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IT IS THEREFORE ORDERED:

(A) That, effective , a new pool in all or parts of San

Juan, Rio Arriba, McKinley and Sandoval Counties, New Mexico, classified as a
gas pool for production from the Fruitland Coalbed Seams, is hereby created
and designated the ﬁan Juan Basin Fruitland Coalbed Methane Gas Pool, with the
vertical limits comprising all coal seams within the stratigraphic interval
from approximately 2450 feet to 2880 feet on the Gamma Ray/Bulkaensity log of
the Amoco Production Company Schneider Gas Com "B" Well No. 1, located 1110
feet from the South line and 1185 feet from the West line of Section 28,
Township 32 North, Range 10 Hest, NMPM, San Juan County, New Mexico, which for
the purpose of this order shall include all stratigraphically equivalent coal

seams which by virtue of intertonguing or other geological events may be found

“within the upper Pictured Cliffs Formation. The horizontal limits shall

consist of the following described lands:

West through 6 West, NMPM
West through 8 West, NMPM
West through 9 West, NMPM
West through 11 West, NMPM
HWest through 14 West, NMPM
East through 16 Hest, NMPM
East through 16 West, NMPM
East through 16 HWest, NMPM
Hest through 16 West, NMPM
Hest through 16 West, NMPM
West through 15 Hest, NMPM
West through 15 Hest, NMPM
West through 15 West, NMPM
West through 13 HWest, NMPM

Township 19 North, Ranges
Township 20 North, Ranges
Township 21 North, Ranges
Township 22 North, Ranges
Township 23 North, Ranges
Township 24 North, Ranges
Township 25 North, Ranges
Township 26 North, Ranges
Township 27 North, Ranges
Township 28 North, Ranges
Township 29 North, Ranges
Township 30 North, Ranges
Township 31 North, Ranges
Township 32 North, Ranges
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(B) That for the purpose of this order a San Juan Basin Fruitland

Coalbed Methane Gas Well is a well that is producing from the Fruitland

Coalbed Seams as demonstrated by a preponderence of data which could include

the following data sources:

a)
b)
c)
d)
e)
f)
g
h)
i)

Electric Log Data

Drilling Time

Drill Cutting or Log Cores

Mud Logs

Completion Data

Gas Analysis

Hater ‘Analysis

Reservoir Performance

Other evidence that indicates the production is

predominately coalbed methane.

No one characteristic of lithology, performance or sampling will either

qualify or disqualify a well from being classified as a Fruitland Coalbed

Methane Gas Hell.




SPECIAL RULES AND REGULATIONS FOR THE
SAN JUAN BASIN FRUITLAND COALBED METHANE GAS POOL
SAN JUAN, RIO ARRIBA, MCKINLEY AND SANDOVAL COUNTIES, NEW MEXICO

RULE 1. GENERAL

Each well completed or recompleted in the San Juan Fruitland Coalbed
Methane Gas Pool shall be spaced, drilled, operated and produced in accordance
with the Special Rules and Regulations hereinafter set forth.

RULE 2. POOL ESTABLISHMENT

That the Director may require the operator of a San Juan Basin Fruitland
Coalbed Methane Gas Well, a Fruitland Sand Well or Pictured Cliffs Sand Well,
which is proposed ih the lands described in (A) above, furnish information and
data that would demonstrate to the satisfaction of the Director that the
existing wells are produﬁing and the proposed well will produce from the
appropriate common source of supply.

RULE 3 (a). WELL SPACING & LOCATION

A standard drilling unit for a San Juan Basin Fruitland Coalbed Methane
Gas Well shall consist of 320 acres, plus or minus 25%, substantially in the
form of a rectangle, consisting of a half section, being a legal subdivision
of the U.S. Public Land Surveys, and shall be located no closer than 790 feet
to any outer boundary of the tract, nor closer than 130 feet to any interior
quarter section line.

In the absence of a standard 320 acre drilling unit, an application for
administrative approval of a non-standard-éﬁit’may be made to the Division
Director provided that the acreage to be dedicated to the non-standard unit is
contiguous, and the non-standard unit lies wholly within a single governmental

half section, and further provided that the operator seeking the non-standard



unit obtains a written waiver from all offset operators of drilled tracts or
owners of undrilled tracts adjacent to any point common to the proposed
non-standard unit. In lieu of the waiver requirements the applicant may
furnish proof of the fact that all of the aforesaid were notified by
registered or certified mail (return receipt requested) of the intent to form
such non-standard unit. The Director may approve the application if no
objection has been received to the formation of such non-standard unit within
20 working days after the Director has received the application.

The drilling unit orientation will be determined by the first well
permitted to be drilled in any one particular standard section.
RULE 3 (b). UNORTHODOX WELL LOCATION

The Director shall have authority to grant an exception to the well
Tocation requirements of Rule 3 (a) above withoutéﬂngEE)and hearing when the
necessity for such unorthodox location is based upon topographic conditions or
the recompletion of a well previously drilled into a deeper horizon, provided
said well was drilled at an orthodox or approved unorthodox location for such
original horizon.

Applications for administrative approval of unorthodox locations shall be
filed in duplicate (original to Santa Fe and one copy to the appropriate
District Office) and shall be accompanied by plats showing the ownership of
all leases offsetting the spacing unit for which the unorthodox location is
sought, and also all wells completed thereon. If the proposed unorthodox
location is based on topography, the plat sha]l also show and describe the
existent topbgraphic conditions. o mm——

If the proposed location is unorthodox by virtue of being located closer

to the outer boundary of the spacing unit than permitted by rule, actual



notice shall be given to any operator of a spacing unit or owner of an
undrilled lease towara which the proposed location is being moved.

A11 such notices éhal] be given by certified mail (return receipt
requested) and the application shall state that such notification has been
given. The Director may approve the unorthodox location upon receipt of
waivers from all such offset operators or if no offset operator has entered an
objection to the unorthodox location within 20 working days after the Director
has received the application.

The Director may at his discretion, set any application for administrative
approval of an unorthodox location for public hearing.

RULE 4. INCREASED WELL DENSITY

The Director shall have the authority to administratively approve one (1)
additional San Juan Basin Fruitland Coalbed Methane Gas Well provided the
following conditions are met:

(a) The increased density well must conform to the spacing and
boundary footage requirements set forth in Rule 3 (a). and the increased
density well cannot be located in the same quarter section as the existing
well.

(b) The operator must notify by certified mail (return receipt
requested) all: offset operators located in contiguous standup or laydown
drilling units; and in the case that the offsetting units are not
developed, then notice shall be provided to the owners of contiguous lands.

(¢) If no objection is received within 20 working days from
receipt of notice, then the applicatiom@#t1T be administratively approved
by the Director. If any objection is received within the time 1imit, then
the Director will set the application for increased well density for

public hearing.



RULE 5. HORIZONTALLY DRILLED WELLS

The Director shall have the authority to administratively approve an
intentionally deviated well in the San Juan Basin Fruitland Coalbed Methane
Gas Pool for the purpose of penetrating the coalbed seams by means of a
wellbore drilled horizontally, at any angle deviated from vertical, through
such coalbed seams provided the following conditions are met:

(a) The surface location of the well is within the permitted
drilling unit area of the proposed well.

(b)  The bore hole must not enter or exit the coalbed seams outside
of a drilling window which is in accordance with the setback requirements

of Rule 3 (a).

If the operator applies for a permit to drill a horizontal well in which
the wellbore is intended to cross the interior quarter section line, the
operator must notify by certified mail (return receipt requested) all: offset
operators located in contiguous standup or 1aydowq<§§££i§§§§:§ril1ing units;
and in the case that the offsetting units are not developed, then notice shall
be provided to the owners of contiguous lands.

If no objection is received within 20 working days from receipt of notice,
then the application may be administratively approved by the Director. If any
objection is received within the time limit, then the Director will set the
application for horizontally drilled wells for public hearing.

RULE 6 (a) TESTING.
In lieu of the gas well testing requirements of Order No. R-8170, testing

s’ s e R me—
for the San ‘Juan Basin Fruitland Coalbed Methane Gas Pool shall consist of: a



minimum twenty-four (24) hour shut-in period, unless otherwise specified by
the Director, and a three (3) hour production test. The following information
from this initial production test must be reported:
(1) the surface shut in tubing and/or casing pressure and date
these pressures were recorded;
(2) the length of the shut-in period;
(3) the final flowing casing and flowing tubing pressures and the
duration and date of the flow period;
(4) the individual fluid flow rate of gas, water and oil which
must be determined by use of separator; and
(5) the method of production, e.g. - flowing, pumping, etc., and
disposition of gas.
RULE 6 (b). VENTING OR FLARING

Venting or flaring for extended well testing will be permitted for
completed San Juan Basin Fruitland Coalbed Methane Gas Wells for a test period
of not more than thirty (30) days or a cumulative produced volume of 50 MMCF
of vented gas, whichever occurs first, the operator will notify the Director
of this testing period.

If an operator has cause to perform further testing of a well, then
administrative approval may be made by the Director to permit an additional
period time and volume limit, set by the Director after sufficient evidence to
justify this request has been submitted. In no case shall a well be
administratively authorized to vent for a period greater than twelve (12)

months. e c e



RULE 7. EXISTING WELLS 4)
That the operator of an existing Fruitland, Pictured Cliffs or commingled

Fruitland/Pictured Cliffs well, which is in conformance with Paragraphs (A Z

and (B) of this order and is drilling to, completed, or has g%czggroved APD 86L4hﬂ

for which the actual or intended completed interval is the San Juan Basin 6??6

Fruitland Coalbed Methane Gas Pool, may request such well be reclassified as a fi:hﬂ

San Juan Basin Fruitland Coalbed Methane Gas Well by the submittal of a new

Form C-102 and C-104 within 90 days of the effective date of this order; this //

well may be so designated with its original spacing unit size as a //

non-standard San Juan Basin Fruitland Coalbed Methane Gas Well or may be

enlarged to be in conformance with Rule 3 (a).

/
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Figure 4 -- Induction-electric log and lithologic column of the type well of

the Huerfanito Bentonite Bed of the Lewis Shale showing the interval from below

the Huerfanito through the lower part of the O0jo Alamo Sandstone.

Lithologies

are based on an interpretation of the three geophysical logs shown.
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Proceedings of the 1987 Coalbed Methane Sym-

J0sa, Alabama, Nov. 16-19, 1987

THE 1987 COALBED
METHANE SYMPOSIUM

Influence of Coal Composition on the Generation and Retention of Coalbed

8711
Natural Gas
J.R. Levine (University of Alabama, Schoo! of Mines & Energy Development)
INTRODUCTION evolve

In terms of composition, coal is classified
according to three distinct characteristics:
1} “"grade", which represents the relative
propofition of organic vs. inorganic constituents,
2) “type", which represents the natural variability
of theé"organic constituents initially deposited in
the coal, and 3) "rank!, which represents the:
physico-chemical changes imparted to the coal by
elevated temperatures and pressures during burial..
Grade, type, and rank influence every aspect of
coal bed natural gas reservoirs either directly or
indirectly. The present paper focuses on two
distinct, but related topics:

1) the influence of type and rank on the the
composition and quantities of volatile substances
formed during coalification, and 2) the influence
of grade and type on the retention of gas in the
subsurface.

EVOLUTION OF
COALIFICATION

VOLATILE SUBSTANCES DURING

The most fundamental change taking place in
coal during coalification 3is the progressive
enrichment of elemental carbon, accompanied by the
elimination and release of large volumes of
"volatile" substances relatively rich in hydrogen
and oxygen. As these wolatile substances are
produced, the H/C and 0/C atomic ratios of the
residual solid coal progressively decrease. The
three principal maceral groups, vitrinite,
liptinite, and inertinite, differ substantially in
their initial H/C - 0/C ratios, hence they also
differ in the quantity and type of gases formed
during coalification.

The coalification process occurs much too
slowly to be observed on a human time scale.
Consequently, we are constrained to examining the
end product and inferring as best we can the
processes that led.to it,
portion of the wolatile substances formed during
coalification remain in the coal today, their
volume and composition is largely problematical.
However, providing a number of reasonable
assumptions are made, then the quantities of CH,,
Co_, and H,0 liberated during coalification can ge

es%imated v%ithin a fairly narrow range, based on
The model

the major element (C-H-0) composition.
rexpuires: 1) that the organic microconstituents of

,coal

compositionally along the four
generalized maturation pathways depicted in Figure
1 (Tissot and Welte, 1978), 2) that (for the most
part) CH,, 002. and H,O represent the only forms in
which cat'bon. hydrogen, and oxygen can escape from
the coal bed, and 3) that once they are formed,
CH,, CO,, and H,O cannot recombine with the solid

mae;rix gf' the cogl.

The elemental compositions of coalification
"products" and "reactants" can be plotted on a Van
Krevelen diagram (Figure 1) which depicts both the
rank and type of the organic constituents,
Coalification paths for the four principal kerogen
types are labeled I, II, III ard IV. Kerogen type
I1 is roughly equivalent to the liptinite (a.k.a.
exinite] maceral group in coal. Kerogen type III
is equivalent to vitrinite, by far the most common
microscopic constituent of coal, and kerogen type
IV is equivalent to the inertinite maceral group in
coal. At low rank the maceral groups differ
substantially in composition, but progressively
converge upon one another they approach the origin.
For example points A and B represent, respectively,
the elemental campositions of liptinite and
vitrinite macerals coexisting in a coal of
vitrinite reflectance 0.5%, but by the time they
have been ccalified to 2.0% reflectance, they have
virtually identical compositions.

A vector connecting any pair of starting and
end points can be used to represent the
compositional evolution of a particular coal or
coal constituent. This vector can be resolved into
1,2, or 3 components, parallel to the dehydration,
decarboxylation, and/or demethanation pathways
plotted on the diagram. These devolatilization
paths represent the change in composition brought
about by the progressive removal of H,0, 002, or
CH, from the coal structure. Applylns the
constraints of the model, it is possible to reach
‘an end point by a variety of pathways--but only

Inasmuch as only a small - peagmwitirin- a limited range-—or else condition (3) may

be violated. For example, a liptinite maceral of
initial composition A on the liptinite curve is
coalified to composition C. There are two limiting
end member paths to get from point A to point C.
In the first, all oxygen is eliminated as CO, ard
none as H,O while in the second the reverse is
true. In“the first case, the decarboxylation
vector intersects the demethanation path at A',

from which point all subsequent compositional

15




changes can be atcounted for by progressively
removing CH,. , plus CH, (Path A-A"-C). Any other
evolutiona: pathways will include both

decartoxylation and dehydration camponents and,
con-sequently, and  must fall between A-A‘ and A-
A". (Note that the "head-to-tail" construction of
the vectors in these examples does not necessarily
imply a time sequence in volatile evolution,
Velatile evolution occurs concurrently, with either
one or the other substance predominating. However,
the vectors do imply an explicit quantity of gases
evolved.

To quantify this model and determine the
precise composition and quantity of gases for each
path, a set of equations is formulated whereby the
total number of atoms of C, H, and O are eguated
between reactants (subscript r) and products
{subscript p), and the H/C and O/C ratios of the
reactants and products are adhered to:

Cp=Cr- CH, - 002 {1}
Hp = Hr - 4*CH - 2’H20 (2)
Op = Or - 2*002 - H20 (3)
Hp = Cp * 0.50 (4)
Op =Cp * 0.06 (5)

* where Cp, Hp, and Op are the number of atums or
moles of carbon, hydrogen, and oxygen per unit of
the product. Cr, Hr, and Or are the number of
atoms or moles of carbon, hydrogen, and oxygen in
the starting (reactant) mixture; and CH4, co,, and
H.0 are the number of molecules or mol%s of
m%thane. carbon dioxide, and water formed from the
reactants during coalification.

The composition of the starting material can
be determined by solving the following set of 3
equations with 3 unknowns:

Hr/Cr = 1.25 (6)
Oor/Cr = 0.07 (7)
Cr + Hr + Or = 1000, (8)

the solution to which is:

Cr = 431 {9)
Hr = 639 (10}
Oor = 30 (11)

The value of 1000 in equation (8) is arbitrary. It
can be thought of as representing an imaginary coal
"molecule" camprised of 1000 atoms. In subsequent
calculations these 1000 atoms shall be partitioned
among the various volatile products and coal.

Substituting equations (9-11) into equations
(1-5} we are left with 5 equations and 6 unknowns.
Hence, in order to derive a unique solution, one
additional relationship must be defined. For end
member case A-A'-C, H,O0 = 0; and for case A-A"-C,
002 = 0. For 1ntenne<ﬁ te paths, some ratio of CO
to“ H .0 must be selected. This needn't be aﬁ
arbittrary choice, but may be based on knowledge of
the functional group composition. For example Van
Krevelen (1963) indicates that throughout most of
the coal ranks under consideration, approximately
half of the oxygen in coal is bound to hydrogen,
and about half to carbon. We can propose then that
002 an Hzo leave the coal in roughly equal amounts;

herice 002 = 1{20.

”»~

Depending on the path chosen, the relative
proportions and total weight percentages of the
volatile products vary considerably. Table 1 lists
the yields of CH,, 002, and H20 and volatile matter
produced along " the “various” maturation patlmays
depicted in Figure 1. For .example, as coal
increases from Ro(vit) = 0.5 to R_ = 2.0, vitrinite
can evolve anywhere from 24 to £13 em® cH {stp)/g
coal, depending upon whether B-B'-C or B—13"—C is
followed. Assuming a ratio of 1:1 H,0:C0
production, vjfrinite will cumulatively geﬂeratg.
around 116 om CH,(stp)/g. Over this same rank
range, and withlﬁ the constraints of the model,
1ipt1n§te macerals generate between 421 and
466 cm~ CH,(stp)/g; however, in reality, liptinites
probably fose a significant proportion of their
hydrogen as longer chain hydrocarbons rather than
as methane. The devolatilization model can be
modified or expanded to accammodate other
hydrocarbon gases, however, a new functional
relationship must be added for each new unknown.

This method of quantitatively estimating the
volatile yield wusing simultaneous equation.is
similar to a widely cited cocal devolatilization
model proposed by Juntgen and Karweil (1966) but
differs in that it does not require that the coal
liberate specific quantities of volatile
substances. Juntgen and Karweil speculated that
the proximate analysis mlagile matter content
{measured by pyrolysis at 950 C} could be used as
an estimate of the total weight of material evolved
as volatile products during coalification.
However, this assumption 1s umwarranted and
thermodynamically unsound. Moreover, by requiring
that their coals produce such a large volume of
volatile substances, Juntgen and Karweil's
equations yielded negative values for water
production-~in other words, it was required that
water be added to the coal structwre to maintain
the proper elemental ratios. Thus, the estimates
of gas volumes based on this model are exaggerated.
A subsequent article by Juntgen and Klein (1975),
however, published a lower revised estimate,
discussed subsequently, that is in close agreement
with the one calculated herein.

Table 2 shows the progressive
devolatilization path to Ro(vit) = 2.0% of an
 hypothetical coal, comprised of 80% vitrinite, 10%
liptinite, and 10% jnertinite. The total CH4
production is 107 cm”/g (Table 1, Path D-D'-C),
almost identical to the quantity calculated by
Juntgen and Klein (1975) based on experimental
pyrolysis. The older estimate by Juntgen and

i1 (1966) for a whole coal was more than 200
cm”,  Unfortunately, the older figure seems to be
used more commonly than the more recent one, (e.g.
Meissner, 1984)

~ BNPRNENGE-<_OF
METHANE CONTENTS

COAL COMPOSITION ON IN SITU

With increasing rank coal loses its capacity
to retain H,0; hence, assuming that the beds remain
fully vate? saturated, any water formed during
coalification must be produced. Coal has a
relatively strong affinity for _002 (as opposed to

16
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CH,. for example), but CO, Is readily soluble in
meer; hence, its amrdanc% will tend to diminish
over time. Consequently, in comparison with other
volatile substances formed during coalification CH
tends to become progressively enriched in the coaf
bed reservoir .

Coal has an attractive affinity for methane
~hat enables it to absorb or adsorb more CH, under
pressure than would be the case if the metha?\e were
a free gas. During the couwrse of coalification
coals generate much more methane than they have the
capacity to retain (Juntgen and Karweil, 1966), so
in a natural setting, most coals should be at or
near their maximum methane capacity (at P,T),
provided that the coals were not exposed to
abnormally low fluid pressures in the past.
Bearing this model in mind, the gas content of coal

In situ should be proportional to the pressure, -

tenperature, and whatever compositional parameters
limit the coal's capacity to sorb gas.

A suite of 57 samples was recently collected

€rom a 3000 ft-deep coal bed methane exploration

core hole in the Cahaba basin, central Alabama.
The gas contents of the samples were measured using
the Bureau of Mines canister desorption test. Then

the coals were subjected to a comprehensive suite .

of analyses, including proximate, ultimate, BTU,
and petrography. These data were then normalized
and used to develop a multiple linear regression
model to predict the gas contents of the samples.

The resulting Jlinear model was very successful, .

explaining 88.5% of the variability in gas content. :
11.5% ;

A large component of the remaining
variability is probably due to measurement error.

Multiple Linear Regression Model
Gas Contents of Cahaba Core Samples

Gas
ConEent = 6.822
{cm™/g) + 0,0025 * Depth (ft)
2 ~ 0.0957 * ParrM
r- = .885 + 0.1112 * (XFusinite + %Semifusinite
- 65.449 * H/C (daf) + ¥Macrinite)

This regression model indicates that for the

suite of coals examined, gas content increases
linearly with depth.
isotherm studies, the g@gas capacity of
increases at a less than linear rate,
anomalously high gas contents at depth may be due
to increasing rank (W. Telle, personal
canmmunication). There was not, however, enough of

a systematic rank variation in the samples to!

In laboratory sorption -
coal :
so the .

produce a measurable effect in the regression

model. The third ¥&rm, ParrMM, is an estimate of

the mineral matter content of the coal using Parr's

equation based on ash and sulfur content.
again the correlation is linear,
negative coefficient. The predicted gas content
using the model is very close to 0.0 at 100%
ParrMM, showing that for these samples, the mineral
matter does not participate measurably in the gas
sorption process. The fourth term is a indication

Once '
but with a-

{
1

of the influence of coal petrography on gas
sorption capacity. This composite variable,
comprised of members of the inertinite maceral
group, indicates that while inertinite does not
contribute significantly to gas generation, it has
a positive influence on the gas content. The fifth
term, the hydrogen to carbon ratio (dry, ash-free
basis) does not contribute strongly toward the
model, but indicates that an increasing H/C ratio
has a negative influence on the gas capacity. It
is uncertain whether this is related to decreasing
rank, or Iincreasing liptinite content. Neither
standard rank parameters nor the liptinite
percentages showed a significant effect.

It remains to be seen whether this model can
be applied to coals in other basins as well. As
additional data become available the model will be
tested and refined.
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H/C Atomic Ratio

0.26

0.20

0.18

O/C Atomic Ratio

Figure 1 -~ Van Krevelen diagram depicting
evolutionary devolatization paths.
Liptinite (A) and vitrinte (B) are situated
at the intersections of the Type II and Type
IIY kerogen maturation paths and the 0.5% R
isoreflectance line. A number of alternat8
devolatilization paths may be followed for

each starting material,
different quantities of
{see Table 1 for details).

each path yielding
volatile products

— g -

Coalification from

Cumulative Grams % of Volume of
Rytvit) = 0.3 to of Volatiles per Original CHy (stp)
Rgplvit) = 2.0 Gram of Coal HWeight per Gram |,
- |- - Lost as of Salid
Path (Descrlption CH, (coz H30 | Volatiles Coal’
Max. CHy»
A-A’-C | Max. COz, |0.333[0.049] O 27.4 bbb,
Min., Ha0
|- g - pm~-—— = o inbiel Sttt St ]
Min. CHy T ;
A-A"-C Min. COa. |0.301 ] 0.038 2s.2 421,
Max. Ha0
HMax, CHy,
B-8'-C | Max. COp, |0.124]0.235] © 26.5 173.
Min. Hx0
Min, CH“’
8-B*-C | Min. CO3, |0.017}) O ]0.156 14.7 2u,
Max. Hx0
r Interme-
B-8"'~{diate Path:]0.083]0.146)0.059 22.4 116,
8**-C {HD 2 €O
[ rlnterne- F
D-D’'-C |diate Path:]0.076]/0.110]0.045 18.7 107.
HaO0 £ COp
TABLE 1. Volatile Products of Coalification

Step: c H 4] H/C os/C
Starting Material:
80 % Vitrinite: 4098 3192 712 ¢.78 0.17
+ 10 X Liptinite: 431 539 30 1.285 0.07
+ (0 % Inertinite: 748 224 30 0.30 0.04
Total: 5273 39558 772 0.75 0.135
Decarboxylation: -79 4] -158
¢ 79 » COp) ——— meee cee-
5196 X933 a6 0.76 0.12
Dehydration: 0 -3 -NS
¢ 315 » HyO) e e ——
5196 3J3es 299 0.76 0.06
Deaeihanation: -208 -832 0
1208 & CH,)  -=-=  =mes -ca-
) 4988 2493 299 0.50 0.06

TABLE 2. Devolatilization Fath for Whole Coal
(D-D'~C, Table .}
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Fruitland coal

"
"

Fruitland sand
”

Pictured Cliffs

WELL LOCATION

A-18-32-7
0-08-32-9(C0)
D-11-33-10(CO)
N-07-31-09

G-08-29-10
E-22-28-12
D-34-30-11
0-28-32-11

J-06-33-10(CO)
0-26~-32-07
F-13-28-09
0-18-30-08

94
95
95
89

83
85
82

83.

79
85

91.
88.

COMPARISON OF GAS ANALYSES

ot

.84
.92
.53
.67

.22
.55
.50
41

.53
.23
77
20

co2

4.25
2.61
2.20
8.54

.65
.45
.33
.42

QOO

.66
.58
.48
.94

O OO

BTU

976
997
1011
949

1235
1138
1223
1224

1234
1188
1102
1157
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g714 Origin and Production Implications of Abnormal Coal Reservoir Pressure

A.D. Decker (Resource Enterprises, Inc.); D.M. Horner (Gas Research Institute)

ABSTRACT

The ability to produce low cost, pipeline
quality gas from deep coal reservoirs depends
largely on thorough integration of exploration
methods with appropriate drilling, completion and
production strategies. In the extreme case,
areas that are not economic with current
completion technologies should be avoided with
adherence to prudent exploration practices.
Therefore, reliable predictive geologic methods
to specify coal reservoir conditions need to
precede drilling and completion decisions.

Dominant coal reservoir mechanisms include:
permeability, saturation, reservoir pressure and
gas-in-place. Production characteristics from
low permeability coal reservoirs are most
sensitive to the interaction between type of
saturation and reservoir pressure. The geologic
processes responsible for these reservoir
conditions have been examined in the Piceance
Basin. This basin, known for low permeability
reservoirs, was selected for geologic evaluation
due to the large coalbed methane resource and
large data base. Also located in the basin is
the Deep Coal Seam Project, a multi-year, multi-
well, field laboratory joint venture by the Gas

Research [Institute and Resource Enterprises,
Inc., providing fully integrated reservoir and
geologic engineering data on deep coal
reservoirs.

Reservoir diagnostics and modeling suggests
that reservoir pressure and type of saturation
demonstrate an interaction between catagenesis
and permeability. Thick, thermally mature coal
deposits actively generate more gas and water
than can be adsorbed by the coal or be diffused
through a low permeability system. In these
regions over-pressuring occurs. Ultimately, pore
pressure will exceed in-situ stresses resulting
in tensional fractures through the coal bearing
sequences.
active gas generation phase, the fractures and
pore spaces become gas saturated. Eventual
temperature reduction through erosion will halt
the gas generating phase, resulting in an under-
pressured reservoir. [Imbibition of water into
these reservoirs is unlikely in areas of low
permeability. In contrast, coal seams that have
not reached an active gas generation phase may be
overpressured and water saturated due to

While "the coal seams remain in the"

compaction and coal dewatering in a shale bounded
situation. Overpressured water saturated coal
reservoirs of the Cedar Hills and San Juan 30-6
Unit in the San Juan Basin have, to date, shown
the highest production capacity for coalbed
methane production.

In summary, geochemical evaluation
techniques have been applied to characterize and
predict coal reservoir mechanisms in the Piceance
and San Juan Basin.

INTRODUCTION

A portion of the extensive gas accumulations
found_in the San Juan Basin!, the Green River
Basin¢, and the Alberta Basin® have been sourced
largely by coal. Despite the amount of data
colliected on coal reservoir characteristics and
coal as a source rock, little work has been done
integrating the two sciences. A coupled
understanding of coal reservoir mechanisms and
coal maturation will assist the explorationist in
his pursuit of coalbed gas resources. This work
was sponsored by the Gas Research Institute under
Contract No 5083-214-0844 with Resource
Enterprises, Inc.

A geologic model 1{s presented which
incorporates coal's resistance to transfer heat
with its ability to generate large volumes of gas
over a specific temperature and time sequence.
In basins where low permeability prohibits cross
formational fiuid flow, gas generation can exceed
the quantity of gas that can migrate through the
geologic system. This results in high pore
pressure within the coal reservoirs. Conversely,
where migration exceeds rate of gas generation,
Tow pore pressure will be observed. These stages
of reservoir disequilibrium have been observed in
other deep coal basins of the western United
States.

The focus of this paper is to describe and
quantify these states of pore pressure
disequilibrium within some coal reservoirs of the
Piceance Basin and San Juan Basin. A sequential
approach is undertaken to examine the coal system
in each phase of basin evolution, as follows:

1. Determination of the volumes of water and
gas produced from coal at specific maturity
levels during the coalification process.
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2. Relate the maturity levels to specific time
periods using thermal maturation models.

3. Determination of the amount of gas that
cannot be retained by the coal and,
therefore, which must diffuse through the
geologic  section for specified time
interval.

This paper is directed at providing the
volumetric calculations of Step 1 and the
methodology (using a case study) for Steps 2 and
3.

included in this paper are geologic
obsorvations and interpretations of areas within
the Piceance Basin where underpressured and
overpressured (less than and greater than
hydrostatic pressure, respectively) coal seams
have been identified. Also included is a section
suggesting a relationship between well
deliverability, permeability and reservoir
pressure in coal degasification wells in the San
Juan Basin. A relationship between material
balance, gas/water flow and abnormal coal pore
pressure is presented.

THE EVOLUTION OF COAL

In response to burial depth, time and
temperature, deposits of terrestrially derived
plant tissue evolves physically and chemically
into thermally mature coal. Compaction and
temperature increases transform the organic
material into three primary coal components or
macerals. (Macerals are the microscopically
recognizable constituents of coal.) The
vitrinite maceral represents jellified cell walls
or woody material, the exinite maceral is
representative of plant resin (cuticles and
spores) and the inertinite maceral vrepresents
carbonized woody material.

The degree of maturation or coal rank during
the coalification process 1is most accurately
measured from the vitrinite maceral. The
percentage of vitrinite optical reflectivity (Ro)
increases correspondingly with increases in coal
rank. The temperature necessary to increase rank
as indicated by Ro and derived by Gijzel4 is
shown on Table 1. Systematic chemical and
biological degradation of organic material during
the coalification process yield varying amounts
of water and gas. Examination of such chemical
products is important in understanding the water
and gas accumulations within present-day coal
reservoirs.

The two most significant stages of coal
maturation, diagenesis and catagenesis, are
defined largely by the products of bfological and
thermal evolution. Water, biogenic methane and
carbon dioxide are the primary coal diagenetic

products. Watef originates from éhe depositional ~

system and organic decomposition A1l biogenic
gas and 98 percent of the coal’s water generative
capacily occurs during giagenesis at maturity
Tevels of 0.23 to 0.76 RoP.

t,
!,ﬂ!.,.lkx ais

Continued exposure of coal to pressure and
temperature allow coal to ent;r the stage of
catagenesis. Juntgen and Klein’/ determined that
thermal methane generation commences during
catagenesis for coal with a vitrinite reflectance
of 0.73 Ro. As shown in Figure 1, active gas
generation accelerates at 0.90 Ro and continues
through 1.30 Ro, accounting for 76 percent of
thermal methane generation. Water produced
during catagenesis is frog the hydration of
inorganic minerals and clays®. Water and thermal
methane volumetrics as a function of increasing
coal maturity is summarized in Figure 2.

Coal’s abilitg to absorb giﬁ decreases with
higher temperature” apd pressurelV, but increases
with higher coal rank!!, Eight to ten times more
gas is generated than can be retained, thereby
initiating gas migration from the coal into other
strata.  Therefore, the development of a time
framework for the coal generative episodes
becomes necessary to understand the possible
influence that thermal generation rates have on
coal reservoir properties. Deterministic
relations between time, temperature and ensuing
gas generation episodes are derived from thermal
maturity modeling.

Jhermal Maturity Modeling

The timing of coal digenetic and catagenetic
history may be identified through use of a time-
dependent, three-dimensional mathematical model
to simulate gas generation dependence on
variables such as sedimentary burial rate,
paleotemperature, paleopressure, thermal
conductivity and heat flow. The simulation
initially requires the computation of three-
dimensional pore pressure in sediments as a
function of time. The system assumes that the
inflow-outflow is equal to the net accumulation
due to grain and fluid compressibility plus the
net accumulation to change in sediment density,
rate ff sedimentation and change in water
depth1 . The next step of the simulation is
evaluation of the simultaneoqi transfer of heat
by conduction and convection’®. In this step,
thermal parameters of the evolving system are
particulary sensitive to pressure and
temperature. The third step in thermal modeling
is relating temperature to specific geologic
periods. Lopatin1 determined for coalification
reactions, the reaction rate doubles with each
increase of 109C. He further related time and
temperature by specifying a geologic time period
with 10°C intervals as follows:

TTl = Ty 6 + T Gy + Ty Gy
where: Tl = T!me Temperagure ?ndex

Ty = Temperature Correction Factor

G] = Geologic Heating Time
correlation between vitrinite
reflectance incorporated as a maturity
indicator and the TTI is established. The
relationship between vitrinite reflectance (Ro)
and the time-temperature index is:

Ro% = 1.301 1g TTI - 0.5282...

S




A

The final output of the thermal model
reveals the type of depositional basin, tectonic
and structural histories, sediment accumulation
(or erosion) through time, thermal history of the
basin and its effect on coal maturation and
compactional history. A comparison of measured
vitrinite reflectance and bottomhole temperatures
with that predicted by the model indicates the
accuracy of modeled events.

ABNORMALLY PRESSURED COAL RESERVOIRS, PICEANCE
BASIN

The preceding coal volumetrics and thermal
modeling may be used to study the implications of
abnormally pressured coal reservoirs within the
Piceance Basin of northwestern Colorado. The
Basin was selected due to the availability of
reservoir and geologic data collected for the
Cretaceous coal reservoirs as are dominate in the

western U.S. and which contain significant
coalbed accumulations.
To date, the thick coal seams of the

laterally continuous Cameo Coal Group, (Williams
fork Formation, Mesaverde Group) have been the
objective for coalbed gas exploration within the
Piceance Basin. A significant coalbed methane
resourge also exists within the- Coal Ridge Coal
Group'?, stratigraphically 200 to 400 feet above
the top of the Cameo Coal Group, laterally
confined to the eastern margin of the basin.

The primary questions to address are: i)
what is the origin and implications of abnormally
pressured coal reservoirs?, and i) why
stratiuraphically equivalent coal seams with
similar coal ranks and burial depths have such
diverse coal reservoir conditions.

The integration of drill stem test data,
bottomhole pressure, buildup tests and drilling
mud weights have resulted in identification of a
regional northeastern overpressured trend
approximately 25 miles in length and eight miles
in width (Figure 3). The East Divide Creek Area
(which has a reservoir pressure gradient in the
Cameo coal seam of 0.59 psi/ft) is located on the
southern-most extension of the regional trend.
In contrast, the reservoir pressure gradient at
the Red Mountain Area is .33 psi/ft. The over-
pressured region coincides with: i) maximum
total coal development in the Basin (Figure 4),
ii) thermally mature coals (Figure 5), and iii)
northern plunging nose of the Divide Creek
Anticline (Figure 3). These coal characteristics
are interrelated and result in dynamic reservoir
conditions. .

The Divide Creek anticline has brought
deeply buried, mature coal seams 4,000 - 5,000
feet <closer to the surface than laterally
equivalent coal seams.
uplift appears to have contributed to the coal
disequilibrium state along the axis of the
anticline. The timing of coalbed gas and water
generative events and material balance
calculations may be determined using thermal
maturation modeling.

The abrupt post-laramide -

Material Balance

An examination of regional maps (Figure 4
and 5) indicate that up to 100 feet of low-
volatile bituminous coal exists in the over-
pressured region. ﬂgllowing lithification and
compiition. 9.18 x 10° barrels of water and 4.27
x 10'! cubic feet of gas are calculated to have
been displaced by the coal seams per square mile.
To determine the «c¢oal's fluid retention
capability, earth strain analysis was conducted
at the East Divide Creek Site. The upper bound
interpretation for %Pa1 porosity was calculated
to be 6.0 percentl . Therefore, if all pore
space in the coal was saturated with water, the
coal could only contain .41 x 10°° percent of
generated water. If completely gas filled, at
equivalent pressure and temperature, the coal
could retain roughly 12 percent of the generated .
gas. Clearly the volumetric difference between
the gas and water generated and that which may be
stored in the coal system is large and suggests a
reason for overpressuring in this region.

Determination of Sequential Thermal Events

The timing of coal generative events at the
East Divide Creek Area and Red Mountain Unit was
determinTg by Waples using computer-aided thermal
modeling:®. In order to best match present-day
calculated subsurface temperatures of 1649F at
Red Mountain and 1769°F at East Divide Creek, and
to obtain good agreement between measured
maturity data and calculated maturity 1levels,
paleoc heat filow was varied. This facilitates
simultaneous corrections for a nearby late Locene

intrusive event and post-Eocene wuplift and
erosion. Pre-Eocene heat flows were held
constant at 1.5 heat flow units. Based on

geologic age dating, the thermal event began 34
million years ago (MYA). A one hundred thousand
year heating span was investigated, decaying
exponentially. The geologic section was layered
to approximate age of deposition and lithology.
The thermal conductivities,K used for pure
sandstone was 6.2 watt/meter/Ke1vin (w/m/k), for
shales 1.5 w/m/k, for dolomites 4.8 w/m/k
decline, for siltstone 2.9 w/m/k, and for coal
0.3 w/m/k as reported by Kappe]meyer1 . The
results from the thermal modeling simulation
expressed as a function of time and maturity for
the volume of water and gas generated by the
coals are shown on Figure 6. In both areas,
active thermal gas generation from coals occurred
approximately 52 MYA when the formations were at
their deepest burial and greatest temperature.
Active gas generation ceased approximately 25
MYA. Gas generation today is at a much lower
rate due to reduced depths resulting from erosion
and thermal decay of the igneous event.
According to Lopatin’s relationship, the current
reaction rate is .00l percent as compared to peak
qusgeeration approximately 40 MYA.

A typical geothermal gradient semi-log plot
of depth and  vitrinite reflectance yields a
straight line 4. A vitrinite profile has been
measured at the 1 Deep Seam 32-2 well (Red
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Mountain Unit), at the 1 Cameo 20-4 (East Divide
Creek Area) , and other areas of the Piceance
Basin as reported by Law'?. A1l wells examined
displayed an increased maturation profile
occurring at approximately 0.90 Ro. The unusual
vitrinite reflectance profiles measured at the 1
Deep Seam 32-2 arg 1 Cameo 20-4 were closely
matched by Waples!® maturation modeling (Figure
7) indicating that maturity modeling in coal-
bearing basins must take heat transfer through
coalbeds into consideration. Poor thermal
conductors, such as coal, result in a heat
buildup under the low conductive section. This
phenomenon is well documented by a static, cased
hole temperature log from the East Divide Creek
Area, Mamm Creek and Rullison Field {Figure 8).
Note the repeated thermal anomalies at the base
of the Cameo and Coal Ridge groups.

Yukler2? first described the temperature and
pressure interrelationship with  abnormally
pressured reservoirs. He observed a sharp
increase in the temperature gradient on top of a
high-pressure medium and a sharp decrease in the
temperature gradient on top of a low-pressure
medium (Figure 9). These findings are consistent
with temperature profiles for overpressured coal
sections as shown in Figure B. The abnormally
high-pressured sedimentary unit resulted from an
insulation effect caused by a zone of low thermal
conductivity. A barrier to heat flow is created
in the areas of thick, laterally continuous coal
seams found in the overpressured region of the
Piceance Basin due to the TJow thermal
conductivity of coal. This results in high
temperatures and pressures which accelerate coal
maturation as noted in vitrinite profiles from
wells at the Red Mountain Area and East Divide
Creek (Figure 7). The sequential results of
thermal maturation events in the Piceance Basin
may be summarized as follows:

1. The coal’s insulating property which exists
from deposition results in heat buildup and
accelerates both the initiation 'and degree

of coal maturation. Therefore, increasing
temperature initiates increasing  gas
generation,

2. The rapid decay of the gas generative system
is caused by reduced temperatures resulting
from erosion of the stratigraphic section.

3. Once in the passive gas generation stage,
the migration of gas from the coal seam to
achieve  equilibrium  will result in
decreasing pore pressure.

from the perspective of the Piceance Basin
evolution, the coal seams underlying the Red
Mountain and East Divide Creek Unit have similar
thermal histories and generally evolved as a
single system. However, thermal maturation and
gas generation eyents alone fail to explain the
different reservoir pressure gradients measured

within the coal seams at the two areas. (e.g.
Red Mountain Area = 0.33 psi/ft, East Divide
Creek Area = 0.59 psi/ft). Distinguishing

factors between the two areas include the post-
laramide uplift paralleling the overpressured,
East Divide Creek region, and absent at the Red
Mountain Area and nearly twice the gas generation

in the overpressured area due to increased coal
thickness (Table 2).

The following thermal maturation events are
presented as mechanisms for high coal pore
pressure. During active gas generation, coal
seams in the overpressured region were located in
the deepest portion of the basin. Therefore,
coalbed gas adsorption reached peak levels due to
high formation pressures and temperatures from
burial. The gas retention capacity was reduced
during rapid post-laramide uplift and erosion.
As a result of the uplift, the coal seams are
currently at elevated maturation and temperature
Tevels relative to laterally equivalent coal
sections (Table 2). High pore pressure may then
be related to coalbed gas retention in excess of
equilibrium temperatures and pressures.
Disequilibrium may have been accentuated by the
large concentration of coal volume in the
overpressured area (Figure 4).

OVERPRESSURED COAL RESERVOIRS

Gas is produced from overpressured, water

- saturated Fruitland coal reservoirs at the Cedar

Hi1l Field and San Juan 30-6 Unit in the San Juan
Basin. The two fields have been examined in

detail?l in an effort to: (i) determine geologic
processes responsible for reservoir
characteristics, and (ii) establish reservoir

parameters controlling production.

The fields were selected because of their
high productivity. The Cedar Hill Field bhas
produced a cumulative of 7.1 Bcf from 7 wells
since 1979 and is still producing at a rate of
1.3 Bcf/year. The Fruitland coal discovery was
made in the San Juan Unit 30-6 during 1985.
Three wells in that field have produced 2.3 Bcf
during the first 15 months of production and
continue to flow at a rate of 2.2 Bcf/year.

A detailed geologic study of both fields
failed to detect significant geologic anomalies
that  might explain favorable  production
characteristics. Similarly investigation of
drilling and completion techniques failed to
yield technological reasons for high
productivity. The only obvious factor that both
fields share which is lacking in approximately
200 less successful coalbed completions in the
San Juan Basin is overpressured coal reservoir
conditions over a large lateral area. From the
stand point of decreasing formation pressure
below gas desorption pressure, over pressure,
water saturated coals should have negative
production implications. However, the
overpressuring condition maybe {indicative of a
permeability enhancement process resulting fin
highly permeable coal reservoirs.

Based on regional isoreflectance maps, coal

algagryairs in both fields fall in the maturation

range of .80 - .90 Ro. According to Figure 2
this maturity 1level falls below peak gas
generation phase. Therefore, sufficient volumes
of gas have not been generated to cause high pore
pressure. However, coal rank and age are
appropriate for relict overpressuring conditions
during the coal dewatering phase. Overpressuring
during shale compaction and dewatering has been
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well documented?? in detrital sequences. Coal
seams bounded by impermeable shales would
similarly develop high pore pressure due to the
inhibited ability to expel water during
compaction. Produced waters from both field
contain 12,000 to 14,000 ppm sodium bicarbonate
type coal water which is suggestive of sluggish
or isolated reservoirs conditions. Sgal derived
should be a sodium bicarbonate water¢?, however,
the high levels measured at the Cedar Hill and
San Juan 30-6 Unit indicates little dilution of
connate water over time, supporting bounded
reservoir conditions. In theory, incompressible
water under high pressure could be acting as a
hydraulic proping mechanisms 1in coal cleats
limiting porosity and permeability reduction
effects from lithostatic loading.

Overpressured coal reservoirs are a product
of shale bounded coal seams during diagenetic
compaction during water expulsion. The process
is similar to the origin of overpressured shales
and sandstone in the Gulf Coast region. To date,
coalbed methane wells producing from deeply
buried coal seams with high permeability and
deliverability occurring in overpressured, water
saturated areas of the San Juan and Piceance
Basins. The simultaneous occurrence of
overpressuring, water saturation and  high
permeability in coal seams is not thought to be
coincidental but rather suggestive of a common
relationship. That relationship could be
quantified through integration of geologic and
reservoir modelling using data collected from
laboratory core measurements in conjunction with
field level reservoir tests.

SUMMARY

Recognition of the geologic and resulting
reservoir processes controlling gas production
from deeply buried coals is the first steps in
the formulation of an exploration strategy for
coalbed gas. The dominant coal reservoir
mechanisms affecting production include:
permeability24reservoir pressure, saturation and

gas-in-placec?®, The relationship between
decreasing coal permeability ggth increasing
depth has been described by McKee<®. In order to

overcome the inherent low coal permeability at

depth, permeability enhancement through
structural  deformation should be sought.
Utilizing fundamental relationships including
Darcy's Law and equation of state, at a given

permeability, overpressured coal reservoirs will
have better deliverabilities and, therefore, are
a preferred exploration target over
underpressured and normally pressured coal seams.

Based on observations resulting from drill
stem tests, blowouts from intercepted coal seams,
gas flares while drilling through coal seams and
coalbed gas proddction, inferences may be made
regarding areas in the Piceance Basin that are
either water productive or predominantly flow gas
with little or no mobile water (reference Figure
10). The pattern shown in Figure 10 coincides
with : (i) an area within an vitrinite
isoreflectance contour of 1.1 Ro (Figure 5), and
(ii) proximity to the basin outcrop. A

relationship is suggested where active gas
generation has occurred in coals at depths
greater than 4500 feet from the surface and
isolated from the outcrop will result in little
or no mobile water from coal reservoirs. Large
volumes of gas generated from the coals and
redistributed laterally and vertically throughout
the geologic section is a possible mechanism for
relocation of water from the coal reservoirs.
Imbibition of water back into the system may be
precluded by the absence of cross-formational
fluid flow in low permeability basins.

Thermal modeling of geologic evolution has
been used to describe and quantify existing
reservoir conditions for deep coal seams within
the Piceance Basin. Various conclusions and
observations regarding coal reservoir conditions
as a function of time, temperature and cross-
formational fluid migration include:

1. Gas occluded in coal seams with maturities
less than .73 Ro vitrinite reflectance may
have largely originated from a deeper source
or are a biogenic origin.

2. The wunusual vitrinite reflectance profile

observed in the Piceance Basin (and other

deep coal basins) is caused by the 1low
thermal conductivity of the coal.

3. Simplistic and commonly used geothermal’
gradient maturation models that do not
account for heat transfer will fail to
predict the accelerated phase of coal
maturation and resulting  hydrocarbon
generation.

4, Active gas generation from coal seams in the
Piceance Basin discontinued approximately
twenty-five million years ago.

5. In the Piceance Basin, underpressured and
overpressured coal reservoirs are part of a
single hydrocarbon generation cycle,
differing by the volume of hydrocarbons
generated and a post-laramide uplift.

6. To date, overpressured coal reservoirs in
the San Juan Basin are water saturated and
highly  permeable. These  reservoir
conditions may be related to coal water
generative cycle under shale bounded
conditions.

7. Water and gas generated during the

coalification process may have fractured
overlying sediments during expulsive cycles.

8. High permeability overpressured coals with
high gas-in-place represent attractive coal
regervoir conditions. For low permeability
basins (such as the Piceance Basin), these
reservoir parameters are most likely to
occur along positive structural features
that overlap thick, thermally mature coal
seams.
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Basin
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Associates, Inc.); D.M. Horner (Gas Research Institute)
ABSTRACT other U.S. coal basins. The San Juan Basin
evaluation is divided into three phases: 1) a
A regional geologic assessment of the geologic appraisal of the Fruitland Formation
Fruitland Formation coals in the San Juan Basin coals, concluding with a gas-in-place resource
indicates that this formation has a high potential estimate; 2) case history studies and history

for natural gas production from coal seams. This
study, sponsored by the Gas Research Institute,
includes subsurface structure, depth, thickness,
and geometry interpretations. Coal ranks were
assessed using vitrinite reflectance data and gas
contents were compiled from public databases.

In addition to the vregional geologic
investigation, four sites were chosen for detailed
field-Tevel geologic and reservoir analyses. The
geologic assessment employed cross-sections, net
coal isopachs, and structure maps. Reservoir
analyses included pressure, temperature, and
permeability, in conjunction with coalbed methane
well completion and production histories.

The regional geologic analysis concluded that
the Fruitland Formation coals have an estimated
in-place methane resource of 56 trillion cubic
feet {TCF) - nearly double the previous estimate
of 31 (TCF). Field-level investigations concluded
that no single completion practice provided better
production  results than any  other and
overpressured reservoirs are significant
contributing factors in the better producing wells.

An economic evaluation of the coalbed methane
resource is due to be completed in early 1988.

INTRODUCTION

Activity of coalbed methane development s

greater in the San Juan Basin than in other
western coal basins. Production of the vast
coalbed methane resource of the Fruitland

Formation dates back to 1953, with the Phillips
Petroleum Co., No. 6-17, San Juan 32-7 Unit well.
More recent activity, specifically directed at
resource development¢~started in the mid-1970's.
To date, more than 200 wells have been documented
as Fruitland Formation coalbed methane tests.
Several pools or fields have been designated in
the basin reporting Fruitland coal seams, or the
"basal® Fruitland as the producing horizons.

The geologic analysis of the Fruitland
Formation coalbed methane resource is part of a
larger econamic evaluation to determine

recoverable coalbed methane in the San Juan and

(1

. resource,

matching of Fruitland coalbed methane wells; and
3} an economic appraisal of the resource, using
various technology cases. At this time, the
regional geologic appraisal and four detailed
field investigations have been completed. History
matching of wells is underway and the economic
evaluation has not been initiated. All three
phases of the project will be completed by early
1988.

GEOLOGIC SETTING OF THE SAN JUAN BASIN
Regional Setting

The San Juan Basin is located in northwestern
New Mexico and southwestern Colorado, with the
study area of this project defined by the Pictured
Cliffs Sandstone outcrop (Figure 1). It s
approximately 90 miles wide, west to east, and 100
mi}es long, north to south and covers 7500 square
miles.

Stratigraphy and Depositional Environments

The coals of the San Juan Basin are Cretaceous
age and Tlocated in the Dakota, Mesaverde, and
Fruitland formations (Figure 2). The Fruitland,
the youngest of these, contains the largest coal
Deposition of the Fruitland coals
occurred predominantly in lagoons, landward of the
Pictured Cliffs barrier strandline. The thickest
and most continuous seams are Tlocated in the
lowermost 70 feet of the formation and are often
associated with stratigraphic rises in the
Pictured Cliffs. A detailed discussion of the
Fruitland-Pictured Cliffs depositional environment
is presented in Fassett, 1987 [1] and in the
Fassett paper in this proceeding.

The Fruitland Formation dis a coastal plain
deposit of paludal carbonaceous shales,
siltstones, sandstones and coals deposited behind
the regressing Pictured Cliffs  strandline.
Formation thickness ranges from less than 100 to
greater than 600 feet and contains evidence of
fresh and brackish water environments. The
sandstones are soft to hard and grey-white to
brown in color. The shales are firm and grey to
black in color. The coals were deposited in
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lagoons, marshes, swamps and abandoned channels rstudies were performed to analyze the geology and
and are overlain by fluvial shales and reservoir properties associated with producing
sandstones. The coals are the most correlative coalbed methane wells, and for use in the regional

units of the fluvial Fruitland sediments.

The underlying Pictured Cliffs is a
regressive, coastal-barcier sandstone. Formation
thickness varies from 125 to 400 feet due to minor
transgressive episodes, which locally intertongue
the Fruitland and Pictured Cliffs., The Tlower
portion of the Pictured Cliffs 1is primarily
interbedded sandstone and shales, with the upper
unit a  quartzitic, fine-to-medium grained
sandstone.

Structure

The San Juan Basin's arcuate structural axis
lies just south of the Colorado-New Mexico state
line. The U-shaped Hogback Monocline forms the
western and northern rims of the basin. To the

east, the Nacimiento Uplift and Archuleta Arch
bound the basin. The south and southwestern
boundaries of the basin are not structurally

defined and sediments gently dip northward from
the Chaco Slope (Figure 3).

There are few major structural elements
within the San Juan Basin and most are of Laramide
age. The Ignacio Anticline, located in the north
central portion of the basin, is the largest and
best documented structure. Minor northwest
trending en echelon folds and northeast-trending,
high angle, Tow displacement faults are found on
the eastern and southeastern edges of the basin,
Radial folds, which plunge toward the basin's
center, can be found around the perimeter. Minor
structures resulting from Tertiary intrusive
activity are located in the basin, Kelly, 1951
[2] and Woodward and Callender, 1977, [3] provide
complete structural and tectonic descriptions of
the San Juan Basin,

Detailed Field Investigation Settings

The four field {investigation sites are
located in the northern end of the basin where
operator activity levels have been concentrated
(Figure 4). The sites selected provide wells with
production histories over extensive time periods

and all four sites Jlack major structural
features. Two sites are located in the Colorado
Ignacio Blanco Field and one each in the New

Mexico Cedar Hill and Undesignated Fruitiand
Fields. Site 1 of the Ignacio Blanco Field and
the Undesignated Fruitland Field are in areas of a
Pictured Cliffs stratigraphic rise, that is, an
area of intertonguing with the Fruitland. The
other two sites are stratigraphically less complex.

METHODOLOGY

The geologfs‘ evaluation of coal
formations is a key element in an economic
appraisal of any coalbed methane resource. The
San Juan Basin provided an opportunity for
detailed geclogic field investigations as well as
a regional scale study, hecause of the large
number of exploration control points and Fruitiand
coalbed methane tests. The purpose of the
regional geologic investigation was to determine a
gas-in-place resource estimate for the Fruitland
Formation coals. The detailed qeologic field

bearing

economic evaluation of the basin.

The regional geologic evaluation consisted of
the construction of two geologic cross-sections

and the interpretation of several thousand
geophysical logs for subsurface geologic data.
The cross-sections provided insight into the

lateral and vertical distribution of the Fruitland
coals. The subsurface geophysical log data were
used to construct structure, overburden, and net
coal thickness maps associated with the Fruitland
Formation and underlying Pictured Cliffs Sandstone.

The geology and «coal resources of the
Fruitland Formation have previously  been
documented [4] and other coalbed methane resource
estimates have been based upon this work [5,6].
In order to independently evaluate the Fruitland
coalbed methane resource, an original
investigation of Fruitland coal resources was
conducted.

After the resource and distribution of
Fruitland coals was determined, an emperical
formula was derived using measured gas contents,
depth, and coal rank. The formula allowed
projection of gas contents into areas lacking
measured data. Gas-in- place estimates were then
calculated on a township and range basis using the
following equation,

GIP = GC * h * A * D seuvevecrorcaconnnns
GIP

Where: Gas in-place {trillion cubic feet)

GC = Gas content (cubic feet/ton)
h = Net coal thickness (feet)
A = Drillable area (acres)
p = Coal density (tons/acre-foot)

The gas-in-place values for 210 townships
with sufficient coal thickness and depth of cover
were summed to derive the Fruitland Formation
gas-in-place resource estimate,

Four detailed field investigation sites in
three producing fields were chosen in areas with
sufficient coalbed methane well populations for
analysis. Detailed geologic cross-sections and
subsurface structure and net coal thickness maps
were prepared for each area. In addition to the
geologic data, reservoir data including pressure,
temperature, permeability (very little data), and
cleat spacing  were collected. Drilling,
completion and production history data for each
coalbed methane well in the four areas were also
compiled. An analysis of the geologic, reservoir
and completion data is being performed in an
attempt to establish trends between the reservoir
data.and production histories.

REGIONAL GEOLOGIC ANALYSIS

~ The primary products of the regional
geolagical analysis are two cross-sections, a net
coal isopach map, an overburden map of the
Fruitland-Pictured Cliffs contact, and a therma
maturity rank map. All of the products were use
to evaluate the geology and properties of th
coals necessary to determine a gas-in-place
estimate.
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Stratigraphic Cross-Sections

Two regional, basin-wide, geologic
cross-sections were constructed with
density-porosity or gamma-density geophysical

logs. (Figure 4). Both were segmented due to the
length of the sections and the number of logs
used. Section A-A", trending northwest to
southeast, is paraliel to the depositional strike
of the Pictured Cliffs strandline. Section B-B"
is constructed perpendicular to depositional
strike, or southwest to northeast. Orientation of
the cross-sections was designed to support the
concept that coals parallel to depositional strike
can be followed for greater distances than those
perpendicular to strike. Interpretations of the
cross-sections were used to understand the lateral
continuity of the Fruitland coals and to determine
if the Fruitland Formation could be divided into
zones, based on vertical coal distribution.

A-A%, the

in cross-section Fruitland

Formation thins from the northwest to the
southeast. Maximum thickness {is greater than 450
feet. Thinning of the Fruitland in the southeast

to less than 100 feet is the result of erosion and
a stratigraphic rise of the Pictured Cliffs [4],
as seen on the cross-section. Coals are found at
depths ranging from 2400 to 4200~ feet, with the
deeper coals along the southeast extension of
A-A". Maximum net coal thickness and thicker
individual seams are Tlocated on the northwest
extension of this cross-section with net coal
thickness ranging from 4 to 95 feet, and frequent
20 foot individual seams. The spacing between
control! points averages § miles and correlation of
individual beds was not possible at this scale.
No grouping or zone determination was established
due to the lack of traceable markers.

The cross-section B-B" trends southwest to
northeast and shows minor thickness variations in
the Fruitland ranging from 200 to 350 feet., A
stratigraphic rise is present to the northeast,
approximately 10 miles south of the Colorado-New
Mexico state line, Coals on the southeast end of
the cross-section are located at 1100 foot depths
and gradually deepen towards the basin's center,
with the deepest coals found at 4000 feet. Net
coal thickness ranges from 19 to 67 feet with a
single seam of 40 feet found near the northeast
limit of the cross-section. Most wells used in
this cross-section have a well developed coal in
close proximity to the Pictured Cliffs. These
basal coals range from 8 to 40 feet in thickness
and are sometimes correlative over many miles.
The average spacing between wells on section B-B"
is 5 miles and no correlation of 1individual beds
was attempted. As with A-A", no division of the
Fruitland Formation into coal groups or zones was
made.

Net Coal Thickne§s and Overburden

A Fruitland Formation net coal d{sopach map
was constructed using data from gamma-density,
density-porosity, and a limited number of gamma
ray-neutron geophysical logs (Figure 5). Net coal

3lues do not include coals thinner than 2 feet
ith efforts made to exclude partings and shaley
aits within individual coals. Net coal thickness
values ranged from O to greater than 100 feet. An
eastern area of the basin exhibits 0 net coal

values which are the results of non-desposition
and erosion of the Fruitland. The maximum net
¢oal values are found in the northwest part of the
basin with net thickness exceeding 100 feet. An
approximate 10 mile wide, northwest trend is
observed in the north central portion of the
basin. This trend is parallel to the structural
axis of the basin with average net coal
thicknesses of 70 to 80 feet. It can be generally
stated that the southern end of the basin has less
than 30 feet of net coal, with the exception of a
small area in the southwest, Net coal values and
the geologic cross-sections were used to determine
the lateral and vertical distribution of coals in
the Fruitiand.

The overburden map or depth parameter of the
Fruitland coals in the regfonal geologic analysis
was utilized as part of the gas content and
containment evaluation. Depths of coals range
from 0 feet at the basin's outcrop to more than

4200 feet along the basin's structural axis.
Depths change rapidly along the  north,
northeastern, and northwestern margins of the

basin due to the structural monoclines. In the
southern part of the basin, coal depths gradually
increase as the structural slope increases to the
northeast. The deepest coals are found in the
northeastern quarter of the basin.

Coal Rank
Fassett and Hinds, 1971 {[4] reported the
coals of the Fruitland Formation as
subbituminous. Support for their conclusion comes

from an observation of the weathering nature of
the coals when mined and stockpiled. Viewing the
coals as a reservoir for natural gas requires a
different approach to rank assessment. The
approach used {n this study was based on the
thermal maturity of the coals, which is measured
by the vitrinite reflectance. This approach is
applicable to all coal basins, Rank generally
increases from south to north, with the highest
ranks found in the north central portion of the
basin. A vitrinite reflectance rank map of the
San Juan Basin (Rice, 1983) [7] was modified with
additional data and used to establish the various
Fruitland coal ranks, ranging from high volatile C
bituminous to low volatile bituminous with 0.46 to
1.51 reflectance values.

GAS CONTENTS OF FRUITLAND COALS

A moderately small public domain database of
measured gas contents exists for the Fruitland
Formation coals. The primary source of the data
was the U.S. Bureau of Mines (USBM) gas content
measurement database for samples from around the
United States., A description of the desorption
process and a partial list of samples is found in
Diamewd—%nd Levine, 1981 [8]. Additional
desorption data were acquired from the Colorado
Geological Survey.

Twenty-eight data points were standardized
for ash content, temperature, and pressure. The
data was sorted by coal rank and sample depth to
develop correlations relating gas content to depth
and vrank. Curves were established for high
volatile A bituminous and high volatile B and (
bituminous coals combined, Insufficient data was
available far i i
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analog curves were founded on the results of
similar analyses in a Piceance Basin study [9].
The mathematical relatfonship that resulted from
the analysis is:

GC =m* (Ind) +b toveesenorcscareness 2
Where: GC = Gas content (cubic feet/ton)
m = Scaling coefficient
In d = Natural log of depth (feet)
b = y intercept

GAS IN-PLACE OF THE FRUITLAND COALS

The regional geologic evaluation of the
Fruitland Formation coals, San Juan Basin,
concluded with a gas-in-place resource estimate,
The unit of analysis is a township and range and a
gas-in-place value was calculated for each of the
210 units in the study area. Elements of the
gas-in-place calculation are gas content, net coal
thickness, drillable area, and coal density.

Each of the 210 units was assigned an
estimated gas content value using the mathematical
relationship discussed previously. Depths used in
the calculation were average maximum overburden on
the Pictured Cliffs Sandstone. Analysis of the
vertical distribution of Fruitland coals showed
more than 85 percent of the net coal thickness is
within 200 feet of the Pictured Cliffs,
Insignificant differences result in gas content
values when depth values are varied within this
200 foot range.

Net coal thickness and coal density are
factors in the coal resource portion of the
gas-in-place calculation. An average net coal
thickness was determined for each unit from the
coal f{isopach map constructed in the geologic
evaluation. The coal rank map was used to assign
coal density to the unit. Densities increase with
rank as documented by Averitt, 1975 [10]. The
following table shows the variation of coal
density with rank used in this study.

Densit
(Tons7acre-¥oot)

Rank

Hi?h Volatile Bituminous

A, B, and C) 1800
Medium Volatile Bituminous 1850
Low Volatile Bituminous 1900

The drillable area of a unit is determined by
totaling the number of acres in the unit and
subtracting undevelopable acreage. Undevelopable
acreage includes areas with urban development;
abandoned, active or permitted coal mining
operations; acreage already containing coalbed
methane wells; and areas of insufficient coal
overburden (gas containment) or coal thickness.

Gag-In-Place Estimate

The total gas-in-place resource estimate for
the Fruitland Formation coals is 56 trillfon cubic
feet (TCF). This is only a resource estimate, not
a reserve estimate and no recovery factor has been
applied. It must be pointed out that up to this
point, we have only been discussing gas in the
micro-pore system of the coals and not dealt with
“free" gas or gas in the cleat system of the
coals,  Calculation of the gas in the cleat system

will be based on the results from history matching
work and is expected to increase the current
gas-in-place estimate by 2 to 3 percent.
is a gas-in-place contour map for the Fruitland
Formation coals.

The 56 TCF gas-in-place estimate is nearly
twice the estimate previously reported by Choate
and others, 1984 [5]. A comparison of the two
estimates revealed that coal resource values used
for each were within 10 percent. The conclusion
was drawn that gas content data in the two studies
were drastically different. Analysis of the data
set used by Choate showed the use of fewer core
desorption data and a TJarge percentage of chip
desorption samples. This explains the increase in
the gas-in-place estimate resulting from this
study.

DETAILED FIELD INVESTIGATIONS

Four sites located in three coalbed methane
production fields were selected for detailed
geologic and reservoir analysis. The number of
completed wells in each area and their production
histories aided in site selection. Figure 4 shows
the location of the four sites studied. They are
the Cedar Hill Field, New Mexico; an Undesignated
Fruitland Field, New Mexico; and two sub-areas of
the Ignacio Blanco Field, Colorado. The primary
purpose of the field site investigations was to
validate the regional geologic study at a field

level. In addition, the field investigations
incorporated production data into the geologic
analysis and established the stratigraphic

intervals contributing to the Fruitiand coaibed
methane production.

Cedar Hill Field

The Cedar Hill Field is located in portions
of Townships 31 and 32 North, Range 10 West.
Development of the coalbed methane resource in
this area was initiated more than ten years ago
and presently, the field contains 12
methane wells. A structure map on the Pictured
Cliffs Sandstone for the area shows a maximum of
100 feet structural relief with a series of subtle
northeast-southwest trends. Most of the
structures in these trends exhibit relief of 20
feet or less. Net coal thickness across the area
ranges from 9 to 55 feet. A coal in the basal
section of the Fruitland Formation has been the
primary production target and thickness ranges
from 5 to 27 feet. This seam thins and splits to
the southeast. The coal rank in the area is high
volatile A bituminous and gas contents average 358
to 521 cubic feet/ton from four samples.

The reservoir parameters assessed in this
evaluation are pressure, temperature, saturation,
permeability and a gas-in-place estimate. Three

wwmne-bottom hole pressures were available from public

records. They range from 1362 psi to 1590 psi or
0.49 to 0.56 psi/foot and indicate an overpressured

coal reservoir, Reservoir temperatures of the
basal coal ranged from 95 to 114 degrees
Fahrenheit. Reservoir saturation status for this

area is unknown and based on production histories
of the earliest wells, 100 percent water
saturation was assumed. Wells drilled at 1later
dates were probably less than 100 percent water
saturated and were partially dewatered by the

Figure 6

coalbed

)
)
]

122




B.S. KELSO, A.D. DECKER, N.E. WICKS, AND D.M. HORNER

initial wells, No permeability data was availahle

for any of the coal seams i the field, A

gas-in-place estimate of 5 to 35 billjon cubic

{ /section (BCF/sec.) was calculated for the
ar Hill Field.

Analysis of the completion histories of eight
Amoco Production Company wells in the field showed
that five were completed open-hole and three were
completed through pipe with stimulation. Both
complation techniques have proven successful and a
conclusion can not be drawn on the best method of
completion. Five of the eight wells are completed
in a single seam and the remaining three are
multiple seam completions. One conclusion drawn
from this geologic and reservoir study is that the
Cedar Hill Field area is overpressured.

Undesignated Fruitland Field

The Undesignated Fruitland Field is located
in Township 30 North, Range 7 West. The field
contains four coalhed methane wells with
production histories dating from early 1986. This
field, much like the Cedar Hill Field, shows very
little structural relief on the Pictured Cliffs
Sandstone. Structural reljef does not exceed 80
feet across the area and a northwest-southeast
structural trend {is present. Structural closures
of small magnitude exist along the trend. Net
coal thickness ranges from 36 to 75 feet and
approximately 95 percent of the coal occurs within
100 feet of the Pictured Cliffs, The thickest
single seam in the area is 30 feet and the coal is
ranked high volatile A bituminous. There are no
m-~ured gas contents in the study area.
W efore, data from the Cedar Hi1l Field, based
¢ similar coal rank and depths, were used for
tun.s parameter,

Reservoir pressure data in the area range
from 1332 to 1521 psi which converts to gradients
of 0.45 to 0.50 psi/foot. Based on this data, the
area s overpressured. Reservoir temperatures
range from 93 to 112 degrees Fahrenheit in the
lower Fruitland interval. This field appears to
contain both gas and water saturated coal seams.
One well in the area exhibits a predominantly
gas-saturated coal seam, as shown by recent
decreases in gas production and unchanged water
production rates. There is no permeability data
available for the coal reservoirs in the study
area. The gas-in-place resource estimate for the
Undesignated Fruitland Field, assuming similar gas
content data for the Cedar Hill Field, ranges from
16 to 38 BCF/sec.

The four coalbed methane wells in the field
were drilled by Meridian 0il Company. Two are
completed open-hole with production Tiners and two
are completed through casing. Three of the four
wells have been stimulated. A1l of the wells have
multiple coal seam completions and net coal
thickness ranges from 43 to.63 feet per well., One
of the open-hole completion wells has had
tremendous gas production rates, at times
exceeding 4 milljon cubic feet per day (MMCF/d).
The worst well in the field only averages 150
t' sand cubic feet per day (MCF/d). The
r ining two wells have production rates ranging
b 2en 1 and 2 MM(F/day.

Ignacin Blanco Field

The Ignacio Blanco Field encompasses most of
the Colorado portion oF the Dbasin. Two areas
within the field were selected for detailed site
investigations. It should be noted that the
majority of the coalbed methane wells in the two
areas were 1initially drilled and completed by
William Perlman between 1982 and 1984. Amoco
Production Company recently took over the Perliman
acreage and recompleted a number of the wells in
1986 and 1987. Preliminary production statistics
from recompleted wells indicate improvement over
past production,

Area 1 - Township 34 North, Range 8 West. Area
T contains 18 FruitlTand coalbed methane wells with
erratic production histories dating back to 1982.
There is 1100 feet of structural relief across the
area with structural lows and possible closures
located in the southern half, A stratigraphic
rise of the Pictured Cliffs Sandstone and
intertonguing with the Fruitland Formation is
located in the north and west portions of the
study area. Net coal thickness throughout the
area ranges from 26 to 76 feet with the thickest
individual seam being 35 feet. The coal {s ranked

medium and Tow volatile bituminous and gas
contents from five samples average 315 cubic
feet/ton.

This area contains the two Southern Ute
Indian, Oxford wells in section 25, which were
part of a Department of Energy (DOE) coalbed
methane research project. The coring of these
wells revealed 1/4 to 1/2 inch cleat spacing. The
Oxford #2 well was used in 1985 by In-situ, Inc.,
a GRI contractor, for reservoir data analysis.
In-situ, 1Inc. determined a static reservoir
pressure of 1490 psi or a gradient of 0.52 psi/ft
and a calculated permeability of 5 md [11].
Reservoir temperature data across the area, for
the lower Fruitland Formation ranges from 100 to
128 degrees Fahrenheit. The pressure data from
In-situ's research and from additional Fruitland
Formation drill-stem test data indicate that the
southern region of the study area is
overpressured. All of the coalbed methane wells
produced significant volumes of water in the
field. A gas-in-place estimate of 18 to 52
BCF/section is estimated for this area.

Completion methods of the 18 wells in the
area included cased and open-hole, with stimulated
and unstimulated examples of each. No one method
has proven more successful than another and
erratic production histories from the wells make
it difficult to draw a completion/production
history conclusion. As noted before, Amoco has
recompleted 6 of the 18 wells in the area with
small to moderate size sand/water stimulations.
Production data from the recompleted wells is not
yet g bles but will be valuable for additional

“analysis.

Area 2 - Township 32 and 33 North, Range 6
West. Area 2 of the Ignacio Blanco Field
contains 28 coalbed methane wells. A maximum of
350 feet of structural relief is found in the area
and a structural nose is located in the northwest
portion of the area. A north-south trend of
structural depressions is located along the
western edge of the area ]
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ranges from 20 to +68 feet, gwith +the thldkest
individual coal seam being 42 feet. Coal rank ‘
medfum vqlatile bituminous! and the -area has .an

A research proje
. G

purpose of ~ the. prOJect was identify
and provide the operator with a
technique that would lead to economical production;
of Fruitland coalbed methane, Extensive work -on
reservoir characteristics was conducted and
reported by Jones, 1985 [12]. A static reservoir
pressure of 1483 psi or gradient of 0.48 psi/foot
was measured at the site by In-Situ, Inc, This
indicates an overpressured reservoir, at least in
the southeastern corner of the study area. A
measured permeability value of 3.5 md was obtained
from coal samples and 1/4 inch cleat spacing was
measured on recovered coal cores., As in Area 1 of
the Ignacio Blanco Field, most of the wells in
Area 2 produce significant volumes of water.
Gas-in-place estimates for this area range from 14
to 45 BCF/section.

Completions of the 28 wells in this area are
similar to those discussed in Area 1 of the
Ignacio Blanco Field, Amoco has attempted
recompletion on a number of the Perliman wells, but
production data is not yet available, A variety
of completion and stimulation methods have been
applied to wells in this area and no single method
provides better results than another.

CONCLUSION

The following conclusions have been drawn
from the regional geologic analysis and detailed
field site investigations of this coalbed methane
resource study:

° This extensive  ‘subsurface geologic
analysis provides a foundation for
additional research and development of the
Fruitland  Formatijon coa]bed
resource. EE :

° Additional meaéured gas content data is
needed for assessment of the resource.

° Jt is estimated that the Fruitlan&
Formation coals contain 56 trillion cubic
feet of natural gas. :

° Lower Fruitland coals at the four field
investigation sites are overpressured.

° Permeability measurements at two locations
in the Ignacio Blanco Field are low and
measurements are not available for the
Cedar Hilly and the Undesignated Fruitland

Fields. - Structural enhancement of
permeability may exist within all four
fields. Fracture and lineament studies

are needed for possible ijdentification of
enhanced areas.

° Numerous well completion and stimulation
methods have been utilized with varying
degrees of success.

average mq?gut‘ed ,9‘%&.{% i) AT 0
14418 '},. ' 3 : 1

the'
resource potential and characteristics at a sute,”
completion’’

' methane .
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8731 GRI Geologic and Economic Appraisal of Coalbed Methane in the San Juan
Basin
B.S. Kelso (Colorado Geological Survey); A.D. Decker (Resource Enterprises, Inc.); D.E. Wicks (Lewin &
Associates, Inc.); D.M. Horner {Gas Research Institute)
ABSTRACT other U.S. coal basins., The San Juan Basin
evaluation is divided into three phases: 1) a

A regional geologic assessment of the
Fruitiand Formation coals in the San Juan Basin
indicates that this formation has a high potential
for natural gas production from coal seams. This
study, sponsored by the Gas Research Institute,
includes subsurface structure, depth, thickness,
and geometry interpretations. Coal ranks were
assessed using vitrinite reflectance data and gas
contents were compiled from public databases.

In addition to the regional geologic
investigation, four sites were chosen for detailed
field-level geologic and reservoir analyses. The
geologic assessment employed cross-sections, net
coal isopachs, and structure maps. Reservoir
analyses included pressure, temperature, and
permeability, in conjunction with coalbed methane
well completion and production histories.

The regional geologic analysis concluded that
the Fruitland Formation coals have an estimated
in-place methane resource of 56 trillion cubic
feet (TCF) - nearly double the previous estimate
of 31 (TCF). Field-level investigations concluded
that no single completion practice provided better
production results than any other and
overpressured reservoirs are significant
contributing factors in the better producing wells.

An economic evaluation of the coalbed methane
resource is due to be completed in early 1988.

INTRODUCTION

Activity of coalbed methane development is

greater in the San Juan Basin than in other
western coal basins. Production of the vast
coalbed methane resource of the Fruitland

Formation dates back to 1953, with the Phillips
Petroleum Co., No. 6-17, San Juan 32-7 Unit well.
More recent activity, specifically directed at
resource development, started in the mid-1970's.
TJo date, more than 200 wells have been documented
as Fruitliand Formation coalbed methane tests.
Several pools or fields have been designated in
the basin reporting Fruitland coal seams, or the
"basal" Fruitland as the producing horizons.

The geologic analysis of the Fruitland
Formation coalbed methane resource is part of a
larger economic evaluation to determine

recoverable coalbed methane in the San Juan and

geologic appraisal of the
coals, concluding with a gas-in-place resource
estimate; 2) case history studies and history
matching of Fruitland coalbed methane wells; and
3) an economic appraisal of the resource, using
various technology cases, At this time, the
regional geologic appraisal and four detailed
field investigations have been completed. History
matching of wells is underway and the economic
evaluation has not been initiated. All three
phases of the project will be completed by early
1988,

Fruitiand Formation

GEOLOGIC SETTING OF THE SAN JUAN BASIN
Regional Setting

The San Juan Basin is located in northwestern
New Mexico and southwestern Colorado, with the
study area of this project defined by the Pictured
Cliffs Sandstone outcrop (Figure 1). It s
approximately 90 miles wide, west to east, and 100
mi}es long, north to south and covers 7500 square
miles,

Stratigraphy and Depositional Environments

The coals of the San Juan Basin are Cretaceous
age and located in the Dakota, Mesaverde, and
Fruitiand formations (Figure 2). The Fruitland,
the youngest of these, contains the largest coal
resource. Deposition of the Fruitland coals,
occurred predominantly in lagoons, landward ‘of the
Pictured Cliffs barrier strandline., The thickest
and most continuous seams are 1located in the
lowermost 70 feet of the formation and are often
associated with stratigraphic rises in the
Pictured Cliffs. A detailed discussion of the
Fruitland-Pictured Cliffs depositional environment
is presented in Fassett, 1987 [1] and in the

Fassett paper in this proceeding.

The Fruitland Formation is a coastal plain
deposit of paludal carbonaceous shales,
siltstones, sandstones and coals deposited behind
the regressing Pictured Cliffs strandline.
Formation thickness ranges from less than 100 to
greater than 600 feet and contains evidence of
fresh and brackish water environments. The
sandstones are soft to hard and grey-white to
brown in color. The shales are firm and grey to
black in color. The coals were deposited in
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marshes, S$wamps and abandoned channels
and 4re overlain by fluvial shales and
sandstones. The coals are the most- correlative
units of the fluvial Fruitland sediments, -

lagoans,

The underlying Pictured Cliffs is a
regressive, coastal-barrier sandstone. Formation
thickness varies from 125 to 400 feet due to minor
transgressive episodes, which Tocally intertongue
the Fruitland and Pictured Cliffs. The lower
portion of the Pictured Cliffs 1is primarily
interbedded sandstone and shales, with the upper
unit a  quartzitic, fine-to-medium  grained
sandstone.

Structure

The San Juan Basin's arcuate structural axis
lies just south of the Colorado-New Mexico state
line. The U-shaped Hogback Monocline forms the
western and northern rims of the basin., To the

east, the Nacimiento Uplift and Archuleta Arch
bound the basin. The south and sSouthwestern
boundaries of the basin are not structurally

defined and sediments gently dip northward from
the Chaco Slope (Figure 3).

There are few major- structural elements
within the San Juan Basin and most are of lLaramide
age. The Ignacio Anticline, located in the north
central portion of the basin, is the largest and
best documented structure. Minor northwest
trending en echelon folds and northeast-trending,
high angle, low displacement faults are found on
the eastern and southeastern edges of the basin.
Radial folds, which plunge toward the basin's
center, can be found around the perimeter. Minor
structures resulting from Tertiary intrusive
activity are located in the basin. Kelly, 1951
(2] and Woodward and Callender, 1977, [3] provide
complete structural and tectonic descriptions of
the San Juan Basin.

Detailed Field Investigation Settings

The four field investigation sites are
located in the northern end of the basin where
operator activity levels have been concentrated
(Figure 4). The sites selected provide wells with
production histories over extensive time periods

and all four sites lack major structural
features. Two sites are located in the Colorado
Ignacio Blanco Field and one each in the New

Mexico Cedar Hill and Undesignated Fruitland
Fields. Site 1 of the Ignacio Blanco Field and
the Undesignated Fruitland Field are in areas of a
Pictured Cliffs stratigraphic rise, that ijs, an
area of 1intertonguing with the Fruitland. The
other two sites are stratigraphically less complex.

METHODOLOGY .

The geologic evaluation of coal
formations is a key element in an
appraisal of any coalbed methane resource. The
San Juan Basin provided an opportunity for
detailed geologic field investigations as well as
a regional scale study, bhecause of the large
number of exploration control points and Fruitiand
coalbed methane tests. The purpose of the
regional geologic investigation was to determine a
gas-in-place resource estimate for the Fruitland
Formation coals. The detailed geologic field

bearing
economic

rstudies were performed to analyz. the geology and
reservoir properties associates with prodacing
coalbed methane wells, and for use in the regional
economic evaluation of the basin.

The regional geologic evaluation consisted of
the construction of two geologic crnss-sections

and the interpretation of several thousand
geophysical logs for subsurface geologic data.
The cross-sections provided insight into the

lateral and vertical distribution of the Fruit)and
coals. The subsurface geophysical log data were
used to construct structure, overburden, and net
coal thickness maps associated with the Fruitland
Formation and underlying Pictured Cliffs Sandstone.

The geology and coal resources of the
Fruitland Formation have previously been
documented {4] and other coalbed methane resource
estimates have been based upon this work [5,6].
In order to independently evaluate the Fruitland
coalbed methane resource, an original
investigation of Fruitiand coal resources was
conducted.

After the resource and distribution of
Fruitland coals was determined, an emperical
formula was derived using measured gas contents,
depth, and coal rank. The formula allowed
projection of gas contents into areas lacking
measured data. Gas-in- place estimates were then
calculated on a township and range basis using the
following equation.

GIP = GC *h * A* P tivieriivnnnsnennnas (1)
Where:

GIP = Gas in-place {trillion cubic feet)

GC = Gas content (cubic feet/ton)
h = Net coal thickness (feet)
A = Drillable area {acres)
p = Coal density (tons/acre-foot)

The gas-in-place values for 210 townships
with sufficient coal thickness and depth of cover
were summed to derive the Fruitland Formation
gas-in-place resource estimate.

Four detailed field investigation sites in
three producing fields were chosen in areas with
sufficient coalbed methane well populations for
analysis. Detailed geologic cross-sections and -
subsurface structure and net coal thickness maps
were prepared for each area. In addition to the
geologic data, reservoir data including pressure,
temperature, permeability (very little data}, and
cleat spacing  were collected. Drilling,
completion and production history data for each
coalbed methane well in the four areas were also
compiled. An analysis of the geologic, reservoir
and completion data 1is being performed in an
attempt to establish trends between the reservoir
data and production histories.

REGIONAL GEOLOGIC ANALYSIS

The primary products of the regional
geological analysis are two cross-sections, a net
coal isopach map, an overburden map of the
Fruitland-Pictured Cliffs contact, and a therma”
maturity rank map. All of the products were used
to evaluate the geology and properties of the
coals necessary to determine a gas-in-place
estimate.
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Stratigraphic Cross-Sections

Two regional, basin-wide, geologic
cross-sections were constructed with
density-porosity or gamma-density geophysical

logs. {Figure 4). Both were segmented due to the
length of the sections and the number of logs
used, Section A-A", trending northwest to
southeast, is parallel to the depositional strike
of the Pictured Cliffs strandline. Section B-B"
is constructed perpendicular to depositional
strike, or southwest to northeast. Orientation of
the cross-sections was designed to support the
concept that coals parallel %o depositional strike
can be followed for greater distances than those
perpendicular to strike. Interpretations of the
cross-sections were used to understand the lateral
continuity of the Fruitland coals and to determine
if the Fruitland Formation could be divided into
zones, based on vertical coal distribution.

In cross-section  A-A", the Fruitiand
Formation thins from the northwest to the
southeast. Maximum thickness is greater than 450
feet. Thinning of the Fruitland in the southeast
to less than 100 feet is the result of erosion and
a stratigraphic rise of the Pictured Cliffs [4],
as seen on the cross-section., Coals are found at
depths ranging from 2400 to 4200 feet, with the
deeper coals along the southeast extension of
A-A". Maximum net coal thickness and thicker
individual seams are located on the northwest
extension of this cross-section with net coal
thickness ranging from 4 to 95 feet, and freguent
20 foot individual seams. The spacing between
control points averages 5 miles and correlation of
individual beds was not possible at this scale.
No grouping or zone determination was established
due to the lack of traceable markers.

The cross-section B-B" trends southwest to
northeast and shows minor thickness variations in
the Fruitland ranging from 200 to 350 feet. A
stratigraphic rise is present to the northeast,
approximately 10 miles south of the Colorado-New
Mexico state line. C(Coals on the southeast end of
the cross-section are located at 1100 foot depths
and gradually deepen towards the basin's center,
with the deepest coals found at 4000 feet. Net
coal thickness ranges from 19 to 67 feet with a
single seam of 40 feet found near the northeast
limit of the cross-section. Most wells used in
this cross-section have a well developed coal in
close proximity to the Pictured Cliffs. These
basal coals range from 8 to 40 feet in thickness
and are sometimes correlative over many miles.
The average spacing between wells on section B-B"
is 5 miles and no correlation of individual beds
was attempted. As with A-A", no division of the
Fruitland Formation into coal groups or zones was
made.

Net Coal Tﬁickness and Overburden

A Fruitland Formation net coal isopach map
was constructed using data from gamma-density,
density-porosity, and a limited number of gamma
ray-neutron geophysical logs (Figure 5). Net coal
values do not include coals thinner than 2 feet
with efforts made to exclude partings and shaley
units within individual coals. Net coal thickness
values ranged from 0 to greater than 100 feet. An
eastern area of the basin exhibjts 0 net coal

values which are the results of non-desposition
and erosion of the Fruitland. The maxinum net
coal values are found in the northwest part uf the
basin with net thickness exceeding 100 feet., An
approximate 10 mile wide, northwest trend is
observed in the north central portion of the
basin. This trend is parallel to the structural
axis of the basin with average net coal
thicknesses of 70 to 80 feet. It can be generally
stated that the southern end of the basin has less
than 30 feet of net coal, with the exception of a
small area in the southwest. Net coal values and
the geologic cross-sections were used to determine
the lateral and vertical distribution of coals in
the Fruitiand.

The overburden map or depth parameter of the
Fruitland coals in the regional geologic analysis
was utilized as part of the gas content and
containment evaluation. Depths of coals range
from 0 feet at the basin's outcrop to more than
4200 feet along the basin's structural axis.
Depths change rapidly along the north,
northeastern, and northwestern margins of the
basin due to the structural monoclines. In the
southern part of the basin, coal depths gradually
increase as the structural slope increases to the
northeast. The deepest coals are found in the
northeastern quarter of the basin.

Coal Rank

Fassett and Hinds, 1971 [4] reported the
coals of the Fruitland Formation as
subbituminous. Support for their conclusion comes
from an observation of the weathering nature of
the coals when mined and stockpiled. Viewing the
coals as a reservoir for natural gas requires a
different approach to rank assessment. The
approach used in this study was based on the
thermal maturity of the coals, which is measured
by the vitrinite reflectance. This approach is
applicable to all coal basins. Rank generally
increases from south to north, with the highest
ranks found in the north central portion of the
basin. A vitrinite reflectance rank map of the
San Juan Basin (Rice, 1983) [7] was modified with
additional data and used to establish the various
Fruitland coal ranks, ranging from high volatile C
bituminous to low volatile bituminous with 0.46 to
1.51 reflectance values.

GAS CONTENTS OF FRUITLAND COALS

A moderately small public domain database of
measured gas contents exists for the Fruitland
Formation coals. The primary source of the data
was the U.S. Bureau of Mines (USBM) gas content
measurement database for samples from around the
United States. A description of the desorption
process and a partial list of samples is found in
Diamond and Levine, 1981 [8]. Additional
desorption data were acquired from the Colorado
Geological Survey.

Twenty-eight data points were standardized
for ash content, temperature, and pressure. The
data was sorted by coal rank and sample depth to
develop correlations relating gas content to depth
and rank. Curves were established for high
volatile A bituminous and high volatile B and C

bituminous coals combined. Insufficient data was
available for medium and low wvolatile ma_l_s._an.dJ
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analog curves were founded on the results of
similar analyses in a Piceance Basin study [9].
The mathematical relationship that resulted from
the analysis is:

B 4

GC=m* (Ind) +b .ieveveenns

Where: GC = Gas content (cubic feet/ton)
m = Scaling coefficient
In d = Natural log of depth (feet)

b = y intercept
GAS IN-PLACE OF THE FRUITLAND COALS

The regional geologic evaluation of the
Fruitland Formation coals, San Juan Basin,
concluded with a gas-in-place resource estimate.
The unit of analysis is a township and range and a
gas-in-place value was calculated for each of the
210 units in the study area. Elements of the
gas-in-place calculation are gas content, net coal
thickness, drillable area, and coal density.

Each of the 210 wunits was assigned an
estimated gas content value using the mathematical
relationship discussed previously. Depths used in
the calculation were average maximum overburden on
the Pictured Cliffs Sandstone. Analysis of the
vertical distribution of Fruitland coals showed
more than 85 percent of the net coal thickness is
within 200 feet of the Pictured Cliffs.
Insignificant differences result in gas content
values when depth values are varied within this
200 foot range.

Net coal thickness and coal density are
factors in the coal resource portion of the
gas-in-place calculation. An average net coal
thickness was determined for each unit from the
coal isopach map constructed in the geologic
evaluation. The coal rank map was used to assign
coal density to the unit., Densities increase with
rank as documented by Averitt, 1975 [10]. The
following table shows the variation of coal
density with rank used in this study.

Densit
(Tons7acre-¥oot)

Rank

High Volatile Bituminous

(A, B, and C) 1800
Medium Volatile Bituminous 1850
Low Volatile Bituminous 1900

The drillable area of a unit is determined by
totaling the number of acres in the unit and
subtracting undevelopable acreage. Undevelopable

acreage 1includes areas with urban development;
abandoned, active or permitted coal mining
operations; acreage already containing coalbed

methane wells; and areas of insufficient coal
overburden (gas containment) or coal thickness.

Gas-In-Place Estimate

The total gas-in-place resource estimate for
the Fruitland Formation coals is 56 trillion cubic
feet (TCF). This is.only a resource estimate, not
a reserve estimate and no recovery factor has been
applied. It must be pointed out that up to this
point, we have only been discussing gas :in the
micro-pore system of the coals and not dealt with

"free” gas or gas in the cleat system of the
coals. Calculation of the gas in the cleat system

will be based on the results from history matching
work and is expected to increase the current
gas-in-place estimate by 2 tu 3 percent. Tigure 6
is a gas-in-place contour map for the Fruitland
Formation coals.

The 56 TCF gas-in-place estimate is nearly
twice the estimate previously reported by Choate
and others, 1984 {5]. A comparison of the two
estimates revealed that coal resource values used
for each were within 10 percent. The conclusion
was drawn that gas content data in the two studies
were drastically different. Analysis of the data
set used by Choate showed the use of fewer core
desorption data and a large percentage of chip
desorption samples. This explains the increase in
the gas-in-place estimate resulting from this
study.

DETAILED FIELD INVESTIGATIONS

Four sites located in three coalbed methane
production fields were selected for detailed
geologic and reservoir analysis. The number of
completed wells in each area and their production
histories aided in site selection. Figure 4 shows
the location of the four sites studied. They are
the Cedar Hill Field, New Mexico; an Undesignated
Fruitland Field, New Mexico; and two sub-areas of
the Ignacio Blanco Field, (olorado. The primary
purpose of the field site investigations was to
validate the regional geciogic study at a field

level, In addition, the field investigations
incorporated production data into the geologic
analysis and established the stratigraphic

intervals contributing to the Fruitland coalbed
methane production.

Cedar Hill Field

The Cedar Hill Field is located in portions
of Townships 31 and 32 North, Range 10 West.
Development of the coalbed methane resource 1in
this area was initiated more than ten years ago
and presently, the field contains 12 coalbed
methane wells. A structure map on the Pictured
Cliffs Sandstone for the area shows a maximum of
100 feet structural relief with a series of subtle
northeast-southwest trends. Most of the
structures in these trends exhibit relief of 20
feet or less. Net coal thickness across the area
ranges from 9 to 55 feet. A coal in the basal
section of the Fruitland Formation has been the
primary production target and thickness ranges
from 5 to 27 feet. This seam thins and splits to
the southeast. The coal rank in the area is high
volatile A bituminous and gas contents average 358
to 521 cubic feet/ton from four samples.

The reservoir parameters assessed in this
evaluation are pressure, temperature, saturation,
permeability and a gas-in-place estimate. Three
bottom hole pressures were available from public
records. They range from 1362 psi to 1590 psi or
0.49 to 0.56 psi/foot and indicate an overpressured

coal reservoir, Reservoir temperatures of the
basal coal ranged from 95 +to 114 degrees
Fahrenheit. Reservoir saturation status for this

area is unknown and based on production histories
of the earliest wells, 100 percent water
saturation was assumed. Wells drilled at later
dates were probably less than 100 percent water
saturated and were partially dewatered by the
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Tinitial wells. No permeability data was availahle
for any of the coal seams i1 the field. A
s-in-place estimate of 5 to 35 billion cuhic
:t/section (BCF/sec.) was calculated for the
Cedar Hill Field.

Analysis of the completion histories of eight
Amoco Production Company wells in the field showed
that five were completed open-hole and three were
completed through pipe with stimulation. Both
completion techniques have proven successful and a
conclusion can not be drawn on the best method of
completion. Five of the eight wells are completed
in a single seam and the remaining three are
multiple seam completions. One conclusion drawn
from this geologic and reservoir study is that the
Cedar Hill Field area is overpressured.

Undesignated Fruitland Field

The Undesignated Fruitland Field is located
in Township 30 North, Range 7 West. The field
contains four coalbed methane wells with
production histories dating from early 1986. This
field, much 1ike the Cedar Hill Field, shows very
little structural relief on the Pictured Cliffs
Sandstone. Structural relief does not exceed 80
feet across the area and a northwest-southeast
structural trend is present. Structural closures
of small magnitude exist along the trend. Net
coal thickness ranges from 36 to 75 feet and
approximately 95 percent of the coal occurs within
100 feet of the Pictured Cliffs. The thickest
single seam in the area is 30 feet and the coal is
ranked high volatile A bituminous, There are no

isured gas contents in  the study area.
.w«erefore, data from the Cedar Hill Field, based
on similar coal rank and depths, were used for
this parameter,

Reservoir pressure data in the area range
from 1332 to 1521 psi which converts to gradients
of 0.45 to 0.50 psi/foot. Based on this data, the
area is overpressured. Reservoir temperatures
range from 93 to 112 degrees Fahrenheit in the
lower Fruitland interval. This field appears to
contain both gas and water saturated coal seams.
One well in the area exhibits a predominantly
gas-saturated coal seam, as shown by recent
decreases in gas production and unchanged water
production rates. There is no permeability data
available for the coal reservoirs in the study
area. The gas-in-place resource estimate for the
Undesignated Fruitland Field, assuming similar gas
content data for the Cedar Hill Field, ranges from
16 to 38 BCF/sec.

The four coalbed methane wells in the field
were drilled by Meridian 0il Company. Two are
completed open-hole with production liners and two
are completed through casing. Three of the four
wells have been stimulated. All of the wells have
multiple coal seam completions and net coal
thickness ranges from 43 to 63 feet per well., One
of the open-hole compietion wells has had
tremendous gas production rates, at times
exceeding 4 million cubic feet per day (MMCF/d).
The worst well in the field only averages 150

ousand cubic feet per day (MCF/d). The

between 1 and 2 MMCF/day.

remaining two wells have production rates ranging’

lgnacin Blanco Field

The Ignacio Blancn Field encompasses most of
the Colorado portion 3F the basin., Two areas
within the field were selected for detailed site
investigations. It should be noted that the
majority of the coalbed methane wells in the two
areas were initially drilled and completed by
William Perlman between 1982 and 1984. Amoco
Production Company recently took over the Perlman
acreage and recompleted a number of the wells in
1986 and 1987. Preliminary production statistics
from recompleted wells indicate improvement over
past production.

Area 1 - Township 34 North, Range 8 West. Area
T contains 18 Fruitland coalbed methane wells with
erratic production histories dating back to 1982.
There is 1100 feet of structural relief across the
area with structural Jows and possible closures
located in the southern half. A stratigraphic
rise of the Pictured Cliffs Sandstone and
intertonguing with the Fruitland Formation is
located in the north and west portions of the
study area. Net coal thickness throughout the
area ranges from 26 to 76 feet with the thickest
individual seam being 35 feet. The coal is ranked
medium and low volatile bituminous and gas
contents from five samples average 315 cubic
feet/ton.

This area contains the two Southern Ute
Indian, Oxford wells in section 25, which were
part of a Department of Energy (DOE) coalbed
methane research project. The coring of these
wells revealed 1/4 to 1/2 inch cleat spacing. The
Oxford #2 well was used in 1985 by In-situ, Inc.,
a GRI contractor, for reservoir data analysis.
In-situ, 1Inc, determined a static reservoir
pressure of 1490 psi or a gradient of 0.52 psi/ft
and a calculated permeability of 5 md [11].
Reservoir temperature data across the area, for
the lower Fruitland Formation ranges from 100 to
128 degrees Fahrenheit. The pressure data from
In-situ’'s research and from additional Fruitland
Formation drill-stem test data indicate that the
southern  region  of the study area is
overpressured. All of the coalbed methane wells
produced significant volumes of water in the
field., A gas-in-place estimate of 18 to 52
BCF/section is estimated for this area.

Completion methods of the 18 wells in the
area included cased and open-hole, with stimulated
and unstimulated examples of each. No one method
has proven more successful than another and
erratic production histories from the wells make
it difficult to draw a completion/production
history conclusion. As noted before, Amoco has
recompleted 6 of the 18 wells in the area with
small to moderate size sand/water stimulations.
Production data from the recompleted wells is not
yet available, but will be valuable for additional
analysis.

Area 2 - Township 32 and 33 North, Range 6

West. Area 2 of the Ignacio Blanco Field
contains 28 coalbed methane wells. A maximum of
350 feet of structural relief is found in the area
and a structural nose is located in the northwest
portion of the area. A north-south trend of
structural depressions is located along the
western edge of the area, Net coal thickness
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ranges from 20 to 68 feet, with the thickest
individual coal seam being 42 feet. Coal rank is
medium volatile bituminous and the area has an
average measured gas content of 380 cubic feet/ton.

A research project was conducted at the
Tiffany Gas, Glover #1 well in section 2, T32N,
R6W, by Terra Tek, Inc., under GRI contract. The
purpose of the project was to identify the
resource potential and characteristics at a site,
and provide the operator with a completion
technique that would lead to economical production
of Fruitland coalbed methane. Extensive work on
reservoir characteristics was conducted and
reported by Jones, 1985 [12]. A static reservoir
pressure of 1483 psi or gradient of 0.48 psi/foot
was measured at the site by In-Situ, Inc. This
indicates an overpressured reservoir, at least in
the southeastern corner of the study area. A
measured permeability value of 3.5 md was obtained
from coal samples and 1/4 1inch cleat spacing was
measured on recovered coal cores. As in Area 1 of
the Ignacio 8lance Field, most of the wells in
Area 2 produce significant volumes of water.
Gas-in-place estimates for this area range from 14
to 45 BCF/section.

Completions of the 28 wells in this area are
similar to those discussed. in Area 1 of the
Ignacio Blanco Field, Amoco has attempted
recompletion on a number of the Perliman wells, but
production data is not yet available. A variety
of completion and stimulation methods have been
applied to wells in this area and no single method
provides better results than another.

CONCLUSION

The following conclusions have been drawn
from the regional geologic analysis and detailed
field site investigations of this coalbed methane
resource study:

° This extensive subsurface geologic
analysis provides a foundation for
additional research and development of the
Fruitland Formation coalbed methane
resource.

° Additional measured gas content data is
needed for assessment of the resource.

° Jt is estimated that the Fruitland
Formation coals contain 56 trillion cubic
feet of natural gas.

° Lower Fruitland coals at the four field
investigation sites are overpressured.

° Permeability measurements at two locations
in the Ignacio Blanco Field are low and
measurements are not available for the
Cedar Hill and the Undesignated Fruitiand

Fields. Structural enhancement of
permeability may exist within all four
fields. Fracture and lineament studies

are needed for possible identification of
enhanced areas.

° Numerous well completion and stimuiation
methods have been utilized with varying
degrees of success.
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ABSTRACT

The ability to produce low cost, pipeline
quality gas from deep coal reservoirs depends
largely on thorough integration of exploration
methods with appropriate drilling, completion and
production strategies. In the extreme case,
areas that are not economic with current
completion technologies shoyld be avoided with
adherence to prudent exploration practices.
Therefore, reliable predictive geologic methods
to specify coal reservoir conditions need to
precede drilling and completion decisions.

Dominant coal reservoir mechanisms include:
permeability, saturation, reservoir pressure and
gas-in-place. Production characteristics from
low permeability coal reservoirs are most
sensitive to the interaction between type of
saturation and reservoir pressure. The geologic
processes responsible for these reservoir
conditions have been examined in the Piceance
Basin. This basin, known for low permeability
reservoirs, was selected for geologic evaluation
due to the tlarge coalbed methane resource and
large data base. Also located in the basin is
the Deep Loal Seam Project, a multi-year, multi-
well, field laboratory joint venture by the Gas

Research Institute and Resource Enterprises,
Inc., providing fully integrated reservoir and
geologic engineering data on deep coal
reservoirs.

Reservoir diagnostics and modeling suggests
that reservoir pressure and type of saturation
demonstrate an interaction between catagenesis
and permeability. Thick, thermally mature coal
deposits actively generate more gas and water
than can be adsorbed by the coal or be diffused
through a low permeability system. In these
regions over-pressuring occurs. Ultimately, pore
pressure will exceed in-situ stresses resulting
in tensional fractures through the coal bearing

sequences. While the coal seams remain in the
active gas generation phase, the fractures and
pore spaces become gas saturated. Eventual

temperature reduction through erosion will halt
the gas generating phase, resulting in an under-
pressured reservoir. Imbibition of water into
these reservoirs is unlikely in areas -of low
permeability. In contrast, coal seams that have
not reached an active gas generation phase may be
overpressured and water saturated due to

compaction and coal dewatering in a shale bounded
situation. Overpressured water saturated coal
reservoirs of the Cedar Hills and San Juan 30-6
Unit in the San Juan Basin have, to date, shown
the highest production capacity for coalbed
methane production.

In summary, geochemical evaluation
techniques have been applied to characterize and
predict coal reserveir mechanisms in the Piceance
and San Juan Basin.

INTRODUCTION

A portion of the extensive gas accumulations
found_in the San Juan Basin., the Green River
BasinZ, and the Alberta Basind have been sourced
largely by coal. Despite the amount of data
collected on coal reservoir characteristics and
coal as a source rock, 1ittle work has been done
integrating the two sciences. A coupled
understanding of coal reservoir mechanisms and
coal maturation will assist the explorationist in
his pursuit of coalbed gas resources. This work
was sponsored by the Gas Research Institute under

Contract No £083-214-0844 with Resource
Enterprises, Inc.
A geologic model is presented which

incorporates coal’s resistance to transfer heat
with its ability to generate large volumes of gas
over a specific temperature and time seguence.
In basins where low permeability prohibits cross
formational fiuid flow, gas generation can exceed
the quantity of gas that can migrate through the
geologic system. This results in high pore
pressure within the coal reservoirs. Conversely,
where migration exceeds rate of gas generation,
low pore pressure will be observed. These stages
of reservoir disequilibrium have been observed in
other deep coal basins of the western United
States.

The focus of this paper is to describe and
quantify these states of pore pressure
disequilibrium within some coal reservoirs of the
Piceance Basin and San Juan Basin. A sequential
approach is undertaken to examine the coal system
in each phase of basin evolution, as follows:

1. Determination of the volumes of water and
gas produced from coal at specific maturity
levels during the coalification process.
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2. Relate the maturity levels to specific time
periods using thermal maturation models.

3. Determination of the amount of gas that
cannot be retained by the coal and,
therefore, which must diffuse through the

geologic section for specified time

interval,

This paper is directed at providing the
volumetric calculations of Step 1 and the

methodology (using a case study) for Steps 2 and
3.

included in this paper are geologic
observations and interpretations of areas within
the Piceance Basin where underpressured and
overpressured (less than and greater than
hydrostatic pressure, respectively) coal seams
have been identified. Also included is a section
suggesting a relationship  between  well
deliverability, permeability and reservoir
pressure in coal degasification wells in the San
Juan Basin, A relationship between material
balance, gas/water flow and abnormal coal pore
pressure is presented.

THE EVOLUTION OF COAL

In response to burial depth, time and
temperature, deposits of terrestrially derived
plant tissue evolves physically and chemically
into thermally mature coal. Compaction and
temperature increases transform the organic
material into three primary coal components or
macerals. (Macerals are the microscopically
recognizable constituents of coal.) The
vitrinite maceral represents jellified cell walls
or woody material, the exinite maceral is
representative of plant resin (cuticles and
spores) and the inertinite maceral represents
carbonized woody material.

The degree of maturation or coal rank during
the coalification process is most accurately
measured from the vitrinite maceral. The
percentzge of vitrinite optical reflectivity (Ro)
increases correspondingly with increases in coal
rank. The temperature necessary to increase rank
as indicated by Ro and derived by Gijzel? is
shown on Table 1. Systematic chemical and
biological degradation of organic material during
the coalification process yield varying amounts
of water and gas. Examination of such chemical
products is important in understanding the water
and gas accumulations within present-day coal
reservoirs.

The two most significant stages of coal
maturation, diagenesis and catagenesis, are
defined largely by the products of biological and
thermal evolution. MWater, biogenic methane and
carbon dioxide are the primary coal diagenetic
products. Water originates from éhe depositional
system and organic decomposition . A1l biogenic
gas and o2 percent of the coal's water generative
capacily occurs during giageneSIS at maturity
levels of 0.23 to 0.76 Ro

Continued exposure of coal to pressure anc
temperature allow coal to ent;r the stage of
catagenesis. Juntgen and Klein’ determined that
thermal methane generation commences during
catagenesis for coal with a vitrinite reflectance
of 0.73 Ro. As shown in Figure 1, active gas
generation accelerates at 0.90 Ro and continues
through 1.30 Ro, accounting for 76 percent of
thermal methane generation. Water produced
during catagenesis is frog the hydration of
inorganic minerals and clays®. Water and thermal
methane volumetrics as a functlon of increasing
coa) maturity is summarized in Figure 2.

Coal’s ability to absorb 915 decreases with
higher temperature T pressure but increases
with higher coal rank Eight to ten times more
gas is generated than can be retained, thereby
initiating gas migration from the coal into other

strata. Therefore, the development of a time
framework for the coal generative episodes
becomes necessary to understand the possible

influence that thermal generation rates have on
coal reservoir properties. Deterministic
relations between time, temperature and ensuing
gas generation episodes are derived from thermal
maturity modeling.

Thermal _Maturity Modeling

The timing of coal digenetic and catagenetic
history may be identified through use of a time-
dependent, three-dimensional mathematical model
to simulate gas generation dependence on
variables such as sedimentary burial rate,
paleotemperature, paleopressure, thermal
conductivity and heat flow. The simulation
initially requires the computation of three-
dimensional pore pressure in sediments as a
function of time. The system assumes that the
inflow-outflow is equal to the net accumulation
due to grain and fluid compressibility plus the
net accumulation to change in sediment density,
rate ff sedimentation and change in water
depth The next step of the simulation fis
evaluat10n of the simultaneoq& transfer of heat
by conduction and convection In this step,
thermal parameters of the evo]ving system are
particulary sensitive to pressure and
temperature. The third step in thermal modeling
is relating temperature to specific geologic
periods. Lopatin14 determined for coalification
reactions, the reaction rate doubles with each
increase of 10°C. He further related time and
temperature by specifying a geologic time period
with 10°C intervals as follows:

Tl =T 6} + 7,6

TT] = Txme Tempera%ure ndex

Ty = Temperature Correction Factor
Gy = Geologic Heating Time

where:

correlation between vitrinite
reflectance is incorporated as a maturity
indicator and the TVl 1is established. The
relationship between vitrinite reflectance (Ro)

and the time-temperature index is:

Next, a

Ro% = 1.301 1g TTI - 0.5282...
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The final output of the thermal model
reveals the type of depositional basin, tectonic
and structural histories, sediment accumulation
(or erosion) through time, thermal history of the
basin and its effect on coal maturation and
compactional history. A comparison of measured
vitrinite reflectance and bottomhole temperatures
with that predicted by the model indicates the
accuracy of modeled events.

ABNORMALLY PRESSURED COAL RESERVOIRS,
BASIN

PICEANCE

The preceding coal volumetrics and thermal
modeling may be used to study the implications of
abnormally pressured coal reservoirs within the
Piceance Basin of northwestern Colorado. The
Basin was selected due to the availability of
reservoir and geologic data collected for the
Cretaceous coal reservoirs as are dominate in the

western U.S. and which contain significant
coalbed accumulations.
To date, the thick coal seams of the

laterally continuous Cameo Coal Group, (Williams
Fork formation, Mesaverde Group) have been the
objective for coalbed gas exploration within the
Piceance Basin. A significant coalbed methane
resouYge also exists within the Coal Ridge Coal
Group'?, stratigraphically 200 to 400 feet above
the top of the Cameo Coal Group, laterally
confined to the eastern margin of the basin.

The primary questions to address are: i)
what is the origin and implications of abnormally
pressured coal reservoirs?, and ii} why
stratigraphically equivalent coal seams with
similar coal ranks and burial depths have such
diverse coal reservoir conditions.

The integration of drill stem test data,
bottomhole pressure, buildup tests and drilling
mud weights have resulted in identification of a
regional northeastern overpressured trend
approximately 25 miles in length and eight miles
in width (Figure 3). The East Divide Creek Area
(which has a reservoir pressure gradient in the
Cameo coal seam of 0.59 psi/ft) is located on the
southern-most extension of the regional trend.
In contrast, the reservoir pressure gradient at
the Red Mountain Area is .33 psi/ft. The over-
pressured region coincides with: i) maximum
total coal development in the Basin (Figure 4),
ii) thermally mature coals (Figure 5), and {ii)
northern plunging nose of the Divide Creek
Anticline (Figure 3). These coal characteristics
are interrelated and result in dynamic reservoir
conditions. :

The Divide Creek anticline has brought
deeply buried, mature coal seams 4,000 - 5,000
feet closer to the surface than laterally
equivalent coal seams. The abrupt post-laramide
uplift appears to have contributed to the coal

disequilibrium state along the axis of the
anticline. The timing of coalbed gas and water
generative events and material balance

calculations may be determined using thermal
maturation modeling.

Material Balance

An examination of regional maps (Figure 4
and 5) indicate that up to 100 feet of low-
volatile bituminous coal exists in the over-
pressured region. ﬁgl]owing lithification and
compiition. §.18 x 10° barrels of water and 4.27
x 1011 cubic feet of gas are calculated to have
been displaced by the coal seams per square mile.
To determine the coal’'s fluid retention
capability, earth strain analysis was conducted
at the tast Divide Creek Site. The upper bound
interpretation for %oal porosity was calculated
to be 6.0 percentl . Therefore, if all pore
space in the coal was saturated with water, the
coal could only contain .41 x 10°° percent of
generated water. If completely gas filled, at
equivalent pressure and temperature, the coal
could retain roughly 12 percent of the generated .
gas. Clearly the volumetric difference between
the gas and water generated and that which may be
stored in the coal system is large and suggests a
reason for overpressuring in this region.

Determination of Sequential Thermal Events

The timing of coal generative events at the
East Divide Creek Area and Red Mountain Unit was
determin?g by Waples using computer-aided thermal
modeling'®. In order to best match present-day
calculated subsurface temperatures of 1649F at
Red Mountain and 176°F at East Divide Creek, and
to obtain good agreement between measured
maturity data and calculated maturity tlevels,
paleo heat fiow was varied. This facilitates
simultaneous correclions for a nearby late Eocene

intrusive event and post-Eocene wuplift and
erosion. Pre-Eocene heat flows were held
constant at 1.5 heat flow units. Based on

geologic age dating, the thermal event began 34
million years ago (MYA). A one hundred thousand
year heating span was investigated, decaying

exponentially. The geologic section was layered
to approximate age of deposition and lithology.
The thermal conductivities K wused for pure
sandstone was 6.2 watt/meter/Kelvin (w/m/k), for
shales 1.5 w/m/k, for dolomites 4.8 w/m/k
decline, for siltstone 2.9 w/m/k, and _for coal
0.3 w/m/k as reported by Kappelmeyerl . The
results from the thermal modeling simulation

expressed as a function of time and maturity for
the volume of water and gas generated by the
coals are shown on Figure 6. In both areas,
active thermal gas generation from coals occurred
approximately 52 MYA when the formations were at
their deepest burial and greatest temperature.
Active gas generation ceased approximately 25
MYA. Gas generation today is at a much Tower
rate due to reduced depths resulting from erosion
and thermal decay of the igneous event.
According to Lopatin’s relationship, the current
reaction rate is .001 percent as compared to peak
gas generation approximately 40 MYA.

A typical geothermal gradient semi-log plot
of depth and  vitrinite reflectance yields a
straight line 4 A vitrinite profile has been
measured at the 1 Deep Seam 32-2 well (Red
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Mountain Unit), at the 1 Cameo 20-4 (East Divide
Creek Area) , and other areas of the Piceance
Basin as reported by Law!?.  All wells examined
displayed an increased maturation profile
occurring at approximately 0.90 Ro. The unusual
vitrinite reflectance profiles measured at the 1
Deep Seam 32-2 arg 1 Cameo 20-4 were closely
matched by Waples!® maturation modeling (Figure
7) indicating that maturity modeling in coal-
bearing basins must take heat transfer through
coalbeds into consideration. Poor thermal
conductors, such as coal, result in a heat
buildup under the low conductive section. This
phenomenon is well documented by a static, cased
hole temperature log from the East Divide Creek
Area, Mamm Creek and Rullison Field (Figure 8).
Note the repeated thermal anomalies at the base
of the Cameo and Coal Ridge groups.

YuklerZ0 first described the temperature and
pressure  interrelationship with  abnormally
pressured reservoirs. He observed a sharp
increase in the temperature gradient on top of a
high-pressure medium and a sharp decrease in the
temperature gradient on top of a low-pressure
medium (Figure 9). These findings are consistent
with temperature profiles for overpressured coal
sections as shown in Figure 8. The abnormally
high-pressured sedimentary unit resulted from an
insulation effect caused by a zone of low thermal
conductivity. A barrier to heat flow is created
in the areas of thick, laterally continuous coal
seams found in the overpressured region of the
Piceance Basin due to the 1low thermal
conductivity of coal. This results in high
temperatures and pressures which accelerate coal
maturation as noted in vitrinite profiles from
wells at the Red Mountain Area and East Divide
Creek (Figure 7). The sequential results of
thermsl maturation events in the Piceance Basin
may be summarized as follows:

1. The coal's insulating property which exists
from deposition results in heat buildup and
accelerates both the initiation and degree
of coal maturation. Therefore, increasing
temperature initiates increasing gas
generation.

2. The rapid decay of the gas generative system
is caused by reduced temperatures resulting
from erosion of the stratigraphic section.

3. Once in the passive gas generation stage,
the migration of gas from the coal seam to
achieve equilibrium  will result in
decreasing pore pressure.

from the perspective of the Piceance Basin
evolution, the coal seams underlying the Red
Mountain and East Divide Creek Unit have similar
thermal histories and generally evolved as a
single system. However, thermal maturation and
gas generation events alone fail to explain the
different reservoir pressure gradients measured
within the coal seams at the two areas. (e.g.
Red Mountain Area = 0.33 psi/ft, East Divide
Creek Area = 0.59 psi/ft). Distinguishing
factors between the two areas include the post-
laramide uplift paralleling the overpressured,
fast Divide Creek region, and absent at the Red
Mountain Area and nearly twice the gas generation

in the overpressured area due to increased coal
thickness (Table 2).

The following thermal maturation events are
presented as mechanisms for high coal pore
pressure. During active gas generation, coal
seams in the overpressured region were located in
the deepest portion of the basin. Therefore,
coalbed gas adsorption reached peak levels due to
high formation pressures and temperatures from
burial. The gas retention capacity was reduced
during rapid post-laramide uplift and erosion.
As a result of the uplift, the coal seams are
currently at elevated maturation and temperature
levels relative to laterally equivalent coal
sections (Table 2). High pore pressure may then
be related to coalbed gas retention in excess of
equilibrium temperatures and pressures.
Disequilibrium may have been accentuated by the
large concentration of coal volume in the
overpressured area (Figure 4).

OVERPRESSURED COAL RESERVOIRS

Gas is produced from overpressured, water

- saturated Fruitland coal reservoirs at the Cedar

Hi1l Field and San Juan 30-6 Unit in the San Juan
Basin, The two fields have been examined 1in
detail?l in an effort to: (1) determine geologic
processes responsible for reservoir
characteristics, and (if) establish reservoir
parameters controlling production.

The fields were selected because of their
high productivity. The Cedar Hill Field has
produced a cumulative of 7.1 Bcf from 7 wells
since 1979 and is still producing at a rate of
1.3 Bcf/year. The Fruitland coal discovery was
made in the San Juan Unit 30-6 during 1985.
Three wells in that field have produced 2.3 Bcf
during the first 15 months of production and
continue to flow at a rate of 2.2 Bcf/year.

A detailed geologic study of both fields
failed to detect significant geologic anomalies
that might explain  favorable  production
characteristics. Similarly investigation of
drilling and completion techniques failed to
yield technological reasons for high
productivity. The only obvious factor that both
fields share which is lacking in approximately
200 1less successful coalbed completions in the
San Juan Basin is overpressured coal reservoir
conditions over a large lateral area. From the
stand point of decreasing formation pressure
below gas desorption pressure, over pressure,
water saturated coals should have negative
production implications. However, the
overpressuring condition maybe indicative of a
permeability enhancement process resulting in
highly permeable coal reservoirs.

Based on regional isoreflectance maps, coal
reservoirs in both fields fall in the maturation
range of .80 - .90 Ro. According to Figure 2
this maturity level falls below peak gas
generation phase. Therefore, sufficient volumes
of gas have not been generated to cause high pore
pressure. However, coal rank and age are
appropriate for relict overpressuring conditions
during the coal dewatering phase. Overpressuring
during shale compaction and dewatering has been
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well documented?? in detrital sequences. Coal
seams bounded by impermeable shales would
similarly develop high pore pressure due to the
inhibited ability to expel water during
compaction. Produced waters from both field
contain 12,000 to 14,000 ppm sodium bicarbonate
type coal water which is suggestive of sluggish
or isolated reservoirs conditions. gga] derived
should be a sodium bicarbonate water<?, however,
the high levels measured at the fedar Hill and
San Juan 30-6 Unit indicates little dilution of
cannate water over time, supporting bounded
reservoir conditions. In theory, incompressible
water under high pressure could be acting as a
hydraulic proping mechanisms in coal cleats
Timiting porosity and permeability reduction
effects from lithostatic loading.

Overpressured coal reservoirs are a product
of shale bounded coal seams during diagenetic
compaction during water expulsion. The process
is similar to the origin of overpressured shales
and sandstone in the Gulf Coast region. To date,
coalbed methane wells producing from deeply
buried coal seams with high permeability and
deliverability occurring in overpressured, water
saturated areas of the San Juan and Piceance
Basins. The simultaneous occurrence of
overpressuring, water saturation and high
permeability in coal seams is not thought to be
coincidental but rather suggestive of a common
relationship. That relationship could be
quantified through integration of geologic and
reservoir modelling using data collected from
laboratory core measurements in conjunction with
field level reservoir tests.

SUMMARY

Recognition of the geologic and resulting
reservoir processes controlling gas production
from deeply buried coals {s the first steps in
the formulation of an exploration strategy for
coalbed gas. The dominant coal reservoir
mechanisms affecting production include:
permeability, reservoir pressure, saturation and
gas-in-p1aceé4, The relationship between
decreasing coal permeability zgth increasing
depth has been described by McKee<®. In order to
overcome the inherent low coal permeability at

depth, permeability enhancement through
structural  deformation should be sought.
Utilizing fundamental relationships including
Darcy’s Law and equation of state, at a given

permeability, overpressured coal reservoirs will
have better deliverabilities and, therefore, are
a preferred exploration target over
underpressured and normally pressured coal seams.

Based on observations resulting from drill
stem tests, blowouts from intercepted coal seams,
gas flares while drilling through coal seams and
coalbed gas production, inferences may be made
regarding areas in the Piceance Basin that are
either water productive or predominantly flow gas
with little or no mobile water (reference Figure
10). The pattern shown in Figure 10 coincides
with (i) an area within an vitrinite
isoreflectance contour of 1.1 Ro (Figure 5), and
(ii) proximity to the basin outcrop. A

relationship 1is suggested where
generation has occurred in coals at depths
greater than 4500 feet from the surface and
isolated from the outcrop will result in little
or no mobile water from coal reservoirs. Large
volumes of gas generated from the coals and
redistributed laterally and vertically throughout
the geologic section is a possible mechanism for
relocation of water from the coal reservoirs.
Imbibition of water back into the system may be
precluded by the absence of cross-formational
fluid flow in low permeability basins.

active gas

Thermal modeling of geologic evolution has
been used to describe and quantify existing
reservoir conditions for deep coal seams within
the Piceance Basin. Various conclusions and
observations regarding coal reservoir conditions
as a function of time, temperature and cross-
formational fluid migration include:

1.  Gas occluded in coal seams with maturities
less than .73 Ro vitrinite reflectance may
have largely originated from a deeper source
or are a biogenic origin.

2. The unusual vitrinite reflectance profile
observed in the Piceance Basin (and other
deep coal basins) 1is caused by the Tow
thermal conductivity of the coal.

3. Simplistic and commonly used geothermal®
gradient maturation models that do not
account for heat transfer will fail to
predict the accelerated phase of coal
maturation and resulting hydrocarbon
generation.

4. Active gas generation from coal seams in the
Piceance Basin discontinued approximately
twenty-five million years ago.

5. 1In the Piceance Basin, underpressured and
overpressured coal reservoirs are part of a
single hydrocarbon generation cycle,
differing by the volume of hydrocarbons
generated and a post-laramide uplift.

6. To date, overpressured coal reservoirs. in
the San Juan Basin are water saturated and
highly  permeable. These  reservoir
conditions may be related to coal. water
generative cycle under shale bounded
conditions.

7. MWater and gas generated during the

coalification process may have fractured
overlying sediments during expulsive cycles.

8. High permeability overpressured coals with
high gas-in-place represent attractive coal
reservoir conditions. For low permeability
basins (such as the Piceance Basin), these
reservoir parameters are most likely to
occur along positive structural features
that overlap thick, thermally mature coal
seams.,
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TABLE 1

COAL VOLUMETRICS

THERMAL
METHANE WATER THICKNESS
Ro% % F COAL RANK  (Bet/M)  (10°pbI/mi?) (FEET)
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PEAT - 14.0 3.5
.23 —~ 95
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.78 — 196 37 »
i P e a1
. 2. w
1.30 . ::: Xy 45 1.0 2
1.80 — 02 Lvd .49 34 1.0 3
2.04 —| ass P " 28 o z§
5 g Lx
2 302 TOTAL 8.63 72.42 g
AFTER LAW, 1883
TABLE 2
COAL RESERVOIR AND GEOLOGIC PROPERTIES
RED MOUNTAIN UNIT AND EAST DIVIDE CREEK
COAL GAS . PREBOUAE PERMEA -
[THICKNESS RANK OENERATED | 1N PLACE | EXPELLED DEPTH TEMP ORADIENT sILiTY
(FY) {Ro) wcrrm?) | (ncrimity | scrimih irn F ({4 11111 {md)
RED MOUNTAIN .
1 DEEP SEAM (3N .90-1.27 238 10 220 8800’ 104° 33 < .01
32-2
EAST DIVIDE CK
100° .90~1.27 407 38 432 4480° 17 .69 »>10.0
t CAMEO 20-4
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8711 Influence of Coal Composition on the Generation and Retention of Coalbed
Natural Gas
J.R. Levine (University of Alabama, School of Mines & Energy Development)
INTRODUCTION evolve the foue

In terms of composition,
according to three distinct characteristics:
1) "grade”, which represents the
proooftion of organic vs. inorganic constituents,
2) "type". which represents the natural variability
of theé organic constituents initially deposited in
the coal, amd 3) "rank”, which
physico~chemical changes imparted to the coal by

coal is classified

elevated temperatures and pressures during burial..

Grade, type, and rank influence every aspect of
coal bed natural gas reservoirs either directly or
indirectly. The present paper focuses on two
distinct, but related topics:

1) the influence of type and rank on the the
composition and quantities of volatile substances
formed during coalification, and 2) the influence
of grade and type on the retention of gas in the
subsurface.

EVOLUTION OF
COALIFICATION

VOLATILE SUBSTANCES  DURING

The most fundamental change taking place in
coal during coalification Jis the progressive
enrichment of elemental carbon, accompanied by the
elimipation and release of large volumes of
"volatile" substances relatively rich in hydrogen
and oxygen. As these volatile substances are
produced, the H/C and 0/C atomic ratios of the
residual solid coal progressively decrease. The
three principal maceral groups, vitrinite,
liptinite, and inertinite, differ substantially in
their initial H/C - 0O/C ratios, hence they also
differ in the quantity and type of gases formed
during coalification.

The coalification process occurs much too
slowly to be observed on a human time scale.
Consequently, we are constrained to examining the
end product and inferring as best we can the
processes that led to it. Inasmuch as only a small
portion of the volatile substances formed during
coalification remain in the coal today, their
volume and composition is largely problematical.
However, providing a number of reasonable
assumptions are made, then the quantities of CH,,
co,. and HO liberated during coalification can be
esgimated within a fairly narrow range, based on
the major element (C-H-0) composition. The model
rexpiires: 1) that the organic microconstituents of

relative

represents the:

coal

compositionally along
generalized maturation pathways depicted in Figure
1 (Tissot and Welte, 1978), 2) that (for the most
part) CH_, 002, and H,O represent the only forms in
which cai'bon. hydrogehi, and oxygen can escape from
the coal bed, and 3) that once they are formed,
CH,, CO,, and H,0 cannot recombine with the solid

matrix &f the codl.

The elemental compositions of coalification
“products" and "reactants" can be plotted on a Van
Krevelen diagram (Figure 1) which depicts both the
rank and type of the organic constituents.
Coalification paths for the four principal kerogen
types are labeled I, II, III and IV. Kerogen type
I1 is roughly equivalent to the liptinite (a.k.a.
exinite) maceral group in coal. Kerogen type III
is equivalent to vitrinite, by far the most common
microscopic constituent of coal, and kerogen type
IV is equivalent to the inertinite maceral group in
coal. At low rank the maceral groups differ
substantially in camposition, but progressively
converge upon one another they approach the origin.
For example points A and B represent, respectively,
the elemental compositions of liptinite and
vitrinite macerals coexisting in a coal of
vitrinite reflectance 0.5%, but by the time they
have been coalified to 2.0% reflectance, they have
virtually identical compositions.

A vector connecting any pair of starting and
end points can be used to represent the
compositional evolution of a particular coal or
coal constituent. This vector can be resolved into
1,2, or 3 components, parallel to the dehydration,
decarboxylation, and/or demethanation pathlsays
plotted on the diagram. These devolatilization
paths represent the change in composition brought
about by the progressive removal of H,0. 002, or
CH, from the coal structure. Applyinj the
constraints of the model, it is possible to reach
an end point by a variety of pathways--but only
within a limited range--or else condition (3) may
be violated. For example, a liptinite maceral of
initial composition A on the liptinite curve is
coalified to composition C. There are two limiting
end member paths to get from point A to point C.

Iin the first, al) oxygen is eliminated as CO, and
none as H2O while in the second the reverse 1s
true. In“the first case, the decarboxylation
vector intersects the demethanation path at A',
from which point all subsequent compositional
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changes can be accounted for by progressively
removing CH,. , plus CH, (Path A-A"-C). Aany other
evolutiona pathways will include both
decarboxylation and dehydration camponents and,
con-sequently, and must fall between A-A' and A-
A". (Note that the "head-to-tail" construction of
the vectors in these examples does not necessarily
imply a time sequence in wvolatile evolution.
Vclatile evolution occurs concurrently, with either
one or the other substance predominating. However,
the vectors do imply an explicit quantity of gases
evolved.

To quantify this model and determine the
precise composition and quantity of gases for each
path, a set of equations is formulated whereby the
tota)l number of atoms of C, H, and O are eguated
betweenn reactants (subscript r) and products
(subscript p), and the H/C and O/C ratios of the
reactants and products are adhered to:

Cp=Cr- CH - €O, (1)
Hp = Hr ~ 4*CH, - 2*H,0 (2)
Op = Or - 2*CO, ~ H0 (3)
Ho = Cp * 0.50 {4)
Op =Cp * 0.06 (5)
vhere Cp, Hp, and Op are the number- of atams or

moles of carbon, hydrogen, and oxygen per unit of
the product. Cr, Hr, and Or are the number of
atoms or moles of carbon, hydrogenh, and oxygen in
the starting (reactant) mixture; and CH4, co,, amd
H,0 are the number of molecules or mo.lgs of
mgthane, carbon dioxide, and water formed from the
reactants during coalification.

The composition of the starting material can
be determined by solving the following set of 3
equations with 3 unknowns:

Hr/Cr = 1.25 (6)
or/Cr = 0.07 (7)
Cr + Hr + Or = 1000, (8)

the solution to which is:

Cr = 431 (9)
Hr = 539 {10)
Oor = 30 {11)

The value of 1000 in equation (8) is arbitrary. It
can be thought of as representing an imaginary coal
“molecule" comprised of 1000 atoms. In subsequent
calculations these 1000 atoms shall be partitioned
among the varjous volatile products and coal.

Substituting equations (9-11) into equations
{1-5) we are left with § equations and 6 unknowns.
Hence, in order to derive a unigue solution, one
additional relationship must be defined. For end
member case A-A'-C, H,0 = 0; and for case A-A"-C,
CO2 = 0. For jntenned?iate paths, some ratio of CO
to” H,0 must be selected. This needn't be a%
arbit¥ary choice, but may be based on knowledge of
the functional group composition, For example Van
Krevelen (1963) indicates that throughout most of
the coal ranks under consideration, approximately
half of the oxygen in coal is bound to hydrogen,
and about half to carbon. We can propose then that

CO, an H_O leave the coal in roughly equal amounts:;:

2 -
henice COZ = H20.

- production is 107 am’/g (Table 1,

Depending on the path chosen, the relative
proportions and total weight percentages of the
volatile products vary considerably. Table 1 lists
the yields of CH‘, 002. and Hzo and volatile matter
produced along the “various” maturation pathways
depicted in Figure 1. For .example, as coal
increases from Ro(vit) = 0.5 to R_= 2.0, vitrinjite
can evolve anywhere fram 24 to I73 om” CH, (stp)/g
coal, depending upon whether B-B'-C or B-B"-C is
followed. Assuming a ratio of 1:1 H,0:CO
production, vifrinite will cumlatively gefierat?
around 116 cmCH4(stp)/g. Over this same rank
range, and within the constraints of the model,
liptinéte macerals generate between 421 and
466 cm” CH, (stp)/g; however, in reality, liptinites
probably fose a significant proportion of their
hydrogen as longer chain hydrocarbons rather than
as methane. The devolatilization model can be
modified or expanded to accammodate other
hydrocarbon gases, however, a new functional
relationship must be added for each new unknown.

This method of quantitatively estimating the
volatile vyield wusing simultaneous equation.is
similar to a widely cited coal devolatilization
model proposed by Juntgen and Karweil (1966) but
differs in that it does not require that the coal
liberate specific quantities of volatile
substances. Juntgen and Karweil speculated that
the proximate analysis volagile matter content
(measured by pyrolysis at 950 C) could be used as
an estimate of the total weight of material evolved
as volatile products during coalification.
However, this assumption is umwarranted and
thermodynamically unsound. Moreover, by requiring
that their coals produce such a large wvolume of
volatile substances, Juntgen and Karweil's
equations vyielded negative values for water
production--in other words, it was required that
water be added to the coal structure to maintain
the proper elemental ratios. Thus, the estimates
of gas volumes based on this model are exaggerated.
A subsequent article by Juntgen and Klein (1975},
however, published a lower revised estimate,
discussed subsequently, that is in close agreement
with the one calculated herein.

Table 2 shows the progressive
devolatilization path to Ro(vit) = 2.0 of an
hypothetical coal, comprised of 80% vitrinite, 10%
liptinite, and 10% §nertinite. The total CH4
Path D-D'-C),
almost identical to the quantity calculated by
Juntgen and Klein (1975) based on experimental
pyrolysis, The older estimate by Juntgen and
i1 (1966) for a whole coal was more than 200
Unfortunately, the older figure seems to be

(e.g.

cm .
used more commonly than the more recent one,
Meissner, 1984)

INFLUENCE OF COAL COMPOSITION ON IN SITU
METHANE CONTENTS

With increasing rank coal loses its capacity
to retain H_O; hence, assuming that the beds remain
fully wateg saturated, any water formed during
coalification must be produced. Coal has a
relatively strong affinity for 002 (as opposed to
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CH . for example), but CO, is readily soluble in
water; hence, its abundanc® will tend to diminish
over time. Consequently, in camparison with other
volatile substances formed during coalification CH
tends to become progressively enriched in the coai
bed reservoir .

Coal has an attractive affinity for methane
*hat enables it to absorb or adsorb more CH4 under
pressure than would be the case if the methane were
a free gas. During the course of coalification
coals generate much more methane than they have the
capacity to retain (Juntgen and Karweil, 1966}, su

in a natural setting, most coals should be at or

near their maximum methane capacity (at P.T).
provided that the coals were not exposed to
abnormally low fluid pressures in the past.

Bearing this model in mind, the gas content of cocal
in situ should be proportional to the pressure,
temperature, and whatever compositional parameters
limit the coal's capacity to sorb gas.

A suite of 57 samples was recently collected
from a 3000 ft-deep coal bed methane exploration
core hole in the Cahaba basin, central Alabama.
The gas contents of the samples were measured using
the Bureau of Mines canister desorption test. Then

the coals were subjected to a comprehensive suite

of analyses, including proximate, ultimate, BTU,
and petrography. These data were then normalized
and used to develop a multiple linear regression
model to predict the gas contents of the samples.
The resulting linear model was very successful,

evplaining 88.5% of the variability in gas content. :

A large component of the remaining
variability is probably due to measurement error.

Multiple Linear Regression Model
Gas Contents of Cahaba Core Samples

Gas
Consent = 6.822
(cm /g) + 0.0025 * Depth (ft)
2 - 0.0957 * ParrMM
r- = .88% + 0.1112 * (¥Fusinite + %Semifusinite
- 5.449 * H/C (daf) + WMacrinite)

This regression model indicates that for the
suite of coals examined, gas content increases

11.5% :

linearly with depth. In laboratory sorption
isotherm studies, the gas capacity of coal
increases at a less than linear rate, so the.

anaomalously high gas contents at depth may be due
to increasing rank (W. Telle, personal
canmunication). There was not, however, encugh of
a systematic rank variation in the samples to
produce a measurable effect in the regression
model. The third term, ParrMM, is an estimate of
the mineral matter content of the coal using Parr's
equation based on ash and sulfur content. Once
again the correlation is linear, but with a
negative coefficient. The predicted gas content
using the model is very close to 0.0 at 100%
ParrtM, showing that for these samples, the mineral
matter does not participate measurably in the gas
sorption process. The fourth term is a indication

of the influence of coal petrography on gas
sorption capacity. This composite variable,
camprised of members of the inertinite maceral
group, indicates that while inertinite does not
contribute significantly to gas generation, it has
a positive influence on the gas content. The fifth
term, the hydrogen to carbon ratio (dry, ash-free
basis) does not contribute strongly toward the
model, but indicates that an increasing H/C ratio
has a negative influence on the gas capacity. It
is uncertain whether this is related to decreasing
rank, or increasing 1liptinite content. Neither
standard rank parameters nor the liptinite
percentages showed a significant effect.

It remains to be seen whether this model can
be applied to coals in other basins as well. As
additional data become available the model will be
tested and refined.
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Figure 1 - Van Krevelen diagram depicting
evolutionary devolatization paths.

Liptinite (A) and vitrinte (B) are situated
at the intersections of the Type II and Type
;II kerogen maturation paths and the 0.5% R
isoreflectance line. A number of alternat®
devnlatilization paths myy be followed for
eéch starting material, each path yielding
different quantities of volatile products
{see Table 1 for cetails).

Step: c K o] H/C o/C
Starting Material:

B0 % Vitrinite: 4094 3192 712 0.78 0.17
+ 10 ¥ Liptinite: 43 539 30 1.23 0.07
+ 10 % Inertinite: 746 2%« 30 0.30 0.0¢

Total: 5273 3935% 772 6.7 0.135

Decarboxylation: -79 [} -138

{79 & COp) LTS - -
5196 9335 &1 0.78 0.12

Dehydration: [} -830 -313

(313 » Ha0) ——— co——— ————
5194 3323 9 0.7% 0.04

Demethanation: -208 -832 0

( 208 & CH) .——- ———— -——-
4588 2692 299 0.50 0.08

TABLE 2. Devolatilization Path for Whole Coal
. (D-D'=C, Table J.)
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Figure 4 -- Induction-electric log and lithologic column of the type well of
the Huerfanito Bentonite Bed of the Lewis Shale showing the interval from below

the Huerfanito through the lower part of the Ojo Alamo Sandstone.

Lithologies

are based on an interpretation of the three geophysical logs shown.
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(B) That for the purpose of this order a San Juan Basin Fruitland

Coalbed Methane Gas Well is a well that is producing from the Fruitland

Coalbed Seams as demonstrated by a preponderence of data which could include

the following data sources:

a)
b)
c)
d)
e)
f)
g)
h)
i)

Electric Log Data

Drilling Time

Drill Cutting or Log Cores

Mud Logs

Completion Data

Gas Analysis

Water Analysis

Reservoir Performance

Other evidence that indicates the production is

predominately coalbed methane.

No one characteristic of lithology, performance or sampling will either

qualify or disqualify a well from being classified as a Fruitland Coalbed

Methane Gas Well.



IT IS THEREFORE ORDERED:

(A) That, effective
Juan, Rio Arriba, McKinley and Sandoval Counties, New Mexico, classified as a
gas pool for production from the Fruitland Coalbed Seams, is hereby created
and designated the San Juan Basin Fruitland Coalbed Methane Gas Pool, with the
vertical limits comprising all coal seams within the stratigraphic interval
from approximately 2450 feet to 2880 feet on the Gamma Ray/Bulk Density log of

the Amoco Production Company Schneider Gas Com "B" Well No. 1, located 1110

, a new pool in all or parts of San

feet from the South line and 1185 feet from the West line of Section 28,

Township 32 North, Range 10 West, NMPM, San Juan County, New Mexico, which for
the purpose of this order shall include all stratigraphically equivalent coal
seams which by virtue of intertonguing or other geological events may be found

within the upper Pictured Cliffs Formation.

consist of the following described lands:

Township
Township
Township
Township
Township
Township
Township
Township
Township
Township
Township
Township
Township
Township

19
20
21
22
23
24
25
26

North,
North,
North,
North,
North,
North,
North,
North,
North,
North,
North,
North,
North,
North,

Ranges
Ranges
Ranges
Ranges
Ranges
Ranges
Ranges
Ranges
Ranges
Ranges
Ranges
Ranges
Ranges
Ranges

Hest
West
West
Hest
Hest
East
East
East
Hest
West
HWest
Hest
HWest
Hest

The horizontal limits shall

through
through
through
through
through
through
through
through
through
through
through
through
through
through

9
11
14
16
16
16
16
16
15
15
15
13

HWest,
West,
Hest,
Hest,
Hest,
Hest,
Hest,
Hest,
Hest,
West,
Hest,
Hest,
West,
Hest,

NMPM
NMPM
NMPM
NMPM
NMPM
NMPM
NMPM
NMPM
NMPM
NMPM
NMPM
NMPM
NMPM

NMPM'
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SPECIAL RULES AND REGULATIONS FOR THE
SAN JUAN BASIN FRUITLAND COALBED METHANE GAS POOL
SAN JUAN, RIO ARRIBA, MCKINLEY AND SANDOVAL COUNTIES, NEW MEXICO

RULE 1. GENERAL
Each well completed or recompleted in the San Juan Fruitland Coalbed

Methane Gas Pool shall be spaced, drilled, operated and produced in accordance
with the Special Rules and Regulations hereinafter set forth.
RULE 2. POOL ESTABLISHMENT

That the Director may require the operator of a San Juan Basin Fruitland
Coalbed Methane Gas Well, a Fruitland Sand Well or Pictured Cliffs Sand Well,
which is proposed in the lands described in (A) above, furnish information and
data that would demonstrate to the satisfaction of the Director that the
existing wells are produfing and the proposed well will produce from the
appropriate common source of supply.
RULE 3 (a). HELL SPACING & LOCATION

A standard drilling unit for a San Juan Basin Fruitland Coalbed Methane

Gas Well shall consist of 320 acres, plus or minus 25%, substantially in the
form of a rectangle, consisting of a half section, being a legal subdivision
of the U.S. Public Land Surveys, and shall be located no closer than_zgg~feet
to any outer boundary of the tract, nor closer than_lgg_feet to any interior
quarter section line.

In the absence of a standard 320 acre drilling unit, -an application for
administrative approval of a non-standard unit may be made to the Division
Director provided that the acreage to be dedicated to the non-standard unit is

contiguous, and the non-standard unit lies wholly within a single governmental

half section, and further provided that the operator seeking the non-standard



unit obtains a written waiver from all offset operators of drilled tracts or
owners of undrilled tracts adjacent to any point common to the proposed
non-standard unit. In lieu of the waiver requirements the applicant may
furnish proof of the fact that ali of the aforesaid were notified by
registered or certified mail (return receipt requested) of the intent to form
such non-standard unit. The Director may approve the application if no
objection has been received to the formation of such non-standard unit within
20 ggigigg days after the Director has received the application.
~\\Z%E§:§:;77;ng unit orientation will Qe determined by the first well
permitted to be drilled in any one particular standard section.

RULE 3 (b). UNORTHODOX WELL LOCATION b\v

The Director shall have authority to grant an exception to the well

——

location requirements of Rule 3 (a) above without{ﬁg;igg_gﬁj@hearing when the
necessity for such unorthodox location is based upon topographic conditions or
the recompletion of a well previously drilled into a deeper horizon, provided
said well was drilled at an orthodox or approved unorthodox location for such
original horizon.

Applications for administrative approval of unorthodox locations shall be
filed in duplicate (original to Santa Fe and one copy to the appropriate
District Office) and shall be accompanied by plats showing the ownership of
all leases offsetting the spacing unit for which the unorthodox location is
sought, and also all wells completed thereon. If the proposed unorthodox
location is based on topography, the plat shall also show and describe the
existent topographic conditions.

If the proposed location is unorthodox by virtue of being located closer

to the outer boundary of the spacing unit than permitted by rule, actual

-2-



notice shall be giveq to any operator of a spacing unit or owner of an
undrilled ﬁ:;Zemtéwara.which the proposed location is being moved.

A1l such notices shall be given by certified mail (return receipt
requested) and the application shall state that such notification has been
given. The Director may approve the unorthodox location upon receipt of

waivers from all such offset operators or if no offset operator has entered an

objection to the unorthodox location within 20 working dqz§ after the Director

e~

has received the appl%cation.
The Director may at his discretion, set any application for administrative

approval of an unorthodox location for public hearing.

RULE 4. INCREASED WELL DENSITY g4
The Director shall have the authority to administratively approve one (1)

additional San Juan Basin Fruitland Coalbed Methane Gas Well provided the

following conditions are met:

(a) The increased density well must conform to the spacing and
boundary footage requirements set forth in Rule 3 (a). and the increased
density well cannot be located in the same quarter section as the existing
well.

(b)  The operator must notify by certified mail (return receipt
requested) all: offset operators located in contiguous standup or laydown
drilling units; and in the case that the offsetting units are not
developed, then notice shall be provided to the owners of contiguous lands.

(c) If no objection is received within 20 working days from

e,

receipf'of notice, then the application will be administratively approved
by the Director. If any objection is received within the time limit, then
the Director will set the application for increased well density for

public hearing.



RULE 5. HORIZONTALLY DRILLED KWELLS

The Director shall have the authority to administratively approve an
intentionally deviated well in the San Juan Basin Fruitland Coalbed Methane
Gas Pool for the purpose of penetrating the coalbed seams by means of a
wellbore drilled horizontally, at any angle deviated from vertical, through
such coalbed seams provided the following conditions are met:

(a) The surface location of the well is within the permitted
drilling unit area of the proposed well.

(b) The bore hole must not enter or exit the coalbed seams outside
of a drilling window which is in accordance with the setback requirements

of Rule 3 (a).

If the operator applies for a permit to drill a horizontal well in which
the wellbore is intended to cross the interior quarter section line, the
operator must notify by certified mail (return receipt requested) all: offset
operators located in contiguous standup or laydown developed drilling units;
and in the case that the offsetting units are not developed, then notice shall
be provided to the owners of contiguous lands.

If no objection is received within 20 working days from receipt of notice,
————————TT

/.—.» ————

then the application may be administratively approved by the Director. If any
objection is received within the time 1imit, then the Director will set the
application for horizontally drillied wells for public hearing.
RULE 6 (a) TESTING.

In lieu of the gas well testing requirements of Order No. R-8170, testing

for the San Juan Basin Fruitland Coalbed Methane Gas Pool shall consist of: a



minimum twenty-four (24) hour shut-in period, unless otherwise specified by
the Director, and a three (3) hour production test. The following information
from this initial production test must be reported:
(1) the surface shut in tubing and/or casing pressure and date
these pressures were recorded;
(2) the length of the shut-in period;
(3) the final flowing casing and flowing tubing pressures and the
duration and date of the flow period;
(4) the individual fluid flow rate of gas, water and oil which
must be determined by use of separator; and
(5) the method of production, e.g. - flowing, pumping, etc., and
disposition of gas.
RULE 6 (b). VENTING OR FLARING

Venting or flaring for extended well testing will be permitted for
completed San Juan Basin Fruitland Coalbed Methane Gas Wells for a test period
of not more than thirty (30) days or a cumulative produced volume of 50 MMCF
of vented gas, whichever occurs first, the operator will notify the Director
of this testing period.

If an operator has cause to perform further testing of a well, then
administrative approval may be made by the Director to permit an additional
period time and volume limit, set by the Director after sufficient evidence to
justify this request has been submitted. In no case shall a well be

administratively authorized to vent for a period greater than twelve (12)

months.



RULE 7. EXISTING WELLS

That the operator of an existing Fruitland, Pictured Cliffs or commingled

Fruitland/Pictured Cliffs well, which is in conformance with Paragraphs (A)

-

B te Levatio Sy d
and (B) of this order and is drilling to, completeq} or has an approved APD

for which the actual or intended completed interval is the San Juan Basin
Fruitland Coalbed Methane Gas Pool, may request such well be reclassified as a
San Juan Basin Fruitland Coalbed Methane Gas Well by the submittal of a new
Form C-102 and C-104 within 90 days of the effective date of this order; this
well may be so designated with its original spacing unit size as a

non-standard San Juan Basin Fruitland Coalbed Methane Gas KWell or may be

enlarged to be in conformance with Rule 3 (a).
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LEGAL DESCRIPTION
OF PROPOSED DIVIDING LINE

Beginning at a point on the New Mexico-Colorado state
line, which point is the Northwest corner of Township
32 ~North, Range 13 West, N.M.P.M., thence South to
the Northwest corner of Township 30 North, Range 13
West, N.M.P.M., thence East to the Northwest corner
of Township 30 North, Range 12 West, N.M.P.M., thence
South to the Northwest corner of Township 29 North,
Range 12 West, N.M.P.M., thence East to the Northwest
corner of Township 29 North, Range 11 West, N.M.P.M.,
thence South to the Northwest corner of Township 28
North, Range 11 West, N.M.P.M., thence East to the
Northwest corner of Township 28 North, Range 8 West,
N.M.P.M., thence South to the Northwest corner of
Township 27 North, Range 8 West, N.M.P.M., thence
East to the Northwest Corner of Township 27 North,
Range 7 West, N.M.P.M., thence South to the Northwest
corner of Township 26 North, Range 7 West, N.M.P.M.,
thence East to the Northwest corner of Township 26
North, Range 3 West, N.M.P.M., thence North along
the western boundary of the Jicarilla Apaéhe Tribal
Reservation to a point on the New Mexico-Colorado
state line, which point is the Northwest corner of
Township 32 North, Range 3 West, N.M.P.M., thence
East along the New Mexico-Colorado state line to the

outcrop of the Fruitland formation.
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SAN JUAN BASIN FRUITLARD CCAL QUTCROP

LOCATION OF GAS SAMPLE ANALYSIS .
TESTS USED POR AVERAGES

{(Map from Rice, et al - Map of Central basin showing iso-
reflectance (Ro) lines on coals of Fruitland Formation)
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3 F - Number of Fruitland coal dominated gas analyses used in township
—— 3 PC - Number of Pictured Cliffs coal dominated gas analyses used in township
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We suggest that structural activity contributed to rela-
tively greater stratigraphic rise in this area and, indirectly,
to the distribution of thick Fruitland coal seams (Ayers and
others, this volume, Fig. 2.20). The Pictured Cliffs shoreline
prograded rapidly basinward across the southern half of
the basin. After the shoreline crossed the structural hinge-
line, sporadic structural activity began and the northern
part of the basin subsided more rapidly to accommodate a
greater thickness of sediment. The changing balance be-
tween sediment input and pulsatory subsidence north of
the hingeline resulted in oscillation and aggradation of the
shoreline, accounting for the most significant stratigraphic
rise of the Pictured Cliffs in the basin and allowing time for
thick peat accumulation landward of the oscillating shore-
line. This model explains why the greatest net thickness of
Fruitland coal is in the northern part of the basin, and why
coal seams in the Fruitland Formation are thicker than those
in subjacent continental strata. Further testing is needed to
verify the existence of the structural hingeline; seismic stud-
ies would be especially useful. A regional map of structural
elements that were identified in regional reflection seismic
lines shows northwest-trending faults in the area of this
hingeline (Huffman and Taylor, 1991).

Structural controls on producibility of
coalbed methane

Earlier studies suggested that Fruitland coal seams have
limited extent and that they are bounded on their basinward
{(northeast) margins by Pictured Cliffs shoreline sandstone
and along paleostrike (northwest-southeast) by Fruitland
fluvial sandstones (Fassett and Hinds, 1971; Fassett, 1986).
However, as we have demonstrated, some Fruitland coal
seams may be regionally continuous, overriding and thin-
ning over upper Pictured Cliffs tongues (Figs. 4.16 and 4.18)
in the paleodip direction. Updip pinch-out lines of upper
Pictured Cliffs tongues may be areas where Fruitland coal
seams drape over shoreline sandstones and have a higher
fracture density because of compaction-induced fractures.
The structural attitude of an upper Fruitland coal bed (Fig.
4.19) differs markedly from the structural attitude of other
strata, such as the Huerfanito Bentonite (Fig. 4.2). Along
paleostrike, coal seams split and interfinger with fluvial
channel-fill sandstone complexes (Fig. 4.17), and many of
these coal benches, rather than terminating against the
channel sandstones, override or underlie them, forming
zigzag splits similar to those described in coal-bearing strata
in other basins (Britten and others, 1975; Ayers and Kaiser,
1984). Although these coal seams pinch and swell, they are
laterally continuous, which contributes to their effective-
ness as aquifers. Fractures related to compactional folding
of coal beds are well documented (Donaldson, 1979; House-
knecht and lannacchione, 1982; Tyler and others, 1991). If
such fracture systems are sufficiently developed, areas of
interbedded sandstones and coal seams would be good tar-
gets for coalbed methane exploration (Fig. 4.20).

This study has shown that Fruitland coal beds are more
extensive and complex than previously inferred (Figs. 4.16-
4.18). The significance of these findings is threefold. First,
coalbed methane reservoirs are larger (more extensive) than
previously thought. Second, compaction-induced fractures,
and therefore enhanced coalbed permeability, may occur in
areas where extensive coal seams drape over shoreline
sandstones or form zigzag splits with channel-fill sandstone
complexes. Finally, the greater lateral extent of coal seams,
inferred from this research, is critical to the interpretation
of ground-water flow and abnormal pressure in the Fruit-
land Formation (Kaiser and others, this volume, Chapter
8).

The viability of the hypothesis of increased fracture den-
sity where coal beds are folded is uncertain; additional sub-

surface and outcrop studies are required. However, given
the abundance of folds and the potential for folding-in-
duced fractures to contribute to enhanced coalbed methane
production, such studies are warranted.

Coalbed methane activity and reservoir conditions

The Navajo Lake area has a long and noteworthy history
of coalbed methane production. The Phillips No. 6-17 well
(Figs. 4.2 and 4.3) is often referred to as the discovery well
for coalbed methane in the San Juan Basin. This well, which
is an open-hole completion in upper Fruitland coal beds
and sandstones, is located on the northwest flank of a mi-
nor, north-plunging anticline. It has operated for more than
25 yrs with little decline in gas production (averaging 160
to 180 Mct/d) or pressure (Hale and Firth, 1988). The well
produces little or no water, indicating some element of
structural and/or stratigraphic trapping. Although Hale and
Firth (1988) discount structural trapping, their interpreta-
tion was based on a structure map of the Huerfanito Ben-
tonite, which does not accurately reflect the structural attitude
of Fruitland coal beds. Since 1985, Meridian Oil and Black-
wood and Nichols have completed several coalbed methane
wells in the Navajo Lake area, including the most produc-
tive coalbed methane wells in the United States. Some Me-
ridian wells in this area (Figs. 4.2, 4.3, and 4.19) have
produced at a-rate of 300 to 15,000 Mcf/d (see Kaiser and
Ayers, this volume, Chapter 10, for discussion of produc-
tion). Meridian 400 wells are completed in lower Fruitland
coal beds on the margin of a syncline and near the updip
pinch-out of UP1 (Fig. 4.19).

In the Navajo Lake area, Fruitland coal beds are mostly
in the area of regional overpressuring and highest Fruitland
bottom-hole pressures; overpressuring is attributed to arte-
sian conditions (Kaiser and others, this volume, Chapter
8). The boundary between overpressured and underpres-
sured strata crosses the southern part of the area (Fig. 4.4);
this boundary may be caused by southwestward pinch-out
and/or offset of aquifer coal beds across faults that are in-
ferred to make up the structural hingeline (Fig. 4.2). Both
gas- and water-saturated coal seams are present in the Na-
vajo Lake area. In this area, Fruitland coal rank increases
from high volatile B bituminous at the south to medium
volatile bituminous at the north (Scott and others, this vol-
ume, Fig. 9.3), and it contains more than 10 Bcf of methane/.
mi* (Ayers and others, this volume, Fig. 2.21). Fruitland
coalbed gas is dry (C/C,s >95%), and it contains a high
percentage of carbon dioxide (commonly 3-10%) (Scott and
others, this volume, Fig. 9.10). Primary fractures (face cleats)
in oriented cores from Blackwood and Nichols NEBU No.
403 trend northeastward, consistent with regional cleat trends
in the southern part of the basin (Tremain and others, this
volume, Fig. 5.1). Highly productive wells in the Navajo
Lake area are reported to have fracture-enhanced perme-
ability that may be predicted from lineament analysis. How-
ever, a recent study showed no significant relations between
methane production and lineament attributes in the north-
ern San Juan Basin (Baumgardner, this volume, Chapter 7).
Geologic and hydrologic controls on producibility of coalbed
methane in the Navajo Lake area are further discussed by
Kaiser and Ayers (this volume, Chapter 10).

Summary and conclusions

In summary, we suggest both depositional and structural
controls affect the occurrence and producibility of Fruitland
coalbed methane in the Navajo Lake area. The distribution
of thick coal seams was controlled by depositional setting,
which in turn was structurally controlled; tectonically in-
duced subsidence north of the hingeline temporarily con-
fined the Pictured Cliffs shoreline to a narrow belt, and this
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(Kaiser and others, this volume, Fig. 8.1) and, consequently,
such areas are favorable for hydrocarbon accumulation (T6th,
1980). Available chemical analyses show Na-Cl-type waters.
Coal seams may be thicker than 10 ft (>3 m} and they occur
primarily in northeast-trending belts (Ayers and others, this
volume, Figs. 2.15 and 2.17). A northeast-trending, dip-
elongate belt of thick coal extends almost to the south-
western margin of the basin (Ayers and others, this volume,
Figs. 2.17 and 2.19) and coincides with a similar trending
belt of high gas production (>100 Mcf/d) (Fig. 10.15). This
belt includes productive wells (200 to 500 Mcf/d) in the
Fulcher and WAW-Gallegos areas (Fig. 10.15) completed in
coal seams of subbituminous and high volatile C bitumi-
nous rank (Scott and others, this volume, Fig. 9.3), and it
flanks a major northeast-trending Fruitland channel-sand-
stone belt. Sandstone wells of the Aztec, Kutz, and Gallegos
fields (Fig. 10.20) are completed in channel-sandstone belts
(thin-coal areas) that flank northeast-trending belts of thick
coal (Ayers and others, this volume, Fig. 2.15).

Northeast-trending coal seams may have served as path-

ways that allowed gas to migrate out of the north-central
part of the basin, either entrained or dissolved in ground
water, or by diffusion in response to the concentration gra-
dient. Carbon dioxide appears to have migrated. Plumes of
high carbon dioxide content gases extend updip (south-
westward) from the overpressured area, coincident with
northeast-trending coal belts (Scott and others, this volume,
Fig. 9.10), and terminate at the San Juan River valley, a
regional no-flow boundary (Kaiser and others, this volume,
Figs. 8.1 and 8.24).

In the west-central part of the basin (area 2), the Fruitland
Formation is mainly an aquitard, and gas is produced water
free (Kaiser and others, this volume, Chapter 8). Water-free
production in this regional discharge area is explained in
terms of the low flow, hydrostratigraphy, trapping mech-
anism, and coal wettability. Limited flow in the basal Fruit-
land coal and Pictured Cliffs Sandstone accounts for water
production from some wells completed in the basal coal.
Conventional trapping and low gas permeability relative to
water are also important factors. Stratigraphic trapping is
postulated to be more important than structural trapping
on the basis of gentle, northeast monoclinal dip and asso-
ciated updip (southwestward) pinch-out of reservoir coal
seams (Ayers and others, this volume, Fig. 2.2).-Coal seams
in the southern part of the basin are lower rank (subbitu-
minous to high volatile C bituminous) and may be water
wet; hence, in these low-permeability strata, water is less
mobile than gas.

In the west-central, underpressured part of the basin,
Fruitland coalbed wells have MAPs ranging from 30 to 300
Mcf/d, simifar to productivities of many wells in the north-
central, overpressured part of the basin (Ignacio Blanco field)
in areas 1B and 1C (Fig. 10.19). Although coalbed methane
production is highest from overpressured coal seams, eco-
nomic production occurs over a wide pressure range.
Cumulative production of some wells exceeds 1 Bcf in area
2 (for example, Clay 1, Gallegos area, >1 Bcf in 14 yrs).
However, most wells in this area have cumulative produc-
tions of a few hundred million cubic feet, and some have
produced oil at the rate of 2 or 3 bbls/d. Numerous Fruitland
sandstone gas fields occur in the southwestern part of the
basin (Fig. 10.20). Several of them, such as Aztec field, are
associated with potentiometric mounds (Kaiser and others,
this volume, Fig. 8.1). Analysis of production decline has
shown that many wells identified as sandstone completions
actually have coal-decline behavior and probably are pro-
ducing coalbed methane indirectly from coal seams (Fig.
10.4). in some cases, sandstone volumetrics require gas pro-
duction from the associated coal seams. Some wells are
dually completed in Fruitland coal seams and Pictured Cliffs

Sandstone or Mesaverde sandstones, and the production
is commingled. Consequently, the contribution of Fruitiand
coalbed methane to total gas production in the west-central
part of the basin is substantial but unquantifiable.
WAW-Gallegos area—Coalbed methane wells in the
WAW-Gallegos area, which is located in area 2 in the south-
western corner of the basin (Figs. 10.15 and 10.20), produce
at rates of 30 to more than 300 Mcf/d. Wells completed in
1990 average about 180 Mcf/d. Long-term productivity is
demonstrated by the Clay 1 well (sec. 12 T26N R12W), which
was completed as a coalbed well in 1976 and had an average
production rate of 185 Mcf/d in 1989. The area is under-
pressured and lies mostly within the regional discharge
area. Structural dip is homoclinal to the northeast at less
than 1° (~80 ft/mi {~15 m/km]). Strike- and dip-elongate
coal seams of subbituminous rank have maximum thick-
nesses of 10 to 20 ft (3 to 6 m) (Ayers and others, this volume,
Fig. 2.17). Stratigraphic and hydrodynamic trapping may
account for considerable gas volume beyond that adsorbed
at reservoir pressures below or near hydrostatic pressure.
Coal seams pinch out updip (southwestward}), and ground
water flows downdip (northward). Enhanced permeability
is inferred for wells producing water from the basal Fruit-

 land coal. Gas may in part come from the underlying Pic-

tured Cliffs Sandstone. Thus, the presence of significant
free gas and enhanced permeability are thought to combine
to explain relatively high gas productivities in the WAW-
Gallegos area.

Area 3: underpressured, eastern area

Little is known about the hydrogeology of the eastern
part of the basin. Area 3 (Fig. 10.19) is regionally under-
pressured, and because of limited data, it appears to be
hydrologically featureless. Widely spaced head contours
suggest sluggish ground-water flow (Kaiser and others, this
volume, Fig. 8.1). Fruitland-produced waters are Na-Cl type
that resemble seawater. An area of thick coal, corresponding
to coals of belt E (Ayers and others, this volume, Fig. 2.15),
trends northwestward across Rio Arriba County, parallel to
depositional strike. There are only a few producing Fruit-
land wells (coal and/or sandstone completions) in the area.
After 1 or 2 yrs of production, these wells have average
annual productions of less than 1 to 3 MMcf, accompanied
by little or no water.

Conclusions

1. Coalbed methane production in the Fruitland For-
mation is lognormally distributed. Production histograms
and probability and scatter plots suggest that coal beds hav-
ing free gas may be common. Production from overpres-
sured coal seams is greater than that from underpressured
seams, although production rates from the two pressure
regimes overlap. Initial gas potential is a predictor of long-
term productivity. Highly productive wells produce both
gas and water, reflecting superior permeability and artesian
overpressure. Decline curves of coalbed and sandstone res-
ervoirs differ. Coalbed wells have negative decline early in
their production history, followed by exponential decline
at less than 5%/yr late in their lives. Sandstone wells that
exhibit coal-decline behavior probably are producing ¢ coalbed
methane _indirectly from adjoining coal seams.

2. Approxlmately 90% of the Fruitland coalbed methane
production is from the Meridian 400 area and Cedar Hill
and Ignacio Blanco fields in the overpressured part of the
basin. Wells in the Meridian 400 area are the most produc-
tive (>1,000 Mcf/d), whereas those in Ignacio Blanco field
are the least productive (~30 to 300 Mcf/d) and may still be
dewatering. Coalbed wells in the west-central (underpres-
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(Kaiser and others, this volume, Fig. 8.1) and, consequently,
such areas are favorable for hydrocarbon accumulation (Téth,
1980). Available chemical analyses show Na-Cl-type waters.
Coal seams may be thicker than 10 ft (>3 m) and they occur
primarily in northeast-trending belts (Ayers and others, this
volume, Figs. 2.15 and 2.17). A northeast-trending, dip-
elongate belt of thick coal extends almost to the south-
western margin of the basin (Ayers and others, this volume,
Figs. 2.17 and 2.19) and coincides with a similar trending
belt of high gas production (>100 Mcf/d) (Fig. 10.15). This
belt includes productive wells (200 to 500 Mcf/d) in the
Fulcher and WAW-Gallegos areas (Fig. 10.15) completed in
coal seams of subbituminous and high volatile C bitumi-
nous rank (Scott and others, this volume, Fig. 9.3), and it
flanks a major northeast-trending Fruitland channel-sand-
stone belt. Sandstone wells of the Aztec, Kutz, and Gallegos
fields (Fig. 10.20) are completed in channel-sandstone belts
{thin-coal areas) that flank northeast-trending belts of thick
coal (Ayers and others, this volume, Fig. 2.15).

Northeast-trending coal seams may have served as path-

ways that allowed gas to migrate out of the north-central
part of the basin, either entrained or dissolved in ground
water, or by diffusion in response to the concentration gra-
dient. Carbon dioxide appears to have migrated. Plumes of
high carbon dioxide content gases extend updip (south-
westward) from the overpressured area, coincident with
northeast-trending coal belts (Scott and others, this volume,
Fig. 9.10), and terminate at the San juan River valley, a
regional no-flow boundary (Kaiser and others, this volume,
Figs. 8.1 and 8.24).

In the west-central part of the basin (area 2), the Fruitland
Formation is mainly an aquitard, and gas is produced water
free (Kaiser and others, this volume, Chapter 8). Water-free
production in this regional discharge area is explained in
terms of the low flow, hydrostratigraphy, trapping mech-
anism, and coal wettability. Limited flow in the basal Fruit-
land coal and Pictured Cliffs Sandstone accounts for water
production from some wells completed in the basal coal.
Conventional trapping and low gas permeability relative to
water are also important factors. Stratigraphic trapping is
postulated to be more important than structural trapping
on the basis of gentle, northeast monoclinal dip and asso-
ciated updip (southwestward) pinch-out of reservoir coal
seams {Ayers and others, this volume, Fig. 2.2)..Coal seams
in the southern part of the basin are lower rank (subbitu-
minous to high volatile C bituminous) and may be water
wet; hence, in these low-permeability strata, water is less
mobile than gas.

In the west-central, underpressured part of the basin,
Fruitland coalbed wells have MAPs ranging from 30 to 300
Mcf/d, similar to productivities of many wells in the north-
central, overpressured part of the basin (Ignacio Blanco field)
in areas 1B and 1C (Fig. 10.19). Although coalbed methane
production is highest from overpressured coal seams, eco-
nomic production occurs over a wide pressure range.
Cumulative production of some wells exceeds 1 Bcf in area
2 {(for example, Clay 1, Gallegos area, >1 Bcf in 14 yrs).
However, most wells in this area have cumulative produc-
tions of a few hundred million cubic feet, and some have
produced oil at the rate of 2 or 3 bbls/d. Numerous Fruitland
sandstone gas fields occur in the southwestern part of the
basin (Fig. 10.20). Several of them, such as Aztec field, are
associated with potentiometric mounds (Kaiser and others,
this volume, Fig. 8.1). Analysis of production decline has
shown that many wells identified as sandstone completions
actually have coal-decline behavior and probably are pro-
ducing coalbed methane indirectly from coal seams (Fig.
10.4). In some cases, sandstone volumetrics require gas pro-
duction from the associated coal seams. Some wells are
dually completed in Fruitland coal seams and Pictured Cliffs

Sandstone or Mesaverde sandstones, and the production
is commingled. Consequently, the contribution of Fruitland
coalbed methane to total gas production in the west-central
part of the basin is substantial but unquantifiable.
WAW-Gallegos area—Coalbed methane wells in the
WAW-Gallegos area, which is located in area 2 in the south-
western corner of the basin (Figs. 10.15 and 10.20), produce
at rates of 30 to more than 300 Mcf/d. Wells completed in
1990 average about 180 Mcf/d. Long-term productivity is
demonstrated by the Clay 1 well (sec. 12 T26N R12W), which
was completed as a coalbed well in 1976 and had an average
production rate of 185 Mcf/d in 1989. The area is under-
pressured and lies mostly within the regional discharge
area. Structural dip is homoclinal to the northeast at less
than 1° (~80 ft/mi [~15 m/km]). Strike- and dip-elongate
coal seams of subbituminous rank have maximum thick-
nesses of 10 to 20 ft (3 to 6 m) (Ayers and others, this volume,
Fig. 2.17). Stratigraphic and hydrodynamic_trapping ma
account for considerable gas volum ond that adsorbe
al reservorr S below or near hydrostatic pressure.
Coal seams pinch out updip (southwestward), and ground
water flows downdip (northward). Enhanced permeability
is inferred for wells producing water from the basal
land coal. Gas may in part come from the underlying Pic-

tured Cliffs Sandstone. Thus, the presence of significant

free gas and enhanced permeability are thought to combine

to_explain relatively high gas productivities in the WAW-

Gallegos area.

lﬁa 3: underpressured, eastern area

Little is known about the hydrogeology of the eastern
part of the basin. Area 3 (Fig. 10.19) is regionally under-
pressured, and because of limited data, it appears to be
hydrologically featureless. Widely spaced head contours
suggest sluggish ground-water flow (Kaiser and others, this
volume, Fig. 8.1). Fruitland-produced waters are Na-Cl type
that resemble seawater. An area of thick coal, corresponding
to coals of belt E (Ayers and others, this volume, Fig. 2.15),
trends northwestward across Rio Arriba County, paraliel to
depositional strike. There are only a few producing Fruit-
land wells (coal and/or sandstone completions) in the area.
After 1 or 2 yrs of production, these wells have average
annual productions of less than 1 to 3 MMcf, accompanied
by little or no water.

~

Conclusions

1. Coalbed methane production in the Fruitland For-
mation is lognormally distributed. Production histograms
and probability and scatter plots suggest that coal beds hav-
ing free gas may be common. Production from overpres-
sured coal seams is greater than that from underpressured
seams, although production rates from the two pressure
regimes overlap. Initial gas potential is a predictor of long-
term productivity. Highly productive wells produce both
gas and water, reflecting superior permeability and artesian
overpressure. Decline curves of coalbed and sandstone res-
ervoirs differ. Coalbed wells have negative decline early in
their production history, followed by exponential decline
at less than 5%/yr late in their lives. Sandstone wells that
exhibit coal-decline behavior probably are producing cc coalbea
methane indirectly from adjoining coal seams.

2. Appronmately 90% of the Fruitland coalbed methane
production is from the Meridian 400 area and Cedar Hill
and Ignacio Blanco fields in the overpressured part of the
basin. Wells in the Meridian 400 area are the most produc-
tive (>1,000 Mct/d), whereas those in Ignacio Blanco field
are the least productive (~30 to 300 Mcf/d) and mav still be
dewatering. Coalbed wells in the west-central (underpres-




We suggest that structural activity contributed to rela-
tively greater stratigraphic rise in this area and, indirectly,
to the distribution of thick Fruitland coal seams (Ayers and
others, this volume, Fig. 2.20). The Pictured Cliffs shoreline
prograded rapidly basinward across the southern half of
the basin. After the shoreline crossed the structural hinge-
line, sporadic structural activity began and the northern
part of the basin subsided more rapidly to accommodate a
greater thickness of sediment. The changing balance be-
tween sediment input and pulsatory subsidence north of
the hingeline resulted in oscillation and aggradation of the
shoreline, accounting for the most significant stratigraphic
rise of the Pictured Cliffs in the basin and allowing time for
thick peat accumulation landward of the oscillating shore-
line. This model explains why the greatest net thickness of
Fruitland coal is in the northern part of the basin, and why
coal seams in the Fruitland Formation are thicker than those
in subjacent continental strata. Further testing is needed to
verify the existence of the structural hingeline; seismic stud-
ies would be especially useful. A regional map of structural
elements that were identified in regional reflection seismic
lines shows northwest-trending faults in the area of this
hingeline (Huffman and Taylor, 1991).

Structural controls on producibility of
coalbed methane

Earlier studies suggested that Fruitland coal seams have
jmﬂ;ad_ex,tgmand that they are bounded on their basinward
{northeast) margins by Pictured Cliffs shoreline sandstone
and along paleostrike (northwest-southeast) by Fruitland
fluvial sandstones (Fassett and Hinds, 1971; Fassett, 1986).

However, as we have demonstrated, some Fruitland coal
sea tonall contmuous, overriding an -
i gs. 4. .

“seams d:age over shorelmemd have a hlgher
racture density ause of compaction-Indliced Iractures.
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surface and outcrop studies are required. However, given
the abundance of folds and the potential for folding-in-
duced fractures to contribute to enhanced coalbed methane
production, such studies are warranted.

Coalbed methane activity and reservoir conditions

The Navajo Lake area has a long and noteworthy history
of coalbed methane production. The Phillips No. 6-17 well
(Figs. 4.2 and 4.3) is often referred to as the discovery well
for coalbed methane in the San Juan Basin. This well, which
is an open-hole completion in upper Fruitland coal beds
and sandstones, is located on the northwest flank of a mi-
nor, north-plunging anticline. It has operated for more than
25 yrs with little decline in gas production (averaging 160
to 180 Mcf/d) or pressure (Hale and Firth, 1988). The well
produces little or no water, indicating some element of
structural and/or stratigraphic trapping. Although Hale and
Firth (1988) discount structural trapping, their interpreta-
tion was based on a structure map of the Huerfanito Ben-
tonite, which does not accurately reflect the structural attitude
of Fruitland coal beds. Since 1985, Meridian Qil and Black-
wood and Nichols have completed several coalbed methane
wells in the Navajo Lake area, including the most produc-
tive coalbed methane wells in the United States. Some Me-
ridian wells in this area (Figs. 4.2, 4.3, and 4.19) have
produced at a-rate of 300 to 15,000 Mcf/d (see Kaiser and
Ayers, this volume, Chapter 10, for discussion of produc-
tion). Meridian 400 wells are completed in lower Fruitland
coal beds on the margin of a syncline and near the updip
pinch-out of UP1 (Fig. 4.19).

In the Navajo Lake area, Fruitland coal beds are mostly
in the area of regional overpressuring and highest Fruitland
bottom-hole pressures; overpressuring is attributed to arte-
sian conditions (Kaiser and others, this volume, Chapter
8). The boundary between overpressured and underpres-
sured strata crosses the southern part of the area (Fig. 4.4);
this boundary may be caused by southwestward pinch-out

“The structural attitude of an upper Fruitland coal bed (Fig.
4.19) differs markedly from the structural attitude of other
strata, such as the Huerfanito Bentonite (Fig. 4.2). Along
paleostrike, coal seams split and interfinger with fluvial
channel-fill sandstone complexes (Fig. 4.17), and many of
these coal benches, rather than terminating against the
channel sandstones, override or underlie them, forming
zigzag splits similar to those described in coal-bearing strata
in other basins (Britten and others, 1975; Ayers and Kaiser,
1984). Although these coal seams pinch and swell, they are
laterally continuous, which contributes to their effective-
ness as aquifers. Fractures related to compactional folding
of coal beds are well documented (Donaldson, 1979; House-
knecht and Iannacchione, 1982; Tyler and others, 1991). If
such fracture systems are sufficiently developed, areas of
interbedded sandstones and coal seams would be good tar-
gets for coalbed methane exploration (Fig. 4.20).

This study has shown that Fruitland coal beds are more
extensive and complex than previously inferred (Figs. 4.16~
4.18). The significance of these findings is threefold. First,
coalbed methane reservoirs are larger (more extensive) than
previously thought. Second, compaction-induced fractures,
and therefore enhanced coalbed permeability, may occur in
areas where extensive coal seams drape over shoreline
sandstones or form zigzag splits with channel-fill sandstone
complexes. Finally, the greater lateral extent of coal seams,
inferred from this research, is critical to the interpretation
of ground-water flow and abnormal pressure in the Fruit-
land Formation (Kaiser and others, this volume, Chapter
8).

The viability of the hypothesis of increased fracture den-
sity where coal beds are folded is uncertain; additional sub-

and/or offset of aquifer coal beds across faults that are in-
ferred to make up the structural hingeline (Fig. 4.2). Both
gas- and water-saturated coal seams are present in the Na-
vajo Lake area. In this area, Fruitland coal rank increases
from high volatile B bituminous at the south to medium
volatile bituminous at the north (Scott and others, this vol-
ume, Fig. 9.3), and it contains more than 10 Bcf of methane/
mi’ (Ayers and others, this volume, Fig. 2.21). Fruitland
coalbed gas is dry (C/C,; >95%), and it contains a high
percentage of carbon dioxide (commonly 3-10%) (Scott and
others, this volume, Fig. 9.10). Primary fractures (face cleats)
in oriented cores from Blackwood and Nichols NEBU No.
403 trend northeastward, consistent with regional cleat trends
in the southern part of the basin (Tremain and others, this
volume, Fig. 5.1). Highly productive wells in the Navajo
Lake area are reported to have fracture-enhanced perme-
ability that may be predicted from lineament analysis. How-
ever, a recent study showed no significant relations between
methane production and lineament attributes in the north-
ern San Juan Basin (Baumgardner, this volume, Chapter 7).
Geologic and hydrologic controls on producibility of coalbed
methane in the Navajo Lake area are further discussed by
Kaiser and Ayers (this volume, Chapter 10).

Summary and conclusions

In summary, we suggest both depositional and structural
controls affect the occurrence and producibility of Fruitland
coalbed methane in the Navajo Lake area. The distribution
of thick coal seams was controlled by depositional setting,
which in turn was structurally controlled; tectonically in-
duced subsidence north of the hingeline temporarily con-
fined the Pictured Cliffs shoreline to a narrow belt, and this
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Chapter 55
Formation Fracturing

S.J. Martinez. U. of Tulsa *
R.E. Steanson. Dowell Schiumberger **
A.W. Coulter. Dowell Schiumberger **

Introduction

Fracturing techniques were developed in 1948 and the first
commercial fracturing treatments were conducted in 1949.
The process rapidly gained popularity because of its high
success ratio, and within a very few years, thousands of
wells per year were being stimulated by hydrautic frac-
turing treatments.

Early treatments consisted of pumping 1,000 to 3.000
gal of fracturing fluid, containing about 1 Ibmn of
20/40-mesh sand/gal, at rates of 1 to 2 bbl/min. Today,
a single treatment can require several hundred thousand
gallons of fluid and more than a million pounds of prop-
ping agent. Although injection rates have exceeded 300
bbl/min in some instances. rates of 20 to 60 bbl/min are
about average. Materials, equipment. and techniques have
become highly sophisticated. A bibliography is present-
ed at the end of this chapter for those interested in a de-
tailed discussion of particular technologies. This
discussion is limited to a generalized description of frac-
turing theory. materials, techniques, equipment, and treat-
ment planning and design.

Hydraulic Fracturing Theory

Oil and gas accumulations occur in the pore spaces or
natural fractures of a subsurface rock where structural
and/or stratigraphic features form a trap. When a well
1s drilled into an oil-bearing rock, the fluids must flow
through the surrounding rock into the wellbore before they
can be brought to the surface. If the pore spaces of the
rock are interconnected so that channels exist through
which the oil can flow. the rock is ‘‘permeable.”” The ease
with which fluid can flow through a rock determines its
degree of permeability. It has high permeability if oil. gas,
or water can flow easily through existing channels and

“Deceased: this author also wrote the oniginal chapter on this topic with coauthor
P E. Fitzgerald.
“*Retired.

low permeability if the connecting channels are very small
and fluid flow is restricted.

In the case of high permeability, drilling fluids may
enter the flow channels and later impair flow into the well-
bore. In the case of low permeability. the flow channcls
may not permit enough flow into the wellbore. In either
case, the well may not be commercial because fluid can-
not flow into the wellbore fast enough. It then becomes
necessary to create an artificial channel that will increase
the ability of the reservoir rock to conduct fluid into the
wellbore. Such channels often can be created by hydraulic
fracturing.

During hydraulic fracturing treatments. what actually
happens when a rock ruptures, or fractures, can be ex-
plained by basic rock mechanics. All subsurface rocks are
stressed in three directions because of the weight of over-
lying formations and their horizontal reactions. Whether
one of the horizontal stresses or the vertical stress is the
greatest will depend on the additional stresses imposed
on the rock by prior folding, faulting, or other geologi-
cal movement in the area. These tectonic stresses will con-
trol the direction of the fracture and determine whether

. the fracture plane will be horizontal, vertical, or inclined.

Every formation rock has some measure of strength de-
pending on its structure, compaction, and cementation.
It has tensile strength in both vertical and horizontal dircc-
tions. The forces tending to hold the rock together e
the stresses on the rock and the strength of the rock it-
self. When a wellbore is filled with fluid and pressure
is applied at the surface, the pressure of the fluid in a per-
foration or even in the pore spaces of the rock will in-
crease. This hydraulic pressure is applied equally in all
directions. If the pressure is increased. the forces applied
by the fluid pressure in the rock will become equal to the
forces tending to hold the rock together. Any additional
pressure applied will cause the rock to split or fracture.
The fracture will extend as long as sufficient pressure is
applied by injection of additional fluids.
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When the treatment is complete and flow is reversed
to produce the well, pressure will gradually return
(decline) to reservoir pressure. As this occurs, the forces
tending to hold the rock together come into play again
and the fracture will close or “*heal.”” To prevent closure,
some solid material must be placed in the fracture to hold
it open. Such materials are called ‘‘propping agents.™
Since the permeability of these propping agents is much
higher than that of the surrounding formation, the ability
ot the propped fracture to conduct fluids to the wellbore
can result in good production increases. In fact, fractur-
ing has made profitable production possible from many
wells and fields that otherwise would not have been prof-
itable.

Formations Fractured

Fracturing has been used successfully in all formations
except those that are very soft. Fracturing has proved suc-
cessful in sand, limestone, dolomitic limestone, dolomite,
conglomerates, granite washes, hard or brittle shale, an-
hydrite. chert, and various silicates. The plastic nature
of soft shales and clays makes them difficult to fracture.

Fracwring has helped wells producing from formations
that have such a wide range of permeabilities that it is
impossible to set upper and lower permeability limits of
formations that might be helped by fracturing. Produc-
tion increases have been obtained from zones having per-
meabilities ranging from less than 0.1 to as high as
900 md.

Fracture Planes

Analysis of pressures encountered on many thousands of
fracturing treatments has shown that the bottomhole pres-
sures (BHP) recorded during the injection of fracturing
materials range from 0.40 to 1.80 psi/ft depth.' Only in
a few treatments have fracturing pressure gradients been
outside of this range. Those were almost all in shallow
experimental treatments. The fracture gradient gy is cal-
culated from treatment data by Eq. 1:

___ph +ps—Pf

g
/ D

where
gy = unit fracture gradient, psi/ft,

p, = total hydrostatic pressure, psi,

p, = total surface treating pressure, psi,
py = total friction loss, psi, and

D = depth of producing interval, ft.

Analysis of thousands of treatments plus experimental
work in reservoirs with known fracture gradients indi-
cate that horizontal fractures are produced in reservoirs
having fracture gradients of 1.0 or higher. This is gener-
ally in shallow wells less than 2,000 ft deep. Vertical frac-
tures are produced in reservoirs having fracture gradients
of 0.7 or lower. Such gradients are normally encountered
in wells deeper than 4,000 ft. Very few cases have been
found where formations have gradients in the intermedi-
ate range between 0.7 and 1.0. Consequently, the use of
fracture gradients to predict the general inclination of frac-
tures should be useful in almost every case.

PETROLEUM ENGINEERING HANDBOOK

With few exceptions, wells in the same reservoir will
have nearly identical fracture gradients. Thus. the gra-
dient from one well generally will serve as a guide for
the entire pool.

Fracture Area

In 1957, Howard and Fast” presented a mathematical
equation to determine the surface area of a newly opened
fracture. The equation. based on the quantity of fractur-
ing materials used and the rate at which they are injected
into the formation, takes into account the physical charac-
terisitics of the fracturing fluids and the specific reser-
voir conditions. This equation is:

A =—Lb——[e":~erfc(r)+ = —l] (2)
s . N e 2
where
2Kt
X= —,
b
and
A, = total arca of one face of the fracture at any
time during injection. sq ft.

i = constant injection rate during fracture

extension, cu ft/min,
t = total pumping time. minutes,

b = fracture width (breadth). ft.

K = fluid coefficient. a constant that is a meas-
ure of the flow resistance of the fluid
leaking off into the formation during
fracture operations. and

erfc(x) = complementary error function of x.

Essentially, during a fracturing treatment, only the
volume of fracturing fluid that remains within the wall
of the fracture is effective. The fluid that leaks off into
the pores of the rock is lost insofar as added fracture ex-
tension is concerned.

When the width of a fracture is known or assumed (frac-
ture width is normally calculated using either Perkins and
Kern? or Khristianovitch and Zheltov* models), the
volume of the fracture can be calculated. With these data,
it is possible to plot the controllable variables of a fluid
volume and injection rate against the fracture area pro-
duced for any particular fluid coefficient. Examples of
such graphs, for various injection rates. are shown in Figs.
55.1 through 55.5.

The rate of fluid leakoff into the formation. as expressed
by the fluid coefficient, is controlled by three variables:
the viscosity and compressibility of the reservoir fluid,
the viscosity of the fracturing fluid. and the fluid-loss char-
acteristics of the fracturing fluid.

Reservoir-Controlled Fluids

This group includes those fracturing fluids having low vis-
cosity and high fluid-loss characteristics. in which the rate
of leakoff is controlled by the compressibility and viscosity
of the reservoir fluid.
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Fig. 55.1—Effect of fluid coefficient and volume on fracture area
at constant injection rate of 10 bbl/min.
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The coefficient for this type of fracturing fluid may be
determined from Eq. 3.7

k.¢,.c
K. =0.0374apa] PR

................. (3)
KR
where
KN, = fluid coefficient (compressibility-viscosity
controlled). ft/min*,
Ap = differential pressure, across the face of the
fracture, psi,
k. = effective formation permeability, darcies,
¢, = effective formation porosity, %,

¢ g = isothermal coefficient of compressibility of
the reservoir fluid, psi~', and
pg = reservoir fluid viscosity, cp.

Compressibility considerations are generally found to be
most applicable in high-pressure, low-volume-factor wells
that have high saturations.

Viscosity-Controlled Fluids

This group includes those tracturing fluids in which the
rate of leakoff is controlled by the viscosity of the fluid
itself. The coefficient for this type of fracturing fluid is
expressed by Eq. 4.2

[k.aps,
K. =0.0369~| PP

.................... 4)
Ky
where
K. = fluid coefficient (viscosity controlled).
ft/min
k. = effective formation permeability, darcies.
Ap = differential pressure across the face of the
fracture, psi—this is the product of the
fracture gradient and depth. minus
normal rescrvoir pressure, (g¢XD)—pg,
¢, = cftective formation porosity. %. and

py = tracturing fluid viscosity. cp.
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Fig. 55.6—Increased fracture penetration by containment of the
fracture in the productive interval can provide much
greater production increases.
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The effective porosity represents the space in the matrix
into which fracturing fluid will leak off. In figuring ef-
fective porosity, the effects of residual oil and water satu-
ration should be considered. The permeability factor in
the equation almost always will be the permeability of the
water-wet formation, but it could be that of an oil-wet
formation. The average md-ft of exposed section also is
considered.

Fluid-Loss-Controlled Fluids
This group includes fracturing fluids containing special
fluid-loss additives designed to reduce the loss of fluid
taking place during a fracturing treatment.

The fluid coefficient for this type of fracturing fluid is
based on Eq. 5-°:

m
K;=0.0328—. ... ... (5
24
where
K; = fluid coefficient, wall building (fluid-loss

additive). ft/min" .
the slope of the fluid-loss curve, plotting
cumulative filtrate volume vs. the square
root of flow time. mL/min " . and
cross-sectional area of test media through
which flow takes place. cm-.

I

m

BN
I

In this case. the coefficient is obtained from an ex-
perimental test to determine the fluid loss resulting from
the use of a particular fluid-loss additive in a particular
fracturing fluid. The test must be performed at. or cor-
rected to, bottomhole temperature (BHT) and pressure
conditions. Spurt loss is the leakoff occurring while the
fluid-retaining wall (filter cake) is being built up. It can
be determined from this test by extrapolating the straight-
linc portion of the curve back to zero time on the ordinate.
The value at this intercept is the spurt loss.

Stimulation Results

The increased production obtained following a fractur-
ing treatment is the result of increased fracture penetra-
tion and conductivity. The greater penctration produces
a larger drainage area from which reservoir fluids can be
produced. Increased fracture conductivity results from the
lowered resistance to flow through the fracture, permit-
ting greater production of fluid under reservoir energy
conditions.

Fig. 55.6° shows the relationship between fracture
penetration. fracture conductivity ratio. and production
increase. These curves represent fracture penetration as
a decimal fraction of the drainage radius. If a good con-
ductivity ratio can be achieved. then a fracture penctrai-
ing 100% of the drainage radius can provide as much as
a 13-fold increase in the production.

Fracture conductivity is controlled largely by propping
agent permeability, size. and placement. Strength of the
propping agent is also very important. The effect of these
properties on fracture conductivity will be discussed fater.

Fracture penetration is related directly to fracture-fiuid
citiciency and containment of the fracture within the pro-
duction zone. A good tracturing fluid should be relative-
Iy low in cost and have Tow fluid loss. low friction loss.
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good proppant transport characteristics. temperature sta-
bility. ability to thin for good cleanup. and compatibility
with reservoir rock and fluids. Containment of the frac-
ture within the productive interval is a function not only
of fluid properties but also of technique.

Fracturing Materials

Fracturing Fluids

Fracturing fluids may be divided into three broad divi-
sions: oil based. water based. and mix based. Classifica-
tion depends primarily on the main constituent of the
fracturing fluid. The aqueous-based fluids.are either water
or acid. and the mix-based fluids are emulsions.

Oil-Based Fluids. In the past, refined oils, crude oils and
soap-type gels of crude. kerosene. or diesel oil were quite
common. Because of safety considerations, lack of tem-
perature stability, and cost of tailoring these materials to
be efficient fluids, they are seldom used today. A new
thickened and crosslinked hydrocarbon gel, made from
either light retined oils or crude oil, is used extensively
in hydraulic fracturing of oil- and gas-condensate wells
producing tfrom reservoirs adversely affected by water or
brine. These gels exhibit all the characteristics of an effi-
cient fracturing fluid.

Water-Based Fluids. Gels. Water-based fluids are natural
or synthetic polymer gels of water or hydrochloric acid.
They may be either linear or crosslinked gels. The water-
based tluids are used almost exclusively except in those
extremely water-sensitive reservoirs previously men-
tioned. The popularity of aqueous fluids is based on many
tactors. including these four: (1) they are sate 1o handle,
(2) their cost is low in comparison to oil-based fluids,
(3) they are. or can be formulated to be, compatible with
nearly all reservoir fluids and conditions, and (4) they can
be tailored to meet almost any treating requirements.
Rheological properties, friction pressure. fluid loss. and
break time can be closely controlled to provide an effi-
cient fracturing fluid over a wide range of well and reser-
voir conditions. The primary disadvantage of aqueous
tluids is that they may not be applicable in formations that
are adversely affected by water.

Waterfrac services use linear (uncrosslinked) gels of
fresh water. salt water, or produced brine as efficient and
economical fracturing fluids. Guar and hydroxypropyi
guar thickening agents are available to satisfy the require-
ments of a wide range of reservoir properties. They can
be used in either batch- or continuous-mix techniques. A
cellulose derivative thickener is available for applications
in which fluids with extremely low residue are required.

The viscosity of fluids used in waterfrac services is con-
trolled by thickening-agent concentration.

High-viscosity fracturing fluids have been developed
that contribute directly to wider, better-propped. and
more-conductive fractures. Fracture width is increased
by increasing the viscosity of the fracturing fluid. Wider
fractures permit use of larger proppant, which has great-
er permeability. These viscous fluids also have the
proppant-transport properties required to carry higher con-
centrations of proppant deeper into the fracture. They
achieve their high viscosity at gel concentrations in the
same range as the traditional waterfrac fluids by using
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special crosslinking systems and stabilizers. The high-
viscosity gels are particularly uscful in deep wells because
of their temperature stability. They are able to create wide,
deeply penetrating fractures at lower rates and can main-
tain their viscosity over the longer pumping times required
in deeper wells. Fig. 55.7 shows the viscosity protile of
one such fluid.

Two other characteristics of fracturing fluids normally
are reported and are used in computer job design. These
are the consistency index, /., and the behavior index. /,,.
The power law model is used to calculate these charac-
teristics. The consistency index 1s based on pipe flow ge-
ometry. The power law parameters are defined as follows:

I, = behavior index: log slope of the shear
stress vs. shear rate curve,
dimensionless, and

1. = consistency index; shear stress at 1 sec ™',

Ibf-sec ~'/fi2.

Apparent viscosity is related to the consistency index and
behavior index as follows:

B 47,880/,
Ba= 7 -1,

= apparent viscosity. cp. and
v = shear rate, sec !

RS
|

Since shear history (shear rate and time at shear) ad-
versely affects the rheology of some crosslinked gels. test
methods have been developed that more accurately
describe the fluids at the time they enter the fracture. Tu-
ble 55.1 compares data developed by the API test method
and shear history method.® The data provided by the
shear history method give more reliable prediction of tric-
tion losses while pumping. Such information is a requi-
site in job design to predict fracture geometry and reduce
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Fig. 55.7—Viscosity profile of high-viscosity, crosslinked, aque-
ous gel.
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TABLE 55.1—COMPARISON OF RHEOLOGY DATA GENERATED BY API|
RP39M AND SHEAR HISTORY METHOD FOR CROSSLINKED AQUEQUS FLUID
CONTAINING 30-Ibm/1,000-gal THICKENER AND 10-lbm/100-gal STABILIZER

RP39M-XL“A" SHSM*-XL"“A"
Temperature  Time cp at 170 cp at 170
(°F) {hours) 1, [p sec ™' 1y 1, sec ™'
225 0 — — — 0.7512 0.0017 23
1 0.570 0.065 342 0.7709 0.0015 22
2 0.588 0.045 259 0.7912  0.0013 20
4 0.630 0.021 150 0.8309 0.0009 18
6 0.672 0.011 98 0.8713 0.0007 17
8 0.710 0.0058 63 0.8115 0.0005 15
250 0 — — — 0.7306 0.0021 25
1 0.656 0.127 220 0.7743 0.0014 21
2 0.674 0.019 170 0.8179 0.0009 17
4 0.712 0.0095 103 0.9044 0.0004 11
6 0.752 0.0046 62 0.9918 0.0002 7
8 0.792 0.0024 39 — — —
275 0 - — — 0.7156  0.0020 22
1 0.718 0.014 157 0.7371 0.0014 17
4 0.740 0.010 126 0.7688 0.0009 13
6 0.805 0.0048 84 — — —
8 0.842 0.0037 79 — — —

*Shear history simulation method.

the possibility of premature screenout. Figs. 55.8 through
55.13 are examples of friction-loss data for various fluids.

In many of the high-viscosity fluids, shear history ef-
fects are minimized by using additives to delay crosslink-
ing until the fluid reaches the bottom of the hole. This
technique also reduces friction losses since high viscosi-

ty does not develop until after the fluid has passed through
the tubulars.

Foams. During recent years, foams have become extreme-
ly popular as fracturing fluids. Normally classed as water-
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Fig. 55.8—Typical friction-loss curves for linear gel of fresh water
or brine using guar or hydroxpropyl guar thickeners.

based fluid. foam is a dispersion of a gas. usually nitro-
gen, within a liquid. A surfactant is used as a foaming
agent to initiate the dispersion. Stabilizers are used where
high temperatures or long pumping time occur. The volu-
metric ratio of the gas to the total volume of the foam,
under downhole conditions, is called the quality of the
foam. Quality is expressed as a number equal to the per-
centage. A 75-quality foam is 75% gas by volume at
downhole temperature and pressure. In fracturing, foam
quality usually ranges from 65 to 85 (compositions con-
taining less than 52 % gas are not normally stable foams).
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Fig. 55.9—Typical friction-loss curve of linear aqueous gel using

cellulose thickener.
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Fig. 55.10—Typical friction-loss curve for crosslinked aqueous
gel using guar-based thickener.

Foam is designed primarily for low-permeability or
low-pressure gas wells. However, it may have equal ad-
vantages in low-pressure oil wells. In oil wells it may be
necessary to use a different foaming agent that is com-
patible with reservoir fluids and reduces the possibility
of emulsions.

Some advantages of foam are: (1) good proppant trans-
port, (2) solids-free fluid-loss control, (3) low fluid loss,
(4) minimum fluid retention owing to its low water con-
tent, (5) compatibility with reservoir fluids, and (6) low
hydrostatic pressure of returned fluids, which gives rapid
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Fig. 55.12—Typical friction-loss curve for oil-in-water dispersion-
type fracturing fluid.
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Fig. 55.11—Typical friction-loss curve for gelled oil fracturing
fluid.

cleanup and allows quicker well evaluation (gas in foam
helps return liquids to the wellbore).

Some disadvantages of foam are: (1) more surface pres-
sure is required because of low hydrostatic head: and
(2) there is the added expense of gas. especially under
high pressure where volume is reduced.

Mix-Based Fluids. Mix-based fluids are oil-in-water dis-
persions or emulsions that serve as highly efficient water-
based fracturing fluids.
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Fig. 55.14—Effect of closure stress on permeability of various
propping agents.

The viscous emulsions are water-outside-phase emul-
sions containing two parts oil (crude or refined) and one
part water or brine. These are commonly called **poly-
emulsions™™ and are designed to provide high-viscosity
fracturing fluids at temperatures up to 350°F. They are
seldom used because of fire hazard and cost.

A crosslinked gel provides high viscosity in the water
volume (95%). and a 5% oil phase is dispersed through-
out the mixture to give excellent fluid-loss control prop-
erties without requiring the addition of solids. The leakoff
control is the result of two-phase fluid flow that reduces
the relative permeability of the formation more than con-
ventional fracturing fluids do over a wide permeability
range. The fluid is highly efficient even when compared
to viscous-emulsion fracturing fluids. Normally. the 5%
oil content is low enough to avoid significant effects on
cither friction pressure or hydrostatic head, even when
uscd with the highly viscous water or brine gels.

Fructuring fluid composition is normally proprietary in-
formation of the service company supplying it. While
competitive fluids are available from most of the service
companies, rheological and friction-loss data will vary ac-
cording to the fluid. Therefore, handbooks provided by
the service companies should be used to obtain data for
job design.

Propping Agents

Propping agents are used to maintain fracture-flow ca-
pacity after completion of a hydraulic fracturing treatment.
The amount of proppant used, the manner in which it is
placed in the fracture, and the properties of the material
itself all play a vital role in maintaining productivity
throughout the life of the well. The selection of the prop-
ping agent and scheduling of the proppant during the treat-
ment are important parts of the overall completion and
treatment design. )

The six physical properties of propping agents that af-
fect the resultant fracture conductivity are grain strength,
grain size. grain size distribution. grain roundness fac-
tor. quality (amount of fines and impurities). and prop-
pant density.

Grain Strength. While all these physical properties have
a decided effect on fracture conductivity, quality standards
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have been established so that the main considerations are
grain strength and grain size. If a proppant is not strong
enough to withstand closure stress of the fracture, it will
crush, and permeability will be reduced greatly. Also. as
reservoir pressure is reduced by fluid production. the
closure stress will increase. Therefore. it 1s important that
proppant strength be selected for the stress that will be
present during the later life of the well. Fig. 55.14 shows
the effect of closure stress on permeability of various prop-
ping agents when the formation is a hard. competent rock.
Sand is an acceptable propping agent at closure stresses
up to 6.000 psi. At stresses greater than this. high-strength
proppants such as sintered bauxite particles or plastic-
coated sand grains should be used.

In soft formations, the proppant will tend to embed into
the formation under closure stress and reduce fracture
width. This, in turn, reduces fracture flow capacity. In
the past, deformable proppants such as rounded walnut
shells and aluminum pellets have been used in an attempt
to overcome this problem. By deforming or spreading out.
these proppants presented a larger surface area to the face
of the fracture and resisted embedment. The low density
and malleability of these proppants caused both pumping
and placement problems, and they were never widely ac-
cepted. There was also a corrosion or oxidation of the
aluminum that resulted in loss of pack permeability.

A better solution to embedment is a wide. packed frac-
ture. In such a fracture, width reduction resulting from
cmbedment is a small percentage of total fracture width.
and adequate flow capacity is maintained even after
embedment occurs.

Grain Size. A large proppant grain size provides a more
permeable pack under low closure stress conditions and
can be used in shallow wells. However, dirty formations
or those subject to significant fines migration are poor
candidates for large-size proppants. The fines tend to in-
vadc the proppant pack. causing partial plugging and rapid
reduction in permeability. In these cases, smaller sizes
of proppant that resist invasion of fines are better.
Larger grain sizes are generally not considered for deep-
er wells because of greater susceptibility to crushing.

Proppant Placement. The manner in which a propping
agent is placed in a fracture is also important. As previ-
ously stated, soft or high-permeability formations need
a wide. fully packed fracture. In very-low-permeability
formations. only a thin fracture may be necessary. How-
ever. fracture length becomes important in such forma-
tions because the greater the surface area of formation
cxposed to the propped fracture. the greater the volume
of oil or gas that can drain into the fracture. Since fluid
enters the fracture along its entire length. long fractures
must be wider at the wellbore than at the tip to accom-
modate the increasing amount of fluid as the fracture nears
the wellbore. To accomplish this fracture geometry. the
proppant must be scheduled so that its concentration in
the fracture fluid increases steadily as the trcatment
progresses.

Fracturing Techniques
Although fracturing treatments usually are performed by

pumping materials down the casing or tubing at rates as
high as well limitations and economics will permit. spe-
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cial techniques sometimes are used to help control verti-
cal fracture growth. Such control is directly related to
fracturing cfficiency. In the case of massive zones, ade-
quate fracture height to cover the entire zone is desirable.
With narrow zones, containment of the fracture within
the productive zone improves efficiency and penetration
and prevents fracture growth into undesirable zones.

While vertical growth can be controlled to some extent
by controlling injection rate, more sophisticated tech-
niques are required for optimum efficiency.

A Limited Entry® technique involves designing the
number and size of perforations to match an economically
feasible pump rate so that all perforations are forced to
accept fluid during the treatment.

Another specialty technique to limit downward growth
of a vertical fracture involves building an artificial lower
barrier. This is done by using low injection rates and fluids
with poor proppant transport characteristics at the begin-
ning of the treatment. Propping agent can create a prop-
pant pack at the bottom of the fracture. A pressure drop
will exist across this pack and will divert the fluid that
follows outward and upward, thus slowing or even stop-
ping downward fracture growth.

Similarly, a buoyant propping agent can create an ar-
tificial upper barrier by floating to the top of the fracture
and bridging to form a proppant pack. In this case also,
the pressure drop across the pack will force subsequent
tfluids outward to increase fracture length.

Multiple-Zone Fracturing

Where multiple zones are open to the wellbore. mechan-
ical devices such as packers or bridge plugs can be used
to isolate zones so that each can be treated individuaily.
Where it is desirable to fracture more than one zone in
a single treatment, sized particulate materials or perfora-
tion ball sealers can be used. The particulate materials
usually are suspended in a viscous fluid and filter out at
the fracture entrance. After treatment, they generally flow
back with produced fluids. They also can break down
through chemical reaction. Ball sealers seat in perfora-
tions and divert fluid flow. They are unseated by reverse
tlow and either fall to the bottom or are produced along
with the returning fluids. When ball sealers are used. a
mechanical device to catch the balls should be used at the
surface to prevent the balls from plugging valves or other
surface equipment.

Fracturing Equipment
Hydraulic fracturing equipment consists of pumps and
blenders. high-pressure manifolds and treating line. re-
motely controlied master valves, and tree savers.
Pumping equipment is the conventional triplex pump,
quintaplex pump, or a pressure-multiplier type of pump.
The latter employs an entirely different pumping concept
from the triplex pump. It operates by using a low-pressure
working fluid to push a large piston. This large piston
is directly connected to a smaller piston. or ram, which
handles the treating fluid. Because of a slow cycle speed.
the pressure multipliers are capable of long pumping times
at high pressures. Both the triplex and pressure multipli-
¢r are capable of high-pressure operation. Above
12.000-psi treating pressure. however. the multiplier is
preferred. These units are capable of operating at pres-
sures slightly in excess of 20.000 psi.
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Individual pumping units are powered by engines rang-
ing from less than 100 to more than 1,300 hp. For high
horsepower requirements, multiple units are used.

Fluids used in hydraulic fracturing are mixed in
blenders. They are either batch mixed before a job and
stored in tanks on location or continuously mixed during
the job. Blenders are capable of metering both dry and
liquid additives into a fluid, mixing the fluid and addi-
tives, and metering and mixing propping agent into the
fluids. After mixing and blending, the slurries are sup-
plied by the blender to the suction on the high-pressure
pumps under pressure. Blending units capable of handling
volumes in excess of 100 bbl/min are available.

Liquid nitrogen is the gas normally used for foam or
energized fluid. Special transport and pumping equipment
is required to handle the nitrogen, which generally is me-
tered into the treating line on the downstream (high-
pressure) side of the triplex or multiplier pumps.

Another piece of equipment recently added to fractur-
ing fleets is the treatment monitoring vehicle. This vehi-
cle gathers data, uses a computer to analyze them. and
presents the results as they occur. or in “'real time.”" The
data are presented by a printer. plotter, and on a CRT
screen. Real-time analysis and presentation of data ailow
positive control of a treatment. Ample warning of prob-
lems normally is available so that changes can be made
to permit successful completion of the job. Also. the
equipment can be used to monitor a minifrac job before
the main treatment. Analysis of the minifrac can either
verify job design or indicate needed design changes be-
fore the main treatment.

Treatment Planning and Design

Success of a hydraulic fracturing treatment depends on
creating a deeply penetrating. highly conductive fracture
in the producing zone. Research, engineering studies. and
experience have provided reliable planning or treatment
design guides. Job calculations with these guides are based
on reservoir conditions, laboratory tests. theoretical data,
well information, and experience in a given arca. Most
service companies and many oil-producing companies
have job-design calculations computerized to aid in rapid
and accurate design comparisons. Special computer pro-
grams are available also to calculate tubing expansion and
contraction, bottomhole cool-down (fluid temperature at
the wellbore and in the fracture), proppant scheduling to
provide best propped fracture geometry, and anticipated
productivity increase.

Evaluating and selecting optimal treating conditions for
any individual well includes several steps. First, accurate
reservoir and well-completion data must be accumulated
to provide a sound basis for engineered treatment prepian-
ning. Next, the fracture area and the extent of formation
penetration necessary to provide the desired productivity
increase are calculated. The fracture conductivity. as re-
lated to the permeability of the matrix, is determined also.

After this. the comparative efficiency of various frac-
turing fluids, based on specific well conditions. is deter-
mined. as well as the volumes and injection rates necessary
to provide the desired fracture extension. Horsepower re-
quirements for each type of treatment then can be calcu-
lated: and fracturing materials and techniques can be
selected that, theoretically, will most efficiently and eco-
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nomically produce the desired productivity increase. Only
when all these factors are considered collectively can a
well-integrated fracturing treatment be carried out.

Nomenclature
A = cross-sectional area of test media through
which flow takes place, cm?
A, = total area of one face of the fracture at any
time during injection, sq ft
b = fracture width (breadth), ft
cgr = isothermal coefficient of compressibility of
the reservoir fluid, psi ™!
D = depth of producing interval, ft
erfe(x) = complementary error function of x
g, = unit fracture gradient, psi/ft
i = constant injection rate during fracture
extension, cu ft/min
1, = behavior index; log slope of the shear-
stress vs. shear-rate curve, dimensionless
/. = consistency index: shear stress at 1 sec ™',
Ibf-sec ~ ! /ft?
= cffective formation permeability, darcies
K = fluid coefficient, a constant that is a meas-
ure of the flow resistance of the fluid
leaking off into the formation during
fracture operations
K, = fluid coefficient (compressibility-viscosity
controlled), ft/min "
K, = fluid coefficient, wall building (fluid-loss
additive), ft/min*
K, = fluid coefficient (viscosity controlled),
ft/min ”
m = slope of fluid-loss curve, plotting
cumulative filtrate volume vs. square
root of flow time, mL/min *
ps = total friction loss, psi
P = total hydrostatic pressure, psi
pr = normal reservoir pressure, psi
p, = total surface treating pressure, psi
Ap = differential pressure across face of fracture,
psi
1 = total pumping time, minutes
v = shear rate, sec !
L. = apparent viscosity, cp
py = fracturing fluid viscosity, cp
pgr = reservoir fluid viscosity, cp
¢, = effective formation porosity, %

Key Equations in SI Metric Units

Y
K.=1.9203x 10"4Ap»\/—M, ............ 3)

MR

[k.ap0,
K. =241x10-4nf eBPPe (4)

Ky

PETROLEUM ENGINEERING HANDBOOK

and
m
K;=0001076—, ............. ... ... ..., (5)
24
where
K..K,, and K; are in m/s"”*,
Ap is in kPa,
k, is in ym?,
¢, is in percent,
cgisinkPa~!,
g is in Pa-s,
m is in mL/s*, and
Ais in m?.
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We suggest that structural activity contributed to rela-
tively greater stratigraphic rise in this area and, indirectly,
to the distribution of thick Fruitland coal seams (Ayers and
others, this volume, Fig. 2.20). The Pictured Cliffs shoreline
prograded rapidly basinward across the southern half of
the basin. After the shoreline crossed the structural hinge-
line, sporadic structural activity began and the northern
part of the basin subsided more rapidly to accommodate a
greater thickness of sediment. The changing balance be-
tween sediment input and pulsatory subsidence north of
the hingeline resulted in oscillation and aggradation of the
shoreline, accounting for the most significant stratigraphic
rise of the Pictured Cliffs in the basin and allowing time for
thick peat accumulation landward of the oscillating shore-
line. This model explains why the greatest net thickness of
Fruitland coal is in the northern part of the basin, and why
coal seams in the Fruitland Formation are thicker than those
in subjacent continental strata. Further testing is needed to
verify the existence of the structural hingeline; seismic stud-
ies would be especially useful. A regional map of structural
elements that were identified in regional reflection seismic
lines shows northwest-trending faults in the area of this
hingeline (Huffman and Taylor, 1991).

Structural controls on producibility of
coalbed methane

Earlier studies suggested that Fruitland coal seams have
limited extent and that they are bounded on their basinward
(northeast) margins by Pictured Cliffs shoreline sandstone
and along paleostrike (northwest-southeast) by Fruitland
fluvial sandstones (Fassett and Hinds, 1971; Fassett, 1986).
However, as we have demonstrated, some Fruitland coal
seams may be regionally continuous, overriding and thin-
ning over upper Pictured Cliffs tongues (Figs. 4.16 and 4.18)
in the paleodip direction. Updip pinch-out lines of upper
Pictured Cliffs tongues may be areas where Fruitland coal
seams drape over shoreline sandstones and have a higher
fracture density because of compaction-induced fractures.
The structural attitude of an upper Fruitland coal bed (Fig.
4.19) differs markedly from the structural attitude of other
strata, such as the Huerfanito Bentonite (Fig. 4.2). Along
paleostrike, coal seams split and interfinger with fluvial
channel-fill sandstone complexes (Fig. 4.17), and many of
these coal benches, rather than terminating against the
channel sandstones, override or underlie them, forming
zigzag splits similar to those described in coal-bearing strata
in other basins (Britten and others, 1975; Ayers and Kaiser,
1984). Although these coal seams pinch and swell, they are
laterally continuous, which contributes to their effective-
ness as aquifers. Fractures related to compactional folding
of coal beds are well documented (Donaldson, 1979; House-
knecht and Iannacchione, 1982; Tyler and others, 1991). If
such fracture systems are sufficiently developed, areas of
interbedded sandstones and coal seams would be good tar-
gets for coalbed methane exploration (Fig. 4.20).

This study has shown that Fruitland coal beds are more
extensive and complex than previously inferred (Figs. 4.16—
4.18). The significance of these findings is threefold. First,
coalbed methane reservoirs are larger (more extensive) than
previously thought. Second, compaction-induced fractures,
and therefore enhanced coalbed permeability, may occur in
areas where extensive coal seams drape over shoreline
sandstones or form zigzag splits with channel-fill sandstone
complexes. Finally, the greater lateral extent of coal seams,
inferred from this research, is critical to the interpretation
of ground-water flow and abnormal pressure in the Fruit-
land Formation (Kaiser and others, this volume, Chapter
8).

The viability of the hypothesis of increased fracture den-
sity where coal beds are folded is uncertain; additional sub-
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surface and outcrop studies are required. However, given
the abundance of folds and the potential for folding-in-
duced fractures to contribute to enhanced coalbed methane
production, such studies are warranted.

Coalbed methane activity and reservoir conditions

The Navajo Lake area has a long and noteworthy history
of coalbed methane production. The Phillips No. 6-17 well
(Figs. 4.2 and 4.3) is often referred to as the discovery well
for coalbed methane in the San Juan Basin. This well, which
is an open-hole completion in upper Fruitland coal beds
and sandstones, is located on the northwest flank of a mi-
nor, north-plunging anticline. It has operated for more than
25 yrs with little decline in gas production (averaging 160
to 180 Mcf/d) or pressure (Hale and Firth, 1988). The well
produces little or no water, indicating some element of
structural and/or stratigraphic trapping. Although Hale and
Firth (1988) discount structural trapping, their interpreta-
tion was based on a structure map of the Huerfanito Ben-
tonite, which does not accurately reflect the structural attitude
of Fruitland coal beds. Since 1985, Meridian Qil and Black-
wood and Nichols have completed several coalbed methane
wells in the Navajo Lake area, including the most produc-
tive coalbed methane wells in the United States. Some Me-
ridian wells in this area (Figs. 4.2, 4.3, and 4.19) have
produced at a rate of 300 to 15,000 Mcf/d (see Kaiser and
Ayers, this volume, Chapter 10, for discussion of produc-
tion). Meridian 400 wells are completed in lower Fruitland
coal beds on the margin of a syncline and near the updip
pinch-out of UP1 (Fig. 4.19).

In the Navajo Lake area, Fruitland coal beds are mostly
in the area of regional overpressuring and highest Fruitland
bottom-hole pressures; overpressuring is attributed to arte-
sian conditions (Kaiser and others, this volume, Chapter
8). The boundary between overpressured and underpres-
sured strata crosses the southern part of the area (Fig. 4.4);
this boundary may be caused by southwestward pinch-out
and/or offset of aquifer coal beds across faults that are in-
ferred to make up the structural hingeline (Fig. 4.2). Both
gas- and water-saturated coal seams are present in the Na-
vajo Lake area. In this area, Fruitland coal rank increases
from high volatile B bituminous at the south to medium
volatile bituminous at the north (Scott and others, this vol-
ume, Fig. 9.3), and it contains more than 10 Bcf of methane/
mi’ (Ayers and others, this volume, Fig. 2.21). Fruitland
coalbed gas is dry (C,/C,s >95%), and it contains a high
percentage of carbon dioxide (commonly 3-10%) (Scott and
others, this volume, Fig. 9.10). Primary fractures (face cleats)
in oriented cores from Blackwood and Nichols NEBU No.
403 trend northeastward, consistent with regional cleat trends
in the southern part of the basin (Tremain and others, this
volume, Fig. 5.1). Highly productive wells in the Navajo
Lake area are reported to have fracture-enhanced perme-
ability that may be predicted from lineament analysis. How-
ever, a recent study showed no significant relations between
methane production and lineament attributes in the north-
ern San Juan Basin (Baumgardner, this volume, Chapter 7).
Geologic and hydrologic controls on producibility of coalbed
methane in the Navajo Lake area are further discussed by
Kaiser and Ayers (this volume, Chapter 10).

Summary and conclusions

In summary, we suggest both depositional and structural
controls affect the occurrence and producibility of Fruitland
coalbed methane in the Navajo Lake area. The distribution
of thick coal seams was controlled by depositional setting,
which in turn was structurally controlled; tectonically in-
duced subsidence north of the hingeline temporarily con-
fined the Pictured Cliffs shoreline to a narrow belt, and this



(Kaiser and others, this volume, Fig. 8.1) and, consequently,
such areas are favorable for hydrocarbon accumulation (Toth,
1980). Available chemical analyses show Na-Cl-type waters.
Coal seams may be thicker than 10 ft (>3 m) and they occur
primarily in northeast-trending belts (Ayers and others, this
volume, Figs. 2.15 and 2.17). A northeast-trending, dip-
elongate belt of thick coal extends almost to the south-
western margin of the basin (Ayers and others, this volume,
Figs. 2.17 and 2.19) and coincides with a similar trending
belt of high gas production (>100 Mcf/d) (Fig. 10.15). This
belt includes productive wells (200 to 500 Mcf/d) in the
Fulcher and WAW-Gallegos areas (Fig. 10.15) completed in
coal seams of subbituminous and high volatile C bitumi-
nous rank (Scott and others, this volume, Fig. 9.3), and it
flanks a major northeast-trending Fruitland channel-sand-
stone belt. Sandstone wells of the Aztec, Kutz, and Gallegos
fields (Fig. 10.20) are completed in channel-sandstone belts
(thin-coal areas) that flank northeast-trending belts of thick
coal (Ayers and others, this volume, Fig. 2.15).

Northeast-trending coal seams may have served as path-

ways that allowed gas to migrate out of the north-central
part of the basin, either entrained or dissolved in ground
water, or by diffusion in response to the concentration gra-
dient. Carbon dioxide appears to have migrated. Plumes of
high carbon dioxide content gases extend updip (south-
westward) from the overpressured area, coincident with
northeast-trending coal belts (Scott and others, this volume,
Fig. 9.10), and terminate at the San Juan River valley, a
regional no-flow boundary (Kaiser and others, this volume,
Figs. 8.1 and 8.24).

In the west-central part of the basin (area 2), the Fruitland
Formation is mainly an aquitard, and gas is produced water
free (Kaiser and others, this volume, Chapter 8). Water-free
production in this regional discharge area is explained in
terms of the low flow, hydrostratigraphy, trapping mech-
anism, and coal wettability. Limited flow in the basal Fruit-
land coal and Pictured Cliffs Sandstone accounts for water
production from some wells completed in the basal coal.
Conventional trapping and low gas permeability relative to
water are also important factors. Stratigraphic trapping is
postulated to be more important than structural trapping
on the basis of gentle, northeast monoclinal dip and asso-
ciated updip (southwestward) pinch-out of reservoir coal
seams (Ayers and others, this volume, Fig. 2.2)..Coal seams
in the southern part of the basin are lower rank (subbitu-
minous to high volatile C bituminous) and may be water
wet; hence, in these low-permeability strata, water is less
mobile than gas.

In the west-central, underpressured part of the basin,
Fruitland coalbed wells have MAPs ranging from 30 to 300
Mcf/d, similar to productivities of many wells in the north-
central, overpressured part of the basin (Ignacio Blanco field)
in areas 1B and 1C (Fig. 10.19). Although coalbed methane
production is highest from overpressured coal seams, eco-
nomic production occurs over a wide pressure range.
Cumulative production of some wells exceeds 1 Bcf in area
2 (for example, Clay 1, Gallegos area, >1 Bcf in 14 yrs).
However, most welis in this area have cumulative produc-
tions of a few hundred million cubic feet, and some have
produced oil at the rate of 2 or 3 bbls/d. Numerous Fruitland
sandstone gas fields occur in the southwestern part of the
basin (Fig. 10.20). Several of them, such as Aztec field, are
associated with potentiometric mounds (Kaiser and others,
this volume, Fig. 8.1). Analysis of production decline has
shown that many wells identified as sandstone completions
actually have coal-decline behavior and probably are pro-
ducing coalbed methane indirectly from coal seams (Fig.
10.4). In some cases, sandstone volumetrics require gas pro-
duction from the associated coal seams. Some wells are
dually completed in Fruitland coal seams and Pictured Cliffs
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Sandstone or Mesaverde sandstones, and the production
is commingled. Consequently, the contribution of Fruitland
coalbed methane to total gas production in the west-central
part of the basin is substantial but unquantifiable.

WAW-Gallegos area—Coalbed methane wells in the
WAW-Gallegos area, which is located in area 2 in the south-
western corner of the basin (Figs. 10.15 and 10.20), produce
at rates of 30 to more than 300 Mcf/d. Wells completed in
1990 average about 180 Mcf/d. Long-term productivity is
demonstrated by the Clay 1 well (sec. 12 T26N R12W), which
was completed as a coalbed well in 1976 and had an average
production rate of 185 Mcf/d in 1989. The area is under-
pressured and lies mostly within the regional discharge
area. Structural dip is homoclinal to the northeast at less
than 1° (~80 ft/mi [~15 mvkm]). Strike- and dip-elongate
coal seams of subbituminous rank have maximum thick-
nesses of 10 to 20 ft (3 to 6 m) (Ayers and others, this volume,
Fig. 2.17). Stratigraphic and hydrodynamic trapping may
account for considerable gas volume beyond that adsorbed
at reservoir pressures below or near hydrostatic pressure.
Coal seams pinch out updip (southwestward), and ground
water flows downdip (northward). Enhanced permeability
is inferred for wells producing water from the basal Fruit-
land coal. Gas may in part come from the underlying Pic-
tured Cliffs Sandstone. Thus, the presence of significant
free gas and enhanced permeability are thought to combine
to explain relatively high gas productivities in the WAW-
Gallegos area.

Area 3: underpressured, eastern area

Little is known about the hydrogeology of the eastern
part of the basin. Area 3 (Fig. 10.19) is regionally under-
pressured, and because of limited data, it appears to be
hydrologically featureless. Widely spaced head contours
suggest sluggish ground-water flow (Kaiser and others, this
volume, Fig. 8.1). Fruitland-produced waters are Na-Cl type
that resemble seawater. An area of thick coal, corresponding
to coals of belt E {Ayers and others, this volume, Fig. 2.15),
trends northwestward across Rio Arriba County, parallel to
depositional strike. There are only a few producing Fruit-
land wells (coal and/or sandstone completions) in the area.
After 1 or 2 yrs of production, these wells have average
annual productions of less than 1 to 3 MMcf, accompanied
by littie or no water.

Conclusions

1. Coalbed methane production in the Fruitland For-
mation is lognormally distributed. Production histograms
and probability and scatter plots suggest that coal beds hav-
ing free gas may be common. Production from overpres-
sured coal seams is greater than that from underpressured
seams, although production rates from the two pressure
regimes overlap. Initial gas potential is a predictor of long-
term productivity. Highly productive wells produce both
gas and water, reflecting superior permeability and artesian
overpressure. Decline curves of coalbed and sandstone res-
ervoirs differ. Coalbed wells have negative decline early in
their production history, followed by exponential decline
at less than 5%/yr late in their lives. Sandstone wells that
exhibit coal-decline behavior probably are producing coalbed
methane indirectly from adjoining coal seams.

~'2. Approximately 90% of the Fruitland coalbed methane
production is from the Meridian 400 area and Cedar Hill
and Ignacio Blanco fields in the overpressured part of the
basin. Wells in the Meridian 400 area are the most produc-
tive (>1,000 Mcf/d), whereas those in Ignacio Blanco field
are the least productive (~30 to 300 Mcf/d) and may still be
dewatering. Coalbed wells in the west-central (underpres-
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FLOW RATE CALCULATIONS

CHACO NO. 1
Perm = 31lmd
Net Pay = 16.5 ft
Area = 107 acres
Porosity =  214%
Water Saturation = 34 %
After Fracturing
Average Gas Rate during 1¥ year 99 Mscf/d
Average Gas Rate after 2 years 13 Mscf/d
Cumulative Production after 2 years 47 MMscf
With 30 fi P
Average Gas Rate during 1% year 180 Mscf/d
Average Gas Rate after 2 years 25 Mscf/d
Cumulative Production after 2 years 85 MMscf
With 320 acre Drainage
Average Gas Rate during 1* year 140 Mscf/d
Average Gas Rate after 2 years 66 Mscf/d
Cumulative Production after 2 years 87 MMscf

EXHIBIT
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