Do not u	UNITED STATES DEPARTMENT OF THE INTI BUREAU OF LAND MANAGES DRY NOTICES AND REPORTS se this form for proposals to dri and well. Use form 3160-3 (APD) for	MENT S ON WELLS II or to re-enter an	OMB	
SUBMI	T IN TRIPLICATE - Other instruc	tions on page 2	7. If Unit or CA/Agr	reement, Name and/or No.
Type of Well			8. Well Name and No BOROS FEDER	
Name of Operator MATADOR PRODUCTION	Contact: NIC ON COMPANYE-Mail: nicky.fitzgerald	CKY FITZGERALD I@matadorresources.com	9. API Well No. 30-015-46530-	-00-X1 Bone Spring, West
3a. Address ONE LINCOLN CENTER DALLAS, TX 75240	R 5400 LBJ FREEWAY SUITE 1570	o. Phone No. (include area code) 0 972-371-5448	10. Field and Pool of AVALON-BON	
4. Location of Well (Footage,	Sec., T., R., M., or Survey Description)		11. County or Parish	, State
Sec 15 T26S R31E NWI 32.048954 N Lat, 103.76			EDDY COUNT	Y, NM
12. CHECK TH	IE APPROPRIATE BOX(ES) TO	INDICATE NATURE OF	NOTICE, REPORT, OR OT	HER DATA
TYPE OF SUBMISSION		TYPE OF	ACTION	
Notice of Intent ■	☐ Acidize	□ Deepen	☐ Production (Start/Resume)	☐ Water Shut-Off
_	☐ Alter Casing	☐ Hydraulic Fracturing	☐ Reclamation	■ Well Integrity
☐ Subsequent Report	□ Casing Repair	■ New Construction	☐ Recomplete	Other
☐ Final Abandonment Not	ice Change Plans	□ Plug and Abandon	□ Temporarily Abandon	Change to Original A PD
	☐ Convert to Injection	☐ Plug Back	■ Water Disposal	
If the proposal is to deepen dir Attach the Bond under which following completion of the in	079	subsurface locations and measur Bond No. on file with BLM/BIA. in a multiple completion or reco	ed and true vertical depths of all pertical Required subsequent reports must be appletion in a new interval, a Form 31	inent markers and zones. the filed within 30 days 60-4 must be filed once
Please see the attached from 400' FNL and 2183' This proposed SHL move	C102 to revise the SHL of Matado FEL of Sec. 15 T26S R31E to 430 e lies within the approved well pad ent DOI-BLM-NM-P020-2020-0098	0' FNL and 2233' FEL of Se location footprint covered	ec. 15 T26S R31E. n	
Also, Matador respectful	y requests the option to amend the	e casing, cementing and m	ud program	Some COA'S
BHermes@matadorreso	ocumentation attached and contac urces.com for any questions.		-5485 or 10-9-20 3	good Same COA'S
APPROVED BY	RALHEL IJABIKEN	1. REVIEW AD	DITIONAL ENGIN	HERING COA.
14. I hereby certify that the foreg	Electronic Submission #5265	UCTION COMPANY, sent to	the Carlsbad	
Name (Printed/Typed) NICK	Y FITZGERALD	Title REGULA	ATORY ANALYST	
Signature (Elect	ronic Submission)	Date 08/20/20	20	
	THIS SPACE FOR I	FEDERAL OR STATE O	FFICE USE	, ,
Approved By	Mark	Title IF M	-4N	bate 9DD X

Approved By

Conditions of approval, if any, are attached. Approval of this notice does not warrant or certify that the applicant holds legal or equitable title to those rights in the subject lease which would entitle the applicant to conduct operations thereon. Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United States any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction.

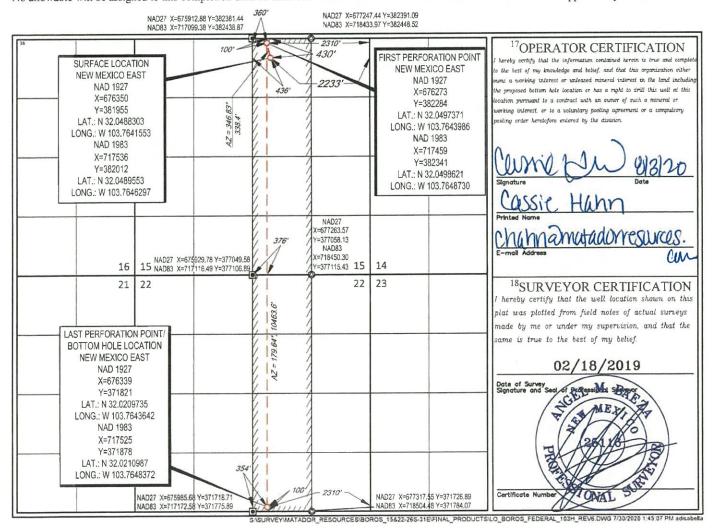
State of New Mexico Energy, Minerals & Natural Resources Department OIL CONSERVATION DIVISION 1220 South St. Francis Dr. Santa Fe, NM 87505

FORM C-102
Revised August 1, 2011
Submit one copy to appropriate
District Office

AMENDED REPORT

WELL LOCATION AND ACREAGE DEDICATION PLAT

¹ API Number 30-015-46530	² Pool Code 97860	Jennings Bone Spring, West	
⁴Property Code		Property Name OS FEDERAL	103H
OGRID No.		Operator Name ODUCTION COMPANY	Selevation 3224


10 Surface Location

UL or lot no.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet from the	East/West line	County
В	15	26-S	31-E	_	430'	NORTH	2233'	EAST	EDDY

11 Bottom Hole Location If Different From Surface

UL or lot no.	Section 22	Township 26-S	Range 31-E	Lot Idn	Feet from the 100'	North/South line	Feet from the 2310'	East/West line EAST	County EDDY
¹² Dedicated Acres 320	¹³ Joint or I	nfill ¹⁴ Co	nsolidation Code	13 Orde	r No.				

No allowable will be assigned to this completion until all interests have been consolidated or a non-standard unit has been approved by the division.

Revisions to Operator-Submitted EC Data for Sundry Notice #526519

Operator Submitted

BLM Revised (AFMSS)

Sundry Type:

APDCH

NOI

APDCH NOI

Lease:

NMNM138865

NMNM138865

Agreement:

Operator:

MATADOR PRODUCTION COMPANY 5400 LBJ FREEWAY, SUITE 1500 DALLAS, TX 75240 Ph: 972-371-5448

Admin Contact:

NICKY FITZGERALD REGULATORY ANALYST E-Mail: nicky.fitzgerald@matadorresources.com

Ph: 972-371-5448

Tech Contact:

NICKY FITZGERALD

REGULATORY ANALYST

E-Mail: nicky.fitzgerald@matadorresources.com

Ph: 972-371-5448

Location:

County:

NM EDDY

Field/Pool:

JENNINGS;BONE SPRING,WEST

Well/Facility:

BOROS FEDERAL 103H Sec 15 T26S R31E 400FNL 2183FEL

MATADOR PRODUCTION COMPANY

ONE LINCOLN CENTER 5400 LBJ FREEWAY SUITE 1500 DALLAS, TX 75240 Ph: 972.371.5200

NICKY FITZGERALD REGULATORY ANALYST E-Mail: nicky.fitzgerald@matadorresources.com

Ph: 972-371-5448

NICKY FITZGERALD

REGULATORY ANALYST E-Mail: nicky.fitzgerald@matadorresources.com

Ph: 972-371-5448

NM EDDY

AVALON-BONE SPRING, EAST

BOROS FEDERAL 103H Sec 15 T26S R31E NWNE 430FNL 2403FEL 32.048954 N Lat, 103.765175 W Lon

Boros Federal 103H SUNDRY

13 3/8	surface	csg in a	17 1/2	inch hole.	ALL II ALL II ALL	Design	Factors	ar aller in aller in a	N 2000 S	Surface	2	- 1000 D 2000 D 2
Segment	#/ft	Grade		Coupling	Body	Collapse	Burst	Length	B@s	a-B	a-C	Weight
"A"	54.50	J	55	BTC	11.34	1.79	0.69	1,381	5	1.26	3.45	75,265
w/8.4#/	g mud, 30min S	fc Csg Test psig	1,308	Tail Cmt	does not	circ to sfc.	Totals:	1,381				75,265
Comparison o	f Proposed to	Minimum R	equired Ceme	nt Volumes								
Hole	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Req'd				Min Dist
Size	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE				Hole-Cpl
17 1/2	0.6946	950	1549	959	61	8.80	2171	3M				1.56
Class 'C' tail cm	t yield above	1.35.										
Burst Frac Grad	dient(s) for Se	gment(s) A, B	=, b All > 0.	70, OK.								0 1000 N 1000 N
75/8	casing in	side the	13 3/8			Design I	Factors		-	Int 1		
Segment	#/ft	Grade	ENAME OF THE	Coupling	Body	Collapse	Burst	Length	B@s	a-B	a-C	Weight
"A"	29.70	Р	110	BTC	3.91	1.35	2.35	8,093	2	4.28	2.46	240,362
"B"							TREES.	0				0
w/8.4#/	g mud, 30min St	fc Csg Test psig:		N PARAMETER SAN A SEC. 1-	CASE NA SHEDONIES DE ANE		Totals:	8,093				240,36
	The cemen	nt volume(s)	re intended to	achieve a top of	4200	ft from su	rface or a	-2819				overlap.
Hole	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Reg'd				Min Dist
Size	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE				Hole-Cpl
9 7/8	0.2148	440	1132	836	35	9.40	2211	3M				0.69
Class 'H' tail cm	t yld > 1.20											
5 1/2	casing in	and the same of the same of the same of	7 5/8	and the Property of the		Design Fac	SOUTH PROPERTY TO SHARE SHARE	Let's State of the	THE CONTROL OF	Prod 1		
Segment	#/ft	Grade		Coupling	Body	Collapse	Burst	Length	B@s	a-B	a-C	Weight
"A"	20.00		110	TLW	3.02	2.83	3.57	18,545	4	6.50	5.88	
w/8.4#/g	g mud, 30min Sf						Totals:	18,545				370,900
		' '		achieve a top of	8040	ft from su		53				overlap.
Hole	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Req'd				Min Dis
Size	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE				Hole-Cpl
6 3/4	0.0835	740	999	878	14	9.40			Base (Area			0.44
Class 'C' tail cm	t yld > 1.35											
				Excess Cement ma	y be needed	l.						

Carlsbad Field Office 9/21/2020

PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL

OPERATOR'S NAME:
LEASE NO.:
WELL NAME & NO.:
SURFACE HOLE FOOTAGE:
BOTTOM HOLE FOOTAGE
LOCATION:
COUNTY:
MATADOR PRODUCTION COMPANY
NMNM138865
BOROS FEDERAL 103H
430'/N & 2233'/E
100'/S & 2310'/E
Section 15, T.26 S., R.31 E., NMPM
Eddy County, New Mexico

COA

H2S	○ Yes	• No	
Potash	None	Secretary	○ R-111-P
Cave/Karst Potential	↑ Low	Medium	∩ High
Cave/Karst Potential	Critical		
Variance	○ None	Flex Hose	Other
Wellhead	Conventional	Multibowl	○ Both
Other	□ 4 String Area	☐ Capitan Reef	□WIPP
Other	Fluid Filled	Cement Squeeze	☐ Pilot Hole
Special Requirements	☐ Water Disposal	ПСОМ	□ Unit

ALL PREVIOUS COAs still apply.

A. CASING

- The 13-3/8 inch surface casing shall be set at apphroximately 1381 feet (a minimum of 70 feet (Eddy County) into the Rustler Anhydrite and above the salt) and cemented to the surface.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
 - b. Wait on cement (WOC) time for a primary cement job will be a minimum of **8** hours or 500 pounds compressive strength, whichever is greater. (This is to include the lead cement)
 - c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
 - d. If cement falls back, remedial cementing will be done prior to drilling out that

string.

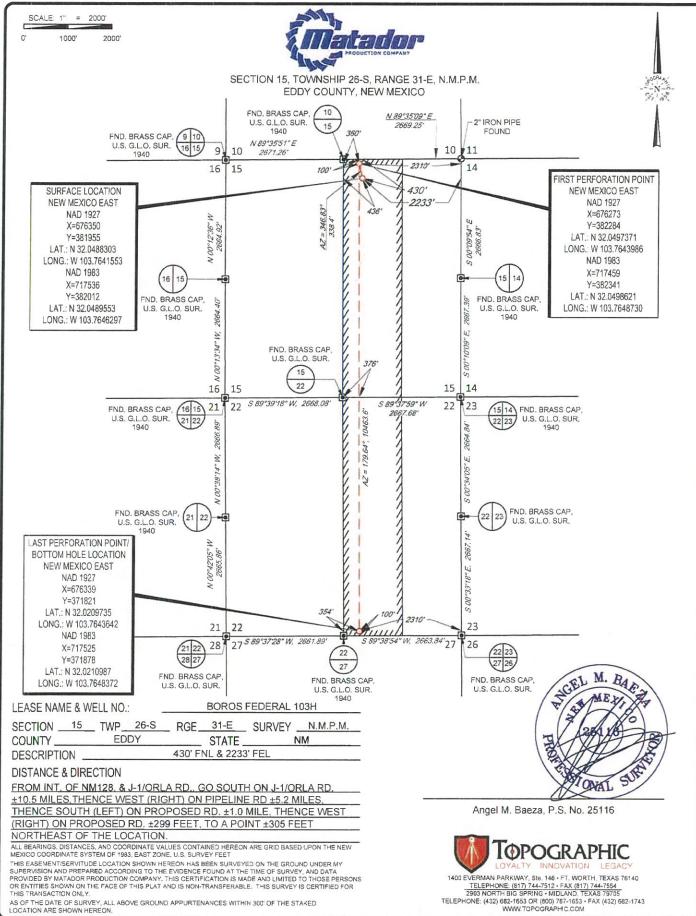
- The 7-5/8 Intermediate Casing shall be set at 8093 feet. The minimum required fill of cement behind the 7-5/8 inch intermediate casing is:
 - Drill plan does not propose cement to surface; In medium Karst Areas, First two strings must be cemented to surface.

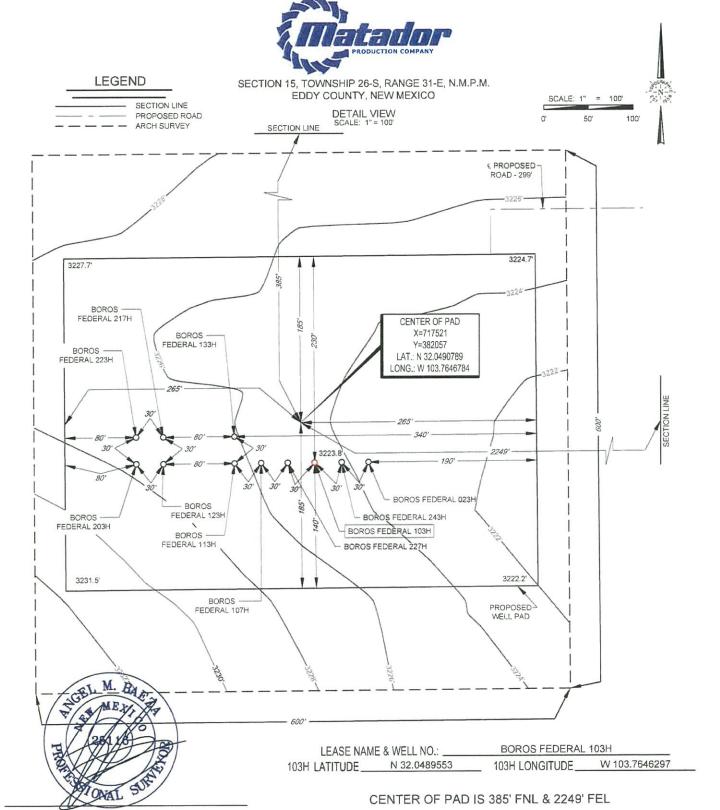
Option 1 (Single Stage):

Cement to surface. If cement does not circulate see B.1.a, c-d above.
 Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst or potash.

Option 2:

Operator has proposed a DV tool, the depth may be adjusted as long as the cement is changed proportionally. The DV tool may be cancelled if cement circulates to surface on the first stage.


- a. First stage to DV tool: Cement to circulate. If cement does not circulate off the DV tool, contact the appropriate BLM office before proceeding with second stage cement job.
- b. Second stage above DV tool:
 - Cement to surface. If cement does not circulate, contact the appropriate BLM office.
 Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst or potash.
- c. Operator will perform bradenhead squeeze. Cement to surface. If cement does not circulate see B.1.a, c-d above.
- d. Operator has proposed to pump down 13-3/8" X 7-5/8" annulus.
 - Operator must run a CBL from TD of the 7-5/8" casing to surface. Submit results to BLM.
- ❖ In Medium Cave/Karst Areas if cement does not circulate to surface on the first two casing strings, the cement on the 3rd casing string must come to surface.


• The minimum required fill of cement behind the 5-1/2 inch production casing is:

Option 1 (Single Stage):

- Cement should tie-back at least **200 feet** into previous casing string. Operator shall provide method of verification.
- Excess Cement calculates to less than 25%; More cement may be needed.

RI09202020

Angel M. Baeza, P.S. No. 25116

ALL BEARINGS, DISTANCES, AND COORDINATE VALUES CONTAINED HEREON ARE GRID BASED UPON THE NEW MEXICO COORDINATE SYSTEM OF 1983, EAST ZONE, U.S. SURVEY FEET, ELEVATIONS USED ARE NAVD88, OBTAINED THROUGH AN OPUS SOLUTION.

THIS PROPOSED PAD SITE LOCATION SHOWN HEREON HAS BEEN SURVEYED ON THE GROUND UNDER MY SUPERVISION AND PREPARED ACCORDING TO THE EVIDENCE FOUND AT THE TIME OF SURVEY. AND DATA PROVIDED BY MATADOR PRODUCTION COMPANY, ONLY THE DATA SHOWN ABOVE IS BEING CERTIFIED TO, ALL OTHER INFORMATION WAS INTENTIONALLY OMITTED, THIS PLAT IS ONLY INTENDED TO BE USED FOR A PERMIT AND IS NOT A BOUNDARY SURVEY. THIS CERTIFICATION IS MADE AND LIMITED TO THOSE PERSONS OR ENTITIES SHOWN ON THE FACE OF THIS PLAT AND IS NON-TRANSFERABLE. THIS SURVEY IS CERTIFIED FOR THIS TRANSACTION ONLY.

1400 EVERMAN PARKWAY, Ste. 146 - FT. WORTH, TEXAS 76140

TELEPHONE (817) 744-7512 - FAX (817) 744-7554

2903 NORTH BIG SPRING - MIDLAND, TEXAS 79705

TELEPHONE: (432) 682-1633 OR (800) 767-1653 - FAX (432) 682-1743

WWW.TOPOGRAPHIC.COM

Boros Federal #103H

SHL: 430' FNL & 2233' FEL Section 15 BHL: 100' FSL & 2310' FEL Section 22

Township/Range: 26S 31E

Elevation Above Sea Level: 3224

Drilling Operation Plan

Proposed Drilling Depth: 18545' MD / 8240' TVD

Type of well: Horizontal well, no pilot hole

Permitted Well Type: Oil

Geologic Name of Surface Formation Quaternary Deposits

KOP Lat/Long (NAD83): 32.0498621 N / -103.7648730 W TD Lat/Long (NAD83): 32.0210987 N / -103.7648372 W

1. Estimated Tops

Formation	MD (ft)	TVD (ft)	Thickness (ft)	Lithology	Resource
Rustler	1,356	1,356	132	Anhydrite	Barren
Salado (Top of Salt)	1,488	1,488	2,609	Salt	Barren
Lamar (Base of Salt)	4,097	4,097	29	Salt	Barren
Bell Canyon	4,126	4,126	1,053	Sandstone	Oil/Natural Gas
Cherry Canyon	5,179	5,179	1,206	Sandstone	Oil/Natural Gas
Brushy Canyon	6,385	6,385	1,282	Sandstone	Oil/Natural Gas
KOP	7,667	7,667	427	Sandstone	Oil/Natural Gas
Bone Spring Lime	8,068	8,094	146	Limestone	Oil/Natural Gas
Avalon Sand	8,567	8,240	-	Sandstone	Oil/Natural Gas
TD	18,545	8,240		Sandstone	Oil/Natural Gas

2. Notable Zones

Brushy Canyon is the goal. All perforations will be within the setback requirements as prescribed or permitted by the New Mexico Oil Conservation Division. OSE estimated ground water depth at this location is 230'

3. Pressure Control

Equipment

A 12,000' 5,000-psi BOP stack consisting of 3 rams with 2 pipe rams, 1 blind ram, and one annular preventer will be utilized below surface casing to TD. See attachments for BOP and choke manifold diagrams.

An accumulator complying with Onshore Order #2 requirements for the pressure rating of the BOP stack will be present. A rotating head will also be installed as needed.

Testing Procedure

BOP will be inspected and operated as required in Onshore Order #2. Kelly cock and sub equipped with a full opening valve sized to fit the drill pipe and collars will be available on the rig floor in the open position.

A third party company will test the BOPs.

After setting surface casing, a minimum 5M BOPE system will be installed. Test pressures will be 250 psi low and 5,000 psi high with the annular preventer being tested to 250 psi low and 2500 psi high before drilling below surface shoe. In the event that the rig drills multiple wells on the pad and any seal subject to test pressures are broken, a full BOP test will be performed when the rig returns and the 5M BOPE system is re-installed.

Variance Request

Matador requests a variance to have the option of running a multi-bowl wellhead assembly for setting the Intermediate 1, and Production Strings. The BOPs will not be tested again unless any flanges are separated.

Matador requests a variance to drill this well using a co-flex line between the BOP and choke manifold. Certification for proposed co-flex hose is attached. The hose is not required by the manufacturer to be anchored. If the specific hose is not available, then one of equal or higher rating will be used.

Matador requests a variance to have the option of batch drilling this well with other wells on the same pad. In the event that this well is batch drilled, the wellbore will be secured with a blind flange of like pressure. When the rig returns to this well and BOPs are installed, the operator will perform a full BOP test.

4. Casing & Cement

All casing will be API and new. See attached casing assumption worksheet.

String	Hole Size (in)	Set MD (ft)	Set TVD (ft)	Casing Size (in)	Wt. (lb/ft)	Grade	Joint	Collapse	Burst	Tension
Surface	17.5	0 - 1381	0 - 1381	13.375	54.5	J-55	BUTT	1.125	1.125	1.8
Intermediate 1	9.875	0 - 8093	0 - 8093	7.625	29.7	P-110	BUTT	1.125	1.125	1.8
Production	6.75	0 - 18545	0 - 8240	5.5	20	P-110	Hunting TLW	1.125	1.125	1.8

- All casing strings will be tested in accordance with Onshore Order #2 III.B.1.h
- Rustler top will be validated via drilling parameters (i.e. reduction in ROP) and surface casing setting depth revised accordingly if needed
- All non-API joint connections will be of like or greater quality, and as run specification sheets will be on location for
- Request the option to deepen the Intermediate 1 casing set depth to 70° in curve, no changes in pipe grade or weight is neccesary.

Variance Request

Matador request a variance to wave the centralizer requirement for the 7-5/8" casing and the 5-1/2" SF/Flush casing in the 6-3/4" hole.

If a DV tool is used, depth(s) will be adjusted based on hole conditions and cement volumes will be adjusted proportionally. DV tool will be set a minimum of 50 feet below previous casing and a minimum of 200 feet above the current shoe. Lab reports with the 500 psi compressive strength time for the cement will be onsite for review.

Matador request option to perform a bradenhead cement squeeze on Intermediate 1 string.

Matador request a variance to utilize a surface setting rig. If this is used, Matador request the option to drill either 17.5" or 20" surface hole.

String	Туре	Sacks	Yield	Cu. Ft.	Weight	Percent Excess	Top of Cement	Class	Blend
Surface	Lead	700	1.72	1198	12.5	50%	0	С	5% NaCl + LCM
Surface	Tail	250	1.38	347	14.8	50%	1081	С	5% NaCl + LCM
Intermediate 1	Lead	230	3.66	839	10.3	35%	4200	A/C	Bentonite + 1% CaCL2 + 8% NaCI + LCM
Intermediate 1	Tail	210	1.38	290	13.2	35%	7093	A/C	5% NaCl + LCM
Production	Tail	740	1.35	999	13.2	10%	7667	A/C	Fluid Loss + Dispersant + Retarder

5. Mud Program

An electronic Pason mud monitoring system complying with Onshore Order 2 will be used. All necessary mud products (barite, bentonite, LCM) for weight addition and fluid loss control will be on location at all times. Mud program is subject to change due to hole conditions.

Hole Section	Hole Size (in)	Mud Type	Interval MD (ft)	Density (lb/gal)	Viscosity	Fluid Loss
Surface	17.5	Spud Mud	0 - 1381	8.4 - 8.8	28-30	NC
Intermediate 1	9.875	Diesel Brine Emulsion	1381 - 7567	8.4 - 9.4	28-30	NC
Production	6.75	Cut Brine/OBM	7567 - 18545	8.6 - 9.4	50-65	<20

6. Cores, Test, & Logs

No core or drill stem test is planned.

No electric logs are planned at this time. GR will be collected through the MWD tools from Intermediate casing to TD. CBL with CCL will be run as far as gravity will let it fall to top of curve.

7. Down Hole Conditions

Casing Table Specification Sheet

Boros Federal #103H SHL: 430' FNL & 2233' FEL Section 15 BHL: 100' FSL & 2310' FEL Section 22 Township/Range: 26S 31E

Elevation Above Sea Level: 3224

String	Hole Size (in)	Set MD (ft)	Set TVD (ft)	Casing Size (in)	Wt. (lb/ft)	Grade	Joint	Collapse	Burst	Tension
Surface	17.5	0 - 1381	0 - 1381	13.375 54.5	54.5	J-55	BUTT	1.125	1.125	1.8
Intermediate 1	9.875	0 - 8093	0 - 8093	7.625 29.7 P-110	29.7	P-110	BUTT	1.125	1.125	1.8
Production	6.75	0 - 18545	0 - 8240	5.5	20	20 P-110	Hunting TLW	1.125	1.125	1.8