STATE OF NEW MEXICO ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT OIL CONSERVATION DIVISION IN THE MATTER OF THE HEARING CALLED BY THE OIL CONSERVATION DIVISION FOR THE PURPOSE OF CONSIDERING: CASE NO. 11,996 APPLICATION OF PENDRAGON ENERGY PARTNERS, INC., AND J.K. EDWARDS ORIGINAL ASSOCIATES, INC., TO CONFIRM PRODUCTION) FROM THE APPROPRIATE COMMON SOURCE OF SUPPLY, SAN JUAN COUNTY, NEW MEXICO REPORTER'S TRANSCRIPT OF PROCEEDINGS, Volume I EXAMINER HEARING 1 BEFORE: DAVID R. CATANACH, Hearing Examiner RECEIVED SEP R July 28th, 1998 Oil Conservation Division Santa Fe, New Mexico 1 This matter came on for hearing before the New Mexico Oil Conservation Division, DAVID R. CATANACH, Hearing Examiner, on Tuesday, July 28th, 1998 (Vol. I), at the New Mexico Energy, Minerals and Natural Resources Department, Porter Hall, 2040 South Pacheco, Santa Fe, New Mexico, Steven T. Brenner, Certified Court Reporter No. 7 for the State of New Mexico. STEVEN T. BRENNER, CCR

(505) 989-9317

1

€. 11 C

2 INDEX July 28th, 1998 (Volume I) Examiner Hearing CASE NO. 11,996 PAGE EXHIBITS 3 5 **APPEARANCES APPLICANT'S WITNESSES:** ALAN B. NICOL (Geological engineer; President, Pendragon Energy Partners, Incorporated) Direct Examination by Mr. Hall 8 Cross-Examination by Mr. Gallegos 92 Redirect Examination by Mr. Hall 161 Examination by Examiner Catanach 163 Examination by Mr. Chavez 176 Further Examination by Examiner Catanach 179 Further Examination by Mr. Gallegos 180 ROLAND BLAUER (Engineer, rheologist; President, Resources Services International) Direct Examination by Mr. Hall 184 Cross-Examination by Mr. Gallegos 217 Examination by Mr. Chavez 260 Examination by Examiner Catanach 268 Further Examination by Mr. Hall 280 Further Examination by Mr. Chavez 281 Further Examination by Mr. Gallegos 283 **REPORTER'S CERTIFICATE** 286 * * *

Applicant's		Identified	Admitted	
Exhibit	N1	11	92	
Exhibit		20	92	
Exhibit		22	92	
		- 1	0.0	
Exhibit		21	92	
Exhibit		29	92	
Exhibit	N6	36, 37	92	
Exhibit	N7	38	92	
Exhibit	N8	42	92	
Exhibit	N9	46	92	
Exhibit	N10	49	92	
Exhibit	N11	49	92	
Exhibit	N12	54	92	
Exhibit	N1 2	58	92	
Exhibit		58 60	92	
Exhibit	NT2	63, 72, 73	92	
Exhibit	N16	73	92	
Exhibit	N17	78	92	
Exhibit	N18	82, 83	92	
	1110	05	00	
Exhibit		85	92	
Exhibit		88	92	
Exhibit	N21	88	-	
		* * *		
Exhibit	B1	188	217	
Exhibit	B2	189	217	
Exhibit	B3	191	217	
Exhibit	R/	193, 194	217	
Exhibit		195, 194	217	
		195	217	
Exhibit	00	199	21/	
Exhibit	B7	201	217	
Exhibit	B8	202	217	
Exhibit	B9	207	217	
		(Continued)		

E	хніві	T S	(Continu	ed)
Applicant's		Identi	fied	Admitted
Exhibit	B10		210	217
Exhibit	B11		212	217
Exhibit	B12		213	217
Exhibit	B13		213	217
Exhibit	B14		204	217
Exhibit	B15		204	217
		* * *		
Whiting/Maralex		Identi	fied	Admitted
Exhibit	9		103	285
Exhibit	37		218	-
Exhibit	39	219,	240	-
Exhibit	40	219,	242	-

* * *

APPEARANCES

FOR THE DIVISION:

RAND L. CARROLL Attorney at Law Legal Counsel to the Division 2040 South Pacheco Santa Fe, New Mexico 87505

FOR PENDRAGON ENERGY PARTNERS, INC., PENDRAGON RESOURCES, L.P., and J.K. EDWARDS ASSOCIATES, INC.:

MILLER, STRATVERT and TORGERSON, P.A. 150 Washington Suite 300 Santa Fe, New Mexico 87501 By: J. SCOTT HALL

FOR WHITING PETROLEUM, INC., and MARALEX RESOURCES, INC.:

GALLEGOS LAW FIRM 460 St. Michael's Drive, #300 Santa Fe, New Mexico 87505 By: J.E. GALLEGOS and MICHAEL J. CONDON

ALSO PRESENT:

FRANK T. CHAVEZ District Supervisor Aztec District Office (District 3) NMOCD

ERNIE BUSCH Geologist Aztec District Office (District 3) NMOCD

* * *

STEVEN T. BRENNER, CCR (505) 989-9317 5

	6
1	WHEREUPON, the following proceedings were had at
2	8:23 a.m.:
3	EXAMINER CATANACH: Call the hearing to order
4	this morning for this special docket, and at this time
5	we'll call Case 11,996
6	MR. CARROLL: Application of Pendragon Energy
7	Partners, Inc., and J.K. Edwards Associates, Inc., to
8	confirm production from the appropriate common source of
9	supply, San Juan County, New Mexico.
10	EXAMINER CATANACH: Call for appearances at this
11	time.
12	MR. HALL: Mr. Examiner, Scott Hall from the
13	Miller Stratvert Torgerson law firm, Santa Fe, on behalf of
14	the Applicants. And I've also entered an appearance in
15	this case on behalf of Pendragon Resources, L.P.
16	I have five witnesses to be sworn as well.
17	MR. CARROLL: And who is Pendragon Resources,
18	L.P.?
19	MR. HALL: Pendragon Resources, L.P., is the
20	owner of the working interest dedicated to the Chaco wells
21	that are the subject of this Application. Pendragon Energy
22	is the operated of the Chaco wells.
23	EXAMINER CATANACH: And you're also representing
24	J.K. Edwards Associates?
25	MR. HALL: Yes.

6

1 EXAMINER CATANACH: Okay. 2 MR. GALLEGOS: Mr. Examiner, appearing on behalf 3 of Whiting Petroleum, Inc., and Maralex Resources, Inc., Gene Gallegos and Michael Condon, Santa Fe. 4 5 MR. CARROLL: And how many witnesses do each of 6 you have? MR. HALL: I have five. 7 MR. GALLEGOS: We have four, I believe. 8 MR. CONDON: We may have five if there's an issue 9 10 on land, title description. 11 EXAMINER CATANACH: Okay, call for additional 12 appearances? MR. GEORGE SHARPE: Mr. Examiner, Merrion Oil and 13 14 Gas requested the opportunity to appear. We don't anticipate giving testimony at this hearing but would like 15 to retain the right to do so if it's continued or appealed. 16 Tommy Roberts will be representing us if we do. 17 EXAMINER CATANACH: Okay. Any additional 18 19 appearances? 20 Okay. I'd just like to mention that we have some Division staff from the Aztec District Office. Mr. Frank 21 Chavez and Mr. Ernie Busch are here today to sit in on the 22 23 proceedings, and they will be allowed to ask questions of 24 the witness. 25 And if need be, Mr. Busch may testify, if he

7

	8
1	needs to clarify some Division policies or issues. I don't
2	know that, but we'll see at the end of the hearing.
3	So Mr. Hall, are you prepared to
4	MR. CARROLL: I'll swear in the witnesses.
5	EXAMINER CATANACH: We need to swear in the
6	witnesses here.
7	(Thereupon, the witnesses were sworn.)
8	MR. HALL: Mr. Catanach, we had not planned on
9	giving an opening statement. We will do so if you request
10	one. Otherwise, we'll go straight to the first witness.
11	EXAMINER CATANACH: Mr. Gallegos, did you plan on
12	making an opening statement?
13	MR. GALLEGOS: No, I think we can just proceed.
14	EXAMINER CATANACH: Okay, let's just proceed, Mr.
15	Hall.
16	MR. HALL: Call Al Nicol to the stand.
17	ALAN B. NICOL,
18	the witness herein, after having been first duly sworn upon
19	his oath, was examined and testified as follows:
20	DIRECT EXAMINATION
21	BY MR. HALL:
22	Q. For the record, Mr. Nicol, state your name.
23	A. My name is Alan B. Nicol.
24	Q. Mr. Nicol, where do you live, and by whom are you
25	employed and in what capacity?

----\

1	A. I live at 5895 Fig Court in Arvada, Colorado.
2	I'm the President of Pendragon Energy Partners,
3	Incorporated.
4	Q. And have you previously testified before the
5	Division or the New Mexico Oil Conservation Commission?
6	A. No, I have not.
7	Q. In view of that, why don't you give the Hearing
8	Examiner a brief summary of your educational background and
9	work experience?
10	A. I have a bachelor of science degree in geological
11	engineering from Michigan Technological University and a
12	master of science in geological engineering from the
13	university of Utah.
14	I began my career in the oil business in 1969
15	with Shell Oil Company and have been working steadily in
16	the business since then. I spent four years with Shell and
17	then with a series of independents as exploration manager,
18	vice president of exploration and operations, those sorts
19	of positions.
20	One of the companies was Resources Investment
21	Corporation in Denver, which grew in the five years I was
22	there from a \$5-million drilling fund company to \$35
23	million, and at one point I had a staff of 22 geologists
24	who were either on retainer or as employees, generating and
25	screening prospects.
1	

.

1	In 1980 I was co-founder of Bellwether
2	Exploration Company, and when that was sold in 1985 I
3	became a consultant for a period of time with a number of
4	clients, both on retainer and occasional clients, and then
5	in 1992 formed Pendragon Energy Partners, Incorporated,
6	with two other individuals.
7	Q. Mr. Nicol, are you familiar with the lands and
8	the wells that are the subject of this Application?
9	A. Yes, I am.
10	Q. And you're familiar with the Application itself?
11	A. Yes.
12	Q. We'd offer By the way, are you in-house
13	geologist for Pendragon now?
14	A. Yes.
15	MR. HALL: We'd offer Mr. Nicol as expert
16	petroleum geologist.
17	EXAMINER CATANACH: Any objection?
18	MR. GALLEGOS: No objection.
19	EXAMINER CATANACH: Mr. Nicol is so qualified.
20	Q. (By Mr. Hall) Mr. Nicol, if you would, please
21	summarize what it is that Pendragon is asking for by this
22	Application.
23	A. We're asking the Commission for an order that
24	states we are the this concerns the six Pendragon
25	Edwards wells in question, that they are Pictured Cliffs

1	wells, that we are producing from the proper source of
2	supply.
3	Q. All right, if you'd refer to what's been marked
4	as Exhibit N1, why don't you identify that and familiarize
5	the Examiner with the properties?
6	A. This first exhibit is simply a picture of our
7	leasehold position and ownership in the area in question.
8	We're discussing portions of Township 26 North, 12 West; 26
9	North, 13 West, in San Juan County, which is roughly 20
10	miles south of Farmington.
11	And there are a total of 11 wells that we will be
12	referring to frequently as being wells in question here.
13	Starting just from the top of the map, the Chaco
14	2-J well, operated by Pendragon, sometimes shows up as the
15	Chaco Limited 2-J, and that's in Section 1 of 26-13.
16	Also in Section 1 is the 1-J well, in the
17	southwest quarter.
18	And in the southeast quarter, the Chaco 5 well.
19	And then down in 26-12, Section 7, we have the
20	Chaco 4, Chaco 2-R, and then south of that in Section 18,
21	the Chaco Number 1.
22	Offsetting Whiting/Maralex wells that are a part
23	of this debate are the 26-13 1-1, which is only a few
24	hundred feet from our Chaco 1-J well; 26-13 1-2, which is
25	about 600 feet from our Chaco 2-J well; the 26-12 6 Number

	21
1	2, which is in the southwest quarter of Section 6 of 26-12;
2	the 26-13 12-1, which is in the northeast quarter of
3	Section 12, diagonally south of the 6-2; and the 26-12 7
4	Number 1, which is about 800 feet from our Chaco 2-R in the
5	west half of Section 7, 26-12.
6	The color coding is what you get when you ask a
7	person to color-code a map and don't tell them what color
8	you want, so we're working with pink and magenta here.
9	The pink is acreage under which Pendragon and
10	Edwards own the Pictured Cliff rights and/or Pictured
11	Cliffs and below.
12	The purple color or magenta color is where we own
13	Fruitland and Pictured Cliffs, or Fruitland, Pictured
14	Cliffs and below, which in effect is all of the rights
15	under consideration here.
16	And then there's a blue tract here in Section 8
17	where we own only the Fruitland rights.
18	Q. Tell us how Pendragon acquired these particular
19	properties.
20	A. These properties were purchased through an
21	offering that Merrion made at an EBCO auction, so we bid at
22	them or bid for them at auction jointly with J.K.
23	Edwards.
24	At that time J.K. Edwards, when we acquired them,
25	became the operator. So there was a period of time here

1	where J.K. Edwards was operating the wells, and then
2	Pendragon took over operations early in 1996. The wells
3	were acquired late in 1994.
4	Q. All right. Generally, what rights did Edwards
5	and Pendragon acquire from Merrion?
6	A. The sale was advertised as Pictured Cliffs rights
7	only, and that was the intention of the parties, that we
8	buy Pictured Cliffs wells.
9	The wells were perforated and producing or had
10	produced in the Pictured Cliffs formation.
11	Q. All right. When Edwards and Pendragon acquired
12	these wells, I assume some due diligence was done, review
13	of the completion reports. What do those completion
14	reports reflect with respect to completion interval?
15	A. The completion intervals are Usually there
16	were two sets of perforations in the wells. The Chaco 2-R
17	is perforated in only one zone, the other wells were
18	perforated in two zones each. And the completion reports
19	and production reports all showed those as Pictured Cliffs
20	production, Pictured Cliffs perforations.
21	Q. All right. Tell us about the dispute that grew
22	up between Whiting and Maralex on the one hand, and
23	Pendragon/Edwards on the other, that led to these
24	Applications before the OCD.
25	A. This dispute actually started, to my knowledge

 I believe it was probably late spring, May or June when I got a call from J.K. Edwards saying that Mara asked for a I don't want to call it a hearing, but audience in front of the Aztec Oil and Gas Commission 	alex had
3 asked for a I don't want to call it a hearing, but	
	ut an
4 audience in front of the Aztec Oil and Gas Commission	
	on
5 office to register a complaint that they felt that t	we were
6 producing their coal reserves out of our Pictured C	liff
7 wells.	
8 So we attended a meeting in Aztec shortly	after
9 that where Maralex made a presentation of what they	thought
10 was the problem to a group of people, including inte	erested
11 operators and representatives from the BLM, and made	e the
12 demand, basically, that we shut in our wells based w	upon
13 that presentation until something could be determine	ed as to
14 what the proper split would be for the production.	
15 We didn't come prepared to make a presenta	ation,
16 and didn't make one, and refused to shut in our well	ls until
17 a lot more work was done. And Mr. Busch with the Az	ztec
18 office made a plea that the parties settle this among	ng
19 themselves and meet to sort out what the questions a	and the
20 problems were and have a general exchange of data to	c
21 further investigate whether or not, in fact, there w	was a
22 problem.	
23 That led to	
24 MR. GALLEGOS: Excuse me, excuse me. I ha	ate to
25 interrupt the witness, but this is far from response	ive.

	15
1	This has gotten way on off the question.
2	MR. HALL: Well, I think it's
3	MR. GALLEGOS: I think we're proceeding by
4	question and answer here. I object to the witness just
5	going off on a narrative.
6	Also, beyond this, I object to the relevancy of
7	this. Efforts of the parties to compromise are not
8	relevant to the issues here to be decided on the evidence.
9	EXAMINER CATANACH: Well, I think it's good to
10	have some background information on those negotiations.
11	Don't get too far into it, though, Mr. Hall.
12	Q. (By Mr. Hall) Go ahead, Mr. Nicol.
13	A. Let's see if I can make this a little more brief.
14	That led to at least one other meeting in our
15	office in Denver with Mr. O'Hare from Maralex to discuss
16	the problem further and exchange data.
17	We still did not see that there was a problem
18	here that needed to be that required some sort of
19	compromise. We didn't feel that we had any indication that
20	we were producing Fruitland Coal gas, and still don't.
21	The last meeting with Maralex, I believe, was in
22	November of 1996, and then nothing more was heard until
23	late in 1997 when we began to hear that Maralex and Whiting
24	were going to make an application to the Commission to have
25	this matter heard, and that was actually formally done in

1	1997, January of 1997, I believe.
2	That application, then, led to another plea from
3	the staff, Commission staff, in Aztec to have the parties
4	meet under their auspices to try to work out the problems
5	and again address what exactly the questions were and
6	whether or not there was a problem.
7	We had three such meetings in Aztec, from
8	February through March of 1998. Have I lost a year there
9	somewhere? Did I say 1997 the first time? I mean the
10	Application was made in January of 1998.
11	And the sequence of events was that again Maralex
12	and Whiting presented what their problems were and their
13	complaints, their evidence for the problem.
14	We came back the next meeting and rebutted and
15	refuted as we could, and the third meeting was basically an
16	effort to see where we go next.
17	There was a lot of information exchanged in these
18	meetings and a lot of presentations made. There was no
19	agreement among the parties as to what the resolution was.
20	I think the only agreement we might have was how well it
21	was handled by the Aztec staff from the standpoint of
22	monitoring it and providing the venue for that effort.
23	Not too long after the last meeting, we were
24	notified that Maralex and Whiting had taken the case
25	directly to Santa Fe District Court. That resulted in a

17
court hearing, I believe a month ago today, here in Santa
Fe, in front of Judge Encinias.
And at that hearing Whiting and Maralex presented
their side of the case. And at that point, without hearing
anything further, Judge Encinias issued an injunction
shutting our wells in until the matter could be further
determined from the Commission.
Q. During the course of the discussions before the
District Office in Aztec, were Whiting and Maralex
contending that fracture-stimulation jobs on certain of the
Chaco wells were communicating through to their Fruitland
Coal and interfering with their Fruitland Coal wells?
MR. GALLEGOS: I object to the relevancy of this.
Numerous discussions of what various people said at various
times are neither here nor there. Are we going to I
think this matter is to be decided on the evidence to be
presented here under oath.
EXAMINER CATANACH: Go ahead and answer the
question.
THE WITNESS: Yes.
Q. (By Mr. Hall) In the course of those meetings,
did you take the opportunity to look at the production
profiles of the Fruitland Coal wells and Pictured Cliff
wells and model them and compare them side by side?
A. Yes.

1	Q. What did you determine from that?
2	A. Well, our determination was that the Fruitland
3	Coal wells were acting as you would expect coal wells to
4	act and that the Pictured Cliff wells were acting as you
5	expect the Pictured Cliffs to act.
6	As an example and this will come up as a
7	formal exhibit a little later, but we have a composite here
8	of
9	MR. GALLEGOS: Well, I object to going into the
10	contents of an exhibit that hasn't been qualified. I guess
11	there's some other witness that's going to attempt to
12	qualify this information. We don't have any basis of the
13	data, anything whatsoever, and now the witness is going to
14	bring this out as evidence.
15	I assume you're going to Pendragon is going to
16	present some witnesses that are technical experts and
17	attempt to prove something of this sort. But this isn't
18	the witness, this is a geologist.
19	MR. HALL: Mr. Catanach, we are presenting this
20	particular exhibit through an engineering witness, and he
21	will authenticate it to your satisfaction, I'm sure.
22	The purpose for revealing it to you at this point
23	is simply to provide you with some context and some
24	background, and I think you can give it the appropriate
25	weight at this stage of the proceedings for that particular

1	purpose, and that's all. That's the only reason we're
2	revealing it to you right now.
3	EXAMINER CATANACH: We'll go ahead and allow the
4	witness to testify on that.
5	THE WITNESS: All I wanted to demonstrate is that
6	the Can you see the yellow that
7	EXAMINER CATANACH: Yes, I can.
8	THE WITNESS: from where you are?
9	The yellow is a composite of the curves of the
10	five Whiting wells' production, the five Whiting wells in
11	question that I've marked in blue on that map. The orange
12	is the decline curve for our Pictured Cliff wells.
13	And the point of that is simply that the Pictured
14	Cliff wells, when they came on after our restimulations,
15	came up to a maximum and have been declining since then.
16	There's a jog in here when we put a well on that wasn't
17	immediately put on at the beginning of the production,
18	whereas the coal wells have been continuing to increase and
19	dewater and improve in production as you would expect coal
20	wells to do.
21	MR. CARROLL: Mr. Hall, what exhibit number is
22	this going to be?
23	MR. HALL: That will be I'm sorry, I don't
24	have the exact number. It will be one of the M-numbered
25	exhibits that will be introduced through Jack McCartney,

19

1	petroleum engineer. We'll provide that to the Examiner and
2	the parties.
3	MR. GALLEGOS: We move the testimony be stricken,
4	no foundation.
5	MR. CARROLL: Motion will be noted.
6	Q. (By Mr. Hall) Mr. Nicol, let's talk about the
7	geology in the area. Have you prepared certain exhibits in
8	conjunction with your geologic testimony?
9	A. Yes, sir.
10	Q. All right, let's refer to those. If you would
11	turn to Exhibit N2, if you could identify that for the
12	Examiner.
13	A. That's a structure map on the top of what I have
14	labeled the basal Fruitland Coal. The basal Fruitland
15	Coal, for the purpose of my discussion, is a coalbed that
16	is ubiquitous throughout the area as the base of the
17	Fruitland formation that is about 20 feet thick, 19 or 20
18	feet thick.
19	And I chose to do a structure map on the top of
20	that coal to give a general picture of the structure in the
21	area. Again, the wells in question are colored in the
22	yellow and blue code, as was the first exhibit.
23	What we have is a general dip to the north
24	northeast. There's very little structure of any moment
25	here. There is a suggestion of a nosing through the

1	general area of the Chaco 4 and 5 wells, which could
2	possibly enhance permeability because of the enhancement
3	you get with a little bit of folding and microfracturing or
4	whatever, but otherwise generally a dip to the north
5	northeast.
6	And from that I'd like to go right to the cross-
7	section.
8	Q. All right, let's go to Exhibit N3.
9	A. In the books we've provided, behind that cross-
10	section there is a cross-section index map that just shows
11	where all the cross-sections we're going to be discussing
12	go.
13	Q. Mr. Nicol, before we delve into Exhibit N3, let's
14	provide further context. Would you explain some of the
15	geologic assumptions made by the parties in the course of
16	the meetings in Aztec, briefly familiarize the Hearing
17	Examiner with what you understood the positions of the
18	parties to be.
19	A. Well, at that time I understood the positions of
20	the parties to be that we were producing from perforations
21	in the Pictured Cliffs formation and that they were
22	concerned that our restimulation jobs, fracturing of
23	these for these wells, had provided an avenue where we
24	were producing gas from the basal Fruitland Coal.
25	Now, I should point out that the term "basal

	22
1	Fruitland Coal" is one that I have used here and placed on
2	this map to for reference standpoint and so we know what
3	bed we're talking about here.
4	And while I'm on that subject, I have used the
5	term "upper Pictured Cliffs" sand here to reflect the
6	sand the top sand that we are perforated in, in all but
7	one of our wells. And I don't mean that to be a definitive
8	term or a definition of "upper Pictured Cliffs" sand. It's
9	I'm using that to refer to the sand here that we'll be
10	referring to over and over again.
11	Q. All right, let's go to N3. Why don't you explain
12	what that's intended to reflect?
13	A. This is a structural cross-section, using the
14	resistivity logs, and it reflects the majority of wells in
15	question but not all of them.
16	It starts with the Whiting/Maralex Gallegos
17	Federal 12-13 1-2 in the southwest of Section 1 and goes
18	through our Chaco Number 5 well, to the Whiting/Maralex
19	well in the southwest of Section 6, to our Chaco Number 4
20	well, to the Whiting/Maralex Coal well in the west half of
21	Section 7, to our neighboring Chaco 2-R well, and then to
22	the Chaco Number 1 well, down in Section 18.
23	The Whiting/Maralex wells are perforated, as you
24	see, in the basal Fruitland Coal. One of the wells the
25	one in Section 1, the southwest of Section 1 is also

	23
1	perforated in three other stringers of coals up above the
2	basal. The other Whiting/Maralex wells, as far as we know,
3	are all perforated only in that basal Fruitland Coal.
4	The perforations for the Chaco wells, the
5	Pendragon/Edwards wells, are in the thicker yellow sand,
6	and then the thinner Pictured Cliffs sand just above it,
7	which generally runs from, oh, two or three on up to about
8	six or seven feet thickness.
9	That sand does not exist in the two wells shown
10	in Section 7. As we get into the geology, I'll show how
11	that occurs and fact that we're running kind of on the edge
12	of this sand with this particular cross-section. This
13	picks up again down in Section 18.
14	These are the perforations that we inherited when
15	we bought the wells as Pictured Cliff wells, and we have
16	not changed them. In two cases we've re-perforated wells,
17	and those were the Chaco 4 and 5, but we re-perforated them
18	in the same intervals. The other wells we did not re-
19	perforate.
20	The four wells that were fracture-stimulated,
21	that raised the question, are the Chaco 5, the Chaco 4, the
22	Chaco 2-R and the Chaco 1. A lot of my discussion kind of
23	leaves out the Chaco 2-J and 1-J wells because we did
24	nothing to them beside the 500-gallon acid job back in
25	1995.
L	

	24
1	You will see that there's a thin shale separation
2	between the basal Fruitland Coal and the top of the
3	Pictured Cliffs. This shale generally runs four or five
4	thick.
5	In the two wells in Section 7 you can see an
6	indication that we're very close to the upper Pictured
7	Cliffs sand and that the shale at the base of the basal
8	Fruitland Coal is about the same four feet, and then you
9	see an indication of maybe it's getting a little bit silty
10	on the resistivity log, or trying to clean up into the
11	sand, some indication of that, a little bit, on the Chaco
12	2-R.
13	And then by the time you get back down to Chaco 1
14	there's about four feet of shale again, and back into the
15	Pictured Cliffs sand.
16	So basically we have coal, four feet of shale,
17	anywhere from two or three to seven feet of Pictured Cliffs
18	sand, another thin shale with generally a little bit of
19	coal indication in that.
20	Now, there is also a little of coal at the base
21	of the sand I've colored in yellow, in most of these wells,
22	and in both cases we have indications that that coal is
23	less than a foot thick, perhaps just a matter of inches,
24	and is encased in shale. And as we go through I'll present
25	that evidence. But that's basically the case.
•	

	23
1	So in reality, this upper Pictured Cliffs sand,
2	which isn't is a matter of contention We were
3	surprised at the District Court hearing a month ago to find
4	that Maralex and Whiting have taken the position that this
5	upper sand here is not Pictured Cliffs but it is, in fact,
6	Fruitland Sand, so that consequently we wouldn't own it.
7	Whiting/Maralex also made an allegation that we
8	had perforated in the coals. They stated in one document
9	that they had knowledge and belief we had perforated in the
10	coals. At that point, just to clear up the issue, we ran
11	some new gamma-ray casing collar logs on the wells, and
12	again we'll show that that's not the case. We have only
13	re-perforated two wells, and we've re-perforated them in
14	the exact same intervals that were perforated the first
15	time.
16	The basis, as I understood it, for the premise
17	that this was all of a sudden a Fruitland sand
18	MR. GALLEGOS: Mr. Examiner, this is not
19	responsive to the question that which was asked ten
20	minutes ago, to explain the cross-section. Now we're going
21	The witness is just going off into all sorts of other
22	subjects. It's not responsive, it's not relevant. We
23	object.
24	MR. CARROLL: What was the question, Mr. Hall?
25	MR. HALL: Well, in context the question is to

	20
1	elicit testimony to give a geologic overview of the area.
2	That was the specific question. And that's what all of
3	these exhibits and his testimony relate to.
4	It also provides further context about the
5	dispute between the parties over the geology in the area.
6	I think it's wholly responsive.
7	EXAMINER CATANACH: I think it's relevant. Let's
8	Let's proceed.
9	THE WITNESS: At the court hearing, geological
10	testimony was presented by Walter Ayers, and he began by
11	describing the difference between Pictured Cliffs and
12	Fruitland formations and the deposition, method of
13	deposition, and did a reasonably nice job of explaining the
14	difference between the marine deposition of the Fruitland
15	and the or the marine deposition of the Pictured Cliffs
16	and the nonmarine continental facies on the Fruitland.
17	But when it came down to defining this particular
18	sand, he addressed a paper written by Fassett and Hinds in
19	1971, and quoted a statement in there as being definitive
20	of what is Pictured Cliffs and what is Fruitland.
21	MR. GALLEGOS: Mr. Examiner, now we've got the
22	witness testifying about what some other witness supposedly
23	said at some time, what he thinks about that. That's
24	improper testimony.
25	The record in the court If we want to talk

1	about what went in the court proceeding, there's a record
2	of that.
3	I object. Mr. Ayers is here to be examined, what
4	his opinions are, and not have his opinions stated by
5	somebody else, in this witness's words.
6	MR. HALL: Well, Mr. Examiner, the fact is that
7	the issue of what certain literature contained was raised
8	earlier. Mr. Nicol is a qualified geologist. He's also
9	qualified to review that same literature and draw his own
10	conclusions from that and point out to you, as an aid to
11	help you understand the geology of the area, what the
12	general literature says, and that's exactly what he's
13	doing.
14	MR. GALLEGOS: That
15	MR. HALL: The testimony is directed towards the
16	literature.
17	MR. GALLEGOS: That is not the testimony. If
18	we're arguing and Mr. Nicols [sic] wants to argue with the
19	evidence that was accepted by Judge Encinias, I don't think
20	this is the place to do that.
21	If Mr. Nicols has something, anything, to support
22	his testimony, that he should do that. Dr. Ayers will
23	present what he has to support his testimony. You'll weigh
24	it and decide which should be accepted.
25	But for one witness to decide he's going to take
L	

	20
1	off to criticize say what somebody else says and the why
2	it's incorrect is not proper testimony.
3	MR. HALL: Let me just briefly address that.
4	EXAMINER CATANACH: Go ahead, Mr. Hall.
5	MR. HALL: You previously allowed testimony which
6	framed the debate between the parties, and there is a
7	dispute over geology. I think that's helpful to the
8	Examiner's understanding of the issues behind this
9	Application. I think it's entirely appropriate that we
10	explore the context of the dispute and then some of the
11	materials, the literature, et cetera, et cetera, that's
12	relevant to that dispute.
13	MR. CARROLL: All right Well, Mr. Hall, we'd
14	like to hear Mr. Nicol's characterization of the geology
15	and not have him characterize Mr. Ayers' interpretation of
16	the geology. So if you could confine your testimony to
17	what you think is going on in this area, rather than
18	characterizing Mr. Ayers' interpretation.
19	THE WITNESS: Okay.
20	Q. (By Mr. Hall) With that, let me ask a question
21	of you.
22	Have you reviewed certain geological literature
23	that's relied on by experts in your field in connection
24	with this case?
25	A. Yes.

1	Q. And was one of those the Fassett article you
2	referenced earlier?
3	A. Yes.
4	Q. And is that Exhibit N5?
5	A. Yes.
6	Q. Why don't you turn to that exhibit and point out
7	to the Hearing Examiner the relevant portions of that, to
8	facilitate his understanding?
9	MR. GALLEGOS: I'm sorry, what exhibit number are
10	you
11	MR. HALL: N5.
12	THE WITNESS: In that group of papers, it's the
13	second paper. It's entitled "Geology and Fuel Resources of
14	the Fruitland Formation and Kirtland Shale of the San Juan
15	Basin, New Mexico and Colorado", by James E. Fassett and
16	Jim S. Hinds, Geological Survey Professional Paper Number
17	676, printed in 1971.
18	On the second page of that, that I've provided,
19	on the right-hand side, there is a discussion of contacts,
20	and I'd like to read that, if I may, and then comment on
21	it.
22	
23	The Pictured Cliffs Sandstone is conformable with
24	both the underlying Lewis Shale and the overlying
25	Fruitland Formation throughout most of the basin. The

lower contact is gradational in most places; shale 1 beds of the Lewis intertonque with sandstone beds of 2 the Pictured Cliffs. The contact is arbitrarily 3 placed to include predominantly sandstone in the 4 Pictured Cliffs and predominantly shale in the Lewis. 5 The contact of the Pictured Cliffs and the 6 overlying Fruitland is usually much more definite than 7 8 the lower contact with the Lewis. On electric logs 9 the Pictured Cliffs...contact is placed at the top of 10 the massive sandstone below the lowermost coal of the 11 Fruitland except in areas where the Fruitland and the 12 Pictured Cliffs intertongue. On the surface, the 13 contact is placed at the top of the highest Ophiomorpha major-bearing sandstone... 14 15 16 ... that being the fossil, and then it goes on into a discussion of that. 17 The term "massive sandstone" turns out to be an 18 area of concern, because that term can be misused as a 19 In this case what Fassett and Hinds have said 20 definition. is that usually the contact is much more clear than it is 21 between the Lewis and the Pictured Cliffs. 22 And then they go on to point out that where you 23 have additional information such as fossils, that 24 information is used. 25

	J1
1	"Massive" by itself doesn't define anything. And
2	I think a good example would be if there were a Pictured
3	Cliffs sandstone in the interval where we have what I call
4	the upper Pictured Cliffs, and at some point it were 30
5	feet thick, perhaps most of us in the room would say, Yeah,
6	that looks like a massive sandstone, standing there at the
7	outcrop. Very few might ask, Massive compared to what?
8	But if that sandstone gradually thinned down to
9	nothing, if you try to use the term "massive", then at some
10	arbitrary point that's totally undefined it would no longer
11	be a Pictured Cliffs sandstone. And that is the issue that
12	I took with what was presented previously.
13	Q. (By Mr. Hall) Do you accord some particular
14	significance to Fassett and Hinds' use of the term
15	"usually" in that text you read?
16	A. Yes. And the real problem with the definition
17	here is that you shouldn't use it in terms of whether it's
18	massive or whether it's white. The proper technical
19	definition of Pictured Cliffs is whether it's marine
20	sandstone or whether it's not. And if it's not, it
21	probably belongs in the Fruitland formation.
22	So the real question is, Is it marine? And
23	that's the purpose of several of these other exhibits of
24	papers in this packet.
25	Now, you have to be a little careful using papers

1	and be careful not to take things out of context and use
2	information or statements where they're not supposed to be
3	used. And I have underlined or excerpted parts of these
4	papers to try to use statements that I think are applicable
5	throughout the Basin, and particularly to this area.
6	Q. Why don't you point some of those out to the
7	Hearing Examiner?
8	A. The first paper, written by Paul Umbach, is a
9	1950 paper put in the Guidebook of the San Juan Basin,
10	Colorado/New Mexico, of the New Mexico Geological Society.
11	And on page 83, which I think is the third page
12	in the that I've copied here, he's describing the
13	various formations for the guidebook and he says:
14	
15	The Pictured Cliffs sandstone, 50 to 500 feet
16	thick, contains interbedded shale and thin coal
17	streaks within the massive white marine sandstone.
18	This sandstone thickens northeastward at the expense
19	of the overlying Fruitland formation.
20	
21	Well, the term "massive" shows up again. And
22	this may be where it started; I'm not sure. I don't think
23	I'm old enough to have read all the papers that have been
24	written on this stuff. But in this case he is including
25	within the "massive" term interbedded shales and thin coal

	55
1	streaks, which is exactly the circumstance we have here.
2	Here again, he points out that it's a white
3	marine sandstone, and it's clear that he's talking about
4	outcrops, because the Pictured Cliffs tends to weather
5	white on the outcrops, as opposed to being a gray or a tan
6	color subsurface.
7	So the main points are that it has interbedded
8	shale and coal, it has a marine sandstone and it thickens
9	northeastward, all of which apply to our circumstances
10	here.
11	The next paper, by Molenaar, which was in the New
12	Mexico Geological Society Guidebook, 28th Field Conference,
13	in 1977, on the second page which is actually page 165 of
14	the book, under "Pictured Cliffs Sandstone" it says:
15	
16	The Pictured Cliffs Sandstone is a regressive
17	coastal-barrier sandstone that represents the final
18	retreat of the western interior sea from the San Juan
19	Basin
20	
21	again, that's a marine sandstone. And further, he says,
22	
23	the Pictured Cliffs prograded at different
24	rates; and, as a result of still-stands or small
25	transgressions and subsequent regressions, greater

1 thicknesses were built up. 2 3 Down below, under "Fruitland", Molenaar states, 4 5 The Fruitland Formation represents nonmarine, lower coastal-plain deposition behind the Pictured 6 7 Cliffs shoreline. 8 9 And then skipping past the Fassett and Hinds paper that I've already discussed, there's another paper by 10 11 James Fassett, also in the 28th Field Conference Guidebook, 1977. And on the last page of that, which is page 197 of 12 the book, he's referring to the Point Lookout, Cliff House 13 and Pictured Cliffs sandstones in general and refers to 14 them first as "littoral marine sandstone units" and then 15 goes on to discuss "the strandline fluctuations which 16 resulted in deposition of these units...on the west edge of 17 the old [sic] continental" freeway -- "seaway..." 18 These are a few of many, many papers and articles 19 and discussions that have been written to the effect that 20 the Pictured Cliffs are marine. 21 On the first page of that Fassett article is a 22 23 little map showing a cross-section that he has provided. That cross-section is also in the packet, but I have 24 enlarged it because I'd like to make a couple points on 25

	55
1	that.
2	On the cross-section, the wells numbered 3, 4 and
3	5 on the Fassett paper are on roughly strike, or would be
4	roughly on strike with the wells in question here, this
5	cross-section being a little bit to the south southeast of
6	the area we're discussing.
7	Fassett picked in those wells the top of the
8	Pictured Cliffs at the base of the basal Fruitland Coal.
9	And the second point to be made here is that he
10	shows that the Pictured Cliffs stairsteps upward into the
11	Basin as compared to a time line at the bentonite marker
12	that was laid down early in geologic history.
13	Now, the point here is that you can stairstep
14	upwards as you come into the Basin, with additional
15	Pictured Cliffs sands prograding over previous sands, and
16	that's mentioned in these articles in more than one place
17	and I think is well accepted.
18	And then the last reference is one by W.A.
19	Ambrose and W.B. Ayers, and that was in the RMAG Coalbed
20	Methane of Western North America, both put out in 1991.
21	And on the second page of the document I've provided, which
22	is page 43 of the book, under "Pictured Cliffs Sandstone"
23	they describe:
24	
25	The Pictured Cliffs Sandstone, which forms a

1	sandstone platform at the base of the Fruitland
2	Formation, consists of northwest-trending, strike-
3	elongate shoreline deposits of barrier-island and
4	wave-dominated delta systems that prograded
5	northeastward.
6	
7	So once again, clearly a marine depositional
8	environment, and I don't think there's any argument in what
9	I've heard from Mr. Ayers on that issue.
10	Under the "Fruitland Formation" on the next page
11	he says or they say
12	
13	The Fruitland formation, the primary coal-bearing
14	formation in the San Juan Basin, is nonmarine facies
15	tract consisting of interbedding sandstone, mudstone
16	and coal bedsdeposited landward of the marine
17	(barrier-island and delta-front) facies of the
18	Pictured Cliffs Sandstone.
19	
20	Now, that particular article was written about
21	the Cedar Hill field, but it applies here, and the same
22	description was given by Dr. Ayers a month ago for this
23	area.
24	Q. Let's look at Exhibit N6, please, sir. Would you
25	identify that for the Hearing Examiner?
1	

This is an isopach of the upper Pictured Cliffs 1 Α. sand by itself. The red is -- I've colored in the red from 2 3 zero sand thickness to eight feet. It's orange from eight feet to about 13 feet, and then in several places I've 4 marked a yellow circle where it coalesces into the rest of 5 the Pictured Cliffs sand and can't be differentiated from 6 the rest of the sand. 7 This little salient right here is where we find 8 the Maralex/Whiting coal well and our Chaco 2-R well that 9 10 didn't have that sand in it. So our cross-section A-A' 11 that you've already seen is skirting the edge of this 12 thinner part of the sand here and cut across this little 13 part right here. 14 So here we have a sand that is correlative over, just on this map, six or seven miles. It gradually 15 16 thickens to the northeastward, has been described. It moves from zero to -- maximum I think I picked was about 13 17 feet before it coalesces into the rest of the Pictured 18 Cliffs -- and it trends northwest-southeast. Everything 19 that I've just said is a description of marine sand, 20 Pictured Cliffs sand. 21 It's -- I have been unable to think of an example 22 of how you could lay down or how a sand would lay down in a 23 nonmarine environment where you get a consistent appearance 24 25 on the logs and a deposition where it's only maybe

1	averaging six or eight feet thick and where it's laid down
2	over miles and miles and miles of territory.
3	You've got to do that on a stable platform in a
4	marine environment where the sand can be winnowed and laid
5	out and worked until it's laid out in a sheet fashion, and
6	that works in a barrier, bar and marine, littoral
7	environment. It doesn't work in a fluvial environment
8	where you have streams coming in at, on the average, right
9	angles to the shoreline. And this is not the kind of sand
10	that you associate with nonmarine deposition, with fluvial
11	or stream deposition.
12	Q. Let's turn to Exhibit N7, the cross-section.
13	A. This I've labeled cross-section F-F', and this is
14	hung on the base of the basal Fruitland Coal, so it's no
15	longer a structural cross-section; it's just a
16	stratigraphic correlation. There is no relationship in the
17	distances between the logs, it's just to They're all
18	laid out about the same distance apart for the purpose of
19	showing the correlation.
20	It begins in the southwest quarter of Section 7
21	in the Merrion and Bayless Chaco number 2 well, which does
22	not have the upper Pictured Cliffs sand, goes to the
23	Lansdale Federal well in the southeast of Section 7, which
24	has the upper Pictured Cliffs and the rest of the sand, and
25	then down to the Fusselman 2-R well in the northwest of

	39
1	Section 17, the Dugan Chaco Plant Number 1 in the southeast
2	of Section 17, back up to Chaco Plant Number 3 well in the
3	northeast of Section 17, then over to our Pendragon-
4	operated Cowsaround 16-11 well in Section 16.
5	And here you see how this little shale between
6	the upper Pictured Cliffs sand and the rest of the Pictured
7	Cliffs gradually thins out and disappears so that the sand
8	coalesces into the rest of the Pictured Cliffs to the east.
9	Nowhere did I find an indication that this shale
10	break between the upper Pictured Cliffs sand and the rest
11	of the Pictured Cliffs moves up and joins the shale below
12	the base of the Fruitland Coal. Nowhere did I find an
13	indication that this upper Pictured Cliffs sand is not
14	connected to the rest of the Pictured Cliffs.
15	Q. What do the red arrows depict on the exhibit?
16	A. Oh, these red arrows are that point where the
17	operator of these wells reported the top of the Pictured
18	Cliffs formation when the wells were completed.
19	One of characteristics of a marine sand, which
20	you can sometimes infer from log character, is a cleaning
21	upward sequence, where the sands started to be deposited in
22	deeper water let's say in a lagoon or out front of a
23	beach and as the sea regressed and beach moved over,
24	what originally had been seaward deposition, the energy at
25	the shoreline where the waves and the tidal currents are

1	higher heaves up the sand and winnows out the finer
2	materials and makes it cleaner.
3	That shows up sometimes as cleaner gamma ray on
4	top of a sand, and more frequently as cleaner SP on top.
5	And you can see that happening Here's a good
6	example right here, down in the PC, that kind of cleaning-
7	up character in these two sands.
8	We also see it happening it's a little more
9	subtle in the upper Pictured Cliffs sand. You see it
10	right there, and here. It's a little ratty and hard to see
11	in the Chaco Plant Number 1 well, but it's apparent there
12	after you get to looking for it, and then we're off into
13	the coalesced sand again.
14	The same thing happens, back on the cross-section
15	A-A', in the Whiting well in the southwest of 1, cleaning
16	up, in our Chaco 5 well. It's a little harder to see, but
17	it does happen in the Whiting well in Section 6 where
18	there's some kind of hard streak right in the middle of the
19	sand, but the SP carries through with cleaning upward
20	throughout the whole sequence.
21	Can't make much out of it at our Chaco 4, only
22	got a couple feet.
23	And it's very apparent again over here in the
24	Chaco 1.
25	For this to happen, it has to start with the sand

	*1
1	being laid down in quieter water and the sand getting
2	cleaner as the energy increases, as the water gets
3	shallower. Again, it's a marine environment.
4	You get the opposite effect, in general, if
5	you're looking at a fluvial sand or channel sand where it
6	tends to be coarser and more porous at the bottom of the
7	channel, and as the channel works its way over you get
8	muddier and muddier sediments on top so that it has the
9	opposite shape. You get a bell shape instead of the funnel
10	shape.
11	Q. By the way, was the Chaco Plant 1, reflected on
12	that cross-section, was that the discovery well for this
13	field?
14	A. The discovery well for this field was the Chaco
15	Plant Number 1 by Dugan. It's on Section F-F', right in
16	the middle of the section, and that's one of the two wells
17	that are of interest on this cross-section.
18	The other one is the Lansdale Federal where we
19	have a core through the intervals being discussed. As a
20	matter of fact, the core through the coal, as I'll come to
21	later on in my testimony, and also through three different
22	benches of sand here, is separated by the coal and the
23	shale streaks.
24	That core analysis is the next exhibit. Shall we
25	go on to that?
L	

1	Q. Yes, go ahead, turn to Exhibit N8.
2	MR. CONDON: Which number are we on?
3	MR. HALL: N8.
4	THE WITNESS: This is a composite of the Core Lab
5	core analysis on the Lansdale Federal Pictured Cliffs core.
6	On the right-hand is just a normal analysis. The
7	middle is the log, density log, of the Lansdale Federal.
8	Then over on the left-hand side I've reduced the Core Lab
9	lithology description, where they actually show what
10	they're seeing in terms of sand, shale, coal, what have you
11	reduced it to the same scale as the log and correlated
12	it so you can see what they're describing there.
13	Looking first at the core analysis itself on the
14	right-hand side, the first striking thing there is that you
15	look at the permeabilities and the porosities on this
16	Pictured Cliffs sand, this is not a tight sand. Even in
17	the upper five or six feet of sand in the upper Pictured
18	Cliffs, we've got permeabilities of 24, 6.7, 142
19	millidarcies. Down in the main part of the sand, the
20	permeabilities go over 200 millidarcies. And the average
21	for that entire column is 55 millidarcies, top to bottom.
22	The average porosity is over 20 percent.
23	And then if you look at their description of the
24	sand, it's sand starting at the top, sand, gray, fine-
25	grained, clay filling clay with filling. And that

42

description carries pretty much throughout. It cleans up a
 little bit to trace of clay in a few places down in the
 second bench. But basically, it's sand, gray, fine grained. There's no graded bedding, there's no change in
 sand size, top to bottom. This, again, is a marine sand.
 It's all very surprisingly uniform.

7 It's the kind of sand you get along a shoreline, 8 separated by some distance from the source material where 9 the tides and the wave action have had an opportunity to 10 sort the sand out by the amount of energy available into 11 graded sizes, and this is the size that happened to be 12 available for deposition in this area.

13 If you look at the density log, this is an old 14 log, and there was no backup scale provided, but if you 15 just look at the two streaks where there's coal and shale, 16 one of them at 1070 and the other at 1086, on the log 17 you'll see that without any further investigation you'd 18 give those streaks three or four feet of thickness. 19 However, when you look at the lithology

20 description over to the left, you see that there's a 21 description of coal there at the equivalent interval, right 22 in the middle of that upper three-foot streak of apparent 23 shale or coal, that's less than a foot thick.

The one at the bottom is shown to actually be, if anything, just a tad larger. That's probably due to the

1	thickness of the pencil of whoever was putting this. But
2	in both cases, they're shown to be less than a foot thick.
3	So there's shale there and there's some finger of
4	coal there. In fact, as we go on to other exhibits I'll
5	show that that was described as a finger of coal. But it's
6	not a big, thick coal section. It's a pretty
7	inconsequential little bit of coal, which is very common in
8	the Pictured Cliffs. I've run across a number of
9	descriptions and discussions of coal, one of which I've
10	already referenced, in shale, in the Pictured Cliffs.
11	Q. (By Mr. Hall) Mr. Nicol, is there a contemporary
12	analogy to the depositional environment presently at work,
13	similar to what was happening in the San Juan Basin?
14	A. Yes, I think it's similar in many ways to what's
15	happening in the Gulf Coast.
16	Q. Could you explain?
17	A. This is not offered as an exhibit because it's my
18	only copy, but I thought it might be of interest. May I
19	bring this up?
20	EXAMINER CATANACH: (Nods)
21	THE WITNESS: This is a Landsat photograph of
22	MR. CARROLL: Can you turn that so Mr. Gallegos
23	and Condon can see it also?
24	THE WITNESS: What I'm showing is a Landsat
25	photograph of the United States. I've got the east half.

1	This is the Gulf of Mexico, and this being the Mississippi
2	delta and Louisiana.
3	What you see here is a series of barrier bars,
4	barrier islands, running the whole length of the Gulf
5	Coast, Galveston Island probably being the most noted one,
6	Padre Island down here, and right off the coast of south
7	Louisiana.
8	This right here is Terrebonne Bay, and Terrebonne
9	Bay is 30 or 40 miles across, and most of it you can walk
10	without getting in over your head. Very shallow, and most
11	of what you walk on there is sand.
12	You can see the Chandeleur island barrier,
13	island, building up to the edge out here, and then behind
14	it you see the shaded color, which is actually underwater
15	sand, sheet sand, behind that island. That's the kind of
16	thing we're talking about here.
17	And the same thing can happen out in front of
18	these islands. If you walk out hundreds of yards past
19	where the waves are lapping here on these little islands,
20	you're still sometimes only waist-high or chest-high, and
21	you're still walking on fine sand.
22	Now, in this area there are buildups where you
23	get a few feet above the water, and there's spots that get
24	quiet, fill up with mud and organic debris. So the
25	thickness comes and goes a little bit in there, but you're
L	

1	talking about a matter of a few feet at most. That's the
2	kind of deposition we're talking about for a barrier
3	island/littoral/marine complex.
4	Q. (By Mr. Hall) All right, let's turn to Exhibit
5	N9 now. Would you identify that, please, sir?
6	A. These are two papers by Jim L. Jacobs of Dugan
7	Production Corporation, done in the late Seventies.
8	The first one discusses the N-I-P-P, NIPP
9	Pictured Cliffs gas field, and on the second page of it he
10	shows the discovery well type log and the distinction
11	between the Fruitland and the Pictured Cliffs. That cutoff
12	is at the top of their perforations. The perforations are
13	right here, and
14	Q. Which well is that, by the way?
15	A. This is the Dugan Production Corporation Chaco
16	Plant Number 1 well. It's in the southeast quarter of
17	Section 17, 26-12.
18	Q. I'm sorry, go ahead.
19	A. And he simply describes the Pictured Cliffs as
20	being below this point right here. I've tried to exactly
21	duplicate his point on the log there out of that paper,
22	this correlation right here.
23	EXAMINER CATANACH: Can you specify what depth
24	that is, Mr. Nicol?
25	THE WITNESS: 1131.

,	4/
1	EXAMINER CATANACH: And that's been picked as the
2	top of the
3	THE WITNESS: That's where I put it here, based
4	upon my effort to duplicate what he did on this log, is,
5	you'll see that it's a little hard to read it off this
6	little log. But yes, that's been picked in this write-up
7	of the discovery well for that field as the top of the
8	Pictured Cliffs.
9	The next paper is also by Jim L. Jacobs, and it's
10	entitled "Some Recent Shallow Pictured Cliffs Gas
11	Discoveries", the key words there being "Pictured Cliffs",
12	and it's in the 28th Field Conference Guidebook again, the
13	1977, New Mexico Society.
14	And before we get to the Pictured or the
15	discussion of this particular pool, I would like to point
16	out some language that comes into play on the first page
17	that comes under "Geology", because this will come up again
18	and I want everyone to know where I've referenced it:
19	"Some of the wells have been perforated in the massive sand
20	below the main producing sand " again referring to
21	Pictured Cliffs " but our experience indicates that
22	while some gas may be produced from this zone the water
23	production is greatly increased causing production
24	problems."
25	Water source is an issue here, and water

	••
1	production is an issue that we'll come to, and this
2	reference is a bit helpful in some of the background.
3	Now, on page on the next page it's up in
4	the left-hand corner, page 248, the second page of this
5	write-up, in the far lower right-hand corner, there's a
6	misprint where he references this well being in Section 26
7	North 13 West. However, it's correct in the rest of the
8	write-up and certainly correct on the logs. So I would
9	like to avoid some confusion over that.
10	And on page 249 under "Geology" Jacobs states,
11	"The NIPP Pictured Cliffs pool produces from thin sand
12	lenses above a more massive and more easily traceable unit
13	in the Pictured Cliffs Sandstone." Keep in mind, this is a
14	description of Pictured Cliffs fields, but he is describing
15	a sandstone above the more massive sand.
16	And then in the next paragraph, "Producing sands
17	are thin and discontinuous from well to well occupying an
18	interval from the base of the Fruitland Coal which, in this
19	field, is approximately 20 feet thick, to the top of a
20	massive water bearing sand."
21	Now, this was written when the field was still
22	being developed and, as you see from my isopach, once you
23	put all the information together it's not nearly so
24	discontinuous as he apparently felt at this time. But you
25	can see how, just looking at cross-section A-A', you would
1	

	4.5
1	consider it discontinuous until you had enough information
2	to really see how it lies in there.
3	On the base map that I'm using there are I've
4	found 34 wells I think there are probably some more, but
5	I've listed 34 wells that were completed by various
6	operators in that upper Pictured Cliffs sand. Generally it
7	was done in conjunction with other sands, sometimes it was
8	done by itself. But in each case the operator in those 34
9	wells reported it as a Pictured Cliffs completion.
10	I'd also like to point out that of those 34
11	wells, seven of them were fractured on initial completion
12	in the Pictured Cliffs. We currently operate four of those
13	seven, not including the ones that are in question here,
14	and there's been no indication, no charge, no evidence, and
15	certainly no pressure information or anything like that to
16	suggest that those wells are in any way connected with the
17	Fruitland Coal.
18	Q. (By Mr. Hall) All right, let's turn to Exhibit
19	N11, if you would, please, sir.
20	A. This is another stratigraphic correlation
21	section, and it starts from the definition well for the
22	Fruitland Coal Pool, which is the Schneider the Amoco
23	Schneider Gas Com B-1 well, in the southwest of Section 28
24	of 32 North, 10 West, and carries correlations down into
25	the area we're discussing here.

	50
1	Now, this is certainly not an effort to correlate
2	well to well to well, to show exactly what's happening in
3	the Pictured Cliffs. It's an effort to show the logical
4	use of the terminology and definition that was given when
5	that order was issued.
6	And the language is this is describing the
7	Fruitland Coal Pool Vertical limits comprising all coal
8	seams within the equivalent of the stratigraphic interval,
9	from a depth of approximately 2450 feet to 2880 feet, as
10	shown in the gamma-ray bulk density log for the Amoco
11	Company's Schneider Gas Com B Number 1 well and it gives
12	the location there in Section 28 of 32-10.
13	That's about 35 miles from the area we're
14	discussing. This cross-section picks a few wells in
15	between to show what's happening, because I'm pursuing the
16	definition of "stratigraphic equivalent".
17	The point picked for the definition is right here
18	on the log at the 2800 approximately, 2880 feet in the
19	Amoco B-1 well. That's the top of the Pictured Cliffs
20	Actually, the top of the Pictured Cliffs as picked by Amoco
21	was 2878 feet. It's also the first sand below the
22	Fruitland Coal, and it's also the first marine sand in the
23	sequence.
24	Now, the definition of "stratum" that I found in
25	the AGI Dictionary of Geological Terms is "a section of a

	51
1	formation that consists throughout of approximately the
2	same kind of rock material. A stratum may consist of a
3	definite number of beds, and a bed may consist of
4	numberless layers " et cetera.
5	The American Heritage Dictionary said, "a
6	formation containing a number of beds or layers of rock of
7	the same kind of material.
8	So the defining criteria is for strata, for
9	stratigraphic equivalent, then, is approximately the same
10	kind of rock material.
11	We've already shown that the upper Pictured
12	Cliffs sand that we're talking about down in the Chaco area
13	is the same kind of material, same kind of rock as the rest
14	of the Pictured Cliffs in that area. And we've shown that
15	it can have layers of coal and shale within it.
16	Following through on the cross-section, this
17	second well is also in Section 32 it's actually north of
18	the Amoco Schneider and I put that in because it shows
19	some changes in stratigraphy right at the base of the
20	Fruitland, even within that section. We lose the bottom
21	six or eight feet of coal or of shale, there. And in
22	this case there's a thin coal stringer below what I've been
23	calling the basal Fruitland Coal that lies directly on the
24	Pictured Cliffs sand.
25	Well, the stratigraphic equivalent between the
-	

	52
1	definition well and this next well is the top of the
2	Fruitland sand again, right here at the base of the coal in
3	this well, as compared to the base of the shale for the
4	Schneider Gas B Number 1 well.
5	Then I move down several townships to Section 18
6	of 29 North, 12 West, and here again the stratigraphic
7	equivalent is the base of the shale below the basal
8	Fruitland Coal, with another coal stringer, another
9	stringer included, and then once again there's another coal
10	shows up, so that here the stratigraphic equivalent is the
11	Fruitland sitting on top of the Fruitland Coal, a thin coal
12	here on top of the Pictured Cliffs sitting on the Pictured
13	Cliffs sand.
14	By the time you get down to Section 1 of 27
15	North, 12 West, the shales and coals below the basal
16	Fruitland Coal are gone.
17	Here's a circumstance where you've got the coal
18	sitting right directly on top of the Pictured Cliffs sand,
19	and the stratigraphic equivalent is that contact up there.
20	One of the frustrating things for us in this
21	process the last couple years has been the position taken
22	by the other side that they have a right to come into a
23	circumstance like this and fracture this coal with, as they
24	do, 110,000, 120,000 pounds of sand, but apparently we
25	don't have the right to come in and stimulate our sand

1	right below it, because we might be taking some of their
2	coal, coal gas.
3	The next correlation point is the Maralex/Whiting
4	well in the southwest of Section 6 of 26-12, which is one
5	of the wells in contention. And here you see the beginning
6	of the upper Pictured Cliffs sand as I've described it,
7	with the shale separation between it and the rest of the
8	Pictured Cliffs sand. But the stratigraphic equivalent
9	point is the top of that upper Pictured Cliffs sand.
10	I've got two other cross-sections to tie this
11	together, because this is a long stretch from Section 1 of
12	one township to Section 6 of the southern township.
13	Cross-section D-D' picks up the three wells in
14	Section 5, which is just east of the Section 6 well that
15	was on the previous cross-section. And then again, this
16	stratigraphic correlation section, and it ties into a well
17	in Section 2 of 26-12.
18	And once again I'm showing that you've got the
19	upper Pictured Cliff sand in the three wells in Section 5
20	with excellent correlation, and it's basically a laydown
21	correlation of the well in Section 6, and then it's
22	coalesced into just total sand and PC, with no
23	connection or no shale between the basal Fruitland Coal
24	and the top of the PC over here again in Section 2.
25	MR. HALL: Mr. Examiner, just briefly to orient
-	

	54
1	you, we're offering three cross-sections, D-D', E-E' and
2	G-G', all under Exhibit Tab 12, as one exhibit.
3	Go ahead, Mr. Nicol.
4	THE WITNESS: Did we confuse you with that? Do I
5	need to back up?
6	EXAMINER CATANACH: I have it.
7	THE WITNESS: Section G-G' ties together what
8	happens between Section 5 and Section 2, and the left-hand
9	well in this case is our Chaco Number 5, showing the upper
10	Pictured Cliffs sand again, and the shale and a finger coal
11	break there.
12	It ties into a well in Section 4 where the upper
13	Pictured Cliffs sand is getting thicker, and then by the
14	time you get over here into Section 3, it's coalesced into
15	one big sand again.
16	And once again, we've got the indication of
17	cleaning upward sequence that I mentioned before, tending
18	to confirm marine deposition.
19	And you see it a little bit in this well, you
20	certainly see it here. Back in here there's a hard streak
21	in the SP, and here it breaks up the sand a little bit.
22	And I don't quite know what that is.
23	Q. (By Mr. Hall) For the record, you're referring
24	to Section D-D'?
25	A. Section D-D', the wells in Section 5.
-	

54

On the south end of the area in question, one 1 more cross-section down there -- This is Section E-E', and 2 again this is a stratigraphic correlation section. 3 It runs from the Gallegos Federal Well in Section 4 19, south of the area of question, in the northeast corner 5 6 of Section 19, back up to our Chaco Number 1 well, showing 7 a gradual thickening of that upper Pictured Cliffs sand, and then over to the Hard Deal Number 4 well in the 8 northeast of Section 18, and it once again ties into our 9 10 Chaco 16-11 well -- I'm sorry, Cowsaround 16-11 well, where the sands are all coalesced. 11 12 And once again, we have that indication of 13 cleaning upward in that upper Pictured Cliffs sand. And you can see the gradual thickening of the sand to the east, 14 the onlapping sequence, and the tie into -- well down into 15 16 the section down here, the PC where it's all coalesced. Do you need some more of that? I took it before 17 you were done. 18 19 EXAMINER CATANACH: No. (By Mr. Hall) From your testimony so far in 20 0. geology, Mr. Nicol, what in summary can we conclude about 21 the characteristics of the PC? 22 Well, we're talking about the upper Pictured 23 A. Cliffs --24 25 Q. Yes.

	56
1	A sand?
2	Q. Yes.
3	A. It coalesces into thicker, undifferentiated
4	thicker Pictured Cliffs sands to the east, to the northeast
5	and to the north. It is part of the same deposition of
6	environment. It correlates and is very consistent in
7	character over a large area, portions of three townships,
8	even though it averages only six or eight feet in
9	thickness.
10	It has a uniform grain size, or sorting. and a
11	cleaning-upward characteristic on the logs. It's elongate,
12	northwest to southeast, strike-oriented to the Basin axis.
13	It unlaps to the northeast and thickens to the northeast.
14	And to lay down a sand like this, you've got to
15	do it in a marine environment. It's just not consistent
16	with something that happens behind a shoreline. In fact,
17	it's amazingly uniform when you think about a sand that
18	thin being laid over that area.
19	And it's been recognized as Pictured Cliffs by
20	numerous operators and by all the regulatory authorities
21	for at least 23 years.
22	MR. HALL: Mr. Examiner, I would suggest this is
23	a good place for us to break, or we're prepared to proceed,
24	however you wish.
25	EXAMINER CATANACH: Let's take a ten-minute break
•	

1	here.
2	You're done with this witness on direct?
3	MR. HALL: I have more direct through him on a
4	different subject matter.
5	EXAMINER CATANACH: How much more do you have?
6	MR. HALL: I'd estimate an hour. Don't hold me
7	to it.
8	EXAMINER CATANACH: All right, let's take a
9	break.
10	(Thereupon, a recess was taken at 9:48 a.m.)
11	(The following proceedings had at 10:12 a.m.)
12	MR. HALL: Mr. Examiner, I want to introduce
13	Marte Lightstone from our Albuquerque office, who's joining
14	me at the table.
15	Q. (By Mr. Hall) Mr. Nicol, let's go back again to
16	the earlier meetings with Whiting and Maralex when they
17	brought their perceived problem to your attention. Would
18	you explain what your understanding of their underlying
19	premise to the perceived problem was?
20	A. At the first meeting, which was held in the
21	spring or the summer of 1996 in Aztec, my understanding
22	was, the basic premises were twofold:
23	One, that we had to be producing Fruitland Coal
24	gas because the Pictured Cliffs no longer held the kind of
25	reserves that we were seeing from our wells. There just

1	wasn't that much gas left, according to Whiting and
2	Maralex, and they had assumed that the Pictured Cliffs was
3	depleted.
4	They also attempted to show that their wells had
5	had an immediate adverse reaction to the commencement of
6	production of our Pictured Cliff wells, and that resurfaced
7	in the formal complaint that was made to the Commission in
8	January of 1998.
9	Q. All right, let's talk about the interference
10	issue. Have you prepared certain exhibits addressing that
11	issue?
12	A. Yes, sir.
13	Q. Let's turn to Exhibit N13, if you would identify
14	that, please, sir.
15	A. This is a montage of production curves on the
16	Whiting/Maralex wells, the Coal wells.
17	The wells on the left-hand side are the five
18	wells in question that they alleged have been affected by
19	our wells when our wells were put on, after we re-fractured
20	them in or fractured them for the first time,
21	restimulated them in mid-1995.
22	The five wells on the right are five other
23	Whiting/Maralex coal wells operated by them in the same
24	area. These are in Sections 19 and 31 of 26-12 and
25	Sections 14, 24 and 25 in 26-13.

1	Their contention was that when we put our wells
2	on in mid-1995 their wells went down. What they said is,
3	Our wells decreased or declined, is the term they used.
4	Well, there was a problem in mid-1995, and it had
5	to do primarily with the El Paso Gas Plant. Our
6	recollection is that in about August of 1995 El Paso was
7	having fits with installing new compressors or changing out
8	compressors. We had numbers of wells that they asked us to
9	shut them in for six, seven, eight days because they wanted
10	to reduce flow to the plant.
11	And pipeline pressures were fluctuating and
12	climbing, and I don't know whether any of the Whiting wells
13	were actually shut in during that period. We have a gap in
14	our data. We do not have Whiting/Maralex production data
15	for August of 1995.
16	The Dwight's data from which this is taken, in
17	addition to data that Whiting and Maralex did provide,
18	shows that in June of 1995 many of their wells had produced
19	only part of the time, and even fewer days in July of 1995.
20	I presume that they had a similar problem in August.
21	Dwight's shows them as zero, and I've been told by Whiting
22	and Maralex that it's not zero.
23	But the point here is that if you compare the
24	wells that they didn't complain about with the wells that
25	they did complain about, that generally the wells they

	60
1	complained about are much better wells than the ones they
2	didn't mention, and that all the wells had similar problems
3	in 1995 with down time, lost production, in that period,
4	June through August. And actually line pressures stayed
5	high on into September of 1995.
6	Now, this does not conform to what should happen
7	in an interference situation in dewatering coal wells. The
8	classic example of what happens in a coal well when you
9	interfere by adding wells to the dewatering process is that
10	the older wells go up in production.
11	Now, next on the in the packet, is a series of
12	decline curves
13	Q. Those are marked Exhibit N14.
14	A on the five Whiting/Maralex wells in question.
15	The Gallegos Federal 26-13 1-2, which I believe
16	is on top in these section, seems to have had a problem
17	from the time that production declined in 1995 well on into
18	1996. Both gas and water were down. I don't know what the
19	problem was, but it appears to have been solved late in
20	1996.
21	But if you look at all of the other decline
22	curves, you see that after production was off in mid-1995,
23	water production increased. This is a dewatering process,
24	and when the rate of water withdrawal decreased, the water
25	actually come up, and it took a period came up.

And it took a period on into early 1996 in virtually every other case where water production actually increased and had to be drawn down again, and the production decline curve for water actually took a step over to the right. In some cases it lasted as much as six months, and in some cases it was only three or four -- two, three, four months.

8 But that appears to be part of the problem they 9 had, is, they had to start over on the dewatering process. 10 And that, combined with the description I've already given 11 of high line pressures and down time at the plant, is an 12 operational problem they had in 1995. It had nothing to do 13 with our wells.

It's interesting to note that their wells had a 14 water problem during this period where water -- the water 15 decline curve jumped to the right, they had to start over a 16 little bit on water withdrawal. Because their wells were 17 on pump all through this period, our Chaco wells, when they 18 were put back on after being shut in or suffering high line 19 pressure, came right back up, and our Chaco wells were not 20 on pump, they were just flowing. 21

So if we had had the kind of water problems or water production that these wells, the coal wells, were having, we should have seen infinitely more problems with the water not having pumps on it than they did. And the

1	fact is that our wells came right back on to where they
2	were on the curve when we had to shut them in and put them
3	back on.
4	Q. By the way, Mr. Nicol, when Edwards and Pendragon
5	acquired the PC wells from Merrion, did you have much water
6	data to look at?
7	A. We had no water data. The wells, of course, had
8	been producing at a very low rate for some time, but little
9	if any water production was reported, and when we bought
10	the wells there was no water production.
11	They were not set up to handle water. The gas
12	went through a separator, and whatever water came out of
13	that process went right into an earthen pit. So there was
14	no tankage set up, no way to measure water.
15	When we restimulated these wells, we didn't take
16	any steps at that time to change that. The water
17	production certainly increased from zero and they were
18	making some water, but we didn't feel that it was a
19	significant amount, and it never affected the productivity
20	of the wells. It came right on at peak rates and produced
21	from there.
22	With the exception of the Chaco 2-R. We had
23	trouble unloading the 2-R. It's a slimhole completion, and
24	we were trying for a while to unload it with a plunger
25	lift, I believe, and that didn't work very well. So it

	83
1	took us a period of time to get the Chaco 2-R on, and we
2	finally installed compression on that one.
3	Q. All right. Mr. Nicol, were Whiting and Maralex
4	contending that there was some pressure interference
5	between the Fruitland Coal and the Pictured Cliffs
6	A. Yes.
7	Q after your fracs?
8	A. In one statement, again, in the Application, they
9	stated that when we frac'd our wells our pressures came up
10	to at or close to their pressures. That's simply not the
11	case, and it wasn't true. And we have another exhibit that
12	shows what the pressure history was out there.
13	Q. Let's go to Exhibit N15. Let's direct it towards
14	that.
15	A. This is a plot of pressure histories we have
16	taken from our files and what we've gotten from Dwight's
17	Data on other wells in the area, in proximity to the wells
18	in question. This chart addresses only Pictured Cliff
19	wells.
20	The yellow dots are the wells we operate that are
21	in question, prior frac'ing, or if the wells were never
22	frac'd we continue with the yellow dots.
23	The green dots are the same wells after being
24	frac'd in 1995. The uncolored circles are other wells in
25	the area.

	64
1	The red lines connect our wells so you can follow
2	a little bit where they're going. Otherwise, it's kind of
3	hard to find them.
4	And the red triangles are the first pressure
5	point given for each well that's on the chart.
6	In early 1997, it appears that the pressures for
7	the Pictured Cliffs wells in this area were running between
8	225 and 250 pounds. This is an underpressured part of the
9	Basin, underpressured part of the area, and that's normal
10	pressure for those wells, and apparently also for the
11	Fruitland Coal.
12	By 1979 it starts to become apparent that some of
13	the new wells are seeing a little bit of pressure depletion
14	on initial completion, they're starting to see pressures a
15	little lower than what had originally been picked up in
16	early 1997.
17	The wells follow a general decline in pressure on
18	into 1994, after which we have virtually no data until
19	1995. That was nineteen ninety-eight four [sic], I'm
20	sorry, 1984. It was the end of that period where pressures
21	are required to be given yearly.
22	But the general trend is that the wells followed
23	kind of the same pattern in pressure down into the 90- to
24	130-pound range. What's interesting is, in many cases this
25	happened regardless of whether the well was initially put

	65
1	on or whether it had been producing for a while, and
2	regardless of how much it had produced.
3	So there's a general indication here that the
4	whole Pictured Cliffs reservoir in the area is being drawn
5	down and is reasonably well connected.
6	By the end of 1983, beginning of 1984, our wells
7	are down as low as oh, something in the 70-pound range
8	for the 1-J and the low hundred pounds for the Chaco 4, on
9	up to maybe 135 pounds for the Chaco 1. As you see, new
10	wells produced or coming on stream in that area for the
11	most part showed some pressure depletion.
12	One well that we have an interest in it's over
13	in Section 4 of 26-13, the Armour 1-Y well showed a
14	pressure of 200 pounds way back in 1976. I presume there
15	was some water in the hole there, because that would have
16	been an initial pressure even before these others.
17	The interesting thing is that that well seems to
18	have declined, and it's never been produced. We take
19	pressures on it now, we get pressures down in the 140-,
20	145-pound range.
21	In 1995, Edwards was the operator of the well,
22	J.K. Edwards, and they contracted Walsh Engineering to do
23	the underground operation. And Walsh began taking pressure
24	readings. And we have pressure readings in early 1995 on
25	the Chaco 4 well, the Chaco 1-J well and the 2-J well.

1	We had three readings for the Chaco 4 that were
2	in the 140 to almost 150 pounds I think it was 140 to
3	147, was the range there before that well was frac'd.
4	The Chaco 1-J at the same time was reading
5	between 150 and 160, and the 2-J 190 to 198 pounds. These
6	are surface shut-in pressures. So they're the minimum
7	pressure, because we assume that if tubing and casing are
8	reading the same that we don't have any water to worry
9	about in the hole, but we really don't know absolutely.
10	The 2-R well Well, let me back up a minute.
11	Those are the readings we have on those wells
12	prior to doing any of four frac jobs.
13	But here we have a situation where we have 147,
14	150 pounds, up in the 198 pounds, in the Pictured Cliffs.
15	If we just extrapolated what happened through 1983, 1984,
16	we would assume that they would be down 100 pounds or less.
17	That wasn't the case.
18	Now, during this period the wells produced and
19	if you look at the production decline curves, they weren't
20	making much; they were just barely perking along, an MCF a
21	day, two MDF a day, this kind of thing.
22	And there appears to have been some pressure
23	recharge in the Pictured Cliffs, either equalization of
24	pressures or pressure building. And there were some
25	potential sources of that, one of which is If we go back

1 to my cross-section, the correlation sections, these zones all tie into big, thick Pictured Cliffs sections downdip to 2 the northeast and the east and the north. And even at 150 3 pounds or 100 pounds differential, there could be some very 4 5 low-grade water encroachment and repressurization through the downdip water leg in the Pictured Cliffs. 6 The other is -- possibility that there's recharge 7 from lower zones in the Pictured Cliff, below where the 8 wells have been perforated. 9 When we frac'd our 2-R well, we had a series of 10 readings down in the 110 to 110, as high as 117 pounds, 11 which was below the other wells here. This is the period 12 of time when we were trying to unload it with a slimhole 13 completion and a small plunger lift, and it wasn't working. 14 In early 1996 we shut it in for three months and 15 ended up with a pressure of 150 pounds. 16 The first pressure we took on the Chaco 1 was 17 right after it was frac'd in February of -- I'm sorry, it 18 was frac'd in January of 1995, and we got 170 pounds. 19 The Chaco 5, also first pressure we got was after 20 it was frac'd right there at about 150 pounds, 152 or 153, 21 if I recall. And that's right where the Chaco 4 and Chaco 22 5 settled in after the frac treatments. 23 This was not a depleted reservoir. 24 If you 25 consider a well that starts at 230 pounds back here and has

	08
1	produced down to 100, that well now had an opportunity to
2	produce from 150 to 170 pounds here, back down to whatever
3	you could deplete it to, which might be well below 50
4	pounds.
5	So for all practical purposes, there's as much
6	reserves left as has been produced out here, but there are
7	far fewer wells pulling on them. So what this had the
8	effect of doing is changing the P/Z curve of the wells.
9	Here, you've got a bunch of wells in the
10	reservoir, pulling it down at this kind of a rate. Here
11	we've got a few wells with, as I've shown earlier,
12	excellent porosity and permeability, capable of draining
13	far more than 160 acres, with enough pressure left to
14	produce and drain a large area.
15	My comment on the P/Z curve is, if I can make an
16	analogy, if you've got compressed gas in a tank with two
17	outlets and you run the P/Z curve, as those two outlets
18	reduce you're going to get each of them seeing about half
19	the reservoir. But if you shut one in, all of a sudden the
20	other one is going to see the whole reservoir. And that's
21	basically what's happening here when we bring wells back
22	on.
23	Now, these wells had not been performing like
24	wells that had 150 pounds. They were, you know, 20 MCF a
25	month, 50 MCF a month, this kind of rate, all through this

	69
1	period, and had not seen or given any indication the
2	pressure was building in the reservoir. That's damage.
3	We have production rates here, for example, on
4	the Chaco 4 and 5 wells that are less than one percent of
5	the same rate that they were producing back in, say, 1979
6	at about the same pressure. So something was wrong with
7	the wells.
8	When we recompleted the Chaco 1 and the Chaco $2-R$
9	by refrac'ing it, we attempted first of all to just acidize
10	the 4 and 5 to see if we could get by without having to do
11	a frac to get past the damage. We didn't see the kind of
12	benefit we got from these two wells, so we went ahead five
13	months later and frac'd the 4 and 5 well.
14	And then you see what happens after that. We've
15	got pressures on into 1997 that are gradually declining,
16	and in 1998 they've started to drop off pretty good.
17	This curve here may be the time it took for us to
18	overcome whatever was happening in the repressuring of the
19	reservoir. We don't know, but that's one explanation for
20	why you have this dropoff in production like this. It may
21	be that we're or the dropoff in pressure, not in
22	production. But it may be that we're just it just took
23	a while to overcome whatever was happening here to increase
24	the reservoir pressure.
25	In the meantime, we have the 1-J and the 2-J out

	70
1	here with pressures at 158 pounds, and this is a shut-in
2	bottomhole pressure, just recently taken in the 1-J, and
3	178 pounds in the 2-J.
4	And these Well, the 2-J, for example, is only
5	a couple hundred feet from the Whiting/Maralex that was
6	given a 112,000-pound frac. It appears to be drawn down a
7	little bit from the pressures that were recorded back here
8	in 1995. We've been producing this well a little bit. I
9	don't know whether this 20 pounds of drawdown here is due
10	to depletion because of the production that we've done or
11	depletion because it may be some way very inefficiently
12	connected to the Whiting/Maralex well. But whatever it is,
13	over that period of time it's very minimal.
14	And as I say, these wells were not frac'd.
15	Q. Mr. Nicol, the damage you referred to, it's what
16	we ordinarily call skin damage; is that correct?
17	A. Yes, although it was much more pervasive than
18	just skin, apparently, because we had to get the wells
19	frac'd in the past.
20	So what we We weren't working on trying to
21	stimulate a well that was already well connected to the
22	reservoir. That well had basically shut off. We're
23	working on the same basis that if you run cement on a well,
24	you've got to get past the cement to get the well to
25	producing, otherwise you get nothing. Whatever we had was

	/1
1	kind of like the well was cemented up.
2	Q. Did you know the damage to exist at the time the
3	fracs were performed?
4	A. We thought so. I wish I was as smart then, or
5	had been as smart then as I am now in retrospect, having to
6	go through all this.
7	But our initial assessment was that the wells had
8	not made nearly as much gas out of the Pictured Cliffs as
9	they should have, based upon volumetrics and based upon
10	expectations of even the original operators.
11	I felt that the Chaco 1 was a good frac candidate
12	for that reason and put the Chaco 2-R next on the list. I
13	was a little skeptical on the Chaco 4 and 5 because they
14	had made more gas than the other the first two I
15	mentioned, even though they still hadn't made nearly the
16	gas that we thought they were capable of.
17	So it was a learning process for us going through
18	it. But in fact, it was the frac job that got us past the
19	damage and turned them into nice wells.
20	Q. So your post-frac production results, were they
21	what you expected?
22	A. Actually, they were better than we expected.
23	Q. Anything further with respect to Exhibit N15?
24	N15 is the time-versus-pressure plot.
25	A. The only other point I would make is that the

1 allegation that our wells came up to their pressures when 2 we completed them, and my statement that that wasn't the case, we have since been supplied some pressure data from 3 Whiting and Maralex, and most of it is flowing casing 4 5 pressure data but occasionally there's a reading up in the higher ranges which we take to be shut-in pressures. 6 7 And using those high points and connecting them, comparing them to what we see here, at the time we had 150 8 pounds, 160 pounds, 170 with the Chaco 1 in 1995, our 9 projections are that all the Whiting/Maralex wells were at 10 well above 200 pounds, and it appears that they started in 11 the 240- to 250-pound range. 12 Now, there are some of those wells that they 13 listed that show pressures in the 180 pounds as the first 14 shut-in pressure that we received on those wells, early on 15 in 1994, if I recall. 16 There's no information as to what the water 17 levels might have been in those wells, however there is the 18 possibility that those wells that started at lower 19 20 pressures could have frac'd into the Pictured Cliffs. It's a consideration, and it's not something we can sit here and 21 22 pound the table about or whatever, but it's an open question. 23 By the way, let's identify an additional part of 24 0. Just behind the blow-down version of the 25 the exhibit, N15.

1	pressure-versus-time plot there is a single sheet with some
2	tabulated data.
3	A. That was just the tabulation that I used to
4	construct the plot originally, and it was dated from our
5	files, where I show the date and the wellhead shut-in
6	pressure and the date the well was frac'd.
7	So it's a tabulated compilation of the same
8	information that's on the chart, and the data goes on into
9	an occasional point in 1997. And after that, I took it
10	directly from the pressure data in the office to update the
11	charts. So it goes through early into 1997.
12	Q. All right. Let's refer to Exhibit N16 now. If
13	you would identify that, please, sir.
14	A. This is a series of pressure-data readings, and I
15	think on your copy the first several pages are the
16	bottomhole shut-in pressures on the 1-J and 2-J wells, and
17	that conforms to the points I've already mentioned here for
18	the 1990 readings on those wells.
19	And then in May we did a three-day shut-in on the
20	Chaco Number 5 well with a dead-weight tester and got a
21	buildup of 95.3 pounds.
22	And in June we did a shut-in, a three-day
23	shut-in, on the Chaco Number 1 well and got a buildup with
24	the dead-weight tester of 88.6 pounds.
25	Q. Let me ask you, is there a summary page for the

	/4
1	information that's contained
2	A. There is a summary of what I consider to be
3	pertinent parts of this information at the end of this
4	package of pressures, but it doesn't contain all of it.
5	Q. All right.
6	A. When we were shut in by District Court on the
7	30th we actually shut the wells in on the 30th of June,
8	we began taking daily shut-in pressures on our wells. And
9	that tabulation through the 21st is given in typewritten
10	form, in table form, for the six wells, the next batch of
11	information.
12	Our wells built up relatively quickly and have
13	stabilized at where the 1-J and 2-J, where they would be
14	expected, perhaps a little higher than the bottomhole
15	pressures, and I'll come back to that in a moment.
16	The Chaco 1-R is in the 98-pound range on these
17	tables.
18	The 2-R at the end of on the 21st of July, was
19	at 68 pounds.
20	And the Chaco 4 was at call it 84 pounds.
21	And the Chaco 5 at 100 to 101.
22	Back toward the end I've got the last three days
23	we had available, 22nd, 23rd and 24th of July, just
24	handwritten. I took those verbally from the pumper over
25	the phone on Friday. But between that handwritten note and

	/3
1	the tabulation is wells that we have been getting by
2	agreement with Whiting/Maralex, readings we've been getting
3	by agreement, off of their wells.
4	And for example, on their Gallegos Federal 6-2
5	well there, you see a day on the 15th of July when they
6	were flowing at 82 pounds flowing casing pressure, while
7	our Chaco Number 4 well was shut in at 88 pounds that day,
8	I think, and the last 24 hours that well, the Maralex well,
9	had made 437 MCF.
10	They have two wells that compressors run pretty
11	much full time, and one, the 12-1 well, looks like it only
12	runs sporadically.
13	And then the two wells that they operate up in
14	Section "they" being Whiting, operates up in Section 1,
15	apparently don't have compressors on them. My
16	understanding is that they have automatic shut-downs at 100
17	pounds. So the production comes and goes if line pressure
18	goes over 100 pounds.
19	And if you will be kind enough to turn to the
20	second to the last page, which is a tabulation of $$
21	comparison of the key points of this data, you'll see the
22	column with the first information is the date, and I start
23	with the shut-in on the Chaco 5 at 95 pounds in May, and
24	then a series of readings from July 15th through July 24th.
25	The first column, if you will look at the Chaco 1

1 shut-in pressures, those are surface shut-in press	sures at
2 98, 99 pounds.	
3 It began to look like we were getting hi	gher
4 shut-in pressures from the pumper's gauge than we	were
5 getting from the dead-weight tester, so I asked th	lem to
6 calibrate the dead-weight tester to the pumper's g	auge, and
7 it turned out the pumper's gauge is reading about	7.5
8 pounds high.	
9 So you get two columns to look at for ea	ch of our
10 wells, and one is the actual shut-in pressure that	we
11 recorded with the pumper's gauge and the second is	a
12 correction for 7.5 pounds to compare it to the dea	d-weight
13 tester.	
14 You'll notice as we go through this that	our
15 wells are continuing to build in pressure. You ge	t down to
16 the 24th of July, and in each case we have the hig	hest
17 pressure so far, so they're continuing to build, e	ven
18 though the Whiting/Maralex coal wells are producing	g at, in
19 some cases, some pretty astronomical rates.	
20 Now, if you'll look at the line marked J	uly 15th,
21 1998, under the Chaco 2R well, you'll see that it	shut in
22 with a gauge pressure of 67 pounds and a corrected	pressure
23 of 59.5, while the Gallegos Federal 7-1 coal sell,	which is
24 800 feet away based on my scale, had produced 308	MCF the
25 last 308 million cubic feet, the last 24 hours,	and had

	,,,
1	a current flowing casing pressure of 74 pounds, or
2	considerably higher on their flowing casing pressure than
3	we had in the shut-in of our closest frac'd well.
4	At that same time the Chaco 4 was shut in at 88
5	pounds, corrected to deadweight at 80.5, while the Gallegos
6	12-1, which is my estimate 2200 feet away, but one of
7	the two closest coal wells, had a flowing casing pressure
8	of 91 pounds and it made 298 MCF the last 24 hours.
9	At that same time, the Gallegos Federal 6-2 was
10	flowing at 82 pounds flowing casing pressure and made over
11	400 million 400,000.
12	These don't look like wells that are connected.
13	If we have flowing casing pressure on coal wells that are
14	higher than our shut-in pressures, it's very difficult to
15	get too concerned that those wells are connected.
16	Q. By the way, how would you characterize the range
17	of the pressure data in dealing with Exhibits 15 and 16?
18	A. We're talking about a total available range to
19	these wells from initial pressure of 250 pounds or less
20	down to a depletion pressure, eventually, somewhere
21	hopefully below 50 pounds, or something in the range of 200
22	pounds total p.s.i. available for comparison of these
23	wells.
24	So it should not be unusual to see wells that
25	have been producing for a period of time, regardless of

	/8
1	what formation, to be to show similar pressures. And it
2	would be easy to get off on a tangent as to comparing
3	pressures between wells that may be more coincidental than
4	indicative of any particular problem.
5	In this case we have some very specific data that
6	shows that it's not just similarities in pressures, but in
7	fact that they can produce wells at higher pressures than
8	we can shut ours in.
9	Q. Anything further with respect to Exhibit 16?
10	A. (Shakes head)
11	Q. All right, let's turn to Exhibit 17, please, sir,
12	if you'd quickly identify that, explain that to the Hearing
13	Examiner.
14	A. Yet another cross-section. This is my record-
15	breaking longest cross-section. Section B-B' is designed
16	to show in a qualitative way that there's additional gas
17	saturation available to the Pictured Cliffs below the zones
18	that are typically perforated.
19	The section starts up in 35 of 27-13 with the
20	High Roll Number 4 well, comes down to the southwest corner
21	of Section 1 and then jogs over to a couple wells in
22	Section 11, back to the southwest of Section 12, to our
23	Chaco Number 4 well, the Chaco 2-R well, and then over
24	again to the Lansdale Federal.
25	And part of the reason for that deviated section

	79
1	was trying to find sufficient logs and sufficient quality
2	to show what we needed to show. In this case, it's a
3	structural cross-section, and it contains both the porosity
4	log and the resistivity log.
5	And if you start looking at the well on the far
6	right, which is the High Roll Number 4, it's perforated in
7	three Pictured Cliffs intervals, the top of which I
8	correlate to be the upper Pictured Cliff sands, the next
9	interval down being equivalent to the main sand that's
10	perforated, the second sand that's perforated in all of our
11	wells.
12	And then what I for this purpose call the third
13	bench of the Pictured Cliffs, which I've colored in red.
14	And on your cross-sections you'll see that sometimes I've
15	colored it intensely red toward the top and then faded out
16	a little bit toward the bottom. That's just a qualitative
17	picture of my impression of the gas saturation that exists
18	here.
19	But this High Roll well has made a little better
20	than a half a BCF out of those zones, and recently enjoyed
21	a 12-fold increase in production, simply by the
22	installation of the compressor. So it's still producing at
23	a very commercial rate.
24	And you'll notice here on both the conductivity
25	and resistivity a third bench, that the resistivity is

increasing, conductivity is backing off as you come up 1 through that third-bench section, at a time when the 2 porosity is also increasing. And so you've got divergence 3 of the curves, and you've got increasing gas saturation up 4 through that section in that well. 5 6 If you go to the Merrion Bayless Chaco 7 well in Section 1, it has the same phenomenon. Looking again at 7 8 the third bench colored in red, you've got increasing 9 density porosity, and in this case I recommend you look at 10 the conductivity, which is backing off, because it's an exaggerated scale and it's a little hard to see what in the 11 world's going on in some of these resistivity curves. 12 But the conductivity is backing off at the time when the 13 porosity is increasing, again indicating increased gas 14 saturation toward the top. 15 Same phenomenon in the well in the northwest 16 northwest of Section 11. 17 And then we have two wells in Section 11 -- well, 18 two wells, the next one in Section 11, the cross-section 19 right here, and the one in Section 12, that have density 20 neutron crossover on the top of this third bench. Now it's 21 only -- call it three feet in the well in Section 11 and 22 probably four feet in Section 12, but the one in Section 12 23 is perforated only in that zone, initially, and I have no 24 record of it ever having been reperforated, but the 25

1 cumulative production, apparently, from that zone is about 2 93 million cubic feet. So it's clearly gas-productive and 3 contains gas. We go to our Chaco 4 well -- And incidentally, 4 5 I'll back up and mention that this gas column down here in the High Roll Number 4 well is the structurally lowest well 6 7 on the cross-section. So you've got plenty of gas column down here, even in a structurally low position. 8 On our Chaco 4, we don't have the classic funnel 9 10 shape of the conductivity backing off in a particular zone 11 while the porosity increases. We do have increasing porosity, and we do have a reduced conductivity as compared 12 to the next zone down. So between these two zones we see a 13 14 very definite increase in gas saturation in the third bench, compared to the next sand down. 15 We do not have a porosity log on the Chaco 2-R. 16 17 It appears that the conductivity has backed off again compared to the next bench down, if you go to that porosity 18 log and compare it. 19 And then we come to the Lansdale, which has the 20 classic funnel shape between the two curves of reduced 21 conductivity and increased porosity. 22 And there is another bench showing up in the 23 Lansdale between the lowest perforated interval and what 24 I'm calling my third bench. We have a little sand builds 25

1 up here, and it looks a little bit tight on the SP, but four feet of that was caught in that core, and it has a 2 3 little bit poorer gas saturation, residual gas saturation, in the core of the Lansdale but still some of the same 4 5 quality with porosities in the 20s and permeabilities in the 20s in this zone right here. So that's a zone that's 6 7 fully capable of producing some gas. 8 And that brings me back to the comment I pointed out earlier by Jacobs when he wrote up this field, that the 9 lower bench tends to produce gas but may also cause some 10 This is higher water saturation than this 11 water problems. stuff that's traditionally been perforated. 12 Let's turn to Exhibit 18 now. Let me ask you, 13 Q. does that conclude your testimony with respect to the 14 geology, reservoir characteristics of the Pictured Cliffs 15 sand and the Chaco wells? 16 17 Α. Yes. All right. 18 Q. 19 One more comment I'd like to make about this. Α. т turned this information over to Jack McCartney, who is one 20 of our witnesses, and asked him to either confirm or refute 21 what I thought I was seeing there, and there will be some 22 more discussion of what came of that. 23 Mr. Nicol, again during the course of the public 24 Q. meetings in Aztec before the District Office up there, what 25

82

	83
1	were some of the other methodologies the group discussed to
2	help evaluate the perceived problem?
3	A. One of the activities we undertook was to
4	investigate whether or not the gas analysis and/or water
5	analysis could be used to determine where the production is
6	coming from. The Commission staff actually undertook to go
7	out and test the wells in question and other nearby wells
8	to get gas samples and water samples.
9	My conclusion was that both were inconclusive and
10	not useful, and I had the impression that that was the
11	general conclusion of the rest of the parties. But I'd
12	like to show why I concluded that.
13	The next page in your book is a tabulation of
14	production I'm sorry, of gas analyses on Designated
15	Hitter Number 2 well.
16	Q. That's Exhibit N18?
17	A. Yes, sir. I've lost the numbers here, but
18	That well is a Pictured Cliffs well that was
19	perforated but not fractured in Section 27 of 26 North, 12
20	West, so it's a little southwest of the area that shows up
21	on the maps I've been presenting or southeast, I'm
22	sorry, of the area I've shown. And I've ranked the data
23	here by date, starting in 1978.
24	When the well first came on, it had a BTU content
25	of 1111. By 19 In late 1979 it was down to 1029.

	04
1	Virtually all of these are El Paso Company analyses, and
2	they do them regularly. And it stayed in that range of low
3	1000, occasionally bumping up. There's one there that's as
4	high as 1055, and there are some that are down as low as
5	1007. It seems to bounce around.
6	We see this indicated in the other data we have
7	where Pictured Cliff wells can come on with an expected
8	high BTU out of the Pictured Cliffs to start with, but that
9	it drops off.
10	I have made some columns, there's a bunch of
11	columns there of what happened to ethane, propane, CO ₂ and
12	nitrogen, and the percentage change where a negative
13	percentage change is actually an increase. And the maximum
14	change that seemed to occur seemed to be in the propane, as
15	far as the components of the the burnable components of
16	the gas go.
17	That well was frac'd in the Pictured Cliffs, in
18	the same perforations, in 1994 December, 1994 and we
19	have three readings since then, but it appeared to
20	actually, on the average, go up in BTU content for two
21	years after the frac job. And then the last reading is
22	back to 1018.
23	I don't think this is atypical, and we will show
24	on in our case why this should actually be expected out of
25	the Pictured Cliffs.
1	

	65
1	Q. Let's turn to Exhibit N19, if you would identify
2	that and explain that, please?
3	A. This is a two-page tabulation of 149 gas analyses
4	we were able to find, either in our files or supplied by
5	Whiting and Maralex, and this particular page is ranked by
6	BTU, top to bottom or two pages of the exhibit.
7	It starts by listing a line number so you can
8	refer to it, and then the well name, the date the sample
9	was taken, the location of the well, whether it's a PC or a
10	Coal well, whether or not it was stimulated, fracture-
11	stimulated, and then columns for the various contents of
12	ethane, BTU, propane, CO ₂ and nitrogen. As I say, it's
13	sorted by BTU.
14	I'd like to point out that under whether or not
15	it was stimulated on the Chaco 5 on line 1, I've got a
16	little asterisk, and the same is true for the Chaco 2-J on
17	line 46.
18	Both of those wells had been originally frac'd
19	when they were completed with 2500-pound fracs, back in
20	1978 or 1979, when they were drilled. That's not a
21	sufficient frac to really do a frac job, and it's certainly
22	no indication of any communication with other reservoirs at
23	that point. So I've listed it as a "no" with the asterisk,
24	so that you recognize that there is at least a little
25	stimulation on those wells.

	86
1	I think points to be made here are, first of all,
2	that there is a general trend in the compilation to have PC
3	wells at the high-BTU end and coal wells at the low-BTU
4	end.
5	Now, it's interesting to note that there are a
6	lot of coal wells with lower BTUs than what the
7	Whiting/Maralex wells are seeing.
8	But if you just look at that column of BTUs from
9	top to bottom, there is no break, there is no definitive
10	break from one category to the other. You just start
11	picking up more and more coal as you go down through the
12	section.
13	And a lot of these wells bounce around quite a
14	bit. They do not maintain a consistent and steady BTU from
15	well to well.
16	For example, if you look at the Chaco 1-J well,
17	which was never frac'd, on lines 108 and 129, which are on
18	the second page, there are two readings for the 1-J that
19	are in the 106-to-112-BTU range. And one was done in It
20	was done by us in March of this year, and the other was
21	done in 1996.
22	The same well shows up on lines 26 and 29, where
23	at one point in 1997, after the low BTU reading, it was
24	gauged at 1078 BTU. And on line 29, again in 1997, it was
25	gauged at 1071.

	· · · · · · · · · · · · · · · · · · ·
1	I had a conversation with the gentleman who does
2	this testing, or manages this testing, I should say, for El
3	Paso, and he commented that they don't
4	MR. GALLEGOS: Object to the hearsay.
5	MR. HALL: Mr. Catanach, it's not offered for the
6	truth of the matter asserted; it's simply, again,
7	contextual to show the utility or lack of meaningful
8	conclusions that could be drawn from BTU data.
9	MR. CARROLL: What information are you offering?
10	THE WITNESS: Let me see if I could make my point
11	in another way without quoting somebody else and avoid that
12	issue; is that all right?
13	MR. HALL: (Nods)
14	THE WITNESS: My I anticipate that the reason
15	two readings were taken on the Chaco 1-J close together in
16	1997 was that it was a significant enough difference in BTU
17	from the previous readings that El Paso wanted to confirm
18	it and took another reading.
19	Q. (By Mr. Hall) All right. Can you explain some
20	of the variabilities that may affect BTU readings over time
21	from various wells?
22	A. I believe it's affected by the quality of gas in
23	the rock. There are different sources for this gas. It
24	can be sourced from the coals as well as from other organic
25	material, or the Lewis shale down below, and I think it

1	changes with producing rate, producing characteristics.
2	Q. All right. Let's turn to Exhibit N20, some
3	additional literature. Would you identify that, please,
4	sir?
5	A. This is an article by Andrew Scott, W.R. Kaiser
6	and Walter Ayers, entitled "Composition, Distribution, and
7	Origin of Fruitland Formation and Pictured Cliffs Sandstone
8	Gases, San Juan Basin, Colorado and New Mexico.
9	Q. Would you In the interests of time, why don't
10	you summarize the points that are made in this article?
11	A. There are five different places in this article
12	where they state basically that you cannot use gas analyses
13	to differentiate between Fruitland Coal and Pictured Cliffs
14	gases in this part of the Basin, in the underpressured
15	reservoir.
16	Q. Have you highlighted those
17	A. I've highlighted Yes.
18	Q particular points in the exhibit?
19	Let's turn to Exhibit N21. If you would identify
20	that and explain that to the Hearing Examiner.
21	A. That's the second part of the core analysis on
22	the Lansdale Federal well that I promised, and this was a
23	desorption analysis done on the Fruitland Coal portion of
24	the core by P-V-T, Inc., on behalf of the operator at that
25	time, which was Southern Union.

-,

this
of the
nal
cc's
ved the
in
in
ith
ge of
s 1
show up
e III,
content
ugh 6,
t we're
s than
be
's very
r down

in the Pictured Cliffs. 1 And then the next page, under "Comments", comment 2 number II states that the amount of adsorbed gas was 3 greatest at the center of the seam and somewhat less at the 4 top and the bottom. So you've got difference in coal gas 5 content, even in a 19-foot coal seam, from top to bottom. 6 The amount of ethane present in the adsorbed gas 7 increased with depth. 8 And then comment number V, "Although it is not 9 shown in this report, a general trend followed for most 10 samples was an increase in ethane evolution and a decrease 11 12 in carbon dioxide evolution with time." 13 So you've got a changing gas content in the desorption analysis, even in a single core, which doesn't 14 give you much confidence that you can watch a well produce 15 16 and come up with a consistent, usable, continuous, constant gas content to use as an analysis to see where it was 17 coming from. 18 By the same token, does the variation within the 19 0. core, from this core analysis, tell you about the 20 applicability of BTU analysis over a wide area, such as the 21 subject of review that's the subject of this Application? 22 No, it's a very specific single point. And you 23 Α. have variations within that single point. I don't know how 24 you would use it over a wide area with any confidence. 25

1	Q. All right. Mr. Nicol, in your opinion, was it
2	reasonable, prudent and necessary for Edwards and Pendragon
3	to fracture-stimulate the Chaco wells?
4	A. Yes, it was.
5	Q. Did the fracture stimulation result in the
6	recovery of additional hydrocarbon reserves from the
7	Pictured Cliffs sandstone that would have otherwise gone
8	unrecovered?
9	A. Yes.
10	Q. In your opinion, from your analysis, are the
11	Pendragon Pictured Cliff sandstone wells producing from the
12	appropriate source of supply?
13	A. Yes, they are.
14	Q. Were Exhibits N1 through N4, N6 through N8, N10
15	through N19 prepared by you or at your direction and
16	control?
17	A. By me.
18	Q. And the literature exhibits, N5, N9 and N20, are
19	they literature of a type that's typically relied on by
20	experts in your field?
21	A. Yes.
22	MR. HALL: Mr. Examiner, that concludes our
23	direct.
24	We'd move the admission of Exhibits N1 through
25	N20.

	92
1	EXAMINER CATANACH: Any objections?
2	MR. GALLEGOS: No objection.
3	EXAMINER CATANACH: N1-N20 exhibits will be
4	admitted as evidence.
5	Mr. Gallegos?
6	CROSS-EXAMINATION
7	BY MR. GALLEGOS:
8	Q. Mr. Nicol, you were standing at one of the cross-
9	sections about midway through your testimony, and you said
10	it was frustrating to you that Whiting has the right to
11	fracture their wells and get into the Pictured Cliffs, but
12	we don't have the right to fracture ours.
13	MR. HALL: I'm going to object
14	MR. GALLEGOS: I think that was the closest
15	THE WITNESS: I didn't say that.
16	Q. (By Mr. Gallegos) Well, what is the frustration
17	that you were expressing?
18	MR. HALL: Let me state an objection to the
19	record, to the previous part of that question. I think it
20	mischaracterizes earlier testimony.
21	If you understand the question now as rephrased,
22	go ahead and answer.
23	THE WITNESS: My frustration was, the
24	circumstance where if the Pictured Cliffs and the Fruitland
25	Coal are unseparated or that they are separated by a

1	minimum of shale, that somebody who comes in and fractures
2	their well with a massive frac and apparently makes no
3	effort to control where the frac goes or what it catches,
4	really doesn't have much complaint when somebody else comes
5	in and tries to do a stimulation on their well with a very
6	carefully controlled frac.
7	Q. (By Mr. Gallegos) Okay, so what you're
8	suggesting, first of all, is, there is little or no stress
9	barrier between the Fruitland Coal formation and the
10	Pictured Cliff formation. Do you agree?
11	A. No. In that circumstance that I was pointing to
12	with no separation between them, there couldn't be any
13	stress barrier.
14	Q. Okay, so there's no separation. One is virtually
15	lying in connection with the other?
16	A. On that log, on that well.
17	Q. Well, which
18	A. I do not agree with what you're trying to say for
19	the other wells that were in contention here, because there
20	are very clearly soft shale stress barriers between the
21	zones.
22	Q. Well, first of all, what log and what well are
23	you specifying?
24	A. I made that comment about the well in Section 1
25	of 27 North, 12 West.

Q Youlro talking about your Chago 5 yoll?
Q. You're talking about your Chaco 5 well?
A. 27-12, sir. It's the township to the north on
that cross-section.
Q. Oh, okay. Not one of the wells in question here,
either the what we refer to, either the Chaco wells or
the Whiting wells?
A. That's right.
Q. All right. So let's address the wells that we're
interested in. You're saying in that case there is what
barrier between the formations?
A. What I characterized as a soft shale.
Q. How thick?
A. Generally about four feet. It varies.
Q. And are you suggesting that that shale was
fractured by the Whiting stimulations of their wells so
that they have opened up communication between the Pictured
Cliffs and the Fruitland?
A. I think that's a possibility in some of their
wells.
Q. Okay, and
A. We have some evidence that it didn't happen in
all of them.
Q. And your frustration is that if you frac your
wells and the same thing happens, you don't think there
should be any criticism?

	33
1	MR. HALL: I'm going to object to, again,
2	mischaracterization of prior testimony. There was no
3	testimony that the Pendragon fracs reached up into the
4	coal. That's what Mr. Gallegos is
5	Q. (By Mr. Gallegos) Well, I'm trying to figure out
6	what this frustration was that he expressed, something
7	about, seemingly, one party could do something with their
8	fracture stimulations, but Pendragon, in other words,
9	couldn't. Well, explain to us, what's the problem?
10	A. My problem was the my belief that the
11	fractures were done on the coal wells without any
12	consideration as to where that frac was going or what zone
13	it was going to connect to, whereas we very carefully tried
14	to avoid getting any fractures into the coals because we
15	didn't own them and we didn't want to connect with the
16	coals.
17	Q. Okay, so did you run some temperature surveys
18	immediately following your fractures to trace where they
19	went, where they grew vertically, how they performed?
20	MR. HALL: Mr. Examiner, I think I may be able to
21	short-circuit this here, but by the way let me object. I
22	think this is going beyond the scope of direct examination.
23	There was no specific testimony from Mr. Nicol about the
24	design and manner of performance of the frac jobs on the
25	Chaco wells, just that they were frac'd, period.

_

1	We have another witness who will testify this
2	afternoon about the design implementation of the frac job,
3	so maybe these questions are best reserved for that time.
4	MR. GALLEGOS: Well, no, they're best asked of
5	Mr. Nicol, since he expressed some sort of frustration, as
6	he put it, about the one party being able to fracture-
7	stimulate and another party not being able to, and that's
8	what I'm exploring.
9	Q. (By Mr. Gallegos) So did you do temperature
10	surveys?
11	A. No.
12	Q. Pendragon Energy Partners is the owner of these,
13	what I'm referring to, this group of wells that's call
14	them the Chaco wells, if we can have that understanding?
15	A. Let me clarify it. Pendragon Energy Partners is
16	the general partner of a partnership that owns the wells.
17	Q. Okay, and what's the partnership that owns the
18	wells?
19	A. It's Pendragon Resources, L.P. Pendragon Energy
20	Partners is the operator.
21	Q. Pendragon Resources, L.P., is the owner?
22	A. Yes.
23	Q. Okay. And that's a partnership of which you are
24	a partner, correct?
25	A. The Pendragon Energy Partners, Inc., is the

1	general p	artner, yes.
2	Q.	And are you a partner of Pendragon Resources?
3	Α.	Are you talking about me personally?
4	Q.	Yes, you personally.
5	Α.	No.
6	Q.	Who is the
7	Α.	I'm a stockholder in the general partner.
8	Q.	And the general partner is What is the entity
9	that's th	e general partner?
10	Α.	Pendragon Energy Partners, Incorporated.
11	Q.	Which is a different entity than the operating
12	company?	
13	А.	That is the operating company.
14	Q.	Pendragon Energy Partners
15	Α.	Yes.
16	Q.	is the operating company and is also the
17	general p	artner of Pendragon Resources?
18	Α.	That's right.
19	Q.	And you're a stockholder of Pendragon Energy
20	Partners?	
21	Α.	Yes.
22	Q.	Okay.
23	Α.	And, go a step farther. We are one of the owners
24	of the we	lls, the partnership.
25	Q.	Yeah, I'm going to get to that. Just exploring

1 your pecuniary interest in these wells, Mr. Nicols. 2 And is -- Your stockholding in Pendragon Energy 3 Partners is to what extent? 4 Α. Fifty percent. 5 Q. And who owns the other 50 percent? 6 MR. HALL: Mr. Examiner, I'm going to have to 7 object at this point. This is getting so far afield from 8 direct testimony, and I don't think it's relevant here at 9 all. MR. GALLEGOS: I'm entitled to examine the 10 witness's --11 EXAMINER CATANACH: What's --12 13 MR. GALLEGOS: -- pecuniary interest --EXAMINER CATANACH: What's the point, Mr. 14 15 Gallegos? MR. GALLEGOS: -- in the matter. He's expressing 16 opinions here, and I think you're entitled to know what his 17 18 interest is, as opposed to somebody who has no particular interest in the outcome, who's just here as an expert 19 20 expressing their opinions. 21 MR. HALL: Well, the interest has been 22 established. Why do we continue to dwell on it? 23 MR. CARROLL: How far are you going to go with this, Mr. Gallegos? 24 25 MR. GALLEGOS: I want to know who the other

1 interest owners are. 2 MR. HALL: I don't see any relevance to that. 3 (By Mr. Gallegos) Who are the other partners? Q. MR. HALL: Do we have a ruling? 4 5 EXAMINER CATANACH: Hold on. MR. CARROLL: You can ask about his financial 6 7 interest, but not other people's. I mean, you're attacking 8 his credibility as a witness, as an expert witness, based upon his financial interest in this case --9 MR. GALLEGOS: I --10 MR. CARROLL: -- is that correct? 11 MR. GALLEGOS: -- think that's something to be 12 weighed, as to -- taken into account --13 MR. CARROLL: I agree, but where are you going 14 with other people's financial interests in this? 15 MR. GALLEGOS: If there are others -- Let me 16 phrase it --17 (By Mr. Gallegos) Are there other interest 18 Q. owners who are to be witnesses? 19 20 A. There's one. Q. And who is that? 21 22 Α. Roland Blauer. And what is his ownership interest? 23 Q. Roland owns an interest in another corporation Α. 24 25 which is a co-general partner to the partnership.

	100
1	Q. And what is the extent of his ownership in the
2	partnership?
3	A. Let me see if I can explain this in a way that
4	helps clarify it.
5	Originally there were three people who started
6	Pendragon Energy Partners, Incorporated. A year ago we
7	split Roland's interest out into a separate corporation as
8	a co-general partner.
9	So originally Roland owned one-third, and still
10	owns one-third, of the Pendragon Energy Partners, Inc.,
11	interest in the partnership. And that interest varies
12	depending on whether or not the properties have paid out.
13	Q. All right. And anybody else who is an owner, who
14	is going to be a witness in this proceeding?
15	A. No.
16	Q. Okay. Tell us, Mr. Nicol, about your experience
17	in coal stratigraphy.
18	A. I've been working on coals in general for just a
19	few years. I really started with our involvement in the
20	San Juan Basin back in I don't remember if it was late
21	1993 or early 1994.
22	Q. About the time that you acquired these
23	properties?
24	A. Yeah, shortly before we perhaps a year before
25	we acquired these properties.
, I	

1	Q. Okay, so you've worked in no other coal basins?
2	A. Well, that's not true, I
3	Q. On coal strati No, on coal stratigraphy.
4	A. On coal stratigraphy, that's not true. I have
5	Our company buys production, so I have looked at a number
6	of other coal properties to purchase. And in doing that, I
7	have to do very detailed analysis of the geology and the
8	economics.
9	So I have looked at a number of other properties,
10	including large properties in Alabama and the Raton Basin
11	and Green River Basin and the Piceance Basin.
12	Q. And what does your experience consist of in the
13	San Juan Basin? What have you done, other than these
14	properties and this study?
15	A. Well, by far my greatest experience has come from
16	being involved here when we bought properties in 19
17	Call it 1993. But I have been involved in other prospects
18	in drilling interests in the San Juan Basin since way back
19	in the early Seventies with Zoller and Danneburg and
20	Resources Investment Corporation.
21	I think some of the wells on this map, I may have
22	participated in Ray Dietrich at one time, i.e., the company
23	that I was speaking for.
24	And I have The period that I was consulting, I
25	did consulting for Santa Fe Energy when they wanted to

1	divest their interest down here and established values and
2	whether or not there was any additional drilling completion
3	potential development, potential
4	Q. Coal properties?
5	A. Coal properties. And I have an ongoing client in
6	Denver, another sizeable independent that contracts for me
7	to do geological evaluations of the properties where they
8	have a large spread of royalties and mineral interests down
9	in the San Juan, most of that on the Colorado side.
10	Q. Okay. And would you consider yourself a
11	sedimentologist?
12	A. I don't Well, I've been, since 1969, working
13	in the oil business, which has all been in sediments, so
14	I'd have to say yes. Not in term of some sort of academic
15	teacher or sedimentology or anything like that, but I've
16	worked with it daily.
17	Q. The group of roughly, I guess, six or seven Chaco
18	wells that we're talking about or maybe, I think you
19	Did you say there were 11 total wells that were in the
20	purchase from Merrion and Bayless?
21	A. No. We're talking about six Chaco wells that we
22	purchased at that EBCO sale and five coal wells that are
23	involved in the debate, so there was
24	Q. All right.
25	A a total of 11.

	103
1	Q. Well, I'm talking about the Chaco wells that you
2	purchased.
3	A. Six.
4	Q. Six. Six Chaco wells. All right.
5	Is that accurate, that they were purchased at an
6	EBCO auction?
7	A. You know, when I said that I was trying to
8	remember whether we bought them outside of the auction, but
9	they were originally offered at an EBCO auction, and I
10	frankly don't remember the circumstances or whether we
11	actually bought them at an auction or bought them Merrion
12	aside from the auction.
13	Q. Isn't it a fact, Mr. Nicols, that those six Chaco
14	wells, those properties, were given to Edwards by Merrion
15	and Bayless? Nothing was paid for; Merrion and Bayless
16	simply wanted to rid itself of the plugging-and-abandoning
17	liability?
18	A. Not to my knowledge.
19	Q. Well, Mr. Edwards handled that transaction?
20	A. If there was that transaction, he would have
21	handled it, yes.
22	Q. All right. And what you bought And if I might
23	approach the witness here, I'll just use the reporter's
24	copy. This is the Whiting/Maralex Exhibit Number 9.
25	What you bought, if you will look at Exhibit

1	Number 9 and turn to the second page, is represented by one
2	of the transfers from the Merrion Bayless group to J.K.
3	Edwards and Associates; isn't that correct?
4	Do you have that, Mr. Examiner?
5	MR. CARROLL: Where is it?
6	MR. CONDON: It's Number 9, it's a packet that's
7	got the area map on top.
8	MR. GALLEGOS: I think what happened is, I took
9	yours instead of the
10	MR. CARROLL: Oh, the reporter's
11	MR. GALLEGOS: the reporter's, I'm sorry. His
12	is over here.
13	THE WITNESS: That describes
14	Q. (By Mr. Gallegos) Does that describe
15	A. Yes, that describes the acreage for the 2-R and
16	the Chaco 1 wells.
17	Q. And that describes the formation that was being
18	transferred, or at least the operating rights, transferred
19	from the Merrion Bayless group to J.K. Edwards and
20	Associates, does it not, Mr. Nicols?
21	A. Yes.
22	Q. And it's described as limited from the base of
23	the Fruitland Coal formation to the base of the Pictured
24	Cliffs formation?
25	A. Yes.
i	

	103
1	Q. And then I take it through some transaction this
2	interest passed from Edwards to the Pendragon entities?
3	A. A portion of it.
4	Q. A portion. Edwards still retains what quantity?
5	A. Twenty-five percent.
6	Q. Okay. Now, do you have some knowledge of the
7	experience that Merrion and Bayless have in the San Juan
8	Basin?
9	A. Yes.
10	Q. About how long have they been operators in the
11	Basin?
12	A. I guess I don't know the answer to about how
13	long, but I've recognized the names and being operators
14	for, I'm going to say, probably as long as I've been in the
15	business.
16	Q. As far as you know, are they competent and
17	successful operators?
18	A. Yes, sir.
19	Q. But we're to understand that they could not
20	recognize this extraordinary potential of remaining
21	reserves in the Pictured Cliffs formation that you were
22	able to
23	MR. HALL: You know, I'm going to object. It
24	asks for the witness to conclude about the thought
25	processes of a third party, nonwitness. Foundation.

1	EXAMINER CATANACH: I agree. You don't have to
2	answer that.
3	Q. (By Mr. Gallegos) These were properties in which
4	the wells were producing three or four MCF a day or, in the
5	case of one or two of them, actually shut in and producing
6	nothing
7	A. That's right.
8	Q isn't that true, when you obtained them?
9	A. (Nods)
10	Q. And are you acquainted with Paul Thompson?
11	A. Yes, sir.
12	Q. Is Mr. Thompson employed in some capacity for
13	Pendragon and Edwards?
14	A. We hired Paul's firm to operate the wells for us.
15	Q. Okay. And for how long has he provided that
16	service?
17	A. Since these wells were purchased by Edwards.
18	Q. Or before these wells were purchased, or
19	acquired?
20	A. On other wells, yes, sir.
21	Q. Maybe since What year, would you say?
22	A. Well, he was operating them for Edwards when we
23	bought our first interest from Edwards, so I would have to
24	guess 1993.
25	Q. And isn't it true that Mr. Thompson was checking

	107
1	on the Whiting coal wells in this area and reporting to you
2	the production of those wells, dewatering process and the
3	gas production?
4	A. When? He has been
5	Q. From
6	A the last few weeks.
7	Q. No, I'm talking about since 1992, 1993.
8	A. If you're asking about an occasional passing
9	comment, sure. If you're asking about regular reporting,
10	absolutely not.
11	Q. Well, however we want to characterize it. He was
12	providing information to you that the Whiting wells were
13	being dewatered, and approximately how much water was being
14	produced and when they began to successfully produce gas;
15	isn't that true?
16	A. No.
17	Q. Well, what were the passing comments that he
18	reported to you?
19	A. The only comments that I recall at all are the
20	fact that they sure have a lot of water tanks out there, or
21	something to that effect. I'm not trying to quote him, but
22	that was the gist of it.
23	I don't I don't know where you're going, but
24	there has been no effort on our part through Thompson to
25	try to monitor what those wells are doing. If I want to

	108
1	know, I call them up on Dwight's.
2	Q. Since you acquired the properties, or as you've
3	acquired these properties, what studies did you make before
4	the fact as to support or reason to do the stimulation jobs
5	that you did on the wells?
6	A. It was really rather simplistic at that time. We
7	looked at what the wells had made, did a volu I did a
8	volumetric calculation of about how much gas I thought they
9	should have made and then selected which wells we wanted to
10	participate in frac'ing.
11	Q. And you just decided that the wells were damaged?
12	Is that what you testified?
13	A. Basically, yeah. We didn't know what, exactly,
14	the problem was, but it was clear that if you could get
15	back into the reservoir there was a lot of gas left to be
16	had.
17	Q. You will agree, will you not, that if there's so-
18	called skin damage, the level of production might be
19	adversely affected, but on a shut-in basis you're going to
20	see the well's going to see whatever pressure exists in
21	the reservoir?
22	A. Eventually, yeah.
23	Q. Yeah, if you shut in for a sufficient period of
24	time, the pressure is going to build up?
25	A. Uh-huh.

	109
1	Q. So the pressures that existed before the
2	stimulations you did on these wells would represent the
3	reservoir pressures?
4	A. Yes, sir.
5	Q. Okay. Now, you have used the terminology "upper
6	Pictured Cliffs" throughout, and I think you testified at
7	one point that this has been a formation recognized for 25
8	years by the regulatory agencies and many operators?
9	A. No, I thought I clarified at the beginning that I
10	was using the term "upper Pictured Cliffs" so that
11	everybody in the room would understand which sand I was
12	talking about. I don't I did not say that's a formation
13	that's been recognized. What I said is that the
14	completions in the Pictured Cliff wells in that zone and
15	the other zones in those wells have been recognized as
16	Pictured Cliffs completions.
17	Q. Okay. There is no place that you will find in
18	the literature, or in a declaration of pools by the OCD, or
19	any other place, a use of the term "upper Pictured Cliffs";
20	don't you agree?
21	A. I would agree. I haven't seen it. My purpose
22	was simply for clarification for this discussion today, as
23	to which zone I was talking about.
24	Q. Well, did you For purposes of the
25	determination that you said you seek by this Application,

1	which is a declaration that your wells are producing from a
2	common source of supply, did you refer to the pool rules
3	concerning the Basin Fruitland Coal formation?
4	A. Yes, sir.
5	Q. Okay. So you would have referred to orders that
6	were entered in 1988, 1989 and later, in connection with
7	the with that pool, correct?
8	A. You're talking about the coal pool now, yes.
9	Q. Yeah, and you're familiar with that?
10	A. Yes.
11	Q. Well, and you're familiar with the fact that in
12	the declaration of that pool considerable attention had to
13	be given to the other adjoining formations; isn't that
14	true?
15	A. Yes, sir.
16	Q. Okay. In Order 8768, which was the case in 1988
17	declaring the actually creating the pool for the Basin
18	Fruitland Coal formation, the Division found, and let me
19	quote this:
20	
21	Geologic evidence presented by the Committee
22	indicates that the Fruitland formation, which is found
23	within the geographic area described above, is
24	composed of alternating layers of shales, sandstones
25	and coal seams.

1	End quote. Do you agree with that?
2	A. Yes, sir.
3	Q. Then Rule 3, which I think is referenced in your
4	Application that you are proceeding here, among other
5	things, under Rule 3 of the special rules pertaining to the
6	Basin Fruitland Coal Pool, that rule says, and I quote:
7	
8	The Division Director may require the operator of
9	a proposed or existing Basin Fruitland Coal gas well,
10	Fruitland sandstone well or Pictured Cliffs sandstone
11	well to submit certain data described in Rule 2 above,
12	which would otherwise not be required by Division
13	Rules and Regulations, in order to demonstrate to the
14	satisfaction of the Division that said well will be or
15	is currently producing from the appropriate common
16	source of supply.
17	
18	End quote.
19	So you're proceeding under that rule for that
20	kind of a declaration; isn't that true?
21	A. Yes, sir.
22	Q. All right. And there has been no mention in any
23	of your testimony that I was able to take note of, of the
24	Fruitland sandstone. That is not a factor in Pendragon's
25	Application; is that correct?

- __

That's correct. All right. Let's just, if we might, maybe I our early cross-section was N3, Exhibit N3. Could
our early cross-section was N3, Exhibit N3. Could
that up?
Is that A-A'?
MR. HALL: Yes.
(By Mr. Gallegos) A-A', yes, sir.
Okay. Now, first of all, I understand you just
coined the phrase "upper Pictured Cliffs" for this
ing?
That's correct.
All right. Now, tell us help us locate on
oss-section the Fruitland sandstone.
What I've got on this cross-section are
vity logs. I can't identify lithology just on
vity logs, but I do not see any Fruitland sandstone
nis 20-foot coal. I have not seen any Fruitland
ne. The only sandstone below that coal is Pictured
There may be Fruitland sandstones here. These
ervals were perforated as coals, and I believe they
don't recall what that zone is. It could possibly
itland sandstone. But I don't have enough
tion here to point to a Fruitland sandstone and say,
one.

1	Q. So on the coal that you show on your cross-
2	section, Exhibit N3 there, is there are no layers within
3	the Fruitland Coal formation of Fruitland sandstone?
4	A. There are no layers of Fruitland sandstone below
5	what I've labeled the basal Fruitland Coal.
6	Q. Well, if there are any, then they would be
7	above
8	A. Above.
9	Q out of the coal formation?
10	A. The coal formation has been separated from the
11	Fruitland sandstones, different pools. So yes, any
12	Fruitland sandstones that existed up in here would not be
13	in the Fruitland Coal formation Fruitland Coal Pool.
14	The use of the term "formation" is a little bit confusing
15	there, but
16	Q. Well
17	A. I guess I don't quite understand your question,
18	I'm sorry.
19	Q. Well, what do you understand the definition of
20	the pool The Fruitland Coal Pool includes all coal
21	formations. That's what the order says, all coal
22	formations. Not a single coal formation.
23	A. Exactly.
24	Q. Isn't that true?
25	A. That's true.

	114
1	Q. And your cross-section shows an upper coal and a
2	lower coal. The blue?
3	A. It shows all the coals in the pool as defined by
4	the Amoco well and the stratigraphic equivalent to that
5	cutoff point. There can be coals down in the Pictured
6	Cliffs; they're not Fruitland Coal.
7	Q. That's fine. But you show in your cross-section,
8	you have colored in blue a what I'm just referring to as
9	the upper, and I think a lot of people refer to it as the B
10	coal section. The thicker coal formation, correct?
11	A. The one I refer to as the basal Fruitland Coal?
12	Yes, sir.
13	Q. You refer to as the basal.
14	A. Yeah.
15	Q. All right. And then below it, varying as one
16	would read these logs, with a thickness of from six feet to
17	maybe two feet, one foot, is a lower coal formation; isn't
18	that what
19	A. Yes.
20	Q the logs show?
21	A. Yes, there's another coal there, yes, sir.
22	Q. All right. And as you understand the pool rules,
23	the definition of the Basin Fruitland Coal formation is
24	inclusive of all of the coal formations, all the layers
25	from the uppermost to the lowermost?

1	A. No.
2	Q. You have There's something in the orders of
3	the Commission or the rules that you rely on to give that
4	answer?
5	A. It's defined as the coals found above the
6	stratigraphic equivalent of a point in a particular well,
7	and I went through that in my testimony as to what I see as
8	the stratigraphic equivalent to that point, carrying it
9	down into the Chaco gray.
10	Q. Okay, so if we
11	A. There are
12	Q. Excuse me.
13	A coals below that point. They're not included
14	in the Fruitland Coal pool.
15	Q. Okay. So just to be clear, let's so that we
16	understand your testimony, if we take Exhibit N3 and we
17	have a lower the lower coal, the thin lower coal and the
18	upper coal, then as you understand it, what is the Basin
19	Fruitland Pool in that area?
20	A. The Basin Fruitland Coal Pool starts at the top
21	of what I have termed the upper Pictured Cliffs sand, and
22	it goes up from there.
23	Q. Okay. So you exclude the lower coal?
24	A. Yes.
25	Q. That's your testimony?

	110
1	A. Yes.
2	Q. Okay. All right.
3	Do you understand that this specific area, Mr.
4	Nicol, is has been recognized as an area where there
5	occurs what's called the WAW Fruitland Pictured Cliffs
6	Pool?
7	A. Yes, sir.
8	Q. Are you familiar with that?
9	A. Uh-huh.
10	Q. What is that?
11	A. When the original development started here in the
12	NIPP Pictured Cliffs Pool, it coalesced with the
13	development of the WAW Pictured Cliffs Pool. Sometime
14	after that, as I understand it
15	Q. I'm sorry, I Let me interrupt you. But you
16	said this was not the WAW? You said when it coalesced with
17	What was the other pool?
18	A. This is the N-I-P-P, the NIPP Pictured Cliffs.
19	Q. Okay.
20	A. At least the Chaco 4 and below. I think that the
21	log heading shows Chaco 5 may have been in the WAW PC Pool.
22	There was some The two pools coalesced.
23	And then sometime later, the pool was changed to
24	include both Fruitland sands and Pictured Cliffs sands, and
25	that, as I understand it, is the WAW PC Fruitland Pool.

1	Q. To include the Pictured Cliff and the sandstone
2	interval within the Fruitland formation?
3	A. Correct.
4	Q. All right. And your testimony is that what we
5	see on this cross-section and you've labeled "Upper
6	Pictured Cliffs Sand" is not the sandstone interval within
7	the Fruitland formation?
8	A. That's correct.
9	Q. Okay. The literature you referenced us to in
10	some place supports that, that what you have recognized as
11	the upper Pictured Cliffs, you've labeled for purposes here
12	the upper Pictured Cliff, as contrasted with being a
13	sandstone within the Fruitland formation?
14	A. Yes, sir.
15	Q. All right. And that specifically is what? And
16	I'm not asking you to go back through, but what piece of
17	the various literature We went through those fast.
18	A. Specifically the publication by Jim Jacobs of
19	Dugan when he wrote up the description of the NIPP Pictured
20	Cliffs discovery and the development of the pool.
21	Q. Was there any reason that in your testimony you
22	didn't refer to Mr. Fagrelius's description of the WAW
23	Fruitland Pictured Cliffs? He's also a geologist with
24	Dugan Production Company.
25	A. Probably the best reason is that in no way was I

1	able to go through all available literature, or even find
2	it. So I'm sure there's an awful lot of literature that I
3	haven't even seen, and I don't recall that one.
4	Q. Okay, the key, as I understand it, to your
5	classification of what you've elected to call here the
6	upper Pictured Cliffs formation is the depositional
7	environment?
8	A. Correct.
9	Q. And your testimony rests on your conclusion that
10	that particular sandstone was laid down in a marine
11	environment?
12	A. Yes, sir.
13	Q. And if it was not laid down in a marine
14	environment, then it would be a sandstone within the
15	Fruitland within the coal formation; do you agree?
16	A. Yes, sir.
17	Q. Okay. How was the In particular I'm
18	interested, how was the lower coal that's shown on your
19	cross-section here deposited at a depth below what you
20	refer to as the upper Pictured Cliffs? What was the
21	depositional sequence there?
22	A. Well, I don't know what the depositional sequence
23	was. There's possibilities that it was laid down in a
24	quiet backwater area of a lagoonal environment.
25	Q. Are you saying that that's also a marine

1	deposition, this coal, the lower coal?
2	A. You can have coals laid down in a predominantly
3	marine environment, certainly, in a lagoon that's still
4	subject to tides and has a shoreline in it and you've got
5	organic material being brought in and laid down and
6	sure, in quiet water.
7	Q. Okay, you're talking now about a coastal
8	environment
9	A. Yes.
10	Q is that what you're
11	A. Yeah, all of this
12	Q. Just on well, but Back on the edge of the
13	sea?
14	A. Uh-huh.
15	Q. But the marine environment accounts for the
16	deposition of the what you call the upper Pictured
17	Cliffs?
18	A. Yes.
19	Q. Okay. And one of the keys to that was the sand
20	size, the grain size. Is that what you were saying?
21	A. Not the grain size, the consistency of the
22	sorting.
23	Q. The cleaning up?
24	A. The cleaning up and the consistency of the
25	sorting where you have fine-grain sand described from top

1	to bottom in that core.
2	Q. Okay. And what's the nature of the sand in the
3	Fruitland sandstone? We find it somewhere there. I guess
4	in your case or in your view, it's up above the coal.
5	But wherever it is, what's the nature of that sand,
6	compared to what you're labeling as the upper Pictured
7	Cliffs?
8	A. I have seen one mudlog description of some
9	Fruitland sands, and some of the mudlog description goes
10	from fine to very fine, some of it was described throughout
11	the sand it was penetrated as fine also.
12	Q. So essentially the same?
13	A. Yeah. And if your deposition is close to your
14	source that's bringing the sand in, you would expect that.
15	Q. Okay. So you see the what you would recognize
16	somewhere at a shallower level as the Fruitland sand as
17	being essentially the same as the sandstone of the Pictured
18	Cliff formation?
19	A. It could be. Could be the same grain size, yeah,
20	if that's what you're
21	Q. Well, from your studies, is it or is it not?
22	A. I don't have enough information to generalize. I
23	saw one mudlog where some of the sand was described
24	virtually the same as the Lansdale Federal core in the PC.
25	Q. What do you hypothesize is the source of the

_

	121
1	sand, laid down either in the Pictured Cliffs formation
2	below the lower coal or what you refer to as the upper
3	Pictured Cliffs?
4	A. Well, the source would be a land source
5	originally. It would be brought down by streams and rivers
6	that are flowing into the marine environment, and then it's
7	redistributed by wave and tidal action, current action.
8	Q. So that could be deposited either in a marine
9	environment or a nonmarine environment, being brought down
10	from flow water flowing toward the sea? Is that a
11	simplistic way
12	A. Are you saying the sand would be deposited that
13	way?
14	Q. In either deposition, the source would be the
15	same?
16	A. The original source would be the same, yeah.
17	Q. Is there a definition you apply to a massive
18	sandstone layer? You used that term, and I wasn't clear if
19	that has some definition?
20	A. No, you're exactly right, it does not have
21	definition and should not be used to define anything.
22	Q. Okay. The Your Exhibit 7 in some of your
23	other discussion Exhibit 7, I think, was the core
24	samples on the No, that's 8, excuse me, Exhibit 8 was
25	the core samples on the Lansdale Federal Number 1, and

the 7 was the We've covered a lot of ground her It's a little hard to come back to all of this. Based on Exhibit N8, and I think some of th other data that you saw, it's your conclusion that th Pictured Cliffs formation in this area has a very hig permeability? A. Yes. Q. Okay. In fact, this core is showing some p where you've got millidarcies of 194, even over 200 - A. Yes, sir. Q and also very good porosity, 25-percent porosity?	e.
 Based on Exhibit N8, and I think some of the other data that you saw, it's your conclusion that the Pictured Cliffs formation in this area has a very hig permeability? A. Yes. Q. Okay. In fact, this core is showing some p where you've got millidarcies of 194, even over 200 - A. Yes, sir. Q and also very good porosity, 25-percent 	
 4 other data that you saw, it's your conclusion that the 5 Pictured Cliffs formation in this area has a very hig 6 permeability? 7 A. Yes. 8 Q. Okay. In fact, this core is showing some p 9 where you've got millidarcies of 194, even over 200 - 10 A. Yes, sir. 11 Q and also very good porosity, 25-percent 	
5 Pictured Cliffs formation in this area has a very hig 6 permeability? 7 A. Yes. 8 Q. Okay. In fact, this core is showing some p 9 where you've got millidarcies of 194, even over 200 - 10 A. Yes, sir. 11 Q and also very good porosity, 25-percent	e
<pre>6 permeability? 7 A. Yes. 8 Q. Okay. In fact, this core is showing some p 9 where you've got millidarcies of 194, even over 200 - 10 A. Yes, sir. 11 Q and also very good porosity, 25-percent</pre>	e
 7 A. Yes. 8 Q. Okay. In fact, this core is showing some p 9 where you've got millidarcies of 194, even over 200 - 10 A. Yes, sir. 11 Q and also very good porosity, 25-percent 	h
 Q. Okay. In fact, this core is showing some p where you've got millidarcies of 194, even over 200 - A. Yes, sir. Q and also very good porosity, 25-percent 	
<pre>9 where you've got millidarcies of 194, even over 200 - 10 A. Yes, sir. 11 Q and also very good porosity, 25-percent</pre>	
 10 A. Yes, sir. 11 Q and also very good porosity, 25-percent 	laces
11 Q and also very good porosity, 25-percent	-
12 porosity?	or so
13 A. Uh-huh.	
14 Q. Okay.	
15 A. Average is over 20.	
16 Q. So this is clearly not what one would refer	to as
17 a tight formation; do you agree?	
18 A. I agree.	
19 Q. So Do you know, by the way, how that mig	nt
20 compare to, say, the Mesaverde formation in the San J	Jan
21 Basin?	
22 A. I'm not as familiar with Mesaverde in the S	an
23 Juan as other areas. But generally speaking, the Mes	averde
would be many degrees tighter at lower permeability.	
25 Q. Okay. Now, I think also it was Exhibit 15,	

I

	125
1	said what it taught you was that the pressures of a large
2	number of wells in this area, Pictured Cliffs wells in this
3	area, indicated basically a stability or a communication?
4	In other words, the pressure declines were fairly uniform
5	across a large area?
6	A. Yes.
7	Q. Okay, and that would indicate to one, again, that
8	you've got very good permeability, and it's
9	A. Good perm.
10	Q. Good perm.
11	A. And the corollary is an opportunity to drain a
12	surprisingly large area with the well.
13	Q. Okay. Probably drain more than 160 acres,
14	wouldn't you think, with this kind of porosity and
15	permeability?
16	A. Yes.
17	Q. Okay. And so what we have here, then, is, you
18	came into wells that were drilled in, oh, I think, 1977 or
19	1978
20	A. 1977.
21	Q and been on production for almost 20 years
22	A. Uh-huh.
23	Q when you obtained the wells, however you got
24	them?
25	A. Uh-huh.
•	

1 Q. Okay. So they had an opportunity to produce and, with this kind of permeability and porosity, accomplish a 2 3 very effective drainage of the reservoir. Do you agree? They had that opportunity. 4 Α. 5 Q. Okay. And the capability to do it, until 6 something happened, I suppose. 7 A. Until something happened. 8 And when did something happen so that they 0. Okay. 9 were no longer performing this efficient drainage? Well, some things -- some things -- several 10 Α. 11 things probably happened. First of all, the reservoir was being drawn down, 12 so they were fighting pressures approaching 100 pounds back 13 in 1984, or less in some cases. And somewhere in there 14 they began to see some damage. I don't know when it 15 happened. I'm not even quite sure how it happened. 16 Ι think it was mostly moveable fines, but that's just an 17 18 opinion. 19 But they had two problems going on. One was that 20 they were fighting a low bottomhole pressure with vastly 21 reduced energy, and secondly they were getting some kind of 22 damage buildup. 23 Well, first of all, the low bottomhole pressure Q. would be a natural phenomenon. That would be a 24 25 characteristic of the reservoir?

124

1	Α.	You bet.
2	Q.	Okay. And that would result from the fact that
3	almost eve	ery 160 in this particular these particular
4	townships	, had a well completed in the Pictured Cliffs
5	formation	?
6	Α.	Yes.
7	Q.	Okay. Then the other possibility is that I
8	think you	say fines were
9	Α.	Moveable fines
10	Q.	Moveable fines
11	Α.	clays, uh-huh.
12	Q.	were collecting near wellbore?
13	Α.	Uh-huh.
14	Q.	Originating in the formation?
15	Α.	Yes, sir.
16	Q.	Okay. And it would be your supposition, then,
17	that Merri	ion and Bayless did nothing to overcome that
18	particula	r problem, if that was a problem?
19	Α.	Yes, sir.
20	Q.	Okay. They just let the wells deplete or go into
21	lower and	lower volume of production?
22	Α.	That's what our well files and records indicate,
23	yes.	
24	Q.	Well, what do your well files indicate as to when
25	you would	begin to see that?

125

	128
1	A. See what?
2	Q. See the drop in production because of what you
3	hypothesize to be a collection of fines.
4	A. You're probably seeing it from day one as the
5	wells gradually decline. You can't attribute how much is
6	due to damage in a situation like this, or even loading up
7	with some water, and how much is due to natural decline
8	interference from offset wells. There's simply not enough
9	information to answer that.
10	Q. Well, what did the well files of I think
11	Merrion was actually the operator of these wells, wasn't
12	it?
13	A. That's right.
14	Q. What do the well files show as to their internal
15	studies or reports? You know, were they examining and
16	asking themselves the question, is there damage, are there
17	more reserves than we're getting, and what can we do about
18	it?
19	A. I have found virtually nothing along that line in
20	their files. There are some early calculations in some of
21	their files of what they thought the reserves should be.
22	Some of it is rather refined, and some is kind of back-of-
23	the-envelope.
24	But later on in the lives of the wells, I have
25	virtually nothing that we've inherited that tells me what

	127
1	their thinking was or what they were doing about it, even
2	when the wells weren't producing the kinds of reserves that
3	they had originally calculated.
4	Q. Let me turn to another subject, Mr. Nicols. See
5	if I can locate your Exhibit N13. This is the 10-well
6	comparison study of Whiting wells, and the purpose of this
7	study was to compare the production levels of the wells
8	that are in close proximity to your Chaco wells, to those
9	that are not affected, or allegedly affected, by your Chaco
10	wells. Is that a correct statement?
11	A. Close.
12	Q. All right, make it correct.
13	A. My purpose was to address the allegation that
14	their wells had gone down in production, declined or
15	decreased in production, when we put our wells on. And it
16	was to demonstrate that there were other factors at work in
17	1995 that caused changes in the rate of production in the
18	wells, besides what was being claimed as the effect of our
19	putting wells on.
20	Q. Well, was the point that you were making
21	regarding the Whiting wells that are in issue here that
22	they did not decline in production when your wells came on?
23	A. The point was that if they did, it was for
24	reasons other than our wells going on.
25	Q. Well, did they

1	A. Some did
2	Q decline?
3	A. Some did, some didn't.
4	Q. Had the Whiting wells, to your observation, been
5	inclining in their production levels prior to your wells
6	coming on?
7	A. Generally yes, yeah.
8	Q. Okay.
9	A. Some of it started to flatten or go down a little
10	bit earlier in the year than when our wells went on. But
11	generally, yeah, they were coming up just like they should.
12	Q. Are you aware of whether or not, after your wells
13	came on, Whiting installed compression on their wells to
14	keep the production levels at least even, what they had
15	been?
16	A. I know that there was compression installed early
17	this year or late last year. Prior to that, I guess I
18	don't have a good knowledge of when if any compression was
19	installed.
20	Q. You don't know In the time period that's shown
21	on your exhibit, you don't know when or whether compression
22	was installed, do you? Installed by Whiting?
23	A. That's correct, until early this year.
24	Q. Tell us at what rates your wells came on. I
25	never did Maybe you told us and I missed that in the

.

1	testimony. 1995, the you acidized Let's see, you
2	acidized the 1-J in January?
3	A. Yes, sir.
4	Q. Okay. And have never frac'd that well?
5	A. Correct.
6	Q. And at what rate is it producing?
7	A. We have one those alternative-measurement
8	agreements with El Paso where they allocate 5 MCF a day to
9	the well.
10	Q. Because its production rate is so low?
11	A. That's right.
12	Q. And that well is in this same reservoir that has
13	these huge reserves that have never been exploited by other
14	operators, correct?
15	A. Yes.
16	Q. But you haven't frac'd it?
17	A. That's right.
18	Q. And the Chaco 1, that well was frac'd?
19	A. Yes, it was.
20	Q. In May of 1995?
21	A. In May of No, it was frac'd in January, I
22	believe, of 1995.
23	Q. January or early February?
24	A. (Nods)
25	Q. Okay. And what production level did you get?

	130
1	A. You're testing my memory, okay? But it was in
2	the neighborhood of 300 MCF a day.
3	Q. Three hundred or more a day, right?
4	A. (Nods)
5	Q. Do you know what that well made when it was
6	completed in 1977 or 1978, when it was originally
7	completed? Do you know what production level it achieved?
8	A. My recollection is that it was half to two-thirds
9	of the rate we achieved after a frac job. And again, I'm
10	going by memory. I could pull some curves. It would take
11	me a few minutes to dig them out, but it was not as high as
12	we got after the frac job.
13	On the other hand, it was completed naturally
14	with just perforating and no, you know, clear stimulation.
15	Q. Yeah, but completed in a very high-quality
16	reservoir, good permeability, good porosity?
17	A. Good-quality reservoir. I don't know the quality
18	of the connection to the reservoir.
19	Q. And the Chaco 4, that was frac'd in
20	A. That was
21	Q hydraulically fractured in May
22	A frac'd in May, yes.
23	Q 1995?
24	A. Right.
25	Q. And that came on with production levels of 500
l	

130

1	MCF a day?
2	A. I don't believe so.
3	Q. Something like that?
4	A. I don't believe it was that high. Now, I My
5	recollection is that the best we had was in the
6	neighborhood of 350 or 400 on any of the wells, but
7	Q. All right, I wanted to get some idea.
8	And what was the best that well ever did when it
9	was a virgin Pictured Cliffs well, originally completed?
10	A. Well, again, it was not that high, but I don't
11	recall what it was.
12	Q. And the Chaco 5 was also hydraulically fractured
13	in May of 1995?
14	A. Yes.
15	Q. And what rates of production did you get?
16	A. Again, around that 300.
17	Q. Now, we should understand that you have not put
18	pumping units on these wells, correct?
19	A. That's correct.
20	Q. So whatever volume of gas production those wells
21	are making, they are making it notwithstanding whatever
22	liquid accumulation there is in the wellbore, correct?
23	A. Correct.
24	Q. And on that note, do you have some idea of what
25	kind of a column of water you'd have?

1	A. No, I don't know how you would determine the kind
2	of column.
3	Q. Well, I didn't mean the kind, I meant the depth.
4	A. The depth? They unload water. There's probably
5	water coming somewhere in the tubing with gas above and
6	below it.
7	Q. But you can shoot a water level? I mean, there's
8	a way to determine what your water level is?
9	A. You can shoot a water level once it's shut in.
10	It doesn't do you any good while it's producing.
11	Q. Well, so what, the well Let's see if we can
12	be clear about the liquids we're talking about. These
13	wells do not make any condensate?
14	A. That's correct.
15	Q. So liquids in the wellbore, we're talking about
16	water?
17	A. We're talking about water.
18	Q. All right. And you say there is no means being
19	used to artificially remove that water
20	A. That's right.
21	Q from these wells?
22	And by the way, when you were making a
23	comparison, you were saying since the shut-in, as a result
24	of the court proceeding, that you're showing wellhead shut-
25	in pressures that are slightly lower than the wellhead

	133
1	flowing pressures of the Whiting wells. That was your
2	testimony, wasn't it?
3	A. Uh-huh, uh-huh.
4	Q. You're comparing oranges and apples, aren't you?
5	The Whiting wells have pumping units that are lifting and
6	removing the water, as opposed to yours who have an
7	accumulation of liquids?
8	A. You There is that danger. You have to be
9	careful not to compare apples and oranges.
10	Now, what happens is, when you shut our wells in,
11	very quickly the tubing in the casing equalizes the
12	pressure. One thing you can assume from that is that the
13	water in the tubing and the casing, at whatever level they
14	are at, is exactly the same. So the pressure building up
15	above them exactly the same.
16	The other assumption is that whatever water is in
17	there is below the base of the tubing, if any.
18	Now, I got concerned when we had a blip where the
19	pressure actually went up a few pounds and went back down
20	during this shut-in period in the middle of the month in
21	Chaco 4, so we asked Walsh to run a fluid-level test to see
22	if we had water building up in that well, and we did not.
23	We saw all 36 joints.
24	So what really seems to happen is that the water
25	imbibes back into the formation. If there is any in the

	134
1	tubing, it drops out and seems to imbibe back into the
2	formation, so that when you have a tubing and a casing
3	pressure that are virtually equal, you can be reasonably
4	comfortable that that well is clean.
5	Q. By "clean" you mean no accumulation of liquids?
6	A. No accumulation of liquids.
7	Q. Okay. I thought you just said a few minutes
8	earlier that these wells were unloading on their own?
9	A. Well, they do make a few barrels of water. We
10	had tests back in February run by the Commission that found
11	that, for instance, Chaco 4 was making five barrels a day.
12	It unloads that water.
13	Q. And in fact, in February of 1998 was the first
14	time you ever reported any water produced by that well;
15	isn't that right?
16	A. That's right.
17	Q. That was the time when the OCD was going to be
18	out and check on the wells?
19	A. Well, actually, we started reporting after that.
20	Q. But you had never reported water production
21	before that, had you?
22	A. We hadn't.
23	Q. What was the What disposition was being made
24	of the water?
25	A. It was going into a pit.

	135
1	Q. And do you understand that the C-115 reports of
2	the Commission require the reporting of water production?
3	A. Yes.
4	Q. These were slimhole completions of these wells.
5	What, 2 7/8?
6	A. Some of them are. Some of them are 5-1/2-inch or
7	4-1/2-inch casing. They're not all slimhole.
8	Q. The six wells we're talking about, any of them
9	are not slimhole completions?
10	A. I probably ought to de fer that to Paul Thompson,
11	but my recollection is that some of them are not slimhole
12	completions.
13	Q. And did any of them have a production string, a
14	tubing?
15	A. They all do.
16	Q. They did not, did th ey ?
17	A. They all do.
18	Q. They all do now, but I mean when they were
19	acquired by you and acquired by Mr. Edwards, they did not,
20	did they?
21	A. I don't recall.
22	Q. Well, didn't you install, at least on some of
23	them, an inch-and-a-quarter tubing so that you could gain
24	some velocity and lift water off these wells?
25	A. Well, we probably did, but you're testing my

-

1	memory of something that was dome when Pendragon wasn't the
2	operator, several years ago. I just don't remember what
3	exactly we ran in what well, or what was or wasn't
4	necessary to re-run or repair or whatever. And I'm not
5	being cute, it's just not something that I memorize.
6	Q. Well, there's a period of time What we're
7	focusing on is when you stimulated these wells and brought
8	them on production in 1995, and you're saying that
9	Pendragon your knowledge doesn't cover that entire
10	period?
11	A. It doesn't cover that question.
12	Q. Well, was Pendragon the operator during that
13	period?
14	A. No.
15	Q. So when did Pendragon become the operator so that
16	you are knowledgeable about the handling of the wells?
17	A. I think we took over these wells in February of
18	1996.
19	Q. And before that, who had been the operator?
20	A. Edwards.
21	Q. Edwards?
22	A. (Nods)
23	Q. Did you have the agreement with Edwards that you
24	acquired your interest with Edwards You had acquired
25	that interest prior to the stimulations, hadn't you?

- ----

	137
1	A. Oh, yeah, we acquired the interest jointly, yeah.
2	MR. GALLEGOS: All right. What do you think?
3	EXAMINER CATANACH: How much longer are you going
4	to be?
5	MR. GALLEGOS: Probably 15 or 20 minutes with the
6	If I get a chance to go over these extensive notes I
7	probably can do it a little better. Maybe it would be a
8	good idea to go ahead and break. Whatever the Examiner
9	wishes.
10	EXAMINER CATANACH: All right, let's go ahead and
11	break at this point. We'll shoot for an hour, but we'll
12	definitely start by 1:30.
13	(Thereupon, noon rec es s was taken at 12:18 p.m.)
14	(The following proceedings had at 1:30 p.m.)
15	EXAMINER CATANACH: Okay, let's resume the
16	hearing. And I think Mr. Gallegos was still cross-
17	examining the witness
18	MR. GALLEGOS: Yes. Thank you, Mr. Examiner.
19	Q. (By Mr. Gallegos) Mr. Nicols, I have my notes
20	concerning your testimony on the what you view as the
21	present characteristics of the Pictured Cliffs reservoir,
22	and if I correctly noted that testimony, you said that the
23	reservoir started with an initial pressure of about 220
24	pounds, and you think it's back to about 150 pounds now?
25	A. No, it was back to 150 pounds, in that range, in

	138
1	1995, when we restimulated our wells.
2	Q. Okay. Original pressure would have been about
3	220 pounds
4	A. 225
5	Q at least on that part of the question?
6	A. Yes, we are. Yes. 225 to 250.
7	Q. All right. And then I believe you testified that
8	you believe that as of 1995, the Pictured Cliffs in this
9	area contained as much gas as had previously been produced
10	from that reservoir. Was that your testimony?
11	A. No, not exactly.
12	Q. Okay, what is your testimony?
13	A. I was referring to a specific well.
14	For this to have repressured, the area of the
15	Pictured Cliff reservoir had to have been reduced to bring
16	the pressure back up, whether it's water encroachment from
17	downdip or whatever. Something had to happen. Unless it
18	was gas recharge from the lower zones.
19	Q. Well, which is it?
20	A. There's no way to tell. I was referring to a
21	specific well when I said a well that had produced from,
22	let's say, your 220 pounds down to 100, and had seen a
23	drawdown of 120 pounds, would have virtually the same
24	opportunity to produce from, now, 150-pounds-plus down to
25	hopefully below 50 pounds eventual abandonment pressure, so

	139
1	that there was about the same reserves available to that
2	well, starting in 1995, as it might have seen under the
3	original scenario, going down to about 100 pounds, ending
4	in 1984.
5	Q. All right, let's see if we've got this clear. At
6	a point in time, at least, when deliverability tests were
7	required and there were required and there were pressures
8	recorded and reported to the OCD, this reservoir generally,
9	across the board, was showing in the neighborhood of 90 to
10	100 pounds of wellhead shut-in pressure; is that
11	A. It ranged from 90 to maybe 130, yeah.
12	Q. All right. And then something happened, and you
13	hypothesize either the container was
14	A. Shrank.
15	Q shrunk because of water intrusion, or the
16	reservoir the rock received s ome gas from some other
17	source?
18	A. Uh-huh.
19	Q. Okay. And if it received gas, if it was, say
20	recharged, from some other source, what is the source?
21	A. One logical position or possibility would
22	be that what I referred to as the third bench of the
23	Pictured Cliffs, the lower Pictured Cliffs, below where the
24	wells were mostly perforated.
25	Q. On one of your I think it's on 17, that's the

139

1	strata that you colored in sort of a red color?
2	A. Yes, yes.
3	Q. All right. And then your testimony is that in
4	1995 the pressures of the wells in this area would be back
5	up to 150-plus?
6	A. Yes.
7	Q. So that you would then conclude that a well
8	either newly drilled on 160-acre spacing or recompleted on
9	160-acre spacing would be able to produce as much as a well
10	that had been completed when the field was first opened in
11	the Seventies?
12	A. Actually, there were two components to that
13	equation, and you're correct as far as you went.
14	The second part was that it also had an
15	opportunity to drain a larger area now because there wasn't
16	the competition there was back in the Seventies. Most of
17	the other wells either were abandoned, shut in, or weren't
18	producing any significant amounts of gas, so that a well
19	really had the opportunity to drain a larger area with the
20	same range of pressure differential, start to finish, that
21	it originally had back in the Seventies.
22	Q. I'm not sure I followed that, I'm sorry. The
23	earlier wells would have had a larger area to drain?
24	A. No, the earlier wells had As you pointed out
25	earlier in the cross, the early wells had a lot of

1	competition, virtually every 160, as you mentioned, had a
2	PC well out there.
3	However, by 1995 there were very few significant
4	PC producers in the area. So the recompleted not
5	recompleted restimulated wells had an opportunity not
6	only to benefit from pressures starting at 150-plus pounds,
7	but also to benefit from not having offset drainage from
8	other wells that would be in competition with what they
9	could drain.
10	Q. Okay. Had any other operator besides Pendragon,
11	by 1995, uncovered this discovery that you had that these
12	wells could be recompleted and you would see and recover
13	this large quantity of reserves?
14	A. My belief is yes. I can't put my finger on who
15	it was or exactly when it was, but I remember in
16	conversations with Keith Edwards, he was pointing out that,
17	Look, other folks are getting new wells or getting better
18	wells by frac'ing the wells.
19	Q. But in your study here you didn't collect data
20	and have any analogies where you could show that other
21	operators had made this quite remarkable discovery?
22	A. That's correct.
23	Q. So just so we'll be clear, so Your testimony
24	would be that wells recompleted today, or a new well
25	drilled on 160 acres, you would expect or project that it

_

	142
1	would produce at the rates and recover as much by way of
2	reserves as one drilled in the Seventies? Or are you
3	saying there's a difference because there's less wells
4	competing for the gas?
5	A. When you say "today", are you talking about today
6	or 1995?
7	Q. Well, let's use 1995.
8	A. Okay. I think the answer to your question is
9	yes. I was saying that the there was no way to predict
10	what rates we would see, but the reserves available to us
11	from in excess of 150 pounds down to less than 50 pounds is
12	which we hope we can draw the reservoir down to,
13	certainly projected enough from the standpoint of economics
14	to go ahead and frac the wells.
15	Q. Okay, did you consider drilling a new well, a
16	replacement well, so you would have larger casing, be able
17	to have larger size tubing and the benefits of, you know,
18	better completion in terms of the equipment?
19	A. Well, first of all, as I said earlier, I think
20	some of the wells have large casing and didn't need that
21	consideration.
22	It was certainly talked about and discussed that
23	our first effort was to go ahead and try to use the
24	wellbores we had because it's so much cheaper.
25	Q. On the pressures, this 150 pounds plus, by my

1	notes, I think you talked about seeing those kind of
2	pressures in the Chaco 4 before it was frac'd
3	A. Yes.
4	Q and then observing those pressures in the
5	Chaco 4 and 5 1, excuse me, the 1 and 5, but after those
6	wells were frac'd?
7	A. Yes.
8	Q. Is that correct?
9	A. That's correct.
10	Q. And isn't it true in the case of the 4, the
11	pressure, which I think was 147, 143, something in that
12	neighborhood, was a reading that was taken approximately
13	three weeks after that well was acidized?
14	A. I don't know the answer. I don't know the I
15	don't recall having checked the timing of the acid job
16	versus that reading.
17	Q. Well, the acid job was on January 30, 1995. And
18	the reading I think you gave us was on what date?
19	Didn't you have a date for that?
20	A. 140 pounds in February of 1995. I didn't specify
21	a day.
22	Q. Okay. Do you have your well file, in case Do
23	you have any issue that it was January 30th, 1995, when the
24	well was acidized?
25	A. No.

1	Q. Have you looked at the shut-in pressure taken,
2	recorded by the on the rig report when the rig moved on
3	to do the acid job? In other words, so you have a pressure
4	you can see before the acidization?
5	A. No, the pressure I have before the one in
6	February was in July of 1983. Now, if there are
7	Q. And that was 97 pounds, wasn't it
8	A. Yes.
9	Q p.s.i.?
10	A. Yeah.
11	MR. GALLEGOS: Okay.
12	MR. HALL: Excuse me, were you finished with your
13	answer?
14	THE WITNESS: Yes.
15	MR. GALLEGOS: I'm sorry.
16	Q. (By Mr. Gallegos) All right, let's talk about
17	the quantity of gas, then. Beside what you've told us
18	about pressure, did you do or have somebody do for you
19	reservoir modeling so you could get some kind of a
20	projection of the probable performance of these wells?
21	A. No.
22	Q. But I believe you indicated that you did perform
23	some volumetric calculations; is that right?
24	A. That's correct.
25	Q. Okay. Do you have those so we could have the

- ---

	143
1	benefit of seeing those calculations?
2	A. No, they're long gone.
3	Q. They have not been retained?
4	A. They have not been retained.
5	Q. You did the study?
6	A. Yes, sir.
7	Q. Well, what parameters did you use can you tell
8	us that? for your volumetrics?
9	A. That was 1995, and I couldn't sit here and tell
10	you exactly what parameters I used.
11	Q. That has not been retained?
12	A. No.
13	Q. You don't There's no place that you can go to
14	refer to for that information?
15	A. I haven't found it.
16	Q. You just threw it away?
17	A. Probably.
18	Q. If my notes are correct, I think you said that
19	these wells, after your volumetrics and then these wells
20	were hydraulically fractured, the results were better than
21	expected. Is that your testimony?
22	A. Yes.
23	Q. And that's true?
24	A. That's true.
25	Q. Okay, well, better than expected by what quantum?

1	A. Well, I frankly would not have expected to get
2	the kinds of flow rates we saw. We didn't know what to
3	expect, but I when you go into a partially depleted
4	reservoir and do a restimulation, generally speaking you
5	don't get as good a well as you started with when it was
6	initially completed. These were actually better than when
7	they were initially completed. That was a pleasant
8	surprise, and that's
9	Q. Why, generally, when you take a 20-year-old well
10	and do a restimulation do you not get better results than
11	you would with the original well?
12	A. Well, if you have properly connected with the
13	reservoir to start with and you have Let's take the 250
14	or 230 pounds initial pressure. That will result in a flow
15	rate of X. And if you come back later and restimulate a
16	well that only has 150 pounds, in that range, the expected
17	rate would be less.
18	What I think this indicates to me is that the
19	initial connection to the reservoir was not particularly
20	good in these wells. They were just perforated; they
21	weren't cleaned up, given a small frac or whatever, in most
22	cases, after they were perforated, so that there was not
23	the kind of connection that we enjoyed after giving the
24	frac job.
25	Q. Do you think with the wells or with the reservoir

	± • /
1	exhibiting the high values of porosity and permeability,
2	that fines would collect at the near wellbore?
3	A. Yes.
4	Q. Do you have some experience to base that on, the
5	same values of permeability and porosity?
6	A. Not exactly. It has more to with permeability
7	than porosity [sic]; it has to do with what are the fines
8	and what fluids are moving through the reservoir and what
9	are the rates, and
10	Q. Well, permeability and porosity I'm sorry.
11	A. Excuse me.
12	Q. Did interrupt you?
13	A. No.
14	Q. Well, the permeability and porosity would have
15	something to do with whether or not the fines would collect
16	or not; isn't that true?
17	A. Yes, and it's a double-edged sword. If you have
18	very tight rock, your flow rate through the rock is so slow
19	that you might not be moving the fines, and you might
20	actually have a bigger problem with better-permeability
21	rock that allows a flow rate that carries the fines and
22	moves it.
23	Q. Well, it carries the fines, and the fines are
24	able to move on through, with good permeability and
25	porosity. Isn't that generally thought to be the case?

- ---

1	A. Well, you certainly hope so, but it isn't always
2	the case.
3	Q. Mr. Nicol, let's take a look at Exhibit N17.
4	It's one of your cross-sections. We kind of referred to
5	that because
6	A. Which cross-section is it?
7	Q. It's N17, and it's B-B'.
8	All right. Now, you've got a formation colored
9	in yellow, and that's your Is that the upper Pictured
10	Cliffs sand, or is that the Pictured Cliffs sand as we
11	generally refer to it?
12	A. Yes.
13	Q. Yes, what?
14	A. Where there are two sands shown in yellow, the
15	top yellow sand is upper Pictured Cliffs sand. Where there
16	is just the thicker sand shown in yellow, that is what I
17	refer to as the second bench or the main bench of the
18	Pictured Cliffs.
19	Q. Where is the Can you take any one of these
20	logs and pick for us, for the Examiner, the Fruitland
21	sandstone?
22	A. I don't think I've got enough log here to pick
23	the Fruitland sand for certain. There may be Fruitland
24	sand in this little streak right here.
25	Q. You'll need to identify for the record what

1	you're referring to.
2	A. The interval from
3	Q. What well is it?
4	A. Lansdale Federal
5	Q. Okay.
6	A the one on the far right-hand side of the
7	cross-section.
8	Q. All right.
9	A. There may be Fruitland sand in the interval from
10	about 1015 to 1020, in that range. But the log is a little
11	ratty in there, and the resistivity is not or the SP
12	isn't showing anything there. So it's iffy. I don't think
13	there's a good, clear indication of Fruitland sand on that
14	cross-section.
15	Q. Which kind of log particularly identifies the
16	coal, while we're looking at these logs?
17	A. The coal is more easily identified on the density
18	or the density neutron log.
19	Q. And can you give us an example there? Why don't
20	you take your Pendragon 4, Pendragon 2-R well, and point
21	that out to the Examiner?
22	A. The Pendragon 4 well on the density log
23	Q. Could you come over to the table, maybe? It's so
24	far away
25	A. Read it upside down. Chaco 4

- -

149

	150
1	Q. Well, do you want to stand on this side?
2	A. No, that's all right. From eleven hundred and
3	probably 1140 to 1160 feet is coal.
4	Q. All right. Do you see any other coal there?
5	A. Yeah, there is an indication of a very thin coal
6	finger down below the upper Pictured Cliffs sand, just at
7	the top of the what I call the main bench, and another
8	one of about the same thickness and size at the base of
9	that. And then there is a coal up here at about 1108.
10	You notice that these coals here, down in the
11	Pictured Cliffs, aren't nearly as thick and don't have the
12	kind of response that you see in the big, thick coal.
13	Q. And I notice, and we're still referring to the
14	Chaco
15	A 4.
16	Q Number 4, this the area colored in red,
17	again, what can we use to refer to that?
18	A. Third bench.
19	Q. Third bench, okay. And the third bench is
20	What's the significance of that? Why have you shown that
21	on these
22	A. I've shown that
23	Q cross-sections?
24	A to show the existence of gas saturation in the
25	third bench, and this is a qualitative picture of gas

saturation building up toward the top of that bench, 1 increasing toward the top, and the fact there is gas 2 3 saturation and, in two wells, actual gas production out of that zone. 4 Well, I notice that in your wells there are no 5 Q. perforations in that zone. 6 That's right. 7 Α. Don't operators typically perforate where the log 8 Q. indicates they have a gas-productive zone? 9 10 Α. Not always. It depends on how much gas versus 11 how much water you think you're going to get, just how good 12 your evaluation is. 13 Well, so what was your evaluation here? Why have Q. you not perforated that zone? 14 A. I frankly was a little skeptical up until very 15 recently that there was enough gas for us to be concerned 16 about. 17 How recently have you changed your mind? 18 Q. Changed your mind -- Changed my mind when it was 19 Α. suggested at one of hearings in Aztec by George Sharpe with 20 Merrion that we look at the possibility that that lower 21 zone had gas in it. 22 So it doesn't play any role in the volume of 23 Q. production from the Chaco 4 well today, and it has not 24 since 1995; isn't that right? 25

1	A. I wouldn't say that at all. It could very well
2	play a significant role in the volume.
3	Q. Okay, how so?
4	A. Because we probably frac'd in.
5	Q. Because your frac, these perforations in what
6	you're calling the second
7	A second bench.
8	Q second bench, probably opened up the third
9	bench?
10	A. Yeah, and that's likely, because first of all,
11	the coal here is a matter of inches. And the apparent
12	tight streak between the porosity in the third bench and
13	the porosity in the second bench is not a shale. It
14	generally shows up as tight and low porosity on the SP log,
15	but on the gamma ray it's usually clean and so it's a tight
16	streak. Brittle tight streaks have a tendency to break
17	easily under frac jobs, as opposed to the soft shale, so I
18	would expect
19	Q. What was the word? What kind of tight streaks?
20	A. Brittle.
21	Q. Brittle.
22	A. Brittle. And I'm not a frac expert. That's a
23	geologist's term, but we have testimony we'll offer as to
24	how that would happen and what we think has happened and
25	what the volumetrics are on the gas.

1	Q. Okay. Remember, I was asking you about the
2	existence of a barrier between your Pictured Cliff
3	formation and the thick the upper coal?
4	A. Yes.
5	Q. And you said you thought there was a four-foot
6	shale?
7	A. Usually about four feet, yes.
8	Q. Can you show us where that is here
9	A. That's this
10	Q on your Chaco 4?
11	A this shale right in here, above the upper
12	Pictured Cliffs sand and the coal. It's this little shale
13	right here. It shows up right here on the gamma ray.
12	right here. It shows up right here on the gamma ray.
14	Q. That looks like four foot to you?.
15	A. Well, that's about three feet in this well, and I
16	said generally about four feet. Over here, for example,
17	you've got four feet.
18	Q. Lansdale.
19	A. Lansdale.
20	Q. And how about Isn't your Chaco 2-R on here
21	someplace?
22	A. Chaco 2-R is here, and the Chaco 2-R doesn't have
23	the upper Pictured Cliffs sand. Remember, it was back
24	behind where that sand started to build seaward, and it's
25	got just a trace of a little tighter streak where the sand
22 23 24	A. Chaco 2-R is here, and the Chaco 2-R doesn't ha the upper Pictured Cliffs sand. Remember, it was back behind where that sand started to build seaward, and it's

i.

· _--

1 exists in the Chaco 4. So you've really got between the top of the sand 2 in the Chaco 2-R and the base of the coal 12 or 14 feet 3 here. 4 And that -- the 2-R well also -- Not only have 5 Q. you perforated only in the second unit, but your 6 7 perforations are high in the second unit, in the 2-R? Ι mean, you haven't perforated even down the whole depth of 8 the second unit? 9 10 Α. That's right. And so the third unit is productive or is not 11 Q. productive? Did you frac down into that? 12 13 Α. We think it's likely we frac'd into it. 14 Q. Okay. How far do you think your frac went, then, 15 south into the third unit? Α. I have no idea. 16 17 Q. So that would account for the water in the wells? It could account for some water in the wells. 18 Α. That goes back to the comment that I referenced in Jacobs' 19 article where he said that they frequently didn't perforate 20 the lower sand because it made some gas, would also cause 21 water production. 22 Hasn't that been generally accepted by operators 23 Q. in this area, to stay away from anything other than the 24 upper unit of the Pictured Cliffs because of the water? 25

A. Generally. So that's the same reason a lot of
them haven't tried frac'ing.
Q. I notice on the Pendragon 2-R, still looking at
your Exhibit N17
A. I'm sorry.
Q. I've got another question or two. The logs lists
the field for this well as being, quote, the WAW Fruitland
Pictured Cliffs. Do you see that?
A. Yes.
Q. What is the definition What is your
understanding of the definition of the WAW Fruitland
Pictured Cliffs?
A. I don't recall when that pool was formed or
redesignated, but my understanding of the pool as it now
exists encompasses all of the sands of the Fruitland
formation and the Pictured Cliffs formation, sands.
Q. Okay, and what did it mean or what do you
think it meant in 1979? What did it designate?
A. Well, I don't You know, I don't know when it
was when the pool was changed, but in 1979 whoever wrote
the heading on that log wrote that information, and I have
no idea what they had in mind or what the source of it was,
and I certainly can't project that to be a definitive
Q. Okay, but definition
A description of which pool.

Excuse me. But definitionally, today, that means 1 Q. that it includes the sands within the Fruitland formation? 2 Α. That pool includes the sands within the Fruitland 3 formation. It doesn't say that that well is completed in 4 the Fruitland. 5 Well, what is typically the purpose of making the 6 Q. 7 entry on the log as to what field a well is in? Isn't that an attempt to identify --8 That identifies --9 Α. -- the formation? 10 ο. That identifies the field. 11 Α. And the Chaco Number 4 is identified as being in 12 Q. the N-I- -- the NIPP --13 NIPP, N-I-P-P. 14 Α. 15 Q. -- N-I-P-P, Pictured Cliffs? 16 Α. Yes, sir. 17 **Q**. And that -- What is that pool? Are you aware there is a pool by that name? 18 Well, that was a field name at the time. The 19 Α. pool now is all consolidated under Fruitland Pictured 20 Cliffs Pool. 21 Inclusive of the sandstones within the Fruitland 22 Q. 23 formation? 24 Α. Yes. 25 If the fracturing applied by your company to the Q.

1	Chaco 4 and Chaco Number 5 wells extended vertically into
2	the upper Fruitland Coal formation, do you have an opinion
3	as to how much gas these wells would produce?
4	A. If they frac'd into the coal, I don't think it
5	would produce much gas. I think the frac would stop when
6	it got to the soft coal.
7	Q. It would just stop when it got to the coal?
8	That's
9	A. Yes, sir.
10	Q. Well, if it didn't, if a fracture if the coal
11	will fracture by reason of a hydraulic fracture being
12	applied to it, I'm just asking your opinion, what do you
13	think the Chaco 4 and Chaco 5 would reflect by way of
14	production?
15	MR. HALL: Mr. Examiner, I'm going to object at
16	this point. This is beyond the scope. It also calls for
17	speculation on the part of the witness.
18	EXAMINER CATANACH: I agree with you, Mr. Hall.
19	Q. (By Mr. Gallegos) When Whiting and Maralex
20	placed their wells on compression, isn't it true that in a
21	very short period Pendragon installed compression on their
22	wells?
23	A. Yes. We had a problem, because the line pressure
24	was going up.
25	Q. And you wanted to continue to produce at an

.

	130
1	equivalent rate as the Whiting wells?
2	A. No, we're No way we could be equivalent rate
3	to the Whiting wells. We just wanted to continue to
4	produce at a reasonable rate for our wells.
5	Q. But the line pressure's gone down, Mr. Nicols,
6	and you continue to keep the compression on, haven't you?
7	A. You say it's gone down?
8	Q. Well, there's been periods of compression shut-
9	down by El Paso, but otherwise it's the line pressure is
10	what it was when these wells were first put on production?
11	A. Not right now, it isn't. If you look at the line
12	pressures on the wells, for example, your Whiting wells
13	that we have the line pressures on for the middle of July
14	of this year, they're running in the 60-to-80-pound range.
15	A couple years ago we were running in the 30-to-40-pound
16	range.
17	Q. Well, I wasn't trying to talk about just the
18	immediate last week or two, but in terms of an overall
19	basis.
20	On an average, is the line pressure You're
21	saying the line pressure now on El Paso's gathering system
22	is higher than it was in 1995?
23	A. Yes.
24	Q. All right. Okay. And what would the values be,
25	speaking across the board, average? What was it in 1995,

1	and what would you say it is, typically, now?
2	A. 1995, typically, if I recall, it would have been
3	in the 35-to-45-pound range, something that we would expect
4	to see out there for most of our wells. It varies from
5	well to well and what part of the system you're on. And
6	right now we're fighting pressures in excess of 60 pounds
7	very frequently.
8	Q. Frequently, but I mean just recently there's been
9	some purported problems at the Chaco plant
10	A. No, I think we've hit higher pressures since your
11	folks kept putting on those bigger compressors, because
12	we're all in the same basic system.
13	Q. All right. These wells are what distance from
14	the Chaco plant, El Paso's Chaco plant, approximately?
15	A. Three miles.
16	Q. One other thing, Mr. Nicol. You came up with a
17	map of the United States and were showing the Gulf of
18	Mexico?
19	A. Yes.
20	Q. That was meant to be an analog to the
21	depositional circumstances that occurred in the San Juan
22	Basin?
23	A. To the extent that I was showing a barrier
24	island, lagoonal, marine-dominated depositional system,
25	yes, sir.

1	Q. And so your testimony, then, is, in that
2	circumstance and by "that", you showed us the Gulf of
3	Mexico and the Mississippi delta and some barrier islands?
4	A. Yes.
5	Q. That's the area that you
6	A. That's the area.
7	Q were focusing on?
8	A. Uh-huh.
9	Q. And so your testimony is that coal is being
10	formed there in that environment?
11	A. Not there. I wouldn't say that coal is being
12	formed now, there. There's not that much organic matter
13	down there. It sure is mucky and swampy, but it's not
14	making coal that I can tell.
15	But I think what I said was that there are places
16	in the areas behind the outermost barrier bars where you
17	get quiet water and where you get organic material building
18	up, and by analogy that could have caused some of the coal
19	deposition in the Pictured Cliffs when it was deposited.
20	Same sort of situation.
21	Q. Well, so then you are saying that the situation
22	you called attention to the Examiner in the Gulf of Mexico
23	is a circumstance where coal deposition is going on?
24	A. Well, it could be. I don't know of any great
25	thick peat bogs or beds down there, but yes, you can get
•	

-

	101
1	layers of organic material that could be forming coal.
2	Q. So what is your testimony? That is happening?
3	Coal is forming, is that your testimony?
4	A. It's possible.
5	MR. GALLEGOS: That's all the questions I have.
6	Thank you.
7	MR. HALL: Mr. Catanach, I have a very brief
8	redirect if you'll permit it.
9	EXAMINER CATANACH: Go ahead.
10	REDIRECT EXAMINATION
11	BY MR. HALL:
12	Q. Mr. Nicol, let's refer back again to your Exhibit
13	N6, isopach. Earlier you were asked by Mr. Gallegos
14	whether there's any way you could determine the source of
15	sand in the Fruitland and then in the PC. Will this
16	exhibit help explain that?
17	A. Well, as I said, I've seen mud logs where there
18	was a Fruitland sand cut up well above that basal Fruitland
19	Coal. It was described as a fine-grained sand. It's
20	certainly reasonable to have streams bringing in fine-
21	grained sands if that what's they're bringing in [sic], but
22	it really doesn't bear on whether or not this is a marine
23	sand.
24	First of all, sands in the Fruitland well above
25	that coal are millions well, hundreds of thousands or

1	perhaps millions of years later in geologic time than the
2	source for this sand right here.
3	And this sand is laid down in a shallow-water or
4	marine-beach environment, and it parallels the shoreline
5	and it thickens out into the Basin when the whole All of
6	the geology I have seen written up on the Pictured Cliffs
7	talks about it thickening out into the Basin, thickening
8	seaward, and that's what's happening here. It runs
9	parallel to the shoreline and thickens out.
10	So I was a little confused about the question of
11	source in the Fruitland. The Fruitland source streams, if
12	they existed at this same time and were the source back
13	here, would be flowing this way. They'd be running
14	northeast and probably meandering, and they'd be losing
15	energy as they get down to water level where there wasn't
16	much slope left, not much energy left, and it would
17	actually probably be thinning, certainly thinning when they
18	got right out here to the edge of the beach. And then
19	marine deposition takes over and takes that sand and
20	spreads it into this sort of a sandbody.
21	Does that answer your question?
22	Q. Yeah. More specifically, is there any way that
23	the Pictured Cliffs sand is one and the same as the
24	Fruitland sandstone?
25	A. No.
L	

	105
1	MR. HALL: That's all I have, Mr. Examiner.
2	EXAMINER CATANACH: Okay.
3	EXAMINATION
4	BY EXAMINER CATANACH:
5	Q. Mr. Nicol, what would the Fruitland sands
6	typically exhibit in this type of situation? They
7	wouldn't Well, have you looked at the Fruitland sands?
8	A. Yes.
9	Q. How would they be different in terms of this type
10	of scenario?
11	A. Well, there's not a lot of difference in the one
12	mud log I've seen, as far as the description goes. Some of
13	it was a little more coarse than what we saw in that
14	Lansdale description, some of it was the same, described as
15	fine-grain. Of course, you're always at the mercy of how
16	good was the mudlogger, what was he seeing at the time?
17	As near as I've been able to see from the logs
18	I've looked up in the Fruitland, it's a little dirtier
19	sand. It tends to be more erratic on the development of
20	the SP and the gamma ray, and they look like channels.
21	They generally tend to look like channel deposition that
22	gets cleaner toward the bottom. Sometimes it's so stacked
23	with these kinds of things you really can't sort them out.
24	But generally, you would expect them to be oriented in a
25	northeast-southwest direction.

	104
1	The slope being this way, then they should have
2	come this way and deposited in streams or meandering
3	streams or channels or whatever was bringing the sediment
4	out into the basin, into the ocean, running in this
5	direction.
6	Am I answering your question?
7	Q. Uh-huh. So are they more discontinuous than this
8	particular sand is?
9	A. Oh, yes. Yes, it's very I have been unable to
10	visualize any circumstance where you can get this sort of
11	continuous deposition in a continental environment.
12	And that's pretty remarkable, really. You're
13	talking about something as thick as this room, or less,
14	that's spread over ten miles. That's pretty uniform
15	deposition.
16	Q. So that's the only difference you can see right
17	now? There's not much differences to the grain size or
18	anything else?
19	A. I can't point to anything specific in the
20	information I have on grain size.
21	Now, the cleaning-upward sequences that you see
22	on the logs is also, I think, an important consideration
23	that's opposite of what you'd expect in the channel
24	environment. And this sand is not associated with any
25	downcutting or any channel deposition. It starts at the

·

	105
1	edge of the beach and it thickens out into the ocean. It
2	doesn't back up into channels or downcut sands.
3	Q. Okay. Mr. Nicol, have you see any literature
4	that would indicate that there may be some natural
5	communication between the Fruitland and the PC?
6	A. Yes, I have, and the answer is yes. I don't
7	recall exactly which papers it was, but there are some
8	papers out there suggesting at least in some parts of the
9	Basin there's natural communication and fracturing. And I
10	think even one of the papers included here addresses the
11	possibility that the Coal could be a source for some the
12	gas in the Pictured Cliffs.
13	Q. Do you know if that is in this area or not? I
14	mean, the literature that you've seen, does it refer to
15	this area?
16	A. It doesn't refer to this area specifically. Very
17	little of the literature refers to this specific area,
18	and at least that I've found. And we see no indication
19	over the years that there's been that sort of natural
20	communication.
21	We don't see For example, if you completed a
22	Pictured Cliffs well and you had good communication with
23	the Coal, I would expect that that pressure drawdown on the
24	Pictured Cliffs would be dewatering the coal and that you'd
25	get either damage to your well or a bunch of water quicker

.

 than you expected, or that you'd get some sort of water- drive situation, and we don't see any of that. They've acted historically like two very different reservoirs. Q. Okay, now, prior to you guys operating the well, you didn't keep records on water production? A. That's right. Q. So you don't really have an idea of how much water they've produced? A. We really don't. It was enough that they lifted the water by themselves and didn't have to be pumped and dewatered. I mean, it was little enough that they lifted the water by themselves, and that's one of the reasons that we didn't make it a priority to measure the water, is we felt that it was pretty minimal. Q. If there was communication with the coal, would you expect to see an increase in water production in your wells? A. If we had communicated in our frac jobs, I would have expected to see massive amounts of water very early, right away. Q. Let me stop you there. Was that at a point in time when they were still dewatering their A. Yes, sir. Q coal wells? A. Yes, it was. 		100
 acted historically like two very different reservoirs. Q. Okay, now, prior to you guys operating the well, you didn't keep records on water production? A. That's right. Q. So you don't really have an idea of how much water they've produced? A. We really don't. It was enough that they lifted the water by themselves and didn't have to be pumped and dewatered. I mean, it was little enough that they lifted the water by themselves, and that's one of the reasons that we didn't make it a priority to measure the water, is we felt that it was pretty minimal. Q. If there was communication with the coal, would you expect to see an increase in water production in your wells? A. If we had communicated in our frac jobs, I would have expected to see massive amounts of water very early, right away. Let me stop you there. Was that at a point in time when they were still dewatering their A. Yes, sir. Q coal wells? 	1	than you expected, or that you'd get some sort of water-
 Q. Okay, now, prior to you guys operating the well, you didn't keep records on water production? A. That's right. Q. So you don't really have an idea of how much water they've produced? A. We really don't. It was enough that they lifted the water by themselves and didn't have to be pumped and dewatered. I mean, it was little enough that they lifted the water by themselves, and that's one of the reasons that we didn't make it a priority to measure the water, is we felt that it was pretty minimal. Q. If there was communication with the coal, would you expect to see an increase in water production in your wells? A. If we had communicated in our frac jobs, I would have expected to see massive amounts of water very early, right away. Q. Let me stop you there. Was that at a point in time when they were still dewatering their A. Yes, sir. Q coal wells? 	2	drive situation, and we don't see any of that. They've
 you didn't keep records on water production? A. That's right. Q. So you don't really have an idea of how much water they've produced? A. We really don't. It was enough that they lifted the water by themselves and didn't have to be pumped and dewatered. I mean, it was little enough that they lifted the water by themselves, and that's one of the reasons that we didn't make it a priority to measure the water, is we felt that it was pretty minimal. Q. If there was communication with the coal, would you expect to see an increase in water production in your wells? A. If we had communicated in our frac jobs, I would have expected to see massive amounts of water very early, right away. Q. Let me stop you there. Was that at a point in time when they were still dewatering their A. Yes, sir. Q coal wells? 	3	acted historically like two very different reservoirs.
 A. That's right. Q. So you don't really have an idea of how much water they've produced? A. We really don't. It was enough that they lifted the water by themselves and didn't have to be pumped and dewatered. I mean, it was little enough that they lifted the water by themselves, and that's one of the reasons that we didn't make it a priority to measure the water, is we felt that it was pretty minimal. Q. If there was communication with the coal, would you expect to see an increase in water production in your wells? A. If we had communicated in our frac jobs, I would have expected to see massive amounts of water very early, right away. Q. Let me stop you there. Was that at a point in time when they were still dewatering their A. Yes, sir. Q coal wells? 	4	Q. Okay, now, prior to you guys operating the well,
 Q. So you don't really have an idea of how much water they've produced? A. We really don't. It was enough that they lifted the water by themselves and didn't have to be pumped and dewatered. I mean, it was little enough that they lifted the water by themselves, and that's one of the reasons that we didn't make it a priority to measure the water, is we felt that it was pretty minimal. Q. If there was communication with the coal, would you expect to see an increase in water production in your wells? A. If we had communicated in our frac jobs, I would have expected to see massive amounts of water very early, right away. Q. Let me stop you there. Was that at a point in time when they were still dewatering their A. Yes, sir. Q coal wells? 	5	you didn't keep records on water production?
 water they've produced? A. We really don't. It was enough that they lifted the water by themselves and didn't have to be pumped and dewatered. I mean, it was little enough that they lifted the water by themselves, and that's one of the reasons that we didn't make it a priority to measure the water, is we felt that it was pretty minimal. Q. If there was communication with the coal, would you expect to see an increase in water production in your wells? A. If we had communicated in our frac jobs, I would have expected to see massive amounts of water very early, right away. Q. Let me stop you there. Was that at a point in time when they were still dewatering their A. Yes, sir. Q coal wells? 	6	A. That's right.
 A. We really don't. It was enough that they lifted the water by themselves and didn't have to be pumped and dewatered. I mean, it was little enough that they lifted the water by themselves, and that's one of the reasons that we didn't make it a priority to measure the water, is we felt that it was pretty minimal. Q. If there was communication with the coal, would you expect to see an increase in water production in your wells? A. If we had communicated in our frac jobs, I would have expected to see massive amounts of water very early, right away. Q. Let me stop you there. Was that at a point in time when they were still dewatering their A. Yes, sir. Q coal wells? 	7	Q. So you don't really have an idea of how much
10 the water by themselves and didn't have to be pumped and 11 dewatered. I mean, it was little enough that they lifted 12 the water by themselves, and that's one of the reasons that 13 we didn't make it a priority to measure the water, is we 14 felt that it was pretty minimal. 15 Q. If there was communication with the coal, would 16 you expect to see an increase in water production in your 17 wells? 18 A. If we had communicated in our frac jobs, I would 19 have expected to see massive amounts of water very early, 20 right away. 21 Q. Let me stop you there. Was that at a point in 22 time when they were still dewatering their 23 A. Yes, sir. 24 Q coal wells?	8	water they've produced?
dewatered. I mean, it was little enough that they lifted the water by themselves, and that's one of the reasons that we didn't make it a priority to measure the water, is we felt that it was pretty minimal. Q. If there was communication with the coal, would you expect to see an increase in water production in your wells? A. If we had communicated in our frac jobs, I would have expected to see massive amounts of water very early, right away. Q. Let me stop you there. Was that at a point in time when they were still dewatering their A. Yes, sir. Q coal wells?	9	A. We really don't. It was enough that they lifted
12 the water by themselves, and that's one of the reasons that 13 we didn't make it a priority to measure the water, is we 14 felt that it was pretty minimal. 15 Q. If there was communication with the coal, would 16 you expect to see an increase in water production in your 17 wells? 18 A. If we had communicated in our frac jobs, I would 19 have expected to see massive amounts of water very early, 20 right away. 21 Q. Let me stop you there. Was that at a point in 22 time when they were still dewatering their 23 A. Yes, sir. 24 Q coal wells?	10	the water by themselves and didn't have to be pumped and
 we didn't make it a priority to measure the water, is we felt that it was pretty minimal. Q. If there was communication with the coal, would you expect to see an increase in water production in your wells? A. If we had communicated in our frac jobs, I would have expected to see massive amounts of water very early, right away. Q. Let me stop you there. Was that at a point in time when they were still dewatering their A. Yes, sir. Q coal wells? 	11	dewatered. I mean, it was little enough that they lifted
 felt that it was pretty minimal. Q. If there was communication with the coal, would you expect to see an increase in water production in your wells? A. If we had communicated in our frac jobs, I would have expected to see massive amounts of water very early, right away. Q. Let me stop you there. Was that at a point in time when they were still dewatering their A. Yes, sir. Q coal wells? 	12	the water by themselves, and that's one of the reasons that
 Q. If there was communication with the coal, would you expect to see an increase in water production in your wells? A. If we had communicated in our frac jobs, I would have expected to see massive amounts of water very early, right away. Q. Let me stop you there. Was that at a point in time when they were still dewatering their A. Yes, sir. Q coal wells? 	13	we didn't make it a priority to measure the water, is we
 you expect to see an increase in water production in your wells? A. If we had communicated in our frac jobs, I would have expected to see massive amounts of water very early, right away. Q. Let me stop you there. Was that at a point in time when they were still dewatering their A. Yes, sir. Q coal wells? 	14	felt that it was pretty minimal.
 17 wells? 18 A. If we had communicated in our frac jobs, I would 19 have expected to see massive amounts of water very early, 20 right away. 21 Q. Let me stop you there. Was that at a point in 22 time when they were still dewatering their 23 A. Yes, sir. 24 Q coal wells? 	15	Q. If there was communication with the coal, would
 A. If we had communicated in our frac jobs, I would have expected to see massive amounts of water very early, right away. Q. Let me stop you there. Was that at a point in time when they were still dewatering their A. Yes, sir. Q coal wells? 	16	you expect to see an increase in water production in your
19 have expected to see massive amounts of water very early, 20 right away. 21 Q. Let me stop you there. Was that at a point in 22 time when they were still dewatering their 23 A. Yes, sir. 24 Q coal wells?	17	wells?
20 right away. 21 Q. Let me stop you there. Was that at a point in 22 time when they were still dewatering their 23 A. Yes, sir. 24 Q coal wells?	18	A. If we had communicated in our frac jobs, I would
Q. Let me stop you there. Was that at a point in time when they were still dewatering their A. Yes, sir. Q coal wells?	19	have expected to see massive amounts of water very early,
22 time when they were still dewatering their 23 A. Yes, sir. 24 Q coal wells?	20	right away.
 23 A. Yes, sir. 24 Q coal wells? 	21	Q. Let me stop you there. Was that at a point in
24 Q coal wells?	22	time when they were still dewatering their
	23	A. Yes, sir.
25 A. Yes, it was.	24	Q coal wells?
	25	A. Yes, it was.

1	Q. So there should have been plenty of water in
2	the
3	A. There should have been plenty of water.
4	Q. What do your wells typically produce now in terms
5	of water?
6	A. I'll give you two answers, because it's recently
7	changed.
8	February through, say, March, the wells were
9	producing The Number 4, for example, was producing five
10	barrels a day, and the Number 5 was producing zero, the
11	Number 2-R was producing 14. Chaco 1 I don't have a record
12	on, that I recall.
13	And then when we put the Chaco 4 and the Chaco 1
14	on compression, we started off with quite a bit of water
15	early on. We put them on in April, I believe. And the
16	Chaco 4 went up to 11 barrels a day, and the Chaco 1 had a
17	period of a week or two where it was in the 20s and 30s and
18	now has come down to about 18 or about half of what it
19	started out in April.
20	Q. Do you know the typical water producing rates of
21	the Whiting wells?
22	A. There's a range in the Whiting wells right now
23	from something in the and again, I'm going by memory
24	seven barrels a day to in excess of 20.
25	At the time that we fractured these wells, I
•	

167

	100
1	think their water production was in the range of 30 to 100
2	barrels a day.
3	Q. Now, I believe you said that none of these PC
4	wells were frac'd initially when they were first drilled,
5	back in 1972?
6	A. 1977.
7	Q. 1977.
8	A. With the exception of a 2500-pound frac on the
9	2-J and the Chaco 5.
10	Q. 2-J and the Number 5 were frac'd initially?
11	A. Yes, that is a 2500 pounds.
12	Q. And that is a relatively small
13	A. It's very small frac.
14	Q. To your knowledge, did these wells exhibit higher
15	producing, initial producing rates than the other wells?
16	A. No.
17	Q. They did not?
18	A. The did not. Part of that is rock quality. The
19	2-J, it's an unfair comparison. It's thin and tight in
20	both zones, by comparison to the others.
21	Q. Okay, I believe it was your opinion that gas
22	analysis probably is not going to help us in this case?
23	A. That's correct.
24	Q. Is there a significant CO ₂ in your PC gas?
25	A. No, we don't have a CO ₂ problem. It's down in
•	

	109
1	the same range as the coal, whether it's one of our frac'd
2	wells or not.
3	Q. Okay, it's i the same range as the coal then
4	A. Yes.
5	Q is what you're saying?
6	A. Down in that one-percent range.
7	Q. You can't really use that as an indicator?
8	A. That's correct. I tried to sort that exhibit I
9	gave you by nitrogen and CO ₂ , as well as by ethane and
10	propane, and I don't come out with anything that looks like
11	it breaks or makes a cutoff.
12	Q. And you don't have any volumetric calculations of
13	gas in place in this area?
14	A. We Jack McCartney is prepared to present
15	volumetric calculations. I don't have any of the old
16	calculations I did.
17	Q. I don't remember which exhibit it was, but you
18	had the Amoco well on one of your cross-sections.
19	A. Yes.
20	Q. That was the
21	A. $$ C-C', I think.
22	Q. I think it was the Schneider well?
23	A. Yes, sir.
24	Q. Let me ask you, in that area where that Schneider
25	well is, are there any coal stringers below the basal coal?
25	well is, are there any coal stringers below the basal coal

	170
1	A. Yes, in that particular field there is a coal
2	stringer about well, we'll call it eight or ten feet
3	below the what I call the basal Fruitland Coal.
4	But there are no coal stringers. These two wells
5	are In that section, 28, there are no coal stringers
6	down in the Pictured Cliffs here.
7	Q. Okay. Is it your understanding, though, that we
8	based or we We used the Schneider well to define the
9	limits of the Basin Fruitland Gas Pool.
10	A. Yes, sir.
11	Q. And we define those as being essentially at the
12	base of the basal coal? Is that correct?
13	A. No, it wasn't really what the definition was. It
14	was a stratigraphic Fruitland at this point right here, at
15	the top of the Pictured Cliffs basin and Fruitland
16	Q. Now, you're going to have to You can't say "at
17	this point".
18	A. I'm sorry. 2880 feet, so it was defined as a
19	point in feet. It's that mark right there on the
20	Q. 2880 feet would be right here?
21	A. Yes, sir, in that well, stratigraphic equivalent,
22	or the equivalent stratigraphic I forget exactly what
23	the language, but the basic stratigraphic equivalent, that
24	zone, that point.
25	Q. Okay. So

1	MR. GALLEGOS: We have that order; it's Exhibit
2	1.
3	Q. (By Examiner Catanach) Okay. So within at least
4	that Schneider well, that coal string below the basal coal
5	would have been classified in the Basin Fruitland Coal Gas
6	Pool?
7	A. Yes, sir.
8	Q. Okay. But you've extended that downward to your
9	area, and it's your interpretation that that stratigraphic
10	equivalent would not that's not the same coal stringer?
11	A. That's correct.
12	Q. Okay. But you did pick up an additional coal
13	interval in your area?
14	A. Yes, a very thin one in our area. Actually, two
15	thin ones show up in most of our wells, and this one is one
16	little thin one down here, below that upper or upper
17	Pictured Cliffs sand. Now he's got me calling it upper
18	Q. But as far as you can tell, that's the same
19	stratigraphic equivalent to the Schneider well as you
20	picked in your area?
21	A. Yeah. And the key is the stratigraphic
22	equivalent. It has to be the same type of deposition, the
23	same type of rock. And here you're going from shale and
24	coal into the first sand and the top of the Pictured
25	Cliffs, and that's the stratigraphic break.

1	If I understood the intention of that order, that
2	would be the The point of definition is where you're
3	getting into that first sand below the coal sand, getting
4	into the top of the Pictured Cliffs. It's also the first
5	marine sand.
6	Q. What you're calling the upper Pictured Cliffs
7	sand?
8	A. Yes, when you get over here and it starts to
9	break up because of the shale string.
10	Q. Could another geologist define that stratigraphic
11	equivalent different in your area?
12	A. Oh, I'm sure.
13	Q. Okay. All right, thank you.
14	There is separation, and there is some kind of
15	barrier between what you've called the third bench
16	A. Yes.
17	Q and the producing sands?
18	A. Appears to be, yes.
19	Q. Okay, so there's nothing natural in there that
20	would cause communication?
21	A. Well, it's a it appears to be just a tight
22	streak. Whether it's a calcareous sand That seems to be
23	what it would crossplot as. It's a hard tight streak in
24	there.
25	It would be natural to expect that to be more

172

- --

	1/3
1	fractured than the softer shales and sands around if
2	there's any natural fracturing. I don't know that it is a
3	barrier between the two zones.
4	Q. Okay, there are some wells that are producing
5	from that third benchmark? You said the upper section of
6	that third bench?
7	A. Yes, there was one well on that cross-section
8	B-B' that had produced about 93 million, if I recall, from
9	that sand, that top portion of that third bench.
10	And that High Roll Number 4 well, which was the
11	one on the far right of the or, I'm sorry, left of the
12	cross-section, is perforated in that same interval.
13	Q. Were those wells structurally higher on that?
14	A. The High Roll Number 4 was structurally the
15	lowest well on the cross-section.
16	Q. You've not attempted to produce that sand in your
17	wells?
18	A. No, we've not perforated that sand and produced
19	it by itself or in conjunction with other perforations, no.
20	Q. And why is that?
21	A. Well, it's as you say, it's just within
22	recently, that in the course of this study that I first
23	built that cross-section to see if the idea had merit, and
24	then I asked Jack McCartney to see what he came up with for
25	gas saturations and possible reserves, and it's too recent

1	an idea on our part to have done anything about it yet.
2	Q. So is it your opinion that your wells initially
3	only drained small areas of the reservoir?
4	A. Yes.
5	Q. Do you have an idea, maybe, how much that might
6	have been?
7	A. Less than 160 acres originally.
8	Q. And you believe that now they're capable of
9	draining in excess of 160 acres?
10	A. Yes. There's no competition anymore.
11	Q. And that's due to the frac job?
12	A. And the lack of offset interfering wells, yes.
13	Q. I believe you had a list somewhere of 34 wells
14	Was it 34 wells?
15	A. Yes.
16	Q that had Was it that it had been perforated
17	in that upper what you're calling the upper Pictured
18	Cliffs sand?
19	A. Yes, either by itself or in conjunction with the
20	next bench.
21	Q. The lower massive PC; is that right?
22	A. Yeah, this the second bench. I'm objecting to
23	the term "massive" again.
24	Q. Okay. Are all those wells located in this area?
25	A. Yes, they are. They're all on the base map.

· _--

	1/5
1	Q. They're all on the base map.
2	So typically it's been the practice for an
3	operator to perforate that sand as if it were in the PC?
4	A. That's correct.
5	Q. And that's been As far as you know, that
6	practice has been approved by the OCD in Aztec?
7	A. Yes, sir.
8	Q. Did these wells Did your wells produce all
9	along, even after Was it 1985 when they were very
10	marginal producers?
11	A. For the most part, yes. But they were very
12	low-rate wells, and you'd see production Sometimes
13	they'd be shut in for a month or a few months, and I the
14	answer varies a little bit, but generally speaking, they
15	were on most of that time and frequently have production in
16	anywhere from a few hundred MCF a month to as low as 10 or
17	25 MCF a month, one a day.
18	Q. So the increase in pressure in these wells
19	happened as a result of the fracturing?
20	A. No, the increase in pressure was there before we
21	fractured any of the wells.
22	Q. So at what point did they recharge? Was it over
23	time?
24	A. I think it was over time, of that whole period.
25	Q. Wouldn't you maybe have seen an increase in

· _

1	production rates?
2	A. You would expect to, and I mentioned that
3	earlier. They did not seem to increase in production as
4	that recharge occurred, and I don't know whether that's a
5	problem with the damage or ongoing damage or just
6	continuing to load up with water or what it was, but there
7	was not that indication that the wells were coming back.
8	Q. Your rates didn't start to increase until you
9	actually did some work on the wells and frac'd them?
10	A. That's correct.
11	EXAMINER CATANACH: Frank, did you have some
12	questions?
13	MR. CHAVEZ: Yes, sir.
14	EXAMINATION
15	BY MR. CHAVEZ:
16	Q. Mr. Nicol, in your review of the literature did
17	you find very many typical logs where the authors had
18	designated what they considered the top of the Pictured
19	Cliffs, such as the Molenaar's work and others?
20	A. I found several examples of that, yes. The ones
21	I included here apply to this specific field, but I have
22	seen some others, yes.
23	Q. Do you find that they're, in general, the tops
24	that are called by these other authors for the Pictured
25	Cliffs are in line with yours for this area?

.

1//
A. Yes. I think I mentioned that earlier when I had
the blow-up of the Fassett cross-section where he was
basically placing the top of the Pictured Cliffs in their
regional sense, where I have put it in more detail.
Q. Okay. A question was asked about the issue of
addition of compression and the effect that has on the
productivity of the wells. Whenever you're comparing wells
or looking at an individual well, don't you have to take
into account the addition of compression, as how that might
affect the productivity of the well and analyzing the
production over time?
A. Yes, sir.
Q. Had you done that in any of the production plots
that you did for the Whiting/Maralex wells?
A. No, I had no information as to when their wells
went on compression, except for the comments we received in
our meetings in Aztec about the compression being put on
early this year. If there were compressors prior to then,
I don't know when they were put on.
Q. Did I hear you correctly say that you thought
that these wells after I'm sorry, that the wells that
you ultimately Edwards purchased, did not meet Merrion's
expectations for production?
MR. HALL: Mr. Examiner, I believe that may have
been one of the questions I objected to because it called

1/0
for speculation about Merrion's state of mind at the time,
so
Q. (By Mr. Chavez) Did you have any information
from Merrion, any that you found in the records, to
indicate what their expectations might have been for the
productivity of the wells that purchased?
A. I did not. As I said, we bought those at an EBCO
auction, and that's usually the case when people want to
get rid of wells the don't want anymore, is to sell them at
an auction. There was nothing in the files after we got
the wells that indicated what their thinking was or what
their expectation was late in the life.
Now, there are some calculations in some of the
files very early on about what the volumetric production
should be. In other words, volumetric calculations, what
they expected. And those the wells in general did not
live up to the volumetrics that were expected of them by
those calculations.
Is that what you were getting at?
Q. Yes, that's what I was getting at.
After frac'ing the wells, have you compared to
what those calculations were to what you're getting now
after frac'ing the wells?
A. Total cumulative production after we frac'd the
wells is in excess of those volumetric calculations, which

1 were done on 160s. Okay. When the productivity of the wells 2 Q. 3 exceeded your expectations, what type of work did you do to 4 find out why that occurred, why they exceeded your 5 expectations? 6 Α. Really, we didn't do any work at that point. We 7 were delighted enough with the outcome to start looking for 8 other candidates to be able to do the same thing, but we 9 didn't do any detailed reservoir work or anything to try to figure out why that was happening. 10 MR. CHAVEZ: Okay, that's all I have. 11 EXAMINER CATANACH: Okay. 12 FURTHER EXAMINATION 13 BY EXAMINER CATANACH: 14 15 Did you guys analyze the production data on the 0. 16 Whiting wells in a more -- on a smaller scale, to where 17 maybe you could see instantaneous -- any instantaneous interference when you brought your wells on line or 18 19 anything? There really wasn't that information 20 Α. No. 21 available. 22 Q. Okay. 23 As an example of that, as I mentioned earlier, Α. 24 most of those wells had several days of down time in June 25 of 1995 and even more in July. So you've got, first of

	180
1	all, only a limited amount of information that was
2	available, only commercial sources, and then the fact that
3	the wells apparently were not on full time for the period
4	that was in question.
5	And that, combined with the problem of all the
6	stuff that El Paso was going through, we just didn't have
7	enough information that would be definitive to do anything
8	in detail.
9	Q. Were these wells producing at the time you
10	brought your wells on line?
11	A. Yes, they were. Yeah, we brought our wells
12	Q. But you didn't look at that data? I mean, in any
13	on a smaller scale of any great detail?
14	A. No.
15	EXAMINER CATANACH: Are there any other questions
16	of this witness?
17	MR. GALLEGOS: Yes, I have a few.
18	EXAMINER CATANACH: Good.
19	MR. GALLEGOS: Like to support you.
20	EXAMINER CATANACH: Okay, go ahead.
21	FURTHER EXAMINATION
22	BY MR. GALLEGOS:
23	Q. Mr. Nicol, let me ask you first of all, for the
24	purpose of my question, see if we can agree on some
25	definitions.

	181
1	If I refer to common ownership, can we understand
2	that that means that one working interest owner, or a
3	combined group, owns from the surface to the base of the
4	Pictured Cliffs or below? That would be when I use the
5	term "common ownership"?
6	A. All right.
7	Q. And when I use the term "divided ownership", I
8	mean that one working interest owner owns from the surface
9	to the base of the Fruitland formation, and another owns
10	from the base of the Fruitland formation to the base of the
11	Pictured Cliffs.
12	A. All right.
13	Q. Right? Now, when these Chaco wells were
14	perforated at a level in which you identify as the upper
15	Pictured Cliffs, there was common ownership at that time;
16	isn't that true?
17	A. To the best of my knowledge, yes, sir.
18	Q. All right. And when you say perforations in the
19	Fruitland sand or in the sands within the Fruitland have
20	been a common practice, can you tell us of any case you
21	know of where that has occurred, where there has been
22	divided ownership?
23	A. First of all, I didn't say that.
24	Q. Well, I thought you said that or you were
25	asked by and responded affirmatively to the Examiner's

	182
1	questions that, have there been perforations has there
2	been a practice to perforate the sands within the
3	Fruitland, and has that practice been approved by the OCD
4	in Aztec?
5	A. No, that was the Pictured Cliffs, if I recall the
6	question correctly, not the Fruitland. We were talking
7	about, has it been the practice to perforate that 34 wells
8	that I have on the list here as Pictured Cliff wells and
9	report them as such, and that's correct. But I didn't say
10	they were perforated in the Fruitland.
11	Q. All right. Well, are you saying that it has been
12	a common practice for perforations to be placed, of the
13	nature that we see in these wells, and to use your
14	vernacular, that is, perforations in the second unit of the
15	Pictured Cliffs and in what you call the upper Pictured
16	Cliffs? Are you saying that that's that you have seen
17	in other wells beside the ones question?
18	A. Yes.
19	Q. All right. Now, I'm asking you, do you know of
20	that occurring in any instances where there was divided
21	ownership?
22	A. No.
23	Q. Okay. Do you know of any instances where that
24	type of practice has been approved by the OCD in Aztec,
25	where there is divided ownership?

_

	183
1	A. I'm not aware of any.
2	Q. When you speak of the approval of the OCD in
3	Aztec, are you talking about just accepting a C-104 form?
4	Or what do you mean?
5	A. Yes, accepting the reports as presented as being
6	accurate and correct based upon what we show as where the
7	perforations are and what the logs show, yeah.
8	Q. Do you know whether the OCD District Office in
9	Aztec undertakes any investigation as to the ownership of
10	the working interest and accepting the filing of a C-104?
11	A. I don't know what the practice is.
12	Q. All right. By the way, I'm just curious about
13	your volumetric studies that are not available now. Were
14	those done by hand, or was that done by on a computer?
15	A. No, it was just a hand calculation, a back-of-
16	the-envelope sort of thing.
17	MR. GALLEGOS: Thank you.
18	EXAMINER CATANACH: Is that it?
19	MR. HALL: Nothing further.
20	EXAMINER CATANACH: Anything else?
21	This witness may be ex cused.
22	THE WITNESS: Thank you.
23	EXAMINER CATANACH: Let's take about five minutes
24	just to get set up here.
25	(Thereupon, a recess was taken at 2:45 p.m.)

	104
1	(The following proceedings had at 3:00 p.m.)
2	EXAMINER CATANACH: Okay, let's go ahead and call
3	the hearing back to order and turn it over to Mr. Hall.
4	MR. HALL: At this time we call Roland Blauer to
5	the stand.
6	ROLAND BLAUER,
7	the witness herein, after having been first duly sworn upon
8	his oath, was examined and testified as follows:
9	DIRECT EXAMINATION
10	BY MR. HALL:
11	Q. Mr. Blauer, for the record, if you would, please
12	state your name.
13	A. Roland Blauer.
14	Q. Where do you live, by whom are you employed and
15	in what capacity?
16	A. I live in Larkspur, Colorado. I'm employed by
17	Resource Services International, and I'm the president.
18	Q. All right. Have you previously testified before
19	the OCD in New Mexico?
20	A. Not in New Mexico.
21	Q. Why don't you give the Hearing Examiner a brief
22	summary of your educational background and work experience?
23	A. I received bachelor's and master's degrees in
24	petroleum engineering with specialties in mathematics and
25	rheology from Colorado School of Mines, went to work for

· · -

	185
1	Diamond Shamrock Corporation, primarily in the western
2	United States and Canada, with some excursions to the North
3	Sea and the north slope.
4	After I finished graduate school I invented a
5	little thing called foam fracturing, and for about four
6	years after graduate school I spent my time with a small
7	consulting company and then ultimately Scientific Software,
8	developing foam fracturing and taking it to industry and
9	doing all the reservoir engineering around to convince
10	people to use the thing.
11	And then approximately 22 years ago I left
12	Scientific Software and started Resource Services as an
13	independent consulting company and have been so involved
14	since then.
15	The majority of my experience has been hydraulic
16	fracturing with special emphasis in coals, low-permeability
17	reservoirs and unusual situations which require careful use
18	of fracturing to achieve a client's desired result.
19	Q. Do you hold any patents?
20	A. Yes, I have certainly the foam-fracturing patent.
21	I have two or three other patents in the oil industry. The
22	other major patent is the use of a foam-slurry pipeline,
23	and it's used primarily in mining.
24	And I have a couple patents on, believe it or
25	not, recovery of gold from slurry ponds using hydraulic
-	

_

186
fracturing as a way of introducing the leachate to the
slurry pond.
Q. All right. Have you previously testified before
regulatory agencies in other jurisdictions and other
courts?
A. Yes, sir, I'm a registered professional engineer
in Colorado, I've testified in Oklahoma, Texas, Colorado,
Wyoming, Montana. I've also appeared in federal, state,
local courts. I've also appeared in Denmark.
Q. And we Previous testimony established that you
have an interest in the subject Chaco wells?
A. Yes, sir, I do.
Q. You are familiar with the wells in the subject
area?
A. Yes, I am.
Q. And you're familiar with the Application in this
case?
A. Yes, I am.
Q. Did you have any hand in designing the frac jobs
for the Chaco wells here?
A. Yes, I did. At the time that the wells were
fractured I was an active partner in the Pendragon
organization, and Mr. Keith Edwards, the operator, involved
me in the design and the monitoring of the fracturing
completions and the process of doing the frac job in these

٤.

1 wells. 2 MR. HALL: We tender Mr. Blauer as a qualified 3 petroleum engineer. 4 EXAMINER CATANACH: Any objections? 5 MR. GALLEGOS: No objection. 6 EXAMINER CATANACH: This witness is so qualified. 7 Q. (By Mr. Hall) Mr. Blauer, I believe you were in the hearing room when previous testimony on the use of BTU 8 analysis, gas analysis, was rendered; is that correct? 9 10 A. Yes, sir. Have you prepared certain exhibits and testimony 11 Q. 12 with respect to that issue? Yes, sir, I have. 13 A. 14 **Q**. All right. Can you tell us generally what you conclude with respect to the use -- the propriety of using 15 gas analyses, BTU analyses, in this case? 16 In this particular case we have a couple unusual 17 Α. situations in the reservoir conditions, which provide a 18 very interesting and difficult-to-evaluate situation as to 19 the face changes and the face behavior of the five major 20 hydrocarbons that we see in the reservoir. 21 Those two situations are, the hydrocarbons exist, 22 23 other than methane, in relatively small quantities, but the 24 second condition is temperature and pressure of the 25 reservoir is such that all except methane and ethane can

1	exist in the reservoirs, both liquid and gas, depending on
2	the current pressure of the reservoir. This makes for a
3	very difficult-to-predict behavior or BTU ratings and gas.
4	and the use of BTU as an identification of source between
5	the Fruitland and Pictured Cliffs is almost impossible
6	because of that.
7	Q. All right. Have you prepared certain exhibits to
8	demonstrate that?
9	A. Yes, sir, I have.
10	Q. Refer to what's been marked as Exhibit B1.
11	A. I'm going to talk briefly about everybody's
12	favorite subject, thermodynamics, and just as a very quick
13	review, this is a phase-change graph, and it's very
14	simplified. Typically, they're presented with a pressure
15	function and some kind of an energy function.
16	There is a region that's identified in which the
17	material that's being examined is neither liquid nor gas.
18	It also defines regions where materials are liquid, over
19	here but not shown would be solid, and on the other side of
20	this region materials would be gaseous.
21	Just to refresh everybody's mind and to place
22	this, a constant-pressure process, as presented in this
23	diagram, would be taking liquid water, applying heat,
24	increasing the temperature, the energy generally.
25	At some point you'll see small bubbles of gas

- -

1 appear at the bottom of a pot of water. At that point 2 you've already crossed through the phase envelope, but --3 You've gone through the phase envelope, and you convert your water to steam. 4 5 The same process can happen with any other material. And as with steam, it's reversible. Two very 6 7 important considerations. The second one is a little more difficult. 8 It's shown by the blue line and then the red line in this graph, 9 of the constant-temperature process. And probably the 10 closest common analogy here would be opening a bottle of 11 12 pop where, at the temperature of the pop -- and we'll assume that there's no temperature change in the pop --13 high pressure inside the bottle when it's capped, your 14 liquid phase, you can't see bubbles. As soon as you pull 15 the cap, you drop the pressure inside the bottle, you cross 16 17 the phase envelope, and you get some of the liquid portions, usually CO₂ converted to gas. This process is 18 also reversible. 19 20 I just do this to set the background for the next 21 exhibit. In Exhibit B2, which are the enthalpy diagrams, 22 23 for the first five hydrocarbons -- methane, ethane, 24 propane, butane and pentane -- the green areas in each of 25 these curves are the phase envelopes, and the red or blue

	190
1	lines are constant-temperature lines at 90 degrees, which
2	is approximately the reservoir temperature, starting at 300
3	p.s.i., and dropping to 10 p.s.i.
4	Now, the significance of these are that methane
5	and ethane are gaseous at all conditions that we would
6	expect in these reservoirs, maximum pressure of 300 p.s.i.
7	However, propane at 300 p.s.i. and to approximately 270
8	p.s.i. is liquid. At 270 p.s.i. it reaches the bubble
9	point, becomes gaseous. And then above 275 p.s.i. is
10	gaseous.
11	Butane is liquid down to a pressure of
12	approximately 45 p.s.i., it crosses the phase envelope and
13	becomes gaseous.
14	And finally, pentane is liquid clear down to
15	about 18 p.s.i and these are p.s.i. absolute,
16	incidentally becomes liquid I mean becomes gaseous,
17	and is gaseous below.
18	Now, again, the importance here is, at the
19	reservoir conditions that we have in the Pictured Cliffs
20	reservoir is within this temperature and pressure. And as
21	you can see, the methane and ethane are gaseous under any
22	conditions, but the propane, butane and pentane can be
23	either gas or liquid. And the significance there, of
24	course, is, the gas moves through the reservoir a lot
25	easier than the liquids.

1	So. I'm going to refer to Figure B3 now, which
2	is a pictorial representation of a reservoir at two
3	different points in the production life of the reservoir.
4	On the left I've shown in the center of a square,
5	rectang a square reservoir, a well drilled and having
6	produced at some point, and the line is a constant-pressure
7	180 p.s.i. line.
8	Looking at the same well and reservoir at some
9	later time when the production has been taken out and the
10	pressure has been dropped, the 180-p.s.i. line now is quite
11	a ways away from the wellbore. And I've just drawn in some
12	contours, constant pressure contours.
13	Down in the propane, butane and pentane, the blue
14	color represents the pressure and temperature conditions at
15	which those materials would be liquid. The white areas
16	represent areas where the material is gaseous.
17	Well, we see in methane and ethane at any time in
18	the life of the well, both materials are gaseous. However,
19	with propane, early in the life of the well, the small area
20	around the wellbore, the propane flashes to gas and is
21	gaseous and is able to flow through the reservoir as a gas.
22	At later time, the area is much larger.
23	The significance here is, you'll notice the BTU
24	of pure methane is about 911 BTUs per pound, propane is
25	2353. The point here is, a small amount of propane could
1	

have a significant impact on the BTU rating of the 1 commixture of the gases that are being produced at the 2 well. 3 4 Similar with butane and pentane, but we will go to pentane -- but we will go to pentane just to save a 5 little bit of time -- only a very small amount of pentane 6 7 is produced early in the life of the well. Later on, there's a larger area that the butane is gaseous, but it's 8 still relatively small. 9 10 Now, the significance of all this is, that since this process is reversible, if a well is shut in or put on 11 12 compression or there are some mechanical things done to the 13 reservoir to change the pressure, the liquid and gaseous 14 phases of these three heavier hydrocarbons can revert, 15 making it harder for the heavier hydrocarbons to produce. And when Mr. Nicol was talking about the High 16 Roller well where the BTU of the well had been falling, 17 then the well was fractured and the BTU went up, that's 18 very logical, because the fracture would have gone into 19 areas where some of the butane, some of the propane were 20 still liquids, and by dropping the pressure in that 21 fracture, at the tip of the fracture, you could have a 22 sudden influx of the heavier hydrocarbons. 23 My conclusion from all this is, when we try to 24 simulate this reservoir with these conditions we have a 25

> STEVEN T. BRENNER, CCR (505) 989-9317

192

	193
1	multi-component reservoir with multi phases, where the very
2	small quantities of the heavier hydrocarbons, when they
3	exist as liquids, are very hard to predict when they
4	produce.
5	And this is very sensitive to the pressure
6	history of the wells. When you look at data taken in the
7	Basin, wells that are shut in and opened up will have a
8	different a BTU rating. Putting wells on compression,
9	you'll see a sudden change in BTU. So we don't consider
10	this as a reliable indicator of the source of gas.
11	Q. All right, let's talk about fracture technology
12	now, if you would.
13	Let me ask you, do you have any specific
14	experience in coal-reservoir fracturing?
15	A. Yes, I do.
16	Q. Would you tell us about that?
17	A. For approximately the last fift well, twelve
18	years, I've been very actively involved in fracturing coal
19	and producing coal. In this area, probably the most
20	notable and famous is the Evergreen Resources, the Raton
21	Basin, but I've also fractured Mesaverde coals in the San
22	Juan, Piceance, some reservoirs in the Wasatch, the Black
23	Warrior Basin, Germany, Poland, Australia now, Lithuania.
24	It's been a part of my practice for many years.
25	Q. All right. Why don't you turn to Exhibit B4 and
•	

	194
1	just give us a brief overview of the basis of the
2	fracturing technology?
3	A. This cartoon was pulled from Recent Advances in
4	Hydraulic Fracturing, and I did this primarily to have a
5	way of making definitions, just so that I am consistent in
6	the rest of my presentation.
7	We have a fracturing a reservoir that we
8	choose to fracture it's shown here, and this diagram is
9	yellow and a wellbore penetrating that, and we're
10	looking at the face plane and fracture. The blue area on
11	this is the created fracture, which is where fluid has been
12	pumped in and created the fracture.
13	And we call the distance through the tubing to
14	the tip of the fracture the half-length. The shaded part
15	in here is the proppant bed, and of course it won't extend
16	beyond where the fluid is. And fracture height, as shown
17	in this diagram, would be from the top of the fracture to
18	the bottom of the fracture.
19	And I might note that this diagram was made in
20	1980 or 1982, and I definitely differ with the smaller
21	height at the wellbore and then the some ways away from
22	the wellbore. But we'll talk about that later.
23	At the top and the bottom of the reservoir, I'll
24	call those lithology changes or facies changes. Where the
25	fracture has crossed above one of the lithology or facies
-	

	195
1	changes, I would call that out-of-zone fracture, and it can
2	happen above and below the desired pay zone.
3	Again, I'm just doing this for providing a
4	vocabulary.
5	Now
6	Q. By the way, is this Exhibit B5?
7	A. Yes, sir.
8	One of the very interesting situations about
9	fracturing coals, and especially coals that are thin and
10	surrounded with sands and shales, is that you have two very
11	dissimilar materials in contact with each other. And
12	there's all sorts of interesting things that happen at the
13	interface of these two dissimilar materials.
14	As it turns out, coal is we'll call, a
15	relatively soft material. It has a Poisson's ratio
16	typically around .5.
17	Now, Poisson's ratio, again, going to strength of
18	materials, which is our second favorite subject, if you
19	if you compress if you had a block of material and you
20	compressed it one unit by applying axial stress on that
21	unit, then measured the displacement at the perpendicular
22	to that and you found that the displacement was 50 percent
23	of the displacement of your compression, that would be a
24	Poisson's ratio of .5. That's very soft, squishy material.
25	Sandstones and shales will have lower Poisson's
l l	

-

1	ratios. Sandstones are .2, .3 maybe. Shales are .25 to
2	.35.
3	Well, one of the things that happens when you put
4	a composite layering of materials together such as coals
5	and sands, or a common one that we all are experienced with
6	but we probably never thought of it this way, is plate-
7	glass windows which is two layers of hard glass with a
8	rather soft, squishy plastic center is, when you go
9	about fracturing these materials you get some unexpected
10	behavior.
11	Using the plate glass as the example, when the
12	inevitable rock hits the front window of the car, the outer
13	hard glass cracks immediately, but the fracture stops at
14	the barrier between it's a facies change between the
15	glass and the plastic. You can do that on either side of
16	the glass. In fact, you can take a piece of glass and a
17	hammer and beat on it and you can get both sides of the
18	glass to fracture, but you won't see the cracks go through
19	the soft plastic center.
20	Well, as it turns out, the same exact thing
21	happens in petroleum reservoirs when you have a coal
22	surrounded by two sandstones or two shales. The interface
23	between the coals and the sands becomes a barrier to
24	fracture growth.
25	Now, the other interesting thing that happens

with this is that if you initiate your crack in your soft, 1 squishy material, your coal, and you get that crack to 2 extend to the top and the bottom of the coal, and it 3 encounters this brittle material, your fracture will 4 immediately go right through the hard material. 5 And I've seen demonstrations with the plate glass where they've 6 actually drilled a hole and initiated the fracture in the 7 middle of the plastic, and both sides of the glass crack. 8 Well, in practice, we see this in practice in 9 coal-sand sequences. 10 And I have here a composite well log, which is 11 the well log -- a radioactive log -- well, two versions of 12 a radioactive log, for a well in Las Animas County, 13 Colorado. And I have chosen this well because it's about 14 the same depth as the one -- as the Fruitland-Pictured 15 Cliffs sequence. Probably more importantly, I chose it 16 17 because I have a lot of data in this area that I can present and talk about. And we spent a lot of time 18 studying the phenomena of growth of fractures in coal-sand 19 20 sequences. And what we have here is the gray-shaded bars are 21 coals or possibly organic shales, high organic shales, and 22 the yellow ones are sands. This particular operator was 23 interested in completing in the coals, and we wanted to 24 confine our fractures to just the coals. 25

1 If you look at the top perforation on this well, 2 what we see happening is that the radioactive tracer shows 3 that the fracture grew out of the coal, through the sand, 4 and stopped at the lower boundary of the next coal. 5 Now, the way I see that is, first of all on this 6 log -- This is a gamma-ray log, taken after the radioactive 7 material and the frac job is completed, and there's a huge 8 kick in radioactivity right here. 9 I've shaded in the area where there was a change 10 between the after-fracture radioactive log and the prefracture radioactive log, which is on this side, just for 11 12 reference. 13 We look at this top perforation, the fracture 14 grew up and stopped at that coal barrier. It also grew down, or possibly this one the fracture grew up and down. 15 Now, if we look at the bottom perforation in this 16 well, the very bottom, the last hole, again we see the 17 fracture grew out of the zone, through the sand, and 18 stopped at the top of the next coal. 19 And if we look at the bottom set of perforations, 20 21 what we see is, the fracture grew out of the coal and up to 22 a facies change. 23 And how do we identify the facies change? We see 24 that there's a facies change right here. If we look at 25 this perforation on the fourth interval from the top, the

179
fracture grew out of the coal, down to a facies change and
stopped.
But more interestingly, if you look at the
relative radioactivity here, you see that the majority of
the fracture stopped growing here at 1102, which is
actually the first facies change.
So when I look at this log and evaluate it, what
I see is, thin barriers of coal act as growth barriers to
fractures. Fractures initiated in the coal will grow out
of the coal through a sand to a lithology change.
Let's see. Now, let me give you another example
of this. It's a little more complex than this one. This
is another composite log with the open-hole well log, a
radioactive log this time. We have liquids and two
proppant tracers, so we've traced with three different
radioactive tracers
Q. By the way, this is Exhibit B6.
A. This is B6.
Q. Excuse me, go ahead.
A. Excuse me. And this is again a well in Las
Animas County, Colorado. There's a number of things on
here that we'll take a look at.
First of all, if you look at the top perforation,
again the operator was desiring a contained fracture, and
he was desiring to complete just the coal.

	200
1	We notice that this top perforation, the fracture
2	grew out of the coal and upwards to the first facies
3	change. But we also notice that there was a minor facies
4	change just two feet above the top of the coal, and the
5	majority of the fracture growth stopped at that two-foot
6	interval. And if you look at the two traces in the
7	radioactive log, you notice that proppant stopped at that
8	two-foot interval.
9	The same thing can be said for the growth
10	downward. It did grow down, but the majority of the growth
11	stopped at this first lithology change, facies change. No
12	proppant in between.
13	We look We can look at the rest of the log in
14	the same way. We can see that fracture growth from the
15	coals, grow out of the coals, stop at a facies change.
16	Again, we see here at the bottom this is the bottom
17	coal, perforated in the coal. It grew through the coal,
18	through the sand, and stopped at the next coal. Now, this
19	was actually a shaly coal, so a little bit grew through.
20	But most of the fracture growth stopped right at the top of
21	that organic shale. No proppant went down there.
22	This well I would call a contained fracture,
23	using the natures of the barriers between the coal and sand
24	as growth barriers.
25	Now, I have one more example of this, which is a

	201
1	little closer to home. This was a radioactive tracer log
2	we found for the I'm sorry, this is Exhibit B
3	Q 7.
4	A 7. This is for the Dome Federal I mean,
5	sorry, the Dome Petroleum Corporation. It's the Dome
6	Federal 17-27-13 Number 3.
7	What's interesting about this well is that the
8	perforations are in the top of the Pictured Cliffs
9	formation. There's a shale barrier in this blue color, and
10	the bottom of the Fruitland Coal is several feet above.
11	Notice the fracture grew into the perforations
12	and down in the Pictured Cliffs. It grew up to the bottom
13	of the coal layer I mean, I'm sorry, the bottom of the
14	shale layer, the facies change, and stopped its upward
15	growth.
16	If we look down, if you want to spend some time
17	pondering this, you'll see that there's a strong
18	correlation between the amounts of the radioactivity at the
19	gamma-ray log, and we see the bottom growth was arrested by
20	a significant facies change right here.
21	One of the other things that we also know about
22	fracture growth is that fractures tend to grow to low-
23	pressure reservoirs. So another containment feature in a
24	well like this Dome Federal well is if we have a lower-
25	pressure PC sitting beneath a higher-pressured coal, not

	202
1	only will the coals act as a growth barrier, but the higher
2	pressures in the coal will prevent growth into the coal.
3	Now. I'm not the only one that has these kinds
4	of beliefs about lithology change and facies changes in
5	hydraulic fracture growth.
6	Exhibit B8 is a composite diagram of three
7	figures from SPE Number 36449 Peterson was the primary
8	author 1996. The rest of the people in this group
9	happen to be the DOE/GRI M-Site contractors' group.
10	There's a number of interesting things on this
11	chart that I'd like to show, that are consistent with what
12	we've said about fracture growth and barrier control.
13	First of all, the paper concerns fracturing in
14	the MWX Number 2 with telemeters and buried geophones in
15	observation wells. And the goal here was to actually
16	measure the location of the fracturing events and then
17	compare it with other ways to determine fracture height
18	growth.
19	Figure 4 is a composite plot of the A-sand
20	fracture diagnostic results. The A sand are these two
21	little benches I have the depth here somewhere. 4900
22	and 4950. Is that right? No, I'm sorry. Yes, 4900 and
23	4950.
24	In figure 4, in this diagram with the ellipse,
25	there's a bunch of little dots. Those little dots are
-	

	203
1	microseismic events, indicating that fracturing was
2	measured at some point in time from the process.
3	The big ellipse is the best FRACPRO simulation
4	that could be made from the pressure data and bottomhole
5	pressure measurement. They were using bottomhole
6	pressures; they didn't have to do the conversion from
7	surface to bottomhole.
8	The red strip on the s ide of this figure, this
9	little hached-in thing, is the radioactive tracer
10	measurement of the fracture location, and this is the
11	stress profile that was used from the stress measurements
12	of this reservoir.
13	Now, what we see is that the fracturing event
14	occurred in a band from approximately 4725 to 4975 and
15	matched very closely to the radioactive tracer measurement
16	of that event. The Fracture Pro model, the FRACPRO model,
17	indicated the fracture growing higher than was measured and
18	significantly lower than measured.
19	The other thing is that if we look at the
20	microseismic events, they're not symmetrical. The fracture
21	grew less to the left and more to the right. And of
22	course, the Fracture Pro model showed none of that.
23	Now, Figure 8c Oh, also in Figure 4, notice
24	that the actual fracturing stopped at a lithology change,
25	both top and bottom. And in the body of the article it

says that the fractures were more contained when they did
 their minifracs using thinner fluids but had some upward
 growth when they switched to high-rate and high-viscosity
 cross-linked polymers.

5 Now, if we look at Figure 8c, which is the comparison of the actual measured microseismic events in 6 7 the B sand and the Fracture Pro model, we find that the B sand, which is approximately from 4525 to 4575, this little 8 50-foot thick interval -- and if we look at the logs, it's 9 this little sand interval right here -- the fracture was 10 entirely contained in that sand interval. The FRACPRO 11 model calculated a total height of nearly 200 feet. 12

What I brought this in for was really to show that this containment of fractures -- and Peterson, in another paper which is included as Exhibit B15 in my exhibit package -- Warpinski, both have comments that say that fracturing in a layered reservoir is a little bit ore complicated than the current models would show.

For example, in reference B14, which is this paper, on page 318 -- it's the back of the -- my exhibit book -- in the left-hand column, the sentence at the very top, first full sentence, "Fracture growth upward is one feature that found agreement between the techniques: radioactive proppant height was almost identical to microseismic height, and both agreed with the model at the

	205
1	top of the fracture. Fracture growth downward found more
2	of a difference between the microseismic and the model
3	calculations."
4	Later on, down, under right the sentence
5	under the bulleted portion of the paragraph on the same
6	page, "Also note in Figure 4, the significant discrepancy
7	in the surface areas of the hydraulic fracture as
8	determined by 3-D modeling and microseismic analysis. This
9	phenomenon wasobserved in the B-Sandanalysis and will
10	be discussed in that section." And he goes on at quite
11	great length to talk about that.
12	In the other paper, which is Exhibit B15 this
13	is the Warpinski paper, on page 332 of this paper, and Norm
14	in his usual way wrote an almost unintelligible sentence,
15	but that's okay, we'll let him do that. The left-hand
16	column, the second full paragraph, I'll read the whole
17	sentence, but it's really one down in there:
18	
19	Comparisons of fracture models with the imaged
20	results were quite good for cases where the fracture
21	was contained, but some discrepancies developed for
22	the latter treatments. Of particular significance was
23	the lack of downward growth, as it suggests that there
24	may be other containment features which are not
25	included in current models (i.e., inefficiency

	206
1	crossing bedding).
2	
3	And that's again where we're looking.
4	The latest work I've seen from the people who are
5	doing this research Chris Wright with Pinnacle, Paul
6	Branagan with Branagan and Associates, and so on are all
7	finding that lithology changes and facies changes have a
8	great deal to do with the ability of fractures to grow and
9	to be contained.
10	Q. Now, from Exhibits B14, B15 and B8, your excerpt,
11	what do you conclude with respect to the reliability of
12	fracture-simulator models, such as FRACPRO?
13	A. The fracture-simulator models that are based upon
14	the same mathematics as FRACPRO and FRACADE and the pseudo-
15	3-D models, such as NSI's model, do not accurately provide
16	a method of determining fracture geometry in layered
17	reservoirs or in reservoirs with significant permeability
18	changes, which is also layers.
19	Q. All right. And is that the case we have in the
20	area of the Chaco wells?
21	A. Absolutely. And the experience that we have had,
22	my professional experience of fracturing layered coal
23	reservoirs is, I can very well use the interfacies changes
24	of coals and sands for growth barriers if I'm cautious with
25	my use of fluid rates, the volumes and viscosities. And

_

	207
1	I'll discuss that here in a minute.
2	Q. All right. Let me ask you, is there any way to
3	determine from fracture-treatment data the direction of
4	vertical fracture-height growth and extension of the
5	fractures?
6	A. Yes, sir, there is.
7	Q. How do you do that?
8	A. I refer now to Figure B9, which is Figure 2 out
9	of Ken Nolte's 1981 paper on fracture pressure analysis. I
10	need to explain a little bit of what the concept is of the
11	Nolte plot, or some people call it the Nolte-Smith plot.
12	When we do a hydraulic fracture, one of the
13	things we determine, often, with the mini-fracture is the
14	closure pressure of the fracture. And essentially that is
15	the minimum pressure at which the fracture is just starting
16	to open.
17	If we know that number accurately and we then
18	measure the difference between that number and the pressure
19	anytime during the frac job, we're essentially measuring
20	the frictional pressure loss, plus whatever stresses it
21	takes, additional stresses it takes, the fracture and keep
22	it open.
23	As it turns out when you go through the
24	mathematics, the frictional pressure loss is a couple
25	orders of magnitude higher than the additional stresses to
-	

open the fracture. Now, that's true whether you have one 1 fracture propagating, two fractures propagating, four 2 fractures propagating, so on. 3 The best analogy, and it's exactly the same -- it 4 is exact -- an analogy is, if we had a fracture that was 5 growing in length but was contained in height, we would 6 7 essentially have the same situation as pumping a constant 8 quantity of fluid into a pipeline that is constantly 9 getting longer. The pressure at the discharge end of the 10 pipeline is constant. As the pipeline lengthens at a 11 constant flow rate of fluid into the pipe, we would see the 12 pressure increase. I mean, that's just -- Long pipelines 13 take more pressure to pump than short pipelines. Well, Nolte-Smith converted that into a fracture 14 model and said if we had a contained fracture where the 15 16 height was contained and the fracture was getting longer, we would expect the net pressure to increase. 17 And if we look on this figure, he identified this 18 19 as Type I. This is a log-log plot of net pressure and a log of time. And he said if the slope of that curve was 20 between an 8 and a 4, positive, it was restricted height 21 and unrestricted extension. The height was contained, the 22 fracture was getting longer. 23 Now, it's a little harder to explain, but if we 24 25 had a real weird pipe, it was some kind of pipe that was a

> STEVEN T. BRENNER, CCR (505) 989-9317

208

1 fixed length but we could change the diameter of the pipe 2 with time, and we started pumping a constant rate of fluid through this pipe and we increased the diameter of the 3 pipe, we would expect our pressure at the inlet to drop. 4 Lower pressures in the bigger pipelines. 5 That's exactly what we would have in a hydraulic 6 7 fracture if we had a fracture that was growing vertically 8 but the length was relatively fixed. Nolte called that 9 Type IV. He said there would be a negative slope. And you see down here, Negative, Type IV fracturing, "unstable 10 11 height growth, (i.e., Run-away)*. Notice in this case he 12 didn't identify a slope, because you could have small rates of height growth, you could have large rates of height 13 growth. But you'll get a negative slope. 14 He also identified the case where as you -- in 15 fractured reservoirs or fissured reservoirs you see no 16 17 net -- pressure in the net change, as your fracture changes geometry, you continue to put more fluid into the 18 19 reservoir. 20 The other interesting one, though, was screenouts, and we're all familiar with that. If the slope 21 22 is 1, one wing is screening out; if the slope is 2, both 23 wings are screening out. 24 Now, this piece of technology has been through 25 several decades now, almost two decades of use. The

1	service companies included almost every treating report
2	that they issue. Most engineers at some time will look at
3	one.
4	But more importantly, a number of people, myself
5	included, have tested this procedure with actual data where
6	they have things like I have here where we know the
7	fractures were contained, or some other reason we know the
8	fractures were contained or not uncontained. And we're
9	able to look at pressures and determine the type of growth
10	that we have.
11	Give you an example of that.
12	This is Figure B10, and it is the same well as I
13	showed before with the radioactive tracer where the
14	fracture was very well contained. The height was contained
15	to specific zones. And we knew that from radioactive
16	logging and later pressure transient testing.
17	I have here the treating report Oh, we also
18	had bottomhole pressure bombs in the well while we were
19	fracturing this well, and this well was fractured with a
20	70-quality foam, treated about 22 barrels a minute. So
21	it's very similar to the frac jobs that Pendragon employed
22	in the Pictured Cliffs fractures.
23	The blue line, which is the circles, is the major
24	bottomhole pressure from the bottomhole bomb. The square
25	data, the red line, is the surface treating pressure.
Ľ	

210

- -

-

Now, what I'm showing here is that for foam fracs 1 at this depth, these rates and these tubing conditions, the 2 slope of the bottomhole pressure that's actually measured 3 is going to be very similar to the slope of the surface 4 5 pressure. So even if we don't have bottomhole pressures or we're uncertain of the calculation of the bottomhole 6 7 pressures from surface pressures, if we look at the slope 8 of the surface pressure we have a pretty good idea what's 9 happening underground.

10 If we look at the net pressure plot on this well, which is the lower half of this exhibit, B10, notice that 11 this thick line completely covers all the data. I mean, we 12 have bottomhole pressure, we had very good data, we knew 13 what the closure pressure was very closely. Notice there's 14 a positive slope, indicating that this fracture was 15 contained. The slope of that line is about plus 1/4. 16 17 Everything fits.

Now, if we take -- One of the advantages of the Nolte plot, of course, is that it's data that we typically have on a well. We have the surface reading pressures, we may have a calculated bottomhole pressure. Even on old, old wells where we didn't have a lot of technology, it gives us a piece of data to let us understand how the fractures grew.

25

So, I've put Exhibit -- I've put an exhibit

STEVEN T. BRENNER, CCR (505) 989-9317 211

	212
1	together with seven wells that were fractured by Maralex
2	and/or Whiting. And I've taken the net treating pressure
3	plots out of those reports as presented by the service
4	companies.
5	Some of these net treating pressure plots, like
6	the second one, which is the Gallegos Federal 26-12 7
7	Number 1, has three different lines on it here. All that
8	indicates is either the operator or the service company
9	wasn't sure what the closure pressure was, so they did this
10	curve at three different closure pressures.
11	What we see on these s even wells, with the
12	exception of the Federal 25-12 31 Number 1, is negative
13	slopes, indicating vertical height growth through some or
14	all of the frac job.
15	Some of them we see a reversal of the slope,
16	indicating screenout. These slopes are high enough that
17	the wells were starting to screen out. And when we look at
18	the actual treating reports, the screenouts typically
19	started shortly after the sand arrived at the location.
20	The Gallegos Federal 26 13-1 Number 2 shows
21	either a sudden drop in injection rate or a runaway, that
22	the tried to get back into it and couldn't.
23	But the importance here is, every one of these
24	net treating plots show negative Nolte treating slopes,
25	which is a direct indication of unrestricted height growth.

	213
1	Now, if we compare those to figures B12, which
2	are the five Pendragon wells, first of all we notice
3	something distinctly different. The slopes in all of
4	these, except the Chaco Number 4, are positive. Whether we
5	believe in Nolte or not, there is a distinct difference
6	between the character of the Maralex wells and the
7	character of the Pendragon wells. If you calculate the
8	slopes of the Nolte plots on those Pendragon wells, you'll
9	see that they're within the 1/8 to 1/4 slope.
10	It looks we've got a s creenout here in the Chaco
11	Number 5, and we clearly late in the treatment. We had
12	a very early screenout in the Chaco Number 4. The Chaco
13	Number 4, we only got about 4000 pounds in the ground.
14	All of these wells were treated at about 20 to 25
15	barrels a minute, small volumes of liquid, 70-quality foam.
16	So Maralex wells were treated significantly higher rates
17	and larger volumes.
18	Exhibit B13 is a table and I apologize, this
19	doesn't reflect all of the data received very lately from
20	Whiting because I was out of the country and just didn't
21	get it done.
22	First of all, the analog coal wells I used in the
23	Raton Basin, notice that we treated with 20 to 25 barrels a
24	minute, 15,000 to 20,000 gallons of fluid, and nearly
25	78,000 pounds of proppant.

	214
1	The Pendragon wells were all treated with
2	essentially the same kind of treatment, 20 to 25 barrels a
3	minute, 32,000 pounds of proppant and 38,000 gallons of
4	fluid I'm sorry, 32,000 gallons of fluid and 38,000
5	pounds of proppant.
6	The Whiting wells, from the data that I could
7	gather, were treated at 45 to 60 barrels a minute, 41,000
8	gallons of fluid. But notice, two of them were treated
9	with excesses of 80,000 gallons of fluid and much excess of
10	100,000 pounds proppant.
11	Now, the significance of the rate of these is
12	that in any fracture simulator, in any kind of calculation
13	of frictional pressure loss on a well, any of the models
14	including Cleary's model, which is the basis of FRACPRO, or
15	Nolte's model which is the basis of FRACADE or Myers',
16	which is the basis of Myer Frac any of the simulators,
17	you look at the height functions and width functions, and
18	they're all a function of viscosity times rate. There will
19	be that function in there.
20	Stated simply, the higher the rate or the higher
21	the viscosity, or both, the higher the fracture geometry
22	the more likely you are to have unrestricted height growth.
23	And if you remember back to the references I made
24	in the two SPE papers, that comment was made that fractures
25	grew out of zone later in the treatments when they

converted to a higher viscosity fluid. 1 2 Q. Mr. Blauer, from what you presented today, your fracture-treatment data compared against the Nolte plots, 3 can you conclude whether the fracture-treatment jobs that 4 5 Pendragon performed on its wells remain contained within the Pictured Cliffs sandstone? 6 Yes, sir, and I say that for three reasons. 7 Α. The wells were treated with low rates, relatively 8 low viscosity fluids. 9 10 They were treated into a low-pressure reservoir, which is in itself a containment. 11 The reservoir -- The Pictured Cliffs reservoir 12 had a shale or coal at the top of that reservoir which 13 would arrest any growth, any upwards growth. 14 And we have from an offset well indications that 15 Pictured Cliffs fractures grow downwards into the Pictured 16 Cliffs as it is, which, from stress considerations, we 17 would agree with. 18 So for those three reasons, we believe that the 19 Pendragon fractures did not breach the Fruitland Coals, 20 stayed contained. The small size of the treatments and the 21 22 upward slopes of the Nolte show that we had fracture extension length, which is also consistent with strong 23 increases in productivity from the wells. 24 Can you make the same conclusion with respect to 25 Q.

215

the fracture-treatment jobs that Maralex did on their coal 1 2 formations? Did they remain contained within zone? Based on my analysis and experience, the Maralex 3 Α. 4 fractures grew out of zone. I cannot say for a certainty 5 whether they grew upwards, downwards, or both; but they 6 clearly grew out of zone. If they breached the top of the Pictured Cliffs 7 8 formation, because the reservoir pressure is much lower in 9 the Pictured Cliffs than the Fruitland, there would be a 10 tendency to grow rapidly into the Pictured Cliffs. And also, once you've breached into the sand of 11 the Pictured Cliffs, you would probably have growth until 12 you reached a significant lithology change. And we could 13 14 go into some detail of where that might occur, but if it breached it went down into the Pictured Cliffs quite well. 15 Mr. Blauer, in your opinion were the fracture-16 Q. treatment jobs applied on the Pendragon Chaco wells done in 17 a reasonable and prudent manner? 18 19 A. Absolutely. And were those fracture-stimulation jobs 20 Q. necessary to recover additional Pictured Cliffs formation 21 reserves that would have otherwise gone unrecovered? 22 23 Α. Yes, they were. 24 Q. Were Exhibits B1 through B7, B10 through B14 25 prepared by you and at your direction?

Yes, sir, they were. 1 A. And with respect to the literature exhibits --2 Q. 3 B8, B14, B15 and B9 -- are those articles of a type 4 reasonably relied on by experts in your field? 5 Α. Yes, sir, they are. 6 MR. HALL: We'd move the admission of Exhibits B1 through B15. 7 8 MR. GALLEGOS: No objection. MR. HALL: That concludes our direct of Mr. 9 10 Blauer. 11 MR. GALLEGOS: No objection. 12 EXAMINER CATANACH: Exhibits B1 through B15 will 13 be admitted as evidence. 14 MR. GALLEGOS: May we have a short break? There's a lot to deal with here. 15 EXAMINER CATANACH: Yes, it is. Let's take ten 16 17 here. 18 (Thereupon, a recess was taken at 3:55 p.m.) 19 (The following proceedings had at 4:10 p.m.) 20 EXAMINER CATANACH: Okay, let's reconvene the 21 hearing and turn it over to Mr. Gallegos. 22 CROSS-EXAMINATION BY MR. GALLEGOS: 23 Mr. Blauer, when did you acquire your interest in 24 Q. 25 these Chaco wells?

217

	210
1	A. At the formation of Pendragon, which would have
2	been about 1993 oh, well, wh e n I acquired the
3	interest when the Chaco wells were acquired. I was a
4	partner from the beginning.
5	Q. Okay. And can you be a little bit more exact
6	than Mr. Nicols as to when that was?
7	A. I'm sorry, I can't. I'm not much on dates.
8	Q. Okay, late 1993 or early 1994?
9	A. In that time frame, yes.
10	Q. Okay. As I understand it, you designed the frac
11	jobs on the Chaco wells?
12	A. Yes, sir.
13	Q. And at that time you were working in conjunction
14	with J.K. Edwards?
15	A. Well, J.K. Edwards was the operator of the
16	property, and I was a partner in Pendragon, one of the
17	working interest owners in the well, and I am in some
18	circles an acknowledged fracturing expert, so Keith called
19	and asked if I would assist in the design and the execution
20	of the frac jobs.
21	Q. I have placed on the witness file I mean on
22	the witness stand, next to you, the well files as produced
23	to us by your company for the Chaco Number 1, and that's
24	Exhibit 37, our Exhibit 37
25	A. Okay.

推正に対抗

1	Q the Chaco Number 4, that's our Exhibit 39, and
2	the Chaco Number 5, which is our Exhibit 40.
3	A. Okay.
4	Q. All right, and unfortunately these pages aren't
5	numbered, but what I'd like to do is see if we can locate
6	the fracture-treatment information. I think it's under a
7	tab that says "Frac Treat Information".
8	A. I have a black page.
9	Q. Right, the black page says "Fracture
10	Information", and then it's followed by a page that's kind
11	of a title page. Do you find it? Western Company
12	A. Yes, sir.
13	Q Frac Treatment Summary?
14	A. Yes, sir.
15	Q. All right. Now, you' r e familiar with this kind
16	of a report by the service company that did the
17	stimulation?
18	A. Yes, sir.
19	Q. It's a typical
20	A. Yes.
21	Q report that you
22	A. Yes.
23	Q prepare?
24	A. Yes.
25	Q. Okay. And this relates to the Chaco Number 1
•	

The second se

	220
1	well in Section 18, which was treated January 27, 1995?
2	A. That's what the cover page says, yes.
3	Q. All right. And the cover page says that makes
4	a reference to the Pictured Cliffs formation
5	A. Yes, sir.
6	Q correct?
7	Okay. And within that group of documents, back
8	under the tab, Walsh Engineering Recommendation
9	A. Okay.
10	Q. Do you find that?
11	A. Yes, sir.
12	Q. This is the stimulation recommendation. It says
13	Prepared by [sic] Mr. Paul Thompson, Walsh Engineering, and
14	this is for the Chaco Number 1, Pictured Cliffs formation?
15	A. Yes, sir.
16	Q. Now, you actually prepared this or participated
17	in the preparation of this stimulation design?
18	A. The actual procedure was I'm not sure. I
19	think Paul Thompson was actually the person talking to the
20	Western Engineers. He may have had a phone conversation
21	with me, or he may have had the Western people contact me
22	directly. And we had telephone conversations with
23	different people in that loop, and we arrived at an
24	agreeable design.
25	Q. All right. Would it comport with your

Į

220

4

	221
1	recollection that two wells were done on that day, the
2	Chaco Number 1 and the Chaco 2-R? By "that day" I refer to
3	January 27, 1995.
4	A. Again, if I look at the records and if that's
5	when the wells were done, I would say yes. But I wouldn't
6	have a recollection.
7	Q. All right. What was the reason behind your doing
8	stimulations, hydraulic fractures, on these wells?
9	A. Well, the wells were acquired and were
10	nonproductive. The first effort was to do relatively small
11	amounts of cleanout and stimulation, go into the wellbores,
12	clean them out, make sure that the tubing casing was clean,
13	and small acid jobs were attempted to see if production
14	could be regained.
15	Q. Well, no, I wasn't asking so much about
16	procedure, rather the thinking behind the idea that there
17	was some economic reason to do a hydraulic fracture on the
18	wells.
19	A. Well, the wells had not been hydraulically
20	fractured. They were nonproductive, and at that point my
21	involvement was just, would it be possible to design or
22	execute a fracture job in these wells? And
23	Q. Well, wouldn't I'm sorry.
24	A. And I wasn't at that point particularly concerned
25	with specifics on why, other than we would expect an

the second

in manager in marking the
increase in productivity.
Q. Well, that's what I'm getting at. One view could
be that these wells have been producing for 20 years,
they're depleted, there are no more reserves to
economically recover. That could be one view?
A. That could be one view.
Q. Evidently, you held another view?
A. Yes, I did. I wouldn't have participated in
ownership if I didn't.
Q. Was your view that there was some sort of damage,
as Mr. Nicol said? And I think often people speak of skin
damage to account for low productivity of the wells?
A. There was some problem with the wells that it
that they were low productivity, and it produced too small
a volume of gas, from my estimation.
Q. Too small a volume of gas, as compared to what?
A. Well, unfortunately, I did the same thing Mr.
Nicol did. When the prospect was put in front of me, I sat
down and did my own estimate of volumetrics. No, I do not
have them; they were the back of the envelope. Convinced
myself, though, that this was an under this was an
underproduced reservoir and that there was a good chance
that there would be additional production in this
reservoir, if we could figure out the mechanical problems
of achieving of acquiring it.

	223
1	Q. Well, isn't good engineering practice such that
2	if you have that suspicion, one of the things you would do
3	would be to do a drawdown test?
4	A. Well, the wells were producing at very low rates,
5	three or four MCF, and there wasn't much production coming
6	out of them. The wells weren't very productive, they
7	weren't very responsive. Hard to do a buildup test.
8	I kind of have troubles with the concept of skin,
9	because skin usually involves a relatively small invasion
10	in the reservoir, and there could have been physical damage
11	several feet into the reservoir. So if that is the case,
12	buildup tests, drawdown tests, pressure-transient tests
13	often aren't very instructive.
14	Q. Well, I suppose you would deny that your reason
15	for going in to hydraulically fracture these wells was to
16	obtain communication with the Fruitland formation and get
17	the coal gas, right?
18	A. Well, we didn't know
19	Q. You admit that?
20	A. No, we wouldn't We didn't own the Fruitland
21	Coal, and one of the things that I was very adamant about
22	when I was talking about fracturing was conducting a
23	fracture in a way which would not breach the coal.
24	Q. I understand that, but what I'm trying to get at
25	is what you did as an engineer, it would be ordinary

4

1	practice to say that fracturing is indicated. There's
2	Fetkovitch type curves that engineers use if they think
3	there's some reserves there that aren't being produced;
4	you're familiar with that?
5	A. Yes, sir.
6	Q. You didn't do that, did you?
7	A. No, sir.
8	Q. You didn't do a drawdown test?
9	A. No, sir.
10	Q. That's a common practice among operators if they
11	think there's some reserves not being produced?
12	A. I wouldn't call it necessarily a common practice,
13	and I think that there's different levels of prudent
14	engineering.
15	This was an acquisition, remember. The cost of
16	acquiring the wells was relatively low. There was a gamble
17	of some reserves, and we were probably thinking that the
18	reserves were relatively small. Three-tenths of a BCF is a
19	small well. You're not going to spend a whole lot of money
20	doing tests and analyses on wells like that. You probably
21	step the line, do some small of work. Remember, we're poor
22	boys, we're just entering into this field. We're not going
23	to spend a lot of money doing high-tech engineering.
24	Q. Okay, so you got the wells for nothing?
25	A. Not nothing, but reasonably priced. I don't know

	225
1	what the ex act cost was, but it was low.
2	Q. And you were going to spend \$15,000, \$16,000 to
3	do a hydraulic fracture?
4	A. Well, I think the initial procedure was, we were
5	going to spend \$2000 or \$3000 to do a small acid job. I
6	mean, the intention there was to go in, clean up the wells
7	as minimum costs, put them on production and go from there.
8	Q. But you wanted to be I think you said you
9	wanted to be really sure that in doing this fracture
10	stimulation you stayed within zone?
11	A. When I was asked to design the frac job, that was
12	one of my considerations, yes, sir.
13	Q. Well, it would particularly be a consideration
14	because you did not have ownership of the near-proximity
15	Fruitland Coal formation; isn't that right?
16	A. That is why we wanted to stay in the Pictured
17	Cliffs.
18	Q. Okay. And evidently a client of yours,
19	Evergreen, had a similar-type interest. You showed us a
20	number of tracer surveys on Evergreen wells
21	A. Yes, sir.
22	Q. And I think you said that that operator
23	particularly wanted to be sure that it stayed in the coal?
24	A. Yes, sir.
25	Q. Okay. Was there a reason that you know of for
1	

STEVEN T. BRENNER, CCR (505) 989-9317 225

1	that?
2	A. In that particular reservoir, Evergreen felt that
3	the majority of the reserves were in the coal, and they
4	were producing a coal gas reservoir. They wanted to have
5	all the fracturing and the maximum amount of fracture
6	length and the maximum conductive proppant bed in the
7	coals. They didn't want to waste their fractures on what
8	they thought were nonproductive shales and sands.
9	Q. Okay. So in order to have some assurance that
10	the stimulations on these Evergreen wells were going to
11	stay in the formation, should we understand that these were
12	some of the early jobs? In other words, they were done
13	with a tracer survey so somebody could know that they were
14	designed so they would stay in the target formation?
15	A. Are you talking about Evergreen now?
16	Q. I'm talking about Evergreen.
17	A. Well
18	Q. You showed us Exhibits 5
19	A these
20	Q 6 and 7.
21	A these treatments, these two treatments that I
22	presented, I think it was the Eureka and the Don well, they
23	were I would call them mid-time. They were after we had
24	gone into the field, done some fracture treatments at
25	higher rates and higher volumes and different designs,

	221
1	different fluids, had taken radioactive tracer surveys in
2	those wells, started calibrating our understanding of the
3	rock properties and the mechanics of fracturing in those
4	wells.
5	These wells were probably the first of what we'll
6	call the Evergreen Raton frac design, which includes the
7	containment feature.
8	Now, at the time we were doing Evergreen and
9	Pendragon, one my professional efforts for all of my
10	clients was to design fractures that were contained, not
11	just in coals and sands. I mean, this was one of the
12	things that I spent a lot of time doing, and we did as a
13	professional fracturing engineer, I spent a lot of time in
14	lots of different reservoirs for lots of different clients
15	designing contained fractures and learning how to treat a
16	reservoir and have a fracture contained where the client
17	wanted it contained.
18	Q. Okay, if we could, let's try and stay on the
19	subject and
20	A. Iam.
21	Q. Well, I was asking you about the Evergreen wells
22	in Raton Basin, and I think you've indicated that the
23	earlier tracer surveys indicated something that led you to
24	change the design parameters of the hydraulic fractures?
25	A. Yes, sir.

1	Q. You're going out of zone?
2	A. Yes, sir.
3	Q. Okay. Were tracer surveys done on all the wells?
4	A. Not all of them, no, sir.
5	Q. But on the early wells, tracer surveys were done,
6	fracture grew out of zone, and now you've shown us the
7	surveys where fracture stayed within zone?
8	A. In the early development of Evergreen
9	Q. First of all, can you answer my question? Is
10	that what happened?
11	A. I'm going to answer your question.
12	In the early development, I think we did three
13	frac jobs which were essentially driven by service company
14	designs, and we traced those to convince ourselves of how
15	the fractures were growing.
16	When we found that a substantial portion of the
17	frac jobs were growing out of zone, we not only changed the
18	fracture system, but we also changed the perforation
19	program. Then we changed the treating rigs.
20	And these two wells were probably the third and
21	fourth wells which we felt we had containment from our
22	radioactive tracer. I don't remember the exact process,
23	the exact numbers of wells. But these were early in a
24	fracture-optimization process that we were conducting for
25	Evergreen.

1	Q. So on the earlier wells, by reason of the tracer
2	surveys, you learned some valuable information, to wit,
3	your fractures were growing out of zone?
4	A. Well, not just the tracer surveys. I mean, we
5	had pressure data and we had the rate-treatment data of the
6	wells. We also had some production data later on, which
7	indicated some indirectly, fracture lengths and fracture
8	heights.
9	Q. Did Evergreen
10	A. We had other information, yes.
11	Q. Excuse me. Did Evergreen also do some
12	temperature surveys?
13	A. I believe they did one or two very early on and
14	found that because of the depth of the reservoir and the
15	fluid we were using, we weren't putting a lot of mass into
16	the reservoir, and the temperature of the fluid and the
17	temperature of the reservoir were very close, and so
18	temperature surveys weren't a reliable indicator of
19	fracture growth.
20	Q. Because what? The depth of the You said the
21	depth of the reservoir and the quantity of fluids present?
22	A. Well, the first level was the temperature of
23	the reservoir and the temperature of the fluids that were
24	injected were nearly identical. We were using a 70-quality
25	foam, so the mass of the fluid was only about 30 percent

1 the mass of water.

2	So if there was any temperature difference
3	between the injected fluid and reservoir temperature, there
4	wasn't a lot of mass to be injected. But that delta T was
5	very small. So essentially the only pressure drop you'd
6	see was if you had cooling of the fluid going through the
7	perforations.
8	As a result of that, when we tried running
9	differential temperature surveys, we would see some
10	indications, but it wasn't There wasn't enough
11	differential temperature between the fluid and enough mass
12	of fracture fluid and the temperature of the reservoir to
13	be a reliable indicator of fracture growth.
14	Q. What depth are these wells?
15	A. These are Well, the Don well is the top zone,
16	and this was The lowest zone in the reservoir was 1100
17	feet, 1200 feet. The Eureka was about the same depth.
18	Q. And the formation, the target formation, is
19	approximately what What's the vertical size of the
20	formation?
21	A. Well, the entire Raton coal and Vermejo coal
22	formation, the entire interval can be as much as 500 feet.
23	When we design fractures, one of the optimization
24	procedures, in fact, is determining what the optimum
25	thickness you could treat with one frac job.

1	Q. What was the temperature at the face of the
2	formation?
3	A. Well, we don't know what the temperature at the
4	face of the formation is, but just so I don't give you a
5	wrong number It's not reported, but as I recall, it was
6	85 degrees, possibly 90. But that's a recollection.
7	Q. And that's what made it difficult to use
8	temperature surveys
9	A. Yes.
10	Q because you had such a low formation
11	temperature?
12	A. Unless we were fracturing in the winter and the
13	fluid temperatures were 40 degrees, there wasn't much of a
14	temperature differential.
15	Q. All right. And so once, by reason of these
16	tracer surveys, you gained some knowledge, then you were
17	able to redesign the fracture treatment so that you stayed
18	in zone as you illustrated with, I think, Exhibits 5 and 6.
19	A. Yes, sir.
20	Q. All right. Now, I take it You know, there's a
21	school of thought that says that when you have a borehole
22	you have this deformation sort of near stress in the hole,
23	and therefore when you're talking about a hydraulic
24	fracture, there's an area where the fracture growth doesn't
25	start till it gets away from the wellbore, then it begins

	232
1	to grow. Do you accept that
2	A. No, sir, I do not.
3	Q concept or not?
4	You do not?
5	A. I do not.
6	Q. All right. And there's also a school of thought
7	that when you use the tracer surveys, the problem with
8	those tracer surveys is that they only read out maybe eight
9	inches, maybe 12 inches from the wellbore, and anything
10	that's happening beyond that distance is becomes an
11	unknown, and you don't accept that?
12	A. The fact that they have a limited depth of
13	investigation is true, and I think eight to 12 is probably
14	reasonable. And certainly anything that would happen
15	beyond that, you would not be able to measure, that's
16	correct.
17	Q. All right. Now, coming back to the situation
18	that you saw in the San Juan Basin with the Chaco wells,
19	you were quite aware, I think maybe this is
20	repetitious that you had another owner whose formation
21	was right in proximity with the formation that you owned?
22	A. Yes, sir.
23	Q. And was there any effort made to do a tracer
24	survey on these January hydraulic fraction [sic] jobs in
25	the two wells that were done in January so that before you

did any other frac jobs you would know the behavior of your
simulations?
A. They were not done.
Q. Okay.
A. There was an effort to do them, but they were not
done.
Q. What do you mean, there was an effort to do them?
A. I begged, pleaded, whined, cajoled, and at that
time I think the cost of that treatment of the
radioactive tracer and logging, was about \$10,000. And
again, that was an expense that, considering that we were
trying to enter what we considered very low-productivity
wells at the time and we were gambling that it was going to
work, that was an unreasonable expense.
Q. Okay, but you as a one-third partner, you
certainly would have borne your share of that expense to
gain that information?
A. Well, there again, I got caught between a rock
and a hard spot, because the professional engineer said, I
want radioactive logging, but I was going to ante up some
portion of that, which was difficult.
So I put the request forward and we discussed it
as a group of working interest owners, and we went forward
without it.
Q. You got You were outvoted?

	234
1	A. On the technical side, I was outvoted. But in
2	all honesty, I was probably I didn't have to pay for it.
3	Q. And another alternative would have been a
4	temperature survey, because in that area you would have the
5	temperature differentials that would be meaningful if you
6	did that kind of survey; isn't that true?
7	A. Well, I don't think so, because the temperature
8	in the reservoir was 95 to 100 degrees, in that
9	neighborhood. Possibly in January you could have had cold
10	enough water. A temperature survey might have worked. I
11	don't recall, though, that it was anything that was
12	discussed.
13	Q. Well, you would agree in January of the year,
14	though, if you decide to use a temperature survey, it would
15	have been meaningful, it would have told you something
16	A. No, I don't agree with that.
17	Q of materiality about what your fracture
18	behavior was?
19	A. No, I don't I don't agree with that. Again,
20	these jobs were designed to 70-quality foam fracs, and so
21	the mass of the liquid that we were pumping And also, if
22	you notice, I was designing very small treating volumes.
23	We're talking about 10,000 gallons of water pumped into
24	this reservoir, and that's not a lot of mass to cause a
25	significant cooling. And I would not agree that a

	235
1	temperature log would give me a lot of meaningful
2	information at this depth, this quantity of water that was
3	pumped.
4	And of course, not knowing what the exact
5	temperature of the fluids in the reservoir are would even
6	be make it harder to speculate.
7	But it wasn't something that I think was
8	seriously considered, and I certainly didn't push for it.
9	Q. Since you've mentioned something about the
10	quantity of fluids, there was two or three other factors I
11	was sort of interested in, in these particularly in your
12	comparison of these fracture stimulations.
13	Do you know whether or not the Whiting well
14	procedures were done with a gel-type fluid or a non-gel?
15	A. I could not tell from the data that I had at the
16	time I prepared this, but the standard procedure was a
17	linear gel base for the fluid. But I do not know.
18	Q. All right. You would agree that a non-gel fluid
19	would have a significantly lower viscosity than a gel-type
20	fluid?
21	A. In a foam?
22	Q. Yes.
23	A. No, I would not agree with that.
24	Q. Well, in the water.
25	A. The water phase of the fluid, a gel fluid would

230
have more viscosity than a non-gel fluid.
Q. Okay. And your wells, your fracture treatments
used a gel fluid; isn't that true?
A. Yes, sir.
Q. What were your I didn't get any pressures.
You gave us the barrels per minute, the gallons and the
quantity of sand proppant, but at what surface pressures?
What was the high surface injection pressure on the wells?
Can you give us that?
A. I can't recall that, no. I can certainly look it
up if you want me to look through the data.
Q. Okay. Well, isn't that significant if we're
talking about what we think the fracture growths are?
A. Well, the fracture growth is, first of all, a net
pressure, and so that is usually calculated and presented
by the service companies as the bottomhole pressure minus
the closure pressure. Whether or not they calculated the
bottomhole pressure is may be a mystery.
But the net pressures are on these plots, and
this is where we're really using the Nolte-Smith plots, and
they're showing somewhere between 800 and 1000 p.s.i., and
the net pressure is
Q. That's at the face of the formation?
A. Pardon?
A. You're talking about at the face of the

1	formation
2	A. If you
3	Q or at the surface?
4	A. At the face of the formation, if you know the
5	closure pressure. And from the looks of both the Maralex
6	and the Pendragon wells where there's multiple plots on the
7	Nolte-Smith plot, it looks like people were uncertain of
8	their closure pressures, so they did three or four plots to
9	see what happens.
10	But the significance of the Nolte plot is the
11	slope of the line, not necessarily the absolute value of
12	the pressure.
13	Q. Okay, we'll come back to that. Let me talk a
14	little bit more with you about the design. When the
15	fracture stimulations that were designed in January were
16	applied, which would have been to the Chaco 1 and the 2
17	Let's see, Chaco 1 and the 2-R, January of 1995. Tell the
18	Examiner what results you got in terms of well performance
19	after the procedures.
20	A. I don't have that in mind, sir.
21	Q. Well, were they successful? Did you start
22	getting the levels of production that you expected?
23	A. Well, we have decline curves for those wells, and
24	I think I would I think Mr. Nicol introduced them, or
25	Mr. McCartney will, and I'd feel more comfortable looking
•	

1	at those curves instead of trying to recall what the
2	performance was.
3	Q. There was a gap, then, the records indicate,
4	after the hydraulic fractures in January on the 1 and the
5	2-R, until May, when the Chaco 4 and 5 were done. Can you
6	explain why that occurred?
7	A. No, sir.
8	Q. What information was being gathered concerning
9	the Whiting wells and, in particular, I refer, when I use
10	the term "information", to the volume of water the wells
11	were producing and the volume of gas that they were
12	producing.
13	A. At what time, what period of time?
14	Q. Between January, 1995, and May, 1995.
15	A. As far as I know, none. I mean, I wasn't aware
16	of any. I mean, it wasn't in front of me and I wasn't
17	looking at it.
18	Q. Okay. Is it just sheer coincidence that the
19	Chaco 4 and 5, which were fracture-stimulated in May of
20	1995, were in very close proximity to the two Whiting wells
21	that had most successfully been dewatered and were
22	producing the most gas out of that group of wells?
23	A. Boy, I don't know how to answer that. The wells
24	were there, and we purchased old wells, and they were where
25	they were. I don't know how that's a coincidence.

	259
1	Q. Well, you purchased six wells. Two wells have
2	not yet, to this day, been fracture-stimulated.
3	A. Okay.
4	Q. And so I'm asking if it's just coincidence you
5	selected the 4 and 5 to be stimulated, and they just
6	happened to be close to those particular Whiting wells.
7	A. I don't think that the selection of the wells for
8	fracture were based upon proximity to other wells or based
9	upon the quality of the reservoir in of the Pictured
10	Cliffs formation in those wells, in our anticipation of
11	successful fracturing and recovery.
12	Q. Did you get that? Successful fracturing and
13	recovery?
14	A. That was our anticipation when we were going to
15	before we did the frac job.
16	Q. Did you achieve that?
17	A. I assume so, because we have some producing wells
18	that weren't producing before we fractured them.
19	Q. Well, and having the If you assume that, why
20	are there two of these six wells that have never been
21	fracture-treated?
22	A. As I recall the conversations at that time, the
23	consensus was, the reservoirs in those two wells were not
24	particularly high quality.
25	Q. Well, after this passage of time from January and
-	

1	the 1 and the 2-R were done, then Exhibits 39 would contain
2	the information on the fracture treatments for the Chaco 4
3	and 5?
4	A. Yes, sir.
5	Q. Okay, let's look at Exhibit 39 under the tab
6	"Fracture Information"
7	A. Okay.
8	Q and we'll turn over the same kind of cover
9	page, "BJ Services", the Chaco Number 4 in Section 1, May
10	10, 1995, Fruitland Coal Formation
11	A. Yes, sir, that's what
12	Q Formation.
13	A. Uh-huh.
14	Q. Fractured. And the transmittal letter from Loren
15	Diede, the district engineer, to J.K. Edwards of the same
16	date, May 10, 1995, the treatment summary refers to the
17	Fruitland Coal formation.
18	A. Okay.
19	Q. And if you want to go back to the treatment
20	report, which is kind of this Western Company form with
21	colored printing, do you find that?
22	A. I'm looking. Yes, sir.
23	Q. The formation is listed as the Fruitland Coal?
24	A. Yes, sir.
25	Q. And the design stimulation recommendation, which

1	is under the Walsh Engineering Recommendation tab
2	A. Again, a Western document?
3	Q. And again, just the same kind of document that we
4	previously referred to, you, in the case of the Chaco
5	Number 1 as reflecting your design, collaboration with Mr.
6	Thompson, and what formation does it list?
7	A. It says Fruitland Coal.
8	Q. So having the experience in January of doing the
9	two wells, was there a recognition by you, or by your
10	company, that what you were really doing was fracture-
11	stimulating the Fruitland Coal formation?
12	A. No, sir, and I I didn't prepare these
13	documents, and I probably I hate to admit this, but I
14	probably didn't look closely at the formation when the
15	proposals came in. I don't know why BJ and Western wrote
16	"Fruitland Coal". If you notice on my net treating plot on
17	those two wells it says "Fruitland Coal" also, but it's not
18	Fruitland Coal.
19	Because of the Because of this hearing we
20	checked the perforations in these wells, and they are
21	perforated in the appropriate reservoir. They are not in
22	the Fruitland Coal.
23	Q. So you're telling us that you got this
24	stimulation recommendation May 5th, 1995, which would have
25	been five days before the work was done, and you either
-	

	242
1	ignored or did nothing to correct, if this was an error,
2	that it says the formation is the Fruitland Coal?
3	A. I think probably the first one Well, I
4	wouldn't say ignored. I think I probably didn't even look
5	at it. I certainly didn't do anything to correct it. I
6	wasn't aware of that problem until we got into preparations
7	for the hearings.
8	Q. And Exhibit 40 is going to show the same
9	information for the Chaco Number 5 well, that in each and
10	every place where there's a reference to the formation that
11	is being fractured, it is described as the Fruitland Coal
12	formation, not the Pictured Cliff formation?
13	A. I'll accept that that's what it says.
14	Q. Let me talk to you about your theory here of
15	which goes, as I understand, like this: The fracture
16	treatments on the Pendragon wells were contained, but the
17	fracture treatment on the Whiting wells were not contained?
18	A. That is a summary statement, yes.
19	Q. All right. And one of the reasons, one of the
20	three reasons that you gave, was that the Pictured Cliffs
21	is a low-pressure reservoir?
22	A. That would It's a lower pressure reservoir
23	than the Fruitland Coal, and so its fracture would tend to
24	grow more readily and robustly in that reservoir than the
25	Fruitland Coal.

	245
1	Q. Okay. Well, give us the information concerning
2	what the pressure of the reservoir was at the time of in
3	January of 1995, of the fracture treatment of the 1 and the
4	2-R and, in May of 1995, the Chaco 4 and 5.
5	A. Well, Mr. Nicol has presented the pressure data
6	that was known, and we had a general sense of the low
7	pressure of the Fruitland and the relatively higher
8	pressure of the Fruitland and the lower pressure of the
9	Pictured Cliffs. I don't think I was acutely aware of that
10	until preparation for this hearing.
11	Q. Well, these are your opinions, Mr. Blauer, that
12	I'm trying to get to the basis of, and I'm asking you, give
13	us the information you have concerning what the reservoir
14	pressure was in the PC at that time
15	A. What my information
16	Q have calculations or
17	A. What my information was in 1994 and 1995, or
18	today?
19	Q. No, what it was whenever you were doing these
20	treatments and concluding that they were staying within
21	zone.
22	A. Okay. At the time I was doing the designs, the
23	formation pressure was not an overwhelmingly important
24	consideration, and particularly the difference in formation
25	pressures between the Fruitland and the Pictured Cliffs was

	Z44
1	not a tremendously important design parameter. I knew I
2	was pumping into 100- to 200-p.s.i. reservoir, I knew about
3	the depth.
4	But I was more interested in the existence of the
5	coals, the barriers of the coals, where the locations of
6	the perforations were in relationship to the coals. And we
7	had a large body of experience in a very similar reservoir
8	at similar depth, which pretty much led us to understand
9	how we would do a fracture in this, this particular kind of
10	reservoir.
11	That was the information. I was more concerned
12	with the barrier growth at that time than the reservoir
13	pressures.
14	Q. Okay. Well, you made conclusions back
15	contemporaneous in time with these fracture stimulations
16	that the fractures had stayed in zone?
17	A. Yes, sir.
18	Q. Okay. But at that time, if I'm understanding
19	your testimony, you weren't basing that on the factor of
20	the relative pressures of the formations?
21	A. No, sir, that was additional information that
22	came to light when we were looking for this
23	Q. Preparation for this?
24	A for this, yes, sir.
25	Q. Okay. So what you were relying on back at the

	273
1	time the procedures were done was the barriers, you say?
2	A. Yes.
3	Q. Okay.
4	A. The presence of them there.
5	Q. The presence of, I think you said, a shale at the
6	top of the target formation?
7	A. Well, I said a sand or I'm sorry, a coal or a
8	shale. A change
9	Q. A coal or a shale?
10	A. A change of formation, a strong lithology change.
11	Q. Okay. So it could have been a coal? In other
12	words, on top of the target formation it could have been a
13	coal rather than a shale, is what you're saying?
14	A. No, let me try to say
15	Q. I thought you just said a coal or a shale. Isn't
16	that what you said?
17	A. I'm not sure what you're asking, so let me make a
18	statement and see if this answers your question, which I'm
19	not quite sure of the question.
20	There is At the top of the Pictured Cliffs
21	there is a strong lithology change. There certainly is a
22	coal up there somewhere. There also might have been a
23	small, thin shale in some wells, not a coal but not a sand.
24	The presence of the coal was an absolute barrier
25	to me with the fracture procedures we were following. The

1	shale might be a fracture barrier, but certainly the coal
2	was.
3	Q. Okay, so your testimony is, the probability is
4	that the barrier to fracture height growth was the coal?
5	A. The strongest probability is, the coal is the
6	fracture height-growth barrier. The shale probably is
7	also.
8	Q. And when you refer to the coal, are you referring
9	to the what we've been calling the upper coal, the thick
10	coal formation, above the upper Pictured Cliffs?
11	A. Yes.
12	Q. All right, so the growth, the vertical growth of
13	the fracture being applied to the Pendragon wells, reached
14	up to the coal, and the coal itself became the barrier that
15	stopped the height growth?
16	A. If it reached that far, and in the Dome Federal
17	well, which is perforated this was the Pictured Cliffs
18	well; I had a radioactive log, Exhibit this one,
19	whatever that one is, B
20	MR. HALL: 5
21	Q. (By Mr. Gallegos) You're going back to Raton
22	Basin, Evergreen
23	MR. HALL: Six.
24	THE WITNESS: No, no, this is in a WAW Pictured
25	Cliffs reservoir.

1	In this particular well, the perforations are
2	indicated about 1308 to about 1320. There is a lithology
3	change, which is probably a shalier interval, and that
4	shalier interval was sufficient to stop the upper growth in
5	this zone. Had it breached that shale and had it breached
6	that lithology change, the coal would have absolutely
7	stopped it.
8	Q. (By Mr. Gallegos) Okay, let's use one of the
9	wells that we're interested in. Could we have the put
10	up the log for the Chaco 4 or Chaco 5? You've got cross-
11	section for those logs.
12	A. Chaco 4. Let's see, this is Exhibit
13	MR. HALL: I don't know.
14	MR. NICOL: Cross-section A-A'. I don't remember
15	I think it's 3.
16	Q. (By Mr. Gallegos) Yeah, I think 3 is
17	A. Exhibit 3?
18	MR. HALL: N3 is correct.
19	THE WITNESS: The Chaco 4 well is the fourth well
20	from the left.
21	Q. (By Mr. Gallegos) All right. Give us a moment,
22	Mr. Blauer, so we can if I can find the exhibit.
23	Okay, the fourth The Number 4 is the fourth
24	well from the left?
25	A. Yes, sir.

	210
1	Q. It's also the fourth well from the right.
2	A. Coincidentally.
3	Q. All right. And what we're looking for What
4	kind of a frac pressure are you going to tell us is needed
5	in order to constitute a barrier to the height growth?
6	A. Well, my
7	Q. What kind of pressure is it in p.s.i., is it
8	going to have to withstand, given the stimulations that
9	were applied to these wells, in order to stop the growth?
10	A. My experience in the Raton Basin, where I have
11	bottomhole pressure data and lots of data, are that to
12	breach a coal interval from a well that was initiated in a
13	shale would require between 2500 and 3000 pounds net
14	pressure, if the fracture was initiated in the sand or
15	shale. So a significantly higher pressure, the net
16	pressures, during the treatment, around 1000 p.s.i.
17	Q. It would take to breach it? Was that the
18	word?
19	A. To breach it. If you initiated your fracture in
20	the sand/shale, to breach that barrier you need an extra
21	between 500 and 1500 pounds of pressure, net pressure to do
22	that.
23	Q. I'm sorry, I took down 2500 and 3000. Is that
24	A. That's absolute. I'm saying net, net pressure.
25	Q. Oh, net opening pressure?
1	

1	But absolute pressure If we look at the Number
2	4 and you see you've got the perfs, you have separated
3	perfs but you have a set that's the higher set.
4	A. Well, let's look at the Number 4. I think that's
5	one of the exhibits that you gave me
6	Q. Yes, sir.
7	A your Exhibit Number 39. And I'll probably
8	look at graphs instead of tables. I'm looking at the
9	treatment graph, which is this thing.
10	Q. Yeah oh, not
11	A. Not the net treating pressure plot, now, the
12	actual treating graph
13	Q. Right here, okay.
14	A which is the pressure
15	Q. It's after the Nolte plot.
16	A. It's the next page after the Nolte plot.
17	MR. CONDON: Now, what section?
18	THE WITNESS: I'm sorry, it's in the section,
19	"Post Frac Treatment Study". It's about halfway back.
20	MR. GALLEGOS: Got it? Okay.
21	THE WITNESS: Okay, the bottomhole treating
22	pressure, which is calculated in this case, according to
23	this chart, which looks to me like it's the red line or
24	the pink line, the pinkish line is 800 to 1000 pounds
25	until the screenout starts. And then when the screenout

1	starts, it increases to about 2000 p.s.i.
2	To breach the coal-shale boundary in this well,
3	we would have had to have seen a bottomhole calculated
4	absolute pressure of somewhere around 1500 to 1800 p.s.i.
5	In other words, if we want to look at it a different way,
6	it is something in excess of a 1.0-p.s.iper-foot
7	gradient.
8	Q. (By Mr. Gallegos) 1.0 or more fracture
9	A p.s.i-per-foot-gradient
10	Q fracture
11	A maybe that's the better way to say it. No,
12	bottomhole-treating-pressure gradient greater than about 1
13	p.s.i. per foot.
14	Q. Well, a fracture In other words, a fracture
15	gradient that would lift the overburden?
16	A. No, sir, it has nothing to do with lifting the
17	overburden at this point. It has to do with overcoming the
18	energy of the compression of this rather squishy coal
19	enough that you can press the coal down, that you actually
20	create a fracture.
21	The problem you have is, the energy to create the
22	fracture in that relatively high Poisson's ratio material
23	is less than the extension pressure laterally into the
24	sand.
25	And so unless you get a very long fracture or you
-	

	201
1	do something like increase your viscosity, your rate,
2	significantly and you get a much higher frictional pressure
3	loss to overcome that 1-p.s.iper-foot boundary breaking
4	pressure, you'll never break into the coal.
5	Q. We'll discuss that, but as I read this chart, if
6	I read it correctly, it's showing a surface pressure from
7	1500 climbing up to 2500
8	A. Yes.
9	Q p.s.i.
10	A. The surface pressure is not what we're worried
11	about in the breaching. I mean, the surface pressure is
12	going to be controlled by the size of the tubing and the
13	roughness of the tubing. There's other factors. What
14	we're really concerned about is the bottomhole treating
15	pressure.
16	Q. And so you're saying when you have a surface
17	pressure and you add to that the hydrostatic head of the
18	fluids, that you're going to have a lesser pressure
19	formation?
20	A. Well, you subtract the hydrostatic head and add
21	the friction, and in this particular case the bottomhole
22	treating pressure was lower than the surface treating
23	pressure.
24	Q. Well, as you're reading the I don't know
25	what color that is, kind of a red or violet, the line under

-

 the surface pressure line? A. Yes, sir. Q. I guess it's red. And that climbs up to something that you might read as being 2100 p.s.i.? A. Yes, sir. We were in the process of screenout in this well. We were filling up the fracture. Q. All right. And so that amount of pressure, 2100 p.s.i. at the formation, would not be sufficient to break into the coal? A. Well, clearly in this case it did not, because had it broken into the coal we would have seen a sudden decline in pressure. In fact, you see that sometimes when you're fracturing wells: If you break across a barrier you'll be seeing some kind of a pressure increase; when you
 Q. I guess it's red. And that climbs up to something that you might read as being 2100 p.s.i.? A. Yes, sir. We were in the process of screenout in this well. We were filling up the fracture. Q. All right. And so that amount of pressure, 2100 p.s.i. at the formation, would not be sufficient to break into the coal? A. Well, clearly in this case it did not, because had it broken into the coal we would have seen a sudden decline in pressure. In fact, you see that sometimes when you're fracturing wells: If you break across a barrier
 something that you might read as being 2100 p.s.i.? A. Yes, sir. We were in the process of screenout in this well. We were filling up the fracture. Q. All right. And so that amount of pressure, 2100 p.s.i. at the formation, would not be sufficient to break into the coal? A. Well, clearly in this case it did not, because had it broken into the coal we would have seen a sudden decline in pressure. In fact, you see that sometimes when you're fracturing wells: If you break across a barrier
 A. Yes, sir. We were in the process of screenout in this well. We were filling up the fracture. Q. All right. And so that amount of pressure, 2100 p.s.i. at the formation, would not be sufficient to break into the coal? A. Well, clearly in this case it did not, because had it broken into the coal we would have seen a sudden decline in pressure. In fact, you see that sometimes when you're fracturing wells: If you break across a barrier
 6 this well. We were filling up the fracture. 7 Q. All right. And so that amount of pressure, 2100 8 p.s.i. at the formation, would not be sufficient to break 9 into the coal? 10 A. Well, clearly in this case it did not, because 11 had it broken into the coal we would have seen a sudden 12 decline in pressure. In fact, you see that sometimes when 13 you're fracturing wells: If you break across a barrier
 Q. All right. And so that amount of pressure, 2100 p.s.i. at the formation, would not be sufficient to break into the coal? A. Well, clearly in this case it did not, because had it broken into the coal we would have seen a sudden decline in pressure. In fact, you see that sometimes when you're fracturing wells: If you break across a barrier
8 p.s.i. at the formation, would not be sufficient to break 9 into the coal? 10 A. Well, clearly in this case it did not, because 11 had it broken into the coal we would have seen a sudden 12 decline in pressure. In fact, you see that sometimes when 13 you're fracturing wells: If you break across a barrier
 9 into the coal? 10 A. Well, clearly in this case it did not, because 11 had it broken into the coal we would have seen a sudden 12 decline in pressure. In fact, you see that sometimes when 13 you're fracturing wells: If you break across a barrier
 A. Well, clearly in this case it did not, because had it broken into the coal we would have seen a sudden decline in pressure. In fact, you see that sometimes when you're fracturing wells: If you break across a barrier
11 had it broken into the coal we would have seen a sudden 12 decline in pressure. In fact, you see that sometimes when 13 you're fracturing wells: If you break across a barrier
12 decline in pressure. In fact, you see that sometimes when 13 you're fracturing wells: If you break across a barrier
13 you're fracturing wells: If you break across a barrier
14 you'll be seeing some kind of a pressure increase; when you
15 break across the zone you'll see a very rapid decrease in
16 pressure.
17 And had we broken across this shale/coal barrier,
18 we would have seen a very rapid drop in our pressure. And
19 this is pretty clear that in this particular reservoir,
20 that the breaking pressure of a boundary of a fracture
21 initiated in a sand is going to be in excess of 1000 p.s.i.
22 net.
23 Q. Now, I thought you already told us that these
24 formations were in communication because back a couple
25 years earlier Whiting's fracture treatments had frac'd down

	235
1	into the Pictured Cliffs?
2	A. Well, I didn't exactly say that. I think the
3	question I answered was, based upon my analysis of the
4	data, were the Whiting wells contained? And my answer was,
5	based upon my analysis, no, they are not contained. I do
6	not know if they grew up, down, both.
7	My belief in my study I have no data to
8	support that, though is that the probability is that
9	they grew both upwards and downwards, and they did grow
10	into the Pictured Cliffs.
11	Q. Okay. So assuming that that was the case, then
12	you already had formations that were in communication, and
13	you wouldn't see anything by way of a break in the plot,
14	because there was no breaking to do. The Pendragon
15	treatment
16	A. Well
17	Q was flowing on up into the coal formation
18	because channels were already made?
19	A. Huh?
20	Q. When you said you said that Pendragon the
21	Pictured Cliffs had been fractured by the fracture
22	stimulations on the Whiting wells back in 1992, 1993, when
23	they were completed.
24	A. Okay, at the location of the Whiting wells
25	Q. Okay.

1	A in the Whiting wells, which is some distance -
2	- it's either as close as 200 and as much as, I guess,
3	2000 feet from a Pendragon well when Whiting fractured
4	the wells and they grew out of zone, and assuming they grew
5	down into the Pictured Cliffs, there would have been
6	hydraulic fracturing, probably proppant, in the Pictured
7	Cliffs, and there would have been a connection between the
8	Whiting wellbore and the Pictured Cliffs reservoir at that
9	site, yes, sir.
10	Q. Okay, but it wouldn't have any effect over at the
11	Pendragon wells? Is that what follows from what you're
12	telling us?
13	A. I don't know that it would or wouldn't. I mean,
14	you now have a connection between the two reservoirs, and
15	if you have established a connection and a flow connection,
16	yes, you could possibly have gas movement between the two
17	reservoirs, yes.
18	Q. Okay. And if you already have a connection, then
19	you don't have any barrier to break when you applied your
20	fracture treatments in 1995?
21	A. That's totally incorrect, because the barrier is
22	at the Pendragon well, and we're talking about the wellbore
23	and within probably the first 50 or 100 feet away from the
24	wellbore, we're talking about the ability of a fracture
25	that is initiated in the Pendragon Pictured Cliffs well to

breach the barrier into the coal from the perforations in
the Pictured Cliffs.
Whatever happened at the Whiting wells, in this
sense i.e., breaking a barrier, growing out of zone or
whatever whatever happens at Whiting well probably
and I say "probably" because you could if you wanted to
get really wild and really bizarre, you could build a case
where the two wells were right in line in the fracture, and
not only did the fracture in the Whiting well breach the
Pictured Cliffs well but actually intersected the wellbore
of the Pendragon well. That would be a possibility, but
it's tiny, tiny.
Excluding that, nothing that happened in the
fracturing of the Whiting well in the Fruitland Coal would
affect the fracturing at the Pendragon Pictured Cliffs
well, in terms of breaching a barrier. Those are not
connected at all.
Q. Okay, and nothing that happened at the Whiting
well, if the fractures did go into the Pictured Cliffs,
would affect production of gas from the Pictured Cliffs
formation, because the formation the coal formation is a
higher pressure and the perforations in the Whiting wells
are open in that formation; isn't that right?
A. I don't know that I can answer that question. I
haven't studied that.

1	Q. All right. Now, just finally, speaking of the
2	coal as a barrier, with your extensive experience in coal
3	formations, you are aware that it is believed that these
4	formations have what is sort of commonly referred to as
5	natural cleating, are you not?
6	A. Yes, sir.
7	Q. There is a permeability that exists within the
8	coal by reason of sort of a matrix of breaks or cracks that
9	exist in nature, in the
10	A. Absolutely.
11	Q deposition?
12	A. Absolutely.
13	Q. All right. So we are to understand that your
14	view is that when the fluids from the fracture treatments
15	on the Pendragon wells reached the coal, in spite of the
16	existence of this natural permeability in the cleating,
17	those fluids would not go up into the coal?
18	A. Well, actually, one of the explanations for the
19	reason that coals are a very good fracture-growth barrier
20	deals with cleating. There's Right now, there's three
21	plausible explanations. One is the difference in the
22	Poisson's ratios of the sands, shales and coals.
23	The other one is the higher permeability of the
24	cleat system of the coals. When you encounter a coal with
25	fracture fluid, you essentially encounter a reservoir with

	257
1	a significantly higher leakoff. Often it's two orders of
2	magnitude higher leakoff.
3	And one of the laboratory-observed methods that
4	cause the coals to be fracture barriers is, when the
5	fracture tip encounters a coal, that's growing through a
6	low leakoff sand or shale, encounters a high-permeability
7	coal, the leakoff is so high that instead of building a
8	fluid pressure in the coals enough to fracture it, the
9	coals just let the thing leak off.
10	And when you look at the fracture growth, you
11	have a relatively small treatment rate, the fracture widths
12	are very small so you have higher fluid frictional losses
13	at the tip of the fracture where the tip is encountering
14	the coal. It's a very plausible explanation.
15	In fact, the GOHFER simulator, which is
16	Marathon's simulator, now includes that ability to model in
17	their simulator.
18	The other model, which Bob Barree is presenting
19	at the fall meeting, is one of the differences in the
20	Poisson's ratio. It has nothing to do with the
21	permeability of the coal.
22	My personal professional opinion from the work
23	I've done is that the reason coals are such good barriers
24	is the combination of their high Poisson's ratio and the
25	cleat system and the ability of that cleat system to take

	200
1	the fluid.
2	So it's a combination of both.
3	Q. So that thesis would lead one to the conclusion
4	that you really can't fracture the coal when you're trying
5	to apply, intentionally, a fracture stimulation to it,
6	because your fracture fluids just leak off in this cleat
7	matrix?
8	A. That's entirely wrong. If you perforate in the
9	coal and if you're trying to fracture in coal and perforate
10	in the coal, you've hopefully designed your fracture fluid
11	that and your fracture-treating rate, sufficiently high
12	that you'll overcome the leakoff. And that's the whole
13	purpose of designing a fracture fluid.
14	Now, there's a large discrepancy of We'll say
15	there's a large body of disagreement between the fracturing
16	experts and how you go about figuring out what that leakoff
17	rate is. But as I showed in the Raton Basin and other
18	coals that I've fractured, you certainly do take into
19	consideration the permeability of the cleat system or the
20	fluid efficiency that you'd have in a reservoir with second
21	permeability. When you design your fracture fluid you make
22	damn sure that you get enough rate in there to overcome
23	that.
24	Q. Okay. And on that note could we ask that you
25	supply us I don't want to elongate the process here; I'd

1	like to finish up. Could we ask that you supply us with
2	the data concerning the fracture treatments on these Raton
3	Basin wells that you used where you say the fracture stayed
4	within the target zone? Could you give us that information
5	so our people could have that?
6	MR. HALL: Well, Mr. Examiner, it's sort of a
7	late request. I don't know that we're able to comply for
8	this hearing, frankly.
9	MR. GALLEGOS: Well, we've never heard about this
10	before. How can we make an earlier request until we've
11	heard the well information and we have a witness who's
12	now
13	Q. (By Mr. Gallegos) You've got it right there?
14	A. On Exhibit B13 I have a It's a very basic
15	presentation, just rate, treating volume and proppant
16	concentration probably.
17	Q. Well, if we could have pressures, pressures and
18	volumes.
19	MR. HALL: We'll see if we can get them. We
20	can't promise. We will try.
21	Q. (By Mr. Gallegos) Well, do you have that
22	available?
23	A. I have it in my office, but I'm going to
24	certainly do the courtesy of checking with Evergreen, see
25	if they have any reason that they wouldn't want that

1	released.
2	MR. GALLEGOS: That completes my cross-
3	examination.
4	EXAMINATION
5	BY MR. CHAVEZ:
6	Q. Mr. Blauer, on your phase-change graph you talked
7	about an analogy of a pop bottle.
8	A. It's a poor analogy, but
9	Q. All right, because there really isn't a phase
10	change that goes on in there, isn't it? It's just
11	dissolved carbon dioxide coming out of solution?
12	A. That is correct, but if you were sitting in a
13	laboratory with an absolutely pure bottle of methane and
14	you unscrewed it, as soon as the pressure in the bottle
15	dropped you'd see the methane bubble, and it would be the
16	same process.
17	That was a poor analogy in realty, but a very
18	common analogy of what happens when you cross the phase
19	envelope from a constant temperature.
20	Q. Okay, in example that you used of increasing BTU,
21	it was mostly theoretical. Have you seen this happen in
22	other pools that reach low pressures, where there's
23	increasing BTU?
24	A. Yes, I have. I'm working in a reservoir in
25	Australia right now where that's a major concern, because

260

1	they're trying to figure out how to optimize the recovery
2	of their heavier hydrocarbons, and the best way to do that
3	is draw the pressure down. So it's beginning to look more
4	like a coal gas reservoir by drilling more wells and
5	getting the pressure down faster.
6	Q. Do the gas analyses from the Pendragon wells bear
7	out what you've stated about increasing butanes, propanes
8	and other heavier hydrocarbon gases?
9	A. Well, again, that's a very difficult analysis to
10	do, because the BTU analysis is related to the pressure
11	history and production history of the reservoir. What we
12	see I think Mr. Nicol introduced in his testimony on the
13	I'm sorry, Lucky Strike, what's the name of the well?
14	MR. NICOL: Designated Hitter 2.
15	THE WITNESS: Designated Hitter 2. The BTUs
16	started high, reduced with time, stabilized, the well was
17	fractured Designated Hitter, yes was fractured, and
18	there was an increase in BTU after the well was fractured,
19	indicating that you were connected to additional new
20	reservoir that was above the gaseous the bubble point of
21	the heavier hydrocarbons.
22	That whole issue is very difficult because you
23	have a multi-phase reservoir You have a two-phase
24	reservoir with a multi-component system, with very small
25	quantities of the heavier hydrocarbons. It's very

1	difficult to simulate. We've tried to do that and we
2	can't.
3	Q. (By Mr. Chavez) But wouldn't the gas analyses
4	bear out that you've got increasing propanes and butanes
5	and got heavier hydrocarbon gases?
6	A. For a period of time, yes. Yes, you would expect
7	that.
8	Q. Were there any measurements attempted of skin
9	damage that might have been occurring in these wells, that
10	you know of?
11	A. Not that I know of, no, sir.
12	Q. Wouldn't that have been important in trying to
13	design the fracture job, to get beyond the skin?
14	A. If I were a scientist, absolutely. In this case
15	I was an engineer/owner, and the cost of doing that kind of
16	analysis was Again, it was like the radioactive tracing.
17	It was almost cheaper to step up the line, do an acid
18	cleanup and a frac job than it would have been to go out
19	and do a lot of study to try to figure out the answers
20	before we did it.
21	We're playing super poor boy here at this point.
22	Q. Do you agree with Mr. Nicol's characterization of
23	a soft shale between the PC and the coal?
24	A. I would probably be uncomfortable with that, but
25	"soft" and "brittle" are kind of nebulous words. It's kind

· ____

1	of like his reaction to "massive". The shale, relative to
2	a sand, is probably a little softer, it has a little higher
3	Poisson's ratio and probably a lower Young's modulus, so
4	you could call it softer. Certainly when you get it in the
5	rock on the ground, and look at it and probably
6	fissile, and beat it and it's brittle and everything.
7	But I don't know that I would characterize that
8	shale as "soft", no.
9	That's a hard one. I mean
10	Q. Well, isn't it When you talked about the
11	change, or lithologic change, causing a fracture to stop
12	growing, does it matter what type of change it is, if it's
13	to a softer or harder rock?
14	A. Well, what we've found in stating a little more
15	technically than "soft" or "hard" is that if we have
16	initiated a fracture in a low-Poisson's-ratio rock and it
17	encounters a higher-Poisson's-ratio rock, and if there is
18	some permeability in that rock, that rock becomes a
19	potential barrier to growth.
20	Q. What about the other direction?
21	A. If you initiate your fracture in the lower I'm
22	sorry, the higher-Poisson's-ratio rock and in this case
23	we're talking about a shale and if you do something to
24	grow out of that zone, the tendency will be to very rapidly
25	grow out of that zone.
-	

If you look at the extremes, like the 300-foot-1 thick coals in Germany, it's very hard to fracture out of 2 that with one fracture treatment. You can, but it's hard 3 to get enough height to fracture out of it. So you stay 4 contained within the coal. 5 But if you look at thinner coals, like I was 6 looking at the Raton Basin, where you are able to achieve 7 8 enough rate and viscosity to breach those coals, you get 9 very rapid growth out of those through the sands until you 10 get to the next lithology change. 11 And if that lithology change is appropriate for 12 fracture growth, usually -- This almost sounds too simple. 13 If you look at the gamma-ray log and you see a kick to the left, that's a strong, wide kick from the sand side to the 14 shale side, that may be sufficient to cause a growth 15 16 barrier. Okay, so in a sense you're saying it's easier to 17 Q. frac out of the coal than it is to frac out of the 18 19 sandstone? Absolutely, absolutely. It's almost automatic if 20 Α. you're in thin coal that you get a fracture out of it. 21 22 Q. Do your analyses of the Pendragon fracture treatments indicate any fracture growth into what Mr. 23 Nicols indicated as the third bench or lower PC? 24 Well, there we're going to have some professional 25 A.

1 disagreement

_

2	I see fracture barrier down underneath the
3	above the third bench. But I think in most of the wells
4	I'm looking here at the Chaco 4, for example I would be
5	surprised if the fracture grew into the third bench because
6	of the barriers above it. And the treatments that we
7	used it wasn't a major part, because no one seems to
8	care if we fractured into the water but at the time I
9	was doing these fracture designs I was also concerned that
10	we'd fracture into the water in the third bench, and it was
11	an undesirable thing to do. So I chose low rates
12	particularly to stay within what we're now calling the
13	upper and second bench.
14	But I don't think many of Looking at the logs,
15	I would say none of the Pendragon wells grew into that
16	third bench.
17	Q. If there had been natural communication, say
18	through natural fractures between the Fruitland Coal and
19	the Pictured Cliffs, would you have been able to see that
20	on your fracture treatments?
21	A. No, sir.
22	Q. If a fracture of the PC got into one of those
23	connecting fractures, would you have been able to see it
24	then?

	200
1	fracturing treatment we had encountered an in situ
2	fracture, in situ fault, in the Pictured Cliffs, would we
3	have seen that?
4	Q. Yes.
5	A. Absolutely.
6	Q. What would you have seen on your fracture
7	treatment?
8	A. Well, probably the most notable thing we would
9	have seen would be a very, very sudden drop in pressure,
10	because when we encountered that fault, all of a sudden we
11	encounter a feature with, one, a lot of permeability, and
12	two, some amount of storage. If a fault is present,
13	there's a storage there. And if we were to cross that
14	during a treatment we'd see a huge drop in pressure.
15	It would look somewhat similar to breaching the
16	coal, actually. I mean, if we breached the coal and got
17	into the coal, we'd grow very rapidly through the coal to
18	the next and the next sand, if there were one, to the
19	next coal barrier. We would see the same thing if we did
20	that.
21	There would be some subtle differences in the
22	leakoff characteristics between encountering a fault and
23	encountering a coal. You'd see a very rapid leakoff if we
24	encountered a fault.
25	Q. You'd also see the same thing if you encountered

1	a frac that had been induced, say, by a treatment of
2	Whiting on the Fruitland Coal?
3	A. Absolutely.
4	Q. What's the likelihood of encountering a fracture
5	that was produced by another well in a fracture in your
6	well?
7	A. I think Well, tiny. The two wells would have
8	had to have been on strike with the maximum principal
9	stress, and It's unlikely. I mean, I've seen it happen
10	sometimes.
11	But I think that if we had done that we would
12	have heard from Whiting, because they would have frac fluid
13	in their well, they might have had some very high pressures
14	at their well, there might have been a shutdown. I don't
15	know how their wellhead configuration is set up. But I
16	think Whiting would have been aware that we had fractured
17	into their well if we had done that.
18	Q. Do you have fracturing calculations for the
19	Whiting and Maralex I'm sorry, the Whiting and Pendragon
20	wells, that might indicate, say, in the worst possible
21	scenario the fracs approached each other, how close they
22	might be?
23	A. No, sir, I don't.
24	Q. Well, given the information you have now about
25	pressures and lithology, would you change what the fracture

1	treatment would you change what you have done if you
2	were to design it now, knowing the information you have?
3	A. Not in terms of the fracture design, no. I would
4	have probably done a little bit more instrumenting the
5	fracture, collect a little bit more data. But in terms of
6	rates, volumes, quantities of proppant, no, sir.
7	MR. CHAVEZ: Thank you. That's all I have.
8	EXAMINATION
9	BY EXAMINER CATANACH:
10	Q. Okay. Let me go over I wanted to make sure I
11	understand how that the plots that you prepared on the
12	Maralex and Whiting wells, how exactly those were prepared.
13	A. Well, I didn't prepare them. Are you talking
14	about Figures B11?
15	Q. Yes.
16	A. Okay. I actually did not prepare these. These
17	were sheets taken from the fracture-treating reports of the
18	service companies that did the job.
19	What these plots are is, the service company
20	calculated the bottomhole pressure. They also had, either
21	supplied to them or possibly determined by a mini-frac or
22	experience in the area, an estimate of the closure
23	pressure.
24	Q. Now, the closure pressure is the pressure it
25	takes to initiate the fracture; is that correct?
L	

1	A. Well, yes and no. But actually, the closure
2	pressure is measured by creating a fracture and then
3	letting it close and determining the first point of
4	contact. If the world were perfect and that's how
5	fractures worked, that's the closure pressure.
6	And so for Now we'll leave it that that's what
7	it is. What that, though, is, says that that pressure
8	you have to pump a pressure higher than that to get the
9	pressure to part, the first parting pressure. Any pressure
10	above that will cause additional parting, length growth,
11	provide a place to pump your proppant.
12	So they calculate the closure pressure and they
13	calculate or they determine the closure pressure
14	somehow. They then calculate the bottomhole pressure from
15	the surface pressures of the treatment. And this pressure
16	on the Y axis is bottomhole treating pressure minus closure
17	pressure. So it's essentially trying to represent the
18	frictional pressure loss, plus the stress-induced pressure
19	at the fracture.
20	And then the X axis is logarithm of time. And
21	this first plot, which is the first one on the first page,
22	they didn't quite get the time axis right, but it doesn't
23	affect the analysis of the data.
24	Q. Okay, you're looking at the Well Number 2?
25	A. The Gallegos Federal Number 2, yes, sir.
-	

	270
1	Q. Okay.
2	A. Now, the fact that there's two plots on this, or
3	two figures And you look in a number of these diagrams,
4	there's multiple plots. Often, if you look in the upper
5	left-hand corner it says, "Calculated net pressure "
6	I'm sorry, right in the center of the heading. S1,
7	calculated net pressure, is 200 p.s.i. And the second one
8	is calculated net pressure is minus 1300 p.s.i. I guess
9	there's three of them on there, there's one for 800.
10	They either weren't sure or they wanted to look
11	at a statistical sampling of closure stresses, so they
12	plotted three different closure stresses to see how that
13	would affect the Nolte plot. So they have an 800, a 200
14	and a 1200 closure-pressure curve on here.
15	For some reason, I can't see one of them, so I
16	don't know what happened to it, unless it disappeared when
17	we copied it.
18	Q. Okay. So the initial pressure is actually when
19	the treatment began.
20	A. The initial pressure
21	Q. Or
22	A. This pressure which starts up here, that's
23	probably when the treatment began, yes, sir.
24	Q. Okay.
25	A. That's when they started pumping.

1	Q. Typically, what length of time are we looking at
2	in these graphs?
3	A. Well, for the Maralex wells And let me just
4	look through here. Well, probably look at it faster this
5	way; these are all together.
6	It looks like about 70 minutes, 40 minutes, 20
7	minutes, 30 minutes, less than five minutes, 20 minutes,
8	and about four minutes.
9	Q. And that's from start to end
10	A. Yes, sir.
11	Q through the whole treatment?
12	A. Yes, sir.
13	Q. So when you once you plot those graphs, you
14	determine the slope of that line just by visual inspection?
15	A. Yes, sir.
16	Q. Okay. And you compare it to the I'm sorry,
17	what was that graph? It's under Exhibit 9; is that right?
18	A. B9, yes, sir.
19	Q. Okay. You just compare it to that in a
20	qualitative sense, and that tells you in effect what that
21	fracture did?
22	A. Essentially, yes. It's that simple.
23	It's also one of the reasons all of the service
24	companies calculate these and supply them, because it's
25	useful information and it's easy to calculate.

	212
1	Q. Okay. You've shown a negative slope on all of
2	the Maralex wells?
3	A. Well, on this Well, in the early times, yes.
4	They show positive slopes later, which is when they were
5	screening out.
6	On the Gallegos Federal 26-12 31 Number 1, which
7	is this last well, I'm not sure what happened here. They
8	only pumped for, it looks like, 12 or 13 minutes, and they
9	had a pressure-out or screenout. I don't know what
10	happened. They shut down, they tried again, and they got a
11	high pressure.
12	That one It is indeed a negative slope, but
13	it's very close to zero. They could have been pumping at
14	too low a rate and they didn't have enough viscosity rate.
15	I don't know what happened on that one.
16	That one, you could build a case that it's not
17	negative. But the rest of them all have negative slopes of
18	the right amount, or of enough negative slope to
19	indicate out-of-zone growth, unrestrained high growth.
20	Q. Okay, the chart you're looking at for a negative-
21	slope-type line says "unstable height growth". How do you
22	know that that's out of zone?
23	A. The unstable height growth means that the
24	fracture is growing vertically
25	Q. Right.

272

	273
1	A instead of laterally. And if you pump on a
2	reservoir for 15, 20, 30 minutes at a high rate, you put a
3	lot of volume in. Even if you I mean, we can do
4	simulations and do all this.
5	But if you assume that the fracture width is,
6	let's say, as much as an inch, which is a very wide created
7	fracture width, and pick a volume that's reasonable, 150,
8	200 foot, and you start calculating what heights you need
9	to handle that volume of fluid, assuming that the height is
10	growing, you can get 200- and 300-foot fracture heights.
11	In fact, the Fracture Pro models and the work
12	that was done at the GRI multi-well site, a lot of the
13	fracture models around now typically say that fractures are
14	going to have 400, 500, 600 foot of height growth. And
15	I've seen designs where people try to grow those kinds of
16	fractures. That is a material balance. You're creating a
17	volume by your fracture, by the amount of fluid and
18	proppant you're putting in there, and you have to honor
19	that.
20	If you assume out-of-zone growth and the rate and
21	the volume that Maralex/Whiting treated, which was on that
22	other exhibit they put fairly large volumes in some of
23	these wells you have to be able to do something with
24	that volume. If you've got unrestricted height growth,
25	which means you have a limit to your length growth, you're

STEVEN T. BRENNER, CCR (505) 989-9317

273

	2/1
1	going to create big fracture heights, and that's why I say
2	it's out of zone.
3	I'm trying not making this a battle of
4	simulators. If we did that, we could come up with all
5	sorts of weird stuff.
6	Q. Do you feel like they got any horizontal frac in
7	these wells?
8	A. They probably did. Again, just an experience
9	call. They're probably looking at 50 or 100 feet. They
10	got some horizontal fracture growth, sure.
11	Q. But at some point during the treatment it just
12	it was preferentially vertical?
13	A. It is more vertical than lateral. The vertical
14	fracture growths can get all sorts of weird kinds of
15	geometry. But You have to have some lateral growth as
16	well as vertical growth, but if you're getting vertical
17	growth, your effective hydraulic diameter of your fracture
18	is growing. That's why you have the negative slopes.
19	Q. And from this data you can't quantify the lengths
20	of those vertical fractures?
21	A. Well, if I wanted to get into all sorts of very
22	controversial simulation, I'd put my estimate forward, and
23	there's probably five fracture experts in here that, if
24	they were locked in closets where they couldn't talk to
25	each other you'd have five different estimates. We could

1 certainly do that.

Ŧ	certainity do that.
2	I think the importance here is, if we compare the
3	Pendragon and the Maralex wells we see two very different
4	looks to the fractures, which indicates two very different
5	fractures and two very different fracture growth patterns.
6	I think that's the significance here, without getting into
7	quantifying how high and how far.
8	Q. You can't definitively say from this evidence
9	that Maralex frac'd into the Pictured Cliffs zone?
10	A. Not with just this evidence, no sir. That is
11	correct, I cannot do that with this evidence.
12	Q. Okay. Do you have any additional evidence that
13	might help you in that regard?
14	A. I think with the last package of information that
15	was delivered, it might be possible for me to sit down and
16	do simulations.
17	But if you read between the lines, I'm not a
18	believer of simulations, and I'm not sure that the
19	simulators that we have, including my favorite simulator,
20	are solid enough to give us a good handle on what actually
21	happens underground.
22	I would feel a lot more comfortable if we
23	instrumented some wells with some bottomhole pressures and
24	went out and fractured wells, put temperature logs,
25	radioactive tracers and went about this thing the proper

1	way.
2	Q. Can you, in fact, do that after the fact?
3	A. No, sir.
4	Q. You can't?
5	A. That has to be done while you're fracturing.
6	And if my Buddy Chris Wright is right and Paul
7	Branagan is right and there is a service now where you
8	could do the microseismic study that GRI did, you can call
9	Branagan and Associates and install the geophone. That's
10	probably actually the better way to do it, but that has to
11	be done while you're fracturing.
12	Q. Now, I guess you've also stated that you believe
13	that the Chaco wells were nor frac'd out of zone?
14	A. Yes, sir.
15	Q. And that, again, is based upon these logs that
16	you have and these diagrams?
17	A. In 1995 and 1994 when we got this data and I saw
18	what the Nolte plots were, I was done. I had made a
19	contained fracture that hadn't breached the coals, probably
20	hadn't breached some barrier down below somewhere. I was
21	content that we had achieved our goal of a contained
22	fracture.
23	In reflection, for preparation for this, there's
24	other pieces of data that give me even more confidence in
25	that.

1	Q. Okay, you have no other evidence to indicate that
2	you to support this?
3	A. No, sir.
4	Q. Okay.
5	A. No hard No tracer surveys, temperature
6	surveys, nothing like that.
7	Q. In going about designing your frac treatments for
8	these wells, did you rely on was it your prior
9	experience in the Raton Basin?
10	A. Not just the Raton Basin. I've been doing
11	contained fracture probably for about ten years all over
12	the world and had very strong Well, I have a large
13	database but also a very strong experience level with this.
14	And I had a pretty Because of the Raton Basin
15	and some work that we were doing, we were very early on in
16	our studies of Raton Basin, and also some work we've done
17	in the Rosa Unit in the San Juan Basin for Evergreen,
18	incidentally we had a pretty strong body of knowledge of
19	what kind of pressures, we had depths and reservoir types.
20	We were in pretty good shape in terms of data, even though
21	we didn't have the hard data on these wells.
22	We're using analogy reservoirs, yes, sir.
23	Q. Okay. Can you again go over the major
24	differences between the Whiting frac treatments and your
25	frac treatments, in terms of Is that significant in

1terms of rates, volumes, that type of thing?2A. Yes, sir. Assuming that I won't get into the3issue of the gel or the non-gel, because with foams, when4you make a foam the viscosity of the base fluid isn't as5important as it is in a non-foam treatment. So we'll6assume that the viscosities of both fluids were essentially7the same. That's not true, but we'll assume it, because8they're not It's not that big of a difference.9When you look at all the fracture mathematics,10you find that the pressure we're talking now about the11net treating pressure, the change in the treating12pressure is always a function of viscosity and rate.13There's other things there also. But it's always14proportional in some fashion to viscosity and rate.15So if you increase either your viscosity or your16rate, you're going to increase your net treating pressure.17And the higher you increase your net treating pressure, the18more likely you are to break across zones, across barriers.19And if you treat at very high rates, you can probably20breach about anything. I think that's what they found at21the GRI M-site, or at least that's what they thought; it23But the key for the Whiting/Maralex wells is that24they treated these wells at 40 to 45 I'm sorry, 40 to 60		
 issue of the gel or the non-gel, because with foams, when you make a foam the viscosity of the base fluid isn't as important as it is in a non-foam treatment. So we'll assume that the viscosities of both fluids were essentially the same. That's not true, but we'll assume it, because they're not It's not that big of a difference. When you look at all the fracture mathematics, you find that the pressure we're talking now about the net treating pressure, the change in the treating pressure is always a function of viscosity and rate. There's other things there also. But it's always proportional in some fashion to viscosity and rate. So if you increase either your viscosity or your rate, you're going to increase your net treating pressure, the more likely you are to break across zones, across barriers. And the higher you increase that's what they found at the GRI M-site, or at least that's what they thought; it didn't quite work that way. 	1	terms of rates, volumes, that type of thing?
 you make a foam the viscosity of the base fluid isn't as important as it is in a non-foam treatment. So we'll assume that the viscosities of both fluids were essentially the same. That's not true, but we'll assume it, because they're not It's not that big of a difference. When you look at all the fracture mathematics, you find that the pressure we're talking now about the net treating pressure, the change in the treating pressure is always a function of viscosity and rate. There's other things there also. But it's always proportional in some fashion to viscosity and rate. So if you increase either your viscosity or your rate, you're going to increase your net treating pressure, the more likely you are to break across zones, across barriers. And the higher you increase that's what they found at the GRI M-site, or at least that's what they thought; it didn't quite work that way. 	2	A. Yes, sir. Assuming that I won't get into the
 important as it is in a non-foam treatment. So we'll assume that the viscosities of both fluids were essentially the same. That's not true, but we'll assume it, because they're not It's not that big of a difference. When you look at all the fracture mathematics, you find that the pressure we're talking now about the net treating pressure, the change in the treating pressure is always a function of viscosity and rate. There's other things there also. But it's always proportional in some fashion to viscosity and rate. So if you increase either your viscosity or your rate, you're going to increase your net treating pressure. And the higher you increase your net treating pressure, the more likely you are to break across zones, across barriers. And if you treat at very high rates, you can probably breach about anything. I think that's what they found at the GRI M-site, or at least that's what they thought; it didn't quite work that way. But the key for the Whiting/Maralex wells is that they treated these wells at 40 to 45 I'm sorry, 40 to 60 	3	issue of the gel or the non-gel, because with foams, when
 assume that the viscosities of both fluids were essentially the same. That's not true, but we'll assume it, because they're not It's not that big of a difference. When you look at all the fracture mathematics, you find that the pressure we're talking now about the net treating pressure, the change in the treating pressure is always a function of viscosity and rate. There's other things there also. But it's always proportional in some fashion to viscosity and rate. So if you increase either your viscosity or your rate, you're going to increase your net treating pressure, the more likely you are to break across zones, across barriers. And if you treat at very high rates, you can probably breach about anything. I think that's what they found at the GRI M-site, or at least that's what they thought; it didn't quite work that way. 	4	you make a foam the viscosity of the base fluid isn't as
the same. That's not true, but we'll assume it, because they're not It's not that big of a difference. When you look at all the fracture mathematics, you find that the pressure we're talking now about the net treating pressure, the change in the treating pressure is always a function of viscosity and rate. There's other things there also. But it's always proportional in some fashion to viscosity and rate. So if you increase either your viscosity or your rate, you're going to increase your net treating pressure. And the higher you increase your net treating pressure, the more likely you are to break across zones, across barriers. And if you treat at very high rates, you can probably breach about anything. I think that's what they found at the GRI M-site, or at least that's what they thought; it didn't quite work that way. But the key for the Whiting/Maralex wells is that they treated these wells at 40 to 45 I'm sorry, 40 to 60	5	important as it is in a non-foam treatment. So we'll
 they're not It's not that big of a difference. When you look at all the fracture mathematics, you find that the pressure we're talking now about the net treating pressure, the change in the treating pressure is always a function of viscosity and rate. There's other things there also. But it's always proportional in some fashion to viscosity and rate. So if you increase either your viscosity or your rate, you're going to increase your net treating pressure, the more likely you are to break across zones, across barriers. And if you treat at very high rates, you can probably breach about anything. I think that's what they found at the GRI M-site, or at least that's what they thought; it didn't quite work that way. But the key for the Whiting/Maralex wells is that they treated these wells at 40 to 45 I'm sorry, 40 to 60 	6	assume that the viscosities of both fluids were essentially
 When you look at all the fracture mathematics, you find that the pressure we're talking now about the net treating pressure, the change in the treating pressure is always a function of viscosity and rate. There's other things there also. But it's always proportional in some fashion to viscosity and rate. So if you increase either your viscosity or your rate, you're going to increase your net treating pressure, the more likely you are to break across zones, across barriers. And the higher you figh rates, you can probably breach about anything. I think that's what they found at the GRI M-site, or at least that's what they thought; it didn't quite work that way. But the key for the Whiting/Maralex wells is that they treated these wells at 40 to 45 I'm sorry, 40 to 60 	7	the same. That's not true, but we'll assume it, because
 you find that the pressure we're talking now about the net treating pressure, the change in the treating pressure is always a function of viscosity and rate. There's other things there also. But it's always proportional in some fashion to viscosity and rate. So if you increase either your viscosity or your rate, you're going to increase your net treating pressure. And the higher you increase your net treating pressure, the more likely you are to break across zones, across barriers. And if you treat at very high rates, you can probably breach about anything. I think that's what they found at the GRI M-site, or at least that's what they thought; it But the key for the Whiting/Maralex wells is that they treated these wells at 40 to 45 I'm sorry, 40 to 60 	8	they're not It's not that big of a difference.
net treating pressure, the change in the treating pressure is always a function of viscosity and rate. There's other things there also. But it's always proportional in some fashion to viscosity and rate. So if you increase either your viscosity or your rate, you're going to increase your net treating pressure. And the higher you increase your net treating pressure, the more likely you are to break across zones, across barriers. And if you treat at very high rates, you can probably breach about anything. I think that's what they found at the GRI M-site, or at least that's what they thought; it didn't quite work that way. But the key for the Whiting/Maralex wells is that they treated these wells at 40 to 45 I'm sorry, 40 to 60	9	When you look at all the fracture mathematics,
12 pressure is always a function of viscosity and rate. 13 There's other things there also. But it's always 14 proportional in some fashion to viscosity and rate. 15 So if you increase either your viscosity or your 16 rate, you're going to increase your net treating pressure. 17 And the higher you increase your net treating pressure, the 18 more likely you are to break across zones, across barriers. 19 And if you treat at very high rates, you can probably 20 breach about anything. I think that's what they found at 21 the GRI M-site, or at least that's what they thought; it 23 But the key for the Whiting/Maralex wells is that 24 they treated these wells at 40 to 45 I'm sorry, 40 to 60	10	you find that the pressure we're talking now about the
 There's other things there also. But it's always proportional in some fashion to viscosity and rate. So if you increase either your viscosity or your rate, you're going to increase your net treating pressure. And the higher you increase your net treating pressure, the more likely you are to break across zones, across barriers. And if you treat at very high rates, you can probably breach about anything. I think that's what they found at the GRI M-site, or at least that's what they thought; it didn't quite work that way. But the key for the Whiting/Maralex wells is that they treated these wells at 40 to 45 I'm sorry, 40 to 60 	11	net treating pressure, the change in the treating
 proportional in some fashion to viscosity and rate. So if you increase either your viscosity or your rate, you're going to increase your net treating pressure. And the higher you increase your net treating pressure, the more likely you are to break across zones, across barriers. And if you treat at very high rates, you can probably breach about anything. I think that's what they found at the GRI M-site, or at least that's what they thought; it didn't quite work that way. But the key for the Whiting/Maralex wells is that they treated these wells at 40 to 45 I'm sorry, 40 to 60 	12	pressure is always a function of viscosity and rate.
 So if you increase either your viscosity or your rate, you're going to increase your net treating pressure. And the higher you increase your net treating pressure, the more likely you are to break across zones, across barriers. And if you treat at very high rates, you can probably breach about anything. I think that's what they found at the GRI M-site, or at least that's what they thought; it didn't quite work that way. But the key for the Whiting/Maralex wells is that they treated these wells at 40 to 45 I'm sorry, 40 to 60 	13	There's other things there also. But it's always
rate, you're going to increase your net treating pressure. And the higher you increase your net treating pressure, the more likely you are to break across zones, across barriers. And if you treat at very high rates, you can probably breach about anything. I think that's what they found at the GRI M-site, or at least that's what they thought; it didn't quite work that way. But the key for the Whiting/Maralex wells is that they treated these wells at 40 to 45 I'm sorry, 40 to 60	14	proportional in some fashion to viscosity and rate.
And the higher you increase your net treating pressure, the more likely you are to break across zones, across barriers. And if you treat at very high rates, you can probably breach about anything. I think that's what they found at the GRI M-site, or at least that's what they thought; it didn't quite work that way. But the key for the Whiting/Maralex wells is that they treated these wells at 40 to 45 I'm sorry, 40 to 60	15	So if you increase either your viscosity or your
 more likely you are to break across zones, across barriers. And if you treat at very high rates, you can probably breach about anything. I think that's what they found at the GRI M-site, or at least that's what they thought; it didn't quite work that way. But the key for the Whiting/Maralex wells is that they treated these wells at 40 to 45 I'm sorry, 40 to 60 	16	rate, you're going to increase your net treating pressure.
 And if you treat at very high rates, you can probably breach about anything. I think that's what they found at the GRI M-site, or at least that's what they thought; it didn't quite work that way. But the key for the Whiting/Maralex wells is that they treated these wells at 40 to 45 I'm sorry, 40 to 60 	17	And the higher you increase your net treating pressure, the
20 breach about anything. I think that's what they found at 21 the GRI M-site, or at least that's what they thought; it 22 didn't quite work that way. 23 But the key for the Whiting/Maralex wells is that 24 they treated these wells at 40 to 45 I'm sorry, 40 to 60	18	more likely you are to break across zones, across barriers.
21 the GRI M-site, or at least that's what they thought; it 22 didn't quite work that way. 23 But the key for the Whiting/Maralex wells is that 24 they treated these wells at 40 to 45 I'm sorry, 40 to 60	19	And if you treat at very high rates, you can probably
22 didn't quite work that way. 23 But the key for the Whiting/Maralex wells is that 24 they treated these wells at 40 to 45 I'm sorry, 40 to 60	20	breach about anything. I think that's what they found at
But the key for the Whiting/Maralex wells is that they treated these wells at 40 to 45 I'm sorry, 40 to 60	21	the GRI M-site, or at least that's what they thought; it
24 they treated these wells at 40 to 45 I'm sorry, 40 to 60	22	didn't quite work that way.
	23	But the key for the Whiting/Maralex wells is that
	24	they treated these wells at 40 to 45 I'm sorry, 40 to 60
25 barrels per minute from the data we have, very high	25	barrels per minute from the data we have, very high

1	rates compared to our 20 to 30 barrels a minute, and
2	actually it was probably 20 to 25 barrels a minute.
3	The volume of the treatment is significant,
4	because as I was saying before, you have a material-balance
5	question. If you break out of zone and you've fixed the
6	length of your fracture and you're getting height growth,
7	the more volume you pump, the more height you're going to
8	get.
9	Now, when I look at the Whiting/Maralex wells, on
10	three of the wells they screened out and they pumped the
11	last 15 minutes of their job in a screenout. That's where
12	the pressures were going up very sharply. At that point
13	their height growth had probably been arrested and they
14	were just filling their fracture. That would be my
15	interpretation of the data.
16	But the fact they were treating with large
17	volumes, large pads, I mean, they had a lot of height
18	growth before they started putting proppant in here and
19	possibly arresting their height growth.
20	And so the Pendragon wells were designed with low
21	rates.
22	We won't talk about viscosity right now, because
23	that would be a whole day of trying to figure out what the
24	viscosity of foam in a fracture is. But low rates and low
25	volumes specifically to not risk breaching the coal.
L	

1	Q. Is it possible for you to estimate what the half-
2	length of your fractures were?
3	A. I could do that.
4	Q. Have you done that?
5	A. No. Again, we're back into the question of the
6	battle of the simulators, and that's ugly stuff.
7	EXAMINER CATANACH: Okay, I think that's all I
8	have of this witness.
9	Mr. Hall?
10	MR. HALL: A quick clean-up.
11	FURTHER EXAMINATION
12	BY MR. HALL:
13	Q. Mr. Blauer, refer back to Exhibits 39 and 40 Mr.
14	Gallegos handed you, which include the BJ Services post-
15	frac treatment summaries on the Chaco 4 and Chaco 5, I
16	believe
17	A. Yes, sir.
18	Q the point was made that these are labeled as
19	treatment summaries for Fruitland Coal formation.
20	A. Yes, sir.
21	Q. Just so the record is absolutely clear on this,
22	do these frac-treatment summaries identify the perforated
23	intervals?
24	A. I believe they do, but let me check.
25	I'm looking at Exhibit Number 39, the tab "Post-
1	

Frac Treatment Study", and it looks like it's about page
It's the page that says "Well Data". It's about the fourth
page back, looks like this.
Q. Does the perforation correspond to perforations -
- Pictured Cliffs formation reflected on the well logs?
A. Let's see, you have a number
Q. A-A' cross-section.
A. Well, let's see. The table says "Perforated
Interval: 1,163' - 1,189'".
The gross interval is correctly identified. This
table does not indicate There's actually two perforated
intervals with a little break between them, but the top and
bottom perforation are identified on the log correctly in
this table.
Q. Is it correct to conclude that the post-frac
treatment summary exhibits you were shown by Mr. Gallegos
are simply mislabeled?
A. Yes, sir.
MR. HALL: Nothing further.
EXAMINER CATANACH: Mr. Chavez?
FURTHER EXAMINATION
BY MR. CHAVEZ:
Q. A couple of things, Mr. Blauer. Did the
oottomhole treating pressures that were used on the
Pendragon wells, the bottomhole treating pressures and the

1	rates were those relative to pressures and rates that
2	are needed to fracture the Pictured Cliffs in this area?
3	A. Obviously they were, yes. We had some offset
4	data, other wells, other frac jobs. I think, as Mr. Nicol
5	said, there were a number of Pictured Cliffs wells, and we
6	had a limited amount of that data to discuss. The service
7	companies had that. We had a pretty good idea what our
8	fracture pressures would be, yes, sir.
9	Q. Were they sufficient to fracture the Were
10	those rates and pressures sufficient to fracture the
11	Fruitland Coal?
12	A. If you had perforated the coal if you put your
13	perforations in the coal, yes, sir.
14	Q. In order for a fracture of the Pictured Cliffs to
15	go into the coal, it would have to cross this shale
16	sequence below the coal; isn't that right?
17	A. If there was a shale sequence there, yes, sir.
18	Q. Would that be reflected on your plots in some
19	way?
20	A. As thin as that interval is I recall Mr.
21	Nicol's testimony is, it was between zero and four foot
22	thick. You might not see it in the pressure-treating
23	responses. It's possible. There are some people who will
24	look at a net treating response, the pressure, and try to
25	follow the growth across every gamma-ray kick. I haven't

1	done that, I don't know if it's possible. You might be
2	able to, but I haven't done that.
3	MR. CHAVEZ: Okay, thank you.
4	THE WITNESS: Uh-huh.
5	EXAMINER CATANACH: Anything further?
6	MR. GALLEGOS: I've got to ask a question too
7	now.
8	FURTHER EXAMINATION
9	BY MR. GALLEGOS:
10	Q. I want to read to you, Mr. Blauer, from the July
11	6th, 1988, Examiner Hearing in Case 9420 and 9421. Those
12	are the cases involving the creation of the Fruitland Coal
13	formation Pool. And Mr. Chavez, Frank Chavez, was
14	testifying at page 104 [<i>sic</i>] as follows. I quote:
15	
16	A problem that's developed in developing the coal
17	resources is that due to the nature of the shales that
18	separate the coals and the sandstone, it is not
19	uncommon for a hydraulic fracture initiated in the
20	Fruitland Sand or the Pictured Cliffs sandstone, to
21	break through the shale into a coal.
22	
23	Are you aware of that?
24	A. I wasn't aware of that statement, no, sir.
25	Q. Okay. Were you aware of that being a fact
•	

STEVEN T. BRENNER, CCR (505) 989-9317

283

that -- experienced by --1 I don't think that --2 Α. 3 0. -- those who --I don't think that's a fact. My data would say 4 Α. that that's uncommon. 5 6 MR. GALLEGOS: Okay. That's all. EXAMINER CATANACH: Okay, anything further of 7 8 this witness? 9 MR. HALL: Not from this witness. I can do one 10 more by six, by ten till six. 11 EXAMINER CATANACH: Who do you have in mind, Mr. 12 Hall? 13 MR. HALL: Paul Thompson. I have a very brief direct of him. 14 15 MR. CONDON: Well, we're not necessarily going to 16 be brief on cross. 17 EXAMINER CATANACH: Yeah, that's the problem. Why don't -- I think it would be a good place to stop. 18 MR. GALLEGOS: Before we close the record for 19 today, we have identified and referenced our Exhibits 9, 20 37, 39 and 40, and I'd like to move their admission? 21 22 MR. HALL: You know, I am going to object. They weren't authenticated through any of the witnesses we've 23 24 presented today. I'm sure Mr. Gallegos can authenticate 25 them among his own witness.

284

EXAMINER CATANACH: Will you have somebody to 1 2 testify to these, Mr. Gallegos? MR. GALLEGOS: Well, 37, 39 and 40 are documents, 3 the well costs, produced to us by Mr. Hall's clients. 4 So are you saying they're not authentic? 5 MR. HALL: To tell you the truth, I cannot 6 respond to that. I haven't had a chance to even look at 7 8 them, so I don't know. 9 MR. CARROLL: Why don't you look at them right 10 after we adjourn here, and then tomorrow morning we'll move them into the record? 11 12 MR. HALL: Okay. 13 MR. GALLEGOS: And is there an objection to 9, which is simply the map and the conveyancing documents by 14 which the parties obtained their ownership? 15 16 MR. HALL: I don't object to that now. EXAMINER CATANACH: Okay, Exhibit Number 9 will 17 be admitted as evidence. 18 19 MR. GALLEGOS: Okay. EXAMINER CATANACH: And with that, we'll adjourn 20 until tomorrow morning at 8:15. 21 22 (Thereupon, evening recess was taken at 5:47 I de hereby certify that the foregoing is a complete record of the proceedings in 23 p.m.) the Examiner bearing of Case 102 24 25 , Examiner Of Conservation Division

285

CERTIFICATE OF REPORTER

STATE OF NEW MEXICO)) ss. COUNTY OF SANTA FE)

I, Steven T. Brenner, Certified Court Reporter and Notary Public, HEREBY CERTIFY that the foregoing transcript of proceedings before the Oil Conservation Division was reported by me; that I transcribed my notes; and that the foregoing is a true and accurate record of the proceedings.

I FURTHER CERTIFY that I am not a relative or employee of any of the parties or attorneys involved in this matter and that I have no personal interest in the final disposition of this matter.

WITNESS MY HAND AND SEAL August 10th, 1998.

STEVEN T. BRENNER CCR No. 7

My commission expires: October 14, 1998