	13	15	28	48	21	69
December 1987	I	38	6	44	17	11	28	55	17	72
January 1988	I	39	6	45	17	11	28	56	17	73
January 1988	11	41	6	47	17	11	28	58	17	75
February 1988	П	37	4	41	26	11	37	63	15	78
March 1988	11	40	4	44	26	11	37	66	15	81
April 1988	111	43	4	47	26	11	37	69	15	84
May 1988	III	46	4	50	26	11	37	72	15	87
June 1988	111	48	4	52	26	11	37	74	15	89

Note: The projected active well count will be dependent upon success of each phase and as dictated by mechanical conditions and/or activation or de-activation of wells in the interest of more efficient operations.

SUMMARY OF ECONOMICS PROJECT WATERFLOOD REDEVELOPMENT PENROSE "B" UNIT LEA COUNTY, NEW MEXICO

	Proved						
	Developed	<u> </u>	Proved Undeveloped			Total	
	Producing	Phase_I	Phase_II	Phase_III	<u>_Iotal</u>	Proved	
Effective Date:			- September	15, 1987			
Gross Reserves:							
Oil (MBBL)	191	752	608	345	1,705	1,896	
Gas (MMCF)	57	225	183	103	511	568	
Net Reserves:							
Oil (MBBL)	143	564	456	259	1,279	1,422	
Gas (MMCF)	43	169	137	78	384	427	
Net Operating Revenues:							
0i1 (M\$)	3,301	14,297	11,506	6,485	32,288	35,589	
Gas (M\$)	71	322	259	141	722	793	
Total (M\$)	3,372	14,619	11,765	6,626	33,010	36, 382	
Expenses:							
Wellhead Taxes (M\$)	252	1,091	878	494	2,463	2,715	
Operating Costs (M\$)	1,659	2,739	2,891	1,517	7,147	8,806	
Total (M\$)	1,911	3,830	3,769	2,011	9,610	11.521	
Investments (M\$)	0	1,660	1,937	1,200	4,797	4, 797	
Future Net Revenue:							
Undiscounted (N\$)	1,461	9,129	6,058	3,415	18,602	20,063	
Discounted @ 10\$ (H\$)	1,030	4,524	2,758	1,553	8,835	9,865	
Payout* (Years)	-	1.3	2.3	3.0	2.0	-	
Annualized Rate of Return (2)	-	100	56.3	47.7	71.7	-	
Profit/Investment Ratio:							
Undiscounted	-	6.5	4.1	3.9	4.9	-	
Discounted 2 10%	-	3.8	2.5	2.4	2.9	-	

* Payout based on project effective date.

• <u>1</u>* 1

89.541

-163.603

-364.921

ASSOC STR

				RESE	RVE	S A	ND EC		2 3			
PENROS Escala	SE "B" NTED CASE		AS OF SEPTEMBER 15, 1987							T. SCOTT HICKHAH & ASSOC Petroleum consultants		
-EXD- ND-YR	GROSS PR DIL, MRBL	DDUCTIOK Sas, MMCF	HET PRO DIL, MBBL	OUCTIOX Cas, NNCF	PRIC Gil \$/8	æs Cas \$/m	NET DPER REVENUES	PERATIONS, SEV+ADV+ NF TAXES	NS Het oper Expexses	CAPITAL COSTS, NS	CASH FLOW BTAX, MS	10.00 PCT Cum. DISC BTAX, HS
12-87 12-88	22. 421 252. 215	6.728 75.664	16.816 189.166	5.047 56.752	18.40 19.40	1.40	316.481 3749.277	23.827 281.959	80. 474 443. 489	1505.000 3292.500	-1292.820 -268.671	-1275.257
12-89 12-90 12-91	229, 281 188, 171 160, 101	58.783 56.454 48.026	171.986 141.133 120.079	51,590 42,346 36,021	19.94 20.96 22.04	1.44 1.51 1.59	3022.780 3022.706 2703.963	283.198 226.792 202.587	475. 130 496. 800 482. 736	. 000 . 000 . 000	2788.432 2299.114 2018.640	2473.007 3879.504
12-92 12-93	139. 472 123. 559	41.843 37.067	104.607 92.672 93.145	31.387 27.804 24.947	23.17 24.36 25.61	1.66	2476.488 2306.410 2175.267	185.296 172.341 162.350	506.862 532.207 558.821	. 000 . 000 000	1784.330 1601.862 1454.096	5009.721 5932.121 6693.313
12-94 12-95 12-96	110. 833 100. 454 91. 778	30.132 27.535	75.342 68.838	22.601 20.654	26.92 28.30	1.93 2.02	2071.930 1989.795	154. 453 148. 167	586.750 616.098	, 000 , 000	1330.727 1225.530	7326.595 7856.795
12-97 12-98 12-99	84. 389 73. 304 56. 464	25.317 21.992 16.938	63.295 54.980 42.351 24.255	18.991 16.498 12.708	29.74 31.26 32.85	2.12 2.23 2.34 2.46	1 922. 950 1 755. 502 1 421. 143 1 268. 642	143.043 130.456 105.503 94.107	646.600 634.302 448.183 421.313	. 000 . 000 . 000 . 000	1133.307 990.744 867.457 753.222	8302.537 8657.078 8939.275 9161 847
12- 0 12- 1 S TOT	40. 331 42. 113 1772 928	14.303 12.634 516.876	31. 587 1292. 242	10, 883 9, 478 387, 707	34. 40 24. 08	2.58 2.73	1111.060 31794.374	82.374 2376.453	385.167 7312.932	. 000	643.519 17307.489	9334.914 9334.914
REN.	173. 105	51.935	129.839	38.962	34. 40	3.12	4588.113	339.374	1493. 545	. 000	2755.194	9865.042
TOTAL	1896. 033	568.811	1422.081	426.669	25.03	1.86	36382,487	2715.827	8806. 477	4797.500	20062.683	9865.042
CUN. Ult.	3339. 303 5235. 336	1003.691 \ 1572.502		XET DIL R XET CAS R TOTAL R	evenue: Evenue: Evenue:	s (N\$) s (N\$) s (N\$)	:	35 589. 096 793. 391 36 382. 487	DISC RATE	PRESENT WI PW OF NET BTAX, MS	DRTH PROFILI DISC RATE	PH DF NET BTAX, MS

BTAX RATE OF RETURN (PCT)	83, 54	PROJECT LIFE (YEARS)	24. 232	. 0	20062.683	30.0	3549,760
BTAX PAYDUT YEARS	1, 86	DISCOUNT RATE (PCT)	10.000	2. Oʻ	17077.937	35.0	2836.053
BTAX PAYOUT YEARS (DISC)	1. 99	GROSS DIL HELLS	48	5.0	13682.306	40. D	2269,103
BTAX HET INCOME/INVEST	5, 18	CRUSS CAS WELLS	. 000	8.0	11182.382	45.0	1809.371
BTAX NET INCOME/INVEST (DISC)	3, 14	GROSS HELLS	48	10. 0	9865.042	50.0	1430,120
				. 12. 0	8757.057	60.0	843,856
				15.0	7396, 381	70.0	414,734

18.0 '

20.0

25.0

6308.070

5698.037

4471.126

80.0

90.0

100.0

.

PEMROSE "B"

RESERVES AND ECONOMICS -----

AS DF SEPTEMBER 15, 1987

T. SCUTT HICKNAN & ASSOC PETROLEUM CONSULTANTS

ESCAL	TED CASE		AS OF SEPTEMBER 15, 1987								L'IKATENI CANONCIMUS			
					PR1	œs		ERATIONS,	M\$			10.00 PCT		
-EXD- ND-YR	CROSS PR DIL, MBBL	EDDUCTION CAS, NMCF	HET PRO DIL, NBBL	DUCTION Gas, MNCF	OIL \$/B	CAS 5/11	NET OPER REVENUES	SEV+ADV+ NF TAXES	NET OPER Expenses	CAPITAL COSTS, NS	CASH FLON BTAX, NS	CUM. DISC BTAX, NS		
	12 252	3 977	9 9 39	2.984	18,40	1.40	187.056	14.083	9. 424	1505.000	-1341. 451	-1323.203		
17-01	202 251	£6 975	167 443	50.235	19.40	1.40	3318,727	249, 581	258. 689	3292.500	-482.043	-1867.233		
12-00	223.231	A1 137	152 849	45,855	19.94	1.44	3113.367	233.939	332.010	. 000	2547.418	280.430		
12-07	115 741	49 775	124 310	37.299	20.96	1.51	2662.401	199.758	348. 624	. 000	2114.019	1900.677		
12-90	140. 362	42.104	105.275	31.579	22.04	1.59	2370.601	177.611	366. 047	. 000	1826.943	3173.608		
12-97	172, 103	36, 632	91.580	27.479	23.17	1.66	2168.085	162.221	384. 339	. 000	1621.525	4200.702		
12-93	108, 273	32, 481	81.207	24.364	24.36	1.75	2021.070	151.019	403.558	. 000	1466.493	5045,152		
12-94	97.404	29.223	73.057	21.921	25.61	1.83	1911.343	142.653	423.739	. 000	1344.951	5749,209		
12-95	88, 617	26.581	66.464	19.938	26.92	1.93	1827.783	136.253	444. 914	. 000	1246.616	6342.463		
12-96	81.361	24.410	61.025	18.310	28.30	2.02	1763.957	131.350	467.170	. 000	1165.437	6846.665		
	75 000	22 6/7	54 400	16 929	29 74	2 12	1714 082	127, 507	490. 226	. 000	1096.349	7277.871		
12-97	(3. 223	10 571	JO. 720	14 492	31 26	2 23	1562 327	116, 101	470.109	. 000	976.117	7627.182		
12-98	65.237	17.372	40.730	12 709	32.20	2.20	1 421 143	105.503	448, 183	. 800	867.457	7909.379		
12-99	56.464	18.730	42.331	10 003	32.03 3A 3A	2.41	1768 647	94 107	421, 313	. 000	753.222	8131.951		
12-0	48.301	14.303	30. 20J 21 5.87	9 478	34 40	2.58	1111.060	82.374	385.167	. 000	643.519	8305.018		
12- 1	42.113	11.034	JI. 701	7	•									
s tot	1531. 544	459.461	1148.702	344.644	24. 22	1.74	28 421. 644	2124.060	5653. 512	4797.500	15846.572	8305.018		
REM.	173. 105	51.935	129.839	38.962	34.40	3.12	4588.113	339.374	1493. 545	. 000	2755.194	8835.146		
TOTAL	1704. 649	511.396	1278.541	383.606	25.25	1.88	33009.757	2463.434	7147.057	4797.500	18601.766	8835.146		
~~~	000	000		XET DIL	REVENUES (N\$) 32287.652				· · · · · · · · · · · · · · · · · · ·					
LU11.				NET CAS	REVENUE	ES (NS)		722.105	DISC	PH OF HET	2210	PH DF NET		
ULT.	1704. 649	511.396		TUTAL	REVENUE	S (M\$)	,	33009.757	RATE	BTAX, MS	RATE	BTAX, MS		
			71 70	PROJECT	LIFE (1	(EARS)		24.232	. 0	18601.766	30.0	2916.843		
BINA KRIE DE KETOKK (TOTT			2 01	DISCOUNT	RATE	(PCT)		10.000	2.0	15726.099	35.0	2258.763		
BINA FRIDUT IEINS			2 16		NELLS	5		19	5.0	12469.809	40.0	1738.036		
DINA FRIDUI ILAKS (PISO)			4 88	A2 22092	S HELLS	2		. 000	8.0	10085.773	45.0	1317.212		
DTAV H	ET INCULL/IN ET INCUME/IN	WEST (DISC)	2 91	CRUSS HE	LLS			19	10.0	8835.146	50.0	971.100		
01MA 8		IAPAI INTAAL	2.72						12.0	7786. <b>812</b>	60. <b>0</b>	438.121		
									15.0	6504.422	70.0	49.846		
									18.0	5483.254	<b>80.0</b>	-243.112		
									20.0	4912.814	90.0	-470.202		
									25.0	3770.268	100.0	-650.033		