

BEFORE EXAMINER CATANACH
OIL CONSERVATION DIVISION
CHEURON EXHIBIT NO. 5
CASE NO. 10059-61

Proposed Eunice Monument West Unit Technical Committee Addendum February 19, 1988

West Division Production Department

TABLE OF CONTENTS

I

INTRODUCTION	1
PROPOSED EXPANSION AREA	1
TWO TRACT PARTICIPATION	1
DEVELOPMENT	2
SECONDARY POTENTIAL	3
DEVELOPMENT COSTS	3
ECONOMICS	5
TEXACO STATE K LEASE	7

Introduction

This addendum is an update to the Technical Committee report completed March 17, 1987, and documents the progress to date and the current status of the unitization efforts of the proposed Eunice Monument West Unit. The purpose is to (1) supply EMWU technical committee members and working interest owners with current data to properly evaluate past recommendations and (2) recommend a two tract participation in lieu of an 18.2% participation for an expansion of the Eunice Monument South Unit.

Proposed Expansion Area

The eastern boundary of the proposed development area was previously defined as a result of Amerada Hess and Texaco declining to include the State M and the State K When the proposed expansion of leases, respectively. the Eunice Monument South Unit (EMSU) to include the EMWU was presented in preliminary reviews by Chevron, both the Bureau of Land Management and the Commissioner of Public Lands of New Mexico indicated the State K lease should be included as a logical portion of the expansion. This was previously incorporated as Recommendation No. 4 of the Eunice Monument West Unit (EMWU) Technical Committee report. With the State K lease included, the area proposed for development consists of approximately 3000 acres. There are seven properties totalling 2280 acres (76% of the total) which are federal leases, four properties totalling 400 acres (13% of the total) are state leases, and two properties totalling 320 acres (11% of the total) are fee leases. The EMWU area which includes the State K lease is shown in Attachment No. 1.

Two Tract Participation

The recommendation to negotiate toward a participation of 18.2% in an expanded unit for the combined EMSU and EMWU has been reviewed with Chevron, as EMSU operator. Chevron's legal interpretation of Section 70-7-10 of the New Mexico Statutory Unitization Act indicates the existing unit should be treated as a fixed entity. The expansion area would constitute its own separate entity, with the two areas being operated under a common plan of operation.

This would require the expanded unit to consist of two "tracts", with each "tract", the EMSU and the EMWU, having its production metered separately. Participation factors would be calculated for the expansion area alone, with no change to the current EMSU working interest owner's participation.

The two "tract" participation is a viable alternative to the 18.2% participation previously recommended for several reasons:

- (1) Separate metering will alleviate any concerns the state/federal agencies and the EMSU working owners may have regarding production and reserve equity, and
 - (2) Expansion is the quickest method to obtain approvals and initiate waterflood operations, as the EMSU will be a precedent for justification.

The scenarios for the expansion cases and the stand alone unit cases were again compared in order to determine the most economical option for EMWU working interest owners. These comparisons are discussed in the following sections.

Development

Secondary development of the EMWU area could begin as early as the fourth quarter of 1988, with injection to commence as early as January, 1989. This is based on Chevron's schedule for an EMSU expansion. The stand alone unit option would be achievable approximately one year later (January, 1990).

A change in the pattern development was made in the northern portion of the expansion area, in order to accommodate Amerada Hess' waterflood pattern configuration in their proposed Monument Unit. This is indicated on Attachment No. 2. Also, the inclusion of the State K lease is noted. The development will initially consist of converting 23 producing wells to injection wells, drilling 3 injection wells and two producers, and reconditioning 47 producers. An additional 12 producers should be converted to injection as leaseline injection agreements are negotiated with offset operators.

EMWU secondary reserve estimates were modified to include the State K lease. Cumulative production for each forty acre proration area is indicated in Attachment Nos. 3A and B.

Development factors were again calculated on an individual well basis, reflecting the number of injectors supporting each producer. If a producer was supported by four injection wells, the secondary development was considered 100%. Conversely, if a producer was not immediately offset by any injection wells, it was considered to have 0% secondary development. This method also was applied to determine the value of the designated injection wells. Using this method, approximately 64% of the potential secondary reserve base will be developed without leaseline agreements. Should 100% of the leaseline agreements become effective after initial development, 98% of the reserve base will be exploited.

Secondary Potential

Evaluation of secondary potential for the expansion area essentially remains the same as previously reported. However, the magnitude of incremental production was adjusted to reflect the inclusion of the State K Lease. Timing of the incremental increase due to waterflood operations was also adjusted to reflect an additional year to implement injection. A first quarter 1988 startup was previously anticipated, with initial response in 1992. A first quarter 1989 startup is now projected for an EMSU expansion to include the study area.

For a stand alone unit, injection could be expected to commence in early 1990, with initial response expected in 1994.

Development Costs

Costs to develop the study area are based on Chevron's estimates using actual values noted in the development of the EMSU. Costs were provided for the four basic scenarios in developing the EMWU: (1) EMSU expansion with the Texaco State K lease included, (2) EMSU expansion without the State K lease, (3) EMWU stand alone with the State K lease included, and (4) EMWU stand alone without the State K lease. Summaries of each cost breakdown are given as Attachment Nos. 4A-D.

In the previous analysis, drilling of producing wells or injection wells was not anticipated. A review of wells which produce Eumont gas indicated two wells may be required to be drilled in order to provide usable wellbores for the development of an expansion or a stand alone unit. This would include Amoco's Gillully Federal Gas Com No. 7 (Unit O, Section 24) and Chevron's R.R. Bell NCT C Com No. 1 (Unit P, Section 13). It is anticipated that current production of Eumont gas from these two wells will be retained by the operators.

An injection well has been projected to be drilled as part of the development in Unit M, Section 14. An injector in this undeveloped location will provide injection support to three producers. Based on primary production from the three producers and a secondary to primary ratio (S/P) of 0.47, secondary reserves of 51 MBO were estimated. However, it is noted in the reserve listing of Attachment No. 3B, no primary (or secondary) reserves were attributed to this undeveloped forty acre location. Upside to development of this location includes undrained primary reserves and secondary reserves.

With the inclusion of the State K lease, two wellbores may be needed. A replacement for Well No. 2 will eventually receive injection support from four injectors once leaseline agreements are obtained. The State K Well No. 1 is currently producing Eumont gas and may be retained by Texaco. As a downside case, two wells were projected to be drilled. The costs associated with drilling new wells as part of the development are shown in Attachment No. 5A-B.

It is expected that all producing wells (including wells which will remain on production pending leaseline agreements) will require remedial work. Chevron has estimated an average of \$63M per workover (\$24M-tangible, \$39M-intangible). This average includes the assumption that 50% of the wells will require new pumping equipment. This includes both surface (i.e. pumping unit replacement) and downhole lift equipment. Total costs for remedial work is estimated to be \$2,961,000 for the 47 producing wells remaining after initial development.

The conversion of 23 producing wells to injection wells as part of the initial development is projected to cost \$1,656,000 (\$72,000/conversion). Again, these cost estimates were based on Chevron's experience in the recent EMSU development. The tangible and intangible portion of the costs is \$25,000 and \$47,000, respectively, per conversion. This same cost per conversion is projected for the 12 leaseline injectors once leaseline agreements are made. The surface facilities costs are estimated at \$3,524,000 and are shown in Attachment No. 6. These are preliminary cost estimates provided by Chevron, based on their assessment of the costs which will be incurred as a result of expanding the EMSU facilities. Additional surface facility costs are projected with the leaseline conversions. These costs are estimated from items 1.4 -1.10 of the surface facility cost estimate. The average cost for surface facilities associated with each conversion was calculated by summing items 1.4 through 1.10 and dividing by the initial 23 conversions. This

average of \$27,800 per conversion was applied to the later development of leaseline injectors.

In order to determine a value for the surface facilities costs of a stand alone unit, Item 1.1 of the detailed cost estimate was eliminated. This is the 8" trunkline required to transport water to the expansion area. All other costs were assumed to remain the same. For a stand alone unit, injection facilities are outlined in Attachment No. 7. Total cost is estimated to be \$896,000, with the majority of the costs (\$831,000) associated with the injection station. Two water supply wells and one disposal well will be required for a stand alone unit. The water supply wells are expected to cost \$391,000 each to drill and complete, and the water disposal well is anticipated to cost \$309,000 to drill and complete.

The EMSU currently has an adequate water supply to handle an expansion of the unit. Therefore, no additional costs associated with water source wells are expected for the expansion case.

Chevron has proposed an investment adjustment (with and without the State K lease) in the event the EMSU is expanded to include the study area. The investment adjustment is based only on facility costs incurred during the development of the EMSU which would benefit injection into the expansion area. Attachment No.8A and B indicates the investment adjustment calculations for the expansion cases. The value of the equipment installed as part of the EMSU development has been adjusted by a multiplier of 0.9652 in order to account for the depreciation of the equipment since initial injection began in November, 1986. An investment adjustment of \$1,090,171 was calculated for an expansion with the State K lease included.

Economics

Economics for the development of the EMWU were rerun in order to reflect:

- 1/1/89 water injection startup for the expansion case,
- 1/1/90 startup for the stand alone case,
- the addition of the State K lease,
- revised investment costs,
- the proposed investment adjustment, and
- revised operating costs

Operating costs for each development scenario was based on the previous criteria of \$1100 per month per primary producer and \$2000 per month per secondary producer. A producing well was considered a secondary producer if offset by two or more injection wells.

An economic analysis was completed on each of five different production and spending profiles. The first case is the base case primary production and operating cost profile for the study area. Two cases are expansion scenarios for secondary development of the study area. One assumes leaseline injection in 1990, which is analogous to Chevron's EMSU leaseline injection second development spending projection. The case leaseline injection agreements can assumes no be These are the best and negotiated. worst case scenarios, which will bracket actual development of the expansion area. Two cases were stand alone scenarios which correspond to the two expansion cases. The stand alone cases assume a one year development delay to the anticipated EMSU expansion cases.

Economics were evaluated on a yet to spend basis as of 1-1-88. The profiles were analazed using Amoco's economic program with a constant oil price of \$18/BO and the gas price held at \$1.50/MCF. The program adds 20% to all investments and expenses as an overhead charge. Operating costs are escalated by 5.5% per year.

Incremental discounted cash flows for each project scenario are summarized in Attachment No. 9. The incremental values were determined by subtracting the base case continued primary operations discounted cash flows from the discounted cash flows of each development scenario. For comparison, a discount factor of 10% will be used on each incremental case.

The production profiles and operating costs for the continued primary operations of all leases in the EMWU study area are shown in Attachment No. 10.

Attachment No. 11A andB are production and spending profiles for the expansion and stand alone cases which include negotiating leaseline injection agreements within two years after initial injection. A comparison of the incremental cash flows for each indicates the expansion case is more economic. Attachment No. 12A and B are production and spending profiles for the expansion and stand alone cases which assume no leaseline agreements can be made. Again, the expansion case is more economic.

Texaco State K Lease

When the original study area was defined, both Texaco and Amerada Hess declined to include their State K and State M leases, respectively. Amerada Hess indicated their lease would be included in their proposed Monument is apparent Texaco would obtain Unit. It a low participation (approximately 0.11%) in the EMWU development by contributing the State K lease, based on EMSU participation formula. Cumulative 1982 the production for the two wells is 306.1 MBO, with last production from the Eunice Monument (G-SA) before 1970.

The inclusion of the Texaco lease will initially allow two additional conversions of producing wells to injection wells. The state and federal agencies have reviewed the preliminary proposal to expand the EMSU and have indicated that the State K lease should be included in any development plans. The inclusion of the State K lease has been incorporated in the economic analysis of the EMWU development.

As a group, the EMWU working interest owners could attempt to acquire rights in the State K lease, as previously recommended. Costs and benefits would be proportioned to each WIO's participation. Two alternatives are available in order to determine a value for the lease:

- Attempt to acquire all producing rights, including the current producing interval (Eumont Gas), or
- (2) Attempt to acquire only rights to the unitized interval.

Current production for the lease is from the Eumont Yates, Seven Rivers, Queen (Pro Gas) Field in Well No. 1 (Unit K, Section 13). Average production for October, 1987 was 140 MCFD. The advantage of acquiring the existing wellbores is possibly reducing the number of wells required to be drilled in the development of the lease acreage. It is assumed that a replacement for Well No. 2 will be necessary; however, Well No. 1 could possibly be recompleted to the Eunice Monument (G-SA). This would reduce the cost of development of the forty acre tract by the drilling cost of \$225,000 less the cost to recomplete. No data is available to accurately determine recompletion cost. This estimate will vary depending on the plugging procedure and the condition of the wellbore at that time.

The second alternative is to acquire only rights as defined by the unitized interval. This option will

require drilling two wells for development. This assumption was used in developing the economic analysis of each development scenario (expansion or stand alone). This alternative would be the most beneficial for unit development for several reasons:

- (1) EMWU would not acquire reserves outside the unitized interval,
- (2) legal complications regarding royalties if gas reserves are shut-in to allow waterflood development, and
- (3) cost to abandon gas zone and recomplete to unitized zone is unknown, which may equal cost to drill a new producer.

In order to determine a value for the State K lease, the lease was evaluated on a stand alone basis. It was projected the conversions from producers to injectors of wells in Unit M, Section 13 and Unit C, Section 24 would be completed, and a replacement for the State K Well No. 2 would be drilled. No development was associated with Well No. 1. The development is shown in Attachment No. Secondary reserves associated with this development 13. are estimated to be 95 MBO, using primary reserve values in Attachment No. 3B and an S/P of 0.47. The production profile for this evaluation is shown in Attachment No. An economic analysis using costs previously noted 14. for unit development and assuming the same economic parameters was completed. Using a 10% discount rate, as in the earlier economic analysis, the State K lease would have a value of \$16,000. The negotiations toward acquiring rights in the State K lease should consider the value the lease would have if developed on a stand alone basis.

ATTACHMENTS

1) Base Map

1

1

1

Ì

- 2) Development Map
- 3A) Percentage of Reserve Base Developed (Map)
- 3B) Percentage of Reserve Base Developed (Table)
- 4A-D) Development Costs
 - 5A) Drilling Well Costs (With State K Lease)
 - 5B) Drilling Well Costs (Without State K Lease)
 - 6) Surface Facility Cost Estimate
 - 7) Injection Facility Cost Estimate
 - 8A) Investment Adjustment Calculation (With State K Lease)
 - 8B) Investment Adjustment Calculation (Without State K Lease)
 - 9) Economic Summary Incremental Discounted Cash Flows
 - 10) Study Area Base Case Production and Spending Profile
 - 11A) Production & Spending Profile Expansion Case 1990 Leaseline Injection
 - 11B) Production & Spending Profile Stand Alone Case 1991 Leaseline Injection
 - 12A) Production & Spending Profile Expansion Case No Leaseline Injection
 - 12B) Production & Spending Profile Stand Alone Case No Leaseline Injection
 - 13) State K Lease Development (Map)
 - 14) State K Lease Production Profile

EUNICE MONUMENT WEST UNIT INITIALLY AND DELAYED DEVELOPED SECONDARY RESERVES BASED ON ACTUAL PORTION OF AREA DEVELOPED RATIOED TO CUMULATIVE OIL PRODUCTION AS OF JUNE 30, 1986 INCLUDES TEXACO STATE & LEASE

İ

Í

Í

ĺ

ļ

ļ

|

																																2														<
DELAVED DEVELOPED Secondary	RESERVES	138043	381314	460364	581343	1/3983	305559	379501	169535	98393	o	284622	308011	94867	0	0 0		30577	186592	0	0	o	144097	175421	193043	66309	o	0	0	112573	50163	5 G		100437	0	o	0	o	0	243770	435921	0	0			2
FULLY DEV Secondary	RESERVES	138043	508419	460364	581343	//6162	611117	379501	169535	393571	545770	569244	308011	142301	427763	417679	910024	10577	377183	568895	645520	459639	288194	175421	193043	265234	356155	376913	590122	150097	150489	154505	405510	401746	0	210250	438359	294238	257780	243770	435921	14884	240338	375777	10400%	510103
INITIALLY DEV Secondary	RESERVES	o	127105	0	0	99942 600360	305559	0	o	295178	545770	284622	0	47434	427763	417679	815024		188592	568895	645520	459699	144097	0	o	198926	356155	376913	590122	37524	100326	241075	405510	301310	0	210250	438359	294238	257780	0	0	14884	240338	375777	107004 554034	5/0AC4
DELAVED	FACTOR	0.500	0.750	0.750	1.000	0.750	0.500	0.750	0.750	0.250	0.000	0.500	0.500	0.500	0.000	0.000	0.000	0.500	0.500	0.000	0 0 0 0	0.000	0.500	0.500	0.750	0.250	0.000	0.000	0.000	0.750	0.250	000.0	0.000	0.250	0.000	0.000	0.000	0.000	0.000	0.750	1.000	0.000	0.000	0.000	0,000	0.000
FULL DEV	FACTOR	0.500	1.000	0.750	1.000	1.000	1.000	0.750	0.750	1.000	1.000	1.000	0.500	0.750	1.000	1.000	1 . 000	1.000	1.000	1.000	1.000	1,000	1.000	0.500	0.750	1.000	1,000	1.000	1.000	1.000	0.750	000 L	1.000	1.000	0.000	1.000	1.000	1.000	1.000	0.750	1.000	0.750	1.000	1.000	7 000 F	7 . UUU
INITIAL	FACTOR	000.0	0.250	000.0	0.000	0.250	0.500	0.000	0.000	0.750	1.000	0.500	000.0	0.250	1.000	1.000	000.1	000 0	0.500	1.000	1.000	1.000	0.500	0.000	0.000	0.750	1.000	1.000	1.000	0.250	0.500		1.000	0.750	000.0	1.000	1.000	1.000	1.000	0.000	0.000	0.750	1.000	1.000	1. 000	7 - UUU
UM OIL		276,085	508,419	613,819	581,343	231,977	611-117 611-117	506,001	226,047	393,571	545,770	569,244	616,021	189,734	427.763	417,679	420,318	240'T44	377.183	568.895	645,520	459,699	288,194	350,842	257,390	265,234	356,155	376,913	590,122	150,097	200,652	2014 CD2	405.510	401,746	0	210,250	438,359	294,238	257,780	325,027	435,921	19,845	240,338	375,777	450,40F	510,904
40 ACRE C	AREA	ч	N	m	4	vn v	0 ~	. 03	0	10	11	12	13	14	IS	16	11	10 F	00	21	22	23	24	25	26	27	28	29	30	31	32	n v		9E	37	38	6 £	40	41	42	64	44	45	¢ .	1 5 7	10 J

ATTACHMENT NO.3B

-

		1	1	1	1			
07	242.824	1.000	1.000	0.000	242824	242824	0	
50	50,486	0.500	1.000	0.500	28243	56486	28243	
51	897,169	0.000	0.750	0.750	0	672877	672877	
52	24,492	0.750	0.750	0.000	18369	18369	0	
53	167,783	1.000	1.000	0.000	167783	167783	0 0	
24 v 25	352,036 The ale	1 000	1 000	0.000	385815 385815	385815	 -	
, s	319.035	1.000	1.000	0.000	319035	319035	. 0	
57	368,655	1.000	1.000	0 0 0 0	368655	368655	0	
58	239,606	1.000	1.000	0,000	239606	239606	0	
59	482,385	0.250	1.000	0.750	120596	482385	361789	
60	19,646	0.500	0.750	0.250	9823	14735	4912	
61	56,151	1.000	1.000	0 . 000	56151	56151	0	
62	330,359	0.750	1.000	0.250	247769	330359	82590	
63	259,143	1.000	1.000	0.000	259143	259143	0	
64	217,377	1.000	1.000	0 0 0 0 0	217377	217377	0	
65	234,255	1.000	1.000	0.000	234255	234255	0	
66	459,408	0.750	1.000	0.250	344556	459408	114852	
67	19,875	0.000	0.500	0.500	0	9938	9938	
68	46,285	0.250	1.000	0.750	11571	46285	34714	
6 9	134,440	0.000	0.750	0.750	0	100830	100830	
70	241,405	0.500	1.000	0.500	120703	241405	120703	
"	239,191	0.750	0.750	0.000	179393	179393	0 0	
72	367,552	1.000	1.000	0.000	202/05	202/05		
73	208,602	0.500	0.500	0.000	070401	C00401	242515	
2 5	154, 425		000 1		27413	154825	77413	
ž		000.0		201.0				
TOTAL	24,601,881				15807098	22875405	7068307	
PERCENT	100				64.25158	92.98234	28.73076	
A(2)	707,826	0.000	0.250	0.250	•	176957	176957	
	08/'CA0	0.000	0.2.0	0.250		180246	180246	
	165 620	000.0	002.0		, c	72715	72715	
E(31)	398.534	0.000	0.250	0.250		99634	99634	
F(43)	575,220	0.000	0.250	0.250	0	143805	143805	
G(43)	655,308	0.000	0.250	0.250	0	163827	163827	÷
H(59)	199,633	0.000	0.250	0.250	0	49908	49908	
I(59,66)	147,910	0.000	0.500	0.500	0	73955	73955	
J(72)	272,608	000.0	0.250	0.250	•	68152	68152	
K(70)	244,696	0.000	0.250	0.250	0 (61174	61174	
L(68)	101,922	0.000	0.250	0.250	0	25481	25481	
M(5)	79,753	0 . 000	0.250	0.250	0	19938	19938	
	4,945,608							
							F \\ 007	
TOTAL RES	SERVES DEVEL(OPED Secover Di			840/0851	14163142 0407 80	63/6043 74 n5448	
PERCENIAL	JE OF AKEA RI		RVELOVED			10000-01	11112-12	

PAGE

Ň

EMSU EXPANSION CASE W/ LEASELINE INJECTION IN 1990

W/ STATE K LEASE

DRILL AND COMPLETE 2 PRODUCERS	\$ 350,000
DRILL AND COMPLETE 3 INJECTORS	515,000
WORKOVER 47 PRODUCERS	2,961,000
CONVERT 23 PRODUCERS TO INJECTION	1,656,000
SURFACE FACILITIES	3,524,000
INVESTMENT ADJUSTMENT	1,090,171
INJECTION FACILITIES	-
DRILL AND COMPLETE WTR SOURCE WELLS	-
DRILL AND COMPLETE SWD WELL	

\$10,096,171

1990

				 197 600
SURFACE	FACILITIES			333,600
CONVERT	12 PRODUCERS	TO	INJECTION	\$ 864,000

TOTAL

Î

\$11,293,771

EMSU EXPANSION CASE W/ LEASELINE INJECTION IN 1990

W/O STATE K LEASE

I

DRILL AND COMPLETE 1 PRODUCER	\$ 125,000
DRILL AND COMPLETE 2 INJECTORS	310,000
WORKOVER 49 PRODUCERS	3,087,000
CONVERT 21 PRODUCERS TO INJECTION	1,512,000
SURFACE FACILITIES	3,524,000
INVESTMENT ADJUSTMENT	1,018,893
INJECTION FACILITIES	-
DRILL AND COMPLETE WTR SOURCE WELLS	-
DRILL AND COMPLETE SWD WELL	-

\$9,576,893

1990

CONVERT	13 PRODUCERS	TO	INJECTION	\$	936,000
SURFACE	FACILITIES				361,400
				 \$1,	297,400

TOTAL \$10,874,293

STAND ALONE CASE W/ LEASELINE INJECTION IN 1991

W/ STATE K LEASE

DRILL AND COMPLETE 2 PRODUCERS	\$ 350,000
DRILL AND COMPLETE 3 INJECTORS	515,000
WORKOVER 47 PRODUCERS	2,961,000
CONVERT 23 PRODUCERS TO INJECTION	1,656,000
SURFACE FACILITIES	3,315,000
INVESTMENT ADJUSTMENT	-
INJECTION FACILITIES	896,000
DRILL AND COMPLETE 2 WTR SOURCE WELLS	782,000
DRILL AND COMPLETE 1 SWD WELL	309,000
	\$10,784,000

1991

CONVERT	12 PRODUCERS	TO	INJECTION	\$	864,000
SURFACE	FACILITIES			_	333,600
				\$1	,197,600

TOTAL

\$11,981,600

STAND ALONE CASE W/ LEASELINE INJECTION IN 1991

W/O STATE K LEASE

DRILL AND COMPLETE 1 PRODUCER	\$ 125,000
DRILL AND COMPLETE 2 INJECTORS	310,000
WORKOVER 49 PRODUCERS	3,087,000
CONVERT 21 PRODUCERS TO INJECTION	1,512,000
SURFACE FACILITIES	3,315,000
INVESTMENT ADJUSTMENT	-
INJECTION FACILITIES	896,000
DRILL AND COMPLETE 2 WTR SOURCE WELLS	782,000
DRILL AND COMPLETE I SWD WELL	309,000
	\$10,336,000

1991

ł

CONVERT	13 PRODUCERS	TO INJECTI	ION \$	936,000
SURFACE	FACILITIES			361,400
			\$1,	,297,400
TOTAL			\$11,	,633,400

ATTACHMENT NO.4[

÷

WELLS TO DRILL FOR DEVELOPMENT OF EMWU (WITH TEXACO STATE "K" LEASE)

PRODUCING WELLS	WELLBORE PENALTY	TANGIBLE COSTS	INTANGIBLE COSTS	TOTAL COSTS
R. R. Bell NCT G Com No. 1 (Unit P, Section 13)	Yes	\$ 63,750	\$ 61,250	\$125,000
State 'K' No. 2 (Unit N, Section 13)	No 🦂	110,000	115,000	225,000
SUBTOTAL		\$173,750	\$176,250	\$350,000
INJECTION WELLS				
Gillully Fed Gas Com No. 7 (Unit O, Section 24)	Yes	\$ 66,600	\$ 38,400	\$105,000
Sanderson B-14 (Unit M, Section 23)	No	⊳ 75,000	130,000	205,000
State 'K' No. 1 (Unit K, Section 13)	No	75,000	130,000	205,000
SUBTOTAL		\$216,600	\$298,400	\$515,000
TOTAL		\$390,350	\$474,650	\$865,000

í

WELLS TO DRILL FOR DEVELOPMENT OF EMWU (WITHOUT TEXACO STATE "K" LEASE)

PRODUCING WELLS	WELLBORE PENALTY	TANGIBLE COSTS	INTANGIBLE COSTS	TOTAL COSTS
R. R. Bell NCT G Com No. 1 (Unit P, Section 13)	Yes	\$ 63,750	\$ 61,250	\$125,000
INJECTION WELLS				
Gillully Fed Gas Com No. 7 (Unit O, Section 24)	Yes	\$ 66,600	\$ 38,400	\$105,000
Sanderson B-14 (Unit M, Section 23)	No	75,000	130,000	205,000
TOTAL		\$205,350	\$229,650	\$435,000

ŧ ...

ATTACHMENT NO.5B

.

EMWU SURFACE FACILITY COST ESTIMATE

١

Ì

			CONTRACT (\$M)	MATERIAL (\$M)	TOTAL (\$M)
1.0	Injec 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 1.10	tion Distribution System 8" Trunkline - 11,000' 6" Trunkline - 9,000' 4" Injection lines - 8,000' 3" Injection lines - 4,000' 2" Injection lines -50,000' Meter runs, manifolds Misc. valves, fittings Wellhead hookups RTUs ROW, damages	55 38 16 7 80 45 10 14 6 50	154 110 80 24 163 127 30 42 42	209 148 96 31 243 172 40 56 48 50
	SUBTO	TAL 1.0	321	772	1093
2.0	Satel 2.1 2.2 2.3	lites(2), Central Battery Two satellite batteries Central battery Damages	100 100 10	300 400	400 500 10
	SUBTO	TAL 2.0	210	700	910
3.0	Produ 3.1 3.2 3.3 3.4 3.5	ction Gathering System 2" Flowlines - 168,000' 6" Gathering lines - 11,000' Misc. valves, fittings Well hookups ROW, damages	235 20 5 15 80	210 50 10 40	445 70 15 55 80
	SUBTO	TAL 3.0	355	310	665
4.0	Elect 4.1 4.2 4.3 4.4	rical Distribution System Primary and secondary Motor services Transformers, reclosers ROW, damages	80 40 36	165 90 55	245 130 55 36
	SUBTO	TAL 4.0	156	310	466
5.0	Misce 5.1 5.2 5.3 SUBTO	llaneous Roads Abandonment of facilities Remove old EDs TAL 5.0	250 125 15 390		250 125 15 390
				<u> </u>	
TOT	AL		1,432	2,092	3,524

EMWU INJECTION FACILITIES (STAND ALONE)

1.0	Injection Plant	\$831,000
2.0	Water Supply Wells (Surface facilities)	55,000
3.0	Water Disposal Well (Surface facilities)	10,000

TOTAL

\$896,000

•

;

EMSU INJECTION FACILITIES SUMMARY CALCULATION OF INVESTMENT ADJUSTMENT (WITH TEXACO STATE K LEASE)

ITEM	EMSU COST	DEPRICIATED COST	* FACTOR	EMWU COST
Main trunk lines	\$ 328,098	\$ 316,680	25/56	\$141,375
Water injection plant	2,229,298	2,151,718	25/159	338,320
Water supply wells (Surface facilities)	403,974	389,916	25/159	61,308
Water disposal well (Surface facilities)	20,591	19,874	25/159	3,125
Water source wells (Drill,complete,equip)	3,511,044	3,388,860	25/159	532,840
Water disposal well	87,000	83,972	25/159	13,203

INVESTMENT ADJUSTMENT

\$1,090,171

* Number of WIWs in expansion area / total number of WIWs served

1

ATTACHMENT NO. 8A

EMSU INJECTION FACILITIES SUMMARY CALCULATION OF INVESTMENT ADJUSTMENT (WITHOUT TEXACO STATE K LEASE)

ITEM	EMSU COST	DEPRICIATED COST	* FACTOR	EMWU COST
Main trunk lines	\$ 328,098	\$ 316,680	23/54	\$134,882
Water injection plant	2,229,298	2,151,718	23/157	315,220
Water supply wells (Surface facilities)	403,974	389,916	23/157	57,121
Water disposal well (Surface facilities)	20,591	19,874	23/157	2,911
Water source wells (Drill,complete,equip)	3,511,044	3,388,860	23/157	496,457
Water disposal well	87,000	83,972	23/157	12,302

INVESTMENT ADJUSTMENT

\$1,018,893

(. . .

* Number of WIWs in expansion area / total number of WIWs served

.

ATTACHMENT NO.8B

PROPOSED EUNICE MONUMENT UNIT ECONOMIC EVALUATION INCREMENTAL DISCOUNTED CASH FLOWS AT VARIOUS DISCOUNT RATES WITH THE STATE K LEASE

SCENARIO	INJECTION AGREEMENTS	INCREMENTAL C	ASH FLOW AT	VARIOUS DISCOUNT	RATES (\$MM)	
		PV(0)	PV(8)	PV(10)	PV(13)	PV(15)
EMSU EXPANSION	1990	91.203	26.501	18.671	161'01	6.120
EMMU STAND ALONE	1661	88 . 046	22.854	15.455	7 . ó95	4.106
EMMU EXPANSION	NONE	51.277	13.075	8.365	3.236	0.763
EMWU STAND ALONE	NONE	48.734	10.787	6.427	1.853	-0.256

-

÷

ATTACHMENT N

STUDY AREA BASE CASE Continued Primary Operations Spending and production profile

	PRIMARY	PRIMARY	TOTAL	OP COSTS
YEAR	BOPD	GOR	MCFD	\$M/YEAR
1988	526	3700	1946	673
1989	499	3700	1845	673
1990	473	3700	1749	673
1991	448	3700	1658	673
1992	425	3700	1572	673
1993	403	3700	1490	673
1994	382	370 0	1413	673
1995	362	3700	1340	673
1996	343	3700	1270	673
1997	325	3700	1204	673
1998	309	3700	1142	673
1999	293	3700	1083	673
2000	277	3700	1026	673
2001	263	3700	973	673
2002	249	3700	923	673
2003	236	3700	875	673
2004	224	3700	829	673
2005	212	3700	786	673
2006	201	3700	745	673
2007	191	3700	707	673
2008	181	3700	670	673
2009	172	3700	635	673
2010	163	3700	602	673
2011	154	3700	571	673
2012	146	3700	541	673
2013	139	3700	513	673
2014	132	3700	487	673
2015	125	3700	461	673
2016	118	3700	437	673
2017	112	3700	415	673
2018	104	3700	303	673
2019	101	3700	373	473
	101	3700	3/3	9/ 3

i .:

ATTACHMENT NO.10

-

EMWU ANALOGY TO CHEVRON ESTIMATE Assuming leaseline injection in 1990 Analogous to chevron assumption With state K

ENT COSTS	NTANGIBLE	\$M/YEAR		4,821	•	675	ø	o	o	0	0	0	0	0	0	0	0	•	•	0	0	0	0	¢	0	0	•	0	0	0	•	0	0	•	0	*.,
DEVELOPM	TANGIBLE I	\$M/YEAR		4,185	0	523	•	o	0	•	0	o	o	o	0	•	0	•	•	•	o	0	0	•	0	•	0	•	•	0	•	•	ο.	0	•	
	OP COSTS	\$M∕YEAR		781	888	888	888	888	888	388	888	888	888	888	888	888	888	388	888	888	888	388	888	888	888	888	888	888	888	888	888	888	888	888	888	
AVERAGE	WEIGHTED	GOR		3700	3700	3700	3014	2622	2083	1730	1417	0111	905	734	614	504	445	445	446	447	447	448	449	450	451	452	454	455	457	458	460	463	465	468	471	
TOTAL	MCFD			1946	1845	1749	1351	1114	850	894	1421	1975	3079	3050	2548	2088	1577	1350	1157	266	850	729	625	535	459	394	338	290	249	213	183	157	135	115	66	
TOTAL	BOPD			526	667	473	448	425	408	517	1003	1779	3400	4154	4148	4141	3544	3032	2595	2221	1900	1626	1392	1190	1019	871	745	637	545	466	398	339	289	246	210	
EVELOPED	GOR			3700	3700	3700	3000	2600	2050	1700	1400	1100	006	730	610	500	440	440	440	440	440	440	440	440	440	440	440	440	440	440	440	440	440	440	440	
PRIMARY D	GOR			3700	3700	3700	3700	3700	3700	3700	3700	3700	3700	3700	3700	3700	3700	3700	3700	3700	3700	3700	3700	3700	3700	3700	3700	3700	3700	3700	3700	3700	3700	3700	3700	
INCREM.	BOPD			0	•	0	0	0	¢	135	641	1436	3075	3845	3855	3864	3281	2783	2359	1997	1688	1425	1201	1009	847	708	5910	165	406	334	273	221	177	140	109	
2%	PRIMARY	NEVER	DEVELOPED	11	10	9	o	83	8	83	2	7	2	¢	¢	9	Ś	5	5	4	4	4	4	4	ю	Ð	M	ю	ю	ы	0	2	8	0	N	
28 %	PRIMARY	INITIALLY	DEVELOPED	515	489	663	439	416	395	374	355	336	319	302	287	272	258	244	232	220	208	197	187	177	168	160	151	143	136	129	122	116	011	104	66	
TOTAL	PRIMARY	BOPD		526	667	473	448	425	603	382	362	343	325	309	293	277	263	249	236	224	212	201	191	181	172	163	154	146	139	132	125	118	211	106	101	
YEAR				1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	

ATTACHMENT NO.11

STAND ALONE CASE ONE VEAR DELAV Assuming leaseline injection in 1991 Analogous to chevron assumption With state K

)	
>	¥
•	ш
2	5
5	Ť
2	S
í	Σ
ç	E

TOTAL AVERAGE DEVELOPMENT COSTS MCFD WEIGHTED OP COSTS TANGIBLE INTANGIBLE

TOTAL BOPD

PRIMARY DEVELOPED Gor Gor

INCREM. BOPD

2% PRIMARY

98% Primary

TOTAL PRIMARY

YEAR

BOPD	DEVELOPED	NEVER DEVELOPED						GOR	\$M/YEAR	\$M/YEAR	\$M/YEAR
8	515	11	0	3700	3700	526	1946	3700	673	0	0
6	484	10	0	3700	3700	499	1845	3700	781	4,959	5,825
ñ	463	0	0	3700	3700	473	1749	3700	888	0	•
48	627	œ	•	3700	3000	448	1351	3014	888	523	675
25	416	8)	•	3700	2600	425	1114	2622	888	0	•
8	395	60	•	3700	2050	603	839	2083	888	•	•
82	374	83	°	3700	1700	387	674	1739	888	0	0
62	355	~	135	3700	1400	497	713	1434	888	0	0
54	336	~	179	3700	1100	984	1011	1118	888	0	0
525	319	2	1436	3700	006	1761	1604	910	888	0	0
309	302	v	3075	3700	730	3384	2488	735	888	0	0
293	287	-0	3845	3700	610	4138	2542	614	888	0	0
277	272	•0	3855	3700	500	4132	2084	504	888	0	0
263	258	S	3864	3700	440	4127	1833	777	888	0	0
653	244	S	3281	3700	440	3530	1570	445	888	0	0
36	232	ŝ	2783	3700	440	3019	1344	445	888	0	0
24	220	£	2359	3700	440	2583	1151	446	888	0	0
:12	208	4	1997	3700	440	2209	986	975	888	0	0
201	197	4	1688	3700	440	1889	844	447	888	0	0
[9]	187	4	1425	3700	440	1616	723	448	888	0	0
181	177	4	1201	3700	440	1382	620	449	888	0	0
172	168	Ð	1009	3700	440	1181	531	440	888	0	0
563	160	'n	847	3700	440	1010	455	451	388	0	0
54	151	'n	708	3700	440	862	389	452	888	0	•
146	143	'n	591	3700	440	737	334	453	888	0	0
139	136	'n	491	3700	440	630	286	454	888	0	0
32	129	'n	406	3700	440	538	245	456	888	0	0
25	122	N	334	3700	440	459	210	458	888	0	0
.18	116	N	273	3700	440	391	180	460	888	o	0
112	011	N	221	3700	440	333	154	462	888	o	0
80	104	N	177	3700	440	283	132	494	888	0	•
101	66	N	140	3700	440	241	113	467	888	0	•

•

ATTACHMENT NO.12A

-

ANALOGY TO CHEVRON ESTIMATE ASSUMING NO LEASELINE INJECTION AGREEMENTS PESSIMISTIC CASE WITH STATE K

M/YEAR BN/YEAR BM/YEAR
WS BOD
AC
0408
805 20
PRIMARY
0408
JNDEVELOPED Primary Bopd
DEVELOPED L PRIMARY BOPD
PRIMARY BOPD

Ţ

STAND ALONE CASE Assuming no léaseline injection agréements Pessimistic case

WITH STATE K

DEVELOPMENT COSTS	NTANGIBLE	4/YEAR			0	5,825	0	0	0	0	0	0	0	0	0	0	0	0	0	•	•	0	0	0	0	•	0	0	0	0	•	0	o	ò	0	•
	TANGIBLE I	\$M/YEAR \$			0	4,959	0	0	0	0	•	0	0	•	ð	•	•	•	0	•	0	•	0	•	0	•	0	0	0	•	0	0	•	0	0	0
	OP COSTS	\$M/YEAR			673	823	973	973	973	973	973	973	973	573	973	973	973	973	973	973	973	973	973	973	973	973	973	973	973	973	973	973	673	973	973	973
AVERAGE	WEIGHTED	GOR			3700	3700	3700	3252	2996	2644	2413	2066	1522	1159	872	726	614	551	562	575	589	604	621	640	660	683	707	733	763	794	829	867	908	954	1001	1053
	TOTAL	MCFD			1946	1845	1749	1457	1273	1065	931	930	1160	1466	2023	2037	1718	1535	1346	1182	1040	917	810	718	638	567	506	453	406	365	329	297	269	244	223	203
	TOTAL	BOPD			526	464	473	448	425	403	386	450	762	1264	2319	2806	2797	2788	2393	2055	1766	1517	1304	1122	966	831	717	617	532	460	397	343	296	256	222	193
	DEVELOPED	GOR			3700	3700	3700	3000	2600	2050	1700	1400	1100	006	730	610	500	440	440	440	440	440	440	440	440	440	440	440	440	440	440	440	440	440	440	440
	GOR	PRIMARY			3700	3700	3700	3700	3700	3700	3700	3700	3700	3700	3700	3700	3700	3700	3700	3700	3700	3700	3700	3700	3700	3700	3700	3700	3700	3700	3700	3700	3700	3700	3700	3700
	INCREM.	BOPD			0	0	0	0	0	0	4	88	419	939	2010	2513	2520	2525	2144	1819	1542	1305	1103	931	785	659	554	463	386	321	265	218	178	144	116	92
	36%		0d08		189	179	170	161	153	145	137	130	124	117	111	105	100	95	06	85	81	76	73	69	65	62	59	56	53	50	47	45	43	40	38	36
-	64%	DEVELOPED	PRIMARY BOPD		337	319	303	287	272	258	244	232	220	208	197	187	178	168	160	151	143	136	129	122	116	110	104	66	94	89	84	80	76	72	68	64
	TOTAL	PRIMARY	BOPD		526	667	473	448	425	403	382	362	545	325	309	293	277	263	249	236	224	212	201	161	181	172	163	154	146	139	132	125	118	112	106	101
	YEAR				1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019

ATTACHMENT NO.1

-

3

NCIJ EXACO STATE K LEASE SECTION 13 CONTRIBL

ATTACHMENT NO. 14