

DCP Midstream 370 17th Street, Suite 2500 Denver, CO 80202 303-595-3331 303-605-2226 *FAX*

RECEIVED OCD

June 11, 2013

2013 JUN 12 A 10: 39

Mr. Leonard Lowe Environmental Engineer New Mexico Oil Conservation Division 1220 S. St. Francis Dr. Santa Fe, NM 87505

RE: 1st Quarter 2013 Groundwater Monitoring Results Hobbs Booster Station, Lea County New Mexico (AP-114) Unit C and D, Section 4, Township 19 South, Range 38 East

Dear Mr. Lowe:

DCP Midstream, LP (DCP), is pleased to submit for your review, a one copy of the 1st Quarter 2013 Groundwater Monitoring Report for the DCP Hobbs Booster Station located in Hobbs, New Mexico (Unit C and D Section 4, T19S, R38E (32.696 degrees North, 103.156 degrees West).

If you have any questions regarding the report, please call me at 303-605-1718 or email me at <u>swweathers@dcpmidstream.com</u>.

Sincerely

DCP Midstream, LP

Stephen Weathers, P.G. Principal Environmental Specialist

cc: Geoffrey Leking, Hobbs District (Copy on CD) Environmental Files

First Quarter 2013 Groundwater Monitoring and Activities Summary Report

Hobbs Booster Station Lea County, New Mexico AP-114

Prepared for:

370 17th St., Suite 2500 Denver, CO 80202 RECEIVED OCD

Prepared by:

6899 Pecos Street, Unit C Denver, Colorado 80221

April 25, 2013

Table of Contents

1.	Introd	luction	1				
2.	Site Location and Background1						
3.		undwater Monitoring					
3	3.1	Groundwater and LNAPL Elevation Monitoring	2				
3	3.2	Groundwater Quality Monitoring	2				
3	3.3	Data Quality Assurance / Quality Control	3				
4.	Rem	nediation System Performance	3				
4	1.1	Remediation System Layout	4				
4	.2	SVE Performance Evaluation	4				
4	.3	Recovery System Performance Evaluation	4				
4	.4	Air Sparge Performance Evaluation	6				
5.	Con	clusions	6				
6.	6. Recommendations						

Tables

1	First Quarter 2013 Summary of Groundwater Elevation Data
2	First Quarter 2013 Summary of BTEX Concentrations in Groundwater

Figures

1	Site Location
2	Site Map With Monitoring Well Locations
3	First Quarter 2013 Groundwater Elevation Contour Map – February 19, 2013
4	First Quarter 2013 Analytical Results Map

Appendices

- A Laboratory Analytical Results
- B Historical Analytical Results

1. Introduction

This report summarizes the remediation system activities and results of groundwater monitoring activities conducted during the first quarter of 2013, at the Hobbs Booster Station (Site) in Lea County, New Mexico (Figure 1). Tasman Geosciences, LLC (Tasman) conducted these activities on behalf of DCP Midstream, LP (DCP). The purpose of the groundwater monitoring activities described herein were to: a) determine the presence of light non-aqueous phase liquid (LNAPL) hydrocarbons; b) measure groundwater levels; c) obtain groundwater samples for chemical analysis; and d) evaluate and present groundwater flow and quality conditions. The field data and laboratory analytical results collected during the reporting period were used to develop a groundwater elevation contour map and an analytical results map to evaluate current conditions at the Site.

2. Site Location and Background

The Site is located in New Mexico Oil Conservation Division (OCD) designated Units C and D, Section 4, Township 19 South, Range 38 East (Figure 1). The facility coordinates are 32.696 degrees north and 103.156 degrees west. This facility is no longer used as an active gas compression facility or product transfer Site; currently the Site is primarily used as a DCP field office and as an overhaul shop. All ancillary equipment and buildings associated with the former Booster Station have been decommissioned and/or demolished.

The Site currently has 30 groundwater monitoring wells, which are illustrated on Figure 2. Twenty-seven of the wells are located on the Site property while the other three wells, MW-23, MW-24, and MW-25, are located to the southeast of the property boundary on land currently owned by Occidental Permian.

An LNAPL recovery and soil vapor extraction (SVE) system utilizing LNAPL recovery pumps and vacuum blower units are present at the Site. There are 28 dual phase extraction wells (Figure 2) located on-Site including MW-4, MW-8, MW-11, and MW-13 which were previously converted from monitoring wells due to the historically high levels of LNAPL observed in those wells. Additionally, the Site operates an air-sparge (AS) cut-off system that was installed along the south-central Site boundary and includes 21 AS injection wells connected in series (Figure 2). LNAPL, AS, and SVE system operation and performance are described in Section 4.

3. Groundwater Monitoring

This section describes the field groundwater monitoring activities as well as laboratory analyses performed during the first quarter 2013 monitoring event. Monitoring activities included Site-wide groundwater gauging, LNAPL measurements, groundwater purging and sampling, and subsequent packaging and shipping of the samples to the laboratory for chemical analyses. Figure 2 illustrates the groundwater monitoring network utilized to perform these activities at the Site.

3.1 Groundwater and LNAPL Elevation Monitoring

Groundwater and LNAPL levels were measured in order to evaluate hydraulic characteristics and provide information regarding fluctuations in groundwater and LNAPL elevations at the Site. In addition, wells that did not have LNAPL present were measured for total depth and recorded for subsequent use to estimate groundwater purge volumes. During the first quarter 2013 monitoring event groundwater and LNAPL levels, if present, were measured at 24 monitoring well locations.

The wells were gauged on the north side of the well casing to the nearest 0.01-foot using an oil-water interface probe (IP). Groundwater levels were subsequently converted to elevations (feet above mean sea level [AMSL]).

Groundwater elevations collected during the first quarter 2013 monitoring event are presented in Table 1 and a groundwater elevation contour map is illustrated on Figure 3. Groundwater elevations ranged from 3567.04 feet AMSL in monitoring wells MW-19D to 3576.30 feet AMSL at monitoring well MW-7. There was an average decrease in groundwater elevation of 0.31 feet from the previous quarter across the site. As illustrated on Figure 3, groundwater flow at the Site generally trends to the east with a gradient of approximately 0.004 foot per foot between monitoring wells MW-6 and MW-21.

LNAPL was detected in nine of the measured groundwater monitoring wells with thicknesses ranging between 0.04-feet in MW-18 to 6.81-feet in MW-12. Calculated groundwater elevation data in these wells were corrected to account for LNAPL thickness and density.

3.2 Groundwater Quality Monitoring

Prior to collecting groundwater samples, groundwater levels, the presence of LNAPL, and the total depth of the wells (in wells without LNAPL) were measured as previously described. A minimum of three well casing volumes of groundwater (calculated from total depth of the well and groundwater level measurements) was then purged using dedicated polyethylene bailers from the subject well prior to the collection of groundwater samples. Groundwater samples were collected using dedicated polyethylene bailers, placed in clean laboratory supplied containers specific to the selected analytical methods and packed in an ice-filled cooler and maintained at approximately four (4) degrees Celsius (⁰C) for

transportation. Groundwater samples were then shipped under chain-of-custody procedures to Accutest Laboratories (Accutest) in Wheat Ridge, Colorado, for analysis.

Water quality samples were collected from 14 monitoring wells during the first quarter 2013 monitoring event conducted on February 19, 2013. MW-1, MW-2, MW-9, MW-10, MW-12, MW-17, MW-18, TW-K, and TW-N were not sampled due to the presence of measurable LNAPL detected in these wells. Water quality samples were submitted to Accutest for benzene, toluene, ethylbenzene, and xylene (BTEX) analyses by United States Environmental Protection Agency (USEPA) Method 8260B.

Table 2 summarizes BTEX concentrations in groundwater samples collected during the February 19, 2013 event. Analytical results are also summarized on Figure 4. Laboratory analytical reports for the event are included in Appendix A and historical analytical results up to and including the February 2013 event are contained in Appendix B.

Water quality parameters were collected during the first quarter 2013 monitoring event and were used to confirm groundwater stabilization prior to sample collection. The Site monitoring wells did not require collection of more than three purge volumes to achieve parameter stabilization. As such, the analytical data are considered to be representative of Site conditions in that a minimum 3 purge volumes were evacuated from all sampled monitoring wells during the first quarter 2013 event.

3.3 Data Quality Assurance / Quality Control

A trip blank, matrix spike or matrix spike duplicate (MS/MSD) and two field duplicate samples (MW-15 and MW-19D) were collected during the sampling event. The data were reviewed for compliance with the analytical method and the associated quality assurance/quality control (QA/QC) procedures. All samples were analyzed using the correct analytical methods and within the correct holding times. Chain of custody forms were in order and properly executed and indicate that samples were received at the proper temperature with no headspace. All data were reported using the correct method number and reporting units. The trip blank was fully in control, having no detections of targets.

Duplicate samples A and B were in compliance with QA/QC standards. MW-15 and associated duplicate sample (Duplicate A) returned results for benzene of 0.002 mg/l and 0.0019 mg/l, respectively. MW-19D and associated duplicate sample (Duplicate B) returned results for benzene of 0.0072 mg/l and 0.0086 mg/l, respectively.

The overall QA/QC assessment of the data, based on the data review, indicate that both field precision and overall data precision and accuracy are acceptable.

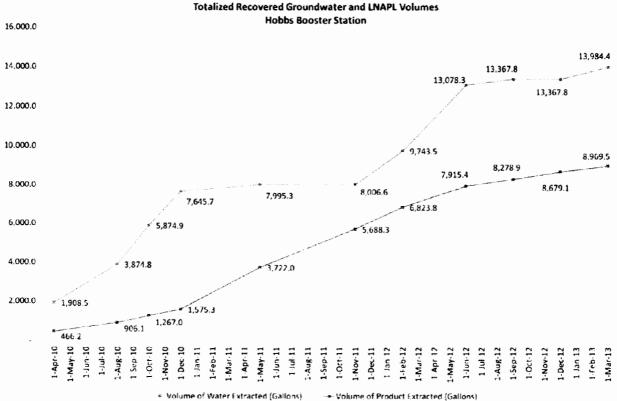
4. Remediation System Performance

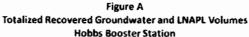
Remediation system activities are described in this section. The performance sections for the LNAPL, SVE, and AS systems are based on historic data as well as data collected during the reporting period.

4.1 Remediation System Layout

The System consists of 28-extraction wells that can be used for liquid or vapor recovery. The extraction wells are currently used for LNAPL recovery. In addition to the extraction well network, there are 22 AS wells aligned west and east to create an 870-foot long dissolved phase hydrocarbon boundary control feature. Groundwater at the Site is typically encountered at 50 feet below ground surface (bgs) and wells are generally completed to approximately 65 feet bgs. The well array spans an area that is approximately 1,000 feet east to west and 800 feet north to south (estimated 15 acres of surface area).

4.2 SVE Performance Evaluation


The soil vapor extraction system was shut down during the second quarter 2012 to allow for equilibration and gauging of LNAPL and groundwater fluid levels at the Site recovery wells. The SVE system remains off as LNAPL recovery from the extraction wells is currently the primary remediation goal at the Site.


4.3 Recovery System Performance Evaluation

The LNAPL recovery system has recovered 31,669.4 gallons of LNAPL since it became operational in January of 2005. During the reporting period two spill buster units were in operation at monitoring well locations PW-JJ and PW-G. A total of 290.33 gallons of LNAPL were recovered from these well locations at an average extraction rate of 3.04 gallons per day (gpd) at PW-JJ and 0.22 gpd at PW-G. Both units have operated with no downtime and have maintained minimal LNAPL thickness in the recovery wells. Incremental and cumulative recovery volumes from April of 2010 through the first quarter 2013 are summarized in Table A and illustrated on Figure A below. LNAPL recovery rates have remained stable through the first quarter of 2013 and incidental groundwater extraction has been eliminated.

Date	Volume of Water Extracted (Gallons)	Total Water (Gallons)	Volume of Product Extracted (Gallons)	Cumulative LNAPL Recovery (Gallons)
26-Apr-10	1,908.5	1,908.5	466.2	466.2
5-Aug-10	1,966.3	3,874.8	439.9	906.1
18-Oct-10	2,000.1	5,874.9	360.9	1,267.0
20-Dec-10	1,770.8	7,645.7	308.3	1,575.3
23-May-11	349.6	7,995.3	2,146.7	3,722.0
21-Nov-11	11.3	8,006.6	1,966.3	5,688.3
20-Feb-12	1,736.9	9,743.5	853.4	6,823.8
28-Jun-12	3,334.8	13,078.3	473.7	7,915.4
25-Sep-12	289.5	13,367.8	363.5	8,278.9
5-Dec-12	-	13,367.8	400.2	8,679.1
25-Mar-13	616.6	13,984.4	290.3	8,969.5

Table A – Liquid Recovery Summary

4.4 Air Sparge Performance Evaluation

The AS system has continued to operate on a 24-hour per day basis with minor down time due to routine scheduled equipment maintenance. The primary evaluation criteria for AS performance is tied to the dissolved phase hydrocarbon concentrations present in groundwater downgradient to the AS well alignment. Monitoring wells MW-14, MW-15, and MW-23, located immediately downgradient from the sparge curtain, provide ideal monitoring locations for observing effects the AS system has on impacted groundwater as it passes through the treatment zone. On the east end of the AS system, monitoring well MW-14 continues to exhibit low dissolved benzene concentrations, however, MW-23 which is located immediately downgradient to MW-14, continues to have no detectable concentrations of benzene or other dissolved petroleum hydrocarbons. On the west end of the AS system, lab data indicates that no dissolved phase hydrocarbon impacts are present in the vicinity of MW-15.

5. Conclusions

This section of the report presents conclusions from the findings of first quarter 2013 groundwater monitoring and remediation system O&M activities.

- Of the fourteen monitoring wells sampled this quarter, only one sample location (MW-14) exhibited benzene concentrations in exceedance of the New Mexico Water Quality Control Commission standards. However, concentrations decreased by an order of magnitude since the December 2012 monitoring event. Additionally, down-gradient point of compliance wells continue to exhibit concentrations below laboratory detection limits indicating the dissolved phase petroleum hydrocarbon plume is stable.
- LNAPL detected in monitoring well MW-10 continues to increase from the initial detection in March 2012 suggesting there is a subsurface migration of the free phase hydrocarbon plume in the central area of the Site.
- BTEX concentrations in the vicinity of the AS trench remain below NMWQCC standards demonstrating that the cut off system remains effective in preventing the advancement of the dissolved and free phase hydrocarbon plumes.
- Based on groundwater concentrations in the vicinity of the AS trench, the cut off system appears to be addressing dissolved phase hydrocarbon concentrations in groundwater along the alignment of the trench;
- LNAPL recovery rates at PW-JJ and PW-G appear to have stabilized to steady state levels;

- Spill Buster pump operation will continue and LNAPL extraction volumes from these units will continue to be monitored, and;
- Installation of additional Spill Buster units on the remaining recovery wells is scheduled for the second guarter 2013.

6. Recommendations

Based on evaluation of current and historical groundwater and LNAPL data as well as remediation system performance data, recommendations have been developed for future activities, as described below:

- Ongoing quarterly groundwater monitoring and sampling activities will provide for continued monitoring of dissolved phase BTEX concentration and LNAPL trends;
- Installation of Spill Buster pumps at 28 recovery well locations during the second quarter 2013 to enhance LNAPL recovery on Site;
- Continue AS and LNAPL recovery system operation and maintenance.

Tables

TABLE 1 FIRST QUARTER 2013 SUMMARY OF GROUNDWATER ELEVATION DATA HOBBS BOOSTER STATION LEA COUNTY, NEW MEXICO

Location	Date	Depth to Groundwater (1) (feet)	Depth to Product (1) (feet)	Free Phase Hydrocarbon Thickness (feet)	Total Depth (2) (feet)	TOC Elevation (feet amsi)	Groundwater Elevation (feet amsl)	Change in Groundwater Elevation Since Previous Event (3) (feet)
MW-1*	3/8/2012	55.85	50.89	4.96	NM	3626.06	3573.93	-0.37
MW-1*	6/6/2012	56.22	51.20	5.02	NM	3626.06	3573.61	-0.32
MW-1*	9/6/2012	56.36	51.34	5.02	NM	3626.06	3573.47	-0.14
MW-1*	12/5/2012	56.45	51.58	4.87	NM	3626.06	3573.26	-0.20
MW-1*	2/19/2013	56.65	51.88	4.77	NM	3626.06	3572.99	-0.28
MW-2*	3/8/2012	48.20	45.95	2.25	NM	3623.14	3576.63	0.03
MW-2*	6/6/2012	49.76	46.30	3.46	NM	3623.14	3575.98	-0.65
MW-2*	9/6/2012	50.90	46.40	4.50	NM	3623.14	3575.62	-0.36
MW-2*	12/5/2012	50.03	46.63	3.40	NM	3623.14	3575.66	0.05
MW-2*	2/19/2013	50.25	46.95	3.30	NM	3623.14	3575.37	-0.30
MW-3	3/9/2012	47.10		Г	55.80	3623.01	3575.91	-0.32
MW-3	6/6/2012	47.43			55.80	3623.01	3575.58	-0.32
MW-3	9/6/2012	47.55			55.80	3623.01	3575.46	-0.12
MW-3	12/5/2012	47.71			55.80	3623.01	3575.30	-0.12
MW-3	2/19/2013	48.04			55.80	3623.01	3574.97	-0.33
MIN 5		54.40						
MW-5 MW-5	3/9/2012	54.42			59.20	3629.16	3574.74	-0.31
MW-5	6/6/2012 9/6/2012	<u>54.80</u> 54.95			59.20	3629.16	3574.36	-0.38
MW-5	12/5/2012	55.08			59.20 59.20	3629.16 3629.16	3574.21 3574.08	-0.15
MW-5 MW-5	2/19/2013	55.42			59.20	3629.16	3573.74	-0.13
								-0.34
MW-6	3/9/2012	50.16			56.46	3626.93	3576.77	-0.31
MW-6	6/6/2012	50.53			56.46	3626.93	3576.40	-0.37
MW-6	9/6/2012	50.60			56.46	3626.93	3576.33	-0.07
MW-6	12/5/2012	50.75			56.46	3626.93	3576.18	-0.15
MW-6	2/19/2013	51.06			56.46	3626.93	3575.87	-0.31
MW-7	3/9/2012	44.31			46.21	3621.40	3577.09	-0.37
MW-7	6/6/2012	44.60			46.21	3621.40	3576.80	-0.29
MW-7	9/6/2012	DRY			46.21	3621.40	NM	NM
MW-7	12/5/2012	NM			46.21	3621.40	NM	NM
MW-7	2/19/2013	45.10			46.21	3621.40	3576.30	-0.50
MW-9*	3/9/2012	58.60	52.70	5.90	NM	3625.21	3571.04	-0.44
MW-9*	6/6/2012	59.08	52.90	6.18	NM	3625.21	3570.77	-0.27
MW-9*	9/6/2012	59.30	52.99	6.31	NM	3625.21	3570.64	-0.12
MW-9*	12/5/2012	59.48	53.15	6.33	NM	3625.21	3570.48	-0.16
MW-9*	2/19/2013	59.66	53.44	6.22	NM	3625.21	3570.22	-0.26
MW-10*	3/12/2012	49.31	47.35	1.96	58.28	3621.07	3573.23	-0.92
MW-10*	6/6/2012	49.46	47.85	1.61	58.28	3621.07	3572.82	-0.92
MW-10*	9/6/2012	50.75	47.74	3.01	58.28	3621.07	3572.58	-0.24
MW-10*	12/5/2012	51.14	47.82	3.32	58.28	3621.07	3572.42	-0.16
MW-10*	2/19/2013	51.53	48.07	3.46	58.28	3621.07	3572.14	-0.29
MW-12*	3/8/2012	60.22	52.36	7.86	NM	3626.60	3572.28	-0.32
MW-12*	6/6/2012	60.34	52.61	7.73	NM	3626.60	3572.06	-0.22
MW-12*	9/6/2012	59.41	52.81	6.60	NM	3626.60	3572.14	0.08
MW-12*	12/5/2012	60.08	53.05	7.03	NM	3626.60	3571.79	-0.35
MW-12*	2/19/2013	60.19	53.38	6.81	NM	3626.60	3571.52	-0.28
MW-14	3/9/2012	50.05			62.94	3621.42	3571.37	
MW-14	6/6/2012	50.45			62.94	3621.42	3570.97	-0.53 -0.40
MW-14	9/6/2012	50.65			62.94	3621.42	3570.77	-0.20
MW-14	12/5/2012	50.75			62.94	3621.42	3570.67	-0.10
MW-14	2/19/2013	51.07			62.94	3621.42	3570.35	-0.32
l							5010.00	-0.32

TABLE 1 FIRST QUARTER 2013 SUMMARY OF GROUNDWATER ELEVATION DATA HOBBS BOOSTER STATION LEA COUNTY, NEW MEXICO

Location	Date	Depth to Groundwater (1) (feet)	Depth to Product (1) (feet)	Free Phase Hydrocarbon Thickness (feet)	Total Depth (2) (feet)	TOC Elevation (feet amsl)	Groundwater Elevation (feet amsl)	Change in Groundwater Elevation Since Previous Event ((feet)
MW-15	3/9/2012	45.86		<u>`</u>	58.17	3619.39	3573.53	-0.56
MW-15	6/6/2012	46.26			58.17	3619.39	3573.13	-0.40
MW-15	9/6/2012	46.42			58.17	3619.39	3572.97	-0.16
MW-15	12/5/2012	46.54			58.17	3619.39	3572.85	-0.12
MW-15	2/19/2013	46.95			58.17	3619.39	3572.44	-0.41
MW-16	3/9/2012	46.05			56.35	3621.87	3575.82	
MW-16	6/6/2012	46.32			56.35	3621.87	3575.82	-0.50 -0.27
MW-16	9/6/2012	46.53			56.35	3621.87	3575.34	-0.27
MW-16	12/5/2012	46.68			56.35	3621.87	3575.19	-0.21
MW-16	2/19/2013	47.00			56.35	3621.87	3574.87	-0.13
MW-17*	3/8/2012	55.40	54.50	0.90	NM	3623.94	3569.22	-0.44
MW-17*	6/6/2012	55.70	54.72	0.98	NM	3623.94	3568.98	-0.24
MW-17*	9/6/2012	55.65	54.88	0.77	NM	3623.94	3568.87	-0.11
MW-17*	12/5/2012	55.84	55.03	0.81	NM	3623.94	3568.71	-0.16
MW-17*	2/19/2013	56.17	55.34	0.83	NM	3623.94	3568.39	-0.32
MW-18*	3/8/2012	55.52	55.30	0.22	NM	3624.30	3568.95	-0.24
MW-18*	6/6/2012	55.81	55.61	0.20	NM	3624.30	3568.64	-0.30
MW-18*	9/6/2012	56.10	55.94	0.16	NM	3624.30	3568.32	-0.32
MW-18*	12/5/2012	56.13	56.10	0.03	NM	3624.30	3568.19	-0.13
MW-18*	2/19/2013	56.40	56.36	0.04	NM	3624.30	3567.93	-0.26
MW-19	3/9/2012	55.85			65.15	3624.12	3568.27	-0.39
MW-19	6/6/2012	56.25			65.15	3624.12	3567.87	-0.39
MW-19	9/6/2012	56.36			65.15	3624.12	3567.76	-0.11
MW-19	12/5/2012	56.48			65.15	3624.12	3567.64	-0.12
MW-19	2/19/2013	56.78			65.15	3624.12	3567.34	-0.30
MW-19D	3/9/2012	55.82			78.75	3623.79	3567.97	-0.41
MW-19D	6/6/2012	56.09			78.75	3623.79	3567.70	-0.27
MW-19D MW-19D	9/6/2012 12/5/2012	56.30 56.38			78.75	3623.79	3567.49	-0.21
MW-19D MW-19D	2/19/2012	56.75			78.75	3623.79	3567.41	-0.08
		30.75			78.75	3623.79	3567.04	-0.37
MW-20	3/9/2012	53.45			60.80	3621.49	3568.04	-0.45
MW-20	6/6/2012	53.79			60.80	3621.49	3567.70	-0.34
MW-20	9/6/2012	53.91			60.80	3621,49	3567.58	-0.12
MW-20	12/5/2012	54.06			60.80	3621.49	3567.43	-0.15
MW-20	2/19/2013	54.36			60.80	3621.49	3567.13	-0.30
MW-21	3/9/2012	55.30			62.75	3624.25	3568.95	-0.46
MW-21	6/6/2012	55.67			62.75	3624.25	3568.58	-0.37
MW-21	9/6/2012	55.84			62.75	3624.25	3568.41	-0.17
MW-21	12/5/2012	55.96			62.75	3624.25	3568.29	-0.12
MW-21	2/19/2013	56.27			62.75	3624.25	3567.98	-0.31
MW-22	3/9/2012	56.86			62.00	3625.16	3568.30	-0.35
MW-22	6/6/2012	57.29			62.00	3625.16	3567.87	-0.43
MW-22	9/6/2012	57.37			62.00	3625.16	3567.79	-0.08
MW-22	12/5/2012	57.46			62.00	3625.16	3567.70	-0.09
MW-22	2/19/2013	57.80			62.00	3625.16	3567.36	-0.34
MW/ 22								
MW-23	3/9/2012	49.65			56.21	3621.16	3571.51	-0.50
MW-23	6/6/2012	50.10			56.21	3621.16	3571.06	-0.45
MW-23 MW-23	9/6/2012 12/5/2012	50.22			56.21	3621.16	3570.94	-0.12
MW-23 MW-23	and the second se	50.36 50.70			56.21	3621.16	3570.80	-0.14
11114-23	2/19/2013	30.70			56.21	3621.16	3570.46	-0.34

TABLE 1 FIRST QUARTER 2013 SUMMARY OF GROUNDWATER ELEVATION DATA HOBBS BOOSTER STATION LEA COUNTY, NEW MEXICO

Location	Date	Depth to Groundwater (1) (feet)	Depth to Product (1) (feet)	Free Phase Hydrocarbon Thickness (feet)	Total Depth (2) (feet)	TOC Elevation (feet amsl)	Groundwater Elevation (feet amsl)	Change in Groundwater Elevation Since Previous Event (3 (feet)
MW-24	3/9/2012	47.75			56.77	3619.27	3571.52	-0.54
MW-24	6/6/2012	48.15			56.77	3619.27	3571.12	-0.40
MW-24	9/6/2012	48.35			56.77	3619.27	3570.92	-0.20
MW-24	12/5/2012	48.51			56.77	3619.27	3570.76	-0.16
MW-24	2/19/2013	48.77			56.77	3619.27	3570.50	-0.26
MW-25	3/9/2012	48.73		[56.29	3619.73	3571.00	-0.58
MW-25	6/6/2012	49.11			56.29	3619.73	3570.62	-0.38
MW-25	9/6/2012	49.31			56.29	3619.73	3570.42	-0.20
MW-25	12/5/2012	49.44			56.29	3619.73	3570.29	-0.13
MW-25	2/19/2013	49.73			56.29	3619.73	3570.00	-0.29
TW-H	3/8/2012	NM		ſ <u></u>	NM	3622.30	NM	NM
TW-H	6/6/2012	NM			NM	3622.30	NM	NM
TW-H	9/6/2012	NM			NM	3622.30	NM	NM
Т W- Н	12/5/2012	NM			NM	3622.30	NM	NM
TW-H	2/19/2013	NM			NM	3622.30	NM	NM
TW-K*	3/8/2012	62.70	57.50	5.20	I	3628.95	3570.15	-1.23
TW-K*	6/6/2012	62.21	56.71	5.50		3628.95	3570.87	0.71
TW-K*	9/6/2012	62.10	56.90	5.20		3628.95	3570.75	-0.11
TW-K*	12/5/2012	62.07	57.07	5.00		3628.95	3570.63	-0.12
TW-K*	2/19/2013	62.10	57.38	4.72		3628.95	3570.39	-0.24
TW-N*	3/8/2012	59.24	54.25	4.99	r	3631.98	3576.48	-0.21
TW-N*	6/6/2012	59.31	54.52	4.79		3631.98	3576.26	-0.22
TW-N*	9/6/2012	59.27	54.71	4.56		3631.98	3576.13	-0.13
TW-N*	12/5/2012	59.14	54.92	4.22		3631.98	3576.01	-0.13
TW-N*	2/19/2013	59.21	55.15	4.06		3631.98	3575.82	-0.19
			Ave	erage change in grou	undwater elevation	on since the previous	s monitoring event	-0.31

Notes:

1- Depths measured from the north edge of the well casing.

2- Total depths were collected and recorded during the first quarter 2013 monitoring event. Total depths were not collected in wells that contained LNAPL.

3- Changes in groundwater elevation calculated by subtracting the measurement collected during the previous monitoring event from the measurement collected during the most recent monitoring event.

Data presented for all well locations includes previous four sampling events, when available. Historic groundwater analytical results for these locations may be found in Appendix B. Sample locations are shown on Figure 2 and and a groundwater elevation contour map is shown on Figure 3.

amsl - feet above mean sea level.

TOC - top of casing.

NM - Not Measured.

* Groundwater elevation was corrected for product thickness using the following calculation:

Groundwater elevation = (TOC Elevation - Measured Depth to Water) + (LNAPL Thickness in Well * LNAPL Density)

LNAPL density was assumed to be approximately 0.75 grams per cubic centimeter

TABLE 2 FIRST QUARTER 2013 SUMMARY OF BTEX CONCENTRATIONS IN GROUNDWATER HOBBS BOOSTER STATION LEA COUNTY, NEW MEXICO

Location Identification	Sample Date	Benzene (mg/l)	Toluene (mg/l)	Ethylbenzene (mg/l)	Total Xylenes (mg/l)	Comments
New Mexico Water Quality				1	(8)	
Control Commission		0.01	0.75	0.75	0.62	
Groundwater Standards (mg/L)						
MW-3	3/9/2012	< 0.001	< 0.002	0.0019	< 0.004	
MW-3	6/6/2012	NS	NS	NS	NS	
MW-3	9/6/2012	< 0.001	<0.002	0.0022	0.0023	
MW-3	12/5/2012	NS	NS	NS	NS	
MW-3	2/19/2013	<0.001	< 0.002	<0.002	<0.003	
MW-5	3/9/2012	< 0.001	< 0.002	<0.002	< 0.004	
MW-5	6/6/2012	NS	NS	NS	NS	
MW-5	9/6/2012	< 0.001	< 0.002	< 0.002	< 0.003	
MW-5	12/5/2012	NS	NS	NS	NS	
MW-5	2/19/2013	<0.001	<0.002	< 0.002	< 0.003	
MW-6	3/9/2012	< 0.001	<0.002	< 0.002	< 0.004	
MW-6	6/6/2012	NS	NS	NS	NS	
MW-6	9/6/2012	< 0.001	< 0.002	<0.002	< 0.003	
MW-6	12/5/2012	NS	NS	NS	NS	
MW-6	2/19/2013	< 0.001	< 0.002	<0.002	< 0.003	
NOV 7		<0.001		<0.002		
<u>MW-7</u> MW-7	3/9/2012 6/6/2012	<0.001 NS	<0.002 NS	<0.002 NS	<0.004	
	9/6/2012	NS NS	NS NS	NS NS	NS NS	
MW-7	12/5/2012	NS	NS	NS	NS	
MW-7 MW-7	2/19/2013	NS	NS	NS	NS	Insufficient water for sample collection
MW-10	3/9/2012	LNAPL	LNAPL	LNAPL	LNAPL	
MW-10 MW-10	6/6/2012	NS	NŠ	NS NS	NS	
MW-10	9/6/2012	LNAPL	LNAPL	LNAPL	LNAPL	
MW-10	12/5/2012	NS	NS	NS	NS	
MW-10	2/19/2013	LNAPL	LNAPL	LNAPL	LNAPL	
MW-14						
MW-14 MW-14	3/9/2012	0.0523	<0.002	0.00066	<0.004	
MW-14 MW-14	6/6/2012 9/6/2012	0.0335	<0.002	0.00064	<0.003	
	12/5/2012	0.105 0.129	<0.002 <0.002	0.0012	<0.003 <0.003	
MW-14	2/19/2013	0.0603	<0.002	0.00081	<0.003	
MW-15		0.0040		0.000		Deplicate Lossen la sella stad
MW-15 MW-15	3/9/2012 6/6/2012	0.0059	<0.002	0.0097	<0.004 <0.003	Duplicate I sample collected
MW-15	9/6/2012	0.0041	<0.002	<0.002	<0.003	Duplicate sample collected Duplicate 1 sample collected
MW-15	12/5/2012	0.0033	<0.002	<0.002	< 0.003	Duplicate sample collected
MW-15	2/19/2013	0.0020	< 0.002	< 0.002	< 0.003	Duplicate A sample collected
MW-16	3/9/2012	< 0.001	< 0.002	<0.002	< 0.004	
MW-16	6/6/2012	< 0.001	<0.002	<0.002	<0.004	
MW-16	9/6/2012	< 0.001	< 0.002	<0.002	< 0.003	
MW-16	12/5/2012	< 0.001	< 0.002	< 0.002	< 0.003	
MW-16	2/19/2013	< 0.001	< 0.002	<0.002	< 0.003	
MW-19	3/9/2012	< 0.001	<0.002	<0.002	<0.004	
MW-19	6/6/2012	< 0.001	< 0.002	< 0.002	< 0.003	
MW-19	9/6/2012	< 0.001	< 0.002	< 0.002	< 0.003	
MW-19	12/5/2012	< 0.001	< 0.002	< 0.002	< 0.003	
MW-19	2/19/2013	< 0.001	< 0.002	< 0.002	< 0.003	1

TABLE 2 FIRST QUARTER 2013 SUMMARY OF BTEX CONCENTRATIONS IN GROUNDWATER HOBBS BOOSTER STATION LEA COUNTY, NEW MEXICO

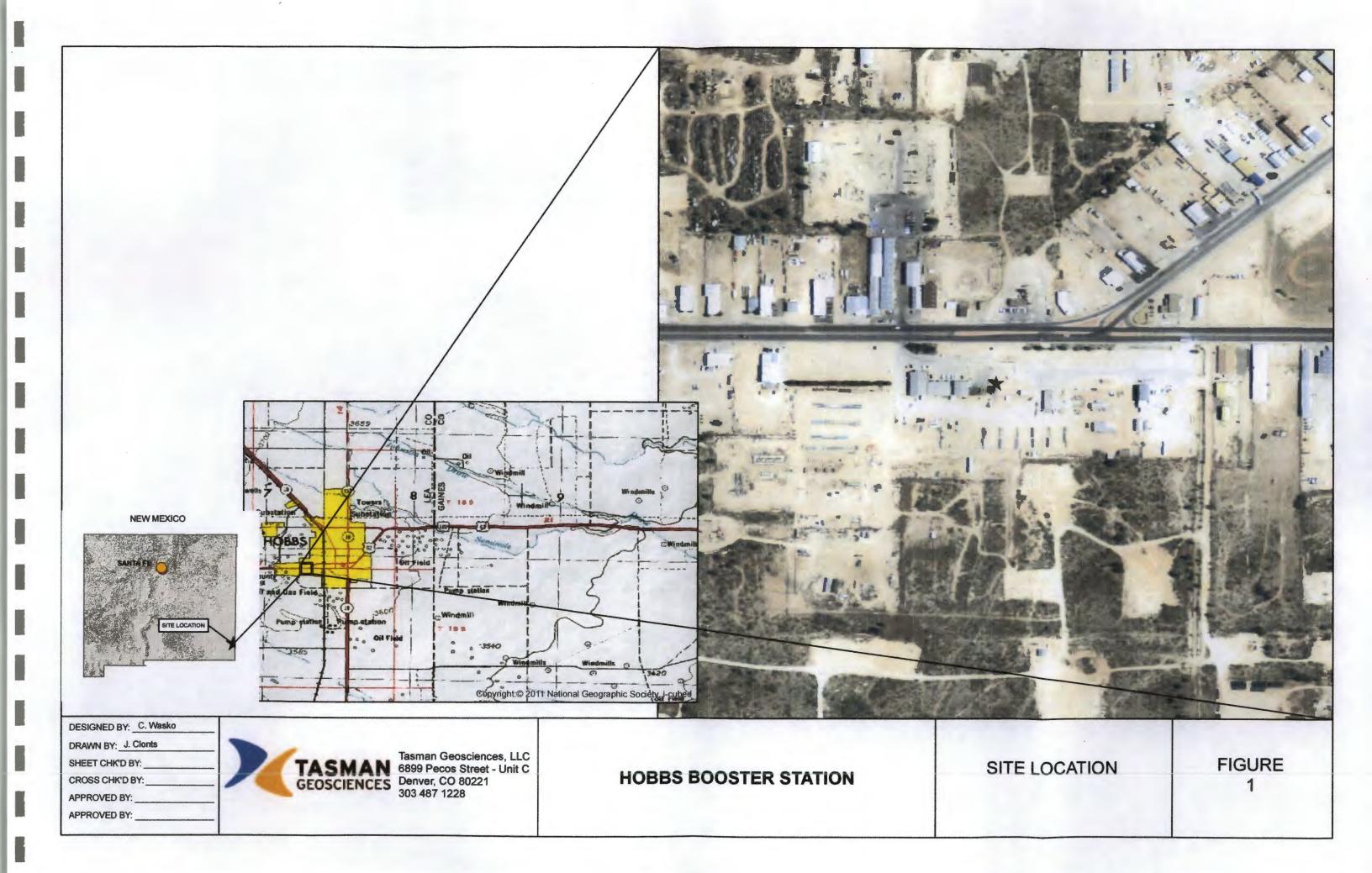
Location Identification	Sample Date	Benzene (mg/l)	Toluene (mg/l)	Ethylbenzene (mg/l)	Total Xylenes (mg/l)	Comments
New Mexico Water Quality Control Commission Groundwater Standards (mg/L)		0.01	0.75	0.75	0.62	
MW-19D	3/9/2012	0.0015	< 0.002	< 0.002	< 0.004	Duplicate 2 sample collected
MW-19D	6/6/2012	0.00079	< 0.002	< 0.002	< 0.003	
MW-19D	9/6/2012	0.00072	< 0.002	< 0.002	< 0.003	Duplicate 2 sample collected
MW-19D	12/5/2012	0.0030	< 0.002	0.00069	< 0.003	
MW-19D	2/19/2013	0.0086	< 0.002	0.0045	< 0.003	Duplicate B sample collected
MW-20	3/9/2012	0.00033	<0.002	<0.002	< 0.004	· · · · · · · · · · · · · · · · · · ·
MW-20	6/6/2012	< 0.001	< 0.002	< 0.002	< 0.003	
MW-20	9/6/2012	< 0.001	< 0.002	< 0.002	< 0.003	
MW-20	12/5/2012	< 0.001	< 0.002	< 0.002	< 0.003	
MW-20	2/19/2013	< 0.001	<0.002	<0.002	< 0.003	
MW-21	3/9/2012	< 0.001	< 0.002	< 0.002	< 0.004	
MW-21	6/6/2012	< 0.001	< 0.002	< 0.002	< 0.003	
MW-21	9/6/2012	< 0.001	< 0.002	< 0.002	< 0.003	
MW-21	12/5/2012	< 0.001	< 0.002	< 0.002	< 0.003	
MW-21	2/19/2013	< 0.001	<0.002	<0.002	< 0.003	
MW-22	3/9/2012	0.0034	< 0.002	0.00046	< 0.004	
MW-22	6/6/2012	0.0031	< 0.002	0.00045	< 0.003	
MW-22	9/6/2012	0.0021	< 0.002	< 0.002	< 0.003	
MW-22	12/5/2012	0.0033	< 0.002	0.00055	0.0031	
MW-22	2/19/2013	0.0046	< 0.002	0.0011	0.0043	
MW-23	3/9/2012	< 0.001	< 0.002	<0.002	< 0.004	
MW-23	6/6/2012	< 0.001	< 0.002	< 0.002	< 0.003	
MW-23	9/6/2012	< 0.001	< 0.002	< 0.002	< 0.003	
MW-23	12/5/2012	< 0.001	< 0.002	< 0.002	< 0.003	
MW-23	2/19/2013	<0.001	<0.002	<0.002	< 0.003	
MW-24	3/9/2012	< 0.001	<0.002	<0.002	< 0.004	
MW-24	6/6/2012	< 0.001	< 0.002	< 0.002	< 0.003	
MW-24	9/6/2012	< 0.001	< 0.002	< 0.002	< 0.003	
MW-24	12/5/2012	< 0.001	< 0.002	< 0.002	< 0.003	
MW-24	2/19/2013	<0.001	<0.002	<0.002	< 0.003	
MW-25	3/9/2012	<0.001	<0.002	<0.002	< 0.004	
MW-25	6/6/2012	<0.001	< 0.002	< 0.002	< 0.003	
MW-25	9/6/2012	<0.001	< 0.002	< 0.002	< 0.003	
MW-25	12/5/2012	< 0.001	< 0.002	<0.002	< 0.003	
MW-25	2/19/2013	< 0.001	< 0.002	< 0.002	< 0.003	

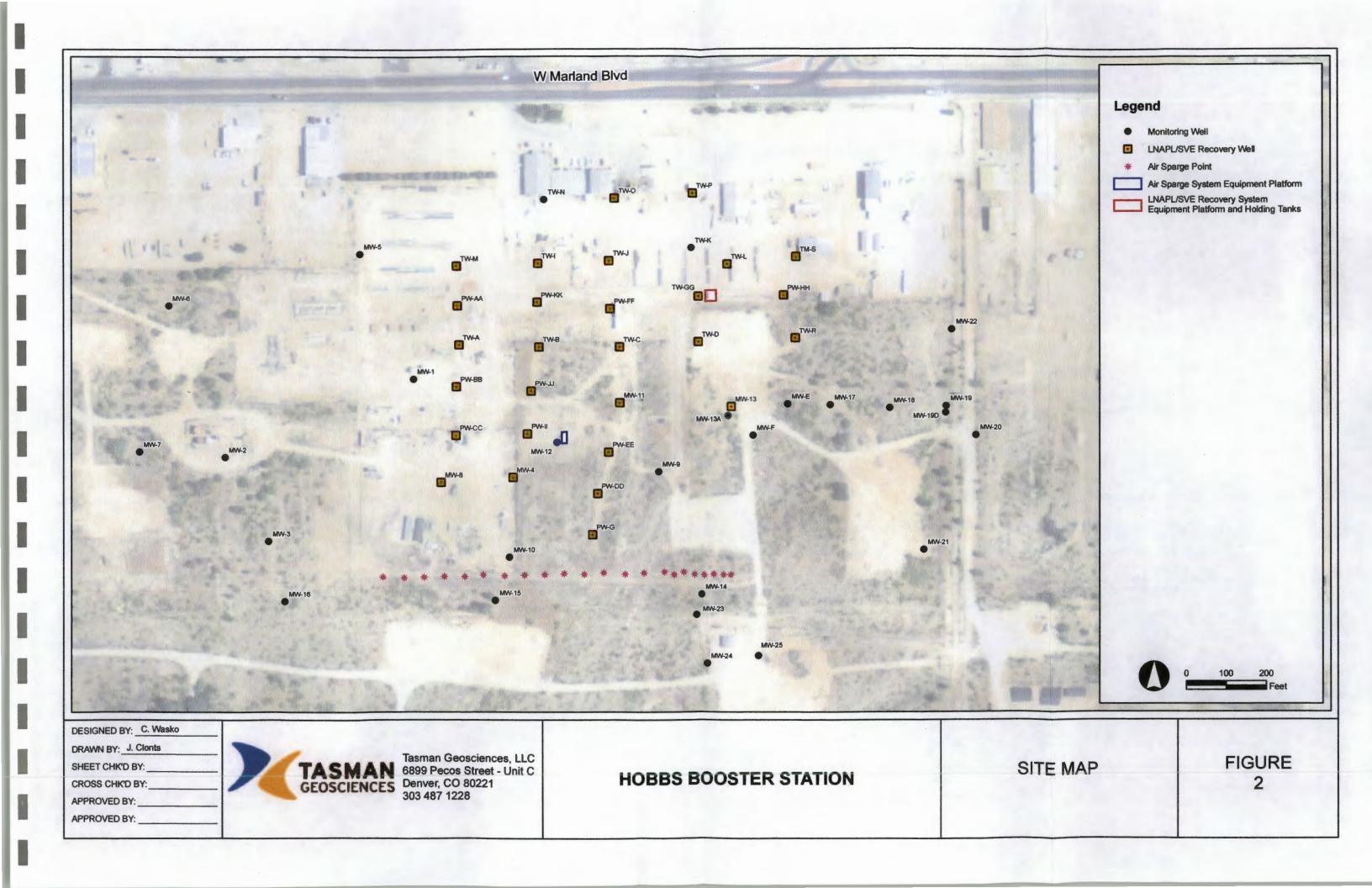
Notes:

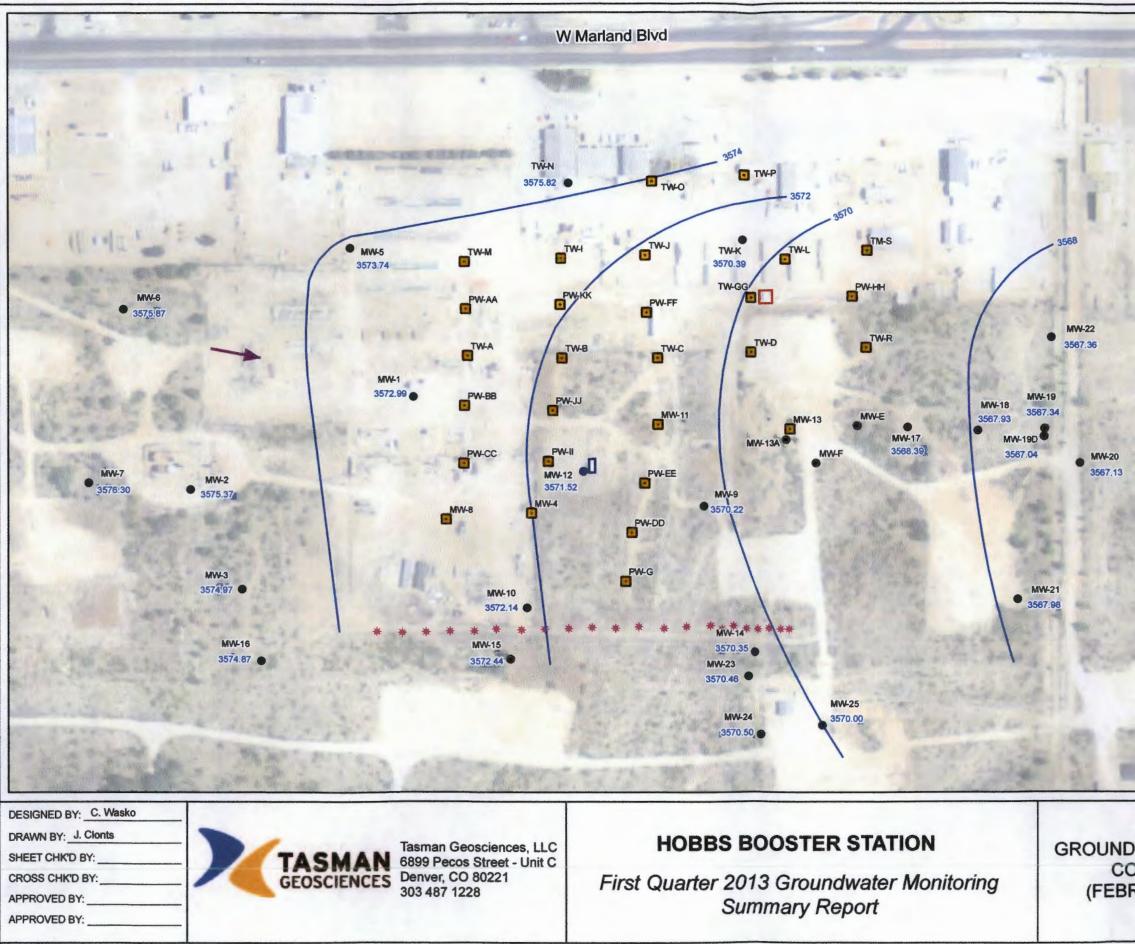
The environmental cleanup standards for groundwater that are applicable to this Site are the New Mexico Water Quality Control Commission (NMWQCC) Groundwater Standards.

Data presented for all other well locations includes previous four sampling events, when available. Historic groundwater analytical results for these locations may be found in Appendix B.

Bold red values indicate an exceedance of the NMWQCC groundwater standards for the Site.

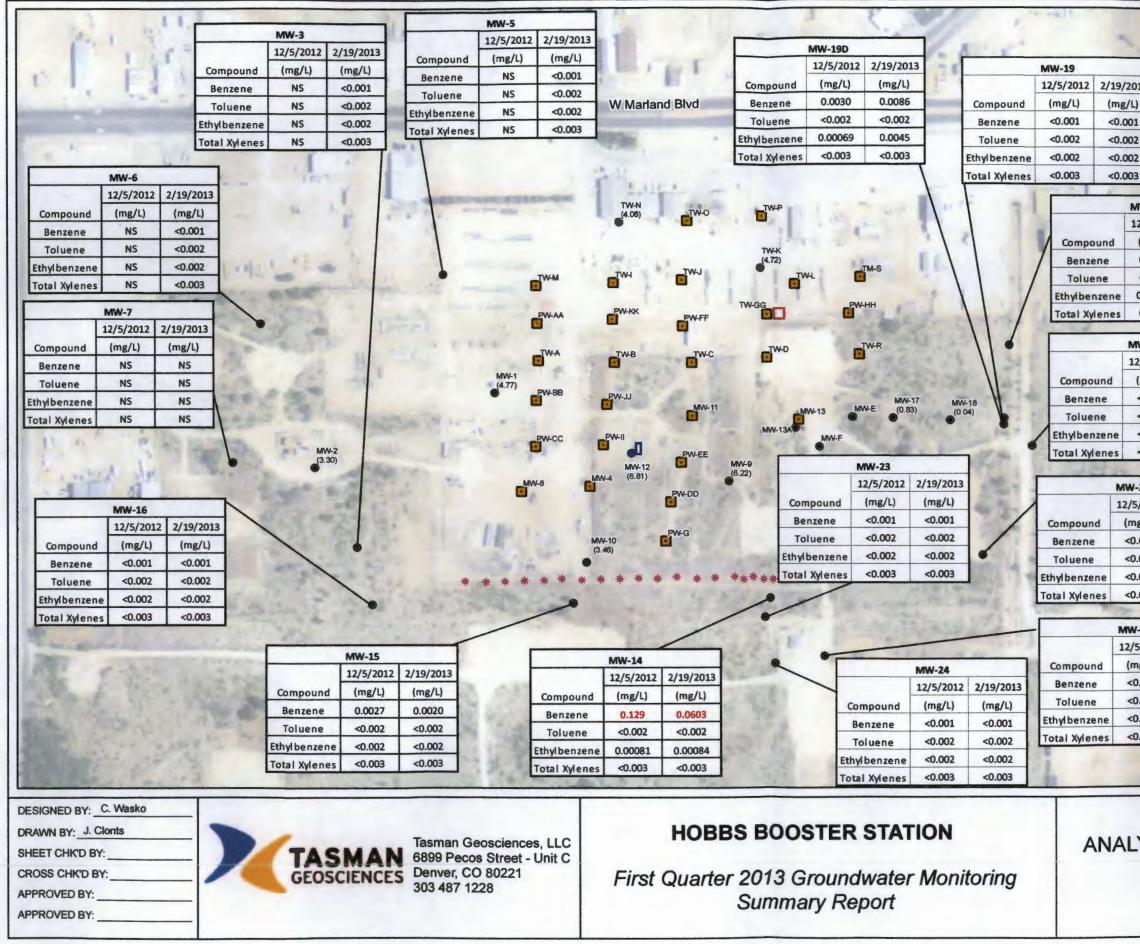

Sample locations are shown on Figure 2 and analytical results are illustrated on Figure 4.


LNAPL = Light non aqueous phase liquid


NS = Not sampled.

mg/L = milligrams per liter.

Figures



8

ŝ

	 Legend Maitoring Well MAPL/SVE Recovery Well Ar Sparge Point Ar Sparge Point Ar Sparge Nystern Equipment Platform Marge Arkense Levation Contour (and feet AMSL), Dashed Where (and feet AMSL), Dashed Where (and feet AMSL)) Massured Groundwater Elevation (and feet AMSL) Massured Frow Direction
	Notes: AMSL - Above Mean Sea Level
OWATER EL ONTOUR MA RUARY 19, 2	AP 3

-	-	
	-	Legend
2013		Monitoring Well
(/L) 001		LNAPL/SVE Recovery Weil
002	1.	* Air Sparge Point
002	100	
003	And a second	Air Sparge System Equipment Platform
	R	Equipment Platform and Holding Tanks
MW-22		
12/5/201		-
(mg/L)	(mg/L)	-1
0.0033		
<0.002		
0.00055		
0.0031	0.0043	4
MW-20		
12/5/201	2 2/19/2013	
(mg/L)	(mg/L)	
<0.001	<0.001	
<0.002	<0.002	
<0.002	<0.002	
< 0.003	<0.003	1
W-21	2/10/2012	
2/5/2012 (mg/L)	2/19/2013 (mg/L)	
(mg/L)	(mg/L) <0.001	Notes:
<0.001	<0.001	Treatment system was decommissioned on June 26, 2006. Treatment system building
<0.002	<0.002	and ancillary components remain on-Site.
<0.002	<0.002	DCP - DCP Midstream
-	33	BPL - Buried Pipeline
W-25		
2/5/2012	2/19/2013	NS - Not Sampled
(mg/L)	(mg/L)	All aqueous analytical results are presented in
<0.001	<0.001	milligrams per liter (mg/L)
<0.002	<0.002	
<0.002	<0.002	
<0.003	<0.003	0 125 250
and the second s	1	Feet
A	1	L
LYTI		ESULTS FIGURE
	MAP	4

Appendix A

Laboratory Analytical Report

02/26/13

Technical Report for

DCP Midstream, LP

TASMCOA:DCP Hobbs Booster Station

RC-GN00 Project-400128005

Accutest Job Number: D43609

Sampling Date: 02/19/13

Report to:

Tasman Geosciencec LLC 5690 Webster Street Arvada, CO 80002 swweathers@dcpmidstream.com; jimdawe@tasman-geo.com; cwasko@tasman-geo.com ATTN: Jim Dawe

Total number of pages in report: 37

Brad Madadian Laboratory Director

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Conference and/or state specific certification programs as applicable.

Client Service contact: Shea Greiner 303-425-6021

Certifications: CO, ID, NE, NM, ND (R-027) (PW), UT (NELAP CO00049), TX (T104704511-12-1)

This report shall not be reproduced, except in its entirety, without the written approval of Accutest Laboratories. Test results relate only to samples analyzed.

Mountain States • 4036 Youngfield St. • Wheat Ridge, CO 80033-3862 • tel: 303-425-6021 • fax: 303-425-6854 • http://www.accutest.com

Table of Contents

-1-

N
ယ
4
G

ດ

Section 1: Sample Summary	3
Section 2: Case Narrative/Conformance Summary	
Section 3: Summary of Hits	
Section 4: Sample Results	8
4.1: D43609-1: MW-3	9
4.2: D43609-2: MW-5	10
4.3: D43609-3: MW-6	11
4.4: D43609-4: MW-14	12
4.5: D43609-5: MW-15	13
4.6: D43609-6: MW-16	14
4.7: D43609-7: MW-19	15
4.8: D43609-8: MW-19D	16
4.9: D43609-9: MW-20	17
4.10: D43609-10: MW-21	18
4.11: D43609-11: MW-22	19
4.12: D43609-12: MW-23	20
4.13: D43609-13: MW-24	21
4.14: D43609-14: MW-25	22
4.15: D43609-15: DUP A	23
4.16: D43609-16: DUP B	24
4.17: D43609-17: TRIP BLANK	25
Section 5: Misc. Forms	26
5.1: Chain of Custody	27
Section 6: GC/MS Volatiles - QC Data Summaries	30
6.1: Method Blank Summary	

6.2: Blank Spike Summary336.3: Matrix Spike Summary356.4: Matrix Spike/Matrix Spike Duplicate Summary366.5: Duplicate Summary37

Sample Summary

DCP Midstream, LP

Job No: D43609

TASMCOA:DCP Hobbs Booster Station Project No: RC-GN00 Project-400128005

Sample Number	Collected Date	Time By	Received	Matri Code		Client Sample ID
D43609-1	02/19/13	10:15 CW	02/20/13	AQ	Ground Water	MW-3
D43609-2	02/19/13	09:25 CW	02/20/13	AQ	Ground Water	MW-5
D43609-3	02/19/13	11:30 CW	02/20/13	AQ	Ground Water	MW-6
D43609-4	02/19/13	08:40 CW	02/20/13	AQ	Ground Water	MW-14
D43609-5	02/19/13	09:00 CW	02/20/13	AQ	Ground Water	MW-15
D43609-6	02/19/13	10:00 CW	02/20/13	AQ	Ground Water	MW-16
D43609-6D	02/19/13	10:00 CW	02/20/13	AQ	Water Dup/MSD	MW-16
D43609-6M	02/19/13	10:00 CW	02/20/13	AQ	Water Matrix Spike	MW-16
D43609-7	02/19/13	12:40 CW	02/20/13	AQ	Ground Water	MW-19
D43609-8	02/19/13	12:30 CW	02/20/13	AQ	Ground Water	MW-19D
D43609-9	02/19/13	13:50 CW	02/20/13	AQ	Ground Water	MW-20
D43609-10	02/19/13	12:00 CW	02/20/13	AQ	Ground Water	MW-21
D43609-11	02/19/13	12:50 CW	02/20/13	AQ	Ground Water	MW-22

Sample Summary (continued)

DCP Midstream, LP

Job No: D43609

TASMCOA:DCP Hobbs Booster Station Project No: RC-GN00 Project-400128005

Sample Number	Collected Date	Time By	Received	Matr Code		Client Sample ID
D43609-12	02/19/13	08:20 CW	02/20/13	AQ	Ground Water	MW-23
D43609-13	02/19/13	07:55 CW	02/20/13	AQ	Ground Water	MW-24
D43609-14	02/19/13	08:05 CW	02/20/13	AQ	Ground Water	MW-25
D43609-15	02/19/13	00:00 CW	02/20/13	AQ	Ground Water	DUP A
D43609-16	02/19/13	00:00 CW	02/20/13	AQ	Ground Water	DUP B
D43609-17	02/19/13	00:00 CW	02/20/13	AQ	Trip Blank Water	TRIP BLANK

CASE NARRATIVE / CONFORMANCE SUMMARY

Client:	DCP Midstream, LP	Job No	D43609
Site:	TASMCOA:DCP Hobbs Booster Station	Report Date	2/26/2013 9:32:36 AM

On 02/20/2013, 16 sample(s), 1 Trip Blank(s), and 0 Field Blank(s) were received at Accutest Mountain States (AMS) at a temperature of 2.3 °C. The samples were intact and properly preserved, unless noted below. An AMS Job Number of D43609 was assigned to the project. The lab sample ID, client sample ID, and date of sample collection are detailed in the report's Results Summary.

Specified quality control criteria were achieved for this job except as noted below. For more information, please refer to the analytical results and QC summary pages.

Volatiles by GCMS By Method SW846 8260B

	v		•	
	Matrix	AQ	Batch ID:	V3V1358
-	All samples were	e analyze	d within the recommended method	holding time.
-	All method blan	ks for thi	s batch meet method specific crite	ria.
-	Sample(s) D436	561-2MS	, D43736-2DUP were used as the	QC samples indicated.

Matrix AQ	Batch ID: V3V1360	

- The data for SW846 8260B meets quality control requirements.
- D43609-16: Confirmation run.

Matrix AQ Batch ID: V6V991	
----------------------------	--

All samples were analyzed within the recommended method holding time.

All method blanks for this batch meet method specific criteria.

- Sample(s) D43609-6MS, D43609-6MSD were used as the QC samples indicated.
- D43609-14: The pH of the sample aliquot for VOA analysis was >2 at time of analysis.
- D43609-13: The pH of the sample aliquot for VOA analysis was >2 at time of analysis.

D43609-12: The pH of the sample aliquot for VOA analysis was >2 at time of analysis.

AMS certifies that data reported for samples received, listed on the associated custody chain or analytical task order, were produced to specifications meeting AMS's Quality System precision, accuracy and completeness objectives except as noted.

Estimated non-standard method measurement uncertainty data is available on request, based on quality control bias and implicit for standard methods. Acceptable uncertainty requires tested parameter quality control data to meet method criteria.

AMS is not responsible for data quality assumptions if partial reports are used and recommends that this report be used in its entirety. This report is authorized by AMS indicated via signature on the report cover.

Summary of Hits

Job Number:	D43609
Account:	DCP Midstream, LP
Project:	TASMCOA:DCP Hobbs Booster Station
Collected:	02/19/13

Lab Sample ID Analyte	Client Sample ID	Result/ Qual	RL	MDL	Units	Method
D43609-1	MW-3					
No hits reported	in this sample.					
D43609-2	MW-5					
No hits reported	in this sample.					
D43609-3	MW-6					
No hits reported	in this sample.					
D43609-4	MW-14					
Benzene Ethylbenzene		0.0603 0.00084 J	0.0010 0.0020	0.00027 0.00033	mg/l mg/l	SW846 8260B SW846 8260B
D43609-5	MW-15					
Benzene		0.0020	0.0010	0.00027	mg/l	SW846 8260B
D43609-6	MW-16					
No hits reported	in this sample.					
D43609-7	MW-19					
No hits reported	in this sample.					
D43609-8	MW-19D					
Benzene Ethylbenzene		0.0072 0.0043	0.0010 0.0020	0.00027 0.00033	mg/l mg/l	SW846 8260B SW846 8260B
D43609-9	MW-20					
No hits reported	in this sample.					
D43609-10	MW-21					
No hits reported	in this sample.					
D43609-11	MW-22					
Benzene		0.0046	0.0010	0.00027	mg/l	SW846 8260B

ω

Summary of Hits

Job Number:	D43609
Account:	DCP Midstream, LP
Project:	TASMCOA: DCP Hobbs Booster Station
Collected:	02/19/13

Lab Sample ID Analyte	Client Sample ID	Result/ Qual	RL	MDL	Units	Method
Ethylbenzene Xylene (total)		0.0011 J 0.0043	0.0020 0.0030	0.00033 0.0020	mg/l mg/l	SW846 8260B SW846 8260B
D43609-12	MW-23					
No hits reported	in this sample.					
D43609-13	MW-24					
No hits reported	in this sample.					
D43609-14	MW-25					
No hits reported	in this sample.					
D43609-15	DUP A					
Benzene		0.0019	0.0010	0.00027	mg/l	SW846 8260B
D43609-16	DUP B					
Benzene Ethylbenzene		0.0086 0.0045	0.0010 0.0020	0.00027 0.00033	mg/l mg/l	SW846 8260B SW846 8260B
D43609-17	TRIP BLANK					

No hits reported in this sample.

ω

Section 4

4

Sample Results

Report of Analysis

Report of Analysis

Client San Lab Samp Matrix: Method: Project:	AQ - SW84)9-1 Ground Wa 6 8260B	ater P Hobbs Booster	r Station	Date Sampled:02/19/13Date Received:02/20/13Percent Solids:n/a			
Run #1 Run #2	File ID 6V17851.D	DF 1	Analyzed 02/20/13	By BR	Prep Date n/a	Prep Batch n/a	Analytical Batch V6V991	
Run #1 Run #2 Purgeable	Purge Volume 5.0 ml	<u>;</u>						

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7	Benzene Toluene Ethylbenzene Xylene (total)	ND ND ND ND	$\begin{array}{c} 0.0010 \\ 0.0020 \\ 0.0020 \\ 0.0030 \end{array}$	0.00027 0.0010 0.00033 0.0020	mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
17060-07-0 2037-26-5 460-00-4	1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	100% 110% 96%		62-13 70-13 69-13	80%	

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Report of Analysis

Lab Samj Matrix: Method: Project:	AQ - SW84)9-2 Ground Wa 6 8260B	ater P Hobbs Booster	r Station	Da	te Sampled: 02 te Received: 02 rcent Solids: n/	
Run #1 Run #2	File ID 6V17852.D	DF 1	Analyzed 02/20/13	By BR	Prep Date n/a	Prep Batch n/a	Analytical Batch V6V991
Run #1 Run #2	Purge Volume 5.0 ml	2					

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7	Benzene Toluene Ethylbenzene Xylene (total)	ND ND ND ND	0.0010 0.0020 0.0020 0.0030	0.00027 0.0010 0.00033 0.0020	mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limit	ts	
17060-07-0 2037-26-5 460-00-4	1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	102% 110% 95%		62-13 70-13 69-13	0%	

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Report of Analysis

Lab Samı Matrix: Method: Project:	AQ - SW84	 D43609-3 AQ - Ground Water SW846 8260B TASMCOA:DCP Hobbs Booster Station 			Date Sampled:02/19/13Date Received:02/20/13Percent Solids:n/a			
Run #1 Run #2	File ID 6V17853.D	DF 1	Analyzed 02/20/13	By BR	Prep Date n/a	Prep Batch n/a	Analytical Batch V6V991	
Run #1 Run #2	Purge Volume 5.0 ml	e						

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7	Benzene Toluene Ethylbenzene Xylene (total)	ND ND ND ND	$\begin{array}{c} 0.0010 \\ 0.0020 \\ 0.0020 \\ 0.0030 \end{array}$	0.00027 0.0010 0.00033 0.0020	mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
17060-07-0 2037-26-5 460-00-4	1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	101% 108% 94%		62-13 70-13 69-13	80%	

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Report of Analysis

Lab Samj Matrix: Method: Project:	AQ - SW8	509-4 Ground W 46 8260B	ater P Hobbs Booster	r Station	Date Sampled:02/19/13Date Received:02/20/13Percent Solids:n/a			
Run #1 Run #2	File ID 6V17854.D	DF 1	Analyzed 02/20/13	By BR	Prep Date n/a	Prep Batch n/a	Analytical Batch V6V991	
Run #1 Run #2	Purge Volum 5.0 ml	ie						

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7	Benzene Toluene Ethylbenzene Xylene (total)	0.0603 ND 0.00084 ND	$\begin{array}{c} 0.0010 \\ 0.0020 \\ 0.0020 \\ 0.0030 \end{array}$	0.00027 0.0010 0.00033 0.0020	mg/l	J
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
17060-07-0 2037-26-5 460-00-4	1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	103% 115% 101%		62-13 70-13 69-13	30%	

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Report of Analysis

Client Sar Lab Samp Matrix: Method: Project:	ole ID: D436 AQ - SW84	09-5 Ground Wa 6 8260B	nter P Hobbs Booster	r Station	Da	tte Sampled: 02 nte Received: 02 rcent Solids: n/	
Run #1 Run #2	File ID 6V17855.D	DF 1	Analyzed 02/20/13	By BR	Prep Date n/a	Prep Batch n/a	Analytical Batch V6V991
Run #1 Run #2 Purgeable	Purge Volum 5.0 ml	e					

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7	Benzene Toluene Ethylbenzene Xylene (total)	0.0020 ND ND ND	$\begin{array}{c} 0.0010 \\ 0.0020 \\ 0.0020 \\ 0.0030 \end{array}$	0.00027 0.0010 0.00033 0.0020	mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
17060-07-0 2037-26-5 460-00-4	1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	112% 112% 97%		62-13 70-13 69-13	80%	

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Report of Analysis

Lab Samp Matrix: Method: Project:	ole ID: D436 AQ - SW84	e ID: MW-16 D: D43609-6 AQ - Ground Water SW846 8260B TASMCOA:DCP Hobbs Booster Station			Date Sampled:02/19/13Date Received:02/20/13Percent Solids:n/a			
Run #1 Run #2	File ID 6V17856.D	DF 1	Analyzed 02/20/13	By BR	Prep Date n/a	Prep Batch n/a	Analytical Batch V6V991	
Run #1 Run #2 Purgeable	Purge Volum 5.0 ml	e						

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7	Benzene Toluene Ethylbenzene Xylene (total)	ND ND ND ND	$\begin{array}{c} 0.0010 \\ 0.0020 \\ 0.0020 \\ 0.0030 \end{array}$	0.00027 0.0010 0.00033 0.0020	mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
17060-07-0 2037-26-5 460-00-4	1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	103% 109% 94%		62-13 70-13 69-13	80%	

- J = Indicates an estimated value
- $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$
- N = Indicates presumptive evidence of a compound

Report of Analysis

Client Sar Lab Samp Matrix: Method: Project:	ple ID: D4360 AQ - SW84)9-7 Ground Wa 6 8260B	nter ? Hobbs Booster	r Station	Date Sampled:02/19/13Date Received:02/20/13Percent Solids:n/a			
Run #1 Run #2	File ID 6V17859.D	DF 1	Analyzed 02/20/13	By BR	Prep Date n/a	Prep Batch n/a	Analytical Batch V6V991	
Run #1 Run #2 Purgeable	Purge Volume 5.0 ml	2						

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7	Benzene Toluene Ethylbenzene Xylene (total)	ND ND ND ND	0.0010 0.0020 0.0020 0.0030	0.00027 0.0010 0.00033 0.0020	mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
17060-07-0 2037-26-5 460-00-4	1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	97% 108% 95%		62-13 70-13 69-13	80%	

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Client Sar Lab Samp Matrix: Method: Project:	ple ID: D4360 AQ - SW84					Date Sampled:02/19/13Date Received:02/20/13Percent Solids:n/a			
Run #1 Run #2	File ID 6V17860.D	DF 1	Analyzed 02/20/13	By BR	Prep Date n/a	Prep Batch n/a	Analytical Batch V6V991		
Run #1 Run #2 Purgeable	Purge Volume 5.0 ml	2							

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7	Benzene Toluene Ethylbenzene Xylene (total)	0.0072 ND 0.0043 ND	$\begin{array}{c} 0.0010 \\ 0.0020 \\ 0.0020 \\ 0.0030 \end{array}$	0.00027 0.0010 0.00033 0.0020	mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
17060-07-0 2037-26-5 460-00-4	1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	107% 113% 98%		62-13 70-13 69-13	30%	

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Client Sa Lab Samj Matrix: Method: Project:	ple ID: D4360 AQ - SW84	: MW-20 D43609-9 AQ - Ground Water SW846 8260B TASMCOA:DCP Hobbs Booster Station				Date Sampled:02/19/13Date Received:02/20/13Percent Solids:n/a			
Run #1 Run #2	File ID 6V17861.D	DF 1	Analyzed 02/20/13	By BR	Prep Date n/a	Prep Batch n/a	Analytical Batch V6V991		
Run #1 Run #2	Purge Volume 5.0 ml	e							
Purgeable	e Aromatics								

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7	Benzene Toluene Ethylbenzene Xylene (total)	ND ND ND ND	$\begin{array}{c} 0.0010 \\ 0.0020 \\ 0.0020 \\ 0.0030 \end{array}$	0.00027 0.0010 0.00033 0.0020	mg/l mg/l mg/l mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
17060-07-0 2037-26-5 460-00-4	1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	102% 106% 94%		62-13 70-13 69-13	80%	

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Report of Analysis

Client Sar Lab Samp Matrix: Method: Project:	AQ - SW84	D: MW-21 D43609-10 AQ - Ground Water SW846 8260B TASMCOA:DCP Hobbs Booster Station				Date Sampled:02/19/13Date Received:02/20/13Percent Solids:n/a			
Run #1 Run #2	File ID 6V17862.D	DF 1	Analyzed 02/20/13	By BR	Prep Date n/a	Prep Batch n/a	Analytical Batch V6V991		
Run #1 Run #2 Purgeable	Purge Volume 5.0 ml	e							

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7	Benzene Toluene Ethylbenzene Xylene (total)	ND ND ND ND	$\begin{array}{c} 0.0010 \\ 0.0020 \\ 0.0020 \\ 0.0030 \end{array}$	0.00027 0.0010 0.00033 0.0020	mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
17060-07-0 2037-26-5 460-00-4	1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	108% 111% 97%		62-13 70-13 69-13	80%	

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Chent San Lab Samj Matrix: Method: Project:	ple ID: D4360 AQ - SW84	 MW-22 D43609-11 AQ - Ground Water SW846 8260B TASMCOA:DCP Hobbs Booster Station 				Date Sampled:02/19/13Date Received:02/20/13Percent Solids:n/a			
Run #1 Run #2	File ID 6V17863.D	DF 1	Analyzed 02/21/13	By BR	Prep Date n/a	Prep Batch n/a	Analytical Batch V6V991		
Run #1 Run #2	Purge Volume 5.0 ml	2							

CAS No.	Compound	Result	RL	MDL Units	Q
71-43-2	Benzene	0.0046	0.0010	0.00027 mg/l	
108-88-3	Toluene	ND	0.0020	0.0010 mg/l	
100-41-4	Ethylbenzene	0.0011	0.0020	0.00033 mg/l	J
1330-20-7	Xylene (total)	0.0043	0.0030	0.0020 mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits	
Cho no.	Surrogate Recoveries	Kull# 1	Kull# 2	Linits	
17060-07-0	1,2-Dichloroethane-D4	117%	Kull# 2	62-130%	
	8		Kull# 2		
17060-07-0	1,2-Dichloroethane-D4	117%	Kull# 2	62-130%	

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Client San Lab Samp Matrix: Method: Project:	le ID: D436 AQ - SW84					Date Sampled:02/19/13Date Received:02/20/13Percent Solids:n/a			
Run #1 ^a Run #2	File ID 6V17864.D	DF 1	Analyzed 02/21/13	By BR	Prep Date n/a	Prep Batch n/a	Analytical Batch V6V991		
Run #1 Run #2 Purgeable	Purge Volum 5.0 ml Aromatics	e							

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7	Benzene Toluene Ethylbenzene Xylene (total)	ND ND ND ND	0.0010 0.0020 0.0020 0.0030	0.00027 0.0010 0.00033 0.0020	mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
17060-07-0 2037-26-5 460-00-4	1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	99% 109% 94%		62-13 70-13 69-13	30%	

(a) The pH of the sample aliquot for VOA analysis was > 2 at time of analysis.

- J = Indicates an estimated value
- $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$
- N = Indicates presumptive evidence of a compound

Client San Lab Samp Matrix: Method: Project:	AQ - SW84	09-13 Ground Wa 46 8260B	ater P Hobbs Booster	station	Date Sampled:02/19/13Date Received:02/20/13Percent Solids:n/a								
Run #1 ^a Run #2	File ID 6V17865.D	DF 1	Analyzed 02/21/13	By BR	Prep Date n/a	Prep Batch n/a	Analytical Batch V6V991						
Run #1 Run #2	Purge Volum 5.0 ml	e											

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7	Benzene Toluene Ethylbenzene Xylene (total)	ND ND ND ND	$\begin{array}{c} 0.0010 \\ 0.0020 \\ 0.0020 \\ 0.0030 \end{array}$	0.00027 0.0010 0.00033 0.0020	mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
17060-07-0 2037-26-5 460-00-4	1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	105% 112% 97%		62-13 70-13 69-13	30%	

(a) The pH of the sample aliquot for VOA analysis was > 2 at time of analysis.

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Client San Lab Samp Matrix: Method: Project:	AQ - SW84	09-14 Ground Wa 6 8260B	ater P Hobbs Booster	r Station	Date Sampled:02/19/13Date Received:02/20/13Percent Solids:n/a							
Run #1 ^a Run #2	File ID 6V17866.D	DF 1	Analyzed 02/21/13	By BR	Prep Date n/a	Prep Batch n/a	Analytical Batch V6V991					
Run #1 Run #2 Purgeable	Purge Volume 5.0 ml	2										

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7	Benzene Toluene Ethylbenzene Xylene (total)	ND ND ND ND	0.0010 0.0020 0.0020 0.0030	0.00027 0.0010 0.00033 0.0020	mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
17060-07-0 2037-26-5 460-00-4	1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	106% 110% 96%		62-13 70-13 69-13	30%	

(a) The pH of the sample aliquot for VOA analysis was > 2 at time of analysis.

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Report of Analysis

Matrix: Method: Project:	SW84	Ground Wa 6 8260B	iter 9 Hobbs Booster	Station	Date Sampled:02/19/13Date Received:02/20/13Percent Solids:n/a							
Run #1 Run #2	File ID 6V17867.D	DF 1	Analyzed 02/21/13	By BR	Prep Date n/a	Prep Batch n/a	Analytical Batch V6V991					
Run #1 Run #2	Purge Volume 5.0 ml	2										

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7	Benzene Toluene Ethylbenzene Xylene (total)	0.0019 ND ND ND	0.0010 0.0020 0.0020 0.0030	0.00027 0.0010 0.00033 0.0020	mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
17060-07-0 2037-26-5 460-00-4	1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	117% 118% 101%		62-13 70-13 69-13	30%	

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Client Sar Lab Samp Matrix: Method: Project:	ple ID: D4360 AQ - 0 SW84	9-16 Ground Wa 6 8260B	ater P Hobbs Booster	• Station	Da	I I	2/19/13 2/20/13 a
	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	3V23088.D	1	02/22/13	BR	n/a	n/a	V3V1358
Run #2 ^a	3V23129.D	1	02/23/13	BR	n/a	n/a	V3V1360
Run #1 Run #2	Purge Volume 5.0 ml 5.0 ml	;					
Purgeable	e Aromatics						

CAS No.	Compound	Result	RL	MDL Units	Q
71-43-2	Benzene	0.0086	0.0010	0.00027 mg/l	
108-88-3	Toluene	ND	0.0020	0.0010 mg/l	
100-41-4	Ethylbenzene	0.0045	0.0020	0.00033 mg/l	
1330-20-7	Xylene (total)	ND	0.0030	0.0020 mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits	
17060-07-0	1,2-Dichloroethane-D4	108%	102%	62-130%	
2037-26-5	Toluene-D8	101%	98%	70-130%	
460-00-4	4-Bromofluorobenzene	96%	94%	69-130%	

(a) Confirmation run.

ND = Not detected MDL - Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Client San Lab Samp Matrix: Method: Project:	AQ - SW84	BLANK 09-17 Trip Blank 46 8260B MCOA:DCI	Water P Hobbs Booster	r Station	Date Sampled:02/19/13Date Received:02/20/13Percent Solids:n/a							
Run #1 Run #2	File ID 3V23084.D	DF 1	Analyzed 02/22/13	By BR	Prep Date n/a	Prep Batch n/a	Analytical Batch V3V1358					
Run #1 Run #2 Purgeable	Purge Volum 5.0 ml Aromatics	e										

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7	Benzene Toluene Ethylbenzene Xylene (total)	ND ND ND ND	0.0010 0.0020 0.0020 0.0030	0.00027 0.0010 0.00033 0.0020	mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
17060-07-0 2037-26-5 460-00-4	1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	111% 101% 95%		62-13 70-13 69-13	80%	

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Section 5

G

Misc. Forms	
Custody Documents and Other Forms	
ncludes the following where applicable:	
Chain of Custody	

			CHAI	ŇĊ	F C	UST	0	DY	,					· ~					PAG	E/	Loi	F_2_
ACCUTEST	e											FE	D-EX T	racking #				Bottle Order Control #				
LABORATORIE	s		4036 Youngf TEL, 303-										cutest C	lunte #				Accutest Job # 1243609				
•			IEL. 505-		accutest.co		5.54					Ê										
Client / Reporting Information				Information								Request	ed Anal	ysis (s	see TE	ST CO	DE shee	/t)	00000	Matrix Codes		
Company Name	Project Name:	DCP HOBBS	BOOSTER ST	ATION									Ì								DW - Drinking Water	
Tasman Geosciences																						GW - Ground Water
Street Address	Street			isti (Ma			li i Mi	d de Siri				022416						÷				WW - Water SW - Surface Water
6899 Pecos Street Unit C						n (if diffa	rent fr	rom Re	port t	:0)				1						İ		SO - Soil SL- Sludge
City	City		State	Compar	Midstre	am																SED-Sediment OI - OII
Denver CO 80221 Project Contact	Project #			Street A									ļ									LIQ - Other Liquid
Jim Dawe jim@tasman-geo.com	· ·	Project - 40012	8005	POI	Box 4876)								E E								AIR - Air SOL - Other Solid
Phone #	Client Purchase			City	-									260								WP - Wipe FB-Field Blank
720-409-8791 cwasko@tasman-geo.com						97208-	4870							8					ł			EB-Equipment Blank RB- Rinse Blank
Sempler(s) Name(s)	Project Manager	r		Attentio				. .					[]	MS/MSD for V8260BTX								TB-Trip Blank
CNINSIME Wask	-	1	Collection	Steve	e Weather	s SWWea	thers(@dcpn Numbe	nidstr er of pri	eam.c	om Bottles		V8260BTX	g								
					1			_	4.	je je	- BR		50	Į								
Acculated Sample # Field ID / Point of Collection	MEOH/DI Vial #	Date	Time	Sampled by	Matrix	# of bottles	Ŷ	HNO3	H2SO4	DI Wat	MEOH		2	Ň							_	LAB USE ONLY
MW-3	N/A	2/19/13	1015	ani	GW	3	3						х								_	01
MW-5			925	1	GW	3	3						x									02
MW-6	1		1130		GW	3	3						x									03
MW-7		-			GW	3	3						x		NUOT	SA	nó	201				
MW-14		2/19/13	840		GW	3	3	-					x				`)				64
MW-15			900		GW	3	3						X					\				05
MW-16			1000		GW	3	3						x		_		ĺ					06
MW-19			1240		GW	3	3						x					ļ				07
MW-19D			1230		GW	3	3						x									69
MW-20			1350		GW	3	3	Ì					x									04
MW-21			1200		GW	3	3						X				_					10
MW-22			1250	V	GW	3	3						X									11
Turnaround Time (Business days)					2011 I.I.I.			erable	Inforr							1910 Hill	Con	nments /	Special Ir	struction	IS MILL	AND STREET BODD STREET
Std. 15 Business Days	Approved By (Ac	cutest PM): / Date:				cial "A" (clai"B" (Ļ			ms Rea ms to S		Er	nail re	sults	to St	eve V	Veather	rs		
Std. 10 Business Days							Level	2)			port by		Juin									
☐ 5 Day RUSH ☐ 3 Day Emergency					COMMB						port by			— Ĺ	ond	Ch)lS	10(0	1715	man	-01	O.CM
2 Day Emergency									[D For	mat									0	
1 Day Emergency						Commer				-	ummer	v										
STD 5 business Days per contract Emergency & Rush T/A data avaijable VIA Lablink						Commerc	ial BN :	= Result	ls/QC/I	Varrativ	; a (+ = ch	- tromatog						- Horney	सरस्य क्रम्स	ana an	uneren inter	na an a
	s	ample Custody	must be docun	nented l	below ea	ch time sa				osses	ssion,	includ	ing co	urier deliv	ery. Date	Time:		Receive	·**		10030000	20.0
Relinguisted by Sampter; Date Time:	inguisted by Sampters Date Times, Received By:						Reili 2	nquishe	aa ay:			1-	-*	-77	Date			Receiver By! / 6-2-20-13				
1 Relinquished by Sampler: Date Time:	> 1 > 20	Received By:	6				Reli	nquishe	nd By:			ŀ-			Date	Time:		Receiv	ed By:			10 2
3 Relinquished by: Date Time:		3 Received By:					4 Cus	tody Se	ai #	PY	ζ		Intact Not Intac		served wit		cable			On Ice	Cor	oler Temp. Z. 3

CHAIN OF CUSTODY

PAGE / OF 2

D43609: Chain of Custody Page 1 of 3

						CHAL	N (JF (JUS	T	JD	Y												PA	GE	6	OF	6
	ACCUTES																FED-EX	Tracking	g#				Bottle C	order Cont	rol #			
L	LABORATOR	IES				4036 Young TEL. 303	3-425-60	eet, Wheat 21 FAX: naccutest.c	303-425								Accules	t Quote f	à				Accutes	i Job #	\mathbb{P}	, 4.	36	09
	Client / Reporting Information					Project						104			20.87	169110		Req	uested	Analy	sis (s	ee TE	ST C	ODE si	neet)	100		Matrix Codes
Compa	ny Name	Project	t Name:	DCP F	OBBS I	BOOSTER S	ΤΑΤΙΟ	N																				
Tas	man Geosciences																										D C	W - Drinking Water 3W - Ground Water
Street /	Address	Street					SIMUS	CHAUNNUN	Din Sali	14112		翻剧	HAN UK	R HILL	1988 I	(URRU)		{									5	WW - Water SW - Sunface Water
689 City	9 Pecos Street Unit C	City				State		Information Ing Name	on (if dif	feren	t from	Rep	ort to)				1										SO - Soli SL- Sludge
	iver CO 80221	Ony				01010		P Midstre	eam												1							SED-Sediment
	Contact	Project	#				Street	Address									1		×						, 1			OI - Oil LIQ - Other Liquid
Jim	Dawe jim@tasman-geo.com	RC - 0	GN0 0	Project	- 40012	8005		Box 487	0										E E									AIR - Air SOL - Other Solid
Phone				City												260									WP - Wipe FB-Field Blank			
720-2409-6791 cwasko@tasman-geo.com Sampler(s) Name(s) Project Manager						Por	tland Ol	R 9720	8-487	70						1		≈									B-Equipment Blank	
Sampler(s) Name(s) CMNSTNEWGSICO			t Manage					on: re Weather	-e S14/14/	aatho	re@da	m	detros				V8260BTX		MS/MSD for V8260BTX									RB-Rinse Blank TB-Trip Blank
⁽	In an a sec					Collection	Jolev	re vyeatriel	5 3000	aunei			of pres				8		5								L	
Accutest							Sample				Ŧ	2	б щ	fater	F	y s	826		N/S						<i>.</i>			
Sample #	Field ID / Point of Collection	MEOH	∜DI Vial #		Date	Time	by	Matrix	# of bott	es₽	NaOH	HN03	NONE	Di Wa	MEC		Ĩ		Ë									LAB USE ONLY
	MW-23	N	14	211	9/12	820	a	GW	3	3							х											12
	MW-24		T		Î	35	1	GW	3	3							x											13
	MW-25					805	T	GW	.8	3 5	·								x								Т	14 11+50
	MS/MSD				Y	1000	П	GW	3	3	Π			ľ.			x					M	12	- 110				06 ms/sio
	DUP A			C.um	No.		T	GW	3	3							x											LH15
	DUP &		V	· • • • •		-		GW																				+316
	Trip Blank		- v				1																					1617
						-							+		-													-
	· · · ·					<u> </u>	1	-				+	+						1									
-				1					+	-	++	-			+		<u> </u>						-					
							-			+	++	+				+												
							-		-		┢╍╋	+	+	+		+										\vdash	+	
NINGER DE	Turnaround Time (Business days)	Powerski		0002500	en an	เสอสแสอรเสสษภาลี	<u>।</u> सिंहास		Dat	a Dali	iverab		forma	lion			10012012	0046536	10005030	DIRAH	CINE IN	Com	mente	/ Specit	al Instruc	finne	190304	
(HUMAN)	Std. 15 Business Days	Approve	ed By (Ac	utest PM	: / Date:	nonnoonnuorint	E avi 600	Commer				10 11			te Fo	ms Re	equired	340982309 	20009/000	a la	20120101010	00m	TIGING	opeois	- mocuc	aono (22	81028752	
	Std. 10 Business Days		•••		_			Commer	cial "B"	Leve	el 2)]Ser	nd For	ms to	State		Ema	il res	ults	o St	eve V	Neath	ers			
	5 Day RUSH				-			соммв							port b													
	3 Day Emergency 2 Day Emergency				-			COMMB	N+						ort by D For				-									
	1 Day Emergency				-			1	Comm	ərcial '	"A" = F	Resul	_		0101													
	STD 5 business Days per contract				_				Comm	ercial '	"B" = F	Resul	lts + Q	C Su														
Em	ergency & Rush T/A data available V/A Lablink		6	ample C	ustody p	nust be docun		below ear	Comme									ourier	deliverv				14286	25101207	613,0100		1111028	
Reli	nquished by Sampler: Date Ti	me:		Receive		nust be uocun	lenteu	Delow eac			dinquis			0000						Date Tir	ne:		Receiv	red By:	no.	<u>/////////////////////////////////////</u>	7 -	20-13
1				1						2					_+	.¥ -	~>						2		<u>// l</u>			7000
Rell 3	nguished by Sampler: Date Ti	mo:		Receive 3	d By:					Re 4	linquis	shed	Ву:							Date Tir	ne:		Receiv 4	ed By				·
Reli	nquished by: Date Ti	me:		Receive	d By:					Cu	stody	Seal	#	F	x		Tritact Not Inte		Preserv	ed wher	applic	able			Onica	• (Cooler.J	Temp.

D43609: Chain of Custody Page 2 of 3

~

DACE 7 000

5.1

G

Accutest Laboratories Sample Receipt Summary

1

Accutest Job Number: D43609

Client: TASMAN Date / Time Received: 2/20/2013 10:00:00 AM No. Coolers:

Immediate Client Services Action Required: No

Client Service Action Required at Login: No

Airbill #'s: FX

Project: HOBBS		Airbill #'s: FX		
Cooler Security Y	or N	<u>Y or N</u> Sample Integrity - Documentation	Yo	or N
1. Custody Seals Present: Image: Custody Seals Intact: 2. Custody Seals Intact: Image: Custody Seals Intact:	3. COC Present: 4. Smpl Dates/Time OK	Image: Symplemetry of the symplectic symplect symplectic symplectic symplectic symplectic symplectic sym	>	
Cooler Temperature	Y or N	3. Sample container label / COC agree:	✓	
 Temp criteria achieved: Cooler temp verification: Cooler media: 	✔ □ Infared gun Ice (bag)	Sample Integrity - Condition 1. Sample recvd within HT: 2. All containers accounted for:	<u> </u>	or N
Quality Control Preservation	Y or N N/A	3. Condition of sample:	In	ntact
 Trip Blank present / cooler: Trip Blank listed on COC: Samples preserved properly: 	V C	Sample Integrity - Instructions 1. Analysis requested is clear: 2. Bottles received for unspecified tests	<u>Y</u> ☑	or N
4. VOCs headspace free:		 Sufficient volume rec'd for analysis: Compositing instructions clear: Filtering instructions clear: 		

Comments

Accutest Laboratories V:(303) 425-6021

4036 Youngfield Street F: (303) 425-6854

Wheat Ridge, CO www/accutest.com

D43609: Chain of Custody Page 3 of 3

N/A

✓ ✓

Section 6

6

GC/MS Volatiles

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries

Method Blank Summary Job Number: D43609

Account: Project:	DCPMCODN I TASMCOA:DC		lstream, LP s Booster Statior	1			
Sample V6V991-MB	File ID 6V17849.D	DF 1	Analyzed 02/20/13	By BR	Prep Date n/a	Prep Batch n/a	Analytical Batch V6V991
The QC repor	ted here applies	to the fo	llowing samples	s:]	Method: SW84	6 8260B

D43609-1, D43609-2, D43609-3, D43609-4, D43609-5, D43609-6, D43609-7, D43609-8, D43609-9, D43609-10, D43609-11, D43609-12, D43609-13, D43609-14, D43609-15

CAS No.	Compound	Result	RL	MDL	Units Q
71-43-2	Benzene	ND	1.0	0.27	ug/l
100-41-4 108-88-3	Ethylbenzene Toluene	ND ND	2.0 2.0	0.33 1.0	ug/l ug/l
1330-20-7	Xylene (total)	ND	3.0	2.0	ug/l

CAS No.	Surrogate Recoveries		Limits
17060-07-0	1,2-Dichloroethane-D4	98%	62-130%
2037-26-5	Toluene-D8	110%	70-130%
460-00-4	4-Bromofluorobenzene	96%	69-130%

Method Blank Summary Job Number: D43609

460-00-4

4-Bromofluorobenzene

Account: Project:	DCPMCODN I TASMCOA:DC			on				
Sample V3V1358-N	File ID 4B 3V23071.D	DF 1	Analyzed 02/22/13	By BR	Pre n/a	ep Date	Prep Batch n/a	Analytical Batch V3V1358
	ported here applies D43609-17	to the foll	owing sample	es:			Method: SW84	6 8260B
CAS No.	Compound		Result	RL	MDL	Units	Q	
71-43-2	Benzene		ND	1.0	0.27	ug/l		
100-41-4	Ethylbenzene		ND	2.0	0.33	ug/l		
108-88-3 1330-20-7	Toluene Xylene (total)		ND ND	2.0 3.0	$1.0 \\ 2.0$	ug/l ug/l		
CAS No.	Surrogate Recover	ies		Limit	s			
17060-07-0 2037-26-5	1,2-Dichloroethane- Toluene-D8	D4	109% 100%	62-13 70-13				

69-130%

93%

D43609

Blank Spike Summary Job Number: D43609

Account: Project:	DCPMCODN I TASMCOA:DO		lstream, LP s Booster Statior	1			
Sample V6V991-BS	File ID 6V17850.D	DF 1	Analyzed 02/20/13	By BR	Prep Date n/a	Prep Batch n/a	Analytical Batch V6V991
The QC repo	rted here applies	to the fo	ollowing samples	s:]	Method: SW84	6 8260B

D43609-1, D43609-2, D43609-3, D43609-4, D43609-5, D43609-6, D43609-7, D43609-8, D43609-9, D43609-10, D43609-11, D43609-12, D43609-13, D43609-14, D43609-15

69-130%

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	Limits
71-43-2	Benzene	50	47.0	94	70-130
100-41-4	Ethylbenzene	50	53.9	108	70-130
108-88-3	Toluene	50	52.5	105	70-130
1330-20-7	Xylene (total)	150	159	106	70-130
CAS No.	Surrogate Recoveries	BSP	Liı	nits	
17060-07-0	1,2-Dichloroethane-D4	96%	62-	130%	
	Toluene-D8	106%	70-	130%	

107%

4-Bromofluorobenzene

460-00-4

Blank Spike Summary Job Number: D43609

17060-07-0 1,2-Dichloroethane-D4

4-Bromofluorobenzene

2037-26-5 Toluene-D8

460-00-4

Job Numbe Account: Project:	er: D43609 DCPMCODN I TASMCOA:DC							
Sample V3V1358-E	File ID 3S 3V23072.D	DF 1	Analy : 02/22/		By BR	Prep Date n/a	Prep Batch n/a	Analytical Batch V3V1358
The QC re	ported here applies	to the fol	lowing sa	mples:			Method: SW84	6 8260B
D43609-16,	, D43609-17							
CAS No.	Compound		Spike ug/l	BSP ug/l	BSP %	Limits		
71-43-2	Benzene		50	56.1	112	70-130		
100-41-4	Ethylbenzene		50	53.9	108	70-130		
108-88-3	Toluene		50	53.2	106	70-130		
1330-20-7	Xylene (total)		150	157	105	70-130		
CAS No.	Surrogate Recover	ies	BSP	I	Limits			

62-130%

70-130%

69-130%

111%

100%

104%

Matrix Spike Summary Job Number: D43609

Account:

DCPMCODN DCP Midstream, LP

Project:	TASMCOA:DO	CP Hobb	s Booster Statior	1			
Sample D43661-2MS D43661-2	File ID 3V23086.D 3V23085.D		Analyzed 02/22/13 02/22/13	By BR BR	Prep Date n/a n/a	Prep Batch n/a n/a	Analytical Batch V3V1358 V3V1358
The QC repor	ted here applies	to the fo	ollowing samples	5:]	Method: SW84	6 8260B

D43609-16, D43609-17

CAS No.	Compound	D43661-2 ug/l Q		/IS g/l	MS %	Limits
71-43-2 100-41-4 108-88-3 1330-20-7	Benzene Ethylbenzene Toluene Xylene (total)	3150 176 5610 E 3370	1250 1 1250 6	500 550 850 300	108 110 99 105	62-130 63-130 60-130 67-130
CAS No.	Surrogate Recoveries	MS	D43661-2	Lim	nits	
17060-07-0 2037-26-5 460-00-4	1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	112% 100% 105%	111% 98% 95%	70-1	130% 130% 130%	

D43609

Matrix Spike/Matrix Spike Duplicate Summary

Job Number:	D43609
Account:	DCPMCODN DCP Midstream, LP
Project:	TASMCOA:DCP Hobbs Booster Station

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
D43609-6MS	6V17857.D	1	02/20/13	BR	n/a	n/a	V6V991
D43609-6MSD	6V17858.D	1	02/20/13	BR	n/a	n/a	V6V991
D43609-6	6V17856.D	1	02/20/13	BR	n/a	n/a	V6V991

The QC reported here applies to the following samples:

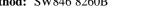
D43609-1, D43609-2, D43609-3, D43609-4, D43609-5, D43609-6, D43609-7, D43609-8, D43609-9, D43609-10, D43609-11, D43609-12, D43609-13, D43609-14, D43609-15

CAS No.	Compound	D43609-6 ug/l Q	Spike ug/l	MS ug/l	MS %	MSD ug/l	MSD %	RPD	Limits Rec/RPD
71-43-2 100-41-4 108-88-3 1330-20-7	Benzene Ethylbenzene Toluene Xylene (total)	ND ND ND ND	50 50 50 150	47.8 55.2 54.4 165	96 110 109 110	49.2 55.4 55.4 165	98 111 111 110	3 0 2 0	62-130/30 63-130/30 60-130/30 67-130/30
CAS No.	Surrogate Recoveries	MS	MSD	D43	3609-6	Limits			
17060-07-0 2037-26-5 460-00-4	1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	96% 110% 110%	94% 109% 110%	103 109 94%	%	62-130% 70-130% 69-130%	, 0		

Method: SW846 8260B

6.4.1 6

Duplicate Summary Job Number: D43609


Account:

DCPMCODN DCP Midstream, LP

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
D43736-2DUP	3V23080A	D1	02/22/13	BR	n/a	n/a	V3V1358
D43736-2	3V23079A.D1		02/22/13	BR	n/a	n/a	V3V1358
The QC report	ed here applie	s to the fo	llowing sample	5:		Method: SW84	6 8260B

D43609-16, D43609-17

CAS No.	Compound	D43736-2 ug/l Q	DUP ug/l Q	RPD Limits
71-43-2	Benzene	10	10.1	1 30 1 30 2 30 0 30
100-41-4	Ethylbenzene	9.2	9.3	
108-88-3	Toluene	9.4	9.6	
1330-20-7	Xylene (total)	27.9	28.0	
CAS No.	Surrogate Recoveries	DUP	D43736-2	Limits
17060-07-0	1,2-Dichloroethane-D4	106%	107%	62-130%
2037-26-5	Toluene-D8	100%	99%	70-130%
460-00-4	4-Bromofluorobenzene	101%	100%	69-130%

6.5.1 6

Appendix B

Historical Analytical Results

Location Identification	Sample Date	Benzene (mg/l)	Toluene (mg/l)	Ethylbenzene (mg/l)	Total Xylenes (mg/l)	Comments
New Mexico Water Quality Control Commission Groundwater Standards (mg/L)		0.01	0.75	0.75	0.62	
MW-1	9/15/2005	0.017	<0.54	0.047	0.066	
MW-3	6/21/2006	0.0018	< 0.54	0.14	0.089	
MW-3	9/21/2009	< 0.00050	<0.00043	0.0123	0.0031	
MW-3	9/14/2005	0.0025	< 0.54	0.24	0.17	
MW-3	6/27/2007	0.0012	< 0.00054	0.207	0.0977	
MW-3	9/14/2010	< 0.00030	<0.0010	0.0134	-	
MW-3	3/29/2011	NS	NS	NS	NS	
MW-3	9/16/2011	<0.001	<0.002	0.0246	0.0135	
MW-3	12/6/2011	NS	NS	NS	NS	
MW-3	3/9/2012	< 0.001	<0.002	0.0019	<0.004	
MW-3	6/6/2012	NS	NS	NS	NS	
MW-3	9/6/2012	< 0.001	< 0.002	0.0022	0.0023	
MW-3	12/5/2012	NS	NS	NS	NS	
MW-3	2/19/2013	< 0.001	< 0.002	< 0.002	< 0.003	
MW-5	9/14/2005	<0.47	<0.54	<0.48	<2.0	
MW-5	6/21/2006	< 0.23	< 0.54	<0.48	<1.1	
MW-5	6/27/2007	< 0.00023	< 0.00054	< 0.00048	< 0.0011	
MW-5	9/21/2009	< 0.00050	< 0.00043	< 0.00055	< 0.0017	
MW-5	9/14/2010	< 0.00030	< 0.0010	< 0.00030	-	
MW-5	3/29/2011	NS	NS	NS	NS	· · · · · · · · · · · · · · · · · · ·
MW-5	9/15/2011	< 0.001	< 0.002	< 0.002	< 0.004	a the second
MW-5	12/6/2011	NS	NS	NS	NS	
MW-5	3/9/2012	< 0.001	< 0.002	< 0.002	< 0.004	
MW-5	6/6/2012	NS	NS	NS	NS	
MW-5	9/6/2012	< 0.001	< 0.002	< 0.002	< 0.003	
MW-5	12/5/2012	NS	NS	NS	NS	
MW-5	2/19/2013	< 0.001	< 0.002	<0.002	< 0.003	
MW-6	6/21/2006	< 0.23	<0.54	<0.48	<1.1	
MW-6	9/21/2009	< 0.00050	< 0.00043	< 0.00055	< 0.0017	
MW-6	9/14/2005	<0.47	<0.54	<0.48	<2.0	
MW-6	6/27/2007	< 0.00023	<0.00054	<0.00048	< 0.0011	
MW-6	9/14/2010	< 0.00030	< 0.0010	< 0.00030	-	
MW-6	3/29/2011	NS	NS	NS	NS	
MW-6	9/16/2011	< 0.001	<0.002	< 0.002	< 0.004	
MW-6	12/6/2011	NS	NS	NS	NS	
MW-6	3/9/2012	< 0.001	<0.002	< 0.002	< 0.004	
MW-6	6/6/2012	NS	NS	NS	NS	
MW-6	9/6/2012	< 0.001	<0.002	< 0.002	< 0.003	
MW-6	12/5/2012	NS	NS	NS	NS	
MW-6	2/19/2013	< 0.001	< 0.002	< 0.002	< 0.003	

Location Identification	Sample Date	Benzene (mg/l)	Toluene (mg/l)	Ethylbenzene (mg/l)	Total Xylenes (mg/l)	Comments
New Mexico Water Quality Control Commission Groundwater Standards (mg/L)		0.01	0.75	0.75	0.62	
MW-7	6/21/2006	<0.23	< 0.54	<0.48	<1.1	
MW-7	6/27/2007	< 0.00023	< 0.00054	< 0.00048	< 0.0011	
MW-7	3/9/2009	< 0.00046	< 0.00048	< 0.00045	< 0.0014	
MW- 7	9/21/2009	< 0.00050	< 0.00043	< 0.00055	< 0.0017	
MW-7	9/29/2010	< 0.00030	< 0.0010	< 0.00030	-	
MW-7	3/29/2011	NS	NS	NS	NS	
MW-7	9/16/2011	NS	NS	NS	NS	
MW-7	12/6/2011	NS	NS	NS	NS	
MW- 7	3/9/2012	< 0.001	< 0.002	< 0.002	< 0.004	
MW-7	6/6/2012	NS	NS	NS	NS	
MW-7	9/6/2012	NS	NS	NS	NS	
MW-7	12/5/2012	NS	NS	NS	NS	
MW-7	2/19/2013	NS	NS	NS	NS	Insufficient water for sample collectio
MW-10	6/21/2006	0.62	0.02	0.19	0.26	
MW-10	6/27/2007	0.42	0.0037	0.221	0.31	
MW-10	9/21/2009	0.0813	< 0.0022	0.343	0.0115	
MW-10	9/14/2010	0.123	< 0.0050	0.274	-	
MW-10	3/29/2011	NS	NS	NS	NS	
MW-10	9/16/2011	0.213	< 0.01	0.135	< 0.02	Duplicate sample collected
MW-10	12/6/2011	NS	NS	NS	NS	[
MW-10	3/9/2012	NS	NS	NS	NS	
MW-10	6/6/2012	NS	NS	NS	NS	
MW-10	9/6/2012	NS	NS	NS	NS	
MW-10	12/5/2012	NS	NS	NS	NS	
MW-10	2/19/2013	LNAPL	LNAPL	LNAPL	LNAPL	

Location Identification	Sample Date	Benzene (mg/l)	Toluene (mg/l)	Ethylbenzene (mg/l)	Total Xylenes (mg/l)	Comments
New Mexico Water Quality Control Commission Groundwater Standards (mg/L)		0.01	0.75	0.75	0.62	
MW-14	3/29/2011	0.0901	0.0041	<0.002	< 0.002	
MW-14	6/21/2011	0.187	< 0.002	<.0043	< 0.004	
MW-14	3/29/2011	< 0.001	<0.002	0.0039	< 0.002	
MW-14	6/21/2011	0.0048	< 0.002	0.0012	< 0.004	
MW-14	3/23/2005	0.085	<0.40	0.024	0.0043	
MW-14	3/28/2006	0.022	<0.54	0.0068	0.0026	
MW-14	6/21/2006	0.014	0.00095	0.005	0.0042	
MW-14	9/27/2006	0.18	0.013	0.015	0.026	
MW-14	12/20/2006	0.5	0.021	0.029	0.059	
MW-14	9/6/2007	0.603	0.00088	0.0194	0.0243	
MW-14	11/28/2007	0.431	< 0.0027	0.0155	0.0075	
MW-14	3/6/2008	0.627	< 0.0024	0.0372	0.0228	
MW-14	12/2/2008	0.38	< 0.00048	0.0172	< 0.0014	
MW-14	3/9/2009	0.341	<0.00048	0.017	< 0.0014	
MW-14	5/26/2009	0.285	< 0.0024	0.0104	< 0.0068	
MW-14	9/21/2009	0.205	< 0.00043	0.008	< 0.0017	
MW-14	12/20/2009	0.165	< 0.00043	0.0037	< 0.0017	······································
MW-14	6/8/2005	0.48	0.0041	0.073	0.013	
MW-14	9/14/2005	0.077	< 0.54	0.0088	<2.0	
MW-14	12/13/2005	0.045	< 0.54	0.0099	0.003	
MW-14	3/29/2007	0.881	0.0116	0.0368	0.0809	
MW-14	6/27/2007	1.11	0.0112	0.0421	0.104	
MW-14	9/14/2010	0.11	< 0.0010	0.0024	-	
MW-14	3/9/2010	<0.40	<1.0	<1.0	-	
MW-14	6/14/2010	0.081	<1.0	0.0017	-	
MW-14	12/7/2010	0.118	< 0.0010	0.002	-	
MW-14	3/29/2011	0.0901	< 0.0010	0.0041	0.0011	
MW-14	3/29/2011	0.0901	0.0041	< 0.002	< 0.002	
MW-14	6/21/2011	0.187	< 0.0010	0.0043	< 0.0020	
MW-14	6/21/2011	0.187	< 0.002	<.0043	< 0.004	· · · · · · · · · · · · · · · · · · ·
MW-14	9/15/2011	0.15	< 0.002	0.0024	< 0.004	
MW-14	12/6/2011	0.0787	< 0.002	0.0017	< 0.004	Duplicate sample collected
MW-14	3/9/2012	0.0523	< 0.002	0.00066	< 0.004	· · · · · · · · · · · · · · · · · · ·
MW-14	6/6/2012	0.0335	< 0.002	0.00064	< 0.003	
MW-14	9/6/2012	0.105	< 0.002	0.0012	< 0.003	
MW-14	12/5/2012	0.129	< 0.002	0.00081	< 0.003	
MW-14	2/19/2013	0.0603	< 0.002	0.00084	< 0.003	

Location Identification	Sample Date	Benzene (mg/l)	Toluene (mg/l)	Ethylbenzene (mg/l)	Total Xylenes (mg/l)	Comments
New Mexico Water Quality Control Commission Groundwater Standards (mg/L)		0.01	0.75	0.75	0.62	
MW-15	3/23/2005	<0.40	<0.40	<0.40	< 0.80	
MW-15	6/8/2005	<0.40	0.0048	0.0034	< 0.80	
MW-15	9/14/2005	<0.47	<0.54	0.0022	<2.0	
MW-15	12/13/2005	<0.47	<0.54	<0.48	<2.0	
MW-15	3/28/2006	< 0.23	<0.54	0.0049	<1.1	
MW-15	6/21/2006	< 0.23	<0.54	0.02	0.0038	
MW-15	9/27/2006	0.002	<0.54	<0.48	<1.1	
MW-15	12/20/2006	< 0.23	<0.54	<0.48	<1.1	
MW-15	3/29/2007	0.0012	< 0.00054	0.0045	< 0.0011	
MW-15	6/27/2007	0.00042	< 0.00054	0.0014	< 0.0011	
MW-15	9/6/2007	< 0.00023	< 0.00054	< 0.00048	< 0.0011	
MW-15	11/28/2007	< 0.0012	< 0.0027	< 0.0024	< 0.0055	
MW-15	3/6/2008	< 0.00046	< 0.00048	< 0.00045	< 0.0014	
MW-15	12/2/2008	< 0.00046	< 0.00048	< 0.00045	< 0.0014	
MW-15	3/9/2009	< 0.00046	< 0.00048	< 0.00045	< 0.0014	
MW-15	5/26/2009	0.0024	< 0.00048	0.0413	< 0.0014	
MW-15	9/21/2009	0.0033	< 0.00043	0.0501	< 0.0017	
MW-15	12/20/2009	0.00093	< 0.00043	0.0137	< 0.0017	
MW-15	9/14/2010	0.00075	< 0.0010	0.0015	-	
MW-15	3/9/2010	0.0041	<1.0	0.099	-	
MW-15	6/14/2010	0.0055	<1.0	0.16	-	
MW-15	12/7/2010	< 0.00030	< 0.0010	0.0011	-	
MW-15	3/29/2011	0.00035	<0.0010	0.0039	0.0012	
MW-15	3/29/2011	< 0.001	< 0.002	0.0039	< 0.002	
MW-15	6/21/2011	0.0048	< 0.0010	0.0012	< 0.0020	
MW-15	6/21/2011	0.0048	< 0.002	0.0012	< 0.004	
MW-15	9/15/2011	0.0054	< 0.002	0.0124	< 0.004	
MW-15	12/6/2011	0.0053	< 0.002	0.0106	< 0.004	
MW-15	3/9/2012	0.0059	< 0.002	0.0097	< 0.004	Duplicate-1 sample collected
MW-15	6/6/2012	0.0041	< 0.002	< 0.002	< 0.003	Duplicate sample collected
MW-15	9/6/2012	0.0033	< 0.002	<0.002	< 0.003	Duplicate-1 sample collected
MW-15	12/5/2012	0.0027	<0.002	<0.002	< 0.003	Duplicate sample collected
MW-15	2/19/2013	0.0020	< 0.002	<0.002	< 0.003	Duplicate A sample collected

Location Identification	Sample Date	Benzene (mg/l)	Toluene (mg/l)	Ethylbenzene (mg/l)	Total Xylenes (mg/l)	Comments
New Mexico Water Quality						
Control Commission		0.01	0.75	0.75	0.62	
Groundwater Standards (mg/L)						
MW-16	3/23/2005	<0.40	<0.40	<0.40	<0.80	
MW-16	3/28/2006	<0.23	<0.54	<0.48	<1.1	
MW-16	6/21/2006	<0.23	<0.54	<0.48	<1.1	
MW-16	9/27/2006	<0.23	<0.54	<0.48	<1.1	
MW-16	12/20/2006	< 0.23	<0.54	<0.48	<1.1	
MW-16	9/6/2007	<0.00023	<0.00054	<0.00048	< 0.0011	
MW-16	11/28/2007	<0.0012	<0.0027	< 0.0024	< 0.0055	
MW-16	3/6/2008	< 0.00046	<0.00048	<0.00045	< 0.0014	
MW-16	12/2/2008	<0.00046	<0.00048	< 0.00045	< 0.0014	
MW-16	3/9/2009	< 0.00046	<0.00048	< 0.00045	< 0.0014	
MW-16	5/26/2009	< 0.00046	< 0.00048	< 0.00045	< 0.0014	
MW-16	9/21/2009	< 0.00050	< 0.00043	< 0.00055	< 0.0017	
MW-16	12/20/2009	< 0.00050	< 0.00043	< 0.00055	< 0.0017	
MW-16	6/8/2005	<0.40	0.013	<0.40	<0.80	
MW-16	9/14/2005	<0.47	<0.54	<0.48	<2.0	
MW-16	12/13/2005	<0.47	< 0.54	<0.48	<2.0	
MW-16	3/29/2007	0.00043	< 0.00054	< 0.00048	<0.0011	
MW-16	6/27/2007	< 0.00023	< 0.00054	< 0.00048	<0.0011	
MW-16	9/14/2010	< 0.00030	<0.0010	< 0.00030	-	
MW-16	3/9/2010	0.15	<1.0	0.0028	-	
MW-16	6/14/2010	< 0.30	<1.0	< 0.30	-	
MW-16	12/7/2010	< 0.00030	< 0.0010	< 0.00030	-	
MW-16	3/29/2011	< 0.00030	<0.0010	< 0.00030	0.0012	
MW-16	3/29/2011	< 0.001	< 0.002	< 0.002	< 0.002	
MW-16	6/21/2011	< 0.00025	<0.0010	< 0.00050	< 0.0020	
MW-16	6/21/2011	< 0.001	< 0.002	< 0.002	< 0.004	
MW-16	9/15/2011	< 0.001	<0.002	<0.002	< 0.004	
MW-16	12/6/2011	<0.001	<0.002	<0.002	< 0.004	
MW-16	3/9/2012	<0.001	<0.002	<0.002	<0.004	
MW-16	6/6/2012	<0.001	<0.002	<0.002	<0.004	
MW-16	9/6/2012	<0.001	<0.002	<0.002	< 0.003	
MW-16	12/5/2012	< 0.001	<0.002	<0.002	< 0.003	
MW-16	2/19/2013	< 0.001	<0.002	<0.002	< 0.003	
MW-18	6/21/2006	0.013	0.0017	0.031	0.023	
MW-18	12/2/2008	0.0216	<0.00048	0.0221	0.0183	
MW-18	9/21/2009	0.0445	0.0026	0.0297	0.0264	
MW-18	6/27/2007	0.0214	0.0016	0.0475	0.0178	

Location Identification	Sample Date	Benzene (mg/l)	Toluene (mg/l)	Ethylbenzene (mg/l)	Total Xylenes (mg/l)	Comments
New Mexico Water Quality Control Commission Groundwater Standards (mg/L)		0.01	0.75	0.75	0.62	
MW-19	3/23/2005	0.0019	<0.40	<0.40	<0.80	
MW-19	3/28/2006	<0.23	< 0.54	<0.48	<1.1	
MW-19	6/21/2006	<0.23	<0.54	<0.48	<1.1	
MW-19	12/20/2006	0.0007	<0.54	<0.48	<1.1	
MW-19	9/6/2007	0.00053	< 0.00054	< 0.00048	< 0.0011	
MW-19	11/28/2007	0.00054	< 0.00054	<0.00048	< 0.0011	
MW-19	3/6/2008	0.00054	< 0.00048	< 0.00045	< 0.0014	
MW-19	12/2/2008	< 0.00046	< 0.00048	< 0.00045	< 0.0014	
MW-19	3/9/2009	< 0.00046	< 0.00048	< 0.00045	< 0.0014	
MW-19	5/26/2009	< 0.00046	< 0.00048	< 0.00045	< 0.0014	
MW-19	9/21/2009	< 0.00050	< 0.00043	< 0.00055	< 0.0017	
MW-19	12/20/2009	< 0.00050	< 0.00043	< 0.00055	< 0.0017	en e
MW-19	6/8/2005	0.0012	0.00072	<0.40	< 0.80	· · · · · · · · · · · · · · · · · · ·
MW-19	9/14/2005	< 0.47	<0.54	<0.48	<2.0	
MW-19	12/13/2005	<0.47	<0.54	<0.48	<2.0	
MW-19	3/29/2007	0.00075	< 0.00054	< 0.00048	< 0.0011	
MW-19	6/27/2007	0.00071	< 0.00054	<0.00048	< 0.0011	
MW-19	9/14/2010	0.00036	< 0.0010	< 0.00030	-	
MW-19	3/9/2010	0.00051	<1.0	<1.0	-	
MW-19	6/14/2010	< 0.30	<1.0	< 0.30	-	
MW-19	12/7/2010	< 0.00030	< 0.0010	0.00068	-	
MW-19	3/29/2011	< 0.00030	< 0.0010	< 0.00030	0.0008	
MW-19	3/29/2011	< 0.001	< 0.002	< 0.002	< 0.002	
MW-19	6/21/2011	< 0.00025	< 0.0010	< 0.00050	< 0.0020	
MW-19	6/21/2011	< 0.001	< 0.002	< 0.002	< 0.004	
MW-19	9/15/2011	< 0.001	< 0.002	< 0.002	< 0.004	
MW-19	12/6/2011	< 0.001	<0.002	< 0.002	< 0.004	
MW-19	3/9/2012	< 0.001	<0.002	< 0.002	< 0.004	
MW-19	6/6/2012	< 0.001	< 0.002	<0.002	< 0.003	
MW-19	9/6/2012	< 0.001	< 0.002	<0.002	< 0.003	
MW-19	12/5/2012	< 0.001	< 0.002	< 0.002	< 0.003	
MW-19	2/19/2013	< 0.001	< 0.002	<0.002	< 0.003	

Location Identification	Sample Date	Benzene (mg/l)	Toluene (mg/l)	Ethylbenzene (mg/l)	Total Xylenes (mg/l)	Comments
New Mexico Water Quality Control Commission Groundwater Standards (mg/L)		0.01	0.75	0.75	0.62	
MW-19D	6/21/2006	0.0011	<0.54	<0.48	<1.1	
MW-19D	3/23/2005	0.00073	<0.40	<0.40	< 0.80	
MW-19D	3/28/2006	< 0.23	<0.54	<0.48	<1.1	
MW-19D	9/27/2006	< 0.23	<0.54	<0.48	<1.1	
MW-19D	12/20/2006	0.0018	< 0.54	0.00074	<1.1	
MW-19D	9/6/2007	0.00072	< 0.00054	< 0.00048	< 0.0011	
MW-19D	11/28/2007	0.00093	< 0.00054	< 0.00048	< 0.0011	
MW-19D	3/6/2008	0.001	< 0.00048	< 0.00045	< 0.0014	, , , , , , , , , , , , , , , , , , ,
MW-19D	12/2/2008	0.0016	< 0.00048	< 0.00045	< 0.0014	
MW-19D	3/9/2009	< 0.00046	< 0.00048	< 0.00045	< 0.0014	
MW-19D	5/26/2009	0.00074	<0.00048	< 0.00045	< 0.0014	
MW-19D	9/21/2009	0.0011	< 0.00043	< 0.00055	< 0.0017	
MW-19D	12/20/2009	0.0009	< 0.00043	< 0.00055	< 0.0017	
MW-19D	6/8/2005	0.0011	0.0012	<0.40	< 0.80	
MW-19D	9/14/2005	< 0.47	< 0.54	<0.48	<2.0	
MW-19D	3/29/2007	0.0007	< 0.00054	< 0.00048	< 0.0011	
MW-19D	6/27/2007	0.00074	< 0.00054	< 0.00048	< 0.0011	
MW-19D	12/13/2005	<0.47	< 0.54	<0.48	<2.0	
MW-19D	9/14/2010	0.00086	<0.0010	< 0.00030	-	
MW-19D	3/9/2010	0.0009	<1.0	<1.0	-	
MW-19D	6/14/2010	0.00037	<1.0	< 0.30	-	
MW-19D	12/7/2010	0.00085	< 0.0010	< 0.00030	-	
MW-19D	3/29/2011	0.00091	<0.0010	< 0.00030	0.00074	
MW-19D	3/29/2011	< 0.001	< 0.002	< 0.002	< 0.002	
MW-19D	6/21/2011	0.00056	< 0.0010	< 0.00050	< 0.0020	
MW-19D	6/21/2011	.0006 J	< 0.002	< 0.002	< 0.004	
MW-19D	9/15/2011	0.0014	< 0.002	< 0.002	< 0.004	
MW-19D	12/6/2011	0.0015	< 0.002	< 0.002	< 0.004	
MW-19D	3/9/2012	0.0015	< 0.002	< 0.002	< 0.004	Duplicate-2 sample collected
MW-19D	6/6/2012	0.00079	< 0.002	< 0.002	< 0.003	
MW-19D	9/6/2012	0.00072	< 0.002	< 0.002	< 0.003	Duplicate-2 sample collected
MW-19D	12/5/2012	0.0030	<0.002	0.00069	< 0.003	
MW-19D	2/19/2013	0.0086	< 0.002	0.0045	< 0.003	Duplicate B sample collected
MW-19S	9/27/2006	< 0.23	< 0.54	<0.48	<1.1	

Location Identification	Sample Date	Benzene (mg/l)	Toluene (mg/l)	Ethylbenzene (mg/l)	Total Xylenes (mg/l)	Comments
New Mexico Water Quality Control Commission Groundwater Standards (mg/L)		0.01	0.75	0.75	0.62	
MW-20	3/23/2005	<0.40	<0.40	<0.40	<0.80	
MW-20	3/28/2006	< 0.23	< 0.54	<0.48	<1.1	
MW-20	6/21/2006	< 0.23	< 0.54	<0.48	<1.1	
MW-20	9/27/2006	< 0.23	<0.54	<0.48	<1.1	
MW-20	12/20/2006	0.00028	<0.54	<0.48	<1.1	
MW-20	9/6/2007	< 0.00023	< 0.00054	< 0.00048	< 0.0011	
MW-20	11/28/2007	< 0.00023	< 0.00054	< 0.00048	< 0.0011	
MW-20	3/6/2008	< 0.00046	< 0.00048	<0.00045	< 0.0014	
MW-20	12/2/2008	< 0.00046	< 0.00048	< 0.00045	< 0.0014	
MW-20	3/9/2009	< 0.00046	< 0.00048	< 0.00045	< 0.0014	
MW-20	5/26/2009	< 0.00046	< 0.00048	< 0.00045	< 0.0014	
MW-20	9/21/2009	< 0.00050	< 0.00043	< 0.00055	< 0.0017	
MW-20	12/20/2009	< 0.00050	< 0.00043	< 0.00055	< 0.0017	
MW-20	6/8/2005	< 0.40	<0.40	<0.40	<0.80	
MW-20	9/14/2005	<0.47	<0.54	<0.48	<2.0	
MW-20	12/13/2005	<0.47	<0.54	<0.48	<2.0	
MW-20	3/29/2007	< 0.00023	< 0.00054	< 0.00048	< 0.0011	
MW-20	6/27/2007	0.00033	< 0.00054	< 0.00048	< 0.0011	
MW-20	9/14/2010	< 0.00030	<0.0010	< 0.00030	-	
MW-20	3/9/2010	<0.40	<1.0	<1.0	•	
MW-20	6/14/2010	< 0.30	<1.0	< 0.30	-	
MW-20	12/7/2010	< 0.00030	<0.0010	< 0.00030	-	
MW-20	3/29/2011	< 0.00030	<0.0010	<0.00030	0.0006	
MW-20	3/29/2011	<0.001	< 0.002	< 0.002	< 0.002	
MW-20	6/21/2011	< 0.00025	< 0.0010	< 0.00050	< 0.0020	
MW-20	6/21/2011	< 0.001	<0.002	<0.002	< 0.004	
MW-20	9/15/2011	< 0.001	<0.002	< 0.002	< 0.004	
MW-20	12/6/2011	< 0.001	< 0.002	< 0.002	< 0.004	
MW-20	3/9/2012	0.00033	< 0.002	<0.002	< 0.004	
MW-20	6/6/2012	< 0.001	< 0.002	< 0.002	< 0.003	
MW-20	9/6/2012	< 0.001	< 0.002	< 0.002	< 0.003	
MW-20	12/5/2012	< 0.001	<0.002	<0.002	< 0.003	
MW-20	2/19/2013	< 0.001	< 0.002	<0.002	< 0.003	

Location Identification	Sample Date	Benzene (mg/l)	Toluene (mg/l)	Ethylbenzene (mg/l)	Total Xylenes (mg/l)	Comments
New Mexico Water Quality Control Commission Groundwater Standards (mg/L)		0.01	0.75	0.75	0.62	
MW-21	3/23/2005	<0.40	<0.40	<0.40	<0.80	
MW-21	3/28/2006	< 0.23	<0.54	<0.48	<1.1	
MW-21	6/21/2006	< 0.23	<0.54	<0.48	<1.1	
MW-21	9/27/2006	<0.23	<0.54	<0.48	<1.1	······································
MW-21	12/20/2006	< 0.23	< 0.54	<0.48	<1.1	
MW-21	9/6/2007	< 0.00023	< 0.00054	<0.00048	< 0.0011	
MW-21	11/28/2007	< 0.00023	< 0.00054	< 0.00048	< 0.0011	
MW-21	3/6/2008	< 0.00046	< 0.00048	< 0.00045	< 0.0014	
MW-21	12/2/2008	< 0.00046	< 0.00048	< 0.00045	< 0.0014	
MW-21	3/9/2009	< 0.00046	< 0.00048	< 0.00045	< 0.0014	· · · · · · · · · · · · · · · · · · ·
MW-21	5/26/2009	< 0.00046	< 0.00048	< 0.00045	< 0.0014	
MW-21	9/21/2009	< 0.00050	< 0.00043	< 0.00055	< 0.0017	
MW-21	12/20/2009	< 0.00050	< 0.00043	< 0.00055	< 0.0017	
MW-21	6/8/2005	< 0.40	<0.40	<0.40	<0.80	
MW-21	9/14/2005	<0.47	<0.54	<0.48	<2.0	
MW-21	12/13/2005	<0.47	<0.54	<0.48	<2.0	
MW-21	3/29/2007	< 0.00023	< 0.00054	< 0.00048	< 0.0011	
MW-21	6/27/2007	< 0.00023	<0.00054	<0.00048	< 0.0011	
MW-21	9/14/2010	< 0.00030	< 0.0010	<0.00030	-	
MW-21	3/9/2010	<0.40	<1.0	<1.0	-	
MW-21	6/14/2010	< 0.30	<1.0	< 0.30	-	
MW-21	12/7/2010	< 0.00030	< 0.0010	< 0.00030	-	
MW-21	3/29/2011	< 0.00030	< 0.0010	< 0.00030	0.00076	
MW-21	3/29/2011	< 0.001	< 0.002	< 0.002	< 0.002	
MW-21	6/21/2011	< 0.00025	< 0.0010	< 0.00050	< 0.0020	
MW-21	6/21/2011	< 0.001	< 0.002	< 0.002	< 0.004	
MW-21	9/15/2011	<0.001	< 0.002	< 0.002	< 0.004	
MW-21	12/6/2011	< 0.001	< 0.002	< 0.002	< 0.004	
MW-21	3/9/2012	< 0.001	< 0.002	< 0.002	< 0.004	
MW-21	6/6/2012	< 0.001	<0.002	<0.002	< 0.003	
MW-21	9/6/2012	< 0.001	< 0.002	<0.002	< 0.003	
MW-21	12/5/2012	<0.001	<0.002	<0.002	< 0.003	
MW-21	2/19/2013	< 0.001	< 0.002	< 0.002	< 0.003	

Location Identification	Sample Date	Benzene (mg/l)	Toluene (mg/l)	Ethylbenzene (mg/l)	Total Xylenes (mg/l)	Comments
New Mexico Water Quality Control Commission		0.01	0.75	0.75	0.62	
Groundwater Standards (mg/L) MW-22	3/23/2005	0.0013	<0.40	<0.40	< 0.80	· · · · · · · · · · · · · · · · · · ·
MW-22 MW-22	6/8/2005	<0.40	0.0025	0.00073	0.0021	
MW-22 MW-22	9/14/2005	0.0066	< 0.54	<0.48	<2.0	······································
MW-22 MW-22	12/13/2005	0.0059	< 0.54	<0.48	<2.0	
MW-22 MW-22	3/28/2006	0.0055	<0.54	<0.48	<1.1	
MW-22 MW-22	6/21/2006	0.0034	<0.54	0.00054	<1.1	
MW-22 MW-22	9/27/2006	<0.23	<0.54	<0.48	<1.1	· · · · · · · · · · · · · · · · · · ·
MW-22 MW-22	12/20/2006	0.00089	< 0.54	<0.48	<1.1	· · · · · · · · · · · · · · · · · · ·
MW-22 MW-22	3/29/2007	0.00067	<0.00054	<0.00048	<0.0011	
MW-22 MW-22	6/27/2007	0.00076	<0.00054	<0.00048	<0.0011	
MW-22 MW-22	9/6/2007	< 0.00023	<0.00054	<0.00048	< 0.0011	
MW-22 MW-22	11/28/2007	0.001	<0.00054	<0.00048	<0.0011	
MW-22 MW-22	3/6/2008	0.0015	<0.00048	<0.00048	< 0.0011	
MW-22	12/2/2008	0.0013	<0.00048	<0.00045	<0.0014	
MW-22 MW-22	3/9/2009	0.004	<0.00048	<0.00045	0.0043	
MW-22 MW-22	5/26/2009	0.0046	<0.00048	0.00069	0.0045	
MW-22 MW-22	9/21/2009	0.0026	<0.00043	< 0.00055	< 0.002	
MW-22 MW-22	12/20/2009	0.0028	<0.00043	<0.00055	<0.0017	
MW-22 MW-22	3/29/2011	0.0028	<0.002	<0.0035	0.0022	
MW-22 MW-22	6/21/2011	0.0034	<0.002	.0005 J	< 0.0022	
MW-22 MW-22	9/15/2011	0.0037	<0.002	<0.002	<0.004	
MW-22 MW-22	12/6/2011	0.0028	<0.002	<0.002	<0.004	
MW-22 MW-22	3/9/2012	0.0034	<0.002	0.00046	<0.004	· · · · · · · · · · · · · · · · · · ·
MW-22 MW-22	6/6/2012	0.0034	<0.002	0.00045	<0.004	· · · · · · · · · · · · · · · · · · ·
MW-22 MW-22	9/6/2012	0.0021	<0.002	<0.002	< 0.003	
MW-22 MW-22	12/5/2012	0.0021	<0.002	0.00055	0.0031	
MW-22	2/19/2013	0.0046	< 0.002	0.0011	0.0043	
MW-23	12/2/2008 3/9/2009	< 0.00046	<0.00048	<0.00045	<0.0014	······································
MW-23		0.00049	<0.00048	<0.00045	<0.0014	
MW-23 MW-23	5/26/2009 9/21/2009	<0.00046	<0.00048	<0.00045 <0.00055	<0.0014	
	9/21/2009	<0.00050	<0.00043		<0.0017 <0.0017	
MW-23 MW-23	9/14/2010	<0.00050 <0.00030	<0.00043 <0.0010	<0.00055 <0.00030	~0.0017	
MW-23	3/9/2010	<0.00030	<1.0	<1.0	-	· ····································
MW-23	6/14/2010	<0.40	<1.0	<0.30		
MW-23	12/7/2010	<0.00030	<0.0010	<0.00030	-	
MW-23	3/29/2011	<0.00030	<0.0010	<0.00030	0.00063	
MW-23	3/29/2011	<0.00030	<0.0010	<0.002	< 0.002	······································
MW-23	6/21/2011	<0.0001	<0.002	<0.002	<0.002	
MW-23	6/21/2011	< 0.001	<0.0010	<0.002	< 0.0020	
MW-23	9/15/2011	< 0.001	<0.002	<0.002	<0.004	
MW-23	12/6/2011	<0.001	<0.002	<0.002	<0.004	
MW-23	3/9/2012	< 0.001	<0.002	<0.002	<0.004	
MW-23	6/6/2012	< 0.001	<0.002	<0.002	<0.004	
MW-23	9/6/2012	<0.001	<0.002	<0.002	< 0.003	
MW-23	12/5/2012	<0.001	<0.002	<0.002	< 0.003	
MW-23	2/19/2012	< 0.001	< 0.002	< 0.002	< 0.003	

Location Identification	Sample Date	Benzene (mg/l)	Toluene (mg/l)	Ethylbenzene (mg/l)	Total Xylenes (mg/l)	Comments
New Mexico Water Quality					(11(2)))	
Control Commission		0.01	0.75	0.75	0.62	
Groundwater Standards (mg/L)						
MW-24	12/2/2008	< 0.00046	<0.00048	<0.00045	<0.0014	
MW-24	3/9/2009	< 0.00046	<0.00048	<0.00045	< 0.0014	
MW-24	5/26/2009	< 0.00046	<0.00048	< 0.00045	< 0.0014	
MW-24	9/21/2009	< 0.00050	< 0.00043	< 0.00055	< 0.0017	
MW-24	12/20/2009	< 0.00050	< 0.00043	< 0.00055	< 0.0017	
MW-24	9/14/2010	< 0.00030	< 0.0010	< 0.00030	-	
MW-24	3/9/2010	<0.40	<1.0	<1.0	-	
MW-24	6/14/2010	< 0.30	<1.0	< 0.30	-	
MW-24	12/7/2010	< 0.00030	< 0.0010	< 0.00030	-	
MW-24	3/29/2011	< 0.00030	< 0.0010	< 0.00030	< 0.00060	
MW-24	3/29/2011	< 0.001	< 0.002	< 0.002	< 0.002	
MW-24	6/21/2011	< 0.00025	< 0.0010	< 0.00050	< 0.0020	
MW-24	6/21/2011	< 0.001	< 0.002	< 0.002	< 0.004	
MW-24	9/15/2011	< 0.001	< 0.002	< 0.002	< 0.004	
MW-24	12/6/2011	< 0.001	< 0.002	< 0.002	< 0.004	
MW-24	3/9/2012	< 0.001	< 0.002	< 0.002	< 0.004	
MW-24	6/6/2012	< 0.001	< 0.002	< 0.002	< 0.003	
MW-24	9/6/2012	< 0.001	< 0.002	< 0.002	< 0.003	
MW-24	12/5/2012	< 0.001	< 0.002	< 0.002	< 0.003	
MW-24	2/19/2013	< 0.001	<0.002	<0.002	< 0.003	
MW-25	12/2/2008	< 0.00046	<0.00048	< 0.00045	< 0.0014	
MW-25	3/9/2009	< 0.00046	<0.00048	< 0.00045	< 0.0014	
MW-25	5/26/2009	< 0.00046	< 0.00048	< 0.00045	< 0.0014	
MW-25	9/21/2009	< 0.00050	< 0.00043	< 0.00055	< 0.0017	
MW-25	12/20/2009	< 0.00050	< 0.00043	< 0.00055	< 0.0017	
MW-25	9/14/2010	< 0.00030	< 0.0010	< 0.00030	-	
MW-25	3/9/2010	< 0.40	<1.0	<1.0	-	
MW-25	6/14/2010	< 0.30	<1.0	< 0.30	-	
MW-25	12/7/2010	< 0.00030	<0.0010	<0.00030	-	
MW-25	3/29/2011	< 0.00030	<0.0010	<0.00030	0.00099	
MW-25	3/29/2011	< 0.001	<0.002	< 0.002	< 0.002	
MW-25	6/21/2011	< 0.00025	< 0.0010	< 0.00050	< 0.0020	
MW-25	6/21/2011	< 0.001	< 0.002	< 0.002	< 0.004	
MW-25	9/15/2011	< 0.001	< 0.002	< 0.002	< 0.004	
MW-25	12/6/2011	< 0.001	<0.002	< 0.002	< 0.004	
MW-25	3/9/2012	< 0.001	<0.002	< 0.002	< 0.004	
MW-25	6/6/2012	< 0.001	<0.002	<0.002	< 0.003	
MW-25	9/6/2012	< 0.001	<0.002	< 0.002	< 0.003	
MW-25	12/5/2012	< 0.001	< 0.002	<0.002	< 0.003	
MW-25	2/19/2013	< 0.001	< 0.002	< 0.002	< 0.003	

Location Identification	Sample Date	Benzene (mg/l)	Toluene (mg/l)	Ethylbenzene (mg/l)	Total Xylenes (mg/l)	Comments
New Mexico Water Quality Control Commission Groundwater Standards (mg/L)		0.01	0.75	0.75	0.62	
MW-A	6/25/2009	< 0.00046	< 0.00048	< 0.00045	< 0.0014	
MW-A	9/1/2009	< 0.00050	< 0.00043	< 0.00055	< 0.0017	
MW-A	11/17/2009	< 0.00050	< 0.00043	< 0.00055	< 0.0017	
MW-A	3/25/2010	< 0.00050	< 0.00043	< 0.00055	< 0.0017	
MW-A	6/8/2010	< 0.00050	< 0.00043	<0.00055	< 0.0017	
MW-A	9/21/2010	< 0.00050	< 0.00043	< 0.00055	< 0.0017	
MW-A	12/16/2010	< 0.00050	< 0.00043	< 0.00055	< 0.0017	
MW-A	3/11/2011	< 0.00050	< 0.00043	<0.00055	< 0.0017	
MW-A	6/14/2011	< 0.00025	<0.00026	< 0.00025	< 0.00071	
MW-A	9/27/2011	< 0.00025	< 0.00026	< 0.00025	< 0.00071	
MW-A	12/13/2011	< 0.00025	< 0.00026	< 0.00025	< 0.00071	
MW-A	6/19/2012	< 0.00025	< 0.00026	<0.00025	< 0.00071	
MW-A	3/27/2012	< 0.00025	<0.00026	< 0.00025	< 0.00071	
MW-B	6/25/2009	1.49	0.27	0.411	2.75	
MW-B	9/1/2009	1.42	0.195	0.38	2.93	
MW-B	11/17/2009	0.199	0.0029	0.0685	0.159	
MW-B	3/25/2010	0.199	0.0078	0.112	0.375	
MW-B	6/8/2010	0.438	0.0202	0.161	0.836	
MW-B	9/21/2010	0.572	0.0217	0.167	0.885	
MW-B	12/16/2010	0.154	0.0146	0.0528	0.239	
MW-B	3/11/2011	0.36	0.0199	0.175	0.742	
MW-B	6/14/2011	0.295	0.0092	0.135	0.584	
MW-B	9/27/2011	0.225	0.0008	0.147	0.464	
MW-B	12/13/2011	0.357	0.01	0.157	0.581	
MW-C	6/25/2009	0.0543	0.00072	0.0119	0.053	
MW-C	9/1/2009	0.0828	0.0013	0.0231	0.132	
MW-C	11/17/2009	0.03	< 0.00043	0.0093	0.053	
MW-C	3/25/2010	0.0482	0.003	0.0169	0.141	
MW-C	6/8/2010	0.0204	0.0011	0.0085	0.0523	
MW-C	9/21/2010	0.124	0.0031	0.0504	0.276	
MW-C	12/16/2010	0.0107	0.00059	0.0051	0.0252	
MW-C	3/11/2011	0.0958	0.0057	0.0424	0.235	
MW-C	6/14/2011	0.066	0.0028	0.0298	0.145	
MW-C	9/27/2011	0.0403	0.00073	0.0199	0.0944	
MW-C	12/13/2011	0.112	0.0043	0.0298	0.2	
MW-C	6/19/2012	0.0668	0.0019	0.0201	0.135	
MW-C	3/27/2012	0.037	0.0012	0.0114	0.0758	

Location Identification	Sample Date	Benzene (mg/l)	Toluene (mg/l)	Ethylbenzene (mg/l)	Total Xylenes (mg/l)	Comments
New Mexico Water Quality Control Commission Groundwater Standards (mg/L)		0.01	0.75	0.75	0.62	
MW-D	6/25/2009	< 0.00046	< 0.00048	< 0.00045	< 0.0014	
MW-D	9/1/2009	< 0.00050	< 0.00043	< 0.00055	< 0.0017	
MW-D	11/17/2009	< 0.00050	< 0.00043	< 0.00055	< 0.0017	
MW-D	3/25/2010	< 0.00050	< 0.00043	< 0.00055	< 0.0017	*****
MW-D	6/8/2010	< 0.00050	< 0.00043	< 0.00055	< 0.0017	
MW-D	9/21/2010	< 0.00050	< 0.00043	< 0.00055	< 0.0017	
MW-D	12/16/2010	< 0.00050	< 0.00043	< 0.00055	< 0.0017	
MW-D	3/11/2011	< 0.00050	< 0.00043	< 0.00055	< 0.0017	
MW-D	6/14/2011	< 0.00025	< 0.00026	< 0.00025	< 0.00071	
MW-D	9/27/2011	< 0.00025	< 0.00026	< 0.00025	< 0.00071	
MW-D	12/13/2011	< 0.00025	< 0.00026	< 0.00025	< 0.00071	
MW-D	6/19/2012	< 0.00025	< 0.00026	< 0.00025	< 0.00071	
MW-D	3/27/2012	< 0.00025	<0.00026	<0.00025	<0.00071	
MW-F	6/25/2009	< 0.00046	<0.00048	<0.00045	< 0.0014	
MW-F	9/1/2009	< 0.00050	< 0.00043	< 0.00055	< 0.0017	
MW-F	11/17/2009	< 0.00050	< 0.00043	< 0.00055	< 0.0017	
MW-F	3/25/2010	< 0.00050	< 0.00043	<0.00055	< 0.0017	
MW-F	6/8/2010	< 0.00050	< 0.00043	< 0.00055	< 0.0017	
MW-F	9/21/2010	< 0.00050	< 0.00043	< 0.00055	< 0.0017	
MW-F	12/16/2010	< 0.00050	< 0.00043	< 0.00055	< 0.0017	
MW-F	3/11/2011	< 0.00050	< 0.00043	< 0.00055	< 0.0017	
MW-F	6/14/2011	< 0.00025	< 0.00026	< 0.00025	< 0.00071	
MW-F	9/27/2011	< 0.00025	< 0.00026	<0.00025	< 0.00071	
MW-F	12/13/2011	< 0.00025	< 0.00026	<0.00025	< 0.00071	
MW-F	6/19/2012	< 0.00025	<0.00026	<0.00025	< 0.00071	
MW-F	3/27/2012	<0.00025	<0.00026	<0.00025	< 0.00071	
SP-1	3/19/2008	0.00075	<0.00048	< 0.00045	<0.0014	
SP-2	3/19/2008	0.0042	0.005	<0.00045	< 0.0014	
SP-3	3/19/2008	0.0012	0.0015	< 0.00045	< 0.0014	

Notes:

1.) The environmental cleanup standards for groundwater that are applicable to this Site are the New Mexico Water Quality Control Commission

2.) Data presented for all other well locations includes previous four sampling events, when available. Historic groundwater analytical results for these **Bold** red values indicate an exceedance of the NMWQCC groundwater standards for the Site.

Sample locations are shown on Figure 2 and analytical results are illustrated on Figure 4.

LNAPL = Light Non-Aqueous Phase Liquid

NS = Not sampled.

mg/L = milligrams per liter.