AP-111

LANDFARMS

2013

Chavez, Carl J, EMNRD

From: Chavez, Carl J, EMNRD

Sent: Wednesday, March 25, 2015 7:58 AM

To: 'Grant Price'

Cc: Larsen, Thurman; Riege, Ed; Joey Waldmann

Subject: RE: Gallup Refinery AP-111 Land Farm Confirm. Sample Results by COB Today!

Mr Price:

The New Mexico Oil Conservation Division (OCD) is in receipt of the "Chloride Exceedance Response Action Plan" (plan) for the central OCD Landfarm dated March 20, 2015.

OCD hereby approves the plan.

Please contact me if you have questions. Thank you.

Carl J. Chavez, CHMM

New Mexico Energy, Minerals & Natural Resources Department Oil Conservation Division, Environmental Bureau 1220 South St. Francis Drive, Santa Fe, New Mexico 87505

O: (505) 476-3490

E-mail: <u>CarlJ.Chavez@State.NM.US</u>
Web: <u>http://www.emnrd.state.nm.us/ocd/</u>

"Why Not Prevent Pollution; Minimize Waste; Reduce the Cost of Operations; & Move Forward With the Rest of the Nation?" To see how, please go to: "Pollution Prevention & Waste Minimization" at

http://www.emnrd.state.nm.us/ocd/environmental.htm#environmental

From: Grant Price [mailto:gprice@trihydro.com]

Sent: Friday, March 20, 2015 2:34 PM

To: Chavez, Carl J, EMNRD

Cc: Larsen, Thurman; Riege, Ed; Joey Waldmann

Subject: RE: AP-111 Land Farm Confirm. Sample Results by COB Today!

Hello Carl,

The response action plan for Western's Central OCD landfarm is attached. A hardcopy will be mailed today. Please let me know if you have any questions. We would like to conduct the field work the week of April 6, so an expedited review would be greatly appreciated.

Thanks,

Grant Price

From: Chavez, Carl J, EMNRD [mailto:CarlJ.Chavez@state.nm.us]

Sent: Thursday, March 05, 2015 12:00 PM

To: Riege, Ed **Cc:** Grant Price

Subject: RE: AP-111 Land Farm Confirm. Sample Results by COB Today!

Ok. Thank you.

Carl J. Chavez, CHMM

New Mexico Energy, Minerals & Natural Resources Department

Oil Conservation Division, Environmental Bureau

1220 South St. Francis Drive, Santa Fe, New Mexico 87505

O: (505) 476-3490

E-mail: <u>CarlJ.Chavez@State.NM.US</u>
Web: <u>http://www.emnrd.state.nm.us/ocd/</u>

"Why Not Prevent Pollution; Minimize Waste; Reduce the Cost of Operations; & Move Forward With the Rest of

the Nation?" To see how, please go to: "Pollution Prevention & Waste Minimization" at

http://www.emnrd.state.nm.us/ocd/environmental.htm#environmental

From: Riege, Ed [mailto:Ed.Riege@wnr.com]
Sent: Thursday, March 05, 2015 10:03 AM

To: Chavez, Carl J, EMNRD

Cc: Grant Price

Subject: FW: AP-111 Land Farm Confirm. Sample Results by COB Today!

Hi Carl,

See response below from Grant.

Thanks

Ed

From: Grant Price [mailto:gprice@trihydro.com]
Sent: Thursday, March 05, 2015 9:36 AM

To: Riege, Ed

Subject: RE: AP-111 Land Farm Confirm. Sample Results by COB Today!

Hi Ed,

We have all analytical results except for radium (takes longer). We are in the process of validating the data, and then we'll prepare the response action plan. The response action plan is due to OCD within 45 days of sample collection, which should put us at around March 20th. We'll have it done by then.

A preliminary review of the un-validated data looks good. No new chloride exceedances.

Thanks, Grant

From: Riege, Ed [mailto:Ed.Riege@wnr.com]
Sent: Thursday, March 05, 2015 9:30 AM

To: Grant Price

Subject: FW: AP-111 Land Farm Confirm. Sample Results by COB Today!

From: Chavez, Carl J, EMNRD [mailto:CarlJ.Chavez@state.nm.us]

Sent: Thursday, March 05, 2015 8:08 AM

To: Riege, Ed

Subject: FW: AP-111 Land Farm Confirm. Sample Results by COB Today!

Ed:

Good morning! Do you know when OCD can expect the analytical results (see attachment)?

Thank you.

Carl J. Chavez, CHMM

New Mexico Energy, Minerals & Natural Resources Department Oil Conservation Division, Environmental Bureau 1220 South St. Francis Drive, Santa Fe, New Mexico 87505

O: (505) 476-3490

E-mail: <u>CarlJ.Chavez@State.NM.US</u>
Web: http://www.emnrd.state.nm.us/ocd/

"Why Not Prevent Pollution; Minimize Waste; Reduce the Cost of Operations; & Move Forward With the Rest of the Nation?" To see how, please go to: "Pollution Prevention & Waste Minimization" at http://www.emnrd.state.nm.us/ocd/environmental.htm#environmental

Chavez, Carl J, EMNRD

From: Grant Price <gprice@trihydro.com>
Sent: Friday, March 20, 2015 2:34 PM

To: Chavez, Carl J, EMNRD

Cc: Larsen, Thurman; Riege, Ed; Joey Waldmann

Subject: RE: AP-111 Land Farm Confirm. Sample Results by COB Today!

Attachments: 201503_ChlorideExceedance_LTRRPT.pdf

Hello Carl,

The response action plan for Western's Central OCD landfarm is attached. A hardcopy will be mailed today. Please let me know if you have any questions. We would like to conduct the field work the week of April 6, so an expedited review would be greatly appreciated.

Thanks, Grant Price

From: Chavez, Carl J, EMNRD [mailto:CarlJ.Chavez@state.nm.us]

Sent: Thursday, March 05, 2015 12:00 PM

To: Riege, Ed **Cc:** Grant Price

Subject: RE: AP-111 Land Farm Confirm. Sample Results by COB Today!

Ok. Thank you.

Carl J. Chavez, CHMM

New Mexico Energy, Minerals & Natural Resources Department

Oil Conservation Division, Environmental Bureau

1220 South St. Francis Drive, Santa Fe, New Mexico 87505

O: (505) 476-3490

E-mail: <u>CarlJ.Chavez@State.NM.US</u>
Web: <u>http://www.emnrd.state.nm.us/ocd/</u>

"Why Not Prevent Pollution; Minimize Waste; Reduce the Cost of Operations; & Move Forward With the Rest of

the Nation?" To see how, please go to: "Pollution Prevention & Waste Minimization" at

http://www.emnrd.state.nm.us/ocd/environmental.htm#environmental

From: Riege, Ed [mailto:Ed.Riege@wnr.com]
Sent: Thursday, March 05, 2015 10:03 AM

To: Chavez, Carl J, EMNRD

Cc: Grant Price

Subject: FW: AP-111 Land Farm Confirm. Sample Results by COB Today!

Hi Carl,

See response below from Grant.

Thanks Fd

From: Grant Price [mailto:gprice@trihydro.com]
Sent: Thursday, March 05, 2015 9:36 AM

To: Riege, Ed

Subject: RE: AP-111 Land Farm Confirm. Sample Results by COB Today!

Hi Ed,

We have all analytical results except for radium (takes longer). We are in the process of validating the data, and then we'll prepare the response action plan. The response action plan is due to OCD within 45 days of sample collection, which should put us at around March 20th. We'll have it done by then.

A preliminary review of the un-validated data looks good. No new chloride exceedances.

Thanks, Grant

From: Riege, Ed [mailto:Ed.Riege@wnr.com]
Sent: Thursday, March 05, 2015 9:30 AM

To: Grant Price

Subject: FW: AP-111 Land Farm Confirm. Sample Results by COB Today!

From: Chavez, Carl J, EMNRD [mailto:CarlJ.Chavez@state.nm.us]

Sent: Thursday, March 05, 2015 8:08 AM

To: Riege, Ed

Subject: FW: AP-111 Land Farm Confirm. Sample Results by COB Today!

Ed:

Good morning! Do you know when OCD can expect the analytical results (see attachment)?

Thank you.

Carl J. Chavez, CHMM

New Mexico Energy, Minerals & Natural Resources Department Oil Conservation Division, Environmental Bureau 1220 South St. Francis Drive, Santa Fe, New Mexico 87505

O: (505) 476-3490

E-mail: <u>CarlJ.Chavez@State.NM.US</u>
Web: <u>http://www.emnrd.state.nm.us/ocd/</u>

"Why Not Prevent Pollution; Minimize Waste; Reduce the Cost of Operations; & Move Forward With the Rest of the Nation?" To see how, please go to: "Pollution Prevention & Waste Minimization" at http://www.emnrd.state.nm.us/ocd/environmental.htm#environmental

March 20, 2015

Mr. Carl J. Chavez
Environmental Engineer
New Mexico Energy, Minerals, and Natural Resources Department
Oil Conservation Division
1220 South St. Francis Drive
Santa Fe, NM 87505

RE: Chloride Exceedance Response Action Plan, Central Oil Conservation Division Landfarm, Western Refining Company Southwest, Inc., Gallup Refinery, Gallup, New Mexico

Dear Mr. Chavez:

On behalf of Western Refining Company Southwest, Inc. (Western), Trihydro Corporation is submitting this correspondence to propose a response action plan due to an action level exceedance of chloride in a vadose zone soil sample collected from the Central Oil Conservation Division (OCD) Landfarm at Western's Gallup Refinery located in Gallup, New Mexico. Semiannual vadose zone sampling was conducted on September 16, 2014 in accordance with 19.15.36.15.E NMAC (Rule 36). A summary of the September 16, 2014 data is provided as Table 1. The September 16, 2014 laboratory analytical report and a Tier II data validation are included as Attachment A. Note that a treatment zone sample that was voluntarily collected by Western to evaluate potential soil reuse is included in this data set, but the treatment zone data are not relevant to this report. No vadose zone data were rejected as a result of the Tier II data validation.

Background

Rule 36 requires that semiannual vadose zone samples be analyzed for total petroleum hydrocarbons (TPH); benzene, toluene, ethylbenzene, and xylenes (BTEX); and, chloride. Results are to be compared to either the practical quantitation limit (PQL) or background soil concentrations (whichever is higher) to determine whether a release has occurred. However, as agreed to in an OCD email dated April 30, 2013, action levels for Western's Central OCD Landfarm for chloride and TPH are 500 and 2,500 mg/kg, respectively. Baseline values and action levels are shown on Table 1.

Baseline values were established for the specific purpose of comparing background concentrations to OCD landfarm soil at the Gallup refinery. Western worked collaboratively with OCD to determine the appropriate processes for establishing these concentrations. The concentrations are referred to as "baseline" instead of background at OCD's request to avoid potential confusion with RCRA background samples. In regards to Western's OCD landfarm and Rule 36, the terms baseline and background should be considered synonymous. Note that, for baseline sampling, the reporting limit was set to equal the PQL. If a constituent was not detected during baseline sampling, the reporting limit (the PQL) was used as the baseline concentration. Therefore, by comparing soil data to the baseline concentrations shown on

Mr. Carl J. Chavez March 20, 2015 Page 2

Table 1, the data are actually being compared to the higher of the baseline data and the PQL (as required by Section 19.15.36.16.F NMAC).

The baseline concentrations beneficial reuse screening concentrations (ABRSCs). During August 2011 teleconferences, Western and OCD agreed that the ABRSCs (shown on Table 1) may be used to determine whether landfarm soil may be beneficially reused in the event that the baseline concentrations are exceeded. By definition, ABRSCs are the highest value relative to:

- NMED Construction Worker Soil Screening Standards were submitted to OCD on September 12, 2011, along with the alternate OCD Form C-137 EZ (Registration/Final Closure Report For Small Landfarm) Screening Standards
- NMAC 20.6.2.3103 Screening Standards with a 20 X dilution factor

The baseline and ABRSC values were conditionally approved by OCD in a letter dated November 4, 2011.

September 2014 Results

As shown on Table 1, analytical data from the September 16, 2014 sampling event indicate that chloride concentrations of one of the four vadose zone soil samples (CentralOCD-04-9/16/14) exceed the baseline concentration and the 500 mg/kg action level/ABRSC. Baseline chloride concentrations were also exceeded in the other three vadose zone soil samples (CentralOCD-01-9/16/14, CentralOCD-02-9/16/14, and CentralOCD-03-9/16/14), however the action level / ABRSC was not exceeded.

In response to the above-referenced chloride action level / ABRSC exceedance, in accordance with Rule 36, and as approved in NMED's January 20, 2015 email, Western collected and analyzed an additional "four randomly selected, independent samples for TPH, BTEX, chlorides, and the constituents listed in Subsections A and B of 20.6.2.3103 NMAC" on February 5, 2015. These data are summarized on Tables 2 through 5. The laboratory analytical report and a Tier II data validation for the February 5, 2015 event are included as Attachment B.

As shown on Table 5, the February 5, 2015 analytical data of the vadose zone samples indicate that chloride concentrations do not exceed the 500 mg/kg action level / ABRSC. As shown on Tables 4 and 5, baseline concentrations were exceeded for chloride, barium, chromium, copper, iron, lead, zinc, cyanide, fluoride, sulfate, and TPH. However, since the respective ABRSCs were not exceeded for these analytes, no additional action is necessitated by the baseline concentration exceedances.

Proposed Response Action Plan

Per Rule 36 and in response to the September 16, 2014 chloride exceedance, Western is submitting this response action plan to OCD to "[provide] a plan for remediating existing contamination." Western intends to excavate the area where an elevated chloride concentration was observed during the

Mr. Carl J. Chavez March 20, 2015 Page 3

September 16, 2014 sampling event. The soil sample exceeding the chloride ABRSC was collected from approximately 6 feet (ft) below the current ground surface (bgs). The 6 ft x 6 ft grid cell where the original sample was collected will be excavated to a depth more than 6 ft bgs. During the grid excavation, field screening may be utilized at Western's discretion to help determine how deep the excavation should extend. However, the terminal depth of the grid will ultimately be based on analytical data (chloride concentrations less than 500 mg/kg). A confirmation sample will be collected from the bottom of the grid to confirm that soils with elevated chloride concentrations (i.e., greater than 500 mg/kg) have been removed.

Should analytical results indicate chloride exceedances at the bottom of the excavation, the depth of the excavation will be extended, and an additional confirmation sample will be collected. Excavated soil will be disposed at an offsite facility permitted to receive chloride-contaminated soils. Upon receipt of analytical data indicating that the chloride-contaminated soils have been removed, the excavation will be backfilled with clean fill material.

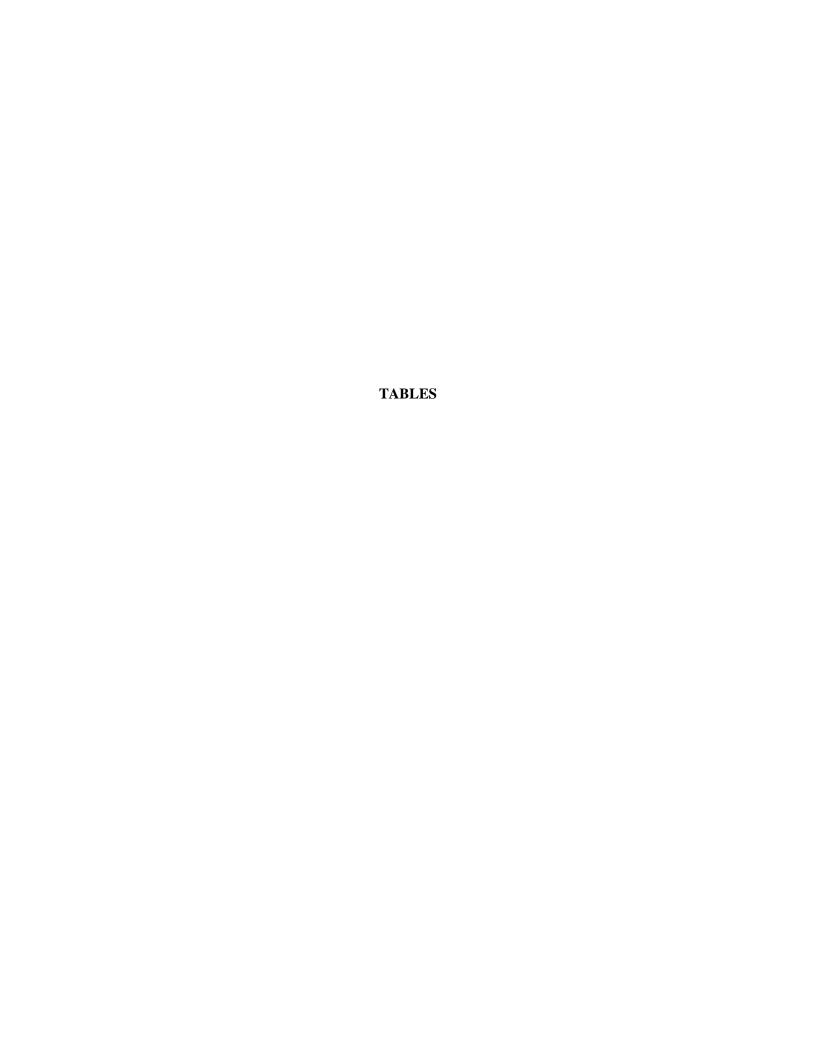
Fieldwork is tentatively scheduled for April 6, 2015, therefore an expedited review of this action plan would be greatly appreciated. Within 30 days of the receipt of complete and accurate laboratory data indicating that chloride contaminated soils have been excavated, Western will provide a letter-style report describing the grid excavation and confirmation soil sampling. The report will include a diagram showing the location of the grid, photo-documentation, the laboratory analytical report, and a copy of the waste manifest. Upon receipt of OCD approval of this response action plan, Western will implement the fieldwork detailed above. If you have any questions or comments, please do not hesitate to call me at (307) 745-7474

Sincerely,

Trihydro Corporation

Grant Price, P.G. Project Manager

697-039-007


Attachments

cc: E. Riege, Western Refining

C. Johnson, Western Refining

T. Larsen, Western Refining

K. Van Horn, NMED

TABLE 1. SEPTEMBER 2014 VADOSE ZONE SOIL ANALYTICAL SUMMARY, CENTRAL OCD LANDFARM WESTERN REFINING COMPANY SOUTHWEST, INC. GALLUP REFINERY, GALLUP, NEW MEXICO

Location ID	Date Sampled	Benzene (mg/kg)	Ethylbenzene (mg/kg)	Toluene (mg/kg)	Total Petroleum Hydrocarbon (mg/kg)	Xylenes, Total (mg/kg)	Chloride (mg/kg)
CentralOCD-01_091614	09/16/14	ND(0.048)	ND(0.048)	ND(0.048)	ND(20) UJ	ND(0.097)	230 A.
CentralOCD-02_091614	09/16/14	ND(0.05)	ND(0.05)	ND(0.05)	1100 J+ ^{A.}	ND(0.099)	93 A.
CentralOCD-03_091614	09/16/14	ND(0.048)	ND(0.048)	ND(0.048)	ND(20) UJ	ND(0.097)	120 ^{A.}
CentralOCD-04 091614	09/16/14	ND(0.049)	ND(0.049)	ND(0.049)	92 J+ ^{A.}	ND(0.098)	870 A.,B.,C.

A.	Baseline Concentration	0.05	0.05	0.05	20	0.1	7.525
B.	Central Landfarm Action Level	NA	NA	NA	2,500	NA	500
C.	ABRSC	0.2	50	50	2,500	50	500

Notes:

Bold concentration indicates exceedance of screening value. J+ - The result is an estimated value that may be biased high ABRSC - Alternate Beneficial Reuse Screening Concentration mg/kg - milligrams per kilogram

Location ID	Date Sampled	Benzene (mg/kg)	Carbon Tetrachloride (mg/kg)	Chloroform (mg/kg)	Dibromomethane (mg/kg)	1,1-Dichloroethane (mg/kg)
Central OCD-01-020515	02/05/15	ND(0.049)	ND(0.049)	ND(0.049)	ND(0.049)	ND(0.049)
Central OCD-02-020515	02/05/15	ND(0.046)	ND(0.046)	ND(0.046)	ND(0.046)	ND(0.046)
Central OCD-03-020515	02/05/15	ND(0.049)	ND(0.049)	ND(0.049)	ND(0.049)	ND(0.049)
Central OCD-04-020515	02/05/15	ND(0.049)	ND(0.049)	ND(0.049)	ND(0.049)	ND(0.049)

Baseline Concentration	0.05	0.1	0.05	0.1	0.1
Central Landfarm Action Level	NA	NA	NA	ŇÁ	NA
ADDCC	0.0	400	074	0.000	
ABRSC	0.2	199	0/1	0.002	6,880

Notes:

ABRSC - Alternate Beneficial Reuse Screening Concentration

Location ID	Date Sampled	1,2-Dichloroethane (mg/kg)	1,1-Dichloroethene (mg/kg)	Ethylbenzene (mg/kg)	Methylene Chloride (mg/kg)	1-Methylnaphthalene (mg/kg)
Central OCD-01-020515	02/05/15	ND(0.049)	ND(0.049)	ND(0.049)	ND(0.15)	ND(0.2)
Central OCD-02-020515	02/05/15	ND(0.046)	ND(0.046)	ND(0.046)	ND(0.14)	ND(0.18)
Central OCD-03-020515	02/05/15	ND(0.049)	ND(0.049)	ND(0.049)	ND(0.15)	ND(0.2)
Central OCD-04-020515	02/05/15	ND(0.049)	ND(0.049)	ND(0.049)	ND(0.15)	ND(0.2)

Baseline Concentration	0.05	0.05	0.05	0.15	0.2
Baseline Concentration	0.00	0.05	0.05	0.10	0.2
Central Landfarm Action Level	NA	NA	NA	NA	NA
ADDCC	754	1 920	50	40.000	0.0
ABRSC	/51	1,830	50	10,600	0.6

Notes:

ABRSC - Alternate Beneficial Reuse Screening Concentration

Location ID	Date Sampled	2-Methylnaphthalene (mg/kg)	Naphthalene (mg/kg)	Tetrachloroethene (mg/kg)	Toluene (mg/kg)	1,1,1-Trichloroethane (mg/kg)
Central OCD-01-020515	02/05/15	ND(0.2)	ND(0.098)	ND(0.049)	ND(0.049)	ND(0.049)
Central OCD-02-020515	02/05/15	ND(0.18)	ND(0.092)	ND(0.046)	ND(0.046)	ND(0.046)
Central OCD-03-020515	02/05/15	ND(0.2)	ND(0.099)	ND(0.049)	ND(0.049)	ND(0.049)
Central OCD-04-020515	02/05/15	ND(0.2)	ND(0.099)	ND(0.049)	ND(0.049)	ND(0.049)

Baseline Concentration	0.2	0.2	0.05	0.05	0.05
Central Landfarm Action Level	NA	NA	NA 338	NA	NA
ABRSC	0.6	702	338	50	64.300

Notes:

ABRSC - Alternate Beneficial Reuse Screening Concentration

Location ID	Date Sampled	1,1,2-Trichloroethane (mg/kg)	Trichloroethene (mg/kg)	Vinyl Chloride (mg/kg)	Xylenes, Total (mg/kg)
Central OCD-01-020515	02/05/15	ND(0.049)	ND(0.049)	ND(0.049)	ND(0.098)
Central OCD-02-020515	02/05/15	ND(0.046)	ND(0.046)	ND(0.046)	ND(0.092)
Central OCD-03-020515	02/05/15	ND(0.049)	ND(0.049)	ND(0.049)	ND(0.099)
Central OCD-04-020515	02/05/15	ND(0.049)	ND(0.049)	ND(0.049)	ND(0.099)

Baseline Concentration	0.05	0.05	0.05	0.1	
Central Landfarm Action Level	0.03 NA	A I A	NA	ŇÁ	
ADDOO	NA	NA 1 222		INA 50	
ABRSC	1,240	4,600	248	50	

Notes:

ABRSC - Alternate Beneficial Reuse Screening Concentration

Location ID	Date Sampled	Acenaphthene (mg/kg)	Acenaphthylene (mg/kg)	Anthracene (mg/kg)	Aroclor-1016 (mg/kg)	Aroclor-1221 (mg/kg)
Central OCD-01-020515	02/05/15	ND(0.2)	ND(0.2)	ND(0.2)	ND(0.02)	ND(0.02)
Central OCD-02-020515	02/05/15	ND(0.2)	ND(0.2)	ND(0.2)	ND(0.02)	ND(0.02)
Central OCD-03-020515	02/05/15	ND(0.2)	ND(0.2)	ND(0.2)	ND(0.02)	ND(0.02)
Central OCD-04-020515	02/05/15	ND(0.2)	ND(0.2)	ND(0.2)	ND(0.1)	ND(0.1)

Baseline Concentration	0.2	0.2	0.2	0.02	0.02
Central Landfarm Action Level	NA	NA	NA	NA	NA
ADDCC	10.000	0.0		15.0	74.0
ABRSC	18,600	0.6	66,800	15.3	71.3

Notes:

ABRSC - Alternate Beneficial Reuse Screening Concentration

Location ID	Date Sampled	Aroclor-1232 (mg/kg)	Aroclor-1242 (mg/kg)	Aroclor-1248 (mg/kg)	Aroclor-1254 (mg/kg)	Aroclor-1260 (mg/kg)
Central OCD-01-020515	02/05/15	ND(0.02)	ND(0.02)	ND(0.02)	ND(0.02)	ND(0.02)
Central OCD-02-020515	02/05/15	ND(0.02)	ND(0.02)	ND(0.02)	ND(0.02)	ND(0.02)
Central OCD-03-020515	02/05/15	ND(0.02)	ND(0.02)	ND(0.02)	ND(0.02)	ND(0.02)
Central OCD-04-020515	02/05/15	ND(0.1)	ND(0.1)	ND(0.1)	ND(0.1)	ND(0.1)

Baseline Concentration	0.02	0.02	0.02	0.02	0.02
Dascinic Contochilation	0.02		0.02	0.02	0.02
Central Landfarm Action Level	NA	NA	NA	NA	NA
ADDCC	74.0	75.0	75.0	4.00	75.0
ABROU	71.3	75.8	75.8	4.30	75.8

Notes:

ABRSC - Alternate Beneficial Reuse Screening Concentration

Location ID	Date Sampled	Benzo(a)anthracene (mg/kg)	Benzo(a)pyrene (mg/kg)	Benzo(b)fluoranthene (mg/kg)	Benzo(g,h,i)perylene (mg/kg)	Benzo(k)fluoranthene (mg/kg)
Central OCD-01-020515	02/05/15	ND(0.2)	ND(0.2)	ND(0.2)	ND(0.2)	ND(0.2)
Central OCD-02-020515	02/05/15	ND(0.2)	ND(0.2)	ND(0.2)	ND(0.2)	ND(0.2)
Central OCD-03-020515	02/05/15	ND(0.2)	ND(0.2)	ND(0.2)	ND(0.2)	ND(0.2)
Central OCD-04-020515	02/05/15	ND(0.2)	ND(0.2)	ND(0.2)	ND(0.2)	ND(0.2)

Baseline Concentration	0.2	0.2	0.2	0.2	0.2
Dascinic Concentration	0.2	0.2	0.2	0.2	0.2
Central Landfarm Action Level	NA	NA	NA	NA	NA
Contrar Landiam / totion Love		1 1// 1		147.4	
ABRSC	213	21.3	213	0.6	2,060

Notes:

ABRSC - Alternate Beneficial Reuse Screening Concentration

Location ID	Date Sampled	4-Chloro-3- methylphenol (mg/kg)	2-Chlorophenol (mg/kg)	Chrysene (mg/kg)	Dibenz(a,h)anthracene (mg/kg)	2,4-Dichlorophenol (mg/kg)
Central OCD-01-020515	02/05/15	ND(0.5)	ND(0.2)	ND(0.2)	ND(0.2)	ND(0.4)
Central OCD-02-020515	02/05/15	ND(0.49)	ND(0.2)	ND(0.2)	ND(0.2)	ND(0.4)
Central OCD-03-020515	02/05/15	ND(0.5)	ND(0.2)	ND(0.2)	ND(0.2)	ND(0.4)
Central OCD-04-020515	02/05/15	ND(0.5)	ND(0.2)	ND(0.2)	ND(0.2)	ND(0.4)

Baseline Concentration	0.5	0.2	0.2	0.2	0.4
	0.0	0.2	0.2	0.2	0.4
Central Landfarm Action Level	NA	NA	NA	NA	NA
ADDCC	0.1	1 550	20,600	21.3	715
ADROC	U. I	1,000	20.000	21.3	/ 10

Notes:

ABRSC - Alternate Beneficial Reuse Screening Concentration

Location ID	Date Sampled	2,4-Dimethylphenol (mg/kg)	2-Methyl-4,6- dinitrophenol (mg/kg)	2,4-Dinitrophenol (mg/kg)	Fluoranthene (mg/kg)	Fluorene (mg/kg)
Central OCD-01-020515	02/05/15	ND(0.3)	ND(0.5)	ND(0.5)	ND(0.2)	ND(0.2)
Central OCD-02-020515	02/05/15	ND(0.3)	ND(0.49)	ND(0.49)	ND(0.2)	ND(0.2)
Central OCD-03-020515	02/05/15	ND(0.3)	ND(0.5)	ND(0.5)	ND(0.2)	ND(0.2)
Central OCD-04-020515	02/05/15	ND(0.3)	ND(0.5)	ND(0.5)	ND(0.2)	ND(0.2)

Baseline Concentration	0.3	0.5	0.4	0.2	0.2
Dascinic Contochilation	0.0	0.0	0.7	0.2	0.2
Central Landfarm Action Level	NA	NA	NA	NA	NA
ADDCC	4,760	၁၁ ၀	476	0.010	9.010
ADROC	4,700	۷۵.0	4/0	0,910	0,910

Notes:

ABRSC - Alternate Beneficial Reuse Screening Concentration

Location ID	Date Sampled	Indeno(1,2,3-cd)pyrene (mg/kg)	1-Methylnaphthalene (mg/kg)	2-Methylnaphthalene (mg/kg)	2-Methylphenol (mg/kg)	3,4-Methylphenol (mg/kg)
Central OCD-01-020515	02/05/15	ND(0.2)	ND(0.2)	ND(0.2)	ND(0.5)	ND(0.2)
Central OCD-02-020515	02/05/15	ND(0.2)	ND(0.2)	ND(0.2)	ND(0.49)	ND(0.2)
Central OCD-03-020515	02/05/15	ND(0.2)	ND(0.2)	ND(0.2)	ND(0.5)	ND(0.2)
Central OCD-04-020515	02/05/15	ND(0.2)	ND(0.2)	ND(0.2)	ND(0.5)	ND(0.2)

Baseline Concentration	0.2	0.2	0.2	0.5	0.2
Dascille Concentration	0.2	0.2	0.2	0.0	0.2
Central Landfarm Action Level	NA	NA	NA	NA	NA
Contrar Earlaiann / totion Eovor		1 1/ 1	1 47 1	1 1// 1	1 17 1
ABRSC	213	0.6	0.6	0.1	0.1

Notes:

ABRSC - Alternate Beneficial Reuse Screening Concentration

Location ID	Date Sampled	Naphthalene (mg/kg)	2-Nitrophenol (mg/kg)	4-Nitrophenol (mg/kg)	Pentachlorophenol (mg/kg)	Phenanthrene (mg/kg)
Central OCD-01-020515	02/05/15	ND(0.2)	ND(0.2)	ND(0.25)	ND(0.4)	ND(0.2)
Central OCD-02-020515	02/05/15	ND(0.2)	ND(0.2)	ND(0.25)	ND(0.4)	ND(0.2)
Central OCD-03-020515	02/05/15	ND(0.2)	ND(0.2)	ND(0.25)	ND(0.4)	ND(0.2)
Central OCD-04-020515	02/05/15	ND(0.2)	ND(0.2)	ND(0.25)	ND(0.4)	ND(0.2)

Baseline Concentration	0.2	0.2	0.225	0.4	0.2
	0.2	0.2	0.220	0.4	0.2
Central Landfarm Action Level	NA	NA	NA	NA	NA
ARRSC	702	0.1	0.1	1 030	7,150
ADROC	102	0.1	0.1	1,030	7,130

Notes:

ABRSC - Alternate Beneficial Reuse Screening Concentration

TABLE 3. FEBRUARY 2015 VADOSE ZONE SOIL ANALYTICAL SUMMARY, SEMIVOLATILE ORGANIC COMPOUNDS, CENTRAL OCD LANDFARM WESTERN REFINING COMPANY SOUTHWEST, INC.

GALLUP REFINERY, GALLUP, NEW MEXICO

Location ID	Date Sampled	Phenol (mg/kg)	Pyrene (mg/kg)	2,4,5-Trichlorophenol (mg/kg)	2,4,6-Trichlorophenol (mg/kg)
Central OCD-01-020515	02/05/15	ND(0.2)	ND(0.2)	ND(0.2)	ND(0.2)
Central OCD-02-020515	02/05/15	ND(0.2)	ND(0.2)	ND(0.2)	ND(0.2)
Central OCD-03-020515	02/05/15	ND(0.2)	ND(0.2)	ND(0.2)	ND(0.2)
Central OCD-04-020515	02/05/15	ND(0.2)	ND(0.2)	ND(0.2)	ND(0.2)

Baseline Concentration	0.2	0.2	0.2	0.2	
	NIA	0.Z NIA	0.Z NIA	0.Z NA	
Central Landianni Action Level	NA	NA	NA	NA	
ABRSC	68,800	6,680	23,800	238	

Notes:

ABRSC - Alternate Beneficial Reuse Screening Concentration

Location ID	Date Sampled	Arsenic, Total (mg/kg)	Barium, Total (mg/kg)	Cadmium, Total (mg/kg)	Chromium, Total (mg/kg)	Copper, Total (mg/kg)
Central OCD-01-020515	02/05/15	ND(2.6)	210 J-	ND(0.1)	13 A.	3.7 A.
Central OCD-02-020515	02/05/15	ND(2.6)	760 J- ^{A.}	ND(0.1)	10	3.3 A.
Central OCD-03-020515	02/05/15	ND(2.4)	220 J-	ND(0.097)	12	3.6 A.
Central OCD-04-020515	02/05/15	ND(2.5)	250 J-	ND(0.1)	12	3.8 A.

A Baseline Concentration	13	365	0.5	12 7	2 95
B. Central Landfarm Action Level	NΛ		A 1 A	NIA	NA
	NA 07	NA 1070	NA	NA 117.000	
[©] ABRSC	65.4	4,350	309	447,000	12,400

Notes:

Bold concentration indicates that the detected value exceeds the screening value.

J- - The result is an estimated value that may be biased low

UJ - Estimated reporting limit ABRSC - Alternate Beneficial Reuse Screening Concentration

Location ID	Date Sampled	Iron, Total (mg/kg)		Lead, Total (mg/kg)	Manganese, Total (mg/kg)	Mercury, Total (mg/kg)	Selenium, Total (mg/kg)
Central OCD-01-020515	02/05/15	20000	A.	2.5 J-	360	ND(0.032)	ND(2.6) UJ
Central OCD-02-020515	02/05/15	16000		2.7 J-	370	ND(0.032)	ND(2.6) UJ
Central OCD-03-020515	02/05/15	18000	A.	3.2 J-	340	ND(0.035)	ND(2.4) UJ
Central OCD-04-020515	02/05/15	17000		6.2 J-	^{A.} 340	ND(0.032)	ND(2.5) UJ

A. Baseline Concentration	17,333.333	5.533	520	0.107	13
B. Central Landfarm Action Level	NA	NA	NA	NA	NA
^{c.} ABRSC	217,000	800	463	63.6	1,550

Notes:

Bold concentration indicates that the detected value exceeds the screening value.

J- - The result is an estimated value that may be biased low

UJ - Estimated reporting limit ABRSC - Alternate Beneficial Reuse Screening Concentration

Location ID	Date Sampled	Silver, Total (mg/kg)	Uranium, Total (mg/kg)	Zinc, Total (mg/kg)
Central OCD-01-020515	02/05/15	ND(0.26)	ND(5.2)	17
Central OCD-02-020515	02/05/15	ND(0.26)	ND(5.2)	14
Central OCD-03-020515	02/05/15	ND(0.24)	ND(4.9)	19
Central OCD-04-020515	02/05/15	ND(0.25)	ND(5.1)	22 A.

A. Baseline Concentration	1.3	43.75	21.333
B. Central Landfarm Action Level	NA	NA	NA
^{c.} ABRSC	1,550	929	92,900

Notes:

Bold concentration indicates that the detected value exceeds the screening value.

J- - The result is an estimated value that may be biased low
UJ - Estimated reporting limit
ABRSC - Alternate Beneficial Reuse Screening Concentration

Location ID	Date Sampled	Chloride (mg/kg)		Cyanide, Total (mg/kg)		DRO as Diesel (mg/kg)	Fluoride, Total (mg/kg)		GRO as Gasoline (mg/kg)
Central OCD-01-020515	02/05/15	290	A.	ND(0.31)		ND(10)	3	A.	ND(4.9)
Central OCD-02-020515	02/05/15	110	A.	ND(0.31)		ND(9.9)	4.3	A.	ND(4.6)
Central OCD-03-020515	02/05/15	300	Α.	ND(0.29)		ND(9.9)	3.4	A.	ND(4.9)
Central OCD-04-020515	02/05/15	260	A.	0.45	A.	54	5.9	A.	ND(4.9)

A. Baseline Concentration	7 525	O 425	NA	2 95	NA
B	7.525	0.720	14/1	2.33	14/1
Central Landfarm Action Level	500	NA	NA	NA	NA
C. ARRSC	500	6 100	NΙΛ	18 600	NA
ADIOC	300	0,190	INA	10,000	INA

Notes:

Bold concentration indicates that the detected value exceeds the screening value.

ABRSC - Alternate Beneficial Reuse Screening Concentration

mg/kg - milligrams per kilogram

pCi/L - picocuries per liter

J - Estimated concentration

J+ - The result is an estimated value that may be biased high

Location ID	Date Sampled	Nitrogen, Nitrate (mg/kg)	Radium 226 (pCi/L)	Radium 228 (pCi/L)	Sulfate (mg/kg)		Total Petroleum Hydrocarbon (mg/kg)
Central OCD-01-020515	02/05/15	2.7 J+	0.586±0.338	1.561±0.449	400	A.	ND(20)
Central OCD-02-020515	02/05/15	1.6 J+	1.24±0.264	1.514±0.382	700 J	A.	ND(20)
Central OCD-03-020515	02/05/15	16 J+	1.467±0.265	2.207±0.494	570	A.	ND(20)
Central OCD-04-020515	02/05/15	7.5 J+	1.48±0.372	1.854±0.591	750	A.	59 A.

A. Baseline Concentration	NΙΔ	NA	NΔ	21.5	20
_ baseline Concentration	NA	INA	INA	21.0	20
^B Central Landfarm Action Level	NΙΛ	NΙΛ	NΙΛ	NA	2 500
Central Landiann Action Level	NA	NA	INA	INA	2,300
C. ARPSC	NΔ	NΙΛ	NΙΛ	12.000	2 500
ABROC	INA	NA	INA	12,000	2,300

Notes:

Bold concentration indicates that the detected value exceeds the screening value.

ABRSC - Alternate Beneficial Reuse Screening Concentration

mg/kg - milligrams per kilogram

pCi/L - picocuries per liter

J - Estimated concentration

J+ - The result is an estimated value that may be biased high

ATTACHMENT A SEPTEMBER 16, 2014 ANALYTICAL DATA AND TIER II DATA VALIDATION

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

October 21, 2014

Ed Riege

Western Refining Southwest, Gallup 92 Giant Crossing Road Gallup, NM 87301

TEL: (505) 722-3833 FAX (505) 722-0210

RE: OCD Central Landfarm Semiannual Sampling OrderNo.: 1409874

Dear Ed Riege:

Hall Environmental Analysis Laboratory received 8 sample(s) on 9/16/2014 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

Andy Freeman

Laboratory Manager

andyl

4901 Hawkins NE

Albuquerque, NM 87109

Date Reported: 10/21/2014

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Gallup

Project: OCD Central Landfarm Semiannual Sam

Lab ID: 1409874-001

Matrix: SOIL

Client Sample ID: CentralOCD-01-9/16/14

Collection Date: 9/16/2014 11:10:00 AM

Received Date: 9/16/2014 5:03:00 PM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analyst	: JRR
Chloride	230	30	mg/Kg	20	9/19/2014 1:25:43 PM	15404
EPA METHOD 8260B: VOLATILES SHORT LIST			Analyst: RAA			
Benzene	ND	0.048	mg/Kg	1	9/20/2014 9:45:22 PM	15378
Toluene	ND	0.048	mg/Kg	1	9/20/2014 9:45:22 PM	15378
Ethylbenzene	ND	0.048	mg/Kg	1	9/20/2014 9:45:22 PM	15378
Xylenes, Total	ND	0.097	mg/Kg	1	9/20/2014 9:45:22 PM	15378
Surr: 1,2-Dichloroethane-d4	89.8	70-130	%REC	1	9/20/2014 9:45:22 PM	15378
Surr: 4-Bromofluorobenzene	85.8	70-130	%REC	1	9/20/2014 9:45:22 PM	15378
Surr: Dibromofluoromethane	95.5	70-130	%REC	1	9/20/2014 9:45:22 PM	15378
Surr: Toluene-d8	90.0	70-130	%REC	1	9/20/2014 9:45:22 PM	15378
EPA METHOD 418.1: TPH					Analyst	: ЈМЕ
Petroleum Hydrocarbons, TR	ND	20	mg/Kg	1	9/19/2014	15373

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 1 of 30

Date Reported: 10/21/2014

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Gallup Client Sample ID: CentralOCD-02-9/16/14 **Project:** OCD Central Landfarm Semiannual Sam Collection Date: 9/16/2014 10:30:00 AM Lab ID: 1409874-002 Matrix: SOIL Received Date: 9/16/2014 5:03:00 PM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analyst	:: JRR
Chloride	93	30	mg/Kg	20	9/19/2014 1:38:07 PM	15404
EPA METHOD 8260B: VOLATILES SHORT LIST					Analyst	: RAA
Benzene	ND	0.050	mg/Kg	1	9/20/2014 10:13:15 PM	1 15378
Toluene	ND	0.050	mg/Kg	1	9/20/2014 10:13:15 PM	1 15378
Ethylbenzene	ND	0.050	mg/Kg	1	9/20/2014 10:13:15 PM	1 15378
Xylenes, Total	ND	0.099	mg/Kg	1	9/20/2014 10:13:15 PM	1 15378
Surr: 1,2-Dichloroethane-d4	90.1	70-130	%REC	1	9/20/2014 10:13:15 PM	1 15378
Surr: 4-Bromofluorobenzene	80.6	70-130	%REC	1	9/20/2014 10:13:15 PM	1 15378
Surr: Dibromofluoromethane	93.4	70-130	%REC	1	9/20/2014 10:13:15 PM	1 15378
Surr: Toluene-d8	97.4	70-130	%REC	1	9/20/2014 10:13:15 PM	1 15378
EPA METHOD 418.1: TPH					Analyst	: JME
Petroleum Hydrocarbons, TR	1100	200	mg/Kg	10	9/19/2014	15373

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- Ε Value above quantitation range
- Analyte detected below quantitation limits
- RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- Spike Recovery outside accepted recovery limits
- Analyte detected in the associated Method Blank
- Η Holding times for preparation or analysis exceeded
- ND
- Not Detected at the Reporting Limit

Page 2 of 30

- P Sample pH greater than 2.
- RL Reporting Detection Limit

Date Reported: 10/21/2014

Hall Environmental Analysis Laboratory, Inc.

CLIENT:Western Refining Southwest, GallupClient Sample ID: CentralOCD-03-9/16/14Project:OCD Central Landfarm Semiannual SamCollection Date: 9/16/2014 9:55:00 AMLab ID:1409874-003Matrix: SOILReceived Date: 9/16/2014 5:03:00 PM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analys	: JRR
Chloride	120	30	mg/Kg	20	9/19/2014 1:50:32 PM	15404
EPA METHOD 8260B: VOLATILES SHORT LIST				Analys	t: RAA	
Benzene	ND	0.048	mg/Kg	1	9/20/2014 10:41:12 PM	1 15378
Toluene	ND	0.048	mg/Kg	1	9/20/2014 10:41:12 PM	1 15378
Ethylbenzene	ND	0.048	mg/Kg	1	9/20/2014 10:41:12 PM	1 15378
Xylenes, Total	ND	0.097	mg/Kg	1	9/20/2014 10:41:12 PM	1 15378
Surr: 1,2-Dichloroethane-d4	87.0	70-130	%REC	1	9/20/2014 10:41:12 PM	1 15378
Surr: 4-Bromofluorobenzene	78.9	70-130	%REC	1	9/20/2014 10:41:12 PM	1 15378
Surr: Dibromofluoromethane	88.2	70-130	%REC	1	9/20/2014 10:41:12 PM	1 15378
Surr: Toluene-d8	86.5	70-130	%REC	1	9/20/2014 10:41:12 PM	1 15378
EPA METHOD 418.1: TPH					Analys	t: JME
Petroleum Hydrocarbons, TR	ND	20	mg/Kg	1	9/19/2014	15373

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 3 of 30

- P Sample pH greater than 2.
- RL Reporting Detection Limit

Date Reported: 10/21/2014

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Gallup
 Project: OCD Central Landfarm Semiannual Sam
 Lab ID: 1409874-004
 Matrix: SOIL
 Client Sample ID: CentralOCD-04-9/16/14
 Collection Date: 9/16/2014 8:40:00 AM
 Received Date: 9/16/2014 5:03:00 PM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analyst	:: JRR
Chloride	870	30	mg/Kg	20	9/19/2014 3:04:58 PM	15404
EPA METHOD 8260B: VOLATILES SHORT LIST				Analyst	: RAA	
Benzene	ND	0.049	mg/Kg	1	9/20/2014 11:09:13 PM	1 15378
Toluene	ND	0.049	mg/Kg	1	9/20/2014 11:09:13 PM	1 15378
Ethylbenzene	ND	0.049	mg/Kg	1	9/20/2014 11:09:13 PM	1 15378
Xylenes, Total	ND	0.098	mg/Kg	1	9/20/2014 11:09:13 PM	1 15378
Surr: 1,2-Dichloroethane-d4	85.8	70-130	%REC	1	9/20/2014 11:09:13 PM	1 15378
Surr: 4-Bromofluorobenzene	76.4	70-130	%REC	1	9/20/2014 11:09:13 PM	1 15378
Surr: Dibromofluoromethane	89.3	70-130	%REC	1	9/20/2014 11:09:13 PM	1 15378
Surr: Toluene-d8	89.9	70-130	%REC	1	9/20/2014 11:09:13 PM	1 15378
EPA METHOD 418.1: TPH					Analyst	: JME
Petroleum Hydrocarbons, TR	92	20	mg/Kg	1	9/19/2014	15373

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 4 of 30

- P Sample pH greater than 2.
- RL Reporting Detection Limit

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 10/21/2014

CLIENT: Western Refining Southwest, Gallup

Project: OCD Central Landfarm Semiannual Sam

Collection Date: 9/16/2014

Lab ID: 1409874-005 **Matrix:** SOIL **Received Date:** 9/16/2014 5:03:00 PM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analys	t: JRR
Chloride	990	30	mg/Kg	20	9/19/2014 3:17:22 PM	15404
EPA METHOD 8260B: VOLATILES SHORT LIST					Analys	t: RAA
Benzene	ND	0.050	mg/Kg	1	9/21/2014 12:33:06 AM	1 15378
Toluene	ND	0.050	mg/Kg	1	9/21/2014 12:33:06 AN	1 15378
Ethylbenzene	ND	0.050	mg/Kg	1	9/21/2014 12:33:06 AN	1 15378
Xylenes, Total	ND	0.099	mg/Kg	1	9/21/2014 12:33:06 AM	1 15378
Surr: 1,2-Dichloroethane-d4	84.9	70-130	%REC	1	9/21/2014 12:33:06 AM	1 15378
Surr: 4-Bromofluorobenzene	84.0	70-130	%REC	1	9/21/2014 12:33:06 AM	1 15378
Surr: Dibromofluoromethane	93.0	70-130	%REC	1	9/21/2014 12:33:06 AM	1 15378
Surr: Toluene-d8	90.3	70-130	%REC	1	9/21/2014 12:33:06 AM	1 15378
EPA METHOD 418.1: TPH					Analys	t: JME
Petroleum Hydrocarbons, TR	39	20	mg/Kg	1	9/19/2014	15373

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 5 of 30

- P Sample pH greater than 2.
- RL Reporting Detection Limit

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 10/21/2014

CLIENT: Western Refining Southwest, Gallup

Project: OCD Central Landfarm Semiannual Sam

Lab ID: 1409874-006

Matrix: SOIL

Client Sample ID: CentralOCD-TZ-9/16/14

Collection Date: 9/16/2014 10:55:00 AM

Received Date: 9/16/2014 5:03:00 PM

Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 8082: PCB'S						Analyst	: SCC
Aroclor 1016	ND	0.20		mg/Kg	1	9/24/2014 9:38:29 AM	15379
Aroclor 1221	ND	0.20		mg/Kg	1	9/24/2014 9:38:29 AM	15379
Aroclor 1232	ND	0.20		mg/Kg	1	9/24/2014 9:38:29 AM	15379
Aroclor 1242	ND	0.20		mg/Kg	1	9/24/2014 9:38:29 AM	15379
Aroclor 1248	ND	0.20		mg/Kg	1	9/24/2014 9:38:29 AM	15379
Aroclor 1254	ND	0.20		mg/Kg	1	9/24/2014 9:38:29 AM	15379
Aroclor 1260	ND	0.20		mg/Kg	1	9/24/2014 9:38:29 AM	15379
Surr: Decachlorobiphenyl	0	37.2-143	S	%REC	1	9/24/2014 9:38:29 AM	15379
Surr: Tetrachloro-m-xylene	0	35.6-141	S	%REC	1	9/24/2014 9:38:29 AM	15379
EPA METHOD 8015D: DIESEL RANGE	ORGANICS					Analyst	: BCN
Diesel Range Organics (DRO)	1100	98		mg/Kg	10	9/22/2014 6:51:10 PM	15363
Surr: DNOP	0	57.9-140	S	%REC	10	9/22/2014 6:51:10 PM	15363
EPA METHOD 8015D: GASOLINE RAN	IGE					Analyst	: NSB
Gasoline Range Organics (GRO)	ND	4.6		mg/Kg	1	9/23/2014 11:51:20 AM	15378
Surr: BFB	82.8	80-120		%REC	1	9/23/2014 11:51:20 AM	15378
EPA METHOD 300.0: ANIONS						Analyst	: JRR
Fluoride	7.4	6.0		mg/Kg	20	9/19/2014 3:29:46 PM	15404
Chloride	130	30		mg/Kg	20	9/19/2014 3:29:46 PM	15404
Nitrogen, Nitrate (As N)	6.9	6.0		mg/Kg	20	9/19/2014 3:29:46 PM	15404
Sulfate	1000	30		mg/Kg	20	9/19/2014 3:29:46 PM	15404
EPA METHOD 7471: MERCURY						Analyst	: MMD
Mercury	0.062	0.033		mg/Kg	1	9/26/2014 11:16:27 AM	15505
EPA METHOD 6010B: SOIL METALS						Analyst	ELS
Arsenic	ND	2.5		mg/Kg	1	9/24/2014 2:46:09 PM	15465
Barium	340	0.20		mg/Kg	2	9/24/2014 2:47:32 PM	15465
Cadmium	ND	0.098		mg/Kg	1	9/24/2014 2:46:09 PM	15465
Chromium	10	0.29		mg/Kg	1	9/24/2014 2:46:09 PM	15465
Copper	10	0.29		mg/Kg	1	9/24/2014 2:46:09 PM	15465
Iron	16000	250		mg/Kg	100	9/24/2014 1:07:26 PM	15465
Lead	5.6	0.25		mg/Kg	1	9/24/2014 2:46:09 PM	15465
Manganese	370	0.20		mg/Kg	2	9/24/2014 2:47:32 PM	15465
Selenium	ND	2.5		mg/Kg	1	9/24/2014 2:46:09 PM	15465
Silver	ND	0.25		mg/Kg	1	9/24/2014 2:46:09 PM	15465
Uranium	ND	4.9		mg/Kg	1	9/25/2014 12:35:49 PM	
Zinc	31	2.5		mg/Kg	1	9/24/2014 2:46:09 PM	15465
EPA METHOD 8270C: SEMIVOLATILE	S					Analyst	: DAM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers: * Value exceeds Maximum Contaminant Level.

- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 6 of 30

- P Sample pH greater than 2.
- RL Reporting Detection Limit

Analytical ReportLab Order **1409874**

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 10/21/2014

CLIENT: Western Refining Southwest, Gallup

Project: OCD Central Landfarm Semiannual Sam

Lab ID: 1409874-006

Matrix: SOIL

Client Sample ID: Central OCD-TZ-9/16/14

Collection Date: 9/16/2014 10:55:00 AM

Received Date: 9/16/2014 5:03:00 PM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8270C: SEMIVOLAT	TILES				Analyst	: DAM
Acenaphthene	ND	2.0	mg/Kg	1	9/19/2014 5:59:33 PM	15370
Acenaphthylene	ND	2.0	mg/Kg	1	9/19/2014 5:59:33 PM	15370
Aniline	ND	2.0	mg/Kg	1	9/19/2014 5:59:33 PM	15370
Anthracene	ND	2.0	mg/Kg	1	9/19/2014 5:59:33 PM	15370
Azobenzene	ND	2.0	mg/Kg	1	9/19/2014 5:59:33 PM	15370
Benz(a)anthracene	ND	2.0	mg/Kg	1	9/19/2014 5:59:33 PM	15370
Benzo(a)pyrene	ND	2.0	mg/Kg	1	9/19/2014 5:59:33 PM	15370
Benzo(b)fluoranthene	ND	2.0	mg/Kg	1	9/19/2014 5:59:33 PM	15370
Benzo(g,h,i)perylene	ND	2.0	mg/Kg	1	9/19/2014 5:59:33 PM	15370
Benzo(k)fluoranthene	ND	2.0	mg/Kg	1	9/19/2014 5:59:33 PM	15370
Benzoic acid	ND	5.0	mg/Kg	1	9/19/2014 5:59:33 PM	15370
Benzyl alcohol	ND	2.0	mg/Kg	1	9/19/2014 5:59:33 PM	15370
Bis(2-chloroethoxy)methane	ND	2.0	mg/Kg	1	9/19/2014 5:59:33 PM	15370
Bis(2-chloroethyl)ether	ND	2.0	mg/Kg	1	9/19/2014 5:59:33 PM	15370
Bis(2-chloroisopropyl)ether	ND	2.0	mg/Kg	1	9/19/2014 5:59:33 PM	15370
Bis(2-ethylhexyl)phthalate	ND	5.0	mg/Kg	1	9/19/2014 5:59:33 PM	15370
4-Bromophenyl phenyl ether	ND	2.0	mg/Kg	1	9/19/2014 5:59:33 PM	15370
Butyl benzyl phthalate	ND	2.0	mg/Kg	1	9/19/2014 5:59:33 PM	15370
Carbazole	ND	2.0	mg/Kg	1	9/19/2014 5:59:33 PM	15370
4-Chloro-3-methylphenol	ND	5.0	mg/Kg	1	9/19/2014 5:59:33 PM	15370
4-Chloroaniline	ND	5.0	mg/Kg	1	9/19/2014 5:59:33 PM	15370
2-Chloronaphthalene	ND	2.5	mg/Kg	1	9/19/2014 5:59:33 PM	15370
2-Chlorophenol	ND	2.0	mg/Kg	1	9/19/2014 5:59:33 PM	15370
4-Chlorophenyl phenyl ether	ND	2.0	mg/Kg	1	9/19/2014 5:59:33 PM	15370
Chrysene	ND	2.0	mg/Kg	1	9/19/2014 5:59:33 PM	15370
Di-n-butyl phthalate	ND	5.0	mg/Kg	1	9/19/2014 5:59:33 PM	15370
Di-n-octyl phthalate	ND	4.0	mg/Kg	1	9/19/2014 5:59:33 PM	15370
Dibenz(a,h)anthracene	ND	2.0	mg/Kg	1	9/19/2014 5:59:33 PM	15370
Dibenzofuran	ND	2.0	mg/Kg	1	9/19/2014 5:59:33 PM	15370
1,2-Dichlorobenzene	ND	2.0	mg/Kg	1	9/19/2014 5:59:33 PM	15370
1,3-Dichlorobenzene	ND	2.0	mg/Kg	1	9/19/2014 5:59:33 PM	15370
1,4-Dichlorobenzene	ND	2.0	mg/Kg	1	9/19/2014 5:59:33 PM	15370
3,3'-Dichlorobenzidine	ND	2.5	mg/Kg	1	9/19/2014 5:59:33 PM	15370
Diethyl phthalate	ND	2.0	mg/Kg	1	9/19/2014 5:59:33 PM	15370
Dimethyl phthalate	ND	2.0	mg/Kg	1	9/19/2014 5:59:33 PM	15370
2,4-Dichlorophenol	ND	4.0	mg/Kg	1	9/19/2014 5:59:33 PM	15370
2,4-Dimethylphenol	ND	3.0	mg/Kg	1	9/19/2014 5:59:33 PM	15370
4,6-Dinitro-2-methylphenol	ND	5.0	mg/Kg	1	9/19/2014 5:59:33 PM	15370
2,4-Dinitrophenol	ND	5.0	mg/Kg	1	9/19/2014 5:59:33 PM	15370

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 7 of 30

- P Sample pH greater than 2.
- RL Reporting Detection Limit

Analytical Report

Lab Order **1409874**

Date Reported: 10/21/2014

Hall Environmental Analysis Laboratory, Inc.

Client Sample ID: CentralOCD-TZ-9/16/14 **Collection Date:** 9/16/2014 10:55:00 AM

CLIENT: Western Refining Southwest, Gallup **Project:** OCD Central Landfarm Semiannual Sam Lab ID: 1409874-006 Matrix: SOIL Received Date: 9/16/2014 5:03:00 PM

Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 8270C: SEMIVOLATILE	S					Analys	t: DAM
2,4-Dinitrotoluene	ND	5.0		mg/Kg	1	9/19/2014 5:59:33 PM	15370
2,6-Dinitrotoluene	ND	5.0		mg/Kg	1	9/19/2014 5:59:33 PM	15370
Fluoranthene	ND	2.0		mg/Kg	1	9/19/2014 5:59:33 PM	15370
Fluorene	ND	2.0		mg/Kg	1	9/19/2014 5:59:33 PM	15370
Hexachlorobenzene	ND	2.0		mg/Kg	1	9/19/2014 5:59:33 PM	15370
Hexachlorobutadiene	ND	2.0		mg/Kg	1	9/19/2014 5:59:33 PM	15370
Hexachlorocyclopentadiene	ND	2.0		mg/Kg	1	9/19/2014 5:59:33 PM	15370
Hexachloroethane	ND	2.0		mg/Kg	1	9/19/2014 5:59:33 PM	15370
Indeno(1,2,3-cd)pyrene	ND	2.0		mg/Kg	1	9/19/2014 5:59:33 PM	15370
Isophorone	ND	5.0		mg/Kg	1	9/19/2014 5:59:33 PM	15370
1-Methylnaphthalene	ND	2.0		mg/Kg	1	9/19/2014 5:59:33 PM	15370
2-Methylnaphthalene	ND	2.0		mg/Kg	1	9/19/2014 5:59:33 PM	15370
2-Methylphenol	ND	5.0		mg/Kg	1	9/19/2014 5:59:33 PM	15370
3+4-Methylphenol	ND	2.0		mg/Kg	1	9/19/2014 5:59:33 PM	15370
N-Nitrosodi-n-propylamine	ND	2.0		mg/Kg	1	9/19/2014 5:59:33 PM	15370
N-Nitrosodiphenylamine	ND	2.0		mg/Kg	1	9/19/2014 5:59:33 PM	15370
Naphthalene	ND	2.0		mg/Kg	1	9/19/2014 5:59:33 PM	15370
2-Nitroaniline	ND	2.0		mg/Kg	1	9/19/2014 5:59:33 PM	15370
3-Nitroaniline	ND	2.0		mg/Kg	1	9/19/2014 5:59:33 PM	15370
4-Nitroaniline	ND	4.0		mg/Kg	1	9/19/2014 5:59:33 PM	15370
Nitrobenzene	ND	5.0		mg/Kg	1	9/19/2014 5:59:33 PM	15370
2-Nitrophenol	ND	2.0		mg/Kg	1	9/19/2014 5:59:33 PM	15370
4-Nitrophenol	ND	2.5		mg/Kg	1	9/19/2014 5:59:33 PM	15370
Pentachlorophenol	ND	4.0		mg/Kg	1	9/19/2014 5:59:33 PM	15370
Phenanthrene	ND	2.0		mg/Kg	1	9/19/2014 5:59:33 PM	15370
Phenol	ND	2.0		mg/Kg	1	9/19/2014 5:59:33 PM	15370
Pyrene	ND	2.0		mg/Kg	1	9/19/2014 5:59:33 PM	15370
Pyridine	ND	5.0		mg/Kg	1	9/19/2014 5:59:33 PM	15370
1,2,4-Trichlorobenzene	ND	2.0		mg/Kg	1	9/19/2014 5:59:33 PM	15370
2,4,5-Trichlorophenol	ND	2.0		mg/Kg	1	9/19/2014 5:59:33 PM	15370
2,4,6-Trichlorophenol	ND	2.0		mg/Kg	1	9/19/2014 5:59:33 PM	15370
Surr: 2-Fluorophenol	0	21-111	S	%REC	1	9/19/2014 5:59:33 PM	15370
Surr: Phenol-d5	0	23.1-117	S	%REC	1	9/19/2014 5:59:33 PM	15370
Surr: 2,4,6-Tribromophenol	0	22.7-88.9	S	%REC	1	9/19/2014 5:59:33 PM	15370
Surr: Nitrobenzene-d5	0	24.5-126	S	%REC	1	9/19/2014 5:59:33 PM	15370
Surr: 2-Fluorobiphenyl	0	21.2-129	S	%REC	1	9/19/2014 5:59:33 PM	15370
Surr: 4-Terphenyl-d14	0	39.4-107	S	%REC	1	9/19/2014 5:59:33 PM	15370
EPA METHOD 8260B: VOLATILES						Analys	t: RAA
Benzene	ND	0.046		mg/Kg	1	9/21/2014 1:00:56 AM	15378

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- Ε Value above quantitation range
- Analyte detected below quantitation limits
- RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- Spike Recovery outside accepted recovery limits
- Analyte detected in the associated Method Blank
- Η Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 8 of 30

- P Sample pH greater than 2.
- RL Reporting Detection Limit

Analytical Report

Lab Order 1409874

Date Reported: 10/21/2014

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Gallup

Project: OCD Central Landfarm Semiannual Sam

Collection Date: 9/16/2014 10:55:00 AM

Lab ID: 1409874-006

Matrix: SOIL

Received Date: 9/16/2014 5:03:00 PM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analyst	: RAA
Toluene	ND	0.046	mg/Kg	1	9/21/2014 1:00:56 AM	15378
Ethylbenzene	ND	0.046	mg/Kg	1	9/21/2014 1:00:56 AM	15378
Methyl tert-butyl ether (MTBE)	ND	0.046	mg/Kg	1	9/21/2014 1:00:56 AM	15378
1,2,4-Trimethylbenzene	ND	0.046	mg/Kg	1	9/21/2014 1:00:56 AM	15378
1,3,5-Trimethylbenzene	ND	0.046	mg/Kg	1	9/21/2014 1:00:56 AM	15378
1,2-Dichloroethane (EDC)	ND	0.046	mg/Kg	1	9/21/2014 1:00:56 AM	15378
1,2-Dibromoethane (EDB)	ND	0.046	mg/Kg	1	9/21/2014 1:00:56 AM	15378
Naphthalene	ND	0.092	mg/Kg	1	9/21/2014 1:00:56 AM	15378
1-Methylnaphthalene	ND	0.18	mg/Kg	1	9/21/2014 1:00:56 AM	15378
2-Methylnaphthalene	ND	0.18	mg/Kg	1	9/21/2014 1:00:56 AM	15378
Acetone	ND	0.69	mg/Kg	1	9/21/2014 1:00:56 AM	15378
Bromobenzene	ND	0.046	mg/Kg	1	9/21/2014 1:00:56 AM	15378
Bromodichloromethane	ND	0.046	mg/Kg	1	9/21/2014 1:00:56 AM	15378
Bromoform	ND	0.046	mg/Kg	1	9/21/2014 1:00:56 AM	15378
Bromomethane	ND	0.14	mg/Kg	1	9/21/2014 1:00:56 AM	15378
2-Butanone	ND	0.46	mg/Kg	1	9/21/2014 1:00:56 AM	15378
Carbon disulfide	ND	0.46	mg/Kg	1	9/21/2014 1:00:56 AM	15378
Carbon tetrachloride	ND	0.046	mg/Kg	1	9/21/2014 1:00:56 AM	15378
Chlorobenzene	ND	0.046	mg/Kg	1	9/21/2014 1:00:56 AM	15378
Chloroethane	ND	0.092	mg/Kg	1	9/21/2014 1:00:56 AM	15378
Chloroform	ND	0.046	mg/Kg	1	9/21/2014 1:00:56 AM	15378
Chloromethane	ND	0.14	mg/Kg	1	9/21/2014 1:00:56 AM	15378
2-Chlorotoluene	ND	0.046	mg/Kg	1	9/21/2014 1:00:56 AM	15378
4-Chlorotoluene	ND	0.046	mg/Kg	1	9/21/2014 1:00:56 AM	15378
cis-1,2-DCE	ND	0.046	mg/Kg	1	9/21/2014 1:00:56 AM	15378
cis-1,3-Dichloropropene	ND	0.046	mg/Kg	1	9/21/2014 1:00:56 AM	15378
1,2-Dibromo-3-chloropropane	ND	0.092	mg/Kg	1	9/21/2014 1:00:56 AM	15378
Dibromochloromethane	ND	0.046	mg/Kg	1	9/21/2014 1:00:56 AM	15378
Dibromomethane	ND	0.046	mg/Kg	1	9/21/2014 1:00:56 AM	15378
1,2-Dichlorobenzene	ND	0.046	mg/Kg	1	9/21/2014 1:00:56 AM	15378
1,3-Dichlorobenzene	ND	0.046	mg/Kg	1	9/21/2014 1:00:56 AM	15378
1,4-Dichlorobenzene	ND	0.046	mg/Kg	1	9/21/2014 1:00:56 AM	15378
Dichlorodifluoromethane	ND	0.046	mg/Kg	1	9/21/2014 1:00:56 AM	15378
1,1-Dichloroethane	ND	0.046	mg/Kg	1	9/21/2014 1:00:56 AM	15378
1,1-Dichloroethene	ND	0.046	mg/Kg	1	9/21/2014 1:00:56 AM	15378
1,2-Dichloropropane	ND	0.046	mg/Kg	1	9/21/2014 1:00:56 AM	15378
1,3-Dichloropropane	ND	0.046	mg/Kg	1	9/21/2014 1:00:56 AM	15378
2,2-Dichloropropane	ND	0.092	mg/Kg	1	9/21/2014 1:00:56 AM	15378
1,1-Dichloropropene	ND	0.092	mg/Kg	1	9/21/2014 1:00:56 AM	15378

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- Page 9 of 30
- $P \hspace{0.5cm} \hbox{Sample pH greater than 2.} \\$
- RL Reporting Detection Limit

Analytical ReportLab Order **1409874**

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 10/21/2014

CLIENT: Western Refining Southwest, Gallup

Project: OCD Central Landfarm Semiannual Sam

Lab ID: 1409874-006

Matrix: SOIL

Client Sample ID: Central OCD-TZ-9/16/14

Collection Date: 9/16/2014 10:55:00 AM

Received Date: 9/16/2014 5:03:00 PM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analyst	: RAA
Hexachlorobutadiene	ND	0.092	mg/Kg	1	9/21/2014 1:00:56 AM	15378
2-Hexanone	ND	0.46	mg/Kg	1	9/21/2014 1:00:56 AM	15378
Isopropylbenzene	ND	0.046	mg/Kg	1	9/21/2014 1:00:56 AM	15378
4-Isopropyltoluene	ND	0.046	mg/Kg	1	9/21/2014 1:00:56 AM	15378
4-Methyl-2-pentanone	ND	0.46	mg/Kg	1	9/21/2014 1:00:56 AM	15378
Methylene chloride	ND	0.14	mg/Kg	1	9/21/2014 1:00:56 AM	15378
n-Butylbenzene	ND	0.14	mg/Kg	1	9/21/2014 1:00:56 AM	15378
n-Propylbenzene	ND	0.046	mg/Kg	1	9/21/2014 1:00:56 AM	15378
sec-Butylbenzene	ND	0.046	mg/Kg	1	9/21/2014 1:00:56 AM	15378
Styrene	ND	0.046	mg/Kg	1	9/21/2014 1:00:56 AM	15378
tert-Butylbenzene	ND	0.046	mg/Kg	1	9/21/2014 1:00:56 AM	15378
1,1,1,2-Tetrachloroethane	ND	0.046	mg/Kg	1	9/21/2014 1:00:56 AM	15378
1,1,2,2-Tetrachloroethane	ND	0.046	mg/Kg	1	9/21/2014 1:00:56 AM	15378
Tetrachloroethene (PCE)	ND	0.046	mg/Kg	1	9/21/2014 1:00:56 AM	15378
trans-1,2-DCE	ND	0.046	mg/Kg	1	9/21/2014 1:00:56 AM	15378
trans-1,3-Dichloropropene	ND	0.046	mg/Kg	1	9/21/2014 1:00:56 AM	15378
1,2,3-Trichlorobenzene	ND	0.092	mg/Kg	1	9/21/2014 1:00:56 AM	15378
1,2,4-Trichlorobenzene	ND	0.046	mg/Kg	1	9/21/2014 1:00:56 AM	15378
1,1,1-Trichloroethane	ND	0.046	mg/Kg	1	9/21/2014 1:00:56 AM	15378
1,1,2-Trichloroethane	ND	0.046	mg/Kg	1	9/21/2014 1:00:56 AM	15378
Trichloroethene (TCE)	ND	0.046	mg/Kg	1	9/21/2014 1:00:56 AM	15378
Trichlorofluoromethane	ND	0.046	mg/Kg	1	9/21/2014 1:00:56 AM	15378
1,2,3-Trichloropropane	ND	0.092	mg/Kg	1	9/21/2014 1:00:56 AM	15378
Vinyl chloride	ND	0.046	mg/Kg	1	9/21/2014 1:00:56 AM	15378
Xylenes, Total	ND	0.092	mg/Kg	1	9/21/2014 1:00:56 AM	15378
mp-Xylenes	ND	0.046	mg/Kg	1	9/21/2014 1:00:56 AM	15378
o-Xylene	ND	0.046	mg/Kg	1	9/21/2014 1:00:56 AM	15378
Surr: Dibromofluoromethane	88.8	70-130	%REC	1	9/21/2014 1:00:56 AM	15378
Surr: 1,2-Dichloroethane-d4	84.1	70-130	%REC	1	9/21/2014 1:00:56 AM	15378
Surr: Toluene-d8	94.7	70-130	%REC	1	9/21/2014 1:00:56 AM	15378
Surr: 4-Bromofluorobenzene	84.0	70-130	%REC	1	9/21/2014 1:00:56 AM	15378
EPA METHOD 418.1: TPH					Analyst	: JME
Petroleum Hydrocarbons, TR	1400	200	mg/Kg	10	9/19/2014	15373

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 10 of 30

- P Sample pH greater than 2.
- RL Reporting Detection Limit

Analytical Report

Lab Order 1409874

Date Reported: 10/21/2014

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Gallup Client Sample ID: EB-9/16/14

Project:OCD Central Landfarm Semiannual SamCollection Date: 9/16/2014 12:10:00 PMLab ID:1409874-007Matrix: AQUEOUSReceived Date: 9/16/2014 5:03:00 PM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8260: VOLATILES SH	HORT LIST				Analyst	: КЈН
Benzene	ND	1.0	μg/L	1	9/22/2014 3:33:56 PM	R21353
Toluene	ND	1.0	μg/L	1	9/22/2014 3:33:56 PM	R21353
Ethylbenzene	ND	1.0	μg/L	1	9/22/2014 3:33:56 PM	R21353
Xylenes, Total	ND	1.5	μg/L	1	9/22/2014 3:33:56 PM	R21353
Surr: 1,2-Dichloroethane-d4	94.5	70-130	%REC	1	9/22/2014 3:33:56 PM	R21353
Surr: 4-Bromofluorobenzene	104	70-130	%REC	1	9/22/2014 3:33:56 PM	R21353
Surr: Dibromofluoromethane	95.8	70-130	%REC	1	9/22/2014 3:33:56 PM	R21353
Surr: Toluene-d8	92.0	70-130	%REC	1	9/22/2014 3:33:56 PM	R21353

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit Page 11 of 30
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Analytical Report

Lab Order **1409874**Date Reported: **10/21/2014**

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Gallup Client Sample ID: FB-9/16/14

Project:OCD Central Landfarm Semiannual SamCollection Date: 9/16/2014 12:15:00 PMLab ID:1409874-008Matrix: AQUEOUSReceived Date: 9/16/2014 5:03:00 PM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8260: VOLATILES SH	HORT LIST				Analyst	: KJH
Benzene	ND	1.0	μg/L	1	9/22/2014 4:03:40 PM	R21353
Toluene	ND	1.0	μg/L	1	9/22/2014 4:03:40 PM	R21353
Ethylbenzene	ND	1.0	μg/L	1	9/22/2014 4:03:40 PM	R21353
Xylenes, Total	ND	1.5	μg/L	1	9/22/2014 4:03:40 PM	R21353
Surr: 1,2-Dichloroethane-d4	90.2	70-130	%REC	1	9/22/2014 4:03:40 PM	R21353
Surr: 4-Bromofluorobenzene	100	70-130	%REC	1	9/22/2014 4:03:40 PM	R21353
Surr: Dibromofluoromethane	89.9	70-130	%REC	1	9/22/2014 4:03:40 PM	R21353
Surr: Toluene-d8	88.8	70-130	%REC	1	9/22/2014 4:03:40 PM	R21353

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.

Page 12 of 30

RL Reporting Detection Limit

Anatek Labs, Inc.

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:

HALL ENVIRONMENTAL ANALYSIS LAB

Batch #:

140919029

Address:

4901 HAWKINS NE SUITE D ALBUQUERQUE, NM 87109

Project Name:

1409874

Sampling Time 10:55 AM

Attn:

ANDY FREEMAN

Analytical Results Report

Sample Number

140919029-001

9/16/2014 Sampling Date

Date/Time Received 9/19/2014 12:10 PM

Client Sample ID

1409874-006C / CENTRALOCD-TZ-9/16/14 Soil

Sample Location

Matrix Comments

Parameter	Result	Units	PQL	Analysis Date	Analyst	Method	Qualifier
Cyanide	ND	mg/Kg	0.285	9/29/2014	CRW	EPA 335.4	
%moisture	11.9	Percent		9/30/2014	KJS	%moisture	

Authorized Signature

John Coddington, Lab Manager

MCL

EPA's Maximum Contaminant Level

ND

Not Detected

PQL

Practical Quantitation Limit

This report shall not be reproduced except in full, without the written approval of the laboratory. The results reported relate only to the samples indicated.

Soil/solid results are reported on a dry-weight basis unless otherwise noted.

Anatek Labs, Inc.

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:

HALL ENVIRONMENTAL ANALYSIS LAB

Batch #:

140919029

Address:

4901 HAWKINS NE SUITE D ALBUQUERQUE, NM 87109

Project Name:

1409874

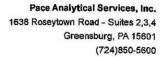
Attn:

ANDY FREEMAN

Analytical Results Report Quality Control Data

Lab Control Samp	le			20009							
Parameter		LCS Result	Units	LCS	Spike %	6Rec	AR	%Rec	Prep	Date	Analysis Date
Cyanide		0.502	mg/kg	9 0	5 1	00.4	90	-110	9/29/	2014	9/29/2014
Matrix Spike		- t							<u> </u>		
Sample Number Par	rameter		Sample Result	MS Result	Units		MS Spike	%Rec	AR %Rec	Prep Date	Analysis Date
STATE OF THE PARTY	anide		ND	12.7	mg/kg		14.1	90.1	90-110	9/29/2014	A CONTROL OF THE WAY OF THE PARTY.
Matrix Spike Dupli	cate		-			-574		2	×		
Parameter		MSD Result	Units	MSD Spike	%Re	r	%RPD	AR %RPD	Pro	p Date	Analysis Date
Cyanide		13.2	mg/kg	14.1	93.6		3.9	0-25		9/2014	9/29/2014
Method Blank			V-12						-		
Parameter			Re	sult	Uni	ts		PQL	Pr	ep Date	Analysis Date
Cyanide			N	ID	mg/l	(g		0.5	g	/29/2014	9/29/2014

AR


Acceptable Range

ND PQL Not Detected

Practical Quantitation Limit

RPD

Relative Percentage Difference

ANALYTICAL RESULTS - RADIOCHEMISTRY

Project:

1409874

Pace Project No.:

30129978

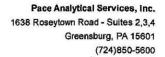
Sample: 1409874-006B CentralOCD-

Lab ID: 30129978001

Collected: 09/16/14 10:55 Received: 09/19/14 09:45 Matrix: Solid

TZ-9/1 PWS:

Site ID:


Sample Type:

Results reported on a "drv-weight" basis

Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 901.1	1.134 ± 0.247 (0.192) C:NA T:NA	pCi/g	10/19/14 13:48	13982-63-3	
Radium-228	EPA 901.1	0.748 ± 0.241 (0.417) C:NA T:NA	pCi/g	10/19/14 13:48	15262-20-1	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

QUALITY CONTROL - RADIOCHEMISTRY

Project:

1409874

Pace Project No.:

QC Batch Method:

30129978

QC Batch:

RADC/21509 EPA 901.1 Analysis Method:

EPA 901.1

Analysis Description:

901.1 Gamma Spec Ingrowth

Associated Lab Samples: 30129978001

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Hall Environmental Analysis Laboratory, Inc.

WO#: **1409874**

21-Oct-14

Client: Western Refining Southwest, Gallup

Project: OCD Central Landfarm Semiannual Sampling

Sample ID MB-15404 SampType: MBLK TestCode: EPA Method 300.0: Anions **PBS** Client ID: Batch ID: 15404 RunNo: 21343 9/19/2014 Analysis Date: 9/19/2014 Prep Date: SeqNo: 623059 Units: mg/Kg Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Fluoride ND 0.30 Chloride ND 1.5 Nitrogen, Nitrate (As N) ND 0.30 ND Sulfate 1.5

Sample ID LCS-15404	SampT	SampType: LCS			tCode: E					
Client ID: LCSS	Batch	Batch ID: 15404			RunNo: 2	1343				
Prep Date: 9/19/2014	Analysis D	Analysis Date: 9/19/2014		5	SeqNo: 623060			Units: mg/Kg		
Analyte	Result	Result PQL SPK value S		SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Fluoride	1.5	0.30	1.500	0	98.7	90	110			
Chloride	14	1.5	15.00	0	94.5	90	110			
Nitrogen, Nitrate (As N)	7.5	0.30	7.500	0	99.4	90	110			
Sulfate	29	1.5	30.00	0	97.1	90	110			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 13 of 30

Hall Environmental Analysis Laboratory, Inc.

WO#: **1409874**

21-Oct-14

Client: Western Refining Southwest, Gallup

Project: OCD Central Landfarm Semiannual Sampling

Sample ID MB-15373 SampType: MBLK TestCode: EPA Method 418.1: TPH

Client ID: **PBS** Batch ID: **15373** RunNo: **21288**

Prep Date: 9/18/2014 Analysis Date: 9/19/2014 SeqNo: 621284 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Petroleum Hydrocarbons, TR ND 20

Sample ID LCS-15373 SampType: LCS TestCode: EPA Method 418.1: TPH

Client ID: LCSS Batch ID: 15373 RunNo: 21288

Prep Date: 9/18/2014 Analysis Date: 9/19/2014 SeqNo: 621285 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Petroleum Hydrocarbons, TR 96 20 100.0 0 95.8 80 120

Sample ID 1409874-004AMS SampType: MS TestCode: EPA Method 418.1: TPH

Client ID: CentralOCD-04-9/16/ Batch ID: 15373 RunNo: 21288

Prep Date: 9/18/2014 Analysis Date: 9/19/2014 SeqNo: 621301 Units: mg/Kg

%REC POL SPK value SPK Ref Val LowLimit HighLimit %RPD **RPDLimit** Qual Analyte Result Petroleum Hydrocarbons, TR 230 20 98.33 91.89 139 S

Sample ID 1409874-004AMSD SampType: MSD TestCode: EPA Method 418.1: TPH

Client ID: CentralOCD-04-9/16/ Batch ID: 15373 RunNo: 21288

Prep Date: 9/18/2014 Analysis Date: 9/19/2014 SeqNo: 621302 Units: mg/Kg

Analyte Result **PQL** SPK value SPK Ref Val %REC I owl imit HighLimit %RPD **RPDLimit** Qual 80 35.2 Petroleum Hydrocarbons, TR 330 20 98.72 91.89 237 120 20 RS

Qualifiers:

Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

O RSD is greater than RSDlimit

R RPD outside accepted recovery limits

S Spike Recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

P Sample pH greater than 2.

RL Reporting Detection Limit

Page 14 of 30

Hall Environmental Analysis Laboratory, Inc.

WO#: 1409874

21-Oct-14

Client: Western Refining Southwest, Gallup

Project: OCD Central Landfarm Semiannual Sampling

Sample ID MB-15363 SampType: MBLK TestCode: EPA Method 8015D: Diesel Range Organics Client ID: **PBS** Batch ID: 15363 RunNo: 21269 Prep Date: 9/18/2014 Analysis Date: 9/18/2014 SeqNo: 620601 Units: mg/Kg Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Diesel Range Organics (DRO) 10 ND Surr: DNOP 10.00 100 57.9 10 140

Sample ID LCS-15363 SampType: LCS TestCode: EPA Method 8015D: Diesel Range Organics
Client ID: LCSS Batch ID: 15363 RunNo: 21269

Prep Date: 9/18/2014 Analysis Date: 9/18/2014 SeqNo: 620602 Units: mg/Kg

Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Diesel Range Organics (DRO) 62 10 50.00 125 68.6 130 Surr: DNOP 5.2 5.000 104 57.9 140

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 15 of 30

Hall Environmental Analysis Laboratory, Inc.

WO#: **1409874**

21-Oct-14

Client: Western Refining Southwest, Gallup

Project: OCD Central Landfarm Semiannual Sampling

Sample ID MB-15378 SampType: MBLK TestCode: EPA Method 8015D: Gasoline Range Client ID: **PBS** Batch ID: 15378 RunNo: 21342 Prep Date: 9/18/2014 Analysis Date: 9/22/2014 SeqNo: 623292 Units: mg/Kg Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Gasoline Range Organics (GRO) ND 5.0 1000 Surr: BFB 940 94.2 80 120 Sample ID LCS-15378 SampType: LCS TestCode: EPA Method 8015D: Gasoline Range

Client ID: LCSS Batch ID: 15378 RunNo: 21342 Analysis Date: 9/22/2014 Prep Date: 9/18/2014 SeqNo: 623293 Units: mg/Kg Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Gasoline Range Organics (GRO) 5.0 25.00 103 65.8 139 Surr: BFB 1000 1000 101 80 120

Sample ID 1409874-006AMS SampType: MS TestCode: EPA Method 8015D: Gasoline Range Client ID: CentralOCD-TZ-9/16 Batch ID: 15378 RunNo: 21342 Prep Date: 9/18/2014 Analysis Date: 9/22/2014 SeqNo: 623304 Units: mg/Kg SPK value SPK Ref Val %REC %RPD **RPDLimit** Analyte Result PQL LowLimit HighLimit Qual Gasoline Range Organics (GRO) 23 23.08 101 71.8 132 Surr: BFB 1000 923.4 120 110 80

SampType: MSD Sample ID 1409874-006AMSD TestCode: EPA Method 8015D: Gasoline Range Client ID: CentralOCD-TZ-9/16 Batch ID: 15378 RunNo: 21342 Analysis Date: 9/22/2014 Prep Date: 9/18/2014 SeqNo: 623305 Units: mg/Kg Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Gasoline Range Organics (GRO) 22 4.6 23.15 96.5 71.8 132 4.58 20 Λ Surr: BFB 1000 925.9 108 80 120 0 0

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 16 of 30

Hall Environmental Analysis Laboratory, Inc.

WO#: 1409874

21-Oct-14

Client: Western Refining Southwest, Gallup

Project: OCD Central Landfarm Semiannual Sampling

Sample ID MB-15379	Samp1	SampType: MBLK TestCode: EPA Method 8082: PCB's								
Client ID: PBS	Batcl	h ID: 15	379	RunNo: 21397						
Prep Date: 9/18/2014	Analysis D	Date: 9/	24/2014	\$	SeqNo: 6	25113	Units: mg/Kg			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Aroclor 1016	ND	0.020								
Aroclor 1221	ND	0.020								
Aroclor 1232	ND	0.020								
Aroclor 1242	ND	0.020								
Aroclor 1248	ND	0.020								
Aroclor 1254	ND	0.020								
Aroclor 1260	ND	0.020								
Surr: Decachlorobiphenyl	0.041		0.06250		65.2	37.2	143			
Surr: Tetrachloro-m-xylene	0.034		0.06250		54.8	35.6	141			
Sample ID LCS-15379	Samp	Гуре: LC	s	Tes	tCode: El	PA Method	8082: PCB's			
Client ID: LCSS	Batc	h ID: 15	379	F	RunNo: 2	1397				
Prep Date: 9/18/2014	Analysis [Date: 9/	24/2014	9	SeqNo: 6	25114	Units: mg/K	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Aroclor 1016	0.065	0.020	0.1250	0	52.1	34.7	146			
Aroclor 1260	0.085	0.020	0.1250	0	68.1	36.3	153			
Surr: Decachlorobiphenyl	0.040		0.06250		64.8	37.2	143			
Surr: Tetrachloro-m-xylene	0.035		0.06250		55.6	35.6	141			

Sample 10 LCS-15379 122	1_12 Samp1	pe: LC	3	res	Code: E	A Wethod	8082: PCB'S			
Client ID: LCSS	Batch	ID: 15	379	R	RunNo: 2	1397				
Prep Date: 9/18/2014	Analysis Da	ate: 9/ 2	24/2014	S	SeqNo: 62	26901	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Aroclor 1221	0.044	0.020	0.1250	0	35.4	70	130			S
Aroclor 1248	0.068	0.020	0.1250	0	54.4	70	130			S
Surr: Decachlorobiphenyl	0.037		0.06250		59.6	37.2	143			
Surr: Tetrachloro-m-xylene	0.035		0.06250		55.6	35.6	141			

Sample ID LCSD-15379 1221	SD	TestCode: EPA Method 8082: PCB's										
Client ID: LCSS02	379	R	RunNo: 2	1397								
Prep Date: 9/18/2014	ate: 9/18/2014 Analysis Date: 9/24/2014					26902	Units: mg/Kg					
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
Aroclor 1221	0.043	0.020	0.1250	0	34.2	70	130	3.45	20	S		
Aroclor 1248	0.069	0.020	0.1250	0	55.0	70	130	1.17	20	S		
Surr: Decachlorobiphenyl	0.037		0.06250		59.6	37.2	143	0	0			
Surr: Tetrachloro-m-xylene	0.034		0.06250		54.8	35.6	141	0	0			

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- Value above quantitation range Е
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- Spike Recovery outside accepted recovery limits
- Analyte detected in the associated Method Blank В
- Η Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- Reporting Detection Limit

Page 17 of 30

Hall Environmental Analysis Laboratory, Inc.

WO#: **1409874**

21-Oct-14

Client: Western Refining Southwest, Gallup

Project: OCD Central Landfarm Semiannual Sampling

Sample ID LCS-15379 1232	S	Tes	tCode: El	PA Method	8082: PCB's						
Client ID: LCSS	: LCSS Batch ID: 15379					1397					
Prep Date: 9/18/2014	Analysis D	ate: 9/	24/2014	8	SeqNo: 6	26903	Units: mg/Kg				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Aroclor 1232	0.081	0.020	0.1250	0	64.9	70	130			S	
Aroclor 1254	0.11	0.020	0.1250	0	86.7	70	130				
Surr: Decachlorobiphenyl	0.045		0.06250		71.6	37.2	143				
Surr: Tetrachloro-m-xylene	0.040		0.06250		63.2	35.6	141				

Sample ID LCSD-15379 1232_1 SampType: LCSD TestCode: EPA Method 8082: PCB's Client ID: LCSS02 Batch ID: 15379 RunNo: 21397 Prep Date: 9/18/2014 Analysis Date: 9/24/2014 SeqNo: 626904 Units: mg/Kg %REC **RPDLimit PQL** SPK value SPK Ref Val LowLimit HighLimit %RPD Analyte Result Qual Aroclor 1232 0.074 0.020 0.1250 0 59.0 70 130 9.49 20 S 0 0.093 0.020 74.3 70 20 Aroclor 1254 0.1250 130 15.4 Surr: Decachlorobiphenyl 0.042 0.06250 68.0 37.2 143 0 0 Surr: Tetrachloro-m-xylene 0.038 0.06250 61.2 35.6 n 0 141

Sample ID LCS-15379 1242 TestCode: EPA Method 8082: PCB's SampType: LCS Client ID: **LCSS** Batch ID: 15379 RunNo: 21397 Prep Date: 9/18/2014 Analysis Date: 9/24/2014 SeqNo: 626905 Units: mg/Kg Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Aroclor 1242 0.079 0.020 0.1250 0 63.1 70 130 S Surr: Decachlorobiphenyl 0.040 0.06250 64.4 37.2 143 Surr: Tetrachloro-m-xylene 0.036 0.06250 56.8 35.6 141

Sample ID LCSD-15379 1242 TestCode: EPA Method 8082: PCB's SampType: LCSD Client ID: LCSS02 Batch ID: 15379 RunNo: 21397 Prep Date: 9/18/2014 Analysis Date: 9/24/2014 SeqNo: 626906 Units: mg/Kg %RPD LowLimit **RPDLimit PQL** SPK value SPK Ref Val %REC HighLimit Qual Analyte Result 70 Aroclor 1242 0.088 0.020 0.1250 0 70.5 130 11.1 20 Surr: Decachlorobiphenyl 0.044 0.06250 70.8 37.2 143 0 0 Surr: Tetrachloro-m-xylene 0.038 0.06250 61.6 35.6 141 0 0

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 18 of 30

Hall Environmental Analysis Laboratory, Inc.

WO#: **1409874**

21-Oct-14

Client: Western Refining Southwest, Gallup

Project: OCD Central Landfarm Semiannual Sampling

Sample ID mb-15378 SampType: MBLK TestCode: EPA Method 8260B: Volatiles Client ID: **PBS** Batch ID: 15378 RunNo: 21355 Prep Date: 9/18/2014 Analysis Date: 9/20/2014 SeqNo: 623843 Units: mg/Kg Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Benzene ND 0.050 Toluene ND 0.050 ND Ethylbenzene 0.050 Methyl tert-butyl ether (MTBE) ND 0.050 1,2,4-Trimethylbenzene ND 0.050 1,3,5-Trimethylbenzene ND 0.050 1,2-Dichloroethane (EDC) ND 0.050 1,2-Dibromoethane (EDB) ND 0.050 Naphthalene ND 0.10 ND 1-Methylnaphthalene 0.20 2-Methylnaphthalene ND 0.20 ND 0.75 Acetone ND 0.050 Bromobenzene Bromodichloromethane ND 0.050 Bromoform ND 0.050 Bromomethane ND 0.15 2-Butanone ND 0.50 Carbon disulfide ND 0.50 Carbon tetrachloride ND 0.050 Chlorobenzene ND 0.050 ND Chloroethane 0.10 Chloroform ND 0.050 Chloromethane ND 0.15 2-Chlorotoluene ND 0.050 4-Chlorotoluene ND 0.050 cis-1,2-DCE ND 0.050 cis-1,3-Dichloropropene ND 0.050 1,2-Dibromo-3-chloropropane ND 0.10 Dibromochloromethane ND 0.050 ND 0.050 Dibromomethane ND 0.050 1.2-Dichlorobenzene ND 0.050 1,3-Dichlorobenzene 1.4-Dichlorobenzene ND 0.050 Dichlorodifluoromethane ND 0.050 1,1-Dichloroethane ND 0.050 1,1-Dichloroethene ND 0.050 ND 0.050 1,2-Dichloropropane 1,3-Dichloropropane ND 0.050 2,2-Dichloropropane ND 0.10

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 19 of 30

Hall Environmental Analysis Laboratory, Inc.

WO#: **1409874**

21-Oct-14

Client: Western Refining Southwest, Gallup

Project: OCD Central Landfarm Semiannual Sampling

Sample ID mb-15378	SampType: MBLK TestCode: EPA Method 8260B: Volatiles									
Client ID: PBS	Batch	n ID: 15 3	378	F	RunNo: 2	1355				
Prep Date: 9/18/2014	Analysis D	ate: 9/ 2	20/2014	S	SeqNo: 6	23843	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
1,1-Dichloropropene	ND	0.10								
Hexachlorobutadiene	ND	0.10								
2-Hexanone	ND	0.50								
Isopropylbenzene	ND	0.050								
4-Isopropyltoluene	ND	0.050								
4-Methyl-2-pentanone	ND	0.50								
Methylene chloride	ND	0.15								
n-Butylbenzene	ND	0.15								
n-Propylbenzene	ND	0.050								
sec-Butylbenzene	ND	0.050								
Styrene	ND	0.050								
tert-Butylbenzene	ND	0.050								
1,1,1,2-Tetrachloroethane	ND	0.050								
1,1,2,2-Tetrachloroethane	ND	0.050								
Tetrachloroethene (PCE)	ND	0.050								
trans-1,2-DCE	ND	0.050								
trans-1,3-Dichloropropene	ND	0.050								
1,2,3-Trichlorobenzene	ND	0.10								
1,2,4-Trichlorobenzene	ND	0.050								
1,1,1-Trichloroethane	ND	0.050								
1,1,2-Trichloroethane	ND	0.050								
Trichloroethene (TCE)	ND	0.050								
Trichlorofluoromethane	ND	0.050								
1,2,3-Trichloropropane	ND	0.10								
Vinyl chloride	ND	0.050								
Xylenes, Total	ND	0.10								
Surr: Dibromofluoromethane	0.42	00	0.5000		84.4	70	130			
Surr: 1,2-Dichloroethane-d4	0.41		0.5000		82.2	70	130			
Surr: Toluene-d8	0.47		0.5000		94.6	70	130			
Surr: 4-Bromofluorobenzene	0.37		0.5000		74.2	70	130			
Sample ID Ics-15378	SampT	ype: LC	S	Tes	tCode: E	PA Method	8260B: Volat	iles		
Client ID: LCSS	Batch	n ID: 153	378	F	RunNo: 2	1355				
Prep Date: 9/18/2014	Analysis D				SeqNo: 6		Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	0.96	0.050	1.000	0	96.0	70	130			

Qualifiers:

Chlorobenzene

Toluene

* Value exceeds Maximum Contaminant Level.

1.0

1.0

0.050

0.050

1.000

1.000

- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank

70

70

130

130

- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

101

101

P Sample pH greater than 2.

0

0

RL Reporting Detection Limit

Page 20 of 30

Hall Environmental Analysis Laboratory, Inc.

WO#: **1409874**

21-Oct-14

Client: Western Refining Southwest, Gallup

Project: OCD Central Landfarm Semiannual Sampling

Sample ID Ics-15378	SampT	ype: LC	s	Tes	tCode: El					
Client ID: LCSS	Batch	n ID: 15	378	R	RunNo: 2					
Prep Date: 9/18/2014	Analysis D	oate: 9/	20/2014	S	Units: mg/Kg					
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
1,1-Dichloroethene	1.1	0.050	1.000	0	105	60.5	160			
Trichloroethene (TCE)	0.92	0.050	1.000	0	91.5	58.8	139			
Surr: Dibromofluoromethane	0.44		0.5000		88.1	70	130			
Surr: 1,2-Dichloroethane-d4	0.41		0.5000		82.0	70	130			
Surr: Toluene-d8	0.44		0.5000		87.5	70	130			
Surr: 4-Bromofluorobenzene	0.42		0.5000		84.7	70	130			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 21 of 30

Hall Environmental Analysis Laboratory, Inc.

WO#: 1409874

21-Oct-14

Client: Western Refining Southwest, Gallup

Project: OCD Central Landfarm Semiannual Sampling

Sample ID mb-15378	Samp1	SampType: MBLK TestCode: EPA Method 8260B: Volatiles Short List									
Client ID: PBS	Batcl	h ID: 15	378	F	RunNo: 2	1355					
Prep Date: 9/18/2014	Analysis D	Date: 9/	20/2014	S	SeqNo: 6	23834	Units: mg/Kg				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Methyl tert-butyl ether (MTBE)	ND	0.050									
Benzene	ND	0.050									
1,2-Dichloroethane (EDC)	ND	0.050									
Toluene	ND	0.050									
Ethylbenzene	ND	0.050									
Xylenes, Total	ND	0.10									
1,2-Dibromoethane (EDB)	ND	0.050									
1,2,4-Trimethylbenzene	ND	0.050									
1,3,5-Trimethylbenzene	ND	0.050									
Naphthalene	ND	0.10									
2-Methylnaphthalene	ND	0.20									
1-Methylnaphthalene	ND	0.20									
Surr: 1,2-Dichloroethane-d4	0.41		0.5000		82.2	70	130				
Surr: 4-Bromofluorobenzene	0.37		0.5000		74.2	70	130				
Surr: Dibromofluoromethane	0.42		0.5000		84.4	70	130				
Surr: Toluene-d8	0.47		0.5000		94.6	70	130				

Sample ID	1409874-004ams	SampType: MS	TestCode: EPA Method 8260B: Volatiles Short List
01:	0 / 1000 04 0/40/	D / L ID 45000	D N 040FF

Client ID: CentralOCD-04-9/16/ Batch ID: 15378 RunNo: 21355

Prep Date: 9/18/2014	Analysis L)ate: 9/	20/2014	5	eqino: 6	23840	Units: mg/K	.g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	1.0	0.049	0.9794	0	104	32.2	145			
Toluene	0.98	0.049	0.9794	0	99.6	29.1	139			
Surr: 1,2-Dichloroethane-d4	0.43		0.4897		88.0	70	130			
Surr: 4-Bromofluorobenzene	0.38		0.4897		78.6	70	130			
Surr: Dibromofluoromethane	0.45		0.4897		92.3	70	130			
Surr: Toluene-d8	0.43		0.4897		87.0	70	130			

Sample ID 1409874-004amsd	I SampT	уре: МS	SD	TestCode: EPA Method 8260B: Volatiles Short List						
Client ID: CentralOCD-04-9/	16/ Batch	n ID: 15	378	RunNo: 21355						
Prep Date: 9/18/2014	Analysis D	ate: 9/	21/2014	SeqNo: 623841 Units: mg/Kg						
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	1.1	0.049	0.9814	0	108	32.2	145	3.73	20	
Toluene	0.99	0.049	0.9814	0	100	29.1	139	1.05	20	
Surr: 1,2-Dichloroethane-d4	0.42		0.4907		85.6	70	130	0	0	
Surr: 4-Bromofluorobenzene	0.40		0.4907		82.0	70	130	0	0	
Surr: Dibromofluoromethane	0.47		0.4907		95.0	70	130	0	0	
Surr: Toluene-d8	0.41		0.4907		84.2	70	130	0	0	

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- Е Value above quantitation range
- Analyte detected below quantitation limits J
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- Spike Recovery outside accepted recovery limits
- Analyte detected in the associated Method Blank В
- Η Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- Reporting Detection Limit

Page 22 of 30

Hall Environmental Analysis Laboratory, Inc.

WO#: **1409874**

21-Oct-14

Client: Western Refining Southwest, Gallup

Project: OCD Central Landfarm Semiannual Sampling

Sample ID Ics-15378 Client ID: LCSS	·	Гуре: LC h ID: 15 :			TestCode: EPA Method 8260B: Volatiles Short Li RunNo: 21355						
Prep Date: 9/18/2014	Analysis D	Date: 9/	20/2014	S	SeqNo: 6	25670	Units: mg/Kg				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Benzene	0.96	0.050	1.000	0	96.0	70	130				
Toluene	1.0	0.050	1.000	0	101	70	130				
Surr: 1,2-Dichloroethane-d4	0.41		0.5000		82.0	70	130				
Surr: 4-Bromofluorobenzene	0.42		0.5000		84.7	70	130				
Surr: Dibromofluoromethane	0.44		0.5000		88.1	70	130				
Surr: Toluene-d8	0.44		0.5000		87.5	70	130				

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 23 of 30

Hall Environmental Analysis Laboratory, Inc.

WO#: **1409874**

21-Oct-14

Client: Western Refining Southwest, Gallup

Project: OCD Central Landfarm Semiannual Sampling

Sample ID b3	SampT	ype: ME	BLK	TestCode: EPA Method 8260: Volatiles Short List						
Client ID: PBW	Batch	Batch ID: R21353			RunNo: 2	1353				
Prep Date:	Analysis D	ate: 9/	22/2014	5	SeqNo: 6	23722	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	1.0								
Toluene	ND	1.0								
Ethylbenzene	ND	1.0								
Xylenes, Total	ND	1.5								
mp-Xylenes	ND	1.0								
o-Xylene	ND	1.0								
Surr: 1,2-Dichloroethane-d4	9.0		10.00		90.0	70	130			
Surr: 4-Bromofluorobenzene	11		10.00		107	70	130			
Surr: Dibromofluoromethane	9.0		10.00		89.5	70	130			
Surr: Toluene-d8	8.7		10.00		87.0	70	130			

Sample ID 100ng lcs2	SampT	ype: LC	S	Tes	tCode: El	EPA Method 8260: Volatiles Short List						
Client ID: LCSW	Batch	n ID: R2	1353	F	RunNo: 2	1353						
Prep Date:	Analysis D	oate: 9/	/22/2014	9	SeqNo: 6	23723	Units: µg/L					
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
Benzene	21	1.0	20.00	0	107	70	130					
Toluene	18	1.0	20.00	0	91.1	80	120					
Surr: 1,2-Dichloroethane-d4	9.1		10.00		91.1	70	130					
Surr: 4-Bromofluorobenzene	10		10.00		104	70	130					
Surr: Dibromofluoromethane	9.0		10.00		90.2	70	130					
Surr: Toluene-d8	9.2		10.00		91.6	70	130					

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 24 of 30

Hall Environmental Analysis Laboratory, Inc.

WO#: **1409874**

21-Oct-14

Client: Western Refining Southwest, Gallup

Project: OCD Central Landfarm Semiannual Sampling

Sample ID mb-15370 SampType: MBLK TestCode: EPA Method 8270C: Semivolatiles Client ID: **PBS** Batch ID: 15370 RunNo: 21328 Prep Date: 9/18/2014 Analysis Date: 9/19/2014 SeqNo: 622393 Units: mg/Kg Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Acenaphthene ND 0.20 Acenaphthylene ND 0.20 ND 0.20 Aniline Anthracene ND 0.20 Azobenzene ND 0.20 Benz(a)anthracene ND 0.20 Benzo(a)pyrene ND 0.20 Benzo(b)fluoranthene ND 0.20 Benzo(q,h,i)perylene ND 0.20 ND 0.20 Benzo(k)fluoranthene Benzoic acid ND 0.50 ND 0.20 Benzyl alcohol Bis(2-chloroethoxy)methane ND 0.20 Bis(2-chloroethyl)ether ND 0.20 Bis(2-chloroisopropyl)ether ND 0.20 Bis(2-ethylhexyl)phthalate ND 0.50 4-Bromophenyl phenyl ether ND 0.20 Butyl benzyl phthalate ND 0.20 Carbazole ND 0.20 4-Chloro-3-methylphenol ND 0.50 4-Chloroaniline ND 0.50 2-Chloronaphthalene ND 0.25 2-Chlorophenol ND 0.20 4-Chlorophenyl phenyl ether ND 0.20 Chrysene ND 0.20 ND 0.50 Di-n-butyl phthalate Di-n-octyl phthalate ND 0.40 Dibenz(a,h)anthracene ND 0.20 Dibenzofuran ND 0.20 ND 0.20 1,2-Dichlorobenzene ND 0.20 1.3-Dichlorobenzene 1,4-Dichlorobenzene ND 0.20 3.3´-Dichlorobenzidine ND 0.25 Diethyl phthalate ND 0.20 Dimethyl phthalate ND 0.20 2,4-Dichlorophenol ND 0.40 2,4-Dimethylphenol ND 0.30 4,6-Dinitro-2-methylphenol ND 0.50 2,4-Dinitrophenol ND 0.50

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 25 of 30

Hall Environmental Analysis Laboratory, Inc.

WO#: **1409874**

21-Oct-14

Client: Western Refining Southwest, Gallup

Project: OCD Central Landfarm Semiannual Sampling

Sample ID mb-15370	SampT	ype: MBLK	Tes	stCode: EPA Method	l 8270C: Semivolatile	s	
Client ID: PBS	Batch	ID: 15370	ı	RunNo: 21328			
Prep Date: 9/18/2014	Analysis D	ate: 9/19/2014	;	SeqNo: 622393	Units: mg/Kg		
Analyte	Result	PQL SPK valu	e SPK Ref Val	%REC LowLimit	HighLimit %RPI	RPDLimit	Qual
2,4-Dinitrotoluene	ND	0.50					
2,6-Dinitrotoluene	ND	0.50					
Fluoranthene	ND	0.20					
Fluorene	ND	0.20					
Hexachlorobenzene	ND	0.20					
Hexachlorobutadiene	ND	0.20					
Hexachlorocyclopentadiene	ND	0.20					
Hexachloroethane	ND	0.20					
Indeno(1,2,3-cd)pyrene	ND	0.20					
Isophorone	ND	0.50					
1-Methylnaphthalene	ND	0.20					
2-Methylnaphthalene	ND	0.20					
2-Methylphenol	ND	0.50					
3+4-Methylphenol	ND	0.20					
N-Nitrosodi-n-propylamine	ND	0.20					
N-Nitrosodiphenylamine	ND	0.20					
Naphthalene	ND	0.20					
2-Nitroaniline	ND	0.20					
3-Nitroaniline	ND	0.20					
4-Nitroaniline	ND	0.40					
Nitrobenzene	ND	0.50					
2-Nitrophenol	ND	0.20					
4-Nitrophenol	ND	0.25					
Pentachlorophenol	ND	0.40					
Phenanthrene	ND	0.20					
Phenol	ND	0.20					
Pyrene	ND	0.20					
Pyridine	ND	0.50					
1,2,4-Trichlorobenzene	ND	0.20					
2,4,5-Trichlorophenol	ND	0.20					
2,4,6-Trichlorophenol	ND	0.20					
•			n	EQ 4 21	111		
Surr: 2-Fluorophenol Surr: Phenol-d5	1.9 2.3	3.33 3.33		58.4 21 69.7 23.1	111		
					117		
Surr: 2,4,6-Tribromophenol	2.4	3.33		70.8 22.7	88.9		
Surr: Nitrobenzene-d5	1.1	1.67		67.3 24.5	126		
Surr: 2-Fluorobiphenyl	1.2	1.67		74.2 21.2			
Surr: 4-Terphenyl-d14	1.4	1.67	U	81.0 39.4	107		

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 26 of 30

Hall Environmental Analysis Laboratory, Inc.

WO#: **1409874**

21-Oct-14

Client: Western Refining Southwest, Gallup

Project: OCD Central Landfarm Semiannual Sampling

Sample ID Ics-15370	SampT	SampType: LCS TestCode: EPA Method 8270C: Semivolatiles								
Client ID: LCSS	Batch	h ID: 15 3	370	F	RunNo: 21328					
Prep Date: 9/18/2014	Analysis D	Date: 9/	19/2014	S	SeqNo: 6	22394	Units: mg/k	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Acenaphthene	0.93	0.20	1.670	0	55.4	50.7	110			
4-Chloro-3-methylphenol	2.2	0.50	3.330	0	66.9	47.8	107			
2-Chlorophenol	2.2	0.20	3.330	0	66.6	45.7	108			
1,4-Dichlorobenzene	0.88	0.20	1.670	0	52.7	46.1	112			
2,4-Dinitrotoluene	0.80	0.50	1.670	0	47.8	44.9	114			
N-Nitrosodi-n-propylamine	0.81	0.20	1.670	0	48.5	38.7	128			
4-Nitrophenol	1.8	0.25	3.330	0	54.3	40.2	103			
Pentachlorophenol	1.6	0.40	3.330	0	48.5	32.9	94			
Phenol	2.2	0.20	3.330	0	64.8	44.1	109			
Pyrene	1.1	0.20	1.670	0	64.3	51.9	109			
1,2,4-Trichlorobenzene	0.92	0.20	1.670	0	55.3	49.5	115			
Surr: 2-Fluorophenol	1.8		3.330		54.4	21	111			
Surr: Phenol-d5	2.2		3.330		65.8	23.1	117			
Surr: 2,4,6-Tribromophenol	1.8		3.330		53.1	22.7	88.9			
Surr: Nitrobenzene-d5	1.1		1.670		64.4	24.5	126			
Surr: 2-Fluorobiphenyl	0.96		1.670		57.7	21.2	129			
Surr: 4-Terphenyl-d14	1.1		1.670		63.7	39.4	107			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 27 of 30

Hall Environmental Analysis Laboratory, Inc.

WO#: 1409874

21-Oct-14

Client: Western Refining Southwest, Gallup

Project: OCD Central Landfarm Semiannual Sampling

Sample ID MB-15505 SampType: MBLK TestCode: EPA Method 7471: Mercury

Client ID: PBS Batch ID: 15505 RunNo: 21480

Prep Date: 9/25/2014 Analysis Date: 9/26/2014 SeqNo: 628099 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Mercury ND 0.033

Sample ID LCS-15505 SampType: LCS TestCode: EPA Method 7471: Mercury

Client ID: LCSS Batch ID: 15505 RunNo: 21480

Prep Date: 9/25/2014 Analysis Date: 9/26/2014 SeqNo: 628100 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Mercury 0.17 0.033 0.1667 0 100 80 120

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 28 of 30

Hall Environmental Analysis Laboratory, Inc.

WO#: **1409874**

21-Oct-14

Client: Western Refining Southwest, Gallup

Project: OCD Central Landfarm Semiannual Sampling

Sample ID MB-15465	SampT	уре: МЕ	BLK	Tes	tCode: El	PA Method	6010B: Soil	Metals		
Client ID: PBS	Batch	n ID: 15	465	R	RunNo: 21420					
Prep Date: 9/23/2014	Analysis D	ate: 9/	24/2014	S	SeqNo: 6	25694	Units: mg/k	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Arsenic	ND	2.5								
Barium	ND	0.10								
Cadmium	ND	0.10								
Chromium	ND	0.30								
Copper	ND	0.30								
Iron	ND	2.5								
Lead	ND	0.25								
Manganese	ND	0.10								
Selenium	ND	2.5								
Silver	ND	0.25								
Zinc	ND	2.5								

Sample ID LCS-15465	SampT	ype: LC	s	Tes	tCode: El	PA Method	6010B: Soil	Metals		
Client ID: LCSS	Batch	1D: 15	465	R	RunNo: 2	1420				
Prep Date: 9/23/2014	Analysis D	ate: 9/	24/2014	S	SeqNo: 6	25695	Units: mg/k	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Arsenic	24	2.5	25.00	0	95.6	80	120			
Barium	25	0.10	25.00	0	99.2	80	120			
Cadmium	24	0.10	25.00	0	97.4	80	120			
Chromium	24	0.30	25.00	0	97.3	80	120			
Copper	28	0.30	25.00	0	110	80	120			
Iron	26	2.5	25.00	0	103	80	120			
Lead	24	0.25	25.00	0	97.8	80	120			
Manganese	25	0.10	25.00	0	101	80	120			
Selenium	24	2.5	25.00	0	95.5	80	120			
Silver	5.0	0.25	5.000	0	101	80	120			
Zinc	23	2.5	25.00	0	90.7	80	120			

Sample ID MB-15465	SampType: MBLK	TestCode: EPA Method	TestCode: EPA Method 6010B: Soil Metals					
Client ID: PBS	Batch ID: 15465	RunNo: 21466						
Prep Date: 9/23/2014	Analysis Date: 9/25/2014	SeqNo: 627397	Units: mg/Kg					
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit	HighLimit %RPD RPDLimit Qua	al				
Harabaa	ND FO							

Uranium ND 5.0

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 29 of 30

Hall Environmental Analysis Laboratory, Inc.

WO#: **1409874**

Qual

21-Oct-14

Client: Western Refining Southwest, Gallup

Project: OCD Central Landfarm Semiannual Sampling

Sample ID LCS-15465 SampType: LCS TestCode: EPA Method 6010B: Soil Metals

Client ID: LCSS Batch ID: 15465 RunNo: 21466

Prep Date: 9/23/2014 Analysis Date: 9/25/2014 SeqNo: 627398 Units: mg/Kg

Analyte **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** 24 25.00 0 97.1 80 Uranium 5.0 120

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 30 of 30

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87105

Sample Log-In Check List

TEL: 505-345-3975 FAX: 505-345-4107
Website: www.hallenvironmental.com

Client Name:	Western Refining Gallup	Work Order Number:	1409874		RcptNo:	1
Received by/date	te: <u>CS</u>	09/16/21				
Logged By:	Lindsay Mangin	9/16/2014 5:03:00 PM		of the state of		
Completed By:	Lindsay Mangin	9/18/2014 8:26:23 AM		July Hayso		
Reviewed By:	CS	09/18/14		000		
Chain of Cus	tody		***	***		
1. Custody sea	als intact on sample bottles?		Yes \square	No 🗆	Not Present	
2. Is Chain of C	Custody complete?		Yes 🗹	No 🗆	Not Present	
3. How was the	e sample delivered?		Client			
Log In						
4. Was an atte	empt made to cool the samp	les?	Yes 🗸	No \square	NA \square	
5. Were all san	mples received at a tempera	ture of >0° C to 6.0°C	Yes 🗹	No 🗆	NA 🗆	
6. Sample(s) in	n proper container(s)?		Yes 🗹	No \square		
7. Sufficient sa	imple volume for indicated to	est(s)?	Yes 🗸	No 🗆		
8. Are samples	(except VOA and ONG) pro	pperly preserved?	Yes 🗹	No 🗆		
9. Was preserv	vative added to bottles?		Yes	No 🗹	NA 🗆	
10.VOA vials ha	ave zero headspace?		Yes	No 🗆	No VOA Vials	
11, Were any sa	ample containers received b	roken?	Yes	No 🗹	# of preserved	
40 -					bottles checked	
Commence of the Commence of th	work match bottle labels? pancies on chain of custody)	Yes 🗸	No 📙	for pH: (<2 o	r >12 unless noted)
	s correctly identified on Chai		Yes 🗹	No 🗆	Adjusted?	
14. Is it clear wh	nat analyses were requested	?	Yes 🗹	No 🗆		
	ding times able to be met? customer for authorization.)		Yes 🗸	No 🗆	Checked by:	.0.
Special Hand	lling (if applicable)					
16. Was client n	notified of all discrepancies w	vith this order?	Yes 🗌	No 🗆	NA 🗹	٦
Persor	n Notified:	Date:		in a		
By Wh	nom:	Via: [eMail _	Phone Fax	In Person	
Regard		Anne di				
Client	Instructions:	11.11 to 11.			78 (144 (144 B) 24]
17. Additional re	emarks:					
18. Cooler Info		[_ :, : : 1	v <u>.</u>		
Cooler N	In Temp © Condition 1.1 Good	Seal Intact Seal No S	Seal Date	Signed By		
		Page 1 122221				

Client:	Wester	Refining	ı	. Standard	□ Rush														TOF		
			377 76 76 84	Project Name:					1 2		www.h	alle	nvir	onm	enta	l.com	ì				
Mailing	Address	:	Route 3 Box 7	OCD Central Land	farm Semian	nual Sampling		49	01 F	lawki	ns NE	- /	Albu	quei	rque,	NM	8710)9			
Gallup,	NM 873	01		Project #:				Te	el. 50)5-34	5-397	5	Fa	x 5	05-3	45-4	107				
Phone :	# :	505-722	-3833	697-039-004								Ar	naly	sis	Requ	ıest					
email o	r Fax#:	505-722	-0210	Project Manager:			hed						i e i							1	
QA/QC I	Package: dard	e e escada de la companya de la comp	☐ Level 4 (Full Validation)	Ed Riege			Zone List (see attached	(peq)	8015D												
Accredi		□ Other		Sampler: On Ice	X∕yes	□ No.	List (se	e attac	by												Siz
□ EDD	(Type)	Please p	provide EDD	Sample Temperati	.ire: /	10	ne	t (se	3RC	6				l							2
Date	Time	Matrix	Sample Request ID	Container Type and #	Preservativ e Type	HEALNO 14098734	Vadose Zo	NMAC List (see attached)	DRO and GRO	BTEX (8260)											Air Ruhhlas /Y
16/14	1110	soil	CentralOCD-01- <u>9/18/1</u> 4	4oz - 2	none	-001	Х														
18/14	1030	soil	GentralOCD-02-9/6/14	4oz - 2	none	-057	х												58 8 5		
18/14	0955	soil	CentralOCD-03- 9/18/14	4oz - 2	none	-603	Х														
18/14	1840	soil	CentralOCD-04-4/16/19	4oz - 2	none	-004	Х										П			П	_
16/14		soil	BD- <u>9/18/1</u> 4	4oz - 2	none	-005	X							Г							-
16/14	0955	soil	CentralOCD- <u>04</u> -9////4-MS	4oz - 2	none	-004	Х				Į.										_
IJ/JU	0900	soil	CentralOCD- <u>04</u> -9/16/14-MSD	4oz - 2	none	- 604	. X														
16/14	1055	soil	CentralOCD-TZ- <u>9/16//</u> 4	8oz - 3, 4oz - 1	none	-006	Х	Х	Х												
18/14	1210	water	EB- <u>9//6/1</u> 4	VOA - 3	HCL	-007				X											
18/14	1215	water	FB- <u>9//8//</u> 4	VOA - 3	HCL	-008				Х			,	1							
		water	Trip Blank	VOA - 3	HCL	-009	-			X	M	09	118	14							_
			-								0					<u></u>			Ц.,.		_
Date: ///// Date:	Time: 1450 Time:	Relinquish Relinquish	It her	Received by:	- 9-16	14 1450	Call	Gra	nt @	307	-745-7	7474	w/	que	stion	s. <u>V</u>	erify	that F) with r Report CBs n	ting	S
16-14	1703	A SUL		alline Sur 09/16/14 1703 DL of 0.02 m											rip		nK				
		if necessar	, samples submitted to Hall Environmental may	be subcontracted to other a	ocredited laboratori	es. This serves as notice of this	s poss	sibility.	Any s	ub-con	tracted d	lata w	ill be o	clearly	notate	ed on th	ie analy	ytical rep	ortry	cs/i	Ş

	Analyte	Analytical Method	Reporting Units	Requested Reporting Limit
	Fluoride	E300	mg/kg	0.3000
-	Nitrogen, Nitrate (As N)	E300	mg/kg	2.2000
-	Sulfate	E300	mg/kg	21.5000
-	*Radium-226	E901.1	pCi/g	1.3950
Т	*Radium-228	E901.1	pCi/g	1.2500
	Radium-226+Radium-228	E901.1	pCi/g	2.6450
1-	Arsenic	SW6010A	mg/kg	2.5000
悻─	Barium	SW6010A	mg/kg	1.0000
┿	Cadmium	SW6010A	mg/kg	0.1000
	Chromium	SW6010A	mg/kg mg/kg	0.3000
	Copper	SW6010A SW6010A		500,0000
₣─	Lead	SW6010A	mg/kg mg/kg	0.2500
┺	Manganese	SW6010A	mg/kg	1.0000
	Selenium	SW6010A	mg/kg	2.5000
Ĕ—	Silver	SW6010A	mg/kg	0.2500
	Uranium	SW6010A	mg/kg	5.0000
#	Zinc	SW6010A	mg/kg	2.5000
+-	Mercury	SW7471	mg/kg	0,0330
ı	Aroclor 1016	SW8082	nig/kg	0,0200
	Arodor 1221	SW8082	mg/kg	0.0200
	Aroclor 1232	SW8082	mg/kg	0.0200
	Aroclor 1242	SW8082	mg/kg	0.0200
	Aroclor 1248	SW8082	rng/kg	0.0200
	Aroclor 1254	SW8082	mg/kg	0.0200
	Aroclor 1260	SW8082	mg/kg	0.0200
	1,1,1-Trichloroethane	SW8260B	mg/kg	0.0480
	1,1,2-Trichloroethane	SW8260B	mg/kg	0.0480
	1,1-Dichloroethane	SW8260B	mg/kg	0.0970
L	1,1-Dichloroethene	SW8260B	rng/kg	0.0480
	1,2-Dichloroethane	SW8260B	mg/kg	0.0480
L	Carbon tetrachloride	SW82608	mg/kg	0.0970
L	Chloroform	SW8260B	mg/kg	0.0460
	Dibromomethane	SW8260B	mg/kg	0.1000
<u> </u>	Methylene chloride	SW8260B	mg/kg	0.1500
II—	Tetrachloroethene	SW8260B	mg/kg	0.0480
-	Trichloroethene	SW8260B	mg/kg	0.0480
—	Vinyl chloride	SW8260B	mg/kg	0.0480
	2,4,5-Trichlorophenol	SW8270C SW8270C	mg/kg	0.2000
	2,4,6-Trichlorophenol 2,4-Dichlorophenol	SW8270C	mg/kg mg/kg	0.4000
-	2,4-Dimethylphenol	SW8270C	mg/kg	0.3000
—	2,4-Dinitrophenol	SW8270C	mg/kg	0.4000
L	2-Chlorophenol	SW8270C	mg/kg	0.2000
1	2-Methylphenol	SW8270C	mg/kg	0.1000
	2-Nitrophenol	SW8270C	mg/kg	0.1000
	3+4-Methylphenol	SW8270C	mg/kg	0.1000
1	4,6-Dinitro-2-methylphenol	SW8270C	mg/kg	0.5000
	4-Chloro-3-methylphenol	SW8270C	mg/kg	0.1000
	4-Nitrophenol	SW8270C	mg/kg	0.1000
1	Pentachlorophenol	SW8270C	mg/kg	0.4000
	Phenol	SW8270C	mg/kg	0.2000
	1-Methylnaphthalene	SW82603	mg/kg	0.2000
	2-Methylnaphthalene	SW8260B	mg/kg	0.2000
l 🗆	Acenaphthene	SW8270C	mg/kg	0.2000
1 <u> </u>	Acenaphthylene	SW8270C	mg/kg	0.2000
	Anthracene	SW8270C	mg/kg	0.2000
\	Benzo(a)anthracene	SW/8270C	mg/kg	0.2000
<u> </u>	Benzo(a)pyrene	SW8270C	mg/kg	0.2000
1	Benzo(b)fluoranthene	SW8270C	mg/kg	0.2000
/ــــــ	Benzo(g,h,i)perylene	SW8270C	mg/kg	0.2000
(Benzo(k)fluoranthene	SW8270C	mg/kg	0.2000
\ <u></u>	Chrysene	SW8270C	mg/kg	0,2000
\	Dibenz(a,h)anthracene	SW8270C	mg/kg	0,2000
) 	Fluoranthene	SW8270C	mg/kg	0.2000
iI	Fluorene	SW8270C	mg/kg	0,2000
/—	Indeno(1,2,3-c,d)pyrene	SW8270C	mg/kg	0.2000
{	Naphthalene	SW8270C	mg/kg	0.2000
1-	Phenanthrene	SW8270C SW8270C	mg/kg	0.2000
1—	Pyrene Cyanide		mg/kg	0.2000
O.	esel Range Organics (DRO)	EPA 335.4 SW8015	mg/kg	12
	oor nange organics (DRO)	2440019	mg/kg	1.0

VADOSE ZONE ANALYTES AND REPORTING LIMITS, CENTRAL OIL CONSERVATION DIVISION LANDFARM WESTERN REFINING SOUTHWEST, GALLUP REFINERY, GALLUP, NEW MEXICO

Analyte	Analytical Method	Reporting Units	Requested Reporting Limit
Chloride	E300	mg/kg	30
Benzene	SW8260B	mg/kg	0.050
Ethylbenzene	SW8260B	mg/kg	0.050
Toluene	SW8260B	mg/kg	0.050
Xylenes, Total	SW8260B	mg/kg	0.100
Petroleum Hydrocarbons, TR	E418.1	mg/kg	20

Tier II Data Validation Report Summary

Client: Western Refining Southwest, Inc.	Laboratory: Hall Environmental Analysis Laboratory, Inc.							
Project Name: OCD Central Landfarm Semiannual Sampling	Sample Matrix: Soil							
Project Number: 697-039-005	Sample Start Date: 9/16/2014							
Date Validated: 12/23/2014	Sample End Date: 9/16/2014							

Parameters Included:

- Inorganic Anions by Environmental Protection Agency (EPA) Method 300.0
- Volatile Organic Compounds (VOC) by Solid Waste 846 (SW-846) Method 8260B
- Total Petroleum Hydrocarbons (TPH) by EPA Method 418.1
- Polychlorinated Biphenyls (PCBs) by EPA Method 8082
- Gasoline Range Organics (GRO) and Diesel Range Organics (DRO) by EPA Method 8015D
- Total Mercury by SW-846 Method 7471
- Total Metals by SW-846 Method 6010B
- Semivolatile Organic Compounds (SVOC) by SW-846 Method 8270C
- Total Cyanide by EPA Method 335.4
- Radium-226 and Radium-228 by EPA Method 901.1

Laboratory Project ID: 1409874

Data Validator: James Gianakon, Environmental Chemist

DATA EVALUATION CRITERIA SUMMARY

A Tier II Data Validation was performed by Trihydro Corporation's Chemical Data Evaluation Services Group on the analytical data report package generated by Hall Environmental Analysis Laboratory in Albuquerque, New Mexico, Anatek Labs, Inc. in Moscow, Idaho, and Pace Analytical Services, Inc. in Greensburg, Pennsylvania, evaluating samples from the Western Refining Southwest, Inc. site, located in Gallup, New Mexico.

Precision, accuracy, method compliance, and completeness of this data package were assessed during this data review. Precision was determined by evaluating the calculated relative percent difference (RPD) values from:

- Field duplicate pairs
- Matrix spike (MS) and matrix spike duplicate (MSD) pairs
- Laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) pairs

Laboratory accuracy was established by reviewing the demonstrated percent recoveries (%R) of the following items to verify that data are not biased.

- MS/MSD samples
- LCS/LCSD samples
- Organic system monitoring compounds (surrogates)

Field accuracy was established by collecting and analyzing the following samples to monitor for possible ambient or cross contamination during sampling and transportation.

- Field blanks
- Equipment blanks

Tier II Data Validation Report Summary

Method compliance was established by reviewing sample integrity, holding times, detection limits, surrogate recoveries, laboratory blanks, initial and continuing calibrations (where applicable), and the LCS/LCSD percent recoveries against method-specific requirements.

Completeness was evaluated by determining the overall ratio of the number of samples and analyses planned versus the number of samples with valid analyses. Determination of completeness included a review of the chain-of-custody (CoC), laboratory analytical methods, and other laboratory and field documents associated with this analytical data set.

١

Tier II Data Validation Report Summary

SAMPLE NUMBERS TABLE

Client Sample ID	Laboratory Sample Number
CentralOCD-01-9/16/14	1409874-001
CentralOCD-02-9/16/14	1409874-002
CentralOCD-03-9/16/14	1409874-003
CentralOCD-04-9/16/14	1409874-004
BD-9/16/14	1409874-005
CentralOCD-TZ-9/16/14	1409874-006/140919029-001/30129978001
EB-9/16/14	1409874-007
FB-9/16/14	1409874-008

Tier II Data Validation Report Summary

The laboratory data were reviewed to evaluate compliance with the methods and the quality of the reported data. Assessment of CoC completeness is included in Item 3 of the Data Validation Checklist. A check mark (\checkmark) indicates that the referenced validation criteria were deemed acceptable, whereas a crossed circle (\otimes) indicates validation criteria for which the data have been qualified by the data validator. An empty circle (\square indicates that the specified criterion does not apply to the reviewed data. Details are noted in the tables below.

Validation Criteria

\otimes	Data Completeness
✓	CoC Documentation (Item 3)
✓	Holding Times and Preservation (Items 6 and 7)
	Initial and Continuing Calibrations (Item 9)
✓	Laboratory Blanks (Item 10)
\otimes	MS/MSD (Item 12)
\otimes	LCS/LCSD (Item 14)
\otimes	System Monitoring Compounds (i.e., Surrogates) (Item 16)
✓	Field and Equipment Blanks (Item 17)
\otimes	Field Duplicates (Item 19)
П	Laboratory Duplicates (Item 21)

Guidance References

Chemical data validation was conducted in accordance with the United States Environmental Protection Agency (USEPA) Contract Laboratory Program (CLP) National Functional Guidelines for the analyses listed below, or by the appropriate method if not covered in the National Functional Guidelines.

- Data for organic analyses were evaluated according to validation criteria set forth in the USEPA CLP National Functional Guidelines for Superfund Organic Methods Data Review, document number EPA-540-R-014-002, August 2014 with additional reference to the USEPA CLP National Functional Guidelines for Organic Data Review, document number EPA 540/R-99/008, October 1999.
- Data for inorganic analyses were evaluated according to validation criteria set forth in the USEPA CLP National Functional Guidelines for Inorganic Superfund Data Review, document number EPA-540-R-013-001, August 2014 with additional reference to the USEPA CLP National Functional Guidelines for Inorganic Data Review, document number EPA 540-R-04-004, October 2004.
- Review of field duplicates was conducted according to the USEPA New England Environmental Data Review Supplement for Regional Data Review Elements and Superfund Specific Guidance/Procedures, EQADR-Supplement0, April 2013.
- The USEPA CLP National Functional Guidelines for Chlorinated Dibenzo-p-Dioxins (CDDs) and Chlorinated Dibenzofurans (CDFs) Data Review, document number EPA-540-R-11-016, September 2011, was referenced for review of CDDs and CDFs.
- Trihydro Data Validation Variance Documentation, September 2014.

Tier II Data Validation Report Summary

OVERALL DATA PACKAGE ASSESSMENT

Based on a data validation review, the data are acceptable as delivered. Data qualified by the laboratory are discussed in Item 2 of the Validation Criteria Checklist.

The purpose of validating data and assigning qualifiers is to assist in proper data interpretation. Data that are not qualified meet the site data quality objectives. If values are assigned qualifiers other than an R (rejected, data not usable), the data may be used for site evaluation; however, consideration should be given to the reasons for qualification when interpreting sample concentrations. Data points that are assigned an R qualifier should not be used for site evaluation purposes.

Text identified in **bold font** in the Validation Criteria Checklist indicates that further action and/or qualification of the data were required. Data were qualified with J data flags by the laboratory if the result was greater than or equal to the method detection limit (MDL) but less than the reporting limit (RL). Laboratory J flags were preserved in the data and included in the Data Qualification Summary table at the end of this report. Additional data validation qualifiers were added for the items noted with crossed circles in the Validation Criteria section above. Please see the Data Qualification Summary table at the end of this report for a complete list of samples and analytes qualified.

Data that would be qualified with more than one flag were assigned one qualifier based on the severity; however, all reasons for qualification were retained. The hierarchy of qualifiers from the most to least severe is as follows:

■ R > JB/U > NJ > J+/J- > J/UJ

Data that would be qualified with both J+ and J- flags were assigned one or the other based on the validation criteria involved. The hierarchy of validation criteria from higher to lower precedence is as follows:

Holding Time > Calibrations > Surrogates > LCS/LCSD > MS/MSD

Data qualifiers used during this validation are included in the following table.

Qualifier	<u>Definition</u>
J+	The result is an estimated concentration, but may be biased high
J-	The result is an estimated concentration, but may be biased low
UJ	Estimated reporting limit
R	Rejected, data not usable

Data Completeness

The analyses were performed as requested on the CoC records. The associated samples were received by the laboratory and analyzed properly unless otherwise noted in the Criteria Checklist below. The complete data package consisted of 198 data points excluding blank samples. Seventy-five data points were rejected. The data completeness measure for this data package is calculated to be 62.12% and is not acceptable.

1. Was the report free of non-conformances identified by the laboratory?

Yes

Comments: The laboratory did not report non-conformances related to this data set.

2. Were the data free of data qualification flags and/or notes used by the laboratory? If no, define.

No

Comments: The laboratory used the following data qualification flags in the laboratory report.

- S Spike Recovery outside accepted recover limits.
- R RPD outside accepted recovery limits.
- 3. Were sample CoC forms and procedures complete?

Yes

Comments: The CoC record from the field to the laboratory was complete and custody was maintained as evidenced by the field and laboratory personnel signatures, dates, and times of receipt.

4. Were detection limits in accordance with the quality assurance project plan (QAPP), permit, or method, or indicated as acceptable?

Yes

Comments: The detection limits appeared to be acceptable. The following dilutions were applied.

Method 300.0: A dilution factor of 20 times was applied for the inorganic anions analyses of the soil samples.

Method 418.1: A dilution factor of 10 times was applied for the TPH analysis of samples CentralOCD-02-9/16/14 and CentralOCD-TZ-9/16/14.

<u>Method 6010B</u>: Dilution factors of 2 to 100 times were applied for the total metals analyses of sample CentralOCD-TZ-9/16/14.

Method 8015D: A dilution factor of 10 times was applied for the DRO analysis of sample CentralOCD-TZ-9/16/14.

5. Were the reported analytical methods and constituents in compliance with the QAPP, permit, or CoC? Were any analytes reported by more than one method?

Yes

Comments: The reported analytical methods and constituents were found to be in compliance with the CoC.

6. Were samples received in good condition within method-specified requirements?

No

Comments: Samples were received on ice, intact, and in good condition, outside the temperature acceptance range of 4°C +/- 2°C at a temperature of 1.1°C as noted on the CoC and the Sample Log-In Checklist. The samples were not frozen and bottles were not broken; therefore, no further action was required. Custody seals were not present on the coolers or the sample containers because the samples were delivered directly to the laboratory by a member of the sampling team after sample collection and custody was maintained at all times.

7. Were samples extracted/digested and analyzed within method-specified or technical holding times?

Yes

Comments: Samples were extracted/digested and analyzed within the method specified holding times.

8. Were reported units appropriate for the sample matrix/matrices and analytical method(s)? Specify if wet or dry units were used for soil.

Yes

Comments: The results were reported in concentration units of milligrams per kilogram (mg/kg), picocurie per gram (pCi/g), and micrograms per liter (µg/L) which were acceptable for the sample matrices and the analyses requested. Analytical results for the soil samples were reported on an as-received, wet weight basis.

9. Was there indication from the laboratory that the initial or continuing calibration verification results were within acceptable limits?

N/A

Comments: Initial and continuing calibration data were not included as part of this data set. However, there data were assumed to be acceptable as the laboratory did not note that any calibration verification results were outside the acceptable limits.

10. Was the total number of laboratory blank samples prepared equal to at least 5% of the total number of samples or analyzed as required by the method?

Yes

Comments: The total number of laboratory blank samples prepared was equal to at least 5% of the total number of samples.

11. Were laboratory blank samples reported to be free of target analyte contamination?

Yes

Comments: The laboratory blank samples were reported to be free of target analyte contamination

12. Was the total number of MS samples prepared equal to at least 5% of the total number of samples or analyzed as required by the method?

Yes

Comments: The total number of matrix spike samples prepared was equal to at least 5% of the total number of samples. The matrix spike sample source for each analytical batch in this sample set has been indicated below.

Method	Analyte (s)	<u>Batch</u>	MS Sample Source
300.0	Inorganic Anions	24343	Not Prepared
418.1	TPH	15373	CentralOCD-04-9/16/14
8015D	DRO	15363	Not Prepared
8015D	GRO	15378	CentralOCD-TZ-9/16/14
8082	PCBs	15379	Not Prepared
8260B	VOCs	15378	CentralOCD-04-9/16/14
8260B	VOCs	R21353	Not Prepared
8270C	SVOCs	15370	Not Prepared
7471	Mercury	15505	Not Prepared
6010B	Total Metals	15465	Not Prepared
335.4	Cyanide	140919029	Not Associated

Not Associated – The MS sample source was not associated with this project. Not Prepared – Matrix spikes were not prepared for this batch.

13. Were MS/MSD percent recoveries and MS/MSD RPDs within data validation or laboratory quality control (QC) limits?

No

Comments: MS/MSD percent recoveries and MS/MSD RPDs were within data validation and laboratory QC limits, with the following exceptions.

The recoveries for petroleum hydrocarbons in the MS and MSD for Method 418.1 batch 15373 were outside the laboratory acceptance limits of 80-120% at 139% and 237%, respectively. The MS/MSD RPD for petroleum hydrocarbons was outside of the laboratory acceptance limit of 20% at 35.2%. Associated detections were assigned J+ qualifiers due to evidence of high bias and non-detections in associated samples were qualified UJ due to evidence of poor precision.

14. Was the total number of LCSs analyzed equal to at least 5% of the total number of samples or analyzed as required by the method?

Yes

Comments: The total number of LCS samples analyzed was equal to at least 5% of the total number of samples analyzed.

15. Were LCS/LCSD percent recoveries and LCS/LCSD RPDs within data validation or laboratory QC limits? No

Comments: The LCS/LCSD percent recoveries and LCS/LCSD RPDs were within data validation or laboratory QC limits with the following exceptions.

Method	Analyte	Patch	<u>LCS</u>	LCSD	LCS/LCSD
ivietriou	Analyte	<u>Batch</u>	Recovery	<u>Recovery</u>	QC Limits
8082	Aroclor 1221	15379	35.4%	34.2%	70-130%
8082	Aroclor 1248	15379	54.4%	55.0%	70-130%
8082	Aroclor 1232	15379	64.9%	59.0%	70-130%
8082	Aroclor 1242	15379	53.1%	Acceptable	70-130%

The identified target analytes were not detected in the associated sample in batch 15379, CentralOCD-TZ-9/16/14, and the results were assigned UJ qualifiers due to evidence of low bias.

16. Were surrogate recoveries within laboratory QC limits?

No

Comments: Surrogate recoveries were within laboratory QC limits with the following exceptions.

Method	<u>Surrogate</u>	<u>Sample</u>	Surrogate Recovery	QC Limits
8082	Decachlorobiphenyl	CentralOCD-TZ-9/16/14	0%	37.2-143%
8082	Tetrachloro-m-xylene	CentralOCD-TZ-9/16/14	0%	35.6-141%
8015D	DNOP	CentralOCD-TZ-9/16/14	0%	57.9-140%
8270C	2-Fluorophenol	CentralOCD-TZ-9/16/14	0%	21-111%
8270C	Phenol-d₅	CentralOCD-TZ-9/16/14	0%	23.1-117%
8270C	2,4,6-Tribromophenol	CentralOCD-TZ-9/16/14	0%	22.7-88.9%
8270C	Nitrobenzene-d₅	CentralOCD-TZ-9/16/14	0%	24.5-126%
8270C	2-Fluorobiphenyl	CentralOCD-TZ-9/16/14	0%	21.2-129%
8270C	4-Terphenyl-d ₁₄	CentralOCD-TZ-9/16/14	0%	39.4-107%

Sample CentralOCD-TZ-9/16/14 had a positive detection from TPH DRO, related to surrogate DNOP. The result was assigned a J- qualifier due to evidence of low bias.

The target analytes associated with the identified surrogates were not detected in the sample and the results were assigned R qualifiers due to evidence of low bias.

17. Were the number of trip blank, field blank, and/or equipment blank samples collected equal to at least 10% of the total number of samples or as required by the project guidelines, QAPP, SAP, or permit?

Yes

Comments: The number of trip blank, field blank, and equipment blank samples collected was equal to at least 10% of the total samples. One field blank sample, FB-9/16/14, and one equipment blank sample, EB-9/16/14, were collected as a part of this data set.

18. Were the field blank and/or equipment blank samples reported to be free of target analyte contamination?

Yes

Comments: The field blank and equipment blank samples were free of target analyte contamination.

19. Was the number of field duplicates collected equal to at least 10% of the total number of samples or as required by the project guidelines, QAPP, SAP, or permit?

Yes

Comments: The number of field duplicate samples collected was equal to at least 10% of the total number of samples. The sample BD-9/16/14 was collected as a duplicate for CentralOCD-04-9/16/14.

20. Were field duplicate RPD values within data validation QC limits (soil 0-50%, water 0-30%, or air 0-25%)?

No

Comments: As detailed in the Field Duplicate Summary Tables below, the field duplicate RPD values were within QC limits with the following exception.

The RPD value for petroleum hydrocarbons was greater than 50% at 80.9% and the parent and duplicate samples, CentralOCD-04-9/16/14 and BD-9/16/14, would have been assigned J qualifiers due to high RPD, but had previously been assigned J+ qualifiers due to evidence of high bias.

21. Were laboratory duplicate RPD values within laboratory QC limits?

N/A

Comments: Laboratory duplicate samples were not prepared as a part of this data set.

FIELD DUPLICATE SUMMARY

Client Sample ID: CentralOCD-04-9/16/14 Field Duplicate Sample ID: BD-9/16/14									
Method Analyte Laboratory Result (mg/kg) Method Method Method Method Method Analyte Method Method Method Analyte Method Method Method Analyte Laboratory Result (mg/kg) Method Method Method Method Method Analyte Method Met									
300.0	Chloride	870	990	12.9%					
418.1	Total Petroleum Hydrocarbons	92	39	80.9%					

Field duplicate RPD control limits are not to exceed 50% for soil as established by USEPA New England Environmental Data Review Supplement for Regional Data Review Elements and Superfund Specific Guidance/Procedures, EQADR-Supplement0, April 2013.

The RPD value for total petroleum hydrocarbons was greater than 50% at 80.9% and the parent and duplicate samples, CentralOCD-04-9/16/14 and BD-9/16/14, would have been assigned J qualifiers due to high RPD, but had previously been assigned J+ qualifiers due to evidence of high bias.

DATA QUALIFICATION SUMMARY

Abbreviation	Reason
LR -SUR	The surrogate percent recovery was less than the lower acceptable limit indicating a possible low bias.
HR-MS	The MS and/or MSD percent recovery was greater than the upper acceptable limit indicating possible matrix interference.
LR-LCS	The LCS and/or LCSD percent recovery was less than the lower acceptable limit indicating a possible low bias.
ERPD-MS	The MS/MSD RPD exceeded the upper acceptable limit indicating poor precision.
ERPD-FD	High field duplicate RPD.

Analyte	Method	Field Sample ID	Lab Sample ID	Result	Limit	Units	Reviewer Qualifier	DV Flag Reasons
1,2,4-Trichlorobenzene	SW8270C	CentralOCD-TZ-9/16/14	1409874-006a	ND	2	mg/kg	R	LR -SUR
1,2-Dichlorobenzene	SW8270C	CentralOCD-TZ-9/16/14	1409874-006a	ND	2	mg/kg	R	LR -SUR
1,3-Dichlorobenzene	SW8270C	CentralOCD-TZ-9/16/14	1409874-006a	ND	2	mg/kg	R	LR -SUR
1,4-Dichlorobenzene	SW8270C	CentralOCD-TZ-9/16/14	1409874-006a	ND	2	mg/kg	R	LR -SUR
1-Methylnaphthalene	SW8270C	CentralOCD-TZ-9/16/14	1409874-006a	ND	2	mg/kg	R	LR -SUR
2,2-oxybis(1-Chloropropane)	SW8270C	CentralOCD-TZ-9/16/14	1409874-006a	ND	2	mg/kg	R	LR -SUR
2,4,5-Trichlorophenol	SW8270C	CentralOCD-TZ-9/16/14	1409874-006a	ND	2	mg/kg	R	LR -SUR
2,4,6-Trichlorophenol	SW8270C	CentralOCD-TZ-9/16/14	1409874-006a	ND	2	mg/kg	R	LR -SUR
2,4-Dichlorophenol	SW8270C	CentralOCD-TZ-9/16/14	1409874-006a	ND	4	mg/kg	R	LR -SUR
2,4-Dimethylphenol	SW8270C	CentralOCD-TZ-9/16/14	1409874-006a	ND	3	mg/kg	R	LR -SUR
2,4-Dinitrophenol	SW8270C	CentralOCD-TZ-9/16/14	1409874-006a	ND	5	mg/kg	R	LR -SUR
2,4-Dinitrotoluene	SW8270C	CentralOCD-TZ-9/16/14	1409874-006a	ND	5	mg/kg	R	LR -SUR
2,6-Dinitrotoluene	SW8270C	CentralOCD-TZ-9/16/14	1409874-006a	ND	5	mg/kg	R	LR -SUR
2-Chloronaphthalene	SW8270C	CentralOCD-TZ-9/16/14	1409874-006a	ND	2.5	mg/kg	R	LR -SUR
2-Chlorophenol	SW8270C	CentralOCD-TZ-9/16/14	1409874-006a	ND	2	mg/kg	R	LR -SUR
2-Methylnaphthalene	SW8270C	CentralOCD-TZ-9/16/14	1409874-006a	ND	2	mg/kg	R	LR -SUR
2-Methylphenol	SW8270C	CentralOCD-TZ-9/16/14	1409874-006a	ND	5	mg/kg	R	LR -SUR
2-Nitroaniline	SW8270C	CentralOCD-TZ-9/16/14	1409874-006a	ND	2	mg/kg	R	LR -SUR
2-Nitrophenol	SW8270C	CentralOCD-TZ-9/16/14	1409874-006a	ND	2	mg/kg	R	LR -SUR

Analyte	Method	Field Sample ID	Lab Sample ID	Result	Limit	Units	Reviewer Qualifier	DV Flag Reasons
3,3-Dichlorobenzidine	SW8270C	CentralOCD-TZ-9/16/14	1409874-006a	ND	2.5	mg/kg	R	LR -SUR
3,4-Dimethylphenol	SW8270C	CentralOCD-TZ-9/16/14	1409874-006a	ND	2	mg/kg	R	LR -SUR
3-Nitroaniline	SW8270C	CentralOCD-TZ-9/16/14	1409874-006a	ND	2	mg/kg	R	LR -SUR
4,6-Dinitro-2-methylphenol	SW8270C	CentralOCD-TZ-9/16/14	1409874-006a	ND	5	mg/kg	R	LR -SUR
4-Bromophenyl-phenylether	SW8270C	CentralOCD-TZ-9/16/14	1409874-006a	ND	2	mg/kg	R	LR -SUR
4-Chloro-3-Methylphenol	SW8270C	CentralOCD-TZ-9/16/14	1409874-006a	ND	5	mg/kg	R	LR -SUR
4-Chloroaniline	SW8270C	CentralOCD-TZ-9/16/14	1409874-006a	ND	5	mg/kg	R	LR -SUR
4-Chlorophenyl-phenylether	SW8270C	CentralOCD-TZ-9/16/14	1409874-006a	ND	2	mg/kg	R	LR -SUR
4-Nitroaniline	SW8270C	CentralOCD-TZ-9/16/14	1409874-006a	ND	4	mg/kg	R	LR -SUR
4-Nitrophenol	SW8270C	CentralOCD-TZ-9/16/14	1409874-006a	ND	2.5	mg/kg	R	LR -SUR
Acenaphthene	SW8270C	CentralOCD-TZ-9/16/14	1409874-006a	ND	2	mg/kg	R	LR -SUR
Acenaphthylene	SW8270C	CentralOCD-TZ-9/16/14	1409874-006a	ND	2	mg/kg	R	LR -SUR
Aniline	SW8270C	CentralOCD-TZ-9/16/14	1409874-006a	ND	2	mg/kg	R	LR -SUR
Anthracene	SW8270C	CentralOCD-TZ-9/16/14	1409874-006a	ND	2	mg/kg	R	LR -SUR
Azobenzene	SW8270C	CentralOCD-TZ-9/16/14	1409874-006a	ND	2	mg/kg	R	LR -SUR
Benzo(a)anthracene	SW8270C	CentralOCD-TZ-9/16/14	1409874-006a	ND	2	mg/kg	R	LR -SUR
Benzo(a)pyrene	SW8270C	CentralOCD-TZ-9/16/14	1409874-006a	ND	2	mg/kg	R	LR -SUR
Benzo(b)fluoranthene	SW8270C	CentralOCD-TZ-9/16/14	1409874-006a	ND	2	mg/kg	R	LR -SUR
Benzo(g,h,i)perylene	SW8270C	CentralOCD-TZ-9/16/14	1409874-006a	ND	2	mg/kg	R	LR -SUR
Benzo(k)fluoranthene	SW8270C	CentralOCD-TZ-9/16/14	1409874-006a	ND	2	mg/kg	R	LR -SUR
Benzoic Acid	SW8270C	CentralOCD-TZ-9/16/14	1409874-006a	ND	5	mg/kg	R	LR -SUR
Benzyl Alcohol	SW8270C	CentralOCD-TZ-9/16/14	1409874-006a	ND	2	mg/kg	R	LR -SUR
Bis(2-chloroethoxy)methane	SW8270C	CentralOCD-TZ-9/16/14	1409874-006a	ND	2	mg/kg	R	LR -SUR
Bis(2-chloroethyl)ether	SW8270C	CentralOCD-TZ-9/16/14	1409874-006a	ND	2	mg/kg	R	LR -SUR
Bis(2-ethylhexyl)phthalate	SW8270C	CentralOCD-TZ-9/16/14	1409874-006a	ND	5	mg/kg	R	LR -SUR
Butylbenzylphthalate	SW8270C	CentralOCD-TZ-9/16/14	1409874-006a	ND	2	mg/kg	R	LR -SUR
Carbazole	SW8270C	CentralOCD-TZ-9/16/14	1409874-006a	ND	2	mg/kg	R	LR -SUR

Analyte	Method	Field Sample ID	Lab Sample ID	Result	Limit	Units	Reviewer Qualifier	DV Flag Reasons
Chrysene	SW8270C	CentralOCD-TZ-9/16/14	1409874-006a	ND	2	mg/kg	R	LR -SUR
Dibenzo(a,h)anthracene	SW8270C	CentralOCD-TZ-9/16/14	1409874-006a	ND	2	mg/kg	R	LR -SUR
Dibenzofuran	SW8270C	CentralOCD-TZ-9/16/14	1409874-006a	ND	2	mg/kg	R	LR -SUR
Diethylphthalate	SW8270C	CentralOCD-TZ-9/16/14	1409874-006a	ND	2	mg/kg	R	LR -SUR
Dimethylphthalate	SW8270C	CentralOCD-TZ-9/16/14	1409874-006a	ND	2	mg/kg	R	LR -SUR
Di-n-butylphthalate	SW8270C	CentralOCD-TZ-9/16/14	1409874-006a	ND	5	mg/kg	R	LR -SUR
Di-n-octylphthalate	SW8270C	CentralOCD-TZ-9/16/14	1409874-006a	ND	4	mg/kg	R	LR -SUR
Fluoranthene	SW8270C	CentralOCD-TZ-9/16/14	1409874-006a	ND	2	mg/kg	R	LR -SUR
Fluorene	SW8270C	CentralOCD-TZ-9/16/14	1409874-006a	ND	2	mg/kg	R	LR -SUR
Hexachlorobenzene	SW8270C	CentralOCD-TZ-9/16/14	1409874-006a	ND	2	mg/kg	R	LR -SUR
Hexachlorobutadiene	SW8270C	CentralOCD-TZ-9/16/14	1409874-006a	ND	2	mg/kg	R	LR -SUR
Hexachlorocyclopentadiene	SW8270C	CentralOCD-TZ-9/16/14	1409874-006a	ND	2	mg/kg	R	LR -SUR
Hexachloroethane	SW8270C	CentralOCD-TZ-9/16/14	1409874-006a	ND	2	mg/kg	R	LR -SUR
Indeno(1,2,3-cd)pyrene	SW8270C	CentralOCD-TZ-9/16/14	1409874-006a	ND	2	mg/kg	R	LR -SUR
Isophorone	SW8270C	CentralOCD-TZ-9/16/14	1409874-006a	ND	5	mg/kg	R	LR -SUR
Naphthalene	SW8270C	CentralOCD-TZ-9/16/14	1409874-006a	ND	2	mg/kg	R	LR -SUR
Nitrobenzene	SW8270C	CentralOCD-TZ-9/16/14	1409874-006a	ND	5	mg/kg	R	LR -SUR
N-Nitrosodi-n-propylamine	SW8270C	CentralOCD-TZ-9/16/14	1409874-006a	ND	2	mg/kg	R	LR -SUR
N-Nitrosodiphenylamine	SW8270C	CentralOCD-TZ-9/16/14	1409874-006a	ND	2	mg/kg	R	LR -SUR
PCB-1016	SW8082	CentralOCD-TZ-9/16/14	1409874-006A	ND	0.2	mg/kg	R	LR -SUR
PCB-1221	SW8082	CentralOCD-TZ-9/16/14	1409874-006A	ND	0.2	mg/kg	R	LR -SUR, LR-LCS
PCB-1232	SW8082	CentralOCD-TZ-9/16/14	1409874-006A	ND	0.2	mg/kg	R	LR -SUR, LR-LCS
PCB-1242	SW8082	CentralOCD-TZ-9/16/14	1409874-006A	ND	0.2	mg/kg	R	LR -SUR, LR-LCS
PCB-1248	SW8082	CentralOCD-TZ-9/16/14	1409874-006A	ND	0.2	mg/kg	R	LR -SUR, LR-LCS
PCB-1254	SW8082	CentralOCD-TZ-9/16/14	1409874-006A	ND	0.2	mg/kg	R	LR -SUR
PCB-1260	SW8082	CentralOCD-TZ-9/16/14	1409874-006A	ND	0.2	mg/kg	R	LR -SUR
Pentachlorophenol	SW8270C	CentralOCD-TZ-9/16/14	1409874-006a	ND	4	mg/kg	R	LR -SUR

Analyte	Method	Field Sample ID	Lab Sample ID	Result	Limit	Units	Reviewer Qualifier	DV Flag Reasons
Phenanthrene	SW8270C	CentralOCD-TZ-9/16/14	1409874-006a	ND	2	mg/kg	R	LR -SUR
Phenol	SW8270C	CentralOCD-TZ-9/16/14	1409874-006a	ND	2	mg/kg	R	LR -SUR
Pyrene	SW8270C	CentralOCD-TZ-9/16/14	1409874-006a	ND	2	mg/kg	R	LR -SUR
Pyridine	SW8270C	CentralOCD-TZ-9/16/14	1409874-006a	ND	5	mg/kg	R	LR -SUR
Total Petroleum Hydrocarbons	E418.1	CentralOCD-02-9/16/14	1409874-002A	1100	200	mg/kg	J+	ERPD-MS, HR-MS
Total Petroleum Hydrocarbons	E418.1	CentralOCD-TZ-9/16/14	1409874-006A	1400	200	mg/kg	J+	ERPD-MS, HR-MS
Total Petroleum Hydrocarbons	E418.1	CentralOCD-01-9/16/14	1409874-001A	ND	20	mg/kg	UJ	ERPD-MS
Total Petroleum Hydrocarbons	E418.1	CentralOCD-03-9/16/14	1409874-003A	ND	20	mg/kg	UJ	ERPD-MS
Total Petroleum Hydrocarbons	E418.1	CentralOCD-04-9/16/14	1409874-004A	92	20	mg/kg	J+	ERPD-FD, ERPD- MS, HR-MS
Total Petroleum Hydrocarbons	E418.1	BD-9/16/14	1409874-005A	39	20	mg/kg	J+	ERPD-FD, ERPD- MS, HR-MS
TPH DRO	SW8015	CentralOCD-TZ-9/16/14	1409874-006A	1100	98	mg/kg	J-	LR -SUR

ATTACHMENT B FEBRUARY 5, 2015 ANALYTICAL DATA AND TIER II DATA VALIDATION

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

March 09, 2015

Ed Riege

Western Refining Southwest, Gallup 92 Giant Crossing Road Gallup, NM 87301

TEL: (505) 722-3833 FAX (505) 722-0210

RE: OCD Central Landfarm Semiannual Sampling OrderNo.: 1502324

Dear Ed Riege:

Hall Environmental Analysis Laboratory received 8 sample(s) on 2/6/2015 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

Andy Freeman

Laboratory Manager

andyl

4901 Hawkins NE

Albuquerque, NM 87109

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Gallup

Project: OCD Central Landfarm Semiannual Sam

Collection Date: 2/5/2015 1:30:00 PM

Lab ID: 1502324-001

Matrix: SOIL

Received Date: 2/6/2015 4:35:00 PM

Analyses	Result	RL Q	ual Units	DF	Date Analyzed	Batch
EPA METHOD 8082: PCB'S					Analyst	: SCC
Aroclor 1016	ND	0.020	mg/Kg	1	2/12/2015 3:20:56 PM	17661
Aroclor 1221	ND	0.020	mg/Kg	1	2/12/2015 3:20:56 PM	17661
Aroclor 1232	ND	0.020	mg/Kg	1	2/12/2015 3:20:56 PM	17661
Aroclor 1242	ND	0.020	mg/Kg	1	2/12/2015 3:20:56 PM	17661
Aroclor 1248	ND	0.020	mg/Kg	1	2/12/2015 3:20:56 PM	17661
Aroclor 1254	ND	0.020	mg/Kg	1	2/12/2015 3:20:56 PM	17661
Aroclor 1260	ND	0.020	mg/Kg	1	2/12/2015 3:20:56 PM	17661
Surr: Decachlorobiphenyl	65.2	37.5-161	%REC	1	2/12/2015 3:20:56 PM	17661
Surr: Tetrachloro-m-xylene	56.8	28.1-149	%REC	1	2/12/2015 3:20:56 PM	17661
EPA METHOD 8015D: DIESEL RANG	E ORGANICS				Analyst	:: JME
Diesel Range Organics (DRO)	ND	10	mg/Kg	1	2/10/2015 2:06:15 PM	17621
Motor Oil Range Organics (MRO)	ND	50	mg/Kg	1	2/10/2015 2:06:15 PM	17621
Surr: DNOP	103	63.5-128	%REC	1	2/10/2015 2:06:15 PM	17621
EPA METHOD 8015D: GASOLINE RA	NGE				Analyst	: NSB
Gasoline Range Organics (GRO)	ND	4.9	mg/Kg	1	2/10/2015 5:44:45 PM	17626
Surr: BFB	90.4	80-120	%REC	1	2/10/2015 5:44:45 PM	17626
EPA METHOD 300.0: ANIONS					Analyst	:: LGT
Fluoride	3.0	0.30	mg/Kg	1	2/11/2015 5:21:36 PM	17685
Chloride	290	30	mg/Kg	20	2/11/2015 5:34:01 PM	17685
Nitrogen, Nitrate (As N)	2.7	0.30	mg/Kg	1	2/11/2015 5:21:36 PM	17685
Sulfate	400	30	mg/Kg	20	2/11/2015 5:34:01 PM	17685
EPA METHOD 7471: MERCURY					Analyst	:: MMD
Mercury	ND	0.032	mg/Kg	1	2/11/2015 1:44:04 PM	17645
EPA METHOD 6010B: SOIL METALS					Analyst	:: ELS
Arsenic	ND	2.6	mg/Kg	1	2/11/2015 11:04:27 AM	17644
Barium	210	0.10	mg/Kg	1	2/11/2015 11:04:27 AM	17644
Cadmium	ND	0.10	mg/Kg	1	2/11/2015 11:04:27 AM	17644
Chromium	13	0.31	mg/Kg	1	2/11/2015 11:04:27 AM	17644
Copper	3.7	0.31	mg/Kg	1	2/11/2015 11:04:27 AM	17644
Iron	20000	100	mg/Kg	100	2/12/2015 8:49:00 AM	17644
Lead	2.5	0.26	mg/Kg	1	2/11/2015 11:04:27 AM	17644
Manganese	360	0.21	mg/Kg	2	2/11/2015 11:05:57 AM	17644
Selenium	ND	2.6	mg/Kg	1	2/11/2015 11:04:27 AM	
Silver	ND	0.26	mg/Kg	1	2/11/2015 11:04:27 AM	-
Uranium	ND	5.2	mg/Kg	1	2/11/2015 11:04:27 AM	-
Zinc	17	2.6	mg/Kg	1	2/11/2015 11:04:27 AM	l 17644

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
 - Page 1 of 46
- P Sample pH Not In Range
- RL Reporting Detection Limit

Lab Order **1502324**

Date Reported: 3/9/2015

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Gallup Client Sample ID: Central OCD-01-2/5/2015

Project:OCD Central Landfarm Semiannual SamCollection Date: 2/5/2015 1:30:00 PMLab ID:1502324-001Matrix: SOILReceived Date: 2/6/2015 4:35:00 PM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8270C: SEMIVOLAT	TILES				Analyst	: DAM
Acenaphthene	ND	0.20	mg/Kg	1	2/11/2015 10:18:36 AM	17635
Acenaphthylene	ND	0.20	mg/Kg	1	2/11/2015 10:18:36 AM	17635
Aniline	ND	0.20	mg/Kg	1	2/11/2015 10:18:36 AM	17635
Anthracene	ND	0.20	mg/Kg	1	2/11/2015 10:18:36 AM	17635
Azobenzene	ND	0.20	mg/Kg	1	2/11/2015 10:18:36 AM	17635
Benz(a)anthracene	ND	0.20	mg/Kg	1	2/11/2015 10:18:36 AM	17635
Benzo(a)pyrene	ND	0.20	mg/Kg	1	2/11/2015 10:18:36 AM	17635
Benzo(b)fluoranthene	ND	0.20	mg/Kg	1	2/11/2015 10:18:36 AM	17635
Benzo(g,h,i)perylene	ND	0.20	mg/Kg	1	2/11/2015 10:18:36 AM	17635
Benzo(k)fluoranthene	ND	0.20	mg/Kg	1	2/11/2015 10:18:36 AM	17635
Benzoic acid	ND	0.50	mg/Kg	1	2/11/2015 10:18:36 AM	17635
Benzyl alcohol	ND	0.20	mg/Kg	1	2/11/2015 10:18:36 AM	17635
Bis(2-chloroethoxy)methane	ND	0.20	mg/Kg	1	2/11/2015 10:18:36 AM	17635
Bis(2-chloroethyl)ether	ND	0.20	mg/Kg	1	2/11/2015 10:18:36 AM	17635
Bis(2-chloroisopropyl)ether	ND	0.20	mg/Kg	1	2/11/2015 10:18:36 AM	17635
Bis(2-ethylhexyl)phthalate	ND	0.50	mg/Kg	1	2/11/2015 10:18:36 AM	17635
4-Bromophenyl phenyl ether	ND	0.20	mg/Kg	1	2/11/2015 10:18:36 AM	17635
Butyl benzyl phthalate	ND	0.20	mg/Kg	1	2/11/2015 10:18:36 AM	17635
Carbazole	ND	0.20	mg/Kg	1	2/11/2015 10:18:36 AM	17635
4-Chloro-3-methylphenol	ND	0.50	mg/Kg	1	2/11/2015 10:18:36 AM	17635
4-Chloroaniline	ND	0.50	mg/Kg	1	2/11/2015 10:18:36 AM	17635
2-Chloronaphthalene	ND	0.25	mg/Kg	1	2/11/2015 10:18:36 AM	17635
2-Chlorophenol	ND	0.20	mg/Kg	1	2/11/2015 10:18:36 AM	17635
4-Chlorophenyl phenyl ether	ND	0.20	mg/Kg	1	2/11/2015 10:18:36 AM	17635
Chrysene	ND	0.20	mg/Kg	1	2/11/2015 10:18:36 AM	17635
Di-n-butyl phthalate	ND	0.50	mg/Kg	1	2/11/2015 10:18:36 AM	17635
Di-n-octyl phthalate	ND	0.40	mg/Kg	1	2/11/2015 10:18:36 AM	17635
Dibenz(a,h)anthracene	ND	0.20	mg/Kg	1	2/11/2015 10:18:36 AM	17635
Dibenzofuran	ND	0.20	mg/Kg	1	2/11/2015 10:18:36 AM	17635
1,2-Dichlorobenzene	ND	0.20	mg/Kg	1	2/11/2015 10:18:36 AM	17635
1,3-Dichlorobenzene	ND	0.20	mg/Kg	1	2/11/2015 10:18:36 AM	17635
1,4-Dichlorobenzene	ND	0.20	mg/Kg	1	2/11/2015 10:18:36 AM	17635
3,3´-Dichlorobenzidine	ND	0.25	mg/Kg	1	2/11/2015 10:18:36 AM	17635
Diethyl phthalate	ND	0.20	mg/Kg	1	2/11/2015 10:18:36 AM	17635
Dimethyl phthalate	ND	0.20	mg/Kg	1	2/11/2015 10:18:36 AM	17635
2,4-Dichlorophenol	ND	0.40	mg/Kg	1	2/11/2015 10:18:36 AM	17635
2,4-Dimethylphenol	ND	0.30	mg/Kg	1	2/11/2015 10:18:36 AM	17635
4,6-Dinitro-2-methylphenol	ND	0.50	mg/Kg	1	2/11/2015 10:18:36 AM	17635
2,4-Dinitrophenol	ND	0.50	mg/Kg	1	2/11/2015 10:18:36 AM	17635

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
 - ng Limit Page 2 of 46
- P Sample pH Not In Range
- RL Reporting Detection Limit

Lab Order **1502324**

Date Reported: 3/9/2015

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Gallup

Project: OCD Central Landfarm Semiannual Sam

Collection Date: 2/5/2015 1:30:00 PM

Lab ID: 1502324-001

Matrix: SOIL

Received Date: 2/6/2015 4:35:00 PM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8270C: SEMIVOLATILE	S				Analy	st: DAM
2,4-Dinitrotoluene	ND	0.50	mg/Kg	1	2/11/2015 10:18:36 A	M 17635
2,6-Dinitrotoluene	ND	0.50	mg/Kg	1	2/11/2015 10:18:36 A	M 17635
Fluoranthene	ND	0.20	mg/Kg	1	2/11/2015 10:18:36 A	M 17635
Fluorene	ND	0.20	mg/Kg	1	2/11/2015 10:18:36 A	M 17635
Hexachlorobenzene	ND	0.20	mg/Kg	1	2/11/2015 10:18:36 A	M 17635
Hexachlorobutadiene	ND	0.20	mg/Kg	1	2/11/2015 10:18:36 A	M 17635
Hexachlorocyclopentadiene	ND	0.20	mg/Kg	1	2/11/2015 10:18:36 A	M 17635
Hexachloroethane	ND	0.20	mg/Kg	1	2/11/2015 10:18:36 A	M 17635
Indeno(1,2,3-cd)pyrene	ND	0.20	mg/Kg	1	2/11/2015 10:18:36 A	M 17635
Isophorone	ND	0.50	mg/Kg	1	2/11/2015 10:18:36 A	M 17635
1-Methylnaphthalene	ND	0.20	mg/Kg	1	2/11/2015 10:18:36 A	M 17635
2-Methylnaphthalene	ND	0.20	mg/Kg	1	2/11/2015 10:18:36 A	M 17635
2-Methylphenol	ND	0.50	mg/Kg	1	2/11/2015 10:18:36 A	M 17635
3+4-Methylphenol	ND	0.20	mg/Kg	1	2/11/2015 10:18:36 A	M 17635
N-Nitrosodi-n-propylamine	ND	0.20	mg/Kg	1	2/11/2015 10:18:36 A	M 17635
N-Nitrosodiphenylamine	ND	0.20	mg/Kg	1	2/11/2015 10:18:36 A	M 17635
Naphthalene	ND	0.20	mg/Kg	1	2/11/2015 10:18:36 A	M 17635
2-Nitroaniline	ND	0.20	mg/Kg	1	2/11/2015 10:18:36 A	M 17635
3-Nitroaniline	ND	0.20	mg/Kg	1	2/11/2015 10:18:36 A	M 17635
4-Nitroaniline	ND	0.40	mg/Kg	1	2/11/2015 10:18:36 A	M 17635
Nitrobenzene	ND	0.50	mg/Kg	1	2/11/2015 10:18:36 A	M 17635
2-Nitrophenol	ND	0.20	mg/Kg	1	2/11/2015 10:18:36 A	M 17635
4-Nitrophenol	ND	0.25	mg/Kg	1	2/11/2015 10:18:36 A	M 17635
Pentachlorophenol	ND	0.40	mg/Kg	1	2/11/2015 10:18:36 A	M 17635
Phenanthrene	ND	0.20	mg/Kg	1	2/11/2015 10:18:36 A	M 17635
Phenol	ND	0.20	mg/Kg	1	2/11/2015 10:18:36 A	M 17635
Pyrene	ND	0.20	mg/Kg	1	2/11/2015 10:18:36 A	M 17635
Pyridine	ND	0.50	mg/Kg	1	2/11/2015 10:18:36 A	M 17635
1,2,4-Trichlorobenzene	ND	0.20	mg/Kg	1	2/11/2015 10:18:36 A	M 17635
2,4,5-Trichlorophenol	ND	0.20	mg/Kg	1	2/11/2015 10:18:36 A	M 17635
2,4,6-Trichlorophenol	ND	0.20	mg/Kg	1	2/11/2015 10:18:36 A	M 17635
Surr: 2-Fluorophenol	85.1	26.4-129	%REC	1	2/11/2015 10:18:36 A	M 17635
Surr: Phenol-d5	77.5	34.8-118	%REC	1	2/11/2015 10:18:36 A	M 17635
Surr: 2,4,6-Tribromophenol	78.8	26.8-128	%REC	1	2/11/2015 10:18:36 A	M 17635
Surr: Nitrobenzene-d5	86.9	35.8-124	%REC	1	2/11/2015 10:18:36 A	M 17635
Surr: 2-Fluorobiphenyl	84.8	24.5-139	%REC	1	2/11/2015 10:18:36 A	M 17635
Surr: 4-Terphenyl-d14	67.1	29.4-129	%REC	1	2/11/2015 10:18:36 A	M 17635
EPA METHOD 8260B: VOLATILES					Δnalv	st: DJF
Benzene	ND	0.049	mg/Kg	1	2/10/2015 2:07:20 PM	

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 3 of 46

- P Sample pH Not In Range
- RL Reporting Detection Limit

Lab Order 1502324

Date Reported: 3/9/2015

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Gallup Client Sample ID: Central OCD-01-2/5/2015 **Project:** OCD Central Landfarm Semiannual Sam **Collection Date:** 2/5/2015 1:30:00 PM **Received Date: 2/6/2015 4:35:00 PM** Lab ID: 1502324-001 Matrix: SOIL

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analyst	: DJF
Toluene	ND	0.049	mg/Kg	1	2/10/2015 2:07:20 PM	17626
Ethylbenzene	ND	0.049	mg/Kg	1	2/10/2015 2:07:20 PM	17626
Methyl tert-butyl ether (MTBE)	ND	0.049	mg/Kg	1	2/10/2015 2:07:20 PM	17626
1,2,4-Trimethylbenzene	ND	0.049	mg/Kg	1	2/10/2015 2:07:20 PM	17626
1,3,5-Trimethylbenzene	ND	0.049	mg/Kg	1	2/10/2015 2:07:20 PM	17626
1,2-Dichloroethane (EDC)	ND	0.049	mg/Kg	1	2/10/2015 2:07:20 PM	17626
1,2-Dibromoethane (EDB)	ND	0.049	mg/Kg	1	2/10/2015 2:07:20 PM	17626
Naphthalene	ND	0.098	mg/Kg	1	2/10/2015 2:07:20 PM	17626
1-Methylnaphthalene	ND	0.20	mg/Kg	1	2/10/2015 2:07:20 PM	17626
2-Methylnaphthalene	ND	0.20	mg/Kg	1	2/10/2015 2:07:20 PM	17626
Acetone	ND	0.74	mg/Kg	1	2/10/2015 2:07:20 PM	17626
Bromobenzene	ND	0.049	mg/Kg	1	2/10/2015 2:07:20 PM	17626
Bromodichloromethane	ND	0.049	mg/Kg	1	2/10/2015 2:07:20 PM	17626
Bromoform	ND	0.049	mg/Kg	1	2/10/2015 2:07:20 PM	17626
Bromomethane	ND	0.15	mg/Kg	1	2/10/2015 2:07:20 PM	17626
2-Butanone	ND	0.49	mg/Kg	1	2/10/2015 2:07:20 PM	17626
Carbon disulfide	ND	0.49	mg/Kg	1	2/10/2015 2:07:20 PM	17626
Carbon tetrachloride	ND	0.049	mg/Kg	1	2/10/2015 2:07:20 PM	17626
Chlorobenzene	ND	0.049	mg/Kg	1	2/10/2015 2:07:20 PM	17626
Chloroethane	ND	0.098	mg/Kg	1	2/10/2015 2:07:20 PM	17626
Chloroform	ND	0.049	mg/Kg	1	2/10/2015 2:07:20 PM	17626
Chloromethane	ND	0.15	mg/Kg	1	2/10/2015 2:07:20 PM	17626
2-Chlorotoluene	ND	0.049	mg/Kg	1	2/10/2015 2:07:20 PM	17626
4-Chlorotoluene	ND	0.049	mg/Kg	1	2/10/2015 2:07:20 PM	17626
cis-1,2-DCE	ND	0.049	mg/Kg	1	2/10/2015 2:07:20 PM	17626
cis-1,3-Dichloropropene	ND	0.049	mg/Kg	1	2/10/2015 2:07:20 PM	17626
1,2-Dibromo-3-chloropropane	ND	0.098	mg/Kg	1	2/10/2015 2:07:20 PM	17626
Dibromochloromethane	ND	0.049	mg/Kg	1	2/10/2015 2:07:20 PM	17626
Dibromomethane	ND	0.049	mg/Kg	1	2/10/2015 2:07:20 PM	17626
1,2-Dichlorobenzene	ND	0.049	mg/Kg	1	2/10/2015 2:07:20 PM	17626
1,3-Dichlorobenzene	ND	0.049	mg/Kg	1	2/10/2015 2:07:20 PM	17626
1,4-Dichlorobenzene	ND	0.049	mg/Kg	1	2/10/2015 2:07:20 PM	17626
Dichlorodifluoromethane	ND	0.049	mg/Kg	1	2/10/2015 2:07:20 PM	17626
1,1-Dichloroethane	ND	0.049	mg/Kg	1	2/10/2015 2:07:20 PM	17626
1,1-Dichloroethene	ND	0.049	mg/Kg	1	2/10/2015 2:07:20 PM	17626
1,2-Dichloropropane	ND	0.049	mg/Kg	1	2/10/2015 2:07:20 PM	17626
1,3-Dichloropropane	ND	0.049	mg/Kg	1	2/10/2015 2:07:20 PM	17626
2,2-Dichloropropane	ND	0.098	mg/Kg	1	2/10/2015 2:07:20 PM	17626
1,1-Dichloropropene	ND	0.098	mg/Kg	1	2/10/2015 2:07:20 PM	17626

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- Ε Value above quantitation range
- Analyte detected below quantitation limits
- RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- Spike Recovery outside accepted recovery limits
- Analyte detected in the associated Method Blank
- Η Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
 - Sample pH Not In Range
- P

Page 4 of 46

Reporting Detection Limit

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Gallup

Client Sample ID: Central OCD-01-2/5/2015

Project: OCD Central Landfarm Semiannual Sam

Collection Date: 2/5/2015 1:30:00 PM

Lab ID: 1502324-001 **Matrix:** SOIL **Received Date:** 2/6/2015 4:35:00 PM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analyst	: DJF
Hexachlorobutadiene	ND	0.098	mg/Kg	1	2/10/2015 2:07:20 PM	17626
2-Hexanone	ND	0.49	mg/Kg	1	2/10/2015 2:07:20 PM	17626
Isopropylbenzene	ND	0.049	mg/Kg	1	2/10/2015 2:07:20 PM	17626
4-Isopropyltoluene	ND	0.049	mg/Kg	1	2/10/2015 2:07:20 PM	17626
4-Methyl-2-pentanone	ND	0.49	mg/Kg	1	2/10/2015 2:07:20 PM	17626
Methylene chloride	ND	0.15	mg/Kg	1	2/10/2015 2:07:20 PM	17626
n-Butylbenzene	ND	0.15	mg/Kg	1	2/10/2015 2:07:20 PM	17626
n-Propylbenzene	ND	0.049	mg/Kg	1	2/10/2015 2:07:20 PM	17626
sec-Butylbenzene	ND	0.049	mg/Kg	1	2/10/2015 2:07:20 PM	17626
Styrene	ND	0.049	mg/Kg	1	2/10/2015 2:07:20 PM	17626
tert-Butylbenzene	ND	0.049	mg/Kg	1	2/10/2015 2:07:20 PM	17626
1,1,1,2-Tetrachloroethane	ND	0.049	mg/Kg	1	2/10/2015 2:07:20 PM	17626
1,1,2,2-Tetrachloroethane	ND	0.049	mg/Kg	1	2/10/2015 2:07:20 PM	17626
Tetrachloroethene (PCE)	ND	0.049	mg/Kg	1	2/10/2015 2:07:20 PM	17626
trans-1,2-DCE	ND	0.049	mg/Kg	1	2/10/2015 2:07:20 PM	17626
trans-1,3-Dichloropropene	ND	0.049	mg/Kg	1	2/10/2015 2:07:20 PM	17626
1,2,3-Trichlorobenzene	ND	0.098	mg/Kg	1	2/10/2015 2:07:20 PM	17626
1,2,4-Trichlorobenzene	ND	0.049	mg/Kg	1	2/10/2015 2:07:20 PM	17626
1,1,1-Trichloroethane	ND	0.049	mg/Kg	1	2/10/2015 2:07:20 PM	17626
1,1,2-Trichloroethane	ND	0.049	mg/Kg	1	2/10/2015 2:07:20 PM	17626
Trichloroethene (TCE)	ND	0.049	mg/Kg	1	2/10/2015 2:07:20 PM	17626
Trichlorofluoromethane	ND	0.049	mg/Kg	1	2/10/2015 2:07:20 PM	17626
1,2,3-Trichloropropane	ND	0.098	mg/Kg	1	2/10/2015 2:07:20 PM	17626
Vinyl chloride	ND	0.049	mg/Kg	1	2/10/2015 2:07:20 PM	17626
Xylenes, Total	ND	0.098	mg/Kg	1	2/10/2015 2:07:20 PM	17626
Surr: Dibromofluoromethane	89.5	70-130	%REC	1	2/10/2015 2:07:20 PM	17626
Surr: 1,2-Dichloroethane-d4	81.5	70-130	%REC	1	2/10/2015 2:07:20 PM	17626
Surr: Toluene-d8	88.1	70-130	%REC	1	2/10/2015 2:07:20 PM	17626
Surr: 4-Bromofluorobenzene	85.5	70-130	%REC	1	2/10/2015 2:07:20 PM	17626
EPA METHOD 418.1: TPH					Analyst	: BCN
Petroleum Hydrocarbons, TR	ND	20	mg/Kg	1	2/10/2015 2:00:00 PM	17630
CYANIDE-TOTAL					Analyst	: SUB
Cyanide	ND	0.31	mg/Kg	1	2/16/2015	R24387

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 5 of 46

- P Sample pH Not In Range
- RL Reporting Detection Limit

Lab Order **1502324**

Date Reported: 3/9/2015

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Gallup

Project: OCD Central Landfarm Semiannual Sam

Collection Date: 2/5/2015 12:15:00 PM

Lab ID: 1502324-002

Matrix: SOIL

Received Date: 2/6/2015 4:35:00 PM

Analyses	Result	RL Q	ual Units	DF	Date Analyzed	Batch
EPA METHOD 8082: PCB'S					Analyst	: SCC
Aroclor 1016	ND	0.020	mg/Kg	1	2/12/2015 5:38:58 PM	17661
Aroclor 1221	ND	0.020	mg/Kg	1	2/12/2015 5:38:58 PM	17661
Aroclor 1232	ND	0.020	mg/Kg	1	2/12/2015 5:38:58 PM	17661
Aroclor 1242	ND	0.020	mg/Kg	1	2/12/2015 5:38:58 PM	17661
Aroclor 1248	ND	0.020	mg/Kg	1	2/12/2015 5:38:58 PM	17661
Aroclor 1254	ND	0.020	mg/Kg	1	2/12/2015 5:38:58 PM	17661
Aroclor 1260	ND	0.020	mg/Kg	1	2/12/2015 5:38:58 PM	17661
Surr: Decachlorobiphenyl	73.2	37.5-161	%REC	1	2/12/2015 5:38:58 PM	17661
Surr: Tetrachloro-m-xylene	65.6	28.1-149	%REC	1	2/12/2015 5:38:58 PM	17661
EPA METHOD 8015D: DIESEL RANG	E ORGANICS				Analyst	: JME
Diesel Range Organics (DRO)	ND	9.9	mg/Kg	1	2/10/2015 2:50:05 PM	17621
Motor Oil Range Organics (MRO)	ND	49	mg/Kg	1	2/10/2015 2:50:05 PM	17621
Surr: DNOP	98.1	63.5-128	%REC	1	2/10/2015 2:50:05 PM	17621
EPA METHOD 8015D: GASOLINE RA	NGE				Analyst	: NSB
Gasoline Range Organics (GRO)	ND	4.6	mg/Kg	1	2/10/2015 11:00:26 PM	17626
Surr: BFB	89.6	80-120	%REC	1	2/10/2015 11:00:26 PM	17626
EPA METHOD 300.0: ANIONS					Analyst	: LGT
Fluoride	4.3	0.30	mg/Kg	1	2/11/2015 6:11:15 PM	17685
Chloride	110	30	mg/Kg	20	2/11/2015 6:23:40 PM	17685
Nitrogen, Nitrate (As N)	1.6	0.30	mg/Kg	1	2/11/2015 6:11:15 PM	17685
Sulfate	700	30	mg/Kg	20	2/11/2015 6:23:40 PM	17685
EPA METHOD 7471: MERCURY					Analyst	:: MMD
Mercury	ND	0.032	mg/Kg	1	2/11/2015 1:45:52 PM	17645
EPA METHOD 6010B: SOIL METALS					Analyst	: ELS
Arsenic	ND	2.6	mg/Kg	1	2/11/2015 11:07:21 AM	17644
Barium	760	0.52	mg/Kg	5	2/12/2015 9:01:20 AM	17644
Cadmium	ND	0.10	mg/Kg	1	2/11/2015 11:07:21 AM	17644
Chromium	10	0.31	mg/Kg	1	2/11/2015 11:07:21 AM	17644
Copper	3.3	0.31	mg/Kg	1	2/11/2015 11:07:21 AM	17644
Iron	16000	100	mg/Kg	100	2/12/2015 8:50:20 AM	17644
Lead	2.7	0.26	mg/Kg	1	2/11/2015 11:07:21 AM	17644
Manganese	370	0.21	mg/Kg	2	2/11/2015 11:08:53 AM	17644
Selenium	ND	2.6	mg/Kg	1	2/11/2015 11:07:21 AM	17644
Silver	ND	0.26	mg/Kg	1	2/11/2015 11:07:21 AM	17644
Uranium	ND	5.2	mg/Kg	1	2/11/2015 11:07:21 AM	17644
Zinc	14	2.6	mg/Kg	1	2/11/2015 11:07:21 AM	l 17644

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 6 of 46

- P Sample pH Not In Range
- RL Reporting Detection Limit

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Gallup

Client Sample ID: Central OCD-02-2/5/2015

Project: OCD Central Landfarm Semiannual Sam

Collection Date: 2/5/2015 12:15:00 PM

Lab ID: 1502324-002

Matrix: SOIL

Received Date: 2/6/2015 4:35:00 PM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8270C: SEMIVOLA	TILES				Analy	st: DAM
Acenaphthene	ND	0.20	mg/Kg	1	2/11/2015 10:46:31 A	M 17635
Acenaphthylene	ND	0.20	mg/Kg	1	2/11/2015 10:46:31 A	M 17635
Aniline	ND	0.20	mg/Kg	1	2/11/2015 10:46:31 A	M 17635
Anthracene	ND	0.20	mg/Kg	1	2/11/2015 10:46:31 A	M 17635
Azobenzene	ND	0.20	mg/Kg	1	2/11/2015 10:46:31 A	M 17635
Benz(a)anthracene	ND	0.20	mg/Kg	1	2/11/2015 10:46:31 A	M 17635
Benzo(a)pyrene	ND	0.20	mg/Kg	1	2/11/2015 10:46:31 A	M 17635
Benzo(b)fluoranthene	ND	0.20	mg/Kg	1	2/11/2015 10:46:31 A	M 17635
Benzo(g,h,i)perylene	ND	0.20	mg/Kg	1	2/11/2015 10:46:31 A	M 17635
Benzo(k)fluoranthene	ND	0.20	mg/Kg	1	2/11/2015 10:46:31 A	M 17635
Benzoic acid	ND	0.49	mg/Kg	1	2/11/2015 10:46:31 A	M 17635
Benzyl alcohol	ND	0.20	mg/Kg	1	2/11/2015 10:46:31 A	M 17635
Bis(2-chloroethoxy)methane	ND	0.20	mg/Kg	1	2/11/2015 10:46:31 A	M 17635
Bis(2-chloroethyl)ether	ND	0.20	mg/Kg	1	2/11/2015 10:46:31 A	M 17635
Bis(2-chloroisopropyl)ether	ND	0.20	mg/Kg	1	2/11/2015 10:46:31 A	M 17635
Bis(2-ethylhexyl)phthalate	ND	0.49	mg/Kg	1	2/11/2015 10:46:31 A	M 17635
4-Bromophenyl phenyl ether	ND	0.20	mg/Kg	1	2/11/2015 10:46:31 A	M 17635
Butyl benzyl phthalate	ND	0.20	mg/Kg	1	2/11/2015 10:46:31 A	M 17635
Carbazole	ND	0.20	mg/Kg	1	2/11/2015 10:46:31 A	M 17635
4-Chloro-3-methylphenol	ND	0.49	mg/Kg	1	2/11/2015 10:46:31 A	M 17635
4-Chloroaniline	ND	0.49	mg/Kg	1	2/11/2015 10:46:31 A	M 17635
2-Chloronaphthalene	ND	0.25	mg/Kg	1	2/11/2015 10:46:31 A	M 17635
2-Chlorophenol	ND	0.20	mg/Kg	1	2/11/2015 10:46:31 A	M 17635
4-Chlorophenyl phenyl ether	ND	0.20	mg/Kg	1	2/11/2015 10:46:31 A	M 17635
Chrysene	ND	0.20	mg/Kg	1	2/11/2015 10:46:31 A	M 17635
Di-n-butyl phthalate	ND	0.49	mg/Kg	1	2/11/2015 10:46:31 A	M 17635
Di-n-octyl phthalate	ND	0.40	mg/Kg	1	2/11/2015 10:46:31 A	M 17635
Dibenz(a,h)anthracene	ND	0.20	mg/Kg	1	2/11/2015 10:46:31 A	M 17635
Dibenzofuran	ND	0.20	mg/Kg	1	2/11/2015 10:46:31 A	M 17635
1,2-Dichlorobenzene	ND	0.20	mg/Kg	1	2/11/2015 10:46:31 A	M 17635
1,3-Dichlorobenzene	ND	0.20	mg/Kg	1	2/11/2015 10:46:31 A	M 17635
1,4-Dichlorobenzene	ND	0.20	mg/Kg	1	2/11/2015 10:46:31 A	M 17635
3,3´-Dichlorobenzidine	ND	0.25	mg/Kg	1	2/11/2015 10:46:31 A	M 17635
Diethyl phthalate	ND	0.20	mg/Kg	1	2/11/2015 10:46:31 A	M 17635
Dimethyl phthalate	ND	0.20	mg/Kg	1	2/11/2015 10:46:31 A	M 17635
2,4-Dichlorophenol	ND	0.40	mg/Kg	1	2/11/2015 10:46:31 A	M 17635
2,4-Dimethylphenol	ND	0.30	mg/Kg	1	2/11/2015 10:46:31 A	M 17635
4,6-Dinitro-2-methylphenol	ND	0.49	mg/Kg	1	2/11/2015 10:46:31 A	M 17635
2,4-Dinitrophenol	ND	0.49	mg/Kg	1	2/11/2015 10:46:31 A	M 17635

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 7 of 46

- P Sample pH Not In Range
- RL Reporting Detection Limit

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Gallup

Client Sample ID: Central OCD-02-2/5/2015

Project: OCD Central Landfarm Semiannual Sam

Collection Date: 2/5/2015 12:15:00 PM

Lab ID: 1502324-002 **Matrix:** SOIL **Received Date:** 2/6/2015 4:35:00 PM

Analyses	Result	RL Qu	al Units	DF Date Analyzed	Batch
EPA METHOD 8270C: SEMIVOLATILE	ES			Ana	alyst: DAM
2,4-Dinitrotoluene	ND	0.49	mg/Kg	1 2/11/2015 10:46:31	AM 17635
2,6-Dinitrotoluene	ND	0.49	mg/Kg	1 2/11/2015 10:46:31	AM 17635
Fluoranthene	ND	0.20	mg/Kg	1 2/11/2015 10:46:31	AM 17635
Fluorene	ND	0.20	mg/Kg	1 2/11/2015 10:46:31	AM 17635
Hexachlorobenzene	ND	0.20	mg/Kg	1 2/11/2015 10:46:31	AM 17635
Hexachlorobutadiene	ND	0.20	mg/Kg	1 2/11/2015 10:46:31	AM 17635
Hexachlorocyclopentadiene	ND	0.20	mg/Kg	1 2/11/2015 10:46:31	AM 17635
Hexachloroethane	ND	0.20	mg/Kg	1 2/11/2015 10:46:31	AM 17635
Indeno(1,2,3-cd)pyrene	ND	0.20	mg/Kg	1 2/11/2015 10:46:31	AM 17635
Isophorone	ND	0.49	mg/Kg	1 2/11/2015 10:46:31	AM 17635
1-Methylnaphthalene	ND	0.20	mg/Kg	1 2/11/2015 10:46:31	AM 17635
2-Methylnaphthalene	ND	0.20	mg/Kg	1 2/11/2015 10:46:31	AM 17635
2-Methylphenol	ND	0.49	mg/Kg	1 2/11/2015 10:46:31	AM 17635
3+4-Methylphenol	ND	0.20	mg/Kg	1 2/11/2015 10:46:31	AM 17635
N-Nitrosodi-n-propylamine	ND	0.20	mg/Kg	1 2/11/2015 10:46:31	AM 17635
N-Nitrosodiphenylamine	ND	0.20	mg/Kg	1 2/11/2015 10:46:31	AM 17635
Naphthalene	ND	0.20	mg/Kg	1 2/11/2015 10:46:31	AM 17635
2-Nitroaniline	ND	0.20	mg/Kg	1 2/11/2015 10:46:31	AM 17635
3-Nitroaniline	ND	0.20	mg/Kg	1 2/11/2015 10:46:31	AM 17635
4-Nitroaniline	ND	0.40	mg/Kg	1 2/11/2015 10:46:31	AM 17635
Nitrobenzene	ND	0.49	mg/Kg	1 2/11/2015 10:46:31	AM 17635
2-Nitrophenol	ND	0.20	mg/Kg	1 2/11/2015 10:46:31	AM 17635
4-Nitrophenol	ND	0.25	mg/Kg	1 2/11/2015 10:46:31	AM 17635
Pentachlorophenol	ND	0.40	mg/Kg	1 2/11/2015 10:46:31	AM 17635
Phenanthrene	ND	0.20	mg/Kg	1 2/11/2015 10:46:31	AM 17635
Phenol	ND	0.20	mg/Kg	1 2/11/2015 10:46:31	AM 17635
Pyrene	ND	0.20	mg/Kg	1 2/11/2015 10:46:31	AM 17635
Pyridine	ND	0.49	mg/Kg	1 2/11/2015 10:46:31	AM 17635
1,2,4-Trichlorobenzene	ND	0.20	mg/Kg	1 2/11/2015 10:46:31	AM 17635
2,4,5-Trichlorophenol	ND	0.20	mg/Kg	1 2/11/2015 10:46:31	AM 17635
2,4,6-Trichlorophenol	ND	0.20	mg/Kg	1 2/11/2015 10:46:31	AM 17635
Surr: 2-Fluorophenol	88.4	26.4-129	%REC	1 2/11/2015 10:46:31	AM 17635
Surr: Phenol-d5	77.2	34.8-118	%REC	1 2/11/2015 10:46:31	AM 17635
Surr: 2,4,6-Tribromophenol	73.6	26.8-128	%REC	1 2/11/2015 10:46:31	AM 17635
Surr: Nitrobenzene-d5	81.5	35.8-124	%REC	1 2/11/2015 10:46:31	AM 17635
Surr: 2-Fluorobiphenyl	79.1	24.5-139	%REC	1 2/11/2015 10:46:31	AM 17635
Surr: 4-Terphenyl-d14	62.0	29.4-129	%REC	1 2/11/2015 10:46:31	AM 17635
EPA METHOD 8260B: VOLATILES				Ana	alyst: DJF
Benzene	ND	0.046	mg/Kg	1 2/10/2015 2:34:51	PM 17626
			5 5		_

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 8 of 46

- P Sample pH Not In Range
- RL Reporting Detection Limit

Lab Order **1502324**

Date Reported: 3/9/2015

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Gallup Client Sample ID: Central OCD-02-2/5/2015

Project:OCD Central Landfarm Semiannual SamCollection Date: 2/5/2015 12:15:00 PMLab ID:1502324-002Matrix: SOILReceived Date: 2/6/2015 4:35:00 PM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analyst	: DJF
Toluene	ND	0.046	mg/Kg	1	2/10/2015 2:34:51 PM	17626
Ethylbenzene	ND	0.046	mg/Kg	1	2/10/2015 2:34:51 PM	17626
Methyl tert-butyl ether (MTBE)	ND	0.046	mg/Kg	1	2/10/2015 2:34:51 PM	17626
1,2,4-Trimethylbenzene	ND	0.046	mg/Kg	1	2/10/2015 2:34:51 PM	17626
1,3,5-Trimethylbenzene	ND	0.046	mg/Kg	1	2/10/2015 2:34:51 PM	17626
1,2-Dichloroethane (EDC)	ND	0.046	mg/Kg	1	2/10/2015 2:34:51 PM	17626
1,2-Dibromoethane (EDB)	ND	0.046	mg/Kg	1	2/10/2015 2:34:51 PM	17626
Naphthalene	ND	0.092	mg/Kg	1	2/10/2015 2:34:51 PM	17626
1-Methylnaphthalene	ND	0.18	mg/Kg	1	2/10/2015 2:34:51 PM	17626
2-Methylnaphthalene	ND	0.18	mg/Kg	1	2/10/2015 2:34:51 PM	17626
Acetone	ND	0.69	mg/Kg	1	2/10/2015 2:34:51 PM	17626
Bromobenzene	ND	0.046	mg/Kg	1	2/10/2015 2:34:51 PM	17626
Bromodichloromethane	ND	0.046	mg/Kg	1	2/10/2015 2:34:51 PM	17626
Bromoform	ND	0.046	mg/Kg	1	2/10/2015 2:34:51 PM	17626
Bromomethane	ND	0.14	mg/Kg	1	2/10/2015 2:34:51 PM	17626
2-Butanone	ND	0.46	mg/Kg	1	2/10/2015 2:34:51 PM	17626
Carbon disulfide	ND	0.46	mg/Kg	1	2/10/2015 2:34:51 PM	17626
Carbon tetrachloride	ND	0.046	mg/Kg	1	2/10/2015 2:34:51 PM	17626
Chlorobenzene	ND	0.046	mg/Kg	1	2/10/2015 2:34:51 PM	17626
Chloroethane	ND	0.092	mg/Kg	1	2/10/2015 2:34:51 PM	17626
Chloroform	ND	0.046	mg/Kg	1	2/10/2015 2:34:51 PM	17626
Chloromethane	ND	0.14	mg/Kg	1	2/10/2015 2:34:51 PM	17626
2-Chlorotoluene	ND	0.046	mg/Kg	1	2/10/2015 2:34:51 PM	17626
4-Chlorotoluene	ND	0.046	mg/Kg	1	2/10/2015 2:34:51 PM	17626
cis-1,2-DCE	ND	0.046	mg/Kg	1	2/10/2015 2:34:51 PM	17626
cis-1,3-Dichloropropene	ND	0.046	mg/Kg	1	2/10/2015 2:34:51 PM	17626
1,2-Dibromo-3-chloropropane	ND	0.092	mg/Kg	1	2/10/2015 2:34:51 PM	17626
Dibromochloromethane	ND	0.046	mg/Kg	1	2/10/2015 2:34:51 PM	17626
Dibromomethane	ND	0.046	mg/Kg	1	2/10/2015 2:34:51 PM	17626
1,2-Dichlorobenzene	ND	0.046	mg/Kg	1	2/10/2015 2:34:51 PM	17626
1,3-Dichlorobenzene	ND	0.046	mg/Kg	1	2/10/2015 2:34:51 PM	17626
1,4-Dichlorobenzene	ND	0.046	mg/Kg	1	2/10/2015 2:34:51 PM	17626
Dichlorodifluoromethane	ND	0.046	mg/Kg	1	2/10/2015 2:34:51 PM	17626
1,1-Dichloroethane	ND	0.046	mg/Kg	1	2/10/2015 2:34:51 PM	17626
1,1-Dichloroethene	ND	0.046	mg/Kg	1	2/10/2015 2:34:51 PM	17626
1,2-Dichloropropane	ND	0.046	mg/Kg	1	2/10/2015 2:34:51 PM	17626
1,3-Dichloropropane	ND	0.046	mg/Kg	1	2/10/2015 2:34:51 PM	17626
2,2-Dichloropropane	ND	0.092	mg/Kg	1	2/10/2015 2:34:51 PM	17626
1,1-Dichloropropene	ND	0.092	mg/Kg	1	2/10/2015 2:34:51 PM	17626

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
 - Page 9
- P Sample pH Not In Range
- RL Reporting Detection Limit

Page 9 of 46

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Gallup

Project: OCD Central Landfarm Semiannual Sam

Collection Date: 2/5/2015 12:15:00 PM

Lab ID: 1502324-002

Matrix: SOIL

Received Date: 2/6/2015 4:35:00 PM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analyst	: DJF
Hexachlorobutadiene	ND	0.092	mg/Kg	1	2/10/2015 2:34:51 PM	17626
2-Hexanone	ND	0.46	mg/Kg	1	2/10/2015 2:34:51 PM	17626
Isopropylbenzene	ND	0.046	mg/Kg	1	2/10/2015 2:34:51 PM	17626
4-Isopropyltoluene	ND	0.046	mg/Kg	1	2/10/2015 2:34:51 PM	17626
4-Methyl-2-pentanone	ND	0.46	mg/Kg	1	2/10/2015 2:34:51 PM	17626
Methylene chloride	ND	0.14	mg/Kg	1	2/10/2015 2:34:51 PM	17626
n-Butylbenzene	ND	0.14	mg/Kg	1	2/10/2015 2:34:51 PM	17626
n-Propylbenzene	ND	0.046	mg/Kg	1	2/10/2015 2:34:51 PM	17626
sec-Butylbenzene	ND	0.046	mg/Kg	1	2/10/2015 2:34:51 PM	17626
Styrene	ND	0.046	mg/Kg	1	2/10/2015 2:34:51 PM	17626
tert-Butylbenzene	ND	0.046	mg/Kg	1	2/10/2015 2:34:51 PM	17626
1,1,1,2-Tetrachloroethane	ND	0.046	mg/Kg	1	2/10/2015 2:34:51 PM	17626
1,1,2,2-Tetrachloroethane	ND	0.046	mg/Kg	1	2/10/2015 2:34:51 PM	17626
Tetrachloroethene (PCE)	ND	0.046	mg/Kg	1	2/10/2015 2:34:51 PM	17626
trans-1,2-DCE	ND	0.046	mg/Kg	1	2/10/2015 2:34:51 PM	17626
trans-1,3-Dichloropropene	ND	0.046	mg/Kg	1	2/10/2015 2:34:51 PM	17626
1,2,3-Trichlorobenzene	ND	0.092	mg/Kg	1	2/10/2015 2:34:51 PM	17626
1,2,4-Trichlorobenzene	ND	0.046	mg/Kg	1	2/10/2015 2:34:51 PM	17626
1,1,1-Trichloroethane	ND	0.046	mg/Kg	1	2/10/2015 2:34:51 PM	17626
1,1,2-Trichloroethane	ND	0.046	mg/Kg	1	2/10/2015 2:34:51 PM	17626
Trichloroethene (TCE)	ND	0.046	mg/Kg	1	2/10/2015 2:34:51 PM	17626
Trichlorofluoromethane	ND	0.046	mg/Kg	1	2/10/2015 2:34:51 PM	17626
1,2,3-Trichloropropane	ND	0.092	mg/Kg	1	2/10/2015 2:34:51 PM	17626
Vinyl chloride	ND	0.046	mg/Kg	1	2/10/2015 2:34:51 PM	17626
Xylenes, Total	ND	0.092	mg/Kg	1	2/10/2015 2:34:51 PM	17626
Surr: Dibromofluoromethane	90.7	70-130	%REC	1	2/10/2015 2:34:51 PM	17626
Surr: 1,2-Dichloroethane-d4	83.7	70-130	%REC	1	2/10/2015 2:34:51 PM	17626
Surr: Toluene-d8	86.5	70-130	%REC	1	2/10/2015 2:34:51 PM	17626
Surr: 4-Bromofluorobenzene	84.1	70-130	%REC	1	2/10/2015 2:34:51 PM	17626
EPA METHOD 418.1: TPH					Analyst	: BCN
Petroleum Hydrocarbons, TR	ND	20	mg/Kg	1	2/10/2015 2:00:00 PM	17630
CYANIDE-TOTAL					Analyst	: SUB
Cyanide	ND	0.31	mg/Kg	1	2/16/2015	R24387

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 10 of 46

- P Sample pH Not In Range
- RL Reporting Detection Limit

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Gallup

Project: OCD Central Landfarm Semiannual Sam

Collection Date: 2/5/2015 2:17:00 PM

Lab ID: 1502324-003

Matrix: SOIL

Received Date: 2/6/2015 4:35:00 PM

Analyses	Result	RL Q	ual Units	DF	Date Analyzed	Batch
EPA METHOD 8082: PCB'S					Analyst	: SCC
Aroclor 1016	ND	0.020	mg/Kg	1	2/12/2015 8:41:10 PM	17661
Aroclor 1221	ND	0.020	mg/Kg	1	2/12/2015 8:41:10 PM	17661
Aroclor 1232	ND	0.020	mg/Kg	1	2/12/2015 8:41:10 PM	17661
Aroclor 1242	ND	0.020	mg/Kg	1	2/12/2015 8:41:10 PM	17661
Aroclor 1248	ND	0.020	mg/Kg	1	2/12/2015 8:41:10 PM	17661
Aroclor 1254	ND	0.020	mg/Kg	1	2/12/2015 8:41:10 PM	17661
Aroclor 1260	ND	0.020	mg/Kg	1	2/12/2015 8:41:10 PM	17661
Surr: Decachlorobiphenyl	81.6	37.5-161	%REC	1	2/12/2015 8:41:10 PM	17661
Surr: Tetrachloro-m-xylene	67.2	28.1-149	%REC	1	2/12/2015 8:41:10 PM	17661
EPA METHOD 8015D: DIESEL RANG	E ORGANICS				Analyst	: JME
Diesel Range Organics (DRO)	ND	9.9	mg/Kg	1	2/10/2015 3:11:57 PM	17621
Motor Oil Range Organics (MRO)	ND	50	mg/Kg	1	2/10/2015 3:11:57 PM	17621
Surr: DNOP	99.6	63.5-128	%REC	1	2/10/2015 3:11:57 PM	17621
EPA METHOD 8015D: GASOLINE RA	NGE				Analyst	: NSB
Gasoline Range Organics (GRO)	ND	4.9	mg/Kg	1	2/10/2015 11:29:05 PM	17626
Surr: BFB	90.0	80-120	%REC	1	2/10/2015 11:29:05 PM	17626
EPA METHOD 300.0: ANIONS					Analyst	:: LGT
Fluoride	3.4	0.30	mg/Kg	1	2/11/2015 6:36:04 PM	17685
Chloride	300	30	mg/Kg	20	2/11/2015 7:13:19 PM	17685
Nitrogen, Nitrate (As N)	16	0.30	mg/Kg	1	2/11/2015 6:36:04 PM	17685
Sulfate	570	30	mg/Kg	20	2/11/2015 7:13:19 PM	17685
EPA METHOD 7471: MERCURY					Analyst	: MMD
Mercury	ND	0.035	mg/Kg	1	2/11/2015 1:51:23 PM	17645
EPA METHOD 6010B: SOIL METALS					Analyst	: ELS
Arsenic	ND	2.4	mg/Kg	1	2/12/2015 9:05:14 AM	17644
Barium	220	0.097	mg/Kg	1	2/12/2015 9:05:14 AM	17644
Cadmium	ND	0.097	mg/Kg	1	2/11/2015 11:10:17 AM	17644
Chromium	12	0.29	mg/Kg	1	2/11/2015 11:10:17 AM	17644
Copper	3.6	0.29	mg/Kg	1	2/11/2015 11:10:17 AM	17644
Iron	18000	97	mg/Kg	100	2/12/2015 8:51:40 AM	17644
Lead	3.2	0.24	mg/Kg	1	2/12/2015 9:05:14 AM	17644
Manganese	340	0.19	mg/Kg	2	2/11/2015 11:14:55 AM	17644
Selenium	ND	2.4	mg/Kg	1	2/12/2015 9:05:14 AM	17644
Silver	ND	0.24	mg/Kg	1	2/11/2015 11:10:17 AM	17644
Uranium	ND	4.9	mg/Kg	1	2/11/2015 11:10:17 AM	17644
Zinc	19	4.9	mg/Kg	2	2/11/2015 11:14:55 AM	l 17644

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- Page 11 of 46
- P Sample pH Not In Range
- RL Reporting Detection Limit

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Gallup Client Sample ID: Central OCD-03-2/5/2015

Project:OCD Central Landfarm Semiannual SamCollection Date: 2/5/2015 2:17:00 PMLab ID:1502324-003Matrix: SOILReceived Date: 2/6/2015 4:35:00 PM

Analyses	Result	RL Qua	al Units	DF	Date Analyzed	Batch
EPA METHOD 8270C: SEMIVOLATILES					Analyst	DAM
Acenaphthene	ND	0.20	mg/Kg	1	2/11/2015 2:00:51 PM	17635
Acenaphthylene	ND	0.20	mg/Kg	1	2/11/2015 2:00:51 PM	17635
Aniline	ND	0.20	mg/Kg	1	2/11/2015 2:00:51 PM	17635
Anthracene	ND	0.20	mg/Kg	1	2/11/2015 2:00:51 PM	17635
Azobenzene	ND	0.20	mg/Kg	1	2/11/2015 2:00:51 PM	17635
Benz(a)anthracene	ND	0.20	mg/Kg	1	2/11/2015 2:00:51 PM	17635
Benzo(a)pyrene	ND	0.20	mg/Kg	1	2/11/2015 2:00:51 PM	17635
Benzo(b)fluoranthene	ND	0.20	mg/Kg	1	2/11/2015 2:00:51 PM	17635
Benzo(g,h,i)perylene	ND	0.20	mg/Kg	1	2/11/2015 2:00:51 PM	17635
Benzo(k)fluoranthene	ND	0.20	mg/Kg	1	2/11/2015 2:00:51 PM	17635
Benzoic acid	ND	0.50	mg/Kg	1	2/11/2015 2:00:51 PM	17635
Benzyl alcohol	ND	0.20	mg/Kg	1	2/11/2015 2:00:51 PM	17635
Bis(2-chloroethoxy)methane	ND	0.20	mg/Kg	1	2/11/2015 2:00:51 PM	17635
Bis(2-chloroethyl)ether	ND	0.20	mg/Kg	1	2/11/2015 2:00:51 PM	17635
Bis(2-chloroisopropyl)ether	ND	0.20	mg/Kg	1	2/11/2015 2:00:51 PM	17635
Bis(2-ethylhexyl)phthalate	ND	0.50	mg/Kg	1	2/11/2015 2:00:51 PM	17635
4-Bromophenyl phenyl ether	ND	0.20	mg/Kg	1	2/11/2015 2:00:51 PM	17635
Butyl benzyl phthalate	ND	0.20	mg/Kg	1	2/11/2015 2:00:51 PM	17635
Carbazole	ND	0.20	mg/Kg	1	2/11/2015 2:00:51 PM	17635
4-Chloro-3-methylphenol	ND	0.50	mg/Kg	1	2/11/2015 2:00:51 PM	17635
4-Chloroaniline	ND	0.50	mg/Kg	1	2/11/2015 2:00:51 PM	17635
2-Chloronaphthalene	ND	0.25	mg/Kg	1	2/11/2015 2:00:51 PM	17635
2-Chlorophenol	ND	0.20	mg/Kg	1	2/11/2015 2:00:51 PM	17635
4-Chlorophenyl phenyl ether	ND	0.20	mg/Kg	1	2/11/2015 2:00:51 PM	17635
Chrysene	ND	0.20	mg/Kg	1	2/11/2015 2:00:51 PM	17635
Di-n-butyl phthalate	ND	0.50	mg/Kg	1	2/11/2015 2:00:51 PM	17635
Di-n-octyl phthalate	ND	0.40	mg/Kg	1	2/11/2015 2:00:51 PM	17635
Dibenz(a,h)anthracene	ND	0.20	mg/Kg	1	2/11/2015 2:00:51 PM	17635
Dibenzofuran	ND	0.20	mg/Kg	1	2/11/2015 2:00:51 PM	17635
1,2-Dichlorobenzene	ND	0.20	mg/Kg	1	2/11/2015 2:00:51 PM	17635
1,3-Dichlorobenzene	ND	0.20	mg/Kg	1	2/11/2015 2:00:51 PM	17635
1,4-Dichlorobenzene	ND	0.20	mg/Kg	1	2/11/2015 2:00:51 PM	17635
3,3´-Dichlorobenzidine	ND	0.25	mg/Kg	1	2/11/2015 2:00:51 PM	17635
Diethyl phthalate	ND	0.20	mg/Kg	1	2/11/2015 2:00:51 PM	17635
Dimethyl phthalate	ND	0.20	mg/Kg	1	2/11/2015 2:00:51 PM	17635
2,4-Dichlorophenol	ND	0.40	mg/Kg	1	2/11/2015 2:00:51 PM	17635
2,4-Dimethylphenol	ND	0.30	mg/Kg	1	2/11/2015 2:00:51 PM	17635
4,6-Dinitro-2-methylphenol	ND	0.50	mg/Kg	1	2/11/2015 2:00:51 PM	17635
2,4-Dinitrophenol	ND	0.50	mg/Kg	1	2/11/2015 2:00:51 PM	17635

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 12 of 46

- P Sample pH Not In Range
- RL Reporting Detection Limit

Lab Order 1502324

Date Reported: 3/9/2015

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Gallup

Project: OCD Central Landfarm Semiannual Sam

Collection Date: 2/5/2015 2:17:00 PM

Lab ID: 1502324-003

Matrix: SOIL

Received Date: 2/6/2015 4:35:00 PM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8270C: SEMIVOLATILE	S				Analys	st: DAM
2,4-Dinitrotoluene	ND	0.50	mg/Kg	1	2/11/2015 2:00:51 PM	17635
2,6-Dinitrotoluene	ND	0.50	mg/Kg	1	2/11/2015 2:00:51 PM	17635
Fluoranthene	ND	0.20	mg/Kg	1	2/11/2015 2:00:51 PM	17635
Fluorene	ND	0.20	mg/Kg	1	2/11/2015 2:00:51 PM	17635
Hexachlorobenzene	ND	0.20	mg/Kg	1	2/11/2015 2:00:51 PM	17635
Hexachlorobutadiene	ND	0.20	mg/Kg	1	2/11/2015 2:00:51 PM	17635
Hexachlorocyclopentadiene	ND	0.20	mg/Kg	1	2/11/2015 2:00:51 PM	17635
Hexachloroethane	ND	0.20	mg/Kg	1	2/11/2015 2:00:51 PM	17635
Indeno(1,2,3-cd)pyrene	ND	0.20	mg/Kg	1	2/11/2015 2:00:51 PM	17635
Isophorone	ND	0.50	mg/Kg	1	2/11/2015 2:00:51 PM	17635
1-Methylnaphthalene	ND	0.20	mg/Kg	1	2/11/2015 2:00:51 PM	17635
2-Methylnaphthalene	ND	0.20	mg/Kg	1	2/11/2015 2:00:51 PM	17635
2-Methylphenol	ND	0.50	mg/Kg	1	2/11/2015 2:00:51 PM	17635
3+4-Methylphenol	ND	0.20	mg/Kg	1	2/11/2015 2:00:51 PM	17635
N-Nitrosodi-n-propylamine	ND	0.20	mg/Kg	1	2/11/2015 2:00:51 PM	17635
N-Nitrosodiphenylamine	ND	0.20	mg/Kg	1	2/11/2015 2:00:51 PM	17635
Naphthalene	ND	0.20	mg/Kg	1	2/11/2015 2:00:51 PM	17635
2-Nitroaniline	ND	0.20	mg/Kg	1	2/11/2015 2:00:51 PM	17635
3-Nitroaniline	ND	0.20	mg/Kg	1	2/11/2015 2:00:51 PM	17635
4-Nitroaniline	ND	0.40	mg/Kg	1	2/11/2015 2:00:51 PM	17635
Nitrobenzene	ND	0.50	mg/Kg	1	2/11/2015 2:00:51 PM	17635
2-Nitrophenol	ND	0.20	mg/Kg	1	2/11/2015 2:00:51 PM	17635
4-Nitrophenol	ND	0.25	mg/Kg	1	2/11/2015 2:00:51 PM	17635
Pentachlorophenol	ND	0.40	mg/Kg	1	2/11/2015 2:00:51 PM	17635
Phenanthrene	ND	0.20	mg/Kg	1	2/11/2015 2:00:51 PM	17635
Phenol	ND	0.20	mg/Kg	1	2/11/2015 2:00:51 PM	17635
Pyrene	ND	0.20	mg/Kg	1	2/11/2015 2:00:51 PM	17635
Pyridine	ND	0.50	mg/Kg	1	2/11/2015 2:00:51 PM	17635
1,2,4-Trichlorobenzene	ND	0.20	mg/Kg	1	2/11/2015 2:00:51 PM	17635
2,4,5-Trichlorophenol	ND	0.20	mg/Kg	1	2/11/2015 2:00:51 PM	17635
2,4,6-Trichlorophenol	ND	0.20	mg/Kg	1	2/11/2015 2:00:51 PM	17635
Surr: 2-Fluorophenol	82.7	26.4-129	%REC	1	2/11/2015 2:00:51 PM	17635
Surr: Phenol-d5	73.0	34.8-118	%REC	1	2/11/2015 2:00:51 PM	17635
Surr: 2,4,6-Tribromophenol	75.6	26.8-128	%REC	1	2/11/2015 2:00:51 PM	17635
Surr: Nitrobenzene-d5	80.8	35.8-124	%REC	1	2/11/2015 2:00:51 PM	17635
Surr: 2-Fluorobiphenyl	79.3	24.5-139	%REC	1	2/11/2015 2:00:51 PM	17635
Surr: 4-Terphenyl-d14	64.8	29.4-129	%REC	1	2/11/2015 2:00:51 PM	17635
EPA METHOD 8260B: VOLATILES					Analys	t: DJF
Benzene	ND	0.049	mg/Kg	1	2/10/2015 3:02:24 PM	17626

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 13 of 46

- P Sample pH Not In Range
- RL Reporting Detection Limit

Lab Order 1502324

Date Reported: 3/9/2015

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Gallup

Project: OCD Central Landfarm Semiannual Sam

Collection Date: 2/5/2015 2:17:00 PM

Lab ID: 1502324-003

Matrix: SOIL

Received Date: 2/6/2015 4:35:00 PM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analyst	: DJF
Toluene	ND	0.049	mg/Kg	1	2/10/2015 3:02:24 PM	17626
Ethylbenzene	ND	0.049	mg/Kg	1	2/10/2015 3:02:24 PM	17626
Methyl tert-butyl ether (MTBE)	ND	0.049	mg/Kg	1	2/10/2015 3:02:24 PM	17626
1,2,4-Trimethylbenzene	ND	0.049	mg/Kg	1	2/10/2015 3:02:24 PM	17626
1,3,5-Trimethylbenzene	ND	0.049	mg/Kg	1	2/10/2015 3:02:24 PM	17626
1,2-Dichloroethane (EDC)	ND	0.049	mg/Kg	1	2/10/2015 3:02:24 PM	17626
1,2-Dibromoethane (EDB)	ND	0.049	mg/Kg	1	2/10/2015 3:02:24 PM	17626
Naphthalene	ND	0.099	mg/Kg	1	2/10/2015 3:02:24 PM	17626
1-Methylnaphthalene	ND	0.20	mg/Kg	1	2/10/2015 3:02:24 PM	17626
2-Methylnaphthalene	ND	0.20	mg/Kg	1	2/10/2015 3:02:24 PM	17626
Acetone	ND	0.74	mg/Kg	1	2/10/2015 3:02:24 PM	17626
Bromobenzene	ND	0.049	mg/Kg	1	2/10/2015 3:02:24 PM	17626
Bromodichloromethane	ND	0.049	mg/Kg	1	2/10/2015 3:02:24 PM	17626
Bromoform	ND	0.049	mg/Kg	1	2/10/2015 3:02:24 PM	17626
Bromomethane	ND	0.15	mg/Kg	1	2/10/2015 3:02:24 PM	17626
2-Butanone	ND	0.49	mg/Kg	1	2/10/2015 3:02:24 PM	17626
Carbon disulfide	ND	0.49	mg/Kg	1	2/10/2015 3:02:24 PM	17626
Carbon tetrachloride	ND	0.049	mg/Kg	1	2/10/2015 3:02:24 PM	17626
Chlorobenzene	ND	0.049	mg/Kg	1	2/10/2015 3:02:24 PM	17626
Chloroethane	ND	0.099	mg/Kg	1	2/10/2015 3:02:24 PM	17626
Chloroform	ND	0.049	mg/Kg	1	2/10/2015 3:02:24 PM	17626
Chloromethane	ND	0.15	mg/Kg	1	2/10/2015 3:02:24 PM	17626
2-Chlorotoluene	ND	0.049	mg/Kg	1	2/10/2015 3:02:24 PM	17626
4-Chlorotoluene	ND	0.049	mg/Kg	1	2/10/2015 3:02:24 PM	17626
cis-1,2-DCE	ND	0.049	mg/Kg	1	2/10/2015 3:02:24 PM	17626
cis-1,3-Dichloropropene	ND	0.049	mg/Kg	1	2/10/2015 3:02:24 PM	17626
1,2-Dibromo-3-chloropropane	ND	0.099	mg/Kg	1	2/10/2015 3:02:24 PM	17626
Dibromochloromethane	ND	0.049	mg/Kg	1	2/10/2015 3:02:24 PM	17626
Dibromomethane	ND	0.049	mg/Kg	1	2/10/2015 3:02:24 PM	17626
1,2-Dichlorobenzene	ND	0.049	mg/Kg	1	2/10/2015 3:02:24 PM	17626
1,3-Dichlorobenzene	ND	0.049	mg/Kg	1	2/10/2015 3:02:24 PM	17626
1,4-Dichlorobenzene	ND	0.049	mg/Kg	1	2/10/2015 3:02:24 PM	17626
Dichlorodifluoromethane	ND	0.049	mg/Kg	1	2/10/2015 3:02:24 PM	17626
1,1-Dichloroethane	ND	0.049	mg/Kg	1	2/10/2015 3:02:24 PM	17626
1,1-Dichloroethene	ND	0.049	mg/Kg	1	2/10/2015 3:02:24 PM	17626
1,2-Dichloropropane	ND	0.049	mg/Kg	1	2/10/2015 3:02:24 PM	17626
1,3-Dichloropropane	ND	0.049	mg/Kg	1	2/10/2015 3:02:24 PM	17626
2,2-Dichloropropane	ND	0.099	mg/Kg	1	2/10/2015 3:02:24 PM	17626
1,1-Dichloropropene	ND	0.099	mg/Kg	1	2/10/2015 3:02:24 PM	17626

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 14 of 46

- P Sample pH Not In Range
- RL Reporting Detection Limit

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Gallup

Client Sample ID: Central OCD-03-2/5/2015

Project: OCD Central Landfarm Semiannual Sam

Collection Date: 2/5/2015 2:17:00 PM

Lab ID: 1502324-003 **Matrix:** SOIL **Received Date:** 2/6/2015 4:35:00 PM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analyst	: DJF
Hexachlorobutadiene	ND	0.099	mg/Kg	1	2/10/2015 3:02:24 PM	17626
2-Hexanone	ND	0.49	mg/Kg	1	2/10/2015 3:02:24 PM	17626
Isopropylbenzene	ND	0.049	mg/Kg	1	2/10/2015 3:02:24 PM	17626
4-Isopropyltoluene	ND	0.049	mg/Kg	1	2/10/2015 3:02:24 PM	17626
4-Methyl-2-pentanone	ND	0.49	mg/Kg	1	2/10/2015 3:02:24 PM	17626
Methylene chloride	ND	0.15	mg/Kg	1	2/10/2015 3:02:24 PM	17626
n-Butylbenzene	ND	0.15	mg/Kg	1	2/10/2015 3:02:24 PM	17626
n-Propylbenzene	ND	0.049	mg/Kg	1	2/10/2015 3:02:24 PM	17626
sec-Butylbenzene	ND	0.049	mg/Kg	1	2/10/2015 3:02:24 PM	17626
Styrene	ND	0.049	mg/Kg	1	2/10/2015 3:02:24 PM	17626
tert-Butylbenzene	ND	0.049	mg/Kg	1	2/10/2015 3:02:24 PM	17626
1,1,1,2-Tetrachloroethane	ND	0.049	mg/Kg	1	2/10/2015 3:02:24 PM	17626
1,1,2,2-Tetrachloroethane	ND	0.049	mg/Kg	1	2/10/2015 3:02:24 PM	17626
Tetrachloroethene (PCE)	ND	0.049	mg/Kg	1	2/10/2015 3:02:24 PM	17626
trans-1,2-DCE	ND	0.049	mg/Kg	1	2/10/2015 3:02:24 PM	17626
trans-1,3-Dichloropropene	ND	0.049	mg/Kg	1	2/10/2015 3:02:24 PM	17626
1,2,3-Trichlorobenzene	ND	0.099	mg/Kg	1	2/10/2015 3:02:24 PM	17626
1,2,4-Trichlorobenzene	ND	0.049	mg/Kg	1	2/10/2015 3:02:24 PM	17626
1,1,1-Trichloroethane	ND	0.049	mg/Kg	1	2/10/2015 3:02:24 PM	17626
1,1,2-Trichloroethane	ND	0.049	mg/Kg	1	2/10/2015 3:02:24 PM	17626
Trichloroethene (TCE)	ND	0.049	mg/Kg	1	2/10/2015 3:02:24 PM	17626
Trichlorofluoromethane	ND	0.049	mg/Kg	1	2/10/2015 3:02:24 PM	17626
1,2,3-Trichloropropane	ND	0.099	mg/Kg	1	2/10/2015 3:02:24 PM	17626
Vinyl chloride	ND	0.049	mg/Kg	1	2/10/2015 3:02:24 PM	17626
Xylenes, Total	ND	0.099	mg/Kg	1	2/10/2015 3:02:24 PM	17626
Surr: Dibromofluoromethane	93.0	70-130	%REC	1	2/10/2015 3:02:24 PM	17626
Surr: 1,2-Dichloroethane-d4	81.8	70-130	%REC	1	2/10/2015 3:02:24 PM	17626
Surr: Toluene-d8	85.1	70-130	%REC	1	2/10/2015 3:02:24 PM	17626
Surr: 4-Bromofluorobenzene	83.3	70-130	%REC	1	2/10/2015 3:02:24 PM	17626
EPA METHOD 418.1: TPH					Analyst	: BCN
Petroleum Hydrocarbons, TR	ND	20	mg/Kg	1	2/10/2015 2:00:00 PM	17630
CYANIDE-TOTAL					Analyst	: SUB
Cyanide	ND	0.29	mg/Kg	1	2/16/2015	R24387

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 15 of 46

- P Sample pH Not In Range
- RL Reporting Detection Limit

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Gallup

Project: OCD Central Landfarm Semiannual Sam

Lab ID: 1502324-004

Matrix: SOIL

Client Sample ID: Central OCD-04-2/5/2015

Collection Date: 2/5/2015 11:35:00 AM

Received Date: 2/6/2015 4:35:00 PM

Analyses	Result	RL Q	ual Units	DF	Date Analyzed	Batch
EPA METHOD 8082: PCB'S					Analys	st: SCC
Aroclor 1016	ND	0.10	mg/Kg	1	2/13/2015 4:17:43 AM	17661
Aroclor 1221	ND	0.10	mg/Kg	1	2/13/2015 4:17:43 AM	17661
Aroclor 1232	ND	0.10	mg/Kg	1	2/13/2015 4:17:43 AM	17661
Aroclor 1242	ND	0.10	mg/Kg	1	2/13/2015 4:17:43 AM	17661
Aroclor 1248	ND	0.10	mg/Kg	1	2/13/2015 4:17:43 AM	17661
Aroclor 1254	ND	0.10	mg/Kg	1	2/13/2015 4:17:43 AM	17661
Aroclor 1260	ND	0.10	mg/Kg	1	2/13/2015 4:17:43 AM	17661
Surr: Decachlorobiphenyl	116	37.5-161	%REC	1	2/13/2015 4:17:43 AM	17661
Surr: Tetrachloro-m-xylene	84.0	28.1-149	%REC	1	2/13/2015 4:17:43 AM	17661
EPA METHOD 8015D: DIESEL RANG	SE ORGANICS				Analys	t: BCN
Diesel Range Organics (DRO)	54	10	mg/Kg	1	2/11/2015 9:16:02 AM	17621
Motor Oil Range Organics (MRO)	100	50	mg/Kg	1	2/11/2015 9:16:02 AM	17621
Surr: DNOP	103	63.5-128	%REC	1	2/11/2015 9:16:02 AM	17621
EPA METHOD 8015D: GASOLINE RA	ANGE				Analys	t: NSB
Gasoline Range Organics (GRO)	ND	4.9	mg/Kg	1	2/13/2015 2:57:09 PM	17626
Surr: BFB	88.1	80-120	%REC	1	2/13/2015 2:57:09 PM	17626
EPA METHOD 300.0: ANIONS					Analys	t: LGT
Fluoride	5.9	0.30	mg/Kg	1	2/11/2015 7:25:44 PM	17685
Chloride	260	30	mg/Kg	20	2/11/2015 7:38:09 PM	17685
Nitrogen, Nitrate (As N)	7.5	0.30	mg/Kg	1	2/11/2015 7:25:44 PM	17685
Sulfate	750	30	mg/Kg	20	2/11/2015 7:38:09 PM	17685
EPA METHOD 7471: MERCURY					Analys	t: MMD
Mercury	ND	0.032	mg/Kg	1	2/11/2015 1:56:54 PM	17645
EPA METHOD 6010B: SOIL METALS	3				Analys	t: ELS
Arsenic	ND	2.5	mg/Kg	1	2/11/2015 11:24:29 AM	И 17644
Barium	250	0.10	mg/Kg	1	2/11/2015 11:24:29 AM	И 17644
Cadmium	ND	0.10	mg/Kg	1	2/11/2015 11:24:29 AM	И 17644
Chromium	12	0.30	mg/Kg	1	2/11/2015 11:24:29 AM	√ 17644
Copper	3.8	0.30	mg/Kg	1	2/11/2015 11:24:29 AM	√ 17644
Iron	17000	100	mg/Kg	100	2/12/2015 8:53:00 AM	17644
Lead	6.2	0.25	mg/Kg	1	2/11/2015 11:24:29 AM	√ 17644
Manganese	340	0.20	mg/Kg	2	2/11/2015 11:26:05 AM	_
Selenium	ND	2.5	mg/Kg	1	2/11/2015 11:24:29 AM	_
Silver	ND	0.25	mg/Kg	1	2/11/2015 11:24:29 AM	_
Uranium	ND	5.1	mg/Kg	1	2/11/2015 11:24:29 AM	_
Zinc	22	2.5	mg/Kg	1	2/11/2015 11:24:29 AM	И 17644

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit D
- P Sample pH Not In Range
- RL Reporting Detection Limit

Page 16 of 46

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Gallup

Client Sample ID: Central OCD-04-2/5/2015

Project: OCD Central Landfarm Semiannual Sam

Collection Date: 2/5/2015 11:35:00 AM

Lab ID: 1502324-004

Matrix: SOIL

Received Date: 2/6/2015 4:35:00 PM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8270C: SEMIVOLA	TILES				Analy	st: DAM
Acenaphthene	ND	0.20	mg/Kg	1	2/11/2015 3:24:31 PM	M 17635
Acenaphthylene	ND	0.20	mg/Kg	1	2/11/2015 3:24:31 PM	M 17635
Aniline	ND	0.20	mg/Kg	1	2/11/2015 3:24:31 PM	M 17635
Anthracene	ND	0.20	mg/Kg	1	2/11/2015 3:24:31 PM	M 17635
Azobenzene	ND	0.20	mg/Kg	1	2/11/2015 3:24:31 PM	M 17635
Benz(a)anthracene	ND	0.20	mg/Kg	1	2/11/2015 3:24:31 PM	M 17635
Benzo(a)pyrene	ND	0.20	mg/Kg	1	2/11/2015 3:24:31 PM	M 17635
Benzo(b)fluoranthene	ND	0.20	mg/Kg	1	2/11/2015 3:24:31 PM	M 17635
Benzo(g,h,i)perylene	ND	0.20	mg/Kg	1	2/11/2015 3:24:31 PM	M 17635
Benzo(k)fluoranthene	ND	0.20	mg/Kg	1	2/11/2015 3:24:31 PM	M 17635
Benzoic acid	ND	0.50	mg/Kg	1	2/11/2015 3:24:31 PM	M 17635
Benzyl alcohol	ND	0.20	mg/Kg	1	2/11/2015 3:24:31 PM	M 17635
Bis(2-chloroethoxy)methane	ND	0.20	mg/Kg	1	2/11/2015 3:24:31 PM	M 17635
Bis(2-chloroethyl)ether	ND	0.20	mg/Kg	1	2/11/2015 3:24:31 PM	M 17635
Bis(2-chloroisopropyl)ether	ND	0.20	mg/Kg	1	2/11/2015 3:24:31 PM	M 17635
Bis(2-ethylhexyl)phthalate	ND	0.50	mg/Kg	1	2/11/2015 3:24:31 PM	M 17635
4-Bromophenyl phenyl ether	ND	0.20	mg/Kg	1	2/11/2015 3:24:31 PM	M 17635
Butyl benzyl phthalate	ND	0.20	mg/Kg	1	2/11/2015 3:24:31 PM	M 17635
Carbazole	ND	0.20	mg/Kg	1	2/11/2015 3:24:31 PM	M 17635
4-Chloro-3-methylphenol	ND	0.50	mg/Kg	1	2/11/2015 3:24:31 PM	M 17635
4-Chloroaniline	ND	0.50	mg/Kg	1	2/11/2015 3:24:31 PM	M 17635
2-Chloronaphthalene	ND	0.25	mg/Kg	1	2/11/2015 3:24:31 PM	M 17635
2-Chlorophenol	ND	0.20	mg/Kg	1	2/11/2015 3:24:31 PM	M 17635
4-Chlorophenyl phenyl ether	ND	0.20	mg/Kg	1	2/11/2015 3:24:31 PM	M 17635
Chrysene	ND	0.20	mg/Kg	1	2/11/2015 3:24:31 PM	M 17635
Di-n-butyl phthalate	ND	0.50	mg/Kg	1	2/11/2015 3:24:31 PM	M 17635
Di-n-octyl phthalate	ND	0.40	mg/Kg	1	2/11/2015 3:24:31 PM	M 17635
Dibenz(a,h)anthracene	ND	0.20	mg/Kg	1	2/11/2015 3:24:31 PM	M 17635
Dibenzofuran	ND	0.20	mg/Kg	1	2/11/2015 3:24:31 PM	M 17635
1,2-Dichlorobenzene	ND	0.20	mg/Kg	1	2/11/2015 3:24:31 PM	M 17635
1,3-Dichlorobenzene	ND	0.20	mg/Kg	1	2/11/2015 3:24:31 PM	M 17635
1,4-Dichlorobenzene	ND	0.20	mg/Kg	1	2/11/2015 3:24:31 PM	M 17635
3,3´-Dichlorobenzidine	ND	0.25	mg/Kg	1	2/11/2015 3:24:31 PM	M 17635
Diethyl phthalate	ND	0.20	mg/Kg	1	2/11/2015 3:24:31 PM	M 17635
Dimethyl phthalate	ND	0.20	mg/Kg	1	2/11/2015 3:24:31 PM	M 17635
2,4-Dichlorophenol	ND	0.40	mg/Kg	1	2/11/2015 3:24:31 PM	M 17635
2,4-Dimethylphenol	ND	0.30	mg/Kg	1	2/11/2015 3:24:31 PM	M 17635
4,6-Dinitro-2-methylphenol	ND	0.50	mg/Kg	1	2/11/2015 3:24:31 PM	M 17635
2,4-Dinitrophenol	ND	0.50	mg/Kg	1	2/11/2015 3:24:31 PM	M 17635

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH Not In Range
- RL Reporting Detection Limit

Page 17 of 46

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Gallup

Client Sample ID: Central OCD-04-2/5/2015

Project:OCD Central Landfarm Semiannual SamCollection Date: 2/5/2015 11:35:00 AMLab ID:1502324-004Matrix: SOILReceived Date: 2/6/2015 4:35:00 PM

Analyses	Result	RL Qu	ıal Units	DF	Date Analyzed	Batch
EPA METHOD 8270C: SEMIVOLATILE	S				Analys	t: DAM
2,4-Dinitrotoluene	ND	0.50	mg/Kg	1	2/11/2015 3:24:31 PM	17635
2,6-Dinitrotoluene	ND	0.50	mg/Kg	1	2/11/2015 3:24:31 PM	17635
Fluoranthene	ND	0.20	mg/Kg	1	2/11/2015 3:24:31 PM	17635
Fluorene	ND	0.20	mg/Kg	1	2/11/2015 3:24:31 PM	17635
Hexachlorobenzene	ND	0.20	mg/Kg	1	2/11/2015 3:24:31 PM	17635
Hexachlorobutadiene	ND	0.20	mg/Kg	1	2/11/2015 3:24:31 PM	17635
Hexachlorocyclopentadiene	ND	0.20	mg/Kg	1	2/11/2015 3:24:31 PM	17635
Hexachloroethane	ND	0.20	mg/Kg	1	2/11/2015 3:24:31 PM	17635
Indeno(1,2,3-cd)pyrene	ND	0.20	mg/Kg	1	2/11/2015 3:24:31 PM	17635
Isophorone	ND	0.50	mg/Kg	1	2/11/2015 3:24:31 PM	17635
1-Methylnaphthalene	ND	0.20	mg/Kg	1	2/11/2015 3:24:31 PM	17635
2-Methylnaphthalene	ND	0.20	mg/Kg	1	2/11/2015 3:24:31 PM	17635
2-Methylphenol	ND	0.50	mg/Kg	1	2/11/2015 3:24:31 PM	17635
3+4-Methylphenol	ND	0.20	mg/Kg	1	2/11/2015 3:24:31 PM	17635
N-Nitrosodi-n-propylamine	ND	0.20	mg/Kg	1	2/11/2015 3:24:31 PM	17635
N-Nitrosodiphenylamine	ND	0.20	mg/Kg	1	2/11/2015 3:24:31 PM	17635
Naphthalene	ND	0.20	mg/Kg	1	2/11/2015 3:24:31 PM	17635
2-Nitroaniline	ND	0.20	mg/Kg	1	2/11/2015 3:24:31 PM	17635
3-Nitroaniline	ND	0.20	mg/Kg	1	2/11/2015 3:24:31 PM	17635
4-Nitroaniline	ND	0.40	mg/Kg	1	2/11/2015 3:24:31 PM	17635
Nitrobenzene	ND	0.50	mg/Kg	1	2/11/2015 3:24:31 PM	17635
2-Nitrophenol	ND	0.20	mg/Kg	1	2/11/2015 3:24:31 PM	17635
4-Nitrophenol	ND	0.25	mg/Kg	1	2/11/2015 3:24:31 PM	17635
Pentachlorophenol	ND	0.40	mg/Kg	1	2/11/2015 3:24:31 PM	17635
Phenanthrene	ND	0.20	mg/Kg	1	2/11/2015 3:24:31 PM	17635
Phenol	ND	0.20	mg/Kg	1	2/11/2015 3:24:31 PM	17635
Pyrene	ND	0.20	mg/Kg	1	2/11/2015 3:24:31 PM	17635
Pyridine	ND	0.50	mg/Kg	1	2/11/2015 3:24:31 PM	17635
1,2,4-Trichlorobenzene	ND	0.20	mg/Kg	1	2/11/2015 3:24:31 PM	17635
2,4,5-Trichlorophenol	ND	0.20	mg/Kg	1	2/11/2015 3:24:31 PM	17635
2,4,6-Trichlorophenol	ND	0.20	mg/Kg	1	2/11/2015 3:24:31 PM	17635
Surr: 2-Fluorophenol	82.2	26.4-129	%REC	1	2/11/2015 3:24:31 PM	17635
Surr: Phenol-d5	68.0	34.8-118	%REC	1	2/11/2015 3:24:31 PM	17635
Surr: 2,4,6-Tribromophenol	73.5	26.8-128	%REC	1	2/11/2015 3:24:31 PM	17635
Surr: Nitrobenzene-d5	80.0	35.8-124	%REC	1	2/11/2015 3:24:31 PM	17635
Surr: 2-Fluorobiphenyl	83.2	24.5-139	%REC	1	2/11/2015 3:24:31 PM	17635
Surr: 4-Terphenyl-d14	59.3	29.4-129	%REC	1	2/11/2015 3:24:31 PM	17635
EPA METHOD 8260B: VOLATILES					Analys	t: DJF
Benzene	ND	0.049	mg/Kg	1	2/10/2015 4:25:04 PM	17626

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 18 of 46

- P Sample pH Not In Range
- RL Reporting Detection Limit

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Gallup

Project: OCD Central Landfarm Semiannual Sam

Lab ID: 1502324-004

Matrix: SOIL

Client Sample ID: Central OCD-04-2/5/2015

Collection Date: 2/5/2015 11:35:00 AM

Received Date: 2/6/2015 4:35:00 PM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analyst	: DJF
Toluene	ND	0.049	mg/Kg	1	2/10/2015 4:25:04 PM	17626
Ethylbenzene	ND	0.049	mg/Kg	1	2/10/2015 4:25:04 PM	17626
Methyl tert-butyl ether (MTBE)	ND	0.049	mg/Kg	1	2/10/2015 4:25:04 PM	17626
1,2,4-Trimethylbenzene	ND	0.049	mg/Kg	1	2/10/2015 4:25:04 PM	17626
1,3,5-Trimethylbenzene	ND	0.049	mg/Kg	1	2/10/2015 4:25:04 PM	17626
1,2-Dichloroethane (EDC)	ND	0.049	mg/Kg	1	2/10/2015 4:25:04 PM	17626
1,2-Dibromoethane (EDB)	ND	0.049	mg/Kg	1	2/10/2015 4:25:04 PM	17626
Naphthalene	ND	0.099	mg/Kg	1	2/10/2015 4:25:04 PM	17626
1-Methylnaphthalene	ND	0.20	mg/Kg	1	2/10/2015 4:25:04 PM	17626
2-Methylnaphthalene	ND	0.20	mg/Kg	1	2/10/2015 4:25:04 PM	17626
Acetone	ND	0.74	mg/Kg	1	2/10/2015 4:25:04 PM	17626
Bromobenzene	ND	0.049	mg/Kg	1	2/10/2015 4:25:04 PM	17626
Bromodichloromethane	ND	0.049	mg/Kg	1	2/10/2015 4:25:04 PM	17626
Bromoform	ND	0.049	mg/Kg	1	2/10/2015 4:25:04 PM	17626
Bromomethane	ND	0.15	mg/Kg	1	2/10/2015 4:25:04 PM	17626
2-Butanone	ND	0.49	mg/Kg	1	2/10/2015 4:25:04 PM	17626
Carbon disulfide	ND	0.49	mg/Kg	1	2/10/2015 4:25:04 PM	17626
Carbon tetrachloride	ND	0.049	mg/Kg	1	2/10/2015 4:25:04 PM	17626
Chlorobenzene	ND	0.049	mg/Kg	1	2/10/2015 4:25:04 PM	17626
Chloroethane	ND	0.099	mg/Kg	1	2/10/2015 4:25:04 PM	17626
Chloroform	ND	0.049	mg/Kg	1	2/10/2015 4:25:04 PM	17626
Chloromethane	ND	0.15	mg/Kg	1	2/10/2015 4:25:04 PM	17626
2-Chlorotoluene	ND	0.049	mg/Kg	1	2/10/2015 4:25:04 PM	17626
4-Chlorotoluene	ND	0.049	mg/Kg	1	2/10/2015 4:25:04 PM	17626
cis-1,2-DCE	ND	0.049	mg/Kg	1	2/10/2015 4:25:04 PM	17626
cis-1,3-Dichloropropene	ND	0.049	mg/Kg	1	2/10/2015 4:25:04 PM	17626
1,2-Dibromo-3-chloropropane	ND	0.099	mg/Kg	1	2/10/2015 4:25:04 PM	17626
Dibromochloromethane	ND	0.049	mg/Kg	1	2/10/2015 4:25:04 PM	17626
Dibromomethane	ND	0.049	mg/Kg	1	2/10/2015 4:25:04 PM	17626
1,2-Dichlorobenzene	ND	0.049	mg/Kg	1	2/10/2015 4:25:04 PM	17626
1,3-Dichlorobenzene	ND	0.049	mg/Kg	1	2/10/2015 4:25:04 PM	17626
1,4-Dichlorobenzene	ND	0.049	mg/Kg	1	2/10/2015 4:25:04 PM	17626
Dichlorodifluoromethane	ND	0.049	mg/Kg	1	2/10/2015 4:25:04 PM	17626
1,1-Dichloroethane	ND	0.049	mg/Kg	1	2/10/2015 4:25:04 PM	17626
1,1-Dichloroethene	ND	0.049	mg/Kg	1	2/10/2015 4:25:04 PM	17626
1,2-Dichloropropane	ND	0.049	mg/Kg	1	2/10/2015 4:25:04 PM	17626
1,3-Dichloropropane	ND	0.049	mg/Kg	1	2/10/2015 4:25:04 PM	17626
2,2-Dichloropropane	ND	0.099	mg/Kg	1	2/10/2015 4:25:04 PM	17626
1,1-Dichloropropene	ND	0.099	mg/Kg	1	2/10/2015 4:25:04 PM	17626

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH Not In Range
- RL Reporting Detection Limit

Page 19 of 46

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Gallup Client Sample ID: Central OCD-04-2/5/2015 **Project:** OCD Central Landfarm Semiannual Sam **Collection Date:** 2/5/2015 11:35:00 AM

Received Date: 2/6/2015 4:35:00 PM Lab ID: 1502324-004 Matrix: SOIL

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analyst	: DJF
Hexachlorobutadiene	ND	0.099	mg/Kg	1	2/10/2015 4:25:04 PM	17626
2-Hexanone	ND	0.49	mg/Kg	1	2/10/2015 4:25:04 PM	17626
Isopropylbenzene	ND	0.049	mg/Kg	1	2/10/2015 4:25:04 PM	17626
4-Isopropyltoluene	ND	0.049	mg/Kg	1	2/10/2015 4:25:04 PM	17626
4-Methyl-2-pentanone	ND	0.49	mg/Kg	1	2/10/2015 4:25:04 PM	17626
Methylene chloride	ND	0.15	mg/Kg	1	2/10/2015 4:25:04 PM	17626
n-Butylbenzene	ND	0.15	mg/Kg	1	2/10/2015 4:25:04 PM	17626
n-Propylbenzene	ND	0.049	mg/Kg	1	2/10/2015 4:25:04 PM	17626
sec-Butylbenzene	ND	0.049	mg/Kg	1	2/10/2015 4:25:04 PM	17626
Styrene	ND	0.049	mg/Kg	1	2/10/2015 4:25:04 PM	17626
tert-Butylbenzene	ND	0.049	mg/Kg	1	2/10/2015 4:25:04 PM	17626
1,1,1,2-Tetrachloroethane	ND	0.049	mg/Kg	1	2/10/2015 4:25:04 PM	17626
1,1,2,2-Tetrachloroethane	ND	0.049	mg/Kg	1	2/10/2015 4:25:04 PM	17626
Tetrachloroethene (PCE)	ND	0.049	mg/Kg	1	2/10/2015 4:25:04 PM	17626
trans-1,2-DCE	ND	0.049	mg/Kg	1	2/10/2015 4:25:04 PM	17626
trans-1,3-Dichloropropene	ND	0.049	mg/Kg	1	2/10/2015 4:25:04 PM	17626
1,2,3-Trichlorobenzene	ND	0.099	mg/Kg	1	2/10/2015 4:25:04 PM	17626
1,2,4-Trichlorobenzene	ND	0.049	mg/Kg	1	2/10/2015 4:25:04 PM	17626
1,1,1-Trichloroethane	ND	0.049	mg/Kg	1	2/10/2015 4:25:04 PM	17626
1,1,2-Trichloroethane	ND	0.049	mg/Kg	1	2/10/2015 4:25:04 PM	17626
Trichloroethene (TCE)	ND	0.049	mg/Kg	1	2/10/2015 4:25:04 PM	17626
Trichlorofluoromethane	ND	0.049	mg/Kg	1	2/10/2015 4:25:04 PM	17626
1,2,3-Trichloropropane	ND	0.099	mg/Kg	1	2/10/2015 4:25:04 PM	17626
Vinyl chloride	ND	0.049	mg/Kg	1	2/10/2015 4:25:04 PM	17626
Xylenes, Total	ND	0.099	mg/Kg	1	2/10/2015 4:25:04 PM	17626
Surr: Dibromofluoromethane	87.8	70-130	%REC	1	2/10/2015 4:25:04 PM	17626
Surr: 1,2-Dichloroethane-d4	75.9	70-130	%REC	1	2/10/2015 4:25:04 PM	17626
Surr: Toluene-d8	86.0	70-130	%REC	1	2/10/2015 4:25:04 PM	17626
Surr: 4-Bromofluorobenzene	84.2	70-130	%REC	1	2/10/2015 4:25:04 PM	17626
EPA METHOD 418.1: TPH					Analyst	: BCN
Petroleum Hydrocarbons, TR	59	20	mg/Kg	1	2/10/2015 2:00:00 PM	17630
CYANIDE-TOTAL					Analyst	: SUB
Cyanide	0.45	0.29	mg/Kg	1	2/16/2015	R24387

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Value exceeds Maximum Contaminant Level.

Spike Recovery outside accepted recovery limits

- Ε Value above quantitation range
- Analyte detected below quantitation limits
- RSD is greater than RSDlimit
- R RPD outside accepted recovery limits

- Reporting Detection Limit

Η

ND

P Sample pH Not In Range

Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

Not Detected at the Reporting Limit

Page 20 of 46

Lab Order **1502324**

Date Reported: 3/9/2015

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Gallup Client Sample ID: BD-2/5/2015

Project: OCD Central Landfarm Semiannual Sam Collection Date: 2/5/2015

Lab ID: 1502324-005 **Matrix:** SOIL **Received Date:** 2/6/2015 4:35:00 PM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8082: PCB'S					Analyst	SCC
Aroclor 1016	ND	0.020	mg/Kg	1	2/13/2015 6:34:18 AM	17661
Aroclor 1221	ND	0.020	mg/Kg	1	2/13/2015 6:34:18 AM	17661
Aroclor 1232	ND	0.020	mg/Kg	1	2/13/2015 6:34:18 AM	17661
Aroclor 1242	ND	0.020	mg/Kg	1	2/13/2015 6:34:18 AM	17661
Aroclor 1248	ND	0.020	mg/Kg	1	2/13/2015 6:34:18 AM	17661
Aroclor 1254	ND	0.020	mg/Kg	1	2/13/2015 6:34:18 AM	17661
Aroclor 1260	ND	0.020	mg/Kg	1	2/13/2015 6:34:18 AM	17661
Surr: Decachlorobiphenyl	79.2	37.5-161	%REC	1	2/13/2015 6:34:18 AM	17661
Surr: Tetrachloro-m-xylene	60.8	28.1-149	%REC	1	2/13/2015 6:34:18 AM	17661
EPA METHOD 8015D: DIESEL RANG	E ORGANICS				Analyst	: JME
Diesel Range Organics (DRO)	ND	10	mg/Kg	1	2/10/2015 4:39:34 PM	17621
Motor Oil Range Organics (MRO)	ND	50	mg/Kg	1	2/10/2015 4:39:34 PM	17621
Surr: DNOP	98.8	63.5-128	%REC	1	2/10/2015 4:39:34 PM	17621
EPA METHOD 8015D: GASOLINE RA	NGE				Analyst	: NSB
Gasoline Range Organics (GRO)	ND	4.6	mg/Kg	1	2/13/2015 3:25:48 PM	17626
Surr: BFB	88.6	80-120	%REC	1	2/13/2015 3:25:48 PM	17626
EPA METHOD 300.0: ANIONS					Analyst	: LGT
Fluoride	6.0	1.5	mg/Kg	5	2/11/2015 7:50:33 PM	17685
Chloride	170	7.5	mg/Kg	5	2/11/2015 7:50:33 PM	17685
Nitrogen, Nitrate (As N)	3.4	1.5	mg/Kg	5	2/11/2015 7:50:33 PM	17685
Sulfate	370	7.5	mg/Kg	5	2/11/2015 7:50:33 PM	17685
EPA METHOD 7471: MERCURY					Analyst	: MMD
Mercury	ND	0.031	mg/Kg	1	2/11/2015 1:58:45 PM	17645
EPA METHOD 6010B: SOIL METALS					Analyst	ELS
Arsenic	ND	5.0	mg/Kg	2	2/11/2015 11:29:02 AM	17644
Barium	200	0.20	mg/Kg	2	2/11/2015 11:29:02 AM	17644
Cadmium	ND	0.20	mg/Kg	2	2/11/2015 11:29:02 AM	17644
Chromium	15	0.60	mg/Kg	2	2/11/2015 11:29:02 AM	17644
Copper	4.1	0.60	mg/Kg	2	2/11/2015 11:29:02 AM	17644
Iron	20000	100	mg/Kg	100	2/12/2015 8:54:20 AM	17644
Lead	3.0	0.50	mg/Kg	2	2/11/2015 11:29:02 AM	17644
Manganese	290	0.20	mg/Kg	2	2/11/2015 11:29:02 AM	17644
Selenium	ND	5.0	mg/Kg	2	2/11/2015 11:29:02 AM	17644
Silver	ND	0.50	mg/Kg	2	2/11/2015 11:29:02 AM	17644
Uranium	ND	10	mg/Kg	2	2/11/2015 11:29:02 AM	17644
Zinc	20	5.0	mg/Kg	2	2/11/2015 11:29:02 AM	17644

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- Page 21 of 46
- P Sample pH Not In Range
- RL Reporting Detection Limit

Lab Order **1502324**

Date Reported: 3/9/2015

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Gallup Client Sample ID: BD-2/5/2015

Project: OCD Central Landfarm Semiannual Sam **Collection Date:** 2/5/2015

Lab ID: 1502324-005 **Matrix:** SOIL **Received Date:** 2/6/2015 4:35:00 PM

Analyses	Result	RL Qua	al Units	DF	Date Analyzed	Batch
EPA METHOD 8270C: SEMIVOLATILES					Analyst:	DAM
Acenaphthene	ND	0.20	mg/Kg	1	2/11/2015 11:14:30 AM	17635
Acenaphthylene	ND	0.20	mg/Kg	1	2/11/2015 11:14:30 AM	17635
Aniline	ND	0.20	mg/Kg	1	2/11/2015 11:14:30 AM	17635
Anthracene	ND	0.20	mg/Kg	1	2/11/2015 11:14:30 AM	17635
Azobenzene	ND	0.20	mg/Kg	1	2/11/2015 11:14:30 AM	17635
Benz(a)anthracene	ND	0.20	mg/Kg	1	2/11/2015 11:14:30 AM	17635
Benzo(a)pyrene	ND	0.20	mg/Kg	1	2/11/2015 11:14:30 AM	17635
Benzo(b)fluoranthene	ND	0.20	mg/Kg	1	2/11/2015 11:14:30 AM	17635
Benzo(g,h,i)perylene	ND	0.20	mg/Kg	1	2/11/2015 11:14:30 AM	17635
Benzo(k)fluoranthene	ND	0.20	mg/Kg	1	2/11/2015 11:14:30 AM	17635
Benzoic acid	ND	0.50	mg/Kg	1	2/11/2015 11:14:30 AM	17635
Benzyl alcohol	0.23	0.20	mg/Kg	1	2/11/2015 11:14:30 AM	17635
Bis(2-chloroethoxy)methane	ND	0.20	mg/Kg	1	2/11/2015 11:14:30 AM	17635
Bis(2-chloroethyl)ether	ND	0.20	mg/Kg	1	2/11/2015 11:14:30 AM	17635
Bis(2-chloroisopropyl)ether	ND	0.20	mg/Kg	1	2/11/2015 11:14:30 AM	17635
Bis(2-ethylhexyl)phthalate	ND	0.50	mg/Kg	1	2/11/2015 11:14:30 AM	17635
4-Bromophenyl phenyl ether	ND	0.20	mg/Kg	1	2/11/2015 11:14:30 AM	17635
Butyl benzyl phthalate	ND	0.20	mg/Kg	1	2/11/2015 11:14:30 AM	17635
Carbazole	ND	0.20	mg/Kg	1	2/11/2015 11:14:30 AM	17635
4-Chloro-3-methylphenol	ND	0.50	mg/Kg	1	2/11/2015 11:14:30 AM	17635
4-Chloroaniline	ND	0.50	mg/Kg	1	2/11/2015 11:14:30 AM	17635
2-Chloronaphthalene	ND	0.25	mg/Kg	1	2/11/2015 11:14:30 AM	17635
2-Chlorophenol	ND	0.20	mg/Kg	1	2/11/2015 11:14:30 AM	17635
4-Chlorophenyl phenyl ether	ND	0.20	mg/Kg	1	2/11/2015 11:14:30 AM	17635
Chrysene	ND	0.20	mg/Kg	1	2/11/2015 11:14:30 AM	17635
Di-n-butyl phthalate	ND	0.50	mg/Kg	1	2/11/2015 11:14:30 AM	17635
Di-n-octyl phthalate	ND	0.40	mg/Kg	1	2/11/2015 11:14:30 AM	17635
Dibenz(a,h)anthracene	ND	0.20	mg/Kg	1	2/11/2015 11:14:30 AM	17635
Dibenzofuran	ND	0.20	mg/Kg	1	2/11/2015 11:14:30 AM	17635
1,2-Dichlorobenzene	ND	0.20	mg/Kg	1	2/11/2015 11:14:30 AM	17635
1,3-Dichlorobenzene	ND	0.20	mg/Kg	1	2/11/2015 11:14:30 AM	17635
1,4-Dichlorobenzene	ND	0.20	mg/Kg	1	2/11/2015 11:14:30 AM	17635
3,3'-Dichlorobenzidine	ND	0.25	mg/Kg	1	2/11/2015 11:14:30 AM	17635
Diethyl phthalate	ND	0.20	mg/Kg	1	2/11/2015 11:14:30 AM	17635
Dimethyl phthalate	ND	0.20	mg/Kg	1	2/11/2015 11:14:30 AM	17635
2,4-Dichlorophenol	ND	0.40	mg/Kg	1	2/11/2015 11:14:30 AM	17635
2,4-Dimethylphenol	ND	0.30	mg/Kg	1	2/11/2015 11:14:30 AM	17635
4,6-Dinitro-2-methylphenol	ND	0.50	mg/Kg	1	2/11/2015 11:14:30 AM	17635
2,4-Dinitrophenol	ND	0.50	mg/Kg	1	2/11/2015 11:14:30 AM	17635

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH Not In Range
- RL Reporting Detection Limit

Page 22 of 46

Lab Order 1502324

Date Reported: 3/9/2015

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Gallup Client Sample ID: BD-2/5/2015

Project: OCD Central Landfarm Semiannual Sam **Collection Date:** 2/5/2015

Lab ID: 1502324-005 Matrix: SOIL Received Date: 2/6/2015 4:35:00 PM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8270C: SEMIVOLATILES					Analys	t: DAM
2,4-Dinitrotoluene	ND	0.50	mg/Kg	1	2/11/2015 11:14:30 AM	A 17635
2,6-Dinitrotoluene	ND	0.50	mg/Kg	1	2/11/2015 11:14:30 AM	Л 17635
Fluoranthene	ND	0.20	mg/Kg	1	2/11/2015 11:14:30 AM	Л 17635
Fluorene	ND	0.20	mg/Kg	1	2/11/2015 11:14:30 AM	И 17635
Hexachlorobenzene	ND	0.20	mg/Kg	1	2/11/2015 11:14:30 AM	M 17635
Hexachlorobutadiene	ND	0.20	mg/Kg	1	2/11/2015 11:14:30 AM	M 17635
Hexachlorocyclopentadiene	ND	0.20	mg/Kg	1	2/11/2015 11:14:30 AM	M 17635
Hexachloroethane	ND	0.20	mg/Kg	1	2/11/2015 11:14:30 AM	M 17635
Indeno(1,2,3-cd)pyrene	ND	0.20	mg/Kg	1	2/11/2015 11:14:30 AM	M 17635
Isophorone	ND	0.50	mg/Kg	1	2/11/2015 11:14:30 AM	M 17635
1-Methylnaphthalene	ND	0.20	mg/Kg	1	2/11/2015 11:14:30 AM	M 17635
2-Methylnaphthalene	ND	0.20	mg/Kg	1	2/11/2015 11:14:30 AM	M 17635
2-Methylphenol	ND	0.50	mg/Kg	1	2/11/2015 11:14:30 AM	M 17635
3+4-Methylphenol	ND	0.20	mg/Kg	1	2/11/2015 11:14:30 AM	M 17635
N-Nitrosodi-n-propylamine	ND	0.20	mg/Kg	1	2/11/2015 11:14:30 AM	M 17635
N-Nitrosodiphenylamine	ND	0.20	mg/Kg	1	2/11/2015 11:14:30 AM	И 17635
Naphthalene	ND	0.20	mg/Kg	1	2/11/2015 11:14:30 AM	M 17635
2-Nitroaniline	ND	0.20	mg/Kg	1	2/11/2015 11:14:30 AM	M 17635
3-Nitroaniline	ND	0.20	mg/Kg	1	2/11/2015 11:14:30 AM	И 17635
4-Nitroaniline	ND	0.40	mg/Kg	1	2/11/2015 11:14:30 AM	M 17635
Nitrobenzene	ND	0.50	mg/Kg	1	2/11/2015 11:14:30 AM	M 17635
2-Nitrophenol	ND	0.20	mg/Kg	1	2/11/2015 11:14:30 AM	M 17635
4-Nitrophenol	ND	0.25	mg/Kg	1	2/11/2015 11:14:30 AM	<i>l</i> 17635
Pentachlorophenol	ND	0.40	mg/Kg	1	2/11/2015 11:14:30 AM	<i>l</i> 17635
Phenanthrene	ND	0.20	mg/Kg	1	2/11/2015 11:14:30 AM	<i>l</i> 17635
Phenol	ND	0.20	mg/Kg	1	2/11/2015 11:14:30 AM	<i>l</i> 17635
Pyrene	ND	0.20	mg/Kg	1	2/11/2015 11:14:30 AM	<i>l</i> 17635
Pyridine	ND	0.50	mg/Kg	1	2/11/2015 11:14:30 AM	A 17635
1,2,4-Trichlorobenzene	ND	0.20	mg/Kg	1	2/11/2015 11:14:30 AM	A 17635
2,4,5-Trichlorophenol	ND	0.20	mg/Kg	1	2/11/2015 11:14:30 AM	A 17635
2,4,6-Trichlorophenol	ND	0.20	mg/Kg	1	2/11/2015 11:14:30 AM	<i>I</i> 17635
Surr: 2-Fluorophenol	86.0	26.4-129	%REC	1	2/11/2015 11:14:30 AM	<i>I</i> 17635
Surr: Phenol-d5	76.8	34.8-118	%REC	1	2/11/2015 11:14:30 AM	<i>I</i> 17635
Surr: 2,4,6-Tribromophenol	79.4	26.8-128	%REC	1	2/11/2015 11:14:30 AM	<i>I</i> 17635
Surr: Nitrobenzene-d5	80.6	35.8-124	%REC	1	2/11/2015 11:14:30 AM	<i>I</i> 17635
Surr: 2-Fluorobiphenyl	85.2	24.5-139	%REC	1	2/11/2015 11:14:30 AM	<i>I</i> 17635
Surr: 4-Terphenyl-d14	64.8	29.4-129	%REC	1	2/11/2015 11:14:30 AM	И 17635
EPA METHOD 8260B: VOLATILES					Analys	t: DJF
Benzene	ND	0.046	mg/Kg	1	2/10/2015 4:52:38 PM	17626

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- Ε Value above quantitation range
- Analyte detected below quantitation limits
- RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- Spike Recovery outside accepted recovery limits
- Analyte detected in the associated Method Blank
- Η Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
 - Page 23 of 46
- P Sample pH Not In Range
- Reporting Detection Limit

Lab Order **1502324**

Date Reported: 3/9/2015

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Gallup

Client Sample ID: BD-2/5/2015

Project: OCD Central Landfarm Semiannual Sam Collection Date: 2/5/2015

Lab ID: 1502324-005 **Matrix:** SOIL **Received Date:** 2/6/2015 4:35:00 PM

Analyses	Result RL Qual Units			DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analyst	: DJF
Toluene	ND	0.046	mg/Kg	1	2/10/2015 4:52:38 PM	17626
Ethylbenzene	ND	0.046	mg/Kg	1	2/10/2015 4:52:38 PM	17626
Methyl tert-butyl ether (MTBE)	ND	0.046	mg/Kg	1	2/10/2015 4:52:38 PM	17626
1,2,4-Trimethylbenzene	ND	0.046	mg/Kg	1	2/10/2015 4:52:38 PM	17626
1,3,5-Trimethylbenzene	ND	0.046	mg/Kg	1	2/10/2015 4:52:38 PM	17626
1,2-Dichloroethane (EDC)	ND	0.046	mg/Kg	1	2/10/2015 4:52:38 PM	17626
1,2-Dibromoethane (EDB)	ND	0.046	mg/Kg	1	2/10/2015 4:52:38 PM	17626
Naphthalene	ND	0.092	mg/Kg	1	2/10/2015 4:52:38 PM	17626
1-Methylnaphthalene	ND	0.18	mg/Kg	1	2/10/2015 4:52:38 PM	17626
2-Methylnaphthalene	ND	0.18	mg/Kg	1	2/10/2015 4:52:38 PM	17626
Acetone	ND	0.69	mg/Kg	1	2/10/2015 4:52:38 PM	17626
Bromobenzene	ND	0.046	mg/Kg	1	2/10/2015 4:52:38 PM	17626
Bromodichloromethane	ND	0.046	mg/Kg	1	2/10/2015 4:52:38 PM	17626
Bromoform	ND	0.046	mg/Kg	1	2/10/2015 4:52:38 PM	17626
Bromomethane	ND	0.14	mg/Kg	1	2/10/2015 4:52:38 PM	17626
2-Butanone	ND	0.46	mg/Kg	1	2/10/2015 4:52:38 PM	17626
Carbon disulfide	ND	0.46	mg/Kg	1	2/10/2015 4:52:38 PM	17626
Carbon tetrachloride	ND	0.046	mg/Kg	1	2/10/2015 4:52:38 PM	17626
Chlorobenzene	ND	0.046	mg/Kg	1	2/10/2015 4:52:38 PM	17626
Chloroethane	ND	0.092	mg/Kg	1	2/10/2015 4:52:38 PM	17626
Chloroform	ND	0.046	mg/Kg	1	2/10/2015 4:52:38 PM	17626
Chloromethane	ND	0.14	mg/Kg	1	2/10/2015 4:52:38 PM	17626
2-Chlorotoluene	ND	0.046	mg/Kg	1	2/10/2015 4:52:38 PM	17626
4-Chlorotoluene	ND	0.046	mg/Kg	1	2/10/2015 4:52:38 PM	17626
cis-1,2-DCE	ND	0.046	mg/Kg	1	2/10/2015 4:52:38 PM	17626
cis-1,3-Dichloropropene	ND	0.046	mg/Kg	1	2/10/2015 4:52:38 PM	17626
1,2-Dibromo-3-chloropropane	ND	0.092	mg/Kg	1	2/10/2015 4:52:38 PM	17626
Dibromochloromethane	ND	0.046	mg/Kg	1	2/10/2015 4:52:38 PM	17626
Dibromomethane	ND	0.046	mg/Kg	1	2/10/2015 4:52:38 PM	17626
1,2-Dichlorobenzene	ND	0.046	mg/Kg	1	2/10/2015 4:52:38 PM	17626
1,3-Dichlorobenzene	ND	0.046	mg/Kg	1	2/10/2015 4:52:38 PM	17626
1,4-Dichlorobenzene	ND	0.046	mg/Kg	1	2/10/2015 4:52:38 PM	17626
Dichlorodifluoromethane	ND	0.046	mg/Kg	1	2/10/2015 4:52:38 PM	17626
1,1-Dichloroethane	ND	0.046	mg/Kg	1	2/10/2015 4:52:38 PM	17626
1,1-Dichloroethene	ND	0.046	mg/Kg	1	2/10/2015 4:52:38 PM	17626
1,2-Dichloropropane	ND	0.046	mg/Kg	1	2/10/2015 4:52:38 PM	17626
1,3-Dichloropropane	ND	0.046	mg/Kg	1	2/10/2015 4:52:38 PM	17626
2,2-Dichloropropane	ND	0.092	mg/Kg	1	2/10/2015 4:52:38 PM	17626
1,1-Dichloropropene	ND	0.092	mg/Kg	1	2/10/2015 4:52:38 PM	17626

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 24 of 46

- P Sample pH Not In Range
- RL Reporting Detection Limit

Lab Order **1502324**

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 3/9/2015

CLIENT: Western Refining Southwest, Gallup Client Sample ID: BD-2/5/2015

Project: OCD Central Landfarm Semiannual Sam **Collection Date:** 2/5/2015

Lab ID: 1502324-005 **Matrix:** SOIL **Received Date:** 2/6/2015 4:35:00 PM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analyst	:: DJF
Hexachlorobutadiene	ND	0.092	mg/Kg	1	2/10/2015 4:52:38 PM	17626
2-Hexanone	ND	0.46	mg/Kg	1	2/10/2015 4:52:38 PM	17626
Isopropylbenzene	ND	0.046	mg/Kg	1	2/10/2015 4:52:38 PM	17626
4-Isopropyltoluene	ND	0.046	mg/Kg	1	2/10/2015 4:52:38 PM	17626
4-Methyl-2-pentanone	ND	0.46	mg/Kg	1	2/10/2015 4:52:38 PM	17626
Methylene chloride	ND	0.14	mg/Kg	1	2/10/2015 4:52:38 PM	17626
n-Butylbenzene	ND	0.14	mg/Kg	1	2/10/2015 4:52:38 PM	17626
n-Propylbenzene	ND	0.046	mg/Kg	1	2/10/2015 4:52:38 PM	17626
sec-Butylbenzene	ND	0.046	mg/Kg	1	2/10/2015 4:52:38 PM	17626
Styrene	ND	0.046	mg/Kg	1	2/10/2015 4:52:38 PM	17626
tert-Butylbenzene	ND	0.046	mg/Kg	1	2/10/2015 4:52:38 PM	17626
1,1,1,2-Tetrachloroethane	ND	0.046	mg/Kg	1	2/10/2015 4:52:38 PM	17626
1,1,2,2-Tetrachloroethane	ND	0.046	mg/Kg	1	2/10/2015 4:52:38 PM	17626
Tetrachloroethene (PCE)	ND	0.046	mg/Kg	1	2/10/2015 4:52:38 PM	17626
trans-1,2-DCE	ND	0.046	mg/Kg	1	2/10/2015 4:52:38 PM	17626
trans-1,3-Dichloropropene	ND	0.046	mg/Kg	1	2/10/2015 4:52:38 PM	17626
1,2,3-Trichlorobenzene	ND	0.092	mg/Kg	1	2/10/2015 4:52:38 PM	17626
1,2,4-Trichlorobenzene	ND	0.046	mg/Kg	1	2/10/2015 4:52:38 PM	17626
1,1,1-Trichloroethane	ND	0.046	mg/Kg	1	2/10/2015 4:52:38 PM	17626
1,1,2-Trichloroethane	ND	0.046	mg/Kg	1	2/10/2015 4:52:38 PM	17626
Trichloroethene (TCE)	ND	0.046	mg/Kg	1	2/10/2015 4:52:38 PM	17626
Trichlorofluoromethane	ND	0.046	mg/Kg	1	2/10/2015 4:52:38 PM	17626
1,2,3-Trichloropropane	ND	0.092	mg/Kg	1	2/10/2015 4:52:38 PM	17626
Vinyl chloride	ND	0.046	mg/Kg	1	2/10/2015 4:52:38 PM	17626
Xylenes, Total	ND	0.092	mg/Kg	1	2/10/2015 4:52:38 PM	17626
Surr: Dibromofluoromethane	91.3	70-130	%REC	1	2/10/2015 4:52:38 PM	17626
Surr: 1,2-Dichloroethane-d4	81.9	70-130	%REC	1	2/10/2015 4:52:38 PM	17626
Surr: Toluene-d8	85.8	70-130	%REC	1	2/10/2015 4:52:38 PM	17626
Surr: 4-Bromofluorobenzene	85.8	70-130	%REC	1	2/10/2015 4:52:38 PM	17626
EPA METHOD 418.1: TPH					Analyst	: BCN
Petroleum Hydrocarbons, TR	ND	20	mg/Kg	1	2/10/2015 2:00:00 PM	17630
CYANIDE-TOTAL					Analyst	:: SUB
Cyanide	ND	0.30	mg/Kg	1	2/16/2015	R24387

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 25 of 46

- P Sample pH Not In Range
- RL Reporting Detection Limit

Lab Order 1502324

Date Reported: 3/9/2015

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Gallup Client Sample ID: EB-2/5/2015

Project:OCD Central Landfarm Semiannual SamCollection Date: 2/5/2015 2:58:00 PMLab ID:1502324-006Matrix: AQUEOUSReceived Date: 2/6/2015 4:35:00 PM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch		
EPA METHOD 8260: VOLATILES SH	EPA METHOD 8260: VOLATILES SHORT LIST							
Benzene	ND	1.0	μg/L	1	2/12/2015 6:57:01 AM	R24238		
Toluene	ND	1.0	μg/L	1	2/12/2015 6:57:01 AM	R24238		
Ethylbenzene	ND	1.0	μg/L	1	2/12/2015 6:57:01 AM	R24238		
Xylenes, Total	ND	1.5	μg/L	1	2/12/2015 6:57:01 AM	R24238		
Surr: 1,2-Dichloroethane-d4	82.4	70-130	%REC	1	2/12/2015 6:57:01 AM	R24238		
Surr: 4-Bromofluorobenzene	94.2	70-130	%REC	1	2/12/2015 6:57:01 AM	R24238		
Surr: Dibromofluoromethane	86.6	70-130	%REC	1	2/12/2015 6:57:01 AM	R24238		
Surr: Toluene-d8	84.8	70-130	%REC	1	2/12/2015 6:57:01 AM	R24238		

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit Page
- P Sample pH Not In Range
- RL Reporting Detection Limit

Page 26 of 46

Lab Order 1502324

Date Reported: 3/9/2015

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Gallup Client Sample ID: FB-2/5/2015

Project:OCD Central Landfarm Semiannual SamCollection Date: 2/5/2015 3:05:00 PMLab ID:1502324-007Matrix: AQUEOUSReceived Date: 2/6/2015 4:35:00 PM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch	
EPA METHOD 8260: VOLATILES SH	EPA METHOD 8260: VOLATILES SHORT LIST						
Benzene	ND	1.0	μg/L	1	2/12/2015 7:25:27 AM	R24238	
Toluene	ND	1.0	μg/L	1	2/12/2015 7:25:27 AM	R24238	
Ethylbenzene	ND	1.0	μg/L	1	2/12/2015 7:25:27 AM	R24238	
Xylenes, Total	ND	1.5	μg/L	1	2/12/2015 7:25:27 AM	R24238	
Surr: 1,2-Dichloroethane-d4	91.2	70-130	%REC	1	2/12/2015 7:25:27 AM	R24238	
Surr: 4-Bromofluorobenzene	97.9	70-130	%REC	1	2/12/2015 7:25:27 AM	R24238	
Surr: Dibromofluoromethane	94.2	70-130	%REC	1	2/12/2015 7:25:27 AM	R24238	
Surr: Toluene-d8	94.5	70-130	%REC	1	2/12/2015 7:25:27 AM	R24238	

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 27 of 46

- P Sample pH Not In Range
- RL Reporting Detection Limit

Lab Order **1502324**

Date Reported: 3/9/2015

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Gallup Client Sample ID: Trip Blank

Project: OCD Central Landfarm Semiannual Sam **Collection Date:**

Lab ID: 1502324-008 **Matrix:** AQUEOUS **Received Date:** 2/6/2015 4:35:00 PM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch		
EPA METHOD 8260: VOLATILES SH	EPA METHOD 8260: VOLATILES SHORT LIST							
Benzene	ND	1.0	μg/L	1	2/12/2015 7:54:03 AM	R24238		
Toluene	ND	1.0	μg/L	1	2/12/2015 7:54:03 AM	R24238		
Ethylbenzene	ND	1.0	μg/L	1	2/12/2015 7:54:03 AM	R24238		
Xylenes, Total	ND	1.5	μg/L	1	2/12/2015 7:54:03 AM	R24238		
Surr: 1,2-Dichloroethane-d4	82.1	70-130	%REC	1	2/12/2015 7:54:03 AM	R24238		
Surr: 4-Bromofluorobenzene	88.7	70-130	%REC	1	2/12/2015 7:54:03 AM	R24238		
Surr: Dibromofluoromethane	85.8	70-130	%REC	1	2/12/2015 7:54:03 AM	R24238		
Surr: Toluene-d8	87.2	70-130	%REC	1	2/12/2015 7:54:03 AM	R24238		

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH Not In Range
- RL Reporting Detection Limit

Page 28 of 46

Anatek Labs, Inc.

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client: Address: HALL ENVIRONMENTAL ANALYSIS LAB

4901 HAWKINS NE SUITE D

ALBUQUERQUE, NM 87109

Attn:

ANDY FREEMAN

Batch #:

150210026

Project Name:

1502324

Analytical Results Report

Sample Number

150210026-001

Sampling Date 2/5/2015

Date/Time Received 2/10/2015

Sampling Time 1:30 PM

Client Sample ID Matrix

1502324-001D / CENTRAL OCD-01-2/5/2015

Soil

Comments

Parameter	Result	Units	PQL	Analysis Date	Analyst	Method	Qualifier
Cyanide	ND	mg/Kg	0.31	2/16/2015	CRW	EPA 335.4	
%moisture	19.4	Percent		2/17/2015	CRW	%moisture	

Sample Number

150210026-002

Soil

2/5/2015 Sampling Date

Date/Time Received 2/10/2015

10:40 AM

10:40 AM

Client Sample ID

1502324-002D / CENTRAL OCD-02-2/5/2015

1502324-003D / CENTRAL QCD-03-2/5/2015

Sampling Time 12:15 PM

Matrix

Comments

Parameter	Result	Units	PQL_	Analysis Date	Analyst	Method	Qualifier
Cyanide	ND	mg/Kg	0.312	2/16/2015	CRW	EPA 335.4	
%moisture	20.5	Percent		2/17/2015	CRW	%moisture	

Sample Number

150210026-003

2/5/2015 Sampling Date

Date/Time Received 2/10/2015 Sampling Time 2:17 PM

10:40 AM

Client Sample ID

Soil

Comments

Matrix

Parameter	Result	Units	PQL	Analysis Date	Analyst	Method	Qualifier
Cyanide	ND	mg/Kg	0.289	2/16/2015	CRW	EPA 335.4	
%moisture	17	Percent		2/1 7 /2015	CRW	%moisture	

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E87893; ID:ID00013; MT:CERT0028; NM: ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C585; MT:Cert0095; FL(NELAP): E871099

Anatek Labs, Inc.

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:

HALL ENVIRONMENTAL ANALYSIS LAB

Batch #:

150210026

Address:

4901 HAWKINS NE SUITE D ALBUQUERQUE, NM 87109

Project Name:

1502324

Attn:

ANDY FREEMAN

Analytical Results Report

Sample Number

150210026-004

Sampling Date

2/5/2015

Date/Time Received 2/10/2015

10:40 AM

Client Sample ID

1502324-004D / CENTRAL OCD-04-2/5/2015

Sampling Time 11:35 AM

Matrix

Soil

Comments

Parameter	Result	Units	PQL_	Analysis Date	Analyst	Method	Qualifier
Cyanide	0.451	mg/Kg	0.293	2/16/2015	CRW	EPA 335.4	
%moisture	14.7	Percent		2/17/2015	CRW	%moisture	

Sample Number Client Sample ID 150210026-005

2/5/2015 Sampling Date

Date/Time Received 2/10/2015 10:40 AM

1502324-005D / BD-2/5/2015

Sampling Time

Matrix

Soil

Comments

Parameter	Result	Units	PQL	Analysis Date	Analyst	Method	Qualifier
Cyanide	ND	mg/Kg	0.302	2/16/2015	CRW	EPA 335.4	
%moisture	19.9	Percent		2/17/2015	CRW	%moisture	

Authorized Signature

John Coddington, Lab Manager

MCL

EPA's Maximum Contaminant Level

ND

Not Detected

PQL

Practical Quantitation Limit

This report shall not be reproduced except in full, without the written approval of the laboratory.

The results reported relate only to the samples indicated.

Soil/solid results are reported on a dry-weight basis unless otherwise noted.

Anatek Labs, Inc.

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:

HALL ENVIRONMENTAL ANALYSIS LAB

Batch #:

150210026

Address:

4901 HAWKINS NE SUITE D ALBUQUERQUE, NM 87109 **Project Name:**

1502324

Attn:

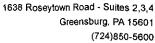
ANDY FREEMAN

Analytical Results Report

Quality Control Data

Lab Control Sample						· · · · · ·		<u></u> ,	
Parameter Cyanide	LCS Result 0.494	Unit mg/k				%Rec 0-110	•	Date 2015	Analysis Date 2/16/2015
Matrix Spike	<u> </u>						, <u> </u>		
Sample Number Parameter		Sample Result	MS Result	Units	MS Spike	%Rec	AR %Rec	Prep Date	Analysis Date
150210026-001 Cyanide		ND	15.3	mg/kg	15.5	98.7	90-110	•	
Matrix Spike Duplicate	·								
Parameter	MSD Result	Units	MSD Spike	%Rec	%RPD	AR %RPI) Pre	p Date	Analysis Date
Cyanide	15.1	mg/kg	15.5	97.4	1.3	0-25		6/2015	2/16/2015
Method Blank					<u>.</u>	<u> </u>			
Parameter		Re	sult	Units		PQL	Pr	ep Date	Analysis Date
Cyanide		ı	4D	mg/Kg		0.5	2	/16/2015	2/16/2015

AR


Acceptable Range

ND PQL Not Detected

RPD

Practical Quantitation Limit Relative Percentage Difference

Comments:

ANALYTICAL RESULTS - RADIOCHEMISTRY

Project:

1502324

Pace Project No.:

30140414

Sample: 1502324-001C Central

OCD-01-2/

Lab ID: 30140414001

Collected: 02/05/15 13:30 Received: 02/10/15 10:00

Matrix: Solid

PWS:

Site ID:

Sample Type:

Results reported on a "dry-weight" basis

Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	ÇAS No.	Qual
Radium-226	EPA 901.1	1.586 ± 0.338 (0.126) C:NA T:NA	pCi/g	03/05/15 10:36	13982-63-3	
Radium-228	EPA 901.1	1.561 ± 0.449 (0.589) C:NA T:NA	pCi/g	03/05/15 10:36	15262-20-1	

Sample: 1502324-002C Central

Lab ID: 30140414002

Collected: 02/05/15 12:15 Received: 02/10/15 10:00 Matrix: Solid

OCD-02-2/ PWS:

Site ID:

Sample Type:

Results reported on a "dry-weight" basis

Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 901.1	1.240 ± 0.264 (0.257) C:NA T:NA	pCi/g	03/05/15 10:35	13982-63-3	
Radium-228	EPA 901.1	1.514 ± 0.382 (0.425) C:NA T:NA	pCi/g	03/05/15 10:35	15262-20-1	

Sample: 1502324-003C Central

Lab ID: 30140414003

Collected: 02/05/15 14:17 Received: 02/10/15 10:00 Matrix: Solid

PWS:

OCD-03-2/

Site ID:

Sample Type:

Results reported on a "dry-weight" basis

Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 901.1	1.467 ± 0.265 (0.189) C:NA T:NA	pCi/g	03/05/15 11:01	13982-63-3	
Radium-228	EPA 901.1	2.207 ± 0.494 (0.131) C:NA T:NA	pCi/g	03/05/15 11:01	15262-20-1	

Sample: 1502324-004C Central

Lab ID: 30140414004

Collected: 02/05/15 11:35 Received: 02/10/15 10:00 Matrix: Solid

PWS:

OCD-04-2/

Site ID:

Sample Type:

Results reported on a "dry-weight" basis

Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 901.1	1.480 ± 0.372 (0.214) C:NA T:NA	pCi/g	03/05/15 11:02	13982-63-3	
Radium-228	EPA 901.1	1.854 ± 0.591 (0.424) C:NA T:NA	pCi/g	03/05/15 11:02	15262-20-1	

PWS:

Sample: 1502324-005C BD-2/5/2015

Lab ID: 30140414005 Site ID:

Collected: 02/05/15 00:01 Received: 02/10/15 10:00 Matrix: Solid

Sample Type:

Results reported on a "dry-weight" basis

Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 901.1	1.602 ± 0.379 (0.141) C:NA T:NA	pCi/g	03/05/15 11:19	13982-63-3	
Radium-228	EPA 901.1	2.233 ± 0.499 (0.432) C:NA T:NA	pCi/g	03/05/15 11:19	15262-20-1	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Pace Analytical Services, Inc. 1638 Roseytown Road - Suites 2,3,4 Greensburg, PA 15601 (724)850-5600

QUALITY CONTROL - RADIOCHEMISTRY

Project:

1502324

Pace Project No.:

30140414

QC Batch:

RADC/23382

Analysis Method:

EPA 901.1

QC Batch Method:

EPA 901.1

Analysis Description:

901.1 Gamma Spec Ingrowth

Associated Lab Samples: 30140414001, 30140414002

Results presented on this page are in the units Indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Pace Analytical Services, Inc. 1638 Roseytown Road - Suites 2,3,4 Greensburg, PA 15601 (724)850-5600

QUALITY CONTROL - RADIOCHEMISTRY

Project:

1502324

Pace Project No.:

30140414

QC Batch:

RADC/23383

Analysis Method:

EPA 901.1

QC Batch Method:

EPA 901.1

Analysis Description:

901.1 Gamma Spec Ingrowth

Associated Lab Samples: 30140414003, 30140414004, 30140414005

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Hall Environmental Analysis Laboratory, Inc.

WO#: **1502324**

09-Mar-15

Client: Western Refining Southwest, Gallup

Project: OCD Central Landfarm Semiannual Sampling

Sample ID MB-17685 SampType: MBLK TestCode: EPA Method 300.0: Anions Client ID: **PBS** Batch ID: 17685 RunNo: 24256 SeqNo: 714901 Prep Date: 2/11/2015 Analysis Date: 2/11/2015 Units: mg/Kg Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Fluoride 0.30 ND Chloride ND 1.5 Nitrogen, Nitrate (As N) ND 0.30 Sulfate ND 1.5

Sample ID LCS-17685 SampType: LCS TestCode: EPA Method 300.0: Anions Client ID: **LCSS** Batch ID: 17685 RunNo: 24256 Prep Date: 2/11/2015 Analysis Date: 2/11/2015 SeqNo: 714902 Units: mg/Kg %REC **RPDLimit** POL SPK value SPK Ref Val HighLimit %RPD Qual Analyte Result LowLimit Fluoride 1.5 0.30 1.500 0 99.9 90 110 0 91.8 90 Chloride 14 1.5 15.00 110 Nitrogen, Nitrate (As N) 7.2 0.30 7.500 0 96.4 90 110 Sulfate 28 30.00 0 92.9 90 1.5 110

TestCode: EPA Method 300.0: Anions Sample ID 1502324-003BMS SampType: MS Client ID: Central OCD-03-2/5/ Batch ID: 17685 RunNo: 24256 Prep Date: 2/11/2015 Analysis Date: 2/11/2015 SeqNo: 714940 Units: mg/Kg Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Fluoride 4.0 0.30 1.500 3.363 39.8 13.6 100 Nitrogen, Nitrate (As N) 25 0.30 7.500 16.15 117 85.3 110 S

Sample ID 1502324-003BMSD SampType: MSD TestCode: EPA Method 300.0: Anions Client ID: Central OCD-03-2/5/ RunNo: 24256 Batch ID: 17685 Prep Date: 2/11/2015 Analysis Date: 2/11/2015 SeqNo: 714941 Units: mg/Kg SPK Ref Val %REC HighLimit %RPD **RPDLimit** Qual Analyte Result **PQL** SPK value LowLimit Fluoride 3.363 46.2 2.38 4.1 0.30 1.500 13.6 100 20 Nitrogen, Nitrate (As N) S 25 0.30 7.500 16.15 118 85.3 110 0.329 20

Qualifiers:

* Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

O RSD is greater than RSDlimit

R RPD outside accepted recovery limits

S Spike Recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

P Sample pH Not In Range

RL Reporting Detection Limit

Page 29 of 46

Hall Environmental Analysis Laboratory, Inc.

WO#: **1502324**

09-Mar-15

Client: Western Refining Southwest, Gallup

Project: OCD Central Landfarm Semiannual Sampling

Sample ID MB-17630 SampType: MBLK TestCode: EPA Method 418.1: TPH

Client ID: PBS Batch ID: 17630 RunNo: 24217

Prep Date: 2/9/2015 Analysis Date: 2/10/2015 SeqNo: 713807 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Petroleum Hydrocarbons, TR ND 20

Sample ID LCS-17630 SampType: LCS TestCode: EPA Method 418.1: TPH

Client ID: LCSS Batch ID: 17630 RunNo: 24217

Prep Date: 2/9/2015 Analysis Date: 2/10/2015 SeqNo: 713808 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Petroleum Hydrocarbons, TR 100 20 100.0 0 104 86.7 126

Sample ID LCSD-17630 SampType: LCSD TestCode: EPA Method 418.1: TPH

Client ID: LCSS02 Batch ID: 17630 RunNo: 24217

Prep Date: 2/9/2015 Analysis Date: 2/10/2015 SeqNo: 713809 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Petroleum Hydrocarbons, TR 100 20 100.0 0 101 86.7 126 3.76 20

Sample ID 1502324-003AMS SampType: MS TestCode: EPA Method 418.1: TPH

Client ID: Central OCD-03-2/5/ Batch ID: 17630 RunNo: 24217

Prep Date: 2/9/2015 Analysis Date: 2/10/2015 SeqNo: 713814 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Petroleum Hydrocarbons, TR 99 20 99.60 8.639 90.6 80 120

Sample ID 1502324-003AMSD SampType: MSD TestCode: EPA Method 418.1: TPH

Client ID: Central OCD-03-2/5/ Batch ID: 17630 RunNo: 24217

Prep Date: 2/9/2015 Analysis Date: 2/10/2015 SegNo: 713815 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Petroleum Hydrocarbons, TR 100 20 98.14 8.639 94.3 80 120 2.32 20

Qualifiers:

Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

O RSD is greater than RSDlimit

R RPD outside accepted recovery limits

S Spike Recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

P Sample pH Not In Range

RL Reporting Detection Limit

Page 30 of 46

Hall Environmental Analysis Laboratory, Inc.

WO#: 1502324

09-Mar-15

Client: Western Refining Southwest, Gallup

Project: OCD Central Landfarm Semiannual Sampling

5.1

Sample ID MB-17621	SampType: MBLK TestCode: EPA Method 8015D: Diesel Range Organics									
Client ID: PBS	Batch	n ID: 17 0	621	F	RunNo: 24	4202				
Prep Date: 2/9/2015	Analysis D	oate: 2/	10/2015	S	SeqNo: 7	13699	Units: mg/K	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	ND	10								
Motor Oil Range Organics (MRO)	ND	50								
Surr: DNOP	9.4		10.00		93.7	63.5	128			
Sample ID LCS-17621	SampT	ype: LC	s	Tes	tCode: El	PA Method	8015D: Diese	el Range C	Organics	
Client ID: LCSS	Batch	Batch ID: 17621 RunNo: 24202								
Prep Date: 2/9/2015	Analysis D	oate: 2/	10/2015	8	SeqNo: 7	13700	Units: mg/K	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	52	10	50.00	0	104	67.8	130			
Surr: DNOP	4.4		5.000		88.3	63.5	128			
Sample ID 1502324-003AMS	SampT	уре: М \$	<u> </u>	Tes	tCode: El	PA Method	8015D: Diese	el Range C	Organics	
Client ID: Central OCD-03-2	2/5/ Batch	n ID: 17 0	621	F	RunNo: 24	4202				
Prep Date: 2/9/2015	Analysis D	oate: 2/	10/2015	8	SeqNo: 7	13952	Units: mg/K	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	53	10	49.75	0	106	29.2	176	200	0	·

Sample ID 1502324-003AM	SD SampT	уре: М	SD	Tes	tCode: E	PA Method	8015D: Diese	el Range C	Organics	
Client ID: Central OCD-03-	-2/5/ Batch	n ID: 17 0	621	R	RunNo: 2	4202				
Prep Date: 2/9/2015	S	SeqNo: 7	13953	Units: mg/k	(g					
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	50	9.9	49.26	0	102	29.2	176	4.12	23	
Surr: DMOP	<i>1</i> Q		4 926		99.4	63.5	128	0	٥	

102

63.5

128

0

0

4.975

Qualifiers:

Surr: DNOP

* Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

O RSD is greater than RSDlimit

R RPD outside accepted recovery limits

S Spike Recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

P Sample pH Not In Range

RL Reporting Detection Limit

Page 31 of 46

Hall Environmental Analysis Laboratory, Inc.

WO#: **1502324**

09-Mar-15

Client: Western Refining Southwest, Gallup

Project: OCD Central Landfarm Semiannual Sampling

Sample ID MB-17626 SampType: MBLK TestCode: EPA Method 8015D: Gasoline Range Client ID: **PBS** Batch ID: 17626 RunNo: 24212 Prep Date: 2/9/2015 Analysis Date: 2/10/2015 SeqNo: 714085 Units: mg/Kg Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Gasoline Range Organics (GRO) ND 5.0 1000 Surr: BFB 880 87.8 80 120 Sample ID LCS-17626 SampType: LCS TestCode: EPA Method 8015D: Gasoline Range Client ID: LCSS Batch ID: 17626 RunNo: 24212 Analysis Date: 2/10/2015 SeqNo: 714086 Prep Date: 2/9/2015 Units: mg/Kg Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Gasoline Range Organics (GRO) 5.0 25.00 98.0 64 130 Surr: BFB 990 1000 99.1 80 120 SampType: MS Sample ID 1502324-003AMS TestCode: EPA Method 8015D: Gasoline Range

Client ID: Central OCD-03-2/5/ Batch ID: 17626 RunNo: 24212 Prep Date: 2/9/2015 Analysis Date: 2/10/2015 SeqNo: 714095 Units: mg/Kg %REC LowLimit %RPD **RPDLimit** Analyte Result **PQL** SPK value SPK Ref Val HighLimit Qual Gasoline Range Organics (GRO) 28 4.9 24.68 112 47.9 144 Surr: BFB 950 987.2 96.0 120 80

SampType: MSD Sample ID 1502324-003AMSD TestCode: EPA Method 8015D: Gasoline Range Client ID: Central OCD-03-2/5/ Batch ID: 17626 RunNo: 24212 Analysis Date: 2/10/2015 Prep Date: 2/9/2015 SeqNo: 714096 Units: mg/Kg Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Gasoline Range Organics (GRO) 28 4.9 24.68 115 47.9 144 3.25 29.9 Λ Surr: BFB 950 987.2 96.3 80 120 0 0

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH Not In Range
- RL Reporting Detection Limit

Page 32 of 46

Hall Environmental Analysis Laboratory, Inc.

WO#: 1502324

09-Mar-15

Client: Western Refining Southwest, Gallup

Project: OCD Central Landfarm Semiannual Sampling

Sample ID MB-17661	Samp ⁻	SampType: MBLK				PA Method				
Client ID: PBS	Batc	h ID: 17	661	F	RunNo: 2	4309				
Prep Date: 2/10/2015	Analysis [Date: 2/	12/2015	5	SeqNo: 7	16406	Units: mg/k	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Aroclor 1016	ND	0.020								
Aroclor 1221	ND	0.020								
Aroclor 1232	ND	0.020								
Aroclor 1242	ND	0.020								
Aroclor 1248	ND	0.020								
Aroclor 1254	ND	0.020								
Aroclor 1260	ND	0.020								
Surr: Decachlorobiphenyl	0.040		0.06250		63.2	37.5	161			
Surr: Tetrachloro-m-xylene	0.036		0.06250		58.0	28.1	149			
Sample ID LCS-17661	Samp	Type: LC	s	Tes	tCode: E	PA Method	8082: PCB's			
Client ID: LCSS	Batc	h ID: 17	661	F	RunNo: 2	4309				
Prep Date: 2/10/2015	Analysis [Date: 2/	12/2015	9	SeqNo: 7	16407	Units: mg/k	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Aroclor 1016	0.092	0.020	0.1250	0	73.8	26.2	127			
Aroclor 1260	0.12	0.020	0.1250	0	93.9	36.6	122			
Surr: Decachlorobiphenyl	0.058		0.06250		92.8	37.5	161			
Surr: Tetrachloro-m-xylene	0.067		0.06250		108	28.1	149			
Sample ID 1502224-003BM	c Sama	Typo: MS		Too	tCodo: E	DA Mothad	9092- DCB's			

Sample ID 1502324-003BN	IS Samp1	ype: M \$	3	TestCode: EPA Method 8082: PCB's						
Client ID: Central OCD-03	3-2/5/ Batcl	n ID: 17	661	F	RunNo: 2	4309				
Prep Date: 2/10/2015	Analysis D	oate: 2/	12/2015	S	SeqNo: 7	16419	Units: mg/k	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Aroclor 1016	0.056	0.020	0.1254	0	44.5	15.8	111			
Aroclor 1260	0.090	0.020	0.1254	0	71.6	6.14	135			
Surr: Decachlorobiphenyl	0.054		0.06272		86.4	37.5	161			
Surr: Tetrachloro-m-xylene	0.042		0.06272		66.8	28.1	149			

Sample ID 1502324-003BMSE	SampT	ype: MS	SD.	TestCode: EPA Method 8082: PCB's						
Client ID: Central OCD-03-2/	Client ID: Central OCD-03-2/5/ Batch ID: 17661									
Prep Date: 2/10/2015	Analysis D	ate: 2/	13/2015	S	SeqNo: 7	16420	Units: mg/K	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Aroclor 1016	0.062	0.020	0.1252	0	49.6	15.8	111	10.8	20	
Aroclor 1260	0.10	0.020	0.1252	0	83.6	6.14	135	15.3	32.8	
Surr: Decachlorobiphenyl	0.060		0.06259		96.0	37.5	161	0	0	
Surr: Tetrachloro-m-xylene	0.048		0.06259		77.2	28.1	149	0	0	

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH Not In Range
- RL Reporting Detection Limit

Page 33 of 46

Hall Environmental Analysis Laboratory, Inc.

WO#: 1502324

09-Mar-15

Client: Western Refining Southwest, Gallup

Project: OCD Central Landfarm Semiannual Sampling

Sample ID mb-17626 SampType: MBLK TestCode: EPA Method 8260B: Volatiles Client ID: **PBS** Batch ID: 17626 RunNo: 24224 Prep Date: 2/9/2015 Analysis Date: 2/10/2015 SeqNo: 714046 Units: mg/Kg Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Benzene ND 0.050 Toluene ND 0.050 ND Ethylbenzene 0.050 Methyl tert-butyl ether (MTBE) ND 0.050 1,2,4-Trimethylbenzene ND 0.050 1,3,5-Trimethylbenzene ND 0.050 1,2-Dichloroethane (EDC) ND 0.050 1,2-Dibromoethane (EDB) ND 0.050 Naphthalene ND 0.10 ND 1-Methylnaphthalene 0.20 2-Methylnaphthalene ND 0.20 ND 0.75 Acetone ND 0.050 Bromobenzene Bromodichloromethane ND 0.050 Bromoform ND 0.050 Bromomethane ND 0.15 2-Butanone ND 0.50 Carbon disulfide ND 0.50 Carbon tetrachloride ND 0.050 Chlorobenzene ND 0.050 ND Chloroethane 0.10 Chloroform ND 0.050 Chloromethane ND 0.15 2-Chlorotoluene ND 0.050 4-Chlorotoluene ND 0.050 cis-1,2-DCE ND 0.050 cis-1,3-Dichloropropene ND 0.050 1,2-Dibromo-3-chloropropane ND 0.10 Dibromochloromethane ND 0.050 ND 0.050 Dibromomethane ND 0.050 1.2-Dichlorobenzene ND 0.050 1,3-Dichlorobenzene 1.4-Dichlorobenzene ND 0.050 Dichlorodifluoromethane ND 0.050 1,1-Dichloroethane ND 0.050 1,1-Dichloroethene ND 0.050 ND 0.050 1,2-Dichloropropane 1,3-Dichloropropane ND 0.050 2,2-Dichloropropane ND 0.10

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH Not In Range
- RL Reporting Detection Limit

Page 34 of 46

Hall Environmental Analysis Laboratory, Inc.

WO#: **1502324**

09-Mar-15

Client: Western Refining Southwest, Gallup

Project: OCD Central Landfarm Semiannual Sampling

Sample ID mb-17626	SampT	ype: ME	BLK	Tes	tCode: El	PA Method	8260B: Volat	iles		
Client ID: PBS	Batch	n ID: 17	626	R	RunNo: 2	4224				
Prep Date: 2/9/2015	Analysis D	ate: 2/	10/2015	S	SeqNo: 7	14046	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
1,1-Dichloropropene	ND	0.10								
Hexachlorobutadiene	ND	0.10								
2-Hexanone	ND	0.50								
Isopropylbenzene	ND	0.050								
4-Isopropyltoluene	ND	0.050								
4-Methyl-2-pentanone	ND	0.50								
Methylene chloride	ND	0.15								
n-Butylbenzene	ND	0.15								
n-Propylbenzene	ND	0.050								
sec-Butylbenzene	ND	0.050								
Styrene	ND	0.050								
tert-Butylbenzene	ND	0.050								
1,1,1,2-Tetrachloroethane	ND	0.050								
1,1,2,2-Tetrachloroethane	ND	0.050								
Tetrachloroethene (PCE)	ND	0.050								
trans-1,2-DCE	ND	0.050								
trans-1,3-Dichloropropene	ND	0.050								
1,2,3-Trichlorobenzene	ND	0.10								
1,2,4-Trichlorobenzene	ND	0.050								
1,1,1-Trichloroethane	ND	0.050								
1,1,2-Trichloroethane	ND	0.050								
Trichloroethene (TCE)	ND	0.050								
Trichlorofluoromethane	ND	0.050								
1,2,3-Trichloropropane	ND	0.10								
Vinyl chloride	ND	0.050								
Xylenes, Total	ND	0.10								
Surr: Dibromofluoromethane	0.47		0.5000		94.3	70	130			
Surr: 1,2-Dichloroethane-d4	0.41		0.5000		81.2	70	130			
Surr: Toluene-d8	0.42		0.5000		83.0	70	130			
Surr: 4-Bromofluorobenzene	0.41		0.5000		81.3	70	130			
Sample ID Ics-17626	SampT	ype: LC	:s	Tes	tCode: El	PA Method	8260B: Volat	iles		
Client ID: LCSS	Batch	n ID: 17	626	R	RunNo: 2	4224				
Prep Date: 2/9/2015	Analysis D	ate: 2/	10/2015	S	SeqNo: 7	14047	Units: mg/K	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual

Qualifiers:

Chlorobenzene

Benzene

Toluene

* Value exceeds Maximum Contaminant Level.

1.1

0.94

0.92

0.050

0.050

0.050

1.000

1.000

1.000

- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank

70

70

70

130

130

130

- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

107

93.7

91.7

P Sample pH Not In Range

0

0

0

RL Reporting Detection Limit

Page 35 of 46

Hall Environmental Analysis Laboratory, Inc.

WO#: 1502324

09-Mar-15

Client: Western Refining Southwest, Gallup

Project: OCD Central Landfarm Semiannual Sampling

Sample ID Ics-17626 SampType: LCS TestCode: EPA Method 8260B: Volatiles Client ID: LCSS Batch ID: 17626 RunNo: 24224 Analysis Date: 2/10/2015 Prep Date: 2/9/2015 SeqNo: 714047 Units: mg/Kg Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual 1,1-Dichloroethene 0.050 118 60.6 1.2 1.000 0 134 104 Trichloroethene (TCE) 1.0 0.050 1.000 0 70 130 97.1 70 Surr: Dibromofluoromethane 0.49 0.5000 130 Surr: 1,2-Dichloroethane-d4 0.44 0.5000 88.0 70 130 Surr: Toluene-d8 0.43 0.5000 86.3 70 130 Surr: 4-Bromofluorobenzene 0.43 0.5000 85.1 70 130

Sample ID 1502324-003ams SampType: MS TestCode: EPA Method 8260B: Volatiles Client ID: Central OCD-03-2/5/ Batch ID: 17626 RunNo: 24224 Prep Date: 2/9/2015 Analysis Date: 2/10/2015 SeqNo: 714051 Units: mg/Kg **PQL** SPK value SPK Ref Val %REC HighLimit %RPD **RPDLimit** Analyte Result LowLimit Qual Benzene 0.98 0.049 0.9872 99.5 57.8 132 0.95 0.049 0.9872 0 95.7 54.8 Toluene 139 95.9 63.5 Chlorobenzene 0.95 0.049 0.9872 0 134 0 105 26.4 1,1-Dichloroethene 1.0 0.049 0.9872 145 Trichloroethene (TCE) 0.95 0.049 0.9872 0 95.7 54.9 125 Surr: Dibromofluoromethane 0.44 0.4936 88.4 70 130 79.2 70 Surr: 1,2-Dichloroethane-d4 0.39 0.4936 130 Surr: Toluene-d8 0.44 0.4936 89.3 70 130 Surr: 4-Bromofluorobenzene 0.4936 84.6 70 0.42 130

Sample ID 1502324-003amsd SampType: MSD TestCode: EPA Method 8260B: Volatiles											
Client ID: Central OCD-03-2/	5/ Batch	ID: 17 6	626	R	RunNo: 24	4224					
Prep Date: 2/9/2015	Analysis Da	ate: 2/	10/2015	SeqNo: 714052 Units: mg/Kg							
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Benzene	0.98	0.049	0.9872	0	99.7	57.8	132	0.159	20		
Toluene	0.91	0.049	0.9872	0	91.9	54.8	139	4.14	20		
Chlorobenzene	0.89	0.049	0.9872	0	90.6	63.5	134	5.65	20		
1,1-Dichloroethene	1.0	0.049	0.9872	0	105	26.4	145	0.516	20		
Trichloroethene (TCE)	0.98	0.049	0.9872	0	99.0	54.9	125	3.33	20		
Surr: Dibromofluoromethane	0.45		0.4936		90.5	70	130	0	0		
Surr: 1,2-Dichloroethane-d4	0.40		0.4936		80.0	70	130	0	0		
Surr: Toluene-d8	0.42		0.4936		85.0	70	130	0	0		
Surr: 4-Bromofluorobenzene	0.43		0.4936		86.9	70	130	0	0		

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH Not In Range
- RL Reporting Detection Limit

Page 36 of 46

Hall Environmental Analysis Laboratory, Inc.

WO#: **1502324**

09-Mar-15

Client: Western Refining Southwest, Gallup

Project: OCD Central Landfarm Semiannual Sampling

Sample ID 5mL-rb	SampT	ype: ME	BLK	Tes	TestCode: EPA Method 8260: Volatiles Short List					
Client ID: PBW	Batch	Batch ID: R24238			RunNo: 24238					
Prep Date:	Analysis D	ate: 2/	11/2015	8	SeqNo: 7	14516	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	1.0								
Toluene	ND	1.0								
Ethylbenzene	ND	1.0								
Xylenes, Total	ND	1.5								
Surr: 1,2-Dichloroethane-d4	8.4		10.00		83.9	70	130			
Surr: 4-Bromofluorobenzene	9.6		10.00		96.3	70	130			
Surr: Dibromofluoromethane	8.4		10.00		83.7	70	130			
Surr: Toluene-d8	9.8		10.00		97.5	70	130			

Sample ID 100ng Ics	SampT	SampType: LCS TestCode: EPA Method 8260: Volatiles Short List								
Client ID: LCSW	Batch	n ID: R2	4238	F	RunNo: 2	4238				
Prep Date:	Analysis D	ate: 2/	11/2015	9	SeqNo: 714517 U					
Analyte	nalyte Result PQL SPK value SPK Ret		SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Benzene	22	1.0	20.00	0	112	70	130			
Toluene	19	1.0	20.00	0	96.8	70	130			
Surr: 1,2-Dichloroethane-d4	9.2		10.00		91.9	70	130			
Surr: 4-Bromofluorobenzene	robenzene 10 10.00 103 7		70	130						
Surr: Dibromofluoromethane	9.7		10.00		97.3	70	130			
Surr: Toluene-d8	8.8		10.00		88.1	70	130			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH Not In Range
- RL Reporting Detection Limit

Page 37 of 46

Hall Environmental Analysis Laboratory, Inc.

WO#: 1502324

09-Mar-15

Client: Western Refining Southwest, Gallup

Project: OCD Central Landfarm Semiannual Sampling

Sample ID mb-17635 SampType: MBLK TestCode: EPA Method 8270C: Semivolatiles Client ID: **PBS** Batch ID: 17635 RunNo: 24253 Prep Date: 2/9/2015 Analysis Date: 2/11/2015 SeqNo: 714838 Units: mg/Kg Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Acenaphthene ND 0.20 Acenaphthylene ND 0.20 ND 0.20 Aniline Anthracene ND 0.20 Azobenzene ND 0.20 Benz(a)anthracene ND 0.20 Benzo(a)pyrene ND 0.20 Benzo(b)fluoranthene ND 0.20 Benzo(q,h,i)perylene ND 0.20 ND 0.20 Benzo(k)fluoranthene Benzoic acid ND 0.50 ND 0.20 Benzyl alcohol Bis(2-chloroethoxy)methane ND 0.20 Bis(2-chloroethyl)ether ND 0.20 Bis(2-chloroisopropyl)ether ND 0.20 Bis(2-ethylhexyl)phthalate ND 0.50 4-Bromophenyl phenyl ether ND 0.20 Butyl benzyl phthalate ND 0.20 Carbazole ND 0.20 4-Chloro-3-methylphenol ND 0.50 4-Chloroaniline ND 0.50 2-Chloronaphthalene ND 0.25 2-Chlorophenol ND 0.20 4-Chlorophenyl phenyl ether ND 0.20 Chrysene ND 0.20 ND 0.40 Di-n-butyl phthalate Di-n-octyl phthalate ND 0.40 Dibenz(a,h)anthracene ND 0.20 Dibenzofuran ND 0.20 ND 0.20 1,2-Dichlorobenzene ND 0.20 1.3-Dichlorobenzene 1,4-Dichlorobenzene ND 0.20 3.3´-Dichlorobenzidine ND 0.25 Diethyl phthalate ND 0.20 Dimethyl phthalate ND 0.20 2,4-Dichlorophenol ND 0.40 2,4-Dimethylphenol ND 0.30 4,6-Dinitro-2-methylphenol ND 0.40 2,4-Dinitrophenol ND 0.50

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH Not In Range
- RL Reporting Detection Limit

Page 38 of 46

Hall Environmental Analysis Laboratory, Inc.

WO#: **1502324**

09-Mar-15

Client: Western Refining Southwest, Gallup

Project: OCD Central Landfarm Semiannual Sampling

	Batch Analysis Da Result ND ND ND	ID: 17 0 ate: 2 / PQL 0.50 0.50	11/2015		RunNo: 2 4 SeqNo: 7 1		Unito: ma/K			
Analyte 2,4-Dinitrotoluene 2,6-Dinitrotoluene Fluoranthene Fluorene Hexachlorobenzene Hexachlorobutadiene Hexachlorocyclopentadiene	Result ND ND	PQL 0.50			SeqNo: 7 1	14838	Unito: ma/K			
2,4-Dinitrotoluene 2,6-Dinitrotoluene Fluoranthene Fluorene Hexachlorobenzene Hexachlorobutadiene Hexachlorocyclopentadiene	ND ND	0.50	SPK value	SPK Ref Val			Units: mg/K	.g		
2,6-Dinitrotoluene Fluoranthene Fluorene Hexachlorobenzene Hexachlorobutadiene Hexachlorocyclopentadiene	ND			Of It Itol Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Fluoranthene Fluorene Hexachlorobenzene Hexachlorobutadiene Hexachlorocyclopentadiene		0.50								
Fluorene Hexachlorobenzene Hexachlorobutadiene Hexachlorocyclopentadiene	ND									
Hexachlorobenzene Hexachlorobutadiene Hexachlorocyclopentadiene		0.20								
Hexachlorobutadiene Hexachlorocyclopentadiene	ND	0.20								
Hexachlorocyclopentadiene	ND	0.20								
	ND	0.20								
Hexachloroethane	ND	0.20								
	ND	0.20								
Indeno(1,2,3-cd)pyrene	ND	0.20								
Isophorone	ND	0.40								
1-Methylnaphthalene	ND	0.20								
2-Methylnaphthalene	ND	0.20								
2-Methylphenol	ND	0.40								
3+4-Methylphenol	ND	0.20								
N-Nitrosodi-n-propylamine	ND	0.20								
N-Nitrosodiphenylamine	ND	0.20								
Naphthalene	ND	0.20								
2-Nitroaniline	ND	0.20								
3-Nitroaniline	ND	0.20								
4-Nitroaniline	ND	0.40								
Nitrobenzene	ND	0.40								
2-Nitrophenol	ND	0.20								
4-Nitrophenol	ND	0.25								
Pentachlorophenol	ND	0.40								
Phenanthrene	ND	0.20								
Phenol	ND	0.20								
Pyrene	ND	0.20								
Pyridine	ND	0.40								
1,2,4-Trichlorobenzene	ND	0.20								
2,4,5-Trichlorophenol	ND	0.20								
2,4,6-Trichlorophenol	ND	0.20								
Surr: 2-Fluorophenol	3.1		3.330		92.6	26.4	129			
Surr: Phenol-d5	2.9		3.330		86.7	34.8	118			
Surr: 2,4,6-Tribromophenol	3.0		3.330		90.4	26.8	128			
Surr: Nitrobenzene-d5	1.5		1.670		87.3	35.8	124			
Surr: 2-Fluorobiphenyl	1.5		1.670		91.0	24.5	139			
Surr: 4-Terphenyl-d14	1.2		1.670		73.3	29.4	129			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH Not In Range
- RL Reporting Detection Limit

Page 39 of 46

Hall Environmental Analysis Laboratory, Inc.

WO#: **1502324**

09-Mar-15

Client: Western Refining Southwest, Gallup

Project: OCD Central Landfarm Semiannual Sampling

Sample ID Ics-17635	SampT	ype: LC	s	Tes	PA Method	8270C: Sem	ivolatiles			
Client ID: LCSS	Batch	h ID: 17	635	F	RunNo: 2	4253				
Prep Date: 2/9/2015	Analysis D	Date: 2/	11/2015	8	SeqNo: 7	14839	Units: mg/k	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Acenaphthene	1.5	0.20	1.670	0	87.6	45.8	114			
4-Chloro-3-methylphenol	2.8	0.50	3.330	0	84.8	52.3	122			
2-Chlorophenol	2.6	0.20	3.330	0	77.6	49.9	115			
1,4-Dichlorobenzene	1.2	0.20	1.670	0	71.4	43.7	107			
2,4-Dinitrotoluene	1.1	0.50	1.670	0	66.7	36	106			
N-Nitrosodi-n-propylamine	1.3	0.20	1.670	0	75.5	39.5	110			
4-Nitrophenol	2.6	0.25	3.330	0	78.3	45.1	121			
Pentachlorophenol	2.4	0.40	3.330	0	72.2	23.7	111			
Phenol	2.8	0.20	3.330	0	84.3	52.7	119			
Pyrene	1.2	0.20	1.670	0	71.6	50.4	116			
1,2,4-Trichlorobenzene	1.3	0.20	1.670	0	77.9	40.1	114			
Surr: 2-Fluorophenol	2.8		3.330		83.7	26.4	129			
Surr: Phenol-d5	2.7		3.330		82.0	34.8	118			
Surr: 2,4,6-Tribromophenol	3.0		3.330		91.5	26.8	128			
Surr: Nitrobenzene-d5	1.4		1.670		83.8	35.8	124			
Surr: 2-Fluorobiphenyl	1.5		1.670		90.3	24.5	139			
Surr: 4-Terphenyl-d14	1.3		1.670		74.9	29.4	129			

Sample ID 1502324-003bms	3bms SampType: MS TestCode: EPA Method 8270C: Semivolatiles											
Client ID: Central OCD-03-	2/5/ Batch	n ID: 17 0	635	F	RunNo: 2	4253						
Prep Date: 2/9/2015	Analysis D	ate: 2/	11/2015	9	SeqNo: 7	14845	Units: mg/k	ζg				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
Acenaphthene	1.5	0.20	1.675	0	86.7	36.3	121					
4-Chloro-3-methylphenol	2.7	0.50	3.340	0	81.0	48.2	119					
2-Chlorophenol	2.7	0.20	3.340	0	81.1	37.2	114					
1,4-Dichlorobenzene	1.3	0.20	1.675	0	76.1	28.8	106					
2,4-Dinitrotoluene	1.1	0.50	1.675	0	68.4	34.6	111					
N-Nitrosodi-n-propylamine	1.4	0.20	1.675	0	81.5	32.7	117					
4-Nitrophenol	2.5	0.25	3.340	0	75.8	30.1	134					
Pentachlorophenol	2.3	0.40	3.340	0.1365	65.9	24	120					
Phenol	2.8	0.20	3.340	0	84.4	38.3	118					
Pyrene	1.3	0.20	1.675	0	78.7	38.3	134					
1,2,4-Trichlorobenzene	1.3	0.20	1.675	0	76.1	31.8	110					
Surr: 2-Fluorophenol	2.7		3.340		81.9	26.4	129					
Surr: Phenol-d5	2.8		3.340		82.7	34.8	118					
Surr: 2,4,6-Tribromophenol	2.7		3.340		80.0	26.8	128					
Surr: Nitrobenzene-d5	1.4		1.675		82.7	35.8	124					
Surr: 2-Fluorobiphenyl	1.5		1.675		89.2	24.5	139					

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH Not In Range
- RL Reporting Detection Limit

Page 40 of 46

Hall Environmental Analysis Laboratory, Inc.

WO#: **1502324**

09-Mar-15

Client: Western Refining Southwest, Gallup

Project: OCD Central Landfarm Semiannual Sampling

Sample ID 1502324-003bms SampType: MS TestCode: EPA Method 8270C: Semivolatiles

Client ID: Central OCD-03-2/5/ Batch ID: 17635 RunNo: 24253

Prep Date: 2/9/2015 Analysis Date: 2/11/2015 SeqNo: 714845 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual Surr: 4-Terphenyl-d14 1.2 1.675 74.2 29.4 129

Sample ID 1502324-003bmsd SampType: MSD TestCode: EPA Method 8270C: Semivolatiles												
Client ID: Central OCD-03-2	2/5/ Batch	1D: 17	635	F	RunNo: 2	4253						
Prep Date: 2/9/2015	Analysis D	ate: 2/	11/2015	S	SeqNo: 7	14846	Units: mg/k	(g				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
Acenaphthene	1.4	0.20	1.674	0	85.7	36.3	121	1.21	25.4			
4-Chloro-3-methylphenol	2.8	0.50	3.339	0	82.5	48.2	119	1.79	30.4			
2-Chlorophenol	2.5	0.20	3.339	0	76.0	37.2	114	6.52	33.4			
1,4-Dichlorobenzene	1.2	0.20	1.674	0	69.8	28.8	106	8.76	20.9			
2,4-Dinitrotoluene	1.2	0.50	1.674	0	69.3	34.6	111	1.30	27.9			
N-Nitrosodi-n-propylamine	1.3	0.20	1.674	0	75.1	32.7	117	8.24	27.5			
4-Nitrophenol	2.8	0.25	3.339	0	83.7	30.1	134	9.87	33.7			
Pentachlorophenol	2.5	0.40	3.339	0.1365	71.4	24	120	7.59	39.7			
Phenol	2.7	0.20	3.339	0	80.2	38.3	118	5.19	30.1			
Pyrene	1.3	0.20	1.674	0	76.3	38.3	134	3.05	22.7			
1,2,4-Trichlorobenzene	1.3	0.20	1.674	0	77.4	31.8	110	1.68	27.8			
Surr: 2-Fluorophenol	2.5		3.339		76.2	26.4	129	0	0			
Surr: Phenol-d5	2.6		3.339		77.5	34.8	118	0	0			
Surr: 2,4,6-Tribromophenol	2.8		3.339				128	0	0			
Surr: Nitrobenzene-d5	1.3		1.674		78.0	35.8	124	0	0			
Surr: 2-Fluorobiphenyl	1.4		1.674	84.8 24.5			139	0	0			
Surr: 4-Terphenyl-d14	1.2		1.674		71.0	29.4	129	0	0			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH Not In Range
- RL Reporting Detection Limit

Page 41 of 46

Hall Environmental Analysis Laboratory, Inc.

WO#: 1502324

09-Mar-15

Client: Western Refining Southwest, Gallup

Project: OCD Central Landfarm Semiannual Sampling

Sample ID MB-R24387 SampType: MBLK TestCode: CYANIDE-TOTAL

Client ID: PBS Batch ID: R24387 RunNo: 24387

Prep Date: Analysis Date: 2/16/2015 SeqNo: 718598 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Cyanide ND 0.50

Sample ID LCS-R24387 SampType: LCS TestCode: CYANIDE-TOTAL

Client ID: LCSS Batch ID: R24387 RunNo: 24387

Prep Date: Analysis Date: 2/16/2015 SeqNo: 718599 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Cyanide 0.49 0.5000 0 98.8 90 110

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
 - P Sample pH Not In Range
- RL Reporting Detection Limit

Page 42 of 46

Hall Environmental Analysis Laboratory, Inc.

WO#: 1502324

09-Mar-15

Client: Western Refining Southwest, Gallup

Project: OCD Central Landfarm Semiannual Sampling

Sample ID MB-17645 SampType: MBLK TestCode: EPA Method 7471: Mercury

Client ID: **PBS** Batch ID: 17645 RunNo: 24243

Prep Date: 2/9/2015 Analysis Date: 2/11/2015 SeqNo: 714587 Units: mg/Kg

Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual

ND 0.033 Mercury

Sample ID LCS-17645 SampType: LCS TestCode: EPA Method 7471: Mercury

Client ID: LCSS Batch ID: 17645 RunNo: 24243

Prep Date: 2/9/2015 Analysis Date: 2/11/2015 SeqNo: 714588 Units: mg/Kg

%REC SPK value SPK Ref Val **RPDLimit** Analyte Result PQL LowLimit HighLimit %RPD Qual

Mercury 0.17 0.033 0.1667 0 99.9 120

TestCode: EPA Method 7471: Mercury Sample ID 1502324-003BMS SampType: MS

Client ID: Central OCD-03-2/5/ Batch ID: 17645 RunNo: 24243

Prep Date: 2/9/2015 Analysis Date: 2/11/2015 SeqNo: 714600 Units: mg/Kg

SPK value SPK Ref Val Analyte Result **PQL** %REC HighLimit %RPD **RPDLimit** Qual LowLimit

0.17 0.035 0.1753 Mercury

Sample ID 1502324-003BMSD SampType: MSD TestCode: EPA Method 7471: Mercury

Client ID: Central OCD-03-2/5/ Batch ID: 17645 RunNo: 24243

Prep Date: 2/9/2015 Analysis Date: 2/11/2015 SeqNo: 714601 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC I owl imit HighLimit %RPD **RPDLimit** Qual

98.2 75 Mercury 0.16 0.033 0.1665 0 125 5.93 20

Qualifiers:

Value exceeds Maximum Contaminant Level.

Е Value above quantitation range

Analyte detected below quantitation limits J

0 RSD is greater than RSDlimit

R RPD outside accepted recovery limits

Spike Recovery outside accepted recovery limits

В Analyte detected in the associated Method Blank

Η Holding times for preparation or analysis exceeded

ND

Not Detected at the Reporting Limit

P Sample pH Not In Range Reporting Detection Limit

Page 43 of 46

Hall Environmental Analysis Laboratory, Inc.

WO#: **1502324**

09-Mar-15

Client: Western Refining Southwest, Gallup

Project: OCD Central Landfarm Semiannual Sampling

Sample ID MB-1764	·	SampType: MBLK Batch ID: 17644			tCode: El	Metals				
Client ID: PBS	Bato	m ID: 170	044	R	RunNo: 2	4235				
Prep Date: 2/9/201	5 Analysis	Date: 2/	11/2015	S	SeqNo: 7	14437	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Arsenic	ND	2.5								
Barium	ND	0.10								
Cadmium	ND	0.10								
Chromium	ND	0.30								
Copper	ND	0.30								
Iron	ND	2.5								
Lead	ND	0.25								
Manganese	ND	0.10								
Selenium	ND	2.5								
Silver	ND	0.25								
Uranium	ND	5.0								
Zinc	ND	2.5								

Sample ID LCS-17644	SampT	SampType: LCS TestCode: EPA Meth					6010B: Soil	Metals		
Client ID: LCSS	Batch	n ID: 17	644	F	RunNo: 2	4235				
Prep Date: 2/9/2015	Analysis D	ate: 2/	11/2015	S	SeqNo: 7	14438	Units: mg/k	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Arsenic	26	2.5	25.00	0	104	80	120			
Barium	25	0.10	25.00	0	99.6	80	120			
Cadmium	25	0.10	25.00	0 99.1 80			120			
Chromium	26	0.30	25.00	0 102 80			120			
Copper	26	0.30	25.00	0	104	80	120			
Iron	26	2.5	25.00	0	102	80	120			
Lead	24	0.25	25.00	0	95.5	80	120			
Manganese	25	0.10	25.00	0	98.3	80	120			
Selenium	24	2.5	25.00	0 94.6 80			120			
Silver	5.2	0.25	5.000	0 104 80			120			
Uranium	24	5.0	25.00	0 96.9 80			120			
Zinc	25	2.5	25.00	0 99.6 80			120			

Sample ID 1502324-003BMS	SampT	ype: MS	6	Tes	tCode: El					
Client ID: Central OCD-03-	2/5/ Batch	n ID: 17 0	644	R	RunNo: 2	4235				
Prep Date: 2/9/2015	11/2015	S	SeqNo: 7	.g						
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Cadmium	18	0.097	24.31	0	75.3	75	125			
Chromium	32	0.29	24.31	11.82	81.9	75	125			
Copper	24	0.29	24.31	3.564	82.9	75	125			
Silver	3.9	0.24	4.863	0	80.4	75	125			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH Not In Range
- RL Reporting Detection Limit

Page 44 of 46

Hall Environmental Analysis Laboratory, Inc.

WO#: 1502324

09-Mar-15

Client: Western Refining Southwest, Gallup

Project: OCD Central Landfarm Semiannual Sampling

Sample ID 1502324-003BMS SampType: MS TestCode: EPA Method 6010B: Soil Metals

Client ID: Central OCD-03-2/5/ Batch ID: 17644 RunNo: 24235

Analysis Date: 2/11/2015 Prep Date: 2/9/2015 SeqNo: 714462 Units: mg/Kg

Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual

75 Uranium 19 4.9 24.31 0 76.6 125

Sample ID 1502324-003BMSD SampType: MSD TestCode: EPA Method 6010B: Soil Metals

Client ID: Central OCD-03-2/5/ Batch ID: 17644 RunNo: 24235

Prep Date: 2/9/2015 Analysis Date: 2/11/2015 SeqNo: 714463 Units: mg/Kg

SPK value SPK Ref Val **RPDLimit** Analyte Result **PQL** %REC LowLimit HighLimit %RPD Qual Cadmium 19 0.10 25.73 0 75.5 75 125 5.87 20 Chromium 32 0.31 25.73 11.82 80.1 75 125 2.17 20 25 3.564 75 20 0.31 25.73 83.4 125 Copper 5.36 Silver 4.2 0.26 81.2 75 125 20 5.147 6.61 25.73 0 76.4 75 125 20 Uranium 20 5.1 5.41

TestCode: EPA Method 6010B: Soil Metals Sample ID 1502324-003BMS SampType: MS

Client ID: Central OCD-03-2/5/ Batch ID: 17644 RunNo: 24235

Prep Date: 2/9/2015 Analysis Date: 2/11/2015 SeqNo: 714465 Units: mg/Kg

SPK value SPK Ref Val %REC %RPD **RPDLimit** Analyte Result PQL LowLimit HighLimit Qual 4.9 24.31 18.77 90.0 125

TestCode: EPA Method 6010B: Soil Metals Sample ID 1502324-003BMSD SampType: MSD

Client ID: Central OCD-03-2/5/ Batch ID: 17644 RunNo: 24235

Prep Date: 2/9/2015 Analysis Date: 2/11/2015 SeqNo: 714469 Units: mg/Kg

SPK value SPK Ref Val %RPD **RPDLimit** Analyte Result POL %REC LowLimit HighLimit Qual Zinc 44 5.1 25.73 18.77 97.6 75 125 7.65 20

Sample ID 1502324-003BMS SampType: MS TestCode: EPA Method 6010B: Soil Metals

Client ID: Batch ID: 17644 Central OCD-03-2/5/ RunNo: 24254

Prep Date: Analysis Date: 2/12/2015 2/9/2015 SeqNo: 714888 Units: mg/Kg

SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Analyte Result **PQL** Qual 20 75 24.31 1.641 76.1 125 Arsenic 2.4 Barium 230 0.097 24.31 219.3 48.1 75 125 S Lead 18 0.24 24.31 3.197 62.1 75 125 S Selenium 9.8 24.31 0 40.2 75 125 S 2.4

Qualifiers:

7inc

Value exceeds Maximum Contaminant Level.

Е Value above quantitation range

J Analyte detected below quantitation limits

0 RSD is greater than RSDlimit

R RPD outside accepted recovery limits

Spike Recovery outside accepted recovery limits

В Analyte detected in the associated Method Blank

Η Holding times for preparation or analysis exceeded

ND

Not Detected at the Reporting Limit

Reporting Detection Limit

P Sample pH Not In Range

Page 45 of 46

Hall Environmental Analysis Laboratory, Inc.

WO#: **1502324**

09-Mar-15

Client: Western Refining Southwest, Gallup

Project: OCD Central Landfarm Semiannual Sampling

Sample ID 1502324-003BMSD SampType: MSD TestCode: EPA Method 6010B: Soil Metals Client ID: Central OCD-03-2/5/ Batch ID: 17644 RunNo: 24254 2/9/2015 Analysis Date: 2/12/2015 SeqNo: **714889** Prep Date: Units: mg/Kg Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Arsenic 21 2.6 25.73 1.641 76.5 75 5.71 20 125 240 25.73 219.3 73.9 75 20 S Barium 0.10 125 3.13 20 0.26 25.73 3.197 63.4 75 125 20 S Lead 6.40 41.7 S Selenium 11 2.6 25.73 0 75 125 9.33 20

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH Not In Range
- RL Reporting Detection Limit

Page 46 of 46

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107

Website: www.hallenvironmental.com

Sample Log-In Check List

Client Name:	Western Refining Gallup	Work Order Number:	15023	24			RcptNo:	1
Received by/dat	te: LM 02/ds	115						
Logged By:	Anne Thorne	2/6/2015 4:35:00 PM			Anne S	P		
Completed By:	Anne Thorne	2/9/2015			ane J	1-	_	
Reviewed By:	CS	02/09/16						
Chain of Cus	stody							
1. Custody sea	als intact on sample bottles?		Yes	V	No [Not Present	
2. Is Chain of 0	Custody complete?		Yes	✓	No [Not Present	
3. How was the	e sample delivered?	4	Client	i.				
Log In	9							×
4. Was an atte	empt made to cool the samples	3?	Yes	✓	No [NA \square	
5. Were all sar	mples received at a temperatu	re of >0° C to 6.0°C	Yes	v	No [NA \square	
6. Sample(s) i	n proper container(s)?		Yes	V	No [
7. Sufficient sa	imple volume for indicated test	(s)?	Yes	~	No [
8. Are samples	(except VOA and ONG) propo	erly preserved?	Yes	✓	No [
9. Was preserv	vative added to bottles?		Yes		No S		NA \square	
10.VOA vials ha	ave zero headspace?		Yes	✓	No [No VOA Vials	
11. Were any sa	ample containers received bro	ken?	Yes		No !	~	# of preserved	
12 pass	dd-b b dila labata		Yes		No [-	bottles checked for pH:	
	work match bottle labels? pancies on chain of custody)		res	V	NO L	-		>12 unless noted)
13. Are matrices	s correctly identified on Chain of	of Custody?	Yes	✓	No [ן כ	Adjusted?	
14. Is it clear wh	nat analyses were requested?		Yes	~	No []		
	ding times able to be met? customer for authorization.)		Yes	✓	No L	<u> </u>	Checked by:	
Special Hand	lling (if applicable)							
16. Was client n	otified of all discrepancies with	this order?	Yes		No []	NA 🗹	
Person	n Notified:	Date				J		ř.
By Wh	nom:	Via:] eMa	il 🗌 Ph	one 🗌 F	ax	☐ In Person	
Regard	ding:							
Client	Instructions:	**************************************						
17. Additional re	emarks:							
18. Cooler Info	o Temp °C Condition %	Seal Intact Seal No. (5 es	ieal Da	te os	Signed By	114		

Analyte	Analytical Method	Reporting Units	Requested Reporting Limit
Fluoride	E300	mg/kg	0.3000
Nitrogen, Nitrate (As N)	E300	mg/kg	2.2000
Sulfate	E300	mg/kg	21,5000
*Radium-226 *Radium-228	E901.1	pCi/g	1.3950 1.2500
*Radium-226+Radium-228	E901.1	pCi/g	2.6450
Arsenic	SW6010A	mg/kg	2,5000
Barium	SW6010A	mg/kg	1.0000
Cadmium	SW6010A	mg/kg	0.1000
Chromlum Copper	SW6010A SW6010A	mg/kg mg/kg	0.3000
Iron	SW6010A	mg/kg	500.0000
Lead	SW8010A	mg/kg	0.2500
Manganese	SW6010A	mg/kg	1.0000
Selenium	SW6010A SW6010A	mg/kg	2.5000
Silver Uranium	SW6010A	mg/kg mg/kg	0.2500 5.0000
Zinc	SW6010A	mg/kg	2.5000
Mercury	SW7471	mg/kg	0.0330
Aroclor 1016	SW8082	mg/kg	0.0200
Aroclor 1221	SW8082	mg/kg	0.0200
Aroclor 1232 Aroclor 1242	SW8082 SW8082	mg/kg	0.0200
Aroclor 1248	SW8082	mg/kg mg/kg	0.0200
Aroclor 1254	SW8082	mg/kg	0.0200
Aroclor 1260	SW-8082	mg/kg	0.0200
1,1,1-Trichloroethane	SW8260B	mg/kg	0.0480
1,1,2-Trichloroethane 1,1-Dichloroethane	SW8260B SW8260B	mg/kg mg/kg	0.0480
1,1-Dichloroethene	SW8260B	mg/kg	0.0480
1,2-Dichloroethane	SW8260B	mg/kg	0.0480
Carbon tetrachloride	SW8260B	mg/kg	0.0970
Chloroform	SW8260B	mg/kg	0.0480
Dibromomethane Methylene chloride	SW8260B SW8260B	mg/kg	0.1000 0.1500
Tetrachloroethene	SW8260B	nig/kg mg/kg	0.0480
Trichloroethene	SW8260B	mg/kg	0.0480
Vinyl chloride	SW8260B	mg/kg	0.0480
2,4,5-Trichlorophenol	SW8270C	mg/kg	0.2000
2,4,6-Trichtorophenol 2,4-Dichlorophenol	SW8270C SW8270C	mg/kg	0.2000
2,4-Dimethylphenol	SW8270C	mg/kg mg/kg	0.3000
2,4-Dinitrophenol	SW8270C	mg/kg	0.4000
2-Chlorophenol	SW8270C	mg/kg	0.2000
2-Methylphenol	SW8270C	mg/kg	0.1000
2-Nitrophenol 3+4-Methylphenol	SW8270C SW8270C	mg/kg mg/kg	0.1000
4,6-Dinitro-2-methylphenol	SW8270C	mg/kg	0.5000
4-Chloro-3-methylphenol	SW8270C	mg/kg	0.1000
4-Nitrophenol	SW8270C	mg/kg	0.1000
Pentachlorophenol	SW8270C	mg/kg	0.4000
Phenol 1-Methylnaphthalene	SW8270C SW8260B	mg/kg mg/kg	0.2000
2-Methylnaphthalene	SW8260B	mg/kg	0.2000
Acenaphthene	SW8270C	mg/kg	0.2000
Acenaphthylene	SW8270C	mg/kg	0.2000
Anthracene	SW8270C	mg/kg	0.2000
Benzo(a)anthracene Benzo(a)pyrene	SW8270C SW8270C	mg/kg mg/kg	0.2000
Benzo(b)fluoranthene	SW8270C	mg/kg	0.2000
Benzo(g,h,i)perylene	SW8270C	mg/kg	0.2000
Benzo(k)fluoranthene	SW8270C	mg/kg	0.2000
Chrysene	SW8270C	mg/kg	0.2000
Dibenz(a,h)anthracene	SW8270C	mg/kg	0.2000
Fluoranthene Fluorene	SW8270C SW8270C	mg/kg mg/kg	0.2000
Indeno(1,2,3-c,d)pyrene	SW8270C	mg/kg	0.2000
Naphthalene	SW8270C	mg/kg	0.2000
Phenanthrene	SW8270C	mg/kg	0.2000
Pyrene	SW8270C	mg/kg	0.2000
Cyanide Diesel Range Organics (DRO)	EPA 335.4 SW8015	mg/kg mg/kg	0.3000
Gasoline Range Organics (GRO)	SW8015	mg/kg	1.0

VADOSE ZONE ANALYTES AND REPORTING LIMITS, CENTRAL OIL CONSERVATION DIVISION LANDFARM WESTERN REFINING SOUTHWEST, GALLUP REFINERY, GALLUP, NEW MEXICO

Analyte	Analytical Method	Reporting Units	Requested Reporting Limit
Chloride	E300	mg/kg	30
Benzene	SW8260B	mg/kg	0.050
Ethylbenzene	SW8260B	mg/kg	0.050
Toluene	SW8260B	mg/kg	0.050
Xylenes, Total	SW8260B	mg/kg	0.100
Petroleum Hydrocarbons, TR	E418.1	mg/kg	20

C	hain	-of-Cu	ustody Record	Turn-Around Time:									· -	~ N.				
Client:	Western	Refining		⊠Standard	□ Rush				-	HAL ANA								
				Project Name:	· · · · · · · · · · · · · · · · · · ·				١,	ww.halle					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	~	<i>></i> 1\	•
Mailing Add	ress:		Route 3 Box 7	OCD Central Land	lfarm Semianr	nual Sampling		49		wkins NI					/ 871	na		
Gallup, NM	87301			Project #:		camping				-345-397				-345-4		00		
Phone #:		505-722-	-3833	697-039-008					1. 000	0-10-00	Anal	-010	The Williams of Street		1101			
email or Fa	x#:	505-722-	-0210	Project Manager:	-)ec	C.		40	П		T	7				\Box
QA/QC Pack			☐ Level 4 (Full Validation)	Ed Riege		*	e attached	hed)									1	
Accreditation		□ Other		Sampler: On Ice:	ZAC BI	tsme □No	List (see	e attached)	İ								ŀ	or N)
□ EDD (Ty	pe) _Ple	ase provi	ide EDD	Sample Temperati	ufe:\	15	Zone	es)	6	Ì								
Date	Time	Matrix	Sample Request ID	Container Type and #	Preservativ e Type	HEAL No. 1512324	Vadose Zo	NMAC List (see	BTEX (8260)			л		1				Air Bubbles (Y or N)
2/5/2015	1330	soil	CentralOCD-01-2/5/2015	8ox - 3, 4oz - 1	none	001	Х	X.										
2/5/2015	iai5	soil	CentralOCD-02-2/5/2015	8ox - 3, 4oz - 1	none	702	Х	Х										
2/5/2015	1417	soil	CentralOCD-03-2/5/2015	8ox - 3, 4oz - 1	none	703	Х	Х										
2/5/2015	1135	soil	CentralOCD-04-2/5/2015	8ox - 3, 4oz - 1	none	-604	Х	Х									-	
2/5/2015	Ĺ	soil	BD-2/5/2015	8ox - 3, 4oz - 1	none	-05	Х	Х					,					
2/5/2015	1428	soil	CentralOCD- <u>03</u> -2/5/2015-MS	8ox - 3, 4oz - 1	none	-003	Х	Х										
2/5/2015	1441	soil	CentralOCD- <u>03</u> -2/5/2015-MSD	8ox - 3, 4oz - 1	none	-003	Х	Х										
2/5/2015	A CANCELLAND AGAIN, MA	water	EB-2/5/2015	VOA - 3	HCL	-culo			Х									
2/5/2015	1505	water	FB-2/5/2015	VOA - 3	HCL	-107			Х									
		water	Trip Blank	VOA - 3	HCL	-768			Х									
Date: 2 5 20/5	Time: /720			265 1:00			Remarks: Please cc Grant Price (gprice@trihydro.com) with results. Call Grant @ 307-745-7474 w/ questions. Verify that Reporting limits comply with those shown on the attached.											
Date:	Time:	Relinquish	ed by:	Received by Date Time						L of 0.0 needed								
				DECOUNT VOS				vent	low s	o needed surrogat	e rec							

If necessary, samples submitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.

Tier II Data Validation Report Summary

Client: Western Refining Southwest, Inc.	Laboratory: Hall Environmental Laboratory
Project Name: OCD Central Landfarm Semiannual Sampling	Sample Matrix: Soil
Project Number: 697-039-007	Sample Start Date: 02/05/2015
Date Validated: 02/26/2015	Sample End Date: 02/05/2015

Parameters Included:

- Polychlorinated Biphenyls (PCBs) by Environmental Protection Agency (EPA) Method 8082
- Diesel Range Organics (DRO) and Gasoline Range Organics (GRO) by Solid Waste 846 (SW-846) Method 8015D
- Anions by EPA Method 300.0
- Total Mercury by SW-846 Method 7471
- Total Metals by SW-846 Method 6010B
- Semivolatile Organic Compounds (SVOC) by SW-846 Method 8270C
- Volatile Organic Compounds (VOC) by SW-846 Method 8260B
- Total Petroleum Hydrocarbons (TPH) by EPA Method 418.1
- Total Cyanide by SW-846 Method 9012
- Radium-226 and Radium-228 by EPA Method 901.1

Laboratory Project ID: 1502324

Data Validator: James Gianakon, Environmental Chemist

DATA EVALUATION CRITERIA SUMMARY

A Tier II Data Validation was performed by Trihydro Corporation's Chemical Data Evaluation Services Group on the analytical data report package generated by Hall Environmental Analysis Laboratory in Albuquerque, New Mexico, Anatek Labs, Inc. in Albuquerque, NM and Pace Analytical Labs in Greensburg, PA evaluating samples from the Western Refining Southwest, Inc. site, located in Gallup, New Mexico.

Precision, accuracy, method compliance, and completeness of this data package were assessed during this data review. Precision was determined by evaluating the calculated relative percent difference (RPD) values from:

- Field duplicate pairs
- Matrix spike (MS) and matrix spike duplicate (MSD) pairs
- Laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) pairs

Laboratory accuracy was established by reviewing the demonstrated percent recoveries (%R) of the following items to verify that data are not biased.

- MS/MSD samples
- LCS/LCSD samples
- Organic system monitoring compounds (surrogates)

Field accuracy was established by collecting and analyzing the following samples to monitor for possible ambient or cross contamination during sampling and transportation.

- Trip blanks
- Field blanks
- Equipment blanks

Tier II Data Validation Report Summary

Method compliance was established by reviewing sample integrity, holding times, detection limits, surrogate recoveries, laboratory blanks, initial and continuing calibrations (where applicable), and the LCS/LCSD percent recoveries against method-specific requirements.

Completeness was evaluated by determining the overall ratio of the number of samples and analyses planned versus the number of samples with valid analyses. Determination of completeness included a review of the chain-of-custody (CoC), laboratory analytical methods, and other laboratory and field documents associated with this analytical data set.

Tier II Data Validation Report Summary

SAMPLE NUMBERS TABLE

Client Sample ID	Laboratory Sample Number
Central OCD-01-2/5/2015	1502324-001
Central OCD-02-2/5/2015	1502324-002
Central OCD-03-2/5/2015	1502324-003
Central OCD-04-2/5/2015	1502324-004
BD-2/5/2015	1502324-005
EB-2/5/1015	1502324-006
FB-2/5/2015	1502324-007
Trip Blank	1502324-008

Tier II Data Validation Report Summary

The laboratory data were reviewed to evaluate compliance with the methods and the quality of the reported data. Assessment of CoC completeness is included in Item 3 of the Data Validation Checklist. A check mark (\checkmark) indicates that the referenced validation criteria were deemed acceptable, whereas a crossed circle (\otimes) indicates validation criteria for which the data have been qualified by the data validator. An empty circle (\square indicates that the specified criterion does not apply to the reviewed data. Details are noted in the tables below.

Validation Criteria

✓	Data Completeness
✓	CoC Documentation (Item 3)
✓	Holding Times and Preservation (Items 6 and 7)
	Initial and Continuing Calibrations (Item 9)
✓	Laboratory Blanks (Item 10)
\otimes	MS/MSD (Item 12)
✓	LCS/LCSD (Item 14)
✓	System Monitoring Compounds (i.e., Surrogates) (Item 16)
✓	Field, Equipment, and Trip Blanks (Item 17)
\otimes	Field Duplicates (Item 19)
П	Laboratory Duplicates (Item 21)

Guidance References

Chemical data validation was conducted in accordance with the United States Environmental Protection Agency (USEPA) Contract Laboratory Program (CLP) National Functional Guidelines for the analyses listed below, or by the appropriate method if not covered in the National Functional Guidelines.

- Data for organic analyses were evaluated according to validation criteria set forth in the USEPA CLP National Functional Guidelines for Superfund Organic Methods Data Review, document number EPA-540-R-014-002, August 2014 with additional reference to the USEPA CLP National Functional Guidelines for Organic Data Review, document number EPA 540/R-99/008, October 1999.
- Data for inorganic analyses were evaluated according to validation criteria set forth in the USEPA CLP National Functional Guidelines for Inorganic Superfund Data Review, document number EPA-540-R-013-001, August 2014 with additional reference to the USEPA CLP National Functional Guidelines for Inorganic Data Review, document number EPA 540-R-04-004, October 2004.
- Radiochemistry data were evaluated following criteria defined in USEPA Multi-Agency Radiological Laboratory Analytical Protocols Manual (MARLAP), document number EPA 402-B-04-001A, July 2004.
- Review of field duplicates was conducted according to the USEPA New England Environmental Data Review Supplement for Regional Data Review Elements and Superfund Specific Guidance/Procedures, EQADR-Supplement0, April 2013.
- Trihydro Data Validation Variance Documentation, September 2014.

Tier II Data Validation Report Summary

OVERALL DATA PACKAGE ASSESSMENT

Based on a data validation review, the data are acceptable as delivered. Data qualified by the laboratory are discussed in Item 2 of the Validation Criteria Checklist.

The purpose of validating data and assigning qualifiers is to assist in proper data interpretation. Data that are not qualified meet the site data quality objectives. If values are assigned qualifiers other than an R (rejected, data not usable), the data may be used for site evaluation; however, consideration should be given to the reasons for qualification when interpreting sample concentrations. Data points that are assigned an R qualifier should not be used for site evaluation purposes.

Text identified in **bold font** in the Validation Criteria Checklist indicates that further action and/or qualification of the data were required. Additional data validation qualifiers were added for the items noted with crossed circles in the Validation Criteria section above. Please see the Data Qualification Summary table at the end of this report for a complete list of samples and analytes qualified.

Data that would be qualified with more than one flag were assigned one qualifier based on the severity; however, all reasons for qualification were retained. The hierarchy of qualifiers from the most to least severe is as follows:

R > JB/U > NJ > J+/J- > J/UJ

Data that would be qualified with both J+ and J- flags were assigned one or the other based on the validation criteria involved. The hierarchy of validation criteria from higher to lower precedence is as follows:

Holding Time > Calibrations > Surrogates > LCS/LCSD > MS/MSD

Data qualifiers used during this validation are included in the following table.

Qualifier	<u>Definition</u>
J	Estimated concentration
J+	The result is an estimated concentration, but may be biased high
J-	The result is an estimated concentration, but may be biased low
UJ	Estimated reporting limit

Data Completeness

The analyses were performed as requested on the CoC records. The associated samples were received by the laboratory and analyzed properly unless otherwise noted in the Criteria Checklist below. The complete data package consisted of 820 data points excluding blank samples. No data points were rejected. The data completeness measure for this data package is calculated to be 100% and is acceptable.

VALIDATION CRITERIA CHECKLIST

1. Was the report free of non-conformances identified by the laboratory?

No

Comments: The laboratory reported the following non-conformance related to this data set.

Method 8082: Sample Central OCD-04-2/5/2015 was diluted x5, which elevates the PQL, because of the sample matrix.

Were the data free of data qualification flags and/or notes used by the laboratory?If no, define.

No

Comments: The laboratory used the following data qualification flags in the laboratory report.

S – Spike Recovery outside accepted recover limits.

3. Were sample CoC forms and procedures complete?

Yes

Comments: The CoC record from the field to the laboratory was complete and custody was maintained as evidenced by the field and laboratory personnel signatures, dates, and times of receipt.

4. Were detection limits in accordance with the quality assurance project plan (QAPP), permit, or method, or indicated as acceptable?

Yes

Comments: The detection limits appeared to be acceptable. The following dilutions were applied.

<u>Method 300.0</u>: Sample BD-2/5/2015 was diluted by a factor of 5 times for anion analysis. Dilution factors of 20 times were applied for the analyses of chloride and sulfate for samples Central OCD-01-2/5/2015, Central OCD-02-2/5/2015, Central OCD-03-2/5/2015, and Central OCD-04-2/5/2015.

Method 6010B: Dilution factors of 2 to 100 times were applied for the total metals analyses of the soil samples.

5. Were the reported analytical methods and constituents in compliance with the QAPP, permit, or CoC? Were any analytes reported by more than one method?

Yes

Comments: The reported analytical methods and constituents were found to be in compliance with the CoC.

6. Were samples received in good condition within method-specified requirements?

No

Comments: Samples were received on ice, intact, and in good condition, outside the temperature acceptance range of 4°C +/- 2°C at a temperature of 1.5°C as noted on the CoC and the Sample Log-In Checklist. The samples were not frozen and bottles were not broken; therefore, no further action was required. Custody seals were noted to be present and intact on the coolers upon receipt by the laboratory.

7. Were samples extracted/digested and analyzed within method-specified or technical holding times? No

Comments: Samples were extracted/digested and analyzed within the method specified holding times.

8. Were reported units appropriate for the sample matrix/matrices and analytical method(s)? Specify if wet or dry units were used for soil.

Yes

Comments: The results were reported in concentration units of milligrams per kilogram (mg/kg), percent (%), and picocuries per gram (pCi/g) which were acceptable for the sample matrices and the analyses requested. Analytical results for the soil samples were reported on an as-received, wet weight basis. The analytical results for the field, equipment, and trip blank samples were reported in units of micrograms per liter which were appropriate.

9. Was there indication from the laboratory that the initial or continuing calibration verification results were within acceptable limits?

Yes

Comments: Initial and continuing calibration data were not included as part of this data set. However, there data were assumed to be acceptable as the laboratory did not note that any calibration verification results were outside the acceptable limits.

VALIDATION CRITERIA CHECKLIST

10. Was the total number of laboratory blank samples prepared equal to at least 5% of the total number of samples or analyzed as required by the method?

Yes

Comments: The total number of laboratory blank samples prepared was equal to at least 5% of the total number of samples.

11. Were laboratory blank samples reported to be free of target analyte contamination?

Yes

Comments: The laboratory blank samples were reported to be free of target analyte contamination.

12. Was the total number of MS samples prepared equal to at least 5% of the total number of samples or analyzed as required by the method?

Yes

Comments: The total number of matrix spike samples prepared was equal to at least 5% of the total number of samples. The matrix spike sample source for each analytical batch in this sample set has been indicated below.

Method	Analyte (s)	<u>Batch</u>	MS Sample Source
300.0	Anions	17685	Central OCD-03-2/5/2015
418.1	TPH	17630	Central OCD-03-2/5/2015
8015D	DRO	17621	Central OCD-03-2/5-2015
8015D	GRO	17626	Central OCD-03-2/5/2015
8082	PCBs	17661	Central OCD-03-2/5/2015
8260B	VOCs	17626	Central OCD-03-2/5/2015
8260B	VOCs	R24238	Not Prepared
8270C	SVOCs	17635	Central OCD-03-2/5/2015
7471	Mercury	17645	Central OCD-03-2/5/2015
6010B	Total Metals	17644	Central OCD-03-2/5/2015
9012	Cyanide	R24387	Not Prepared
901.1	Radium	RADC/23382	Not Prepared/Not Required
901.1	Radium	RADC/23383	Not Prepared/Not Required

Not Prepared – Matrix spikes were not prepared for this batch.

13. Were MS/MSD percent recoveries and MS/MSD RPDs within data validation or laboratory quality control (QC) limits?

No

Comments: MS/MSD percent recoveries and MS/MSD RPDs were within data validation and laboratory QC limits, with the following exceptions.

Method	Analyta	Dotob	<u>MS</u>	<u>MSD</u>	MS/MSD
ivietriou	<u>Analyte</u>	<u>Batch</u>	Recovery	Recovery	QC Limits
300.0	Nitrogen, Nitrate	17685	117%	118%	85.3-110%
6010B	Barium	17644	48.1%	73.9%	75-125%
6010B	Lead	17644	62.1%	63.4%	75-125%
6010B	Selenium	17644	40.2%	41.7%	75-125%

Nitrogen, nitrate was detected in the associated samples and the results were assigned J+ qualifiers due to evidence of high bias.

Barium and lead were detected in the associated samples and the results were assigned J- qualifiers due to evidence of low bias.

Selenium was not detected in the associated samples and the results were assigned UJ qualifiers due to evidence of low bias.

VALIDATION CRITERIA CHECKLIST

14. Was the total number of LCSs analyzed equal to at least 5% of the total number of samples or analyzed as required by the method?

Yes

Comments: The total number of LCS samples analyzed was equal to at least 5% of the total number of samples analyzed.

15. Were LCS/LCSD percent recoveries and LCS/LCSD RPDs within data validation or laboratory QC limits?

Yes

Comments: The LCS/LCSD percent recoveries and LCS/LCSD RPDs were within data validation and laboratory QC limits.

16. Were surrogate recoveries within laboratory QC limits?

Yes

Comments: Surrogate recoveries were within laboratory QC limits.

17. Were the number of trip blank, field blank, and/or equipment blank samples collected equal to at least 10% of the total number of samples or as required by the project guidelines, QAPP, SAP, or permit?

Yes

Comments: The number of trip blank, field blank, and equipment blank samples collected was equal to at least 10% of the total samples. One trip blank sample, Trip Blank, one field blank sample, FB-2/5/2015, and one equipment blank sample, EB-2/5/2015, were collected as a part of this data set.

18. Were the trip blank, field blank, and/or equipment blank samples reported to be free of target analyte contamination?

Yes

Comments: The trip blank, field blank, and equipment blank samples were reported to be free of target analyte contamination.

19. Was the number of field duplicates collected equal to at least 10% of the total number of samples or as required by the project guidelines, QAPP, SAP, or permit?

Yes

Comments: The number of field duplicate samples collected was equal to at least 10% of the total number of samples. The sample BD-2/5/2015 was collected as a duplicate for CentralOCD-02-2/5/2015.

20. Were field duplicate RPD values within data validation QC limits (soil 0-50%, water 0-30%, or air 0-25%)?

No

Comments: As detailed in the Field Duplicate Summary Tables below, the field duplicate RPD values were within QC limits with the following exceptions.

The RPD values for nitrogen (nitrate), sulfate, and barium were greater than the limit of 50% at 72.0%, 61.7%, and 116.7%, respectively. Results in the parent and duplicate sample, Central OCD-02-2/5/2015 and BD-2/5/2015 were assigned J qualifiers due to poor precision.

Additionally, the barium results for the associated samples were also qualified and would have been assigned J qualifiers due to evidence of extremely poor precision (RPD > 100%), but the results had previously been assigned J- qualifiers due to evidence of low bias. The J- qualifiers were retained but the additional flag reason was included in the qualification results.

21. Were laboratory duplicate RPD values within laboratory QC limits?

Yes

Comments: Laboratory duplicate samples were not prepared as a part of this data set.

FIELD DUPLICATE SUMMARY

	Client Sample ID: Central OCD-02-2/5/2015 Field Duplicate Sample ID: BD-2/5/2015							
Method	Analyte	Laboratory Result (mg/kg)	Duplicate Result (mg/kg)	Relative Percent Difference (RPD)				
300.0	Fluoride	4.3	6.0	33.0%				
300.0	Chloride	110	170	42.9%				
300.0	Nitrogen, Nitrate	1.6	3.4	72.0%				
300.0	Sulfate	700	370	61.7%				
6010B	Barium	760	200	116.7%				
6010B	Chromium	10	15	40%				
6010B	Copper	3.3	4.1	21.6%				
6010B	Iron	16000	20000	22.2%				
6010B	Lead	2.7	3.0	10.5%				
6010B	Manganese	370	290	24.2%				
6010B	Zinc	14	20	35.3%				
8270C	Benzyl alcohol	ND (0.20)	0.23	DL				
901.1	Radium-226	1.240 ± 0.264 pCi/g	1.602 ± 0.379 pCi/g	26.6%				
901.1	Radium-228	1.514 ± 0.382 pCi/g	2.233 ± 0.499 pCi/g	38.4%				

Field duplicate RPD control limits are not to exceed 50% for soil as established by USEPA New England Environmental Data Review Supplement for Regional Data Review Elements and Superfund Specific Guidance/Procedures, EQADR-Supplement0, April 2013.

DL – Indicates that the analyte was detected in one of the duplicate samples and was undetected in the other sample, and therefore an RPD could not be calculated. Data were not qualified since the detection was within two times the reporting limit.

The RPD values for nitrogen (nitrate), sulfate, and barium were greater than the limit of 50% at 72.0%, 61.7%, and 116.7%, respectively. Results in the parent and duplicate sample, Central OCD-02-2/5/2015 and BD-2/5/2015 were assigned J qualifiers due to poor precision.

Additionally, the barium results for the associated samples were also qualified and would have been assigned J qualifiers due to evidence of extremely poor precision (RPD > 100%), but the results had previously been assigned J- qualifiers due to evidence of low bias. The J- qualifiers were retained but the additional flag reason was included in the qualification results.

DATA QUALIFICATION SUMMARY

Abbreviation	Reason
HR-MS	The MS and/or MSD percent recovery was greater than the upper acceptable limit indicating possible matrix interference.
LR-MS	The MS and/or MSD percent recovery was less than the lower acceptable limit indicating possible matrix interference.
ERPD-FD	High field duplicate RPD.

Analyte	Method	Field Sample ID	Lab Sample ID	Result	Limit	Units	Reviewer Qualifier	DV Flag Reasons
Nitrogen	E300	Central OCD-01-2/5/2015	1502324-001B	2.7	0.3	mg/kg	J+	HR-MS
Nitrogen	E300	Central OCD-03-2/5/2015	1502324-003B	16	0.3	mg/kg	J+	HR-MS
Nitrogen	E300	Central OCD-04-2/5/2015	1502324-004B	7.5	0.3	mg/kg	J+	HR-MS
Nitrogen	E300	Central OCD-02-2/5/2015	1502324-002B	1.6	0.3	mg/kg	J+	ERPD-FD, HR-MS
Nitrogen	E300	BD-2/5/2015	1502324-005B	3.4	1.5	mg/kg	J+	ERPD-FD, HR-MS
Sulfate	E300	Central OCD-02-2/5/2015	1502324-002B	700	30	mg/kg	J	ERPD-FD
Sulfate	E300	BD-2/5/2015	1502324-005B	370	7.5	mg/kg	J	ERPD-FD
Barium, Total	SW6010B	Central OCD-01-2/5/2015	1502324-001B	210	0.1	mg/kg	J-	ERPD-FD, LR-MS
Barium, Total	SW6010B	Central OCD-02-2/5/2015	1502324-002B	760	0.52	mg/kg	J-	ERPD-FD, LR-MS
Barium, Total	SW6010B	Central OCD-03-2/5/2015	1502324-003B	220	0.097	mg/kg	J-	ERPD-FD, LR-MS
Barium, Total	SW6010B	Central OCD-04-2/5/2015	1502324-004B	250	0.1	mg/kg	J-	ERPD-FD, LR-MS
Barium, Total	SW6010B	BD-2/5/2015	1502324-005B	200	0.2	mg/kg	J-	ERPD-FD, LR-MS
Lead, Total	SW6010B	Central OCD-01-2/5/2015	1502324-001B	2.5	0.26	mg/kg	J-	LR-MS
Lead, Total	SW6010B	Central OCD-02-2/5/2015	1502324-002B	2.7	0.26	mg/kg	J-	LR-MS
Lead, Total	SW6010B	Central OCD-03-2/5/2015	1502324-003B	3.2	0.24	mg/kg	J-	LR-MS
Lead, Total	SW6010B	Central OCD-04-2/5/2015	1502324-004B	6.2	0.25	mg/kg	J-	LR-MS
Lead, Total	SW6010B	BD-2/5/2015	1502324-005B	3	0.5	mg/kg	J-	LR-MS
Selenium, Total	SW6010B	Central OCD-01-2/5/2015	1502324-001B	ND	2.6	mg/kg	UJ	LR-MS
Selenium, Total	SW6010B	Central OCD-02-2/5/2015	1502324-002B	ND	2.6	mg/kg	UJ	LR-MS
Selenium, Total	SW6010B	Central OCD-03-2/5/2015	1502324-003B	ND	2.4	mg/kg	UJ	LR-MS
Selenium, Total	SW6010B	Central OCD-04-2/5/2015	1502324-004B	ND	2.5	mg/kg	UJ	LR-MS

Analyte	Method	Field Sample ID	Lab Sample ID	Result	Limit	Units	Reviewer Qualifier	DV Flag Reasons
Selenium, Total	SW6010B	BD-2/5/2015	1502324-005B	ND	5	mg/kg	UJ	LR-MS

Chavez, Carl J, EMNRD

From: Chavez, Carl J, EMNRD

Sent: Thursday, September 12, 2013 1:36 PM

To: 'Grant Price'

Cc:Riege, Ed; VanHorn, Kristen, NMENVSubject:RE: Action Plan, OCD Landfarm

Mr. Price:

The New Mexico Oil Conservation Division (OCD) has reviewed your comments in red text below.

The action plan is **hereby** approved by the OCD with the following conditions:

- 1) Adherence to EPA QA/QC and DQOs during environmental sample and environmental laboratory analyses;
- 2) Implementation of Best Professional Judgment (BPJ) at the base of the excavation areas to remove stained soils and/or soils where olfactory senses suggests the presence of contamination;
- 3) Provide photos of each excavation areas where sampling is conducted. If soil staining is evident at the base of the excavation, BTEX sampling should also be conducted; and
- 4) Follow-up with NMED in the event there are any RCRA related land treatment issues that need to be addressed.

Regarding the inquiry into procedures for ensuring each lift of landfarm soils is properly analyzed for chlorides to assess placement of hydrocarbon contaminated soils into the landfarm, OCD requires: Collection with analytical for a minimum of one composite soil sample per maximum of 3000 cubic yards per acre, consisting of four discrete samples. This is consistent with 19.15.36.15(F). The data should be handled similar to 19.15.36(E)4 NMAC below. The operator may propose an alternate method for OCD consideration.

19.15.36.15(F) NMAC Treatment zone closure performance standards. After the operator has filled a landfarm cell to the maximum thickness of two feet or approximately 3000 cubic yards per acre, the operator shall continue treatment until the contaminated soil has been remediated to the higher of the background concentrations or the following closure performance standards. The operator shall demonstrate compliance with the closure performance standards by collecting and analyzing a minimum of one composite soil sample, consisting of four discrete samples.

(4) Chlorides, as determined by EPA method 300.1, shall not exceed 500 mg/kg if the landfarm is located where ground water is less than 100 feet but at least 50 feet below the lowest elevation at which the operator will place oil field waste or 1000 mg/kg if the landfarm is located where ground water is 100 feet or more below the lowest elevation at which the operator will place oil field waste.

Please contact me if you have questions. Thank you.

Carl J. Chavez, CHMM

New Mexico Energy, Minerals & Natural Resources Department

Oil Conservation Division, Environmental Bureau

1220 South St. Francis Drive, Santa Fe, New Mexico 87505

Office: (505) 476-3490

E-mail: CarlJ.Chavez@State.NM.US

Website: http://www.emnrd.state.nm.us/ocd/

"Why Not Prevent Pollution; Minimize Waste; Reduce the Cost of Operations; & Move Forward With the Rest of the

Nation?" To see how, please go to: "Pollution Prevention & Waste Minimization" at

http://www.emnrd.state.nm.us/ocd/environmental.htm#environmental

From: Grant Price [mailto:gprice@trihydro.com] **Sent:** Wednesday, September 04, 2013 11:06 AM

To: Chavez, Carl J, EMNRD

Cc: Riege, Ed; VanHorn, Kristen, NMENV Subject: RE: Action Plan, OCD Landfarm

Hello Carl,

I've added responses to your comments in the email below to document the conversation that we had yesterday regarding Western's Central OCD Landfarm and to verify that everyone is on the same page moving forward. Responses are provided below in red. Also, as a bit of background information...

The Central Landfarm is currently at capacity and has been for some time. Additional lifts have not been added since the May 2013 sampling event, and Western has no intent to add additional lifts in the immediate future. Treated soil will need to be removed prior to adding additional lifts. Recent treatment zone soil samples (collected from approximately 1 foot below the current ground surface) suggest that treated soils may be eligible for reuse with OCD's approval. The chloride exceedances referenced in the email below are vadose zone exceedances (collected from approximately 4 feet below the cell's original ground surface). Currently, Western has no urgent reuse needs for the soil. Additionally, Western has no urgent need to "reopen" the landfarm for the treatment of additional soils. As such, Western is not currently seeking approval to remove or reuse the treated soil. In the meantime, Western proposes to remove soils with elevated chloride concentrations (detailed in the responses below) and continue disking the landfarm and conducting semiannual vadose zone sampling until such time when Western wishes to reuse the treated soils/re-open the landfarm. At that time, Western will verify that treated soils meet Rule 36 standards for reuse, and will seek OCD approval prior to reusing the soils.

Ed:

Good afternoon.

The New Mexico Oil Conservation Division (OCD) has completed its review of Western Refining SW, Inc.(Western)- Gallup Refinery's June 21, 2013 OCD Central Landfarm and "No Further Action" request with a change to the operating procedure to analyze potential landfarm candidate soils for chlorides before placement into the landfarm. The OCD appreciates Western's rationale for the "No Further Action" request with modification of its standard landfarm operating procedures to "Not" accept hydrocarbon contaminated soils into its landfarm that exceed the limit specified in the OCD Regulations.

Unfortunately, Western is already required under Rule 36 (19.15.36.15 et. seq NMAC) to not emplace hydrocarbon contaminated soils with chlorides exceeding the specified chloride limit as a function of depth to the water table. In Western's landfill operations, the chloride limit is 500 mg/kg. Similarly, this is the limit that must be met before adding another lift into the landfarm. Western understands that Rule 36 requires that soils be analyzed for chloride concentrations prior to landfarm treatment. However, Rule 36 does not specify the frequency that soils should be analyzed or what chloride analysis documentation should be retained. Please advise.

The OCD Central Landfarm Closure, when and/or if, Western ever closes the landfarm also has criteria to meet. The OCD notices that some PAHs except for Naphthalene and Phenol exceeded all of the established limits. Some Phenol isomers exceeded OCD's Data Quality Objectives when it used "ND" limits above the established limits; therefore, Western must ensure that the laboratory that it selects for analytical laboratory data has equipment that is able to achieve a "ND" that meets the OCD limits in the future. Western understands that the detection limits of PAHs exceeded screening standards during the May 2013 confirmation sampling event. Western will verify that the laboratory will meet detection limits equal to or less than the screening standards for future sampling events.

Therefore, based on Western's intent to continue use of the OCD Central Landfarm, Western's "No Further Action" request is denied. Western shall undertake to remove soils exceeding the 500 mg/kg Chlorides (Method 300.1) and 2,500 mg/kg TPH (Method 418.1) using a acceptable field kit and/or OCD prescribed PID Method, etc. before adding another lift into its landfarm. If soils are allowed to exceed the OCD limits, this would be a violation of Rule 36, in which case the OCD and operator will be dealing with a much larger volume of soils for disposition at point and time that Western requests closure of its Central Landfarm. Western intends to excavate the 3 areas where elevated chloride concentrations were observed during the March and May 2013 sampling events. The exceeding samples were collected from approximately 6 feet below the current ground surface. The 6' X 6' grid cell where the original sample was collected will be excavated to a depth greater than 6 ft bgs and a confirmation sample will be collected from the bottom of each grid to confirm that soils with elevated chloride concentrations (i.e. > 500 mg/kg) have been removed. Due to TPH detections, confirmation samples will be analyzed for

chlorides and TPH. However, there were no TPH exceedances of the 2,500 mg/kg standard during the March and May sampling events. Field screening may be utilized at Western's discretion to help determine how deep the excavation should extend, however, the terminal depth of the excavation will ultimately be based on analytical data (chloride < 500 mg/kg, TPH < 2,500 mg/kg). Should analytical results indicate chloride or TPH exceedances at the bottom of the excavation, the depth of the excavation will be extended and additional confirmation samples will be collected. Excavated soil will be disposed of at an off Site facility permitted to receive chloride contaminated soils. Upon receipt of laboratory data indicating that the chloride contaminated soils have been removed, the excavations will be backfilled with clean fill material.

Western shall provide adequate notice to the OCD and NMED when field work will begin. Western will begin field work preparation pending OCD approval of the above approach. A tentative field work schedule will be provided to OCD at that time. Within 30-days of completion of work described above, Western shall provide a diagram to the OCD and NMED displaying the locations within the landfarm where soils exceeded the above with concentrations. Western will provide the requested diagram within 30 days of receipt of complete and accurate laboratory data indicating that chloride contaminated soils have been excavated. A C-138 Manifest(s) shall be submitted verifying the OCD permitted facility that the soils were removed for disposal. Western agrees.

Please contact me if you have questions. Thank you.

Carl J. Chavez, CHMM

New Mexico Energy, Minerals & Natural Resources Department Oil Conservation Division, Environmental Bureau 1220 South St. Francis Drive, Santa Fe, New Mexico 87505

Office: (505) 476-3490

E-mail: CarlJ.Chavez@State.NM.US

Website: http://www.emnrd.state.nm.us/ocd/ "Why Not Prevent Pollution; Minimize Waste; Reduce the Cost of Operations; & Move Forward With the Rest of the Nation?" To see how, please go to: "Pollution Prevention & Waste Minimization" at http://www.emnrd.state.nm.us/ocd/environmental.htm#environmental

----Original Message-----

From: Riege, Ed [mailto:Ed.Riege@wnr.com]

Sent: Monday, June 24, 2013 8:24 AM

To: Chavez, Carl J, EMNRD; VanHorn, Kristen, NMENV

Cc: Johnson, Cheryl; Grant Price Subject: Action Plan, OCD Landfarm

Carl.

Please see the attached action plan due to action level exceedances of chloride in vadose zone soil samples collected from OCD landfarm. Hard copy is in the US mail.

Thanks, Ed

Ed Riege MPH Environmental Manager

Western Refining Gallup Refinery Route 3 Box 7 Gallup, NM 87301 (505) 722-0217 ed.riege@wnr.com

Chavez, Carl J, EMNRD

From: Chavez, Carl J, EMNRD

Sent: Tuesday, July 23, 2013 3:24 PM

To: 'Riege, Ed'; VanHorn, Kristen, NMENV; VonGonten, Glenn, EMNRD

Cc:Johnson, Cheryl; Grant PriceSubject:RE: Action Plan, OCD Landfarm

Ed:

Good afternoon.

The New Mexico Oil Conservation Division (OCD) has completed its review of Western Refining SW, Inc.(Western)- Gallup Refinery's June 21, 2013 OCD Central Landfarm and "No Further Action" request with a change to the operating procedure to analyze potential landfarm candidate soils for chlorides before placement into the landfarm. The OCD appreciates Western's rationale for the "No Further Action" request with modification of its standard landfarm operating procedures to "Not" accept hydrocarbon contaminated soils into its landfarm that exceed the limit specified in the OCD Regulations.

Unfortunately, Western is already required under Rule 36 (19.15.36.15 et. seq NMAC) to not emplace hydrocarbon contaminated soils with chlorides exceeding the specified chloride limit as a function of depth to the water table. In Western's landfill operations, the chloride limit is 500 mg/kg. Similarly, this is the limit that must be met before adding another lift into the landfarm.

The OCD Central Landfarm Closure, when and/or if, Western ever closes the landfarm also has criteria to meet. The OCD notices that some PAHs except for Naphthalene and Phenol exceeded all of the established limits. Some Phenol isomers exceeded OCD's Data Quality Objectives when it used "ND" limits above the established limits; therefore, Western must ensure that the laboratory that it selects for analytical laboratory data has equipment that is able to achieve a "ND" that meets the OCD limits in the future.

Therefore, based on Western's intent to continue use of the OCD Central Landfarm, Western's "No Further Action" request is denied. Western shall undertake to remove soils exceeding the 500 mg/kg Chlorides (Method 300.1) and 2,500 mg/kg TPH (Method 418.1) using a acceptable field kit and/or OCD prescribed PID Method, etc. before adding another lift into its landfarm. If soils are allowed to exceed the OCD limits, this would be a violation of Rule 36, in which case the OCD and operator will be dealing with a much larger volume of soils for disposition at point and time that Western requests closure of its Central Landfarm.

Western shall provide adequate notice to the OCD and NMED when field work will begin. Within 30-days of completion of work described above, Western shall provide a diagram to the OCD and NMED displaying the locations within the landfarm where soils exceeded the above with concentrations. A C-138 Manifest(s) shall be submitted verifying the OCD permitted facility that the soils were removed for disposal.

Please contact me if you have questions. Thank you.

Carl J. Chavez, CHMM

New Mexico Energy, Minerals & Natural Resources Department Oil Conservation Division, Environmental Bureau

1220 South St. Francis Drive, Santa Fe, New Mexico 87505

Office: (505) 476-3490

E-mail: CarlJ.Chavez@State.NM.US

Website: http://www.emnrd.state.nm.us/ocd/ "Why Not Prevent Pollution; Minimize Waste; Reduce the Cost of Operations; & Move Forward With the Rest of the Nation?" To see how, please go to: "Pollution Prevention

& Waste Minimization" at http://www.emnrd.state.nm.us/ocd/environmental.htm#environmental

----Original Message-----

From: Riege, Ed [mailto:Ed.Riege@wnr.com]

Sent: Monday, June 24, 2013 8:24 AM

To: Chavez, Carl J, EMNRD; VanHorn, Kristen, NMENV

Cc: Johnson, Cheryl; Grant Price Subject: Action Plan, OCD Landfarm

Carl,

Please see the attached action plan due to action level exceedances of chloride in vadose zone soil samples collected from OCD landfarm. Hard copy is in the US mail.

Thanks,

Ed

Ed Riege MPH Environmental Manager

Western Refining Gallup Refinery Route 3 Box 7 Gallup, NM 87301 (505) 722-0217 ed.riege@wnr.com

GALLUP REFINERY

Mr. Carl J. Chavez June 21, 2013 Page 1

June 21, 2013

Mr. Carl J. Chavez
Environmental Engineer
New Mexico Energy, Minerals, and Natural Resources Department
Oil Conservation Division
1220 South St. Francis Drive
Santa Fe, NM 87505

RE: Chloride Exceedance Response Action Plan, Central Oil Conservation Division Landfarm, Western Refining Company Southwest, Inc., Gallup Refinery, Gallup, New Mexico

Dear Mr. Chavez:

Western Refining Company Southwest, Inc. (Western) is submitting this correspondence to propose a response action plan due to action level exceedances of chloride in vadose zone soil samples collected from the Central Oil Conservation Division (OCD) Landfarm at Western's Gallup Refinery located in Gallup, New Mexico. Semiannual vadose zone sampling was conducted on March 27, 2013 in accordance with 19.15.36.15.E NMAC (Rule 36). A summary of the March 27, 2013 data is provided as Table 1. The March 27, 2013 analytical data and a Tier II data validation are included as Attachment A. No data were rejected as a result of the Tier II data validation.

The referenced NMAC requires that semiannual vadose zone samples be analyzed for total petroleum hydrocarbons (TPH); benzene, toluene, ethylbenzene, and xylenes (BTEX); and chloride. Results are to be compared to higher of the practical quantitation limit (PQL) or background soil concentrations to determine whether a release has occurred. However, as agreed to in an OCD email dated April 30, 2013, action levels for Western's Central OCD Landfarm for chloride and TPH are 500 and 2,500 mg/kg, respectively. Baseline values and action levels are shown on Table 1.

Baseline values were established for the specific purpose of comparing background concentrations to OCD landfarm soil at the Gallup refinery. Western worked collaboratively with OCD to determine the appropriate processes for establishing concentrations. The concentrations are referred to as baseline instead of background at OCD's request to avoid potential confusion with RCRA background samples. In regards to Western's OCD landfarm and Rule 36, the terms baseline and background should be considered synonymous. Note that, for baseline sampling, the reporting limit was set to equal the PQL. If a constituent was not detected during baseline sampling, the reporting limit (the PQL) was used as the baseline concentration. Therefore, by comparing soil data to the baseline concentrations shown on Table 1, the data are actually being compared to the higher of the baseline data and the PQL (as required by Section 19.15.36.16.F NMAC).

Mr. Carl J. Chavez June 21, 2013 Page 2

The baseline concentrations were submitted to OCD on September 12, 2011, along with the alternate beneficial reuse screening concentrations (ABRSCs). During August 2011 teleconferences, Western and OCD agreed that the ABRSCs (shown on Table 1) may be used to determine whether landfarm soil may be beneficially reused in the event that the baseline concentrations are exceeded. ABRSCs are the highest of:

- NMED Construction Worker Soil Screening Standards
- OCD Form C-137 EZ (Registration/Final Closure Report For Small Landfarm) Screening Standards
- NMAC 20.6.2.3103 Screening Standards with a 20 X dilution factor

The baseline and ABRSC values were conditionally approved by OCD in a letter dated November 4, 2011.

As shown on Table 1, analytical data from the March 27, 2013 sampling event indicate that chloride concentrations of two of the four vadose zone soil samples (CentralOCD-01_032713 and CentralOCD-04_032713) exceed the baseline concentration and the 500 mg/kg action level/ABRSC. Baseline TPH concentrations were also exceeded in the same samples, but the 2,500 mg/kg TPH action level/ABRSC was not exceeded. Baseline chloride concentrations were also exceeded in samples CentralOCD-02_032713 and CentralOCD-03_032713. However, the action level/ABRSC was not exceeded. No further action is required due to the above referenced baseline exceedances, because the action levels/ABSRCs were not exceeded.

In response to the above-referenced chloride action level/ABRSC exceedances, in accordance with Rule 36, and as approved in NMED's April 30, 2013 email, Western collected and analyzed an additional "four randomly selected, independent samples for TPH, BTEX, chlorides and the constituents listed in Subsections A and B of 20.6.2.3103 NMAC" on May 8, 2013. These data are summarized on Tables 2 through 5. Analytical data and a Tier II data validation for the May 8, 2013 event are included as Attachment B. As shown on Table 5, the May 8, 2013 analytical data indicate that the chloride concentration of one vadose zone soil sample (Central OCD-02_05082013) exceeds the 500 mg/kg action level/ABRSC. Baseline concentrations were also exceeded for chloride, fluoride, nitrogen (nitrate[as N]), sulfate, chromium, copper, iron, lead, manganese, zinc, chrysene, phenanthrene, and TPH. However, with the exception of manganese, the concentrations of these constituents do not exceed the respective ABRSCs, as indicated on Tables 2 through 5. Manganese was detected in sample Central OCD-04-05082013 at a concentration of 560 mg/kg. The baseline concentration and the ABRSC for manganese are 520 mg/kg and 463 mg/kg, respectively. Since this is the first baseline/ABRSC manganese exceedance in Central OCD Landfarm soil samples, and since the detected concentration is comparable to the baseline value, Western does not believe that additional action is warranted at this time due to the manganese exceedance.

Mr. Carl J. Chavez June 21, 2013 Page 3

Per Rule 36, in response to the May 8, 2013 chloride exceedance, Western is submitting this response action plan to OCD to "address changes in the landfarm's operation to prevent further contamination and, if necessary, [provide] a plan for remediating existing contamination."

Due to the relatively low risks associated with chloride at the concentrations detected in the Central OCD Landfarm samples, Western does not believe that further action to address the existing chloride concentrations is necessary at this time. However, Western will continue semiannual landfarm sampling and will modify the landfarm's operational procedures to assess chloride concentrations of soils that may be placed into the landfarm.

Per 19.15.36.15.D NMAC, treatment zone soils are currently monitored prior to adding additional lifts to confirm that chloride concentrations are less than 500 mg/kg. However, this monitoring is conducted in soils that have already been placed in the landfarm. Western proposes that representative samples of soil that may potentially be treated in the Central OCD Landfarm be analyzed for chloride prior to placement in the landfarm. If analytical data indicates that the chloride concentrations of the representative samples exceed the 500 mg/kg action level, the soil will not be treated in the landfarm. Alternate appropriate disposal methods will be required.

At this time, soil treatment is limited to periodic disking of the landfarm soils. However, in the future, should Western decide to apply additional remediation techniques (the application of moisture or, with division approval, microbes to enhance bioremediation), the new techniques will be evaluated for their potential to increase vadose zone chloride concentrations. Should the evaluation determine that the new technique is likely to increase vadose zone chloride concentrations, the technique will not be used.

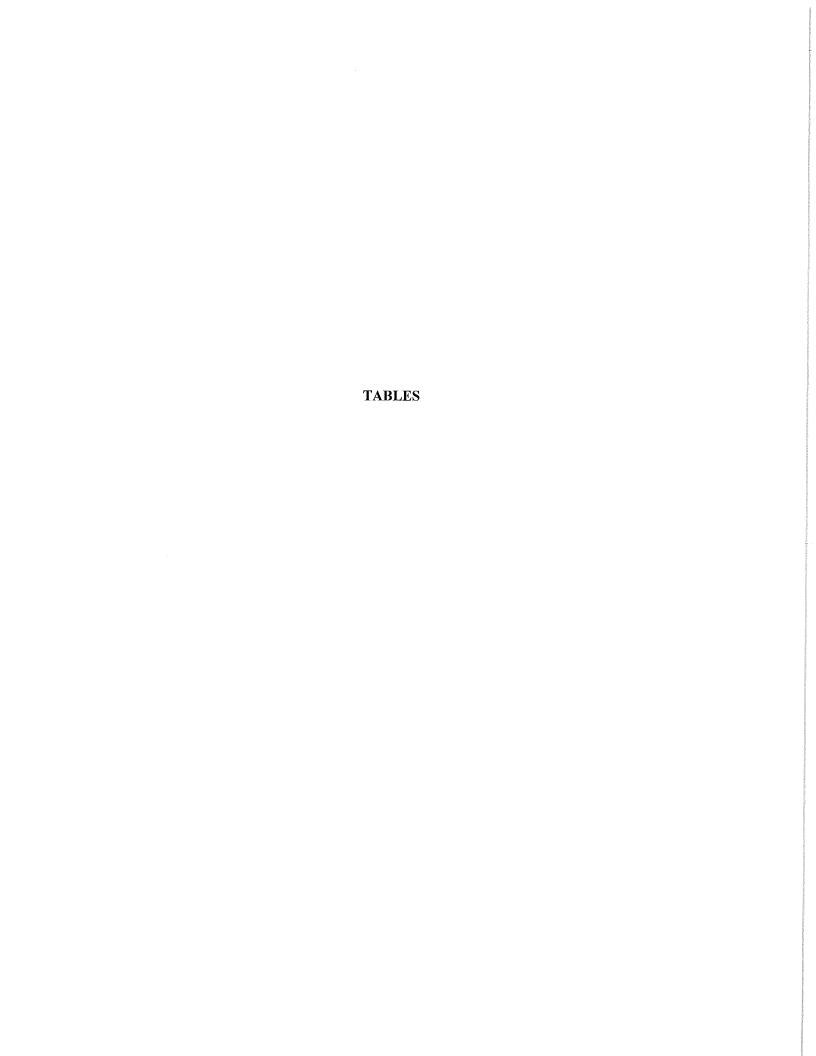
Pending OCD's approval, Western will implement the above-referenced changes in the Central OCD Landfarm's operation. If you have any questions or comments, please do not hesitate to call me at (505) 722-0217.

Sincerely,

Western Refining Company

Ed Riege

Environmental Manager


697-039-004

Attachments

Mr. Carl J. Chavez June 21, 2013 Page 4

cc:

C. Johnson, Western Refining G. Price, Trihydro Corporation K. Van Horn, NMED

TABLE 1. FIRST QUARTER 2013 VADOSE ZONE SOIL ANALYTICAL SUMMARY, CENTRAL OCD LANDFARM WESTERN REFINING COMPANY SOUTHWEST, INC. GALLUP REFINERY, GALLUP, NEW MEXICO

Location ID	Date Sampled	Benzene (mg/kg)	Ethyl- benzene (mg/kg)	Toluene (mg/kg)	Total Petroleum Hydrocarbon (mg/kg)	Xylenes, Total (mg/kg)	Chloride (mg/kg)
CentralOCD-01 032713	03/27/13	ND(0.05)	ND(0.05)	ND(0.05)	66 ^	ND(0.1)	1,200 A,B,C.
CentralOCD-02 032713	03/27/13	ND(0.05)	ND(0.05)	ND(0.05)	ND(19.92)	ND(0.09)	210 J ^
CentralOCD-03 032713	03/27/13	ND(0.05)	ND(0.05)	ND(0.05)	ND(19.86)	ND(0.1)	460 ^
CentralOCD-04 032713	03/27/13	ND(0.05)	ND(0.05)	ND(0.05)	140 ^K	ND(0.09)	510 A.B.C.

Α.	Baseline Concentration	0.05	0.05	0.05	20	0.1	7.53
B.	Central Landfarm Action Level	NA	NA	NA	2,500	NA	500
C.	ABRSC	0.2	50	50	2,500	50	500

Notes: Bold concentration indicates exceedance of screening value, J - Estimated concentration ABRSC - Alternate Beneficial Reuse Screening Concentration

1 of 1

ProjectDirect: 1stQTR2013VZ PK:87 RK:14205

Location ID	Date Sampled	Benzene (mg/kg)	Carbon tetrachloride (mg/kg)	Chloroform (mg/kg)	Dibromomethane (mg/kg)	1,1- Dichloro- ethane (mg/kg)
Central OCD-01-05082013	05/08/13	ND(0.049)	ND(0.093)	ND(0.046)	ND(0.093)	ND(0,093)
Central OCD-02-05082013	05/08/13	ND(0.049)	ND(0.095)	ND(0.048)	ND(0.095)	ND(0.095)
Central OCD-03-05082013		ND(0.048)	ND(0.093)	ND(0.046)	ND(0.093)	ND(0.093)
Central OCD-04-05082013	05/08/13	ND(0.049)	ND(0.093)	ND(0.046)	ND(0.093)	ND(0.093)

Baseline Concentration 0.05 0.1 Central Landfarm Action Level NA NA ABRSC 0.2 199	0.05	0.1	0.01
	NA	NA	NA
	671	0.002	6,880

Notes:
Bold concentration indicates that the detected value exceeds the screening value.
J - Estimated concentration
ABRSC - Alternate Beneficial Reuse Screening Concentration

ProjectDirect: 1stQTR2013VZResampleVOCs PK:87 RK:14234

Location ID	Date Sampled	1,2- Dichloro- ethane (mg/kg)	1,1- Dichloro- ethene (mg/kg)	Ethyl- benzene (mg/kg)	Methylene Chloride (mg/kg)	1- Methyl- naphthalene (mg/kg)
Central OCD-01-05082013	05/08/13	ND(0.046)	ND(0.046)	ND(0.049)	ND(0.14)	ND(0.19)
Central OCD-02-05082013	05/08/13	ND(0.048)	ND(0.048)	ND(0.049)	ND(0.14)	ND(0.19)
Central OCD-03-05082013	05/08/13	ND(0.046)	ND(0.046)	ND(0.048)	ND(0.14)	ND(0.19)
Central OCD-04-05082013	05/08/13	ND(0.046)	ND(0.046)	ND(0.049)	ND(0.14)	ND(0.19)

Baseline Concentration	0.05	0.05	0.05	0.15	0.2
Central Landfarm Action Level	NA	NA	NA	NA	NA
ABRSC	751	1,830	50	10,600	0.6

Notes:
Bold concentration indicates that the detected value exceeds the screening value,
J - Estimated concentration
ABRSC - Alternate Beneficial Reuse Screening Concentration

Location ID	Date Sampled	2- Methyl- naphthalene (mg/kg)	Naphthalene (mg/kg)	Tetrachloro- ethene (mg/kg)	Toluene (mg/kg)	1,1,1- Trichloro- ethane (mg/kg)
Central OCD-01-05082013 Central OCD-02-05082013 Central OCD-03-05082013 Central OCD-04-05082013	05/08/13 05/08/13	ND(0.19) ND(0.19) ND(0.19) ND(0.19)	ND(0.093) ND(0.095) ND(0.093) ND(0.093)	ND(0.046) ND(0.048) ND(0.046) ND(0.046)	ND(0.049) ND(0.049) ND(0.048) ND(0.049)	ND(0.046) ND(0.048) ND(0.046) ND(0.046)

	Baseline Concentration Central Landfarm Action Level ABRSC	0.2 NA 0.6	0.2 NA 702	0.05 NA 338	0.05 NA 50	0.05 NA 64.300
--	--	------------------	------------------	-------------------	------------------	----------------------

Notes:
Bold concentration indicates that the detected value exceeds the screening value.
J - Estimated concentration
ABRSC - Alternate Beneficial Reuse Screening Concentration

ProjectDirect: 1stQTR2013VZResampleVOCs PK:87 RK:14234

Location ID	Date Sampled	1,1,2- Trichloro- ethane (mg/kg)	Trichloro- ethene (mg/kg)	Vinyl Chloride (mg/kg)	Xylenes, Total (mg/kg)
Central OCD-01-05082013 Central OCD-02-05082013 Central OCD-03-05082013 Central OCD-04-05082013	05/08/13 05/08/13	ND(0.046) ND(0.048) ND(0.046) ND(0.046)	ND(0.046) ND(0.048) ND(0.046) ND(0.046)	ND(0.046) ND(0.048) ND(0.046) ND(0.046)	ND(0.098) ND(0.098) ND(0.095) ND(0.097)

Baseline Concentration Central Landfarm Action Level	0.05 NA	0.05 NA	0.05 NA	0.1 NA	
ABRSC	1,240	4,600	248	NA 50	

Notes:
Bold concentration indicates that the detected value exceeds the screening value.
J - Estimated concentration
ABRSC - Alternate Beneficial Reuse Screening Concentration

ProjectDirect: 1stQTR2013VZResampleVOCs PK:87 RK:14234

Location ID	Date Sampled	Acenaph- thene (mg/kg)	Acenaph- thylene (mg/kg)	Anthracene (mg/kg)	Aroclor- 1016 (mg/kg)	Aroclor- 1221 (mg/kg)
Central OCD-01-05082013	05/08/13	ND(2.5)	ND(2.5)	ND(0.15)	ND(0.04)	ND(0.04)
Central OCD-02-05082013	05/08/13	ND(2.5)	ND(2.5)	ND(0.15)	ND(0.1)	ND(0.1)
Central OCD-03-05082013	05/08/13	ND(1.3)	ND(1.3)	ND(0.075)	ND(0.02)	ND(0.02)
Central OCD-04-05082013	05/08/13	ND(1.3)	ND(1.3)	ND(0,075)	ND(0.02)	ND(0.02)

A Baseline Concentration	0,2	0.2	0.2	0.02	0.02
Central Landfarm Action Level	NA	NA	NA	NA	NA
c. ABRSC	18,600	0.6	66,800	15.3	71.3

Notes: Bold concentration indicates that the detected value exceeds the screening value. J - Estimated concentration ABRSC - Alternate Beneficial Reuse Screening Concentration

	ate Sampled	Aroclor- 1232 (mg/kg)	Aroclor- 1242 (mg/kg)	Aroclor- 1248 (mg/kg)	Aroclor- 1254 (mg/kg)	Aroclor- 1260 (mg/kg)
Central OCD-01-05082013 05, Central OCD-02-05082013 05,	/08/13	ND(0.04) ND(0.1)	ND(0.04) ND(0.1)	ND(0.04) ND(0.1)	ND(0.04)	ND(0.04)
Central OCD-03-05082013 05/ Central OCD-04-05082013 05/		ND(0.02) ND(0.02)	ND(0.02) ND(0.02)	ND(0.1) ND(0.02) ND(0.02)	ND(0.1) ND(0.02) ND(0.02)	ND(0.1) ND(0.02) ND(0.02)

 A Baseline Concentration B Central Landfarm Action Level C ABRSC 	0.02 NA 71.3	0.02 NA 75.8	0.02 NA 75.8	0.02 NA 4,36	0.02 NA
		70.0	70.0	4.30	75.8

Notes:
Bold concentration indicates that the detected value exceeds the screening value.
J - Estimated concentration
ABRSC - Alternate Beneficial Reuse Screening Concentration

ProjectDirect: 1stQTR2013VZResampleSVOCs PK:87 RK:14239

Location ID	Date Sampled	Benzo(a)- anthracene (mg/kg)	Benzo(a)- pyrene (mg/kg)	Benzo(b)- fluor- anthene (mg/kg)	Benzo(ghi)- perylene (mg/kg)	Benzo(k) fluor- anthene (mg/kg)
Central OCD-01-05082013 Central OCD-02-05082013 Central OCD-03-05082013 Central OCD-04-05082013	05/08/13 05/08/13	ND(0.1) ND(0.1) ND(0.05) ND(0.05)	ND(0.1) ND(0.1) ND(0.05) ND(0.05)	ND(0.1) 0.1 ND(0.05) ND(0.05)	ND(0.1) 0.13 ND(0.05) ND(0.05)	ND(0.1) ND(0.1) ND(0.05) ND(0.05)

A Baseline Concentration	0.2	0.2	0.2	0.2	0.2
B. Central Landfarm Action Level	NA	NA	NA	NA	NA
	212	21.3	213	0.6	2.060
c. ABRSC	213	21.0	2.10		

Notes:
Bold concentration indicates that the detected value exceeds the screening value,
J - Estimated concentration
ABRSC - Alternate Beneficial Reuse Screening Concentration

ProjectDirect: 1stQTR2013VZResampleSVOCs PK:87 RK:14239

		4-				
		Chloro-3-	2-		Dibenz	2,4-
		Methyl	Chloro-		(a,h)	Dichloro-
Location ID	Date Sampled	phenol	phenol	Chrysene	anthracene	phenol
Ecoation 15	Date Campica	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Central OCD-01-05082013	05/08/13	ND(1)	ND(0.4)	0.13 J	ND(0.1)	ND(0.8)
Central OCD-02-05082013	05/08/13	ND(1)	ND(0.4)	0.44 J ^	ND(0.1)	ND(0.8)
Central OCD-03-05082013	05/08/13	ND(0.5)	ND(0.2)	ND(0.05)	ND(0.05)	ND(0.4)
Central OCD-04-05082013	05/08/13	ND(0.5)	ND(0.2)	ND(0.05)	ND(0.05)	ND(0.4)

A Baseline Concentration B Central Landfarm Action Level	0.5	0.2	0.2	0.2	0.4
	NA	NA	NA	NA	NA
△ ABRSC	0.1	1,550	20,600	21.3	715

Notes:
Bold concentration indicates that the detected value exceeds the screening value,
J - Estimated concentration
ABRSC - Alternate Beneficial Reuse Screening Concentration

		2,4- Dimethyl-	2- Methyl- 4,6-dinitro	2,4- Dinitro-	Fluor-	
Location ID	Date Sampled	phenol (mg/kg)	phenol (mg/kg)	phenol (mg/kg)	anthene (mg/kg)	Fluorene (mg/kg)
Central OCD-01-05082013 Central OCD-02-05082013 Central OCD-03-05082013 Central OCD-04-05082013	05/08/13 05/08/13	ND(0.6) ND(0.6) ND(0.3) ND(0.3)	ND(1) ND(1) ND(0.5) ND(0.5)	ND(0.8) ND(0.8) ND(0.4) ND(0.4)	ND(0.2) ND(0.2) ND(0.1) ND(0.1)	ND(0.3) ND(0.3) ND(0.15) ND(0.15)

A Baseline Concentration	0.3	0.5	0.4	0.2	0.2
Central Landfarm Action Level	NA	NA	NA	NA	NA
□ ABRSC	4,760	23.8	476	8.910	8,910

Notes:
Bold concentration indicates that the detected value exceeds the screening value.
J - Estimated concentration
ABRSC - Alternate Beneficial Reuse Screening Concentration

ProjectDirect: 1stQTR2013VZResampleSVOCs PK:87 RK:14239

Location ID	Date Sampled	Indeno- (1,2,3-cd) pyrene (mg/kg)	1- Methyl- naphthalene (mg/kg)	2- Methyl- naphthalene (mg/kg)	2- Methyl phenol (mg/kg)	3,4- Methyl phenol (mg/kg)
Central OCD-01-05082013	05/08/13	ND(0.1)	ND(2.5)	ND(2.5)	ND(1)	ND(0.4)
Central OCD-02-05082013	05/08/13	0.13	ND(2.5)	ND(2.5)	ND(1)	ND(0.4)
Central OCD-03-05082013	05/08/13	ND(0.05)	ND(1.3)	ND(1.3)	ND(0.5)	ND(0.2)
Central OCD-04-05082013	05/08/13	ND(0.05)	ND(1.3)	ND(1.3)	<u>ND(0.5)</u>	ND(0.2)

A Baseline Concentration	0.2	0.2	0.2	0.5	0.2
Central Landfarm Action Level	NA	NA	NA	NA	NA
 ABRSC 	213	0.6	0.6	0.1	0.1

Notes: Bold concentration indicates that the detected value exceeds the screening value. J - Estimated concentration ABRSC - Alternate Beneficial Reuse Screening Concentration

Location ID	Date Sampled	Naphthalene (mg/kg)	2- Nitro- phenol (mg/kg)	4- Nitro- phenol (mg/kg)	Penta- chloro- phenol (mg/kg)	Phen- anthrene (mg/kg)
Central OCD-01-05082013	05/08/13	ND(2.5)	ND(0.4)	ND(0.5)	ND(0.8)	ND(0.15)
Central OCD-02-05082013	05/08/13	ND(2.5)	ND(0.4)	ND(0.5)	ND(0.8)	0.26 J´ ^
Central OCD-03-05082013	05/08/13	ND(1.3)	ND(0.2)	ND(0.25)	ND(0.4)	ND(0.075)
Central OCD-04-05082013	05/08/13	ND(1.3)	ND(0.2)	ND(0.25)	ND(0.4)	ND(0.075)

A Baseline Concentration	0.2	0.2	0.23	0.4	0.2
B. Central Landfarm Action Level	NA	NA	NA	NA	NA
 ABRSC 	702	0.1	0.1	1,030	7,150

Notes:
Bold concentration indicates that the detected value exceeds the screening value.
J - Estimated concentration
ABRSC - Alternate Beneficial Reuse Screening Concentration

Location ID	Date Sampled	Phenol	Pyrene	2,4,5- Tri- chloro- phenol	2,4,6- Tri- chloro- phenol
Education 18	Date Sampled	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Central OCD-01-05082013	05/08/13	ND(0.4)	ND(0.25)	ND(0.4)	ND(0.4)
Central OCD-02-05082013	05/08/13	ND(0.4)	ND(0.25)	ND(0.4)	ND(0.4)
Central OCD-03-05082013		ND(0.2)	ND(0.13)	ND(0.2)	ND(0,2)
Central OCD-04-05082013	05/08/13	ND(0,2)	ND(0.13)	ND(0.2)	ND(0.2)

Ceptral Landfarm Action Level NA NA NA NA NA NA	 Baseline Concentration 	0.2	0.2	0.2	0.2	
	Central Landfarm Action Level	NA	NA		NA	
	<u> ABRSC</u>	68,800	6,680	23,800	238	

Notes:
Bold concentration indicates that the detected value exceeds the screening value.
J - Estimated concentration
ABRSC - Alternate Beneficial Reuse Screening Concentration

ProjectDirect: 1stQTR2013VZResampleSVOCs PK:87 RK:14239

Location ID	Date Sampled	Arsenic, Total (mg/kg)	Barium, Total (mg/kg)	Cadmium, Total (mg/kg)	Chromium, Total (mg/kg)	Copper, Total (mg/kg)
Central OCD-01-05082013	05/08/13	ND(12)	270	ND(0.5)	19 ^	4.6
Central OCD-02-05082013	05/08/13	ND(12)	280	ND(0.5)	19 ^	2.8
Central OCD-03-05082013	05/08/13	ND(12)	290	ND(0.5)	18 ^A	4.6 ^
Central OCD-04-05082013	05/08/13	ND(12)	140 J	ND(0.5)	14^	3.7 ^

A.	Baseline Concentration	13	365	0.5	12.7	2.95
8.	Central Landfarm Action Level	NA	NA	NA	NA	NA
C.	ABRSC	65.4	4,350	309	447,000	12,400

Notes:
Bold concentration indicates that the detected value exceeds the screening value.
J - Estimated concentration
ABRSC - Alternate Beneficial Reuse Screening Concentration

Location ID	Date Sampled	Iron, Total (mg/kg)	Lead, Total (mg/kg)		Manganese, Total (mg/kg)		Mercury, Total (mg/kg)	Selenium, Total (mg/kg)
Central OCD-01-05082013	05/08/13	22000 ^	5.6	Α.	390		ND(0.033)	ND(12) UJ
Central OCD-02-05082013	05/08/13	22000 <i>^</i>	9.6	A.	380		ND(0.033)	ND(12) UJ
Central OCD-03-05082013	05/08/13	21000 ^	3.2		380		ND(0.033)	ND(12) UJ
Central OCD-04-05082013	05/08/13	17000	1,8		560	A,C.	ND(0.033)	ND(12) UJ

Α.	Baseline Concentration	17,333.333	5.533	520	0.107	13
B.	Central Landfarm Action Level	NA	NA	NA	NA	NA
C.	ABRSC	217,000	800	463	63.6	1,550

Notes:
Bold concentration indicates that the detected value exceeds the screening value.
J - Estimated concentration
ABRSC - Alternate Beneficial Reuse Screening Concentration

ProjectDirect: 1stQTR2013VZResampleMetals PK:87 RK:14240

Location ID	Date Sampled	Silver, Total (mg/kg)	Uranium, Total (mg/kg)	Zinc, Total (mg/kg)
Central OCD-01-05082013	05/08/13	ND(1.2)	ND(25)	77 ^
Central OCD-02-05082013	05/08/13	ND(1.2)	ND(25)	33 ^.
Central OCD-03-05082013	05/08/13	ND(1.2)	ND(25)	31 ^
Central OCD-04-05082013	05/08/13	ND(1.2)	ND(25)	21

A.	Baseline Concentration	1.3	43.75	21.333	
В,	Central Landfarm Action Level	NA	NA	NA	
c.	ABRSC	1,550	929	92,900	

Notes:
Bold concentration indicates that the detected value exceeds the screening value.
J - Estimated concentration
ABRSC - Alternate Beneficial Reuse Screening Concentration

Location ID	Date Sampled	Chloride (mg/kg)	Cyanide, Total (mg/kg)	Fluoride, Total (mg/kg)	Nitrogen, Nitrate (mg/kg)	Radium 226 (pCi/L)
Central OCD-01-05082013	05/08/13	150 ^A .	ND(0.3)	5.2 ^	14 ^	1.069±0.236
Central OCD-02-05082013		670 ^{A,B,C.}	ND(0.3)	4.5 ^	13 ^	1.197±0.275
Central OCD-03-05082013		280 ^	ND(0.3)	2.7	0.34	1.168±0.259
Central OCD-04-05082013		180 ^	ND(0.3)	3.7 ^	14 J ^	1.007±0.21

A.	Baseline Concentration	7.525	0.425	2.95	2.2	NA
B.	Central Landfarm Action Level	500	NA	NA	NA	NA
C.	ABRSC	500	6,190	18,600	496,000	NA

Notes: Bold concentration indicates that the detected value exceeds the screening value. J - Estimated concentration ABRSC - Alternate Beneficial Reuse Screening Concentration

Location ID	Date Sampled	Radium 228 (pCi/L)	Sulfate (mg/kg)	Total Petroleum Hydrocarbon (mg/kg)
Central OCD-01-05082013	05/08/13	1.27±0.37	650 ^A	94 ^
Central OCD-02-05082013	05/08/13	1.883±0.427	450 ^	740 ^
Central OCD-03-05082013	05/08/13	2.033±0.456	530 [^]	ND(20)
Central OCD-04-05082013	05/08/13	1.483±0.33	570 [^]	ND(20)

A.	Baseline Concentration	NA	21.5	20	
В.	Central Landfarm Action Level	NA	NA	2,500	
C.	ABRSC	NA	12,000	2,500	

Notes:
Bold concentration indicates that the detected value exceeds the screening value.
J - Estimated concentration
ABRSC - Alternate Beneficial Reuse Screening Concentration

ATTACHMENT A

MARCH 27, 2013 ANALYTICAL DATA AND TIER II DATA VALIDATION

Hall Environmental Analysis Laboratory
4901 Hawkins NE
Albuquerque, NM 87109
TEL: 505-345-3975 FAX: 505-345-4107
Website: www.hallenvironmental.com

April 15, 2013

Ed Riege

Western Refining Southwest, Gallup

Rt. 3 Box 7

Gallup, NM 87301

TEL: (505) 722-3833 FAX (505) 722-0210

RE: OCD Central Landfarm Semiannual Sampling

OrderNo.: 1303A89

Dear Ed Riege:

Hall Environmental Analysis Laboratory received 10 sample(s) on 3/27/2013 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. All samples are reported as received unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

Sincerely,

Andy Freeman

Laboratory Manager

andyl

4901 Hawkins NE

Albuquerque, NM 87109

Lab Order **1303A89**

Date Reported: 4/15/2013

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Gallup

Project: OCD Central Landfarm Semiannual Sam

Lab ID: 1303A89-001

Matrix: SOIL

Client Sample ID: CentralOCD-01

Collection Date: 3/27/2013 11:40:00 AM **Received Date:** 3/27/2013 4:07:00 PM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8021B: VOLATILES	to the state of th			and the second second second second second second	Analyst: NSB
Benzene	ND	0.049	mg/Kg	1	3/29/2013 12:33:48 PM
Toluene	ND	0.049	mg/Kg	1	3/29/2013 12:33:48 PM
Ethylbenzene	ND	0.049	mg/Kg	1	3/29/2013 12:33:48 PM
Xylenes, Total	ND	0.097	mg/Kg	1	3/29/2013 12:33:48 PM
Surr: 4-Bromofluorobenzene	96.7	80-120	%REC	1	3/29/2013 12:33:48 PM
EPA METHOD 300.0: ANIONS					Analyst: JRR
Chloride	1200	30	mg/Kg	20	3/29/2013 11:44:25 AM
EPA METHOD 418.1: TPH					Analyst: LRW
Petroleum Hydrocarbons, TR	66	20	mg/Kg	1	3/29/2013

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH greater than 2
- RL Reporting Detection Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits 1 of 32

Lab Order 1303A89

Date Reported: 4/15/2013

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Gallup

OCD Central Landfarm Semiannual Sam

Lab ID: 1303A89-002

Project:

Client Sample ID: CentralOCD-02

Collection Date: 3/27/2013 12:30:00 PM

Received Date: 3/27/2013 4:07:00 PM

Analyses	Result	RL Qual	Units	DF	Date Analyzed
EPA METHOD 8021B: VOLATILES	en e			,,	Analyst: NSB
Benzene	ND	0.047	mg/Kg	1	3/29/2013 1:04:06 PM
Toluene	ND	0.047	mg/Kg	1	3/29/2013 1:04:06 PM
Ethylbenzene	ND	0.047	mg/Kg	1	3/29/2013 1:04:06 PM
Xylenes, Total	ND	0.094	mg/Kg	1	3/29/2013 1:04:06 PM
Surr: 4-Bromofluorobenzene	97.5	80-120	%REC	1	3/29/2013 1:04:06 PM
EPA METHOD 300.0: ANIONS					Analyst: JRR
Chloride	210	30	mg/Kg	20	3/29/2013 12:09:14 PM
EPA METHOD 418.1: TPH					Analyst: LRW
Petroleum Hydrocarbons, TR	ND	20	mg/Kg	1	3/29/2013

Matrix: SOIL

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH greater than 2
- RL Reporting Detection Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits 2 of 32

Lab Order 1303A89

Date Reported: 4/15/2013

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Gallup

OCD Central Landfarm Semiannual Sam

Lab ID:

1303A89-003

Matrix: SOIL

Client Sample ID: CentralOCD-03

Collection Date: 3/27/2013 12:50:00 PM

Received Date: 3/27/2013 4:07:00 PM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8021B: VOLATILES					Analyst: NSB
Benzene	ND	0.048	mg/Kg	1	3/29/2013 1:34:14 PM
Toluene	ND	0.048	mg/Kg	1	3/29/2013 1:34:14 PM
Ethylbenzene	ND	0.048	mg/Kg	1	3/29/2013 1:34:14 PM
Xylenes, Total	ND	0.095	mg/Kg	1	3/29/2013 1:34:14 PM
Surr: 4-Bromofluorobenzene	98.2	80-120	%REC	1	3/29/2013 1:34:14 PM
EPA METHOD 300.0: ANIONS					Analyst: JRR
Chloride	460	30	mg/Kg	20	3/29/2013 12:34:03 PM
EPA METHOD 418.1: TPH					Analyst: LRW
Petroleum Hydrocarbons, TR	ND	20	mg/Kg	1	3/29/2013

- Value exceeds Maximum Contaminant Level.
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH greater than 2
- Reporting Detection Limit

- В Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- RPD outside accepted recovery limits
- Spike Recovery outside accepted recovery limits 3 of 32

Lab Order 1303A89

Date Reported: 4/15/2013

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Gallup

OCD Central Landfarm Semiannual Sam

Lab ID:

1303A89-004 Matrix: SOIL Client Sample ID: CentralOCD-04

Collection Date: 3/27/2013 1:40:00 PM

Received Date: 3/27/2013 4:07:00 PM

Analyses	Result	RL Qua	l Units	DF	Date Analyzed
EPA METHOD 8021B: VOLATILES					Analyst: NSB
Benzene	ND	0.046	mg/Kg	1	3/29/2013 2:04:24 PM
Toluene	ND	0.046	mg/Kg	1	3/29/2013 2:04:24 PM
Ethylbenzene	ND	0.046	mg/Kg	1	3/29/2013 2:04:24 PM
Xylenes, Total	ND	0.092	mg/Kg	1	3/29/2013 2:04;24 PM
Surr: 4-Bromofluorobenzene	96.6	80-120	%REC	1	3/29/2013 2:04:24 PM
EPA METHOD 300.0: ANIONS					Analyst: JRR
Chloride	510	30	mg/Kg	20	3/29/2013 12:58:51 PM
EPA METHOD 418.1: TPH					Analyst: LRW
Petroleum Hydrocarbons, TR	140	40	mg/Kg	2	3/29/2013

- Value exceeds Maximum Contaminant Level.
- Е Value above quantitation range
- Analyte detected below quantitation limits
- P Sample pH greater than 2
- Reporting Detection Limit

- В Analyte detected in the associated Method Blank
- Η Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
 - RPD outside accepted recovery limits R
 - Spike Recovery outside accepted recovery limits Page 4 of 32

Lab Order 1303A89

Date Reported: 4/15/2013

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Gallup

Client Sample ID: BD-

OCD Central Landfarm Semiannual Sam

Collection Date: 3/27/2013

Lab ID: 1303A89-005 Matrix: SOIL

Received Date: 3/27/2013 4:07:00 PM

Result RL Qual Units		al Units	DF	Date Analyzed	
				Analyst: NSB	
ND	0.047	mg/Kg	1	3/29/2013 2:34:24 PM	
ND	0.047	mg/Kg	1	3/29/2013 2:34:24 PM	
ND	0.047	mg/Kg	1	3/29/2013 2:34:24 PM	
ND	0.094	mg/Kg	1	3/29/2013 2:34:24 PM	
95.8	80-120	%REC	1	3/29/2013 2:34:24 PM	
				Analyst: JRR	
400	30	mg/Kg	20	3/29/2013 1:48:29 PM	
				Analyst: LRW	
ND	20	mg/Kg	1	3/29/2013	
	ND ND ND ND 95.8	ND 0.047 ND 0.047 ND 0.047 ND 0.094 95.8 80-120	ND 0.047 mg/Kg ND 0.047 mg/Kg ND 0.047 mg/Kg ND 0.094 mg/Kg 95.8 80-120 %REC	ND 0.047 mg/Kg 1 ND 0.047 mg/Kg 1 ND 0.047 mg/Kg 1 ND 0.047 mg/Kg 1 ND 0.094 mg/Kg 1 95.8 80-120 %REC 1 400 30 mg/Kg 20	

- Value exceeds Maximum Contaminant Level.
- Е Value above quantitation range
- Analyte detected below quantitation limits
- P Sample pH greater than 2
- Reporting Detection Limit

- Analyte detected in the associated Method Blank В
- Holding times for preparation or analysis exceeded Η
- Not Detected at the Reporting Limit
- RPD outside accepted recovery limits
- Spike Recovery outside accepted recovery limits 5 of 32

Lab Order 1303A89

Date Reported: 4/15/2013

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Gallup

OCD Central Landfarm Semiannual Sam

Lab ID:

1303A89-006

Matrix: SOIL

Client Sample ID: CentralOCD-02-MS/MSD Collection Date: 3/27/2013 12:30:00 PM Received Date: 3/27/2013 4:07:00 PM

Analyses	Result	RL Qual Units		DF	Date Analyzed
EPA METHOD 8021B: VOLATILES			W		Analyst: NSB
Benzene	ND	0.048	mg/Kg	1	3/29/2013 3:04:29 PM
Toluene	ND	0.048	mg/Kg	1	3/29/2013 3:04:29 PM
Ethylbenzene	ND	0.048	mg/Kg	1	3/29/2013 3:04:29 PM
Xylenes, Total	ND	0.096	mg/Kg	1	3/29/2013 3:04:29 PM
Surr: 4-Bromofluorobenzene	95.3	80-120	%REC	1	3/29/2013 3:04:29 PM
EPA METHOD 300.0: ANIONS					Analyst: JRR
Chloride	250	30	mg/Kg	20	3/29/2013 2:13:18 PM
EPA METHOD 418.1: TPH					Analyst: LRW
Petroleum Hydrocarbons, TR	ND	20	mg/Kg	1	3/29/2013

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range

Reporting Detection Limit

- J Analyte detected below quantitation limits
- P Sample pH greater than 2

RL

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits 6 of 32

Lab Order 1303A89

Date Reported: 4/15/2013

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Gallup

Matrix: SOIL

Project: OCD Central Landfarm Semiannual Sam

Lab ID: 1303A89-008

Client Sample ID: CentralOCD-TZ

Collection Date: 3/27/2013 1:15:00 PM

Received Date: 3/27/2013 4:07:00 PM

Analyses	Result	RL (Qual	Units	DF	Date Analyzed
EPA METHOD 8082: PCB'S						Analyst: SCC
Aroclor 1016	ND	1.0		mg/Kg	10	4/1/2013 12:50:09 PM
Aroclor 1221	ND	1.0		mg/Kg	10	4/1/2013 12:50:09 PM
Aroclor 1232	ND	1.0		mg/Kg	10	4/1/2013 12:50:09 PM
Aroclor 1242	ND	1.0		mg/Kg	10	4/1/2013 12:50:09 PM
Aroclor 1248	ND	1.0		mg/Kg	10	4/1/2013 12:50:09 PM
Aroclor 1254	ND	1.0		mg/Kg	10	4/1/2013 12:50:09 PM
Aroclor 1260	ND	1.0		mg/Kg	10	4/1/2013 12:50:09 PM
Surr: Decachlorobiphenyl	0	22.2-164	S	%REC	10	4/1/2013 12:50:09 PM
Surr: Tetrachloro-m-xylene	0	17.8-160	S	%REC	10	4/1/2013 12:50:09 PM
EPA METHOD 8015D: DIESEL RANG	SE ORGANICS					Analyst: MMD
Diesel Range Organics (DRO)	480	98		mg/Kg	10	4/4/2013 4:11:23 PM
Surr: DNOP	0	72.4-120	S	%REC	10	4/4/2013 4:11:23 PM
EPA METHOD 8015D: GASOLINE RA	ANGE					Analyst: NSB
Gasoline Range Organics (GRO)	ND	4.8		mg/Kg	1	3/29/2013 4:34:32 PM
Surr: BFB	91.1	84-116		%REC	1	3/29/2013 4:34:32 PM
EPA METHOD 300.0: ANIONS						Analyst: JRR
Fluoride	9.6	0.30		mg/Kg	1	4/2/2013 10:05:25 AM
Chloride	310	30		mg/Kg	20	4/2/2013 10:17:50 AM
Nitrogen, Nitrate (As N)	23	6.0		mg/Kg	20	4/2/2013 10:17:50 AM
Sulfate	1600	30		mg/Kg	20	4/2/2013 10:17:50 AM
EPA METHOD 7471: MERCURY						Analyst: IDC
Mercury	0.13	0.033		mg/Kg	1	4/5/2013 1:35:13 PM
EPA METHOD 6010B: SOIL METALS	3					Analyst: ELS
Arsenic	ND	2.5		mg/Kg	1	4/5/2013 9:37:35 AM
Barium	230	1.0		mg/Kg	10	4/5/2013 9:43:10 AM
Cadmium	ND	0.10		mg/Kg	1	4/5/2013 9:37:35 AM
Chromium	15	0.30		mg/Kg	1	4/5/2013 9:37:35 AM
Copper	4.2	0.60		mg/Kg	2	4/8/2013 10:14:49 AM
Iron	23000	500		mg/Kg	500	4/5/2013 9:45:41 AM
Lead	2.1	0.25		mg/Kg	1	4/5/2013 9:37:35 AM
Manganese	420	1.0		mg/Kg	10	4/5/2013 9:43:10 AM
Selenium	ND	2.5		mg/Kg	1	4/5/2013 9:37:35 AM
Silver	ND	0.25		mg/Kg	1	4/5/2013 9:37:35 AM
Uranium	ND	5.0		mg/Kg	1	4/5/2013 9:37:35 AM
Zinc	20	2.5		mg/Kg	1	4/5/2013 9:37:35 AM
EPA METHOD 8270C: SEMIVOLATIL	_ES					Analyst: JDC
Acenaphthene	ND	2.4		mg/Kg	1	4/2/2013 10:44:44 AM
Acenaphthylene	ND	2.4		mg/Kg	1	4/2/2013 10:44:44 AM
Aniline	ND	2.4		mg/Kg	1	4/2/2013 10:44:44 AM

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH greater than 2
- RL Reporting Detection Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits 7 of 32

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Gallup Client Sample ID: CentralOCD-TZ

Project:OCD Central Landfarm Semiannual SamCollection Date: 3/27/2013 1:15:00 PMLab ID:1303A89-008Matrix: SOILReceived Date: 3/27/2013 4:07:00 PM

Analyses	Result	RL Qu	ıal Units	DF	Date Analyzed
EPA METHOD 8270C: SEMIVOLA	TILES				Analyst: JD C
Anthracene	ND	2.4	mg/Kg	1	4/2/2013 10:44:44 AM
Azobenzene	ND	2.4	mg/Kg	1	4/2/2013 10:44:44 AM
Benz(a)anthracene	ND	2.4	mg/Kg	1	4/2/2013 10:44:44 AM
Benzo(a)pyrene	ND	2.4	mg/Kg	1	4/2/2013 10:44:44 AM
Benzo(b)fluoranthene	ND	2.4	mg/Kg	1	4/2/2013 10:44:44 AM
Benzo(g,h,i)perylene	ND	2.4	mg/Kg	1	4/2/2013 10:44:44 AM
Benzo(k)fluoranthene	ND	2.4	mg/Kg	1	4/2/2013 10:44:44 AM
Benzoic acid	ND	6.0	mg/Kg	1	4/2/2013 10:44:44 AM
Benzyl alcohol	ND	2.4	mg/Kg	1	4/2/2013 10:44:44 AM
Bis(2-chloroethoxy)methane	ND	2.4	mg/Kg	1	4/2/2013 10:44:44 AM
Bis(2-chloroethyl)ether	ND	2.4	mg/Kg	1	4/2/2013 10:44:44 AM
Bis(2-chloroisopropyl)ether	ND	2.4	mg/Kg	1	4/2/2013 10:44:44 AM
Bis(2-ethylhexyl)phthalate	ND	6.0	mg/Kg	1	4/2/2013 10:44:44 AM
4-Bromophenyl phenyl ether	ND	2.4	mg/Kg	1	4/2/2013 10:44:44 AM
Butyl benzyl phthalate	ND	2.4	mg/Kg	1	4/2/2013 10:44:44 AM
Carbazole	ND	2.4	mg/Kg	1	4/2/2013 10:44:44 AM
4-Chloro-3-methylphenol	ND	6.0	mg/Kg	1	4/2/2013 10:44:44 AM
4-Chloroaniline	ND	6.0	mg/Kg	1	4/2/2013 10:44:44 AM
2-Chloronaphthalene	ND	3.0	mg/Kg	1	4/2/2013 10:44:44 AM
2-Chlorophenol	ND	2.4	mg/Kg	1	4/2/2013 10:44:44 AM
4-Chlorophenyl phenyl ether	ND	2.4	mg/Kg	1	4/2/2013 10:44:44 AM
Chrysene	ND	2.4	mg/Kg	1	4/2/2013 10;44;44 AM
Di-n-butyl phthalate	ND	6.0	mg/Kg	1	4/2/2013 10:44:44 AM
Di-n-octyl phthalate	ND	4.8	mg/Kg	1	4/2/2013 10:44:44 AM
Dibenz(a,h)anthracene	ND	2.4	mg/Kg	1	4/2/2013 10:44:44 AM
Dibenzofuran	ND	2.4	mg/Kg	1	4/2/2013 10:44:44 AM
1,2-Dichlorobenzene	ND	2.4	mg/Kg	1	4/2/2013 10:44:44 AM
1,3-Dichlorobenzene	ND	2.4	mg/Kg	1	4/2/2013 10:44:44 AM
1,4-Dichlorobenzene	ND	2.4	mg/Kg	1	4/2/2013 10:44:44 AM
3,3'-Dichlorobenzidine	ND	3.0	mg/Kg	1	4/2/2013 10:44:44 AM
Diethyl phthalate	ND	2.4	mg/Kg	1	4/2/2013 10:44:44 AM
Dimethyl phthalate	ND	2.4	mg/Kg	1	4/2/2013 10:44:44 AM
2,4-Dichlorophenol	ND	4.8	mg/Kg	1	4/2/2013 10:44:44 AM
2,4-Dimethylphenol	ND	3.6	mg/Kg	1	4/2/2013 10:44:44 AM
4,6-Dinitro-2-methylphenol	ND	6.0	mg/Kg	1	4/2/2013 10:44:44 AM
2,4-Dinitrophenol	ND	4.8	mg/Kg	1	4/2/2013 10:44:44 AM
2,4-Dinitrotoluene	ND	6.0	mg/Kg	1	4/2/2013 10:44:44 AM
2,6-Dinitrotoluene	ND	6.0	mg/Kg	1	4/2/2013 10:44:44 AM
Fluoranthene	ND	2.4	mg/Kg	1	4/2/2013 10:44:44 AM
Fluorene	ND	2.4	mg/Kg	1	4/2/2013 10:44:44 AM
Hexachlorobenzene	ND	2.4	mg/Kg	1	4/2/2013 10:44:44 AM
Hexachlorobutadiene	ND	2.4	mg/Kg	1	4/2/2013 10:44:44 AM

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH greater than 2
- RL Reporting Detection Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits 8 of 32

Lab Order 1303A89

Date Reported: 4/15/2013

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Gallup

Project: OCD Central Landfarm Semiannual Sam

Lab ID: 1303A89-008

Matrix: SOIL

Client Sample ID: CentralOCD-TZ

Collection Date: 3/27/2013 1:15:00 PM **Received Date:** 3/27/2013 4:07:00 PM

Analyses	Result	RL Qu	ıal Units	DF	Date Analyzed
EPA METHOD 8270C: SEMIVOLATIL	.ES		- Control of the Cont		Analyst: JDC
Hexachlorocyclopentadiene	ND	2.4	mg/Kg	1	4/2/2013 10:44:44 AM
Hexachloroethane	ND	2.4	mg/Kg	1	4/2/2013 10:44:44 AM
Indeno(1,2,3-cd)pyrene	ND	2.4	mg/Kg	1	4/2/2013 10:44:44 AM
Isophorone	ND	6.0	mg/Kg	1	4/2/2013 10:44:44 AM
1-Methylnaphthalene	ND	2.4	mg/Kg	1	4/2/2013 10:44:44 AM
2-Methylnaphthalene	ND	2.4	mg/Kg	1	4/2/2013 10:44:44 AM
2-Methylphenol	ND	6.0	mg/Kg	1	4/2/2013 10:44:44 AM
3+4-Methylphenol	ND	2.4	mg/Kg	1	4/2/2013 10:44:44 AM
N-Nitrosodi-n-propylamine	ND	2.4	mg/Kg	1	4/2/2013 10:44:44 AM
N-Nitrosodiphenylamine	ND	2.4	mg/Kg	1	4/2/2013 10:44:44 AM
Naphthalene	ND	2.4	mg/Kg	1	4/2/2013 10:44:44 AM
2-Nitroaniline	ND	2.4	mg/Kg	1	4/2/2013 10:44:44 AM
3-Nitroaniline	ND	2.4	mg/Kg	1	4/2/2013 10:44:44 AM
4-Nitroaniline	ND	4.8	mg/Kg	1	4/2/2013 10:44:44 AM
Nitrobenzene	ND	6.0	mg/Kg	1	4/2/2013 10:44:44 AM
2-Nitrophenol	ND	2.4	mg/Kg	1	4/2/2013 10:44:44 AM
4-Nitrophenol	ND	3.0	mg/Kg	1	4/2/2013 10:44:44 AM
Pentachlorophenol	ND	4.8	mg/Kg	1	4/2/2013 10:44:44 AM
Phenanthrene	ND	2.4	mg/Kg	1	4/2/2013 10:44:44 AM
Phenol	ND	2.4	mg/Kg	1	4/2/2013 10:44:44 AM
Pyrene	ND	2.4	mg/Kg	1	4/2/2013 10:44:44 AM
Pyridine	ND	6.0	mg/Kg	1	4/2/2013 10:44:44 AM
1,2,4-Trichlorobenzene	ND	2.4	mg/Kg	1	4/2/2013 10:44:44 AM
2,4,5-Trichlorophenol	ND	2.4	mg/Kg	1	4/2/2013 10:44:44 AM
2,4,6-Trichlorophenol	ND	2.4	mg/Kg	1	4/2/2013 10:44:44 AM
Surr: 2,4,6-Tribromophenol	109	40.1-130	%REC	1	4/2/2013 10:44:44 AM
Surr: 2-Fluorobiphenyl	83.8	44.4-123	%REC	1	4/2/2013 10:44:44 AM
Surr: 2-Fluorophenol	87.9	41.9-112	%REC	1	4/2/2013 10:44:44 AM
Surr: 4-Terphenyl-d14	83.4	29.6-130	%REC	1	4/2/2013 10:44:44 AM
Surr: Nitrobenzene-d5	110	42.4-132	%REC	1	4/2/2013 10:44:44 AM
Surr: Phenol-d5	84.8	44.3-119	%REC	1	4/2/2013 10:44:44 AM
PA METHOD 8260B: VOLATILES					Analyst: RAA
Benzene	ND	0.048	mg/Kg	1	3/31/2013 8:40:15 PM
Toluene	ND	0.048	mg/Kg	1	3/31/2013 8:40:15 PM
Ethylbenzene	ND	0.048	mg/Kg	1	3/31/2013 8:40:15 PM
Methyl tert-butyl ether (MTBE)	ND	0.048	mg/Kg	1	3/31/2013 8:40:15 PM
1,2,4-Trimethylbenzene	ND	0.048	mg/Kg	1	3/31/2013 8:40:15 PM
1,3,5-Trimethylbenzene	ND	0.048	mg/Kg	1	3/31/2013 8:40:15 PM
1,2-Dichloroethane (EDC)	ND	0.048	mg/Kg	1	3/31/2013 8:40:15 PM
1,2-Dibromoethane (EDB)	ND	0.048	mg/Kg	1	3/31/2013 8:40:15 PM
Naphthalene	ND	0.097	mg/Kg	1	3/31/2013 8:40:15 PM

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH greater than 2
- RL Reporting Detection Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits 9 of 32

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Gallup

OCD Central Landfarm Semiannual Sam

1303A89-008 Lab ID:

Project:

Matrix: SOIL

Client Sample ID: CentralOCD-TZ

Collection Date: 3/27/2013 1:15:00 PM Received Date: 3/27/2013 4:07:00 PM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES					Analyst: RAA
1-Methylnaphthalene	ND	0.19	mg/Kg	1	3/31/2013 8:40:15 PM
2-Methylnaphthalene	ND	0.19	mg/Kg	1	3/31/2013 8:40:15 PM
Acetone	ND	0.73	mg/Kg	1	3/31/2013 8:40:15 PM
Bromobenzene	ND	0.048	mg/Kg	1	3/31/2013 8:40:15 PM
Bromodichloromethane	ND	0.048	mg/Kg	1	3/31/2013 8:40:15 PM
Bromoform	ND	0.048	mg/Kg	1	3/31/2013 8:40:15 PM
Bromomethane	ND	0.15	mg/Kg	1	3/31/2013 8:40:15 PM
2-Butanone	ND	0.48	mg/Kg	1	3/31/2013 8:40:15 PM
Carbon disulfide	ND	0.48	mg/Kg	1	3/31/2013 8:40:15 PM
Carbon tetrachloride	ND	0.097	mg/Kg	1	3/31/2013 8:40:15 PM
Chlorobenzene	ND	0.048	mg/Kg	1	3/31/2013 8:40:15 PM
Chloroethane	ND	0.097	mg/Kg	1	3/31/2013 8:40:15 PM
Chloroform	ND	0.048	mg/Kg	1	3/31/2013 8:40:15 PM
Chloromethane	ND	0.15	mg/Kg	1	3/31/2013 8:40:15 PM
2-Chlorotoluene	ND	0.048	mg/Kg	1	3/31/2013 8:40:15 PM
4-Chlorotoluene	ND	0.048	mg/Kg	1	3/31/2013 8:40:15 PM
cis-1,2-DCE	ND	0.048	mg/Kg	1	3/31/2013 8:40:15 PM
cis-1,3-Dichloropropene	ND	0.048	mg/Kg	1	3/31/2013 8:40:15 PM
1,2-Dibromo-3-chloropropane	ND	0.097	mg/Kg	1	3/31/2013 8:40:15 PM
Dibromochloromethane	ND	0.048	mg/Kg	1	3/31/2013 8:40:15 PM
Dibromomethane	ND	0.097	mg/Kg	1	3/31/2013 8:40:15 PM
1,2-Dichlorobenzene	ND	0.048	mg/Kg	1	3/31/2013 8:40:15 PM
1,3-Dichlorobenzene	ND	0.048	mg/Kg	1	3/31/2013 8:40:15 PM
1,4-Dichlorobenzene	ND	0.048	mg/Kg	1	3/31/2013 8:40:15 PM
Dichlorodifluoromethane	ND	0.048	mg/Kg	1	3/31/2013 8:40:15 PM
1,1-Dichloroethane	ND	0.097	mg/Kg	1	3/31/2013 8:40:15 PM
1,1-Dichloroethene	ND	0.048	mg/Kg	1	3/31/2013 8:40:15 PM
1,2-Dichloropropane	ND	0.048	mg/Kg	1	3/31/2013 8:40:15 PM
1,3-Dichloropropane	ND	0.048	mg/Kg	1	3/31/2013 8:40:15 PM
2,2-Dichloropropane	ND	0.097	mg/Kg	1	3/31/2013 8:40:15 PM
1,1-Dichloropropene	ND	0.097	mg/Kg	1	3/31/2013 8:40:15 PM
Hexachlorobutadiene	ND	0.097	mg/Kg	1	3/31/2013 8:40:15 PM
2-Hexanone	ND	0.48	mg/Kg	1	3/31/2013 8:40:15 PM
Isopropylbenzene	ND	0.048	mg/Kg	1	3/31/2013 8:40:15 PM
4-Isopropyltoluene	ND	0.048	mg/Kg	1	3/31/2013 8:40:15 PM
4-Methyl-2-pentanone	ND	0.48	mg/Kg	1	3/31/2013 8:40:15 PM
Methylene chloride	ND	0.15	mg/Kg	1	3/31/2013 8:40:15 PM
n-Butylbenzene	ND	0.15	mg/Kg	1	3/31/2013 8:40:15 PM
n-Propylbenzene	ND	0.048	mg/Kg	1	3/31/2013 8:40:15 PM
sec-Butylbenzene	ND	0.048	mg/Kg	1	3/31/2013 8:40:15 PM
Styrene	ND	0.048	mg/Kg	1	3/31/2013 8:40:15 PM
tert-Butylbenzene	ND	0.048	mg/Kg	1	3/31/2013 8:40:15 PM

- Value exceeds Maximum Contaminant Level.
- Ε Value above quantitation range
- Analyte detected below quantitation limits
- P Sample pH greater than 2
- Reporting Detection Limit

- В Analyte detected in the associated Method Blank
- Η Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit ND
- RPD outside accepted recovery limits R
- Spike Recovery outside accepted recovery limits 10 of 32

Lab Order 1303A89

Date Reported: 4/15/2013

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Gallup

OCD Central Landfarm Semiannual Sam

Project: Lab ID:

1303A89-008

Client Sample ID: CentralOCD-TZ

Collection Date: 3/27/2013 1:15:00 PM

Received Date: 3/27/2013 4:07:00 PM

Analyses	Result	RL Qu	ıal Units	DF	Date Analyzed	
EPA METHOD 8260B: VOLATILES					Analyst: RAA	
1,1,1,2-Tetrachloroethane	ND	0.048	mg/Kg	1	3/31/2013 8:40:15 PM	
1,1,2,2-Tetrachloroethane	ND	0.048	mg/Kg	1	3/31/2013 8:40:15 PM	
Tetrachloroethene (PCE)	ND	0.048	mg/Kg	1	3/31/2013 8:40:15 PM	
trans-1,2-DCE	ND	0.048	mg/Kg	1	3/31/2013 8:40:15 PM	
trans-1,3-Dichloropropene	ND	0.048	mg/Kg	1	3/31/2013 8:40:15 PM	
1,2,3-Trichlorobenzene	ND	0.097	mg/Kg	1	3/31/2013 8:40:15 PM	
1,2,4-Trichlorobenzene	ND	0.048	mg/Kg	1	3/31/2013 8:40:15 PM	
1,1,1-Trichloroethane	ND	0.048	mg/Kg	1	3/31/2013 8:40:15 PM	
1,1,2-Trichloroethane	ND	0.048	mg/Kg	1	3/31/2013 8:40:15 PM	
Trichloroethene (TCE)	ND	0.048	mg/Kg	1	3/31/2013 8:40:15 PM	
Trichlorofluoromethane	ND	0.048	mg/Kg	1	3/31/2013 8:40:15 PM	
1,2,3-Trichloropropane	ND	0.097	mg/Kg	1	3/31/2013 8:40:15 PM	
Vinyl chloride	ND	0.048	mg/Kg	1	3/31/2013 8:40:15 PM	
Xylenes, Total	ND	0.097	mg/Kg	1	3/31/2013 8:40:15 PM	
Surr: 1,2-Dichloroethane-d4	84.3	70-130	%REC	1	3/31/2013 8:40:15 PM	
Surr: 4-Bromofluorobenzene	87.6	70-130	%REC	1	3/31/2013 8:40:15 PM	
Surr: Dibromofluoromethane	94.9	70-130	%REC	1	3/31/2013 8:40:15 PM	
Surr: Toluene-d8	100	70-130	%REC	1	3/31/2013 8:40:15 PM	
EPA METHOD 418.1: TPH					Analyst: LRW	
Petroleum Hydrocarbons, TR	770	20	mg/Kg	1	3/29/2013	
SM4500-H+B: PH					Analyst: KS	
рН	7.43	1.68	pH Units	1	4/3/2013 2:45:00 PM	

Matrix: SOIL

- Value exceeds Maximum Contaminant Level.
- Е Value above quantitation range
- Analyte detected below quantitation limits
- P Sample pH greater than 2
- RLReporting Detection Limit

- В Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- Spike Recovery outside accepted recovery limits 11 of 32

Lab Order 1303A89

Date Reported: 4/15/2013

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Gallup

Project: OCD Central Landfarm Semiannual Sam

Lab ID: 1303A89-009 Client Sample ID: EB

Collection Date: 3/27/2013 2:00:00 PM

Received Date: 3/27/2013 4:07:00 PM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8021B: VOLATILES					Analyst: NSB
Benzene	ND	1.0	μg/L	1	3/28/2013 8:36:09 PM
Toluene	ND	1.0	μg/L	1	3/28/2013 8:36:09 PM
Ethylbenzene	ND	1.0	μg/L	1	3/28/2013 8:36:09 PM
Xylenes, Total	ND	2.0	μg/L	1	3/28/2013 8:36:09 PM
Surr: 4-Bromofluorobenzene	83.6	69.4-129	%REC	1	3/28/2013 8:36:09 PM

Matrix: AQUEOUS

- Value exceeds Maximum Contaminant Level.
- Е Value above quantitation range
- Analyte detected below quantitation limits J
- P Sample pH greater than 2
- Reporting Detection Limit RL

- Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit ND
- R RPD outside accepted recovery limits
- Spike Recovery outside accepted recovery limits 12 of 32

Lab Order 1303A89

Date Reported: 4/15/2013

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Gallup

Project: OCD Central Landfarm Semiannual Sam

Lab ID: 1303A89-010

Client Sample ID: FB

Collection Date: 3/27/2013 2:00:00 PM

Received Date: 3/27/2013 4:07:00 PM

Analyses	Result	RL Qu	ıal Units	DF	Date Analyzed
EPA METHOD 8021B: VOLATILES					Analyst: NSB
Benzene	ND	1.0	μg/L	1	3/28/2013 9:04:51 PM
Toluene	ND	1.0	μg/L	1	3/28/2013 9:04:51 PM
Ethylbenzene	ND	1.0	μg/L	1	3/28/2013 9:04:51 PM
Xylenes, Total	ND	2.0	μg/L	1	3/28/2013 9:04:51 PM
Surr: 4-Bromofluorobenzene	81.5	69.4-129	%REC	1	3/28/2013 9:04:51 PM

Matrix: AQUEOUS

Qualifiers:

Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

Sample pH greater than 2

RL Reporting Detection Limit

Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

R RPD outside accepted recovery limits

S Spike Recovery outside accepted recovery limits 13 of 32

Lab Order 1303A89

Date Reported: 4/15/2013

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Gallup

Client Sample ID: TRIP BLANK

OCD Central Landfarm Semiannual Sam Project:

Collection Date:

Lab ID: 1303A89-011 Matrix: AQUEOUS

Received Date: 3/27/2013 4:07:00 PM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8021B: VOLATILES		***************************************			Analyst: NSB
Benzene	ND	1.0	μg/L	1	3/28/2013 9:33:30 PM
Toluene	ND	1.0	μg/L	1	3/28/2013 9:33:30 PM
Ethylbenzene	ND	1.0	μg/L	1	3/28/2013 9:33:30 PM
Xylenes, Total	ND	2.0	μg/L	1	3/28/2013 9:33:30 PM
Surr: 4-Bromofluorobenzene	79.1	69.4-129	%REC	1	3/28/2013 9:33:30 PM

- Value exceeds Maximum Contaminant Level.
- Ε Value above quantitation range
- Analyte detected below quantitation limits J
- P Sample pH greater than 2
- Reporting Detection Limit

- Analyte detected in the associated Method Blank В
- Holding times for preparation or analysis exceeded Η
- Not Detected at the Reporting Limit ND
- RPD outside accepted recovery limits R
- Spike Recovery outside accepted recovery limits 14 of 32

Anatek Labs, Inc.

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste, D · Spokane WA 99202 · (509) 838-3999 · Fax (509) 838-4433 · email spokane@anateklabs.com

Client:

HALL ENVIRONMENTAL ANALYSIS LAB

Batch #:

130402027

Address:

4901 HAWKINS NE SUITE D ALBUQUERQUE, NM 87109

Project Name:

1303A89

Attn:

ANDY FREEMAN

Analytical Results Report

Sample Number

130402027-001

Sampling Date

3/27/2013

Date/Time Received 4/2/2013

10:30 AM

Client Sample ID

1303A89-008B / CENTRALOCD-TZ

Sampling Time 1:15 PM

Matrix

Comments

Parameter	Result	Units	PQL	Analysis Date	Analyst	Method	Qualifier
Cyanide	0.579	mg/Kg	0.3	4/10/2013	CRW	EPA 335.4	
%moisture	12.8	Percent		4/11/2013	CRW	%molsture	

Authorized Signature

MCL PQL EPA's Maximum Contaminant Level

ND

Not Detected

Practical Quantilation Limit

This report shall not be reproduced except in full, without the written approval of the laboratory. The results reported relate only to the samples indicated.

Soil/solid results are reported on a dry-weight basis unless otherwise noted.

Hall Environmental Analysis Laboratory, Inc.

WO#:

1303A89

15-Apr-13

Client:

Western Refining Southwest, Gallup

Project:

OCD Central Landfarm Semiannual Sampling

SampType: MBLK

TestCode: EPA Method 300.0: Anions

LowLimit

90

Client ID:

PBS

Batch ID: 6732

Prep Date: 3/29/2013

Analysis Date: 3/29/2013

PQL

RunNo: 9545 SeqNo: 272415

%REC LowLimit

Units: mg/Kg

%RPD

%RPD

%RPD

RPDLimit

Qual

Analyte Chloride

Result

Result

15

ND

1.5

16

7.3

29

ND 1.5

SampType: LCS TestCode: EPA Method 300.0: Anions

SPK value SPK Ref Val

Sample ID LCS-6732 Client ID: LCSS

Batch ID: 6732

RunNo: 9545

HighLimit

Prep Date:

3/29/2013

SeqNo: 272416

Units: mg/Kg

Analyte

Analysis Date: 3/29/2013 **PQL**

1.5

SPK value SPK Ref Val %REC 0 101

SPK value SPK Ref Val %REC LowLimit

0

0

0

0

5.961

34.77

27.08

0

HighLimit

110

RPDLimit Qual

Chloride

Sample ID MB-6784

4/2/2013

SampType: MBLK

TestCode: EPA Method 300.0: Anions

Client ID:

Prep Date:

PBS

Batch ID: 6784

Analysis Date: 4/2/2013

RunNo: 9604 SeqNo: 273886

Units: mg/Kg

HighLimit

RPDLimit

Analyte Fluoride

Result **PQL** ND 0.30

ND 1.5

Chloride Nitrogen, Nitrate (As N) Sulfate

ND 0.30

15.00

Sample ID LCS-6784

Client ID: LCSS Prep Date: 4/2/2013 SampType: LCS

Batch ID: 6784

0.30

1.5

0.30

1.5

3.0

15

3.0

15

1.5

RunNo: 9604

97.6

103

97.1

95.1

Units: mg/Kg

110

110

110

110

Analyte Fluoride Chloride

Analysis Date: 4/2/2013 Result

1.500

15.00

7.500

30.00

1.500

15.00

7.500

30.00

SPK value SPK Ref Val

SeqNo: 273887 %REC

HighLimit

%RPD

RPDLimit Qual

Sulfate

SampType: MS

90 TestCode: EPA Method 300.0: Anions

90

90

90

Sample ID 1303B79-001AMS Client ID:

Nitrogen, Nitrate (As N)

BatchQC

Batch ID: 6784

7.4

51

7.8

55

RunNo: 9604

TestCode: EPA Method 300.0: Anions

LowLimit

Analyte Fluoride

Prep Date: 4/2/2013 Analysis Date: 4/2/2013

SeqNo: 273891

18.1

64.4

80.1

20.8

130

117

108

141

Chloride Nitrogen, Nitrate (As N)

Sulfate

Result **PQL** SPK value SPK Ref Val

%REC LowLimit

99.2

107

104

92.1

Units: mg/Kg

HighLimit %RPD **RPDLimit**

Qual

Qualifiers:

Value exceeds Maximum Contaminant Level.

Ε Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH greater than 2 В Analyte detected in the associated Method Blank

Η Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

RPD outside accepted recovery limits R

Page 15 of 32

Reporting Detection Limit

S Spike Recovery outside accepted recovery limits

Hall Environmental Analysis Laboratory, Inc.

WO#:

1303A89

15-Apr-13

Client:

Western Refining Southwest, Gallup

Project:

OCD Central Landfarm Semiannual Sampling

Sample ID 1303B79-001AMS	D SampT	ype: MS	D	Tes	tCode: EI					
Client ID: BatchQC	Batch	ID: 67 8	34	RunNo: 9604						
Prep Date: 4/2/2013	: 4/2/2013 Analysis Date: 4/2/2013					73892	Units: mg/Kg			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Fluoride	7.3	3.0	1.500	5.961	86.6	18.1	130	2.57	20	
Chloride	48	15	15.00	34.77	87.7	64.4	117	5.74	20	
Nitrogen, Nitrate (As N)	7.7	3.0	7.500	0	103	80.1	108	1.31	20	
Sulfate	55	15	30.00	27.08	92.7	20.8	141	0.345	24.9	
Sample ID 1303B79-009AMS	SampType: MS TestCode: EPA Method 300.0: Anions									
Client ID: BatchQC	Batch	ID: 678	34	F	RunNo: 9	604				

Sample ID	1303B79-009AMS	SampT	ype: MS	3	Tes	tCode: El					
Client ID:	BatchQC	Batch	1D: 67	84	F	RunNo: 9	604				
Prep Date:	4/2/2013	Analysis D	ate: 4/	2/2013	8	SeqNo: 2	73916	Units: mg/k	(g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Fluoride		2.3	0.30	1.500	1.544	49.0	18.1	130			
Nitrogen, Nitrat	le (As N)	7.4	0.30	7.500	0.2811	95.0	80.1	108			
Sulfate		33	1.5	30.00	4.372	97.0	20.8	141			

Sample ID 1303B79-009AMS	D SampT	уре: М S	SD	Tes	tCode: El	PA Method	300.0: Anion	s		
Client ID: BatchQC	Batch	ID: 67	84	F	RunNo: 9	604				
Prep Date: 4/2/2013	Analysis D	ate: 4/	2/2013	8	SeqNo: 2	73917	Units: mg/k	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Fluoride	2.3	0.30	1.500	1.544	48.5	18.1	130	0.316	20	
Nitrogen, Nitrate (As N)	7.4	0.30	7.500	0.2811	94.7	80.1	108	0.377	20	
Sulfate	33	1.5	30.00	4.372	94.0	20.8	141	2.73	24.9	

Qualifiers:

* Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH greater than 2

RL Reporting Detection Limit

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

Spike Recovery outside accepted recovery limits

ND Not Detected at the Reporting Limit

R RPD outside accepted recovery limits

Page 16 of 32

Hall Environmental Analysis Laboratory, Inc.

WO#:

1303A89

15-Apr-13

Client:

Western Refining Southwest, Gallup

Project:

OCD Central Landfarm Semiannual Sampling

Sample ID MB-6714

SampType: MBLK

TestCode: EPA Method 418.1: TPH

Client ID:

PBS

Batch ID: 6714

PQL

RunNo: 9516

Prep Date:

SeqNo: 271508

Units: mg/Kg

HighLimit

Analyte

3/28/2013

Analysis Date: 3/29/2013

SPK value SPK Ref Val %REC LowLimit

%RPD

%RPD

%RPD

RPDLimit

Qual

Petroleum Hydrocarbons, TR Sample ID LCS-6714

ND 20

Result

Result

95

TestCode: EPA Method 418.1: TPH

Client ID:

LCSS

SampType: LCS Batch ID: 6714

RunNo: 9516

Prep Date: 3/28/2013

Units: mg/Kg

Qual

Analyte Petroleum Hydrocarbons, TR

Analysis Date: 3/29/2013 **PQL**

20

SeqNo: 271509 %REC

95.4

HighLimit

RPDLimit

Sample ID 1303A89-006AMS

SampType: MS

TestCode: EPA Method 418.1: TPH

LowLimit

LowLimit

80

Client ID: CentralOCD-02-MS/ Batch ID: 6714

RunNo: 9516

120

Prep Date: 3/28/2013

Analysis Date: 3/29/2013

SeqNo: 271520

Units: mg/Kg

Analyte

PQL

20

%REC

RPDLimit

Petroleum Hydrocarbons, TR

Result 110

Result

110

SPK value SPK Ref Val 100.5 7.764

SPK value SPK Ref Val

100.0

97.8

HighLimit 120 Qual

Sample ID 1303A89-006AMSD

SampType: MSD

TestCode: EPA Method 418.1: TPH

Client ID: CentralOCD-02-MS/ Prep Date:

3/28/2013

Batch ID: 6714

PQL

20

RunNo: 9516 SeqNo: 271521

Units: mg/Kg

RPDLimit

20

Analyte Petroleum Hydrocarbons, TR

Analysis Date: 3/29/2013

99.50

SPK value SPK Ref Val %REC LowLimit 7.764

99.0

80

HighLimit %RPD 120

0.206

Qual

Oualifiers:

Value exceeds Maximum Contaminant Level.

Е Value above quantitation range

Ţ Analyte detected below quantitation limits

P Sample pH greater than 2 RLReporting Detection Limit

Analyte detected in the associated Method Blank В

Н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

R RPD outside accepted recovery limits S Spike Recovery outside accepted recovery limits

Page 17 of 32

Hall Environmental Analysis Laboratory, Inc.

WO#:

1303A89

15-Apr-13

Client:

Western Refining Southwest, Gallup

Project:

OCD Central Landfarm Semiannual Sampling

			·····							
Sample ID MB-6790	Samp	Туре: М	BLK	TestCode: EPA Method 8015D: Diesel Range Organics						
Client ID: PBS	Bato	h ID: 67	90	RunNo: 9569						
Prep Date: 4/2/2013	Analysis I	Date: 4/	/2/2013	S	SeqNo: 2	73111	Units: mg/K	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	ND	10								
Surr: DNOP	9.5		10.00		95.0	72.4	120			
Sample ID LCS-6790	Samp	Туре: LC	s	Tes	tCode: El	PA Method	8015D: Diese	el Range C	Organics	
Client ID: LCSS	Bato	h ID: 67	90	F	RunNo: 9	569				
Prep Date: 4/2/2013	Analysis [Date: 4/	2/2013	S	SeqNo: 2	73112	Units: mg/K	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	50	10	50.00	0	100	47.4	122			

Qualifiers:

* Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH greater than 2

RL Reporting Detection Limit

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

R RPD outside accepted recovery limits

S Spike Recovery outside accepted recovery limits

Page 18 of 32

Hall Environmental Analysis Laboratory, Inc.

WO#:

1303A89

15-Apr-13

Client:

Western Refining Southwest, Gallup

Project.

OCD Central Landfarm Semiannual Sampling

Project: OCD (Central Landf	arm Se	miannual S	ampling						
Sample ID MB-6713	SampT	уре: М	BLK	Tes	tCode: El	PA Method	8015D: Gas	oline Rang	re	
Client ID: PBS	Batch	n ID: 67	13	F	RunNo: 9512					
Prep Date: 3/28/2013	Analysis D	ate: 3/	29/2013	SeqNo: 271753			Units: mg/Kg			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRO)	ND	5.0								
Surr: BFB	910	.,	1000		90.5	84	116			
Sample ID LCS-6713	SampT	ype: LC	s	Tes	tCode: EF	PA Method	8015D: Gaso	oline Rang	е	
Client ID: LCSS	Batch	1D: 67	13	F	RunNo: 9	512				
Prep Date: 3/28/2013	Analysis D	ate: 3/	29/2013	8	SeqNo: 27	71754	Units: mg/k	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRO)	27	5.0	25.00	0	106	62.6	136			
Surr: BFB	940		1000		93.8	84	116			
Sample ID 1303A89-008AN	1S SampT	ype: MS	3	Tes	tCode: EF	PA Method	8015D: Gaso	line Rang	е	h
Client ID: CentralOCD-TZ	Batch	ID: 67	13	F	RunNo: 95	512				
Prep Date: 3/28/2013	Analysis D	ate: 3/	29/2013	S	SeqNo: 27	71756	Units: mg/k	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRO)	28	4.7	23.50	1.741	111	70	130			,
Surr: BFB	890		939.8		94.3	84	116			
Sample ID 1303A89-008AN	ISD SampT	ype: MS	SD	Test	tCode: EF	A Method	8015D: Gaso	line Rang	e	
Client ID: CentralOCD-TZ	Batch	ID: 67 ′	13	R	tunNo: 95	512				
Prep Date: 3/28/2013	Analysis D	ate: 3/2	29/2013	S	eqNo: 27	1757	Units: mg/K	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRO)	29	4.7	23.45	1.741	117	70	130	4.82	22.1	
Surr: BFB	890		938.1		94.6	84	116	0	0	

Qualifiers:

Value exceeds Maximum Contaminant Level.

Е Value above quantitation range

Analyte detected below quantitation limits

P Sample pH greater than 2

Reporting Detection Limit

В Analyte detected in the associated Method Blank

 \mathbf{H} Holding times for preparation or analysis exceeded

Spike Recovery outside accepted recovery limits

ND Not Detected at the Reporting Limit

RPD outside accepted recovery limits R

Page 19 of 32

Hall Environmental Analysis Laboratory, Inc.

WO#:

1303A89

15-Apr-13

Client:

Western Refining Southwest, Gallup

Project:

OCD Central Landfarm Semiannual Sampling

Project:	ОСРСе	entrai Landi	aiii Sci	mamiaai St	impinig				·		
Sample ID	MB-6713	SampT	уре: МЕ	ILK	Tes	tCode: El	PA Method	8021B: Volat	iles		
Client ID:	PBS	Batch	n ID: 67 ′	13	F	RunNo: 9	512				
Prep Date:	3/28/2013	Analysis D	oate: 3/	29/2013	8	SeqNo: 2	71792	Units: mg/K	ζg		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene		ND	0.050								
Toluene		ND	0.050								
Ethylbenzene		ND	0.050								
Xylenes, Total		ND	0.10								
Surr: 4-Bron	nofluorobenzene	0.98		1.000		98.2	80	120			
Sample ID	LCS-6713	SampT	ype: LC	S	Tes	tCode: El	PA Method	8021B: Vola	tiles		
Client ID:	LCSS	Batch	n ID: 67 ′	13	F	RunNo: 9	512				
Prep Date:	3/28/2013	Analysis D	Date: 3/	29/2013	8	SeqNo: 2	71793	Units: mg/k	(g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene		0.93	0.050	1.000	0	92.6	80	120			
Toluene		0.95	0.050	1.000	0	95.3	80	120			
Ethylbenzene		0.98	0.050	1.000	0	97.6	80	120			
Xylenes, Total		3.0	0.10	3.000	0	101	80	120			
Surr: 4-Bron	nofluorobenzene	1.0		1.000		102	80	120			
	1303A89-006AM		Гуре: МЅ		Tes	tCode: El	PA Method	8021B: Vola	tiles	103/3	
		S Samp1	Type: MS	3		tCode: El		8021B: Vola	tiles	1040	
Sample ID Client ID:	1303A89-006AM	S Samp1	h ID: 67	13	F		512	8021B: Vola		1019	
Sample ID Client ID:	1303A89-006AMS CentralOCD-02-M	S Sampī /IS/ Batcl	h ID: 67	3 13 29/2013	F	RunNo: 9	512			RPDLimit	Qual
Sample ID Client ID: Prep Date:	1303A89-006AMS CentralOCD-02-M	S SampT //S/ Batcl Analysis E	h ID: 67 Date: 3 /	3 13 29/2013	F	RunNo: 9 SeqNo: 2	512 71800	Units: mg/h	ζg	RPDLimit	Qual
Sample ID Client ID: Prep Date: Analyte	1303A89-006AMS CentralOCD-02-M	S Sampī VIS/ Batcl Analysis E Result	h ID: 67 Date: 3 /	13 29/2013 SPK value	F S SPK Ref Val	RunNo: 9 SeqNo: 2 %REC	512 71800 LowLimit	Units: mg/k HighLimit	ζg	RPDLimit	Qual
Sample ID Client ID: Prep Date: Analyte Benzene	1303A89-006AMS CentralOCD-02-M	S Samp1 VIS/ Batcl Analysis E Result 0.93	h ID: 67 Date: 3/ PQL 0.049	3 13 29/2013 SPK value 0.9737	SPK Ref Val	RunNo: 9 SeqNo: 2 %REC 95.3	512 71800 LowLimit 67.2	Units: mg/k HighLimit 113	ζg	RPDLimit	Qual
Sample ID Client ID: Prep Date: Analyte Benzene Toluene	1303A89-006AMS CentralOCD-02-M	S SampT MS/ Batcl Analysis E Result 0.93 0.97	PQL 0.049 0.049	5 13 29/2013 SPK value 0.9737 0.9737	SPK Ref Val 0 0	RunNo: 9 SeqNo: 2 %REC 95.3 100	512 71800 LowLimit 67.2 62.1	Units: mg/F HighLimit 113 116	ζg	RPDLimit	Qual
Sample ID Client ID: Prep Date: Analyte Benzene Toluene Ethylbenzene Xylenes, Total	1303A89-006AMS CentralOCD-02-M	S SampT MS/ Batcl Analysis E Result 0.93 0.97 1.0	PQL 0.049 0.049 0.049	3 29/2013 SPK value 0.9737 0.9737 0.9737	SPK Ref Val 0 0 0	RunNo: 9 SeqNo: 2 %REC 95.3 100 103	512 71800 LowLimit 67.2 62.1 67.9	Units: mg/F HighLimit 113 116 127	ζg	RPDLimit	Qual
Sample ID Client ID: Prep Date: Analyte Benzene Toluene Ethylbenzene Xylenes, Total Surr: 4-Bron	1303A89-006AM8 CentralOCD-02-N 3/28/2013	S Samp T MS/ Batcl Analysis E Result 0.93 0.97 1.0 3.1 0.98	PQL 0.049 0.049 0.049	3 29/2013 SPK value 0.9737 0.9737 0.9737 2.921 0.9737	SPK Ref Val 0 0 0 0	RunNo: 9 SeqNo: 2 %REC 95.3 100 103 107 101	512 71800 LowLimit 67.2 62.1 67.9 60.6 80	Units: mg/k HighLimit 113 116 127 134	Kg %RPD	RPDLimit	Qual
Sample ID Client ID: Prep Date: Analyte Benzene Toluene Ethylbenzene Xylenes, Total Surr: 4-Bron	1303A89-006AM8 CentralOCD-02-N 3/28/2013	S SampT MS/ Batcl Analysis E Result 0.93 0.97 1.0 3.1 0.98 SD SampT	PQL 0.049 0.049 0.049 0.049 0.097	SPK value 0.9737 0.9737 0.9737 2.921 0.9737	SPK Ref Val 0 0 0 0 Tes	RunNo: 9 SeqNo: 2 %REC 95.3 100 103 107 101	512 71800 LowLimit 67.2 62.1 67.9 60.6 80 PA Method	Units: mg/k HighLimit 113 116 127 134 120	Kg %RPD	RPDLimit	Qual
Sample ID Client ID: Prep Date: Analyte Benzene Toluene Ethylbenzene Xylenes, Total Surr: 4-Bron	1303A89-006AM8 CentralOCD-02-N 3/28/2013 nofluorobenzene 1303A89-006AM8 CentralOCD-02-N	S SampT MS/ Batcl Analysis E Result 0.93 0.97 1.0 3.1 0.98 SD SampT	PQL 0.049 0.049 0.049 0.097 Type: MS	SPK value 0.9737 0.9737 0.9737 2.921 0.9737	SPK Ref Val 0 0 0 0 0	RunNo: 9 SeqNo: 2 %REC 95.3 100 103 107 101	512 71800 LowLimit 67.2 62.1 67.9 60.6 80 PA Method	Units: mg/k HighLimit 113 116 127 134 120	%RPD	RPDLimit	Qual
Sample ID Client ID: Prep Date: Analyte Benzene Toluene Ethylbenzene Xylenes, Total Surr: 4-Bror Sample ID Client ID:	1303A89-006AM8 CentralOCD-02-N 3/28/2013 nofluorobenzene 1303A89-006AM8 CentralOCD-02-N	S SampT MS/ Batcl Analysis E Result 0.93 0.97 1.0 3.1 0.98 SD SampT MS/ Batcl	PQL 0.049 0.049 0.049 0.097 Type: MS	SPK value 0.9737 0.9737 0.9737 2.921 0.9737	SPK Ref Val 0 0 0 0 Tes F	RunNo: 9 SeqNo: 2 %REC 95.3 100 103 107 101 stCode: El	512 71800 LowLimit 67.2 62.1 67.9 60.6 80 PA Method 512 71801 LowLimit	Units: mg/k HighLimit 113 116 127 134 120 8021B: Vola Units: mg/k	Kg %RPD tiles Kg %RPD	RPDLimit	Qual
Sample ID Client ID: Prep Date: Analyte Benzene Toluene Ethylbenzene Xylenes, Total Surr: 4-Bron Sample ID Client ID: Prep Date:	1303A89-006AM8 CentralOCD-02-N 3/28/2013 nofluorobenzene 1303A89-006AM8 CentralOCD-02-N	S SampT MS/ Batcl Analysis E Result 0.93 0.97 1.0 3.1 0.98 SD SampT MS/ Batcl Analysis E	PQL 0.049 0.049 0.097 Type: MS 6h ID: 67	SPK value 0.9737 0.9737 0.9737 2.921 0.9737	SPK Ref Val 0 0 0 0 0	RunNo: 9 SeqNo: 2 %REC 95.3 100 103 107 101 stCode: El	512 71800 LowLimit 67.2 62.1 67.9 60.6 80 PA Method 512 71801 LowLimit 67.2	Units: mg/k HighLimit 113 116 127 134 120 8021B: Vola Units: mg/k HighLimit 113	%RPD tiles %RPD 4.92	RPDLimit 14.3	
Sample ID Client ID: Prep Date: Analyte Benzene Toluene Ethylbenzene Xylenes, Total Surr: 4-Bron Sample ID Client ID: Prep Date: Analyte	1303A89-006AM8 CentralOCD-02-N 3/28/2013 nofluorobenzene 1303A89-006AM8 CentralOCD-02-N	S SampT MS/ Batcl Analysis E Result 0.93 0.97 1.0 3.1 0.98 SD SampT MS/ Batcl Analysis E Result	PQL 0.049 0.049 0.049 0.097 Type: MS h ID: 67 Date: 3/	SPK value 0.9737 0.9737 0.9737 2.921 0.9737	SPK Ref Val 0 0 0 0 Tes F	RunNo: 9 SeqNo: 2 %REC 95.3 100 103 107 101 stCode: El	512 71800 LowLimit 67.2 62.1 67.9 60.6 80 PA Method 512 71801 LowLimit	Units: mg/k HighLimit 113 116 127 134 120 8021B: Vola Units: mg/k	%RPD ***tiles ***G ***GPD 4.92 5.59	RPDLimit 14.3 15.9	
Sample ID Client ID: Prep Date: Analyte Benzene Toluene Ethylbenzene Xylenes, Total Surr: 4-Bror Sample ID Client ID: Prep Date: Analyte Benzene	1303A89-006AM8 CentralOCD-02-N 3/28/2013 nofluorobenzene 1303A89-006AM8 CentralOCD-02-N	S SampT MS/ Batcl Analysis E Result 0.93 0.97 1.0 3.1 0.98 SD SampT MS/ Batcl Analysis E Result 0.97	PQL 0.049 0.049 0.097 Type: MS h ID: 67 Date: 3/ PQL 0.049	SPK value 0.9737 0.9737 0.9737 2.921 0.9737 6D 13 29/2013 SPK value 0.9756	SPK Ref Val 0 0 0 0 Tes F SPK Ref Val 0	RunNo: 9 SeqNo: 2 %REC 95.3 100 103 107 101 stCode: El	512 71800 LowLimit 67.2 62.1 67.9 60.6 80 PA Method 512 71801 LowLimit 67.2	Units: mg/k HighLimit 113 116 127 134 120 8021B: Vola Units: mg/k HighLimit 113	%RPD tiles %RPD 4.92	RPDLimit 14.3	
Sample ID Client ID: Prep Date: Analyte Benzene Toluene Ethylbenzene Xylenes, Total Surr: 4-Bror Sample ID Client ID: Prep Date: Analyte Benzene Toluene	1303A89-006AM8 CentralOCD-02-N 3/28/2013 nofluorobenzene 1303A89-006AM8 CentralOCD-02-N	S SampT MS/ Batcl Analysis E Result 0.93 0.97 1.0 3.1 0.98 SD SampT MS/ Batcl Analysis E Result 0.97 1.0	PQL 0.049 0.097 Type: MS h ID: 67 PQL 0.049 0.097 PQL 0.049 0.097	SPK value 0.9737 0.9737 0.9737 2.921 0.9737 6D 13 29/2013 SPK value 0.9756 0.9756	SPK Ref Val 0 0 0 0 Tes SPK Ref Val 0 0	RunNo: 9 SeqNo: 2 %REC 95.3 100 103 107 101 stCode: Ei RunNo: 9 SeqNo: 2 %REC 99.9 106	512 71800 LowLimit 67.2 62.1 67.9 60.6 80 PA Method 512 71801 LowLimit 67.2 62.1	Units: mg/k HighLimit 113 116 127 134 120 8021B: Vola Units: mg/k HighLimit 113 116	%RPD ***tiles ***G ***GPD 4.92 5.59	RPDLimit 14.3 15.9	

Qualifiers:

* Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH greater than 2

RL Reporting Detection Limit

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

R RPD outside accepted recovery limits

S Spike Recovery outside accepted recovery limits

Page 20 of 32

Hall Environmental Analysis Laboratory, Inc.

WO#:

1303A89

15-Apr-13

Client:

Western Refining Southwest, Gallup

Project:

OCD Central Landfarm Semiannual Sampling

Sample ID 5ML RB	SampTy	/ре: М Е	BLK	Tes	TestCode: EPA Method 8021B: Volatiles						
Client ID: PBW	Batch ID: R9484			F	RunNo: 9	484					
Prep Date:	Analysis Da	ite: 3/	28/2013	\$	SeqNo: 2	71172	Units: µg/L				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Benzene	ND	1.0									
Toluene	ND	1.0									
Ethylbenzene	ND	1.0									
Xylenes, Total	ND	2.0									
Surr: 4-Bromofluorobenzene	16		20.00		80.5	69.4	129				

Sample ID 100NG BTEX LO	CS SampT	ype: LC	s	Tes	TestCode: EPA Method 8021B: Volatiles						
Client ID: LCSW	Batch	1D: R 9	484	F	RunNo: 9						
Prep Date:	Analysis D	ate: 3/	28/2013	S	SeqNo: 2	71173	Units: µg/L				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Benzene	21	1.0	20.00	0	103	80	120				
Toluene	20	1.0	20.00	0	102	80	120				
Ethylbenzene	21	1.0	20.00	0	104	80	120				
Xylenes, Total	62	2.0	60.00	0	104	80	120				
Surr: 4-Bromofluorobenzene	17		20.00		86.3	69.4	129				

Sample ID 1303A45-002AM	I S Samp	Туре: М	S	Tes	tCode: E	PA Method	8021B: Volat	iles		
Client ID: BatchQC	Batc	h ID: R9	9484	F	RunNo: 9	484				
Prep Date:	Analysis [nalysis Date: 3/28/2013 SeqNo: 271183 Ur				Units: µg/L				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	21	1.0	20.00	0	103	80	120			
Toluene	20	1.0	20.00	0	101	80	120			
Ethylbenzene	20	1.0	20.00	0	102	80	120			
Xylenes, Total	62	2.0	60.00	0	103	80	120			
Surr: 4-Bromofluorobenzene	17		20.00		86.1	69.4	129			

Sample ID 1303A45-002AN	ISD SampT	ype: MS	SD	Tes						
Client ID: BatchQC	Batch	n ID: R9	484	F	RunNo: 9	484				
Prep Date:	Analysis D)ate: 3 /	28/2013	S	SeqNo: 2	71184	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	20	1.0	20.00	0	99.5	80	120	2.99	20	
Toluene	20	1.0	20.00	0	99.7	80	120	1.11	20	
Ethylbenzene	20	1.0	20.00	0	101	80	120	1.53	20	
Xylenes, Total	61	2.0	60.00	0	101	80	120	1.62	20	
Surr: 4-Bromofluorobenzene	17		20.00		86.1	69.4	129	0	0	

Qualifiers:

Value exceeds Maximum Contaminant Level.

Value above quantitation range Е

J Analyte detected below quantitation limits

P Sample pH greater than 2

Reporting Detection Limit

В Analyte detected in the associated Method Blank

Н Holding times for preparation or analysis exceeded

Spike Recovery outside accepted recovery limits

ND Not Detected at the Reporting Limit

RPD outside accepted recovery limits R

Page 21 of 32

Hall Environmental Analysis Laboratory, Inc.

WO#:

1303A89

15-Apr-13

Client:

Western Refining Southwest, Gallup

Project:

OCD Central Landfarm Semiannual Sampling

Sample ID MB-6709	•	ype: ME			PA Method					
Client ID: PBS	Batcl	n ID: 67 0	09	F	RunNo: 9	533				
Prep Date: 3/28/2013	Analysis D)ate: 3/	30/2013	8	SeqNo: 2	72067	Units: mg/k	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Aroclor 1016	ND	0.020								
Aroclor 1221	ND	0.020								
Aroclor 1232	ND	0.020								
Aroclor 1242	ND	0.020								
Aroclor 1248	ND	0.020								
Aroclor 1254	ND	0.020								
Aroclor 1260	ND	0.020								
Surr: Decachlorobiphenyl	0.060		0.06250		96.0	22.2	164			
Surr: Tetrachloro-m-xylene	0.049		0.06250		78.0	17.8	160			

	T 10 1 FDAM (1 1000 FDR)									
Sample ID LCS-6709	Samp ⁻	Гуре: LC	S	Tes	tCode: El	PA Method	8082: PCB's			
Client ID: LCSS	Batc	h ID: 67	09	F	RunNo: 9	533				
Prep Date: 3/28/2013	Analysis [Date: 3/	30/2013	8	SeqNo: 2	72068	Units: mg/k	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Aroclor 1016	0.068	0.020	0.1250	0	54.5	31.6	114			
Aroclor 1260	0.10	0.020	0.1250	0	80.8	39	135			
Surr: Decachlorobiphenyl	0.058		0.06250		92.8	22.2	164			
Surr: Tetrachloro-m-xylene	0.045		0.06250		72.4	17.8	160			

Qualifiers:

* Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH greater than 2

RL Reporting Detection Limit

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

R RPD outside accepted recovery limits

S Spike Recovery outside accepted recovery limits

Page 22 of 32

Hall Environmental Analysis Laboratory, Inc.

WO#:

1303A89

15-Apr-13

Client:

Western Refining Southwest, Gallup

Project:

OCD Central Landfarm Semiannual Sampling

Sample ID mb-6713	Samp	Туре: М	BLK	Tes	tCode: El	PA Method	8260B: VOL	ATILES	77,	
Client ID: PBS	Bato	h ID: 67	13	F	RunNo: 9	532				
Prep Date: 3/28/2013	Analysis	Date: 3/	31/2013	8	SeqNo: 27	72070	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	0.050								
Toluene	ND	0.050								
Ethylbenzene	ND	0.050								
Methyl tert-butyl ether (MTBE)	ND	0.050								
1,2,4-Trimethylbenzene	ND	0.050								
1,3,5-Trimethylbenzene	ND	0.050								
1,2-Dichloroethane (EDC)	ND	0.050								
1,2-Dibromoethane (EDB)	ND	0.050								
Naphthalene	ND	0.10								
1-Methylnaphthalene	ND	0.20								
2-Methylnaphthalene	ND	0.20								
Acetone	ND	0.75								
Bromobenzene	ND	0.050								
Bromodichloromethane	ND	0.050								
Bromoform	ND	0.050								
Bromomethane	ND	0.15								
2-Butanone	ND	0.50								
Carbon disulfide	ND	0.50								
Carbon tetrachloride	ND	0.10								
Chlorobenzene	ND	0.050								
Chloroethane	ND	0.10								
Chloroform	ND	0.050								
Chloromethane	ND	0.15								
2-Chlorotoluene	ND	0.050								
4-Chlorotoluene	ND	0.050								
cis-1,2-DCE	ND	0.050								
cis-1,3-Dichloropropene	ND	0.050								
1,2-Dibromo-3-chloropropane	ND	0.10								
Dibromochloromethane	ND	0.050								
Dibromomethane	ND	0.10								
1,2-Dichlorobenzene	ND	0.050								
1,3-Dichlorobenzene	ND	0.050								
1,4-Dichlorobenzene	ND	0.050								
Dichlorodifluoromethane	ND	0.050								
1,1-Dichloroethane	ND	0.10								
1,1-Dichloroethene	ND	0.050								
1,2-Dichloropropane	ND	0.050								
1,3-Dichloropropane	ND	0.050								
2,2-Dichloropropane	ND	0.10								
1,1-Dichloropropene	ND	0.10								

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH greater than 2
- RL Reporting Detection Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits

Page 23 of 32

Hall Environmental Analysis Laboratory, Inc.

WO#:

1303A89

15-Apr-13

Client:

Western Refining Southwest, Gallup

Project:

OCD Central Landfarm Semiannual Sampling

Sample ID mb-6713	Samp1	ype: ME	BLK	Test	Code: El	PA Method	8260B: VOLA	TILES		
Client ID: PBS	Batcl	n ID: 67	13	R	tunNo: 9	532				
Prep Date: 3/28/2013	Analysis E	Date: 3/	31/2013	S	eqNo: 2	72070	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Hexachlorobutadiene	ND	0.10								
2-Hexanone	ND	0.50								
Isopropylbenzene	ND	0.050								
4-Isopropyltoluene	ND	0.050								
4-Methyl-2-pentanone	ND	0.50								
Methylene chloride	ND	0.15								
n-Butylbenzene	ND	0.15								
n-Propylbenzene	ND	0.050								
sec-Butylbenzene	ND	0.050								
Styrene	ND	0.050								
tert-Butylbenzene	ND	0.050								
1,1,1,2-Tetrachloroethane	ND	0.050								
1,1,2,2-Tetrachloroethane	ND	0.050								
Tetrachloroethene (PCE)	ND	0.050								
trans-1,2-DCE	ND	0.050								
trans-1,3-Dichloropropene	ND	0.050								
1,2,3-Trichlorobenzene	ND	0.10								
1,2,4-Trichlorobenzene	ND	0.050								
1,1,1-Trichloroethane	ND	0.050								
1,1,2-Trichloroethane	ND	0.050								
Trichloroethene (TCE)	ND	0.050								
Trichlorofluoromethane	ND	0.050								
1,2,3-Trichloropropane	ND	0.10								
Vinyl chloride	ND	0.050								
Xylenes, Total	ND	0.10								
Surr: 1,2-Dichloroethane-d4	0.43		0.5000		86.3	70	130			
Surr: 4-Bromofluorobenzene	0.44		0.5000		87.7	70	130			
Surr: Dibromofluoromethane	0.49		0.5000		97.0	70	130			
Surr: Toluene-d8	0.51	.0.00	0.5000		101	70	130			

Sample ID Ics-6713	SampT	ype: LC	S	Test	tCode: El	ATILES				
Client ID: LCSS	Batch	ı ID: 67 '	13	R	RunNo: 9	532				
Prep Date: 3/28/2013	Analysis D	ate: 3/	31/2013	S	SeqNo: 2	72073	Units: mg/K	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	1.1	0.050	1.000	0	110	70	130			
Toluene	1.1	0.050	1.000	0	106	80	120			
Chlorobenzene	ND	0.050	1.000	0	0.502	70	130			S
1,1-Dichloroethene	ND	0.050	1.000	0	0	83.5	130			S
Trichloroethene (TCE)	ND	0.050	1.000	0	0	70	130			S

Qualifiers:

* Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH greater than 2

RL Reporting Detection Limit

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

R RPD outside accepted recovery limits

S Spike Recovery outside accepted recovery limits

Page 24 of 32

Hall Environmental Analysis Laboratory, Inc.

WO#;

1303A89

15-Apr-13

Client:

Western Refining Southwest, Gallup

Project:

OCD Central Landfarm Semiannual Sampling

Sample ID Ics-6713	Samp	ype: LC	s	Tes	tCode: El	8260B: VOL	ATILES			
Client ID: LCSS	Batcl	n ID: 67	13	F	RunNo: 9	532				
Prep Date: 3/28/2013	Analysis [)ate: 3/	31/2013	S	SeqNo: 2	72073	Units: mg/k	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: 1,2-Dichloroethane-d4	0.44		0.5000		88.3	70	130			
Surr: 4-Bromofluorobenzene	0.42		0.5000		84.9	70	130			
Surr: Dibromofluoromethane	0.49		0.5000		98.8	70	130			
Surr: Toluene-d8	0.49		0.5000		98.9	70	130			

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH greater than 2
- RL Reporting Detection Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded

Spike Recovery outside accepted recovery limits

- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits

Page 25 of 32

Hall Environmental Analysis Laboratory, Inc.

WO#:

1303A89 15-Apr-13

Client:

Western Refining Southwest, Gallup

Project:

OCD Central Landfarm Semiannual Sampling

Sample ID mb-6712	SampTy	уре: МВ	LK	Test	tCode: EF	'A Method	8270C: Semi	volatiles		
Client ID: PBS	Batch	ID: 671	12	R	RunNo: 96	301				
Prep Date: 3/28/2013	Analysis Da			S	SeqNo: 27	73641	Units: mg/K	g		:
				SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Analyte	Result	PQL 0.20	or it value	OF IVINEL AND	,u. \LO					
Acenaphthene	ND									
Acenaphthylene	ND ND	0.20								
Aniline	ND	0.20								
Anthracene	ND	0.20								
Azobenzene	ND	0.20								
Benz(a)anthracene	ND	0.20								
Benzo(a)pyrene	ND	0.20								
Benzo(b)fluoranthene	ND	0.20								
Benzo(g,h,i)perylene	ND	0.20								
Benzo(k)fluoranthene	ND	0.20								
Benzoic acid	ND	0.50					4			
Benzyl alcohol	ND	0.20								
Bis(2-chloroethoxy)methane	ND	0.20								
Bis(2-chloroethyl)ether	ND	0.20								
Bis(2-chloroisopropyl)ether	ND	0.20								
Bis(2-ethylhexyl)phthalate	ND	0.50								
4-Bromophenyl phenyl ether	ND	0.20								
Butyl benzyl phthalate	ND	0.20								
Carbazole	ND	0.20								
4-Chloro-3-methylphenol	ND	0.50								
4-Chloroaniline	ND	0.50								
2-Chloronaphthalene	ND	0.25								
2-Chlorophenol	ND	0.20								
4-Chlorophenyl phenyl ether	ND	0.20								
Chrysene	ND	0.20								
Di-n-butyl phthalate	ND	0.50								
Di-n-octyl phthalate	ND	0.40								
Di-n-octyl phthalate Dibenz(a,h)anthracene	ND	0.20								
Dibenz(a,n)anuracene Dibenzofuran	ND	0.20								
Dibenzoturan 1,2-Dichlorobenzene	ND	0.20								
·	ND	0.20								
1,3-Dichlorobenzene	ND ND	0.20								
1,4-Dichlorobenzene	ND ND	0.25								
3,3'-Dichlorobenzidine	ND ND	0.20								
Diethyl phthalate	ND ND	0.20								
Dimethyl phthalate	ND ND	0.40								
2,4-Dichlorophenol		0.40								
2,4-Dimethylphenol	ND									
4,6-Dinitro-2-methylphenol	ND ND	0.50								
2,4-Dinitrophenol	ND	0.40								
2,4-Dinitrotoluene	ND	0.50	,							

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH greater than 2
- RL Reporting Detection Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits

Page 26 of 32

Hall Environmental Analysis Laboratory, Inc.

WO#:

1303A89

15-Apr-13

Client:

Western Refining Southwest, Gallup

Project:

OCD Central Landfarm Semiannual Sampling

Sample ID mb-6712	Samp	Гуре: М	BLK	Tes	tCode: E	PA Method	8270C: Sem	ivolatiles		
Client ID: PBS		h ID: 67			RunNo: 9		-2, 00, 00111	· · · · iatiles		
Prep Date: 3/28/2013	Analysis [Date: 4	/2/2013		SeqNo: 2		Units: mg/k	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	01
2,6-Dinitrotoluene	ND	0.50				LOWERINE	riigriciiriit	MINED	RPDLIMIC	Qual
Fluoranthene	ND	0.20								
Fluorene	ND	0.20								
Hexachlorobenzene	ND	0.20								
Hexachlorobutadiene	ND	0.20								
Hexachlorocyclopentadiene	ND	0.20								
Hexachloroethane	ND	0.20								
Indeno(1,2,3-cd)pyrene	ND	0.20								
Isophorone	ND	0.50								
1-Methylnaphthalene	ND	0.20								
2-Methylnaphthalene	ND	0.20								
2-Methylphenol	ND	0.50								
3+4-Methylphenol	ND	0.20								
N-Nitrosodi-n-propylamine	ND	0.20								
N-Nitrosodiphenylamine	ND	0.20								
Naphthalene	ND	0.20								
2-Nitroaniline	ND	0.20								
3-Nitroaniline	ND	0.20								
4-Nitroaniline	ND	0.40								
Nitrobenzene	ND	0.50								
2-Nitrophenol	ND	0.20								
4-Nitrophenol	ND	0.25								
Pentachlorophenol	ND	0.40								
Phenanthrene	ND	0.20								
Phenol	ND	0.20								
Pyrene	ND	0.20								
Pyridine	ND	0.50								
1,2,4-Trichlorobenzene	ND	0.20								
2,4,5-Trichlorophenol	ND	0.20								
2,4,6-Trichlorophenol	ND	0.20								
Surr: 2,4,6-Tribromophenol	3.2	0.20	2 220							
Surr: 2-Fluorobiphenyl	1.5		3.330		95.4	40.1	130			
Surr: 2-Fluorophenol	2.8		1.670		91.8	44.4	123			
Surr: 4-Terphenyl-d14	2.6 1.5		3.330		83.3	41.9	112			
Surr: Nitrobenzene-d5	1.5 1.5		1.670		89.3	29.6	130			
Surr: Phenol-d5			1.670		89.3	42.4	132			
oun. i nonorgo	3.1		3.330		94.0	44.3	119			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH greater than 2
- RL Reporting Detection Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits

Page 27 of 32

Hall Environmental Analysis Laboratory, Inc.

WO#: 130

1303A89

15-Apr-13

Client:

Western Refining Southwest, Gallup

Project:

OCD Central Landfarm Semiannual Sampling

Sample ID Ics-6712	SampT	Type: LC	S	Tes	tCode: El	PA Method	8270C: Semi	ivolatiles		
Client ID: LCSS	Batcl	h ID: 67	12	F	RunNo: 9	601				
Prep Date: 3/28/2013	Analysis D	Date: 4/	2/2013	5	SeqNo: 2	73642	Units: mg/k	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Acenaphthene	1.4	0.20	1.670	0	83.1	45.8	95.8			
4-Chloro-3-methylphenol	2.7	0.50	3.330	0	81.7	49.9	103			
2-Chlorophenol	2.4	0.20	3.330	0	72.6	43.4	94			
1,4-Dichlorobenzene	1.3	0.20	1.670	0	78.5	37.3	95.4			
2,4-Dinitrotoluene	1.5	0.50	1.670	0	89.1	51.6	113			
N-Nitrosodi-n-propylamine	1.3	0.20	1.670	0	76.4	43.4	105			
4-Nitrophenol	2.5	0.25	3.330	0	73.9	45.4	113			
Pentachlorophenol	2.3	0.40	3.330	0	70.3	40	90.2			
Phenol	2.6	0.20	3.330	0	77.9	44.4	99.8			
Pyrene	1.3	0.20	1.670	0	78.9	48.1	93.1			
1,2,4-Trichlorobenzene	1.5	0.20	1.670	0	89.8	41.6	103			
Surr: 2,4,6-Tribromophenol	3.4		3.330		102	40.1	130			
Surr: 2-Fluorobiphenyl	1.6		1.670		94.3	44.4	123			
Surr: 2-Fluorophenol	2.5		3.330		75.1	41.9	112			
Surr: 4-Terphenyl-d14	1.5		1.670		91.7	29.6	130			
Surr: Nitrobenzene-d5	1.6		1.670		94.4	42.4	132			
Surr: Phenol-d5	2.9		3.330		87.8	44.3	119			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH greater than 2
- RL Reporting Detection Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits

Page 28 of 32

Hall Environmental Analysis Laboratory, Inc.

WO#:

1303A89

15-Apr-13

Client:

Western Refining Southwest, Gallup

Project:

OCD Central Landfarm Semiannual Sampling

Sample ID mb-6845 Client ID: **PBS**

Sample ID Ics-6845

LCSS

SampType: MBLK

TestCode: EPA Method 7471: Mercury

Batch ID: 6845

RunNo: 9687

Prep Date: 4/5/2013 Analysis Date: 4/5/2013 SeqNo: 276025

%REC LowLimit

Units: mg/Kg

%RPD

%RPD

%RPD

RPDLimit Qual

Analyte Mercury

Client ID:

Result

SPK value SPK Ref Val **PQL** ND 0.033

TestCode: EPA Method 7471: Mercury

%REC

97.6

SampType: LCS Batch ID: 6845

PQL

0.033

RunNo: 9687

HighLimit

Prep Date: 4/5/2013

Analysis Date: 4/5/2013

SegNo: 276026

Units: mg/Kg HighLimit

LowLimit

RPDLimit

Analyte Mercury

Sample ID 1303820-001ams

SampType: MS

TestCode: EPA Method 7471: Mercury

Client ID: BatchQC Batch ID: 6845

RunNo: 9687

Prep Date: 4/5/2013

Sample ID 1303820-001amsd

BatchQC

Analysis Date: 4/5/2013

Result

0.16

SeqNo: 276028

Units: mg/Kg

125

Analyte

Result PQL SPK value SPK Ref Val

0.033

%REC

95.2

HighLimit

RPDLimit Qual

Qual

Mercury

Client ID:

0.17

SampType: MSD

TestCode: EPA Method 7471: Mercury

RunNo: 9687

75

LowLimit

Units: mg/Kg

Prep Date:

4/5/2013

Batch ID: 6845 Analysis Date: 4/5/2013

SeqNo: 276029

Analyte

Result 0.17 SPK value SPK Ref Val %REC

LowLimit

HighLimit

%RPD

RPDLimit Qual

Mercury

PQL 0.033

0.1640 0.008650

0.008650

SPK value SPK Ref Val

0.1667

0.1648

96.4

75

125

0.691

20

Qualifiers:

Value exceeds Maximum Contaminant Level.

Ε Value above quantitation range

Analyte detected below quantitation limits

Sample pH greater than 2

RLReporting Detection Limit Analyte detected in the associated Method Blank

Н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

R RPD outside accepted recovery limits S Spike Recovery outside accepted recovery limits Page 29 of 32

Hall Environmental Analysis Laboratory, Inc.

WO#:

1303A89

15-Apr-13

Client:

Western Refining Southwest, Gallup

Project:

OCD Central Landfarm Semiannual Sampling

Sample ID MB-6823	SampT	ype: ME	BLK	Tes	tCode: El	PA Method	6010B: Soil	Metals		
Client ID: PBS	Batch	n ID: 68	23	F	RunNo: 9	682				
Prep Date: 4/4/2013	Analysis D	ate: 4/	5/2013	8	SeqNo: 2	75889	Units: mg/k	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Arsenic	ND	2.5								
Barium	ND	0.10								
Cadmium	ND	0.10								
Chromium	ND	0.30								
Copper	ND	0.30								
ron	ND	1.0								
_ead	ND	0.25								
Manganese	ND	0.10								
Selenium	ND	2.5								
Silver	ND	0.25								
Jranium	ND	5.0								
Zinc Zinc	ND	2.5								

Sample ID LCS-6823	SampType: LCS			TestCode: EPA Method 6010B: Soil Metals						
Client ID: LCSS	Batch ID: 6823			F	RunNo: 9					
Prep Date: 4/4/2013	Analysis Date: 4/5/2013		SeqNo: 275890			Units: mg/K	ίg			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Arsenic	24	2.5	25.00	0	95.4	80	120			
Barium	24	0.10	25.00	0	97.4	80	120			
Cadmium	24	0.10	25.00	0	96.9	80	120			
Chromium	24	0.30	25.00	0	97.7	80	120			
Copper	25	0.30	25.00	0	102	80	120			
Iron	25	1.0	25.00	0	99.4	80	120			
Lead	24	0.25	25.00	0	95.5	80	120			
Manganese	24	0.10	25.00	0	95.7	80	120			
Selenium	24	2.5	25.00	0	95.0	80	120			
Silver	4.9	0.25	5.000	0	98.1	80	120			
Uranium	25	5.0	25.00	0	98.5	80	120			
Zinc	24	2.5	25.00	0	95.7	80	120			

Sample ID	1303953-003AMS	SampType: MS			TestCode: EPA Method 6010B: Soil Metals						
Client ID:	BatchQC	Batch ID: 6823			RunNo: 9682						
Prep Date:	4/4/2013	Analysis Date: 4/5/2013		SeqNo: 275902			Units: mg/K	(g			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Arsenic		26	5.0	24.53	3.218	94.7	75	125			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH greater than 2
- RL Reporting Detection Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits

Page 30 of 32

Hall Environmental Analysis Laboratory, Inc.

WO#:

1303A89

15-Apr-13

Client:

Western Refining Southwest, Gallup

Project:

OCD Central Landfarm Semiannual Sampling

Sample ID 1303953-003AMSD

SampType: MSD

TestCode: EPA Method 6010B: Soil Metals

Client ID:

BatchQC

Batch ID: 6823

PQL

RunNo: 9682

Prep Date: 4/4/2013

Analysis Date: 4/5/2013

SeqNo: 275903

Units: mg/Kg

Analyte

Result

SPK value SPK Ref Val 5.0

%REC

LowLimit

HighLimit %RPD

RPDLimit 2.89

Qual

Arsenic

26

24.09

3.218

93.3

75

125

20

Qualifiers:

Value exceeds Maximum Contaminant Level.

Е Value above quantitation range

Analyte detected below quantitation limits

P Sample pH greater than 2

Reporting Detection Limit

В Analyte detected in the associated Method Blank

Η Holding times for preparation or analysis exceeded

Not Detected at the Reporting Limit

R RPD outside accepted recovery limits

Spike Recovery outside accepted recovery limits

Page 31 of 32

Hall Environmental Analysis Laboratory, Inc.

WO#:

1303A89

15-Apr-13

Client:

Western Refining Southwest, Gallup

Project:

OCD Central Landfarm Semiannual Sampling

Sample ID 1303A38-020ADUP

SampType: DUP

TestCode: SM4500-H+B: pH

Client ID: BatchQC

Batch ID: R9613

PQL

RunNo: 9613

Prep Date:

Analysis Date: 4/3/2013

SeqNo: 274335

Units: pH Units

SPK value SPK Ref Val %REC HighLimit

RPDLimit

Qual

Analyte

9.08 1.68 LowLimit %RPD

0.877

Qualifiers:

Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH greater than 2

RLReporting Detection Limit В Analyte detected in the associated Method Blank

Η Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

R

RPD outside accepted recovery limits S Spike Recovery outside accepted recovery limits Page 32 of 32

Hall Environmental Analysis Laboratory 4901 Hawkins Nl: Albuquergue, NM 87105

TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

Sample Log-In Check List

	irebsile: whyr.na	nenvironme)	ntai.com		
Client Name: Western Refining Gallup	Work Order Number:	1303A89	•	RcptNo:	1
Received by/date:	03/27/13				
ogged By: Lindsay Mangin	3/27/2013 4:07:00 PM				
Completed By: Ashley Gallegos	3/27/2013 5:22:43 PM				
Poviowed Rv					
hain of Custody	03/28/2013				
Custody seals intact on sample bottles?		Yes	No ·	Not Present ✓	
2. Is Chain of Custody complete?		Yes 🗸	No	Not Present	
3. How was the sample delivered?		Client			
Log In					
Was an attempt made to cool the sample	s?	Yes 🗸	No	NA	
5. Were all samples received at a temperatu		Yes .	No 🍫	NA	
6. Sample(s) in proper container(s)?	Samples wer	e collected Yes ✓	the same day and No	<u>l chilled.</u>	
·		103 4	110		
7. Sufficient sample volume for indicated tes	Yes 🗸	No ·			
8, Are samples (except VOA and ONG) properly preserved?			No :		
9. Was preservative added to bottles?		Yes	No 🗸	NA .	
0,VOA vials have zero headspace?		Yes 🗸	No ' !	No VOA Vials	
1. Were any sample containers received bro	ken?	Yes	No 🗸 :		
				# of preserved bottles checked	
12. Does paperwork match bottle labels?			No	for pH:	r >12 unless noted
(Note discrepancies on chain of custody) [3] Are matrices correctly identified on Chain of Custody?			No	Adjusted?	1 212 Unioss noted
4. Is it clear what analyses were requested?	er success.	Yes ✓ Yes ✓	No '		
15. Were all holding times able to be met?			No ·	Checked by:	
(If no, notify customer for authorization.)					
pecial Handling (if applicable)					
6. Was client notified of all discrepancies wit	h this order?	Yes	No	NA 🗸	
70000444 30044444444474 (200042244	and described and an arrange of the same o		NO	1477	
Person Notified: By Whom:	Date: Via:	eMail	Phone Fax	In Dozen	
Regarding:	VIC.	Cividii	Phone Fax	In Person	
Client Instructions:	The state of the s			ALCOHOLD TO THE PROPERTY OF	
7. Additional remarks:					
8. Cooler Information					
3	Seal Intact Seal No S	eal Date	Signed By		
1 7.3 Good N	ot Present				

Cliant		2-10-10-10-10-10-10-10-10-10-10-10-10-10-	Ch 7-of-Custody Record	Turn-Around Time:	Time:	<i>(</i> '			460		ANCOLVIA I I A H	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	4		
	. weste	an Residing		X Standard	□ Rush						ANAI YSTS I ARODAHOOV		3 E] }	
•				Project Name					4)	sa <i>A</i>	
Mailin	Mailing Address:	.SS:	Route 3 Box 7	OCD Central	Landfarm Sen	OCD Central Landfarm Semiannual Sampling		4901	Takk	www.nallen 1901 Hawkips NF : Al	www.idilethinonmental.com	27400			
Gallur	Gallup, NM 87301	301		Project #:		D)	T	<u>a</u>	05-34	Tel 505-345-3975	Eav 505_345_4107	501.70			
Phone #	3#.	505-722-3833	2-3833	697-039-00					3	Ana	Analysis Request	5			
email	email or Fax#:	505-722-0210	2-0210	Project Manager:	ter:									_	
QA/QC	QA/QC Package:			Ed Riege						<i>Ç/</i> / (pəq					**********
⊠ Sta	区 Standard		☐ Level 4 (Full Validation))					(attac 8 S				***************************************	
Accreditation	Accreditation:	Č	-	Sampler.					Marc	(E) (000) (22/0				. (1	7.
				On Ice		□ No	7.00	(1)8)	0103 7 7				1 40	
	□ EDD (Type)		Please provide EDD	Sample Temperature:	erature: 🦳	8			90	C 3				<u> </u>	
Date	Тіте	Matrix		Container Type and #	Preservative Type	HEAL NO :-	(1,814) H9T	BTEX (8021 Chlorides (3	IO bns OAC	/WW 10 8 bae /				ir Bubbles (\ 001000
3/27/201	04/1/52	soil	CentralOCD-01-	40z-3	none	100-				1			1	∀	
4	1230	soil	CentralOCD-02-		none	-002	×	×						+	
+	1250	soil	CentralOCD-03-		none	-883	×	×						-	т-
_	03.40	soil	CentralOCD-04-		none	700-	×	×						-	
+	1	soil .			попе	187	×	×						+	-
+	1230	soil	CentralOCD-&zMS		none	()(U)	×	×						-	
	1230	soil	CentralOCD-62:MSD	40z - 3	none	Q-577	×	×						-	
	13,5	soil	CentralOCD-TZ-	40z - 1	none	100%	×	×	×	×				<u> </u>	
-	1400	water	EB	VOA - 3	HCL	700,	<u> </u>	×							
	0///	water	FB-	VOA - 3	HCL	(101	Î	×				-		-	
~	{	water	Trip Blank		HCI.	10-	1^	×						 	
))									
Date:		Relinquished by:		Received by:		Date Time	Remai	ks:	lease	cc Grant Pr	Remarks: Please cc Grant Price (gprice@trihydro.com) with	dro.com) with	_	
Date:	//o/0	Relinquished by	Burs		X 03/2		results	Sa Ca	Gran	t @ 307-74	results. Call Grant @ 307-745-7474 w/ questions.	JUS.			
į				Kecerved tay:	-)	Date Time									
	lf ng	omes descen	And another Man of the Principle of the												

nples submitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.

İ

standard specified in Subsection A, B, or C of this section, the existing pH or concentration shall be the allowable limit, provided that the discharge at such concentrations will not result in concentrations at any place of withdrawal for present or reasonably foreseeable future use in excess of the standards of this section. These standards shall apply to the dissolved portion of the contaminants specified with a definition of dissolved being that given in the publication "Methods for Chemical Analysis of Water and Waste of the U.S. Environmental Protection Agency," with the exception that standards for mercury, organic compounds and non-aqueous phase liquids shall apply to the total unfiltered concentrations of the contaminants.

A. Human Health Standards-Ground water shall meet the standards of Subsection A and B of this section unless otherwise provided. If more than one water contaminant affecting human health is present, the toxic pollutant criteria as set forth in the definition of toxic pollutant in Section 20.6.2.1101 NMAC for the combination of contaminants, or the Human Health Standard of Subsection A of Section 20.6.2.3103 NMAC for each contaminant shall apply, whichever is more stringent. Non-aqueous phase liquid shall not be present floating atop of or immersed within ground water, as can be reasonably measured.

/13	Parame Maray as cart of tensorianty incasined.		
(1)			
(2)	Barium (Ba)		
(3)		•	:
(4)	Caromana (Cr)		
(5)	Cyanide (CN)		
_(6)	1.6 mg/i		
(7)	Lead (PD)	•	
(8)	1 TOTAL INTERCHTY (Hg)	•	
(9)	10 militale (NO: as M)	•	
(10)) Selemum (Se)		
(11)) Silver (Ag)		
(12)		12012	
7(13)	Randactivity: Combined Randin 226 & Radium 22830 wCt/4: A T	- 1/85/EG	
(14)	An word	no Ra 226/22	0
(15)) Polychionnated biphenyls (PCB's)	, (0)	
(16)) lonene		
(17)) Carbon Tetrachloride		
(18)) 12-atomotoguana (EDC) ************************************		
(19)) 1,1-diculorostavisus (1,1-1)CR)		
(20)) 1,1,2,2-terachioroethylene (PCE)	0276	
(21)	1,1,2-trichloroethylene (TCE)	8270	
(22)	ethylbenzene	\$74 s7 7	
(23)	total xylenes	8082	•
(24)	methylene chloride0.1 mg/l		
(25)	chloroform0.1 mg/l		
(26)	1,1-dichloroethane		
(27)			
(28)	1,1,1-trichloroethane0.06 mg/l		
(29)	1.1.Z-Michionoginane	•	
(30)	1,1,2,2-tetrachloroethane		
(31)	vinyl chloride		
(32)	PAHs: total naphthalene plus monomethylnaphthalenes0.03 mg/l		
(33)	benzo-a-pyrene		
	Other Standards for Domestic Water Supply		
(1)	Chloride (Cl)	•	
(2)	Copper (Cu)		
(3)	Iron (Fe)		
(4)	Manganese (Mn)		
~ (7)	Sulfate (SO ₄)	•	
(8)	Total Dissolved Solids (TDS)		
(9)	Zinc (Zn)	•	
(10)	νΗ		

- C. Standards for Irrigation Use Ground water shall meet the standards of Subsection A, B, and C of this section unless otherwise provided.

20.6.2.3104 DISCHARGE PERMIT REQUIRED: Unless otherwise provided by this Part, no person shall cause or allow effluent or leachate to discharge so that it may move directly of indirectly into ground water unless he is discharging pursuant to a discharge permit issued by the secretary. When a permit has been issued, discharges must be consistent with the terms and conditions of the permit. In the event of a transfer of the ownership, control, or possession of a facility for which a discharge permit is in effect, the transferce shall have authority to discharge under such permit, provided that the transferce has complied with Section 20.6.2.3111 NMAC, regarding transfers. [2-18-77, 12-24-87, 12-1-95; Rn & A, 20.6.2.3104 NMAC - 20 NMAC 6.2.III.3104, 1-15-01; A, 12-1-01]

20.6.2.3105 EXEMPTIONS FROM DISCHARGE PERMIT REQUIREMENT: Sections 20.6.2.3104 and 20.6.2.3106 NMAC do not apply to the following:

A. Effluent or leachate which conforms to all the listed numerical standards of Section 20.6.2.3103 NMAC and has a total nitrogen concentration of 10 mg/l or less, and does not contain any toxic pollutant. To determine conformance, samples may be taken by the agency before the effluent or leachate is discharged so that it may move directly or indirectly into ground water; provided that if the discharge is by seepage through non-natural or altered natural materials, the agency may take samples of the solution before or after seepage. If for any reason the agency does not have access to obtain the appropriate samples, this exemption shall not apply;

B. Effluent which is discharged from a sewerage system used only for disposal of household and other domestic waste which is designed to receive and which receives 2,000 gallons or less of liquid waste per day;

C. Water used for irrigated agriculture, for watering of lawns, trees, gardens or shrubs, or for irrigation for a period not to exceed five years for the revegetation of any disturbed land area, unless that water is received directly from any sewerage system;

D. Discharges resulting from the transport or storage of water diverted, provided that the water diverted has not had added to it after the point of diversion any effluent received from a sewerage system, that the source of the water diverted was not mine workings, and that the secretary has not determined that a hazard to public health may result:

E. Effluent which is discharged to a watercourse which is naturally perennial; discharges to dry arroyos and ephemeral streams are not exempt from the discharge permit requirement, except as otherwise provided in this section;

- F. Those constituents which are subject to effective and enforceable effluent limitations in a National Pollutant Discharge Elimination System (NPDES) permit, where discharge onto or below the surface of the ground so that water contaminants may move directly or indirectly into ground water occurs downstream from the outfail where NPDES effluent limitations are imposed, unless the secretary determines that a hazard to public health may result. For purposes of this subsection, monitoring requirements alone do not constitute effluent limitations:
 - G. Discharges resulting from flood control systems;

H. Leschate which results from the direct natural infiltration of precipitation through disturbed materials, unless the secretary determines that a hazard to public health may result:

 Leachate which results entirely from the direct natural infiltration of precipitation through undisturbed materials;

 Leachate from materials disposed of in accordance with the Solid Waste Management Regulations (20 NMAC 9.1) adopted by the New Mexico Environmental Improvement Board;

K. Natural ground water seeping or flowing into conventional mine workings which re-enters the ground by natural gravity flow prior to pumping or transporting out of the mine and without being used in any mining process; this exemption does not apply to solution mining;

L. Effluent or leachate discharges resulting from activities regulated by a mining plan approved and permit issued by the New Mexico Coal Surface Mining Commission, provided that this exemption shall not be construed as limiting the application of appropriate ground water protection requirements by the New Mexico Coal Surface Mining Commission;

Tier II Data Validation Report Summary

Client: Western Refining Southwest, Gallup	Laboratory: Hall Environmental Analysis Laboratory, with subcontracted analyses sent to Anatek Labs, Inc.
Project Name:	Sample Matrix: Soil
Project Number: 697-039-004	Sample Start Date: 3/27/2013
Date Validated: April 19, 2013	Sample End Date: 3/27/2013

Parameters Included: Benzene, Toluene, Ethylbenzene, and Xylenes (BTEX) by United States Environmental Protection Agency (USEPA) Solid Waste 846 (SW846) Method 8021B; Volatile Organic Compounds (VOC) by United States Environmental Protection Agency (USEPA) Solid Waste 846 (SW846) Method 8260B; Semi-Volatile Organic Compounds (SVOC) by USEPA SW-846 Method 8270C; Chloride, Fluoride, Nitrate as Nitrogen, and Sulfate by USEPA Method 300.0; Cyanide by USEPA Method 335.4; Total Recoverable Petroleum Hydrocarbons by USEPA Method 418.1; Polychlorinated Biphenyls (PCB) by USEPA SW-846 Method 8082; Diesel Range Organics (DRO) and Gasoline Range Organics (GRO) by USEPA SW-846 Method 8015D; Mercury by USEPA SW-846 Method 7471A; Metals (As, Ba, Cd, Cr, Cu, Fe, Pb, Mn, Se, Ag, U, and Zn) by USEPA SW-846 Method 6010B; pH by Standard Methods for the Examination of Water & Wastewater (SM) Method 4500-H+B; and Percent Moisture

Laboratory Project ID: 1303A89

Data Validator: Justin Hildenbrand, Environmental Chemist

DATA EVALUATION CRITERIA SUMMARY

A Tier II Data Validation was performed by Trihydro Corporation's Chemical Data Evaluation Services Group on the analytical data report package generated by Hall Environmental Analysis Laboratory, evaluating samples from the Western Refining Southwest site, located in Gallup, New Mexico.

Precision, accuracy, method compliance, and completeness of this data package were assessed during this data review. Precision was determined by evaluating the calculated relative percent difference (RPD) values of samples from field duplicate pairs; laboratory duplicate pairs; matrix spike (MS) and matrix spike duplicate (MSD) pairs; and laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) pairs. Laboratory accuracy was established by reviewing the demonstrated percent recoveries of MS/MSD samples and LCS/LCSD samples, and percent recoveries (%R) of organic system monitoring compounds (surrogates) to verify that data are not biased. Field accuracy was established by collecting trip blank, field blank, and equipment blank samples to monitor for possible ambient or cross contamination during sampling and transportation. Method compliance was established by reviewing sample integrity, holding times, detection limits, surrogate recoveries, laboratory blanks, initial and continuing calibrations (where applicable), and the LCS/LCSD percent recoveries against method-specific requirements. Completeness was evaluated by determining the overall ratio of the number of samples and analyses planned versus the number of samples with valid analyses. Determination of completeness included a review of the chain-of-custody (CoC), laboratory analytical methods, and other laboratory and field documents associated with this analytical data set.

Chemical data validation was conducted in accordance with the USEPA Contract Laboratory Program (CLP) National Functional Guidelines for organic and inorganic analyses, or by the appropriate method if not covered in the National Functional Guidelines. Data for organic analyses were evaluated according to validation criteria set forth in the USEPA CLP National Functional Guidelines for Superfund Organic Methods Data Review, document number USEPA-540-R-08-01, June 2008 with additional reference to the USEPA CLP National Functional Guidelines for Organic Data Review, document number EPA 540/R-99-008, October 1999. Data for inorganic analyses were evaluated according to validation criteria set forth in the USEPA CLP National Functional Guidelines for Inorganic Superfund Data Review, document number EPA 540R-10-011, January 2010. Review of field duplicates is conducted according to the USEPA Region 1 Laboratory Data Validation Functional Guidelines for Evaluation of Organic Analysis, December 1996.

Tier II Data Validation Report Summary

SAMPLE NUMBERS TABLE

Client Sample ID	Laboratory Sample Number
CentralOCD-01	1303A89-001
CentralOCD-02	1303A89-002
CentralOCD-03	1303A89-003
CentralOCD-04	1303A89-004
BD-	1303A89-005
CentralOCD-TZ	1303A89-008
CentralOCD-12	Anatek Labs, Inc. sample number 130402027-001
EB	1303A89-009
FB	1303A89-010
TRIP BLANK	1303A89-011

Tier II Data Validation Report Summary

The laboratory data were reviewed to evaluate compliance with the methods and the quality of the reported data. Assessment of CoC completeness is included in Item 3 of the Data Validation Checklist. A check mark (<) indicates that the referenced validation criteria were deemed acceptable, whereas a crossed circle (\otimes) indicates validation criteria for which the data have been qualified by the data validator. A null symbol (\varnothing) indicates that the specified criterion does not apply to the reviewed data. Details are noted in the tables below.

Validation Criteria

- ✓ Data Completeness
- ✓ CoC Documentation
- ✓ Holding Times and Preservation
- ✓ Laboratory Blanks
- ✓ System Monitoring Compounds (i.e., Surrogates)
- ✓ LCS/LCSD
- ✓ MS/MSD
- Ø Initial and Continuing Calibrations
- ⊗ Field Duplicates
- ✓ Laboratory Duplicates
- ✓ Field, Equipment, and Trip Blanks

OVERALL DATA PACKAGE ASSESSMENT

Based on a data validation review, the data are acceptable as delivered. Data qualified by the laboratory are discussed in Item 2 of the Data Validation Checklist.

The purpose of validating data and assigning qualifiers is to assist in proper data interpretation. Data that are not qualified meet the site data quality objectives. If values are assigned qualifiers other than an R (rejected, data not usable), the data may be used for site evaluation; however, consideration should be given to the reasons for qualification when interpreting sample concentrations. Data points that are assigned an R qualifier should not be used for site evaluation purposes. Text identified in **bold font** indicates that further action and/or qualification of the data were required. Data validation qualifiers were added for the items noted with crossed circles above. Please see the Data Qualification Summary table at the end of this report for a complete list of samples and analytes qualified.

Data qualifiers used during this validation included:

J - Estimated concentration

Data Completeness

The analyses were performed as requested on the CoC records. The associated samples were received by the laboratory and analyzed properly. The complete data package consisted of 200 data points excluding blank samples. No data points were rejected. The data completeness measure for this data package is calculated to be 100% and is acceptable.

1. Was the report free of non-conformances identified by the laboratory?

Yes

Comments: The laboratory did not note non-conformances related to data quality, aside from the application of data qualification flags defined in Section 2, below.

2. Were the data free of data qualification flags and/or notes used by the laboratory? If no, define.

Yes

Comments: The laboratory applied the following note and data qualification flag.

S - Spike recovery outside accepted recovery limits.

3. Were sample CoC forms complete?

Yes

Comments: The CoC record from the field to the laboratory was complete, and custody was maintained as evidenced by field and laboratory personnel signatures, dates, and times of receipt.

For sample CentralOCD-TZ, a note was included on the CoC form to refer to the attached reference for required constituents and analyses: Section 20.6.2.3103, Subsections A and B, of the New Mexico Administrative Code. An additional handwritten note recorded on March 28, 2013 indicated that radium 226 and 228 were to be excluded from analysis.

4. Were detection limits in accordance with the quality assurance project plan (QAPP), permit, or method, or indicated as acceptable?

Yes

Comments: The detection limits were in accordance with project requirements. Dilutions summarized in the table below were applied in several analyses for the samples and the detection limits rose accordingly.

Method	<u>Samples</u>	<u>Dilution Factor</u>
	BD-	
	CentralOCD-01	
000.0	CentralOCD-02	
300.0	CentralOCD-03	20
	CentralOCD-04	
	CentralOCD-TZ	
418.1	CentralOCD-04	2
6010B	CentralOCD-TZ	2-500
8015	CentralOCD-TZ	10
8082	CentralOCD-TZ	10

The dilutions were reviewed and appeared appropriate.

Polychlorinated biphenyls were not detected in the Method 8082 dilution analysis of sample CentralOCD-TZ. In correspondence by email and phone on April 24, 2013, the laboratory indicated that the sample was originally ran without dilution, but the sample solution appeared dark in color and the CCV performed directly after analysis failed low, demonstrating evidence of detector suppression. The CCV associated with the dilution analysis was within laboratory QC limits and the dilution analysis data were reported.

Final determination of the data quality regarding detection limits will be made by the project team.

5. Were the reported analytical methods and constituents in compliance with the QAPP, permit, or CoC? Were any analytes reported by more than one method?

Yes

Comments: Reported analytical methods and constituents were in compliance. Data for volatile organic hydrocarbons were reported either from Method 8021B or from Method 8260B as requested in the CoC.

6. Were samples received in good condition within method-specified requirements?

No

Comments: Samples were received intact and in good condition, with a cooler temperature outside the method requirement of 4 +/- 2°C at 7.3°C. Samples were delivered to the laboratory on the same day of sampling, and although the sampling team attempted to chill the samples insufficient time had elapsed for the sample containers to cool to method requirements. No further action was necessary based on professional judgment.

The laboratory indicated custody seals were not present on the sample containers. Custody was maintained since samples were delivered directly to the laboratory by the sample team.

7. Were samples analyzed within method-specified or technical holding times?

Yes

Comments: Analyses were performed within method specified holding times.

8. Were reported units appropriate for the sample matrix/matrices and analytical method(s)?

Yes

Comments: Data for soil samples were reported in units of milligram per kilogram (mg/kg) and results for aqueous samples were reported in units of micrograms per liter (μ g/L). Data for pH were reported in standard pH units. Reported units were acceptable for the matrices and analyses reported.

9. Was there indication from the laboratory that the initial or continuing calibration verification results were within acceptable limits?

Yes

Comments: Initial and continuing calibration data were not requested or included as part of this data set; however, these data were assumed to be acceptable as the laboratory did not note that any calibration results were outside acceptable limits.

10. Was the total number of laboratory blank samples prepared equal to at least 5% of the total number of samples or analyzed as required by the method?

Yes

Comments: The total number of laboratory blank samples prepared was equal to at least 5% of the total number of samples. Laboratory blanks were not required for the analyses of pH or percent moisture.

11. Were laboratory blank samples reported to be free of target analyte contamination?

Yes

Comments: The laboratory blank samples were free of target analyte contamination.

12. Was the total number of MS samples prepared equal to at least 5% of the total number of samples or analyzed as required by the method?

Yes

Comments: The total number of matrix spike samples prepared was equal to at least 5% of the total number of samples, although matrix spike samples were not prepared for all analyses. Matrix spikes were not required for analyses of percent moisture or pH.

Method	Analyte (s)	Preparation Batch	Analysis Batch	MS Sample Source
300.0	Chloride	6732	9545	Not Prepared
300.0	Chloride, Fluoride, Nitrate as Nitrogen, and Sulfate	6784	9604	Not Associated
300.0	Chloride, Fluoride, Nitrate as Nitrogen, and Sulfate	6784	9604	Not Associated
418.1	Petroleum Hydrocarbons, TR	6714	9516	CentralOCD-02
8015D	Diesel Range Organics (DRO)	6790	9569	Not Prepared
8015D	Gasoline Range Organics (GRO)	6713	9512	CentralOCD-TZ
8021B	BTEX	6713	9512	CentralOCD-02
8021B	BTEX	R9484	9484	Not Associated
8082	PCBs	6709	9533	Not Prepared
8260B	VOCs	6713	9532	Not Prepared

<u>Method</u>	Analyte (s)	Preparation Batch	Analysis Batch	MS Sample Source
8270C	SVOCs	6712	9601	Not Prepared
7471A	Mercury	6845	9687	Not Associated
6010B	Metals	6823	9682	Not Associated
4500-H+B	рН	R9613	9613	Not Prepared

Not Associated – The MS sample source was not associated with this project. Not Prepared – Matrix spikes were not prepared for this batch.

13. Were MS/MSD percent recoveries and MS/MSD RPDs within data validation or laboratory quality control (QC) limits?

Yes

Comments: The MS and MSD recoveries and RPD values for project samples were within laboratory QC limits. The MS samples prepared from non-project samples were considered during the data validation process, but data were not qualified based on these results since matrix similarity to project samples could not be guaranteed.

In metals Method 6010B preparation batch 6823, analysis batch 9682, only arsenic was reported for the matrix spike and matrix spike duplicate.

The MS samples prepared from non-project samples were considered during the data validation process, but data were not qualified based on these results since matrix similarity to project samples could not be guaranteed.

14. Was the total number of LCSs analyzed equal to at least 5% of the total number of samples or analyzed as required by the method?

Yes

Comments: The total number of LSC/LCSDs analyzed was equal to at least 5% of the total number of samples required. LCS analyses were not required for analysis of percent moisture.

15. Were LCS/LCSD percent recoveries and LCS/LCSD RPDs within data validation or laboratory QC limits? No

Comments: The LCS/LCSD recoveries and RPD values were within laboratory QC limits, with the exceptions noted in the table below.

Method	<u>Analyte</u>	Preparation Batch	Analysis Batch	LCS Recovery	LCS QC Limits
8260B	Chlorobenzene	6713	9532	0.502%	70-130%
8260B	1,1-Dichloroethene	6713	9532	0%	83.5-130%
8260B	Trichloroethene (TCE)	6713	9532	0%	70-130%

The low recoveries for the three analytes above occurred because they were not spiked in the LCS. In email and phone correspondence on April 24, 2013 with the laboratory project manager, the associated sample (CentralOCD-TZ) was analyzed by Method 8260 but was prepared with the samples for 8021 BTEX analyses, and as a result the 8021 BTEX spike solution was inadvertently used for the LCS. The three analytes were not in the Method 8021 LCS spike and therefore could not be recovered. The laboratory indicated that water spikes and CCVs are within method and laboratory limits for the day. Since other QC and calibration data within requirements of the method the data were evaluated to be acceptable and no qualification was applied based on professional judgment.

The laboratory reported a subset of analytes in the LCSs for the following analyses.

PCBs by Method 8082: Due to limitations of the analytical technique and characteristics of the target constituents, the laboratory reported only the following analytes in the LCS for preparation batch 6709, analysis batch 9533: Arochlor 1016 and Arochlor 1260.

<u>VOCs by Method 8260B</u>: The laboratory reported only the following analytes in the LCS for preparation batch 6713, analysis batch 9532: benzene, toluene, chlorobenzene, 1,1-dichloroethene, and trichloroethene.

<u>SVOCs by Method 8270C</u>: The laboratory reported only the following analytes in the LCS for preparation batch 6712, analysis batch 9601: acenaphthene, 4-chloro-3-methylphenol, 2-chlorophenol, 1,4-dichlorobenzene, 2,4-dinitrotoluene, n-nitrosodi-n-propylamine, 4-nitrophenol, pentachlorophenol, phenol, pyrene, and 1,2,4-trichlorobenzene.

16. Were surrogate recoveries within laboratory QC limits?

Yes

Comments: The surrogate recoveries were within laboratory QC limits, with the exceptions noted in the table below.

Method	<u>Surrogate</u>	<u>Sample</u>	Surrogate Recovery	QC Limits
8082	Decachlorobiphenyl	CentralOCD-TZ	0%	22.2-164%
8082	Tetrachloro-m-xylene	CentralOCD-TZ	0%	17.8-160%
8015D	Diesel Range Organics (DRO)	CentralOCD-TZ	0%	72.4-120%

Sample CentralOCD-TZ was diluted by a factor of 10 for the analyses of PCBs by Method 8082 and DRO by 8015D, and the surrogates were diluted to concentrations below the ability of the analytical methods to quantitate. Qualification of data was not required.

17. Were the number of trip blank, field blank, and/or equipment blank samples collected equal to at least 10% of the total number of samples or as required by the project guidelines, QAPP, SAP, or permit?

Yes

Comments: The number of trip blank, field blank, and/or equipment blank samples collected was equal to at least 10% of the total number of samples. One equipment blank, EB, one field blank, FB, and one trip blank, TRIP BLANK, were provided to the laboratory with the project samples. The blank samples were analyzed only for BTEX by Method 8021.

18. Were the trip blank, field blank, and/or equipment blank samples reported to be free of target analyte contamination?

Yes

Comments: The trip blank, field blank, and equipment blank samples were reported to be free of target analyte contamination

19. Was the number of field duplicates collected equal to at least 10% of the total number of samples or as required by the project guidelines, QAPP, SAP, or permit?

Yes

Comments: The number of field duplicates collected was equal to at least 10% of the total number of samples. Sample BD- was collected as the duplicate of sample CentralOCD-2.

20. Were field duplicate RPD values within data validation QC limits (soil 0-50%, water 0-30%, or air 0-25%)?

No

Comments: Chloride was detected at 210 mg/kg in the parent sample, CentralOCD-02, and at 400 mg/kg in the field duplicate sample. The calculated field duplicate RPD exceeded the data validation QC limits for soil of 0-50% at 62.3%. Chloride was qualified as J to indicate estimated detection in the parent and duplicate samples.

Field duplicate RPD values for other target constituents could not be calculated since the analytes were undetected in the parent and duplicate samples.

21. Were laboratory duplicate RPD values within laboratory QC limits?

Yes

Comments: One laboratory duplicate was prepared for pH by Method 4500-H+B preparation batch R9613, analysis batch 9613, from a non-project sample. The duplicate RPD was within laboratory QC limits.

22. General Comments: The analysis of total cyanide was subcontracted to Anatek Labs, Inc., located in Moscow, Idaho.

The laboratory QC data for the subcontracted total cyanide analysis were not included in the laboratory data report and are included in Attachment A at the end of this document.

DATA QUALIFICATION SUMMARY

Analyte	Method	Field Sample ID	Lab Sample ID	Result	Limit	Units	Reviewer Qualifier	Reviewer Qualifier Reason
Chloride	300.0	CentralOCD-02	1303A89-002A	210	30	mg/kg	J	High field duplicate RPD value
Chloride	300.0	BD-	1303A89-005A	400	30	mg/kg	J	High field duplicate RPD value

ATTACHMENT A ANATEK LABS, INC. QUALITY CONTROL DATA

Anatek Labs, Inc.

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:

HALL ENVIRONMENTAL ANALYSIS LAB

Address:

4901 HAWKINS NE SUITE D

ALBUQUERQUE, NM 87109

Batch #:

130402027

Project Name:

1303A89

Attn:

ANDY FREEMAN

Analytical Results Report Quality Control Data

Lab Control Sample								·	
Parameter Cyanide	LCS Result 0.480	Units mg/kg		•		R %Rec 0-120	Prep 4/10/	Date 2013	Analysis Date 4/10/2013
Matrix Spike Sample Number Parameter 130402027-001 Cyanide	And the second s	Sample Result 0.579	MS Result 14.1	Units mg/kg	MS Spike 13.4		AR %Rec 60-140	Prep Date 4/10/2013	
Matrix Spike Duplicate Parameter Cyanide	MSD Result 13.7	Units mg/kg	MSD Spike 13.4	% Rec 97.9	%RP 2.9	AR D %RPI 0-25		ep Date 10/2013	Analysis Date 4/10/2013
Method Blank Parameter	The state of the s	Re	sult	Units mg/K		PQL 0.3		rep Date 4/10/2013	Analysis Date

AR

Acceptable Range

ND

Not Detected

PQL RPD Practical Quantitation Limit Relative Percentage Difference

Comments:

Certifications held by Anatek Lebs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP);E87893; ID:ID00013; IN:C-ID-01; KY:90142; MT:CERT0028; NM: ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Lebs WA: EPA:WA00169; ID:WA00169; WA:C595; MT:Cert0095

Wednesday, April 24, 2013

Page 1 of 1

ATTACHMENT B

MAY 8, 2013 ANALYTICAL DATA AND TIER II DATA VALIDATION

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

June 14, 2013

Beck Larsen

Western Refining Southwest, Gallup

Rt. 3 Box 7

Gallup, NM 87301

TEL: (505) 722-0258 FAX (505) 722-0210

RE: OCD Land Farm

OrderNo.: 1305307

Dear Beck Larsen:

Hall Environmental Analysis Laboratory received 8 sample(s) on 5/8/2013 for the analyses presented in the following report.

This report is a revised report and it replaces the original report issued May 15, 2013.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. All samples are reported as received unless otherwise indicated.

Please don't hesitate to contact HEAL for any additional information or clarifications.

Sincerely,

Andy Freeman

Laboratory Manager

andyl

4901 Hawkins NE

Albuquerque, NM 87109

Lab Order 1305307

Date Reported: 6/14/2013

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Gallup

Client Sample ID: Central OCD-01-05082013

Project: OCD Land Farm

Collection Date: 5/8/2013 9:10:00 AM Received Date: 5/8/2013 2:05:00 PM

Lab ID: 1305307-001

Matrix: SOIL

Analyses Result RL Qual Units **DF** Date Analyzed Batch EPA METHOD 8082: PCB'S Analyst: SCC Aroclor 1016 ND 0.040 mg/Kg 1 5/22/2013 6:33:02 PM 7504 Aroclor 1221 ND 0.040 mg/Kg 1 5/22/2013 6:33:02 PM 7504 ND Aroclor 1232 0.040 mg/Kg 1 5/22/2013 6:33:02 PM 7504 Aroclor 1242 ND 0.040 mg/Kg 1 5/22/2013 6:33:02 PM 7504 Aroclor 1248 ND 0.040 mg/Kg 1 5/22/2013 6:33:02 PM 7504 ND Aroclor 1254 0.040 mg/Kg 1 5/22/2013 6:33:02 PM 7504 Aroclor 1260 ND 0.040 mg/Kg 1 5/22/2013 6:33:02 PM 7504 40.0 Surr: Decachlorobiphenyl 31.8-151 %REC 1 5/22/2013 6:33:02 PM 7504 Surr: Tetrachloro-m-xylene 35.2 26.2-144 %REC 1 5/22/2013 6:33:02 PM 7504 **EPA METHOD 8021B: VOLATILES** Analyst: NSB ND Benzene 0.049 mg/Kg 5/10/2013 11:41:24 PM 5/10/2013 11:41:24 PM Toluene ND 0.049 mg/Kg 1 Ethylbenzene ND 0.049 mg/Kg 1 5/10/2013 11:41:24 PM 7366 Xylenes, Total ND 0.098 mg/Kg 1 5/10/2013 11:41:24 PM Surr: 4-Bromofluorobenzene 98.6 80-120 %REC 1 5/10/2013 11:41:24 PM 7366 **EPA METHOD 8310: PAHS** Analyst: SCC Naphthalene ND 2.5 mg/Kg 5/28/2013 11:21:04 AM 7505 1 ND 1-Methylnaphthalene 2.5 mg/Kg 1 5/28/2013 11:21:04 AM 7505 2-Methylnaphthalene ND 2.5 mg/Kg 1 5/28/2013 11:21:04 AM Acenaphthylene ND 2.5 mg/Kg 1 5/28/2013 11:21:04 AM 7505 Acenaphthene ND 2.5 mg/Kg 1 5/28/2013 11:21:04 AM 7505 Fluorene ND 0.30 mg/Kg 1 5/28/2013 11:21:04 AM 7505 Phenanthrene ND 0.15 mg/Kg 1 5/28/2013 11:21:04 AM 7505 Anthracene ND 0.15 mg/Kg 5/28/2013 11:21:04 AM 1 Fluoranthene ND 0.20 1 mg/Kg 5/28/2013 11:21:04 AM 7505 ND 0.25 Pyrene 1 mg/Kg 5/28/2013 11:21:04 AM 7505 Benz(a)anthracene ND 0.10 mg/Kg 1 5/28/2013 11:21:04 AM 7505 Chrysene 0.13 0.10 mg/Kg 1 5/28/2013 11:21:04 AM 7505 Benzo(b)fluoranthene ND 0.10 mg/Kg 1 5/28/2013 11:21:04 AM 7505 Benzo(k)fluoranthene ND 0.10 mg/Kg 1 5/28/2013 11:21:04 AM ND Benzo(a)pyrene 0.10 5/28/2013 11:21:04 AM mg/Kg 1 7505 Dibenz(a,h)anthracene ND 0.10 mg/Kg 1 5/28/2013 11:21:04 AM mg/Kg Benzo(g,h,i)perylene ND 0.10 1 5/28/2013 11:21:04 AM ND Indeno(1,2,3-cd)pyrene 0.10 mg/Kg 1 5/28/2013 11:21:04 AM 7505 Surr: Benzo(e)pyrene 86.0 36.7-118 %REC 1 5/28/2013 11:21:04 AM 7505 **EPA METHOD 300.0: ANIONS** Analyst: JRR Fluoride 0.30 5.2 mg/Kg 5/9/2013 2:42:37 PM 1 7373 Chloride 150 30 mg/Kg 20 5/9/2013 2:55:01 PM 7373 Nitrogen, Nitrate (As N) 0.30 14 mg/Kg 1 5/9/2013 2:42:37 PM 7373

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 1 of 49

- P Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

Lab Order 1305307

Date Reported: 6/14/2013

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Gallup

Project: OCD Land Farm

Lab ID: 1305307-001 Matrix: SOIL

Client Sample ID: Central OCD-01-05082013 Collection Date: 5/8/2013 9:10:00 AM

Received Date: 5/8/2013 2:05:00 PM

Analyses	Result	RL (Qual Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analys	t: JRR
Sulfate	650	30	mg/Kg	20	5/9/2013 2:55:01 PM	7373
EPA METHOD 7471: MERCURY					Analys	t: JLF
Mercury	ND	0.033	mg/Kg	1	5/22/2013 9:13:33 AM	7539
EPA METHOD 6010B: SOIL METALS		3,330	9.7.9	•	Analys	
Arsenic	ND	12	mg/Kg	5	5/28/2013 10:28:20 AM	
Barium	270	1.0	mg/Kg	10	5/28/2013 10:30:56 AM	
Cadmium	ND	0.50	mg/Kg	5	5/28/2013 10:28:20 AM	
Chromium	19	1.5	mg/Kg	5	5/28/2013 10:28:20 AM	
Copper	4.6	1.5	mg/Kg	5	5/28/2013 10:28:20 AM	
Iron	22000	500				
Lead	5.6	1.2	mg/Kg	5	5/28/2013 10:33:28 AM	
Manganese	390	1.0	mg/Kg		5/28/2013 10:28:20 AM	
Selenium	ND	1.0	mg/Kg	10 5	5/28/2013 10:30:56 AM	
Silver	ND	1.2	mg/Kg	-	5/28/2013 10:28:20 AM	
Uranium	ND ND	1.2 25	mg/Kg	5	5/28/2013 10:28:20 AM	
Zinc	77	25 12	mg/Kg	5	5/28/2013 10:28:20 AM	
	11	12	mg/Kg	5	5/28/2013 10:28:20 AM	7531
EPA METHOD 8270C: SEMIVOLATILES					Analyst	: JDC
4-Chloro-3-methylphenol	ND	1.0	mg/Kg	1	5/22/2013 5:06:13 PM	7537
2-Chlorophenol	ND	0.40	mg/Kg	1	5/22/2013 5:06:13 PM	7537
2,4-Dichlorophenol	ND	0.80	mg/Kg	1	5/22/2013 5:06:13 PM	7537
2,4-Dimethylphenol	ND	0.60	mg/Kg	1	5/22/2013 5:06:13 PM	7537
4,6-Dinitro-2-methylphenol	ND	1.0	mg/Kg	1	5/22/2013 5:06:13 PM	7537
2,4-Dinitrophenol	ND	0.80	mg/Kg	1	5/22/2013 5:06:13 PM	7537
2-Methylphenol	ND	1.0	mg/Kg	1	5/22/2013 5:06:13 PM	7537
3+4-Methylphenol	ND	0.40	mg/Kg	1	5/22/2013 5:06:13 PM	7537
2-Nitrophenol	ND	0.40	mg/Kg	1	5/22/2013 5:06:13 PM	7537
4-Nitrophenol	ND	0.50	mg/Kg	1	5/22/2013 5:06:13 PM	7537
Pentachlorophenol	ND	0.80	mg/Kg	1	5/22/2013 5:06:13 PM	7537
Phenol	ND	0.40	mg/Kg	1	5/22/2013 5:06:13 PM	7537
2,4,5-Trichlorophenol	ND	0.40	mg/Kg	1	5/22/2013 5:06:13 PM	7537
2,4,6-Trichlorophenol	ND	0.40	mg/Kg	1	5/22/2013 5:06:13 PM	7537
Surr: 2,4,6-Tribromophenol	93.6	40.1-130	%REC	1	5/22/2013 5:06:13 PM	7537
Surr: 2-Fluorobiphenyl	78.2	44.4-123	%REC	1	5/22/2013 5:06:13 PM	7537
Surr: 2-Fluorophenol	71.4	41.9-112	%REC	1	5/22/2013 5:06:13 PM	7537
Surr: 4-Terphenyl-d14	83.6	29.6-130	%REC	1	5/22/2013 5:06:13 PM	7537
Surr: Nitrobenzene-d5	84.8	42.4-132	%REC	1	5/22/2013 5:06:13 PM	7537
Surr: Phenol-d5	74.0	44.3-119	%REC	1	5/22/2013 5:06:13 PM	7537 7537
		7 70	,,,,,,,,	•		
EPA METHOD 8260B: VOLATILES					Analyst	DAM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- Value above quantitation range Ε
- J Analyte detected below quantitation limits
- RSD is greater than RSDlimit
- RPD outside accepted recovery limits

- Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit

- Not Detected at the Reporting Limit Page 2 of 49 Sample pH greater than 2 for VOA and TOC only. P
- RL Reporting Detection Limit

Lab Order 1305307

Date Reported: 6/14/2013

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Gallup

Client Sample ID: Central OCD-01-05082013

OCD Land Farm Project:

Collection Date: 5/8/2013 9:10:00 AM Received Date: 5/8/2013 2:05:00 PM

Lab ID: 1305307-001

Matrix: SOIL

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analyst	: DAM
Benzene	ND	0.046	mg/Kg	1	5/21/2013 1:30:22 AM	7495
Toluene	ND	0.046	mg/Kg	1	5/21/2013 1:30:22 AM	7495
Ethylbenzene	ND	0.046	mg/Kg	1	5/21/2013 1:30:22 AM	7495
Methyl tert-butyl ether (MTBE)	ND	0.046	mg/Kg	1	5/21/2013 1:30:22 AM	7495
1,2,4-Trimethylbenzene	ND	0.046	mg/Kg	1	5/21/2013 1:30:22 AM	7495
1,3,5-Trimethylbenzene	ND	0.046	mg/Kg	1	5/21/2013 1:30:22 AM	7495
1,2-Dichloroethane (EDC)	ND	0.046	mg/Kg	1	5/21/2013 1:30:22 AM	7495
1,2-Dibromoethane (EDB)	ND	0.046	mg/Kg	1	5/21/2013 1:30:22 AM	7495
Naphthalene	ND	0.093	mg/Kg	1	5/21/2013 1:30:22 AM	7495
1-Methylnaphthalene	ND	0.19	mg/Kg	1	5/21/2013 1:30:22 AM	7495
2-Methylnaphthalene	ND	0.19	mg/Kg	1	5/21/2013 1:30:22 AM	7495
Acetone	ND	0.70	mg/Kg	1	5/21/2013 1:30:22 AM	7495
Bromobenzene	ND	0.046	mg/Kg	1	5/21/2013 1:30:22 AM	7495
Bromodichloromethane	ND	0.046	mg/Kg	1	5/21/2013 1:30:22 AM	7495
Bromoform	ND	0.046	mg/Kg	1	5/21/2013 1:30:22 AM	7495
Bromomethane	ND	0.14	mg/Kg	1	5/21/2013 1:30:22 AM	7495
2-Butanone	ND	0.46	mg/Kg	1	5/21/2013 1:30:22 AM	7495
Carbon disulfide	ND	0.46	mg/Kg	1	5/21/2013 1:30:22 AM	7495
Carbon tetrachloride	ND	0.093	mg/Kg	1	5/21/2013 1:30:22 AM	7495
Chlorobenzene	ND	0.046	mg/Kg	1	5/21/2013 1:30:22 AM	7495
Chloroethane	ND	0.093	mg/Kg	1	5/21/2013 1:30:22 AM	7495
Chloroform	ND	0.046	mg/Kg	1	5/21/2013 1:30:22 AM	7495
Chloromethane	ND	0.14	mg/Kg	1	5/21/2013 1:30:22 AM	7495
2-Chlorotoluene	ND	0.046	mg/Kg	1	5/21/2013 1:30:22 AM	7495
4-Chlorotoluene	ND	0.046	mg/Kg	1	5/21/2013 1:30:22 AM	7495
cis-1,2-DCE	ND	0.046	mg/Kg	1	5/21/2013 1:30:22 AM	7495
cis-1,3-Dichloropropene	ND	0.046	mg/Kg	1	5/21/2013 1:30:22 AM	7495
1,2-Dibromo-3-chloropropane	ND	0.093	mg/Kg	1	5/21/2013 1:30:22 AM	7495
Dibromochloromethane	ND	0.046	mg/Kg	1	5/21/2013 1:30:22 AM	7495
Dibromomethane	ND	0.093	mg/Kg	1	5/21/2013 1:30:22 AM	7495
1,2-Dichlorobenzene	ND	0.046	mg/Kg	1	5/21/2013 1:30:22 AM	7495
1,3-Dichlorobenzene	ND	0.046	mg/Kg	1	5/21/2013 1:30:22 AM	7495
1,4-Dichlorobenzene	ND	0.046	mg/Kg	1	5/21/2013 1:30:22 AM	7495
Dichlorodifluoromethane	ND	0.046	mg/Kg	1	5/21/2013 1:30:22 AM	7495
1,1-Dichloroethane	ND	0.093	mg/Kg	1	5/21/2013 1:30:22 AM	7495
1,1-Dichloroethene	ND	0.046	mg/Kg	1	5/21/2013 1:30:22 AM	7495
1,2-Dichloropropane	ND	0.046	mg/Kg	1	5/21/2013 1:30:22 AM	7495
1,3-Dichloropropane	ND	0.046	mg/Kg	1	5/21/2013 1:30:22 AM	7495
2,2-Dichloropropane	ND	0.093	mg/Kg	1	5/21/2013 1:30:22 AM	7495
1,1-Dichloropropene	ND	0.093	mg/Kg	1	5/21/2013 1:30:22 AM	7495

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- RPD outside accepted recovery limits

- Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- Page 3 of 49 P Sample pH greater than 2 for VOA and TOC only.
- Reporting Detection Limit

Lab Order 1305307

Date Reported: 6/14/2013

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Gallup

Client Sample ID: Central OCD-01-05082013

OCD Land Farm Project:

Collection Date: 5/8/2013 9:10:00 AM

Lab ID: 1305307-001

Matrix: SOIL Received Date: 5/8/2013 2:05:00 PM

Analyses	Result	RL Qu	ıal Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analyst	: DAM
Hexachlorobutadiene	ND	0.093	mg/Kg	1	5/21/2013 1:30:22 AM	7495
2-Hexanone	ND	0.46	mg/Kg	1	5/21/2013 1:30:22 AM	7495
Isopropylbenzene	ND	0.046	mg/Kg	1	5/21/2013 1:30:22 AM	7495
4-Isopropyltoluene	ND	0.046	mg/Kg	1	5/21/2013 1:30:22 AM	7495
4-Methyl-2-pentanone	ND	0.46	mg/Kg	1	5/21/2013 1:30:22 AM	7495
Methylene chloride	ND	0.14	mg/Kg	1	5/21/2013 1:30:22 AM	7495
n-Butylbenzene	ND	0.14	mg/Kg	1	5/21/2013 1:30:22 AM	7495
n-Propylbenzene	ND	0.046	mg/Kg	1	5/21/2013 1:30:22 AM	7495
sec-Butylbenzene	ND	0.046	mg/Kg	1	5/21/2013 1:30:22 AM	7495
Styrene	ND	0.046	mg/Kg	1	5/21/2013 1:30:22 AM	7495
tert-Butylbenzene	ND	0.046	mg/Kg	1	5/21/2013 1:30:22 AM	7495
1,1,1,2-Tetrachloroethane	ND	0.046	mg/Kg	1	5/21/2013 1:30:22 AM	7495
1,1,2,2-Tetrachloroethane	ND	0.046	mg/Kg	1	5/21/2013 1:30:22 AM	7495
Tetrachloroethene (PCE)	ND	0.046	mg/Kg	1	5/21/2013 1:30:22 AM	7495
trans-1,2-DCE	ND	0.046	mg/Kg	1	5/21/2013 1:30:22 AM	7495
trans-1,3-Dichloropropene	ND	0.046	mg/Kg	1	5/21/2013 1:30:22 AM	7495
1,2,3-Trichlorobenzene	ND	0.093	mg/Kg	1	5/21/2013 1:30:22 AM	7495
1,2,4-Trichlorobenzene	ND	0.046	mg/Kg	1	5/21/2013 1:30:22 AM	7495
1,1,1-Trichloroethane	ND	0.046	mg/Kg	1	5/21/2013 1:30:22 AM	7495
1,1,2-Trichloroethane	ND	0.046	mg/Kg	1	5/21/2013 1:30:22 AM	7495
Trichloroethene (TCE)	ND	0.046	mg/Kg	1	5/21/2013 1:30:22 AM	7495
Trichlorofluoromethane	ND	0.046	mg/Kg	1	5/21/2013 1:30:22 AM	7495
1,2,3-Trichloropropane	ND	0.093	mg/Kg	1	5/21/2013 1:30:22 AM	7495
Vinyl chloride	ND	0.046	mg/Kg	1	5/21/2013 1:30:22 AM	7495
Xylenes, Total	ND	0.093	mg/Kg	1	5/21/2013 1:30:22 AM	7495
Surr: 1,2-Dichloroethane-d4	86.7	70-130	%REC	1	5/21/2013 1:30:22 AM	7495
Surr: 4-Bromofluorobenzene	83.9	70-130	%REC	1	5/21/2013 1:30:22 AM	7495
Surr: Dibromofluoromethane	87.8	70-130	%REC	1	5/21/2013 1:30:22 AM	7495
Surr: Toluene-d8	96.9	70-130	%REC	1	5/21/2013 1:30:22 AM	7495
EPA METHOD 418.1: TPH					Analyst:	LRW
Petroleum Hydrocarbons, TR	94	20	mg/Kg	1	5/13/2013	7382

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- RPD outside accepted recovery limits

- Analyte detected in the associated Method Blank
- Η Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

- Not Detected at the Reporting Limit Page 4 of 49 Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

Lab Order 1305307

Date Reported: 6/14/2013

Hall Environmental Analysis Laboratory, Inc.

Matrix: SOIL

CLIENT: Western Refining Southwest, Gallup

Project: OCD Land Farm

Lab ID: 1305307-002

Client Sample ID: Central OCD-02-05082013

Collection Date: 5/8/2013 9:45:00 AM Received Date: 5/8/2013 2:05:00 PM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8082: PCB'S					Analyst	: SCC
Aroclor 1016	ND	0.10	mg/Kg	1	5/22/2013 7:18:01 PM	7504
Aroclor 1221	ND	0.10	mg/Kg	1	5/22/2013 7:18:01 PM	7504
Aroclor 1232	ND	0.10	mg/Kg	1	5/22/2013 7:18:01 PM	7504
Aroclor 1242	ND	0.10	mg/Kg	1	5/22/2013 7:18:01 PM	7504
Aroclor 1248	ND	0.10	mg/Kg	1	5/22/2013 7:18:01 PM	7504
Aroclor 1254	ND	0.10	mg/Kg	1	5/22/2013 7:18:01 PM	7504
Aroclor 1260	ND	0.10	mg/Kg	1	5/22/2013 7:18:01 PM	7504
Surr: Decachlorobiphenyl	92.0	31.8-151	%REC	1	5/22/2013 7:18:01 PM	7504
Surr: Tetrachloro-m-xylene	80.0	26.2-144	%REC	1	5/22/2013 7:18:01 PM	7504
EPA METHOD 8021B: VOLATILES					Analyst:	NSB
Benzene	ND	0.049	mg/Kg	1	5/11/2013 12:11:44 AM	7366
Toluene	ND	0.049	mg/Kg	1	5/11/2013 12:11:44 AM	7366
Ethylbenzene	ND	0.049	mg/Kg	1	5/11/2013 12:11:44 AM	7366
Xylenes, Total	ND	0.098	mg/Kg	1	5/11/2013 12:11:44 AM	7366
Surr: 4-Bromofluorobenzene	99.0	80-120	%REC	1	5/11/2013 12:11:44 AM	
EPA METHOD 8310: PAHS					Analyst:	SCC
Naphthalene	ND	2.5	mg/Kg	1	5/28/2013 11:50:21 AM	7505
1-Methylnaphthalene	ND	2.5	mg/Kg	1	5/28/2013 11:50:21 AM	7505
2-Methylnaphthalene	ND	2.5	mg/Kg	1	5/28/2013 11:50:21 AM	7505
Acenaphthylene	ND	2.5	mg/Kg	1	5/28/2013 11:50:21 AM	7505
Acenaphthene	ND	2.5	mg/Kg	1	5/28/2013 11:50:21 AM	7505
Fluorene	ND	0.30	mg/Kg	1	5/28/2013 11:50:21 AM	7505
Phenanthrene	0.26	0.15	mg/Kg	1	5/28/2013 11:50:21 AM	7505
Anthracene	ND	0.15	mg/Kg	1	5/28/2013 11:50:21 AM	7505
Fluoranthene	ND	0.20	mg/Kg	1	5/28/2013 11:50:21 AM	7505
Pyrene	ND	0.25	mg/Kg	1	5/28/2013 11:50:21 AM	7505
Benz(a)anthracene	ND	0.10	mg/Kg	1	5/28/2013 11:50:21 AM	7505
Chrysene	0.44	0.10	mg/Kg	1	5/28/2013 11:50:21 AM	7505
Benzo(b)fluoranthene	0.10	0.10	mg/Kg	1	5/28/2013 11:50:21 AM	7505
Benzo(k)fluoranthene	ND	0.10	mg/Kg	1	5/28/2013 11:50:21 AM	7505
Benzo(a)pyrene	ND	0.10	mg/Kg	1	5/28/2013 11:50:21 AM	7505
Dibenz(a,h)anthracene	ND	0.10	mg/Kg	1	5/28/2013 11:50:21 AM	7505
Benzo(g,h,i)perylene	0.13	0.10	mg/Kg	1	5/28/2013 11:50:21 AM	7505
Indeno(1,2,3-cd)pyrene	0.13	0.10	mg/Kg	1	5/28/2013 11:50:21 AM	7505
Surr: Benzo(e)pyrene	114	36.7-118	%REC	1	5/28/2013 11:50:21 AM	7505
EPA METHOD 300.0: ANIONS					Analyst:	JRR
Fluoride	4.5	0.30	mg/Kg	1	5/9/2013 3:07:25 PM	7373
Chloride	670	30	mg/Kg	20	5/9/2013 3:19:50 PM	7373
Nitrogen, Nitrate (As N)	13	0.30	mg/Kg	1	5/9/2013 3:07:25 PM	7373

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- Page 5 of 49
- Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

Lab Order 1305307

Date Reported: 6/14/2013

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Gallup

Project: OCD Land Farm

Lab ID: 1305307-002

Matrix: SOIL

Collection Date: 5/8/2013 9:45:00 AM Received Date: 5/8/2013 2:05:00 PM

Client Sample ID: Central OCD-02-05082013

Analyses	Result	RL Q	ual Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS			H		Analyst	: JRR
Sulfate	450	30	mg/Kg	20	5/9/2013 3:19:50 PM	7373
EPA METHOD 7471: MERCURY					Analyst	: JLF
Mercury	ND	0.033	mg/Kg	1	5/22/2013 9:15:20 AM	7539
EPA METHOD 6010B: SOIL METALS			0 0		Analyst	: JLF
Arsenic	ND	12	mg/Kg	5	5/28/2013 10:36:12 AM	
Barium	280	1.0	mg/Kg	10	5/28/2013 10:39:02 AM	
Cadmium	ND	0.50	mg/Kg	5	5/28/2013 10:36:12 AM	
Chromium	19	1.5	mg/Kg	5	5/28/2013 10:36:12 AM	
Copper	2.8	1.5	mg/Kg	5	5/28/2013 10:36:12 AM	
Iron	22000	500	mg/Kg		5/28/2013 10:41:34 AM	
Lead	9.6	1.2	mg/Kg	5	5/28/2013 10:36:12 AM	
Manganese	380	1.0	mg/Kg	10	5/28/2013 10:39:02 AM	
Selenium	ND	1.0	mg/Kg	5	5/28/2013 10:36:12 AM	
Silver	ND	1.2	mg/Kg	5	5/28/2013 10:36:12 AM	
Uranium	ND	25	mg/Kg	5	5/28/2013 10:36:12 AM	
Zinc	33	12	mg/Kg	5	5/28/2013 10:36:12 AM	
	00	12	mg/rtg	3		
EPA METHOD 8270C: SEMIVOLATILES					Analyst	JDC
4-Chloro-3-methylphenol	ND	1.0	mg/Kg	1	5/22/2013 5:37:26 PM	7537
2-Chlorophenol	ND	0.40	mg/Kg	1	5/22/2013 5:37:26 PM	7537
2,4-Dichlorophenol	ND	0.80	mg/Kg	1	5/22/2013 5:37:26 PM	7537
2,4-Dimethylphenol	ND	0.60	mg/Kg	1	5/22/2013 5:37:26 PM	7537
4,6-Dinitro-2-methylphenol	ND	1.0	mg/Kg	1	5/22/2013 5:37:26 PM	7537
2,4-Dinitrophenol	ND	0.80	mg/Kg	1	5/22/2013 5:37:26 PM	7537
2-Methylphenol	ND	1.0	mg/Kg	1	5/22/2013 5:37:26 PM	7537
3+4-Methylphenol	ND	0.40	mg/Kg	1	5/22/2013 5:37:26 PM	7537
2-Nitrophenol	ND	0.40	mg/Kg	1	5/22/2013 5:37:26 PM	7537
4-Nitrophenol	ND	0.50	mg/Kg	1	5/22/2013 5:37:26 PM	7537
Pentachlorophenol	ND	0.80	mg/Kg	1	5/22/2013 5:37:26 PM	7537
Phenol	ND	0.40	mg/Kg	1	5/22/2013 5:37:26 PM	7537
2,4,5-Trichlorophenol	ND	0.40	mg/Kg	1	5/22/2013 5:37:26 PM	7537
2,4,6-Trichlorophenol	ND	0.40	mg/Kg	1	5/22/2013 5:37:26 PM	7537
Surr: 2,4,6-Tribromophenol	90.1	40.1-130	%REC	1	5/22/2013 5:37:26 PM	7537
Surr: 2-Fluorobiphenyl	74.7	44.4-123	%REC	1	5/22/2013 5:37:26 PM	7537
Surr: 2-Fluorophenol	70.3	41.9-112	%REC	1	5/22/2013 5:37:26 PM	7537
Surr: 4-Terphenyl-d14	79.0	29.6-130	%REC	1	5/22/2013 5:37:26 PM	7537
Surr: Nitrobenzene-d5	82.9	42.4-132	%REC	1	5/22/2013 5:37:26 PM	7537
Surr: Phenol-d5	70.8	44.3-119	%REC	1	5/22/2013 5:37:26 PM	7537
EPA METHOD 8260B: VOLATILES					Analyst:	DAM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 6 of 49

- P Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

Lab Order 1305307

Date Reported: 6/14/2013

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Gallup

Client Sample ID: Central OCD-02-05082013

OCD Land Farm Project:

Collection Date: 5/8/2013 9:45:00 AM

Lab ID: 1305307-002

Matrix: SOIL

Received Date: 5/8/2013 2:05:00 PM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analys	: DAM
Benzene	ND	0.048	mg/Kg	1	5/21/2013 1:59:29 AM	7495
Toluene	ND	0.048	mg/Kg	1	5/21/2013 1:59:29 AM	7495
Ethylbenzene	ND	0.048	mg/Kg	1	5/21/2013 1:59:29 AM	7495
Methyl tert-butyl ether (MTBE)	ND	0.048	mg/Kg	1	5/21/2013 1:59:29 AM	7495
1,2,4-Trimethylbenzene	ND	0.048	mg/Kg	1	5/21/2013 1:59:29 AM	7495
1,3,5-Trimethylbenzene	ND	0.048	mg/Kg	1	5/21/2013 1:59:29 AM	7495
1,2-Dichloroethane (EDC)	ND	0.048	mg/Kg	1	5/21/2013 1:59:29 AM	7495
1,2-Dibromoethane (EDB)	ND	0.048	mg/Kg	1	5/21/2013 1:59:29 AM	7495
Naphthalene	ND	0.095	mg/Kg	1	5/21/2013 1:59:29 AM	7495
1-Methylnaphthalene	ND	0.19	mg/Kg	1	5/21/2013 1:59:29 AM	7495
2-Methylnaphthalene	ND	0.19	mg/Kg	1	5/21/2013 1:59:29 AM	7495
Acetone	ND	0.71	mg/Kg	1	5/21/2013 1:59:29 AM	7495
Bromobenzene	ND	0.048	mg/Kg	1	5/21/2013 1:59:29 AM	7495
Bromodichloromethane	ND	0.048	mg/Kg	1	5/21/2013 1:59:29 AM	7495
Bromoform	ND	0.048	mg/Kg	1	5/21/2013 1:59:29 AM	7495
Bromomethane	ND	0.14	mg/Kg	1	5/21/2013 1:59:29 AM	7495
2-Butanone	ND	0.48	mg/Kg	1	5/21/2013 1:59:29 AM	7495
Carbon disulfide	ND	0.48	mg/Kg	1	5/21/2013 1:59:29 AM	7495
Carbon tetrachloride	ND	0.095	mg/Kg	1	5/21/2013 1:59:29 AM	7495
Chlorobenzene	ND	0.048	mg/Kg	1	5/21/2013 1:59:29 AM	7495
Chloroethane	ND	0.095	mg/Kg	1	5/21/2013 1:59:29 AM	7495
Chloroform	ND	0.048	mg/Kg	1	5/21/2013 1:59:29 AM	7495
Chloromethane	ND	0.14	mg/Kg	1	5/21/2013 1:59:29 AM	7495
2-Chlorotoluene	ND	0.048	mg/Kg	1	5/21/2013 1:59:29 AM	7495
4-Chlorotoluene	ND	0.048	mg/Kg	1	5/21/2013 1:59:29 AM	7495
cis-1,2-DCE	ND	0.048	mg/Kg	1	5/21/2013 1:59:29 AM	7495
cis-1,3-Dichloropropene	ND	0.048	mg/Kg	1	5/21/2013 1:59:29 AM	7495
1,2-Dibromo-3-chloropropane	ND	0.095	mg/Kg	1	5/21/2013 1:59:29 AM	7495
Dibromochloromethane	ND	0.048	mg/Kg	1	5/21/2013 1:59:29 AM	7495
Dibromomethane	ND	0.095	mg/Kg	1	5/21/2013 1:59:29 AM	7495
1,2-Dichlorobenzene	ND	0.048	mg/Kg	1	5/21/2013 1:59:29 AM	7495
1,3-Dichlorobenzene	ND	0.048	mg/Kg	1	5/21/2013 1:59:29 AM	7495
1,4-Dichlorobenzene	ND	0.048	mg/Kg	1	5/21/2013 1:59:29 AM	7495
Dichlorodifluoromethane	ND	0.048	mg/Kg	1	5/21/2013 1:59:29 AM	7495
1,1-Dichloroethane	ND	0.095	mg/Kg	1	5/21/2013 1:59:29 AM	7495
1,1-Dichloroethene	ND	0.048	mg/Kg	1	5/21/2013 1:59:29 AM	7495
1,2-Dichloropropane	ND	0.048	mg/Kg	1	5/21/2013 1:59:29 AM	7495
1,3-Dichloropropane	ND	0.048	mg/Kg	1	5/21/2013 1:59:29 AM	7495
2,2-Dichloropropane	ND	0.095	mg/Kg	1	5/21/2013 1:59:29 AM	7495
1,1-Dichloropropene	ND	0.095	mg/Kg	1	5/21/2013 1:59:29 AM	7495

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- Е Value above quantitation range
- Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- RPD outside accepted recovery limits

- В Analyte detected in the associated Method Blank
- Η Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit

- Not Detected at the Reporting Limit Page 7 of 49 Sample pH greater than 2 for VOA and TOC only. P
- Reporting Detection Limit

Lab Order 1305307

Date Reported: 6/14/2013

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Gallup

Client Sample ID: Central OCD-02-05082013

OCD Land Farm Project:

Collection Date: 5/8/2013 9:45:00 AM Received Date: 5/8/2013 2:05:00 PM

Lab ID: 1305307-002

Matrix: SOIL

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analyst	DAM
Hexachlorobutadiene	ND	0.095	mg/Kg	1	5/21/2013 1:59:29 AM	7495
2-Hexanone	ND	0.48	mg/Kg	1	5/21/2013 1:59:29 AM	7495
Isopropylbenzene	ND	0.048	mg/Kg	1	5/21/2013 1:59:29 AM	7495
4-lsopropyltoluene	ND	0.048	mg/Kg	1	5/21/2013 1:59:29 AM	7495
4-Methyl-2-pentanone	ND	0.48	mg/Kg	1	5/21/2013 1:59:29 AM	7495
Methylene chloride	ND	0.14	mg/Kg	1	5/21/2013 1:59:29 AM	7495
n-Butylbenzene	ND	0.14	mg/Kg	1	5/21/2013 1:59:29 AM	7495
n-Propylbenzene	ND	0.048	mg/Kg	1	5/21/2013 1:59:29 AM	7495
sec-Butylbenzene	ND	0.048	mg/Kg	1	5/21/2013 1:59:29 AM	7495
Styrene	ND	0.048	mg/Kg	1	5/21/2013 1:59:29 AM	7495
tert-Butylbenzene	ND	0.048	mg/Kg	1	5/21/2013 1:59:29 AM	7495
1,1,1,2-Tetrachloroethane	ND	0.048	mg/Kg	1	5/21/2013 1:59:29 AM	7495
1,1,2,2-Tetrachloroethane	ND	0.048	mg/Kg	1	5/21/2013 1:59:29 AM	7495
Tetrachloroethene (PCE)	ND	0.048	mg/Kg	1	5/21/2013 1:59:29 AM	7495
trans-1,2-DCE	ND	0.048	mg/Kg	1	5/21/2013 1:59:29 AM	7495
trans-1,3-Dichloropropene	ND	0.048	mg/Kg	1	5/21/2013 1:59:29 AM	7495
1,2,3-Trichlorobenzene	ND	0.095	mg/Kg	1	5/21/2013 1:59:29 AM	7495
1,2,4-Trichlorobenzene	ND	0.048	mg/Kg	1	5/21/2013 1:59:29 AM	7495
1,1,1-Trichloroethane	ND	0.048	mg/Kg	1	5/21/2013 1:59:29 AM	7495
1,1,2-Trichloroethane	ND	0.048	mg/Kg	1	5/21/2013 1:59:29 AM	7495
Trichloroethene (TCE)	ND	0.048	mg/Kg	1	5/21/2013 1:59:29 AM	7495
Trichlorofluoromethane	ND	0.048	mg/Kg	1	5/21/2013 1:59:29 AM	7495
1,2,3-Trichloropropane	ND	0.095	mg/Kg	1	5/21/2013 1:59:29 AM	7495
Vinyl chloride	ND	0.048	mg/Kg	1	5/21/2013 1:59:29 AM	7495
Xylenes, Total	ND	0.095	mg/Kg	1	5/21/2013 1:59:29 AM	7495
Surr: 1,2-Dichloroethane-d4	87.8	70-130	%REC	1	5/21/2013 1:59:29 AM	7495
Surr: 4-Bromofluorobenzene	83.7	70-130	%REC	1	5/21/2013 1:59:29 AM	7495
Surr: Dibromofluoromethane	93.5	70-130	%REC	1	5/21/2013 1:59:29 AM	7495
Surr: Toluene-d8	94.9	70-130	%REC	1	5/21/2013 1:59:29 AM	7495
EPA METHOD 418.1: TPH					Analyst	LRW
Petroleum Hydrocarbons, TR	740	20	mg/Kg	1	5/13/2013	7382

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- Е Value above quantitation range
- Analyte detected below quantitation limits J
- O RSD is greater than RSDlimit
- RPD outside accepted recovery limits

- Analyte detected in the associated Method Blank В
- Holding times for preparation or analysis exceeded Η
- ND Not Detected at the Reporting Limit
- Not Detected at the Reporting Limit Page 8 of 49 Sample pH greater than 2 for VOA and TOC only. P
- Reporting Detection Limit

Lab Order 1305307

Date Reported: 6/14/2013

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Gallup

Project: OCD Land Farm

Lab ID: 1305307-003

Client Sample ID: Central OCD-03-05082013

Collection Date: 5/8/2013 10:10:00 AM

Received Date: 5/8/2013 2:05:00 PM

Analyses	Result	RL Qı	ual Units	DF	Date Analyzed	Batch
EPA METHOD 8082: PCB'S			na ya kata ka sangala kata kata kata kata kata kata kata k	Service Pro Consideration (1997)	Analyst	: scc
Aroclor 1016	ND	0.020	mg/Kg	1	5/22/2013 8:00:02 PM	7504
Aroclor 1221	ND	0.020	mg/Kg	1	5/22/2013 8:00:02 PM	7504
Aroclor 1232	ND	0.020	mg/Kg	1	5/22/2013 8:00:02 PM	7504
Aroclor 1242	ND	0.020	mg/Kg	1	5/22/2013 8:00:02 PM	7504
Aroclor 1248	ND	0.020	mg/Kg	1	5/22/2013 8:00:02 PM	7504
Aroclor 1254	ND	0.020	mg/Kg	1	5/22/2013 8:00:02 PM	7504
Aroclor 1260	ND	0.020	mg/Kg	1	5/22/2013 8:00:02 PM	7504
Surr: Decachlorobiphenyl	62.8	31.8-151	%REC	1	5/22/2013 8:00:02 PM	7504
Surr: Tetrachloro-m-xylene	54.8	26.2-144	%REC	1	5/22/2013 8:00:02 PM	7504
EPA METHOD 8021B: VOLATILES					Analyst	NSB
Benzene	ND	0.048	mg/Kg	1	5/11/2013 12:42:01 AM	7366
Toluene	ND	0.048	mg/Kg	1	5/11/2013 12:42:01 AM	7366
Ethylbenzene	ND	0.048	mg/Kg	1	5/11/2013 12:42:01 AM	7366
Xylenes, Total	ND	0.095	mg/Kg	1	5/11/2013 12:42:01 AM	7366
Surr: 4-Bromofluorobenzene	98.2	80-120	%REC	1	5/11/2013 12:42:01 AM	7366
EPA METHOD 8310: PAHS					Analyst:	scc
Naphthalene	· ND	1.3	mg/Kg	5	5/28/2013 12:19:38 PM	7505
1-Methylnaphthalene	ND	1.3	mg/Kg	5	5/28/2013 12:19:38 PM	7505
2-Methylnaphthalene	ND	1.3	mg/Kg	5	5/28/2013 12:19:38 PM	
Acenaphthylene	ND	1.3	mg/Kg	5	5/28/2013 12:19:38 PM	7505
Acenaphthene	ND	1.3	mg/Kg	5	5/28/2013 12:19:38 PM	7505
Fluorene	ND	0.15	mg/Kg	5	5/28/2013 12:19:38 PM	7505
Phenanthrene	ND	0.075	mg/Kg	5	5/28/2013 12:19:38 PM	7505
Anthracene	ND	0.075	mg/Kg	5	5/28/2013 12:19:38 PM	7505
Fluoranthene	ND	0.10	mg/Kg	5	5/28/2013 12:19:38 PM	7505
Pyrene	ND	0.13	mg/Kg	5	5/28/2013 12:19:38 PM	7505
Benz(a)anthracene	ND	0.050	mg/Kg	5	5/28/2013 12:19:38 PM	7505
Chrysene	ND	0.050	mg/Kg	5	5/28/2013 12:19:38 PM	7505
Benzo(b)fluoranthene	ND	0.050	mg/Kg	5	5/28/2013 12:19:38 PM	7505
Benzo(k)fluoranthene	ND	0.050	mg/Kg	5	5/28/2013 12:19:38 PM	7505
Benzo(a)pyrene	ND	0.050	mg/Kg	5	5/28/2013 12:19:38 PM	7505
Dibenz(a,h)anthracene	ND	0.050	mg/Kg	5	5/28/2013 12:19:38 PM	7505
Benzo(g,h,i)perylene	ND	0.050	mg/Kg	5	5/28/2013 12:19:38 PM	7505
Indeno(1,2,3-cd)pyrene	ND	0.050	mg/Kg	5	5/28/2013 12:19:38 PM	7505
Surr: Benzo(e)pyrene	92.5	36.7-118	%REC	5	5/28/2013 12:19:38 PM	7505
EPA METHOD 300.0: ANIONS					Analyst:	JRR
Fluoride	2.7	0.30	mg/Kg	1	5/9/2013 3:32:14 PM	7373
Chloride	280	30	mg/Kg	20	5/9/2013 3:44:38 PM	7373
Nitrogen, Nitrate (As N)	0.34	0.30	mg/Kg	1	5/9/2013 3:32:14 PM	7373

Matrix: SOIL

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- Ε Value above quantitation range
- J Analyte detected below quantitation limits
- 0 RSD is greater than RSDlimit
- R RPD outside accepted recovery limits

- Analyte detected in the associated Method Blank
- Η Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit

Page 9 of 49

- Sample pH greater than 2 for VOA and TOC only.
- RLReporting Detection Limit

Lab Order 1305307

Date Reported: 6/14/2013

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Gallup

OCD Land Farm Project:

Lab ID: 1305307-003 Matrix: SOIL

Collection Date: 5/8/2013 10:10:00 AM Received Date: 5/8/2013 2:05:00 PM

Client Sample ID: Central OCD-03-05082013

Analyses	Result	RL Qı	ıal Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS				rkuntherfolgsschaftelikke mietzig jeroch zeiteret word	Analys	t: JRR
Sulfate	530	30	mg/Kg	20	5/9/2013 3:44:38 PM	7373
EPA METHOD 7471: MERCURY					Analys	f JIF
Mercury	ND	0.033	mg/Kg	1	5/22/2013 9:17:09 AM	
,	110	0.000	mgmvg	•		
EPA METHOD 6010B: SOIL METALS					Analys	
Arsenic	ND	12	mg/Kg	5	5/28/2013 10:54:08 AM	
Barium	290	1.0	mg/Kg	10	5/28/2013 10:56:38 AM	
Cadmium	ND	0.50	mg/Kg	5	5/28/2013 10:54:08 AM	
Chromium	18	1.5	mg/Kg	5	5/28/2013 10:54:08 AM	
Copper	4.6	1.5	mg/Kg	5	5/31/2013 4:32:11 PM	7531
Iron	21000	500	mg/Kg		5/28/2013 10:59:09 AN	
Lead	3.2	1.2	mg/Kg	5	5/28/2013 10:54:08 AN	<i>l</i> 7531
Manganese	380	1.0	mg/Kg	10	5/28/2013 10:56:38 AN	<i>l</i> 7531
Selenium	ND	12	mg/Kg	5	5/28/2013 10:54:08 AN	<i>l</i> 7531
Silver	ND	1.2	mg/Kg	5	5/28/2013 10:54:08 AM	<i>l</i> 7531
Uranium	ND	25	mg/Kg	5	5/28/2013 10:54:08 AN	7531
Zinc	31	12	mg/Kg	5	5/28/2013 10:54:08 AN	7531
EPA METHOD 8270C: SEMIVOLATILES					Analys	t: JDC
4-Chloro-3-methylphenol	ND	0.50	mg/Kg	1	5/22/2013 6:08:31 PM	7537
2-Chlorophenol	ND	0.20	mg/Kg	1	5/22/2013 6:08:31 PM	7537
2,4-Dichlorophenol	ND	0.40	mg/Kg	1	5/22/2013 6:08:31 PM	7537
2,4-Dimethylphenol	ND	0.30	mg/Kg	1	5/22/2013 6:08:31 PM	7537
4,6-Dinitro-2-methylphenol	ND	0.50	mg/Kg	1	5/22/2013 6:08:31 PM	7537
2,4-Dinitrophenol	ND	0.40	mg/Kg	1	5/22/2013 6:08:31 PM	7537
2-Methylphenol	ND	0.50	mg/Kg	1	5/22/2013 6:08:31 PM	7537
3+4-Methylphenol	ND	0.20	mg/Kg	1	5/22/2013 6:08:31 PM	7537
2-Nitrophenol	ND	0.20	mg/Kg	1	5/22/2013 6:08:31 PM	7537
4-Nitrophenol	ND	0.25	mg/Kg	1	5/22/2013 6:08:31 PM	7537
Pentachlorophenol	ND	0.40	mg/Kg	1	5/22/2013 6:08:31 PM	7537
Phenol	ND	0.20	mg/Kg	1	5/22/2013 6:08:31 PM	7537
2,4,5-Trichlorophenol	ND	0.20	mg/Kg	1	5/22/2013 6:08:31 PM	7537
2,4,6-Trichlorophenol	ND	0.20	mg/Kg	1	5/22/2013 6:08:31 PM	7537
Surr: 2,4,6-Tribromophenol	86.6	40.1-130	%REC	1	5/22/2013 6:08:31 PM	7537
Surr: 2-Fluorobiphenyl	78.3	44.4-123	%REC	1	5/22/2013 6:08:31 PM	7537
Surr: 2-Fluorophenol	60.6	41.9-112	%REC	1	5/22/2013 6:08:31 PM	7537
Surr: 4-Terphenyl-d14	78.9	29.6-130	%REC	1	5/22/2013 6:08:31 PM	7537
Surr: Nitrobenzene-d5	82.0	42.4-132	%REC	1	5/22/2013 6:08:31 PM	7537
Surr: Phenol-d5	72.1	44.3-119	%REC	1	5/22/2013 6:08:31 PM	7537

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- Ε Value above quantitation range
- Analyte detected below quantitation limits
- 0 RSD is greater than RSDlimit
- RPD outside accepted recovery limits

- Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit
- Not Detected at the Reporting Limit Page 10 of 49 Sample pH greater than 2 for VOA and TOC only. P
- RL Reporting Detection Limit

Lab Order 1305307

Date Reported: 6/14/2013

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Gallup

Client Sample ID: Central OCD-03-05082013

Project: OCD Land Farm Collection Date: 5/8/2013 10:10:00 AM

Lab ID: 1305307-003

Matrix: SOIL

Received Date: 5/8/2013 2:05:00 PM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES				***************************************	Analyst	: DAM
Benzene	ND	0.046	mg/Kg	1	5/21/2013 2:28:09 AM	7495
Toluene	ND	0.046	mg/Kg	1	5/21/2013 2:28:09 AM	7495
Ethylbenzene	ND	0.046	mg/Kg	1	5/21/2013 2:28:09 AM	7495
Methyl tert-butyl ether (MTBE)	ND	0.046	mg/Kg	1	5/21/2013 2:28:09 AM	7495
1,2,4-Trimethylbenzene	ND	0.046	mg/Kg	1	5/21/2013 2:28:09 AM	7495
1,3,5-Trimethylbenzene	ND	0.046	mg/Kg	1	5/21/2013 2:28:09 AM	7495
1,2-Dichloroethane (EDC)	ND	0.046	mg/Kg	1	5/21/2013 2:28:09 AM	7495
1,2-Dibromoethane (EDB)	ND	0.046	mg/Kg	1	5/21/2013 2:28:09 AM	7495
Naphthalene	ND	0.093	mg/Kg	1	5/21/2013 2:28:09 AM	7495
1-Methylnaphthalene	ND	0.19	mg/Kg	1	5/21/2013 2:28:09 AM	7495
2-Methylnaphthalene	ND	0.19	mg/Kg	1	5/21/2013 2:28:09 AM	7495
Acetone	ND	0.69	mg/Kg	1	5/21/2013 2:28:09 AM	7495
Bromobenzene	ND	0.046	mg/Kg	1	5/21/2013 2:28:09 AM	7495
Bromodichloromethane	ND	0.046	mg/Kg	1	5/21/2013 2:28:09 AM	7495
Bromoform	ND	0.046	mg/Kg	1	5/21/2013 2:28:09 AM	7495
Bromomethane	ND	0.14	mg/Kg	1	5/21/2013 2:28:09 AM	7495
2-Butanone	ND	0.46	mg/Kg	1	5/21/2013 2:28:09 AM	7495
Carbon disulfide	ND	0.46	mg/Kg	1	5/21/2013 2:28:09 AM	7495
Carbon tetrachloride	ND	0.093	mg/Kg	1	5/21/2013 2:28:09 AM	7495
Chlorobenzene	ND	0.046	mg/Kg	1	5/21/2013 2:28:09 AM	7495
Chloroethane	ND	0.093	mg/Kg	1	5/21/2013 2:28:09 AM	7495
Chloroform	ND	0.046	mg/Kg	1	5/21/2013 2:28:09 AM	7495
Chloromethane	. ND	0.14	mg/Kg	1	5/21/2013 2:28:09 AM	7495
2-Chlorotoluene	ND	0.046	mg/Kg	1	5/21/2013 2:28:09 AM	7495
4-Chlorotoluene	ND	0.046	mg/Kg	1	5/21/2013 2:28:09 AM	7495
cis-1,2-DCE	ND	0.046	mg/Kg	1	5/21/2013 2:28:09 AM	7495
cis-1,3-Dichloropropene	ND	0.046	mg/Kg	1	5/21/2013 2:28:09 AM	7495
1,2-Dibromo-3-chloropropane	ND	0.093	mg/Kg	1	5/21/2013 2:28:09 AM	7495
Dibromochloromethane	ND	0.046	mg/Kg	1	5/21/2013 2:28:09 AM	7495
Dibromomethane	ND	0.093	mg/Kg	1	5/21/2013 2:28:09 AM	7495
1,2-Dichlorobenzene	ND	0.046	mg/Kg	1	5/21/2013 2:28:09 AM	7495
1,3-Dichlorobenzene	ND	0.046	mg/Kg	1	5/21/2013 2:28:09 AM	7495
1,4-Dichlorobenzene	ND	0.046	mg/Kg	1	5/21/2013 2:28:09 AM	7495
Dichlorodifluoromethane	ND	0.046	mg/Kg	1	5/21/2013 2:28:09 AM	7495
1,1-Dichloroethane	ND	0.093	mg/Kg	1	5/21/2013 2:28:09 AM	7495
1,1-Dichloroethene	ND	0.046	mg/Kg	1	5/21/2013 2:28:09 AM	7495
1,2-Dichloropropane	ND	0.046	mg/Kg	1	5/21/2013 2:28:09 AM	7495
1,3-Dichloropropane	ND	0.046	mg/Kg	1	5/21/2013 2:28:09 AM	7495
2,2-Dichloropropane	ND	0.093	mg/Kg	1	5/21/2013 2:28:09 AM	7495
1,1-Dichloropropene	ND	0.093	mg/Kg	1	5/21/2013 2:28:09 AM	7495

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- Analyte detected below quantitation limits J
- 0 RSD is greater than RSDlimit
- R RPD outside accepted recovery limits

- Analyte detected in the associated Method Blank
- Η Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- Not Detected at the Reporting Limit Page 11 of 49 Sample pH greater than 2 for VOA and TOC only. P
- Reporting Detection Limit

Lab Order 1305307

Date Reported: 6/14/2013

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Gallup

OCD Land Farm Project:

Lab ID: 1305307-003 Matrix: SOIL

Collection Date: 5/8/2013 10:10:00 AM Received Date: 5/8/2013 2:05:00 PM

Client Sample ID: Central OCD-03-05082013

Analyses	Result	RL Qu	ıal Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analyst	: DAM
Hexachlorobutadiene	ND	0.093	mg/Kg	1	5/21/2013 2:28:09 AM	7495
2-Hexanone	ND	0.46	mg/Kg	1	5/21/2013 2:28:09 AM	7495
Isopropylbenzene	ND	0.046	mg/Kg	1	5/21/2013 2:28:09 AM	7495
4-Isopropyltoluene	ND	0.046	mg/Kg	1	5/21/2013 2:28:09 AM	7495
4-Methyl-2-pentanone	ND	0.46	mg/Kg	1	5/21/2013 2:28:09 AM	7495
Methylene chloride	ND	0.14	mg/Kg	1	5/21/2013 2:28:09 AM	7495
n-Butylbenzene	ND	0.14	mg/Kg	1	5/21/2013 2:28:09 AM	7495
n-Propylbenzene	ND	0.046	mg/Kg	1	5/21/2013 2:28:09 AM	7495
sec-Butylbenzene	ND	0.046	mg/Kg	1	5/21/2013 2:28:09 AM	7495
Styrene	ND	0.046	mg/Kg	1	5/21/2013 2:28:09 AM	7495
tert-Butylbenzene	ND	0.046	mg/Kg	1	5/21/2013 2:28:09 AM	7495
1,1,1,2-Tetrachloroethane	ND	0.046	mg/Kg	1	5/21/2013 2:28:09 AM	7495
1,1,2,2-Tetrachloroethane	ND	0.046	mg/Kg	1	5/21/2013 2:28:09 AM	7495
Tetrachloroethene (PCE)	ND	0.046	mg/Kg	1	5/21/2013 2:28:09 AM	7495
trans-1,2-DCE	ND	0.046	mg/Kg	1	5/21/2013 2:28:09 AM	7495
trans-1,3-Dichloropropene	ND	0.046	mg/Kg	1	5/21/2013 2:28:09 AM	7495
1,2,3-Trichlorobenzene	ND	0.093	mg/Kg	1	5/21/2013 2:28:09 AM	7495
1,2,4-Trichlorobenzene	ND	0.046	mg/Kg	1	5/21/2013 2:28:09 AM	7495
1,1,1-Trichloroethane	ND	0.046	mg/Kg	1	5/21/2013 2:28:09 AM	7495
1,1,2-Trichloroethane	ND	0.046	mg/Kg	1	5/21/2013 2:28:09 AM	7495
Trichloroethene (TCE)	ND	0.046	mg/Kg	1	5/21/2013 2:28:09 AM	7495
Trichlorofluoromethane	ND	0.046	mg/Kg	1	5/21/2013 2:28:09 AM	7495
1,2,3-Trichloropropane	ND	0.093	mg/Kg	1	5/21/2013 2:28:09 AM	7495
Vinyl chloride	ND	0.046	mg/Kg	1	5/21/2013 2:28:09 AM	7495
Xylenes, Total	ND	0.093	mg/Kg	1	5/21/2013 2:28:09 AM	7495
Surr: 1,2-Dichloroethane-d4	85.4	70-130	%REC	1	5/21/2013 2:28:09 AM	7495
Surr: 4-Bromofluorobenzene	86.7	70-130	%REC	1	5/21/2013 2:28:09 AM	7495
Surr: Dibromofluoromethane	92.7	70-130	%REC	1	5/21/2013 2:28:09 AM	7495
Surr: Toluene-d8	97.1	70-130	%REC	1	5/21/2013 2:28:09 AM	7495
EPA METHOD 418.1: TPH					Analyst:	LRW
Petroleum Hydrocarbons, TR	ND	20	mg/Kg	1	5/13/2013	7382

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- Ε Value above quantitation range
- Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- RPD outside accepted recovery limits

- Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

- Not Detected at the Reporting Limit Page 12 of 49 Sample pH greater than 2 for VOA and TOC only. P
- RL Reporting Detection Limit

Lab Order 1305307

Date Reported: 6/14/2013

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Gallup

Client Sample ID: Central OCD-04-05082013

Project: OCD Land Farm Collection Date: 5/8/2013 11:05:00 AM

Lab ID: 1305307-004

Matrix: SOIL

Received Date: 5/8/2013 2:05:00 PM

Analyses	Result	RL Qu	ıal Units	DF	Date Analyzed	Batch
EPA METHOD 8082: PCB'S					Analys	t: SCC
Aroclor 1016	ND	0.020	mg/Kg	1	5/22/2013 9:39:40 PM	7504
Aroclor 1221	ND	0.020	mg/Kg	1	5/22/2013 9:39:40 PM	7504
Aroclor 1232	ND	0.020	mg/Kg	1	5/22/2013 9:39:40 PM	7504
Aroclor 1242	ND	0.020	mg/Kg	1	5/22/2013 9:39:40 PM	7504
Aroclor 1248	ND	0.020	mg/Kg	1	5/22/2013 9:39:40 PM	7504
Aroclor 1254	ND	0.020	mg/Kg	1	5/22/2013 9:39:40 PM	7504
Aroclor 1260	ND	0.020	mg/Kg	1	5/22/2013 9:39:40 PM	7504
Surr: Decachlorobiphenyl	121	31.8-151	%REC	1	5/22/2013 9:39:40 PM	7504
Surr: Tetrachloro-m-xylene	97.2	26.2-144	%REC	1	5/22/2013 9:39:40 PM	7504
EPA METHOD 8021B: VOLATILES					Analys	t: NSB
Benzene	ND	0.049	mg/Kg	1	5/11/2013 1:12:12 AM	7366
Toluene	ND	0.049	mg/Kg	1	5/11/2013 1:12:12 AM	7366
Ethylbenzene	ND	0.049	mg/Kg	1	5/11/2013 1:12:12 AM	7366
Xylenes, Total	ND	0.097	mg/Kg	1	5/11/2013 1:12:12 AM	7366
Surr: 4-Bromofluorobenzene	99.6	80-120	%REC	1	5/11/2013 1:12:12 AM	7366
EPA METHOD 8310: PAHS					Analys	t: SCC
Naphthalene	ND	1.3	mg/Kg	5	5/28/2013 12:48:55 PN	1 7505
1-Methylnaphthalene	ND	1.3	mg/Kg	5	5/28/2013 12:48:55 PN	1 7505
2-Methylnaphthalene	ND	1.3	mg/Kg	5	5/28/2013 12:48:55 PN	7505
Acenaphthylene	ND	1.3	mg/Kg	5	5/28/2013 12:48:55 PN	1 7505
Acenaphthene	ND	1.3	mg/Kg	5	5/28/2013 12:48:55 PM	1 7505
Fluorene	ND	0.15	mg/Kg	5	5/28/2013 12:48:55 PM	
Phenanthrene	ND	0.075	mg/Kg	5	5/28/2013 12:48:55 PM	7505
Anthracene	ND	0.075	mg/Kg	5	5/28/2013 12:48:55 PM	7505
Fluoranthene	ND	0.10	mg/Kg	5	5/28/2013 12:48:55 PM	1 7505
Pyrene	ND	0.13	mg/Kg	5	5/28/2013 12:48:55 PM	
Benz(a)anthracene	ND	0.050	mg/Kg	5	5/28/2013 12:48:55 PM	7505
Chrysene	ND	0.050	mg/Kg	5	5/28/2013 12:48:55 PM	7505
Benzo(b)fluoranthene	ND	0.050	mg/Kg	5	5/28/2013 12:48:55 PM	
Benzo(k)fluoranthene	ND	0.050	mg/Kg	5	5/28/2013 12:48:55 PM	7505
Benzo(a)pyrene	ND	0.050	mg/Kg	5	5/28/2013 12:48:55 PM	7505
Dibenz(a,h)anthracene	ND	0.050	mg/Kg	5	5/28/2013 12:48:55 PM	7505
Benzo(g,h,i)perylene	ND	0.050	mg/Kg	5	5/28/2013 12:48:55 PM	1 7505
Indeno(1,2,3-cd)pyrene	ND	0.050	mg/Kg	5	5/28/2013 12:48:55 PM	7505
Surr: Benzo(e)pyrene	115	36.7-118	%REC	5	5/28/2013 12:48:55 PM	
EPA METHOD 300.0: ANIONS					Analys	: JRR
Fluoride	3.7	1.5	mg/Kg	5	5/9/2013 3:57:02 PM	7373
Chloride	180	7.5	mg/Kg	5	5/9/2013 3:57:02 PM	7373
Nitrogen, Nitrate (As N)	14	1.5	mg/Kg	5	5/9/2013 3:57:02 PM	7373

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- 0 RSD is greater than RSDlimit
- RPD outside accepted recovery limits

- Analyte detected in the associated Method Blank
- Η Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
 - Not Detected at the Reporting Limit Page 13 of 49 Sample pH greater than 2 for VOA and TOC only.
- Reporting Detection Limit

P

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Gallup

Client Sample ID: Central OCD-04-05082013

OCD Land Farm Project:

Collection Date: 5/8/2013 11:05:00 AM

1305307-004 Lab ID:

Matrix: SOIL Received Date: 5/8/2013 2:05:00 PM

Analyses	Result	RL Q	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analys	t: JRR
Sulfate	570	7.5	mg/Kg	5	5/9/2013 3:57:02 PM	7373
EPA METHOD 7471: MERCURY					Analys	t: JLF
Mercury	ND	0.033	mg/Kg	1	5/22/2013 9:22:40 AM	7539
EPA METHOD 6010B: SOIL METALS					Analys	
	ND	40	ma m /1/ m	r-	•	
Arsenic	ND 140	12	mg/Kg	5	5/28/2013 11:01:50 AN	
Barium	140	2.0	mg/Kg	20	5/31/2013 4:46:38 PM	7531
Cadmium	ND	0.50	mg/Kg	5	5/28/2013 11:01:50 AN	
Chromium	14	1.5	mg/Kg	5	5/28/2013 11:01:50 AN	
Copper	3.7	1.5	mg/Kg	5	5/31/2013 4:34:59 PM	7531
lron	17000	500	mg/Kg		5/28/2013 11:14:35 AN	
Lead	1.8	1.2	mg/Kg	5	5/28/2013 11:01:50 AN	
Manganese	560	2.0	mg/Kg	20	5/31/2013 4:46:38 PM	7531
Selenium	ND	12	mg/Kg	5	5/31/2013 4:34:59 PM	7531
Silver	ND	1.2	mg/Kg	5	5/28/2013 11:01:50 AN	
Uranium	ND	25	mg/Kg	5	5/28/2013 11:01:50 AM	
Zinc	21	12	mg/Kg	5	5/28/2013 11:01:50 AM	1 7531
EPA METHOD 8270C: SEMIVOLATILES					Analys	t: JDC
4-Chloro-3-methylphenol	ND	0.50	mg/Kg	1	5/22/2013 6:39:33 PM	7537
2-Chlorophenol	ND	0.20	mg/Kg	1	5/22/2013 6:39:33 PM	7537
2,4-Dichlorophenol	ND	0.40	mg/Kg	1	5/22/2013 6:39:33 PM	7537
2,4-Dimethylphenol	ND	0.30	mg/Kg	1	5/22/2013 6:39:33 PM	7537
4,6-Dinitro-2-methylphenol	ND	0.50	mg/Kg	1	5/22/2013 6:39:33 PM	7537
2,4-Dinitrophenol	ND	0.40	mg/Kg	1	5/22/2013 6:39:33 PM	7537
2-Methylphenol	ND	0.50	mg/Kg	1	5/22/2013 6:39:33 PM	7537
3+4-Methylphenol	ND	0.20	mg/Kg	1	5/22/2013 6:39:33 PM	7537
2-Nitrophenol	ND	0.20	mg/Kg	1	5/22/2013 6:39:33 PM	7537
4-Nitrophenol	ND	0.25	mg/Kg	1	5/22/2013 6:39:33 PM	7537
Pentachlorophenol	ND	0.40	mg/Kg	1	5/22/2013 6:39:33 PM	7537
Phenol	ND	0.20	mg/Kg	1	5/22/2013 6:39:33 PM	7537
2,4,5-Trichlorophenol	ND	0.20	mg/Kg	1	5/22/2013 6:39:33 PM	7537
2,4,6-Trichlorophenol	ND	0.20	mg/Kg	1	5/22/2013 6:39:33 PM	7537
Surr: 2,4,6-Tribromophenol	79.4	40.1-130	%REC	1	5/22/2013 6:39:33 PM	7537
Surr: 2-Fluorobiphenyl	68.8	44.4-123	%REC	1	5/22/2013 6:39:33 PM	7537
Surr: 2-Fluorophenol	54.0	41.9-112	%REC	1	5/22/2013 6:39:33 PM	7537
Surr: 4-Terphenyl-d14	75.6	29.6-130	%REC	1	5/22/2013 6:39:33 PM	7537
Surr: Nitrobenzene-d5	67.3	42.4-132	%REC	1	5/22/2013 6:39:33 PM	7537
Surr: Phenol-d5	68.0	44.3-119	%REC	1	5/22/2013 6:39:33 PM	7537
EPA METHOD 8260B: VOLATILES					Analys	t: DAM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- Value above quantitation range
- Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- RPD outside accepted recovery limits

- Analyte detected in the associated Method Blank
- Η Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit

- Sample pH greater than 2 for VOA and TOC only.
- Reporting Detection Limit

Lab Order 1305307

Date Reported: 6/14/2013

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Gallup

Project: OCD Land Farm

Lab ID: 1305307-004 Client Sample ID: Central OCD-04-05082013

Collection Date: 5/8/2013 11:05:00 AM Received Date: 5/8/2013 2:05:00 PM

Analyses	Result	RL Qu	ıal Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analyst	: DAM
Benzene	ND	0.046	mg/Kg	1	5/21/2013 2:56:25 AM	7495
Toluene	ND	0.046	mg/Kg	1	5/21/2013 2:56:25 AM	7495
Ethylbenzene	ND	0.046	mg/Kg	1	5/21/2013 2:56:25 AM	7495
Methyl tert-butyl ether (MTBE)	ND	0.046	mg/Kg	1	5/21/2013 2:56:25 AM	7495
1,2,4-Trimethylbenzene	ND	0.046	mg/Kg	1	5/21/2013 2:56:25 AM	7495
1,3,5-Trimethylbenzene	ND	0.046	mg/Kg	1	5/21/2013 2:56:25 AM	7495
1,2-Dichloroethane (EDC)	ND	0.046	mg/Kg	1	5/21/2013 2:56:25 AM	7495
1,2-Dibromoethane (EDB)	ND	0.046	mg/Kg	1	5/21/2013 2:56:25 AM	7495
Naphthalene	ND	0.093	mg/Kg	1	5/21/2013 2:56:25 AM	7495
1-Methylnaphthalene	ND	0.19	mg/Kg	1	5/21/2013 2:56:25 AM	7495
2-Methylnaphthalene	ND	0.19	mg/Kg	1	5/21/2013 2:56:25 AM	7495
Acetone	ND	0.69	mg/Kg	1	5/21/2013 2:56:25 AM	7495
Bromobenzene	ND	0.046	mg/Kg	1	5/21/2013 2:56:25 AM	7495
Bromodichloromethane	ND	0.046	mg/Kg	1	5/21/2013 2:56:25 AM	7495
Bromoform	ND	0.046	mg/Kg	1	5/21/2013 2:56:25 AM	7495
Bromomethane	ND	0.14	mg/Kg	1	5/21/2013 2:56:25 AM	7495
2-Butanone	ND	0.46	mg/Kg	1	5/21/2013 2:56:25 AM	7495
Carbon disulfide	ND	0.46	mg/Kg	1	5/21/2013 2:56:25 AM	7495
Carbon tetrachloride	ND	0.093	mg/Kg	1	5/21/2013 2:56:25 AM	7495
Chlorobenzene	ND	0.046	mg/Kg	1	5/21/2013 2:56:25 AM	7495
Chloroethane	ND	0.093	mg/Kg	1	5/21/2013 2:56:25 AM	7495
Chloroform	ND	0.046	mg/Kg	1	5/21/2013 2:56:25 AM	7495
Chloromethane	ND	0.14	mg/Kg	1	5/21/2013 2:56:25 AM	7495
2-Chlorotoluene	ND	0.046	mg/Kg	1	5/21/2013 2:56:25 AM	7495
4-Chlorotoluene	ND	0.046	mg/Kg	1	5/21/2013 2:56:25 AM	7495
cis-1,2-DCE	ND	0.046	mg/Kg	1	5/21/2013 2:56:25 AM	7495
cis-1,3-Dichloropropene	ND	0.046	mg/Kg	1	5/21/2013 2:56:25 AM	7495
1,2-Dibromo-3-chloropropane	ND	0.093	mg/Kg	1	5/21/2013 2:56:25 AM	7495
Dibromochloromethane	ND	0.046	mg/Kg	1	5/21/2013 2:56:25 AM	7495
Dibromomethane	ND	0.093	mg/Kg	1	5/21/2013 2:56:25 AM	7495
1,2-Dichlorobenzene	ND	0.046	mg/Kg	1	5/21/2013 2:56:25 AM	7495
1,3-Dichlorobenzene	ND	0.046	mg/Kg	1	5/21/2013 2:56:25 AM	7495
1,4-Dichlorobenzene	ND	0.046	mg/Kg	1	5/21/2013 2:56:25 AM	7495
Dichlorodifluoromethane	ND	0.046	mg/Kg	1	5/21/2013 2:56:25 AM	7495
1,1-Dichloroethane	ND	0.093	mg/Kg	1	5/21/2013 2:56:25 AM	7495
1,1-Dichloroethene	ND	0.046	mg/Kg	1	5/21/2013 2:56:25 AM	7495
1,2-Dichloropropane	ND	0.046	mg/Kg	1	5/21/2013 2:56:25 AM	7495
1,3-Dichloropropane	ND	0.046	mg/Kg	1	5/21/2013 2:56:25 AM	7495
2,2-Dichloropropane	ND	0.093	mg/Kg	1	5/21/2013 2:56:25 AM	7495
1,1-Dichloropropene	ND	0.093	mg/Kg	1	5/21/2013 2:56:25 AM	7495

Matrix: SOIL

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- Ε Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- RPD outside accepted recovery limits

- Analyte detected in the associated Method Blank
- Η Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit
 - Not Detected at the Reporting Limit Page 15 of 49 Sample pH greater than 2 for VOA and TOC only.
- Reporting Detection Limit RL

Lab Order 1305307

Date Reported: 6/14/2013

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Gallup

Project: OCD Land Farm

Lab ID: 1305307-004 Matrix: SOIL

Client Sample ID: Central OCD-04-05082013 Collection Date: 5/8/2013 11:05:00 AM Received Date: 5/8/2013 2:05:00 PM

Analyses	Result	RL Qu	ıal Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analyst	: DAM
Hexachlorobutadiene	ND	0.093	mg/Kg	1	5/21/2013 2:56:25 AM	7495
2-Hexanone	ND	0.46	mg/Kg	1	5/21/2013 2:56:25 AM	7495
Isopropylbenzene	ND	0.046	mg/Kg	1	5/21/2013 2:56:25 AM	7495
4-Isopropyltoluene	ND	0.046	mg/Kg	1	5/21/2013 2:56:25 AM	7495
4-Methyl-2-pentanone	ND	0.46	mg/Kg	1	5/21/2013 2:56:25 AM	7495
Methylene chloride	ND	0.14	mg/Kg	1	5/21/2013 2:56:25 AM	7495
n-Butylbenzene	ND	0.14	mg/Kg	1	5/21/2013 2:56:25 AM	7495
n-Propylbenzene	ND	0.046	mg/Kg	1	5/21/2013 2:56:25 AM	7495
sec-Butylbenzene	ND	0.046	mg/Kg	1	5/21/2013 2:56:25 AM	7495
Styrene	ND	0.046	mg/Kg	1	5/21/2013 2:56:25 AM	7495
tert-Butylbenzene	ND	0.046	mg/Kg	1	5/21/2013 2:56:25 AM	7495
1,1,1,2-Tetrachloroethane	ND	0.046	mg/Kg	1	5/21/2013 2:56:25 AM	7495
1,1,2,2-Tetrachloroethane	ND	0.046	mg/Kg	1	5/21/2013 2:56:25 AM	7495
Tetrachloroethene (PCE)	ND	0.046	mg/Kg	1	5/21/2013 2:56:25 AM	7495
trans-1,2-DCE	ND	0.046	mg/Kg	1	5/21/2013 2:56:25 AM	7495
trans-1,3-Dichloropropene	ND	0.046	mg/Kg	1	5/21/2013 2:56:25 AM	7495
1,2,3-Trichlorobenzene	ND	0.093	mg/Kg	1	5/21/2013 2:56:25 AM	7495
1,2,4-Trichlorobenzene	ND	0.046	mg/Kg	1	5/21/2013 2:56:25 AM	7495
1,1,1-Trichloroethane	ND	0.046	mg/Kg	1	5/21/2013 2:56:25 AM	7495
1,1,2-Trichloroethane	ND	0.046	mg/Kg	1	5/21/2013 2:56:25 AM	7495
Trichloroethene (TCE)	ND	0.046	mg/Kg	1	5/21/2013 2:56:25 AM	7495
Trichlorofluoromethane	ND	0.046	mg/Kg	1	5/21/2013 2:56:25 AM	7495
1,2,3-Trichloropropane	ND	0.093	mg/Kg	1	5/21/2013 2:56:25 AM	7495
Vinyl chloride	ND	0.046	mg/Kg	1	5/21/2013 2:56:25 AM	7495
Xylenes, Total	ND	0.093	mg/Kg	1	5/21/2013 2:56:25 AM	7495
Surr: 1,2-Dichloroethane-d4	86.0	70-130	%REC	1	5/21/2013 2:56:25 AM	7495
Surr: 4-Bromofluorobenzene	84.5	70-130	%REC	1	5/21/2013 2:56:25 AM	7495
Surr: Dibromofluoromethane	91.6	70-130	%REC	1	5/21/2013 2:56:25 AM	7495
Surr: Toluene-d8	93.4	70-130	%REC	1	5/21/2013 2:56:25 AM	7495
EPA METHOD 418.1: TPH					Analyst:	LRW
Petroleum Hydrocarbons, TR	ND	20	mg/Kg	1	5/13/2013	7382

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- О RSD is greater than RSDlimit
- RPD outside accepted recovery limits

- Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit

- Not Detected at the Reporting Limit

 Page 16 of 49

 Sample pH greater than 2 for VOA and TOC only. P
- RL Reporting Detection Limit

Lab Order 1305307

Date Reported: 6/14/2013

Hall Environmental Analysis Laboratory, Inc.

Matrix: SOIL

CLIENT: Western Refining Southwest, Gallup

Project: OCD Land Farm

Lab ID: 1305307-007 Client Sample ID: BD-05082013

Collection Date: 5/8/2013

Received Date: 5/8/2013 2:05:00 PM

Analyses	Result	RL Qu	ıal Units	DF	Date Analyzed	Batch
EPA METHOD 8082: PCB'S					Analyst	scc
Aroclor 1016	ND	0.020	mg/Kg	1	5/22/2013 11:55:34 PM	7504
Aroclor 1221	ND	0.020	mg/Kg	1	5/22/2013 11:55:34 PM	7504
Aroclor 1232	ND	0.020	mg/Kg	1	5/22/2013 11:55:34 PM	7504
Aroclor 1242	ND	0.020	mg/Kg	1	5/22/2013 11:55:34 PM	7504
Aroclor 1248	ND	0.020	mg/Kg	1	5/22/2013 11:55:34 PM	7504
Aroclor 1254	ND	0.020	mg/Kg	1	5/22/2013 11:55:34 PM	7504
Aroclor 1260	ND	0.020	mg/Kg	1	5/22/2013 11:55:34 PM	7504
Surr: Decachlorobiphenyl	121	31.8-151	%REC	1	5/22/2013 11:55:34 PM	7504
Surr: Tetrachloro-m-xylene	110	26.2-144	%REC	1	5/22/2013 11:55:34 PM	7504
EPA METHOD 8021B: VOLATILES					Analyst	NSB
Benzene	ND	0.048	mg/Kg	1	5/11/2013 2:42:54 AM	7366
Toluene	ND	0.048	mg/Kg	1	5/11/2013 2:42:54 AM	7366
Ethylbenzene	ND	0.048	mg/Kg	1	5/11/2013 2:42:54 AM	7366
Xylenes, Total	ND	0.096	mg/Kg	1	5/11/2013 2:42:54 AM	7366
Surr: 4-Bromofluorobenzene	96.8	80-120	%REC	1	5/11/2013 2:42:54 AM	7366
EPA METHOD 8310: PAHS					Analyst	SCC
Naphthalene	ND	1.2	mg/Kg	5	5/28/2013 1:18:13 PM	7505
1-Methylnaphthalene	ND	1.2	mg/Kg	5	5/28/2013 1:18:13 PM	7505
2-Methylnaphthalene	ND	1.2	mg/Kg	5	5/28/2013 1:18:13 PM	7505
Acenaphthylene	ND	1.2	mg/Kg	5	5/28/2013 1:18:13 PM	7505
Acenaphthene	ND	1.2	mg/Kg	5	5/28/2013 1:18:13 PM	7505
Fluorene	ND	0.15	mg/Kg	5	5/28/2013 1:18:13 PM	7505
Phenanthrene	ND	0.075	mg/Kg	5	5/28/2013 1:18:13 PM	7505
Anthracene	ND	0.075	mg/Kg	5	5/28/2013 1:18:13 PM	7505
Fluoranthene	ND	0.099	mg/Kg	5	5/28/2013 1:18:13 PM	7505
Pyrene	ND	0.12	mg/Kg	5	5/28/2013 1:18:13 PM	7505
Benz(a)anthracene	ND	0.050	mg/Kg	5	5/28/2013 1:18:13 PM	7505
Chrysene	ND	0.050	mg/Kg	5	5/28/2013 1:18:13 PM	7505
Benzo(b)fluoranthene	ND	0.050	mg/Kg	5	5/28/2013 1:18:13 PM	7505
Benzo(k)fluoranthene	ND	0.050	mg/Kg	5	5/28/2013 1:18:13 PM	7505
Benzo(a)pyrene	ND	0.050	mg/Kg	5	5/28/2013 1:18:13 PM	7505
Dibenz(a,h)anthracene	ND	0.050	mg/Kg	5	5/28/2013 1:18:13 PM	7505
Benzo(g,h,i)perylene	0.055	0.050	mg/Kg	5	5/28/2013 1:18:13 PM	7505
Indeno(1,2,3-cd)pyrene	ND	0.050	mg/Kg	5	5/28/2013 1:18:13 PM	7505
Surr: Benzo(e)pyrene	87.5	36.7-118	%REC	5	5/28/2013 1:18:13 PM	7505
EPA METHOD 300.0: ANIONS					Analyst:	JRR
Fluoride	3.6	1.5	mg/Kg	5	5/9/2013 5:11:30 PM	7373
Chloride	260	30	mg/Kg	20	5/9/2013 5:23:54 PM	7373
Nitrogen, Nitrate (As N)	ND	1.5	mg/Kg	5	5/9/2013 5:11:30 PM	7373

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- Value above quantitation range Ε
- Analyte detected below quantitation limits J
- О RSD is greater than RSDlimit
- RPD outside accepted recovery limits

- Analyte detected in the associated Method Blank
- Η Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit ND
- Page 17 of 49 Sample pH greater than 2 for VOA and TOC only.
- Reporting Detection Limit RL

Lab Order 1305307

Date Reported: 6/14/2013

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Gallup

Client Sample ID: BD-05082013

Project: OCD Land Farm Collection Date: 5/8/2013

Lab ID: 1305307-007 Matrix: SOIL

Received Date: 5/8/2013 2:05:00 PM

Analyses	Result	RL (Qual Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analys	t: JRR
Sulfate	390	7.5	mg/Kg	5	5/9/2013 5:11:30 PM	7373
EPA METHOD 7471: MERCURY					Analys	t: JLF
Mercury	ND	0.033	mg/Kg	1	5/22/2013 9:28:10 AM	7539
EPA METHOD 6010B: SOIL METALS					Analys	t: JLF
Arsenic	ND	12	mg/Kg	5	5/31/2013 4:49:25 PM	7531
Barium	300	1.0	mg/Kg	10	5/31/2013 4:52:14 PM	7531
Cadmium	ND	0.50	mg/Kg	5	5/28/2013 11:29:37 AM	
Chromium	18	1.5	mg/Kg	5	5/31/2013 4:49:25 PM	7531
Copper	4.3	1.5	mg/Kg	5	5/31/2013 4:49:25 PM	7531
Iron	21000	500	mg/Kg	500	5/31/2013 4:55:08 PM	7531
Lead	1.9	1.2	mg/Kg	5	5/31/2013 4:49:25 PM	7531
Manganese	400	1.0	mg/Kg	10	5/31/2013 4:52:14 PM	7531
Selenium	ND	12	mg/Kg	5	5/31/2013 4:49:25 PM	7531
Silver	ND	1.2	mg/Kg	5	5/28/2013 11:29:37 AM	
Uranium	ND	25	mg/Kg	5	5/28/2013 11:29:37 AM	A 7531
Zinc	27	12	mg/Kg	5	5/31/2013 4:49:25 PM	7531
EPA METHOD 8270C: SEMIVOLATILES					Analys	t: JDC
4-Chloro-3-methylphenol	ND	0.99	mg/Kg	1	5/22/2013 8:12:32 PM	7537
2-Chlorophenol	ND	0.40	mg/Kg	1	5/22/2013 8:12:32 PM	7537
2,4-Dichlorophenol	ND	0.80	mg/Kg	1	5/22/2013 8:12:32 PM	7537
2,4-Dimethylphenol	ND	0.60	mg/Kg	1	5/22/2013 8:12:32 PM	7537
4,6-Dinitro-2-methylphenol	ND	0.99	mg/Kg	1	5/22/2013 8:12:32 PM	7537
2,4-Dinitrophenol	ND	0.80	mg/Kg	1	5/22/2013 8:12:32 PM	7537
2-Methylphenol	ND	0.99	mg/Kg	1	5/22/2013 8:12:32 PM	7537
3+4-Methylphenol	ND	0.40	mg/Kg	1	5/22/2013 8:12:32 PM	7537
2-Nitrophenol	ND	0.40	mg/Kg	1	5/22/2013 8:12:32 PM	7537
4-Nitrophenol	ND	0.50	mg/Kg	1	5/22/2013 8:12:32 PM	7537
Pentachlorophenol	ND	0.80	mg/Kg	1	5/22/2013 8:12:32 PM	7537
Phenol	ND	0.40	mg/Kg	1	5/22/2013 8:12:32 PM	7537
2,4,5-Trichlorophenol	ND	0.40	mg/Kg	1	5/22/2013 8:12:32 PM	7537
2,4,6-Trichlorophenol	ND	0.40	mg/Kg	1	5/22/2013 8:12:32 PM	7537
Surr: 2,4,6-Tribromophenol	96.5	40.1-130	%REC	1	5/22/2013 8:12:32 PM	7537
Surr: 2-Fluorobiphenyl	79.0	44.4-123	%REC	1	5/22/2013 8:12:32 PM	7537
Surr: 2-Fluorophenol	77.4	41.9-112	%REC	1	5/22/2013 8:12:32 PM	7537
Surr: 4-Terphenyl-d14	86.9	29.6-130	%REC	1	5/22/2013 8:12:32 PM	7537
Surr: Nitrobenzene-d5	82.9	42.4-132	%REC	1	5/22/2013 8:12:32 PM	7537
Surr: Phenol-d5	77.1	44.3-119	%REC	1	5/22/2013 8:12:32 PM	7537
EPA METHOD 8260B: VOLATILES					Analys	t: DAM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- Е Value above quantitation range
- Analyte detected below quantitation limits J
- O RSD is greater than RSDlimit
- RPD outside accepted recovery limits

- Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- Not Detected at the Reporting Limit Page 18 of 49 Sample pH greater than 2 for VOA and TOC only. P
- RL Reporting Detection Limit

Lab Order 1305307

Date Reported: 6/14/2013

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Gallup

Project: OCD Land Farm

Lab ID: 1305307-007

Client Sample ID: BD-05082013

Collection Date: 5/8/2013

Received Date: 5/8/2013 2:05:00 PM

Analyses	Result	RL Qu	ıal Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analys	: DAM
Benzene	ND	0.047	mg/Kg	1	5/21/2013 3:24:37 AM	7495
Toluene	ND	0.047	mg/Kg	1	5/21/2013 3:24:37 AM	7495
Ethylbenzene	ND	0.047	mg/Kg	1	5/21/2013 3:24:37 AM	7495
Methyl tert-butyl ether (MTBE)	ND	0.047	mg/Kg	1	5/21/2013 3:24:37 AM	7495
1,2,4-Trimethylbenzene	ND	0.047	mg/Kg	1	5/21/2013 3:24:37 AM	7495
1,3,5-Trimethylbenzene	ND	0.047	mg/Kg	1	5/21/2013 3:24:37 AM	7495
1,2-Dichloroethane (EDC)	ND	0.047	mg/Kg	1	5/21/2013 3:24:37 AM	7495
1,2-Dibromoethane (EDB)	ND	0.047	mg/Kg	1	5/21/2013 3:24:37 AM	7495
Naphthalene	ND	0.094	mg/Kg	1	5/21/2013 3:24:37 AM	7495
1-Methylnaphthalene	ND	0.19	mg/Kg	1	5/21/2013 3:24:37 AM	7495
2-Methylnaphthalene	ND	0.19	mg/Kg	1	5/21/2013 3:24:37 AM	7495
Acetone	ND	0.70	mg/Kg	1	5/21/2013 3:24:37 AM	7495
Bromobenzene	ND	0.047	mg/Kg	1	5/21/2013 3:24:37 AM	7495
Bromodichloromethane	ND	0.047	mg/Kg	1	5/21/2013 3:24:37 AM	7495
Bromoform	ND	0.047	mg/Kg	1	5/21/2013 3:24:37 AM	7495
Bromomethane	ND	0.14	mg/Kg	1	5/21/2013 3:24:37 AM	7495
2-Butanone	ND	0.47	mg/Kg	1	5/21/2013 3:24:37 AM	7495
Carbon disulfide	ND	0.47	mg/Kg	1	5/21/2013 3:24:37 AM	7495
Carbon tetrachloride	ND	0.094	mg/Kg	1	5/21/2013 3:24:37 AM	7495
Chlorobenzene	ND	0.047	mg/Kg	1	5/21/2013 3:24:37 AM	7495
Chloroethane	ND	0.094	mg/Kg	1	5/21/2013 3:24:37 AM	7495
Chloroform	ND	0.047	mg/Kg	1	5/21/2013 3:24:37 AM	7495
Chloromethane	ND	0.14	mg/Kg	1	5/21/2013 3:24:37 AM	7495
2-Chlorotoluene	ND	0.047	mg/Kg	1	5/21/2013 3:24:37 AM	7495
4-Chlorotoluene	ND	0.047	mg/Kg	1	5/21/2013 3:24:37 AM	7495
cis-1,2-DCE	ND	0.047	mg/Kg	1	5/21/2013 3:24:37 AM	7495
cis-1,3-Dichloropropene	ND	0.047	mg/Kg	1	5/21/2013 3:24:37 AM	7495
1,2-Dibromo-3-chloropropane	ND	0.094	mg/Kg	1	5/21/2013 3:24:37 AM	7495
Dibromochloromethane	ND	0.047	mg/Kg	1	5/21/2013 3:24:37 AM	7495
Dibromomethane	ND	0.094	mg/Kg	1	5/21/2013 3:24:37 AM	7495
1,2-Dichlorobenzene	ND	0.047	mg/Kg	1	5/21/2013 3:24:37 AM	7495
1,3-Dichlorobenzene	ND	0.047	mg/Kg	1	5/21/2013 3:24:37 AM	7495
1,4-Dichlorobenzene	ND	0.047	mg/Kg	1	5/21/2013 3:24:37 AM	7495
Dichlorodifluoromethane	ND	0.047	mg/Kg	1	5/21/2013 3:24:37 AM	7495
1,1-Dichloroethane	ND	0.094	mg/Kg	1	5/21/2013 3:24:37 AM	7495
1,1-Dichloroethene	ND	0.047	mg/Kg	1	5/21/2013 3:24:37 AM	7495
1,2-Dichloropropane	ND	0.047	mg/Kg	1	5/21/2013 3:24:37 AM	7495
1,3-Dichloropropane	ND	0.047	mg/Kg	1	5/21/2013 3:24:37 AM	7495
2,2-Dichloropropane	ND	0.094	mg/Kg	1	5/21/2013 3:24:37 AM	7495
1,1-Dichloropropene	ND	0.094	mg/Kg	1	5/21/2013 3:24:37 AM	7495

Matrix: SOIL

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- Page 19 of 49
- P Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

Lab Order 1305307

Date Reported: 6/14/2013

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Gallup

Project: OCD Land Farm

Lab ID: 1305307-007

Matrix: SOIL

Client Sample ID: BD-05082013

Collection Date: 5/8/2013

Received Date: 5/8/2013 2:05:00 PM

Analyses	Result	RL Qu	ıal Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analyst	: DAM
Hexachlorobutadiene	ND	0.094	mg/Kg	1	5/21/2013 3:24:37 AM	7495
2-Hexanone	ND	0.47	mg/Kg	1	5/21/2013 3:24:37 AM	7495
Isopropylbenzene	ND	0.047	mg/Kg	1	5/21/2013 3:24:37 AM	7495
4-Isopropyltoluene	ND	0.047	mg/Kg	1	5/21/2013 3:24:37 AM	7495
4-Methyl-2-pentanone	ND	0.47	mg/Kg	1	5/21/2013 3:24:37 AM	7495
Methylene chloride	ND	0.14	mg/Kg	1	5/21/2013 3:24:37 AM	7495
n-Butylbenzene	ND	0.14	mg/Kg	1	5/21/2013 3:24:37 AM	7495
n-Propylbenzene	ND	0.047	mg/Kg	1	5/21/2013 3:24:37 AM	7495
sec-Butylbenzene	ND	0.047	mg/Kg	1	5/21/2013 3:24:37 AM	7495
Styrene	ND	0.047	mg/Kg	1	5/21/2013 3:24:37 AM	7495
tert-Butylbenzene	ND	0.047	mg/Kg	1	5/21/2013 3:24:37 AM	7495
1,1,1,2-Tetrachloroethane	ND	0.047	mg/Kg	1	5/21/2013 3:24:37 AM	7495
1,1,2,2-Tetrachloroethane	ND	0.047	mg/Kg	1	5/21/2013 3:24:37 AM	7495
Tetrachloroethene (PCE)	ND	0.047	mg/Kg	1	5/21/2013 3:24:37 AM	7495
trans-1,2-DCE	ND	0.047	mg/Kg	1	5/21/2013 3:24:37 AM	7495
trans-1,3-Dichloropropene	ND	0.047	mg/Kg	1	5/21/2013 3:24:37 AM	7495
1,2,3-Trichlorobenzene	ND	0.094	mg/Kg	1	5/21/2013 3:24:37 AM	7495
1,2,4-Trichlorobenzene	ND	0.047	mg/Kg	1	5/21/2013 3:24:37 AM	7495
1,1,1-Trichloroethane	ND	0.047	mg/Kg	1	5/21/2013 3:24:37 AM	7495
1,1,2-Trichloroethane	ND	0.047	mg/Kg	1	5/21/2013 3:24:37 AM	7495
Trichloroethene (TCE)	ND	0.047	mg/Kg	1	5/21/2013 3:24:37 AM	7495
Trichlorofluoromethane	ND	0.047	mg/Kg	1	5/21/2013 3:24:37 AM	7495
1,2,3-Trichloropropane	ND	0.094	mg/Kg	1	5/21/2013 3:24:37 AM	7495
Vinyl chloride	ND	0.047	mg/Kg	1	5/21/2013 3:24:37 AM	7495
Xylenes, Total	ND	0.094	mg/Kg	1	5/21/2013 3:24:37 AM	7495
Surr: 1,2-Dichloroethane-d4	86.2	70-130	%REC	1	5/21/2013 3:24:37 AM	7495
Surr: 4-Bromofluorobenzene	82.9	70-130	%REC	1	5/21/2013 3:24:37 AM	7495
Surr: Dibromofluoromethane	88.8	70-130	%REC	1	5/21/2013 3:24:37 AM	7495
Surr: Toluene-d8	97.3	70-130	%REC	1	5/21/2013 3:24:37 AM	7495
EPA METHOD 418.1: TPH					Analyst:	LRW
Petroleum Hydrocarbons, TR	ND	20	mg/Kg	1	5/13/2013	7382

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- RPD outside accepted recovery limits

- Analyte detected in the associated Method Blank
- Η Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit

- Not Detected at the Reporting Limit Page 20 of 49 Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

Lab Order 1305307

Date Reported: 6/14/2013

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Gallup

Client Sample ID: FB-05082013

OCD Land Farm Project:

Collection Date: 5/8/2013 11:15:00 AM

1305307-008 Lab ID:

Matrix: AQUEOUS

Received Date: 5/8/2013 2:05:00 PM

Analyses	Result	RL Qı	al Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analys	t: CWS
Benzene	ND	1.0	μg/L	1	5/9/2013 4:22:09 PM	R1053
Toluene	ND	1.0	μg/L	1	5/9/2013 4:22:09 PM	R1053
Ethylbenzene	ND	1.0	μg/L	1	5/9/2013 4:22:09 PM	R1053
Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L	1	5/9/2013 4:22:09 PM	R1053
1,2,4-Trimethylbenzene	ND	1.0	μg/L	1	5/9/2013 4:22:09 PM	R1053
1,3,5-Trimethylbenzene	ND	1.0	μg/L	1	5/9/2013 4:22:09 PM	R1053
1,2-Dichloroethane (EDC)	ND	1.0	μg/L	1	5/9/2013 4:22:09 PM	R1053
1,2-Dibromoethane (EDB)	ND	1.0	μg/L	1	5/9/2013 4:22:09 PM	R1053
Naphthalene	ND	2.0	μg/L	1	5/9/2013 4:22:09 PM	R1053
1-Methylnaphthalene	ND	4.0	μg/L	1	5/9/2013 4:22:09 PM	R1053
2-Methylnaphthalene	ND	4.0	μg/L	1	5/9/2013 4:22:09 PM	R1053
Acetone	ND	10	μg/L	1	5/9/2013 4:22:09 PM	R1053
Bromobenzene	ND	1.0	μg/L	1	5/9/2013 4:22:09 PM	R1053
Bromodichloromethane	ND	1.0	μg/L	1	5/9/2013 4:22:09 PM	R1053
Bromoform	ND	1.0	μg/L	1	5/9/2013 4:22:09 PM	R1053
Bromomethane	ND	3.0	μg/L	1	5/9/2013 4:22:09 PM	R1053
2-Butanone	ND	10	μg/L	1	5/9/2013 4:22:09 PM	R1053
Carbon disulfide	ND	10	μg/L	1	5/9/2013 4:22:09 PM	R1053
Carbon Tetrachloride	ND	1.0	μg/L	1	5/9/2013 4:22:09 PM	R1053
Chlorobenzene	ND	1.0	µg/L	1	5/9/2013 4:22:09 PM	R1053
Chloroethane	ND	2.0	μg/L	1	5/9/2013 4:22:09 PM	R1053
Chloroform	ND	1.0	μg/L	1	5/9/2013 4:22:09 PM	R1053
Chloromethane	ND	3.0	μg/L	1	5/9/2013 4:22:09 PM	R1053
2-Chlorotoluene	ND	1.0	μg/L	1	5/9/2013 4:22:09 PM	R1053
4-Chlorotoluene	ND	1.0	μg/L	1	5/9/2013 4:22:09 PM	R1053
cis-1,2-DCE	ND	1.0	μg/L	1	5/9/2013 4:22:09 PM	R1053
cis-1,3-Dichloropropene	ND	1.0	μg/L	1	5/9/2013 4:22:09 PM	R1053
1,2-Dibromo-3-chloropropane	ND	2.0	μg/L	1	5/9/2013 4:22:09 PM	R1053
Dibromochloromethane	ND	1.0	μg/L	1	5/9/2013 4:22:09 PM	R1053
Dibromomethane	ND	1.0	μg/L	1	5/9/2013 4:22:09 PM	R1053
1,2-Dichlorobenzene	ND	1.0	μg/L	1	5/9/2013 4:22:09 PM	R1053
1,3-Dichlorobenzene	ND	1.0	μg/L	1	5/9/2013 4:22:09 PM	R1053
1,4-Dichlorobenzene	ND	1.0	μg/L	1	5/9/2013 4:22:09 PM	R1053
Dichlorodifluoromethane	ND	1.0	μg/L	1	5/9/2013 4:22:09 PM	R1053
1,1-Dichloroethane	ND	1.0	μg/L	1	5/9/2013 4:22:09 PM	R1053
1,1-Dichloroethene	ND	1.0	μg/L	1	5/9/2013 4:22:09 PM	R1053
1,2-Dichloropropane	ND	1.0	μg/L	1	5/9/2013 4:22:09 PM	R1053
1,3-Dichloropropane	ND	1.0	μg/L	1	5/9/2013 4:22:09 PM	R1053
2,2-Dichloropropane	ND	2.0	μg/L	1	5/9/2013 4:22:09 PM	R10534
1,1-Dichloropropene	ND	1.0	μg/L	1	5/9/2013 4:22:09 PM	R10534

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- Value above quantitation range Е
- Analyte detected below quantitation limits J
- O RSD is greater than RSDlimit
- RPD outside accepted recovery limits

- В Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded Η
- ND Not Detected at the Reporting Limit Not Detected at the Reporting Limit Page 21 of 49 Sample pH greater than 2 for VOA and TOC only.

Reporting Detection Limit

Lab Order 1305307

Date Reported: 6/14/2013

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Gallup

Client Sample ID: FB-05082013

Project: OCD Land Farm Collection Date: 5/8/2013 11:15:00 AM

1305307-008 Lab ID:

Matrix: AQUEOUS Received Date: 5/8/2013 2:05:00 PM

Analyses	Result	RL Qı	ıal Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analys	t: cws
Hexachlorobutadiene	ND	1.0	μg/L	1	5/9/2013 4:22:09 PM	R10534
2-Hexanone	ND	10	μg/L	1	5/9/2013 4:22:09 PM	R10534
Isopropylbenzene	ND	1.0	μg/L	1	5/9/2013 4:22:09 PM	R10534
4-Isopropyltoluene	ND	1.0	μg/L	1	5/9/2013 4:22:09 PM	R10534
4-Methyl-2-pentanone	ND	10	μg/L	1	5/9/2013 4:22:09 PM	R10534
Methylene Chloride	ND	3.0	μg/L	1	5/9/2013 4:22:09 PM	R10534
n-Butylbenzene	ND	3.0	μg/L	1	5/9/2013 4:22:09 PM	R10534
n-Propylbenzene	ND	1.0	μg/L	1	5/9/2013 4:22:09 PM	R10534
sec-Butylbenzene	ND	1.0	μg/L	1	5/9/2013 4:22:09 PM	R10534
Styrene	ND	1.0	μg/L	1	5/9/2013 4:22:09 PM	R10534
tert-Butylbenzene	ND	1.0	μg/L	1	5/9/2013 4:22:09 PM	R10534
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1	5/9/2013 4:22:09 PM	R10534
1,1,2,2-Tetrachloroethane	ND	2.0	μg/L	1	5/9/2013 4:22:09 PM	R10534
Tetrachloroethene (PCE)	ND	1.0	μg/L	1	5/9/2013 4:22:09 PM	R10534
trans-1,2-DCE	ND	1.0	μg/L	1	5/9/2013 4:22:09 PM	R10534
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	5/9/2013 4:22:09 PM	R10534
1,2,3-Trichlorobenzene	ND	1.0	μg/L	1	5/9/2013 4:22:09 PM	R10534
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1	5/9/2013 4:22:09 PM	R10534
1,1,1-Trichloroethane	ND	1.0	μg/L	1	5/9/2013 4:22:09 PM	R10534
1,1,2-Trichloroethane	ND	1.0	μg/L	1	5/9/2013 4:22:09 PM	R10534
Trichloroethene (TCE)	ND	1.0	μg/L	1	5/9/2013 4:22:09 PM	R10534
Trichlorofluoromethane	ND	1.0	μg/L	1	5/9/2013 4:22:09 PM	R10534
1,2,3-Trichloropropane	ND	2.0	μg/L	1	5/9/2013 4:22:09 PM	R10534
Vinyl chloride	ND	1.0	μg/L	1	5/9/2013 4:22:09 PM	R10534
Xylenes, Total	ND	1.5	μg/L	1	5/9/2013 4:22:09 PM	R10534
Surr: 1,2-Dichloroethane-d4	101	70-130	%REC	1	5/9/2013 4:22:09 PM	R10534
Surr: 4-Bromofluorobenzene	117	69.5-130	%REC	1	5/9/2013 4:22:09 PM	R10534
Surr: Dibromofluoromethane	106	70-130	%REC	1	5/9/2013 4:22:09 PM	R10534
Surr: Toluene-d8	94.7	70-130	%REC	1	5/9/2013 4:22:09 PM	R10534

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- Ε Value above quantitation range
- Analyte detected below quantitation limits
- RSD is greater than RSDlimit 0
- RPD outside accepted recovery limits

- Analyte detected in the associated Method Blank В
- Η Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

- Not Detected at the Reporting Limit Page 22 of 49 Sample pH greater than 2 for VOA and TOC only. P
- RLReporting Detection Limit

Lab Order 1305307

Date Reported: 6/14/2013

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Gallup

OCD Land Farm

Lab ID: 1305307-009

Project:

Client Sample ID: EB-05082013

Collection Date: 5/8/2013 11:20:00 AM

Received Date: 5/8/2013 2:05:00 PM

Analyses	Result	RL Qu	ıal Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analys	t: CWS
Benzene	ND	1.0	μg/L	1	5/9/2013 4:50:47 PM	R10534
Toluene	ND	1.0	μg/L	1	5/9/2013 4:50:47 PM	R10534
Ethylbenzene	ND	1.0	μg/L	1	5/9/2013 4:50:47 PM	R10534
Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L	1	5/9/2013 4:50:47 PM	R10534
1,2,4-Trimethylbenzene	ND	1.0	μg/L	1	5/9/2013 4:50:47 PM	R10534
1,3,5-Trimethylbenzene	ND	1.0	μg/L	1	5/9/2013 4:50:47 PM	R10534
1,2-Dichloroethane (EDC)	ND	1.0	μg/L	1	5/9/2013 4:50:47 PM	R10534
1,2-Dibromoethane (EDB)	ND	1.0	μg/L	1	5/9/2013 4:50:47 PM	R10534
Naphthalene	ND	2.0	μg/L	1	5/9/2013 4:50:47 PM	R10534
1-Methylnaphthalene	ND	4.0	μg/L	1	5/9/2013 4:50:47 PM	R10534
2-Methylnaphthalene	ND	4.0	μg/L	1	5/9/2013 4:50:47 PM	R10534
Acetone	ND	10	μg/L	1	5/9/2013 4:50:47 PM	R10534
Bromobenzene	ND	1.0	μg/L	1	5/9/2013 4:50:47 PM	R10534
Bromodichloromethane	ND	1.0	μg/L	1	5/9/2013 4:50:47 PM	R10534
Bromoform	ND	1.0	μg/L	1	5/9/2013 4:50:47 PM	R10534
Bromomethane	ND	3.0	μg/L	1	5/9/2013 4:50:47 PM	R10534
2-Butanone	ND	10	μg/L	1	5/9/2013 4:50:47 PM	R10534
Carbon disulfide	ND	10	μg/L	1	5/9/2013 4:50:47 PM	R10534
Carbon Tetrachloride	ND	1.0	μg/L	1	5/9/2013 4:50:47 PM	R10534
Chlorobenzene	ND	1.0	μg/L	1	5/9/2013 4:50:47 PM	R10534
Chloroethane	ND	2.0	μg/L	1	5/9/2013 4:50:47 PM	R10534
Chloroform	ND	1.0	μg/L	1	5/9/2013 4:50:47 PM	R10534
Chloromethane	ND	3.0	μg/L	1	5/9/2013 4:50:47 PM	R10534
2-Chlorotoluene	ND	1.0	μg/L	1	5/9/2013 4:50:47 PM	R10534
4-Chlorotoluene	ND	1.0	μg/L	1	5/9/2013 4:50:47 PM	R10534
cis-1,2-DCE	ND	1.0	μg/L	1	5/9/2013 4:50:47 PM	R10534
cis-1,3-Dichloropropene	ND	1.0	μg/L	1	5/9/2013 4:50;47 PM	R10534
1,2-Dibromo-3-chloropropane	ND	2.0	μg/L	1	5/9/2013 4:50:47 PM	R10534
Dibromochloromethane	ND	1.0	μg/L	1	5/9/2013 4:50:47 PM	R10534
Dibromomethane	ND	1.0	μg/L	1	5/9/2013 4:50:47 PM	R10534
1,2-Dichlorobenzene	ND	1.0	μg/L	1	5/9/2013 4:50:47 PM	R10534
1,3-Dichlorobenzene	ND	1.0	μg/L	1	5/9/2013 4:50:47 PM	R10534
1,4-Dichlorobenzene	ND	1.0	μg/L	1	5/9/2013 4:50:47 PM	R10534
Dichlorodifluoromethane	ND	1.0	μg/L	1	5/9/2013 4:50:47 PM	R10534
1,1-Dichloroethane	ND	1.0	μg/L	1	5/9/2013 4:50:47 PM	R10534
1,1-Dichloroethene	ND	1.0	μg/L	1	5/9/2013 4:50:47 PM	R10534
1,2-Dichloropropane	ND	1.0	µg/L	1	5/9/2013 4:50:47 PM	R10534
1,3-Dichloropropane	ND	1.0	μg/L	1	5/9/2013 4:50:47 PM	R10534
2,2-Dichloropropane	ND	2.0	μg/L	1	5/9/2013 4:50:47 PM	R10534
1,1-Dichloropropene	ND	1.0	μg/L	1	5/9/2013 4:50:47 PM	R10534

Matrix: AQUEOUS

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- RSD is greater than RSDlimit
- RPD outside accepted recovery limits

- Analyte detected in the associated Method Blank
- Η Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
 - Page 23 of 49
- Sample pH greater than 2 for VOA and TOC only.
- Reporting Detection Limit

Lab Order 1305307

Date Reported: 6/14/2013

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Gallup

Client Sample ID: EB-05082013

OCD Land Farm Project:

Collection Date: 5/8/2013 11:20:00 AM

Lab ID: 1305307-009

Received Date: 5/8/2013 2:05:00 PM Matrix: AQUEOUS

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analys	t: CWS
Hexachlorobutadiene	ND	1.0	μg/L	1	5/9/2013 4:50:47 PM	R10534
2-Hexanone	ND	10	μg/L	1	5/9/2013 4:50:47 PM	R10534
Isopropylbenzene	ND	1.0	μg/L	1	5/9/2013 4:50:47 PM	R10534
4-Isopropyltoluene	ND	1.0	μg/L	1	5/9/2013 4:50:47 PM	R10534
4-Methyl-2-pentanone	ND	10	μg/L	1	5/9/2013 4:50:47 PM	R10534
Methylene Chloride	ND	3.0	μg/L	1	5/9/2013 4:50:47 PM	R10534
n-Butylbenzene	ND	3.0	μg/L	1	5/9/2013 4:50:47 PM	R10534
n-Propylbenzene	ND	1.0	μg/L	1	5/9/2013 4:50:47 PM	R10534
sec-Butylbenzene	ND	1.0	μg/L	1	5/9/2013 4:50:47 PM	R10534
Styrene	ND	1.0	μg/L	1	5/9/2013 4:50:47 PM	R10534
tert-Butylbenzene	ND	1.0	μg/L	1	5/9/2013 4:50:47 PM	R10534
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1	5/9/2013 4:50:47 PM	R10534
1,1,2,2-Tetrachloroethane	ND	2.0	μg/L	1	5/9/2013 4:50:47 PM	R10534
Tetrachloroethene (PCE)	ND	1.0	μg/L	1	5/9/2013 4:50:47 PM	R10534
trans-1,2-DCE	ND	1.0	μg/L	1	5/9/2013 4:50:47 PM	R10534
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	5/9/2013 4:50:47 PM	R10534
1,2,3-Trichlorobenzene	ND	1.0	μg/L	1	5/9/2013 4:50:47 PM	R10534
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1	5/9/2013 4:50:47 PM	R10534
1,1,1-Trichloroethane	ND	1.0	μg/L	1	5/9/2013 4:50:47 PM	R10534
1,1,2-Trichloroethane	ND	1.0	μg/L	1	5/9/2013 4:50:47 PM	R10534
Trichloroethene (TCE)	ND	1.0	μg/L	1	5/9/2013 4:50:47 PM	R10534
Trichlorofluoromethane	ND	1.0	μg/L	1	5/9/2013 4:50:47 PM	R10534
1,2,3-Trichloropropane	ND	2.0	μg/L	1	5/9/2013 4:50:47 PM	R10534
Vinyl chloride	ND	1.0	μg/L	1	5/9/2013 4:50:47 PM	R10534
Xylenes, Total	ND	1.5	μg/L	1	5/9/2013 4:50:47 PM	R10534
Surr: 1,2-Dichloroethane-d4	103	70-130	%REC	1	5/9/2013 4:50:47 PM	R10534
Surr: 4-Bromofluorobenzene	110	69.5-130	%REC	1	5/9/2013 4:50:47 PM	R10534
Surr: Dibromofluoromethane	110	70-130	%REC	1	5/9/2013 4:50:47 PM	R10534
Surr: Toluene-d8	94.6	70-130	%REC	1	5/9/2013 4:50:47 PM	R10534

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- Value above quantitation range
- Analyte detected below quantitation limits
- RSD is greater than RSDlimit O
- RPD outside accepted recovery limits

- Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded Н
- Not Detected at the Reporting Limit ND
- Not Detected at the Reporting Limit Page 24 of 49 Sample pH greater than 2 for VOA and TOC only. Ρ
- Reporting Detection Limit RL

Lab Order 1305307

Date Reported: 6/14/2013

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Gallup

Client Sample ID: Trip Blank

Project: OCD Land Farm

Collection Date:

Lab ID: 1305307-010

Matrix: TRIP BLANK

Received Date: 5/8/2013 2:05:00 PM

Analyses	Result	RL Q	ual Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Analys	st: cws
Benzene	ND	1.0	μg/L	1	5/9/2013 5:19:22 PM	R10534
Toluene	ND	1.0	μg/L	1	5/9/2013 5:19:22 PM	R10534
Ethylbenzene	ND	1.0	μg/L	1	5/9/2013 5:19:22 PM	R10534
Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L	1	5/9/2013 5:19:22 PM	R10534
1,2,4-Trimethylbenzene	ND	1.0	μg/L	1	5/9/2013 5:19:22 PM	R10534
1,3,5-Trimethylbenzene	ND	1.0	μg/L	1	5/9/2013 5:19:22 PM	R10534
1,2-Dichloroethane (EDC)	ND	1.0	μg/L	1	5/9/2013 5:19:22 PM	R10534
1,2-Dibromoethane (EDB)	ND	1.0	μg/L	1	5/9/2013 5:19:22 PM	R10534
Naphthalene	ND	2.0	μg/L	1	5/9/2013 5:19:22 PM	R10534
1-Methylnaphthalene	ND	4.0	μg/L	1	5/9/2013 5:19:22 PM	R10534
2-Methylnaphthalene	ND	4.0	μg/L	1	5/9/2013 5:19:22 PM	R10534
Acetone	ND	10	µg/L	1	5/9/2013 5:19:22 PM	R10534
Bromobenzene	ND	1.0	μg/L	1	5/9/2013 5:19:22 PM	R10534
Bromodichloromethane	ND	1.0	μg/L	1	5/9/2013 5:19:22 PM	R10534
Bromoform	ND	1.0	μg/L	1	5/9/2013 5:19:22 PM	R10534
Bromomethane	ND	3.0	μg/L	1	5/9/2013 5:19:22 PM	R10534
2-Butanone	ND	10	μg/L	1	5/9/2013 5:19:22 PM	R10534
Carbon disulfide	ND	10	μg/L	1	5/9/2013 5:19:22 PM	R10534
Carbon Tetrachloride	ND	1.0	μg/L	1	5/9/2013 5:19:22 PM	R10534
Chlorobenzene	ND	1.0	μg/L	1	5/9/2013 5:19:22 PM	R10534
Chloroethane	ND	2.0	μg/L	1	5/9/2013 5:19:22 PM	R10534
Chloroform	ND	1.0	μg/L	1	5/9/2013 5:19:22 PM	R10534
Chloromethane	ND	3.0	μg/L	1	5/9/2013 5:19:22 PM	R10534
2-Chlorotoluene	ND	1.0	μg/L	1	5/9/2013 5:19:22 PM	R10534
4-Chlorotoluene	ND	1.0	μg/L	1	5/9/2013 5:19;22 PM	R10534
cis-1,2-DCE	ND	1.0	μg/L	1	5/9/2013 5:19:22 PM	R10534
cis-1,3-Dichloropropene	ND	1.0	μg/L	1	5/9/2013 5:19:22 PM	R10534
1,2-Dibromo-3-chloropropane	ND	2.0	μg/L	1	5/9/2013 5:19:22 PM	R10534
Dibromochloromethane	ND	1.0	μg/L	1	5/9/2013 5:19:22 PM	R10534
Dibromomethane	ND	1.0	μg/L	1	5/9/2013 5:19:22 PM	R10534
1,2-Dichlorobenzene	ND	1.0	μg/L	1	5/9/2013 5:19:22 PM	R10534
1,3-Dichlorobenzene	ND	1.0	μg/L	1	5/9/2013 5:19:22 PM	R10534
1,4-Dichlorobenzene	ND	1.0	μg/L	1	5/9/2013 5:19:22 PM	R10534
Dichlorodifluoromethane	ND	1.0	μg/L	1	5/9/2013 5:19:22 PM	R10534
1,1-Dichloroethane	ND	1.0	μg/L	1	5/9/2013 5:19:22 PM	R10534
1,1-Dichloroethene	ND	1.0	μg/L	1	5/9/2013 5:19:22 PM	R10534
1,2-Dichloropropane	ND	1.0	μg/L	1	5/9/2013 5:19:22 PM	R10534
1,3-Dichloropropane	ND	1.0	μg/L	1	5/9/2013 5:19:22 PM	R10534
2,2-Dichloropropane	ND	2.0	μg/L	1	5/9/2013 5:19:22 PM	R10534
1,1-Dichloropropene	ND	1.0	μg/L	1	5/9/2013 5:19:22 PM	R10534

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
 - Page 25 of 49
 - P Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

Lab Order 1305307

Date Reported: 6/14/2013

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Gallup

Client Sample ID: Trip Blank

OCD Land Farm Project:

Collection Date:

Lab ID: 1305307-010 Matrix: TRIP BLANK

Received Date: 5/8/2013 2:05:00 PM

Analyses	Result	RL Qı	ıal Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analys	t: CWS
Hexachlorobutadiene	ND	1.0	μg/L	1	5/9/2013 5:19:22 PM	R10534
2-Hexanone	ND	10	μg/L	1	5/9/2013 5:19:22 PM	R10534
Isopropylbenzene	ND	1.0	μg/L	1	5/9/2013 5:19:22 PM	R10534
4-Isopropyltoluene	ND	1.0	μg/L	1	5/9/2013 5:19:22 PM	R10534
4-Methyl-2-pentanone	ND	10	μg/L	1	5/9/2013 5:19:22 PM	R10534
Methylene Chloride	ND	3.0	μg/L	1	5/9/2013 5:19:22 PM	R10534
n-Butylbenzene	ND	3.0	μg/L	1	5/9/2013 5:19:22 PM	R10534
n-Propylbenzene	ND	1.0	μg/L	1	5/9/2013 5:19:22 PM	R10534
sec-Butylbenzene	ND	1.0	μg/L	1	5/9/2013 5:19:22 PM	R10534
Styrene	ND	1.0	μg/L	1	5/9/2013 5:19:22 PM	R10534
tert-Butylbenzene	ND	1.0	μg/L	1	5/9/2013 5:19:22 PM	R10534
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1	5/9/2013 5:19:22 PM	R10534
1,1,2,2-Tetrachloroethane	ND	2.0	μg/L	1	5/9/2013 5:19:22 PM	R10534
Tetrachloroethene (PCE)	ND	1.0	μg/L	1	5/9/2013 5:19:22 PM	R10534
trans-1,2-DCE	ND	1.0	μg/L	1	5/9/2013 5:19:22 PM	R10534
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	5/9/2013 5:19:22 PM	R10534
1,2,3-Trichlorobenzene	ND	1.0	μg/L	1	5/9/2013 5:19:22 PM	R10534
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1	5/9/2013 5:19:22 PM	R10534
1,1,1-Trichloroethane	ND	1.0	μg/L	1	5/9/2013 5:19:22 PM	R10534
1,1,2-Trichloroethane	ND	1.0	μg/L	1	5/9/2013 5:19:22 PM	R10534
Trichloroethene (TCE)	ND	1.0	μg/L	1	5/9/2013 5:19:22 PM	R10534
Trichlorofluoromethane	ND	1.0	μg/L	1	5/9/2013 5:19:22 PM	R10534
1,2,3-Trichloropropane	ND	2.0	μg/L	1	5/9/2013 5:19:22 PM	R10534
Vinyl chloride	ND	1.0	μg/L	1	5/9/2013 5:19:22 PM	R10534
Xylenes, Total	ND	1,5	μg/L	1	5/9/2013 5:19:22 PM	R10534
Surr: 1,2-Dichloroethane-d4	98.6	70-130	%REC	1	5/9/2013 5:19:22 PM	R10534
Surr: 4-Bromofluorobenzene	105	69.5-130	%REC	1	5/9/2013 5:19:22 PM	R10534
Surr: Dibromofluoromethane	103	70-130	%REC	1	5/9/2013 5:19:22 PM	R10534
Surr: Toluene-d8	95.7	70-130	%REC	1	5/9/2013 5:19:22 PM	R10534

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- Е Value above quantitation range
- Analyte detected below quantitation limits J
- RSD is greater than RSDlimit O
- RPD outside accepted recovery limits

- Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded H
- ND Not Detected at the Reporting Limit
- Not Detected at the Reporting Limit Page 26 of 49 Sample pH greater than 2 for VOA and TOC only. P
- Reporting Detection Limit

Anatek Labs, Inc.

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client: Address: HALL ENVIRONMENTAL ANALYSIS LAB

4901 HAWKINS NE SUITE D

ALBUQUERQUE, NM 87109

Attn:

ANDY FREEMAN

Batch #:

130521032

Project Name:

1305307

Analytical Results Report

Sample Number

130521032-001

5/8/2013 Sampling Date

Date/Time Received 5/21/2013 12:22 PM

Sampling Time 9:10 AM

Client Sample ID Matrix

1305307-001C / CENTRAL OCD-01-05082013

Sample Location

Comments

Parameter	Result	Units	PQL	Analysis Date	Analyst	Method	Qualifier
Cyanide	ND	mg/Kg	0.3	5/22/2013	ETL	EPA 335,4	
%moisture	13.3	Percent		5/22/2013	AJT	%moisture	

Sample Number Client Sample ID 130521032-002

Sampling Date 5/8/2013 Date/Time Received 5/21/2013 12:22 PM

1305307-002C / CENTRAL OCD-02-05082013

Matrix Comments Soil

Sample Location

Sampling Time 9:45 AM

Parameter	Result	Units	PQL	Analysis Date	Analyst	Method	Qualifier
Cyanide	ND	mg/Kg	0.3	5/22/2013	ETL	EPA 335.4	
 %moisture	16.5	Percent		5/22/2013	AJT	%moisture	

Sample Number Client Sample ID 130521032-003

Sampling Date

5/8/2013

Date/Time Received 5/21/2013 12:22 PM

Sampling Time 10:10 AM

Matrix

1305307-003C / CENTRAL OCD-03-05082013

Sample Location

Comments

1305307-004C / CENTRAL OCD-04-05082013

Parameter Result Units PQL **Analysis Date** Analyst Method Qualifier Cyanide ND 0.3 mg/Kg 5/22/2013 ETL EPA 335.4 %moisture 20.6 Percent 5/22/2013 AJT %moisture

Sample Number

130521032-004

Sampling Date 5/8/2013 Date/Time Received 5/21/2013

Client Sample ID Matrix

Comments

Soil

Sample Location

Sampling Time 11:05 AM

Parameter Result Units PQL **Analysis Date** Analyst Method Qualifier Cyanide ND mg/Kg 0.3 5/22/2013 ETL EPA 335.4 %moisture 12.7 Percent 5/22/2013 AJT %moisture

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E87893; ID:ID00013; IN:C-ID-01; KY:80142; MT:CERT0028; NM: ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C585; MT:Cert0095

Anatek Labs, Inc.

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Cilent:

HALL ENVIRONMENTAL ANALYSIS LAB

Batch #:

130521032

Address:

4901 HAWKINS NE SUITE D

Project Name:

1305307

ALBUQUERQUE, NM 87109

Attn:

ANDY FREEMAN

Analytical Results Report

Sample Number

130521032-005

Sampling Date

5/8/2013

Date/Time Received 5/21/2013

12:22 PM

Client Sample ID

1305307-007C / BD-05082013

Sampling Time

Matrix

Sample Location

Comments

Parameter	Result	Units	PQL	Analysis Date	Analyst	Method	Qualifier
Cyanide	ND	mg/Kg	0.3	5/22/2013	ETL	EPA-335.4	
%moisture	21.1	Percent		5/22/2013	AJT	%moisture	

Authorized Signature

John Coddington, Lab Manager

MCL

EPA's Maximum Contaminant Level

ND PQL Not Detected

Practical Quantitation Limit

This report shall not be reproduced except in full, without the written approval of the laboratory.

The results reported relate only to the samples indicated.

Soil/solid results are reported on a dry-weight basis unless otherwise noted.

Anatek Labs, Inc.

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:

HALL ENVIRONMENTAL ANALYSIS LAB

Batch #:

130521032

Address:

4901 HAWKINS NE SUITE D ALBUQUERQUE, NM 87109

Project Name:

1305307

Attn:

ANDY FREEMAN

Analytical Results Report Quality Control Data

Lab Control Sample									•
Parameter	LCS Result	Units	LCS	Spike %I	Rec AR	%Rec	Prep	Date	Analysis Date
Cyanide	0.498	mg/kg	0	.5 99	9.6 8	0-120	5/21/	2013	5/22/2013
Matrix Spike	не сум ит технического менен образованием постанованием населения на совети на применения постанованием на сов		1-2	-00000 Aug					
Sample Number Parameter		Sample Result	MS Result	Units	MS Spike	%Rec	AR %Rec	Prep Date	Analysis Date
130510061-007 Cyanide	V	2.07	98.6	mg/kg	100	96.5	60-140	-	_
Matrix Spike Duplicate			Work of the second seco	Transcration to the consequent	in Piles (Herrales paraceurs mans	anna ann am ann an ann an ann an an an an an an an			
Parameter	MSD Result	Units	M\$D Spike	%Rec	%RPD	AR %RPI	n Pre	p Date	Analysis Date
Cyanide	98.0	mg/kg	100	95,9	0.6	0-25		1/2013	5/22/2013
Method Blank	отникую на меня станов на станов на станов на станов на станов на станов на станов на станов на станов на стан			The state of the s	and the second s	and a second service of the colleges by the second service of the second service of the second secon			4. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
Parameter		Re	sult	Unite	i	PQL	Pi	ep Date	Analysis Date
Cyanide		N	D	mg/Kg	ļ	0.3		/21/2013	5/22/2013

RPD

Acceptable Range

ND

Not Detected PQL

Practical Quantitation Limit Relative Percentage Difference

Comments:

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E87693; ID:ID00013; IN:C-ID-01; KY:80142; MT:CERT0026; NM: ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C585; MT:Cert0095

ANALYTICAL RESULTS

Project:

1305307

Pace Project No.:

3094809

Sample: 1305307-001B Central

Lab ID: 3094809001

Collected: 05/08/13 09:10 Received: 05/21/13 10:00

Matrix: Solid

PWS:

PWS:

Site ID:

Sample Type:

Results reported on a "dry-weight" basis

Parameters	Method	Act ± Unc (MDC)	Units	Analyzed	CAS No.	Qual
Radium-226 Radium-228	EPA 901.1m EPA 901.1m	1.089 ± 0.236 (0.204) 1.270 ± 0.370 (0.377)	pCl/g pCl/g	06/12/13 10:59 06/12/13 10:59		

Sample: 1305307-002B Central

OCD-01-05

Lab ID: 3094809002

Collected: 05/08/13 09:45 Received: 05/21/13 10:00

OCD-02-05

Site ID:

Site ID:

Sample Type:

Results reported on a "dry-weight" basis

Parameters	Method	Act ± Unc (MDC)	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 901.1m	1.197 ± 0.275 (0.280)	pCi/g	06/12/13 11:34	13982-63-3	
Radium-228	EPA 901.1m	$1.883 \pm 0.427 (0.373)$	pCi/g	06/12/13 11:34	15262-20-1	

Sample: 1305307-003B Central

Lab ID: 3094809003

Collected: 05/08/13 10:10 Received: 05/21/13 10:00 Matrix: Solid

OCD-03-05 PWS:

Sample Type:

Results reported on a "dry-weight" basis

Parameters	Method	Act ± Unc (MDC)	Units	Analyzed	CAS No.	Qual
Radium-226 Radium-228	EPA 901.1m EPA 901.1m	1.168 ± 0.259 (0.205) 2.033 ± 0.456 (0.285)	pCi/g pCi/g			

Sample: 1305307-004B Central

Lab ID: 3094809004

Collected: 05/08/13 11:05 Received: 05/21/13 10:00 Matrix: Solid

OCD-04-05 PWS:

Site ID:

Sample Type:

Results reported on a "dry-weight" basis

Parameters	Method	Act ± Unc (MDC)	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 901.1m	1.007 ± 0.210 (0.191)	pCi/g	06/12/13 13:12		
Radium-228	EPA 901.1m	1.483 ± 0.330 (0.235)	pCi/g	06/12/13 13:12	15262-20-1	

Sample: 1305307-007B BD-

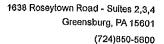
Lab ID: 3094809005

Collected: 05/08/13 00:01 Received: 05/21/13 10:00 Matrix: Solid

PWS:

05082013

Site ID:


Sample Type:

Results reported on a "dry-weight" basis

Parameters	Method	Act ± Unc (MDC)	Units	Analyzed	CAS No.	Qual
Radium-226 Radium-228	EPA 901.1m EPA 901.1m	1.197 ± 0.237 (0.238) 1.592 ± 0.347 (0.222)	pCi/g pCi/g	06/12/13 13:46 06/12/13 13:46	13982-63-3	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

QUALITY CONTROL DATA

Project:

1305307

Pace Project No.:

3094809

QC Batch:

RADC/16080

Analysis Method:

EPA 901.1m

QC Batch Method:

EPA 901.1m

Analysis Description:

901.1 Gamma Spec Ingrowth

Associated Lab Samples:

3094809001, 3094809002, 3094809003, 3094809004, 3094809005

METHOD BLANK: 591821 Associated Lab Samples:

Matrix: Solid

3094809001, 3094809002, 3094809003, 3094809004, 3094809005

Parameter Act ± Unc (MDC) Units Analyzed Qualifiers Radium-226 0.030 ± 0.237 (0.459) pCi/g 06/11/13 14:09 Radium-228 0.027 ± 0.339 (0.688) pCi/g 06/11/13 14:09

Hall Environmental Analysis Laboratory, Inc.

WO#:

1305307

14-Jun-13

Client:

Western Refining Southwest, Gallup

Project:

OCD Land Farm

Sample ID MB-7373	Samp	SampType: MBLK			TestCode: EPA Method 300.0: Anions								
Client ID: PBS	Batcl	Batch ID: 7373			RunNo: 10541								
Prep Date: 5/9/2013	Analysis E	Analysis Date: 5/9/2013			SeqNo: 297850			Units: mg/Kg					
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual			
Fluoride	ND	0.30											
Chloride	ND	1.5											
Nitrogen, Nitrate (As N)	ND	0.30											
Sulfate	ND	1.5											
Sample ID LCS-7373	SampT	ype: LC	S	Tes	tCode: E	PA Method	300.0: Anion	s					
Client ID: LCSS	Batci	Batch ID: 7373		F	RunNo: 1	0541							

Sample ID LCS-7373	SampT	Гуре: LC	S	Tes	tCode: E	s							
Client ID: LCSS	Batcl	h ID: 73	73	F	RunNo: 10541								
Prep Date: 5/9/2013	Analysis D	Date: 5/	9/2013	8	SeqNo: 2	97851	Units: mg/K	ıg/Kg					
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual			
Fluoride	1.5	0.30	1.500	0	96.8	90	110			.,.			
Chloride	14	1.5	15.00	0	92.4	90	110						
Nitrogen, Nitrate (As N)	7.2	0.30	7.500	0	96.5	90	110						
Sulfate	28	1.5	30.00	0	92.6	90	110						

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

Page 27 of 49

Hall Environmental Analysis Laboratory, Inc.

WO#:

1305307

14-Jun-13

Client:

Western Refining Southwest, Gallup

Project:

OCD Land Farm

Sample ID MB-7382

SampType: MBLK

TestCode: EPA Method 418.1: TPH

Client ID: PBS

Batch ID: 7382

PQL

20

RunNo: 10576

Prep Date: 5/10/2013

Analysis Date: 5/13/2013

SeqNo: 298945

Units: mg/Kg

Analyte

Result ND SPK value SPK Ref Val %REC LowLimit

HighLimit

%RPD

%RPD

%RPD

Qual

Petroleum Hydrocarbons, TR Sample ID LCS-7382

SampType: LCS

TestCode: EPA Method 418.1: TPH

Client ID: LCSS

Batch ID: 7382

RunNo: 10576

Prep Date: 5/10/2013

Analysis Date: 5/13/2013

SeqNo: 298946

Units: mg/Kg

Analyte

Result **PQL**

SPK value SPK Ref Val

%REC LowLimit HighLimit

Qual

Petroleum Hydrocarbons, TR

97

20 100.0 96.7

120

RPDLimit

RPDLimit

Sample ID 1305307-004AMS

SampType: MS

TestCode: EPA Method 418.1: TPH

Client ID: Central OCD-04-050

Batch ID: 7382

RunNo: 10576

120

Analyte

Prep Date: 5/10/2013

Analysis Date: 5/13/2013

SeqNo: 298951 %REC

Units: mg/Kg HighLimit

RPDLimit

Qual

Petroleum Hydrocarbons, TR

PQL 100 20

0

0

TestCode: EPA Method 418.1: TPH

Client ID: Prep Date:

Central OCD-04-050 Batch ID: 7382

110

Result

RunNo: 10576

102

20

Page 28 of 49

5/10/2013

Sample ID 1305307-004AMSD

Analysis Date: 5/13/2013

SampType: MSD

SeqNo: 298952

Units: mg/Kg

RPDLimit

Analyte Petroleum Hydrocarbons, TR

SPK value SPK Ref Val

SPK value SPK Ref Val

99.40

100.1

%REC 105 LowLimit

LowLimit

HighLimit 120 %RPD 3.47

Qual

Qualifiers:

0

Value exceeds Maximum Contaminant Level.

Ε Value above quantitation range

Analyte detected below quantitation limits

Analyte detected in the associated Method Blank

Η Holding times for preparation or analysis exceeded

Not Detected at the Reporting Limit ND

RSD is greater than RSDlimit R RPD outside accepted recovery limits В

P Sample pH greater than 2 for VOA and TOC only.

Reporting Detection Limit

Hall Environmental Analysis Laboratory, Inc.

WO#:

1305307

14-Jun-13

Client:

Western Refining Southwest, Gallup

Project:	OCD Lai	nd Farm									
Sample ID	MB-7366	Samp	Туре: МІ	BLK	Tes	tCode: El	PA Method	8021B: Vola	tiles		
Client ID:	PBS	Batc	h ID: 73	66	F	RunNo: 1	0548				
Prep Date:	5/9/2013	Analysis [Date: 5/	/10/2013	5	SeqNo: 2	98461	Units: mg/h	⟨ g		
Analyte	4	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene		ND	0.050								
Toluene		ND	0.050								
Ethylbenzene		ND	0.050								
Xylenes, Total		ND	0.10								
Surr: 4-Bron	nofluorobenzene	0.97	···	1.000		97.2	80	120			
Sample ID			Гуре: LC					8021B: Vola	tiles		
Client ID:	LCSS	Batcl	h ID: 73	66	F	RunNo: 10	0548				
Prep Date:	5/9/2013	Analysis E	Date: 5/	/10/2013	5	SeqNo: 2	98462	Units: mg/k	(g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene		1.0	0.050	1.000	0	100	80	120			
Toluene		0.99	0.050	1.000	0	99.5	80	120			
Ethylbenzene		0.97	0.050	1.000	0	97.1	80	120			
Xylenes, Total		3.0	0.10	3.000	0	101	80	120			
Surr: 4-Brom	ofluorobenzene	1.1		1.000		107	80	120			
											17 U.W. 18 11 1 1 1 1 7 1
Sample ID	1305307-004AMS	SampT	ype: MS	3	Tes	Code: EF	PA Method	8021B: Volat	tiles		
Sample ID Client ID:	1305307-004AMS Central OCD-04-0	•	ype: MS n ID: 73 0			tCode: EF tunNo: 10		8021B: Vola	tiles		
	Central OCD-04-0	•	n ID: 73 0	66	F		0548	8021B: Volati Units: mg/k			
Client ID:	Central OCD-04-0	50 Batch	n ID: 73 0	66 11/2013	F	tunNo: 10	0548			RPDLimit	Qual
Client ID: Prep Date:	Central OCD-04-0	50 Batch Analysis D	n ID: 73 0 Date: 5 /	66 11/2013	R S	tunNo: 10)548 98467	Units: mg/k	(g	RPDLimit	Qual
Client ID: Prep Date: Analyte	Central OCD-04-0	50 Batch Analysis D Result	n ID: 73 0 Pate: 5 /	66 11/2013 SPK value	SPK Ref Val	tunNo: 10 eqNo: 29 %REC	0548 98467 LowLimit	Units: mg/K	(g	RPDLimit	Qual
Client ID: Prep Date: Analyte Benzene	Central OCD-04-0	50 Batch Analysis D Result 1.1	PQL 0.049	66 11/2013 SPK value 0.9843	SPK Ref Val	tunNo: 10 seqNo: 29 %REC 110	0548 98467 LowLimit 67.2	Units: mg/K HighLimit	(g	RPDLimit	Qual
Client ID: Prep Date: Analyte Benzene Toluene	Central OCD-04-0	50 Batch Analysis D Result 1.1 1.1	PQL 0.049 0.049	66 11/2013 SPK value 0.9843 0.9843	SPK Ref Val 0 0	tunNo: 10 eqNo: 29 %REC 110 111	0548 98467 LowLimit 67.2 62.1	Units: mg/K HighLimit 113 116	(g	RPDLimit	Qual
Client ID: Prep Date: Analyte Benzene Toluene Ethylbenzene Xylenes, Total	Central OCD-04-0	50 Batch Analysis D Result 1.1 1.1	PQL 0.049 0.049	66 11/2013 SPK value 0.9843 0.9843 0.9843	SPK Ref Val 0 0	eqNo: 10 eqNo: 29 %REC 110 111 113	0548 98467 LowLimit 67.2 62.1 67.9	Units: mg/k HighLimit 113 116 127	(g	RPDLimit	Qual
Client ID: Prep Date: Analyte Benzene Toluene Ethylbenzene Xylenes, Total Surr: 4-Brom	Central OCD-04-0 5/9/2013	50 Batch Analysis D Result 1.1 1.1 1.1 3.4 1.0	PQL 0.049 0.049	66 11/2013 SPK value 0.9843 0.9843 2.953 0.9843	SPK Ref Val 0 0 0 0	eunNo: 10 eqNo: 29 %REC 110 111 113 116 104	0548 98467 LowLimit 67.2 62.1 67.9 60.6 80	Units: mg/k HighLimit 113 116 127 134	% RPD	RPDLimit	Qual
Client ID: Prep Date: Analyte Benzene Toluene Ethylbenzene Xylenes, Total Surr: 4-Brom	Central OCD-04-0 5/9/2013 ofluorobenzene	50 Batch Analysis E Result 1.1 1.1 1.1 3.4 1.0 C SampT	PQL 0.049 0.049 0.049 0.049 0.098	SPK value 0.9843 0.9843 0.9843 2.953 0.9843	SPK Ref Val 0 0 0 0	eunNo: 10 eqNo: 29 %REC 110 111 113 116 104	0548 08467 LowLimit 67.2 62.1 67.9 60.6 80 PA Method	Units: mg/k HighLimit 113 116 127 134 120	% RPD	RPDLimit	Qual
Client ID: Prep Date: Analyte Benzene Toluene Ethylbenzene Xylenes, Total Surr: 4-Brom	ofluorobenzene 1305307-004AMSE Central OCD-04-0	50 Batch Analysis E Result 1.1 1.1 1.1 3.4 1.0 C SampT	PQL 0.049 0.049 0.098 0.098 0.098 0.098	SPK value 0.9843 0.9843 0.9843 2.953 0.9843	SPK Ref Val 0 0 0 0 Test	kunNo: 10 eqNo: 29 %REC 110 111 113 116 104	0548 08467 LowLimit 67.2 62.1 67.9 60.6 80 PA Method	Units: mg/k HighLimit 113 116 127 134 120	kg %RPD kiles	RPDLimit	Qual
Client ID: Prep Date: Analyte Benzene Toluene Ethylbenzene Xylenes, Total Surr: 4-Brom Sample ID Client ID: Prep Date: Analyte	ofluorobenzene 1305307-004AMSE Central OCD-04-0	Analysis D Result 1.1 1.1 1.1 3.4 1.0 SampT 50 Batch Analysis D Result	PQL 0.049 0.049 0.098 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.	SPK value 0.9843 0.9843 0.9843 2.953 0.9843 6D 66 11/2013 SPK value	SPK Ref Val 0 0 0 0 Test R S SPK Ref Val	cunNo: 10 eqNo: 29 %REC 110 111 113 116 104 Code: EF unNo: 10 eqNo: 29 %REC	0548 08467 LowLimit 67.2 62.1 67.9 60.6 80 PA Method 0548 08468 LowLimit	Units: mg/K HighLimit 113 116 127 134 120 8021B: Volat Units: mg/K HighLimit	%RPD tiles %RPD	RPDLimit	Qual
Client ID: Prep Date: Analyte Benzene Toluene Ethylbenzene Xylenes, Total Surr: 4-Brom Sample ID Client ID: Prep Date: Analyte Benzene	ofluorobenzene 1305307-004AMSE Central OCD-04-0	50 Batch Analysis D Result 1.1 1.1 1.1 3.4 1.0 D SampT 50 Batch Analysis D Result 1.1	PQL 0.049 0.098 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.	SPK value 0.9843 0.9843 0.9843 2.953 0.9843 6D 666 11/2013 SPK value 1.000	SPK Ref Val 0 0 0 0 Test R S SPK Ref Val 0	RunNo: 10 ReqNo: 29 REC 110 111 113 116 104 Code: EF unNo: 10 eqNo: 29 %REC 109	0548 08467 LowLimit 67.2 62.1 67.9 60.6 80 0548 08468 LowLimit 67.2	Units: mg/K HighLimit 113 116 127 134 120 8021B: Volat Units: mg/K HighLimit 113	%RPD tiles %RPD 0.299	RPDLimit 14.3	
Client ID: Prep Date: Analyte Benzene Toluene Ethylbenzene Xylenes, Total Surr: 4-Brom Sample ID Client ID: Prep Date: Analyte Benzene Toluene	ofluorobenzene 1305307-004AMSE Central OCD-04-0	50 Batch Analysis E Result 1.1 1.1 1.1 3.4 1.0 D SampT 50 Batch Analysis E Result 1.1 1.1	PQL 0.049 0.098 0.098 0.050 0.050 0.050	SPK value 0.9843 0.9843 0.9843 2.953 0.9843 6D 66 11/2013 SPK value 1.000 1.000	SPK Ref Val 0 0 0 0 Test R SPK Ref Val 0 0	RunNo: 10 ReqNo: 29 REC 110 111 113 116 104 RCode: EF unNo: 10 eqNo: 29 %REC 109 110	0548 08467 LowLimit 67.2 62.1 67.9 60.6 80 0548 08468 LowLimit 67.2 62.1	Units: mg/K HighLimit 113 116 127 134 120 8021B: Volat Units: mg/K HighLimit 113 116	%RPD tiles %RPD 0.299 0.358	RPDLimit 14.3 15.9	
Client ID: Prep Date: Analyte Benzene Toluene Ethylbenzene Xylenes, Total Surr: 4-Brom Sample ID Client ID: Prep Date: Analyte Benzene Toluene Ethylbenzene	ofluorobenzene 1305307-004AMSE Central OCD-04-0	50 Batch Analysis E Result 1.1 1.1 1.1 3.4 1.0 C SampT 50 Batch Analysis E Result 1.1 1.1 1.1	PQL 0.049 0.049 0.098 Type: MS 1D: 730 PQL 0.050 0.050 0.050	SPK value 0.9843 0.9843 0.9843 2.953 0.9843 66 11/2013 SPK value 1.000 1.000 1.000	SPK Ref Val 0 0 0 0 Testi R SPK Ref Val 0 0 0	Code: EF unNo: 10 %REC 109 110 111	0548 08467 LowLimit 67.2 62.1 67.9 60.6 80 0548 08468 LowLimit 67.2 62.1 67.9	Units: mg/K HighLimit 113 116 127 134 120 8021B: Volat Units: mg/K HighLimit 113 116 127	%RPD (Section 1997) (RPDLimit 14.3 15.9 14.4	
Client ID: Prep Date: Analyte Benzene Toluene Ethylbenzene Xylenes, Total Surr: 4-Brom Sample ID Client ID: Prep Date: Analyte Benzene Toluene Ethylbenzene Xylenes, Total	ofluorobenzene 1305307-004AMSE Central OCD-04-0	50 Batch Analysis E Result 1.1 1.1 1.1 3.4 1.0 D SampT 50 Batch Analysis E Result 1.1 1.1	PQL 0.049 0.098 0.098 0.050 0.050 0.050	SPK value 0.9843 0.9843 0.9843 2.953 0.9843 6D 66 11/2013 SPK value 1.000 1.000	SPK Ref Val 0 0 0 0 Test R SPK Ref Val 0 0	RunNo: 10 ReqNo: 29 REC 110 111 113 116 104 RCode: EF unNo: 10 eqNo: 29 %REC 109 110	0548 08467 LowLimit 67.2 62.1 67.9 60.6 80 0548 08468 LowLimit 67.2 62.1	Units: mg/K HighLimit 113 116 127 134 120 8021B: Volat Units: mg/K HighLimit 113 116	%RPD tiles %RPD 0.299 0.358	RPDLimit 14.3 15.9	

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

Page 29 of 49

Hall Environmental Analysis Laboratory, Inc.

WO#:

RPDLimit

1305307

14-Jun-13

Client:

Western Refining Southwest, Gallup

Project:

OCD Land Farm

Sample ID MB-7495

SampType: MBLK

TestCode: EPA Method 8021B: Volatiles

LowLimit

80

Client ID:

PBS

Batch ID: 7495

PQL

RunNo: 10738

Prep Date: 5/17/2013

SeqNo: 303902

Units: %REC

Analyte

Analysis Date: 5/20/2013

%REC

99.7

Qual

Surr: 4-Bromofluorobenzene

Result 1.0

1.000

SPK value SPK Ref Val

HighLimit 120

Sample ID LCS-7495

SampType: LCS

TestCode: EPA Method 8021B: Volatiles

%RPD

%RPD

Client ID: LCSS

Batch ID: 7495

RunNo: 10738

Prep Date: 5/17/2013

Analysis Date: 5/20/2013

PQL

SeqNo: 303903

Units: %REC

Result

SPK value SPK Ref Val %REC

LowLimit HighLimit **RPDLimit** Qual

Analyte

120

Surr: 4-Bromofluorobenzene 1.1 1.000 108 80

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- Ε Value above quantitation range
- Analyte detected below quantitation limits
- RSD is greater than RSDlimit O
- RPD outside accepted recovery limits R

- Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2 for VOA and TOC only.
- Reporting Detection Limit RL

Page 30 of 49

Hall Environmental Analysis Laboratory, Inc.

WO#: 1305307

14-Jun-13

Client:

Western Refining Southwest, Gallup

Project:	OCD	Land Farm		•			********				
Sample ID	MB-7504	SampT	ype: ME	BLK	Tes	tCode: El	PA Method	8082: PCB's			
Client ID:	PBS	Batch	n ID: 75	04	F	RunNo: 1	0783				
Prep Date:	5/20/2013	Analysis D	ate: 5 /	22/2013	S	SeqNo: 3	05224	Units: mg/K	(g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Aroclor 1016		ND	0.020								
Aroclor 1221		ND	0.020								
Aroclor 1232		ND	0.020								
Aroclor 1242		ND	0.020								
Aroclor 1248		ND	0.020								
Aroclor 1254		ND	0.020								
Aroclor 1260		ND	0.020								
	nlorobiphenyl	0.074		0.06250		118	31.8	151			
Surr: Tetrach	nloro-m-xylene	0.074		0.06250	200	119	26.2	144			
Sample ID	LCS-7504	SampT	ype: LC	s	Tes	tCode: El	PA Method	8082: PCB's			
Client ID:	LCSS	Batch	i ID: 75 0	04	R	RunNo: 10	0783				
Prep Date:	5/20/2013	Analysis D	ate: 5/	22/2013	S	SeqNo: 30	05268	Units: mg/K	g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Aroclor 1016		0.13	0.020	0.1250	0	107	27	132			
Aroclor 1260		0.13	0.020	0.1250	0	106	33.6	133			
Surr: Decach	lorobiphenyl	0.071		0.06250		114	31.8	151			
Surr: Tetrach	lloro-m-xylene	0.071		0.06250		113	26.2	144			
Sample ID	1305307-004A	MS SampT	ype: MS	j	Test	Code: EF	PA Method	8082: PCB's			
Client ID:	Central OCD-	04-050 Batch	1D: 75 0	04	R	tunNo: 10	0783				
Prep Date:	5/20/2013	Analysis D	ate: 5/	22/2013	S	eqNo: 30	05655	Units: mg/K	g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Aroclor 1016		0.076	0.020	0.1249	0	60.8	13.68	112			
Aroclor 1260		0.11	0.020	0.1249	0	85.6	12.2	129			
Surr: Decach	lorobiphenyl	0.061		0.06244		98.4	31.8	151			
Surr: Tetrach	loro-m-xylene	0.052		0.06244		83.6	26.2	144			
Sample ID	1305307-004A	MSD SampT	ype: MS	D .	Test	Code: EF	PA Method	8082: PCB's			
Client ID:	Central OCD-	04-050 Batch	ID: 75 0	04	R	tunNo: 10	0783				
Prep Date:	5/20/2013	Analysis D	ate: 5/2	22/2013	S	eqNo: 30	05656	Units: mg/K	g		
Analyte		Result	PQL		SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Aroclor 1016		0.089	0.020	0.1254	0	70.8	13.68	112	15.7	20	
Aroclor 1260		0.13	0.020	0.1254	0	100	12.2	129	16.0	20	
Surr: Decach		0.072		0.06272		114	31.8	151	0	0	
Surr: Tetrach	loro-m-xylene	0.062		0.06272		98.4	26.2	144	0	0	

Qualifiers:

* Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

RSD is greater than RSDlimit

R RPD outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

P Sample pH greater than 2 for VOA and TOC only.

RL Reporting Detection Limit

Page 31 of 49

Hall Environmental Analysis Laboratory, Inc.

WO#:

1305307

14-Jun-13

Client:

Western Refining Southwest, Gallup

Project:

OCD Land Farm

Sample ID mb-7366	Samp	Туре: М	BLK	Tes	tCode: E	PA Method	8260B: VOL	ATILES		
Client ID: PBS	Bato	h ID: 7 :	366	F	RunNo: 1	10546				
Prep Date: 5/9/2013	Analysis I	Date: 5	/10/2013	5	SeqNo: 2	98264	Units: %RE	C		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: 1,2-Dichloroethane-d4	0.42		0.5000		84.2	70	130			
Surr: 4-Bromofluorobenzene	0.44		0.5000		88.2	70	130			
Surr: Dibromofluoromethane	0.46		0.5000		91.3	70	130			
Surr: Toluene-d8	0.49		0.5000		97.5	70	130			
Sample ID Ics-7366	Samp	Гуре: L0	cs	Tes	tCode: E	PA Method	8260B: VOL	ATILES		
Client ID: LCSS	Batc	h ID: 7 3	166	F	RunNo: 1	0546				
Prep Date: 5/9/2013	Analysis [Date: 5	/10/2013	S	SeqNo: 2	98265	Units: %RE	C		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: 1,2-Dichloroethane-d4	0.43		0.5000		86.2	70	130			
Surr: 4-Bromofluorobenzene	0.44		0.5000		87.8	70	130			
Surr: Dibromofluoromethane	0.45		0.5000		90.5	70	130			
Surr: Toluene-d8	0.48		0.5000		95.5	70	130			
Sample ID mb-7495	SampT	ype: M	BLK	Test	Code: EI	PA Method	8260B: VOL	ATILES		
Client ID: PBS	Batch	n ID: 74	95	R	tunNo: 1	0748				
Prep Date: 5/17/2013	Analysis D)ate: 5	21/2013	S	eqNo: 3	03851	Units: mg/k	ζg		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	0.050								
Toluene	ND	0.050								
Ethylbenzene	ND	0.050								
Methyl tert-butyl ether (MTBE)	ND	0.050								
1,2,4-Trimethylbenzene	ND	0.050								
1,3,5-Trimethylbenzene	ND	0.050								
1,2-Dichloroethane (EDC)	ND	0.050								
1,2-Dibromoethane (EDB)	ND	0.050								
Naphthalene	ND	0.10								
1-Methylnaphthalene	ND	0.20								
2-Methylnaphthalene	ND	0.20								
Acetone	ND	0.75								
Bromobenzene	ND	0.050								
Bromodichloromethane	ND	0.050								
Bromoform	ND	0.050								
Bromomethane	ND	0.15								
2-Butanone	ND	0.50								
Carbon disulfide	ND	0.50								
		0.00								
Carbon tetrachloride	ND	0.10								
Carbon tetrachloride Chlorobenzene										

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

Page 32 of 49

Hall Environmental Analysis Laboratory, Inc.

WO#:

1305307

14-Jun-13

Client:

Western Refining Southwest, Gallup

Project:

OCD Land Farm

Sample ID mb-7495	Samp	Туре: МІ	3LK	Tes	tCode: El	PA Method	8260B: VOL	ATILES		
Client ID: PBS		ch iD: 74			RunNo: 10					
Prep Date: 5/17/2013	Analysis	Date: 5/	21/2013		SeqNo: 30		Units: mg/K	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloroethane	ND	0.10					······································			
Chloroform	ND	0.050				•				
Chloromethane	ND	0.15								
2-Chlorotoluene	ND	0.050								
4-Chlorotoluene	ND	0.050								
cis-1,2-DCE	ND	0.050								
cis-1,3-Dichloropropene	ND	0.050								
1,2-Dibromo-3-chloropropane	ND	0.10								
Dibromochloromethane	ND	0.050								
Dibromomethane	ND	0.10								
1,2-Dichlorobenzene	ND	0.050								
1,3-Dichlorobenzene	ND	0.050								
1,4-Dichlorobenzene	ND	0.050								
Dichlorodifluoromethane	ND	0.050								
1,1-Dichloroethane	ND	0.10								
1,1-Dichloroethene	ND	0.050								
1,2-Dichloropropane	ND	0.050								
1,3-Dichloropropane	ND	0.050								
2,2-Dichloropropane	ND	0.10								
1,1-Dichloropropene	ND	0.10								
Hexachlorobutadiene	ND	0.10								
2-Hexanone	ND	0.50								
Isopropylbenzene	ND	0.050								
4-Isopropyltoluene	ND	0.050								
4-Methyl-2-pentanone	ND	0.50								
Methylene chloride	ND	0.15								
n-Butylbenzene	ND	0.15								
n-Propylbenzene	ND	0.050								
sec-Butylbenzene	ND	0.050								
Styrene	ND	0.050								
tert-Butylbenzene	ND	0.050								
1,1,1,2-Tetrachloroethane	ND	0.050								
1,1,2,2-Tetrachloroethane	ND	0.050								
Tetrachloroethene (PCE)	ND	0.050								
trans-1,2-DCE	ND	0.050								
trans-1,3-Dichloropropene	ND	0.050								
1,2,3-Trichlorobenzene	ND	0.10								
1,2,4-Trichlorobenzene	ND	0.050								
1,1,1-Trichloroethane	ND	0.050								
1,1,2-Trichloroethane	ND	0.050								

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

Page 33 of 49

Hall Environmental Analysis Laboratory, Inc.

WO#: 1305307

14-Jun-13

Client:

Western Refining Southwest, Gallup

Project:

OCD Land Farm

Sample ID mb-7495	SampT	SampType: MBLK			TestCode: EPA Method 8260B: VOLATILES					
Client ID: PBS	Batcl	Batch ID: 7495			RunNo: 10748					
Prep Date: 5/17/2013	Analysis D	Analysis Date: 5/21/2013			SeqNo: 303851			(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Trichloroethene (TCE)	ND	0.050								
Trichlorofluoromethane	ND	0.050								
1,2,3-Trichloropropane	ND	0.10								
Vinyl chloride	ND	0.050								
Xylenes, Total	ND	0.10								
Surr: 1,2-Dichloroethane-d4	0.45		0.5000		89.5	70	130		-	
Surr: 4-Bromofluorobenzene	0.42		0.5000		84.4	70	130			
Surr: Dibromofluoromethane	0.47		0.5000		93.1	70	130			
Surr: Toluene-d8	0.49		0.5000		97.7	70	130			

Sample ID Ics-7495	Samp	Type: LC	s	Tes	tCode: E					
Client ID: LCSS	Batc	h ID: 74	95	F	RunNo: 1					
Prep Date: 5/17/2013	Analysis I	Date: 5 /	21/2013	8	SeqNo: 303852 Units: mg/Kg					
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	1.1	0.050	1,000	0	105	70	130			
Toluene	1.2	0.050	1.000	0	120	80	120			
Chlorobenzene	1.1	0.050	1.000	0	107	70	130			
1,1-Dichloroethene	0.96	0.050	1.000	0	95.6	83.5	130			
Trichloroethene (TCE)	1.0	0.050	1.000	0	102	70	130			
Surr: 1,2-Dichloroethane-d4	0.44		0.5000		87.2	70	130			
Surr: 4-Bromofluorobenzene	0.42		0.5000		83.9	70	130			
Surr: Dibromofluoromethane	0.45		0.5000		90.5	70	130			
Surr: Toluene-d8	0.51		0.5000		101	70	130			

Sample ID 1305307-004AMS	SampTy	/pe: MS	3	Tes	tCode: El	PA Method	8260B: VOL	ATILES		
Client ID: Central OCD-04-0	50 Batch	ID: 74 9	95	F	lunNo: 1	0748				
Prep Date: 5/17/2013	Analysis Da	ate: 5 /2	21/2013	S	SeqNo: 3	03853	Units: mg/K	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	1.0	0.048	0.9533	0	105	67.5	124			
Toluene	1.1	0.048	0.9533	0	114	55.8	142			
Chlorobenzene	1.0	0.048	0.9533	0	104	67.6	124			
1,1-Dichloroethene	0.93	0.048	0.9533	0	98.0	59.2	138			
Trichloroethene (TCE)	0.96	0.048	0.9533	0	101	60.2	114			
Surr: 1,2-Dichloroethane-d4	0.44		0.4766		91.8	70	130			
Surr: 4-Bromofluorobenzene	0.41		0.4766		86.1	70	130			
Surr: Dibromofluoromethane	0.45		0.4766		93.9	70	130			
Surr: Toluene-d8	0.47		0.4766		98.0	70	130			

Qualifiers:

* Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

O RSD is greater than RSDlimit

R RPD outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

P Sample pH greater than 2 for VOA and TOC only.

RL Reporting Detection Limit

Page 34 of 49

Hall Environmental Analysis Laboratory, Inc.

WO#:

1305307

14-Jun-13

Client:

Western Refining Southwest, Gallup

Project:

OCD Land Farm

Sample ID 1305307-004AM	SD SampT	ype: MS	SD	Tes	ATILES					
Client ID: Central OCD-04-	- 050 Batch	n ID: 74 !	95	F	0748					
Prep Date: 5/17/2013	Analysis D	oate: 5/	21/2013	SeqNo: 303854 Units: mg/Kg						
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	0.94	0.048	0.9560	0	98.5	67.5	124	6.12	20	
Toluene	0.99	0.048	0.9560	0	103	55.8	142	9.30	20	
Chlorobenzene	0.91	0.048	0.9560	0	95.5	67.6	124	8.65	20	
1,1-Dichloroethene	0.85	0.048	0.9560	0	88.7	59.2	138	9.65	20	
Trichloroethene (TCE)	0.92	0.048	0.9560	0	95.8	60.2	114	4.97	20	
Surr: 1,2-Dichloroethane-d4	0.43		0.4780		90.7	70	130	0	0	
Surr: 4-Bromofluorobenzene	0.41		0.4780		85.3	70	130	0	0	
Surr: Dibromofluoromethane	0.45		0.4780		93.9	70	130	0	0	
Surr: Toluene-d8	0.46		0.4780		96.9	70	130	0	0	

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

Page 35 of 49

Hall Environmental Analysis Laboratory, Inc.

WO#:

1305307

14-Jun-13

Client:

Western Refining Southwest, Gallup

Project:

OCD Land Farm

Sample ID 5ml rb	SampT	ype: Mi	BLK	Tes	tCode: El	PA Method	8260B: VOL	ATILES		
Client ID: PBW	Batch	ılD: R1	0534	F	RunNo: 10	0534				
Prep Date:	Analysis D				SeqNo: 2		Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	1.0						•		
Toluene	ND	1.0								
Ethylbenzene	ND	1.0								
Methyl tert-butyl ether (MTBE)	ND	1.0								
1,2,4-Trimethylbenzene	ND	1.0								
1,3,5-Trimethylbenzene	ND	1.0								
1,2-Dichloroethane (EDC)	ND	1.0								
1,2-Dibromoethane (EDB)	ND	1.0								
Naphthalene	ND	2.0								
1-Methylnaphthalene	ND	4.0								
2-Methylnaphthalene	ND	4.0								
Acetone	ND	10								
Bromobenzene	ND	1.0								
Bromodichloromethane	ND	1.0								
Bromoform	ND	1.0								
Bromomethane	ND	3.0								
2-Butanone	ND	10								
Carbon disulfide	ND	10								
Carbon Tetrachloride	ND	1.0								
Chlorobenzene	ND	1.0								
Chloroethane	ND	2.0								
Chloroform	ND	1.0								
Chloromethane	ND	3.0								
2-Chlorotoluene	ND	1.0								
4-Chlorotoluene	ND	1.0								
cis-1,2-DCE	ND	1.0								
cis-1,3-Dichloropropene	ND	1.0								
1,2-Dibromo-3-chloropropane	ND	2.0								
Dibromochloromethane	ND	1.0								
Dibromomethane	ND	1.0								
1,2-Dichlorobenzene	ND	1.0								
1,3-Dichlorobenzene	ND	1.0								
1,4-Dichlorobenzene	ND	1.0								
Dichlorodifluoromethane	ND	1.0								
1,1-Dichloroethane	ND	1.0								
1,1-Dichloroethene	ND	1.0								
1,2-Dichloropropane	ND	1.0								
1,3-Dichloropropane	ND	1.0								
2,2-Dichloropropane	ND	2.0								
1,1-Dichloropropene	ND	1.0								

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

Page 36 of 49

Hall Environmental Analysis Laboratory, Inc.

WO#:

1305307

14-Jun-13

Client:

Western Refining Southwest, Gallup

Project:

OCD Land Farm

Sample ID 5ml rb	SampT	Гуре: МВ	LK	Tes	tCode: El	PA Method	8260B: VOL	ATILES		
Client ID: PBW	Batch	h ID: R1 0	0534	F	RunNo: 1	0534				
Prep Date:	Analysis D	Date: 5/9	9/2013	S	SeqNo: 2	97703	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Hexachlorobutadiene	ND	1.0								
2-Hexanone	ND	10								
Isopropylbenzene	ND	1.0								
4-Isopropyltoluene	ND	1.0								
4-Methyl-2-pentanone	ND	10								
Methylene Chloride	ND	3.0								
n-Butylbenzene	ND	3.0								
n-Propylbenzene	ND	1.0								
sec-Butylbenzene	ND	1.0								
Styrene	ND	1.0								
tert-Butylbenzene	ND	1.0								
1,1,1,2-Tetrachloroethane	ND	1.0								
1,1,2,2-Tetrachloroethane	ND	2.0								
Tetrachloroethene (PCE)	ND	1.0								
trans-1,2-DCE	ND	1.0								
trans-1,3-Dichloropropene	ND	1.0								
1,2,3-Trichlorobenzene	ND	1.0								
1,2,4-Trichlorobenzene	ND	1.0								
1,1,1-Trichloroethane	ND	1.0								
1,1,2-Trichloroethane	ND	1.0								
Trichloroethene (TCE)	ND	1.0								
Trichlorofluoromethane	ND	1.0								
1,2,3-Trichloropropane	ND	2.0								
Vinyl chloride	ND	1.0								
Xylenes, Total	ND	1.5								
Surr: 1,2-Dichloroethane-d4	10		10.00		102	70	130			
Surr: 4-Bromofluorobenzene	10		10.00		104	69.5	130			
Surr: Dibromofluoromethane	10		10.00		104	70	130			
Surr: Toluene-d8	9.8		10.00		98.1	70	130			

Sample ID 100ng Ics	SampT	ype: LC	s	Tes	tCode: E	PA Method	8260B: VOL	ATILES		
Client ID: LCSW	Batch	1D: R1	0534	F	RunNo: 1	0534				
Prep Date:	Analysis D	ate: 5/	9/2013	S	SeqNo: 2	97705	Units: µg/L			
Analyte	Result				%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	21	1.0	20.00	0	106	70	130			
Toluene	20	1.0	20.00	0	99.4	80	120			
Chlorobenzene	19	1.0	20.00	0	96.1	70	130			
1,1-Dichloroethene	20	1.0	20.00	0	98.9	85.8	133			
Trichloroethene (TCE)	19	1.0	20.00	0	93.4	70	130			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

Page 37 of 49

Hall Environmental Analysis Laboratory, Inc.

WO#:

1305307 14-Jun-13

Client:

Western Refining Southwest, Gallup

Project:

OCD Land Farm

Sample ID 100ng Ics	Samp	Гуре: LC	s	Tes	tCode: E	PA Metho	d 8260B: VOL	ATILES		
Client ID: LCSW	Batc	h ID: R 1	0534	F	RunNo: 1	0534				
Prep Date:	Analysis [Date: 5	9/2013	5	SeqNo: 2	97705	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimi	HighLimit	%RPD	RPDLimit	Qual
Surr: 1,2-Dichloroethane-d4	10		10.00		102	70	130			
Surr: 4-Bromofluorobenzene	11		10.00		107	69.5	130			
Surr: Dibromofluoromethane	10		10.00		102	70	130			
Surr: Toluene-d8	9.6		10.00		96.1	70	130			
Sample ID rb2	SampT	уре: М	BLK	Tes	tCode: E	PA Metho	8260B: VOL	ATILES		
Client ID: PBW	Batcl	n ID: R1	0534	F	RunNo: 1	0534				
Prep Date:	Analysis D				SeqNo: 2		Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimi	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	1.0								
Toluene	ND	1.0								
Ethylbenzene	ND	1.0								
Methyl tert-butyl ether (MTBE)	ND	1.0								
1,2,4-Trimethylbenzene	ND	1.0								
1,3,5-Trimethylbenzene	ND	1.0								
1,2-Dichloroethane (EDC)	ND	1.0								
1,2-Dibromoethane (EDB)	ND	1.0								
Naphthalene	ND	2.0								
1-Methylnaphthalene	ND	4.0								
2-Methylnaphthalene	ND	4.0								
Acetone	ND	10								
Bromobenzene	ND	1.0								
Bromodichloromethane	ND	1.0								
Bromoform	ND	1.0								
3romomethane	ND	3.0								
2-Butanone	ND	10								
Carbon disulfide	ND	10								
Carbon Tetrachloride	ND	1.0								
Chlorobenzene	ND	1.0								
Chloroethane	ND	2.0								
Chloroform	ND	1.0								
Chloromethane	ND	3.0								
2-Chlorotoluene	ND	1.0								
-Chlorotoluene	ND	1.0								
is-1,2-DCE	ND	1.0								
is-1,3-Dichloropropene	ND	1.0								
1,2-Dibromo-3-chloropropane	ND	2.0								
Dibromochloromethane	ND	1.0								
Dibromomethane	ND	1.0								

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

Page 38 of 49

Hall Environmental Analysis Laboratory, Inc.

WO#: 1305307

14-Jun-13

Client:

Western Refining Southwest, Gallup

Project:

OCD Land Farm

Sample ID rb2	SampT	ype: M	BLK	Tes	tCode: El	PA Method	8260B: VOL	ATILES		
Client ID: PBW	Batch	n ID: R1	0534	F	RunNo: 1	0534				
Prep Date:	Analysis D	ate: 5/	9/2013	8	SeqNo: 2	97728	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
1,2-Dichlorobenzene	ND	1.0								
1,3-Dichlorobenzene	ND	1.0								
1,4-Dichlorobenzene	ND	1.0								
Dichlorodifluoromethane	ND	1.0								
1,1-Dichloroethane	ND	1.0								
1,1-Dichloroethene	ND	1.0								
1,2-Dichloropropane	ND	1.0								
1,3-Dichloropropane	ND	1.0								
2,2-Dichloropropane	ND	2.0								
1,1-Dichloropropene	ND	1.0								
Hexachlorobutadiene	ND	1.0								
2-Hexanone	ND	10								
Isopropylbenzene	ND	1.0								
4-Isopropyltoluene	ND	1.0								
4-Methyl-2-pentanone	ND	10								
Methylene Chloride	ND	3.0								
n-Butylbenzene	ND	3.0								
n-Propylbenzene	ND	1.0								
sec-Butylbenzene	ND	1.0								
Styrene	ND	1.0								
tert-Butylbenzene	ND	1.0								
1,1,1,2-Tetrachloroethane	ND	1.0								
1,1,2,2-Tetrachloroethane	ND	2.0								
Tetrachloroethene (PCE)	ND	1.0								
trans-1,2-DCE	ND	1.0								
trans-1,3-Dichloropropene	ND	1.0								
1,2,3-Trichlorobenzene	ND	1.0								
1,2,4-Trichlorobenzene	ND	1.0								
1,1,1-Trichloroethane	ND	1.0								
1,1,2-Trichloroethane	ND	1.0								
Trichloroethene (TCE)	ND	1.0								
• •	ND	1.0								
Trichlorofluoromethane	ND	2.0								
1,2,3-Trichloropropane										
Vinyl chloride	ND	1.0								
Xylenes, Total	ND	1.5	40.00		404	70	420			
Surr: 1,2-Dichloroethane-d4	10		10.00		101	70	130			
Surr: 4-Bromofluorobenzene	11		10.00		105	69.5	130			
Surr: Dibromofluoromethane	10		10.00		104	70	130			
Surr: Toluene-d8	9.7		10.00		96.7	70	130			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

Page 39 of 49

Hall Environmental Analysis Laboratory, Inc.

WO#:

1305307

14-Jun-13

Client:

Western Refining Southwest, Gallup

Project:

OCD Land Farm

Sample ID 100ng Ics ii	SampT	ype: LC	s	Tes	tCode: El	PA Method	8260B: VOL	ATILES		· · · · · · · · · · · · · · · · · · ·
Client ID: LCSW	Batcl	n ID: R1	0534	F	RunNo: 1	0534				
Prep Date:	Analysis D	ate: 5/	9/2013	8	SeqNo: 2	97730	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	22	1.0	20.00	0	110	70	130			
Toluene	20	1.0	20.00	0	101	80	120			
Chlorobenzene	20	1.0	20.00	0	97.7	70	130			
1,1-Dichloroethene	20	1.0	20.00	0	97.6	85.8	133			
Trichloroethene (TCE)	20	1.0	20.00	0	98.1	70	130			
Surr: 1,2-Dichloroethane-d4	10		10.00		105	70	130			
Surr: 4-Bromofluorobenzene	11		10.00		106	69.5	130			
Surr: Dibromofluoromethane	10		10.00		99.9	70	130			
Surr: Toluene-d8	9.5		10.00		95.2	70	130			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

Page 40 of 49

Hall Environmental Analysis Laboratory, Inc.

WO#:

1305307

14-Jun-13

Client:

Western Refining Southwest, Gallup

Project:

OCD Land Farm

Sample ID mb-7537	SampT	ype: ME	BLK	Tes	tCode: El	PA Method	8270C: Semi	volatiles		
Client ID: PBS	Batch	ID: 75 3	37	F	RunNo: 10	808				
Prep Date: 5/21/2013	Analysis D	ate: 5/	22/2013	5	SeqNo: 3	05734	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
4-Chloro-3-methylphenol	ND	0.50								
2-Chlorophenol	ND	0.20								
2,4-Dichlorophenol	ND	0.40								
2,4-Dimethylphenol	ND	0.30								
4,6-Dinitro-2-methylphenol	ND	0.50								
2,4-Dinitrophenol	ND	0.40								
2-Methylphenol	ND	0.50								
3+4-Methylphenol	ND	0.20								
2-Nitrophenol	ND	0.20								
4-Nitrophenol	ND	0.25								
Pentachlorophenol	ND	0.40								
Phenol	ND	0.20								
2,4,5-Trichlorophenol	ND	0.20								
2,4,6-Trichlorophenol	ND	0.20								
Surr: 2,4,6-Tribromophenol	3.1		3.330		93.4	40.1	130			
Surr: 2-Fluorobiphenyl	1.4		1.670		85.6	44.4	123			
Surr: 2-Fluorophenol	2.4		3.330		71.0	41.9	112			
Surr: 4-Terphenyl-d14	1.5		1.670		88.6	29.6	130			
Surr: Nitrobenzene-d5	1.4		1.670		83.3	42.4	132			
Surr: Phenol-d5	2.8		3.330		83.4	44.3	119			

Sample ID Ics-7537	SampT	ype: LC	S	Tes	tCode: El	PA Method	8270C: Semi	volatiles		
Client ID: LCSS	Batch	n ID: 75 :	37	F	RunNo: 1	8080				
Prep Date: 5/21/2013	Analysis D	ate: 5/	22/2013	S	SeqNo: 3	05738	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
4-Chloro-3-methylphenol	2.6	0.50	3.330	0	79.0	49.9	103			., .,
2-Chlorophenol	2.2	0.20	3.330	0	67.3	43.4	94			
4-Nitrophenot	2.4	0.25	3.330	0	72.7	45.4	113			
Pentachlorophenol	2.1	0.40	3.330	0	63.0	40	90.2			
Phenol	2.6	0.20	3.330	0	77.6	44.4	99.8			
Surr: 2,4,6-Tribromophenol	3.0		3.330		90.1	40.1	130			
Surr: 2-Fluorobiphenyl	1.5		1.670		87.3	44.4	123			
Surr: 2-Fluorophenol	2.2		3.330		66.7	41.9	112			
Surr: 4-Terphenyl-d14	1.5		1.670		89.7	29.6	130			
Surr: Nitrobenzene-d5	1.5		1.670		88.0	42.4	132			
Surr: Phenol-d5	2.9		3.330		86.7	44.3	119			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

Page 41 of 49

Hall Environmental Analysis Laboratory, Inc.

WO#:

1305307

14-Jun-13

Client:

Western Refining Southwest, Gallup

Project:

OCD Land Farm

Sample ID 1305307-004Ams	SampT	ype: MS	3	Tes	tCode: El	PA Method	8270C: Semi	volatiles		""
Client ID: Central OCD-04-0	50 Batch	ID: 75	37	F	RunNo: 1	8080				
Prep Date: 5/21/2013	Analysis D	ate: 5/	22/2013	5	SeqNo: 3	05746	Units: mg/K	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
4-Chloro-3-methylphenol	2.6	0.50	3.328	0	79.1	63.7	100			
2-Chlorophenol	2.3	0.20	3.328	0	68.3	22.2	126			
4-Nitrophenol	2.4	0.25	3.328	0	70.7	36.7	130			
Pentachlorophenol	2.2	0.40	3.328	0	65.0	15.8	113			
Phenol	2.4	0.20	3.328	0	73.5	25.1	124			
Surr: 2,4,6-Tribromophenol	3.0		3.328		90.6	40.1	130			
Surr: 2-Fluorobiphenyl	1.4		1.669		83.1	44.4	123			
Surr: 2-Fluorophenol	2.0		3.328		60.2	41.9	112			
Surr: 4-Terphenyl-d14	1.4		1.669		83.7	29.6	130			
Surr: Nitrobenzene-d5	1.4		1.669		86.8	42.4	132			
Surr: Phenol-d5	2.7		3.328		79.9	44.3	119			

Sample ID 1305307-004Ams	d SampT	ype: MS	SD	Tes	tCode: El	PA Method	8270C: Semi	volatiles		
Client ID: Central OCD-04-0	050 Batch	ID: 75 :	37	F	RunNo: 1	8080				
Prep Date: 5/21/2013	Analysis D	ate: 5/	22/2013	8	SeqNo: 3	05749	Units: mg/K	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
4-Chloro-3-methylphenol	2.6	0.50	3.331	0	77.8	63.7	100	1.52	27.3	
2-Chlorophenol	2.3	0.20	3.331	0	68.3	22.2	126	0.188	26.3	
4-Nitrophenol	2.3	0.25	3.331	0	68.5	36.7	130	3.05	20	
Pentachlorophenol	2.2	0.40	3.331	0	66.9	15.8	113	2.92	27.1	
Phenol	2.4	0.20	3.331	0	71.0	25.1	124	3.43	32.2	
Surr: 2,4,6-Tribromophenol	3.0		3.331		91.4	40.1	130	0	0	
Surr: 2-Fluorobiphenyl	1.4		1.671		81.1	44.4	123	0	0	
Surr: 2-Fluorophenol	2.0		3.331		58.7	41.9	112	0	0	
Surr: 4-Terphenyl-d14	1.5		1.671		92.5	29.6	130	0	0	
Surr: Nitrobenzene-d5	1.3		1.671		79.3	42.4	132	0	0	
Surr: Phenol-d5	2.6		3.331		78.6	44.3	119	0	0	

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

Page 42 of 49

Hall Environmental Analysis Laboratory, Inc.

WO#: 1305307

14-Jun-13

Client:

Western Refining Southwest, Gallup

Project:

OCD Land Farm

Sample ID MB-7505	SampT	Гуре: МЕ	BLK	Tes	tCode: El	PA Method	8310: PAHs			
Client ID: PBS	Batch	h ID: 75 0)5	F	RunNo: 1	0822				
Prep Date: 5/20/2013	Analysis D	Date: 5/	23/2013	5	SeqNo: 3	06482	Units: mg/K	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Naphthalene	ND	0.25								
1-Methylnaphthalene	ND	0.25								
2-Methylnaphthalene	ND	0.25								
Acenaphthylene	ND	0.25								
Acenaphthene	ND	0.25								
Fluorene	ND	0.030								
Phenanthrene	ND	0.015								
Anthracene	ND	0.015								
Fluoranthene	ND	0.020								
Pyrene	ND	0.025								
Benz(a)anthracene	ND	0.010								
Chrysene	ND	0.010								
Benzo(b)fluoranthene	ND	0.010								
Benzo(k)fluoranthene	ND	0.010								
Benzo(a)pyrene	ND	0.010								
Dibenz(a,h)anthracene	ND	0.010								
Benzo(g,h,i)perylene	ND	0.010								
Indeno(1,2,3-cd)pyrene	ND	0.010								
Surr: Benzo(e)pyrene	0.47		0.5000		93.2	36.7	118			

Sample ID LCS-7505	SampT	ype: LC	S	Test	Code: EF	PA Method	8310: PAHs			
Client ID: LCSS	Batch	1D: 75 0	05	R	unNo: 10	0822				
Prep Date: 5/20/2013	Analysis D	ate: 5/	23/2013	S	eqNo: 30	06483	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Naphthalene	1.7	0.25	2.000	0	82.9	43.1	92.9			
1-Methylnaphthalene	1.7	0.25	2.000	0	85.3	44.9	94.8			
2-Methylnaphthalene	1.8	0.25	2.000	0	89.2	44.5	95.4			
Acenaphthylene	1.6	0.25	2.000	0	80.4	44.7	96			
Acenaphthene	1.8	0.25	2.000	0	87.6	47.5	97.2			
Fluorene	0.18	0.030	0.2000	0	89.5	36	84.9			S
Phenanthrene	0.085	0.015	0.1006	0	84.5	42.6	92.6			
Anthracene	0.075	0.015	0.1006	0	74.3	44.4	89.9			
Fluoranthene	0.18	0.020	0.2006	0	88.7	39.3	102			
Pyrene	0.16	0.025	0.2000	0	78.4	25.3	96.9			
Benz(a)anthracene	0.018	0.010	0.02000	0	90.0	50.2	98.7			
Chrysene	0.085	0.010	0.1006	0	84.7	43.5	89.5			
Benzo(b)fluoranthene	0.024	0.010	0.02500	0	97.0	58.2	106			
Benzo(k)fluoranthene	0.012	0.010	0.01250	0	92.0	48.7	109			
Benzo(a)pyrene	ND	0.010	0.01250	0	72.0	40.3	113			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

Page 43 of 49

Hall Environmental Analysis Laboratory, Inc.

WO#:

1305307

14-Jun-13

Client:

Western Refining Southwest, Gallup

Project:

OCD Land Farm

Sample ID LCS-7505	Samp	Гуре: LC	s	Tes	tCode: E	PA Method	8310: PAHs			
Client ID: LCSS	Batc	h ID: 75 6	05	F	RunNo: 1	0822				
Prep Date: 5/20/2013	Analysis [8	SeqNo: 306483			Units: mg/Kg				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Dibenz(a,h)anthracene	0.023	0.010	0.02500	0	92.0	47.7	106		· · · · · · · · · · · · · · · · · · ·	
Benzo(g,h,i)perylene	0.024	0.010	0.02500	0	94.0	48.3	106			
Indeno(1,2,3-cd)pyrene	0.044	0.010	0.05002	0	89.0	43.5	101			
Surr: Benzo(e)pyrene	0.47		0.5000		94.5	36.7	118			

Sample ID 1305307-004AMS	Samp [*]	Type: MS	3	Tes	tCode: El	PA Method	8310: PAHs			
Client ID: Central OCD-04-0)50 Batc	h ID: 75	05	F	RunNo: 1	0902				
Prep Date: 5/20/2013	Analysis [Date: 5/	28/2013	S	SeqNo: 3	08160	Units: mg/k	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Naphthalene	2.2	1.3	2.011	0	110	34.9	90.8			S
1-Methylnaphthalene	2.2	1.3	2.011	0	107	36.4	91.9			S
2-Methylnaphthalene	2.1	1.3	2.011	0	106	36.2	91.7			S
Acenaphthylene	1.9	1.3	2.011	0	93.8	18.6	120			
Acenaphthene	2.1	1.3	2.011	0	105	33	100			S
Fluorene	0.21	0.15	0.2011	0	103	37.5	77			S
Phenanthrene	0.12	0.075	0.1012	0	121	32.2	104			S
Anthracene	0.089	0.075	0.1012	0	88.2	25.2	112			_
Fluoranthene	0.20	0.10	0.2017	0	97.2	24.6	106			
Pyrene	0.21	0.13	0.2011	0	105	12.2	99.3			S
Benz(a)anthracene	ND	0.050	0.02011	0	106	29.3	122			_
Chrysene	0.10	0.050	0.1012	0	102	40.9	93.5			S
Benzo(b)fluoranthene	ND	0.050	0.02514	0	120	42.2	125			_
Benzo(k)fluoranthene	ND	0.050	0.01257	0	110	14.8	130			
Benzo(a)pyrene	ND	0.050	0.01257	0	90.0	13.2	134			
Dibenz(a,h)anthracene	ND	0.050	0.02514	0	85.0	14.9	116			
Benzo(g,h,i)perylene	ND	0.050	0.02514	0.005015	100	15.7	113			
Indeno(1,2,3-cd)pyrene	ND	0.050	0.05030	0	95.0	16.3	115			
Surr: Benzo(e)pyrene	0.58		0.5028		115	36.7	118			

Sample ID 1305307-004AMS	SD SampT	ype: MS	SD	Tes	tCode: E	PA Method	8310: PAHs				
Client ID: Central OCD-04-	050 Batch	ID: 75	05	F	RunNo: 1	0902					
Prep Date: 5/20/2013 Analysis Date: 5/28/2013 SeqNo: 308161 Units: mg/Kg											
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Naphthalene	2.0	1.3	2.010	0	102	34.9	90.8	8.12	20	s	
1-Methylnaphthalene	2.0	1.3	2.010	0	99.4	36.4	91.9	7.44	20	S	
2-Methylnaphthalene	2.0	1.3	2.010	0	99.4	36.2	91.7	6.74	20	S	
Acenaphthylene	1.8	1.3	2.010	0	89.8	18.6	120	4.41	20		
Acenaphthene	2.0	1.3	2.010	0	99.1	33	100	6.05	20		

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- 0 RSD is greater than RSDlimit
- R RPD outside accepted recovery limits

- Analyte detected in the associated Method Blank В
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- Sample pH greater than 2 for VOA and TOC only.
- RLReporting Detection Limit

Page 44 of 49

Hall Environmental Analysis Laboratory, Inc.

WO#:

1305307

14-Jun-13

Client:

Western Refining Southwest, Gallup

Project:

OCD Land Farm

Sample ID 1305307-004AMSD SampType: MSD TestCode: EPA Method 8310: PAHs												
Client ID: Central OCD-04-0	050 Batch	1 ID: 75 0	05	F	RunNo: 10	0902						
Prep Date: 5/20/2013	Analysis D	oate: 5/	28/2013	S	SeqNo: 3	08161	Units: mg/k	(g				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
Fluorene	0.20	0.15	0.2010	0	99.4	37.5	77	3.15	20	S		
Phenanthrene	0.10	0.075	0.1011	0	102	32.2	104	16.8	20			
Anthracene	0.089	0.075	0.1011	0	88.2	25.2	112	0.0503	20			
Fluoranthene	0.20	0.10	0.2016	0	98.5	24.6	106	1.22	20			
Pyrene	0.20	0.13	0.2010	0	101	12.2	99.3	4.31	20	S		
Benz(a)anthracene	ND	0.050	0.02010	0	106	29.3	122	0	20			
Chrysene	0.11	0.050	0.1011	0	104	40.9	93.5	2.36	20	S		
Benzo(b)fluoranthene	ND	0.050	0.02513	0	120	42.2	125	0	20			
Benzo(k)fluoranthene	ND	0.050	0.01256	0	110	14.8	130	0	20			
Benzo(a)pyrene	ND	0.050	0.01256	0	90.0	13.2	134	0	20			
Dibenz(a,h)anthracene	ND	0.050	0.02513	0	85.0	14.9	116	0	20			
Benzo(g,h,i)perylene	ND	0.050	0.02513	0.005015	100	15.7	113	0	20			
Indeno(1,2,3-cd)pyrene	ND	0.050	0.05027	0	95.0	16.3	115	0	20			
Surr: Benzo(e)pyrene	0.55		0.5025		110	36.7	118	0	20			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

Page 45 of 49

Hall Environmental Analysis Laboratory, Inc.

WO#:

1305307

14-Jun-13

Client:

Western Refining Southwest, Gallup

Project:

OCD Land Farm

Sample ID MB-7539

SampType: MBLK

TestCode: EPA Method 7471: Mercury

Client ID:

Prep Date:

PBS

5/21/2013

Batch ID: 7539 Analysis Date: 5/22/2013 RunNo: 10790

SeqNo: 305007

Units: mg/Kg

HighLimit

%RPD

RPDLimit Qual

Analyte Mercury

Result **PQL**

ND 0.033

TestCode: EPA Method 7471: Mercury

SPK value SPK Ref Val %REC LowLimit

SampType: LCS Batch ID: 7539

RunNo: 10790

Prep Date: 5/21/2013

Sample ID LCS-7539

Client ID: LCSS

Analysis Date: 5/22/2013

PQL

0.033

100

Units: mg/Kg

Analyte Result

0.17

SeqNo: 305008 %REC

LowLimit

HighLimit

%RPD **RPDLimit**

Qual

Мегсигу

Sample ID 1305307-004AMS

SampType: MS

0.1667

0.1617

0.1597

SPK value SPK Ref Val

TestCode: EPA Method 7471: Mercury

120

Client ID: Central OCD-04-050 Prep Date:

5/21/2013

Batch ID: 7539

RunNo: 10790 SeqNo: 305020

80

Units: mg/Kg

125

%RPD

Analyte Mercury

Analysis Date: 5/22/2013

PQL

0.033

SPK value SPK Ref Val

SPK value SPK Ref Val

0.005729

0.005729

%REC 96.9 HighLimit

RPDLimit

Qual

Sample ID 1305307-004AMSD

SampType: MSD

TestCode: EPA Method 7471: Mercury

LowLimit

Central OCD-04-050

Result

0.16

Result

0.16

Batch ID: 7539

0.033

RunNo: 10790

97.0

75

75

Units: mg/Kg

125

Analyte Mercury

Client ID:

Prep Date:

5/21/2013

Analysis Date: 5/22/2013 **PQL**

SeqNo: 305021

%REC LowLimit

HighLimit

%RPD

1.16

RPDLimit

Qual

Qualifiers:

Value exceeds Maximum Contaminant Level.

Е Value above quantitation range

J Analyte detected below quantitation limits

O RSD is greater than RSDlimit

R RPD outside accepted recovery limits В Analyte detected in the associated Method Blank

Η Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

P Sample pH greater than 2 for VOA and TOC only.

Reporting Detection Limit

Page 46 of 49

Hall Environmental Analysis Laboratory, Inc.

WO#:

1305307

14-Jun-13

Client:

Western Refining Southwest, Gallup

Project:

OCD Land Farm

Project:	ОСБ	Land Farm									
Sample ID	MB-7531	Samp	Type: M	BLK	Te	stCode: E	PA Method	d 6010B: Soi	Metals		
Client ID:	PBS	Batc	h ID: 7	531		RunNo:	10786				
Prep Date:	5/21/2013	Analysis [Date: 5	/22/2013		SeqNo: :	304938	Units: mg/	Kg		
Analyte		Result	PQL		SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Arsenic		ND	2.5								
Barium		ND	0.10								
Cadmium		ND	0.10								
Chromium		ND	0.30								
Copper		ND	0.30								
_ead		ND	0.25								
Selenium		ND	2.5								
Silver		ND	0.25								
inc.		ND	2.5		A						
Sample ID	LCS-7531	·	ype: LC		Tes	tCode: E	PA Method	6010B: Soil	Metals		
Client ID:	LCSS	Batch	n ID: 75	31	F	RunNo: 1	0786				
Prep Date:	5/21/2013	Analysis D	ate: 5	/22/2013	5	SeqNo: 3	04939	Units: mg/i	≺g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
rsenic		26	2.5	25.00	0	104	80	120			
arium		26	0.10	25.00	0	103	80	120			
admium		26	0.10	25.00	0	103	80	120			
hromium		26	0.30	25.00	0	104	80	120			
opper		27	0.30	25.00	0	107	80	120			
ead		26	0.25	25.00	0	103	80	120			
elenium		24	2.5	25.00	0	95.8	80	120			
ilver		5.2	0.25	5.000	0	105	80	120			
inc		26	2.5	25.00	0	103	80	120			
Sample ID	MB-7531	SampT	ype: ME	BLK	Tes	tCode: El	PA Method	6010B: Soil	Metals	770	
Client ID:	PBS	Batch	ID: 75	31	R	tunNo: 1	0852				
Prep Date:	5/21/2013	Analysis D	ate: 5/	23/2013	S	eqNo: 3	06409	Units: mg/h	(g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
n 		ND	1.0								
anganese		ND	0.10								
ranium		ND -	5.0								
Sample ID I		SampTy	ype: LC	S	Test	Code: EF	PA Method	6010B: Soil l	Vietals		
Client ID: I	LCSS	Batch	ID: 75 3	31	R	unNo: 1 0	0852				
rep Date:	5/21/2013	Analysis Da	ate: 5/2	23/2013	s	eqNo: 30	06410	Units: mg/K	g		
nalyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
on		28	1.0	25.00	0	110	80	120			
anganese		25	0.10	25.00	0	102	80	120			

- Value exceeds Maximum Contaminant Level.
- Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- RPD outside accepted recovery limits

- В Analyte detected in the associated Method Blank
- Η Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

Page 47 of 49

Hall Environmental Analysis Laboratory, Inc.

WO#:

1305307

14-Jun-13

Client:

Western Refining Southwest, Gallup

Project:

OCD Land Farm

Sample ID LCS-7531

SampType: LCS

TestCode: EPA Method 6010B: Soil Metals

LowLimit

80

Client ID: LCSS

Batch ID: 7531

RunNo: 10852

Prep Date: 5/21/2013 Analysis Date: 5/23/2013

SeqNo: 306410

Units: mg/Kg

Analyte

120

%RPD

%RPD

Result

SPK value SPK Ref Val **PQL**

5.0

%REC

109

HighLimit

Qual

Uranium

Sample ID 1305307-004AMS

SampType: MS

TestCode: EPA Method 6010B: Soil Metals

RPDLimit

RPDLimit

RPDLimit

Qual

Qual

Client ID: Central OCD-04-050

RunNo: 10899

Batch ID: 7531

27

26

43

24

5.3

ND

50

27

25.00

24.79

24.79

24.79

24.79

4.959

24.79

24.79

SPK value SPK Ref Val

Units: mg/Kg

Prep Date: 5/21/2013 Analysis Date: 5/28/2013

SeqNo: 308045

125

125

125

Analyte Arsenic Cadmium Chromium Result

PQL

12

0.50

1.5

1.2

1.2

25

12

104

117

90.1

107

100

118

%REC HighLimit LowLimit 109 75 125 75 125 75 125 75 125

75

75

75

Silver Uranium

Lead

Zinc

Sample ID 1305307-004AMSD

SampType: MSD

TestCode: EPA Method 6010B: Soil Metals

Central OCD-04-050

Batch ID: 7531

RunNo: 10899

Prep Date: 5/21/2013

Analysis Date: 5/28/2013

0

O

0

0

14.21

1.800

21.00

SeqNo: 308046

Units: mg/Kg

Analyte Arsenic Cadmium Chromium Lead

Result **PQL** SPK value SPK Ref Val 24 12 24.11 O 23 0.50 24.11

%REC LowLimit HighLimit %RPD

101 75 125 10.1 20 0 97.3 75 125 9.52 20 41 1.5 24.11 14.21 113 75 125 4.13 20 22 1.2 24.11 1.800 83.8 75 125 9.24 20 Silver 4.8 1.2 4.822 0 100 75 125 9.41 20 ND 25 24.11 n 98.6 75 125 n 20 Uranium 12 24.11 109 75 125 6.35 20 Zinc 47 21.00

SPK value SPK Ref Val

SPK value SPK Ref Val

Η

Р

3.737

24.79

24.79

Sample ID 1305307-004AMS

SampType: MS

TestCode: EPA Method 6010B: Soil Metals

LowLimit

75

75

Client ID:

Central OCD-04-050

Batch ID: 7531

RunNo: 11009

Prep Date:

5/21/2013

Analysis Date: 5/31/2013

SeqNo: 311409

86.9

42.8

Units: mg/Kg

125

Analyte Copper

PQL

1.5

12

Result

Result

25

ND

%REC

%RPD **RPDLimit** HighLimit Qual 125

%RPD

Selenium

Sample ID 1305307-004AMSD SampType: MSD TestCode: EPA Method 6010B: Soil Metals

Client ID: Central OCD-04-050

Batch ID: 7531

RunNo: 11009

Prep Date:

5/21/2013

Analysis Date: 5/31/2013 PQL

SeqNo: 311410 %REC

Units: mg/Kg HighLimit

RPDLimit Qual

S

Analyte

Qualifiers: Value exceeds Maximum Contaminant Level.

Е Value above quantitation range

Analyte detected below quantitation limits I

В Analyte detected in the associated Method Blank

LowLimit

Holding times for preparation or analysis exceeded

Page 48 of 49

0 RSD is greater than RSDlimit ND Not Detected at the Reporting Limit

Sample pH greater than 2 for VOA and TOC only. Reporting Detection Limit

R RPD outside accepted recovery limits

Hall Environmental Analysis Laboratory, Inc.

WO#:

1305307

14-Jun-13

Client:

Western Refining Southwest, Gallup

Project:

Client ID:

OCD Land Farm

Sample ID 1305307-004AMSD

SampType: MSD

TestCode: EPA Method 6010B: Soil Metals

Central OCD-04-050

Batch ID: **7531**

RunNo: 11009

Prep Date: 5/21/2013

Analysis Date: 5/31/2013

SeaNo: 311410

Units: mg/Kg

'	,						3.1.	3		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Copper	25	1.5	24.11	3.737	88.6	75	125	0.720	20	
Selenium	ND	12	24.11	0	36.7	75	125	0	20	S

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

Page 49 of 49

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87105 TEL: 505-345-3975 FAX: 505-345-4107

Website: www.hallenvironmental.com

Sample Log-In Check List

Client Name: Western Refining Gallup Work Order Number: 1305307 RcptNo: 1 Received by/date: Logged By: Lindsay Mangin 5/8/2013 2:05:00 PM Completed By: Lindsay Mangin 5/8/2013 2:20:50 PM 05/09/13 Reviewed By: Chain of Custody Yes : : 1. Custody seals intact on sample bottles? No : Not Present ✓ No : Not Present : 2. Is Chain of Custody complete? Yes 🗸 3. How was the sample delivered? Client <u>Log In</u> 4. Was an attempt made to cool the samples? No | Yes 🗸 5. Were all samples received at a temperature of >0° C to 6.0°C No ! NA : 6. Sample(s) in proper container(s)? Yes 🗸 No : No 1 7. Sufficient sample volume for indicated test(s)? Yes No ! 8. Are samples (except VOA and ONG) properly preserved? 9. Was preservative added to bottles? No V 10.VOA vials have zero headspace? No : i No VOA Vials Yes 🗸 11, Were any sample containers received broken? Yes No V # of preserved bottles checked No 📑 12. Does paperwork match bottle labels? Yes V for pH: (Note discrepancies on chain of custody) (<2 or >12 unless noted) Adjusted? 13. Are matrices correctly identified on Chain of Custody? No | No 📑 14. Is it clear what analyses were requested? 15. Were all holding times able to be met? Checked by: No Yes (If no, notify customer for authorization.) Special Handling (if applicable) No | 16. Was client notified of all discrepancies with this order? Yes NA V Person Notified: Date: By Whom: Via: eMail Phone In Person Fax Regarding: Client Instructions: 17. Additional remarks: 18. Cooler Information Cooler No Temp °C Condition Seal Intact Seal No Good

Not Present

	MALENVIKONMENIAL ANALYSTA LABODA-LODV	Time bellowing the property of	4901 Hawkins NE - Albuquerque, NM 87109	Tel. 505-345-3975 Fax 505-345-4107	Analysis	(\rangle (\)	(s / WE	O9 MIS O9,	(1.8) (1.4) (1.8) (1.4) (1.4) (1.4) (1.4) (1.4)	(GR 41) (GR 41) (A 5(GR 41) (A	BTEX + MTI BTEX + MTI BTEX + MTI BTEX + MTI TPH 8015B TPH (Metho EDB (Metho EDB (Metho BYCRA 8 Methons (F,Cl 8081 Pestici 8260B (VOA 8270 (Semi- 8270 (Semi-	><	X	×		X	X	X	×	×	×		Remarks:		This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.
Turn-Around Time:	X Standard Rush	i	OCD LAND TARK		100-120-160	Project Manager:	•		Sampler: Bekkij Th Jacobs C. Ondice: Id/Nes	Sample Température LK	Container Preservative HEALNo Type and # Type	402-4 NONE -CO!	7	402-4 NOWE -03	7	402-4 MONE - NOBY	4-20%	462-4 NONE -OFT	168-3 the OX	VOA-3 HCL -COT	104.3 HCL -010		Received by Date Time 05 05 05 05 05 05	Received by: Date Time	to other accredited laboratories.
hain-of-Custody Record	Client Western Referring		Mailing Address: Rove 3 Box 7	NM 87301	Phone #: 505 722 3833	email or Fax#: 88 722 6210	QA/QC Package:	Xi Standard	⁴ Accreditation □ Other □	□ EDD (Type)	Date Time Matrix Sample Request ID	5/8/13 0910 Soil Central 000-01-0508003	0945 So. 1 Central Octo-02-05082013	(1010 Soi) Centralocos-03-05082013		1/05 50:1 (Compless - 04 - 5508013	1105 50:1 Control 000 - 0400 - 0508003-1457	50:1 Grido RD-05082013	1115 W FB-05082013	1120 W EB-05082013	- W TREPBUNK		Time: Relinquisher Toy: 3 1405 Heart Mann	Date: Time: Relinquished by:	If necessary, samples submitted to Hall Environmental may be subcontracted

;

Tier II Data Validation Report Summary

Client: Western Refining Southwest, Gallup	Laboratory: Hall Environmental Analysis Laboratory, with subcontracted analyses sent to Anatek Labs, Inc and Pace Analytical.
Project Name: Semi-Annual Land Farm Soil Sampling	Sample Matrix: Soil
Project Number: 697-039-004, Task 6	Sample Start Date: 05/08/2013
Date Validated: 06/17/2013	Sample End Date: 05/08/2013
Agency (USEPA) Solid Waste 846 (SW-846) Method Method 8260B; Poly-Aromatic Hydrocarbons (PAHs Compounds (SVOC) by USEPA SW-846 Method 82 Method 300.0; Total Recoverable Petroleum Hydroc USEPA SW-846 Method 8082; Mercury by USEPA SAG, U, and Zn) by USEPA SW-846 Method 6010B; USEPA Method 901.1m	ene, and Xylenes (BTEX) by United States Environmental Protection d 8021B; Volatile Organic Compounds (VOC) by USEPA SW-846 b) by USEPA SW-846 Method 8310; Semi-Volatile Organic 70C; Chloride, Fluoride, Nitrate as Nitrogen, and Sulfate by USEPA arbons by USEPA Method 418.1; Polychlorinated Biphenyls (PCB) by SW-846 Method 7471A; Metals (As, Ba, Cd, Cr, Cu, Fe, Pb, Mn, Se, Cyanide by USEPA Method 335.4; Radium-226 and Radium 228 by
Laboratory Project ID: 1305307	

DATA EVALUATION CRITERIA SUMMARY

Data Validator: Coleman Henry, Chemical and Environmental Engineer, E.I.T.

A Tier II Data Validation was performed by Trihydro Corporation's Chemical Data Evaluation Services Group on the analytical data report package generated by Hall Environmental Analysis Laboratory, evaluating samples from the Western Refining Southwest site, located in Gallup, New Mexico.

Precision, accuracy, method compliance, and completeness of this data package were assessed during this data review. Precision was determined by evaluating the calculated relative percent difference (RPD) values of samples from field duplicate pairs; matrix spike (MS) and matrix spike duplicate (MSD) pairs; and laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) pairs. Laboratory accuracy was established by reviewing the demonstrated percent recoveries of MS/MSD samples and LCS/LCSD samples, and percent recoveries (%R) of organic system monitoring compounds (surrogates) to verify that data are not biased. Field accuracy was established by collecting trip blank, field blank, and equipment blank samples to monitor for possible ambient or cross contamination during sampling and transportation. Method compliance was established by reviewing sample integrity, holding times, detection limits, surrogate recoveries, laboratory blanks, initial and continuing calibrations (where applicable), and the LCS/LCSD percent recoveries against method-specific requirements. Completeness was evaluated by determining the overall ratio of the number of samples and analyses planned versus the number of samples with valid analyses. Determination of completeness included a review of the chain-of-custody (CoC), laboratory analytical methods, and other laboratory and field documents associated with this analytical data set.

Chemical data validation was conducted in accordance with the USEPA Contract Laboratory Program (CLP) National Functional Guidelines for organic and inorganic analyses, or by the appropriate method if not covered in the National Functional Guidelines. Data for organic analyses were evaluated according to validation criteria set forth in the USEPA CLP National Functional Guidelines for Superfund Organic Methods Data Review, document number USEPA-540-R-08-01, June 2008 with additional reference to the USEPA CLP National Functional Guidelines for Organic Data Review, document number EPA 540/R-99-008, October 1999. Data for inorganic analyses were evaluated according to validation criteria set forth in the USEPA CLP National Functional Guidelines for Inorganic Superfund Data Review, document number EPA 540R-10-011, January 2010. Review of field duplicates is conducted according to the USEPA Region 1 Laboratory Data Validation Functional Guidelines for Evaluation of Organic Analysis, December 1996.

Tier II Data Validation Report Summary

SAMPLE NUMBERS TABLE

Client Sample ID	Laboratory Sample Number
Central OCD-01-05082013	1305307-001
Central OCD-02-05082013	1305307-002
Central OCD-03-05082013	1305307-003
Central OCD-04-05082013	1305307-004
BD-05082013	1305307-007
FB-05082013	1305307-008
EB-05082013	1305307-009
Trip Blank	1305307-010

Tier II Data Validation Report Summary

The laboratory data were reviewed to evaluate compliance with the methods and the quality of the reported data. Assessment of CoC completeness is included in Item 3 of the Data Validation Checklist. A check mark (\checkmark) indicates that the referenced validation criteria were deemed acceptable, whereas a crossed circle (\otimes) indicates validation criteria for which the data have been qualified by the data validator. A null symbol (\varnothing) indicates that the specified criterion does not apply to the reviewed data. Details are noted in the tables below.

Validation Criteria

- ✓ Data Completeness
- ✓ CoC Documentation
- ✓ Holding Times and Preservation
- ✓ Laboratory Blanks
- ✓ System Monitoring Compounds (i.e., Surrogates)
- ✓ LCS/LCSD
- ⊗ MS/MSD
- Ø Initial and Continuing Calibrations
- ⊗ Field Duplicates
- Ø Laboratory Duplicates
- ✓ Field, Equipment, and Trip Blanks

OVERALL DATA PACKAGE ASSESSMENT

Based on a data validation review, the data are acceptable as delivered. Data qualified by the laboratory are discussed in Item 2 of the Data Validation Checklist.

The purpose of validating data and assigning qualifiers is to assist in proper data interpretation. Data that are not qualified meet the site data quality objectives. If values are assigned qualifiers other than an R (rejected, data not usable), the data may be used for site evaluation; however, consideration should be given to the reasons for qualification when interpreting sample concentrations. Data points that are assigned an R qualifier should not be used for site evaluation purposes. Text identified in **bold font** indicates that further action and/or qualification of the data were required. Data validation qualifiers were added for the items noted with crossed circles above. Please see the Data Qualification Summary table at the end of this report for a complete list of samples and analytes qualified.

Data qualifiers used during this validation included:

- J Estimated concentration
- UJ Estimated reporting limits

Data Completeness

The analyses were performed as requested on the CoC records. The associated samples were received by the laboratory and analyzed properly. The complete data package consisted of 645 data points excluding blank samples. No data points were rejected. The data completeness measure for this data package is calculated to be 100% and is acceptable.

1. Was the report free of non-conformances identified by the laboratory?

Yes

Comments: The laboratory did not note non-conformances related to data quality, aside from the application of data qualification flags defined in Section 2, below.

Were the data free of data qualification flags and/or notes used by the laboratory? If no, define.

No

Comments: The laboratory applied the following note and data qualification flag.

S - Spike recovery outside accepted recovery limits.

3. Were sample CoC forms complete?

Yes

Comments: The CoC record from the field to the laboratory was complete, and custody was maintained as evidenced by field and laboratory personnel signatures, dates, and times of receipt.

The requested analytes were incomplete on the CoC form. The project team indicated that an additional analysis request sheet was submitted to the lab. It is attached to this data validation as an Attachment A.

4. Were detection limits in accordance with the quality assurance project plan (QAPP), permit, or method, or indicated as acceptable?

Yes

Comments: Dilutions summarized in the table below were applied in several analyses for the samples and the detection limits rose accordingly.

<u>Method</u>	<u>Samples</u>	<u>Dilution Factor</u>
	Central OCD-01-05082013	
	Central OCD-02-05082013	
300.0	Central OCD-03-05082013	5 - 20
	Central OCD-04-05082013	
	BD-05082013	
	Central OCD-01-05082013	
i	Central OCD-02-05082013	
6010B	Central OCD-03-05082013	5 - 500
	Central OCD-04-05082013	
	BD-05082013	
	Central OCD-03-05082013	
8310	Central OCD-04-05082013	5
	BD-05082013	

The dilutions were reviewed and appeared appropriate. Final determination of the data quality regarding detection limits will be made by the project team.

5. Were the reported analytical methods and constituents in compliance with the QAPP, permit, or CoC? Were any analytes reported by more than one method?

Yes

Comments: Reported analytical methods and constituents were in compliance. Data for volatile organic hydrocarbons were reported either from Method 8021B or from Method 8260B as requested in the CoC.

6. Were samples received in good condition within method-specified requirements?

No

Comments: Samples were received intact, in good condition, and with a cooler temperature within the recommended temperature range of 4°C +/- 2°C at 4.5°C. The laboratory indicated custody seals were not present on the sample containers. Custody was maintained since samples were delivered directly to the laboratory by the sample team.

The laboratory reported that one trip blank container was received broken. The remaining containers provided sufficient volume to complete the requested analysis and no further action was necessary.

7. Were samples extracted and analyzed within method-specified or technical holding times?

Yes

Comments: Analyses were extracted and analyzed within method specified holding times.

8. Were reported units appropriate for the sample matrix/matrices and analytical method(s)?

Yes

Comments: Data for soil samples were reported in units of milligram per kilogram (mg/kg) and results for aqueous samples were reported in units of micrograms per liter (µg/L). Data for Radium 226 and 228 were reported in picocuries per liter (pCi/L). Reported units were acceptable for the matrices and analyses reported.

9. Was there indication from the laboratory that the initial or continuing calibration verification results were within acceptable limits?

Yes

Comments: Initial and continuing calibration data were not requested or included as part of this data set; however, these data were assumed to be acceptable as the laboratory did not note that any calibration results were outside acceptable limits.

10. Was the total number of laboratory blank samples prepared equal to at least 5% of the total number of samples or analyzed as required by the method?

Yes

Comments: The total number of laboratory blank samples prepared was equal to at least 5% of the total number of samples.

11. Were laboratory blank samples reported to be free of target analyte contamination?

Yes

Comments: The laboratory blank samples were free of target analyte contamination.

12. Was the total number of MS samples prepared equal to at least 5% of the total number of samples or analyzed as required by the method?

No

Comments: The total number of matrix spike samples prepared was equal to at least 5% of the total number of samples, although matrix spike samples were not prepared for all analyses. Matrix spikes were not required for analyses of percent moisture or pH.

Method	Analyte (s)	Preparation Batch	Analysis Batch	MS Sample Source
300.0	Chloride, Fluoride, Nitrate as Nitrogen, and Sulfate	7373	10541	Not Prepared
418.1	Petroleum Hydrocarbons, TR	7382	10576	CentralOCD-04
8021	BTEX	7366	10548	CentralOCD-04
8082	PCBs	7504	10783	CentralOCD-04
8260B	VOCs	7366	10546	CentralOCD-04
8260B	VOCs	7495	10748	CentralOCD-04
8260B	VOCs	R10534	10534	Not Prepared
8270C	SVOCs	7537	10808	CentralOCD-04
8310	PAHs	7505	10822	CentralOCD-04
7471	Mercury	7539	10790	CentralOCD-04
6010B	Metals	7531	10899	CentralOCD-04
6010B	Metals	7531	11009	CentralOCD-04
335.4	Cyanide	130521032		Not Prepared
901.1m	Radium 226 & 228	RADC/16080		Not Prepared

Not Associated – The MS sample source was not associated with this project. Not Prepared – Matrix spikes were not prepared for this batch.

13. Were MS/MSD percent recoveries and MS/MSD RPDs within data validation or laboratory quality control (QC) limits?

No

Comments: The MS and MSD recoveries and RPD values for project samples were within laboratory QC limits with exceptions noted in the table below. The MS samples prepared from non-project samples were considered during the data validation process, but data were not qualified based on these results since matrix similarity to project samples could not be guaranteed.

<u>Analyte</u>	Method	<u>Batch</u>	MS Recovery	MSD Recovery	QC Limits
Naphthalene	8310	7505	110%	102%	34.9-90.8%
1-Methylnaphthalene	8310	7505	107%	99.4%	36.4-91.9%
2-Methylnaphthalene	8310	7505	106%	99.4%	36.2-91.7%
Acenaphthalene	8310	7505	105%	Acceptable	33-100%
Fluorene	8310	7505	103%	99.4%	37.5-77%
Phenanthrene	8310	7505	121%	Acceptable	32.2-104%
Pyrene	8310	7505	105%	101%	12.2-99.3%
Chrysene	8310	7505	102%	104%	40.9-93.5%
Selenium	6010B	7531	42.8%	36.7%	75-125%

A high MS/MSD recovery is evidence of high bias. The associated analyte detections with Method 8310/Batch 7505 were qualified as J to indicate estimated concentrations. The non-detection did not require qualification

The low MS/MSD recovery for Selenium in Method 6010B/Batch 7531 is evidence of low bias. The associated sample results were non-detections and qualified as UJ to indicate estimated reporting limits.

The MS samples prepared from non-project samples were considered during the data validation process, but data were not qualified based on these results since matrix similarity to project samples could not be guaranteed.

14. Was the total number of LCSs analyzed equal to at least 5% of the total number of samples or analyzed as required by the method?

Yes

Comments: The total number of LSC/LCSDs analyzed was equal to at least 5% of the total number of samples required. LCS analyses were not required for analysis of percent moisture or Radium 226/228.

15. Were LCS/LCSD percent recoveries and LCS/LCSD RPDs within data validation or laboratory QC limits? No

Comments: The LCS/LCSD recoveries and RPD values were within laboratory QC limits, with the following exception:

The analyte Fluorene analyzed by Method 8310 in preparation batch 7505 was recovered above the laboratory QC limits of 36-84.9% at 89.5%. The associated results were reported as non-detections and qualification is not required.

16. Were surrogate recoveries within laboratory QC limits?

Yes

Comments: The surrogate recoveries were within laboratory QC limits.

17. Were the number of trip blank, field blank, and/or equipment blank samples collected equal to at least 10% of the total number of samples or as required by the project guidelines, QAPP, SAP, or permit?

Yes

Comments: The number of trip blank, field blank, and/or equipment blank samples collected was equal to at least 10% of the total number of samples. One equipment blank, EB-05082013, one field blank, FB-05082013, and one trip blank, TRIP BLANK, were provided to the laboratory with the project samples. The blank samples were analyzed only for VOCs by Method 8206B.

18. Were the trip blank, field blank, and/or equipment blank samples reported to be free of target analyte contamination?

Yes

Comments: The trip blank, field blank, and equipment blank samples were reported to be free of target analyte contamination

19. Was the number of field duplicates collected equal to at least 10% of the total number of samples or as required by the project guidelines, QAPP, SAP, or permit?

Yes

Comments: The number of field duplicates collected was equal to at least 10% of the total number of samples. Sample BD-05082013 was collected as the duplicate of sample CentralOCD-4.

20. Were field duplicate RPD values within data validation QC limits (soil 0-50%, water 0-30%, or air 0-25%)?

No

Comments: Field duplicate RPD values were less than the upper limit of 50% for soil samples with the following exceptions.

The analyte nitrogen, nitrate was detected in one sample and non-detected in the other. As a result, the detection was qualified as J and non-detection as UJ because the detection was greater than two times the reporting limit.

As a result of possible poor repeatability, barium was qualified as J in the parent and duplicate sample for a high field duplicate RPD value.

Field duplicate RPD values for other target constituents could not be calculated since the analytes were undetected in the parent and duplicate samples.

21. Were laboratory duplicate RPD values within laboratory QC limits?

No

Comments: Laboratory duplicates were not prepared for this sample set.

FIELD DUPLICATE SUMMARY

Client Sample ID: Central OCD-04 Field Duplicate Sample ID: BD-05082013						
Analyte	Laboratory Result Duplicate Result		Relative Percent Difference (RPD)			
Chloride	180 mg/kg	260 mg/kg	36.36%			
Fluoride, Total	3.7 mg/kg	3.6 mg/kg	2.7%			
Nitrogen, Nitrate	14 mg/kg	ND (1.5 mg/kg)	DL			
Sulfate	570 mg/kg	390 mg/kg	37.5%			
Radium 226 Total	1.01 pCi/L	1.2 pCi/L	17.2%			
Radium 228 Total	1.48 pCi/L	1.59 pCi/L	7.2%			
Barium, Total	140 mg/kg	300 mg/kg	72.7%			
Chromium, Total	14 mg/kg	18 mg/kg	25.0%			
Copper, Total	3.7 mg/kg	4.3 mg/kg	15.0%			
Iron, Total	17000 mg/kg	21000 mg/kg	21.1%			
Lead, Total	1.8 mg/kg	1.9 mg/kg	5.4% +/-RL			
Manganese, Total	Manganese, Total 560 mg/kg		33.3%			
Zinc, Total	Zinc, Total 21 mg/kg		25.0% +/-RL			
Benzo(g,h,i)perylene ND (0.05 mg/kg)		0.055 mg/kg	DL			

Field duplicate RPD control limits should not exceed 50% for soil as established by USEPA Region 1 Laboratory Data Validation Function Guidelines for Evaluation of Organic Analysis, December 1996.

DL – Indicates that one result was detected and one non-detect, and therefore an RPD could not be calculated. The analyte Nitrogen, Nitrate was qualified as J in the parent and UJ in the duplicate sample because the detection was greater than two times the reporting limit. Data that were within two times the reporting limit acceptable.

As a result of possible poor repeatability, barium was qualified as J in the parent and duplicate sample for a high field duplicate RPD value.

+/-RL – Indicates that the detections in the samples are within two times the reporting limit. No qualification of data was required.

DATA QUALIFICATION SUMMARY

Analyte	Method	Field Sample ID	Lab Sample ID	Result	Limit	Units	Reviewer Qualifier	Reviewer Qualifier Reason
Barium, Total	SW 6010B	BD-05082013	1305307-007A	300	1	mg/kg	J	High field duplicate RPD value
Barium, Total	SW 6010B	Central OCD-04-05082013	1305307-004A	140	2	mg/kg	J	High field duplicate RPD value
Chrysene	SW 8310	Central OCD-01-05082013	1305307-001A	0.13	0.1	mg/kg	J	The MS and/or MSD recovery(ies) were above the acceptable limits indicating possible matrix interference.
Chrysene	SW 8310	Central OCD-02-05082013	1305307-002A	0.44	0.1	mg/kg	J	The MS and/or MSD recovery(ies) were above the acceptable limits indicating possible matrix interference.
Nitrogen, Nitrate	E300	BD-05082013	1305307-007A	ND	1.5	mg/kg	tU	Field duplicate RPD value could not be calculated; however, the detection was greater than two times the reporting limit.
Nitrogen, Nitrate	E300	Central OCD-04-05082013	1305307-004A	14	1.5	mg/kg	j	Field duplicate RPD value could not be calculated; however, the detection was greater than two times the reporting limit.
Phenanthrene	SW 8310	Central OCD-02-05082013	1305307-002A	0.26	0.15	mg/kg	J	The MS and/or MSD recovery(ies) were above the acceptable limits indicating possible matrix interference.
Selenium, Total	SW 6010B	BD-05082013	1305307-007A	ND	12	mg/kg	υJ	The MS and/or MSD recovery(ies) were below the acceptable limits indicating possible matrix interference.
Selenium, Total	SW 6010B	Central OCD-01-05082013	1305307-001A	ND	12	mg/kg	UJ	The MS and/or MSD recovery(ies) were below the acceptable limits indicating possible matrix interference.
Selenium, Total	SW 6010B	Central OCD-02-05082013	1305307-002A	ND	12	mg/kg	UJ	The MS and/or MSD recovery(ies) were below the acceptable limits indicating possible matrix interference.
Selenium, Total	SW 6010B	Central OCD-03-05082013	1305307-003A	ND	12	mg/kg	UJ	The MS and/or MSD recovery(ies) were below the acceptable limits indicating possible matrix interference.
Selenium, Total	SW 6010B	Central OCD-04-05082013	1305307-004A	ND	12	mg/kg	ΩJ	The MS and/or MSD recovery(ies) were below the acceptable limits indicating possible matrix interference.

ATTACHMENT A ANALYSIS REQUEST

5.65=5.00 ABB SF 20.6.2.3103 NMAC

A. Human Health Standards-Ground water shall meet the standards of Subsection A and B of this section unless otherwise provided. If more than one water contaminant affecting human health is present, the toxic pollutant criteria as set forth in the definition of toxic pollutant in Section 20.6.2.1101 NMAC for the combination of contaminants, or the Human Health Standard of Subsection A of Section 20.6.2.3103 NMAC for each contaminant shall apply, whichever is more stringent. Non-aqueous phase liquid shall not be present floating atop of or immersed within ground water, as can be reasonably measured.

(1)	Arsenic (As)
(2)	Barium (Ba)
(3)	Cadmium (Cd)
(4)	Chromium (Cr)
(5)	Cyanide (CN)
(6)	Cyanide (CN)
(7)	Fluoride (F)
(8)	Lead (Pb)
(9)	Total Mercury (Hg)
	Nitrate (NO ₃ as N)
(10)	
(11)	
(12)	Uranium (U)
(13)	
(14)	
(15)	Polychlorinated biphenyls (PCB's)
(16)	
(17)	Carbon Tetrachloride0.01 mg/l
(18)	1,2-dichloroethane (EDC)0.01 mg/l
(19)	1,1-dichloroethylene (1,1-DCE)
(20)	1,1,2,2-tetrachloroethylene (PCE)
(21)	1,1,2-trichloroethylene (TCE)
(22)	ethylbenzene0.75 mg/l
(23)	total xylenes
(24)	methylene chloride0.1 mg/l
(25)	chloroform0.1 mg/l
(26)	1,1-dichloroethane
(27)	ethylene dibromide (EDB)0.0001 mg/l
(28)	1.1.1-trichloroethane
(29)	1,1,2-trichloroethane
(30)	1,1,2,2-tetrachloroethane
(31)	vinyl chloride0.001 mg/l
(32)	PAHs: total naphthalene plus monomethylnaphthalenes0.03 mg/l
(33)	benzo-a-pyrene
	Other Standards for Domestic Water Supply
(1)	Chloride (Cl)250.0 mg/l
(2)	Copper (Cu)
(3)	Iron (Fe)
(4)	Manganese (Mn)
(6)	Phenols
(7)	Sulfate (SO_4)
(8)	Total Dissolved Solids (IDS)
(9)	Zinc (Zn)
(10)	between 6 and 9

B.