TENNECO OIL COMPANY

DOWNHOLE COMMINGLING APPLICATION

OTERO CHACRA - BLANCO MESAVERDE POOLS

T27N R8W; T28N R9W

CASE # 8845 & 8846

Tennece Exhibit to 2

CASE NO. 8845 + 8846

Tenneco Oil Exploration and Production

A Tenneco Company

6162 South Willow Drive PO. Box 3249 Englewood, Colorado 80155 (303) 740-4800

Western Rocky Mountain Division

March 13, 1986

New Mexico Oil Conservation Commission Box 2088 Santa Fe, NM 87501

Attention: David R. Catanach

Re: Chacra/Mesaverde Comingling

Schwerdtfeger A LS #14A NW/4 Sec. 8, T27N-R8W Schwerdtfeger A LS #15A NW/4 Sec. 21, T27N-R8W Florance D LS #14A SE/4 Sec. 21, T27N-R8W Bolack C LS #11A NW/4 Sec. 28, T27N-R9W Florance D LS #11A SE/4 Sec. 18, T27N-R8W Florance D LS #13A NW/4 Sec. 20, T27N-R8W Lackey B LS #4A NW/4 Sec. 29, T28N-R9W

Gentlemen:

The attached documentation demonstrates that the subject wells satisfy all of the requirements as stipulated by the NMOCC for downhole commingling. This data will be presented at an examiner hearing on March 19, 1986.

Very truly yours,

TENNECO OIL COMPANY

Harry F. Hufft

Division Production Manager

HFH:SMS:pe:4133R

Attachment

WELL NAME: LOCATION: SCHWERDTFEGER A LS #14A NW/4 SEC. 8 T27N, R8W

Tenneco Oil Company currently plans to drill the captioned well during the third or fourth quarter of 1986. The well is anticipated to encounter productive sands in both the Mesaverde and Chacra formations. Tenneco Oil Company seeks to obtain the Commission's approval to down-hole commingle production from the Chacra and Mesaverde formations. The attached documentation indicates that the two zones proposed for commingling will satisfy all requirements as stipulated by the Commission (303C(b)(1-6)).

The Mesaverde formation is the primary target of the captioned well. In light of current market conditions estimated reserves associated with a Chacra completion at the above location are considered to be insufficient to justify the capital expenditure required to separately produce these reserves. In the event that approval to commingle production is not granted, the Chacra interval would not be completed.

Estimated bottom hole pressures for the two zones were extrapolated statistically from offset Mesaverde and Chacra wells (Exhibits 1 & 2). The anticipated pressure of the lower pressured zone (Mesaverde) is estimated to be 87.07% of the pressure anticipated in the higher pressured zone (Chacra), when adjusted to a common datum. Therefore, rules 303C(b)(2) and 303C(b)(6) are satisfied.

A compatibility test was performed using the produced Chacra water from a nearby offset (Dryden LS #1A; SE/4 Sec. 28 T28N, R8W) and the produced Mesaverde water from another nearby offset (Schwerdtfeger A LS #14; SW/4 Sec. 8 T27N, R8W). The test indicated that no scale or precipitate problems should result when production streams from these two horizons are commingled. Water analyses also indicated that corresponding salinities are similar, and no formation damage should occur due to the presence of produced water from another zone. Therefore, rules 303C(b)(3) and 303C(b)(4) are satisfied.

Common ownership exists between the Chacra and Mesaverde zones, satisfying rule 303C(b)(5). A detailed ownership breakdown is attached.

It is recommended that production be allocated on a strict percentage basis according to the fraction of total reserves contributed by each zone. Chacra reserves were estimated from the attached iso-reserve map (Exhibit 3). Mesaverde reserves were estimated from the attached net pay

CH/MV Commingling Application Schwerdtfeger A LS #14A Page 2

isopach map (Exhibit 4) and a linear correlation of reserves versus net pay (Exhibit 5). Exhibit 5 was obtained by plotting estimated ultimate recoveries (decline curve derived) from recent (1980+) Mesaverde wells against the amount of net perforated pay as determined from log analysis and completion reports. Chacra reserves are estimated to be 175 MMCF, while Mesaverde reserves are estimated to be 600 MMCF. Production allocated to the Chacra should be 22.58% of total, and the production allocated to the Mesaverde should be 77.42% of total.

Both Chacra and Mesaverde wells in this area exhibit similarly shaped decline curves. Exhibits 6 and 7 are representative type decline curves for local Mesaverde and Chacra wells.

Despite the large disparity in estimated reserves, both formations have very similar reserve lives. Exhibit 8 shows initial rate versus reserves for the type decline scenario used. The following table compares reserve lives from each of the two zones assuming a 10 MCF/D economic limit. An average reserve ratio was taken for this example:

<u>FORMATION</u>	RESERVES (MMCF)	INITIAL RATE (MCF/D)	ECONOMIC* LIMIT (MCF/D)	RESERVE LIFE (YRS)
Mesaverde	1150	735	8	31.7
Chacra	235	160	2	31.2
			_	
			10	

Produced Chacra gas is extremely dry. Chacra wells in the vicinity of the subject well produce less than 1 BBL/MMCF of water and condensate (combined) on an average basis. Local Mesaverde wells produce considerably more liquids than do the Chacra wells. Average condensate and water yields are approximately 5 BBL/MMCF and 2 BBL/MMCF, respectively, for the Mesaverde producers. As the production capacity of the Mesaverde zone decreases with time, its ability to unload produced fluids also decreases. The increased

^{*}The economic limit was allocated roughly according to the reserve ratio: 83% Mesaverde / 17% Chacra

CH/MV Commingling Application Schwerdtfeger A LS #14A Page 3

volume of commingled dry Chacra gas through the tubing will help to lift the produced Mesaverde liquids. Over the life of the well, the commingled Chacra production will definitely improve the flow efficiency of the Mesaverde zone. Early in the life of the well, while both zones are producing at maximum rates, there will be a slight increase in friction loss (tubing) due to the additional volume of Chacra gas. Exhibit 9 shows that the flowing bottom hole pressure goes from 390 psi for a well producing 750 mcf/d, to 405 psi for a well producing at 1250 mcf/d. An increased pressure drop of 15 psi is insignificant, and would represent a maximum considering the initial rate of the Chacra production will be much closer to 200 mcf/d rather than 500 mcf/d.

All operators of offset wells have been notified in writing of the proposed commingling within the time limits provided under rule #1207.

S. M. Struna

Petroleum Engineer

SMS:pe:3/13/86

4131R

Attachment

WELL:

Schwerdtfeger A LS #14A

LOCATION: NW/4 Sec. 8 T27N, R8W

Estimated Chacra completed interval midpoint:	3279 ft.
Estimated Mesaverde completed interval midpoint:	4670 ft.

Average su	rrounding (Chacra ISIP's (surface)	1002 psi
Average su	rrounding	Mesaverde ISIP's (surface)	867 psi

Average Surrounding Chacra Completed Interval Midpoint: 3244 ft. Average surrounding Mesaverde Completed Interval Midpoint: 4616 ft.

Chacra Pressure Gradient .3382 psi/ft. Mesaverde Pressure Gradient .2143 psi/ft.

Anticipated Chacra shut in pressure (bottom hole): 1109 psi Anticipated Mesaverde shut in pressure (bottom hole): 1001 psi

Anticipated pressures adjusted to 4000 ft. datum:

Chacra	1129 psi
Mesaverde	983 psi

Ratio 983/1129 = .8707

Satisfies 50% pressure requirement

SMS:pe:2/24/86

4086R-6

CHARCA

R 9 W	1		R 8	8 W		·	7
36	31					36	T 28 N
1	6		870 ●	1031 ●		1	
●951			989 ●	1063 ● 913 ●	1076 1043 955 1043		
●979		1020			882 • 1125 •	1006 1084 1063 1107	T
	,				968 1042 885	• 1023 970 • 975	27 N
					1150	925 874 • 1029 • 1013	-
36	31					36	

Initial Shut-In Pressure (PSI)

• Producing Well

■ Schwerdtfeger A LS ≠14A

MESAVERDE

1	R 9 W	<u> </u>		<u>R</u> 8	3 W			,
	36	31		■735			≈ 7 85 36	T 28
			720 🖪	ļ				28 N
	1	6		7 35			1	
						●814		1
	629		805	918 •		1033]
						• .		
					707 •		1093	T 27
	● 756							N
					! !	• 1000	979	
					918		• 813 990 •	
		825 •	940		788	763 •	953 ●] }
	• 724 36	• 787 31				1049	36	
			,			1013 956		1

Initial Shut-In Pressure (PSI)

- Recent Infill (post 1978)
- 1985 Tenneco Completion
- Schwerdtfeger A LS ≠14A

Assumptions Used in Pressure Calculations

Chacra

Gravity = .665*

 $P_C = 670.4 \text{ psia}$

 $T_{c} = 378.6^{\circ}R$

Mesaverde

Gravity = .701*

 $P_c = 669.1 \text{ psia}$

 $T_{c} = 389.7^{\circ}R$

Local Temperature Gradient Ambient Temperature .0139°F/ft. 60°F

Pressures were calculated using a modified Cullender & Smith method.

*Gas gravities estimated from chromatographic analyses of local Chacra and Mesaverde gas samples.

SMS:pe:2/24/86

4086R

CHACRA/MESAVERDE COMMINGLING APPLICATION INITIAL SHUT-IN PRESSURE DATA RECENT MESAVERDE INFILL WELLS (POST 1978)

WELL NAME	LOCATI	<u>on</u>	<u>OPERATOR</u>	<u>DOFP</u>	INITIAL SHUT- IN PRESSURE
State Com #47	SW/2	27N 8W	Mesa	2/79	814
Dawson A #1M	NW/4	27N 8W	TOC	3/81	735
Graham C WN Fed					
Com #1A	SE/9	27N 8W	Arco	3/78	918
Federal J #lA	SE/11	27W 8W	AAA Oper. Co. Inc.	4/80	1133
Federal E #3A	SW/13	27N 8W	AAA Oper. Co. Inc.	4/80	1193
Federal R #1A	SE/15	27N 8W	AAA Oper. Co. Inc.	3/84	707
Federal E #2A	SE/23	27N 8W	AAA Oper. Co. Inc.	10/79	1000
Marron WN Fed	SE/24	27N 8W	Arco	4/78	979
Com #6A					
Hammond #41R	NE/25	27N 8W	Russell WM. C.	2/78	813
Federal E #1A	NW/25	27N 8W	AAA Oper. Co. Inc.	10/79	990
Federal E #1	SE/25	27N 8W	AAA Oper. Co. Inc.	6/72	953
Hammond #55A	SE/26	27N 8W	Great Lakes Chem.	3/79	763
Marron WN Fed	NW/27	27N 8W	Arco	1/78	918
Com #1A					
Marron #5A	SE/27	27N 8W	Western Oil & Min.	7/79	788
Linda #1A	NW/37	27N 8W	Consolidated O & G	6/79	787
Hammond #5	NW/35	27N 8W	Great Lakes Chem.	2/78	1049
Hammond WN Fed #7A	SE/35	27N 8W	Arco	4/79	956
Hammond #47R	SW/35	27N 8W	R & G Drilling Co.	4/78	1013
Blanco #2A	SE/12	27N 9W	NWPL	5/82	629
Huerfanito Unit #77A	NW/24	27N 9W	EPNG	3/83	756
Huerfanito Unit #86A	NW/36	27N 9W	EPNG	1/80	724

1985 TENNECO MESAVERDE INFILL WELLS

WELL NAME	LOCATION	<u>OPERATOR</u>	<u>DOFP</u>	INITIAL SHUT- IN PRESSURE
Riddle F LS #5A	SE/32 28N	8W		720
Bolack B LS #1A	NW/33 28N	8W		735
Blanco LS #12A	NW/36 28N	8W		785
Schwertdfeger A LS #20M	SE/8 27N	8W		805
Bolack C LS #12A	SE/29 27N	8W		940
Bolack C LS #14A	SE/30 27N	8W		825

Chacra/Mesaverde Commingling Application Initial Shut-in Pressure Data Page 2

OTERO CHACRA OFFSET WELLS

WELL NAME	LOCATI	<u>ON</u>	<u>OPERATOR</u>	<u>DOFP</u>	INITIAL SHUT- IN PRESSURE
Graham #3	SE/3	27N 8W	Great Lakes Chem.	8/77	1031
Graham #1A	SE/4	27N 8W	Great Lakes Chem.	7/76	870
Graham C WN Fed Com #1A	SE/9	27N 8W	Arco	3/78	989
Graham #51	NE/10	27N 8W	Russell William C.	10/72	1063
Graham #96	SE/10	27N 8W	Russell William C.	12/83	913
Federal J #1	NE/11	27N 8W	AAA Oper. Co. Inc.	7/72	1043
Largo Fed. #4	NW/11	27N 8W	AAA Oper. Co. Inc.	12/73	1076
Largo Fed. #1	SW/11	27N 8W	AAA Oper. Co. Inc.	7/72	955
Federal J #2	SE/11	27N 8W	AAA Oper. Co. Inc.	4/80	1043
Largo Fed #5	NE/13	27N 8W	AAA Oper. Co. Inc.	12/73	1084
Federal E #3	NW/13	27N 8W	AAA Oper. Co. Inc.	7/72	1006
Largo Federal #2	SE/13	27N 8W	AAA Oper. Co. Inc.	5/73	1107
Federal E #6	SW/13	27N BW	AAA Oper. Co. Inc.	4/80	1063
Largo Federal #3	NE/14	27N 8W	AAA Oper. Co. Inc.	5/73	882
Largo Federal #6	SE/14	27N 8W	AAA Oper. Co. Inc.	12/73	1125
Florance D LS #17	SE/17	27N 8W	TOC	10/72	1020
Marron #94	NW/23	27N BW	Russell William C.	1/80	968
Federal E #2	NE/23	27N 8W	AAA Oper. Co. Inc.	6/72	1042
Federal E #5	SE/23	27N 8W	AAA Oper. Co. Inc.	9/79	885
Marron #6A	NW/24	27N BW	Western Oil & Min.	2/76	1023
Marron WN Fed. Com #6A	SE/24	27N 8W	Arco	4/78	975
Snodgrass #1	SW/24	27N 8W	Western Oil & Min.	4/78	970
Federal E #4	NW/25	27N 8W	AAA Oper. Co. Inc.	9/79	874
Hammond #91	NE/25	27N BW	Russell William C.	12/77	925
Federal E #1	SW/25	27N 8W	AAA Oper. Co. Inc.	7/72	1029
Hammond #92	SE/25	27N 8W	Russell William C.	1/80	1013
Hammond #52	NE/26	27N 8W	Russell William C.	12/74	1150
Blanco #25	NW/12	27N 9W	NWPL	6/75	951
John Charles #7E	NW/13	27N 9W	Getty	5/81	979

CHACRA/MESAVERDE COMMINGLING APPLICATION RESERVE ESTIMATION AND PRODUCTION ALLOCATION

WELL: LOCATION: Schwerdtfeger A LS #14A NW/4 Sec. 8 T27N, R8W

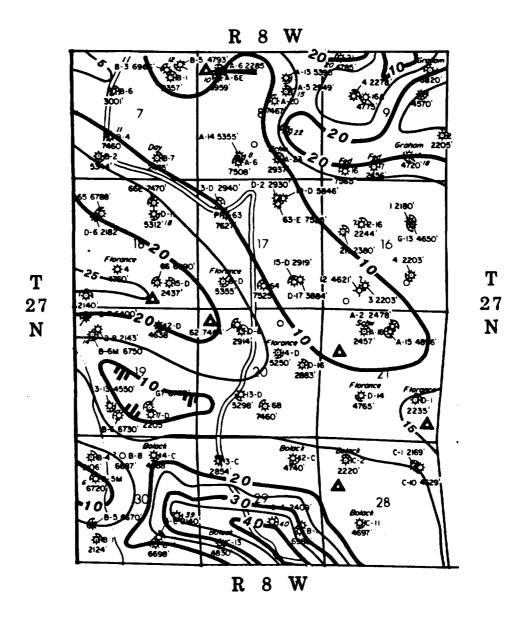
Chacra Reserves

Total Estimated Reserves (Exhibit 3) = 175 MMCF

Mesaverde Reserves

Net Pay Thickness (Exhibit 4) = 10 ft. Total Estimated Reserves (Exhibit 5) = 600 MMCF

Production Allocation


Chacra: (175)/(175 + 600) = .2258 = 22.58%

Mesaverde: (600)/(175 + 600) = .7742 = 77.42%

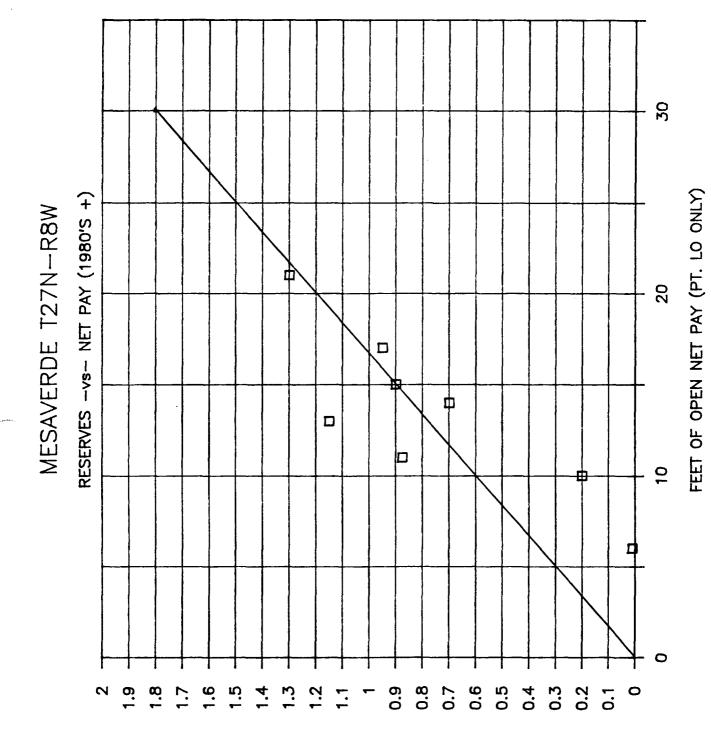
SMS:pe:3/11/86 4129R-4

Schwerdtfeger A LS #14A 175 MMCF

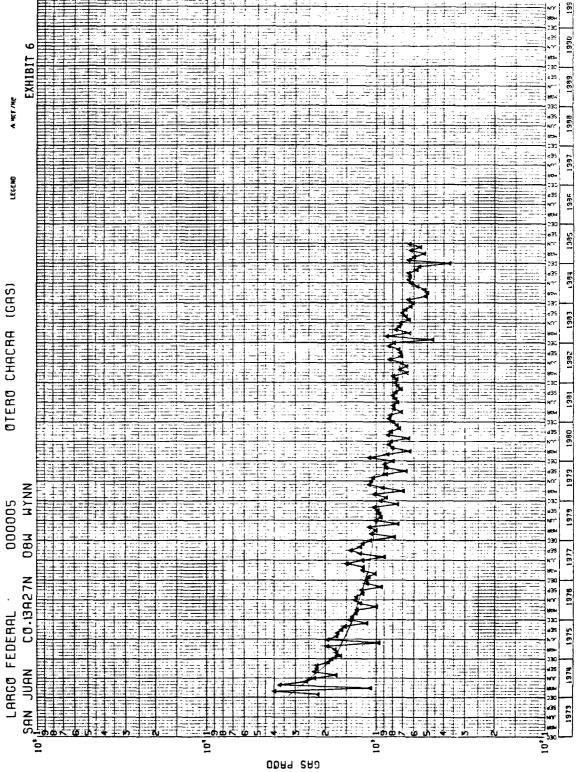
LEGEND

- PICTURED CLIFFS PENETRATION
- M CHACRA PENETRATION
- MESA VERDE PENETRATION
- GALLUP PENETRATION
- & DAKOTA PENETRATION
- A PROPOSED LOCATION

Tenneco Oil Exploration and Production WESTERN ROCKY MOUNTAIN DIVISION



San Juan Basin


CLIFFHOUSE & POINT LOOKOUT COMPOSITE NET PAY ISOPACH

C.I. = 10' 1:4000

MKD 3/4/86

(Thousands)
(ESERVES (MMCF)

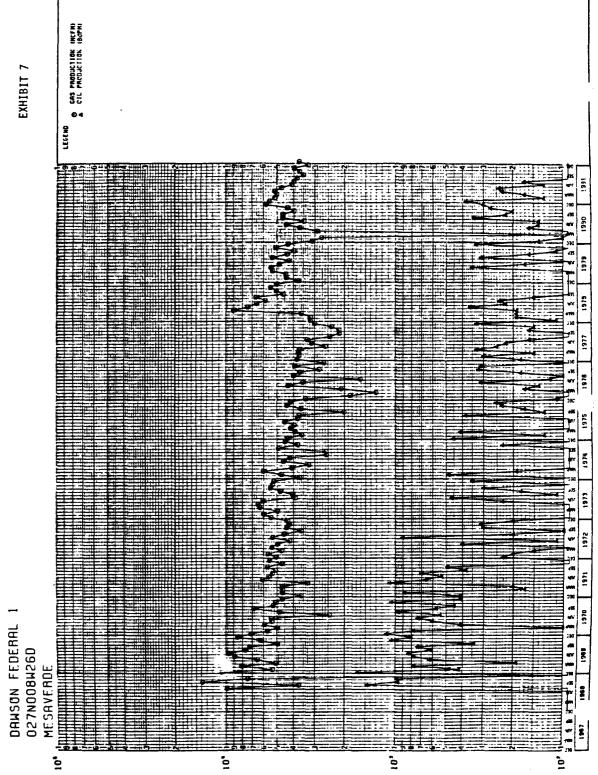


EXHIBIT 7

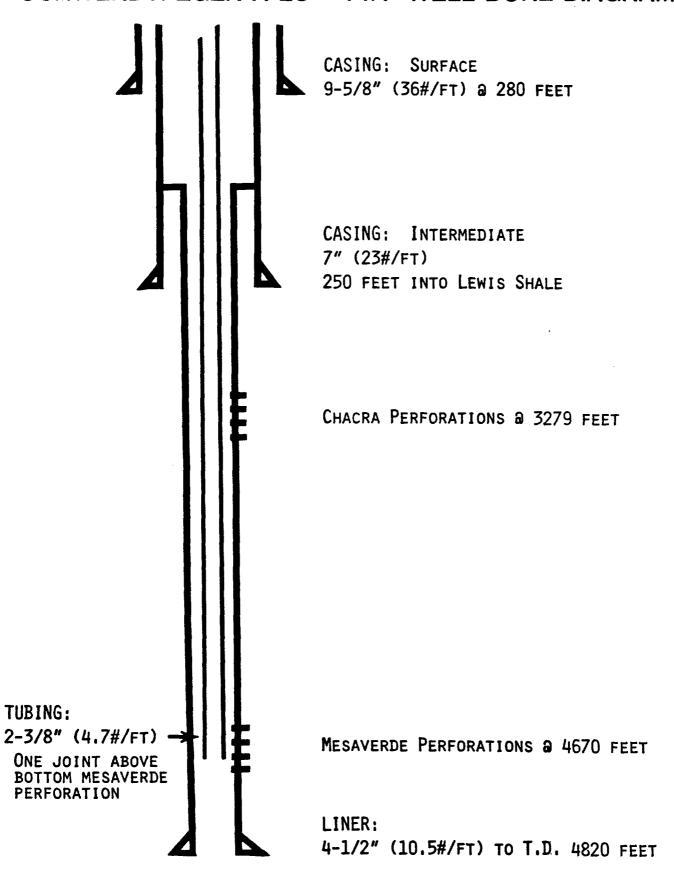
700 INITIAL RATE VS RESERVES TYPE DECLINE (45-30-20-10) INITIAL RATE (mcfd) 200 300 100 0.1 0.9 0.8 9.0 0.5 0.3 0.2 **:** 4.0 0.7

EXHIBIT 8

(Lyonsdugs)
KEZEKAEZ (WWCL)

BOTTOM HOLE PRESSURE (PSIA)

COMMINGLING CAPITAL SAVINGS


Dual Wellhead	\$ 5,000
Separators	\$ 5,500
1 1/4" Tubing	\$17,000
PKR	\$ 3,500
Blast Jts/Pup Jts	\$ 5,000
Miscellaneous Plugs, Etc.	\$ 2,000
Casing	\$ 5,000 (Less 7", More 4 1/2")
Drilling Miscellaneous	\$ 2,500 (Deeper 8 1/4" hole)
Completion Miscellaneous	\$10,500 (Rig time, nitrogen)
Taxes - Misc. Contingency (3%)	\$ 2,000
	\$57,000

The above total represents the additional capital required to produce the Chacra reserves separately. In light of current gas market trends (gas price estimate \$1.50 - 2.00/MCF), estimated demand (50-70% takes), hook-up delay, and associated risk, Chacra reserves are insufficient to justify the above incremental investment. To prevent the waste of these Chacra reserves it is necessary to obtain commingling approval. Correlative rights will be protected. The commingled wellbore will more efficiently recover Mesaverde reserves and extend the economic life of the well.

SMS:pe:3/17/86

4135R

CHACRA/MESAVERDE COMMINGLING APPLICATION SCHWERDTFEGER A LS #14A WELL BORE DIAGRAM

WELL NAME: LOCATION: SCHWERDTFEGER A LS #15A NW/4 SEC. 21 T27N, R8W

Tenneco Oil Company currently plans to drill the captioned well during the third or fourth quarter of 1986. The well is anticipated to encounter productive sands in both the Mesaverde and Chacra formations. Tenneco Oil Company seeks to obtain the Commission's approval to down-hole commingle production from the Chacra and Mesaverde formations. The attached documentation indicates that the two zones proposed for commingling will satisfy all requirements as stipulated by the Commission (303C(b)(1-6)).

The Mesaverde formation is the primary target of the captioned well. In light of current market conditions estimated reserves associated with a Chacra completion at the above location are considered to be insufficient to justify the capital expenditure required to separately produce these reserves. In the event that approval to commingle production is not granted, the Chacra interval would not be completed.

Estimated bottom hole pressures for the two zones were extrapolated statistically from offset Mesaverde and Chacra wells (Exhibits 1 & 2). The anticipated pressure of the lower pressured zone (Mesaverde) is estimated to be 85.37% of the pressure anticipated in the higher pressured zone (Chacra), when adjusted to a common datum. Therefore, rules 303C(b)(2) and 303C(b)(6) are satisfied.

A compatibility test was performed using the produced Chacra water from a nearby offset (Dryden LS #1A; SE/4 Sec. 28 T28N, R8W) and the produced Mesaverde water from another nearby offset (Schwerdtfeger A LS #14; SW/4 Sec. 8 T27N, R8W). The test indicated that no scale or precipitate problems should result when production streams from these two horizons are commingled. Water analyses also indicated that corresponding salinities are similar, and no formation damage should occur due to the presence of produced water from another zone. Therefore, rules 303C(b)(3) and 303C(b)(4) are satisfied.

Common ownership exists between the Chacra and Mesaverde zones, satisfying rule 303C(b)(5). A detailed ownership breakdown is attached.

It is recommended that production be allocated on a strict percentage basis according to the fraction of total reserves contributed by each zone. Chacra reserves were estimated from the attached iso-reserve map (Exhibit 3). Mesaverde reserves were estimated from the attached net pay

CH/MV Commingling Application Schwerdtfeger A LS #15A Page 2

isopach map (Exhibit 4) and a linear correlation of reserves versus net pay (Exhibit 5). Exhibit 5 was obtained by plotting estimated ultimate recoveries (decline curve derived) from recent (1980+) Mesaverde wells against the amount of net perforated pay as determined from log analysis and completion reports. Chacra reserves are estimated to be 250 MMCF, while Mesaverde reserves are estimated to be 600 MMCF. Production allocated to the Chacra should be 29.41% of total, and the production allocated to the Mesaverde should be 70.59% of total.

Both Chacra and Mesaverde wells in this area exhibit similarly shaped decline curves. Exhibits 6 and 7 are representative type decline curves for local Mesaverde and Chacra wells.

Despite the large disparity in estimated reserves, both formations have very similar reserve lives. Exhibit 8 shows initial rate versus reserves for the type decline scenario used. The following table compares reserve lives from each of the two zones assuming a 10 MCF/D economic limit. An average reserve ratio was taken for this example:

FORMATION	RESERVES (MMCF)	INITIAL RATE (MCF/D)	ECONOMIC* LIMIT (MCF/D)	RESERVE LIFE (YRS)
Mesaverde	1150	735	8	31.7
Chacra	235	160	2	31.2
			10	

Produced Chacra gas is extremely dry. Chacra wells in the vicinity of the subject well produce less than 1 BBL/MMCF of water and condensate (combined) on an average basis. Local Mesaverde wells produce considerably more liquids than do the Chacra wells. Average condensate and water yields are approximately 5 BBL/MMCF and 2 BBL/MMCF, respectively, for the Mesaverde producers. As the production capacity of the Mesaverde zone decreases with time, its ability to unload produced fluids also decreases. The increased

^{*}The economic limit was allocated roughly according to the reserve ratio: 83% Mesaverde / 17% Chacra

CH/MV Commingling Application Schwerdtfeger A LS #15A Page 3

volume of commingled dry Chacra gas through the tubing will help to lift the produced Mesaverde liquids. Over the life of the well, the commingled Chacra production will definitely improve the flow efficiency of the Mesaverde zone. Early in the life of the well, while both zones are producing at maximum rates, there will be a slight increase in friction loss (tubing) due to the additional volume of Chacra gas. Exhibit 9 shows that the flowing bottom hole pressure goes from 390 psi for a well producing 750 mcf/d, to 405 psi for a well producing at 1250 mcf/d. An increased pressure drop of 15 psi is insignificant, and would represent a maximum considering the initial rate of the Chacra production will be much closer to 200 mcf/d rather than 500 mcf/d.

All operators of offset wells have been notified in writing of the proposed commingling within the time limits provided under rule #1207.

5. M. Struna

Petroleum Engineer

SMS:pe:3/13/86

4131R

Attachment

WELL:

Schwerdtfeger A LS #15A

LOCATION:

NW/4 Sec. 21 T27N, R8W

Estimated Chacra completed interval midpoint: 3462 ft.

Estimated Mesaverde completed interval midpoint: 4834 ft.

Average surrounding Chacra ISIP's (surface) 1002 psi

Average surrounding Mesaverde ISIP's (surface) 867 psi

Average Surrounding Chacra Completed Interval Midpoint: 3244 ft.

Average surrounding Mesaverde Completed Interval Midpoint: 4616 ft.

Chacra Pressure Gradient .3382 psi/ft.

Mesaverde Pressure Gradient .2143 psi/ft.

Anticipated Chacra shut in pressure (bottom hole): 1171 psi

Anticipated Mesaverde shut in pressure (bottom hole): 1036 psi

Anticipated pressures adjusted to 4000 ft. datum:

Chacra 1187 psi

Mesaverde 1013 psi

Ratio 1013/1187 = .8537

Satisfies 50% pressure requirement

SMS:pe:2/24/86

4086R-7

CHARCA

R 9 W	L		R 8	W			7
36	31					3 6	T 28 N
•	6		870 ●	1031 •		1	
●951			989 ●	1063 ● 913 ●	1076 1043 955 1043		T
●979		1020	lander on broken , server algebras es		882 • 1125	1006 1084 1063 1107	T
					968 • 1042 885•	●1023 970 ● 975	27 N
					1150	925 874 • 1029 • 1013	
26	31	·				36	

Initial Shut-In Pressure (PSI)

Producing Well

Schwerdtfeger A LS #15A

MESAVERDE

R9W	1		R 8	3 W		· · · · · · · · · · · · · · · · · · ·	7
36	31		■735			■ 785 36	T 28 N
		720 \blacksquare					N
1	6		735			1	
					●814		1
629		805	918 •		1033		1
				707 •		1093	T 27
• 756							N
					• 1000	• 979	
				918		990 • 813	İ
	825 =	940 =		788	763 •	953 ●	
• 724 36	● 787 31				1049	36	
					1013 956		<u> </u>

Initial Shut-In Pressure (PSI)

- Recent Infill (post 1978)
- 1985 Tenneco Completion
- Schwerdtfeger A LS ≠15A

Assumptions Used in Pressure Calculations

Chacra

$$P_C = 670.4 \text{ psia}$$

$$T_{c} = 378.6^{\circ}R$$

Mesaverde

$$6$$
ravity = .701*

$$P_c = 669.1 \text{ psia}$$

$$T_{c} = 389.7^{\circ}R$$

Local Temperature Gradient Ambient Temperature

.0139°F/ft. 60°F

Pressures were calculated using a modified Cullender & Smith method.

*Gas gravities estimated from chromatographic analyses of local Chacra and Mesaverde gas samples.

SMS:pe:2/24/86

4086R

INITIAL SHUT-IN PRESSURE DATA

RECENT MESAVERDE INFILL WELLS (POST 1978)

WELL NAME	LOCATI	<u>on</u>	<u>OPERATOR</u>	<u>DOFP</u>	INITIAL SHUT- IN PRESSURE
State Com #47	SW/2	27N 8W	Mesa	2/79	814
Dawson A #1M	NW/4	27N 8W	TOC	3/81	735
Graham C WN Fed			-		
Com #1A	SE/9	27N BW	Arco	3/78	918
Federal J #1A	SE/11	27W 8W	AAA Oper. Co. Inc.	4/80	1133
Federal E #3A	SW/13	27N 8W	AAA Oper. Co. Inc.	4/80	1193
Federal R #1A	SE/15	27N 8W	AAA Oper. Co. Inc.	3/84	707
Federal E #2A	SE/23	27N 8W	AAA Oper. Co. Inc.	10/79	1000
Marron WN Fed	SE/24	27N 8W	Arco	4/78	979
Com #6A				•	
Hammond #41R	NE/25	27N 8W	Russell WM. C.	2/78	813
Federal E #1A	NW/25	27N 8W	AAA Oper. Co. Inc.	10/79	990
Federal E #1	SE/25	27N 8W	AAA Oper. Co. Inc.	6/72	953
Hammond #55A	SE/26	27N 8W	Great Lakes Chem.	3/79	763
Marron WN Fed	NW/27	27N 8W	Arco	1/78	918
Com #1A					
Marron #5A	SE/27	27N 8W	Western Oil & Min.	7/79	788
Linda #ÎA	NW/31	27N 8W	Consolidated O & G	6/79	787
Hammond #5	NW/35	27N 8W	Great Lakes Chem.	2/78	1049
Hammond WN Fed #7A	SE/35	27N 8W	Arco	4/79	956
Hammond #47R	SW/35	27N BW	R & G Drilling Co.	4/78	1013
Blanco #2A	SE/12	27N 9W	NWPL	5/82	629
Huerfanito Unit #77A		27N 9W	EPNG	3/83	756
Huerfanito Unit #86A		27N 9W	EPNG	1/80	724

1985 TENNECO MESAVERDE INFILL WELLS

WELL NAME	LOCATION	<u>OPERATOR</u>	<u>DOFP</u>	INITIAL SHUT- IN PRESSURE	
Riddle F LS #5A	SE/32 28N 8W			720	
Bolack B LS #1A	NW/33 28N 8W			735	
Blanco LS #12A	NW/36 28N 8W			785	
Schwertdfeger A LS #20M	SE/8 27N BW			805	
Bolack C LS #12A	SE/29 27N 8W			- 940	
Bolack C LS #14A	SE/30 27N 8W			825	

Chacra/Mesaverde Commingling Application Initial Shut-in Pressure Data Page 2

OTERO CHACRA OFFSET WELLS

WELL NAME	LOCATI	<u>on</u>	<u>OPERATOR</u>	<u>DOFP</u>	INITIAL SHUT- IN PRESSURE
Graham #3	SE/3	27N 8W	Great Lakes Chem.	8/77	1031
Graham #1A	SE/4	27N 8W	Great Lakes Chem.	7/76	870
Graham C WN Fed Com #1A	SE/9	27N 8W	Arco	3/78	989
Graham #51	NE/10	27N 8W	Russell William C.	10/72	1063
Graham #96	SE/10	27N 8W	Russell William C.	12/83	913
Federal J #1	NE/11	27N 8W	AAA Oper. Co. Inc.	7/72	1043
Largo Fed. #4	NW/11	27N 8W	AAA Oper. Co. Inc.	12/73	1076
Largo Fed. #1	SW/11	27N 8W	AAA Oper. Co. Inc.	7/72	955
Federal J #2	SE/11	27N 8W	AAA Oper. Co. Inc.	4/80	1043
Largo Fed #5	NE/13	27N 8W	AAA Oper. Co. Inc.	12/73	1084
Federal E #3	NW/13	27N 8W	AAA Oper. Co. Inc.	7/72	1006
Largo Federal #2	SE/13	27N 8W	AAA Oper. Co. Inc.	5/73	1107
Federal E #6	SW/13	27N 8W	AAA Oper. Co. Inc.	4/80	1063
Largo Federal #3	NE/14	27N 8W	AAA Oper. Co. Inc.	5/73	88 2
Largo Federal #6	SE/14	27N 8W	AAA Oper. Co. Inc.	12/73	1125
Florance D LS #17	SE/17	27N 8W	TOC	10/72	1020
Marron #94	NW/23	27N 8W	Russell William C.	1/80	968
Federal E #2	NE/23	27N 8W	AAA Oper. Co. Inc.	6/72	1042
Federal E #5	SE/23	27N 8W	AAA Oper. Co. Inc.	9/79	885
Marron #6A	NW/24	27N 8W	Western Oil & Min.	2/76	1023
Marron WN Fed. Com #6A	SE/24	27N 8W	Arco	4/78	975
Snodgrass #1	SW/24	27N 8W	Western Oil & Min.	4/78	970
Federal E #4	NW/25	27N 8W	AAA Oper. Co. Inc.	9/79	874
Hammond #91	NE/25	27N 8W	Russell William C.	12/77	925
Federal E #1	SW/25	27N 8W	AAA Oper. Co. Inc.	7/72	1029
Hammond #92	SE/25	27N 8W	Russell William C.	1/80	1013
Hammond #52	NE/26	27N 8W	Russell William C.	12/74	1150
Blanco #25	NW/12	27N 9W	NWPL	6/75	951
John Charles #7E	NW/13	27N 9W	Getty	5/81	979

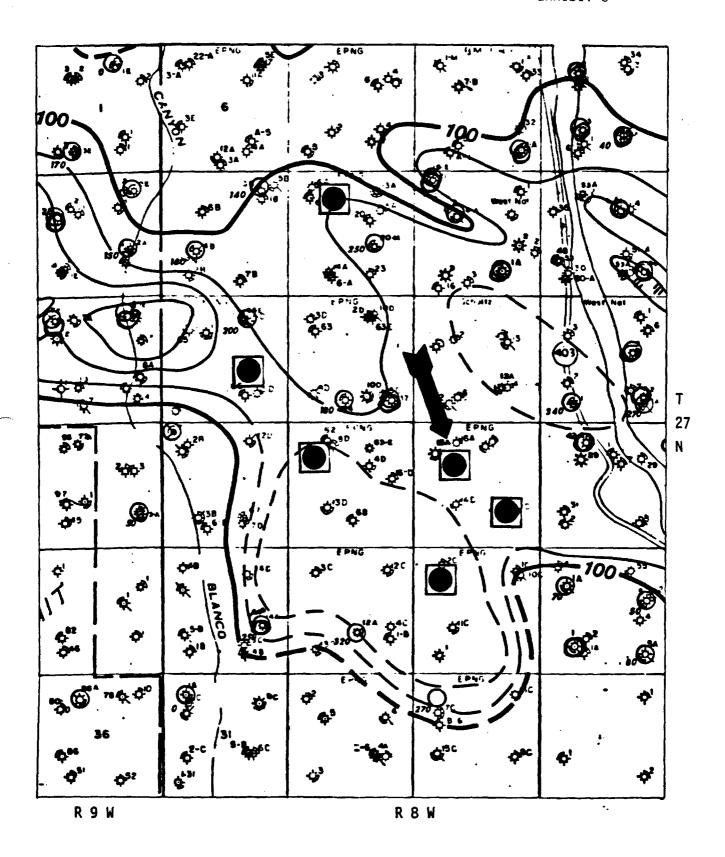
CHACRA/MESAVERDE COMMINGLING APPLICATION RESERVE ESTIMATION AND PRODUCTION ALLOCATION

WELL: LOCATION: Schwerdtfeger A LS #15A NW/4 Sec. 21 T27N, R8W

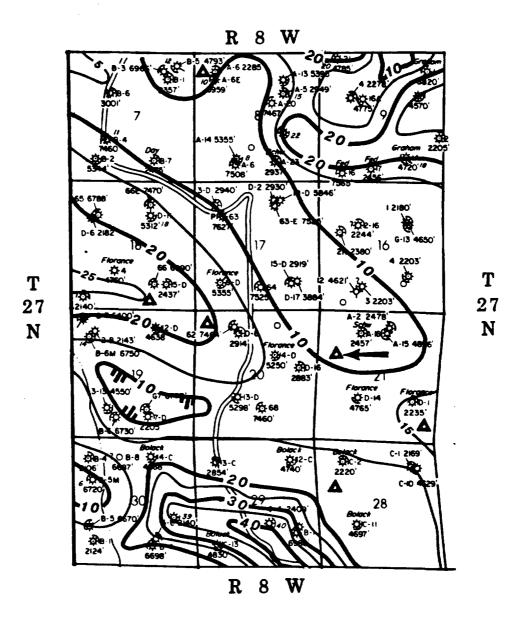
Chacra Reserves

Total Estimated Reserves (Exhibit 3) = 250 MMCF

Mesaverde Reserves


Net Pay Thickness (Exhibit 4) = 10 ft. Total Estimated Reserves (Exhibit 5) = 600 MMCF

Production Allocation


Chacra: (250)/(250 + 600) = .2941 = 29.41%

Mesaverde: (600)/(250 + 600) = .7059 = 70.59%

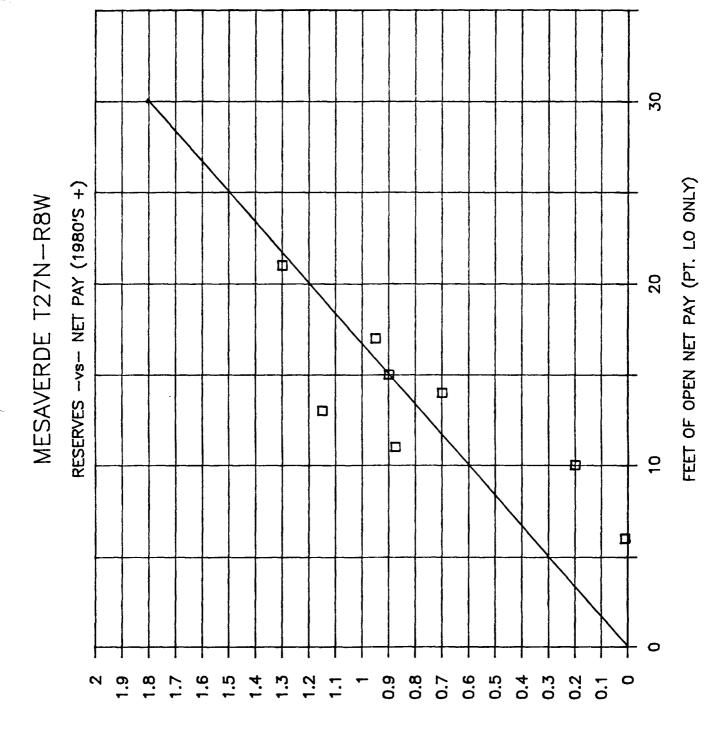
SMS:pe:3/11/86 4129R-3

Schwerdtfeger A LS #15A 250 MMCF

LEGEND

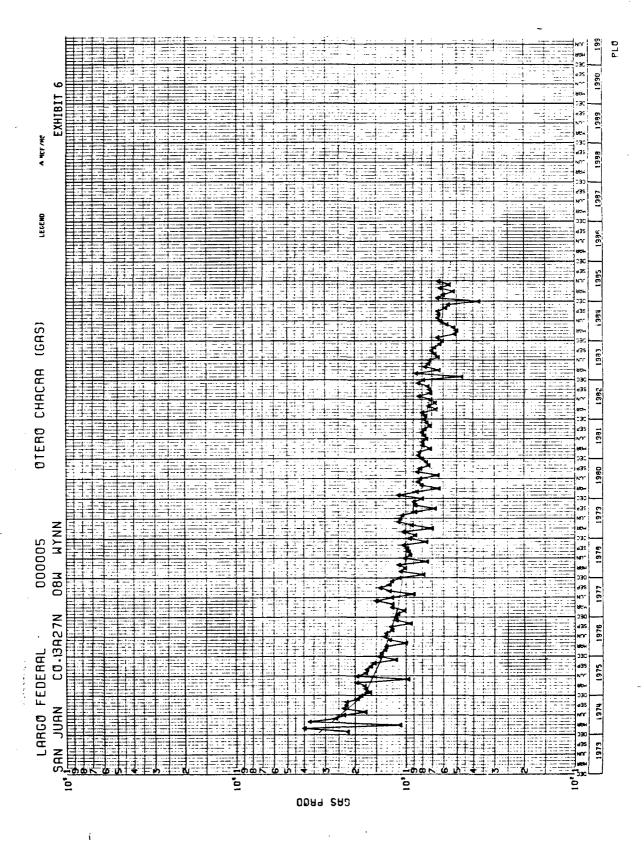
- PICTURED CLIFFS PENETRATION
- CHACRA PENETRATION
- MESA VERDE PENETRATION
- GALLUP PENETRATION
- & DAKOTA PENETRATION
- A PROPOSED LOCATION

Tenneco Oil Exploration and Production WESTERN ROCKY MOUNTAIN DIVISION



San Juan Basin

CLIFFHOUSE & POINT LOOKOUT
COMPOSITE NET PAY ISOPACH


C.I. = 10' 1:4000

MKD 3/4/86

(Lyonaduga)

SESEBAER (MMCE)

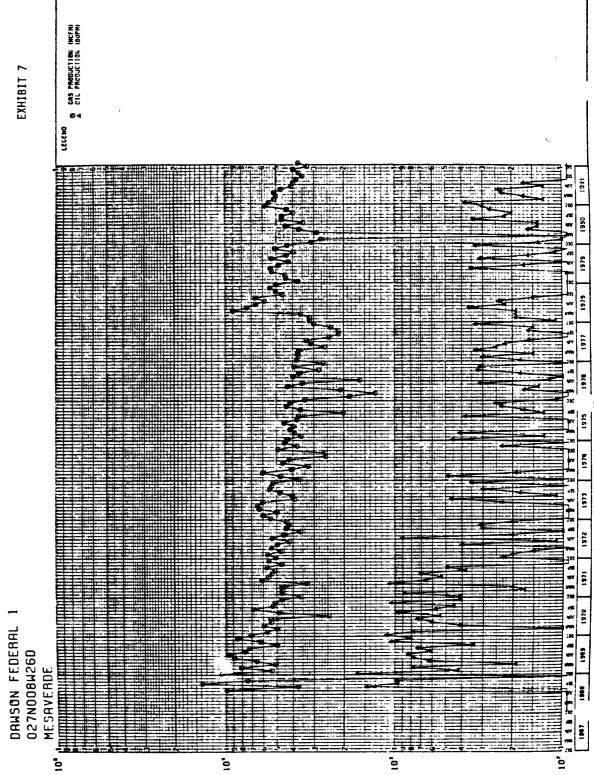


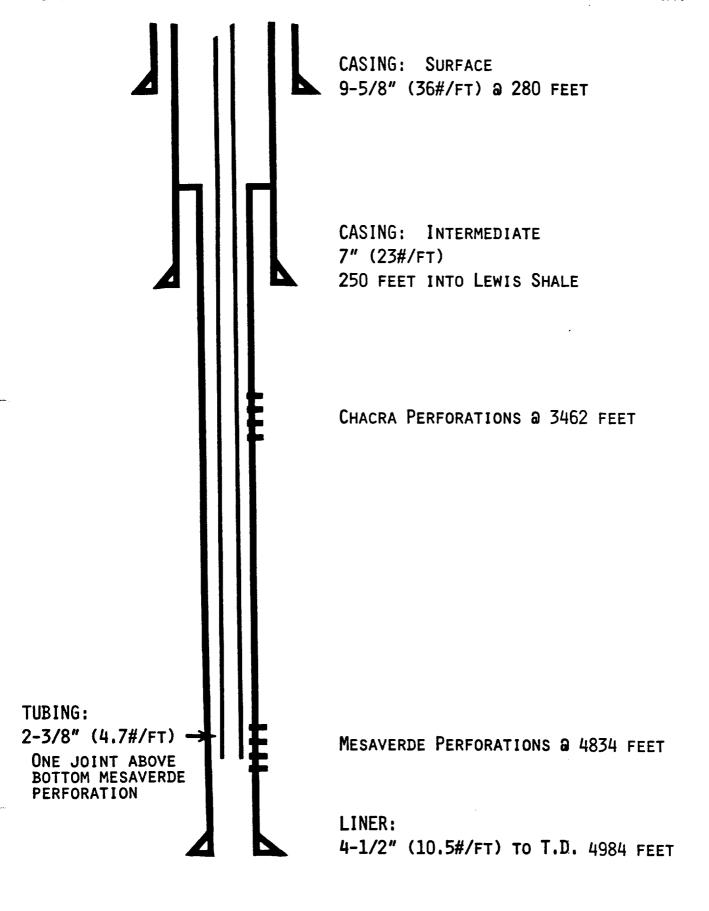
EXHIBIT 7

EXHIBIT 8 700 INITIAL RATE VS RESERVES TYPE DECLINE (45-30-20-10) INITIAL RATE (mcfd) 300 10 0.1 1.2 0.9 0.8 0.7 9.0 0.5 0.4 0.3 0.2 -:

(Lponsaugs) BEZEBAEZ (MMCL)

BOTTOM HOLE PRESSURE (PSIA)

COMMINGLING CAPITAL SAVINGS


Dual Wellhead	\$ 5,000
Separators	\$ 5,500
1 1/4" Tubing	\$17,000
PKR	\$ 3,500
Blast Jts/Pup Jts	\$ 5,000
Miscellaneous Plugs, Etc.	\$ 2,000
Casing	\$ 5,000 (Less 7", More 4 1/2")
Drilling Miscellaneous	\$ 2,500 (Deeper 8 1/4* hole)
Completion Miscellaneous	\$10,500 (Rig time, nitrogen)
Taxes - Misc. Contingency (3%)	\$ 2,000
	\$ 57,000

The above total represents the additional capital required to produce the Chacra reserves separately. In light of current gas market trends (gas price estimate \$1.50 - 2.00/MCF), estimated demand (50-70% takes), hook-up delay, and associated risk, Chacra reserves are insufficient to justify the above incremental investment. To prevent the waste of these Chacra reserves it is necessary to obtain commingling approval. Correlative rights will be protected. The commingled wellbore will more efficiently recover Mesaverde reserves and extend the economic life of the well.

SMS:pe:3/17/86

4135R

CHACRA/MESAVERDE COMMINGLING APPLICATION SCHWERDTFEGER A LS #15A WELL BORE DIAGRAM

WELL NAME: FLORANCE D LS #14A

LOCATION: SE/4 SEC. 21 T27N, R8W

Tenneco Oil Company currently plans to drill the captioned well during the third or fourth quarter of 1986. The well is anticipated to encounter productive sands in both the Mesaverde and Chacra formations. Tenneco Oil Company seeks to obtain the Commission's approval to down-hole commingle production from the Chacra and Mesaverde formations. The attached documentation indicates that the two zones proposed for commingling will satisfy all requirements as stipulated by the Commission (303C(b)(1-6)).

The Mesaverde formation is the primary target of the captioned well. In light of current market conditions estimated reserves associated with a Chacra completion at the above location are considered to be insufficient to justify the capital expenditure required to separately produce these reserves. In the event that approval to commingle production is not granted, the Chacra interval would not be completed.

Estimated bottom hole pressures for the two zones were extrapolated statistically from offset Mesaverde and Chacra wells (Exhibits 1 & 2). The anticipated pressure of the lower pressured zone (Mesaverde) is estimated to be 86.02% of the pressure anticipated in the higher pressured zone (Chacra), when adjusted to a common datum. Therefore, rules 303C(b)(2) and 303C(b)(6) are satisfied.

A compatibility test was performed using the produced Chacra water from a nearby offset (Dryden LS #1A; SE/4 Sec. 28 T28N, R8W) and the produced Mesaverde water from another nearby offset (Schwerdtfeger A LS #14; SW/4 Sec. 8 T27N, R8W). The test indicated that no scale or precipitate problems should result when production streams from these two horizons are commingled. Water analyses also indicated that corresponding salinities are similar, and no formation damage should occur due to the presence of produced water from another zone. Therefore, rules 303C(b)(3) and 303C(b)(4) are satisfied.

Common ownership exists between the Chacra and Mesaverde zones, satisfying rule 303C(b)(5). A detailed ownership breakdown is attached.

It is recommended that production be allocated on a strict percentage basis according to the fraction of total reserves contributed by each zone. Chacra reserves were estimated from the attached iso-reserve map (Exhibit 3). Mesaverde reserves were estimated from the attached net pay

CH/MV Commingling Application Florance D LS #14A Page 2

isopach map (Exhibit 4) and a linear correlation of reserves versus net pay (Exhibit 5). Exhibit 5 was obtained by plotting estimated ultimate recoveries (decline curve derived) from recent (1980+) Mesaverde wells against the amount of net perforated pay as determined from log analysis and completion reports. Chacra reserves are estimated to be 250 MMCF, while Mesaverde reserves are estimated to be 950 MMCF. Production allocated to the Chacra should be 20.83% of total, and the production allocated to the Mesaverde should be 79.17% of total.

Both Chacra and Mesaverde wells in this area exhibit similarly shaped decline curves. Exhibits 6 and 7 are representative type decline curves for local Mesaverde and Chacra wells.

Despite the large disparity in estimated reserves, both formations have very similar reserve lives. Exhibit 8 shows initial rate versus reserves for the type decline scenario used. The following table compares reserve lives from each of the two zones assuming a 10 MCF/D economic limit. An average reserve ratio was taken for this example:

FORMATION	RESERVES (MMCF)	INITIAL RATE (MCF/D)	ECONOMIC* LIMIT (MCF/D)	RESERVE LIFE (YRS)
Mesaverde	1150	735	8	31.7
Chacra	235	160	2	31.2
			10	

Produced Chacra gas is extremely dry. Chacra wells in the vicinity of the subject well produce less than 1 BBL/MMCF of water and condensate (combined) on an average basis. Local Mesaverde wells produce considerably more liquids than do the Chacra wells. Average condensate and water yields are approximately 5 BBL/MMCF and 2 BBL/MMCF, respectively, for the Mesaverde producers. As the production capacity of the Mesaverde zone decreases with time, its ability to unload produced fluids also decreases. The increased

^{*}The economic limit was allocated roughly according to the reserve ratio: 83% Mesaverde / 17% Chacra

CH/MV Commingling Application Florance D LS #14A Page 3

volume of commingled dry Chacra gas through the tubing will help to lift the produced Mesaverde liquids. Over the life of the well, the commingled Chacra production will definitely improve the flow efficiency of the Mesaverde zone. Early in the life of the well, while both zones are producing at maximum rates, there will be a slight increase in friction loss (tubing) due to the additional volume of Chacra gas. Exhibit 9 shows that the flowing bottom hole pressure goes from 390 psi for a well producing 750 mcf/d, to 405 psi for a well producing at 1250 mcf/d. An increased pressure drop of 15 psi is insignificant, and would represent a maximum considering the initial rate of the Chacra production will be much closer to 200 mcf/d rather than 500 mcf/d.

All operators of offset wells have been notified in writing of the proposed commingling within the time limits provided under rule #1207.

S. M. Struna

Petroleum Engineer

SMS:pe:3/13/86

4131R

Attachment

WELL:

Florance D LS #14A

LOCATION:

SE/4 Sec. 21 T27N, R8W

Estimated Chacra	completed interval midpoint:	3356	ft.
		4707	

Estimated Mesaverde completed interval midpoint: 4727 ft.

Average surrounding Chacra ISIP's (surface) 1002 psi

Average surrounding Mesaverde ISIP's (surface) 867 psi

Average Surrounding Chacra Completed Interval Midpoint: 3244 ft.

Average surrounding Mesaverde Completed Interval Midpoint: 4616 ft.

Chacra Pressure Gradient .3382 psi/ft.

Mesaverde Pressure Gradient .2143 psi/ft.

Anticipated Chacra shut in pressure (bottom hole): 1135 psi

Anticipated Mesaverde shut in pressure (bottom hole): 1012 psi

Anticipated pressures adjusted to 4000 ft. datum:

Chacra 1154 psi Mesaverde 992 psi

Ratio 992/1154 = .8602

Satisfies 50% pressure requirement

SMS:pe:2/24/86

4086R-5

CHARCA

R9W	l		R 8	3 W		·	1
36	31					36	T 28 N
1	6		870 ●	1031 ●		1	
●951			989 ●	1063 ● 913 ●	1076 1043 955 1043		1
●979		1020			882• 1125	1006 1084 1063 1107	T
	·				968 1042 885	● 1023 970 ● 975	27 N
					1150	925 874 • 1029 • 1013	
36	31					36	

Initial Shut-In Pressure (PSI)

Producing Well

Florance D LS #14A

MESAVERDE

R9W			R 8	3 W			7
36	31		■735			■ 785 36	T 28 N
		720	<u> </u>				1
1 .	6		735		●814	1	
6 29		805 ■	918 •		1033		
					• .		
				7 07		1093	T 27
7 56						•	N
					1000	979	 -
				918		990 • 813	Ì
	825 •	940		788	763 ●	953 •	
• 724 36	● 787 31				1049	36	
			K		1013 956		<u>.</u>

Initial Shut-In Pressure (PSI)

- Recent Infili (post 1978)
- 1985 Tenneco Completion

Florance D LS #14A

EXHIBIT 2

Assumptions Used in Pressure Calculations

Chacra

Gravity = .665*

 $P_C = 670.4 \text{ psia}$

 $T_C = 378.6$ °R

Mesaverde

Gravity = .701*

 $P_C = 669.1 \text{ psia}$

 $T_{c} = 389.7^{\circ}R$

Local Temperature Gradient Ambient Temperature .0139°F/ft. 60°F

Pressures were calculated using a modified Cullender & Smith method.

*Gas gravities estimated from chromatographic analyses of local Chacra and Mesaverde gas samples.

SMS:pe:2/24/86

4086R

INITIAL SHUT-IN PRESSURE DATA

RECENT MESAVERDE INFILL WELLS (POST 1978)

WELL NAME	LOCATI	<u>on</u>	<u>OPERATOR</u>	<u>DOFP</u>	INITIAL SHUT- IN PRESSURE
State Com #47	SW/2	27N 8W	Mesa	2/79	814
Dawson A #1M	NW/4	27N 8W	TOC	3/81	735
Graham C WN Fed					
Com #1A	SE/9	27N 8W	Arco	3/78	918
Federal J #1A	SE/11	27W 8W	AAA Oper. Co. Inc.	4/80	1133
Federal E #3A	SW/13	27N 8W	AAA Oper. Co. Inc.	4/80	1193
Federal R #1A	SE/15	27N 8W	AAA Oper. Co. Inc.	3/84	707
Federal E #2A	SE/23	27N 8W	AAA Oper. Co. Inc.	10/79	1000
Marron WN Fed	SE/24	27N 8W	Arco	4/78	9 79
Com #6A					
Hammond #41R	NE/25	27N 8W	Russell WM. C.	2/78	813
Federal E #1A	NW/25	27N 8W	AAA Oper. Co. Inc.	10/79	990
Federal E #1	SE/25	27N 8W	AAA Oper. Co. Inc.	6/72	953
Hammond #55A	SE/26	27N 8W	Great Lakes Chem.	3/79	763
Marron WN Fed	NW/27	27N 8W	Arco	1/78	9 18
Com #1A					
Marron #5A	SE/27	27N 8W	Western Oil & Min.	7/79	788
Linda #1A	NW/31	27N 8W	Consolidated O & G	6/79	787
Hammond #5	NW/35	27N 8W	Great Lakes Chem.	2/78	1049
Hammond WN Fed #7A	SE/35	27N 8W	Arco	4/79	956
Hammond #47R	SW/35	27N 8W	R & G Drilling Co.	4/78	1013
Blanco #2A	SE/12	27N 9W	NWPL	5/82	629
Huerfanito Unit #77A	NW/24	27N 9W	EPNG	3/83	756
Huerfanito Unit #86A	NW/36	27N 9W	EPNG	1/80	724

1985 TENNECO MESAVERDE INFILL WELLS

WELL NAME LOCATION OPERATOR DOFP	IN PRESSURE
Riddle F LS #5A SE/32 28N 8W	720
Bolack B LS #1A NW/33 28N 8W	735
Blanco LS #12A NW/36 28N 8W	785
Schwertdfeger A SE/8 27N 8W LS #20M	805
Bolack C LS #12A SE/29 27N 8W	. 940
Bolack C LS #14A SE/30 27N BW	825

Chacra/Mesaverde Commingling Application Initial Shut-in Pressure Data Page 2

OTERO CHACRA OFFSET WELLS

WELL NAME	LOCATI	<u>.on</u>	<u>OPERATOR</u>	<u>DOFP</u>	INITIAL SHUT- IN PRESSURE
Graham #3	SE/3	27N 8W	Great Lakes Chem.	8/77	1031
Graham #1A	SE/4	27N 8W	Great Lakes Chem.	7/76	870
Graham C WN Fed Com #1A	SE/9	27N 8W	Arco	3/78	989
Graham #51	NE/10	27N 8W	Russell William C.	10/72	1063
Graham #96	SE/10	27N 8W	Russell William C.	12/83	913
Federal J #1	NE/11	27N 8W	AAA Oper. Co. Inc.	7/72	1043
Largo Fed. #4	NW/11	27N BW	AAA Oper. Co. Inc.	12/73	1076
Largo Fed. #1	SW/11	27N BW	AAA Oper. Co. Inc.	7/72	9 55
Federal J #2	SE/11	27N 8W	AAA Oper. Co. Inc.	4/80	1043
Largo Fed #5	NE/13	27N BW	AAA Oper. Co. Inc.	12/73	1084
Federal E #3	NW/13	27N 8W	AAA Oper. Co. Inc.	7/72	1006
Largo Federal #2	SE/13	27N 8W	AAA Oper. Co. Inc.	5/73	1107
Federal E #6	SW/13	27N 8W	AAA Oper. Co. Inc.	4/80	1063
Largo Federal #3	NE/14	27N 8W	AAA Oper. Co. Inc.	5/73	8 82
Largo Federal #6	SE/14	27N 8W	AAA Oper. Co. Inc.	12/73	1125
Florance D LS #17	SE/17	27N 8W	TOC	10/72	1020
Marron #94	NW/23	27N 8W	Russell William C.	1/80	968
Federal E #2	NE/23	27N 8W	AAA Oper. Co. Inc.	6/72	1042
Federal E #5	SE/23	27N 8W	AAA Oper. Co. Inc.	9/79	8 85
Marron #6A	NW/24	27N 8W	Western Oil & Min.	2/76	1023
Marron WN Fed. Com #6A	SE/24	27N 8W	Arco	4/78	975
Snodgrass #1	SW/24	27N 8W	Western Oil & Min.	4/78	970
Federal E #4	NW/25	27N 8W	AAA Oper. Co. Inc.	9/79	874
Hammond #91	NE/25	27N 8W	Russell William C.	12/77	925
Federal E #1	SW/25	27N 8W	AAA Oper. Co. Inc.	7/72	1029
Hammond #92	SE/25	27N 8W	Russell William C.	1/80	1013
Hammond #52	NE/26	27N 8W	Russell William C.	12/74	1150
Blanco #25	NW/12	27N 9W	NWPL	6/75	951
John Charles #7E	NW/13	27N 9W	Getty	5/81	979

CHACRA/MESAVERDE COMMINGLING APPLICATION RESERVE ESTIMATION AND PRODUCTION ALLOCATION

WELL:

Florance D LS #14A

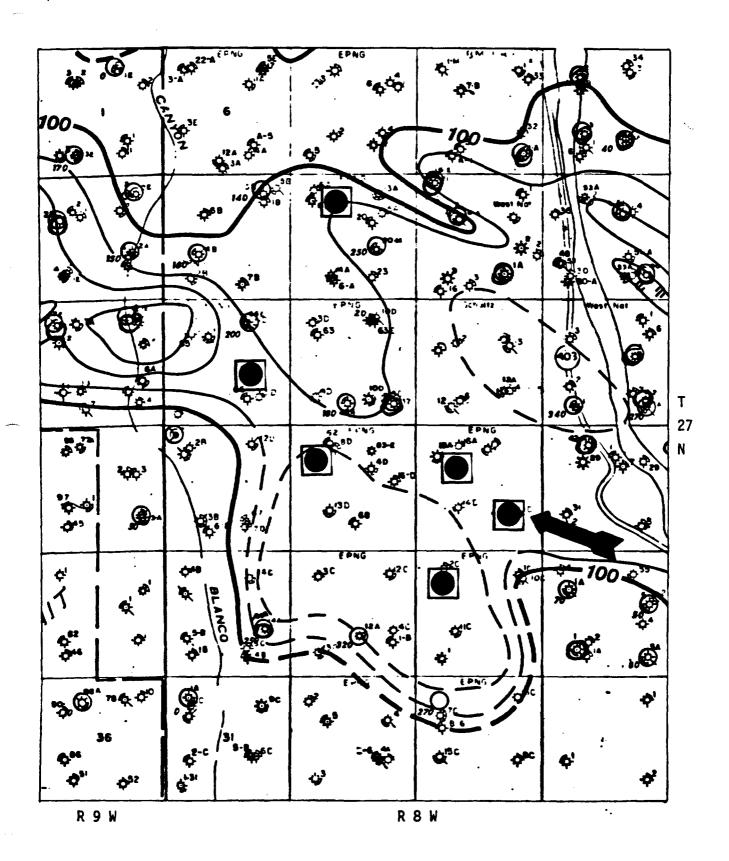
LOCATION:

SE/4 Sec. 21 T27N, R8W

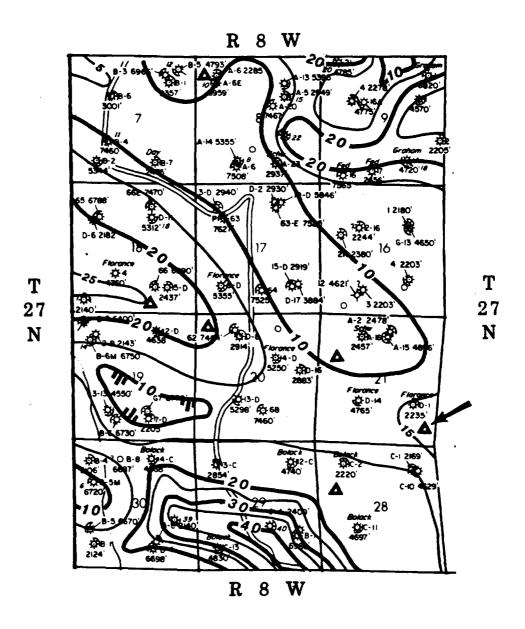
Chacra Reserves

Total Estimated Reserves (Exhibit 3) = 250 MMCF

Mesaverde Reserves


Net Pay Thickness (Exhibit 4) = 16 ft. Total Estimated Reserves (Exhibit 5) = 950 MMCF

Production Allocation


Chacra: (250)/(250 + 950) = .2083 = 20.83%

Mesaverde: (950)/(250 + 950) = .7917 = 79.17%

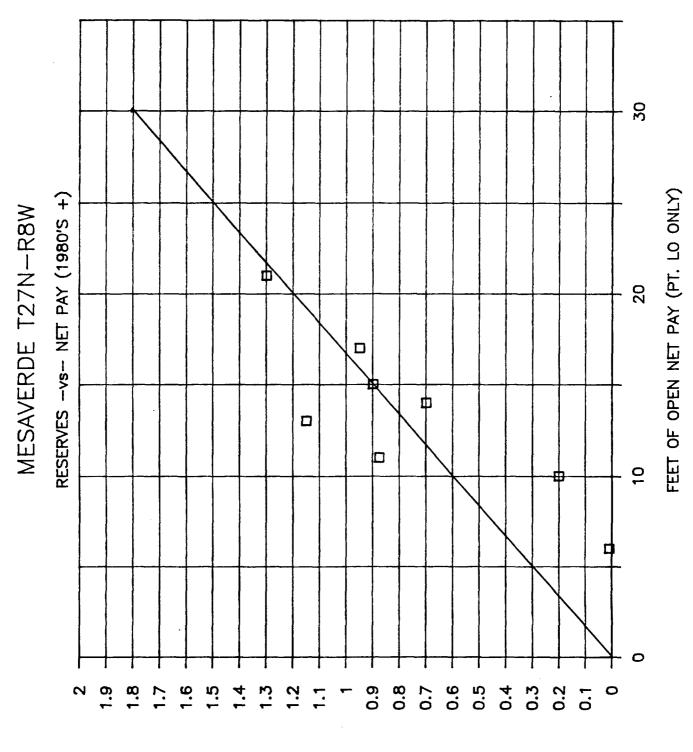
SMS:pe:3/11/86 4129R-1

Florance D LS #14A 250 MMCF

LEGEND

- PICTURED CLIFFS PENETRATION
- M CHACRA PENETRATION
- MESA VERDE PENETRATION
- & GALLUP PENETRATION
- & DAKOTA PENETRATION
- A PROPOSED LOCATION

Tenneco Oil Exploration and Production WESTERN ROCKY MOUNTAIN DIVISION



San Juan Basin

CLIFFHOUSE & POINT LOOKOUT
COMPOSITE NET PAY ISOPACH

C.I.=10' 1:4000

MKD 3/4/86

(Lyonaduqa) KEZEKAEZ (WMCL)

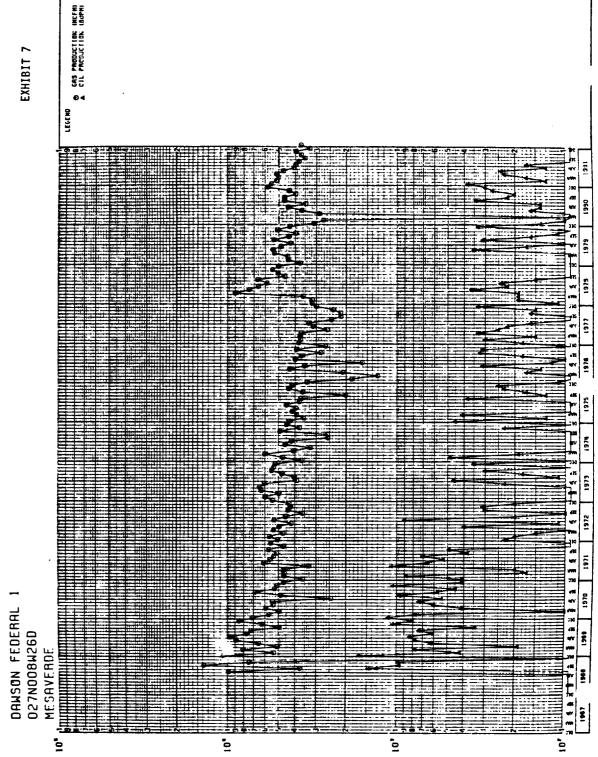
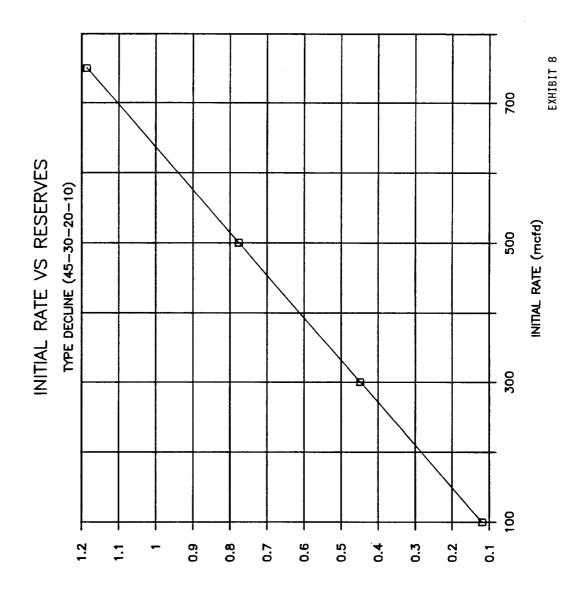



EXHIBIT 7

(Lµonsduqs) KEZEKAEZ (WWCL)

BOTTOM HOLE PRESSURE (PSIA)

COMMINGLING CAPITAL SAVINGS

Dual Wellhead	\$ 5,000
Separators	\$ 5,500
1 1/4" Tubing	\$17,000
PKR	\$ 3,500
Blast Jts/Pup Jts	\$ 5,000
Miscellaneous Plugs, Etc.	\$ 2,000
Casing	\$ 5,000 (Less 7", More 4 1/2")
Drilling Miscellaneous	\$ 2,500 (Deeper 8 1/4" hole)
Completion Miscellaneous	\$10,500 (Rig time, nitrogen)
Taxes - Misc. Contingency (3%)	\$ 2,000
	
	\$ 57,000

The above total represents the additional capital required to produce the Chacra reserves separately. In light of current gas market trends (gas price estimate \$1.50 - 2.00/MCF), estimated demand (50-70% takes), hook-up delay, and associated risk, Chacra reserves are insufficient to justify the above incremental investment. To prevent the waste of these Chacra reserves it is necessary to obtain commingling approval. Correlative rights will be protected. The commingled wellbore will more efficiently recover Mesaverde reserves and extend the economic life of the well.

SMS:pe:3/17/86

4135R

CHACRA/MESAVERDE COMMINGLING APPLICATION FLORANCE D LS #14A WELL BORE DIAGRAM

CASING: SURFACE 9-5/8" (36#/FT) a 280 FEET CASING: INTERMEDIATE 7" (23#/FT) 250 FEET INTO LEWIS SHALE CHACRA PERFORATIONS @ 3356 FEET 2-3/8" (4.7#/FT) -> MESAVERDE PERFORATIONS @ 4727 FEET ONE JOINT ABOVE BOTTOM MESAVERDE **PERFORATION** LINER: 4-1/2" (10.5#/FT) TO T.D. 4877 FEET

TUBING:

WELL NAME:

BOLACK C LS #11A

LOCATION:

NW/4 SEC. 28 T27N, R8W

Tenneco Oil Company currently plans to drill the captioned well during the third or fourth quarter of 1986. The well is anticipated to encounter productive sands in both the Mesaverde and Chacra formations. Tenneco Oil Company seeks to obtain the Commission's approval to down-hole commingle production from the Chacra and Mesaverde formations. The attached documentation indicates that the two zones proposed for commingling will satisfy all requirements as stipulated by the Commission (303C(b)(1-6).

The Mesaverde formation is the primary target of the captioned well. In light of current market conditions estimated reserves associated with a Chacra completion at the above location are considered to be insufficient to justify the capital expenditure required to separately produce these reserves. In the event that approval to commingle production is not granted, the Chacra interval would not be completed.

Estimated bottom hole pressures for the two zones were extrapolated statistically from offset Mesaverde and Chacra wells (Exhibits 1 & 2). The anticipated pressure of the lower pressured zone (Mesaverde) is estimated to be 87.68% of the pressure anticipated in the higher pressured zone (Chacra), when adjusted to a common datum. Therefore, rules 303C(b)(2) and 303C(b)(6) are satisfied.

A compatibility test was performed using the produced Chacra water from a nearby offset (Dryden LS #1A; SE/4 Sec. 28 T28N, R8W) and the produced Mesaverde water from another nearby offset (Schwerdtfeger A LS #14; SW/4 Sec. 8 T27N, R8W). The test indicated that no scale or precipitate problems should result when production streams from these two horizons are commingled. Water analyses also indicated that corresponding salinities are similar, and no formation damage should occur due to the presence of produced water from another zone. Therefore, rules 303C(b)(3) and 303C(b)(4) are satisfied.

Common ownership exists between the Chacra and Mesaverde zones, satisfying rule 303C(b)(5). A detailed ownership breakdown is attached.

It is recommended that production be allocated on a strict percentage basis according to the fraction of total reserves contributed by each zone. Chacra reserves were estimated from the attached iso-reserve map (Exhibit 3). Mesaverde reserves were estimated from the attached net pay

CH/MV Commingling Application Bolack C LS #11A Page 2

isopach map (Exhibit 4) and a linear correlation of reserves versus net pay (Exhibit 5). Exhibit 5 was obtained by plotting estimated ultimate recoveries (decline curve derived) from recent (1980+) Mesaverde wells against the amount of net perforated pay as determined from log analysis and completion reports. Chacra reserves are estimated to be 300 MMCF, while Mesaverde reserves are estimated to be 1025 MMCF. Production allocated to the Chacra should be 22.64% of total, and the production allocated to the Mesaverde should be 77.36% of total.

Both Chacra and Mesaverde wells in this area exhibit similarly shaped decline curves. Exhibits 6 and 7 are representative type decline curves for local Mesaverde and Chacra wells.

Despite the large disparity in estimated reserves, both formations have very similar reserve lives. Exhibit 8 shows initial rate versus reserves for the type decline scenario used. The following table compares reserve lives from each of the two zones assuming a 10 MCF/D economic limit. An average reserve ratio was taken for this example:

FORMATION	RESERVES (MMCF)	INITIAL RATE (MCF/D)	ECONOMIC* LIMIT (MCF/D)	RESERVE LIFE (YRS)
Mesaverde	1150	735	8	31.7
Chacra	235	160	2	31.2
			_	
			10	

Produced Chacra gas is extremely dry. Chacra wells in the vicinity of the subject well produce less than 1 BBL/MMCF of water and condensate (combined) on an average basis. Local Mesaverde wells produce considerably more liquids than do the Chacra wells. Average condensate and water yields are approximately 5 BBL/MMCF and 2 BBL/MMCF, respectively, for the Mesaverde producers. As the production capacity of the Mesaverde zone decreases with time, its ability to unload produced fluids also decreases. The increased

^{*}The economic limit was allocated roughly according to the reserve ratio: 83% Mesaverde / 17% Chacra

CH/MV Commingling Application Bolack C LS #11A Page 3

volume of commingled dry Chacra gas through the tubing will help to lift the produced Mesaverde liquids. Over the life of the well, the commingled Chacra production will definitely improve the flow efficiency of the Mesaverde zone. Early in the life of the well, while both zones are producing at maximum rates, there will be a slight increase in friction loss (tubing) due to the additional volume of Chacra gas. Exhibit 9 shows that the flowing bottom hole pressure goes from 390 psi for a well producing 750 mcf/d, to 405 psi for a well producing at 1250 mcf/d. An increased pressure drop of 15 psi is insignificant, and would represent a maximum considering the initial rate of the Chacra production will be much closer to 200 mcf/d rather than 500 mcf/d.

All operators of offset wells have been notified in writing of the proposed commingling within the time limits provided under rule #1207.

S. M. Struna

Petroleum Engineer

SMS:pe:3/13/86

4131R

Attachment

WELL:

Bolack C LS #11A

LOCATION:

NW/4 Sec. 28 T27N, R8W

Estimated	Chacra	completed	interval	midpoint:	3160 ft.

Estimated Mesaverde completed interval midpoint: 4531 ft.

Average surrounding Chacra ISIP's (surface) 1002 psi

Average surrounding Mesaverde ISIP's (surface) 867 psi

Average Surrounding Chacra Completed Interval Midpoint: 3244 ft.

Average surrounding Mesaverde Completed Interval Midpoint: 4616 ft.

Chacra Pressure Gradient .3382 psi/ft.

Mesaverde Pressure Gradient .2143 psi/ft.

Anticipated Chacra shut in pressure (bottom hole): 1069 psi

Anticipated Mesaverde shut in pressure (bottom hole): 971 psi

Anticipated pressures adjusted to 4000 ft. datum:

Chacra 1092 psi

Mesaverde 957 psi

Ratio 957/1092 = .8768

Satisfies 50% pressure requirement

SMS:pe:2/24/86

4086R-4

CHARCA

R 9 W	1		R &	W			_
36	31					36	T 28 N
1	6		870 ●	1031 ●		1	
9 951			989 ●	1063 ● 913 ●	1076 1043 955 1043		
●979		1020			882 • 1125 •	1006 1084 1063 1107	T
					968 1042 885	• 1023 970 • 975	27 N
					1150	925 874 1029 1013	
26	31					36	

Initial Shut-In Pressure (PSI)

• Producing Well

■ Bolack C LS #11A

MESAVERDE

R 9 W				R 8 W				
	36	31		■735			■ 785 36	T 28
			720					28 N
	1 .	6		735		●814	1	
	6 29		805 ■	918 •		1033		
					707 •	٠.	• 1093	T
	7 56					1000		27 N
		825 •	940		918 78 8	763	990 • 813 990 • 953	+
	● 724 36	• 787 31				1049 1013 956	36	4

Initial Shut-In Pressure (PSI)

- Recent Infill (post 1978)
- 1985 Tenneco Completion
- Bolack C LS #11A

Assumptions Used in Pressure Calculations

Chacra

$$P_c = 670.4 \text{ psia}$$

$$T_{C} = 378.6^{\circ}R$$

Mesaverde

$$Gravity = .701*$$

$$P_c = 669.1 \text{ psia}$$

$$T_c = 389.7^{\circ}R$$

Local Temperature Gradient Ambient Temperature .0139°F/ft. 60°F

Pressures were calculated using a modified Cullender & Smith method.

*Gas gravities estimated from chromatographic analyses of local Chacra and Mesaverde gas samples.

SMS:pe:2/24/86

4086R

INITIAL SHUT-IN PRESSURE DATA

RECENT MESAVERDE INFILL WELLS (POST 1978)

WELL NAME	LOCATI	<u>ON</u>	<u>OPERATOR</u>	<u>DOFP</u>	INITIAL SHUT- IN PRESSURE
State Com #47	SW/2	27N 8W	Mesa	2/79	814
Dawson A #1M	NW/4	27N 8W	TOC	3/81	735
Graham C WN Fed					
Com #1A	SE/9	27N BW	Arco	3/78	9 18
Federal J #1A	SE/11	27W BW	AAA Oper. Co. Inc.	4/80	1133
Federal E #3A	SW/13	27N BW	AAA Oper. Co. Inc.	4/80	1193
Federal R #1A	SE/15	27N 8W	AAA Oper. Co. Inc.	3/84	707
Federal E #2A	SE/23	27N 8W	AAA Oper. Co. Inc.	10/79	1000
Marron WN Fed	SE/24	27N BW	Arco	4/78	979
Com #6A					
Hammond #41R	NE/25	27N 8W	Russell WM. C.	2/78	813
Federal E #1A	NW/25	27N 8W	AAA Oper. Co. Inc.	10/79	9 90
Federal E #1	SE/25	27N 8W	AAA Oper. Co. Inc.	6/72	953
Hammond #55A	SE/26	27N 8W	Great Lakes Chem.	3/79	763
Marron WN Fed	NW/27	27N 8W	Arco	1/78	918
Com #1A					
Marron #5A	SE/27	27N 8W	Western Oil & Min.	7/79	788
Linda #1A	NW/31	27N 8W	Consolidated O & G	6/79	787
Hammond #5	NW/35	27N 8W	Great Lakes Chem.	2/78	1049
Hammond WN Fed #7A	SE/35	27N 8W	Arco	4/79	956
Hammond #47R	SW/35	27N 8W	R & G Drilling Co.	4/78	1013
Blanco #2A	SE/12	27N 9W	NWPL	5/82	629
Huerfanito Unit #77A	NW/24	27N 9W	EPNG	3/83	756
Huerfanito Unit #86A	NW/36	27N 9W	EPNG	1/80	724

1985 TENNECO MESAVERDE INFILL WELLS

LOCATION	<u>OPERATOR</u>	<u>DOFP</u>	INITIAL SHUT- IN PRESSURE	
SE/32 28N 8W			720	
NW/33 28N 8W			735	
NW/36 28N 8W			785	
SE/8 27N 8W			805	
SE/29 27N 8W			· 940	
SE/30 27N 8W			825	
	SE/32 28N 8W NW/33 28N 8W NW/36 28N 8W SE/8 27N 8W SE/29 27N 8W	SE/32 28N 8W NW/33 28N 8W NW/36 28N 8W SE/8 27N 8W SE/29 27N 8W	SE/32 28N 8W NW/33 28N 8W NW/36 28N 8W SE/8 27N 8W SE/29 27N 8W	

Chacra/Mesaverde Commingling Application Initial Shut-in Pressure Data Page 2

OTERO CHACRA OFFSET WELLS

WELL NAME	LOCATIO	<u>on</u>	<u>OPERATOR</u>	<u>DOFP</u>	INITIAL SHUT- IN PRESSURE
Graham #3	SE/3	27N 8W	Great Lakes Chem.	8/77	1031
Graham #1A	SE/4	27N 8W	Great Lakes Chem.	7/76	870
Graham C WN Fed Com #1A	SE/9	27N 8W	Arco	3/78	989
Graham #51	NE/10	27N 8W	Russell William C.	10/72	1063
Graham #96	SE/10	27N 8W	Russell William C.	12/83	913
Federal J #1	NE/11	27N 8W	AAA Oper. Co. Inc.	7/72	1043
Largo Fed. #4	NW/11	27N 8W	AAA Oper. Co. Inc.	12/73	1076
Largo Fed. #1	SW/11	27N 8W	AAA Oper. Co. Inc.	7/72	955
Federal J #2	SE/11	27N 8W	AAA Oper. Co. Inc.	4/80	1043
Largo Fed #5	NE/13	27N 8W	AAA Oper. Co. Inc.	12/73	1084
Federal E #3	NW/13	27N 8W	AAA Oper. Co. Inc.	7/72	1006
Largo Federal #2	SE/13	27N 8W	AAA Oper. Co. Inc.	5/73	1107
Federal E #6	SW/13	27N 8W	AAA Oper. Co. Inc.	4/80	1063
Largo Federal #3	NE/14	27N 8W	AAA Oper. Co. Inc.	5/73	882
Largo Federal #6	SE/14	27N 8W	AAA Oper. Co. Inc.	12/73	1125
Florance D LS #17	SE/17	27N 8W	TOC	10/72	1020
Marron #94	NW/23	27N 8W	Russell William C.	1/80	968
Federal E #2	NE/23	27N 8W	AAA Oper. Co. Inc.	6/72	1042
Federal E #5	SE/23	27N 8W	AAA Oper. Co. Inc.	9/79	88 5
Marron #6A	NW/24	27N 8W	Western Oil & Min.	2/76	1023
Marron WN Fed. Com #6A	SE/24	27N 8W	Arco	4/78	975
Snodgrass #1	SW/24	27N 8W	Western Oil & Min.	4/78	970
Federal E #4	NW/25	27N 8W	AAA Oper. Co. Inc.	9/79	874
Hammond #91	NE/25	27N 8W	Russell William C.	12/77	925
Federal E #1	SW/25	27N 8W	AAA Oper. Co. Inc.	7/72	1029
Hammond #92	SE/25	27N 8W	Russell William C.	1/80	1013
Hammond #52	NE/26	27N 8W	Russell William C.	12/74	1150
Blanco #25	NW/12	27N 9W	NWPL	6/75	951
John Charles #7E	NW/13	27N 9W	Getty	5/81	979

CHACRA/MESAVERDE COMMINGLING APPLICATION RESERVE ESTIMATION AND PRODUCTION ALLOCATION

WELL:

Bolack C LS #11A

LOCATION:

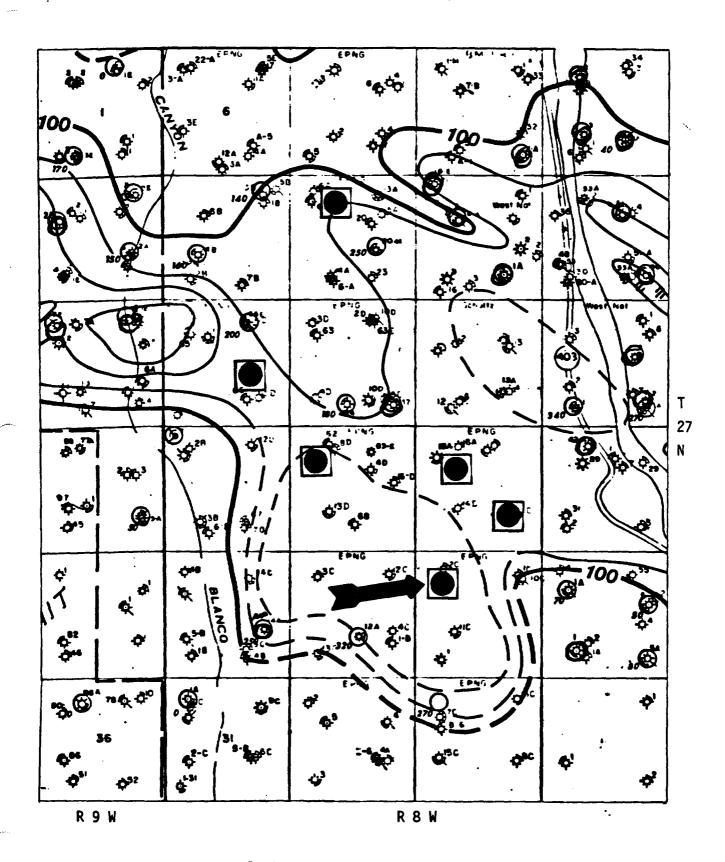
NW/4 Sec. 28 T27N, R8W

Chacra Reserves

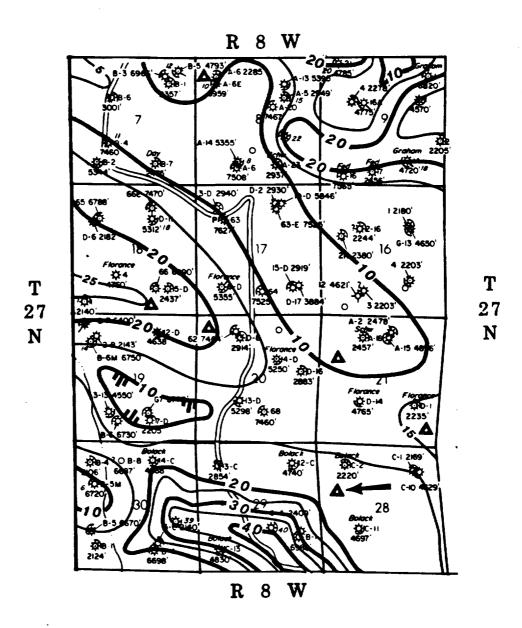
Total Estimated Reserves (Exhibit 3) = 300 MMCF

Mesaverde Reserves

Net Pay Thickness (Exhibit 4) = 17 ft. Total Estimated Reserves (Exhibit 5) = 1025 MMCF


Production Allocation

Chacra: (300)/(300 + 1025) = .2264 = 22.64%


Mesaverde: (1025)/(300 + 1025) = .7736 = 77.36%

SMS:pe:3/11/86

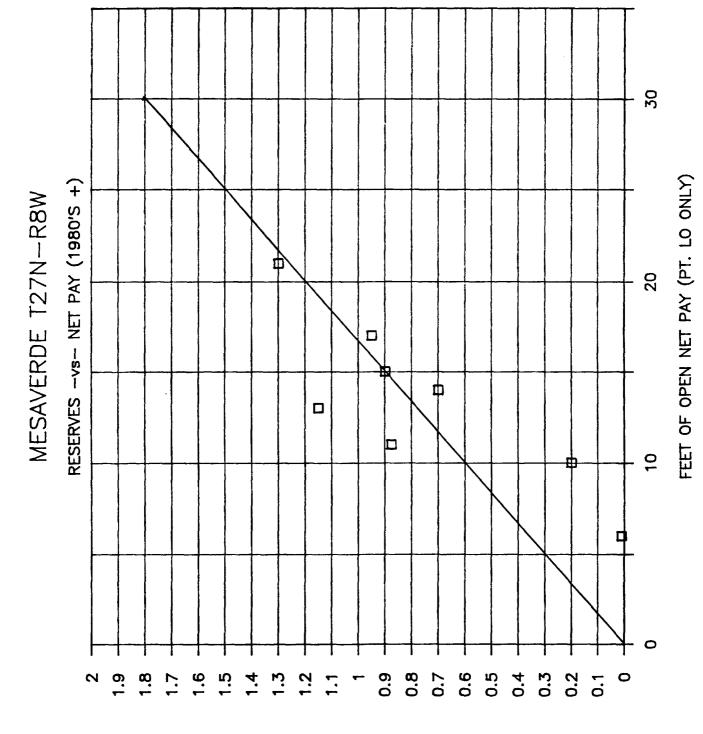
4129R-5

Bolack C LS #11A 300 MMCF

LEGEND

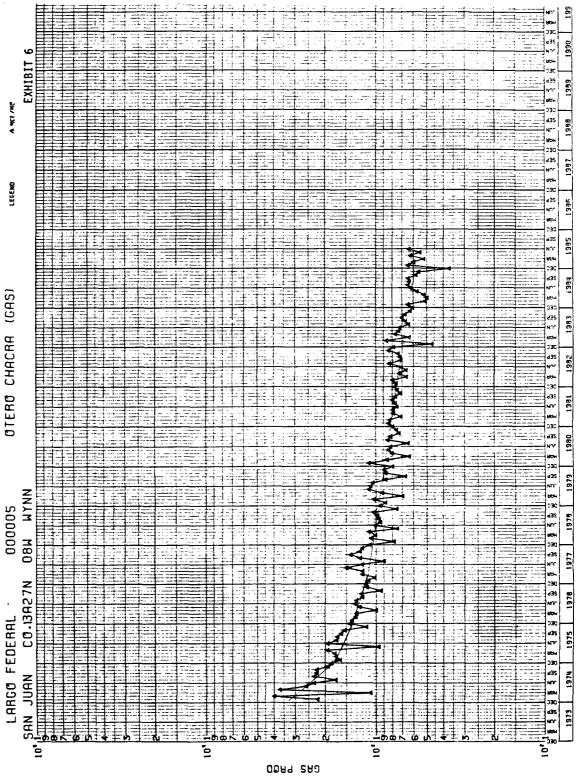
- PICTURED CLIFFS PENETRATION
- CHACRA PENETRATION
- MESA VERDE PENETRATION
- GALLUP PENETRATION
- A DAKOTA PENETRATION
- A PROPOSED LOCATION

Tenneco Oil
Exploration and Production
WESTERN ROCKY MOUNTAIN DIVISION



San Juan Basin

CLIFFHOUSE & POINT LOOKOUT
COMPOSITE NET PAY ISOPACH


C.I. = 10' 1:4000

MKD 3/4/86

(Lyonaduqa) BEZEBAEZ (WMCE)

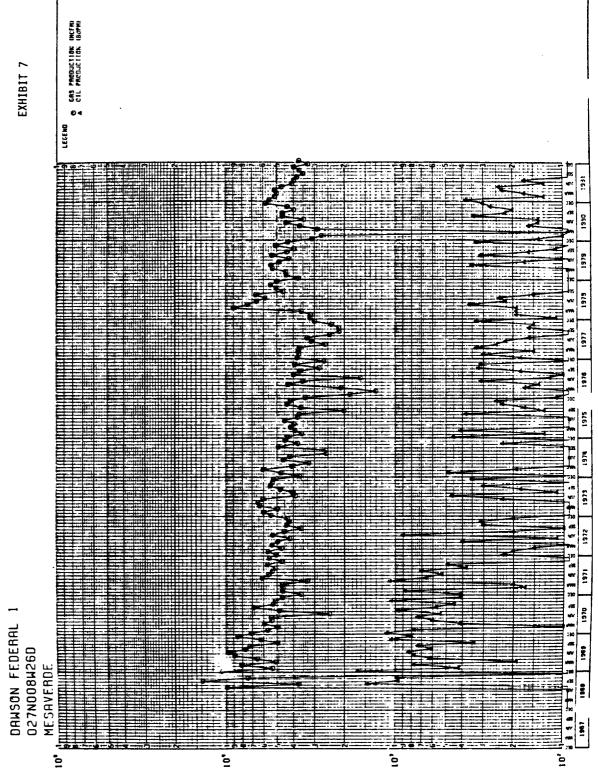
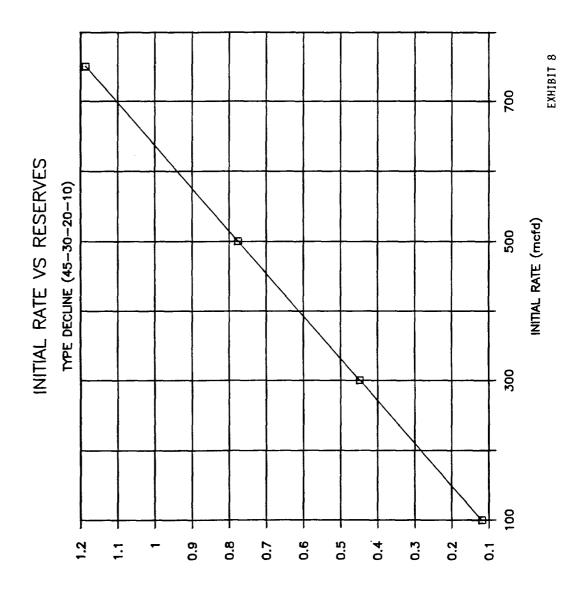
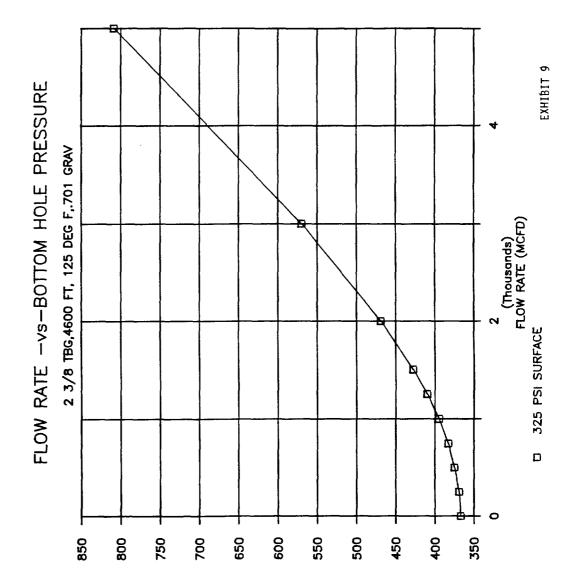




EXHIBIT 7

(Lyonsauqs) KEZEKAEZ (WWCL)

COMMINGLING CAPITAL SAVINGS

Dual Wellhead	\$ 5,000
Separators	\$ 5,500
1 1/4" Tubing	\$17,000
PKR	\$ 3,500
Blast Jts/Pup Jts	\$ 5,000
Miscellaneous Plugs, Etc.	\$ 2,000
Casing	\$ 5,000 (Less 7", More 4 1/2")
Drilling Miscellaneous	\$ 2,500 (Deeper 8 1/4" hole)
Completion Miscellaneous	\$10,500 (Rig time, nitrogen)
Taxes - Misc. Contingency (3%)	\$ 2,000
	\$ 57,000

The above total represents the additional capital required to produce the Chacra reserves separately. In light of current gas market trends (gas price estimate \$1.50 - 2.00/MCF), estimated demand (50-70% takes), hook-up delay, and associated risk, Chacra reserves are insufficient to justify the above incremental investment. To prevent the waste of these Chacra reserves it is necessary to obtain commingling approval. Correlative rights will be protected. The commingled wellbore will more efficiently recover Mesaverde reserves and extend the economic life of the well.

SMS:pe:3/17/86

4135R

CHACRA/MESAVERDE COMMINGLING APPLICATION BOLACK C LS #11A WELL BORE DIAGRAM

CASING: SURFACE 9-5/8" (36#/FT) a 280 FEET CASING: INTERMEDIATE 7" (23#/FT) 250 FEET INTO LEWIS SHALE CHACRA PERFORATIONS @ 3160 FEET 2-3/8" (4.7#/FT) → MESAVERDE PERFORATIONS @ 4531 FEET ONE JOINT ABOVE BOTTOM MESAVERDE **PERFORATION** LINER: 4-1/2" (10.5#/FT) TO T.D. 4681 FEET

TUBING:

WELL NAME:

FLORANCE D LS #11A

LOCATION:

SE/4 SEC. 18 T27N. R8W

Tenneco Oil Company currently plans to drill the captioned well during the third or fourth quarter of 1986. The well is anticipated to encounter productive sands in both the Mesaverde and Chacra formations. Tenneco Oil Company seeks to obtain the Commission's approval to down-hole commingle production from the Chacra and Mesaverde formations. The attached documentation indicates that the two zones proposed for commingling will satisfy all requirements as stipulated by the Commission (303C(b)(1-6)).

The Mesaverde formation is the primary target of the captioned well. In light of current market conditions estimated reserves associated with a Chacra completion at the above location are considered to be insufficient to justify the capital expenditure required to separately produce these reserves. In the event that approval to commingle production is not granted, the Chacra interval would not be completed.

Estimated bottom hole pressures for the two zones were extrapolated statistically from offset Mesaverde and Chacra wells (Exhibits 1 & 2). The anticipated pressure of the lower pressured zone (Mesaverde) is estimated to be 87.67% of the pressure anticipated in the higher pressured zone (Chacra), when adjusted to a common datum. Therefore, rules 303C(b)(2) and 303C(b)(6) are satisfied.

A compatibility test was performed using the produced Chacra water from a nearby offset (Dryden LS #1A; SE/4 Sec. 28 T28N, R8W) and the produced Mesaverde water from another nearby offset (Schwerdtfeger A LS #14; SW/4 Sec. 8 T27N, R8W). The test indicated that no scale or precipitate problems should result when production streams from these two horizons are commingled. Water analyses also indicated that corresponding salinities are similar, and no formation damage should occur due to the presence of produced water from another zone. Therefore, rules 303C(b)(3) and 303C(b)(4) are satisfied.

Common ownership exists between the Chacra and Mesaverde zones, satisfying rule 303C(b)(5). A detailed ownership breakdown is attached.

It is recommended that production be allocated on a strict percentage basis according to the fraction of total reserves contributed by each zone. Chacra reserves were estimated from the attached iso-reserve map (Exhibit 3). Mesaverde reserves were estimated from the attached net pay

CH/MV Commingling Application Florance D LS #11A Page 2

isopach map (Exhibit 4) and a linear correlation of reserves versus net pay (Exhibit 5). Exhibit 5 was obtained by plotting estimated ultimate recoveries (decline curve derived) from recent (1980+) Mesaverde wells against the amount of net perforated pay as determined from log analysis and completion reports. Chacra reserves are estimated to be 250 MMCF, while Mesaverde reserves are estimated to be 1450 MMCF. Production allocated to the Chacra should be 14.71% of total, and the production allocated to the Mesaverde should be 85.29% of total.

Both Chacra and Mesaverde wells in this area exhibit similarly shaped decline curves. Exhibits 6 and 7 are representative type decline curves for local Mesaverde and Chacra wells.

Despite the large disparity in estimated reserves, both formations have very similar reserve lives. Exhibit 8 shows initial rate versus reserves for the type decline scenario used. The following table compares reserve lives from each of the two zones assuming a 10 MCF/D economic limit. An average reserve ratio was taken for this example:

<u>FORMATION</u>	RESERVES (MMCF)	INITIAL RATE <u>(MCF/D)</u>	ECONOMIC* LIMIT (MCF/D)	RESERVE LIFE (YRS)
Mesaverde	1150	735	8	31.7
Chacra	235	160	2	31.2
			_	
			10	

Produced Chacra gas is extremely dry. Chacra wells in the vicinity of the subject well produce less than 1 BBL/MMCF of water and condensate (combined) on an average basis. Local Mesaverde wells produce considerably more liquids than do the Chacra wells. Average condensate and water yields are approximately 5 BBL/MMCF and 2 BBL/MMCF, respectively, for the Mesaverde producers. As the production capacity of the Mesaverde zone decreases with time, its ability to unload produced fluids also decreases. The increased

^{*}The economic limit was allocated roughly according to the reserve ratio: 83% Mesaverde / 17% Chacra

CH/MV Commingling Application Florance D LS #11A Page 3

volume of commingled dry Chacra gas through the tubing will help to lift the produced Mesaverde liquids. Over the life of the well, the commingled Chacra production will definitely improve the flow efficiency of the Mesaverde zone. Early in the life of the well, while both zones are producing at maximum rates, there will be a slight increase in friction loss (tubing) due to the additional volume of Chacra gas. Exhibit 9 shows that the flowing bottom hole pressure goes from 390 psi for a well producing 750 mcf/d, to 405 psi for a well producing at 1250 mcf/d. An increased pressure drop of 15 psi is insignificant, and would represent a maximum considering the initial rate of the Chacra production will be much closer to 200 mcf/d rather than 500 mcf/d.

All operators of offset wells have been notified in writing of the proposed commingling within the time limits provided under rule #1207.

S. M. Struna

Petroleum Engineer

SMS:pe:3/13/86

4131R

Attachment

WELL:

Florance D LS #11A

LOCATION:

SE/4 Sec. 18 T27N, R8W

Estimated Chacra completed interval midpoint: 3304 ft.

Estimated Mesaverde completed interval midpoint: 4675 ft.

Average surrounding Chacra ISIP's (surface) 1002 psi

Average surrounding Mesaverde ISIP's (surface) 867 psi

Average Surrounding Chacra Completed Interval Midpoint: 3244 ft.

Average surrounding Mesaverde Completed Interval Midpoint: 4616 ft.

Chacra Pressure Gradient .3382 psi/ft.

Mesaverde Pressure Gradient .2143 psi/ft.

Anticipated Chacra shut in pressure (bottom hole): 1069 psi

Anticipated Mesaverde shut in pressure (bottom hole): 971 psi

Anticipated pressures adjusted to 4000 ft. datum:

Chacra 1088 psi

Mesaverde 953 psi

Ratio 953/1088 = .8767

Satisfies 50% pressure requirement

SMS:pe:2/24/86

4086R-3

CHARCA

R 9 W	.		R 8	3 W		,	7
36	31					36	T 28 N
1	6		870 ●	1031 ●		1	
●951			989 ●	1063 ● 913 ●	1076 1043 955 1043		
●979		1020			882 • 1125	1006 1084 1063 1107	Т
	·				968 • 1042 . 885•	● 1023 970 ● 975	27 N
				-	1150	925 874 • 1029 • 1013	-
26	31					36	-

Initial Shut-In Pressure (PSI)

• Producing Well

Florance D LS #11A

MESAVERDE

,	R 9 W	L		R 6	3 W			7
	36	31		■735			■ 785 36	T 28 N
			720				9	N
	1 .	6		735		●814	1	
	• 629		805 ■	918 •		1033		
		•			707 •	•	1093	T 27
	7 56		ļ			• 1000	979	N
		825 •	940		918 788	763 •	990 • 813 990 • 953	
	• 724 36	● 787 31	,			1049 1013 956	36	

Initial Shut-In Pressure (PSI)

- Recent Infill (post 1978)
- 1985 Tenneco Completion
- Florance D LS #11A

Assumptions Used in Pressure Calculations

Chacra

$$P_c = 670.4 \text{ psia}$$

$$T_{C} = 378.6^{\circ}R$$

Mesaverde

$$Gravity = .701*$$

$$P_c = 669.1 \text{ psia}$$

$$T_c = 389.7^{\circ}R$$

Local Temperature Gradient Ambient Temperature .0139°F/ft. 60°F

Pressures were calculated using a modified Cullender & Smith method.

*Gas gravities estimated from chromatographic analyses of local Chacra and Mesaverde gas samples.

SMS:pe:2/24/86

4086R

INITIAL SHUT-IN PRESSURE DATA

RECENT MESAVERDE INFILL WELLS (POST 1978)

WELL NAME	LOCATI	<u>ON</u>	<u>OPERATOR</u>	<u>DOFP</u>	INITIAL SHUT- IN PRESSURE
State Com #47	SW/2	27N 8W	Mesa	2/79	814
Dawson A #1M	NW/4	27N 8W	TOC	3/81	735
Graham C WN Fed					
Com #1A	SE/9	27N 8W	Arco	3/78	918
Federal J #1A	SE/11	27W 8W	AAA Oper. Co. Inc.	4/80	1133
Federal E #3A	SW/13	27N 8W	AAA Oper. Co. Inc.	4/80	1193
Federal R #1A	SE/15	27N 8W	AAA Oper. Co. Inc.	3/84	707
Federal E #2A	SE/23	27N 8W	AAA Oper. Co. Inc.	10/79	1000
Marron WN Fed	SE/24	27N 8W	Arco	4/78	979
Com #6A				•	
Hammond #41R	NE/25	27N 8W	Russell WM. C.	2/78	813
Federal E #1A	NW/25	27N 8W	AAA Oper. Co. Inc.	10/79	990
Federal E #1	SE/25	27N 8W	AAA Oper. Co. Inc.	6/72	953
Hammond #55A	SE/26	27N 8W	Great Lakes Chem.	3/79	763
Marron WN Fed	NW/27	27N 8W	Arco	1/78	918
Com #1A					
Marron #5A	SE/27	27N 8W	Western Oil & Min.	7/79	788
Linda #1A	NW/31	27N 8W	Consolidated O & G	6/79	787
Hammond #5	NW/35	27N 8W	Great Lakes Chem.	2/78	1049
Hammond WN Fed #7A	SE/35	27N 8W	Arco	4/79	956
Hammond #47R	SW/35	27N 8W	R & G Drilling Co.	4/78	1013
Blanco #2A	SE/12	27N 9W	NWPL	5/82	629
Huerfanito Unit #77A	NW/24	27N 9W	EPNG	3/83	756
Huerfanito Unit #86A	NW/36	27N 9W	EPNG	1/80	724

1985 TENNECO MESAVERDE INFILL WELLS

WELL NAME	LOCATION	<u>OPERATOR</u>	<u>DOFP</u>	INITIAL SHUT- IN PRESSURE
Riddle F LS #5A	SE/32 28N 8W			720
Bolack B LS #1A	NW/33 28N 8W			735
Blanco LS #12A	NW/36 28N 8W			785
Schwertdfeger A LS #20M	SE/8 27N 8W			805
Bolack C LS #12A	SE/29 27N 8W			. 940
Bolack C LS #14A	SE/30 27N 8W			825

Chacra/Mesaverde Commingling Application Initial Shut-in Pressure Data Page 2

OTERO CHACRA OFFSET WELLS

WELL NAME	LOCATIO	<u>DN</u>	<u>OPERATOR</u>	<u>DOFP</u>	INITIAL SHUT- IN PRESSURE
Graham #3	SE/3	27N 8W	Great Lakes Chem.	8/77	1031
Graham #1A	SE/4	27N 8W	Great Lakes Chem.	7/76	870
Graham C WN Fed Com #1A	SE/9	27N 8W	Arco	3/78	989
Graham #51	NE/10	27N 8W	Russell William C.	10/72	1063
Graham #96	SE/10	27N BW	Russell William C.	12/83	913
Federal J #1	NE/11	27N BW	AAA Oper. Co. Inc.	7/72	1043
Largo Fed. #4	NW/11	27N BW	AAA Oper. Co. Inc.	12/73	1076
Largo Fed. #1	SW/11	27N BW	AAA Oper. Co. Inc.	7/72	955
Federal J #2	SE/11	27N BW	AAA Oper. Co. Inc.	4/80	1043
Largo Fed #5	NE/13	27N BW	AAA Oper. Co. Inc.	12/73	1084
Federal E #3	NW/13	27N BW	AAA Oper. Co. Inc.	7/72	1006
Largo Federal #2	SE/13	27N BW	AAA Oper. Co. Inc.	5/73	1107
Federal E #6	SW/13	27N BW	AAA Oper. Co. Inc.	4/80	1063
Largo Federal #3	NE/14	27N BW	AAA Oper. Co. Inc.	5/73	8 82
Largo Federal #6	SE/14	27N BW	AAA Oper. Co. Inc.	12/73	1125
Florance D LS #17	SE/17	27N BW	TOC	10/72	1020
Marron #94	NW/23	27N 8W	Russell William C.	1/80	968
Federal E #2	NE/23	27N BW	AAA Oper. Co. Inc.	6/72	1042
Federal E #5	SE/23	27N 8W	AAA Oper. Co. Inc.	9/79	885
Marron #6A	NW/24	27N 8W	Western Oil & Min.	2/76	1023
Marron WN Fed. Com #6A	SE/24	27N 8W	Arco	4/78	975
Snodgrass #1	SW/24	27N 8W	Western Oil & Min.	4/78	970
Federal E #4	NW/25	27N 8W	AAA Oper. Co. Inc.	9/79	874
Hammond #91	NE/25	27N 8W	Russell William C.	12/77	925
Federal E #1	SW/25	27N 8W	AAA Oper. Co. Inc.	7/72	1029
Hammond #92	SE/25	27N 8W	Russell William C.	1/80	1013
Hammond #52	NE/26	27N 8W	Russell William C.	12/74	1150
Blanco #25	NW/12	27N 9W	NWPL	6/75	951
John Charles #7E	NW/13	27N 9W	Getty	5/81	979

CHACRA/MESAVERDE COMMINGLING APPLICATION RESERVE ESTIMATION AND PRODUCTION ALLOCATION

WELL:

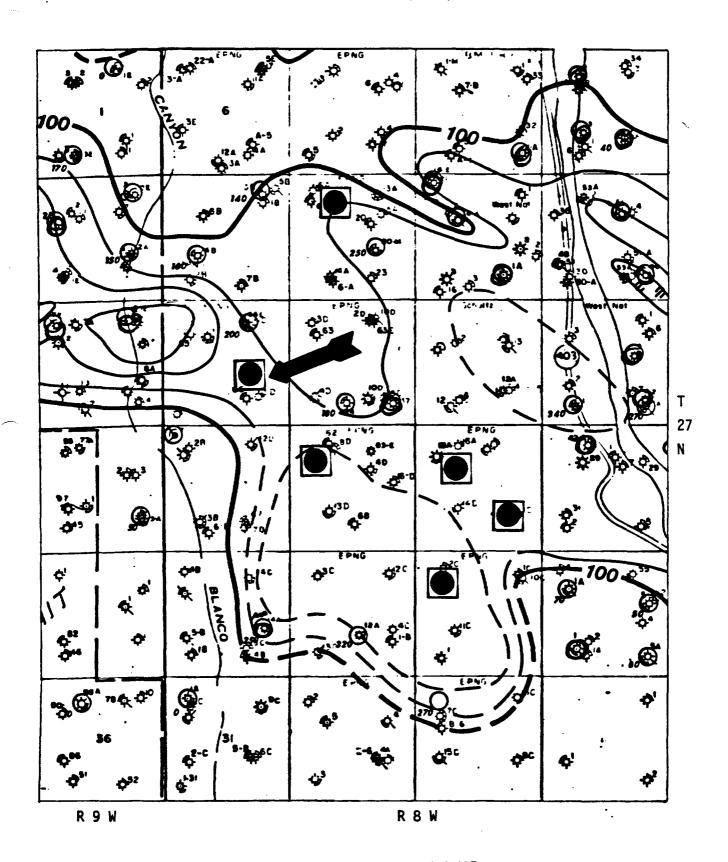
Florance D LS #11A

LOCATION: SE/4 Sec. 18 T27N, R8W

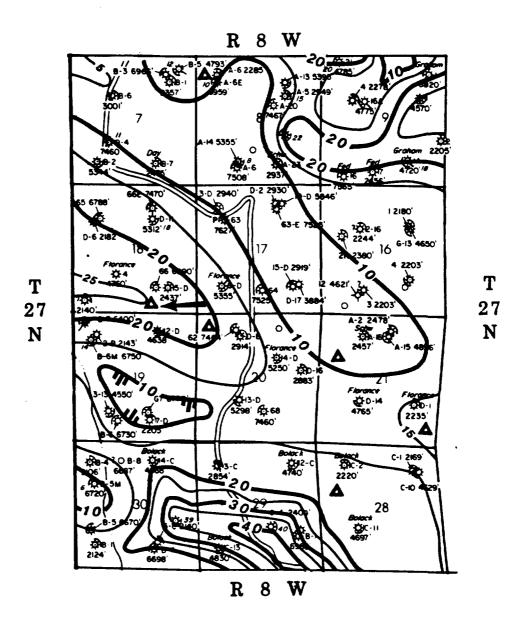
Chacra Reserves

Total Estimated Reserves (Exhibit 3) = 250 MMCF

Mesaverde Reserves


Net Pay Thickness (Exhibit 4) = 24 ft. Total Estimated Reserves (Exhibit 5) = 1450 MMCF

Production Allocation


Chacra: (250)/(250 + 1450) = .1471 = 14.71%

Mesaverde: (1450)/(250 + 1450) = .8529 = 85.29%

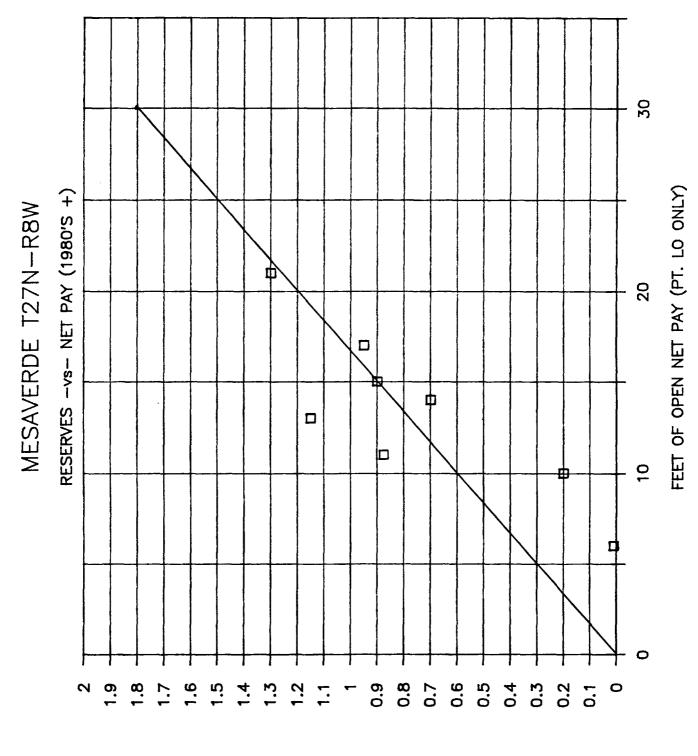
SMS:pe:3/11/86 4129R-6

Florance D LS #11A 250 MMCF

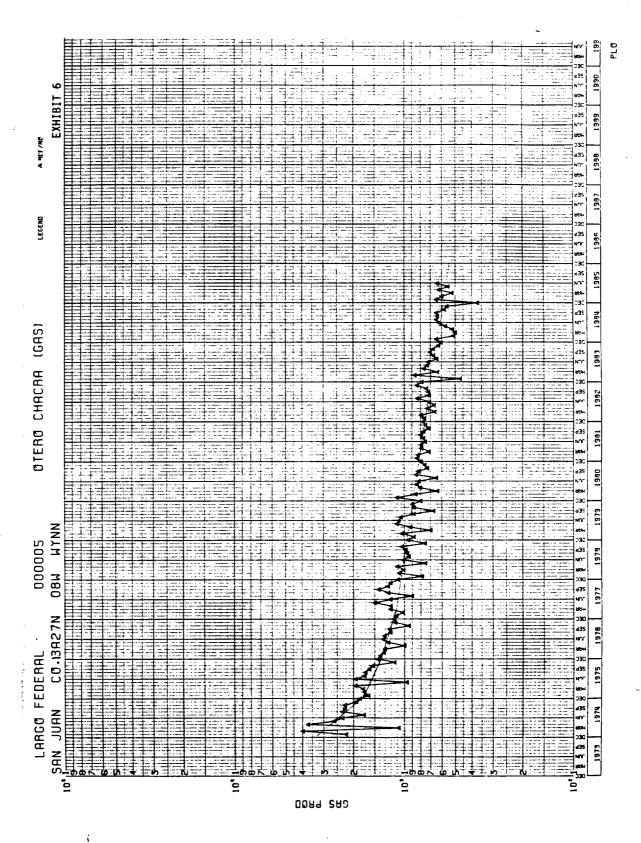
LEGEND

- PICTURED CLIFFS PENETRATION
- CHACRA PENETRATION
- MESA VERDE PENETRATION
- GALLUP PENETRATION
- & DAKOTA PENETRATION
- A PROPOSED LOCATION

Tenneco Oil Exploration and Production WESTERN ROCKY MOUNTAIN DIVISION



San Juan Basin


CLIFFHOUSE & POINT LOOKOUT
COMPOSITE NET PAY ISOPACH

C.I. = 10

MKD 3/4/86

(Lyonaduqa) KEZEKAEZ (WMCL)

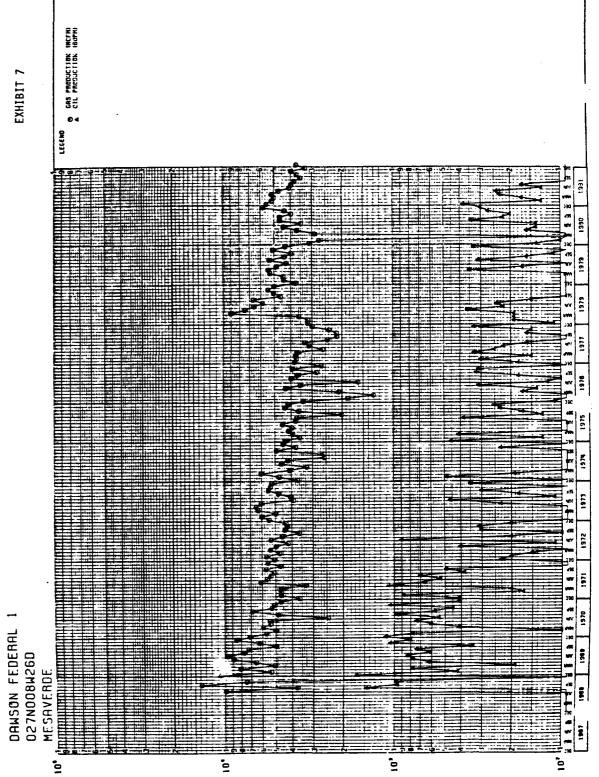
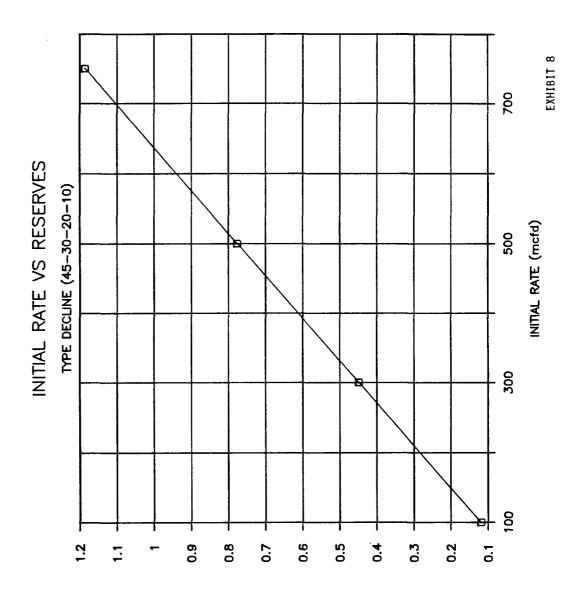
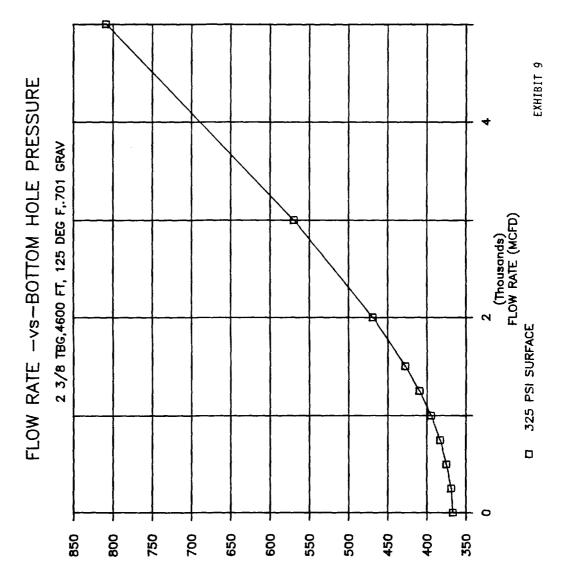
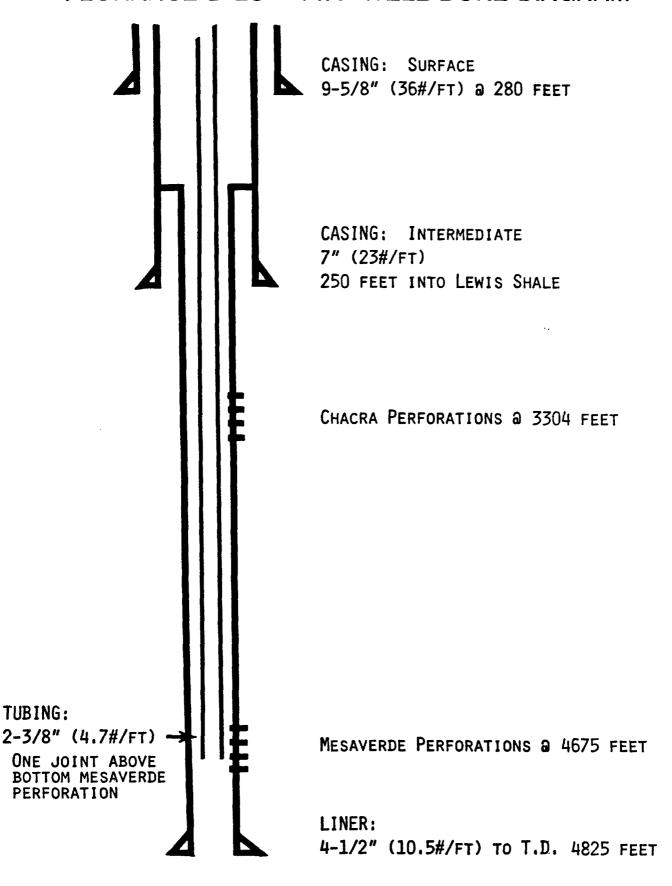




EXHIBIT 7

(Lyonaduqa) KEZEKAEZ (WWCL)

COMMINGLING CAPITAL SAVINGS


Dual Wellhead	\$ 5,000
Separators	\$ 5,500
1 1/4" Tubing	\$17,000
PKR	\$ 3,500
Blast Jts/Pup Jts	\$ 5,000
Miscellaneous Plugs, Etc.	\$ 2,000
Casing	\$ 5,000 (Less 7", More 4 1/2")
Drilling Miscellaneous	\$ 2,500 (Deeper 8 1/4" hole)
Completion Miscellaneous	\$10,500 (Rig time, nitrogen)
Taxes - Misc. Contingency (3%)	\$ 2,000
	\$57,000

The above total represents the additional capital required to produce the Chacra reserves separately. In light of current gas market trends (gas price estimate \$1.50 - 2.00/MCF), estimated demand (50-70% takes), hook-up delay, and associated risk, Chacra reserves are insufficient to justify the above incremental investment. To prevent the waste of these Chacra reserves it is necessary to obtain commingling approval. Correlative rights will be protected. The commingled wellbore will more efficiently recover Mesaverde reserves and extend the economic life of the well.

SMS:pe:3/17/86

4135R

CHACRA/MESAVERDE COMMINGLING APPLICATION FLORANCE D LS #11A WELL BORE DIAGRAM

WELL NAME:

FLORANCE D LS #13A

LOCATION:

NW/4 SEC. 20 T27N, R8W

Tenneco Oil Company currently plans to drill the captioned well during the third or fourth quarter of 1986. The well is anticipated to encounter productive sands in both the Mesaverde and Chacra formations. Tenneco Oil Company seeks to obtain the Commission's approval to down-hole commingle production from the Chacra and Mesaverde formations. The attached documentation indicates that the two zones proposed for commingling will satisfy all requirements as stipulated by the Commission (303C(b)(1-6).

The Mesaverde formation is the primary target of the captioned well. In light of current market conditions estimated reserves associated with a Chacra completion at the above location are considered to be insufficient to justify the capital expenditure required to separately produce these reserves. In the event that approval to commingle production is not granted, the Chacra interval would not be completed.

Estimated bottom hole pressures for the two zones were extrapolated statistically from offset Mesaverde and Chacra wells (Exhibits 1 & 2). The anticipated pressure of the lower pressured zone (Mesaverde) is estimated to be 82.98% of the pressure anticipated in the higher pressured zone (Chacra), when adjusted to a common datum. Therefore, rules 303C(b)(2) and 303C(b)(6) are satisfied.

A compatibility test was performed using the produced Chacra water from a nearby offset (Dryden LS #1A; SE/4 Sec. 28 T28N, R8W) and the produced Mesaverde water from another nearby offset (Schwerdtfeger A LS #14; SW/4 Sec. 8 T27N, R8W). The test indicated that no scale or precipitate problems should result when production streams from these two horizons are commingled. Water analyses also indicated that corresponding salinities are similar, and no formation damage should occur due to the presence of produced water from another zone. Therefore, rules 303C(b)(3) and 303C(b)(4) are satisfied.

Common ownership exists between the Chacra and Mesaverde zones, satisfying rule 303C(b)(5). A detailed ownership breakdown is attached.

It is recommended that production be allocated on a strict percentage basis according to the fraction of total reserves contributed by each zone. Chacra reserves were estimated from the attached iso-reserve map (Exhibit 3). Mesaverde reserves were estimated from the attached net pay

CH/MV Commingling Application Florance D LS #13A Page 2

isopach map (Exhibit 4) and a linear correlation of reserves versus net pay (Exhibit 5). Exhibit 5 was obtained by plotting estimated ultimate recoveries (decline curve derived) from recent (1980+) Mesaverde wells against the amount of net perforated pay as determined from log analysis and completion reports. Chacra reserves are estimated to be 300 MMCF, while Mesaverde reserves are estimated to be 1250 MMCF. Production allocated to the Chacra should be 19.35% of total, and the production allocated to the Mesaverde should be 80.65% of total.

Both Chacra and Mesaverde wells in this area exhibit similarly shaped decline curves. Exhibits 6 and 7 are representative type decline curves for local Mesaverde and Chacra wells.

Despite the large disparity in estimated reserves, both formations have very similar reserve lives. Exhibit 8 shows initial rate versus reserves for the type decline scenario used. The following table compares reserve lives from each of the two zones assuming a 10 MCF/D economic limit. An average reserve ratio was taken for this example:

FORMATION	RESERVES (MMCF)	INITIAL RATE (MCF/D)	ECONOMIC* LIMIT (MCF/D)	RESERVE LIFE (YRS)
Mesaverde	1150	735	8	31.7
Chacra	235	160	2	31.2
			10	

Produced Chacra gas is extremely dry. Chacra wells in the vicinity of the subject well produce less than 1 BBL/MMCF of water and condensate (combined) on an average basis. Local Mesaverde wells produce considerably more liquids than do the Chacra wells. Average condensate and water yields are approximately 5 BBL/MMCF and 2 BBL/MMCF, respectively, for the Mesaverde producers. As the production capacity of the Mesaverde zone decreases with time, its ability to unload produced fluids also decreases. The increased

^{*}The economic limit was allocated roughly according to the reserve ratio: 83% Mesaverde / 17% Chacra

CH/MV Commingling Application Florance D LS #13A Page 3

volume of commingled dry Chacra gas through the tubing will help to lift the produced Mesaverde liquids. Over the life of the well, the commingled Chacra production will definitely improve the flow efficiency of the Mesaverde zone. Early in the life of the well, while both zones are producing at maximum rates, there will be a slight increase in friction loss (tubing) due to the additional volume of Chacra gas. Exhibit 9 shows that the flowing bottom hole pressure goes from 390 psi for a well producing 750 mcf/d, to 405 psi for a well producing at 1250 mcf/d. An increased pressure drop of 15 psi is insignificant, and would represent a maximum considering the initial rate of the Chacra production will be much closer to 200 mcf/d rather than 500 mcf/d.

All operators of offset wells have been notified in writing of the proposed commingling within the time limits provided under rule #1207.

Ś. M. Struna

Petroleum Engineer

SMS:pe:3/13/86

4131R

Attachment

WELL:

Florance D LS #13A

LOCATION:

NW/4 Sec. 20 T27N, R8W

Estimated	Chacra completed interval midpoint:	3840 ft.
Estimated	Mesaverde completed interval midpoint:	5211 ft.

Average surrounding Chacra ISIP's (surface) 1002 psi Average surrounding Mesaverde ISIP's (surface) 867 psi

Average Surrounding Chacra Completed Interval Midpoint: 3244 ft.

Average surrounding Mesaverde Completed Interval Midpoint: 4616 ft.

Chacra Pressure Gradient .3382 psi/ft.

Mesaverde Pressure Gradient .2143 psi/ft.

Anticipated Chacra shut in pressure (bottom hole): 1299 psi Anticipated Mesaverde shut in pressure (bottom hole): 1117 psi

Anticipated pressures adjusted to 4000 ft. datum:

Chacra 1304 psi Mesaverde 1082 psi

Ratio 1082/1304 = .8298

Satisfies 50% pressure requirement

SMS:pe:2/24/86

4086R-2

CHARCA

R9W			RS	3 W			~
36	31					36	T 28 N
1	6		870 ●	1031 ●		1	
●951				1063 ●	1076 • • 1043		
			989 ●	913 ●	955 1043		;]
●979					882●	1006	
		1020			1125	1063 • 1107	T
					968 • • 1042	●1023	27 N
	·				885⊕	970 975	
					1150	925 874	
						1029 • 1013	1
36	31					36	-

Initial Shut-In Pressure (PSI)

Producing Well

Florance D LS #13A

MESAVERDE

735 918 1033 707 1093 756 918 918 990 979 918 918 990 953 763 953	R 9 W	L		R	3 W			,
735 918 1033 629 805 918 1033 707 1093 707 1093 756 918 918 918 990 979 813 990 979 918 763 953 953	36	31		■ 735				T 28 N
918 1033 707 1093 756 1093 756 940 918 990 979 918 990 979 918 990 979			720					N
707 1093 756 918 918 918 763 953 763 953 724 787	1 .	6		735		●814	1	
707 1093 756 1093 756 1000 979 918 918 763 990 813 990 953 724 787	● 629		805 ■	918				
756 1000 979 918 918 763 953 724 787					707 ●	• .	• 1093	T 27
825 940 788 . 763 953 • 724 • 787	756		•			1000		N
		825 •				. 763 •	990 • 953	
36 31 36 1013 956		_				1049	36	

Initial Shut-In Pressure (PSI)

- Recent Infill (post 1978)
- 1985 Tenneco Completion
- Florance D LS #13A

Assumptions Used in Pressure Calculations

Chacra

Gravity = .665*

 $P_C = 670.4 \text{ psia}$

 $T_c = 378.6$ °R

Mesaverde

Gravity = .701*

 $P_C = 669.1 \text{ psia}$

 $T_{c} = 389.7^{\circ}R$

Local Temperature Gradient Ambient Temperature .0139°F/ft. 60°F

Pressures were calculated using a modified Cullender & Smith method.

*Gas gravities estimated from chromatographic analyses of local Chacra and Mesaverde gas samples.

SMS:pe:2/24/86

4086R

CHACRA/MESAVERDE COMMINGLING APPLICATION INITIAL SHUT-IN PRESSURE DATA RECENT MESAVERDE INFILL WELLS (POST 1978)

WELL NAME	LOCATI	<u>ON</u>	<u>OPERATOR</u>	<u>DOFP</u>	INITIAL SHUT- IN PRESSURE
State Com #47	SW/2	27N 8W	Mesa	2/79	814
Dawson A #1M	NW/4	27N 8W	TOC	3/81	735
Graham C WN Fed					
Com #1A	SE/9	27N BW	Arco	3/78	918
Federal J #1A	SE/11	27W 8W	AAA Oper. Co. Inc.	4/80	1133
Federal E #3A	SW/13	27N 8W	AAA Oper. Co. Inc.	4/80	1193
Federal R #1A	SE/15	27N 8W	AAA Oper. Co. Inc.	3/84	707
Federal E #2A	SE/23	27N BW	AAA Oper. Co. Inc.	10/79	1000
Marron WN Fed	SE/24	27N BW	Arco	4/78	979
Com #6A					
Hammond #41R	NE/25	27N 8W	Russell WM. C.	2/78	813
Federal E #1A	NW/25	27N 8W	AAA Oper. Co. Inc.	10/79	990
Federal E #1	SE/25	27N 8W	AAA Oper. Co. Inc.	6/72	953
Hammond #55A	SE/26	27N 8W	Great Lakes Chem.	3/79	763
Marron WN Fed	NW/27	27N 8W	Arco	1/78	918
Com #1A					
Marron #5A	SE/27	27N 8W	Western Oil & Min.	7/79	788
Linda #1A	NW/31	27N 8W	Consolidated O & G	6/79	787
Hammond #5	NW/35	27N 8W	Great Lakes Chem.	2/78	1049
Hammond WN Fed #7A	SE/35	27N 8W	Arco	4/79	956
Hammond #47R	SW/35	27N 8W	R & G Drilling Co.	4/78	1013
Blanco #2A	SE/12	27N 9W	NWPL	5/82	629
Huerfanito Unit #77A	NW/24	27N 9W	EPNG	3/83	756
Huerfanito Unit #86A	NW/36	27N 9W	EPNG	1/80	724

1985 TENNECO MESAVERDE INFILL WELLS

WELL NAME	LOCATION		<u>OPERATOR</u>	DOFP	INITIAL SHUT- IN PRESSURE
Riddle F LS #5A	SE/32	28N 8W			720
Bolack B LS #1A	NW/33	28N 8W			735
Blanco LS #12A	NW/36	28N 8W			785
Schwertdfeger A LS #20M	SE/8	27N 8W			805
Bolack C LS #12A	SE/29	27N 8W			. 940
Bolack C LS #14A	SE/30	27N 8W			825

Chacra/Mesaverde Commingling Application Initial Shut-in Pressure Data Page 2

OTERO CHACRA OFFSET WELLS

WELL NAME	LOCATION		<u>OPERATOR</u>	<u>DOFP</u>	INITIAL SHUT- IN PRESSURE
Graham #3	SE/3	27N 8W	Great Lakes Chem.	8/77	1031
Graham #1A	SE/4	27N BW	Great Lakes Chem.	7/76	870
Graham C WN Fed Com #1A	SE/9	27N BW	Arco	3/78	989
Graham #51	NE/10	27N 8W	Russell William C.	10/72	1063
Graham #96	SE/10	27N 8W	Russell William C.	12/83	9 13
Federal J #1	NE/11	27N 8W	AAA Oper. Co. Inc.	7/72	1043
Largo Fed. #4	NW/11	27N 8W	AAA Oper. Co. Inc.	12/73	1076
Largo Fed. #1	SW/11	27N BW	AAA Oper. Co. Inc.	7/72	955
Federal J #2	SE/11	27N BW	AAA Oper. Co. Inc.	4/80	1043
Largo Fed #5	NE/13	27N BW	AAA Oper. Co. Inc.	12/73	1084
Federal E #3	NW/13	27N 8W	AAA Oper. Co. Inc.	7/72	1006
Largo Federal #2	SE/13	27N 8W	AAA Oper. Co. Inc.	5/73	1107
Federal E #6	SW/13	27N 8W	AAA Oper. Co. Inc.	4/80	1063
Largo Federal #3	NE/14	27N 8W	AAA Oper. Co. Inc.	5/73	8 82
Largo Federal #6	SE/14	27N 8W	AAA Oper. Co. Inc.	12/73	1125
Florance D LS #17	SE/17	27N 8W	TOC	10/72	1020
Marron #94	NW/23	27N 8W	Russell William C.	1/80	968
Federal E #2	NE/23	27N 8W	AAA Oper. Co. Inc.	6/72	1042
Federal E #5	SE/23	27N 8W	AAA Oper. Co. Inc.	9/79	885
Marron #6A	NW/24	27N 8W	Western Oil & Min.	2/76	1023
Marron WN Fed. Com #6A	SE/24	27N 8W	Arco	4/78	975
Snodgrass #1	SW/24	27N 8W	Western Oil & Min.	4/78	970
Federal E #4	NW/25	27N 8W	AAA Oper. Co. Inc.	9/79	874
Hammond #91	NE/25	27N 8W	Russell William C.	12/77	925
Federal E #1	SW/25	27N 8W	AAA Oper. Co. Inc.	7/72	1029
Hammond #92	SE/25	27N 8W	Russell William C.	1/80	1013
Hammond #52	NE/26	27N 8W	Russell William C.	12/74	1150
Blanco #25	NW/12	27N 9W	NWPL	6/75	951
John Charles #7E	NW/13	27N 9W	Getty	5/81	979

CHACRA/MESAVERDE COMMINGLING APPLICATION RESERVE ESTIMATION AND PRODUCTION ALLOCATION

WELL: LOCATION:

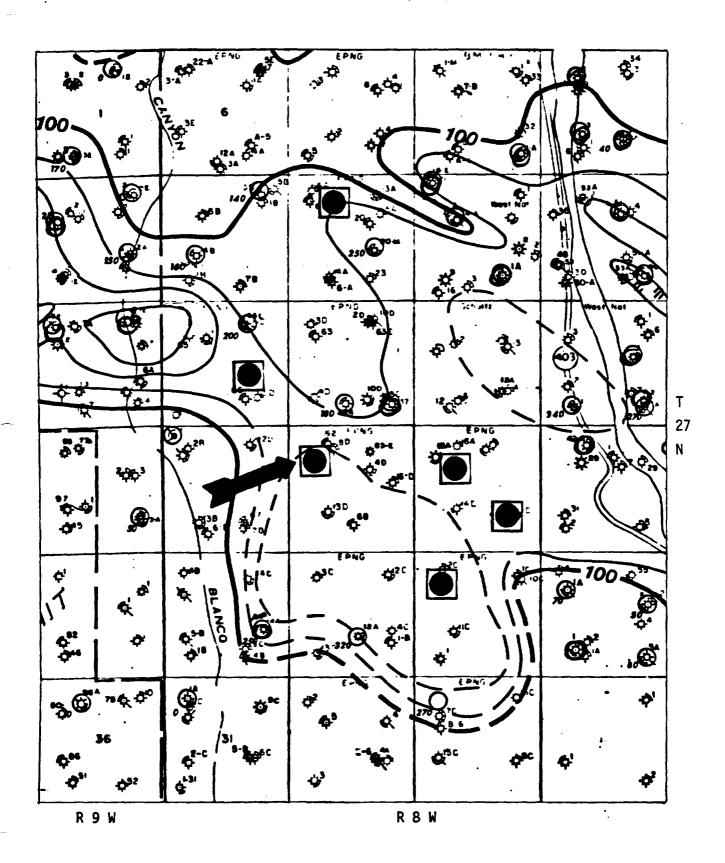
Florance D LS #13A NW/4 Sec. 20 T27N, R8W

Chacra Reserves

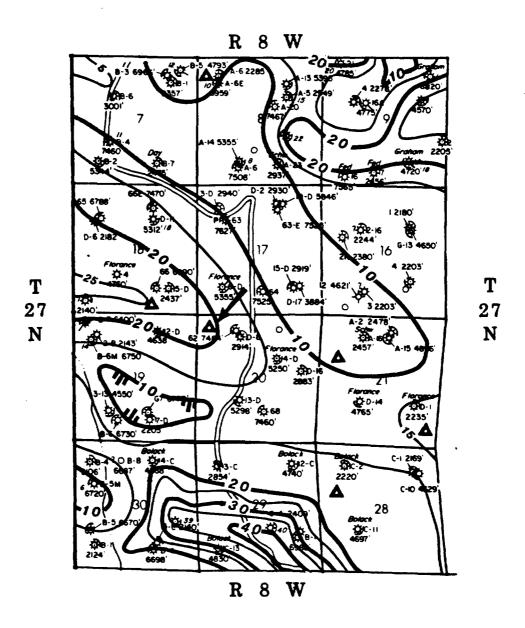
Total Estimated Reserves (Exhibit 3) = 300 MMCF

Mesaverde Reserves

Net Pay Thickness (Exhibit 4) = 21 ft. Total Estimated Reserves (Exhibit 5) = 1250 MMCF


Production Allocation

Chacra: (300)/(300 + 1250) = .1935 = 19.35%


Mesaverde: (1250)/(300 + 1250) = .8065 = 80.65%

SMS:pe:3/11/86

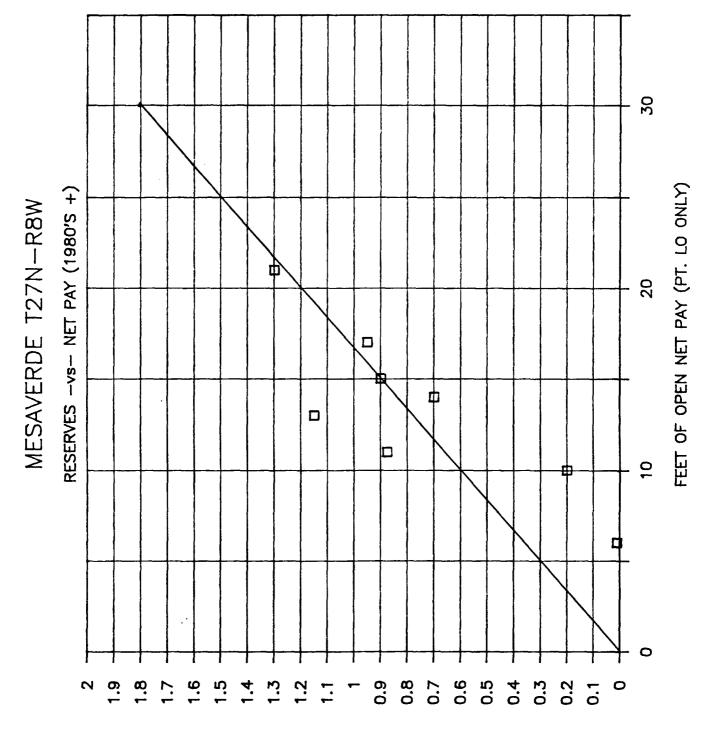
4129R-2

Florance D LS #13A 300 MMCF

LEGEND

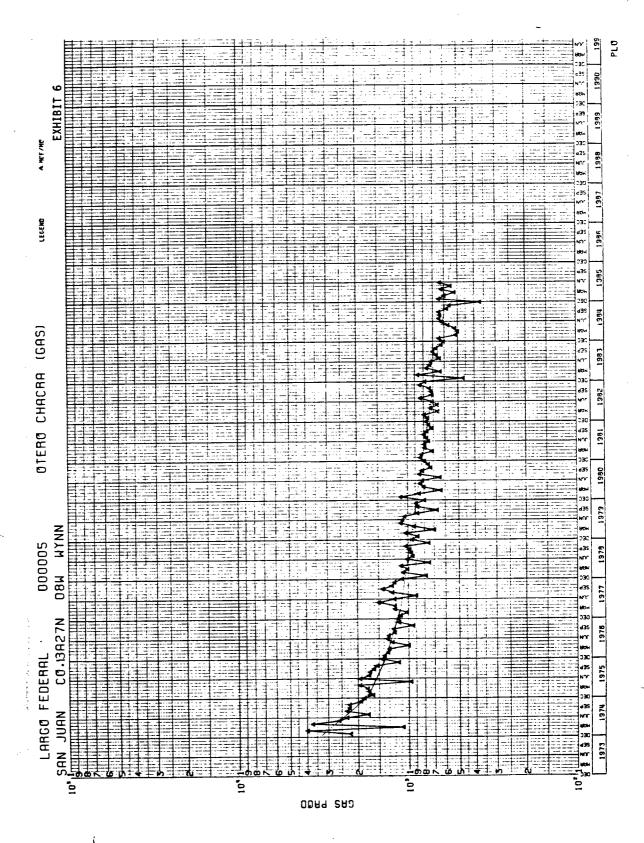
- PICTURED CLIFFS PENETRATION
- M CHACRA PENETRATION
- MESA VERDE PENETRATION
- GALLUP PENETRATION
- & DAKOTA PENETRATION
- A PROPOSED LOCATION

Tenneco Oil Exploration and Production WESTERN ROCKY MOUNTAIN DIVISION



San Juan Basin

CLIFFHOUSE & POINT LOOKOUT
COMPOSITE NET PAY ISOPACH


C.I.=10' 1:4000

MKD 3/4/86

(Lyonaduqa)

SEZEBAEZ (WMCE)

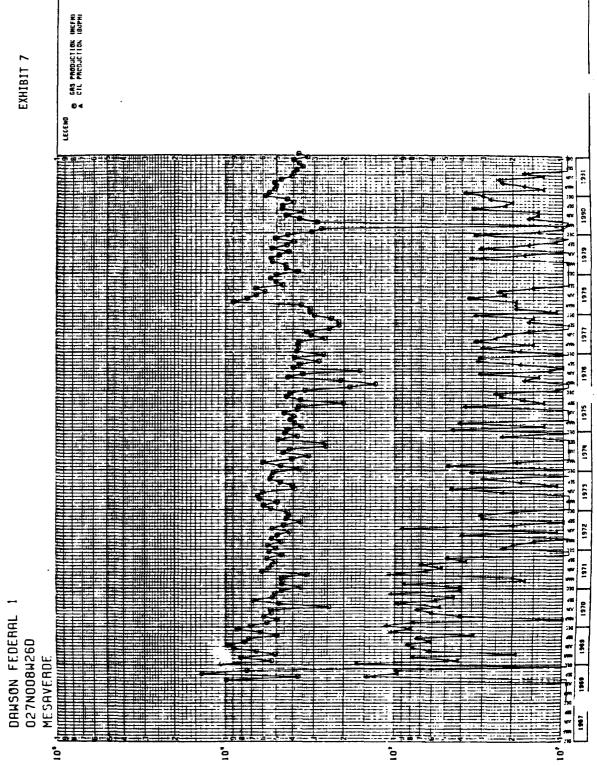
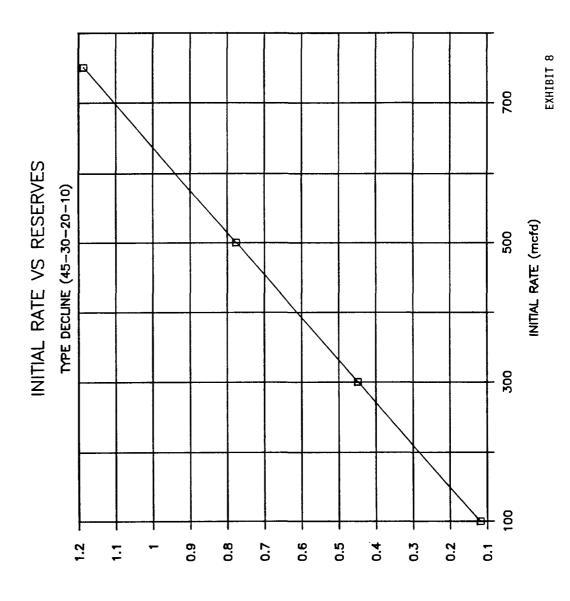
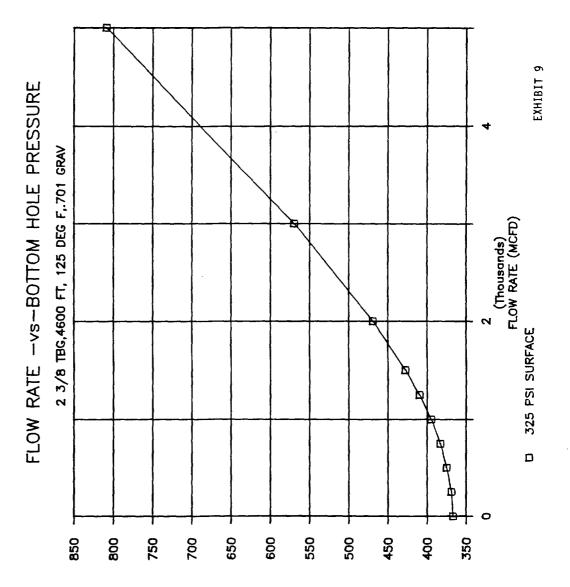




EXHIBIT 7

(Thousands)
RESERVES (MMCF)

BOTTOM HOLE PRESSURE (PSIA)

COMMINGLING CAPITAL SAVINGS


Dual Wellhead	\$ 5,000
Separators	\$ 5,500
1 1/4" Tubing	\$17,000
PKR	\$ 3,500
Blast Jts/Pup Jts	\$ 5,000
Miscellaneous Plugs, Etc.	\$ 2,000
Casing	\$ 5,000 (Less 7", More 4 1/2")
Drilling Miscellaneous	\$ 2,500 (Deeper 8 1/4" hole)
Completion Miscellaneous	\$10,500 (Rig time, nitrogen)
Taxes - Misc. Contingency (3%)	\$ 2,000
	\$57,000

The above total represents the additional capital required to produce the Chacra reserves separately. In light of current gas market trends (gas price estimate \$1.50 - 2.00/MCF), estimated demand (50-70% takes), hook-up delay, and associated risk, Chacra reserves are insufficient to justify the above incremental investment. To prevent the waste of these Chacra reserves it is necessary to obtain commingling approval. Correlative rights will be protected. The commingled wellbore will more efficiently recover Mesaverde reserves and extend the economic life of the well.

SMS:pe:3/17/86

4135R

CHACRA/MESAVERDE COMMINGLING APPLICATION FLORANCE D LS #13A WELL BORE DIAGRAM

CHACRA/MESAVERDE COMMINGLING APPLICATION

WELL NAME:

LACKEY B LS #4A

LOCATION:

NW/4 SEC. 29 T28N, R9W

Tenneco Oil Company currently plans to drill the captioned well during the third or fourth quarter of 1986. The well is anticipated to encounter productive sands in both the Mesaverde and Chacra formations. Tenneco Oil Company seeks to obtain the Commission's approval to down~hole commingle production from the Chacra and Mesaverde formations. The attached documentation indicates that the two zones proposed for commingling will satisfy all requirements as stipulated by the Commission (303C(b)(1-6).

The Mesaverde formation is the primary target of the captioned well. In light of current market conditions estimated reserves associated with a Chacra completion at the above location are considered to be insufficient to justify the capital expenditure required to separately produce these reserves. In the event that approval to commingle production is not granted, the Chacra interval would not be completed.

Estimated bottom hole pressures for the two zones were extrapolated statistically from offset Mesaverde and Chacra wells (Exhibits 1 & 2). The anticipated pressure of the lower pressured zone (Mesaverde) is estimated to be 84.76% of the pressure anticipated in the higher pressured zone (Chacra), when adjusted to a common datum. Therefore, rules 303C(b)(2) and 303C(b)(6) are satisfied.

A compatibility test was performed using the produced Chacra water from a nearby offset (Dryden LS #1A; SE/4 Sec. 28 T2BN, R8W) and the produced Mesaverde water from another nearby offset (Schwerdtfeger A LS #14; SW/4 Sec. 8 T27N, R8W). The test indicated that no scale or precipitate problems should result when production streams from these two horizons are commingled. Water analyses also indicated that corresponding salinities are similar, and no formation damage should occur due to the presence of produced water from another zone. Therefore, rules 303C(b)(3) and 303C(b)(4) are satisfied.

Common ownership exists between the Chacra and Mesaverde zones, satisfying rule 303C(b)(5). A detailed ownership breakdown is attached.

It is recommended that production be allocated on a strict percentage basis according to the fraction of total reserves contributed by each zone. Chacra reserves were estimated from the attached iso-reserve map (Exhibit 3). Mesaverde reserves were estimated from a figure similar to the attached net pay isopach map (Exhibit 4) and a linear correlation of reserves versus net

CH/MV Commingling Application Lackey B LS #4A Page 2

pay (similar to Exhibit 5)[†]. Exhibit 5 was obtained by plotting estimated ultimate recoveries (decline curve derived) from recent (1980+) Mesaverde wells against the amount of net perforated pay as determined from log analysis and completion reports. Chacra reserves are estimated to be 200 MMCF, while Mesaverde reserves are estimated to be 650 MMCF. Production allocated to the Chacra should be 23.53% of total, and the production allocated to the Mesaverde should be 76.47% of total.

Both Chacra and Mesaverde wells in this area exhibit similarly shaped decline curves. Exhibits 6 and 7 are representative type decline curves for local Mesaverde and Chacra wells.

Despite the large disparity in estimated reserves, both formations have very similar reserve lives. Exhibit 8 shows initial rate versus reserves for the type decline scenario used. The following table compares reserve lives from each of the two zones assuming a 10 MCF/D economic limit. An average reserve ratio was taken for this example:

FORMATION	RESERVES (MMCF)	INITIAL RATE (MCF/D)	ECONOMIC* LIMIT (MCF/D)	RESERVE LIFE (YRS)
Mesaverde	1150	735	8	31.7
Chacra	235	160	2	31.2
			10	

Produced Chacra gas is extremely dry. Chacra wells in the vicinity of the subject well produce less than 1 BBL/MMCF of water and condensate (combined) on an average basis. Local Mesaverde wells produce considerably more liquids than do the Chacra wells. Average condensate and water yields are approximately 5 BBL/MMCF and 2 BBL/MMCF, respectively, for the Mesaverde

^{*}The economic limit was allocated roughly according to the reserve ratio: 83% Mesaverde / 17% Chacra

[†]Tenneco Oil Company considers net pay isopach maps to be proprietary information and is reluctant to include an additional map over this specific area (T28N R9W). The process used in obtaining Mesaverde reserves on the subject well is identical to that used on the previous six wells.

CH/MV Commingling Application Lackey B LS #4A Page 3

producers. As the production capacity of the Mesaverde zone decreases with time, its ability to unload produced fluids also decreases. The increased volume of commingled dry Chacra gas through the tubing will help to lift the produced Mesaverde liquids. Over the life of the well, the commingled Chacra production will definitely improve the flow efficiency of the Mesaverde zone. Early in the life of the well, while both zones are producing at maximum rates, there will be a slight increase in friction loss (tubing) due to the additional volume of Chacra gas. Exhibit 9 shows that the flowing bottom hole pressure goes from 390 psi for a well producing 750 mcf/d, to 405 psi for a well producing at

1250 mcf/d. An increased pressure drop of 15 psi is insignificant, and would represent a maximum considering the initial rate of the Chacra production will be much closer to 200 mcf/d rather than 500 mcf/d.

All operators of offset wells have been notified in writing of the proposed commingling within the time limits provided under rule #1207.

S. M. Struna

Petroleum Engineer

SMS:pe:3/13/86

4131R

Attachment

CHACRA/MESAVERDE COMMINGLING APPLICATION

WELL: Lackey B LS #4A

LOCATION: NW/4 Sec. 29 T28N, R9W

Estimated Chacra completed interval midpoint:	3037	ft.
Estimated Mesaverde completed interval midpoint:	4383	ft.
Average surrounding Chacra ISIP's (surface)	932	psi
Average surrounding Mesaverde ISIP's (surface)	775	psi
Average Surrounding Chacra Completed Interval Midpoint:	3244	ft.
Average surrounding Mesaverde Completed Interval Midpoin	t: 4616	ft.
Chacra Pressure Gradient	.3142 psi	/ft.
Mesaverde Pressure Gradient	.1911 psi	/ft.
Anticipated Chacma chut in proceure (bottom bolo):	QEA	nci

Anticipated Chacra shut in pressure (bottom hole): 954 psi Anticipated Mesaverde shut in pressure (bottom hole): 829 psi

Anticipated pressures adjusted to 4000 ft. datum:

978 psi Chacra Mesaverde 829 psi

Ratio 829/978 = .8476

Satisfies 50% pressure requirement

MS:pe:2/21/86

4086R-1

•		R 9 W		•
	19 1053		21 ••980	
	30		25	T 28 N
	3:-	■ 920	7775	

Initial Shut-In Pressure (PSI)

- Producing Well
- 1985 Tenneco Completion
- Lackey B LS #4A

EXHIBIT 1

<u> </u>	R9W	,	1
19		21 - 735	
■ 880 3C		26	T 28 N
■768 31		720 - 33	

Initial Shut-In Pressure (PSI)

- Recent Infill (post 1978)
- 1985 Tenneco Completion
- Lackey B LS #4A

EXHIBIT 2

CHACRA/MESAVERDE COMMINGLING APPLICATION

Assumptions Used in Pressure Calculations

Chacra

Gravity = .665*

 $P_C = 670.4 \text{ psia}$

 $T_C = 378.6$ °R

Mesaverde

Gravity = .701*

 $P_c = 669.1 \text{ psia}$

 $T_{c} = 389.7^{\circ}R$

Local Temperature Gradient Ambient Temperature .0139°F/ft. 60°F

Pressures were calculated using a modified Cullender & Smith method.

*Gas gravities estimated from chromatographic analyses of local Chacra and Mesaverde gas samples.

SMS:pe:2/24/86

4086R

Chacra/Mesaverde Commingling Application Initial Shut-in Pressure Data

RECENT TOC COMPLETIONS (1985) IN THE AREA

WELL NAME	LOCATION	FORMATION	INITIAL SHUT <u>DOFP IN PRESSURE</u>	
Lackey B LS #11A	NW/30 28N 9W	Mesaverde	880	
Lackey B LS #12A	SW/21 28N 9W	Mesaverde	735	
Michener A LS #5A	NW/31 28N 9W	Mesaverde	768	
Michener A #7	NE/33 28N 9W	Mesaverde	720	
Daum LS #6E	NW/32 28N 9W	Chacra	920	
Lackey B LS #12A	SW/21 28N 9W	Chacra	980	
Michener A #7	NE/33 28N 9W	Chacra	775	

SMS:pe:2/24/86 4092R

CHACRA/MESAVERDE COMMINGLING APPLICATION RESERVE ESTIMATION AND PRODUCTION ALLOCATION

WELL:

Lackey B LS #4A

LOCATION:

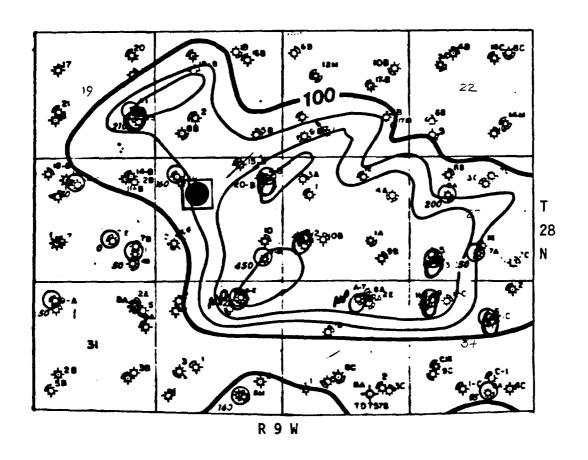
NW/4 Sec. 29 T28N, R9W

Chacra Reserves

Total Estimated Reserves (Exhibit 3) = 200 MMCF

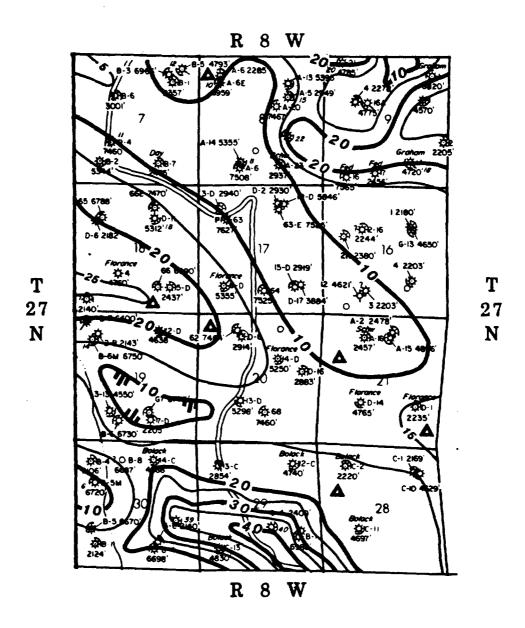
Mesaverde Reserves

Net Pay Thickness (Exhibit 4) = 12 ft. Total Estimated Reserves (Exhibit 5) = 650 MMCF


Production Allocation

Chacra: (200)/(200 + 650) = .2353 = 23.53%

Mesaverde: (650)/(200 + 650) = .7647 = 76.47%


SMS:pe:3/11/86 4129R-7

CHACRA ISO-RESERVE MAP (MMCF)

Lackey B LS #4A 200 MMCF

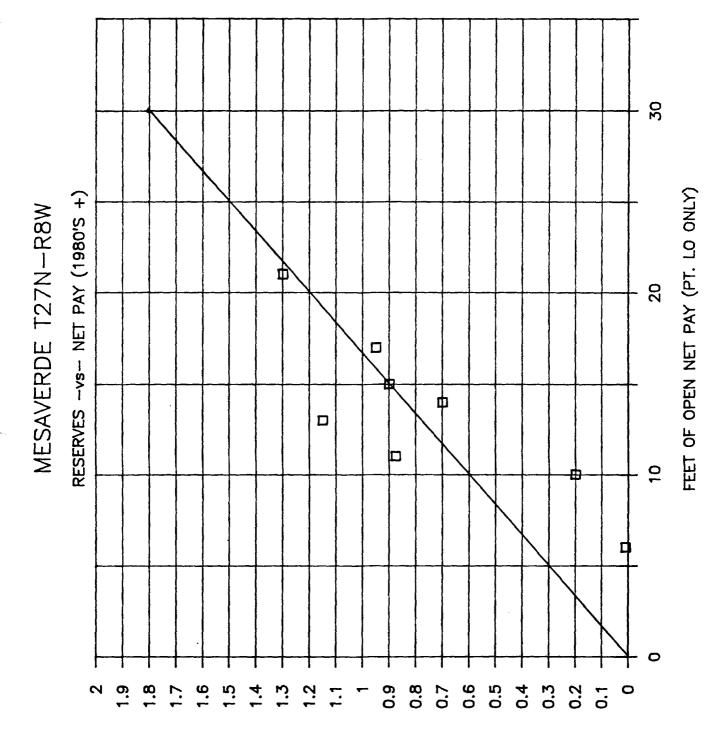
EXHIBIT 3

LEGEND

- PICTURED CLIFFS PENETRATION
- CHACRA PENETRATION
- MESA VERDE PENETRATION
- GALLUP PENETRATION
- & DAKOTA PENETRATION
- A PROPOSED LOCATION

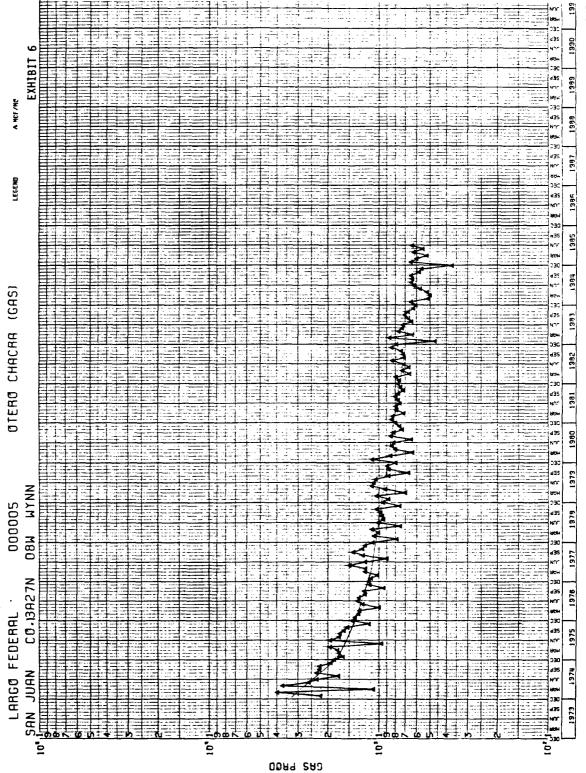
Tenneco Oil Exploration and Production WESTERN BOCKY MOUNTAIN DIVIS

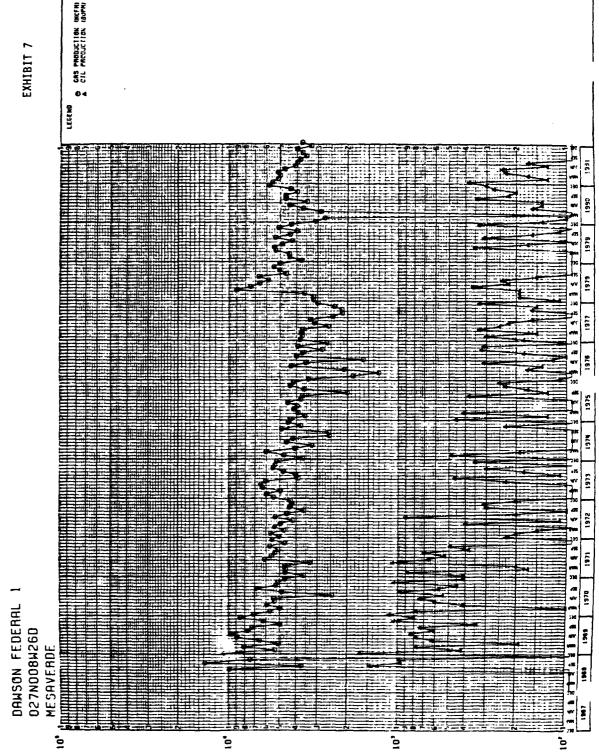
WESTERN ROCKY MOUNTAIN DIVISION



San Juan Basin

CLIFFHOUSE & POINT LOOKOUT COMPOSITE NET PAY ISOPACH


C.I.=10' 1:4000


MKD 3/4/86

(Lyonaduds)

SESEBAES (WMCE)

1.1
1.1
0.9
0.6
0.6
0.6
0.6
0.7
0.6
0.7
0.6
0.7
0.7
0.6
0.7
0.7
0.7
0.8
0.9

(Thousands)
RESERVES (MMCF)

EXHIBIT 8

INITIAL RATE (mcfd)

700

200

300

90

0.1

0.2

BOTTOM HOLE PRESSURE (PSIA)

COMMINGLING CAPITAL SAVINGS

Dual Wellhead	\$ 5,000
Separators	\$ 5,500
1 1/4" Tubing	\$17,000
PKR	\$ 3,500
Blast Jts/Pup Jts	\$ 5,000
Miscellaneous Plugs, Etc.	\$ 2,000
Casing	\$ 5,000 (Less 7", More 4 1/2")
Drilling Miscellaneous	\$ 2,500 (Deeper 8 1/4" hole)
Completion Miscellaneous	\$10,500 (Rig time, nitrogen)
Taxes - Misc. Contingency (3%)	\$ 2,000
	\$57,000

The above total represents the additional capital required to produce the Chacra reserves separately. In light of current gas market trends (gas price estimate \$1.50 - 2.00/MCF), estimated demand (50-70% takes), hook-up delay, and associated risk, Chacra reserves are insufficient to justify the above incremental investment. To prevent the waste of these Chacra reserves it is necessary to obtain commingling approval. Correlative rights will be protected. The commingled wellbore will more efficiently recover Mesaverde reserves and extend the economic life of the well.

SMS:pe:3/17/86

4135R

CHACRA/MESAVERDE COMMINGLING APPLICATION LACKEY B LS #4A WELL BORE DIAGRAM

CASING: SURFACE

9-5/8" (36#/FT) a 280 FEET

CASING: INTERMEDIATE

7" (23#/FT)

250 FEET INTO LEWIS SHALE

CHACRA PERFORATIONS @ 3037 FEET

TUBING:

2-3/8" (4.7#/FT)
ONE JOINT ABOVE
BOTTOM MESAVERDE
PERFORATION

MESAVERDE PERFORATIONS @ 4383 FEET

LINER:

4-1/2" (10.5#/FT) TO T.D. 4533 FEET

Divison of Smith International, Inc.

2198 East Bloomfield Highway Farmington, New Mexico 87401 Phone (505) 327-7281

February 25, 1986

Tenneco Oil Co. Western Rocky Mountain Division P.O. Box 3249 Englewood, Co. 80155

ATTN: Bob Sagel

Dear Mr. Sagel:

Water analysis and compatibility studies were conducted using the following water samples:

- 1. Schwerdtfeger ALS-14 Mesa Verde
- 2. Dryden LS-1A (CHACRA)

No solid precipitates of any type were noted and these samples should be considered compatible for mixing.

Sincerely, SMITH ENERGY SERVICES

Loren L. Diede District Engineer

LLD/kr

Report No:

Date:

Formation:

2-26-86

Company: Address:

TENNECO

County: Field:

MESA VERDE

Attention: Date Sampled:

BOB SAGEL 2-26-86 Lease: Well: SCWHTFEGER ALS 14

WATER ANALYSIS

Specific Grav:		1.	000	Hq:	7	.00
Chloride:		2.200	mg/l	Calcium:	40	mg/l
Bicarbonate:		61	mg/1	Magnesium:	49	mg/l
Sulfate:	0			Total Iron:	3	mg/1
Sulfide:	0			Sodium:	1.308	mg/l
Total Hardness				Total Dislvd		
(as CaCO3):		300	mq/l	Solids:	3,660	mg/1
Resistivity:		1.6	50	Ohm Meters G:	70	F
Potassium:	0			Carbonate:	N I	ם

Sample Source:

PRODUCTION UNIT

Remarks:

Analyst: LOREN L. DIEDE

Smith Representative: M. CONREY

Report No:

Date:

County: Field:

2-20-86

Company:

Attention:

Address:

Date Sampled:

BOB SAGEL 2-19-86

TENNECO

Formation: Lease:

Well:

DRYDEN LS1A

WATER ANALYSIS

Specific Grav:	1.	010	pH:	7.	00
Chloride:	9, 9 98	mp/l	Calcium:	321	mp/1
Bicarbonate:	183	mp/1	Magnesium:	121	mp/1
Sulfate:	300	mp/l	Total Iron:	3	mp/l
Sulfide:	Ø		Sodium:	5.800	mp/l
Total Hardness			Total Dislyd		
(as CaCD3):	1.301	m <u>p</u> /l	Solids:	17, 225	mg/l
Resistivity:	Ø.	. 48	Ohm Meters @:	70	F
Potassium:	500	mo/1	Carbonate:	ND	

Sample Source:

Remarks:

Analyst: LOREN L. DIEDE Smith Representative: M. CONREY

TO:

WRMD

DATE: March 4, 1986

FOR:

Steve Struna

FROM: Kevin G. Heringer

RE:

Chacra-Mesaverde Commingling

Listed below is an ownership breakdown for the 7 proposed Chacra-Mesaverde commingled wells.

WELL NAME	SPACING	FORMATION	<u>OWNERSHIP</u>	FED. LSE. #	EFFECTIVE DATE	<u>EXPIRES</u>
Schwerdtfeger A LS 14A	W/2-8-27N-8W	Surface to base of MV	TOC - 50% CON - 50%	U.S.A. SF-079319	10/1/48	НВР
Florance D LS 11A	E/2-18-27N-8W	Surface to base of MV	TOC - 50% CON - 50%	U.S.A. NM-03380	4/1/48	НВР
Florance D LS 13A	W/2-20-27N-8W	Surface to base of MV	TOC - 50% CON - 50%	U.S.A. NM-03380	4/1/48	НВР
Schwerdtfeger A LS 15A	N/2-21-27N-8W	Surface to base of MV	TOC - 50% CON - 50%	U.S.A. SF-079319	10/1/48	НВР
Florance D LS 14A	S/2-21-27N-8W	Surface to base of MV	TOC - 50% CON - 50%	U.S.A. NM-03380	4/1/48	НВР
Bolack C LS 11A	W/2-28-27N-8W	Surface to base of MV	TOC - 50% CON - 50%	U.S.A. SF-079232	10/1/48	НВР
Lackey B LS 4A	N/2-29-28N-9W	All formations	TOC - 50% CON - 50%	U.S.A. SF-077106	3/1/47	НВР

Kevin G. Heringer S

KGH/1h

) 44	
TENNECO	EPNG		
	_		
6 💂	5 4	4	3
■ _{A12}			
EPNG	TENNECO TENNECO		
B5	PENNECO PENNECO		
'	Schwerdt-		
7	feger A LS 8	9	10
B2	A14 A20M		
TENNECO TENNECO	TENNECO	EPNG	R.C. WYNN
AA IEMNECO	D10		
 18 _{D11}	17	16	1
_ [17	16 GI3	15
* *	_		ı
Florance D LS 11A	D9 D17	G12	ni j
UNION TX PET EPNG	TENNECO TENNECO	TENNECO	A
B6M D12	🌣	☆ A15	42A
19	Florance D LS 13A 20 D4	Schwerdtfeger A LS 15A	R & G Drlg. Company 22
		TENNECO D14	1
	D13	*	
В3		Florance D LS 14A	42
TENNECO	TENNECO C12	TENNECO TENNECO	ARCO
<u>C1</u> 4	C12	Bolack C	
3,0	29	LS 11A 28	1A 27
l .		C11	1
	C13 C12A		A :
i	C13 C12A EPNG	TENNECO	1
		C16	
31	32	^{C15} 33	34
	B4A	C15	
		C16A	
<u>[</u>		01011	

■ Mesaverde Completion

Proposed Commingling Candidate

▲ Chacra Completion

	R	9 W	المن المن المن المن المن المن المن المن	_
		•	. #	
-				7
SOUTHLAND 20 19	TENNECO 20	TENNECO 21 Blo	22	2
TENNECO B11 30 EPNG	TENNECO B4 Lackey B LS 4A 29 EPNG	TENNECO 28 A4 B1 EPNG	27	
31	32	33	34	

■ Mesaverde Completion

▲ Chacra Completion

Proposed Commingling Candidate