RECR – 27

Roland Jackson Well

June 2012 Investigation Report

June 22, 2012 #5121620

Mr. Jim Griswold Senior Hydrologist EMNRD/Oil Conservation Division 1220 South St. Francis Drive Santa Fe, NM 87505 (505) 476-3465 jim.griswold@state.nm.us

RE: SITE INVESTIGATION REPORT, MAVERIK REFINERY/ ROLAND JACKSON WELL SITE, KIRTLAND AREA, SAN JUAN COUNTY, NEW MEXICO

Dear Mr. Griswold:

Enclosed please find the Initial Site Investigation Report for the Roland Jackson Properties #18 and #20 CR 6271 associated with the Maverik Refinery groundwater impacts located approximately 2.0 miles east of Kirtland High School. This report for the Maverik/Jackson Property site is submitted pursuant to the State of New Mexico General Services Department Purchasing Division price agreement #10-805-00-07208 and *Purchase Order (PO) #52100-000035025* issued by the New Mexico Oil Conservation Division (NMOCD). All work was completed in accordance with the Souder, Miller and Associates (SMA) workplan dated April 2, 2012 and approved by NMOCD.

SMA appreciates the opportunity to provide environmental consulting services to NMOCD. If you have any questions or comments concerning the report please feel free to call me at 505-325-7535 or contact me at via e-mail at the address provided below.

Sincerely,

SOUDER, MILLER & ASSOCIATES

Denny G. Foust Senior Geologist

Jemy S. Fourt

Reid S. Allan, P.G. Vice President/Principal Scientist

vide i redideriti ililoipai edieritiot

Mille

Site Investigation Report
Maverik Refinery/ Jackson Well
#18 and #20 County Road 6271, San Juan County, New Mexico
June 22, 2012

TABLE OF CONTENTS

Table of Contents								
1.0 Executive Summary 2.0 Background 3.0 Investigation Activities 4.0 Soil Investigation Activities 4.1 Soil Investigation Procedures 4.2 Soil Sampling Results 5.0 Ground Water Investigation 5.1 Ground Water Investigation Procedures 5.2 Jackson Irrigation Well Investigation Procedures 5.3 Ground Water Sampling Results 6.0 Conclusions								
7.0 Recommendations								
<u>List of Figures</u> Figure 1 – Site Vicinity Map Figure 2 – Site Map Figure 3 – Potentiometric Surface Map								
<u>List of Tables</u>								
Table 1 – Summary of Soil Analytical Results Table 2 – Summary of Ground Water Elevations Table 3 – Summary of Ground Water Analytical and NAPL Results								
<u>List of Appendices</u>								
Appendix A – NMOCD Historical Reports: 2005 and 2008 Water Sampling Appendix B – Signed Access Agreements Appendix C – Site Investigation Photographs Appendix D – Site-Specific Health & Safety Plan Appendix E – Field Notes and Well Purge Sheets Appendix F – Soil Boring Logs and Well Completion Data Appendix G – Laboratory Analytical Reports								

1.0 EXECUTIVE SUMMARY

Souder, Miller & Associates (SMA) has completed the initial investigation of the Roland Jackson Property located at #18 and #20 CR 6271, Kirtland area, San Juan County, New Mexico (SW/4, NE/4 section 17-T29N-R14W). This investigation was completed in accordance with the State of New Mexico General Services Department Purchasing Division Price Agreement #10-805-00-07208AG and Purchase Order (PO) # 52100-0000035025 issued by the New Mexico Oil Conservation Division (NMOCD). The Roland Jackson properties are located approximately 0.5 miles southwest of the former Caribou Four Corners/Maverik Refinery. SMA has drilled two soil borings and five new monitoring wells on the Roland Jackson Property to evaluate possible hydrocarbon impacts on Mr. Jackson's existing shallow irrigation well. The borings were completed May 15-18, 2012 with subsequent water samples taken May 23-24, 2012. The impacted irrigation well was sampled on June 12, 2012.

SMA has reached the following conclusions from this investigation:

- 1. Based on available data, SMA does not believe that hydrocarbon contamination exists in the soil or ground water from surface to approximately 20 feet bgs at the locations investigated in this study.
- 2. Based on available data, it does not appear that there is a continuous contaminant plume of either dissolved phase hydrocarbons or NAPL extending from upgradient (northeast) of the Jackson irrigation well to the well itself.
- 3. However, NAPL does exist in the Jackson irrigation well, and appears to have persisted since at least 2005.
- 4. The NAPL analyzed indicates that it is derived from diesel range hydrocarbons; however, the age and source of the hydrocarbons cannot be determined at this time.

SMA recommends the following future work for the site:

- Quarterly monitoring of fluid levels and ground water quality in the monitoring wells and the Jackson irrigation well for a period of 1 year to determine if there are seasonal fluctuations in fluid elevation and/or water quality.
- 2. Securing the Jackson irrigation well head with a locking cover.
- Additional characterization of the NAPL from the Jackson well and comparison to analytical results from the Caribou-Maverik refinery investigations to determine any similarities between the products.
- 4. Consideration of total fluids removal from the Jackson irrigation well by pumping, vacuum extraction, or a multi-phase extraction system. The preferred method is an initial rapid fluid removal event by either pumping or vacuum truck extraction. The fluid levels should be monitored during well recovery and periodically after the fluid removal event to determine if NAPL recovers in the well. Multi-phase extraction would be a longer term remedial approach.

Site Investigation Report
Maverik Refinery/ Jackson Well
#18 and #20 County Road 6271, San Juan County, New Mexico
June 22, 2012

2.0 BACKGROUND

The former Caribou Four Corners/Maverik Refinery is located 0.5 miles to the southeast of the Roland Jackson Property, in the NW/4, NE/4 of section 17-T29N-R14W. Figure 1 is the vicinity map on an aerial photo. The refinery was operated by Caribou Four Corners, Inc/Maverik Country Stores, Inc. from 1963 until April 1982. The refinery had both documented and undocumented releases of petroleum hydrocarbons throughout its operating history. Major releases of refined product occurred as late as 1981. In 1985, groundwater contamination was noted by inspectors from the New Mexico Environmental Improvement Division (EID). In 1987, EID water quality sampling was conducted on 24 private wells in the area.

At different times, hydrocarbon liquids have been documented along the Westside Irrigation Ditch, located near the west boundary of the refinery property. The ditch extended south under CR 6100, along the east edge of the Jackson properties #18 and #20 CR 6271. In 1989, a 12" plastic pipe was installed in the Westside (of the Refinery Property) Irrigation Ditch. The piping extended south to CR 6100. Piping the ditch was a method of eliminating one migration path for contaminants. Continuing groundwater and soil studies in the refinery area resulted in the 1990 construction of a bentonitic slurry wall around the refinery property from 12 to 25 feet in depth. The wall was designed to retain most of the remaining known contamination within the refinery property.

Investigations by Maverik show that ground water flow in the alluvial gravel aquifer overlying basal Kirtland Shale is from the north-northeast to the south-southwest towards the San Juan River. This overall pattern is modified by seepage from irrigation ditches and septic system influx into the ground water. The general gradient is 0.01 ft/ft which mirrors the topographic gradient.

Potential hydrocarbon contamination in the Jackson water wells was first brought to the attention of the NMOCD Aztec office in April 2005 by Roland Jackson, property owner. The NMOCD Environmental Bureau retained Envirotech, Inc. to sample the irrigation well in 2005. Samples were taken August 24, 2005 for laboratory testing. The results are documented in NMOCD files. In 2008, NMOCD again sampled the irrigation well and results are available in NMOCD files (both NMOCD files are included in Appendix A). Maverik continues to do annual reports focused on the slurry wall containment area.

To date, no independent investigation of the Jackson Property site other than sampling of the irrigation well had been conducted. However, historical evidence at the site indicates that potential impact from the Maverik/Caribou Refinery plume may persist. This evidence includes laboratory results of sampling of the Jackson irrigation water supply well in 2005 and the presence of non-aqueous phase liquid (NAPL) in the well visually confirmed by NMOCD personnel on February 2, 2012.

Site Investigation Report
Maverik Refinery/ Jackson Well
#18 and #20 County Road 6271, San Juan County, New Mexico
June 22, 2012

3.0 INVESTIGATION ACTIVITIES

SMA personnel visited the property and residence of Roland Jackson on April 27, 2012. Brandon Powell of NMOCD-Aztec scheduled the meeting to discuss access agreements and actual project activities with Mr. Jackson. SMA and Brandon Powell reviewed the project activities and requirements for signed access agreements for both NMOCD and SMA with Mr. Jackson. On April 30, 2012, Mr. Jackson visited the SMA Farmington office and signed both NMOCD and SMA access agreements before a notary (Appendix B).

On May 11, 2012, SMA and the property owner staked six drilling locations based on the workplan aerial photo plat. The monitoring wells were located to determine the extent and possible origin of NAPL found in the Roland Jackson irrigation well at #20 CR 6271, San Juan County, New Mexico. SMA obtained utility clearance from New Mexico One-Call prior to the start of drilling activities. The site vicinity is shown in Figure 1 and a Jackson property site map is provided in Figure 2.

On May 16, 2012, Enviro-Drill, Inc. mobilized a rig onto the site under SMA supervision to drill two soil borings and four monitoring wells. Brandon Powell of NMOCD approved moving the location a fifth monitoring well proposed in the workplan on an adjacent property onto the Roland Jackson property, due to difficulty in obtaining owner approved access at the originally proposed site. The new location of the fifth monitoring well is shown with the locations of other borings and monitoring wells on Figure 2. All drilling and monitoring well development was completed on May 18, 2012.

Monitoring well casing was secured with evidence tape until surface completions were finished to preserve the integrity of the wells. The final steps of the surface completions were in place May 22, 2012.

On May 23 and 24, 2012, the five monitoring wells were purged and sampled. Photographs of site investigation activities are included in Appendix C. A site specific Health and Safety Plan was also produced by SMA and a copy is included as Appendix D. Copies of all field notes are included in Appendix E.

4.0 SOIL INVESTIGATION ACTIVITIES

4.1 Soil Investigation Procedures

All seven borings were drilled with a 6.5-inch outside diameter (O.D.) hollow stem auger. Total depth for the seven borings ranges from 17-20 feet below ground surface (bgs). During drilling, a properly calibrated photo-ionization detector (PID) was used to conduct field headspace testing of field samples for petroleum contamination. soil Groundwater was encountered at 5.5-6.0 feet in depth. This roughly corresponds to the depth that sands first appear beneath the surface clays. The two borings used to evaluate soil only were backfilled with 3/8" bentonite pellets to within six inches of the surface then filled with native soil.

One split spoon sample for laboratory analysis was taken by SMA from each of the seven borings. Samples were collected at 5.5 to 6.0 feet in depth, just above the clay and sand contact. All soil samples were collected in new, 4-ounce glass jars, labeled, immediately placed on ice and shipped under standard chain of custody procedures to Hall

Environmental Analysis Laboratory (HEAL) in Albuquerque, New Mexico for analysis. Samples were analyzed for gasoline range organics (GRO)

were analyzed for gasoline range organics (GRO) using EPA Method 8015B and total lead using EPA Method 6010B. NMOCD personnel witnessed all sampling and drilling activities.

Each monitoring well was completed with 15 feet of 2-inch, factory slotted 0.010 slot size screen. The annulus around the screen was filled with 10-20 silica sand to a depth one (1) foot minimum above the top of the screened interval. The remainder of the annulus was filled with 3/8" bentonite pellets, which were placed from the top of the sand to approximately 0.5 foot bgs and hydrated. Each well was completed using an 8-

inch circular, flush mount surface vault which was concreted into place, and locking well caps were installed.

Site Investigation Report
Maverik Refinery/ Jackson Well
#18 and #20 County Road 6271, San Juan County, New Mexico
June 22, 2012

Diagrams summarizing well completions are attached in Appendix F. Photos of the drilling and completion process are included in Appendix C.

The five monitoring well completions were developed by purging four well-casing volumes from MW-J3, MW-J6, and MW-J7. MW-J4 and MW-J5 bailed dry at 2.5 well casing volumes.

4.2 Soil Sampling Results

Soil sample results are summarized in Table 1. All soil samples collected were below laboratory practical quantitation (PQL) for GRO. Lead from soil samples collected for laboratory analysis ranged from 2.9 to 17.0 mg/Kg. No additional speciation of the lead has been completed as part of this investigation. A copy of the laboratory analytical report is provided in Appendix G.

5.0 GROUND WATER INVESTIGATION

5.1 Ground Water Investigation Procedures

On May 23, 2012, all five site monitoring wells were gauged for depth to water and non-aqueous phase liquid (NAPL) prior to purging, utilizing a Geotech Interface Probe. NAPL was not detected in the monitoring wells.

On May 23 and 24, 2012, ground water from all five site monitoring wells was sampled. Using a dedicated, disposable bailer for each well, monitoring wells were purged of three well bore volumes or until the well went dry prior to sampling. Samples collected for EPA Methods 8011/504.1 (EDB), 8015B (GRO), 8260B (volatile organics) were collected in six 40-ml vials, preserved with mercuric chloride, labeled with the date, time, monitoring well number, and the name of the sampler, and stored on ice. Samples collected for Method 6010 (total recoverable lead) were collected in 125 mL polypropylene bottles, preserved with HNO₃, labeled with the date, time, monitoring well number and the name of the sampler, and stored on ice. Sample numbers were recorded on chain of custody forms and field notes prior to delivery to HEAL.

5.2 Jackson Irrigation Well Investigation Procedures

On June 12, 2012, SMA sampled the Roland Jackson irrigation well located east of the residences. An NMOCD representative was present as a witness, and the property owner was also present. The Geotech Interface Probe detected fluid at 5.48 feet below top of casing and detected water at 6.12 feet below top of casing. A total of 0.64 feet of NAPL was present in the well. After discussion and approval from NMOCD, a NAPL grab sample was collected and submitted to HEAL for analysis of GRO/DRO/MRO by EPA Method 8015B and volatile organics by EPA Method 8260B.

5.3 Ground Water Sampling Results

The ground water surface elevation data for the site can be found in Table 1. Figure 3 is a potentiometric surface map. In general, the direction of groundwater flow is to the southwest at an average gradient of 0.006 ft/ft. The groundwater flow direction and gradient is fairly consistent with historical data (Appendix A).

Site Investigation Report
Maverik Refinery/ Jackson Well
#18 and #20 County Road 6271, San Juan County, New Mexico
June 22, 2012

All water samples collected were below laboratory practical quantitation limit (PQL) for all volatile organics, GRO, and EDB. Total lead in water ranged from 0.049 mg/L to 0.31 mg/L. The laboratory analytical report is provided in Appendix G.

Results from the NAPL analyses indicate that the NAPL is composed of diesel range hydrocarbons measured as 100% by weight. Total xylenes and naphthalenes were also detected.

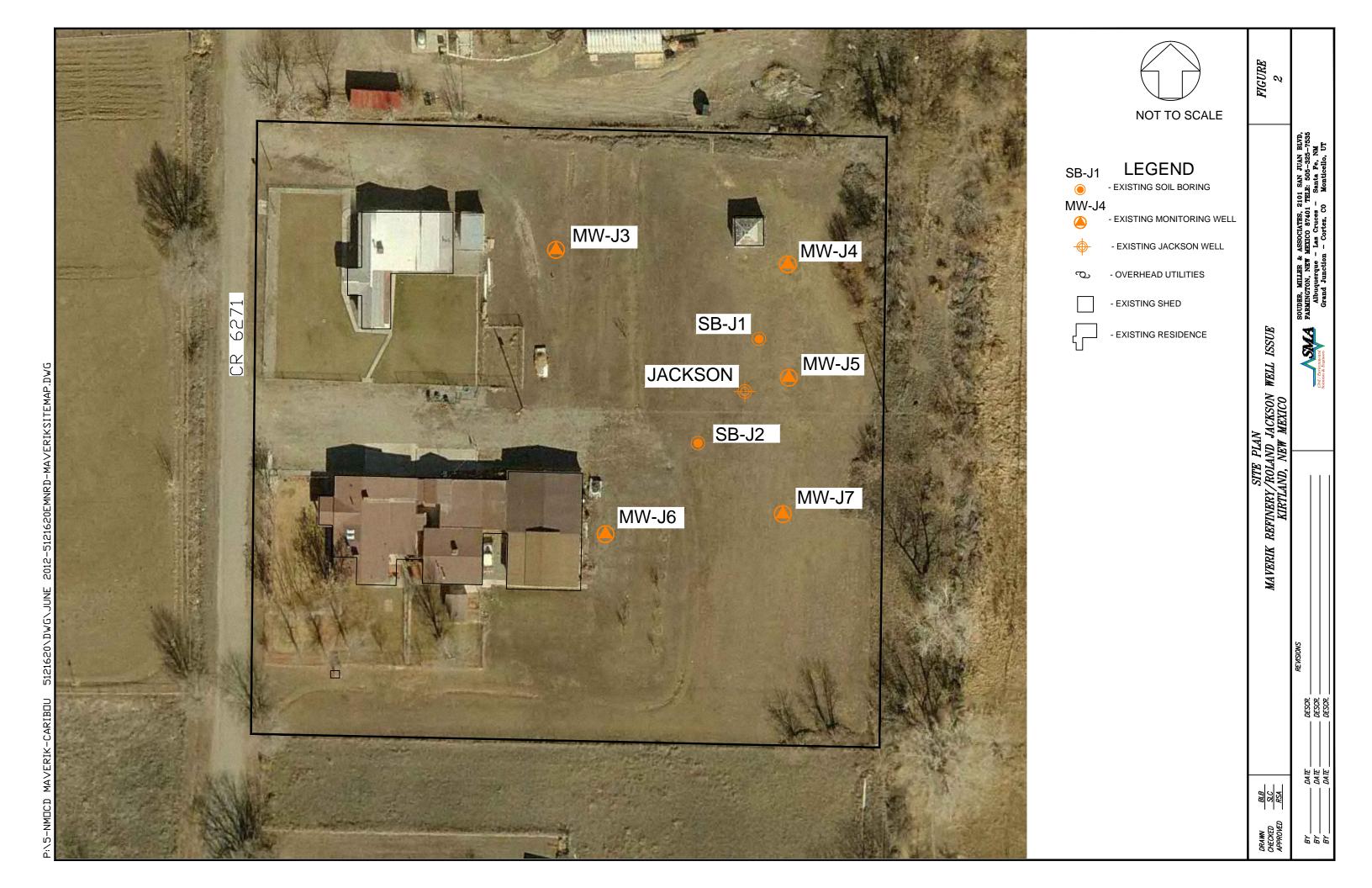
6.0 CONCLUSIONS

SMA has reached the following conclusions from this investigation:

- 1. Based on available data, SMA does not believe that hydrocarbon contamination exists in the soil or ground water from surface to approximately 20 feet bgs at the locations investigated in this study.
- Based on available data, it does not appear that there is a continuous contaminant plume of either dissolved phase hydrocarbons or NAPL extending from upgradient (northeast) of the Jackson irrigation well to the well itself.
- 3. However, NAPL does exist in the Jackson irrigation well, and appears to have persisted since at least 2005.
- 4. The NAPL analyzed indicates that it is derived from refined diesel product; however, the age and source of the hydrocarbons cannot be determined at this time.

7.0 RECOMMENDATIONS

SMA recommends the following future work for the site:


- 1. Quarterly monitoring of fluid levels and ground water quality in the monitoring wells and the Jackson irrigation well for a period of 1 year to determine if there are seasonal fluctuations in fluid elevation and/or water quality.
- 2. Securing the Jackson irrigation well head with a locking cover.
- Additional characterization of the NAPL from the Jackson well and comparison to analytical results from the Caribou-Maverik refinery investigations to determine any similarities between the products.
- 4. Consideration of total fluids removal from the Jackson irrigation well by pumping, vacuum extraction, or a multi-phase extraction system. The preferred method is an initial rapid fluid removal event by either pumping or vacuum truck extraction. The fluid levels should be monitored during well recovery and periodically after the fluid removal event to determine if NAPL recovers in the well. Multi-phase extraction would be a longer term remedial approach.

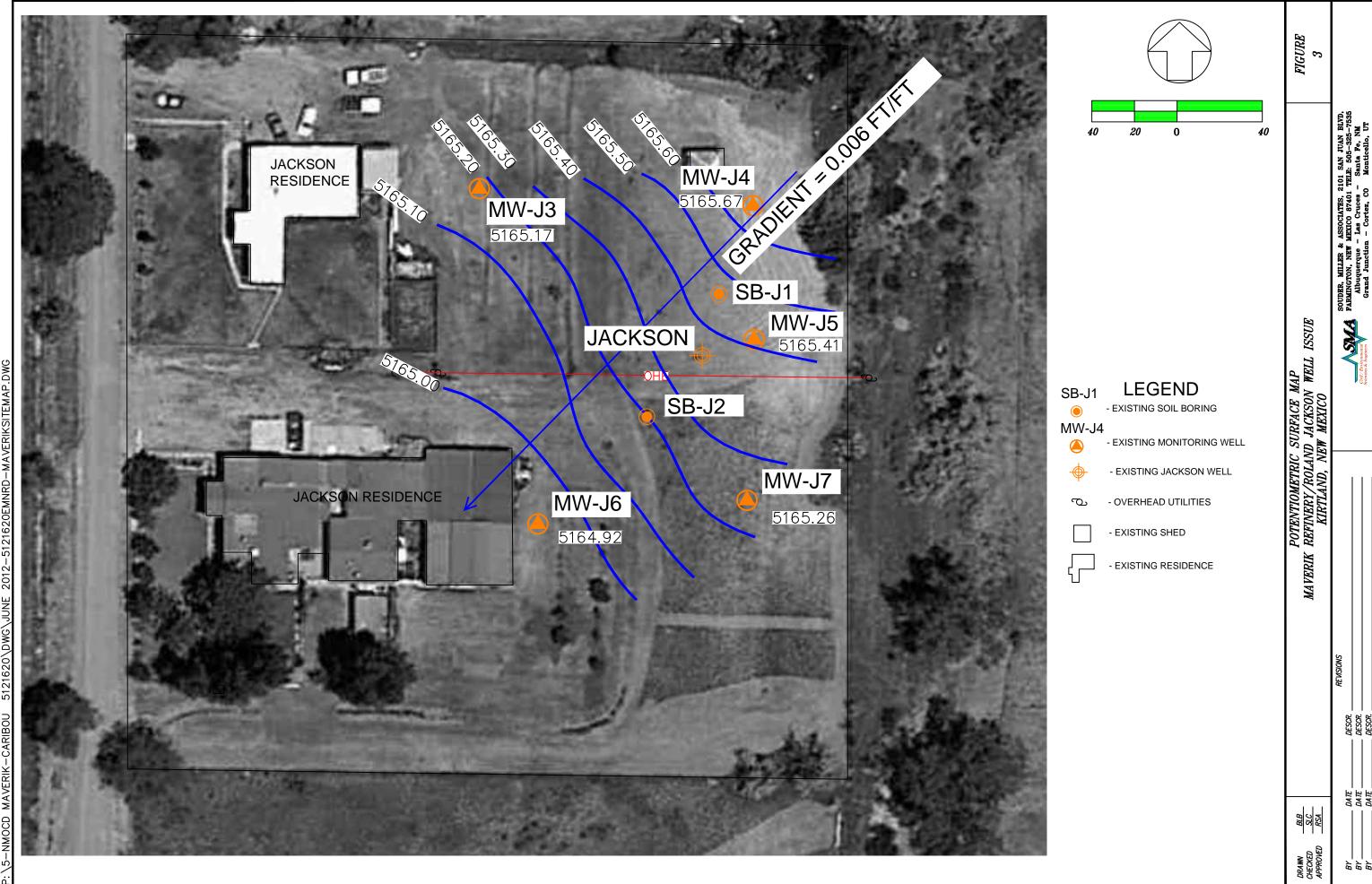

Figures

FIGURE 1

Tables

		Method 8015	Method 6010
		mg/Kg	mg/Kg
Sample ID	Date	GRO	Pb
SB-J1 6'	5/16/2012	<4.9	6.0
SB-J2 5'	5/18/2012	<4.7	17
MW-J3 5.75'	5/17/2012	<4.7	4.5
MW-J4 6'	5/17/2012	<5.0	4.4
MW-J8 6' (MW-J5)	5/17/2012	<4.7	5.8
MW-J6 5.5'	5/17/2012	<4.6	2.9
MW-J7 5'	5/16/2012	<4.9	5.4

Table 2: Summary of Ground Water Elevations Project #5121620 Maverik / Jackson Investigation Kirtland, Mexico

Monitoring Well Identification	Date	Top of Casing (ft)	Depth to Water (ft)	Relative Water Elevation (ft)
MW-J3	5/23/12	5168.63	3.46	5165.17
MW-J4	5/23/12	5168.83	3.16	5165.67
MW-J5	5/23/12	5168.76	3.35	5165.41
MW-J6	5/23/12	5168.48	3.56	5164.92
MW-J7	5/23/12	5168.48	3.22	5165.26

Table 3: Summary of Groundwater Analytical Results Maverik/Jackson Investigation Kirtland, New Mexico

			Me	ethod 826	0		Method 504.1	Method 6010	Method 8015	Method 8015	Method 8015
Monitoring Well Identification	Date	Benzene (ug/L)	Toluene (ug/L)	Ethyl- benzene (ug/L)	Total Xylenes (ug/L)	BTEX (ug/L)	EDB (ug/L)	Total Lead (ug/L)	GRO (mg/L except as noted*)	DRO (weight %)	MRO (weight %)
NMWQCC Sta	ndards	10.0	750.0	750.0	620.0						
MW-J3	5/23/2012	<2.0	<2.0	<2.0	<3.0	<3.0	<0.010	0.16	<0.10	NA	NA
MW-J4	5/24/2012	<2.0	<2.0	<2.0	<3.0	<3.0	<0.010	0.049	<0.10	NA	NA
MW-J5	5/24/2012	<2.0	<2.0	<2.0	<3.0	<3.0	<0.010	0.22	<0.10	NA	NA
MW-J6	5/23/2012	<2.0	<2.0	<2.0	<3.0	<3.0	<0.010	0.16	<0.10	NA	NA
MW-J7	5/24/2012	<2.0	<2.0	<2.0	<3.0	<3.0	<0.010	0.31	<0.10	NA	NA
Jackson Irrigation Well #1 (NAPL sample*)	6/12/2012	<120**	<120**	<120**	140**	140**	NA	NA	<2.5*	100*	<9.9*

^{*} GRO, DRO, MRO for NAPL sample reported in weight %

NA = not analyzed ND = not detected at reporting limit

^{**} BTEX for NAPL sample reported as mg/L

Appendix A – NMOCD Historical Reports

New Mexico Oil Conservation Division 1220 South St Francis Drive Santa Fe, New Mexico 87505

September 2, 2005

Attention: Mr. Ed Martin

Dear Mr. Martin

Attached are the results of the laboratory analysis from the San Juan Basin Health Department/Laboratory in Durango, CO. The samples were taken from the water well at Mr. Roland Jackson residence at # 20 CR 6271 in Kirtland, NM. The well was sampled on 08-24-05 and a sample was submitted to San Juan Labs in Durango for coliform bacteria analysis.

If you have any further questions or concerns, you can contact me and I will assist you in any way that I can.

Best regards,

Envirotech Inc.

C. Yack Collins, PG # 1822

Chief Environmental Scientist/Geologist

NCES #038

San Juan Basin Health Department/Laboratory 281 Sawyer Drive P.O. Box 140 Durango, CO 81302

Jesse Colbert Microbiology/Chemistry 970 247 5702 ext 221

Results of Laboratory Analysis

Owner of Facility	motech - Jack Col	County	
BillingAddress 5790			n, nm 87410
Sampling Location ★ ¥	C)		e Well Water
Samp Date and Time Collected :	oling Directions on other Side	Date Received in Laborat	on <i>r</i> :
05-08-24-1	0-55	05-08-2	
YY MM DD Hrs If Composite Sample:	s. Min.	YY MM DD Date Reported:	4-114-60 Hrs. Min.
Hrs. Min. Hrs	-	05-08-30	
*Effluent ph 6.0-9.0	Min.	YY MM DD	
(std. Units) * Effluent			
Dissolved Oxygen mg/l			
*Effluent Ttl. Residual Chlorine mg/l			
Influent Suspended Solids mg/l (Gravimetric) \$ 15. Std Methods 20th ed 2540 D	Lub #	Lab Results	
Effluent Suspended Solids mg/l (Gravimetric) \$15. Std Methods 20 th ed2540 D	00		
Fecal Coliform per 100 ml (Five Tube MPN) Std Methods 20th ed 9221 B&E	00		
Total Coliform & E.Coli Per 100 ml (IDEXX MPN) Std Methods 20 th ed 9223 D	5 1220	TTI. Coliform: 34, 480	E.Coli:
Influent BOD mg/l (Winkler) \$ 55.0 Std Methods 20 th ed 5210 B	0	BOD:	CBOD:
Effluent BOD mg/l (Winkler) \$ 55.00 Std Methods 20t ed 5210B	#160	560	
Ttl. Dissolved Solids mg/l (Gravimetric) \$ 15.00 Std Methods 20th ed 2540C		Effluent:	Raw Water:
*Provided by Sampler H – Holding Time Q – Questionable	Sampled Ru	,	

Sampled By:	Date:
	Date:

New Mexico Oil Conservation Division 1220 South St Francis Drive Santa Fe, New Mexico 87505 August 30, 2005 3 R 00 7 7

Attention: Mr. Ed Martin

Dear Mr. Martin

Attached are the water sample laboratory results from the water well at Mr. Roland Jackson residence at # 20 CR 6271 in Kirtland, NM. The well was sampled on 08-24-05 and the sampled analyzed by Envirotech Labs for VOC's using EPA Method 8260 and Cation/Anions. A separate sample was submitted to San Juan Labs in Durango for coliform bacteria analysis.

The water sample was collected from the well after pumping for approximately five minutes using a 2" stainless steel submersible grunfoss pump. The well was pumped dry then allowed to recover, then sampled, using a clean disposable bailer. Recovery time was approximately 10 minutes.

Depth to water was approximately 7.63' and total depth was 10.23' (measured from top of casing, stickup = 8"). Well has 10" steel surface casing and appears to have silted in over the years, as the original depth was reported by the owner to be approximately 18'.

Lab analysis indicate the well water has been impacted with hydrocarbons, including BTEX, Naphthalene, and lesser amounts of chlorinated hydrocarbons including PCE, TCA, & TCE. While the total Coliform and BOD are high, it doesn't contain any fecal coliform, indicating it is not being impacted by raw sewage or a septic system.

Field notes are attached also.

Preliminary results from the fecal coliform analysis: (final results to follow)

Total Coliform: 34,480 Fecal (e coli) < 1.0 BOD 560 mg/l

Best regards,

Envirotech Inc.

C. ack Collins, PG # 1822

Chief Environmental Scientist/Geologist

NCES #038

EPA Method 8260B Volatile Organic Compounds by GC/MS

Client:

NMOCD

Sample ID:

R. Jackson MW #1

Chain of Custody:

14450

Laboratory Number: Sample Matrix:

34133

Preservative:

Water

Cool

Condition:

Cool and Intact

Project #:

Date Reported:

Date Sampled:

Date Received: Date Analyzed:

Analysis Requested:

04093-003

08-26-05

08-24-05

08-24-05 08-26-05

8260 VOC

	Concentration	Det.	Dilution	
Parameter	(ug/L)	Units	Limit	Factor
			4.0	4
Benzene	93.8	(ug/L)	1.0	1
Toluene	1,410	(ug/L)	1.0	10
Ethylbenzene	837	(ug/L)	1.0	10
Xylenes, Total	1,710	(ug/L)	1.0	10
Methyl tert-butyl ether (MTBE)	ND	(ug/L)	1.0	1
1,2,4-Trimethylbenzene	1,620	(ug/L)	1.0	10
1,3,5-Trimethylbenzene	891	(ug/L)	1.0	10
1,2-Dichloroethane (EDC)	ND	(ug/L)	1.0	1
1,2-Dibromoethane (EDB)	ND	(ug/L)	1.0	1
Naphthalene	550	(ug/L)	1.0	10
1-Methylnaphthalene	369	(ug/L)	2.0	10
2-Methylnaphthalene	543	(ug/L)	2.0	10
Bromobenzene	ND	(ug/L)	1.0	1
Bromochloromethane	ND	(ug/L)	1.0	1
Bromodichloromethane	27.4	(ug/Ľ)	1.0	1
Bromoform	ND	(ug/L)	1.0	1
Bromomethane	ND	(ug/L)	1.0	1
Carbon Tetrachloride	ND	(ug/L)	1.0	1.
Chlorobenzene	14.9	(ug/L)	1.0	1
Chloroethane	ND	(ug/L)	2.0	1
Chloroform	3.62	(ug/L)	1.0	1
Chloromethane	ND	(ug/L)	1.0	1 ·
2-Chlorotoluene	ND	(ug/L)	1.0	1
4-Chlorotoluene	ND	(ug/L)	1.0	1
cis-1,2-Dichloroethene	ND	(ug/L)	1.0	1
cis-1,3-Dichloropropene	ND	(ug/L)	1.0	1
1,2-Dibromo-3-chloropropane	ND	(ug/L)	2.0	1
Dibromochloromethane	21.2	(ug/L)	1.0	1
Dibromoethane	ND	(ug/L)	2.0	1
1,2-Dichlorobenzene	` ND	(ug/L)	1.0	1
1,3-Dichlorobenzene	ND	. (ug/L)	1.0	1
1,4-Dichlorobenzene	ND	(ug/L)	1.0	1
Dichlorodifluoromethane	ND	(ug/L)	1.0	1
1,1-Dichloroethane	ND	(ug/L)	1.0	1
1,1-Dichloroethene	ND	(ug/L)	1.0	1
1,2-Dichloropropane	ND	(ug/L)	1.0	1
	ND	(ug/L)	1.0	1
1,3-Dichloropropane 2,2-Dichloropropane	ND	(ug/L)	1.0	1

EPA Method 8260BVolatile Organic Compounds by GC/MS

Client:	NMOCD				nage 2
Sample ID:	R. Jackson MW #1				page 2
Laboratory Number:	34133			Det.	Dilution
		Concentration		Limit	Factor
Parameter		(ug/L)	Units	Liant	1 actor
1,1-Dichloropropene		ND	(ug/L)	1.0	1
Hexachlorobutadiene		ND	(ug/L)	1.0	1
Isopropylbenzene		411	(ug/L)	1.0	10
4-Isopropyltoluene		276	(ug/L)	1.0	10
Methylene Chloride		ND	(ug/L)	3.0	1
n-Butylbenzene		226	(ug/L)	1.0	10
n-Propylbenzene		606	(ug/L)	1.0	10
sec-Butylbenzene		389	(ug/L)	1.0	10
Styrene		ND	(ug/L)	1.0	1
tert-Butylbenzene		485	(ug/L)	1.0	10
Tetrachloroethene (PCE)		14.2	(ug/L)	1.0	1
1,1,1,2-Tetrachloroethan		ND	(ug/L)	1.0	1
1,1,2,2-Tetrachloroethan		232	(ug/L)	1.0	10
trans-1,2-Dichloroethene		ND	(ug/L)	1.0	1
trans-1,3-Dichloroproper		ND	(ug/L)	1.0	1
Trichloroethene (TCE)		7.83	(ug/L)	1.0	1
Trichlorofluoromethane		ND	(ug/L)	1.0	1
1,2,3-Trichlorobenzene		ND	(ug/L)	1.0	1
1,2,4-Trichlorobenzene		22.9	(ug/L)	1.0	1
1,1,1-Trichloroethane		ND	(ug/L)	1.0	1
1,1,2-Trichloroethane		ND	(ug/L)	1.0	1
1,2,3-Trichloropropane		ND	(ug/L)	2.0	1
Vinyl Chloride		· ND	(ug/L)	2.0	1
Surrogates:				Rec. Limits	
Dibromofluoromethane		99.9	% Recovery	78.6-115	1
1,2-Dichloroethane-d4		99.9	% Recovery	74.6-123	1
Toluene-d8		100.0	% Recovery	84.2-115	1
10.00110 00		100.1	O/ Denessans	79 6-115	1

ND = Parameter not detected at the stated detection limit.

References:

4-Bromofluorobenzene

Method 5030, Purge-and-Trap, Test Methods for Evaluating Solid Waste,

SW-846, USEPA, July 1992.

Method 8260, Volatile Organic Compounds by Gas Chromatography / Mass

Spectrometry, Test Methods for Evaluating Solid Waste, SW-846, USEPA, July 1992

100.1

% Recovery

Comments:

Kirtland, NM.

Analyst

Mistine m Walter
Review

78.6-115

1

QUALITY ASSURANCE / QUALITY CONTROL DOCUMENTATION

EPA Method 8260B

Volatile Organic Compounds by GC/MS Quality Assurance Report

Client:

QA/QC

Sample ID:

Laboratory Blank

Laboratory Number:

08-26 VOA Water

Sample Matrix: Preservative:

Condition:

N/A N/A Project #:

Date Reported:

Date Sampled:

Date Received:

Date Analyzed:

Analysis Requested:

N/A

08-26-05

N/A

N/A

08-26-05

8260 VOC

	Concentration	Det.	Dilution	
Parameter	(ug/L)	Units	Limit	Factor
		(/II.)	1.0	1
Benzene	ND	(ug/L)	1.0	1
Toluene	ND	(ug/L)	1.0	1
Ethylbenzene	ND	(ug/L)	1.0	1
Xylenes, Total	ND	(ug/L)	1.0	1
Methyl tert-butyl ether (MTBE)	ND -	(ug/L)	1.0	1
1,2,4-Trimethylbenzene	, ND	(ug/L)		1
1,3,5-Trimethylbenzene	ND	(ug/L)	1.0	1
1,2-Dichloroethane (EDC)	ND	(ug/L)	1.0	1
1,2-Dibromoethane (EDB)	ND	(ug/L)	1.0	-
Naphthalene	ND	(ug/L)	1.0	1
1-Methylnaphthalene	ND	(ug/L)	2.0	1
2-Methylnaphthalene	ND	(ug/L)	2.0	1
Bromóbenzene	ND	(ug/L)	1.0	1
Bromochloromethane	ND	(ug/L)	1.0	1
Bromodichloromethane	ND	(ug/L)	1.0	1
Bromoform	ND	· (ug/L)	1.0	1
Bromomethane	ND	(ug/L)	1.0	1
Carbon Tetrachloride	ND	(ug/L)	1.0	1
Chlorobenzene	ND	(ug/L)	1.0	1
Chloroethane	ND	(ug/L)	2.0	1
Chloroform	ND	(ug/L)	1.0	1
Chloromethane	ND	(ug/L)	1.0	1
2-Chlorotoluene	ND	(ug/L)	1.0	1
4-Chlorotoluene	ND	(ug/L)	1.0	1
cis-1,2-Dichloroethene	ND	(ug/L)	1.0	1
cis-1,3-Dichloropropene	· ND	(ug/L)	1.0	1
1.2-Dibromo-3-chloropropane	ND	(ug/L)	2.0	1
Dibromochloromethane	ND	(ug/L)	1.0	1
Dibromoethane	ND	(ug/L)	2.0	1
1,2-Dichlorobenzene	ND	(ug/L)	1.0	1
1,3-Dichlorobenzene	ND	(ug/L)	1.0	1
1,4-Dichlorobenzene	ND	(ug/L)	1.0	1
Dichlorodifluoromethane	ND	(ug/L)	1.0	1
1,1-Dichloroethane	ND	(ug/L)	1.0	1
·	ND	(ug/L)	1.0	1
1,1-Dichloroethene	ND	(ug/L)	1.0	1
1,2-Dichloropropane	ND	(ug/L)	1.0	1
1,3-Dichloropropane	ND	(ug/L)	1.0	1
2,2-Dichloropropane	טאו	(ug/ L)		*

LPA Method 8260B Volatile Organic Compounds by GC/MS **Quality Assurance Report**

Client:

QA/QC

Sample ID:

Laboratory Blank

08-26 VOA

page 2

1 .

78.6-115

Laboratory Number: 08-26 VOA	Concentration	<u> </u>	Det.	Dilution	
Parameter	(ug/L)	Units	Limit	Factor	
				_	
1,1-Dichloropropene	ND	(ug/L)	1.0	1	
Hexachlorobutadiene	ND	(ug/L)	1.0	1	
Isopropylbenzene	ND	(ug/L)	1.0	1	
4-isopropyltoluene	ND	(ug/L)	1.0	1	
Methylene Chloride	ND	(ug/L)	1.0	1	
n-Butylbenzene	ND	(ug/L)	1.0	1	
n-Propylbenzene	ND	(ug/L)	1.0	, 1	
sec-Butylbenzene	ND	(ug/L)	1.0	1	
Styrene	ND	_ (ug/L)	1.0	1	
tert-Butylbenzene	ND	(ug/L)	1.0	1	
Tetrachloroethene (PCE)	ND	(ug/L)	1.0	1	
1,1,1,2-Tetrachloroethane	ND	(ug/L)	1.0	1	
1,1,2,2-Tetrachloroethane	ND	(ug/L)	1.0	1	
trans-1,2-Dichloroethene	ND	(ug/L)	1.0	1	
trans-1,3-Dichloropropene	ND	(ug/L)	1.0	1	
Trichloroethene (TCE)	ND	(ug/L)	1.0	1	
Trichlorofluoromethane	ND	(ug/L)	1.0	1	
1,2,3-Trichlorobenzene	ND	(ug/L)	1.0	1	
1,2,4-Trichlorobenzene	ND	(ug/L)	1.0	1	
1,1,1-Trichloroethane	ND	(ug/L)	1.0	1	
1,1,2-Trichloroethane	ND	(ug/L)	1.0	1	
1,2,3-Trichloropropane	ND	(ug/L)	2.0	1	
Vinyl Chloride	ND	(ug/L)	2.0	1	
Surrogates:			Rec. Limits		
Dibromofluoromethane	100.2	% Recovery	78.6-115	1	
1,2-Dichloroethane-d4	99.9	% Recovery	74.6-123	1	
Toluene-d8	100.1	% Recovery	84.2-115	1	
				_	

ND = Parameter not detected at the stated detection limit.

References:

4-Bromofluorobenzene

Method 5030, Purge-and-Trap, Test Methods for Evaluating Solid Waste,

SW-846, USEPA, July 1992.

Method 8260, Volatile Organic Compounds by Gas Chromatography / Mass

Spectrometry, Test Methods for Evaluating Solid Waste, SW-846, USEPA, July 1992

100.0

Comments:

QA/QC for sample 34133.

% Recovery

EPA Method 8260B Volatile Organic Compounds by GC/MS Quality Assurance Report

Client:

QA/QC

Sample ID:

Matrix Spikes

Laboratory Number:

08-26-VOA - 34133

Sample Matrix:

Water

Preservative: Condition:

N/A N/A Project #:

N/A

Date Reported:

08-26-05

Date Sampled:

N/A

Date Received:

N/A

Date Analyzed:

08-26-05

Analysis Requested:

8260 VOC

Spike		Units: uG/L	-		Recovery	Det.
Analyte	Sample	Added	Result	%Recovery	Limits	Limit
Benzene	93.8	100.0	193	99.8%	85.3 - 120	1.0
Toluene	1,410	100.0	1,510	100.0%	73 - 123	1.0
Chlorobenzene	14.9	100.0	114	99.5%	84.7 - 119	1.0
1.1-Dichloroethene	ND	100.0	99.9	99.9%	83.4 - 122	1.0
Trichloroethene (TCE)	7.83	100.0	107	99.6%	76.1 - 126	1.0

Spike Duplicate		Units: uG/l	•		Recovery	Det.
Analyte	Sample	Added	Result	%Recovery	Limits	Limit
Benzene	93.8	100.0	193	99.6%	85.3 - 120	1.0
Toluene	1,410	100.0	1,500	99.3%	73 - 123	1.0
Chlorobenzene	14.9	100.0	114	99.5%	84.7 - 119	1.0
1.1-Dichloroethene	ND	100.0	100	100.0%	83.4 - 122	1.0
Trichloroethene (TCE)	7.83	100.0	107	99.6%	76.1 - 126	1.0

ND = Parameter not detected at the stated detection limit.

References:

Method 5030, Purge-and-Trap, Test Methods for Evaluating Solid Waste,

SW-846, USEPA, July 1992.

Method 8260, Volatile Organic Compounds by Gas Chromatography / Mass

Spectrometry, Test Methods for Evaluating Solid Waste, SW-846, USEPA, July 1992

Comments:

QA/QC for samples 34133.

Ahalvst

Review

EPA Method 8260B

Volatile Organic Compounds by GC/MS Daily Calibration Report

Client:

QA/QC

Sample ID:

Daily Calibration

Laboratory Number: Sample Matrix:

08-26-VOA

Preservative:

Water

Condition:

N/A

N/A

Project #:

Date Reported:

N/A

08-26-05

Date Sampled:

N/A

Date Received:

N/A

Date Analyzed:

08-26-05

Analysis Requested:

8260 VOC

	Concentration			% Recovery
Parameter	(ug/L)	Result	% Recovered	Limits
			00.0	90 430
Benzene	100	99.9	99.9	80 - 120 80 - 120
Toluene	100	99.8	99.8	
Ethylbenzene	100	99.9	99.9	80 - 120
Xylenes, Total	100	99.8	99.8	80 - 120
Methyl tert-butyl ether (MTBE)	100	99.9	99.9	80 - 120
1,2,4-Trimethylbenzene	100	99.9	99.9	80 - 120
1,3,5-Trimethylbenzene	100	99.9	99.9	80 - 120
1,2-Dichloroethane (EDC)	100	99.9	99.9	80 - 120
1,2-Dibromoethane (EDB)	100	99.9	99.9	80 - 120
Naphthalene	100	99.9	99.9	80 - 120
1-Methylnaphthalene	100	99.7	99.7	80 - 120
2-Methylnaphthalene	100	99.9	99.9	80 - 120
Bromobenzene	100	99.8	99.8	80 - 120
Bromochloromethane	100	99.7	99.7	80 - 120
Bromodichloromethane	100	99.8	99.8	80 - 120
Bromoform	100	99.8	99.8	80 - 120
Bromomethane	100	99.8	99.8	80 - 120
Carbon Tetrachloride	100	99.9	99.9	80 - 120
Chlorobenzene	100	99.8	99.8	80 - 120
Chloroethane	100	99.9	99.9	80 - 120
Chloroform	100	99.8	99.8	80 - 120
Chloromethane	100	99.7	99.7	80 - 120
2-Chlorotoluene	100	99.6	99.6	80 - 120
4-Chlorotoluene	100	99.8	99.8	80 - 120
cis-1,2-Dichloroethene	100	99.7	99.7	80 - 120
cis-1,3-Dichloropropene	100	99.2	99.2	80 - 120
1,2-Dibromo-3-chloropropane	100	99.8	99.8	80 - 120
Dibromochloromethane	100	99.5	99.5	80 - 120
Dibromoethane	100	99.8	99.8	80 - 120
1,2-Dichlorobenzene	100	99.9	99.9	80 - 120
1,3-Dichlorobenzene	100	99.6	99.6	80 - 120
1,4-Dichlorobenzene	100	99.8	99.8	80 - 120
Dichlorodifluoromethane	100	99.8	99.8	80 - 120
1,1-Dichloroethane	100	99.6	99.6	80 - 120
•	100	99.8	99.8	80 - 120
1,1-Dichloroethene	100	99.6	99.6	80 - 120
1,2-Dichloropropane		99.6	99.6	80 - 120
1,3-Dichloropropane	100		99.3	80 - 120
2,2-Dichloropropane	100	99.3	33.3	00 - 120

EPA Method 8260B Volatile Organic Compounds by GC/MS **Quality Assurance Report**

Client:

QA/QC

Sample ID:

Daily Calibration

page 2

Sample ID:	Daily Galleration				
Laboratory Number:	08-26-VOA	Concentration			% Recovery
		_	Result	% Recovered	Limits
Parameter		(ug/L)	1/63uit		
		100	99.4	99.4	80 - 120
1,1-Dichloropropene	•	100	99.6	99.6	80 - 120
Hexachlorobutadiene		100	99.9	99.9	80 - 120
Isopropylbenzene			99.4	99.4	80 - 120
4-Isopropyltoluene		100	99.5	99.5	80 - 120
Methylene Chloride		100	99.3	99.3	80 - 120
n-Butylbenzene		100	99.9	99.9	80 - 120
n-Propylbenzene		100	99.9 99.4	99.4	80 - 120
sec-Butylbenzene		100	98.9	. 98.9	80 - 120
Styrene		100	99.8	99.8	80 - 120
tert-Butylbenzene		100		99.6	80 - 120
Tetrachloroethene (PCE)		100	99,6	99.8	80 - 120
1,1,1,2-Tetrachloroethane	•	100	99.8	98.9	80 - 120
1,1,2,2-Tetrachloroethane)	100	98.9	99.9	80 - 120
trans-1,2-Dichloroethene		100	99.9	99.9 99.8	80 - 120
trans-1,3-Dichloropropen	е	100	99.8	99.8 99.8	80 - 120
Trichloroethene (TCE)		100	99.8		80 - 120
Trichlorofluoromethane		100	99.9	99.9	80 - 120 80 - 120
1,2,3-Trichlorobenzene		100	99.6	99.6	80 - 120 80 - 120
1,2,4-Trichlorobenzene		100	99.3	99.3	80 - 120 80 - 120
1,1,1-Trichloroethane		100	99.5	99.5	
1,1,2-Trichloroethane		100	99.7	99.7	80 - 120
1,2,3-Trichloropropane		100	99.5	99.5	80 - 120
Vinyl Chloride		100	99.3	99.3	80 - 120
thiji Oilloilae					
Surrogates:				Rec. Limits	
Dibromofluoromethane		99.5	% Recovery	78.6-115	
1,2-Dichloroethane-d4		99.7	% Recovery	74.6-123	
1,2-Dicilior Contains a		00.2	% Pecovery	84.2-115	

			1100. 2111110
Surrogates:	99.5	% Recovery	78.6-115
Dibromofluoromethane	99.7	% Recovery	74.6-123
1,2-Dichloroethane-d4	99.2	% Recovery	84.2-115
Toluene-d8	97.2	% Recovery	78.6-115
4-Bromofluorobenzene	91.2	/u 14000voi y	• =

ND = Parameter not detected at the stated detection limit.

References:

Method 5030, Purge-and-Trap, Test Methods for Evaluating Solid Waste,

SW-846, USEPA, July 1992.

Method 8260, Volatile Organic Compounds by Gas Chromatography / Mass

Spectrometry, Test Methods for Evaluating Solid Waste, SW-846, USEPA, July 1992

Comments:

QA/QC for sample 34133.

CATION / ANION ANALYSIS

Client: NMOCD Sample ID: R. Jackson MW #1 Laboratory Number: 34133 Chain of Custody: 14450 Sample Matrix: Water Preservative: Cool	Date Reported: 08 Date Sampled: 08 Date Received: 08 Date Extracted: N	4093-003 3-25-05 3-24-05 3-24-05 /A 3-25-05
--	--	--

Parameter	Analytical Result	Units		
рН	8.41	s.u.		
Conductivity @ 25° C	2,290	umhos/cm		
Total Dissolved Solids @ 180C	1,160	mg/L		
Total Dissolved Solids (Calc)	1,180	mg/L		
SAR	21.0	ratio		
Total Alkalinity as CaCO3	688	mg/L		
Total Hardness as CaCO3	53.3	mg/L		
Total Hardness as Cacos	33.0	g. =		
Bicarbonate as HCO3	688	mg/L	11.28	meq/L
- -	<0.1	mg/L	0.00	meq/L
Carbonate as CO3	<0.1	mg/L	0.00	meq/L
Hydroxide as OH	1.0	mg/L	0.02	meq/L
Nitrate Nitrogen	0.084	mg/L	0.00	meq/L
Nitrite Nitrogen		-	4.48	meq/L
Chloride	159	mg/L	0.03	meg/L
Fluoride	0.48	mg/L	0.24	meq/L
Phosphate	7.6	mg/L	3.18	meq/L
Sulfate	153	mg/L	0.02	meq/L
Iron	0.425	mg/L	0.02	meq/L
Calcium	19.2	mg/L	0.43	meq/L
Magnesium	5.27	mg/L	0.43	*
Potassium	12.4	mg/L		· meq/L
Sodium	402	mg/L	17.49	meq/L
0.0			19.21	meq/L
Cations	•		19.21	meq/L
Anions				
Cation/Anion Difference			0.02%	

Reference: U.S.E.P.A., 600/4-79-020, "Methods for Chemical Analysis of Water and Wastes", 1983. Standard Methods For The Examination of Water And Waste Water", 18th ed., 1992.

Comments: Kirtland, NM.

Analyst Waster

Review C. (Herry

CHAIN OF CUSTODY RECORD

Client / Project Name	Project Location Little Wm				ANAL	YSIS / PAR	AMETERS				
Sampler: Jack Colling	Client No. 0 4093-003	No. of Containers	VOC'S EPA	Cotan				Rema	arks		
Sample No./ Sample Sample Identification Date Time	Lab Number Sample Matrix	Control	8260								
R. Jackson Mundy 8/24/05 1055	3413.3 31433 /20	3	1								I
,								-			
										-	
·											
				•							
									4 -	T :.	me
Relinquished by: (Signature)	8/24/51230/	ceived by	stue	\mathcal{M}	Wa	Eltes		8/2			
Relinquished by: (Signature)	Rei	ceived by	(Signat	ure)							-,
Relinquished by: (Signature)	Re	ceived by	: (Signat	ure)							
	ENVIROTE	CH		<u>C</u> .			Sam	nple Red	ceipt Y	N	N/A
	5796 U.S. H						Received Int	tact		, IN	IN/A
	Farmington, New (505) 63) 8/4C) I			Cool - Ice/Blue	e Ice			

ENVIROTECH INC. FARMINGTON, NM 5796 HIGHWAY 64 MONITOR WELL DATA

1	locati Projec	t Name: on: t Manage	<u>്യ</u> er:	C55	<u> </u>	<u> </u>	500	San	pler:	Cyc	13L	C
	-					MONITO	R WELL	DATA			,	
	WELL #	TIME	OVM	рН	COND. µS	TEMP.	DEPTH TO WATER FT.	TOTAL DEPTH FT.	WATER COLUMN FT.	BAILED Water Gal.	PRODUCT Ft.	WATER LEVEI FT.
ON THE	1	10:55		867	135		7.63	10.23				
1												
	Notes: Bailed	TOC = T = 3 wel	1 volum	mes:	well = well = well =	0.19 ga 0.49 ga 1.96 ga	1/ft. 1/ft. 1/ft. one of th					

Report Date: July 7, 2008 Work Order: 8061928 Page Number: 1 of 4 R. Jackson Kirkland, NM

Summary Report

Leonard Lowe OCD-Santa Fe 1220 S. Saint Francis Dr. Santa Fe, NM, 87505

Project Name:

Project Location: Kirkland, NM R. Jackson

Report Date: July 7, 2008

Work Order: 8061928

			Date	Time	Date
Sample	Description	Matrix	Taken	Taken	Received
164012	R. Jackson	water	2008-06-16	11:00	2008-06-19

	TPH 418.1	TPH DRO	TPH GRO
	TRPHC	DRO	$_{ m GRO}$
Sample - Field Code	(mg/L)	(mg/L)	(mg/L)
164012 - R. Jackson	2930	3230	55.7

Sample: 164012 - R. Jackson

Param	Flag	Result	Units	RL
Hydroxide Alkalinity		< 1.00	mg/L as $CaCo3$	1.00
Carbonate Alkalinity		44.0	mg/L as $CaCo3$	1.00
Bicarbonate Alkalinity		686	mg/L as $CaCo3$	4.00
Total Alkalinity		730	mg/L as CaCo3	4.00
Specific Conductance		2080	$^{ m uMHOS/cm}$	0.00
Chloride		$\boldsymbol{225}$	$_{ m mg/L}$	3.00
Fluoride		< 1.00	m mg/L	0.200
Nitrate-N		< 1.00	m mg/L	0.200
Sulfate		277	m mg/L	1.00
Naphthalene	1	0.216	m mg/L	0.000200
2-Methylnaphthalene	2	0.393	m mg/L	0.000200
1-Methylnaphthalene	3	0.221	m mg/L	0.000200
Acenaphthylene		< 0.000200	m mg/L	0.000200
Acenaphthene		$\boldsymbol{0.00973}$	m mg/L	0.000200
Dibenzofuran		0.00755	m mg/L	0.000200
Fluorene		0.0339	m mg/L	0.000200

 $continued \dots$

 $^{^{1}}$ Estimated concentration value greater than standard range.

²Estimated concentration value greater than standard range.

Estimated concentration value greater than standard range.

Report Date: July 7, 2008 Work Order: 8061928 Page Number: 2 of 4
R. Jackson Kirkland, NM

sample 164012 continued ...

Param	Flag	Result	Units	RL
Anthracene		< 0.000200	m mg/L	0.000200
Phenanthrene		0.0364	$_{ m mg/L}$	0.000200
Fluoranthene		< 0.000200	m mg/L	0.000200
Pyrene		0.000775	$_{ m mg/L}$	0.000200
$\operatorname{Benzo}(\operatorname{a})\operatorname{anthracene}$		< 0.000200	m mg/L	0.000200
Chrysene		< 0.000200	m mg/L	0.000200
Benzo(b)fluoranthene		< 0.000200	m mg/L	0.000200
Benzo(k)fluoranthene		< 0.000200	m mg/L	0.000200
Benzo(a)pyrene		< 0.000200	m mg/L	0.000200
Indeno(1,2,3-cd)pyrene		< 0.000200	m mg/L	0.000200
Dibenzo(a,h)anthracene		< 0.000200	m mg/L	0.000200
Benzo(g,h,i) perylene		< 0.000200	m mg/L	0.000200
pH		8.83	s.u.	0.00
Total Calcium		11.6	m mg/L	1.00
Total Magnesium		13.7	m mg/L	1.00
Total Potassium		31.5	m mg/L	1.00
Total Sodium		479	m mg/L	1.00
Pyridine		< 0.00500	m mg/L	0.00500
N-Nitrosodimethylamine		< 0.00500	m mg/L	0.00500
2-Picoline		< 0.00500	m mg/L	0.00500
Methyl methanesulfonate		< 0.00500	m mg/L	0.00500
Ethyl methanesulfonate		< 0.00500	m mg/L	0.00500
Phenol	4	0.183	m mg/L	0.00500
Aniline		< 0.00500	m mg/L	0.00500
${ m bis}(2{ ext{-chloroet}}{ m hyl}){ m et}{ m her}$		< 0.00500	m mg/L	0.00500
2-Chlorophenol		< 0.00500	m mg/L	0.00500
1,3-Dichlorobenzene (meta)		< 0.00500	m mg/L	0.00500
1,4-Dichlorobenzene (para)		< 0.00500	m mg/L	0.00500
Benzyl alcohol		< 0.00500	m mg/L	0.00500
1,2-Dichlorobenzene (ortho)		< 0.00500	m mg/L	0.00500
2-Methylphenol	5	0.508	m mg/L	0.00500
${ m bis}(2{ ext{-chloroisopropyl}}) { m ether}$		< 0.00500	m mg/L	0.00500
4-Methylphenol / 3-Methylphenol	6	0.351	m mg/L	0.00500
N-Nitrosodi-n-propylamine		< 0.00500	m mg/L	0.00500
${ m Hexachloroethane}$		< 0.00500	m mg/L	0.00500
$egin{array}{c} { m Acetophenone} \end{array}$		< 0.00500	m mg/L	0.00500
Nitrobenzene		< 0.00500	m mg/L	0.00500
N-Nitrosopiperidine		< 0.00500	$_{ m mg/L}$	0.00500
Isophorone		< 0.00500	$_{ m mg/L}$	0.00500
2-Nitrophenol		< 0.00500	m mg/L	0.00500
2,4-Dimethylphenol	7	0.341	m mg/L	0.00500
bis(2-chloroethoxy) methane		< 0.00500	m mg/L	0.00500
2,4-Dichlorophenol		< 0.00500	m mg/L	0.00500

 $continued \dots$

 $^{^4\}mathrm{Estimated}$ concentration value greater than standard range.

⁵Estimated concentration value greater than standard range.

 $^{^6\}mathrm{Estimated}$ concentration value greater than standard range.

⁷Estimated concentration value greater than standard range.

Report Date: July 7, 2008 Work Order: 8061928 Page Number: 3 of 4 R. Jackson Kirkland, NM

sample 164012 continued ...

Param	Flag	Result	Units	RL
1,2,4-Trichlorobenzene		< 0.00500	m mg/L	0.00500
Benzoic acid		< 0.00500	m mg/L	0.00500
Naphthalene	8	$\boldsymbol{0.227}$	m mg/L	0.00500
a,a-Dimethylphenethylamine		< 0.00500	m mg/L	0.00500
4-Chloroaniline		< 0.00500	m mg/L	0.00500
2,6-Dichlorophenol		< 0.0100	m mg/L	0.0100
$\operatorname{Hexachlorobutadiene}$		< 0.00500	m mg/L	0.00500
N-Nitroso-di-n-butylamine		< 0.00500	m mg/L	0.00500
4-Chloro-3-methylphenol		< 0.00500	m mg/L	0.00500
2-Methylnaphthalene	9	0.408	m mg/L	0.00500
1-Methylnaphthalene	10	0.230	m mg/L	0.00500
1,2,4,5-Tetrachlorobenzene		< 0.00500	m mg/L	0.00500
Hexachlorocyclopentadiene		< 0.00500	m mg/L	0.00500
2,4,6-Trichlorophenol		< 0.0100	m mg/L	0.0100
2,4,5-Trichlorophenol		< 0.00500	m mg/L	0.00500
2-Chloronaphthalene		< 0.00500	m mg/L	0.00500
1-Chloronaphthalene		< 0.00500	m mg/L	0.00500
2-Nitroaniline		< 0.00500	m mg/L	0.00500
Dimethylphthalate		< 0.00500	m mg/L	0.00500
Acenaphthylene		< 0.00500	m mg/L	0.00500
2,6-Dinitrotoluene		< 0.00500	m mg/L	0.00500
3-Nitroaniline		< 0.00500	m mg/L	0.00500
Acenaphthene		0.0104	m mg/L	0.00500
2,4-Dinitrophenol		< 0.00500	m mg/L	0.00500
Dibenzofuran		0.00740	m mg/L	0.00500
Pentachlorobenzene		< 0.00500	m mg/L	0.00500
4-Nitrophenol		< 0.0250	m mg/L	0.0250
2,4-Dinitrotoluene		< 0.00500	m mg/L	0.00500
1-Naphthylamine		0.0102	m mg/L	0.00500
2,3,4,6-Tetrachlorophenol		< 0.0100	m mg/L	0.0100
2-Naphthylamine		0.0106	m mg/L	0.00500
Fluorene		0.0332	m mg/L	0.00500
4-Chlorophenyl-phenylether		< 0.00500	m mg/L	0.00500
Diethylphthalate		< 0.00500	m mg/L	0.00500
4-Nitroaniline		< 0.00500	m mg/L	0.00500
Diphenylhydrazine		< 0.00500	m mg/L	0.00500
4,6-Dinitro-2-methylphenol		< 0.00500	m mg/L	0.00500
Diphenylamine		0.0113	m mg/L	0.00500
4-Bromophenyl-phenylether		< 0.00500	m mg/L	0.00500
Phenacetin		< 0.00500	m mg/L	0.00500
Hexachlorobenzene		< 0.00500	m mg/L	0.00500
4-Aminobiphenyl		0.00590	m mg/L	0.00500
Pentachlorophenol		< 0.0100	m mg/L	0.0100
Anthracene		< 0.00500	m mg/L	0.00500

 $continued \dots$

⁸Estimated concentration value greater than standard range.

⁹Estimated concentration value greater than standard range. ¹⁰Estimated concentration value greater than standard range.

sample 164012 continued ...

Param	Flag Result	Units	RL
Pentachloronitrobenzene	< 0.00500	m mg/L	0.00500
Pronamide	< 0.00500	m mg/L	0.00500
Phenanthrene	0.0395	m mg/L	0.00500
Di-n-butylphthalate	< 0.00500	m mg/L	0.00500
Fluoranthene	< 0.00500	m mg/L	0.00500
Benzidine	< 0.0250	m mg/L	0.0250
Pyrene	< 0.00500	m mg/L	0.00500
p-Dimethylaminoazobenzene	< 0.00500	m mg/L	0.00500
${\bf Butylbenzylphthalate}$	< 0.00500	m mg/L	0.00500
Benzo(a)anthracene	< 0.00500	m mg/L	0.00500
3,3-Dichlorobenzidine	< 0.00500	m mg/L	0.00500
Chrysene	< 0.00500	m mg/L	0.00500
bis(2-ethylhexyl)phthalate	< 0.00500	m mg/L	0.00500
Di-n-octylphthalate	< 0.00500	m mg/L	0.00500
Benzo(b)fluoranthene	< 0.00500	m mg/L	0.00500
Benzo(k)fluoranthene	< 0.00500	m mg/L	0.00500
7,12-Dimethylbenz(a)anthracene	< 0.00500	m mg/L	0.00500
Benzo(a)pyrene	< 0.00500	m mg/L	0.00500
3-Methylcholanthrene	< 0.00500	m mg/L	0.00500
Dibenzo(a,j)acridine	< 0.00500	m mg/L	0.00500
Indeno(1,2,3-cd)pyrene	< 0.00500	m mg/L	0.00500
Dibenzo(a,h)anthracene	< 0.00500	m mg/L	0.00500
Benzo(g,h,i) perylene	< 0.00500	m mg/L	0.00500
Total Dissolved Solids	$\boldsymbol{1296}$	m mg/L	10.00
Total Silver	< 0.00500	m mg/L	0.00500
Total Arsenic	< 0.00500	m mg/L	0.00500
Total Barium	0.0440	m mg/L	0.00100
Total Cadmium	< 0.00100	m mg/L	0.00100
Total Chromium	0.0130	m mg/L	0.00100
Total Mercury	< 0.000200	m mg/L	0.000200
Total Lead	< 0.00500	m mg/L	0.00500
Total Selenium	< 0.0100	m mg/L	0.0100
MTBE	<100	$\mu \mathrm{g}/\mathrm{L}$	1.00
Benzene	3510	$\mu { m g}/{ m L}$	1.00
Toluene	8070	$\mu { m g}/{ m L}$	1.00
Ethylbenzene	1170	$\mu \mathrm{g}/\mathrm{L}$	1.00
m,p-Xylene	3540	$\mu \mathrm{g}/\mathrm{L}$	1.00
o-Xylene	1450	$\mu \mathrm{g}/\mathrm{L}$	1.00

E-Mail: lab@traceanalysis.com

6701 Aberdeen Avenue, Suite 9 200 East Sunset Road, Suite E 5002 Basin Street, Suite A1 6015 Harris Parkway, Suite 110 Ft. Worth, Texas 76132

Lubbock Texas 79424 El Paso, Texas 79922 Midland, Texas 79703

888 • 588 • 3443

806 • 794 • 1296 915 • 585 • 3443

FAX 806 • 794 • 1298 FAX 915 • 585 • 4944 FAX 432 • 689 • 6313

432 • 689 • 6301

817 • 201 • 5260

Lubbock T104704219-08-TX

El Paso T104704221-08-TX

NELAP Certifications

Midland T104704392-08-TX

Analytical and Quality Control Report

Leonard Lowe OCD-Santa Fe 1220 S. Saint Francis Dr. Santa Fe, NM, 87505

Report Date:

July 7, 2008

Work Order:

8061928

Project Location: Kirkland, NM Project Name: Project Number:

R. Jackson R. Jackson

Enclosed are the Analytical Report and Quality Control Report for the following sample(s) submitted to TraceAnalysis, Inc.

Date Time Date Received Sample Description Matrix Taken Taken 164012 2008-06-16 2008-06-19 R. Jackson water 11:00

These results represent only the samples received in the laboratory. The Quality Control Report is generated on a batch basis. All information contained in this report is for the analytical batch(es) in which your sample(s) were analyzed.

This report consists of a total of 35 pages and shall not be reproduced except in its entirety, without written approval of TraceAnalysis, Inc.

Dr. Blair Leftwich, Director

Standard Flags

 $\, B \,$ - The sample contains less than ten times the concentration found in the method blank.

Case Narrative

Samples for project R. Jackson were received by TraceAnalysis, Inc. on 2008-06-19 and assigned to work order 8061928. Samples for work order 8061928 were received damaged without headspace and at a temperature of 23.4 deg. C.

Samples were analyzed for the following tests using their respective methods.

Test	Method
Ag, Total	S 6010B
Alkalinity	SM 2320B
As, Total	S 6010B
Ba, Total	S 6010B
Ca, Total	S 6010B
Cd, Total	S 6010B
Chloride (IC)	E 300.0
Conductivity	SM 2510B
Cr, Total	S 6010B
Fluoride (IC)	E 300.0
Hg, Total	S 7470A
K, Total	S 6010B
Mg, Total	S 6010B
Na, Total	S 6010B
NO3 (IC)	E 300.0
PAH	S 8270C
Pb, Total	S 6010B
pН	SM 4500-H+
Semivolatiles	S 8270C
Se, Total	S 6010B
SO4 (IC)	E 300.0
TDS	SM 2540C
TPH 418.1	E 418.1
TPH DRO	Mod. 8015B
TPH GRO	S 8015 B
Volatiles	S 8260B

Results for these samples are reported on a wet weight basis unless data package indicates otherwise.

A matrix spike (MS) and matrix spike duplicate (MSD) sample is chosen at random from each preparation batch. The MS and MSD will indicate if a site specific matrix problem is occurring, however, it may not pertain to the samples for work order 8061928 since the sample was chosen at random. Therefore, the validity of the analytical data reported has been determined by the laboratory control sample (LCS) and the method blank (MB). These quality control measures are performed with each preparation batch to ensure data integrity.

All other exceptions associated with this report have been footnoted on the appropriate analytical page to assist in general data comprehension. Please contact the laboratory directly if there are any questions regarding this project.

Report Date: July 7, 2008 Work Order: 8061928 Page Number: 4 of 35 R. Jackson Kirkland, NM

Analytical Report

Sample: 164012 - R. Jackson

Laboratory: Lubbock

Analytical Method: Analysis: Alkalinity SM 2320BPrep Method: N/AQC Batch: 49666 Date Analyzed: Analyzed By: RG2008-06-24 Prep Batch: 42654Sample Preparation: 2008-06-24 Prepared By: RG

RLParameter Result Units Dilution RLFlag Hydroxide Alkalinity mg/L as CaCo3 1.00 < 1.001 Carbonate Alkalinity mg/L as CaCo3 1 44.0 1.00 mg/L as CaCo3 Bicarbonate Alkalinity 686 1 4.00Total Alkalinity 730 mg/L as CaCo3 1 4.00

Sample: 164012 - R. Jackson

Laboratory: Lubbock

Analysis: Analytical Method: SM 2510BPrep Method: Conductivity N/AQC Batch: 49726 Date Analyzed: 2008-06-25 Analyzed By: RDPrep Batch: 42697 Sample Preparation: 2008-06-25 Prepared By: RD

Sample: 164012 - R. Jackson

Laboratory: Lubbock

Analysis: Ion Chromatography Analytical Method: E 300.0 Prep Method: N/AQC Batch: 49956Date Analyzed: 2008-07-03 Analyzed By: RDPrep Batch: 42877Sample Preparation: 2008-06-26 Prepared By: RD

RLParameter Dilution Flag Result Units RLChloride 225 3.00 mg/L50 Fluoride < 1.00 mg/L5 0.200Nitrate-N < 1.00 5 0.200mg/LSulfate277 mg/L50 1.00 Report Date: July 7, 2008 Work Order: 8061928 Page Number: 5 of 35 R. Jackson R. Jackson Kirkland, NM

Sample: 164012 - R. Jackson

Laboratory: Lubbock

Analysis: PAHAnalytical Method: S 8270C Prep Method: S 3510C QC Batch: 49676 Date Analyzed: 2008-06-24 Analyzed By: DS Prep Batch: 42660Sample Preparation: 2008-06-20 Prepared By: DS

		RL			
Parameter	Flag	Result	Units	Dilution	RL
Naphthalene	1	0.216	m mg/L	1	0.000200
$2 ext{-} ext{Methylnaphthalene}$	2	$\boldsymbol{0.393}$	${ m mg/L}$	1	0.000200
$1 ext{-} ext{Methylnaphthalene}$	3	$\boldsymbol{0.221}$	${ m mg/L}$	1	0.000200
${ m Acenapht hylene}$		< 0.000200	${ m mg/L}$	1	0.000200
${ m Acenaphthene}$		$\boldsymbol{0.00973}$	${ m mg/L}$	1	0.000200
Dibenzofuran		0.00755	m mg/L	1	0.000200
Fluorene		0.0339	m mg/L	1	0.000200
${\bf Anthracene}$		< 0.000200	m mg/L	1	0.000200
${\bf Phenanthrene}$		0.0364	m mg/L	1	0.000200
Fluoranthene		< 0.000200	m mg/L	1	0.000200
Pyrene		0.000775	${ m mg/L}$	1	0.000200
$\operatorname{Benzo}(\operatorname{a}) \operatorname{anthracene}$		< 0.000200	m mg/L	1	0.000200
Chrysene		< 0.000200	m mg/L	1	0.000200
${ m Benzo}({ m b}) { m fluoranthene}$		< 0.000200	m mg/L	1	0.000200
$\operatorname{Benzo}(k)$ fluoranthene		< 0.000200	m mg/L	1	0.000200
Benzo(a)pyrene		< 0.000200	m mg/L	1	0.000200
Indeno(1,2,3-cd)pyrene		< 0.000200	m mg/L	1	0.000200
${ m Dibenzo(a,h)}$ anthracene		< 0.000200	m mg/L	1	0.000200
$\mathrm{Benzo}(\mathrm{g,h,i})$ perylene		< 0.000200	m mg/L	1	0.000200

					Spike	$\operatorname{Percent}$	Recovery
$\mathbf{Surrogate}$	Flag	Result	Units	$\operatorname{Dilution}$	${ m Amount}$	Recovery	Limits
Nitrobenzene-d5		0.0592	$\mathrm{mg/L}$	1	0.0800	74	37.4 - 123
2-Fluorobiphenyl		0.0465	$\mathrm{mg/L}$	1	0.0800	58	34.3 - 130
Terphenyl-d14		0.0543	mg/L	1	0.0800	68	10 - 252

Sample: 164012 - R. Jackson

Laboratory: Lubbock

Analysis: pHAnalytical Method: SM 4500-H+ Prep Method: N/A QC Batch: 49616 Date Analyzed: 2008-06-20 Analyzed By: RGPrep Batch: 42609Sample Preparation: 2008-06-20 Prepared By: RG

		RL			
Parameter	Flag	Result	Units	Dilution	RL
рН		8.83	s.u.	1	0.00

 $^{^{1}}$ Estimated concentration value greater than standard range.

²Estimated concentration value greater than standard range.

³Estimated concentration value greater than standard range.

Report Date: July 7, 2008 Work Order: 8061928 Page Number: 6 of 35 R. Jackson Kirkland, NM

Sample: 164012 - R. Jackson

Laboratory: Lubbock

Analysis: Salts, Total Analytical Method: S_{6010B} Prep Method: S 3010A QC Batch: 49885Date Analyzed: 2008-06-30 Analyzed By: TPPrep Batch: 42752Sample Preparation: 2008-06-27 Prepared By: KV

		RL			
Parameter	Flag	Result	Units	${\rm Dilution}$	RL
Total Calcium		11.6	$\mathrm{mg/L}$	1	1.00
Total Magnesium		13.7	m mg/L	1	1.00
Total Potassium		31.5	$\mathrm{mg/L}$	1	1.00
Total Sodium		479	$\mathrm{mg/L}$	10	1.00

Sample: 164012 - R. Jackson

Laboratory: Lubbock

Analysis: Semivolatiles Analytical Method: S 8270C Prep Method: S 3510C QC Batch: 49675Date Analyzed: 2008-06-24 Analyzed By: DSPrep Batch: 42659Sample Preparation: 2008-06-20 Prepared By: DS

		RL			
Parameter	Flag	Result	Units	Dilution	RL
Pyridine		< 0.00500	m mg/L	1	0.00500
N-Nitrosodimethylamine		< 0.00500	$\mathrm{mg/L}$	1	0.00500
2-Picoline		< 0.00500	$\mathrm{mg/L}$	1	0.00500
Methyl methanesulfonate		< 0.00500	$\mathrm{mg/L}$	1	0.00500
Ethyl methanesulfonate		< 0.00500	$\mathrm{mg/L}$	1	0.00500
Phenol	4	0.183	$\mathrm{mg/L}$	1	0.00500
Aniline		< 0.00500	$\mathrm{mg/L}$	1	0.00500
bis(2-chloroethyl)ether		< 0.00500	$\mathrm{mg/L}$	1	0.00500
2-Chlorophenol		< 0.00500	m mg/L	1	0.00500
1,3-Dichlorobenzene (meta)		< 0.00500	m mg/L	1	0.00500
1,4-Dichlorobenzene (para)		< 0.00500	m mg/L	1	0.00500
Benzyl alcohol		< 0.00500	m mg/L	1	0.00500
1,2-Dichlorobenzene (ortho)		< 0.00500	m mg/L	1	0.00500
2-Methylphenol	5	0.508	m mg/L	1	0.00500
${ m bis}(2{ ext{-chloroisopropyl}}) { m ether}$		< 0.00500	m mg/L	1	0.00500
4-Methylphenol / 3-Methylphenol	6	0.351	$\mathrm{mg/L}$	1	0.00500
N-Nitrosodi-n-propylamine		< 0.00500	m mg/L	1	0.00500
$\operatorname{Hexachloroethane}$		< 0.00500	m mg/L	1	0.00500
$egin{array}{c} Acetophenone \end{array}$		< 0.00500	m mg/L	1	0.00500
Nitrobenzene		< 0.00500	m mg/L	1	0.00500
${ m N-Nitrosopiperidine}$		< 0.00500	m mg/L	1	0.00500

⁴Estimated concentration value greater than standard range.

⁵Estimated concentration value greater than standard range.

 $^{^6\,\}mathrm{Estimated}$ concentration value greater than standard range.

Report Date: July 7, 2008 Work Order: 8061928 Page Number: 7 of 35 R. Jackson Kirkland, NM

 $sample\ 164012\ continued\ \dots$

		RL			
Parameter	Flag	Result	Units	Dilution	RL
Isophorone		< 0.00500	$\mathrm{mg/L}$	1	0.00500
2-Nitrophenol		< 0.00500	m mg/L	1	0.00500
2,4-Dimethylphenol	7	0.341	m mg/L	1	0.00500
bis(2-chloroethoxy) methane		< 0.00500	${ m mg/L}$	1	0.00500
2,4-Dichlorophenol		< 0.00500	$\mathrm{mg/L}$	1	0.00500
1,2,4-Trichlorobenzene		< 0.00500	m mg/L	1	0.00500
Benzoic acid		< 0.00500	m mg/L	1	0.00500
Naphthalene	8	$\boldsymbol{0.227}$	m mg/L	1	0.00500
a,a-Dimethylphenethylamine		< 0.00500	m mg/L	1	0.00500
4-Chloroaniline		< 0.00500	m mg/L	1	0.00500
2,6-Dichlorophenol		< 0.0100	m mg/L	1	0.0100
${ m Hexachlorobutadiene}$		< 0.00500	m mg/L	1	0.00500
N-Nitroso-di-n-butylamine		< 0.00500	m mg/L	1	0.00500
4-Chloro-3-methylphenol		< 0.00500	m mg/L	1	0.00500
$2 ext{-Methylnaphthalene}$	9	0.408	m mg/L	1	0.00500
$1 ext{-} ext{Methylnaphthalene}$	10	0.230	m mg/L	1	0.00500
1,2,4,5-Tetrachlorobenzene		< 0.00500	m mg/L	1	0.00500
${ m Hexachlorocyclopentadiene}$		< 0.00500	m mg/L	1	0.00500
2,4,6-Trichlorophenol		< 0.0100	m mg/L	1	0.0100
2,4,5-Trichlorophenol		< 0.00500	m mg/L	1	0.00500
$2 ext{-Chloronaphthalene}$		< 0.00500	m mg/L	1	0.00500
$1 ext{-}\text{Chloronaphthalene}$		< 0.00500	m mg/L	1	0.00500
2-Nitroaniline		< 0.00500	m mg/L	1	0.00500
${\bf Dimethyl phthal ate}$		< 0.00500	m mg/L	1	0.00500
${ m Acenapht}$ hylene		< 0.00500	m mg/L	1	0.00500
2,6-Dinitrotoluene		< 0.00500	m mg/L	1	0.00500
3-Nitroaniline		< 0.00500	m mg/L	1	0.00500
${ m Acenaphthene}$		0.0104	m mg/L	1	0.00500
2,4-Dinitrophenol		< 0.00500	m mg/L	1	0.00500
Dibenzofuran		0.00740	m mg/L	1	0.00500
${\bf Pentachlorobenzene}$		< 0.00500	m mg/L	1	0.00500
4-Nitrophenol		< 0.0250	m mg/L	1	0.0250
2,4-Dinitrotoluene		< 0.00500	m mg/L	1	0.00500
1 entropy Naphthylamine		$\boldsymbol{0.0102}$	m mg/L	1	0.00500
2,3,4,6-Tetrachlorophenol		< 0.0100	m mg/L	1	0.0100
2-Naphthylamine		0.0106	m mg/L	1	0.00500
Fluorene		$\boldsymbol{0.0332}$	m mg/L	1	0.00500
4-Chlorophenyl-phenylether		< 0.00500	m mg/L	1	0.00500
Diethylphthalate		< 0.00500	m mg/L	1	0.00500

 $^{{}^{7}}_{\,\,{}^{\,\,{}}}\mathrm{Estimated}$ concentration value greater than standard range.

⁸ Estimated concentration value greater than standard range.

⁹ Estimated concentration value greater than standard range.

 $^{^{10}\,\}mathrm{Estimated}$ concentration value greater than standard range.

Report Date: July 7, 2008 Work Order: 8061928 Page Number: 8 of 35 R. Jackson Kirkland, NM

sample 164012 continued . . .

		RL			
Parameter	Flag	Result	Units	Dilution	RL
4-Nitroaniline		< 0.00500	$\mathrm{mg/L}$	1	0.00500
Diphenylhydrazine		< 0.00500	m mg/L	1	0.00500
4,6-Dinitro- 2 -methylphenol		< 0.00500	m mg/L	1	0.00500
Diphenylamine		0.0113	m mg/L	1	0.00500
4-Bromophenyl-phenylether		< 0.00500	m mg/L	1	0.00500
Phenacetin		< 0.00500	m mg/L	1	0.00500
Hexachlorobenzene		< 0.00500	m mg/L	1	0.00500
4-Aminobiphenyl		0.00590	m mg/L	1	0.00500
Pentachlorophenol		< 0.0100	m mg/L	1	0.0100
Anthracene		< 0.00500	m mg/L	1	0.00500
Pentachloronitrobenzene		< 0.00500	m mg/L	1	0.00500
Pronamide		< 0.00500	$\mathrm{mg/L}$	1	0.00500
Phenanthrene		$\boldsymbol{0.0395}$	$\mathrm{mg/L}$	1	0.00500
Di-n-butylphthalate		< 0.00500	$\mathrm{mg/L}$	1	0.00500
Fluoranthene		< 0.00500	$\mathrm{mg/L}$	1	0.00500
Benzidine		< 0.0250	$\mathrm{mg/L}$	1	0.0250
Pyrene		< 0.00500	$\mathrm{mg/L}$	1	0.00500
p-Dimethylaminoazobenzene		< 0.00500	m mg/L	1	0.00500
Butylbenzylphthalate		< 0.00500	m mg/L	1	0.00500
Benzo(a)anthracene		< 0.00500	m mg/L	1	0.00500
3,3-Dichlorobenzidine		< 0.00500	m mg/L	1	0.00500
Chrysene		< 0.00500	$\mathrm{mg/L}$	1	0.00500
bis(2-ethylhexyl)phthalate		< 0.00500	$\mathrm{mg/L}$	1	0.00500
Di-n-octylphthalate		< 0.00500	m mg/L	1	0.00500
Benzo(b)fluoranthene		< 0.00500	m mg/L	1	0.00500
$\operatorname{Benzo}(k)$ fluoranthene		< 0.00500	m mg/L	1	0.00500
7,12-Dimethylbenz(a) anthracene		< 0.00500	$\mathrm{mg/L}$	1	0.00500
Benzo(a)pyrene		< 0.00500	m mg/L	1	0.00500
3-Methylcholanthrene		< 0.00500	m mg/L	1	0.00500
${ m Dibenzo}({ m a,j}){ m acridine}$		< 0.00500	m mg/L	1	0.00500
Indeno(1,2,3-cd)pyrene		< 0.00500	$\mathrm{mg/L}$	1	0.00500
${ m Dibenzo(a,h)}$ anthracene		< 0.00500	$\mathrm{mg/L}$	1	0.00500
Benzo(g,h,i)perylene		< 0.00500	$\mathrm{mg/L}$	1	0.00500

					Spike	$\operatorname{Percent}$	Recovery
$\operatorname{Surrogate}$	Flag	Result	Units	Dilution	${f Amount}$	Recovery	Limits
2-Fluorophenol		0.0225	$\mathrm{mg/L}$	1	0.0800	28	10 - 84.7
${ m Phenol-d5}$		0.0153	m mg/L	1	0.0800	19	10 - 54.9
${ m Nitrobenzene-d5}$		0.0599	m mg/L	1	0.0800	75	10 - 202
2-Fluorobiphenyl		0.0457	m mg/L	1	0.0800	57	10 - 199
2,4,6-Tribromophenol		0.0635	m mg/L	1	0.0800	79	10 - 141
Terphenyl-d14		0.0539	m mg/L	1	0.0800	67	10 - 160

Report Date: July 7, 2008 Work Order: 8061928 Page Number: 9 of 35 R. Jackson Kirkland, NM

Sample: 164012 - R. Jackson

Laboratory: Lubbock

TDS Analytical Method: Analysis: SM 2540C Prep Method: N/AQC Batch: 49803 Date Analyzed: Analyzed By: RD2008-06-27 Prep Batch: 42759Sample Preparation: 2008-06-23 Prepared By: RD

RL

Parameter	Flag	Result	Units	${\rm Dilution}$	RL
Total Dissolved Solids		1296	mg/L	2	10.00

Sample: 164012 - R. Jackson

Laboratory: Lubbock

Analysis: Total 8 Metals Analytical Method: S 7470A Prep Method: N/AQC Batch: 49583 Date Analyzed: Analyzed By: TP 2008-06-20 Prep Batch: 42582Sample Preparation: 2008-06-20 Prepared By: TP Laboratory: Lubbock

S 3010A

RR

KV

Analysis:Total 8 MetalsAnalytical Method:S 6010BPrep Method:QC Batch:49619Date Analyzed:2008-06-23Analyzed By:Prep Batch:42606Sample Preparation:2008-06-23Prepared By:

RL

Parameter	Flag	Result	Units	Dilution	RL
Total Silver		< 0.00500	m mg/L	1	0.00500
Total Arsenic		< 0.00500	m mg/L	1	0.00500
Total Barium		0.0440	m mg/L	1	0.00100
Total Cadmium		< 0.00100	m mg/L	1	0.00100
Total Chromium		0.0130	m mg/L	1	0.00100
Total Mercury		< 0.000200	m mg/L	1	0.000200
Total Lead		< 0.00500	m mg/L	1	0.00500
Total Selenium		< 0.0100	m mg/L	1	0.0100

Sample: 164012 - R. Jackson

Laboratory: Lubbock

Analysis: TPH 418.1 Analytical Method: Prep Method: N/AE 418.1 QC Batch: 49940 Date Analyzed: 2008-07-02 Analyzed By: MNPrep Batch: 42865Sample Preparation: 2008-07-02 Prepared By: MN

RL

Parameter	Flag	Result	Units	Dilution	RL
TRPHC		2930	$\mathrm{mg/L}$	64	1.00

Work Order: 8061928 Report Date: July 7, 2008 Page Number: 10 of 35 R. Jackson R. Jackson Kirkland, NM

Sample: 164012 - R. Jackson

Laboratory: Lubbock

Analysis: TPH DRO Analytical Method: Mod. 8015B Prep Method: QC Batch: 49558 Date Analyzed: 2008-06-19 Analyzed By: Prep Batch: 42562Sample Preparation: 2008-06-19 Prepared By:

RL

Parameter	Flag	Result	Units	Dilution	RL
DRO		3230	$\mathrm{mg/L}$	1	5.00

					Spike	$\operatorname{Percent}$	$\operatorname{Recovery}$
$\mathbf{Surrogate}$	Flag	Result	Units	$\operatorname{Dilution}$	${f Amount}$	Recovery	Limits
n-Triacontane		11.4	mg/L	1	10.0	114	57.2 - 149

Sample: 164012 - R. Jackson

Laboratory: Lubbock

Analysis: TPH GRO Analytical Method: S 8015B Prep Method: S_{5030B} QC Batch: 49641 Date Analyzed: 2008-06-23 Analyzed By: ERPrep Batch: 42633Sample Preparation: 2008-06-23 Prepared By: ER

RLParameter Flag Result Dilution Units RLGRO 55.7mg/L50 0.100

					Spike	$\operatorname{Percent}$	$\operatorname{Recovery}$
$\mathbf{Surrogate}$	Flag	Result	Units	Dilution	${ m Amount}$	Recovery	Limits
Trifluorotoluene (TFT)		4.56	$_{ m mg/L}$	50	5.00	91	67.1 - 120
4-Bromofluorobenzene (4-BFB)		4.74	${ m mg/L}$	50	5.00	95	63.1 - 122

Sample: 164012 - R. Jackson

Laboratory: Lubbock

Analysis: Volatiles Analytical Method: S 8260B Prep Method: S_{5030B} QC Batch: 49702 Date Analyzed: 2008 - 06 - 23Analyzed By: KBPrep Batch: 42681Sample Preparation: 2008-06-23 Prepared By: KB

		RL			
Parameter	Flag	Result	Units	Dilution	RL
MTBE		<100	$\mu { m g/L}$	100	1.00
Benzene		$\boldsymbol{3510}$	$\mu { m g}/{ m L}$	100	1.00
Toluene		$\boldsymbol{8070}$	$\mu { m g}/{ m L}$	100	1.00
Ethylbenzene		1170	$\mu { m g}/{ m L}$	100	1.00
$_{\mathrm{m,p-Xylene}}$		$\boldsymbol{3540}$	$\mu { m g}/{ m L}$	100	1.00

continued . . .

N/A

MN

MN

Report Date: July 7, 2008 R. Jackson Work Order: 8061928 R. Jackson Page Number: 11 of 35 Kirkland, NM

sample 164012 co	$ntinued \dots$
------------------	-----------------

sample 164012 contir	$nued \dots$						
		RL					
Parameter	Flag	Result		Units		Dilution	RL
o-Xylene		1450		$\mu \mathrm{g/L}$		100	1.00
Surrogate	Flag	Result	Units	Dilution	$egin{array}{c} ext{Spike} \ ext{Amount} \end{array}$	Percent Recovery	$egin{array}{c} ext{Recovery} \ ext{Limits} \end{array}$
Dibromofluorometha		5350	$\mu \mathrm{g/L}$	100	5000	107	89.8 - 111
Toluene-d8		5180	$\mu \mathrm{g/L}$	100	5000	104	93.2 - 108
4-Bromofluorobenzen	ie (4-BFB)	4830	$\mu \mathrm{g/L}$	100	5000	97	88.4 - 103
Method Blank (1)	QC Batch: 49558						
QC Batch: 49558 Prep Batch: 42562		Date Analyz QC Preparat		08-06-19 08-06-19		Analyz Prepare	
Parameter	Flag		$rac{ ext{MDL}}{ ext{Result}}$		Ur	nits	m RL
DRO	<u> </u>		1.43		mg	g/L	5
Surrogate	Flag Result	Units	Dilu	ion	Spike Amount	Percent Recovery	Recovery Limits
n-Triacontane	10.8	mg/L	1		10.0	108	57.2 - 149
Method Blank (1) QC Batch: 49583 Prep Batch: 42582	QC Batch: 49583	Date Analyz QC Prepara	tion: 20	008-06-20 008-06-20 DL			zed By: TP
Parameter	Flag		Res		Un	its	RL
Total Mercury			< 0.00002		mg		0.0002
Method Blank (1)	QC Batch: 49619						
QC Batch: 49619 Prep Batch: 42606		Date Analyz QC Preparat		08-06-23 08-06-23		Analyz Prepar	
Parameter	Flag		$\mathrm{R}\epsilon$	MDL esult		nits	RL
Total Silver			< 0.00			g/L	0.005
Total Arsenic			< 0.00	0430	m	g/L	0.005
<u> </u>						<u> </u>	continued

 $\overline{continued}$. . .

Report Date: July 7, 2008 Work Order: 8061928 Page Number: 13 of 35 R. Jackson Kirkland, NM

$method\ blank\ continued\ \dots$				
Danamatan	Dl	MDL	Units	DI
Parameter N. Nitness dimetholomins	Flag	Result <0.00192	<u> </u>	$\frac{RL}{0.005}$
N-Nitrosodimethylamine		<0.00192 <0.00132	m mg/L	
2-Picoline Methyl methonogylfonete			$\frac{\mathrm{mg/L}}{\mathrm{mg/L}}$	$0.005 \\ 0.005$
Methyl methanesulfonate		< 0.00175	m mg/L	
Ethyl methanesulfonate		< 0.00122	m mg/L	0.005
Phenol		< 0.00165	m mg/L	0.005
Aniline		< 0.00138	m mg/L	0.005
bis(2-chloroethyl)ether		< 0.00217	m mg/L	0.005
2-Chlorophenol		< 0.00150	m mg/L	0.005
1,3-Dichlorobenzene (meta)		< 0.00166	$_{ m mg/L}$	0.005
1,4-Dichlorobenzene (para)		< 0.00156	$_{\mathrm{mg/L}}$	0.005
Benzyl alcohol		< 0.00100	m mg/L	0.005
1,2-Dichlorobenzene (ortho)		< 0.00164	m mg/L	0.005
2-Methylphenol		< 0.00158	m mg/L	0.005
${ m bis}(2{ m -chloroisopropyl}){ m ether}$		< 0.000828	m mg/L	0.005
4-Methylphenol / 3-Methylphenol		< 0.00124	$\mathrm{mg/L}$	0.005
N-Nitrosodi-n-propylamine		< 0.00127	$\mathrm{mg/L}$	0.005
Hexachloroethane		< 0.00198	m mg/L	0.005
Acetophenone		< 0.00127	m mg/L	0.005
Nitrobenzene		< 0.00193	$_{ m mg/L}$	0.005
N-Nitrosopiperidine		< 0.00120	$_{ m mg/L}$	0.005
Isophorone		< 0.00194	$_{ m mg/L}$	0.005
2-Nitrophenol		< 0.00140	$_{ m mg/L}$	0.005
2,4-Dimethylphenol		< 0.00110	$\frac{mg}{L}$	0.005
bis(2-chloroethoxy)methane		< 0.00103	$\frac{\mathrm{mg}}{\mathrm{L}}$	0.005
2,4-Dichlorophenol		< 0.00124	$\frac{\mathrm{mg}}{\mathrm{L}}$	0.005
1,2,4-Trichlorobenzene		< 0.00194		0.005
Benzoic acid		< 0.00193	$\frac{\mathrm{mg/L}}{\mathrm{mg/L}}$	0.005
			m mg/L	
Naphthalene		< 0.00165	m mg/L	0.005
a,a-Dimethylphenethylamine		< 0.000758	m mg/L	0.005
4-Chloroaniline		< 0.00115	m mg/L	0.005
2,6-Dichlorophenol		< 0.00120	m mg/L	0.01
Hexachlorobutadiene		< 0.00184	$_{ m mg/L}$	0.005
N-Nitroso-di-n-butylamine		< 0.00169	m mg/L	0.005
4-Chloro-3-methylphenol		< 0.00120	m mg/L	0.005
2-Methylnaphthalene		< 0.00145	m mg/L	0.005
$1 ext{-} ext{Methylnaphthalene}$		< 0.00155	m mg/L	0.005
1,2,4,5-Tetrachlorobenzene		< 0.00205	m mg/L	0.005
${\it Hexachlorocyclopentadiene}$		< 0.00385	m mg/L	0.005
2,4,6-Trichlorophenol		< 0.00152	m mg/L	0.01
2,4,5-Trichlorophenol		< 0.00320	m mg/L	0.005
2-Chloronaphthalene		< 0.00168	$_{ m mg/L}$	0.005
1-Chloronaphthalene		< 0.00181	$_{ m mg/L}$	0.005
2-Nitroaniline		< 0.00169	$_{ m mg/L}$	0.005
Dimethylphthalate		< 0.00178	m mg/L	0.005
2 III conjupitono co		70.00110	8/	aontinu ad

continued . . .

Report Date: July 7, 2008 Work Order: 8061928 Page Number: 14 of 35 R. Jackson R. Jackson Kirkland, NM

$method\ blank\ continued\ \dots$		MINI		
Parameter	Flag	$egin{array}{c} ext{MDL} \ ext{Result} \end{array}$	Units	m RL
Acenaphthylene	1 145	<0.00136	$\frac{\rm mg/L}$	0.005
2,6-Dinitrotoluene		< 0.00139	m mg/L	0.005
3-Nitroaniline		< 0.00124	m mg/L	0.005
Acenaphthene		< 0.00121	m mg/L	0.005
2,4-Dinitrophenol		< 0.00392	m mg/L	0.005
Dibenzofuran		< 0.00161	m mg/L	0.005
Pentachlorobenzene		< 0.00242	m mg/L	0.005
4-Nitrophenol		< 0.00127	m mg/L	0.025
2,4-Dinitrotoluene		< 0.00127	m mg/L	0.005
1-Naphthylamine		< 0.00139	m mg/L	0.005
2,3,4,6-Tetrachlorophenol		< 0.00120	m mg/L	0.003
2-Naphthylamine		< 0.00154	m mg/L	0.005
Fluorene		< 0.00134	m mg/L	0.005
4-Chlorophenyl-phenylether		< 0.00130		0.005
Diethylphthalate		<0.00173	$\frac{\mathrm{mg/L}}{\mathrm{mg/L}}$	0.005
4-Nitroaniline			m mg/L	
		<0.00101	m mg/L	0.005
Diphenylhydrazine		< 0.00125	m mg/L	0.005
4,6-Dinitro-2-methylphenol		< 0.00135	$\frac{\mathrm{mg/L}}{\mathrm{mg/L}}$	0.005
Diphenylamine		< 0.00159	m mg/L	0.005
4-Bromophenyl-phenylether		< 0.00187	m mg/L	0.005
Phenacetin		< 0.00139	m mg/L	0.005
Hexachlorobenzene		< 0.00238	m mg/L	0.005
4-Aminobiphenyl		< 0.00134	m mg/L	0.005
Pentachlorophenol		< 0.000632	mg/L	0.01
Anthracene		< 0.00152	mg/L	0.005
Pentachloronitrobenzene		< 0.00307	mg/L	0.005
Pronamide		< 0.00159	mg/L	0.005
Phenanthrene		< 0.00144	mg/L	0.005
Di-n-butylphthalate		< 0.00125	m mg/L	0.005
Fluoranthene		< 0.00159	m mg/L	0.005
Benzidine		< 0.000845	m mg/L	0.025
Pyrene		< 0.00135	m mg/L	0.005
p-Dimethylaminoazobenzene		< 0.000969	m mg/L	0.005
Butylbenzylphthalate		< 0.00110	m mg/L	0.005
Benzo(a)anthracene		< 0.00138	m mg/L	0.005
3,3-Dichlorobenzidine		< 0.00130	m mg/L	0.005
Chrysene		< 0.00146	m mg/L	0.005
bis(2-ethylhexyl)phthalate		< 0.00108	m mg/L	0.005
Di-n-octylphthalate		< 0.000892	m mg/L	0.005
Benzo(b)fluoranthene		< 0.00126	m mg/L	0.005
Benzo(k)fluoranthene		< 0.00149	m mg/L	0.005
7,12-Dimethylbenz(a)anthracene		< 0.00134	m mg/L	0.005
Benzo(a)pyrene		< 0.00155	m mg/L	0.005
3-Methylcholanthrene		< 0.00166	m mg/L	0.005

Report Date: July 7, 2008 Work Order: 8061928 Page Number: 15 of 35 R. Jackson Kirkland, NM

$method\ blank\ continued$				
		MDL		
Parameter	Flag	Result	Units	RL
$\overline{\text{Dibenzo}(a,j)}$ acridine		< 0.00201	m mg/L	0.005
Indeno(1,2,3-cd)pyrene		< 0.00195	$\mathrm{mg/L}$	0.005
${ m Dibenzo}({ m a,h}) { m anthracene}$		< 0.00210	m mg/L	0.005
Benzo(g,h,i)perylene		< 0.00207	$\mathrm{mg/L}$	0.005

					Spike	Percent	Recovery
$\operatorname{Surrogate}$	Flag	Result	Units	Dilution	${f Amount}$	Recovery	Limits
2-Fluorophenol		0.0158	$\mathrm{mg/L}$	1	0.0800	20	10 - 66.9
${ m Phenol-d5}$		0.0100	$\mathrm{mg/L}$	1	0.0800	12	10 - 50.7
${ m Nitrobenzene-d5}$		0.0276	m mg/L	1	0.0800	34	10 - 124
2-Fluorobiphenyl		0.0249	$\mathrm{mg/L}$	1	0.0800	31	10 - 127
2,4,6-Tribromophenol		0.0311	m mg/L	1	0.0800	39	10 - 138
${ m Terphenyl-d14}$		0.0433	$\mathrm{mg/L}$	1	0.0800	54	10 - 143

Method Blank (1) QC Batch: 49676

QC Batch: 49676 Date Analyzed: 2008-06-24 Analyzed By: DS Prep Batch: 42660 QC Preparation: 2008-06-20 Prepared By: DS

		MDL		
Parameter	Flag	Result	Units	RL
Naphthalene		< 0.000730	$\mathrm{mg/L}$	0.0002
$2 ext{-Methylnaphthalene}$		< 0.0000509	m mg/L	0.0002
$1 ext{-} ext{Methylnaphthalene}$		< 0.0000748	m mg/L	0.0002
${ m Acenapht hylene}$		< 0.000767	m mg/L	0.0002
${f Acenaphthene}$		< 0.000142	m mg/L	0.0002
Dibenzofuran		< 0.000470	${ m mg/L}$	0.0002
Fluorene		< 0.0000569	${ m mg/L}$	0.0002
${ m Anthracene}$		< 0.0000876	${ m mg/L}$	0.0002
Phenanthrene		< 0.0000552	m mg/L	0.0002
Fluoranthene		< 0.0000954	m mg/L	0.0002
Pyrene		< 0.000497	m mg/L	0.0002
$\operatorname{Benzo}(\operatorname{a})\operatorname{anthracene}$		< 0.0000328	m mg/L	0.0002
Chrysene		< 0.0000990	${ m mg/L}$	0.0002
$\operatorname{Benzo}(b)$ fluoranthene		< 0.0000684	${ m mg/L}$	0.0002
Benzo(k)fluoranthene		< 0.0000830	m mg/L	0.0002
Benzo(a)pyrene		< 0.0000549	${ m mg/L}$	0.0002
Indeno(1,2,3-cd)pyrene		< 0.0000869	${ m mg/L}$	0.0002
${ m Dibenzo}({ m a,h}) { m anthracene}$		< 0.0000605	m mg/L	0.0002
$\mathrm{Benzo}(\mathrm{g,h,i})$ perylene		< 0.0000681	m mg/L	0.0002

Report Date: July 7, 2008	Work Order: 8061928	Page Number: 16 of 35
R. Jackson	R. Jackson	Kirkland, NM

Surrogate	Flag	Result	Units	Dilution	$egin{aligned} ext{Spike} \ ext{Amount} \end{aligned}$	Percent Recovery	$egin{array}{c} ext{Recovery} \ ext{Limits} \end{array}$
Nitrobenzene-d5		0.0298	m mg/L	1	0.0800	37	10 - 146
2-Fluorobiphenyl		0.0224	${ m mg/L}$	1	0.0800	28	10 - 141
Terphenyl-d14		0.0541	$\mathrm{mg/L}$	1	0.0800	68	10 - 266

Method Blank (1) QC Batch: 49702

QC Batch:	49702	Date Analyzed:	2008-06-23	Analyzed By:	KB
Prep Batch:	42681	QC Preparation:	2008-06-23	Prepared By:	KB

		MDL		
Parameter	Flag	Result	Units	RL
MTBE		< 0.318	$\mu { m g/L}$	1
Benzene		< 0.319	$\mu { m g}/{ m L}$	1
Toluene		< 0.268	$\mu { m g}/{ m L}$	1
${ m Ethylbenzene}$		< 0.245	$\mu { m g}/{ m L}$	1
$_{ m m,p-Xylene}$		< 0.517	$\mu m g/L$	1
o-Xylene		< 0.247	$ m \mu g/L$	1

					Spike	$\operatorname{Percent}$	Recovery
Surrogate	Flag	Result	Units	$\operatorname{Dilution}$	${f Amount}$	Recovery	Limits
Dibromofluoromethane		55.2	$\mu \mathrm{g/L}$	1	50.0	110	89.8 - 111
Toluene-d8		53.6	$\mu { m g}/{ m L}$	1	50.0	107	93.2 - 108
4-Bromofluorobenzene (4-BFB)		44.8	$\mu { m g}/{ m L}$	1	50.0	90	88.4 - 103

Method Blank (1) QC Batch: 49726

QC Batch:	49726	Date Analyzed:	2008-06-25	Analyzed By:	RD
Prep Batch:	42697	QC Preparation:	2008-06-25	Prepared By:	RD

		MDL		
Parameter	Flag	Result	${ m Units}$	RL
Specific Conductance		1.06	uMHOS/cm	

Method Blank (1) QC Batch: 49803

QC Batch:	49803	Date Analyzed:	2008-06-27	Analyzed By:	RD
Prep Batch:	42759	QC Preparation:	2008-06-23	Prepared By:	RD

		MDL			
Parameter	Flag	Result	Units	RL	
Total Dissolved Solids		< 5.000	m mg/L	10	

Report Date: July 7, 2008 Work Order: 8061928 Page Number: 17 of 35 R. Jackson R. Jackson Kirkland, NM Method Blank (1) QC Batch: 49885 QC Batch: 49885 Date Analyzed: 2008-06-30 Analyzed By: TP Prep Batch: QC Preparation: 2008-06-27 Prepared By: KV42752MDLParameter Flag Result Units RLTotal Calcium < 0.175mg/LTotal Magnesium < 0.148 mg/L1 Total Potassium < 0.327 mg/L1 Total Sodium 1.59 mg/L1 Method Blank (1) QC Batch: 49940 QC Batch: Date Analyzed: 2008-07-02 Analyzed By: 49940 MN Prep Batch: 42865QC Preparation: 2008-07-02 Prepared By: MNMDLParameter Flag Result Units RLTRPHC < 0.946mg/L1 Method Blank (1) QC Batch: 49956 QC Batch: 49956 Date Analyzed: 2008-07-03 Analyzed By: RDPrep Batch: 42877QC Preparation: 2008-06-26 Prepared By: RDMDLParameter Flag Result Units RLChloride <1.74 mg/L3 Fluoride 0.2< 0.0889 mg/LNitrate-N < 0.0805 mg/L0.2Sulfate < 0.344 mg/L1 Duplicates (1) QC Batch: 49616 Date Analyzed: 2008-06-20 Analyzed By: RG42609 2008-06-20 Prep Batch: QC Preparation: Prepared By: RGDuplicate Sample RPD Result Result Dilution RPD Limit Param Units

 \overline{pH}

7.80

7.74

s.u.

1.3

Pupilicates 1	Report Date: July 7, 2008 R. Jackson		Work Order R. Jac		Page Number Kirl	r: 18 of 35 kland, NM		
Prep Batch: 42654 QC Preparation: 2008-06-24 Prepared By: RC Pount Param Result Result Units Dilution RPD Limit Hydroxide Alkalinity 0.00 0.00 mg/L as CaCo3 1 0 20 Carbonate Alkalinity 338 332 mg/L as CaCo3 1 2 20 Blearbonate Alkalinity 338 332 mg/L as CaCo3 1 2 20 Total Alkalinity 338 332 mg/L as CaCo3 1 2 20 Total Alkalinity 338 332 mg/L as CaCo3 1 2 20 Total Alkalinity 338 332 mg/L as CaCo3 1 2 35 Duplicates Sample Sample Sample Mg/L Analyzed By: RD RD Prep Batch: 42097 QC Preparation: 2008-06-25 Dilution RPD Limit Duplicates Result Units Dilution RPD	Duplicates (1)							
Param Result Quality Units Dilution RPD Limit Hydroxide Alkalinity 0.00 0.00 mg/L as CaCo3 1 0 20 Carbonate Alkalinity 338 332 mg/L as CaCo3 1 2 20 Total Alkalinity 338 332 mg/L as CaCo3 1 2 20 Duplicates (1) ***********************************			-				-	-
Carbonate Alkalinity 0.00 0.00 mg/L as CaCo3 1 0 20 Bicarbonate Alkalinity 338 332 mg/L as CaCo3 1 2 20 Total Alkalinity 338 332 mg/L as CaCo3 1 2 20 Duplicates (1) QC Batch: 49726 Date Analyzed: 2008-06-25 Analyzed By: RD Limit RD RD Limit RD Analyzed By: RD RD<		Result	Result					Limit
Duplicates (1)	Carbonate Alkalinity Bicarbonate Alkalinity	$0.00 \\ 338$	$0.00 \\ 332$	$\frac{\mathrm{mg/L}}{\mathrm{mg/L}}$	as CaCo3 as CaCo3	1 1	$0 \\ 2$	$\begin{array}{c} 20 \\ 20 \end{array}$
Prep Batch: 42697 QC Preparation: 2008-06-25 Prepared By: RD Prep Batch: 42697 Duplicate Result Result Units Dilution RPD Limit Specific Conductance 2080 2080 uMHOS/cm 1 0 4.4 Duplicates (1) QC Batch: 49803 Prep Batch: 42759 Duplicate Analyzed: 2008-06-27 Analyzed By: RD Prep Batch: 42759 RPD Param Result Result Units Dilution RPD Limit Total Dissolved Solids 1280 1296 mg/L 2 1 10 Laboratory Control Spike (LCS-1) QC Batch: 49558 QC Preparation: 2008-06-19 Prepared By: MN Prep Batch: 42562 QC Preparation: 2008-06-19 Prepared By: MN Prep Batch: 42562 Spike Matrix Result Rec. Rec. Param Result Units Dil. Amount Result Rec. Limit	-			Oi.				
Param Result Specific Conductance Result 2080 Result 2080 Units uMHOS/cm Dilution 1 RPD 4.4 Limit 3 Duplicates (1) QC Batch: 49803 Date Analyzed: QC Preparation: 2008-06-27 Analyzed By: RD Prepared By:							-	-
Duplicates (1) QC Batch: 49803		Result	Result			Dilution		Limit
Prep Batch: 42759 QC Preparation: 2008-06-23 Prepared By: RD RPD Result Result Units Dilution RPD Limit Total Dissolved Solids 1280 1296 MN Prep Batch: 49558 Date Analyzed: 2008-06-19 Prep Batch: 42562 QC Preparation: 2008-06-19 Prepared By: MN Prep Batch: 42562 LCS Result Units Dil. Amount Result Result Rec. Limit						-	- U	
Param Result Result Units Dilution RPD Limit Total Dissolved Solids 1280 1296 mg/L 2 1 10 Laboratory Control Spike (LCS-1) QC Batch: 49558 Date Analyzed: 2008-06-19 Analyzed By: MN Prep Batch: 42562 QC Preparation: 2008-06-19 Prepared By: MN Prep Rec. Param Spike Matrix Rec. Limit	-		-				-	-
Laboratory Control Spike (LCS-1) QC Batch: 49558 Date Analyzed: 2008-06-19 Analyzed By: MN Prep Batch: 42562 QC Preparation: 2008-06-19 Prepared By: MN LCS Spike Matrix Rec. Param Result Units Dil. Amount Result Rec. Limit		Result	Result	; 1				Limit
QC Batch: 49558 Date Analyzed: 2008-06-19 Analyzed By: MN Prep Batch: 42562 QC Preparation: 2008-06-19 Prepared By: MN Prep Batch: ECS Spike Matrix Rec. Param Ec.	Total Dissolved Solids	1280	1296	I	ng/L	2	1	10
Prep Batch: 42562 QC Preparation: 2008-06-19 Prepared By: MN LCS Spike Matrix Rec. Param Result Units Dil. Amount Result Rec. Limit	Laboratory Control Spike (L	CS-1)						
Param Result Units Dil. Amount Result Rec. Limit	•		·					
		Result			$\overline{\mathrm{Amount}}$	Result		Limit

 $\frac{\text{Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.}{continued\dots}$

Report Date: July 7, 2008

Work Order: 8061928 R. Jackson

R. Jackson

DRO

$control\ spikes\ continued\ \dots$									
-	LCSD			$_{ m Spike}$	Matrix		$\mathrm{Rec.}$		RPD
Param	Result	Units	Dil.	${f Amount}$	Result	Rec .	Limit	RPD	Limit
	T 00D			G 11	3.5		ъ		
	LCSD			${ m Spike}$	Matrix		$\mathrm{Rec}.$		RPD
Param	Result	Units	Dil.	${f Amount}$	Result	$\mathrm{Rec}.$	Limit	RPD	$_{ m Limit}$

25.0

1.43

90

66.3 - 135

mg/L Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCS	LCSD			Spike	LCS	LCSD	$\mathrm{Rec.}$
$\mathbf{Surrogate}$	Result	Result	Units	Dil.	${ m Amount}$	Rec.	$\mathrm{Rec.}$	Limit
n-Triacontane	11.0	11.1	$_{ m mg/L}$	1	10.0	110	111	57.2 - 149

Laboratory Control Spike (LCS-1)

QC Batch: Date Analyzed: 49583 2008-06-20 Prep Batch: 42582QC Preparation: 2008-06-20

24.0

Analyzed By: Prepared By: TP

7

Page Number: 19 of 35

Kirkland, NM

20

	LCS			Spike	Matrix		$\mathrm{Rec.}$
Param	Result	Units	Dil.	${ m Amount}$	Result	Rec.	Limit
Total Mercury	0.000999	mg/L	1	0.00100	< 0.0000251	100	89 6 - 111

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCSD			Spike	Matrix		$\mathrm{Rec.}$		RPD
Param	Result	Units	Dil.	A mount	Result	Rec.	Limit	RPD	Limit
Total Mercury	0.000975	mg/L	1	0.00100	< 0.0000251	98	89.6 - 111	2	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Laboratory Control Spike (LCS-1)

QC Batch: 49619 Date Analyzed: 2008-06-23 Analyzed By: RR Prep Batch: 42606 QC Preparation: 2008-06-23 Prepared By: KV

Param	$rac{ ext{LCS}}{ ext{Result}}$	Units	Dil.	$egin{array}{c} ext{Spike} \ ext{Amount} \end{array}$	Matrix Result	Rec.	$egin{array}{l} { m Rec.} \\ { m Limit} \end{array}$
Total Silver	0.118	$\frac{\rm mg/L}$	1	0.125	< 0.00210	94	86.7 - 113
Total Arsenic	0.512	$_{ m mg/L}$	1	0.500	< 0.00430	102	85 - 112
Total Barium	1.05	$_{ m mg/L}$	1	1.00	< 0.00170	105	86.9 - 115
Total Cadmium	0.256	$_{ m mg/L}$	1	0.250	< 0.00140	102	85.2 - 115
Total Chromium	0.106	$\mathrm{mg/L}$	1	0.100	< 0.000900	106	86 - 115
Total Lead	0.503	$\mathrm{mg/L}$	1	0.500	< 0.00320	101	87.9 - 112
Total Selenium	0.470	${ m mg/L}$	1	0.500	< 0.0131	94	85 - 109

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Report Date: July 7, 2008

Work Order: 8061928 Page Number: 20 of 35 R. Jackson $R.\ Jackson$ Kirkland, NM

Param	LCSD Result	Units	Dil.	$egin{array}{c} ext{Spike} \ ext{Amount} \end{array}$	Matrix Result	Rec.	$egin{array}{c} \operatorname{Rec.} \ \operatorname{Limit} \end{array}$	RPD	$egin{array}{c} ext{RPD} \ ext{Limit} \end{array}$
Total Silver	0.116	mg/L	1	0.125	< 0.00210	93	86.7 - 113	2	20
Total Arsenic	0.491	m mg/L	1	0.500	< 0.00430	98	85 - 112	4	20
Total Barium	1.01	mg/L	1	1.00	< 0.00170	101	86.9 - 115	4	20
Total Cadmium	0.253	mg/L	1	0.250	< 0.00140	101	85.2 - 115	1	20
Total Chromium	0.106	mg/L	1	0.100	< 0.000900	106	86 - 115	0	20
Total Lead	0.493	mg/L	1	0.500	< 0.00320	99	87.9 - 112	2	20
Total Selenium	0.473	$\mathrm{mg/L}$	1	0.500	< 0.0131	95	85 - 109	1	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Laboratory Control Spike (LCS-1)

QC Batch: 49641 Date Analyzed: 2008-06-23 Analyzed By: ER Prep Batch: 42633QC Preparation: 2008-06-23 Prepared By: ER

	LCS			Spike	Matrix		$\mathrm{Rec}.$
Param	Result	Units	Dil.	${ m Amount}$	Result	Rec .	Limit
GRO	0.964	mg/L	1	1.00	< 0.0231	96	76.2 - 127

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCSD			$_{ m Spike}$	Matrix		Rec .		RPD
Param	Result	Units	Dil.	${f Amount}$	Result	Rec.	Limit	RPD	Limit
GRO	0.981	mg/L	1	1.00	< 0.0231	98	76.2 - 127	2	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCS	LCSD			Spike	LCS	LCSD	$\mathrm{Rec}.$
Surrogate	Result	Result	Units	Dil.	${f Amount}$	Rec .	Rec .	Limit
Trifluorotoluene (TFT)	0.104	0.0967	mg/L	1	0.100	104	97	75.8 - 126
4-Bromofluorobenzene (4-BFB)	0.0909	0.0901	m mg/L	1	0.100	91	90	82.4 - 119

Laboratory Control Spike (LCS-1)

QC Batch: 49675 Date Analyzed: Analyzed By: DS 2008-06-24 Prep Batch: 42659 QC Preparation: 2008-06-20 Prepared By:

Param	$egin{array}{c} ext{LCS} \ ext{Result} \end{array}$	Units	Dil.	$egin{array}{c} ext{Spike} \ ext{Amount} \end{array}$	$rac{ m Matrix}{ m Result}$	Rec.	${ m Rec.} \ { m Limit}$
Phenol	0.0135	mg/L	1	0.0800	< 0.00165	17	10 - 46.1
2-Chlorophenol	0.0363	mg/L	1	0.0800	< 0.00150	45	10 - 123
1,4-Dichlorobenzene (para)	0.0312	mg/L	1	0.0800	< 0.00156	39	10 - 118
N-Nitrosodi-n-propylamine	0.0322	$_{ m mg/L}$	1	0.0800	< 0.00127	40	10 - 132
1,2,4-Trichlorobenzene	0.0371	$_{ m mg/L}$	1	0.0800	< 0.00193	46	10 - 130
Naphthalene	0.0367	$_{ m mg/L}$	1	0.0800	< 0.00165	46	20.3 - 121

Report Date: July 7, 2008 Work Order: 8061928 Page Number: 21 of 35 R. Jackson Kirkland, NM

, 1		,		
control	spikes	continued		

		LCS			Spike	Matrix		$\mathrm{Rec}.$
Param		Result	Units	Dil.	${ m Amount}$	Result	Rec.	Limit
4-Chloro-3-methylphenol		0.0435	$\mathrm{mg/L}$	1	0.0800	< 0.00120	54	10 - 140
${ m Acenapht hylene}$		0.0499	${ m mg/L}$	1	0.0800	< 0.00136	62	22.3 - 124
${ m Acenaphthene}$		0.0486	${ m mg/L}$	1	0.0800	< 0.00132	61	18.8 - 134
Dibenzofuran		0.0495	${ m mg/L}$	1	0.0800	< 0.00161	62	37.5 - 102
4-Nitrophenol		0.0135	${ m mg/L}$	1	0.0800	< 0.00127	17	10 - 135
2,4-Dinitrotoluene		0.0587	${ m mg/L}$	1	0.0800	< 0.00139	73	13.6 - 152
Fluorene		0.0531	${ m mg/L}$	1	0.0800	< 0.00130	66	29.7 - 114
${ m Pentachlorophenol}$		0.0248	${ m mg/L}$	1	0.0800	< 0.000632	31	10 - 144
${ m Anthracene}$		0.0558	${ m mg/L}$	1	0.0800	< 0.00152	70	48.2 - 118
Phenanthrene		0.0550	${ m mg/L}$	1	0.0800	< 0.00144	69	45.5 - 121
Fluoranthene		0.0586	${ m mg/L}$	1	0.0800	< 0.00159	73	42.7 - 126
Pyrene		0.0619	${ m mg/L}$	1	0.0800	< 0.00135	77	26.8 - 155
$\operatorname{Benzo}(\operatorname{a})\operatorname{anthracene}$		0.0594	${ m mg/L}$	1	0.0800	< 0.00138	74	60.2 - 97.3
Chrysene		0.0600	${ m mg/L}$	1	0.0800	< 0.00146	75	56 - 92.4
Benzo(b)fluoranthene	11	0.0586	${ m mg/L}$	1	0.0800	< 0.00126	73	73.9 - 102
Benzo(k)fluoranthene		0.0576	${ m mg/L}$	1	0.0800	< 0.00149	72	45.6 - 143
Benzo(a)pyrene		0.0624	${ m mg/L}$	1	0.0800	< 0.00155	78	54.8 - 122
Indeno(1,2,3-cd)pyrene		0.0663	${ m mg/L}$	1	0.0800	< 0.00195	83	61.4 - 118
${ m Dibenzo}({ m a,h}) { m anthracene}$		0.0645	${ m mg/L}$	1	0.0800	< 0.0210	81	64.9 - 118
Benzo(g,h,i)perylene		0.0637	$\mathrm{mg/L}$	1	0.0800	< 0.00207	80	46.8 - 129

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCSD			Spike	Matrix		${ m Rec.}$		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Phenol	0.0136	mg/L	1	0.0800	< 0.00165	17	10 - 46.1	1	20
2-Chlorophenol	0.0363	mg/L	1	0.0800	< 0.00150	45	10 - 123	0	20
1,4-Dichlorobenzene (para)	0.0312	$\mathrm{mg/L}$	1	0.0800	< 0.00156	39	10 - 118	0	20
N-Nitrosodi-n-propylamine	0.0335	$\mathrm{mg/L}$	1	0.0800	< 0.00127	42	10 - 132	4	20
1,2,4-Trichlorobenzene	0.0357	$\mathrm{mg/L}$	1	0.0800	< 0.00193	45	10 - 130	4	20
Naphthalene	0.0361	$\mathrm{mg/L}$	1	0.0800	< 0.00165	45	20.3 - 121	2	20
4-Chloro-3-methylphenol	0.0439	$\mathrm{mg/L}$	1	0.0800	< 0.00120	55	10 - 140	1	20
${ m Acenapht}$ hylene	0.0494	$\mathrm{mg/L}$	1	0.0800	< 0.00136	62	22.3 - 124	1	20
${\it Acenaphthene}$	0.0485	$\mathrm{mg/L}$	1	0.0800	< 0.00132	61	18.8 - 134	0	20
Dibenzofuran	0.0493	$\mathrm{mg/L}$	1	0.0800	< 0.00161	62	37.5 - 102	0	20
4-Nitrophenol	0.0138	$\mathrm{mg/L}$	1	0.0800	< 0.00127	17	10 - 135	2	20
2,4-Dinitrotoluene	0.0580	$\mathrm{mg/L}$	1	0.0800	< 0.00139	72	13.6 - 152	1	20
Fluorene	0.0531	$\mathrm{mg/L}$	1	0.0800	< 0.00130	66	29.7 - 114	0	20
${ m Pentachlorophenol}$	0.0248	$\mathrm{mg/L}$	1	0.0800	< 0.000632	31	10 - 144	0	20
${ m Anthracene}$	0.0546	$\mathrm{mg/L}$	1	0.0800	< 0.00152	68	48.2 - 118	2	20
Phenanthrene	0.0542	$\mathrm{mg/L}$	1	0.0800	< 0.00144	68	45.5 - 121	2	20
Fluoranthene	0.0573	mg/L	1	0.0800	< 0.00159	72	42.7 - 126	2	20
Pyrene	0.0601	$\mathrm{mg/L}$	1	0.0800	< 0.00135	75	26.8 - 155	3	20
$\mathrm{Benzo}(\mathrm{a}) \mathrm{anthracene}$	0.0584	$\mathrm{mg/L}$	1	0.0800	< 0.00138	73	60.2 - 97.3	2	20

¹¹Benzo(b)fluoranthene out of control limits for LCS/LCSD. Majority of analytes within range show process is within control. •

Report Date: July 7, 2008 Work Order: 8061928 Page Number: 22 of 35 R. Jackson Kirkland, NM

 $control\ spikes\ continued\ \dots$

		$_{ m LCSD}$			Spike	Matrix		$\mathrm{Rec}.$		RPD
Param		Result	Units	Dil.	${ m Amount}$	Result	Rec.	Limit	RPD	Limit
Chrysene		0.0595	$\mathrm{mg/L}$	1	0.0800	< 0.00146	74	56 - 92.4	1	20
Benzo(b)fluoranthene	12	0.0553	$\mathrm{mg/L}$	1	0.0800	< 0.00126	69	73.9 - 102	6	20
$\operatorname{Benzo}(k)$ fluoranthene		0.0557	${ m mg/L}$	1	0.0800	< 0.00149	70	45.6 - 143	3	20
Benzo(a)pyrene		0.0617	$\mathrm{mg/L}$	1	0.0800	< 0.00155	77	54.8 - 122	1	20
Indeno(1,2,3-cd)pyrene		0.0653	$\mathrm{mg/L}$	1	0.0800	< 0.00195	82	61.4 - 118	2	20
${ m Dibenzo(a,h)}$ anthracene		0.0635	$\mathrm{mg/L}$	1	0.0800	< 0.0210	79	64.9 - 118	2	20
Benzo(g,h,i) perylene		0.0632	mg/L	1	0.0800	< 0.00207	79	46.8 - 129	1	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCS	LCSD			Spike	LCS	LCSD	$\mathrm{Rec}.$
Surrogate	Result	Result	Units	Dil.	${f Amount}$	$\mathrm{Rec}.$	Rec .	Limit
2-Fluorophenol	0.0220	0.0219	$_{ m mg/L}$	1	0.0800	28	27	10 - 109
${ m Phenol-d5}$	0.0142	0.0142	${ m mg/L}$	1	0.0800	18	18	10 - 61.5
${ m Nitrobenzene-d5}$	0.0382	0.0370	${ m mg/L}$	1	0.0800	48	46	10 - 139
2-Fluorobiphenyl	0.0431	0.0418	${ m mg/L}$	1	0.0800	54	52	10 - 139
2,4,6-Tribromophenol	0.0510	0.0498	${ m mg/L}$	1	0.0800	64	62	10 - 161
Terphenyl-d14	0.0615	0.0605	${ m mg/L}$	1	0.0800	77	76	10 - 144

Laboratory Control Spike (LCS-1)

QC Batch: 49676 Date Analyzed: 2008-06-24 Analyzed By: DS Prep Batch: 42660 QC Preparation: 2008-06-20 Prepared By: DS

	LCS			Spike	Matrix		Rec.
Param	Result	Units	Dil.	${ m Amount}$	Result	Rec .	Limit
Naphthalene	0.0350	$\mathrm{mg/L}$	1	0.0800	< 0.0000730	44	10 - 141
2-Methylnaphthalene	0.0408	$\mathrm{mg/L}$	1	0.0800	< 0.0000509	51	50 - 150
$1 ext{-Methylnaphthalene}$	0.0426	$\mathrm{mg/L}$	1	0.0800	< 0.0000748	53	50 - 150
${ m Acenapht hylene}$	0.0495	$\mathrm{mg/L}$	1	0.0800	< 0.0000767	62	10 - 152
${f Acenaphthene}$	0.0478	$_{ m mg/L}$	1	0.0800	< 0.000142	60	10 - 151
Dibenzofuran	0.0538	mg/L	1	0.0800	< 0.0000470	67	10 - 148
Fluorene	0.0632	mg/L	1	0.0800	< 0.0000569	79	10 - 172
Anthracene	0.0558	mg/L	1	0.0800	< 0.0000876	70	22.5 - 172
Phenanthrene	0.0540	mg/L	1	0.0800	< 0.0000552	68	19.6 - 172
Fluoranthene	0.0505	mg/L	1	0.0800	< 0.0000954	63	17.3 - 187
Pyrene	0.0621	$_{ m mg/L}$	1	0.0800	< 0.0000497	78	14.9 - 199
Benzo(a)anthracene	0.0580	mg/L	1	0.0800	< 0.0000328	72	19.4 - 185
Chrysene	0.0613	$\mathrm{mg/L}$	1	0.0800	< 0.0000990	77	18.4 - 188
Benzo(b)fluoranthene	0.0614	mg/L	1	0.0800	< 0.0000684	77	10 - 193
Benzo(k)fluoranthene	0.0609	mg/L	1	0.0800	< 0.0000830	76	27.8 - 196
Benzo(a)pyrene	0.0686	m mg/L	1	0.0800	< 0.0000549	86	12.4 - 205

¹²Benzo(b)fluoranthene out of control limits for LCS/LCSD. Majority of analytes within range show process is within control. •

Report Date: July 7, 2008 Work Order: 8061928 Page Number: 23 of 35 R. Jackson Kirkland, NM

 $control\ spikes\ continued\ \dots$

	LCS			Spike	Matrix		$\mathrm{Rec}.$
Param	Result	Units	Dil.	${ m Amount}$	Result	Rec.	Limit
$\overline{\text{Indeno}(1,2,3\text{-cd})}$ pyrene	0.0742	mg/L	1	0.0800	< 0.0000869	93	10 - 198
${ m Dibenzo(a,h)}$ anthracene	0.0719	$\mathrm{mg/L}$	1	0.0800	< 0.0000605	90	10 - 172
$\mathrm{Benzo}(\mathrm{g,h,i})$ perylene	0.0709	${ m mg/L}$	1	0.0800	< 0.0000681	89	10 - 186

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

		LCSD			Spike	Matrix		$\mathrm{Rec}.$		RPD
Param		Result	Units	Dil.	A mount	Result	Rec.	Limit	RPD	Limit
Naphthalene		0.0339	mg/L	1	0.0800	< 0.0000730	42	10 - 141	3	20
$2 ext{-Methylnaphthalene}$	13	0.0387	${ m mg/L}$	1	0.0800	< 0.0000509	48	50 - 150	5	20
$1 ext{-} ext{Methylnaphthalene}$		0.0400	${ m mg/L}$	1	0.0800	< 0.0000748	50	50 - 150	6	20
${ m Acenapht hylene}$		0.0481	${ m mg/L}$	1	0.0800	< 0.0000767	60	10 - 152	3	20
${ m Acenaphthene}$		0.0459	${ m mg/L}$	1	0.0800	< 0.000142	57	10 - 151	4	20
Dibenzofuran		0.0521	${ m mg/L}$	1	0.0800	< 0.0000470	65	10 - 148	3	20
Fluorene		0.0623	${ m mg/L}$	1	0.0800	< 0.0000569	78	10 - 172	1	20
${ m Anthracene}$		0.0532	${ m mg/L}$	1	0.0800	< 0.0000876	66	22.5 - 172	5	20
Phenanthrene		0.0513	${ m mg/L}$	1	0.0800	< 0.0000552	64	19.6 - 172	5	20
Fluoranthene		0.0481	${ m mg/L}$	1	0.0800	< 0.0000954	60	17.3 - 187	5	20
Pyrene		0.0603	${ m mg/L}$	1	0.0800	< 0.0000497	75	14.9 - 199	3	20
$\operatorname{Benzo}(\operatorname{a}) \operatorname{anthracene}$		0.0559	${ m mg/L}$	1	0.0800	< 0.0000328	70	19.4 - 185	4	20
$\operatorname{Chrysene}$		0.0588	${ m mg/L}$	1	0.0800	< 0.0000990	74	18.4 - 188	4	20
${f Benzo}({f b}){f fluoranthene}$		0.0586	${ m mg/L}$	1	0.0800	< 0.0000684	73	10 - 193	5	20
$\operatorname{Benzo}(k)$ fluoranthene		0.0580	${ m mg/L}$	1	0.0800	< 0.0000830	72	27.8 - 196	5	20
$\mathrm{Benzo}(\mathrm{a})\mathrm{pyrene}$		0.0656	${ m mg/L}$	1	0.0800	< 0.0000549	82	12.4 - 205	4	20
Indeno(1,2,3-cd)pyrene		0.0710	${ m mg/L}$	1	0.0800	< 0.0000869	89	10 - 198	4	20
${ m Dibenzo(a,h)}$ anthracene		0.0692	$\mathrm{mg/L}$	1	0.0800	< 0.0000605	86	10 - 172	4	20
$\mathrm{Benzo}(\mathrm{g,h,i})\mathrm{perylene}$		0.0679	$\mathrm{mg/L}$	1	0.0800	< 0.0000681	85	10 - 186	4	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Surrogate	$rac{ ext{LCS}}{ ext{Result}}$	LCSD Result	Units	Dil.	Spike Amount	$rac{ ext{LCS}}{ ext{Rec.}}$	LCSD Rec.	$egin{array}{c} { m Rec.} \\ { m Limit} \end{array}$
Nitrobenzene-d5	0.0385	0.0377	mg/L	1	0.0800	48	47	10 - 165
2-Fluorobiphenyl	0.0325	0.0313	${ m mg/L}$	1	0.0800	41	39	10 - 157
Terphenyl-d14	0.0612	0.0583	$_{ m mg/L}$	1	0.0800	76	73	10 - 220

Laboratory Control Spike (LCS-1)

QC Batch: 49702 Date Analyzed: 2008-06-23 Analyzed By: KB Prep Batch: 42681 QC Preparation: 2008-06-23 Prepared By: KB

¹³LCSD analyte out of range. LCS/LCSD has an RPD within limits. Therefore, LCS shows extraction occurred properly.

Report Date: July 7, 2008 Work Order: 8061928 Page Number: 24 of 35 R. Jackson Kirkland, NM

$control\ spikes\ continued\ \dots$								
		LCS			Spike	Matrix		Rec .
Param		Result	Units	Dil.	${f Amount}$	Result	Rec.	Limit
		T CC			C :1	M-+-:		D
		LCS			Spike	Matrix		$\mathrm{Rec}.$
Param		Result	$_{ m Units}$	Dil.	${f Amount}$	Result	$\mathrm{Rec}.$	Limit
MTBE		52.5	$\mu { m g/L}$	1	50.0	< 0.318	105	88.3 - 115
Benzene		52.4	$\mu { m g}/{ m L}$	1	50.0	< 0.319	105	87.6 - 107
Toluene		52.5	$\mu { m g}/{ m L}$	1	50.0	< 0.268	105	91.3 - 110
Ethylbenzene	14	54.8	$\mu { m g}/{ m L}$	1	50.0	< 0.245	110	90.5 - 107
m,p-Xylene		111	$\mu { m g/L}$	1	100	< 0.517	111	89.5 - 111

 $\mu g/L$

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

55.5

		LCSD			Spike	Matrix		Rec .		RPD
Param		Result	Units	Dil.	${f Amount}$	Result	Rec.	Limit	RPD	Limit
MTBE		57.5	$\mu \mathrm{g/L}$	1	50.0	< 0.318	115	88.3 - 115	9	20
Benzene	15	54.1	$\mu { m g}/{ m L}$	1	50.0	< 0.319	108	87.6 - 107	3	20
Toluene		54.6	$\mu { m g}/{ m L}$	1	50.0	< 0.268	109	91.3 - 110	4	20
Ethylbenzene	16	56.6	$\mu { m g}/{ m L}$	1	50.0	< 0.245	113	90.5 - 107	3	20
m,p-Xylene	17	115	$\mu \mathrm{g}/\mathrm{L}$	1	100	< 0.517	115	89.5 - 111	4	20
o-Xylene	18	57.7	$\mu { m g}/{ m L}$	1	50.0	< 0.247	115	91.2 - 112	4	20

50.0

< 0.247

111

91.2 - 112

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCS	LCSD			Spike	LCS	LCSD	$\mathrm{Rec}.$
Surrogate	Result	Result	Units	Dil.	${ m Amount}$	Rec .	Rec .	Limit
Dibromofluoromethane	53.5	53.6	$\mu { m g/L}$	1	50.0	107	107	89.5 - 107
Toluene-d8	50.8	50.4	$\mu { m g}/{ m L}$	1	50.0	102	101	92.6 - 102
4-Bromofluorobenzene (4-BFB)	50.8	51.2	$\mu { m g}/{ m L}$	1	50.0	102	102	95.2 - 103

Laboratory Control Spike (LCS-1)

QC Batch: 49885 Date Analyzed: 2008-06-30 Analyzed By: TP Prep Batch: 42752 QC Preparation: 2008-06-27 Prepared By: KV

	LCS			Spike	Matrix		Rec .
Param	Result	Units	Dil.	${f Amount}$	Result	Rec .	Limit
Total Calcium	52.3	${ m mg/L}$	1	50.0	< 0.175	105	89.7 - 115
Total Magnesium	52.0	${ m mg/L}$	1	50.0	< 0.148	104	85 - 114
Total Potassium	53.9	$\mathrm{mg/L}$	1	50.0	< 0.327	108	85.1 - 115

 $^{^{14}}$ Spike recovery outside control limits but within method limits. Majority of analytes have recoveries within limits showing the analysis to be in control. ullet

¹⁵LCSD analyte out of range. LCS/LCSD has a RPD within limits. Therfore, LCS shows extraction occurred properly.

 $^{^{16}}$ Spike recovery outside control limits but within method limits. RPD within RPD limits. ullet

¹⁷LCSD analyte out of range. LCS/LCSD has a RPD within limits. Therfore, LCS shows extraction occured properly.

¹⁸LCSD analyte out of range. LCS/LCSD has a RPD within limits. Therfore, LCS shows extraction occured properly.

Report Date: July 7, 2008 R. Jackson Work Order: 8061928

Page Number: 25 of 35

Kirkland, NM

R. Jackson

control spikes continued . . .

	LCS			Spike	Matrix		$\mathrm{Rec}.$
Param	Result	Units	Dil.	${f Amount}$	Result	$\mathrm{Rec}.$	Limit
Total Sodium	53.0	$\mathrm{mg/L}$	1	50.0	1.59	103	91.5 - 113

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCSD			Spike	Matrix		$\mathrm{Rec}.$		RPD
Param	Result	Units	Dil.	${ m Amount}$	Result	Rec.	Limit	RPD	Limit
Total Calcium	50.6	$\mathrm{mg/L}$	1	50.0	< 0.175	101	89.7 - 115	3	20
Total Magnesium	50.4	$\mathrm{mg/L}$	1	50.0	< 0.148	101	85 - 114	3	20
Total Potassium	52.2	$\mathrm{mg/L}$	1	50.0	< 0.327	104	85.1 - 115	3	20
Total Sodium	51.4	$\mathrm{mg/L}$	1	50.0	1.59	100	91.5 - 113	3	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Laboratory Control Spike (LCS-1)

QC Batch: 49940 Date Analyzed: 2008-07-02 Analyzed By: MN Prep Batch: 42865 QC Preparation: 2008-07-02 Prepared By: MN

	LCS			Spike	Matrix		Rec .
Param	Result	Units	Dil.	${f Amount}$	Result	$\mathrm{Rec}.$	Limit
TRPHC	6.81	$_{ m mg/L}$	1	8.50	< 0.946	80	76.6 - 117

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCSD			Spike	Matrix		$\mathrm{Rec}.$		RPD
Param	Result	Units	Dil.	${f Amount}$	Result	Rec.	Limit	RPD	Limit
TRPHC	6.94	mg/L	1	8.50	< 0.946	82	76.6 - 117	2	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Laboratory Control Spike (LCS-1)

QC Batch: 49956 Date Analyzed: 2008-07-03 Analyzed By: RD Prep Batch: 42877 QC Preparation: 2008-06-26 Prepared By: RD

		LCS			Spike	Matrix		$\mathrm{Rec}.$
Param		Result	Units	Dil.	${ m Amount}$	Result	Rec .	Limit
Chloride	19	13.7	$\mathrm{mg/L}$	1	12.5	<1.74	110	90 - 110
Fluoride	20	2.63	$\mathrm{mg/L}$	1	2.50	< 0.0889	105	90 - 110
Nitrate-N	21	2.54	$_{ m mg/L}$	1	2.50	< 0.0805	102	90 - 110
$\operatorname{Sulfate}$	22	13.8	$\mathrm{mg/L}$	1	12.5	< 0.344	110	90 - 110

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

 $^{^{19}}$ Matrix spikes run with batch, but spiked sample reran in another batch. Use LCS/LCSD to show analysis is in control. ullet

²⁰ Matrix spikes run with batch, but spiked sample reran in another batch. Use LCS/LCSD to show analysis is in control. •

²¹ Matrix spikes run with batch, but spiked sample reran in another batch. Use LCS/LCSD to show analysis is in control. •

²²Matrix spikes run with batch, but spiked sample reran in another batch. Use LCS/LCSD to show analysis is in control. •

Report Date: July 7, 2008 R. Jackson Work Order: 8061928 R. Jackson

Param		LCSD Result	Units	Dil.	$egin{array}{c} ext{Spike} \ ext{Amount} \end{array}$	Matrix Result	Rec.	$egin{array}{c} { m Rec.} \\ { m Limit} \end{array}$	RPD	$rac{ ext{RPD}}{ ext{Limit}}$
Chloride	23	13.8	mg/L	1	12.5	<1.74	110	90 - 110	1	20
Fluoride	24	2.55	mg/L	1	2.50	< 0.0889	102	90 - 110	3	20
Nitrate-N	25	2.74	mg/L	1	2.50	< 0.0805	110	90 - 110	8	20
$\operatorname{Sulfate}$	26	13.3	$\mathrm{mg/L}$	1	12.5	< 0.344	106	90 - 110	4	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Matrix Spike (MS-1) Spiked Sample: 164012

QC Batch: 49558 Date Analyzed: 2008-06-19
Prep Batch: 42562 QC Preparation: 2008-06-19

Date Analyzed: 2008-06-19 Analyzed By: MN QC Preparation: 2008-06-19 Prepared By: MN

Page Number: 26 of 35

Kirkland, NM

		MS			Spike	Matrix		$\mathrm{Rec}.$
Param		Result	Units	Dil.	${f Amount}$	Result	Rec .	Limit
DRO	27	<1.09	${ m mg/L}$	1	25.0	< 1.09	0	73 - 119

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

		MSD			Spike	Matrix		$\mathrm{Rec}.$		RPD
Param		Result	Units	Dil .	${f Amount}$	Result	Rec.	Limit	RPD	Limit
DRO	28	< 1.09	mg/L	1	25.0	< 1.09	0	73 - 119	0	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

		MS	MSD			Spike	MS	MSD	$\mathrm{Rec.}$
Surrogate		Result	Result	Units	Dil.	${f Amount}$	Rec .	Rec.	Limit
n-Triacontane	29 30	0.00	0.00	mg/L	1	10	0	0	57.2 - 149

Matrix Spike (MS-1) Spiked Sample: 163769

QC Batch: 49583 Date Analyzed: 2008-06-20 Analyzed By: TP Prep Batch: 42582 QC Preparation: 2008-06-20 Prepared By: TP

	MS			Spike	Matrix		${ m Rec.}$
Param	Result	Units	Dil.	${ m Amount}$	Result	Rec.	Limit
Total Mercury	0.000997	$_{ m mg/L}$	1	0.00100	< 0.0000251	100	75 - 125

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

²³ Matrix spikes run with batch, but spiked sample reran in another batch. Use LCS/LCSD to show analysis is in control. •

²⁴Matrix spikes run with batch, but spiked sample reran in another batch. Use LCS/LCSD to show analysis is in control. •

 $^{^{25}}$ Matrix spikes run with batch, but spiked sample reran in another batch. Use LCS/LCSD to show analysis is in control. ullet

²⁶ Matrix spikes run with batch, but spiked sample reran in another batch. Use LCS/LCSD to show analysis is in control. •

 $^{^{27}}$ Sample can not be re-extracted and re-ran because there is not enough sample remaining to analyze.

²⁸Sample can not be re-extracted and re-ran because there is not enough sample remaining to analyze.

²⁹Sample can not be re-extracted and re-ran because there is not enough sample remaining to analyze.

³⁰Sample can not be re-extracted and re-ran because there is not enough sample remaining to analyze.

Report Date: July 7, 2008

Work Order: 8061928 Page Number: 27 of 35 R. Jackson $R.\ Jackson$ Kirkland, NM

	MSD			Spike	Matrix		$\mathrm{Rec.}$		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Total Mercury	0.000989	$\mathrm{mg/L}$	1	0.00100	< 0.0000251	99	75 - 125	1	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Matrix Spike (MS-1) Spiked Sample: 163769

QC Batch: 49619Date Analyzed: 2008-06-23 Analyzed By: RR Prep Batch: 42606QC Preparation: 2008-06-23 Prepared By: KV

	MS			Spike	Matrix		$\mathrm{Rec}.$
Param	Result	Units	Dil.	${f Amount}$	Result	Rec .	Limit
Total Silver	0.119	$_{ m mg/L}$	1	0.125	< 0.00210	95	76.1 - 115
Total Arsenic	0.522	${ m mg/L}$	1	0.500	< 0.00430	104	81.6 - 116
Total Barium	1.16	${ m mg/L}$	1	1.00	0.143	102	75 - 123
Total Cadmium	0.257	${ m mg/L}$	1	0.250	< 0.00140	103	75 - 115
Total Chromium	0.110	${ m mg/L}$	1	0.100	< 0.000900	110	75 - 125
Total Lead	0.500	$_{ m mg/L}$	1	0.500	< 0.00320	100	82.6 - 114
Total Selenium	0.461	mg/L	1	0.500	< 0.0131	92	75 - 106

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MSD			Spike	Matrix		Rec .		RPD
Param	Result	Units	Dil.	${ m Amount}$	Result	Rec.	Limit	RPD	Limit
Total Silver	0.118	$\mathrm{mg/L}$	1	0.125	< 0.00210	94	76.1 - 115	1	20
Total Arsenic	0.518	$\mathrm{mg/L}$	1	0.500	< 0.00430	104	81.6 - 116	1	20
Total Barium	1.14	mg/L	1	1.00	0.143	100	75 - 123	2	20
Total Cadmium	0.253	mg/L	1	0.250	< 0.00140	101	75 - 115	2	20
Total Chromium	0.108	mg/L	1	0.100	< 0.000900	108	75 - 125	2	20
Total Lead	0.494	mg/L	1	0.500	< 0.00320	99	82.6 - 114	1	20
Total Selenium	0.466	mg/L	1	0.500	< 0.0131	93	75 - 106	1	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Matrix Spike (MS-1) Spiked Sample: 164012

QC Batch: 49641 Date Analyzed: 2008-06-23 Analyzed By: ERPrep Batch: 42633 QC Preparation: 2008-06-23 Prepared By: ER

	MS			Spike	Matrix		${ m Rec.}$
Param	Result	Units	Dil.	${f Amount}$	Result	Rec.	Limit
GRO	98.9	$_{ m mg/L}$	50	50.0	55.7	86	24 - 157

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Work Order: 8061928 Page Number: 28 of 35 R. Jackson R. Jackson Kirkland, NM

matrix spikes continued	MSD			Spike	Matrix		Rec.		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Param	$rac{ ext{MSD}}{ ext{Result}}$	Units	Dil.	$egin{array}{c} ext{Spike} \ ext{Amount} \end{array}$	Matrix Result	Rec.	$egin{array}{l} { m Rec.} \\ { m Limit} \end{array}$	RPD	$rac{ ext{RPD}}{ ext{Limit}}$

50.0

55.7

105

24 - 157

9

20

50

mg/LPercent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

108

	MS	MSD			Spike	MS	MSD	Rec.
Surrogate	Result	Result	Units	Dil.	${ m Amount}$	Rec .	Rec .	Limit
Trifluorotoluene (TFT)	5.01	4.90	mg/L	50	5	100	98	53 - 134
4-Bromofluorobenzene (4-BFB)	5.07	5.01	$_{ m mg/L}$	50	5	101	100	55 - 138

Standard (ICV-1)

 \overline{GRO}

QC Batch: 49558 Date Analyzed: 2008-06-19 Analyzed By: MN

			ICVs	ICVs	ICVs	$\operatorname{Percent}$	
			True	Found	$\operatorname{Percent}$	Recovery	Date
Param	Flag	Units	Conc .	Conc .	Recovery	Limits	${\bf Analyzed}$
DRO		$_{ m mg/L}$	250	275	110	85 - 115	2008-06-19

Standard (CCV-1)

QC Batch: 49558 Date Analyzed: 2008-06-19 Analyzed By: MN

			CCVs	CCVs	CCVs	Percent	
			True	Found	$\operatorname{Percent}$	Recovery	Date
Param	Flag	Units	$\operatorname{Conc.}$	Conc .	Recovery	Limits	${ m Analyzed}$
DRO		$\mathrm{mg/L}$	250	219	88	85 - 115	2008-06-19

Standard (ICV-1)

QC Batch: 49583 Date Analyzed: 2008-06-20 Analyzed By: TP

			ICVs	ICVs	ICVs	$\operatorname{Percent}$	
			True	Found	$\operatorname{Percent}$	Recovery	Date
Param	Flag	Units	$\operatorname{Conc.}$	$\operatorname{Conc.}$	Recovery	Limits	${ m Analyzed}$
Total Mercury		m mg/L	0.00100	0.000964	96	90 - 110	2008-06-20

Standard (CCV-1)

QC Batch: 49583 Date Analyzed: 2008-06-20 Analyzed By: TP Report Date: July 7, 2008

R. Jackson

Work Order: 8061928

Page Number: 29 of 35 R. Jackson Kirkland, NM

			CCVs	CCVs	$_{ m CCVs}$	Percent	ъ.
			True	Found	$\operatorname{Percent}$	$\operatorname{Recovery}$	Date
Param	Flag	Units	$\operatorname{Conc.}$	$\operatorname{Conc.}$	Recovery	Limits	${ m Analyzed}$
Total Mercury		$\mathrm{mg/L}$	0.00100	0.000999	100	80 - 120	2008-06-20

Standard (ICV-1)

QC Batch: 49616

Date Analyzed: 2008-06-20

Analyzed By: RG

			ICVs	ICVs	ICVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	$\operatorname{Conc.}$	$\operatorname{Conc.}$	Recovery	Limits	${ m Analyzed}$
pН		s.u.	7.00	7.02	100	98 - 102	2008-06-20

Standard (CCV-1)

QC Batch: 49616

Date Analyzed: 2008-06-20

Analyzed By: RG

			CCVs	CCVs	CCVs	Percent	
			True	Found	$\operatorname{Percent}$	Recovery	Date
Param	Flag	Units	Conc .	$\operatorname{Conc.}$	$\operatorname{Recovery}$	Limits	${ m Analyzed}$
pН		s.u.	7.00	7.14	102	98 - 102	2008-06-20

Standard (ICV-1)

QC Batch: 49619

Date Analyzed: 2008-06-23

Analyzed By: RR

			ICVs	ICVs	ICVs	Percent	
			True	Found	$\operatorname{Percent}$	Recovery	Date
Param	Flag	Units	$\operatorname{Conc.}$	$\operatorname{Conc.}$	Recovery	Limits	${ m Analyzed}$
Total Silver		m mg/L	0.125	0.123	98	90 - 110	2008-06-23
Total Arsenic		$\mathrm{mg/L}$	1.00	0.988	99	90 - 110	2008-06-23
Total Barium		$\mathrm{mg/L}$	1.00	1.03	103	90 - 110	2008-06-23
Total Cadmium		m mg/L	1.00	1.01	101	90 - 110	2008-06-23
Total Chromium		$\mathrm{mg/L}$	1.00	1.01	101	90 - 110	2008-06-23
Total Lead		$\mathrm{mg/L}$	1.00	1.01	101	90 - 110	2008-06-23
Total Selenium		m mg/L	1.00	1.01	101	90 - 110	2008-06-23

Standard (CCV-1)

QC Batch: 49619 Date Analyzed: 2008-06-23 Analyzed By: RR Report Date: July 7, 2008 R. Jackson Work Order: 8061928 R. Jackson

			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc .	$\operatorname{Conc.}$	Recovery	Limits	${ m Analyzed}$
Total Silver		$\mathrm{mg/L}$	0.125	0.118	94	90 - 110	2008-06-23
Total Arsenic		m mg/L	1.00	0.976	98	90 - 110	2008-06-23
Total Barium		m mg/L	1.00	1.01	101	90 - 110	2008-06-23
Total Cadmium		m mg/L	1.00	0.971	97	90 - 110	2008-06-23
Total Chromium		m mg/L	1.00	0.969	97	90 - 110	2008-06-23
Total Lead		$\mathrm{mg/L}$	1.00	0.985	98	90 - 110	2008-06-23
Total Selenium		${ m mg/L}$	1.00	1.09	109	90 - 110	2008-06-23

Standard (ICV-1)

 $QC\ Batch:\ 49641$

Date Analyzed: 2008-06-23

Analyzed By: ER

Page Number: 30 of 35

Kirkland, NM

			ICVs	ICVs	ICVs	$\operatorname{Percent}$	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc .	$\operatorname{Conc.}$	Recovery	Limits	${ m Analyzed}$
$\overline{\text{GRO}}$		m mg/L	1.00	1.03	103	85 - 115	2008-06-23

Standard (CCV-1)

QC Batch: 49641

Date Analyzed: 2008-06-23

Analyzed By: ER

			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	$\operatorname{Conc.}$	$\operatorname{Conc.}$	Recovery	Limits	Analyzed
GRO		m mg/L	1.00	0.991	99	85 - 115	2008-06-23

Standard (ICV-1)

 $QC\ Batch:\ 49666$

Date Analyzed: 2008-06-24

Analyzed By: RG

			ICVs	ICVs	ICVs	$\operatorname{Percent}$	
			True	Found	$\operatorname{Percent}$	Recovery	Date
Param	Flag	Units	$\operatorname{Conc.}$	Conc .	Recovery	Limits	${ m Analyzed}$
Total Alkalinity		mg/L as CaCo3	250	242	97	90 - 110	2008-06-24

Standard (CCV-1)

QC Batch: 49666 Date Analyzed: 2008-06-24 Analyzed By: RG

Work Order: 8061928 R. Jackson

R. Jackson

			${ m CCVs} \ { m True}$	${ m CCVs} \ { m Found}$	${ m CCVs} \ { m Percent}$	Percent Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Total Alkalinity		mg/L as CaCo3	250	248	99	90 - 110	2008-06-24

Standard (CCV-1)

QC Batch: 49675 Date Analyzed: 2008-06-24 Analyzed By: DS

			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc .	Conc .	Recovery	Limits	${ m Analyzed}$
Phenol		$\mathrm{mg/L}$	60.0	51.9	86	80 - 120	2008-06-24
1,4-Dichlorobenzene (para)		m mg/L	60.0	59.0	98	80 - 120	2008-06-24
2-Nitrophenol		m mg/L	60.0	66.3	110	80 - 120	2008-06-24
2,4-Dichlorophenol		$\mathrm{mg/L}$	60.0	51.0	85	80 - 120	2008-06-24
${ m Hexachlorobutadiene}$		m mg/L	60.0	63.5	106	80 - 120	2008-06-24
4-Chloro-3-methylphenol		$\mathrm{mg/L}$	60.0	58.3	97	80 - 120	2008-06-24
2,4,6-Trichlorophenol		$\mathrm{mg/L}$	60.0	62.3	104	80 - 120	2008-06-24
${f Acenaphthene}$		$\mathrm{mg/L}$	60.0	60.1	100	80 - 120	2008-06-24
Diphenylamine		$\mathrm{mg/L}$	60.0	56.6	94	80 - 120	2008-06-24
${ m Pentachlorophenol}$		m mg/L	60.0	50.5	84	80 - 120	2008-06-24
Fluoranthene		$\mathrm{mg/L}$	60.0	56.4	94	80 - 120	2008-06-24
Di-n-octylphthalate		$\mathrm{mg/L}$	60.0	65.1	108	80 - 120	2008-06-24
Benzo(a) pyrene		$_{ m mg/L}$	60.0	60.7	101	80 - 120	2008-06-24

					Spike	$\operatorname{Percent}$	$\operatorname{Recovery}$
$\operatorname{Surrogate}$	Flag	Result	Units	Dilution	${f Amount}$	Recovery	Limit
2-Fluorophenol		58.6	$\mathrm{mg/L}$	1	60.0	98	80 - 120
Phenol-d5		50.9	m mg/L	1	60.0	85	80 - 120
${ m Nitrobenzene-d5}$		58.4	m mg/L	1	60.0	97	80 - 120
2-Fluorobiphenyl		58.5	$\mathrm{mg/L}$	1	60.0	98	80 - 120
2,4,6-Tribromophenol		67.6	m mg/L	1	60.0	113	80 - 120
Terphenyl-d14		61.7	${ m mg/L}$	1	60.0	103	80 - 120

Standard (CCV-1)

QC Batch: 49676 Date Analyzed: 2008-06-24 Analyzed By: DS

			$rac{ ext{CCVs}}{ ext{True}}$	$\begin{array}{c} { m CCVs} \\ { m Found} \end{array}$	${ m CCVs} \ { m Percent}$	$egin{array}{l} ext{Percent} \ ext{Recovery} \end{array}$	Date
Param	Flag	Units	Conc .	Conc .	Recovery	Limits	${ m Analyzed}$
Naphthalene		$\mathrm{mg/L}$	60.0	56.1	94	80 - 120	2008-06-24
$2 ext{-} ext{Methylnaphthalene}$		$\mathrm{mg/L}$	60.0	53.2	89	80 - 120	2008-06-24
$1 ext{-} ext{Methylnaphthalene}$		$\mathrm{mg/L}$	60.0	52.6	88	80 - 120	2008-06-24
${ m Acenapht hylene}$		$\mathrm{mg/L}$	60.0	59.0	98	80 - 120	2008-06-24

 $continued \dots$

Page Number: 31 of 35

Kirkland, NM

Report Date: July 7, 2008 Work Order: 8061928 Page Number: 32 of 35 R. Jackson Kirkland, NM

$standard\ continued\ \dots$							
			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc .	$\operatorname{Conc.}$	Recovery	Limits	${ m Analyzed}$
$\overline{ ext{Acenapht}}$ hene		$\mathrm{mg/L}$	60.0	58.7	98	80 - 120	2008-06-24
Dibenzofuran		${ m mg/L}$	60.0	61.4	102	80 - 120	2008-06-24
Fluorene		$\mathrm{mg/L}$	60.0	67.3	112	80 - 120	2008-06-24
${ m Anthracene}$		$\mathrm{mg/L}$	60.0	58.1	97	80 - 120	2008-06-24
Phenanthrene		$\mathrm{mg/L}$	60.0	55.5	92	80 - 120	2008-06-24
Fluoranthene		$\mathrm{mg/L}$	60.0	56.3	94	80 - 120	2008-06-24
Pyrene		$\mathrm{mg/L}$	60.0	63.2	105	80 - 120	2008-06-24
Benzo(a) anthracene		$\mathrm{mg/L}$	60.0	56.2	94	80 - 120	2008-06-24
Chrysene		$\mathrm{mg/L}$	60.0	57.3	96	80 - 120	2008-06-24
Benzo(b)fluoranthene		$\mathrm{mg/L}$	60.0	59.5	99	80 - 120	2008-06-24
Benzo(k)fluoranthene		$\mathrm{mg/L}$	60.0	58.8	98	80 - 120	2008-06-24
Benzo(a)pyrene		$\mathrm{mg/L}$	60.0	63.6	106	80 - 120	2008-06-24
Indeno(1,2,3-cd)pyrene		$\mathrm{mg/L}$	60.0	69.1	115	80 - 120	2008-06-24
${ m Dibenzo(a,h)}$ anthracene		$\mathrm{mg/L}$	60.0	69.3	116	80 - 120	2008-06-24
$\underline{\mathrm{Benzo}(\mathrm{g,h,i})}$ perylene		mg/L	60.0	67.8	113	80 - 120	2008-06-24

					Spike	$\operatorname{Percent}$	$\operatorname{Recovery}$
$\mathbf{Surrogate}$	Flag	Result	Units	$\operatorname{Dilution}$	${f Amount}$	Recovery	Limit
Nitrobenzene-d5		58.4	m mg/L	1	60.0	97	80 - 120
2-Fluorobiphenyl		57.6	$\mathrm{mg/L}$	1	60.0	96	80 - 120
Terphenyl-d14		62.1	m mg/L	1	60.0	104	80 - 120

Standard (CCV-2)

QC Batch: 49702 Date Analyzed: 2008-06-23 Analyzed By: KB

			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc .	$\operatorname{Conc.}$	Recovery	Limits	${ m Analyzed}$
MTBE		$\mu { m g/L}$	50.0	58.6	117	70 - 130	2008-06-23
Benzene		$\mu { m g}/{ m L}$	50.0	49.5	99	70 - 130	2008-06-23
$\operatorname{Toluene}$		$\mu { m g}/{ m L}$	50.0	49.8	100	80 - 120	2008-06-23
Ethylbenzene		$\mu { m g}/{ m L}$	50.0	51.0	102	80 - 120	2008-06-23
$_{ m m,p ext{-}Xylene}$		$\mu { m g}/{ m L}$	100	104	104	70 - 130	2008-06-23
o-Xylene		$\mu { m g}/{ m L}$	50.0	52.1	104	70 - 130	2008-06-23

Standard (ICV-1)

QC Batch: 49726 Date Analyzed: 2008-06-25 Analyzed By: RD

Report Date: July 7, 2008	Work Order: 8061928	Page Number: 33 of 35
R. Jackson	R. Jackson	Kirkland, NM

			$rac{ ext{ICVs}}{ ext{True}}$	$egin{array}{l} ext{ICVs} \ ext{Found} \end{array}$	$egin{array}{l} ext{ICVs} \ ext{Percent} \end{array}$	Percent Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Specific Conductance		uMHOS/cm	1410	1490	106	90 - 110	2008-06-25

Standard (CCV-1)

QC Batch: 49726 Date Analyzed: 2008-06-25 Analyzed By: RD

			CCVs	CCVs	CCVs	Percent	
			True	Found	$\operatorname{Percent}$	Recovery	Date
Param	Flag	Units	$\operatorname{Conc.}$	$\operatorname{Conc.}$	Recovery	Limits	${\bf Analyzed}$
Specific Conductance		uMHOS/cm	1410	1330	94	90 - 110	2008-06-25

Standard (ICV-1)

QC Batch: 49803 Date Analyzed: 2008-06-27 Analyzed By: RD

			ICVs	${ m ICVs}$	ICVs	$\operatorname{Percent}$	
			True	Found	$\operatorname{Percent}$	Recovery	Date
Param	Flag	Units	Conc .	Conc .	Recovery	Limits	Analyzed
Total Dissolved Solids		mg/L	1000	1048	105	90 - 110	2008-06-27

Standard (CCV-1)

QC Batch: 49803 Date Analyzed: 2008-06-27 Analyzed By: RD

			CCVs	CCVs	CCVs	$\operatorname{Percent}$	
			True	Found	$\operatorname{Percent}$	Recovery	Date
Param	Flag	Units	Conc .	Conc .	Recovery	Limits	Analyzed
Total Dissolved Solids		$_{ m mg/L}$	1000	989.0	99	90 - 110	2008-06-27

Standard (ICV-1)

QC Batch: 49885 Date Analyzed: 2008-06-30 Analyzed By: TP

			ICVs	ICVs	ICVs	$\operatorname{Percent}$	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc .	Conc .	Recovery	Limits	Analyzed
Total Calcium		$\mathrm{mg/L}$	50.0	50.3	101	90 - 110	2008-06-30
Total Magnesium		$\mathrm{mg/L}$	50.0	50.3	101	90 - 110	2008-06-30
Total Potassium		$\mathrm{mg/L}$	50.0	51.6	103	90 - 110	2008-06-30
Total Sodium		mg/L	50.0	49.8	100	90 - 110	2008-06-30

Report Date: July 7, 2008 Work Order: 8061928 Page Number: 34 of 35 R. Jackson Kirkland, NM

Standard (CCV-1)

QC Batch: 49885 Date Analyzed: 2008-06-30 Analyzed By: TP

			CCVs	CCVs	CCVs	Percent	
			True	Found	$\operatorname{Percent}$	Recovery	Date
Param	Flag	Units	$\operatorname{Conc.}$	Conc .	Recovery	Limits	${ m Analyzed}$
Total Calcium		m mg/L	50.0	50.6	101	90 - 110	2008-06-30
Total Magnesium		$\mathrm{mg/L}$	50.0	50.4	101	90 - 110	2008-06-30
Total Potassium		$\mathrm{mg/L}$	50.0	52.0	104	90 - 110	2008-06-30
Total Sodium		m mg/L	50.0	52.8	106	90 - 110	2008-06-30

Standard (ICV-1)

QC Batch: 49940 Date Analyzed: 2008-07-02 Analyzed By: MN

			ICVs	ICVs	ICVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc .	$\operatorname{Conc.}$	Recovery	Limits	Analyzed
TRPHC		$_{ m mg/L}$	100	114	114	80 - 120	2008-07-02

Standard (CCV-1)

QC Batch: 49940 Date Analyzed: 2008-07-02 Analyzed By: MN

			CCVs	CCVs	CCVs	$\operatorname{Percent}$	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	$\operatorname{Conc.}$	$\operatorname{Conc.}$	Recovery	Limits	${ m Analyzed}$
TRPHC		m mg/L	100	109	109	80 - 120	2008-07-02

Standard (ICV-1)

QC Batch: 49956 Date Analyzed: 2008-07-03 Analyzed By: RD

			ICVs	ICVs	ICVs	$\operatorname{Percent}$	
			True	Found	$\operatorname{Percent}$	Recovery	Date
Param	Flag	Units	$\operatorname{Conc.}$	$\operatorname{Conc.}$	Recovery	Limits	${ m Analyzed}$
Chloride		$\mathrm{mg/L}$	12.5	13.7	110	90 - 110	2008-07-03
Fluoride		$\mathrm{mg/L}$	2.50	2.48	99	90 - 110	2008-07-03
Nitrate-N		$\mathrm{mg/L}$	2.50	2.57	103	90 - 110	2008-07-03
$\operatorname{Sulfate}$		mg/L	12.5	13.8	110	90 - 110	2008-07-03

Standard (CCV-1)

QC Batch: 49956 Date Analyzed: 2008-07-03 Analyzed By: RD

Report Date: July 7, 2008 Work Order: 8061928 R. Jackson R. Jackson

			$rac{ ext{CCVs}}{ ext{True}}$	${ m CCVs} \ { m Found}$	$rac{ ext{CCVs}}{ ext{Percent}}$	Percent Recovery	Date
Param	Flag	Units	$\operatorname{Conc.}$	Conc .	Recovery	Limits	${ m Analyzed}$
Chloride		$\mathrm{mg/L}$	12.5	13.8	110	90 - 110	2008-07-03
Fluoride		$\mathrm{mg/L}$	2.50	2.53	101	90 - 110	2008-07-03
Nitrate-N		$\mathrm{mg/L}$	2.50	2.73	109	90 - 110	2008-07-03
Sulfate		$_{ m mg/L}$	12.5	13.7	110	90 - 110	2008-07-03

Page Number: 35 of 35

Kirkland, NM

LAB Order ID #

8061908

ð

Page

TraceAnalysis, Inc.

email: lab@traceanalysis.com

6701 Aberdeen Avenue, Suite 9 **Lubbock, Texas 79424** Tel (806) 794-1296 Fax (806) 794-1298 1 (800) 378-1296

5002 Basin Street, Suite A1 Midland, Texas 79703 Tel (432) 689-6301 Fax (432) 689-6313

8808 Camp Bowie Blvd. West, Suite 180 Ft. Worth, Texas 76116 Tel (817) 201-5260 Fax (817) 560-4336 200 East Sunset Rd., Suite E El Paso, Texas 79922
Tel (915) 585-3443
Fax (915) 586-4944
1 (888) 588-3443

	Ι						***************************************		~.~.	T-	Τ	Т					Τ	1		T		
			ndard	eta n	nont tr	aifferei	ne It o	ıı punc	Turn Ard bloH	-										-		
		*****								-	-									1		
										+										1		
		<u></u>					M3.		426			li .					×			_		
	ŧ					つ(02	8/7	SIGB SUS			,	メ								eq	
	<u> </u>	Ö							nutsioM 96 i C			×								-	Requir	ired
	LES	ŭ _						Hq ,SS	т ,аов												35.8 F	Requ
	ANALYSIS REQUEST					80			Pesticid												Dry Weight Basis Required	TRRP Report Required
	S	<u> </u>			979	/ D07g			ec\ws	-1		-								ö	Weig	Ω Ω
	YSI	<u> </u>				þZ9	/ 809	Vol. 82	ec/wa											ARK	D	2
	AL	n 					Si	anionsa.	TCLP P											REMARKS		
		5 -				***************************************		loV imə		<u> </u>										-	-	1
	i i	Ž _						səlitelo'												ш	Não Việt	9
	ζ	5 7						A gA slat A slateN								×				AB USE	- N	
	740		000/00	700 -	11 -0 -	14 -0 F	***************************************		28 HAG	>			×			$\hat{}$				BON	Sec.	3.4
								15GRC			×									בׁ רַ	act.	CR
		mintend	32)						BTEX :						×						ĒŤ	
		oranoon.				978			38TM	\prec					_					Temp °c:	Temp °c:	Temp°c:
			3				<u>0</u>		TIME	S.:	(I'. 10 cm	[F. to	11.20am	H. 30	ال کوم	1:20,1	11:20			Ten	Ten	Ten
			n				SAMPLING			=	3	 	=	≒	=	_ <u>:</u>	Ξ.					١.,
	N		4		,	}	SAM		3TA Q	6/16	و/10						4		-	Time:	Time:	Time:
	0		State			0				9	Ć.	ļ								'	1	ľ
	476-3492		1 1		7	4	Ш		NONE	 			~	×			\prec			نۆ	jej	ë
	1		0		;		3 C	2	ICE	 										Date:	Date:	Date:
	2		0000		-		ESERVATAE MFTHOD		HOBN]	ļ	
	A		7		$\mathcal{D}_{\frac{1}{2}}$	and M	RES	<u> </u>	*OS ^Z H											Company:	Company:	Company:
	#:		. 3		t Na	er Si	PR		HNO ³ HCI	X	X	ス く		***********	X	不				m O	mo _S	Som
	Phone #: ○	Fax #:	E-mail:		Project Name:	Sampler Signat	H		1011	+										1		
	۵٬۵	ŭ.	, Ø		۵	S	×	3E	STADO											à.:	by:	Received by
	(0		1 7				MATRIX		ЯIА											ved	ved	ved
	ž						2	<u> </u>	ROIL	1	-7	X	ベ							Received by:	Received by:	fede
	Sic						-		HETAW	NoA N	人					ය ප්	1			1	1	-
	Division (Oco)						jur	nomA \ 6	o√	8	VDA	VOA	르	<u> </u>	1	508				Time:	Time:	Time:
٠	á						SS	д ЭИІАТ	# CON	3	3	3					_			E Rig	F	F
	ړ	8							······································	 '	,	-								Date: Time: 6.16.081 3:00		
	4	Francis				1 2														Date: /6.0	Date:	Date:
)	200	10				1 2												-		io	-	
	CONSCIVE HON					اند		FIELD CODE					耳	•						۸ خا	خا	;
	٥	(diz	T)			state		Ö Q					PAH				ş	•		Company:	Company:	Company:
	<u>:</u>	V) city	oue	_	A	ding	4	哥						1		S	و کــ			3	/5	S
	q	(Street, City, Zip)	7	ove)		ncluc *				C	0	0	淅	3	I	7	7					
			<u>=</u> A	ım ak	1	on (including st んぐも)				UDCs	GRO	ORO	SWE	5 VCX	Hd	Metals	Gen Chen			1. 12	py.	ä
	y Name: Mexico	Q	erso): htfro	#:	Scati			fir .		\supset	u	W	V)	H	2	9			is //	shed	hed
	Company Name:	Yes	tact Person:	ce to Ferer	# d	act Loc		LAB#	AB USE	00				, <u>B</u> ,	4,			ŢĒ,		Relinquished My:	Å <u>ä</u>	duis
	Company 7 c U	Address:	Contact Person:	Invoice to: (If different from above)	Project #:	Project Location (including state)		5	LAB	P)					5					景人	Relinquished by	Relinquished by:
	1	····	<u></u>		1	4				4										····		

Check If Special Reporting Limits Are Needed

Log-in-Review

Temp[°]c:

Company:

Company:

Relinquished by:

Carrier #

Appendix B – Signed Access Agreements

Oil and Gas Reclamation Fund
Oil Conservation Division
Energy, Minerals and Natural Resources Department
1220 South St. Francis
Santa Fe, New Mexico 87505

CONSENT TO ENTRY FOR INVESTIGATION, RECLAMATION, & MONITORING Groundwater investigation PROJECT San Juan County COUNTY (IES) G. 17, 29N, 14W UNIT LETTER, SECTION, TOWNSHIP, RANGE

Pursuant to Chapter 70, Article 2, Section 38 of the Oil and Gas Act, the Director of the Oil Conservation Division (OCD) proposes to utilize the Oil and Gas Reclamation Fund in order to restore and remediate abandoned well sites and associated production facilities to protect public health and the environment.

To achieve this objective, it will be upon the property described below	•	loyees, agents, and contractors to enter
Residential Properties located at #18 &	#20 Road 6271 Kirtland NM	
A(n) Deeded Jackson Roland E and Gloria		interest in such property is held by
acquired by Deed		interest holder). Such interest was as recorded in Book 1050 and 1368
page(s) 206 & 853 , in San Juan	County Assessor's	_records.

NOW, THEREFORE, in consideration of the benefits that will accrue to the Interest Holder and to the general public, the Interest Holder does hereby grant to the OCD, its employees, agents, contractors, and subcontractors a right of entry into, over, and upon the property described above, including all necessary and convenient rights of ingress, egress, and regress, with all materials and equipment necessary to conduct the proposed investigation and reclamation activities and to do any and all things necessary and convenient to effectively carry on said activities in a good and workmanlike manner, including but not limited to the temporary storage of equipment and materials, the right to remove or dispose of materials necessary to reclamation, and the construction of temporary roadways on the property. Said right of entry is granted to complete the reclamation activities and to conduct inspections of, and perform maintenance and repairs to, the reclamation activities completed on the property.

The Interest Holder understands and acknowledges that the success of the project cannot be warranted and the proposed work may not accomplish the intended result. The Interest Holder also acknowledges

that the OCD has no responsibility or liability for any oil and gas related damage to the property that occurred prior to or that might occur during or after the reclamation work.

It is understood the work performed in the project area shall be done by contractors for the OCD and the OCD is without authority to assume the risk of injury to persons or damage to persons or property resulting from the action of the contractors, however the OCD shall require contractors performing the work on the property to obtain and keep in force liability insurance in the minimum amount of \$1,000,000 per occurrence and \$2,000,000 per aggregate.

Execution of this Consent to Entry does not obligate OCD to perform any part of the contemplated or proposed reclamation work.

Interest Holder agrees that any sale, assignment, mortgage, or other encumbrance or conveyance of this property shall be made subject to this Consent to Entry. Additionally, Interest Holder agrees to provide written notice to the OCD ten (10) days in advance of any such event.

Witness my hand or seal this <u>30十ん</u>	day of <u>April</u> 20 12.
	Reland & Jucho
	Signature of Interest Holder
۷ر۸	NOWLEDGEMENT
STATE OF New Mexico)	MOANTED OF IAITIE I
COUNTY OF San Juan)	
	edged before me this 30th day of April , 2012 ,
by Roland E. Jackson	
My commission expires: 2-22-2016	Dandin Shinday
(Seal) OFFICIAL BEAL PAMELIA SHIRLEY NOTARY PUBLIC STATE OF NEW MEXON WY Commission Expires: 2-22-ACKNOWLEDGE	Notary Public \(\sqrt{2}
STATE OF	
COUNTY OF)	
The foregoing Consent to Entry was acknowle	edged before me this day of, 20,
	Interest Holder) the(title)
	Corporation) a (state) corporation.
My commission expires:	
(Seal)	Notary Public

CONSENT FOR ACCESS TO PROPERTY FOR PURPOSES OF GROUNDWATER SAMPLING

Project: Maverik Refinery

Project #5121620

Project Location:

#18 and #20 CR 6271, Kirtland, New Mexico

Date: April 30, 2012

Name of Property Owner: Roland E. Jackson aka Ron Jackson

Address of Property Owner: #20 CR 6271, Kirtland,, NM 87417

Telephone Number: Home 505-598-5955

Cell 505-402-6252

Location of the property on which access is sought:

#18 CR 6271 Lots 1, 2, 3 and 4

#20 CR 6271 Lots 5, 6, 7 and 8

Kirtland, NM 87417

I hereby consent to allow the employees and contractors of Souder, Miller & Associates (SMA) to enter and have access to the property located at the above address ("the property") for the following purposes:

- 1. As shown on attached Figure 1, SMA proposes to drill four monitoring wells and two sample boreholes with a truck mounted rig in the noted approximate locations to a total depth of 15 to 20 feet.
- 2. All waste fluids and solids resulting from drilling will be removed from the property.
- 3. Boreholes will be plugged with hydrated bentonite to 18 inches below ground surface (bgs) and the remaining 18 inches will be filled with native soil.
- 4. The monitoring wells will be completed with 2" casing sealed with bentonitic cement.
- 5. The wells will be completed with a well cover flush with the ground surface; the well cover will be surrounded by approximately a two foot by two foot concrete pad.
- 6. Sampling of the wells will continue by SMA or successor contractors for a minimum of two years.
- 7. SMA understands that the landowner may want to retain one or more of these wells for irrigation at the termination of this project.

8. The landowner is responsible for obtaining state permission, permits and proper paperwork for the conversions.

Drilling activities are projected to begin in May of 2012 and be completed in June of 2012. In order to conduct the drilling and sampling activities, I understand that vehicles will be on my property for the time period through May and June, 2012. I understand that SMA is performing this work on behalf of the New Mexico Oil Conservation Division for ground water quality monitoring. I understand that by granting this consent, I am in no way responsible for the actions or the consequences of the persons conducting these investigations. I have also been told that the Project Manager for this site is Denny Foust or Cindy Gray whom I may contact at 505-325-7535, if I have any questions or concerns about this Consent for Access or any work performed as a result of it.

After all access permission has been acquired, SMA will schedule the field activities associated with the investigations.

In return for this permission, SMA agrees to the following:

- A. To notify Mr. Roland Jackson by telephone 24 hours prior to accessing the property. SMA will extend the same courtesy for subsequent sampling events. A message left on the answering machine shall constitute notification.
- B. To exercise reasonable professional care to ensure that the property's landscaping and structures are not damaged during the investigation activities. In the event of any property damaged as a result of SMA or its subcontractor's activities, the damage will be repaired to original condition, as possible, within 30 calendar days after the damage occurred.
- C. To ensure all equipment is promptly removed from the property.

Property Owner or Authorized Representative Souder. Miller and Associates

By: Kaland E. Jekson

By: 23/1/1/1/1

Roland E. Jackson, Owner

Reid S. Allan, Vice President
Printed Name and Title

Printed Name and Title

Appendix C – Site Investigation Photographs

Photo 1: 1 Roland Jackson Irrigation Well

Photo 1: 2 Drilling Rig at Jackson Property

Photo 1: 3 Soil Sampling

Photo 1: 4 Soil Sampling

Photo 1: 5 Monitoring Well Completion

Photo 1: 6 Monitoring Well Secured with SMA Lock

Photo 1: 7 Monitoring Well Open for Ground Water Sampling

Appendix D – Health & Safety Plan

SITE SAFETY AND HEALTH PLAN

Location: #20 CR 6172 Kirtland, New Mexico

PREPARED FOR: State of New Mexico Oil Conservation Division

PREPARED BY:
SOUDER, MILLER & ASSOCIATES
2101 SAN JUAN BLVD.
FARMINGTON, NEW MEXICO 87401-2247
505-325-7535
FAX 505-326-0045

DATE: May 16-18, 2012

	BLE OF CONTENTS INTRODUCTION:	3
II.	SITE DESCRIPTION	3
III.	ENTRY OBJECTIVES	
A. B. C. D.	TASK 1 TASK 2 TASK 3 TASK 4 ON-SITE ORGANIZATION & COORDINATION	3 3
V.	ON-SITE CONTROL	4
VI.	HAZARDS EVALUATION	5
VII.	PERSONAL PROTECTIVE EQUIPMENT	7
A. VIII.	PERSONAL PROTECTIVE EQUIPMENT MATRIX:	
A. B. C. IX.	WATER SAMPLES: SOIL SAMPLES FOR ASSESSMENT/VERIFICATION: AIR MONITORING: SITE WORK PLAN	8 8
X . (COMMUNICATION PROCEDURES	9
XI.	DECONTAMINATION PROCEDURES	9
A. B. C. XII.	PERSONAL DECONTAMINATION: EXCAVATION/EXPLORATORY EQUIPMENT: SAMPLING EQUIPMENT: CONTINGENCIES	9 9
A. B. 1. 2. 3. 4. C. D.	Skin contact:	10 10 10 10 10 10
1. 2. 3. 4.	Personal Injury in the Exclusion Zone: Personal Injury in the Support Zone: Fire / Explosion: Personal Protective Equipment Failure:	11 11 11 11
5. XIII.	Other Equipment Failure:	<i>11</i> 13

I. Introduction:

The health and safety of **Souder, Miller & Associates** employees, subcontractors, and the general public is the primary concern. The inherent dangers involved in the handling of hazardous materials or waste, and hazards associated with any job site require that all participants in this project become familiar with the contents of this Health and Safety plan.

II. SITE DESCRIPTION

Date:

May 16-18, 2012

Location:

#20 CR 6271

(Address)

Kirtland, New Mexico

(City, State)

Hazards: Potential hazards may include; heavy equipment, exposure to hydrocarbon vapors and soil contamination, overhead hazards, and falling tripping hazards and:

Area affected: Jackson Property

(Site Description)

The specific areas of interest are eastern portions of property behind

house and near property wells.

Surrounding population: The surrounding area will consist of one or more of the following: Rural, Rural Residential, Residential, Commercial, Industrial.

III. ENTRY OBJECTIVES

A. Task 1 Advance seven soil borings to approx. 20' depth

B. Task 2 Complete 4 of the borings as monitoring wells

C. Task 3

D. Task 4

IV. ON-SITE ORGANIZATION & COORDINATION

The following personnel are designated to carry out the stated job functions on site. (*Note: one person may carry out more than one job function.*)

Souder, Miller & Associates:

PROJECT TEAM LEADER:

Mr. Denny Foust

FIELD TEAM LEADER: ALTERNATES:	<u>Matt Earthman</u>
Subcontractors: SITE CREW CHIEF:	Enviro-Drill, Inc.
Owner.	-
FEDERAL AGENCIES: EPA	
STATE AGENCIES:	NM OCD
Other Agencies:	

V. ON-SITE CONTROL

The occupancy of the area will be minimal. Only key personnel will be in attendance. Representatives of **Souder, Miller & Associates** may include the following: Matt Earthman, Denny Foust

EPA or State Agency personnel will be varied.

Control boundaries will be established and prior to Task 1, and the Exclusion Zone (the contaminated area), Contamination Reduction (decontamination) Zone, and Support Zone (clean area) will be identified as noted.

All personnel involved in the project will be required to adhere to all boundaries and rules regarding the project. All personnel will be required to show proof of 40 Hour HAZWOPER and other applicable training.

Boundaries to be marked:

Containment:

Orange temp fencing & yellow caution

tape.

Traffic/Hotline:

Orange Cones.

Decontamination:

Orange Cones & White Tape.

Support/Staging area:

Vehicles & As needed.

VI. HAZARDS EVALUATION

Table 1 and 2 list several potential hazards that might be associated with execution of this project. This list is by no means all inclusive and other unforeseen hazards may be contingent upon conditions.

Table 1
Possible Chemicals

Substances Involved	Concentration	Fire	Eyes	Skin	Respiratory
Anti-Freeze	Ethylene Glycol Variable				
Used Oil	Petroleum Hydrocarbons Variable				
Gasoline	Variable				
Diesel	Variable				
Grease	Variable				
Solvent/Cleaners pH Approximate Range 3.5 To 11 (Irritating Liquids) and possible Chorinated Hydrocarbons	Variable				
Off-Spec Paint (Liquid/Solid)	Lead And Chromium Variable 8% - 15%				
Tar & MC 250 & MC-70	Variable				
Polychlorinated Biphenyl (PCB)	Variable, Halogens				
Organic Solvents	Variable				
Acids	Variable				
Bases	Variable				
Organic Peroxides	Variable				

Legend:

Slt. Slight Mod Moderate

Hi. High IDLH Immediately Dangerous to Life and Health

NA Not Applicable

Table 2 Potential Health And Safety Hazards

Hazard	Task 1:	Task 2:	Task 3	Task 4
Inhalation Hazard	Х	X		
Contaminated Soil/Liquid Contact	Х	Х		
Noise	Х	X		
Heat/Cold Stress	Х	X		
Electrical (Transformers And Buried Powerlines)				
Potential Fire/Explosion	X	X		
High Pressure Liquids				
Collapsing Of Sidewalls				
Confined Spaces				
Physical Injury	X	X		
Overhead Powerlines	X	Х		
Buried Piping/Tanks				
Skin Hazards				
Ventilation Problems				
Vandalism				
Heavy Equipment/Trucking /Traffic	Х	Х		
Level Of Protection	D	D		
Air Monitoring	NA	NA		
Buried Line Detection	One-Call 48 hr Notice			

VII. PERSONAL PROTECTIVE EQUIPMENT

Based on the OVM (PID) readings in the breathing zone, the criteria for levels of protection are as follows:

Background-25 (PPM)	Level D
25-50(PPM)	Level C
50-100(PPM)	Level B
>100 (PPM)	Level A

NOTE: Deviations from these levels will be based on the types of products and constituents. No changes to the specified levels given in table 1 and the above table shall be made without the approval of the site safety officer and the project team leader.

A. Personal Protective Equipment Matrix:

	COVERALL	Накрнат	GLOVES	SAFETY	NOMEX	HEARING PROTECTION	SAFETY GLASSES W/SIDE	LEVEL C	LEVEL B	Level A	Отнек
DAILY ROUTINE		X	X	X		X	X				
SAMPLING (OIL FIELD)											1
SAMPLING (NON-OIL FIELD)											
EXCAVATION (OIL FIELD)											1
EXCAVATION (NON OIL FIELD)											
DRILLING											
(INVESTIGATION)											
FACILITY INVENTORY											
CHEMICAL INVENTORY											2
Underground Storage											
TANK REMOVAL											
EMERGENCY RESPONSE											2

- 1. Minimum required will be determined by Client's current policy
- 2. MSDS will be consulted to determine proper Personal Protective Equipment.

VIII. PROTOCOL

The following briefly describes the protocol to be followed for any soil and water samples to be taken at a site. A working knowledge of applicable EPA SW-846, sampling and analytical procedures and proper use of field testing equipment is necessary. New disposable Nitrile gloves shall be worn for all water and soil sampling activities.

A. Water samples:

Volatile Organic Analysis (VOA)- Use of a 40 mL VOA glass vial with Teflon closure, leave no airspace present, and preserve as required; keep cool with ice in cooler, use chain-of-custody sample handling procedures, and transport to Laboratory. For other analyses, see detailed procedures.

B. Soil samples for assessment/verification:

Field vapor headspace - 475 mL wide mouth glass container, fill 1/2 full, seal with aluminum foil, or use heavy zip-locking plastic bags.

Laboratory analysis for hydrocarbons (standard) - Use laboratory supplied sterile glass container, with Teflon closure. Fill completely, keep cool with ice in cooler, use chain-of custody sample handling procedures, transport to Laboratory. For NMED USTB Methanol Extraction, see detailed procedure.

C. Air Monitoring:

Air monitoring for the site will be accomplished with an MHSA approved LEL continuous meter, calibrated to pentane, and with and alarm at 10% LEL. An OVM (PID) calibrated to isobutylene can be substituted to an LEL. All air monitoring for exposure is to be in breathing area. (for frequencies, see Section VI, Table 2).

IX. SITE WORK PLAN

This project will be completed in the Tasks outlined in Section B. The following outlines the key personnel and their responsibilities:

Project Team Leader:

<u>Denny Foust</u> **Souder, Miller & Associates** Farmington, NM (505) 325-7535

Alternates:

Matt Earthman

The Project Team Leader will function as the Project Manager, Site Health & Safety Officer, Site Supervisor, and sampler for this Project.

Tailgate safety meetings will be held and all personnel will be briefed on the contents of this plan prior to initiating any efforts. Tailgates will also cover any safety and/or health issues not anticipated or addressed in this plan. The Project Manager will be responsible for briefing and record keeping.

X. COMMUNICATION PROCEDURES

Radio communication is not anticipated to be essential for this project. Personnel in the Exclusion Zone should be in visual contact of the Project Team Leader.

The following standard hand signals will be used:

Hand gripping throat	Out of air, can't breathe
Grip partner's wrist or both hands around waist	Leave area immediately
Hands on top of head	Need assistance
Thumbs up	OK, I'm all right, I understand
Thumbs down	NO, Negative

Others as needed while handling, moving, or loading materials, are acceptable provided that all personnel involved agree to their meaning.

Telephone communication will be available in the Staging Area by mobile phone.

XI. DECONTAMINATION PROCEDURES

The following are a brief summary of decontamination procedures. Common sense should be used at all times.

A. Personal Decontamination:

The following procedure assumes level "D" Personal Protective Equipment (PPE). Prior to entering a vehicle and leaving the site, coveralls are to be doffed and placed in appropriate laundry/duffel bags in the reduction zone, and hands and face are to be washed.

For all other levels of PPE, PPE to be doffed in the reduction zone, Tyvek and other disposables will be placed with the waste for off-site disposal, and all other reusable PPE will be washed with brushes or soapy rags and rinsed by hand sprayers. All exposed skin to be washed in reduction zone also.

B. Excavation/Exploratory Equipment:

All equipment will be decontaminated by high pressure wash, and/or steam cleaned as necessary, initially in the exclusion zone and final rinsed in the reduction zone. Rinse and wash media to be disposed of with contaminated soil/groundwater.

C. Sampling Equipment:

Reusable sampling equipment is to be triple rinsed with alconox soap, tap water and deionized water. Disposable sampling equipment is to be consolidated with waste for off-site disposal.

XII. CONTINGENCIES

A. FIRST AID MEASURES/MEDICAL EMERGENCIES

The nearest hospital is located at:

San Juan Regional Medical Center 801 W. Maple St., Farmington, NM 87401

In the event that personnel exposure symptoms occur, the following procedures will be used:

B. PETROLEUM PRODUCTS / IRRITATING LIQUIDS:

1. Eye contact:

Flush eye immediately with copious amounts of water and repeat until irritation is eliminated. If prolonged irritation occurs for more than 15 minutes, seek medical attention.

2. Skin contact:

Wash exposed area with soap and water. If dermatitis or severe reddening occurs, seek medical attention.

3. Inhalation:

Remove person into fresh air. If symptom occurs for more than 15 minutes, seek medical attention.

911

4. Ingestion:

Do not induce vomiting, seek medical attention.

C. PHONE LIST:

AMBULANCE

POLICE, FIRE & RESCUE	<u>911</u>
STATE POLICE	<u>505-841-9256</u>
POISON CONTROL	1-800-362-0101
CHEMTREC	1-800-424-8802

First aid and emergency fire equipment will be available in **Souder, Miller & Associates** vehicles.

D. ENVIRONMENTAL MONITORING

The following environmental monitoring instruments will be used on site:

The following instruments will be used continuously to monitor air quality.

Combustible gas Indicator: Trigger level will be 10%. The alarm will be audible or vibratory in the event of extreme noise levels.

FID/OVA: Will measure in the parts per million. It will indicate organic volatiles.

pH meter. The pH meter will be used to indicate the pH of each separate sample.

E. EMERGENCY PROCEDURES (to be modified as required for project or incident)

The following standard emergency procedures will be used by on site personnel. The Site Safety Officer shall be notified of any on site emergencies and be responsible for ensuring that the appropriate procedures are followed.

Personal Injury in the Exclusion Zone:

Upon notification of an injury in the Exclusion Zone, all site personnel shall assemble in the Reduction Zone. The rescue team will enter the Exclusion Zone (if required) to remove the injured person to the hotline. The Site Safety Officer and Project Team Leader shall evaluate the nature of the injury, prior to movement to the Support Zone. Appropriate first aid will be initiated, and contact should be made for an ambulance and with the designated medical facility (if required). No persons shall reenter the Exclusion Zone until the cause of the injury or symptoms is determined.

2. Personal Injury in the Support Zone:

Upon notification of an injury in the Support Zone, the Project Team Leader and Site Safety Officer will assess the nature of the injury. If the cause of the injury or loss of the injured person does not affect the performance of remaining personnel, operations may continue. If the injury increases the risk to others, the designated emergency signal horn shall be sounded and all site personnel shall move to the Reduction Zone for further instructions.

In any case, the appropriate first aid will be initiated and necessary followup as stated above.

3. Fire / Explosion:

Upon notification of a fire or explosion on site, the designated emergency signal horn shall be sounded and all site personnel assembled at the Reduction Zone. The fire department shall be alerted and all personnel moved to a safe distance from the involved area. Fire extinguishers shall be used with discretion to minimize the risk of fire and explosion that would result in injuries.

4. Personal Protective Equipment Failure:

If any site worker experiences a failure or alteration of protective equipment that affects the protection factor, that person and his/her buddy shall immediately leave the Exclusive Zone. Reentry shall not be permitted until the equipment has been repaired or replaced.

5. Other Equipment Failure:

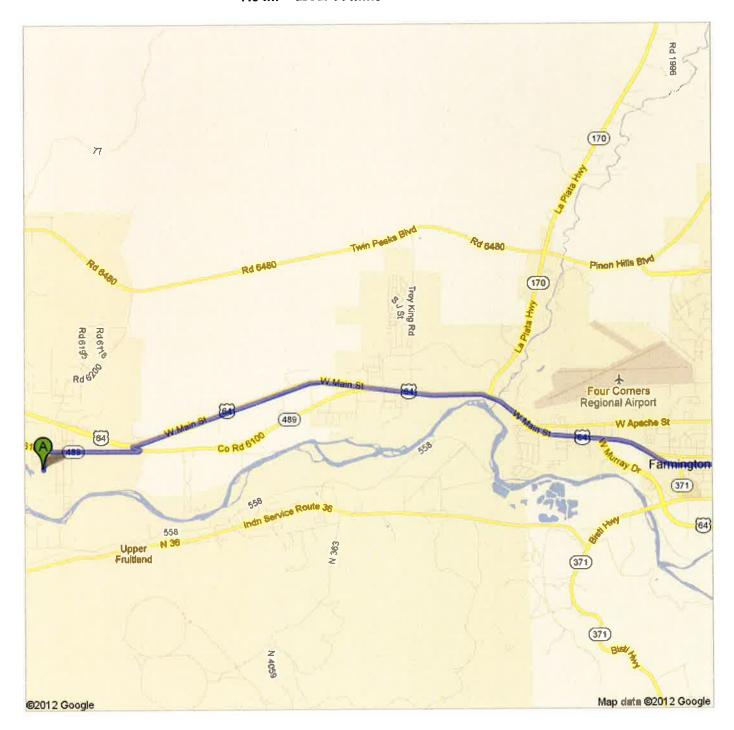
If any other equipment on site fails to operate properly, the Project Team Leader and Site Safety Officer shall be notified and then determine the effect of this failure on continuing operations on site. If the failure affects the safety of personnel or prevents completion of the Work Plan tasks, all personnel shall leave the Exclusion Zone until the situation is evaluated and appropriate actions taken.

In all situations, when an on site emergency results in evacuation of the Exclusion Zone, personnel shall not reenter until:

- 1. The hazards have been reassessed.
- 2. The conditions resulting in the emergency have been corrected.
- 3. The Site Safety Plan has been reviewed.
 - 3. Site personnel have been briefed on any changes in the Site Safety Plan.

Owner:

XIII. CLOSURES AND SIGNATURES


This plan has been reviewed and has the full approval of the following Management.

NAME:____

	TITLE: DATE:	
	Souder, Miller & Associates. NAME: TITLE: DATE:	
All site personnel ha	ave read the above plan and are	e familiar with its provisions.
	Print Name	Signature
Site Safety Officer	Matt Earthman	Matt E
Project Team Leade	7 1 11	my from
Other Site Personne	Shed Beflis Brandon Powell Jonathan D. Kelly	South Skelly

Directions to San Juan Regional Medical Center 301 South Auburn Avenue, Farmington, NM 87401 - (505) 609-6575 7.3 mi – about 14 mins

20 Road 6271, Kirtland, NM 87417

Y		
	1. Head north on Rd 6271 toward Rd 6275 About 1 min	go 0.2 mi total 0.2 mi
4	2. Turn right onto Co Rd 6100 About 2 mins	go 0.9 mi total 1.1 mi
4	3. Turn left to stay on Co Rd 6100 About 1 min	go 495 ft total 1.2 mi
64	1. Turn right onto US-64 E/W Main St Continue to follow US-64 E About 10 mins	go 6.1 mi total 7.3 mi
4	5. Turn right onto S Auburn Ave Destination will be on the right	go 318 ft total 7.3 mi
	San Juan Regional Medical Center 301 South Auburn Avenue, Farmington, NM 87401 - (505) 609-6575	

These directions are for planning purposes only. You may find that construction projects, traffic, weather, or other events may cause conditions to differ from the map results, and you should plan your route accordingly. You must obey all signs or notices regarding your route. Map data ©2012 Google

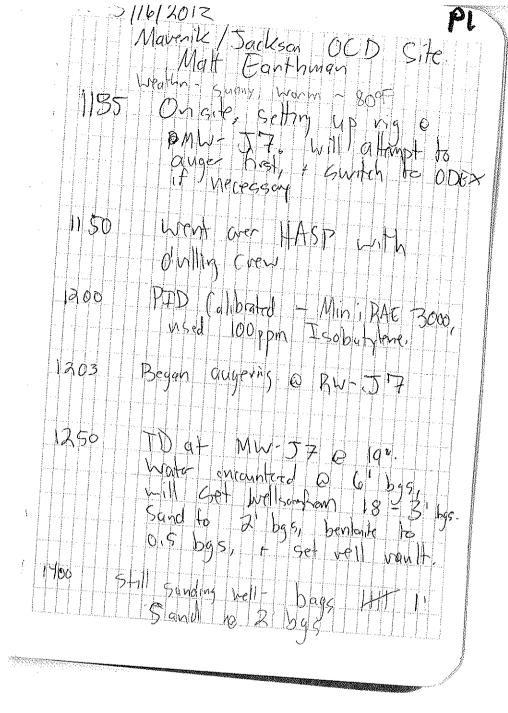
Directions weren't right? Please find your route on maps.google.com and click "Report a problem" at the bottom left.

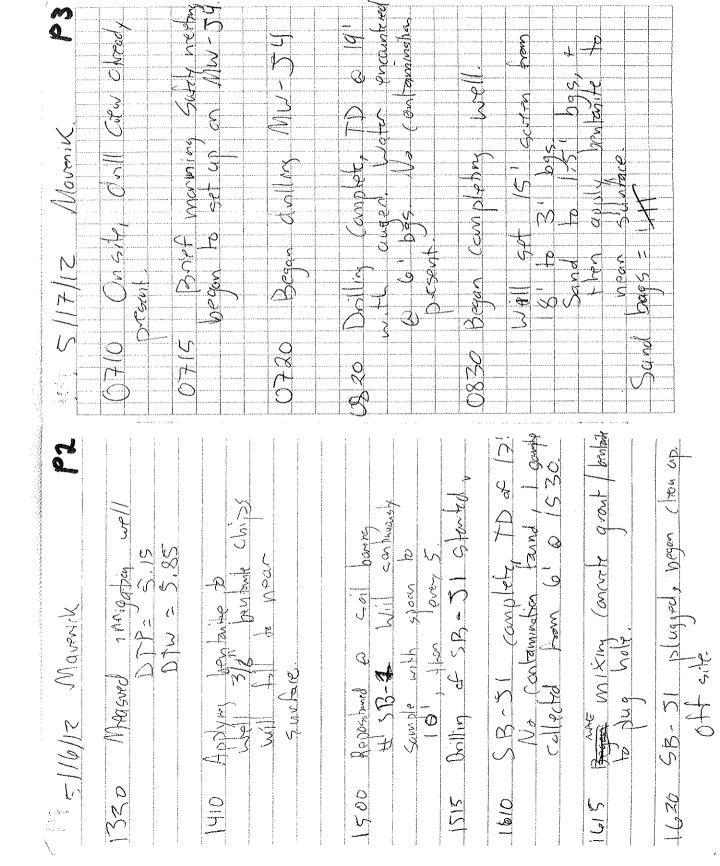
Appendix E – Field Notes

maven K-Juckson

FIELD BOOK

Project Name: Marenick OCD Lowerychin


Project Number: 5121620


Date: 5/16-5/22/2012

Mathew Earthman Notes

16 Pages
50% cotton content
water-resistant paper

#18 and #20 CR 6271
Scotion 17-29 1- 1814

2117112	320 Per Collinated PID 340 MW. J 3 Complete	TS-3 2 Squal to 15 Milary	1020 MILL 53 COMDIPPED WITH CONTROL WITH BOTH SILL IN DICK WE SHOW	525 Willing & Stanta	65 MW -)8 (anotet began 118-3" bas sand to 115	100 MW - 53 Well Cample of 100 MW - 53 Mell (200 MW - 100	
2// \\	0915 well MW-54 Set, mainy	0930 Dally of MW-JG Gtold	19: Will Sorth	Surlaite. Sund Dage = IIII	1136 MW-56 Set, Complete.	1240 Water Full on MIN-58	1248 Dalling Stanted on MW-73

Johnsthm with OSE on Site. Tamper Sols @ On site, dulles on site possitioning rigo SB-52. 2//8/15 0720 0712

0730 Bryon dullin 513-52

collect 4-6 , 8-10 intowers.

Tables complete, 13 lugger with hole plugger by congre

0820 Dallin Camplete, Mc Major Castan developmy wells-

-		東る	-	lo.	5	, <u> </u>		
255	20		1	Q [†]	T-7	100 28 Vol.	J. C.	
	15 15	8	17.45	3	12	2.5 well 655	1 3 1 2	*
 	(Y)	34	7	0	0	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		9
					M	Chevrelops of the state of the	S C (64e)	
	m 10	5 N	19 1	2010	6	Jells Dall ed	Custady Cult	
2//8//5	3	2	3		3			
						09		

SZZIZ Marak Well Gap Installation - Dm Wat Canthman Wat Canthman Www - E Mw - 3 + In Vanth **Q**0 Site - no more pires averand wells - bankyss 1435 (USFRD4, FOR Shill DIESM) Uell (aps msalled locked on a so 1520 1500

WELL PURGE RECORD								
JOB NUMBER:	51211	20	DATE: <u>633</u>	12 TIME	1018			
JOB NAME:	Mayenk/Ja	ckon(CD	SMA REPRESE	ENTIVE: <u>Sl</u>				
	WELL ID: 3							
SAMPLING ME	THOD:	USEPA SW84	16					
FIELD CONDITI	FIELD CONDITIONS: Sundy Warmy Milety							
DESCRIBE EQU	JIPMENT D	ECONTAM	NATION METH	OD BEFORE SAMI	PLING THE WELL			
SINGLE USE BAILE	ER, FIELD EQ	UIPMENT: AL	CANOX WASH, TI	RIPLE DI WATER RINS	E			
TOTAL DEPTH	TOTAL DEPTH OF WELL: 12.5 FEET							
DEPTH TO WATER BEFORE PUMPING: 346 FEET SAMPLE TIME: 54								
HEIGHT OF	WELL PVC	DIAMETER	VOLUME IN	MINIMUM QUANTITY OF	VOLUME TO PURGE			
WATER COLUMN	2-INCH	4-INCH	GALLONS	WELL VOLUMES TO PURG				
1 (3) 6.1 (∕ 0 163	0.653	1 11	2	1 11/			

HEIGHT OF		WELL PVC DIAMETER		VOLUME IN	MINIMUM QUANTITY OF WELL VOLUMES TO PURGE	VOLUME TO PURGE IN GALLONS
WATER COLUMN		2-INCH 0.163	4-INCH 0.653	GALLONS LL-7	WELL VOLUMES TO PURGE	1) H
TIME	VOL	.UME	рН	SPECIFIC	TEMPERATURE	COMMENTS
PURGED		RGED		CONDUCTIVIT	Y IN °C	**************************************

	PURGED		CONDUCTIVITY	IN °C	
1526	1.0	"E(1"	1545	15,9	
1531	20	7.74	1450	15.4	
1534	3.1	7.78	1398	145	
1538	4,0	7.79	1280	14.6	
		•	000	7	

WELL PURGE RECORD						
JOB NUMBER: 5/2/620 DATE: 5/23-12 TIME: 15/8						
JOB NAME: Maverik Jackson Com SMA REPRESENTIVE: SLC						
WELL ID:						
SAMPLING METHOD: USEPA SW846						
FIELD CONDITIONS: Surry warm, very windy						
DESCRIBE EQUIPMENT DECONTAMINATION METHOD BEFORE SAMPLING THE WE	LL					
SINGLE USE BAILER, FIELD EQUIPMENT: ALCANOX WASH, TRIPLE DI WATER RINSE						
TOTAL DEPTH OF WELL: SIZY/12 09:50						
DEPTH TO WATER BEFORE PUMPING: 3 10 FEET SAMPLE TIME: 143						
HEIGHT OF WELL PVC DIAMETER VOLUME IN MINIMUM QUANTITY OF VOLUME TO PU	RGE					
WATER COLUMN 2-INCH 4-INCH GALLONS WELL VOLUMES TO PURGE IN GALLONS	3					
1 14 GH 10:163 0.653 C T 3						

TIME	VOLUME	pН	SPECIFIC	TEMPERATURE	COMMENTS
	PURGED		CONDUCTIVITY	IN °C	
1604	2.0	8,20	1/00	14.8	
11009	3.0	8.12	1169	13.4	
163	bailed à	in take o	iande		
16TE	dropped	milesin	well mos	Ample filled V	OPS ody
	wind	ausing St	somet on of	op of bott	25)
	70190	card re-	Sangele to	mocrow after	5
	Dai	06 15 56	moved		
	Recovered	Doiler	5/24/12 0	930 hrs	
0945	1.0	7.99	1211	13.6	Santled
		, ,			

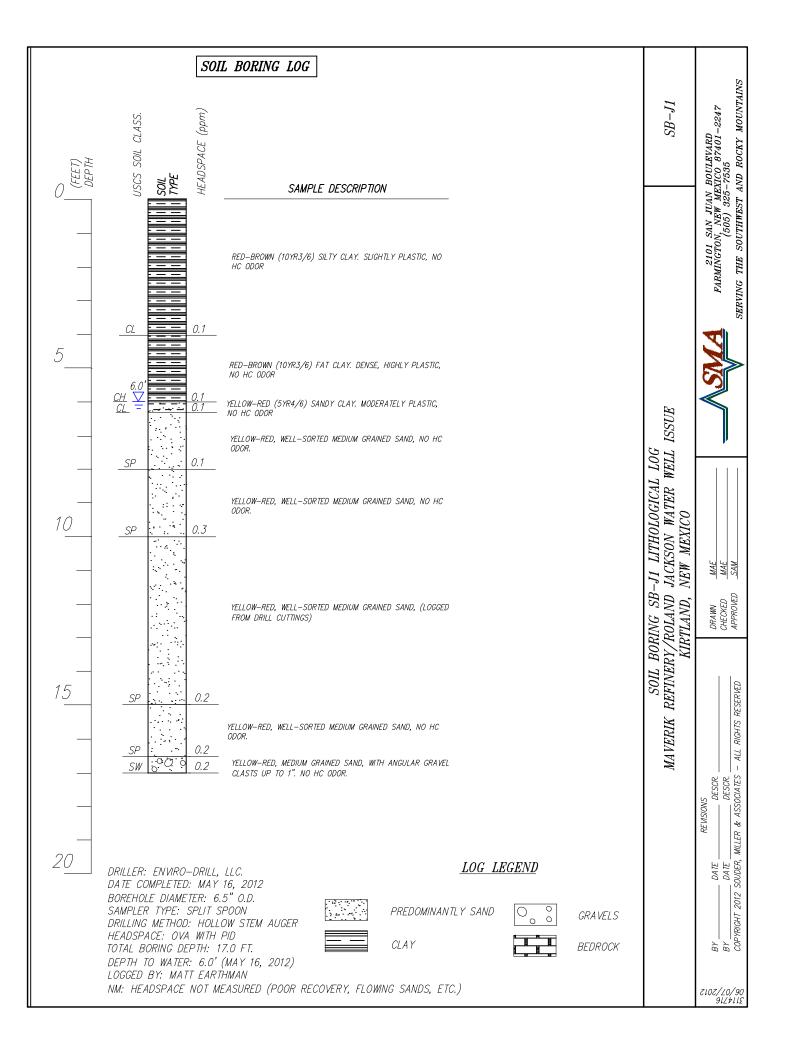
revised 4/4/2008

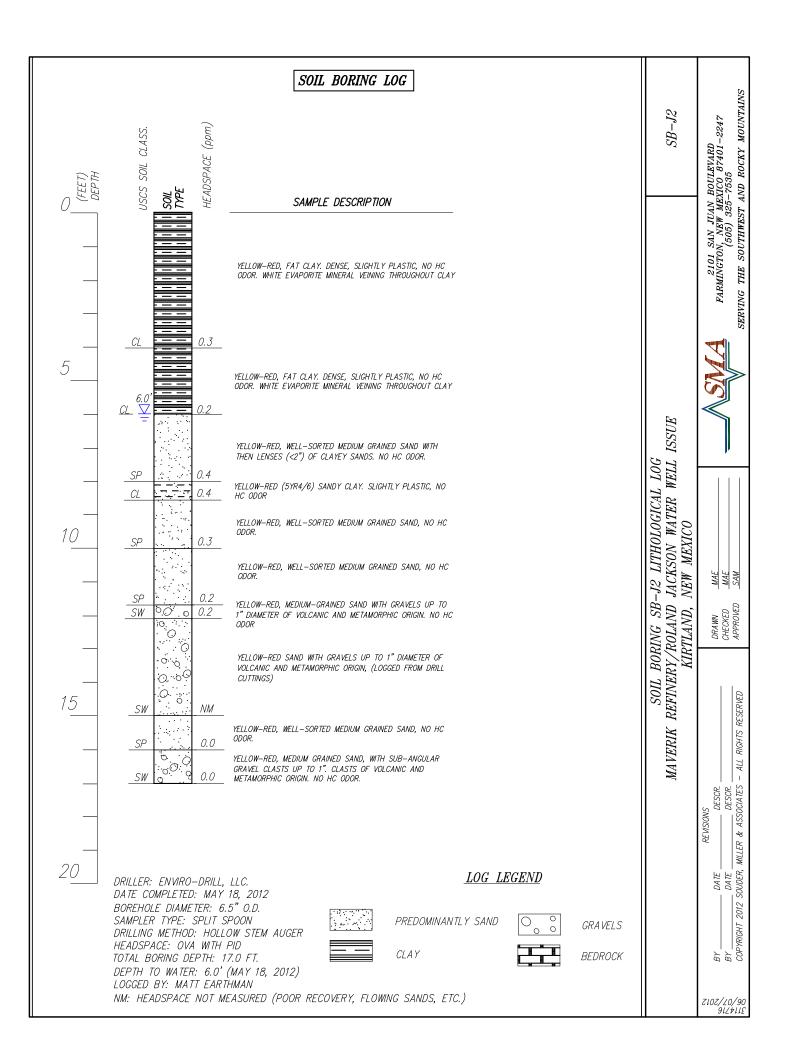
WELL PURGE RECORD
JOB NUMBER: 521620 DATE: 5-23-12 TIME: 404 (WLONG)
JOB NAME: March Jodson Co SMA REPRESENTIVE: 9 (10)2
WELL ID: 38 (5 - relocation)
SAMPLING METHOD: USEPA SW846
FIELD CONDITIONS: Sunny warm with Break
DESCRIBE EQUIPMENT DECONTAMINATION METHOD BEFORE SAMPLING THE WELL
SINGLE USE BAILER, FIELD EQUIPMENT: ALCANOX WASH, TRIPLE DI WATER RINSE
TOTAL DEPTH OF WELL: FEET
DEPTH TO WATER BEFORE PUMPING: 335 FEET SAMPLE TIME: 10:44

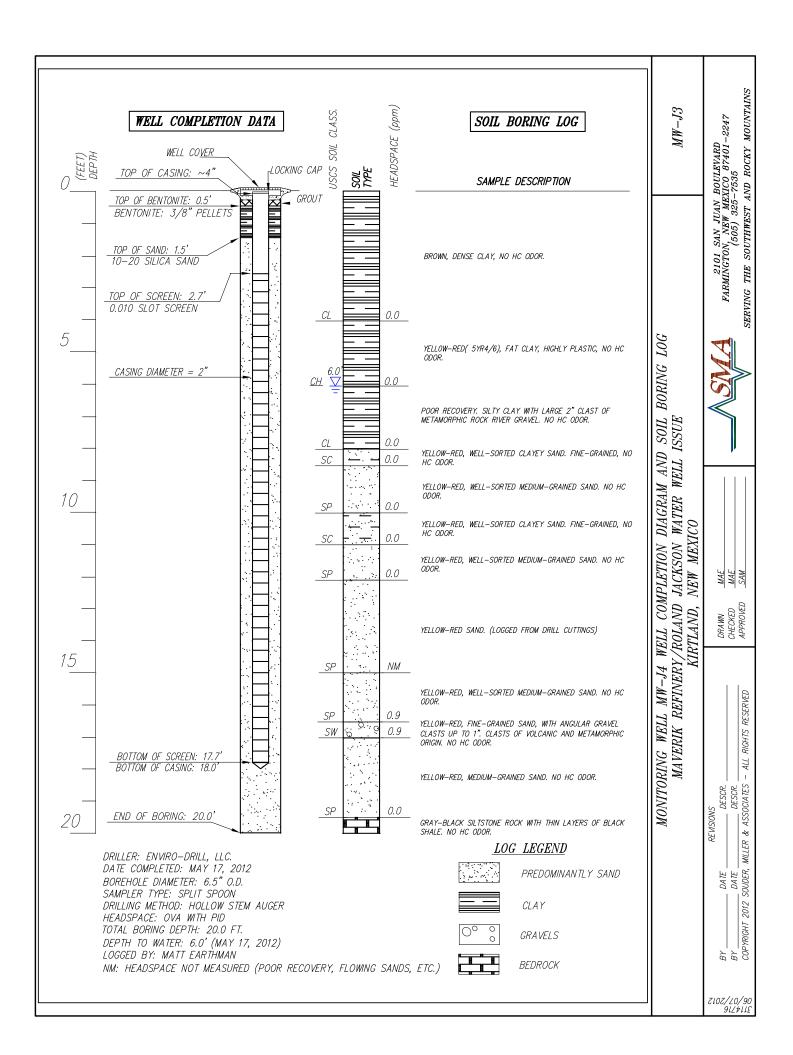
HEIGHT OF	WELL PVC DIAMETER		VOLUME IN	MINIMUM QUANTITY OF	VOLUME TO PURGE
WATER COLUMN	2-INCH	4-INCH	GALLONS	WELL VOLUMES TO PURGE	IN GALLONS
14.35	0.163	0.653	2.34	3	7.0

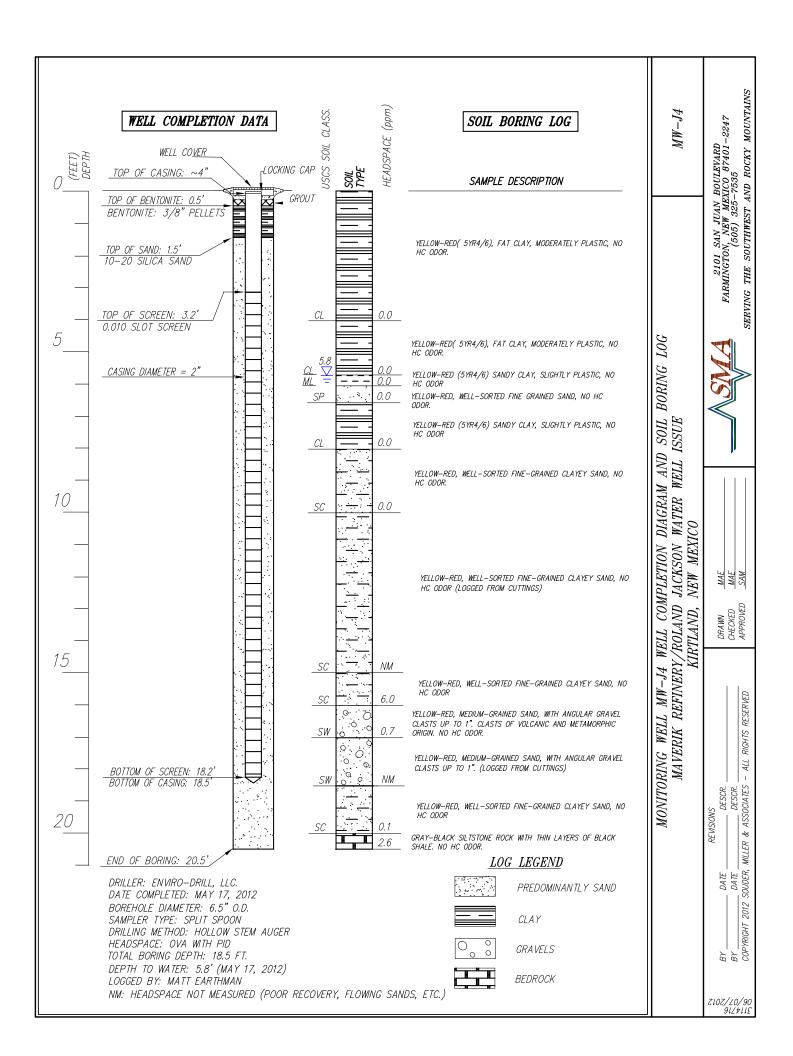
TIME	VOLUME PURGED	рН	SPECIFIC CONDUCTIVITY	TEMPERATURE IN °C	COMMENTS
10:30	1,0	80.8	"Ev-1	14, (Muddy
10:35	2.0	8.89	<u> </u>	13.3	<u>(</u>
10:42	3.0	8,00	}	13.1	
10:44	·~	Sumpley			

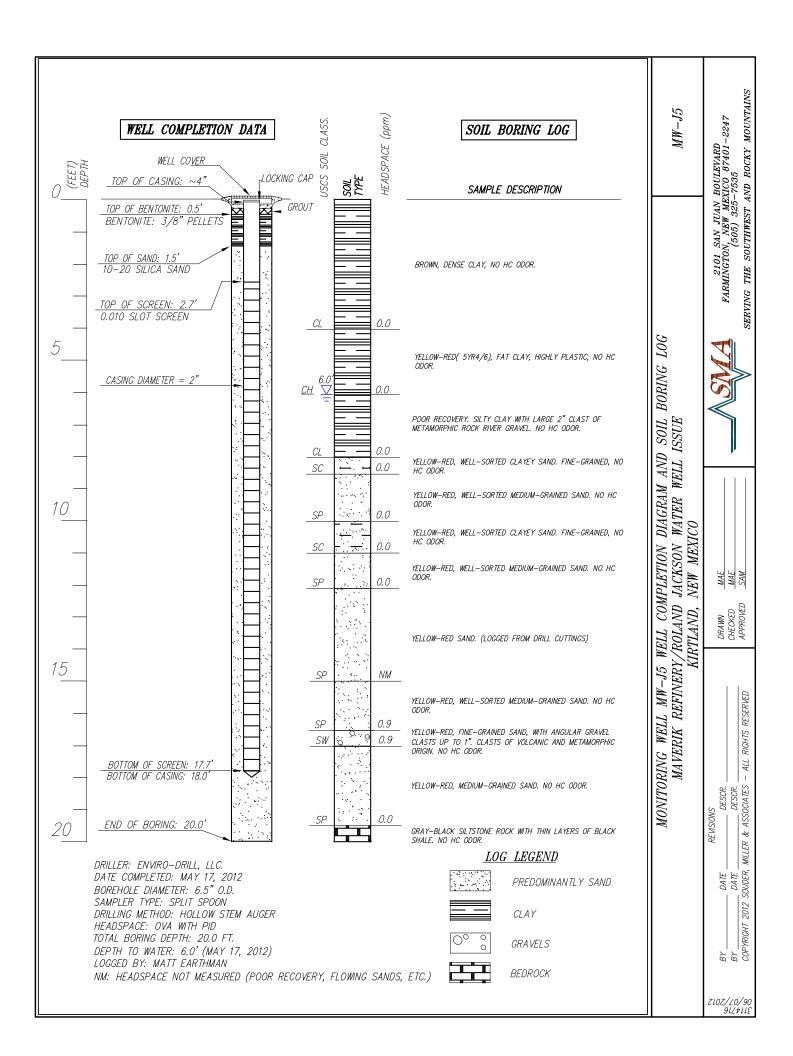
			\A/E	LL PURGE RECO	PD	
JOB NUN	MBER:	5121		DATE: 5-23		[4]
JOB NAN	⁄IE: (Maveci	V Indsonce	SMA REPRESEN	ITIVE: SLC	· · · · · · · · · · · · · · · · · · ·
				WELL ID:	Ma	
SAMPLIN	IG MET	HOD:	USEPA SW8	346		
FIELD C	ONDITIO	ONS:	Syn	y, (MM)		
DESCRI	BE EQU	IIPMEN			D BEFORE SAMPL	ING THE WELL
SINGLE U	SE BAILE	R, FIELD	DEQUIPMENT: A	LCANOX WASH, TRII	PLE DI WATER RINSE	
TOTAL E	EPTH (OF WEI	LL: <u>1745</u>	FEET		
DEPTH 1	TO WAT	ER BE	FORE PUMPII	NG: 356 F	EET SAMPI	E TIME: 1457
HEIGH	-IT OF	WELL	PVC DIAMETER	VOLUME IN	MINIMUM QUANTITY OF	VOLUME TO PURGE
WATER C	OLUMN CA	2-INC	H 4-INCH 0.653	GALLONS W	ELL VOLUMES TO PURGE	IN GALLONS
1_1. (<u> </u>		,			10-(_)
TIME	VOL PUR		рН	SPECIFIC CONDUCTIVITY	TEMPERATURE IN °C	COMMENTS
1426	30	>	7.57	VE514	19.9	
1432	4.0	0	7.5%	990	16.0	
1439	5.1	\sim	7.51	951	16.0	
41 (x (3 3		- 1			1 1	
1444	(p.	\rightarrow	1.00	1 707	15.2	
11.4	(p.(<u> </u>	1.00	1-7-7	15.2	
	(0.0	<u> </u>			15.2	

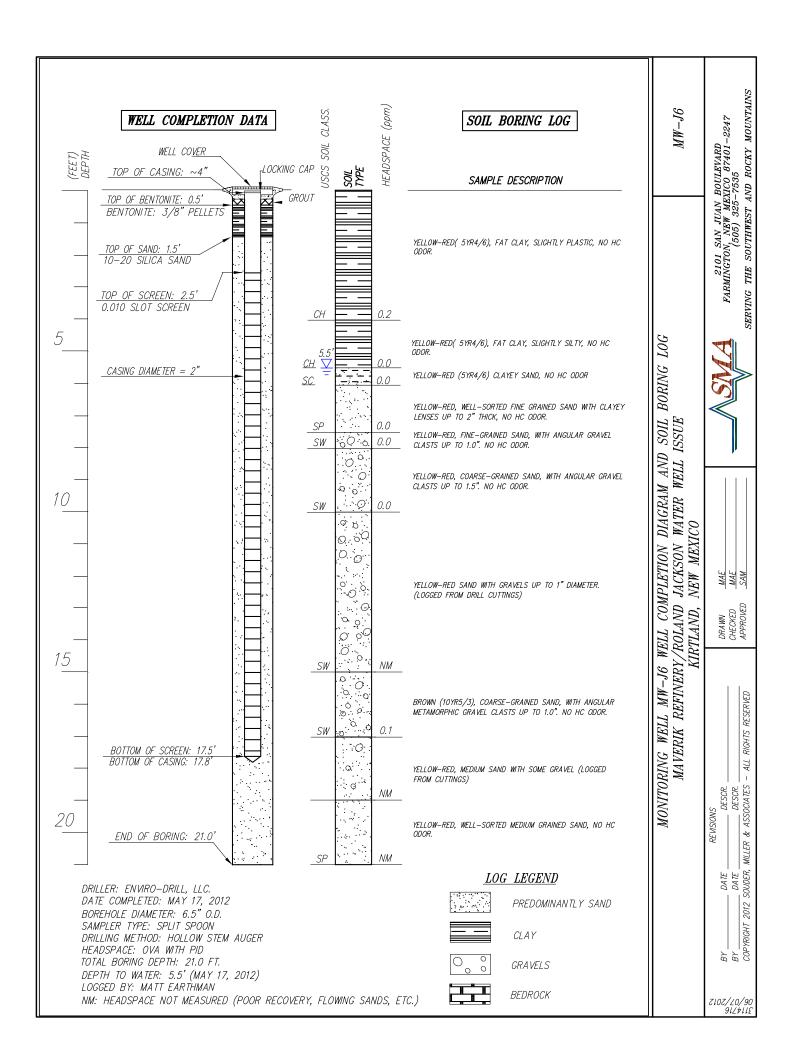

WELL PURGE RECORD
JOB NUMBER: 512/620 DATE: 5-23-12 TIME: 1629 (WL 0)
JOB NAME: Marie Jackson SMA REPRESENTIVE: 510
WELL ID:
SAMPLING METHOD: USEPA SW846
FIELD CONDITIONS: Surry, Warm with Breage
DESCRIBE EQUIPMENT DECONTAMINATION METHOD BEFORE SAMPLING THE WELL
SINGLE USE BAILER, FIELD EQUIPMENT: ALCANOX WASH, TRIPLE DI WATER RINSE
TOTAL DEPTH OF WELL: 15 FEET
DEPTH TO WATER BEFORE PUMPING: 322 FEET SAMPLE TIME: 1/36

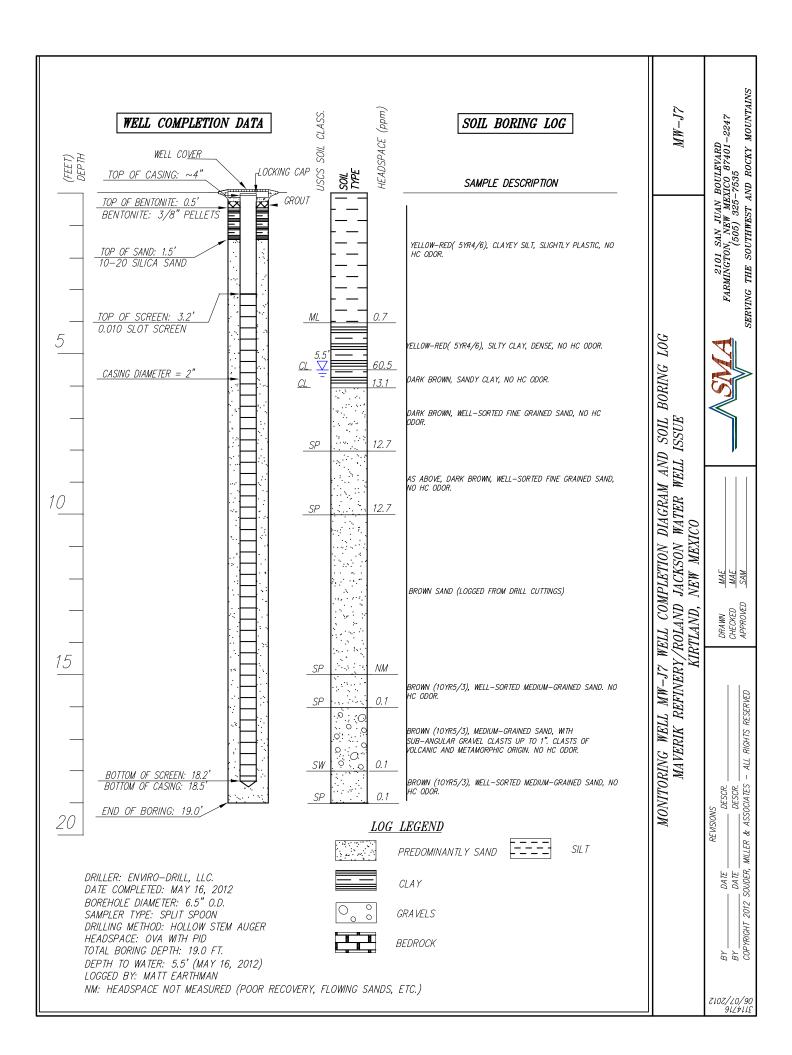

HEIGHT OF	WELL PVC DIAMETER		VOLUME IN	MINIMUM QUANTITY OF	VOLUME TO PURGE
WATER COLUMN	2-INCH	4-INCH	GALLONS	WELL VOLUMES TO PURGE	IN GALLONS
14.93	0.163	0.653	2.43	3	7. 3


TIME	VOLUME PURGED	рН	SPECIFIC CONDUCTIVITY	TEMPERATURE IN °C	COMMENTS
11:25	1.0	7.83		14.2	Muddy
11:30	2.0	7.77		14.1	
11:34	3.6	7.74		13.8	
11:34	Sont	1		13.6	5
				`	


	****			WEL	L PURGE RE	77		
JOB NUN	/IBER:	517	16	20	DATE:	1	TIME:	6944
JOB NAM	ΛE: Ţ	Marie	ix Do	WSCD	SMA REPRES	SEN	TIVE: 5	
		·	O(3)	<i>)</i>	WELL ID:	2	deson Well	
SAMPLIN	IG MET	THOD:	US	SEPA SW84	46			
FIELD CO	ITIDNC	ONS:	<u>C</u>	Moon	Lucy		·····	
DESCRIE	BE EQL	JIPMEN	T DEC	CONTAMI	INATION MET	HOE	BEFORE SAMP	LING THE WELL
SINGLE US	SE BAILE	ER, FIELD	EQUIF	PMENT: AL	.CANOX WASH,	TRIP	LE DI WATER RINSE	
TOTAL D				,		FE	1112	epth=5.48 (=6 PLE TIME: 1030
HEIGH	IT OF	WELL	PVC DIA	AMETER	VOLUME IN	N	INIMUM QUANTITY OF	VOLUME TO PURGE
WATER CO		2 -ING 0.163		4-IN 6H 0.653	GALLONS		LL VOLUMES TO PURGE	IN GALLONS
		10-10	- h ()	V ./\				
TIME		UME GED		pН	SPECIFIC CONDUCTIVI	TY	TEMPERATURE IN °C	COMMENTS
DE)	06		1155	ion l	1/ Joseph	-0 X	(2) Lu + Braco	to Road (OCT
λb_{α}	he	<u>usio</u>		ixis	Lade to		JUA AM	PL Sange
\triangle 0	/// ٤	200	30-10	<u>)</u>				y
$\Delta \mathcal{C}$	0	لمكر	5 G	ollect	ed with	ď	ales, and	400
54	200		50 C	70 W	Har wa	5	ochála "	Took
6	Ves (of the	n/5	13	11 500	$\sqrt{}$	ochála c	
		·/						
					-			


Appendix F – Soil Boring Logs and Well Completion Data





Appendix G – Laboratory Analytical Reports

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

May 24, 2012

Denny Foust Souder, Miller and Associates 2101 San Juan Boulevard Farmington, NM 87401

TEL: (505) 325-5667 FAX (505) 327-1496

RE: Maverik OCD Investigation OrderNo.: 1205837

Dear Denny Foust:

Hall Environmental Analysis Laboratory received 7 sample(s) on 5/18/2012 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. All samples are reported as received unless otherwise indicated.

Please don't hesitate to contact HEAL for any additional information or clarifications.

Sincerely,

Andy Freeman

Laboratory Manager

Only

4901 Hawkins NE

Albuquerque, NM 87109

Lab Order 1205837

Date Reported: 5/24/2012

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Souder, Miller and Associates Client Sample ID: SB-J1 6'

Project:Maverik OCD InvestigationCollection Date: 5/16/2012 12:30:00 PMLab ID:1205837-001Matrix: SOILReceived Date: 5/18/2012 3:14:00 PM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8015B: GASOLINE R.	ANGE				Analyst: NSB
Gasoline Range Organics (GRO)	ND	4.9	mg/Kg	1	5/23/2012 8:55:15 PM
Surr: BFB	91.0	69.7-121	%REC	1	5/23/2012 8:55:15 PM
EPA METHOD 6010B: SOIL METALS	3				Analyst: JLF
Lead	6.0	1.2	mg/Kg	5	5/23/2012 10:55:30 AM

Qualifiers: */X Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

S Spike Recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Lab Order 1205837

Date Reported: 5/24/2012

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Souder, Miller and Associates Client Sample ID: SB-J2 5'

Project:Maverik OCD InvestigationCollection Date: 5/18/2012 8:10:00 AMLab ID:1205837-002Matrix: SOILReceived Date: 5/18/2012 3:14:00 PM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8015B: GASOLINE RA		Analyst: NSB			
Gasoline Range Organics (GRO)	ND	4.7	mg/Kg	1	5/23/2012 10:21:40 PM
Surr: BFB	90.8	69.7-121	%REC	1	5/23/2012 10:21:40 PM
EPA METHOD 6010B: SOIL METALS					Analyst: JLF
Lead	17	1.2	mg/Kg	5	5/23/2012 10:57:10 AM

Qualifiers: */X Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

S Spike Recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Lab Order 1205837

Date Reported: 5/24/2012

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Souder, Miller and Associates Client Sample ID: MW-J3 5.75'

Project:Maverik OCD InvestigationCollection Date: 5/17/2012 12:54:00 PMLab ID:1205837-003Matrix: SOILReceived Date: 5/18/2012 3:14:00 PM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8015B: GASOLINE RA	NGE				Analyst: NSB
Gasoline Range Organics (GRO)	ND	4.7	mg/Kg	1	5/23/2012 10:50:27 PM
Surr: BFB	91.3	69.7-121	%REC	1	5/23/2012 10:50:27 PM
EPA METHOD 6010B: SOIL METALS					Analyst: JLF
Lead	4.5	1.2	mg/Kg	5	5/23/2012 11:21:20 AM

Qualifiers: */X Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

S Spike Recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Lab Order 1205837

Date Reported: 5/24/2012

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Souder, Miller and Associates Client Sample ID: MW-J6 5.5'

Project:Maverik OCD InvestigationCollection Date: 5/17/2012 9:40:00 AMLab ID:1205837-004Matrix: SOILReceived Date: 5/18/2012 3:14:00 PM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8015B: GASOLINE R		Analyst: NSB			
Gasoline Range Organics (GRO)	ND	4.6	mg/Kg	1	5/23/2012 11:19:13 PM
Surr: BFB	91.1	69.7-121	%REC	1	5/23/2012 11:19:13 PM
EPA METHOD 6010B: SOIL METAL	S				Analyst: JLF
Lead	2.9	1.2	mg/Kg	5	5/23/2012 11:22:59 AM

Qualifiers: */X Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

S Spike Recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Lab Order 1205837

Date Reported: 5/24/2012

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Souder, Miller and Associates Client Sample ID: MW-J4 6'

Project:Maverik OCD InvestigationCollection Date: 5/17/2012 7:35:00 AMLab ID:1205837-005Matrix: SOILReceived Date: 5/18/2012 3:14:00 PM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8015B: GASOLINE R	ANGE				Analyst: NSB
Gasoline Range Organics (GRO)	ND	5.0	mg/Kg	1	5/23/2012 11:47:56 PM
Surr: BFB	91.5	69.7-121	%REC	1	5/23/2012 11:47:56 PM
EPA METHOD 6010B: SOIL METAL	S				Analyst: JLF
Lead	4.4	1.2	mg/Kg	5	5/23/2012 11:24:36 AM

Qualifiers: */X Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

S Spike Recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Lab Order 1205837

Date Reported: 5/24/2012

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Souder, Miller and Associates Client Sample ID: MW-J7 5'

Project:Maverik OCD InvestigationCollection Date: 5/16/2012 12:10:00 PMLab ID:1205837-006Matrix: SOILReceived Date: 5/18/2012 3:14:00 PM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8015B: GASOLINE RA	ANGE				Analyst: NSB
Gasoline Range Organics (GRO)	ND	4.9	mg/Kg	1	5/24/2012 12:16:41 AM
Surr: BFB	90.9	69.7-121	%REC	1	5/24/2012 12:16:41 AM
EPA METHOD 6010B: SOIL METALS	3				Analyst: JLF
Lead	5.4	1.2	mg/Kg	5	5/23/2012 11:26:13 AM

Qualifiers: */X Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

S Spike Recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Lab Order 1205837

Date Reported: 5/24/2012

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Souder, Miller and Associates Client Sample ID: MW-J8 6'

Project:Maverik OCD InvestigationCollection Date: 5/17/2012 3:35:00 PMLab ID:1205837-007Matrix: SOILReceived Date: 5/18/2012 3:14:00 PM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8015B: GASOLINE R	ANGE				Analyst: NSB
Gasoline Range Organics (GRO)	ND	4.7	mg/Kg	1	5/24/2012 12:45:25 AM
Surr: BFB	90.8	69.7-121	%REC	1	5/24/2012 12:45:25 AM
EPA METHOD 6010B: SOIL METAL	S				Analyst: JLF
Lead	5.8	1.2	mg/Kg	5	5/23/2012 11:27:48 AM

Qualifiers: */X Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

S Spike Recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

QC SUMMARY REPORT

Hall Environmental Analysis Laboratory, Inc.

WO#: **1205837**

24-May-12

Client: Souder, Miller and Associates

Project: Maverik OCD Investigation

Sample ID MB-2045 SampType: MBLK TestCode: EPA Method 8015B: Gasoline Range

Client ID: PBS Batch ID: 2045 RunNo: 3004

Prep Date: 5/21/2012 Analysis Date: 5/24/2012 SeqNo: 83270 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Gasoline Range Organics (GRO) ND 5.0

Surr: BFB 920 1,000 91.7 69.7 121

Sample ID LCS-2045 SampType: LCS TestCode: EPA Method 8015B: Gasoline Range

Client ID: LCSS Batch ID: 2045 RunNo: 3004

Prep Date: 5/21/2012 Analysis Date: 5/24/2012 SeqNo: 83271 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

 Gasoline Range Organics (GRO)
 28
 5.0
 25.00
 0
 112
 98.5
 133

 Surr: BFB
 970
 1,000
 97.0
 69.7
 121

Qualifiers:

*/X Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

RL Reporting Detection Limit

Page 8 of 9

QC SUMMARY REPORT

Hall Environmental Analysis Laboratory, Inc.

WO#: **1205837**

24-May-12

Client: Souder, Miller and Associates

Project: Maverik OCD Investigation

Sample ID MB-2053 SampType: MBLK TestCode: EPA Method 6010B: Soil Metals

Client ID: PBS Batch ID: 2053 RunNo: 2973

Prep Date: 5/22/2012 Analysis Date: 5/23/2012 SeqNo: 82594 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Lead ND 0.25

Sample ID LCS-2053 SampType: LCS TestCode: EPA Method 6010B: Soil Metals

Client ID: LCSS Batch ID: 2053 RunNo: 2973

Prep Date: 5/22/2012 Analysis Date: 5/23/2012 SeqNo: 82595 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Lead 25 0.25 25.00 0 100 80 120

Qualifiers:

*/X Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

RL Reporting Detection Limit

Page 9 of 9

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87105

TEL: 505-345-3975 FAX: 505-345-4107

Website: www.hallenvironmental.com

Sample	Log-In	Check	List

Client Name: SMA-FARM	Work Order Number: 1205837
Received by/date: 46 05/18//2	
Logged By: Anne Thorne 5/18/2012 3:14:00	PM Am II.
Completed By: Anne Thorne 5/21/2012	am Il-
Reviewed By: TO 05/a1/1a	
Chain of Custody	
1. Were seals intact?	Yes ✓ No 🗌 Not Present 🗀
2. Is Chain of Custody complete?	Yes ☑ No □ Not Present □
3. How was the sample delivered?	Courier
<u>Log In</u>	
4. Coolers are present? (see 19. for cooler specific information)	Yes ✓ No □ NA □
5. Was an attempt made to cool the samples?	Yes ☑ No ☐ NA ☐
6. Were all samples received at a temperature of >0° C to 6.0°C	Yes ☑ No □ NA □
7. Sample(s) in proper container(s)?	Yes ☑ No □
8. Sufficient sample volume for indicated test(s)?	Yes ☑ No 🗌
9. Are samples (except VOA and ONG) properly preserved?	Yes ✓ No 🗌
10. Was preservative added to bottles?	Yes □ No ☑ NA □
11. VOA vials have zero headspace?	Yes ☐ No ☐ No VOA Vials ✔
12. Were any sample containers received broken?	Yes No 🗆
13. Does paperwork match bottle labels? (Note discrepancies on chain of custody)	Yes ✓ No ☐ # of preserved bottles checked for pH:
14. Are matrices correctly identified on Chain of Custody?	Yes ✓ No ☐ (<2 or >12 unless noted)
15. Is it clear what analyses were requested?	Yes No Adjusted?
16. Were all holding times able to be met? (If no, notify customer for authorization.)	Yes ✓ No ☐ Checked by:
Special Handling (if applicable)	
17. Was client notified of all discrepancies with this order?	Yes ☐ No 🗹 NA ☐
Person Notified: Dat	е
By Whom: Via	:
Regarding:	
Client Instructions:	
18. Additional remarks:	
19. Cooler Information Cooler No Temp C Condition Seal Intact Seal No	Seal Date Signed By
1 3.1 Good Yes	Osar Sato Osgrida Sy

HALL ENVIRONMENTAL ANALYSIS LABORATORY www.hallenvironmental.com 4901 Hawkins NE - Albuquerque, NM 87109 Tel. 505-345-3975 Fax 505-345-4107 Analysis Request	BTEX + MTBE + TMB's (8021) BTEX + MTBE + TPH (Gas only) TPH Method 8015B (Gas Diesel) TPH (Method 418.1) EDB (Method 504.1) BOR1 Pesticides \ 8082 PCB's Anions (F,Cl,NO ₃ ,NO ₂ ,PO ₄ ,SO ₄) Anions (F,Cl,NO ₃ ,NO ₂ ,PO ₄ ,SO ₄) 8081 Pesticides \ 8082 PCB's Anions (F,Cl,NO ₃ ,NO ₂ ,PO ₄ ,SO ₄) Anions (F,Cl,NO ₃ ,NO ₂ ,PO ₄ ,SO ₄) Anions (F,Cl,NO ₃ ,NO ₂ ,PO ₄ ,SO ₄) Anions (F,Cl,NO ₃ ,NO ₂ ,PO ₄ ,SO ₄) Anions (F,Cl,NO ₃ ,NO ₂ ,PO ₄ ,SO ₄) Anions (F,Cl,NO ₃ ,NO ₂ ,PO ₄ ,SO ₄) Anions (F,Cl,NO ₃ ,NO ₂ ,PO ₄ ,SO ₄) Anions (F,Cl,NO ₃ ,NO ₂ ,PO ₄ ,SO ₄)			Remarks:
Client: Sander, Miller & Acsocialize, Standard Rush Mailling Address: 210 San Suan Blud Project Name: Project Name: Anvestigation Project #: 5121620	Sampler: Math (Santhman On Ice: Math (Santhma	SON SB-31 6 1 Soils name -022 MW-535.75	5/14/12 1310 MW - 34 6" SIBMIZ 1310 MW - 37 5" SIBMIZ 1310 MW - 37 5" SIBMIZ 1336 W MW - 38 6" V - 007	Date: Time: Relinquished by:

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

June 06, 2012

Reid Allan

Souder, Miller and Associates 2101 San Juan Boulevard

TEL: (505) 325-5667 FAX (505) 327-1496

Farmington, NM 87401

RE: Maverik/Jackson OCD OrderNo.: 1205A69

Dear Reid Allan:

Hall Environmental Analysis Laboratory received 6 sample(s) on 5/25/2012 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. All samples are reported as received unless otherwise indicated.

Please don't hesitate to contact HEAL for any additional information or clarifications.

Sincerely,

Andy Freeman

Laboratory Manager

Indest

4901 Hawkins NE

Albuquerque, NM 87109

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Souder, Miller and Associates Client Sample ID: J6

 Project:
 Maverik/Jackson OCD
 Collection Date: 5/23/2012 1:57:00 PM

 Lab ID:
 1205A69-001
 Matrix: AQUEOUS
 Received Date: 5/25/2012 10:25:00 AM

Analyses	Result	RL Qu	ual Units	DF	Date Analyzed
EPA METHOD 8011/504.1: EDB					Analyst: LRW
1,2-Dibromoethane	ND	0.010	μg/L	1	5/29/2012 4:24:07 PM
EPA METHOD 8015B: GASOLINE RA	NGE				Analyst: NSB
Gasoline Range Organics (GRO)	ND	0.10	mg/L	2	5/31/2012 7:39:02 PM
Surr: BFB	95.1	69.3-120	%REC	2	5/31/2012 7:39:02 PM
EPA 6010B: TOTAL RECOVERABLE	METALS				Analyst: JLF
Lead	0.16	0.050	mg/L	5	6/1/2012 3:49:10 PM
EPA METHOD 8260B: VOLATILES			3		Analyst: MMS
Benzene	ND	2.0	μg/L	2	5/30/2012 5:38:43 PM
Toluene	ND	2.0	μg/L	2	5/30/2012 5:38:43 PM
Ethylbenzene	ND	2.0	μg/L	2	5/30/2012 5:38:43 PM
•			· -	2	
Methyl tert-butyl ether (MTBE)	ND	2.0	μg/L		5/30/2012 5:38:43 PM
1,2,4-Trimethylbenzene	ND	2.0	μg/L	2	5/30/2012 5:38:43 PM
1,3,5-Trimethylbenzene	ND	2.0	μg/L	2	5/30/2012 5:38:43 PM
1,2-Dichloroethane (EDC)	ND	2.0	μg/L 	2	5/30/2012 5:38:43 PM
1,2-Dibromoethane (EDB)	ND	2.0	μg/L	2	5/30/2012 5:38:43 PM
Naphthalene	ND	4.0	μg/L	2	5/30/2012 5:38:43 PM
1-Methylnaphthalene	ND	8.0	μg/L	2	5/30/2012 5:38:43 PM
2-Methylnaphthalene	ND	8.0	μg/L	2	5/30/2012 5:38:43 PM
Acetone	ND	20	μg/L	2	5/30/2012 5:38:43 PM
Bromobenzene	ND	2.0	μg/L	2	5/30/2012 5:38:43 PM
Bromodichloromethane	ND	2.0	μg/L	2	5/30/2012 5:38:43 PM
Bromoform	ND	2.0	μg/L	2	5/30/2012 5:38:43 PM
Bromomethane	ND	6.0	μg/L	2	5/30/2012 5:38:43 PM
2-Butanone	ND	20	μg/L	2	5/30/2012 5:38:43 PM
Carbon disulfide	ND	20	μg/L	2	5/30/2012 5:38:43 PM
Carbon Tetrachloride	ND	2.0	μg/L	2	5/30/2012 5:38:43 PM
Chlorobenzene	ND	2.0	μg/L	2	5/30/2012 5:38:43 PM
Chloroethane	ND	4.0	μg/L	2	5/30/2012 5:38:43 PM
Chloroform	ND	2.0	μg/L	2	5/30/2012 5:38:43 PM
Chloromethane	ND	6.0	μg/L	2	5/30/2012 5:38:43 PM
2-Chlorotoluene	ND	2.0	μg/L	2	5/30/2012 5:38:43 PM
4-Chlorotoluene	ND	2.0	μg/L	2	5/30/2012 5:38:43 PM
cis-1,2-DCE	ND	2.0	μg/L	2	5/30/2012 5:38:43 PM
cis-1,3-Dichloropropene	ND	2.0	μg/L	2	5/30/2012 5:38:43 PM
1,2-Dibromo-3-chloropropane	ND	4.0	μg/L	2	5/30/2012 5:38:43 PM
Dibromochloromethane	ND	2.0		2	5/30/2012 5:38:43 PM
Dibromomethane	ND ND	2.0	μg/L	2	5/30/2012 5:38:43 PM
1,2-Dichlorobenzene	ND ND	2.0	μg/L	2	5/30/2012 5:38:43 PM
1,3-Dichlorobenzene			μg/L		
*	ND	2.0	μg/L	2	5/30/2012 5:38:43 PM
1,4-Dichlorobenzene	ND	2.0	μg/L	2	5/30/2012 5:38:43 PM

^{*/}X Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

S Spike Recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

RL Reporting Detection Limit

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Souder, Miller and Associates Client Sample ID: J6

Collection Date: 5/23/2012 1:57:00 PM **Project:** Maverik/Jackson OCD 1205A69-001 Matrix: AQUEOUS Received Date: 5/25/2012 10:25:00 AM Lab ID:

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES					Analyst: MMS
Dichlorodifluoromethane	ND	2.0	μg/L	2	5/30/2012 5:38:43 PM
1,1-Dichloroethane	ND	2.0	μg/L	2	5/30/2012 5:38:43 PM
1,1-Dichloroethene	ND	2.0	μg/L	2	5/30/2012 5:38:43 PM
1,2-Dichloropropane	ND	2.0	μg/L	2	5/30/2012 5:38:43 PM
1,3-Dichloropropane	ND	2.0	μg/L	2	5/30/2012 5:38:43 PM
2,2-Dichloropropane	ND	4.0	μg/L	2	5/30/2012 5:38:43 PM
1,1-Dichloropropene	ND	2.0	μg/L	2	5/30/2012 5:38:43 PM
Hexachlorobutadiene	ND	2.0	μg/L	2	5/30/2012 5:38:43 PM
2-Hexanone	ND	20	μg/L	2	5/30/2012 5:38:43 PM
Isopropylbenzene	ND	2.0	μg/L	2	5/30/2012 5:38:43 PM
4-Isopropyltoluene	ND	2.0	μg/L	2	5/30/2012 5:38:43 PM
4-Methyl-2-pentanone	ND	20	μg/L	2	5/30/2012 5:38:43 PM
Methylene Chloride	ND	6.0	μg/L	2	5/30/2012 5:38:43 PM
n-Butylbenzene	ND	2.0	μg/L	2	5/30/2012 5:38:43 PM
n-Propylbenzene	ND	2.0	μg/L	2	5/30/2012 5:38:43 PM
sec-Butylbenzene	ND	2.0	μg/L	2	5/30/2012 5:38:43 PM
Styrene	ND	2.0	μg/L	2	5/30/2012 5:38:43 PM
tert-Butylbenzene	ND	2.0	μg/L	2	5/30/2012 5:38:43 PM
1,1,1,2-Tetrachloroethane	ND	2.0	μg/L	2	5/30/2012 5:38:43 PM
1,1,2,2-Tetrachloroethane	ND	4.0	μg/L	2	5/30/2012 5:38:43 PM
Tetrachloroethene (PCE)	ND	2.0	μg/L	2	5/30/2012 5:38:43 PM
trans-1,2-DCE	ND	2.0	μg/L	2	5/30/2012 5:38:43 PM
trans-1,3-Dichloropropene	ND	2.0	μg/L	2	5/30/2012 5:38:43 PM
1,2,3-Trichlorobenzene	ND	2.0	μg/L	2	5/30/2012 5:38:43 PM
1,2,4-Trichlorobenzene	ND	2.0	μg/L	2	5/30/2012 5:38:43 PM
1,1,1-Trichloroethane	ND	2.0	μg/L	2	5/30/2012 5:38:43 PM
1,1,2-Trichloroethane	ND	2.0	μg/L	2	5/30/2012 5:38:43 PM
Trichloroethene (TCE)	ND	2.0	μg/L	2	5/30/2012 5:38:43 PM
Trichlorofluoromethane	ND	2.0	μg/L	2	5/30/2012 5:38:43 PM
1,2,3-Trichloropropane	ND	4.0	μg/L	2	5/30/2012 5:38:43 PM
Vinyl chloride	ND	2.0	μg/L	2	5/30/2012 5:38:43 PM
Xylenes, Total	ND	3.0	μg/L	2	5/30/2012 5:38:43 PM
Surr: 1,2-Dichloroethane-d4	107	70-130	%REC	2	5/30/2012 5:38:43 PM
Surr: 4-Bromofluorobenzene	113	70-130	%REC	2	5/30/2012 5:38:43 PM
Surr: Dibromofluoromethane	86.8	69.8-130	%REC	2	5/30/2012 5:38:43 PM
Surr: Toluene-d8	101	70-130	%REC	2	5/30/2012 5:38:43 PM

Qualifiers:

- Value exceeds Maximum Contaminant Level. */X
- Ε Value above quantitation range
- J Analyte detected below quantitation limits

Spike Recovery outside accepted recovery limits

- R RPD outside accepted recovery limits
- В Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- Reporting Detection Limit RL

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Souder, Miller and Associates Client Sample ID: J3

Project:Maverik/Jackson OCDCollection Date: 5/23/2012 3:41:00 PMLab ID:1205A69-002Matrix: AQUEOUSReceived Date: 5/25/2012 10:25:00 AM

Analyses	Result	RL Qu	ıal Units	DF	Date Analyzed
EPA METHOD 8011/504.1: EDB					Analyst: LRW
1,2-Dibromoethane	ND	0.010	μg/L	1	5/29/2012 4:36:48 PM
EPA METHOD 8015B: GASOLINE RAN	NGE				Analyst: NSB
Gasoline Range Organics (GRO)	ND	0.10	mg/L	2	5/31/2012 8:09:55 PM
Surr: BFB	79.8	69.3-120	%REC	2	5/31/2012 8:09:55 PM
EPA 6010B: TOTAL RECOVERABLE	METALS				Analyst: JLF
Lead	0.16	0.050	mg/L	5	6/4/2012 1:54:08 PM
EPA METHOD 8260B: VOLATILES			_		Analyst: MMS
Benzene	ND	2.0	μg/L	2	5/30/2012 6:08:12 PM
Toluene	ND	2.0	μg/L	2	5/30/2012 6:08:12 PM
Ethylbenzene	ND	2.0	μg/L	2	5/30/2012 6:08:12 PM
Methyl tert-butyl ether (MTBE)	ND	2.0	μg/L	2	5/30/2012 6:08:12 PM
1,2,4-Trimethylbenzene	ND	2.0	μg/L	2	5/30/2012 6:08:12 PM
1,3,5-Trimethylbenzene	ND	2.0	μg/L	2	5/30/2012 6:08:12 PM
1,2-Dichloroethane (EDC)	ND	2.0	μg/L	2	5/30/2012 6:08:12 PM
1,2-Dibromoethane (EDB)	ND	2.0	μg/L	2	5/30/2012 6:08:12 PM
Naphthalene	ND	4.0	μg/L	2	5/30/2012 6:08:12 PM
1-Methylnaphthalene	ND	8.0	μg/L	2	5/30/2012 6:08:12 PM
2-Methylnaphthalene	ND	8.0	μg/L	2	5/30/2012 6:08:12 PM
Acetone	ND ND	20	μg/L	2	5/30/2012 6:08:12 PM
Bromobenzene	ND	2.0	μg/L	2	5/30/2012 6:08:12 PM
Bromodichloromethane	ND ND	2.0	μg/L	2	5/30/2012 6:08:12 PM
Bromoform	ND ND	2.0	μg/L	2	5/30/2012 6:08:12 PM
Bromomethane	ND ND	6.0	· -	2	5/30/2012 6:08:12 PM
			μg/L	2	
2-Butanone Carbon disulfide	ND	20	μg/L		5/30/2012 6:08:12 PM
	ND	20	μg/L	2	5/30/2012 6:08:12 PM
Carbon Tetrachloride	ND	2.0	μg/L	2	5/30/2012 6:08:12 PM
Chloropthaga	ND	2.0	μg/L	2	5/30/2012 6:08:12 PM
Chloroethane	ND	4.0	μg/L "	2	5/30/2012 6:08:12 PM
Chloroform	ND	2.0	μg/L "	2	5/30/2012 6:08:12 PM
Chloromethane	ND	6.0	μg/L "	2	5/30/2012 6:08:12 PM
2-Chlorotoluene	ND	2.0	μg/L	2	5/30/2012 6:08:12 PM
4-Chlorotoluene	ND	2.0	μg/L	2	5/30/2012 6:08:12 PM
cis-1,2-DCE	ND	2.0	μg/L	2	5/30/2012 6:08:12 PM
cis-1,3-Dichloropropene	ND	2.0	μg/L	2	5/30/2012 6:08:12 PM
1,2-Dibromo-3-chloropropane	ND	4.0	μg/L	2	5/30/2012 6:08:12 PM
Dibromochloromethane	ND	2.0	μg/L	2	5/30/2012 6:08:12 PM
Dibromomethane	ND	2.0	μg/L	2	5/30/2012 6:08:12 PM
1,2-Dichlorobenzene	ND	2.0	μg/L	2	5/30/2012 6:08:12 PM
1,3-Dichlorobenzene	ND	2.0	μg/L	2	5/30/2012 6:08:12 PM
1,4-Dichlorobenzene	ND	2.0	μg/L	2	5/30/2012 6:08:12 PM

^{*/}X Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

S Spike Recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

RL Reporting Detection Limit

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Souder, Miller and Associates Client Sample ID: J3

Collection Date: 5/23/2012 3:41:00 PM **Project:** Maverik/Jackson OCD 1205A69-002 Matrix: AQUEOUS Received Date: 5/25/2012 10:25:00 AM Lab ID:

Analyses	Result	RL Qua	l Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES					Analyst: MMS
Dichlorodifluoromethane	ND	2.0	μg/L	2	5/30/2012 6:08:12 PM
1,1-Dichloroethane	ND	2.0	μg/L	2	5/30/2012 6:08:12 PM
1,1-Dichloroethene	ND	2.0	μg/L	2	5/30/2012 6:08:12 PM
1,2-Dichloropropane	ND	2.0	μg/L	2	5/30/2012 6:08:12 PM
1,3-Dichloropropane	ND	2.0	μg/L	2	5/30/2012 6:08:12 PM
2,2-Dichloropropane	ND	4.0	μg/L	2	5/30/2012 6:08:12 PM
1,1-Dichloropropene	ND	2.0	μg/L	2	5/30/2012 6:08:12 PM
Hexachlorobutadiene	ND	2.0	μg/L	2	5/30/2012 6:08:12 PM
2-Hexanone	ND	20	μg/L	2	5/30/2012 6:08:12 PM
Isopropylbenzene	ND	2.0	μg/L	2	5/30/2012 6:08:12 PM
4-Isopropyltoluene	ND	2.0	μg/L	2	5/30/2012 6:08:12 PM
4-Methyl-2-pentanone	ND	20	μg/L	2	5/30/2012 6:08:12 PM
Methylene Chloride	ND	6.0	μg/L	2	5/30/2012 6:08:12 PM
n-Butylbenzene	ND	2.0	μg/L	2	5/30/2012 6:08:12 PM
n-Propylbenzene	ND	2.0	μg/L	2	5/30/2012 6:08:12 PM
sec-Butylbenzene	ND	2.0	μg/L	2	5/30/2012 6:08:12 PM
Styrene	ND	2.0	μg/L	2	5/30/2012 6:08:12 PM
tert-Butylbenzene	ND	2.0	μg/L	2	5/30/2012 6:08:12 PM
1,1,1,2-Tetrachloroethane	ND	2.0	μg/L	2	5/30/2012 6:08:12 PM
1,1,2,2-Tetrachloroethane	ND	4.0	μg/L	2	5/30/2012 6:08:12 PM
Tetrachloroethene (PCE)	ND	2.0	μg/L	2	5/30/2012 6:08:12 PM
trans-1,2-DCE	ND	2.0	μg/L	2	5/30/2012 6:08:12 PM
trans-1,3-Dichloropropene	ND	2.0	μg/L	2	5/30/2012 6:08:12 PM
1,2,3-Trichlorobenzene	ND	2.0	μg/L	2	5/30/2012 6:08:12 PM
1,2,4-Trichlorobenzene	ND	2.0	μg/L	2	5/30/2012 6:08:12 PM
1,1,1-Trichloroethane	ND	2.0	μg/L	2	5/30/2012 6:08:12 PM
1,1,2-Trichloroethane	ND	2.0	μg/L	2	5/30/2012 6:08:12 PM
Trichloroethene (TCE)	ND	2.0	μg/L	2	5/30/2012 6:08:12 PM
Trichlorofluoromethane	ND	2.0	μg/L	2	5/30/2012 6:08:12 PM
1,2,3-Trichloropropane	ND	4.0	μg/L	2	5/30/2012 6:08:12 PM
Vinyl chloride	ND	2.0	μg/L	2	5/30/2012 6:08:12 PM
Xylenes, Total	ND	3.0	μg/L	2	5/30/2012 6:08:12 PM
Surr: 1,2-Dichloroethane-d4	104	70-130	%REC	2	5/30/2012 6:08:12 PM
Surr: 4-Bromofluorobenzene	109	70-130	%REC	2	5/30/2012 6:08:12 PM
Surr: Dibromofluoromethane	90.0	69.8-130	%REC	2	5/30/2012 6:08:12 PM
Surr: Toluene-d8	100	70-130	%REC	2	5/30/2012 6:08:12 PM

Qualifiers:

- Value exceeds Maximum Contaminant Level. */X
- Ε Value above quantitation range
- J Analyte detected below quantitation limits

Spike Recovery outside accepted recovery limits

- R RPD outside accepted recovery limits
- В Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- Reporting Detection Limit RL

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Souder, Miller and Associates Client Sample ID: J4

 Project:
 Maverik/Jackson OCD
 Collection Date: 5/24/2012 9:50:00 AM

 Lab ID:
 1205A69-003
 Matrix: AQUEOUS
 Received Date: 5/25/2012 10:25:00 AM

Analyses	Result	RL Qu	ıal Units	DF	Date Analyzed
EPA METHOD 8011/504.1: EDB					Analyst: LRW
1,2-Dibromoethane	ND	0.010	μg/L	1	5/29/2012 4:49:28 PM
EPA METHOD 8015B: GASOLINE R	ANGF				Analyst: NSB
Gasoline Range Organics (GRO)	ND	0.10	mg/L	2	6/1/2012 12:46:14 AM
Surr: BFB	77.6	69.3-120	%REC	2	6/1/2012 12:46:14 AM
EPA 6010B: TOTAL RECOVERABLI	E METALS				Analyst: JLF
Lead	0.049	0.010	mg/L	1	6/1/2012 3:17:50 PM
EPA METHOD 8260B: VOLATILES			3		Analyst: MMS
Benzene	ND	2.0	μg/L	2	5/30/2012 6:37:44 PM
Toluene	ND ND	2.0	μg/L	2	5/30/2012 6:37:44 PM
	ND ND	_	· -	2	
Ethylbenzene		2.0	μg/L		5/30/2012 6:37:44 PM
Methyl tert-butyl ether (MTBE)	ND	2.0	μg/L	2	5/30/2012 6:37:44 PM
1,2,4-Trimethylbenzene	ND	2.0	μg/L "	2	5/30/2012 6:37:44 PM
1,3,5-Trimethylbenzene	ND	2.0	μg/L	2	5/30/2012 6:37:44 PM
1,2-Dichloroethane (EDC)	ND	2.0	μg/L	2	5/30/2012 6:37:44 PM
1,2-Dibromoethane (EDB)	ND	2.0	μg/L	2	5/30/2012 6:37:44 PM
Naphthalene	ND	4.0	μg/L	2	5/30/2012 6:37:44 PM
1-Methylnaphthalene	ND	8.0	μg/L	2	5/30/2012 6:37:44 PM
2-Methylnaphthalene	ND	8.0	μg/L	2	5/30/2012 6:37:44 PM
Acetone	ND	20	μg/L	2	5/30/2012 6:37:44 PM
Bromobenzene	ND	2.0	μg/L	2	5/30/2012 6:37:44 PM
Bromodichloromethane	ND	2.0	μg/L	2	5/30/2012 6:37:44 PM
Bromoform	ND	2.0	μg/L	2	5/30/2012 6:37:44 PM
Bromomethane	ND	6.0	μg/L	2	5/30/2012 6:37:44 PM
2-Butanone	ND	20	μg/L	2	5/30/2012 6:37:44 PM
Carbon disulfide	ND	20	μg/L	2	5/30/2012 6:37:44 PM
Carbon Tetrachloride	ND	2.0	μg/L	2	5/30/2012 6:37:44 PM
Chlorobenzene	ND	2.0	μg/L	2	5/30/2012 6:37:44 PM
Chloroethane	ND	4.0	μg/L	2	5/30/2012 6:37:44 PM
Chloroform	ND	2.0	μg/L	2	5/30/2012 6:37:44 PM
Chloromethane	ND	6.0	μg/L	2	5/30/2012 6:37:44 PM
2-Chlorotoluene	ND	2.0	μg/L	2	5/30/2012 6:37:44 PM
4-Chlorotoluene	ND ND	2.0	. •	2	5/30/2012 6:37:44 PM
			μg/L		
cis-1,2-DCE	ND	2.0	μg/L	2	5/30/2012 6:37:44 PM
cis-1,3-Dichloropropene	ND	2.0	μg/L "	2	5/30/2012 6:37:44 PM
1,2-Dibromo-3-chloropropane	ND	4.0	μg/L "	2	5/30/2012 6:37:44 PM
Dibromochloromethane	ND	2.0	μg/L "	2	5/30/2012 6:37:44 PM
Dibromomethane	ND	2.0	μg/L	2	5/30/2012 6:37:44 PM
1,2-Dichlorobenzene	ND	2.0	μg/L	2	5/30/2012 6:37:44 PM
1,3-Dichlorobenzene	ND	2.0	μg/L	2	5/30/2012 6:37:44 PM
1,4-Dichlorobenzene	ND	2.0	μg/L	2	5/30/2012 6:37:44 PM

^{*/}X Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

S Spike Recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

RL Reporting Detection Limit

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Souder, Miller and Associates Client Sample ID: J4

 Project:
 Maverik/Jackson OCD
 Collection Date: 5/24/2012 9:50:00 AM

 Lab ID:
 1205A69-003
 Matrix: AQUEOUS
 Received Date: 5/25/2012 10:25:00 AM

Analyses	Result	RL Qu	ual Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES					Analyst: MMS
Dichlorodifluoromethane	ND	2.0	μg/L	2	5/30/2012 6:37:44 PM
1,1-Dichloroethane	ND	2.0	μg/L	2	5/30/2012 6:37:44 PM
1,1-Dichloroethene	ND	2.0	μg/L	2	5/30/2012 6:37:44 PM
1,2-Dichloropropane	ND	2.0	μg/L	2	5/30/2012 6:37:44 PM
1,3-Dichloropropane	ND	2.0	μg/L	2	5/30/2012 6:37:44 PM
2,2-Dichloropropane	ND	4.0	μg/L	2	5/30/2012 6:37:44 PM
1,1-Dichloropropene	ND	2.0	μg/L	2	5/30/2012 6:37:44 PM
Hexachlorobutadiene	ND	2.0	μg/L	2	5/30/2012 6:37:44 PM
2-Hexanone	ND	20	μg/L	2	5/30/2012 6:37:44 PM
Isopropylbenzene	ND	2.0	μg/L	2	5/30/2012 6:37:44 PM
4-Isopropyltoluene	ND	2.0	μg/L	2	5/30/2012 6:37:44 PM
4-Methyl-2-pentanone	ND	20	μg/L	2	5/30/2012 6:37:44 PM
Methylene Chloride	ND	6.0	μg/L	2	5/30/2012 6:37:44 PM
n-Butylbenzene	ND	2.0	μg/L	2	5/30/2012 6:37:44 PM
n-Propylbenzene	ND	2.0	μg/L	2	5/30/2012 6:37:44 PM
sec-Butylbenzene	ND	2.0	μg/L	2	5/30/2012 6:37:44 PM
Styrene	ND	2.0	μg/L	2	5/30/2012 6:37:44 PM
tert-Butylbenzene	ND	2.0	μg/L	2	5/30/2012 6:37:44 PM
1,1,1,2-Tetrachloroethane	ND	2.0	μg/L	2	5/30/2012 6:37:44 PM
1,1,2,2-Tetrachloroethane	ND	4.0	μg/L	2	5/30/2012 6:37:44 PM
Tetrachloroethene (PCE)	ND	2.0	μg/L	2	5/30/2012 6:37:44 PM
trans-1,2-DCE	ND	2.0	μg/L	2	5/30/2012 6:37:44 PM
trans-1,3-Dichloropropene	ND	2.0	μg/L	2	5/30/2012 6:37:44 PM
1,2,3-Trichlorobenzene	ND	2.0	μg/L	2	5/30/2012 6:37:44 PM
1,2,4-Trichlorobenzene	ND	2.0	μg/L	2	5/30/2012 6:37:44 PM
1,1,1-Trichloroethane	ND	2.0	μg/L	2	5/30/2012 6:37:44 PM
1,1,2-Trichloroethane	ND	2.0	μg/L	2	5/30/2012 6:37:44 PM
Trichloroethene (TCE)	ND	2.0	μg/L	2	5/30/2012 6:37:44 PM
Trichlorofluoromethane	ND	2.0	μg/L	2	5/30/2012 6:37:44 PM
1,2,3-Trichloropropane	ND	4.0	μg/L	2	5/30/2012 6:37:44 PM
Vinyl chloride	ND	2.0	μg/L	2	5/30/2012 6:37:44 PM
Xylenes, Total	ND	3.0	μg/L	2	5/30/2012 6:37:44 PM
Surr: 1,2-Dichloroethane-d4	106	70-130	%REC	2	5/30/2012 6:37:44 PM
Surr: 4-Bromofluorobenzene	111	70-130	%REC	2	5/30/2012 6:37:44 PM
Surr: Dibromofluoromethane	91.6	69.8-130	%REC	2	5/30/2012 6:37:44 PM
Surr: Toluene-d8	102	70-130	%REC	2	5/30/2012 6:37:44 PM

- */X Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- RL Reporting Detection Limit

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Souder, Miller and Associates Client Sample ID: J8

 Project:
 Maverik/Jackson OCD
 Collection Date: 5/24/2012 10:44:00 AM

 Lab ID:
 1205A69-004
 Matrix: AQUEOUS
 Received Date: 5/25/2012 10:25:00 AM

Analyses	Result	RL Qu	ıal Units	DF	Date Analyzed
EPA METHOD 8011/504.1: EDB					Analyst: LRW
1,2-Dibromoethane	ND	0.010	μg/L	1	5/29/2012 5:02:07 PM
EPA METHOD 8015B: GASOLINE RA	NGE				Analyst: NSB
Gasoline Range Organics (GRO)	ND	0.10	mg/L	2	6/1/2012 1:17:03 AM
Surr: BFB	98.4	69.3-120	%REC	2	6/1/2012 1:17:03 AM
EPA 6010B: TOTAL RECOVERABLE	METALS				Analyst: JLF
Lead	0.22	0.050	mg/L	5	6/4/2012 2:10:27 PM
EPA METHOD 8260B: VOLATILES					Analyst: MMS
Benzene	ND	2.0	μg/L	2	5/30/2012 7:07:06 PM
Toluene	ND	2.0	μg/L	2	5/30/2012 7:07:06 PM
Ethylbenzene	ND	2.0	μg/L	2	5/30/2012 7:07:06 PM
Methyl tert-butyl ether (MTBE)	ND	2.0	μg/L	2	5/30/2012 7:07:06 PM
1,2,4-Trimethylbenzene	ND	2.0	μg/L	2	5/30/2012 7:07:06 PM
1,3,5-Trimethylbenzene	ND	2.0	μg/L	2	5/30/2012 7:07:06 PM
1,2-Dichloroethane (EDC)	ND	2.0	μg/L	2	5/30/2012 7:07:06 PM
1,2-Dibromoethane (EDB)	ND	2.0	μg/L	2	5/30/2012 7:07:06 PM
Naphthalene	ND	4.0	μg/L	2	5/30/2012 7:07:06 PM
1-Methylnaphthalene	ND	8.0	μg/L	2	5/30/2012 7:07:06 PM
2-Methylnaphthalene	ND	8.0	μg/L	2	5/30/2012 7:07:06 PM
Acetone	ND	20	μg/L	2	5/30/2012 7:07:06 PM
Bromobenzene	ND	2.0	μg/L	2	5/30/2012 7:07:06 PM
Bromodichloromethane	ND	2.0	μg/L	2	5/30/2012 7:07:06 PM
Bromoform	ND	2.0	μg/L	2	5/30/2012 7:07:06 PM
Bromomethane	ND	6.0	μg/L	2	5/30/2012 7:07:06 PM
2-Butanone	ND	20	μg/L	2	5/30/2012 7:07:06 PM
Carbon disulfide	ND	20	μg/L	2	5/30/2012 7:07:06 PM
Carbon Tetrachloride	ND	2.0	μg/L	2	5/30/2012 7:07:06 PM
Chlorobenzene	ND	2.0	μg/L	2	5/30/2012 7:07:06 PM
Chloroethane	ND	4.0	μg/L	2	5/30/2012 7:07:06 PM
Chloroform	ND	2.0	μg/L	2	5/30/2012 7:07:06 PM
Chloromethane	ND	6.0	μg/L	2	5/30/2012 7:07:06 PM
2-Chlorotoluene	ND	2.0	μg/L	2	5/30/2012 7:07:06 PM
4-Chlorotoluene	ND	2.0	μg/L	2	5/30/2012 7:07:06 PM
cis-1,2-DCE	ND	2.0	μg/L	2	5/30/2012 7:07:06 PM
cis-1,3-Dichloropropene	ND	2.0	μg/L	2	5/30/2012 7:07:06 PM
1,2-Dibromo-3-chloropropane	ND	4.0	μg/L	2	5/30/2012 7:07:06 PM
Dibromochloromethane	ND	2.0	μg/L	2	5/30/2012 7:07:06 PM
Dibromomethane	ND	2.0	μg/L	2	5/30/2012 7:07:06 PM
1,2-Dichlorobenzene	ND	2.0	μg/L	2	5/30/2012 7:07:06 PM
1,3-Dichlorobenzene	ND	2.0	μg/L	2	5/30/2012 7:07:06 PM
1,4-Dichlorobenzene	ND	2.0	μg/L	2	5/30/2012 7:07:06 PM

^{*/}X Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

S Spike Recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

RL Reporting Detection Limit

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Souder, Miller and Associates Client Sample ID: J8

 Project:
 Maverik/Jackson OCD
 Collection Date: 5/24/2012 10:44:00 AM

 Lab ID:
 1205A69-004
 Matrix: AQUEOUS
 Received Date: 5/25/2012 10:25:00 AM

Analyses	Result	RL Qu	ual Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES					Analyst: MMS
Dichlorodifluoromethane	ND	2.0	μg/L	2	5/30/2012 7:07:06 PM
1,1-Dichloroethane	ND	2.0	μg/L	2	5/30/2012 7:07:06 PM
1,1-Dichloroethene	ND	2.0	μg/L	2	5/30/2012 7:07:06 PM
1,2-Dichloropropane	ND	2.0	μg/L	2	5/30/2012 7:07:06 PM
1,3-Dichloropropane	ND	2.0	μg/L	2	5/30/2012 7:07:06 PM
2,2-Dichloropropane	ND	4.0	μg/L	2	5/30/2012 7:07:06 PM
1,1-Dichloropropene	ND	2.0	μg/L	2	5/30/2012 7:07:06 PM
Hexachlorobutadiene	ND	2.0	μg/L	2	5/30/2012 7:07:06 PM
2-Hexanone	ND	20	μg/L	2	5/30/2012 7:07:06 PM
Isopropylbenzene	ND	2.0	μg/L	2	5/30/2012 7:07:06 PM
4-Isopropyltoluene	ND	2.0	μg/L	2	5/30/2012 7:07:06 PM
4-Methyl-2-pentanone	ND	20	μg/L	2	5/30/2012 7:07:06 PM
Methylene Chloride	ND	6.0	μg/L	2	5/30/2012 7:07:06 PM
n-Butylbenzene	ND	2.0	μg/L	2	5/30/2012 7:07:06 PM
n-Propylbenzene	ND	2.0	μg/L	2	5/30/2012 7:07:06 PM
sec-Butylbenzene	ND	2.0	μg/L	2	5/30/2012 7:07:06 PM
Styrene	ND	2.0	μg/L	2	5/30/2012 7:07:06 PM
tert-Butylbenzene	ND	2.0	μg/L	2	5/30/2012 7:07:06 PM
1,1,1,2-Tetrachloroethane	ND	2.0	μg/L	2	5/30/2012 7:07:06 PM
1,1,2,2-Tetrachloroethane	ND	4.0	μg/L	2	5/30/2012 7:07:06 PM
Tetrachloroethene (PCE)	ND	2.0	μg/L	2	5/30/2012 7:07:06 PM
trans-1,2-DCE	ND	2.0	μg/L	2	5/30/2012 7:07:06 PM
trans-1,3-Dichloropropene	ND	2.0	μg/L	2	5/30/2012 7:07:06 PM
1,2,3-Trichlorobenzene	ND	2.0	μg/L	2	5/30/2012 7:07:06 PM
1,2,4-Trichlorobenzene	ND	2.0	μg/L	2	5/30/2012 7:07:06 PM
1,1,1-Trichloroethane	ND	2.0	μg/L	2	5/30/2012 7:07:06 PM
1,1,2-Trichloroethane	ND	2.0	μg/L	2	5/30/2012 7:07:06 PM
Trichloroethene (TCE)	ND	2.0	μg/L	2	5/30/2012 7:07:06 PM
Trichlorofluoromethane	ND	2.0	μg/L	2	5/30/2012 7:07:06 PM
1,2,3-Trichloropropane	ND	4.0	μg/L	2	5/30/2012 7:07:06 PM
Vinyl chloride	ND	2.0	μg/L	2	5/30/2012 7:07:06 PM
Xylenes, Total	ND	3.0	μg/L	2	5/30/2012 7:07:06 PM
Surr: 1,2-Dichloroethane-d4	107	70-130	%REC	2	5/30/2012 7:07:06 PM
Surr: 4-Bromofluorobenzene	112	70-130	%REC	2	5/30/2012 7:07:06 PM
Surr: Dibromofluoromethane	91.6	69.8-130	%REC	2	5/30/2012 7:07:06 PM
Surr: Toluene-d8	103	70-130	%REC	2	5/30/2012 7:07:06 PM

^{*/}X Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

S Spike Recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

RL Reporting Detection Limit

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Souder, Miller and Associates Client Sample ID: J7

 Project:
 Maverik/Jackson OCD
 Collection Date: 5/24/2012 11:36:00 AM

 Lab ID:
 1205A69-005
 Matrix: AQUEOUS
 Received Date: 5/25/2012 10:25:00 AM

Analyses	Result	RL Qu	ual Units	DF	Date Analyzed
EPA METHOD 8011/504.1: EDB					Analyst: LRW
1,2-Dibromoethane	ND	0.010	μg/L	1	5/29/2012 5:14:51 PM
EPA METHOD 8015B: GASOLINE RA	NGE				Analyst: NSB
Gasoline Range Organics (GRO)	ND	0.10	mg/L	2	6/1/2012 1:47:55 AM
Surr: BFB	71.4	69.3-120	%REC	2	6/1/2012 1:47:55 AM
EPA 6010B: TOTAL RECOVERABLE	METALS				Analyst: JLF
Lead	0.31	0.050	mg/L	5	6/4/2012 2:14:01 PM
EPA METHOD 8260B: VOLATILES					Analyst: MMS
Benzene	ND	2.0	μg/L	2	5/30/2012 7:36:28 PM
Toluene	ND	2.0	μg/L	2	5/30/2012 7:36:28 PM
Ethylbenzene	ND	2.0	μg/L	2	5/30/2012 7:36:28 PM
Methyl tert-butyl ether (MTBE)	ND	2.0	μg/L	2	5/30/2012 7:36:28 PM
1,2,4-Trimethylbenzene	ND	2.0	μg/L	2	5/30/2012 7:36:28 PM
1,3,5-Trimethylbenzene	ND	2.0	μg/L	2	5/30/2012 7:36:28 PM
1,2-Dichloroethane (EDC)	ND	2.0	μg/L	2	5/30/2012 7:36:28 PM
1,2-Dibromoethane (EDB)	ND	2.0	μg/L	2	5/30/2012 7:36:28 PM
Naphthalene	ND	4.0	μg/L	2	5/30/2012 7:36:28 PM
1-Methylnaphthalene	ND	8.0	μg/L	2	5/30/2012 7:36:28 PM
2-Methylnaphthalene	ND	8.0	μg/L	2	5/30/2012 7:36:28 PM
Acetone	ND	20	μg/L	2	5/30/2012 7:36:28 PM
Bromobenzene	ND	2.0	μg/L	2	5/30/2012 7:36:28 PM
Bromodichloromethane	ND	2.0	μg/L	2	5/30/2012 7:36:28 PM
Bromoform	ND	2.0	μg/L	2	5/30/2012 7:36:28 PM
Bromomethane	ND	6.0	μg/L	2	5/30/2012 7:36:28 PM
2-Butanone	ND	20	μg/L	2	5/30/2012 7:36:28 PM
Carbon disulfide	ND	20	μg/L	2	5/30/2012 7:36:28 PM
Carbon Tetrachloride	ND	2.0	μg/L	2	5/30/2012 7:36:28 PM
Chlorobenzene	ND	2.0	μg/L	2	5/30/2012 7:36:28 PM
Chloroethane	ND	4.0	μg/L	2	5/30/2012 7:36:28 PM
Chloroform	ND	2.0	μg/L	2	5/30/2012 7:36:28 PM
Chloromethane	ND	6.0	μg/L	2	5/30/2012 7:36:28 PM
2-Chlorotoluene	ND	2.0	μg/L	2	5/30/2012 7:36:28 PM
4-Chlorotoluene	ND	2.0	μg/L	2	5/30/2012 7:36:28 PM
cis-1,2-DCE	ND	2.0	μg/L	2	5/30/2012 7:36:28 PM
cis-1,3-Dichloropropene	ND	2.0	μg/L	2	5/30/2012 7:36:28 PM
1,2-Dibromo-3-chloropropane	ND	4.0	μg/L	2	5/30/2012 7:36:28 PM
Dibromochloromethane	ND	2.0	μg/L	2	5/30/2012 7:36:28 PM
Dibromomethane	ND	2.0	μg/L	2	5/30/2012 7:36:28 PM
1,2-Dichlorobenzene	ND	2.0	μg/L	2	5/30/2012 7:36:28 PM
1,3-Dichlorobenzene	ND	2.0	μg/L	2	5/30/2012 7:36:28 PM
1,4-Dichlorobenzene	ND	2.0	μg/L μg/L	2	5/30/2012 7:36:28 PM
1,7 DIGITIOTODETIZETIE	ND	2.0	μg/ L	۷	3/30/2012 1.30.20 F IVI

^{*/}X Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

S Spike Recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

RL Reporting Detection Limit

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Souder, Miller and Associates Client Sample ID: J7

Collection Date: 5/24/2012 11:36:00 AM **Project:** Maverik/Jackson OCD 1205A69-005 Matrix: AQUEOUS Received Date: 5/25/2012 10:25:00 AM Lab ID:

Analyses	Result	RL Qua	al Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES					Analyst: MMS
Dichlorodifluoromethane	ND	2.0	μg/L	2	5/30/2012 7:36:28 PM
1,1-Dichloroethane	ND	2.0	μg/L	2	5/30/2012 7:36:28 PM
1,1-Dichloroethene	ND	2.0	μg/L	2	5/30/2012 7:36:28 PM
1,2-Dichloropropane	ND	2.0	μg/L	2	5/30/2012 7:36:28 PM
1,3-Dichloropropane	ND	2.0	μg/L	2	5/30/2012 7:36:28 PM
2,2-Dichloropropane	ND	4.0	μg/L	2	5/30/2012 7:36:28 PM
1,1-Dichloropropene	ND	2.0	μg/L	2	5/30/2012 7:36:28 PM
Hexachlorobutadiene	ND	2.0	μg/L	2	5/30/2012 7:36:28 PM
2-Hexanone	ND	20	μg/L	2	5/30/2012 7:36:28 PM
Isopropylbenzene	ND	2.0	μg/L	2	5/30/2012 7:36:28 PM
4-Isopropyltoluene	ND	2.0	μg/L	2	5/30/2012 7:36:28 PM
4-Methyl-2-pentanone	ND	20	μg/L	2	5/30/2012 7:36:28 PM
Methylene Chloride	ND	6.0	μg/L	2	5/30/2012 7:36:28 PM
n-Butylbenzene	ND	2.0	μg/L	2	5/30/2012 7:36:28 PM
n-Propylbenzene	ND	2.0	μg/L	2	5/30/2012 7:36:28 PM
sec-Butylbenzene	ND	2.0	μg/L	2	5/30/2012 7:36:28 PM
Styrene	ND	2.0	μg/L	2	5/30/2012 7:36:28 PM
tert-Butylbenzene	ND	2.0	μg/L	2	5/30/2012 7:36:28 PM
1,1,1,2-Tetrachloroethane	ND	2.0	μg/L	2	5/30/2012 7:36:28 PM
1,1,2,2-Tetrachloroethane	ND	4.0	μg/L	2	5/30/2012 7:36:28 PM
Tetrachloroethene (PCE)	ND	2.0	μg/L	2	5/30/2012 7:36:28 PM
trans-1,2-DCE	ND	2.0	μg/L	2	5/30/2012 7:36:28 PM
trans-1,3-Dichloropropene	ND	2.0	μg/L	2	5/30/2012 7:36:28 PM
1,2,3-Trichlorobenzene	ND	2.0	μg/L	2	5/30/2012 7:36:28 PM
1,2,4-Trichlorobenzene	ND	2.0	μg/L	2	5/30/2012 7:36:28 PM
1,1,1-Trichloroethane	ND	2.0	μg/L	2	5/30/2012 7:36:28 PM
1,1,2-Trichloroethane	ND	2.0	μg/L	2	5/30/2012 7:36:28 PM
Trichloroethene (TCE)	ND	2.0	μg/L	2	5/30/2012 7:36:28 PM
Trichlorofluoromethane	ND	2.0	μg/L	2	5/30/2012 7:36:28 PM
1,2,3-Trichloropropane	ND	4.0	μg/L	2	5/30/2012 7:36:28 PM
Vinyl chloride	ND	2.0	μg/L	2	5/30/2012 7:36:28 PM
Xylenes, Total	ND	3.0	μg/L	2	5/30/2012 7:36:28 PM
Surr: 1,2-Dichloroethane-d4	106	70-130	%REC	2	5/30/2012 7:36:28 PM
Surr: 4-Bromofluorobenzene	111	70-130	%REC	2	5/30/2012 7:36:28 PM
Surr: Dibromofluoromethane	90.3	69.8-130	%REC	2	5/30/2012 7:36:28 PM
Surr: Toluene-d8	107	70-130	%REC	2	5/30/2012 7:36:28 PM

Qualifiers:

Spike Recovery outside accepted recovery limits

^{*/}X Value exceeds Maximum Contaminant Level.

Ε Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

В Analyte detected in the associated Method Blank

Н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Reporting Detection Limit RL

Lab Order **1205A69**Date Reported: **6/6/2012**

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Souder, Miller and Associates Client Sample ID: Trip Blank

Project: Maverik/Jackson OCD Collection Date:

Lab ID: 1205A69-006 **Matrix:** TRIP BLANK **Received Date:** 5/25/2012 10:25:00 AM

Analyses	Result	RL	Qual Units	DF	Date Analyzed
EPA METHOD 8011/504.1: EDB					Analyst: LRW
1,2-Dibromoethane	ND	0.010	μg/L	1	5/29/2012 5:40:25 PM
EPA METHOD 8260B: VOLATILES					Analyst: MMS
Benzene	ND	1.0	μg/L	1	5/30/2012 8:05:52 PM
Toluene	ND	1.0	μg/L	1	5/30/2012 8:05:52 PM
Ethylbenzene	ND	1.0	μg/L	1	5/30/2012 8:05:52 PM
Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L	1	5/30/2012 8:05:52 PM
1,2,4-Trimethylbenzene	ND	1.0	μg/L	1	5/30/2012 8:05:52 PM
1,3,5-Trimethylbenzene	ND	1.0	μg/L	1	5/30/2012 8:05:52 PM
1,2-Dichloroethane (EDC)	ND	1.0	μg/L	1	5/30/2012 8:05:52 PM
1,2-Dibromoethane (EDB)	ND	1.0	μg/L	1	5/30/2012 8:05:52 PM
Naphthalene	ND	2.0	μg/L	1	5/30/2012 8:05:52 PM
1-Methylnaphthalene	ND	4.0	μg/L	1	5/30/2012 8:05:52 PM
2-Methylnaphthalene	ND	4.0	μg/L	1	5/30/2012 8:05:52 PM
Acetone	ND	10	μg/L	1	5/30/2012 8:05:52 PM
Bromobenzene	ND	1.0	μg/L	1	5/30/2012 8:05:52 PM
Bromodichloromethane	ND	1.0	μg/L	1	5/30/2012 8:05:52 PM
Bromoform	ND	1.0	μg/L	1	5/30/2012 8:05:52 PM
Bromomethane	ND	3.0	μg/L	1	5/30/2012 8:05:52 PM
2-Butanone	ND	10	μg/L	1	5/30/2012 8:05:52 PM
Carbon disulfide	ND	10	μg/L	1	5/30/2012 8:05:52 PM
Carbon Tetrachloride	ND	1.0	μg/L	1	5/30/2012 8:05:52 PM
Chlorobenzene	ND	1.0	μg/L	1	5/30/2012 8:05:52 PM
Chloroethane	ND	2.0	μg/L	1	5/30/2012 8:05:52 PM
Chloroform	ND	1.0	μg/L	1	5/30/2012 8:05:52 PM
Chloromethane	ND	3.0	μg/L	1	5/30/2012 8:05:52 PM
2-Chlorotoluene	ND	1.0	μg/L	1	5/30/2012 8:05:52 PM
4-Chlorotoluene	ND	1.0	μg/L	1	5/30/2012 8:05:52 PM
cis-1,2-DCE	ND	1.0	μg/L	1	5/30/2012 8:05:52 PM
cis-1,3-Dichloropropene	ND	1.0	μg/L	1	5/30/2012 8:05:52 PM
1,2-Dibromo-3-chloropropane	ND	2.0	μg/L	1	5/30/2012 8:05:52 PM
Dibromochloromethane	ND	1.0	μg/L	1	5/30/2012 8:05:52 PM
Dibromomethane	ND	1.0	μg/L	1	5/30/2012 8:05:52 PM
1,2-Dichlorobenzene	ND	1.0	μg/L	1	5/30/2012 8:05:52 PM
1,3-Dichlorobenzene	ND	1.0	μg/L	1	5/30/2012 8:05:52 PM
1,4-Dichlorobenzene	ND	1.0	μg/L	1	5/30/2012 8:05:52 PM
Dichlorodifluoromethane	ND	1.0	μg/L	1	5/30/2012 8:05:52 PM
1,1-Dichloroethane	ND	1.0	μg/L	1	5/30/2012 8:05:52 PM
1,1-Dichloroethene	ND	1.0	μg/L	1	5/30/2012 8:05:52 PM
1,2-Dichloropropane	ND	1.0	μg/L	1	5/30/2012 8:05:52 PM
1,3-Dichloropropane	ND	1.0	μg/L	1	5/30/2012 8:05:52 PM
2,2-Dichloropropane	ND	2.0	μg/L	1	5/30/2012 8:05:52 PM

^{*/}X Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

S Spike Recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

RL Reporting Detection Limit

Lab Order **1205A69**Date Reported: **6/6/2012**

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Souder, Miller and Associates Client Sample ID: Trip Blank

Project: Maverik/Jackson OCD Collection Date:

Lab ID: 1205A69-006 **Matrix:** TRIP BLANK **Received Date:** 5/25/2012 10:25:00 AM

Analyses	Result	RL Q	ual Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES					Analyst: MMS
1,1-Dichloropropene	ND	1.0	μg/L	1	5/30/2012 8:05:52 PM
Hexachlorobutadiene	ND	1.0	μg/L	1	5/30/2012 8:05:52 PM
2-Hexanone	ND	10	μg/L	1	5/30/2012 8:05:52 PM
Isopropylbenzene	ND	1.0	μg/L	1	5/30/2012 8:05:52 PM
4-Isopropyltoluene	ND	1.0	μg/L	1	5/30/2012 8:05:52 PM
4-Methyl-2-pentanone	ND	10	μg/L	1	5/30/2012 8:05:52 PM
Methylene Chloride	ND	3.0	μg/L	1	5/30/2012 8:05:52 PM
n-Butylbenzene	ND	1.0	μg/L	1	5/30/2012 8:05:52 PM
n-Propylbenzene	ND	1.0	μg/L	1	5/30/2012 8:05:52 PM
sec-Butylbenzene	ND	1.0	μg/L	1	5/30/2012 8:05:52 PM
Styrene	ND	1.0	μg/L	1	5/30/2012 8:05:52 PM
tert-Butylbenzene	ND	1.0	μg/L	1	5/30/2012 8:05:52 PM
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1	5/30/2012 8:05:52 PM
1,1,2,2-Tetrachloroethane	ND	2.0	μg/L	1	5/30/2012 8:05:52 PM
Tetrachloroethene (PCE)	ND	1.0	μg/L	1	5/30/2012 8:05:52 PM
trans-1,2-DCE	ND	1.0	μg/L	1	5/30/2012 8:05:52 PM
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	5/30/2012 8:05:52 PM
1,2,3-Trichlorobenzene	ND	1.0	μg/L	1	5/30/2012 8:05:52 PM
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1	5/30/2012 8:05:52 PM
1,1,1-Trichloroethane	ND	1.0	μg/L	1	5/30/2012 8:05:52 PM
1,1,2-Trichloroethane	ND	1.0	μg/L	1	5/30/2012 8:05:52 PM
Trichloroethene (TCE)	ND	1.0	μg/L	1	5/30/2012 8:05:52 PM
Trichlorofluoromethane	ND	1.0	μg/L	1	5/30/2012 8:05:52 PM
1,2,3-Trichloropropane	ND	2.0	μg/L	1	5/30/2012 8:05:52 PM
Vinyl chloride	ND	1.0	μg/L	1	5/30/2012 8:05:52 PM
Xylenes, Total	ND	1.5	μg/L	1	5/30/2012 8:05:52 PM
Surr: 1,2-Dichloroethane-d4	101	70-130	%REC	1	5/30/2012 8:05:52 PM
Surr: 4-Bromofluorobenzene	110	70-130	%REC	1	5/30/2012 8:05:52 PM
Surr: Dibromofluoromethane	92.2	69.8-130	%REC	1	5/30/2012 8:05:52 PM
Surr: Toluene-d8	107	70-130	%REC	1	5/30/2012 8:05:52 PM

^{*/}X Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

S Spike Recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

RL Reporting Detection Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: **1205A69**

06-Jun-12

Client: Souder, Miller and Associates

Project: Maverik/Jackson OCD

Sample ID MB-2135 SampType: MBLK TestCode: EPA Method 8011/504.1: EDB

Client ID: PBW Batch ID: 2135 RunNo: 3071

Prep Date: 5/29/2012 Analysis Date: 5/29/2012 SeqNo: 84971 Units: μg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

1,2-Dibromoethane ND 0.010

Sample ID LCS-2135 SampType: LCS TestCode: EPA Method 8011/504.1: EDB

Client ID: LCSW Batch ID: 2135 RunNo: 3071

Prep Date: 5/29/2012 Analysis Date: 5/29/2012 SeqNo: 84972 Units: μg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

1,2-Dibromoethane 0.093 0.010 0.1000 0 93.0 70 130

Qualifiers:

*/X Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

RL Reporting Detection Limit

Page 13 of 20

Hall Environmental Analysis Laboratory, Inc.

WO#: **1205A69**

06-Jun-12

Client: Souder, Miller and Associates

Project: Maverik/Jackson OCD

Sample ID 5ML RB SampType: MBLK TestCode: EPA Method 8015B: Gasoline Range

Client ID: PBW Batch ID: R3145 RunNo: 3145

Prep Date: Analysis Date: 5/31/2012 SeqNo: 86907 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Gasoline Range Organics (GRO) ND 0.050

Surr: BFB 16 20.00 79.9 69.3 120

Sample ID 2.5UG GRO LCS SampType: LCS TestCode: EPA Method 8015B: Gasoline Range

Client ID: LCSW Batch ID: R3145 RunNo: 3145

Prep Date: Analysis Date: 5/31/2012 SeqNo: 86908 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

 Gasoline Range Organics (GRO)
 0.54
 0.050
 0.5000
 0
 108
 101
 123

 Surr: BFB
 20
 20.00
 97.7
 69.3
 120

Qualifiers:

*/X Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits
 R RPD outside accepted recovery limits

37.1 1 44.4

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

RL Reporting Detection Limit

Page 14 of 20

Hall Environmental Analysis Laboratory, Inc.

WO#: 1205A69

06-Jun-12

Client: Souder, Miller and Associates

Project: Maverik/Jackson OCD

Sample ID 5ml rb	SampT	ype: Mi	3LK	Tes	TestCode: EPA Method 8260B: VOLATILES								
Client ID: PBW	Batch	ID: R3	118	F	RunNo: 3	118							
Prep Date:	Analysis D				SeqNo: 8		Units: µg/L						
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual			
Benzene	ND	1.0											
Toluene	ND	1.0											
Ethylbenzene	ND	1.0											
Methyl tert-butyl ether (MTBE)	ND	1.0											
1,2,4-Trimethylbenzene	ND	1.0											
1,3,5-Trimethylbenzene	ND	1.0											
1,2-Dichloroethane (EDC)	ND	1.0											
1,2-Dibromoethane (EDB)	ND	1.0											
Naphthalene	ND	2.0											
1-Methylnaphthalene	ND	4.0											
2-Methylnaphthalene	ND	4.0											
Acetone	ND	10											
Bromobenzene	ND	1.0											
Bromodichloromethane	ND	1.0											
Bromoform	ND	1.0											
Bromomethane	ND	3.0											
2-Butanone	ND	10											
Carbon disulfide	ND	10											
Carbon Tetrachloride	ND	1.0											
Chlorobenzene	ND	1.0											
Chloroethane	ND	2.0											
Chloroform	ND	1.0											
Chloromethane	ND	3.0											
2-Chlorotoluene	ND	1.0											
4-Chlorotoluene	ND	1.0											
cis-1,2-DCE	ND	1.0											
cis-1,3-Dichloropropene	ND	1.0											
1,2-Dibromo-3-chloropropane	ND	2.0											
Dibromochloromethane	ND	1.0											
Dibromomethane	ND	1.0											
1,2-Dichlorobenzene	ND	1.0											
1,3-Dichlorobenzene	ND	1.0											
1,4-Dichlorobenzene	ND	1.0											
Dichlorodifluoromethane	ND	1.0											
1,1-Dichloroethane	ND	1.0											
1,1-Dichloroethene	ND	1.0											
1,2-Dichloropropane	ND	1.0											
1,3-Dichloropropane	ND	1.0											
2,2-Dichloropropane	ND	2.0											
1,1-Dichloropropene	ND	1.0											
Hexachlorobutadiene	ND	1.0											

Qualifiers:

*/X Value exceeds Maximum Contaminant Level.

Value above quantitation range

J Analyte detected below quantitation limits

RPD outside accepted recovery limits

Analyte detected in the associated Method Blank

Η Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Reporting Detection Limit

Page 15 of 20

Hall Environmental Analysis Laboratory, Inc.

WO#: 1205A69

06-Jun-12

Client: Souder, Miller and Associates

Project: Maverik/Jackson OCD

Sample ID 5ml rb	SampT	уре: МЕ	BLK	TestCode: EPA Method 8260B: VOLATILES							
Client ID: PBW	Batch	n ID: R3	118	R	tunNo: 3	118					
Prep Date:	Analysis D	Date: 5/	30/2012	S	SeqNo: 8	6304	Units: µg/L				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
2-Hexanone	ND	10									
Isopropylbenzene	ND	1.0									
4-Isopropyltoluene	ND	1.0									
4-Methyl-2-pentanone	ND	10									
Methylene Chloride	ND	3.0									
n-Butylbenzene	ND	1.0									
n-Propylbenzene	ND	1.0									
sec-Butylbenzene	ND	1.0									
Styrene	ND	1.0									
tert-Butylbenzene	ND	1.0									
1,1,1,2-Tetrachloroethane	ND	1.0									
1,1,2,2-Tetrachloroethane	ND	2.0									
Tetrachloroethene (PCE)	ND	1.0									
trans-1,2-DCE	ND	1.0									
trans-1,3-Dichloropropene	ND	1.0									
1,2,3-Trichlorobenzene	ND	1.0									
1,2,4-Trichlorobenzene	ND	1.0									
1,1,1-Trichloroethane	ND	1.0									
1,1,2-Trichloroethane	ND	1.0									
Trichloroethene (TCE)	ND	1.0									
Trichlorofluoromethane	ND	1.0									
1,2,3-Trichloropropane	ND	2.0									
Vinyl chloride	ND	1.0									
Xylenes, Total	ND	1.5									
Surr: 1,2-Dichloroethane-d4	10		10.00		103	70	130				
Surr: 4-Bromofluorobenzene	10		10.00		103	70	130				
Surr: Dibromofluoromethane	9.2		10.00		92.0	69.8	130				
Surr: Toluene-d8	10		10.00		101	70	130				

Sample ID 100ng Ics	SampT	ype: LC	s	Tes	tCode: El	PA Method	ATILES			
Client ID: LCSW	Batch	Batch ID: R3118 RunNo: 3118								
Prep Date:	Analysis D	ate: 5/	30/2012	8	SeqNo: 8	6307	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	18	1.0	20.00	0	91.3	84.1	126			
Toluene	20	1.0	20.00	0	101	80	120			
Chlorobenzene	19	1.0	20.00	0	96.0	70	130			
1,1-Dichloroethene	20	1.0	20.00	0	99.6	83	130			
Trichloroethene (TCE)	20	1.0	20.00	0	101	76.2	119			
Surr: 1,2-Dichloroethane-d4	10		10.00		102	70	130			
Surr: 4-Bromofluorobenzene	11		10.00		110	70	130			

Qualifiers:

Page 16 of 20

^{*/}X Value exceeds Maximum Contaminant Level.

Value above quantitation range

Analyte detected below quantitation limits RPD outside accepted recovery limits

J

Analyte detected in the associated Method Blank

Η Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Reporting Detection Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: 1205A69

06-Jun-12

Client: Souder, Miller and Associates

Project: Maverik/Jackson OCD

Sample ID 100ng lcs TestCode: EPA Method 8260B: VOLATILES SampType: LCS Client ID: LCSW RunNo: **3118** Batch ID: R3118 Prep Date: SeqNo: 86307 Analysis Date: 5/30/2012 Units: µg/L Analyte Result SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Surr: Dibromofluoromethane 9.0 10.00 89.8 69.8 130 Surr: Toluene-d8 10.00 105 70 11 130

) · · · · · · · · · · · · · · · · ·	TestCode: EPA Method 8260B: VOLATILES							
Client ID: PBW	Batch	1D: R3	118	F	RunNo: 3	118				
Prep Date:	Analysis D	ate: 5/	30/2012	5	SeqNo: 8	6342	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	1.0								
Toluene	ND	1.0								
Ethylbenzene	ND	1.0								
Methyl tert-butyl ether (MTBE)	ND	1.0								
1,2,4-Trimethylbenzene	ND	1.0								
1,3,5-Trimethylbenzene	ND	1.0								
1,2-Dichloroethane (EDC)	ND	1.0								
1,2-Dibromoethane (EDB)	ND	1.0								
Naphthalene	ND	2.0								
1-Methylnaphthalene	ND	4.0								
2-Methylnaphthalene	ND	4.0								
Acetone	ND	10								
Bromobenzene	ND	1.0								
Bromodichloromethane	ND	1.0								
Bromoform	ND	1.0								
Bromomethane	ND	3.0								
2-Butanone	ND	10								
Carbon disulfide	ND	10								
Carbon Tetrachloride	ND	1.0								
Chlorobenzene	ND	1.0								
Chloroethane	ND	2.0								
Chloroform	ND	1.0								
Chloromethane	ND	3.0								
2-Chlorotoluene	ND	1.0								
4-Chlorotoluene	ND	1.0								
cis-1,2-DCE	ND	1.0								
cis-1,3-Dichloropropene	ND	1.0								
1,2-Dibromo-3-chloropropane	ND	2.0								
Dibromochloromethane	ND	1.0								
Dibromomethane	ND	1.0								
1,2-Dichlorobenzene	ND	1.0								
1,3-Dichlorobenzene	ND	1.0								
1,4-Dichlorobenzene	ND	1.0								

Qualifiers:

Value exceeds Maximum Contaminant Level.

Value above quantitation range

Analyte detected below quantitation limits J

RPD outside accepted recovery limits

В Analyte detected in the associated Method Blank

Η Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Reporting Detection Limit

Page 17 of 20

Hall Environmental Analysis Laboratory, Inc.

WO#: **1205A69**

06-Jun-12

Client: Souder, Miller and Associates

Project: Maverik/Jackson OCD

Sample ID b5	SampT	ype: ME	BLK	Te	stCode: E	PA Method	8260B: VOL	ATILES		
Client ID: PBW	Batch	1D: R3	118		RunNo: 3	118				
Prep Date:	Analysis D	ate: 5/	30/2012		SeqNo: 8	6342	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Va	l %REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Dichlorodifluoromethane	ND	1.0								
1,1-Dichloroethane	ND	1.0								
1,1-Dichloroethene	ND	1.0								
1,2-Dichloropropane	ND	1.0								
1,3-Dichloropropane	ND	1.0								
2,2-Dichloropropane	ND	2.0								
1,1-Dichloropropene	ND	1.0								
Hexachlorobutadiene	ND	1.0								
2-Hexanone	ND	10								
Isopropylbenzene	ND	1.0								
4-Isopropyltoluene	ND	1.0								
4-Methyl-2-pentanone	ND	10								
Methylene Chloride	ND	3.0								
n-Butylbenzene	ND	1.0								
n-Propylbenzene	ND	1.0								
sec-Butylbenzene	ND	1.0								
Styrene	ND	1.0								
tert-Butylbenzene	ND	1.0								
1,1,1,2-Tetrachloroethane	ND	1.0								
1,1,2,2-Tetrachloroethane	ND	2.0								
Tetrachloroethene (PCE)	ND	1.0								
trans-1,2-DCE	ND	1.0								
trans-1,3-Dichloropropene	ND	1.0								
1,2,3-Trichlorobenzene	ND	1.0								
1,2,4-Trichlorobenzene	ND	1.0								
1,1,1-Trichloroethane	ND	1.0								
1,1,2-Trichloroethane	ND	1.0								
Trichloroethene (TCE)	ND	1.0								
Trichlorofluoromethane	ND	1.0								
1,2,3-Trichloropropane	ND	2.0								
Vinyl chloride	ND	1.0								
Xylenes, Total	ND	1.5								
Surr: 1,2-Dichloroethane-d4	11		10.00		108	70	130			
Surr: 4-Bromofluorobenzene	11		10.00		114	70	130			
Surr: Dibromofluoromethane	9.4		10.00		94.5	69.8	130			
Surr: Toluene-d8	10		10.00		103	70	130			
Jun. Tolucho-uo	10		10.00		100	70	130			

^{*/}X Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

RL Reporting Detection Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: **1205A69**

06-Jun-12

Client: Souder, Miller and Associates

Project: Maverik/Jackson OCD

Sample ID 100ng lcs2 Client ID: LCSW	•	ype: LC			tCode: El		8260B: VOL	ATILES		
Prep Date:	Analysis D	oate: 5/	31/2012	9	SeqNo: 8	6343	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	19	1.0	20.00	0	95.6	84.1	126			
Toluene	21	1.0	20.00	0	103	80	120			
Chlorobenzene	20	1.0	20.00	0	100	70	130			
1,1-Dichloroethene	21	1.0	20.00	0	105	83	130			
Trichloroethene (TCE)	21	1.0	20.00	0	105	76.2	119			
Surr: 1,2-Dichloroethane-d4	11		10.00		105	70	130			
Surr: 4-Bromofluorobenzene	11		10.00		108	70	130			
Surr: Dibromofluoromethane	9.5		10.00		94.9	69.8	130			
Surr: Toluene-d8	11		10.00		107	70	130			

Qualifiers:

R RPD outside accepted recovery limits

RL Reporting Detection Limit

^{*/}X Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: **1205A69**

06-Jun-12

Client: Souder, Miller and Associates

Project: Maverik/Jackson OCD

Sample ID MB-2152 SampType: MBLK TestCode: EPA 6010B: Total Recoverable Metals

Client ID: PBW Batch ID: 2152 RunNo: 3170

Prep Date: 5/30/2012 Analysis Date: 6/1/2012 SeqNo: 87551 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Lead ND 0.0050

Sample ID LCS-2152 SampType: LCS TestCode: EPA 6010B: Total Recoverable Metals

Client ID: LCSW Batch ID: 2152 RunNo: 3170

Prep Date: 5/30/2012 Analysis Date: 6/1/2012 SeqNo: 87552 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Lead 0.49 0.0050 0.5000 0 97.0 80 120

Qualifiers:

*/X Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

RL Reporting Detection Limit

Page 20 of 20

Hall Environmental Analysis Laborator) 4901 Hawkins NE Albuquerque, NM 87105

TEL: 505-345-3975 FAX: 505-345-410' Website: www.hallenvironmental.com

Sample Log-In Check List

Client Name: SMA-FARM Work Order Number: 1205A69 Received by/date: Logged By: **Lindsay Mangin** 5/25/2012 10:25:00 AM Completed By: **Lindsay Mangin** 5/25/2012 12:26:44 PM Reviewed By: Chain of Custody Yes No 🗌 Not Present 1. Were seals intact? Yes 🗸 No 🗌 Not Present 2. Is Chain of Custody complete? 3. How was the sample delivered? Client Log In Yes 🗸 No 🗌 NA 🗌 4. Coolers are present? (see 19. for cooler specific information) Yes 🗸 No 🗌 NA 🗌 5. Was an attempt made to cool the samples? Yes 🗹 No 🗌 NA 🗌 6. Were all samples received at a temperature of >0° C to 6.0°C Yes 🗸 No 🗌 7 Sample(s) in proper container(s)? Yes 🗸 No 🗌 8 Sufficient sample volume for indicated test(s)? Yes 🗸 No 🗌 9. Are samples (except VOA and ONG) properly preserved? Yes No V NA 🔲 10 Was preservative added to bottles? Added IML HNO3 to -0010, -0040, -0050 for Yes ✓ No ☐ No VOA Vials ☐ acceptable PH 11. VOA vials have zero headspace? Yes U No 🗹 12. Were any sample containers received broken? # of preserved Yes 🗹 No 🗍 13. Does paperwork match bottle labels? bottles checked (Note discrepancies on chain of custody) for pH: Yes ✓ No 🗆 14 Are matrices correctly identified on Chain of Custody? 12 unless noted) Yes 🗸 No 🗌 15. Is it clear what analyses were requested? Yes 🗹 No 🗌 16. Were all holding times able to be met? (If no, notify customer for authorization.) Checked by Special Handling (if applicable) Yes No NA 🔽 17 Was client notified of all discrepancies with this order? Person Notified: Date: By Whom: ☐ eMail Phone Fax In Person Regarding: Client Instructions: 18 Additional remarks: 19 Cooler Information Cooler No | Temp °C | Condition Seal Intact | Seal No Seal Date Signed By Not Present

	HALL ENVIKONMENTAL ANALYSIS LABORATORY	www.hallenvironmental.com	4901 Hawkins NE - Albuquerque, NM 87109	Tel. 505-345-3975 Fax 505-345-4107	Analysis		PCB's	(1.4((HA ,200,e) S808 \ (P	or P. tals ides // // //	TPH (Methored EDB (Methored B310 (PNA B Methored Properties B081 Pestical B270 (Semi-B270 (Semi-B27	∀	X	X X X		X X Y	7				•	intracted data will be clearly notated on the analytical report.
			4901 Ha	Tel. 50((ylr	Gas or) H9T -	- ∃8	BTEX + MT BTEX + MT		X	×	×	×				Remarks:		ssibility. Any sub
Turn-Around Time:	ह्य Standard 🗆 Rush	Project Name:	Maverik/Jackson Co	Project #:		Project Manager:	A)(00)	Sampler: SLC/OT)	Temperature / C	r Preservative HEAL No. #	4 your HANAMan -001	<i>)</i> ,	1 11005 4 501/MB -003	1,00- 1,1	11 11 11	- 000			Received by: Date Time Re Machine 1635	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	If necessary, samples submitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report
Chain-of-Custody Record	Client: SMA)		Mailing Address: AM LES JUAN PW	; hm;	256	email or Fax#:	OA/QC Package:	ا ا Other	□ EDD (Type)	Date Time Matrix Sample Request ID	Stasta 1357 HAD 16	SB/2 1541 NGC 33	0880	5/24/10/14 Hzo J8	S124//21/:34 420 57	Trip Blonk			I De	12/1748 (Mother Walter (If necessary, samples submitted to Hall Environmental may be subα

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

June 20, 2012

Denny Foust Souder, Miller and Associates 2101 San Juan Boulevard Farmington, NM 87401

TEL: (505) 325-5667 FAX (505) 327-1496

RE: MMOCD Maverick/Jackson OrderNo.: 1206507

Dear Denny Foust:

Hall Environmental Analysis Laboratory received 1 sample(s) on 6/13/2012 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. All samples are reported as received unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

Sincerely,

Andy Freeman

Laboratory Manager

4901 Hawkins NE

Albuquerque, NM 87109

Lab Order **1206507**

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 6/20/2012

CLIENT: Souder, Miller and Associates Client Sample ID: Jackson Well

 Project:
 MMOCD Maverick/Jackson
 Collection Date: 6/12/2012 10:30:00 AM

 Lab ID:
 1206507-001
 Matrix: PRODUCT
 Received Date: 6/13/2012 10:00:00 AM

	TVIUTIA:	тковест	Received D	atc. 6/15/20	712 10.00.00 71171
Analyses	Result	RL Qu	ial Units	DF	Date Analyzed
DRO BY 8015B					Analyst: JMP
Diesel Range Organics (DRO)	100	2.0	wt%	20	6/18/2012 8:05:27 PM
Motor Oil Range Organics (MRO)	ND	9.9	wt%	20	6/18/2012 8:05:27 PM
Surr: DNOP	0	80-120	S %REC	20	6/18/2012 8:05:27 PM
GRO BY 8015B					Analyst: RAA
Gasoline Range Organics (GRO)	ND	2.5	wt%	1	6/16/2012 5:43:09 AM
Surr: BFB	106	89.7-125	%REC	1	6/16/2012 5:43:09 AM
EPA METHOD 8260B: VOLATILES					Analyst: RAA
Benzene	ND	120	mg/Kg	50	6/17/2012 3:34:27 PM
Toluene	ND	120	mg/Kg	50	6/17/2012 3:34:27 PM
Ethylbenzene	ND	120	mg/Kg	50	6/17/2012 3:34:27 PM
Methyl tert-butyl ether (MTBE)	ND	120	mg/Kg	50	6/17/2012 3:34:27 PM
1,2,4-Trimethylbenzene	670	250	mg/Kg	100	6/18/2012 4:51:27 PM
1,3,5-Trimethylbenzene	ND	250	mg/Kg	100	6/18/2012 4:51:27 PM
1,2-Dichloroethane (EDC)	ND	120	mg/Kg	50	6/17/2012 3:34:27 PM
1,2-Dibromoethane (EDB)	ND	120	mg/Kg	50	6/17/2012 3:34:27 PM
Naphthalene	ND	500	mg/Kg	100	6/18/2012 4:51:27 PM
1-Methylnaphthalene	1000	1000	mg/Kg	100	6/18/2012 4:51:27 PM
2-Methylnaphthalene	1700	1000	mg/Kg	100	6/18/2012 4:51:27 PM
Acetone	ND	1200	mg/Kg	50	6/17/2012 3:34:27 PM
Bromobenzene	ND	250	mg/Kg	100	6/18/2012 4:51:27 PM
Bromodichloromethane	ND	380	mg/Kg	50	6/17/2012 3:34:27 PM
Bromoform	ND	250	mg/Kg	100	6/18/2012 4:51:27 PM
Bromomethane	ND	380	mg/Kg	50	6/17/2012 3:34:27 PM
2-Butanone	ND	1200	mg/Kg	50	6/17/2012 3:34:27 PM
Carbon disulfide	ND	1200	mg/Kg	50	6/17/2012 3:34:27 PM
Carbon Tetrachloride	ND	120	mg/Kg	50	6/17/2012 3:34:27 PM
Chlorobenzene	ND	250	mg/Kg	50	6/17/2012 3:34:27 PM
Chloroethane	ND	250	mg/Kg	50	6/17/2012 3:34:27 PM
Chloroform	ND	120	mg/Kg	50	6/17/2012 3:34:27 PM
Chloromethane	ND	380	mg/Kg	50	6/17/2012 3:34:27 PM
2-Chlorotoluene	ND	250	mg/Kg	100	6/18/2012 4:51:27 PM
4-Chlorotoluene	ND	250	mg/Kg	100	6/18/2012 4:51:27 PM
cis-1,2-DCE	ND	120	mg/Kg	50	6/17/2012 3:34:27 PM
cis-1,3-Dichloropropene	ND	120	mg/Kg	50	6/17/2012 3:34:27 PM
1,2-Dibromo-3-chloropropane	ND	500	mg/Kg	100	6/18/2012 4:51:27 PM
Dibromochloromethane	ND	250	mg/Kg	50	6/17/2012 3:34:27 PM
Dibromomethane	ND	120	mg/Kg	50	6/17/2012 3:34:27 PM
1,2-Dichlorobenzene	ND	250	mg/Kg	100	6/18/2012 4:51:27 PM
1,3-Dichlorobenzene	ND	250	mg/Kg	100	6/18/2012 4:51:27 PM
1,4-Dichlorobenzene	ND	250	mg/Kg	100	6/18/2012 4:51:27 PM
Dichlorodifluoromethane	ND	120	mg/Kg	50	6/17/2012 3:34:27 PM

- */X Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- RL Reporting Detection Limit
- U Samples with CalcVal < MDL

Lab Order **1206507**

Date Reported: 6/20/2012

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Souder, Miller and Associates Client Sample ID: Jackson Well

 Project:
 MMOCD Maverick/Jackson
 Collection Date: 6/12/2012 10:30:00 AM

 Lab ID:
 1206507-001
 Matrix: PRODUCT
 Received Date: 6/13/2012 10:00:00 AM

Analyses	Result	RL (Qual	Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES						Analyst: RAA
1,1-Dichloroethane	ND	120		mg/Kg	50	6/17/2012 3:34:27 PM
1,1-Dichloroethene	ND	120		mg/Kg	50	6/17/2012 3:34:27 PM
1,2-Dichloropropane	ND	120		mg/Kg	50	6/17/2012 3:34:27 PM
1,3-Dichloropropane	ND	120		mg/Kg	50	6/17/2012 3:34:27 PM
2,2-Dichloropropane	ND	120		mg/Kg	50	6/17/2012 3:34:27 PM
1,1-Dichloropropene	ND	120		mg/Kg	50	6/17/2012 3:34:27 PM
Hexachlorobutadiene	ND	250		mg/Kg	100	6/18/2012 4:51:27 PM
2-Hexanone	ND	1200		mg/Kg	50	6/17/2012 3:34:27 PM
Isopropylbenzene	ND	120		mg/Kg	50	6/17/2012 3:34:27 PM
4-Isopropyltoluene	ND	250		mg/Kg	100	6/18/2012 4:51:27 PM
4-Methyl-2-pentanone	ND	1200		mg/Kg	50	6/17/2012 3:34:27 PM
Methylene Chloride	ND	380		mg/Kg	50	6/17/2012 3:34:27 PM
n-Butylbenzene	ND	250		mg/Kg	100	6/18/2012 4:51:27 PM
n-Propylbenzene	ND	250		mg/Kg	100	6/18/2012 4:51:27 PM
sec-Butylbenzene	ND	250		mg/Kg	100	6/18/2012 4:51:27 PM
Styrene	ND	120		mg/Kg	50	6/17/2012 3:34:27 PM
tert-Butylbenzene	ND	250		mg/Kg	100	6/18/2012 4:51:27 PM
1,1,1,2-Tetrachloroethane	ND	120		mg/Kg	50	6/17/2012 3:34:27 PM
1,1,2,2-Tetrachloroethane	ND	250		mg/Kg	100	6/18/2012 4:51:27 PM
Tetrachloroethene (PCE)	ND	120		mg/Kg	50	6/17/2012 3:34:27 PM
trans-1,2-DCE	ND	120		mg/Kg	50	6/17/2012 3:34:27 PM
trans-1,3-Dichloropropene	ND	120		mg/Kg	50	6/17/2012 3:34:27 PM
1,2,3-Trichlorobenzene	ND	250		mg/Kg	100	6/18/2012 4:51:27 PM
1,2,4-Trichlorobenzene	ND	250		mg/Kg	100	6/18/2012 4:51:27 PM
1,1,1-Trichloroethane	ND	120		mg/Kg	50	6/17/2012 3:34:27 PM
1,1,2-Trichloroethane	ND	120		mg/Kg	50	6/17/2012 3:34:27 PM
Trichloroethene (TCE)	ND	120		mg/Kg	50	6/17/2012 3:34:27 PM
Trichlorofluoromethane	ND	120		mg/Kg	50	6/17/2012 3:34:27 PM
1,2,3-Trichloropropane	ND	500		mg/Kg	100	6/18/2012 4:51:27 PM
Vinyl chloride	ND	120		mg/Kg	50	6/17/2012 3:34:27 PM
Xylenes, Total	140	120		mg/Kg	50	6/17/2012 3:34:27 PM
Surr: 1,2-Dichloroethane-d4	95.3	56.8-108		%REC	50	6/17/2012 3:34:27 PM
Surr: 4-Bromofluorobenzene	78.9	83.1-108	S	%REC	100	6/18/2012 4:51:27 PM
Surr: Dibromofluoromethane	120	49.4-117	S	%REC	50	6/17/2012 3:34:27 PM
Surr: Toluene-d8	96.0	88.3-103		%REC	50	6/17/2012 3:34:27 PM

- */X Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- RL Reporting Detection Limit
- U Samples with CalcVal < MDL

Hall Environmental Analysis Laboratory, Inc.

WO#: **1206507**

20-Jun-12

Client: Souder, Miller and Associates

Project: MMOCD Maverick/Jackson

Sample ID MB-2446 SampType: MBLK TestCode: DRO by 8015B Client ID: PBW Batch ID: 2446 RunNo: 3482 Prep Date: 6/18/2012 Analysis Date: 6/18/2012 SeqNo: 98731 Units: wt% Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Diesel Range Organics (DRO) ND 0.10 Motor Oil Range Organics (MRO) ND 0.50 Surr: DNOP 0.1000 106 0.11 80 120

Sample ID LCS-2446 SampType: LCS TestCode: DRO by 8015B Batch ID: 2446 Client ID: LCSW RunNo: 3482 Prep Date: 6/18/2012 Analysis Date: 6/18/2012 SeqNo: 98732 Units: wt% Analyte **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Diesel Range Organics (DRO) 0.10 87.5 80 0.44 0.5000 120 Surr: DNOP 0.054 0.05000 108 80 120

Sample ID LCSD-2446 SampType: LCSD TestCode: DRO by 8015B Client ID: LCSS02 Batch ID: 2446 RunNo: 3482 Prep Date: 6/18/2012 Analysis Date: 6/18/2012 SeqNo: 98733 Units: wt% Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Diesel Range Organics (DRO) 0.40 0.10 0.5000 80.7 80 120 8.13 20 Surr: DNOP 0.046 0.05000 92.0 80 120 0 0

Qualifiers:

*/X Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

RL Reporting Detection Limit

Page 3 of 7

Hall Environmental Analysis Laboratory, Inc.

WO#: 1206507

20-Jun-12

Project:	MMOCD Maverick/Jackson
.,	

Project: MMOC	D Maverick/Jackso	n							
Sample ID MB-2397	SampType: MI	TestCode: GRO by 8015B							
Client ID: PBW	Batch ID: 23	Batch ID: 2397			RunNo: 3464				
Prep Date: 6/14/2012	Analysis Date: 6/	15/2012	S	eqNo: 9	3184	Units: wt%			
Analyte	Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRO) Surr: BFB	ND 2.5 910	1000		90.5	89.7	125			
Sample ID LCS-2397	SampType: LC	s	Tes	Code: G	RO by 8015	В			
Client ID: LCSW	Batch ID: 23	97	R	tunNo: 34	164				
Prep Date: 6/14/2012	Analysis Date: 6/	15/2012	S	eqNo: 9	3185	Units: wt%			
Analyte	Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRO)	30 2.5	25.00	0	120	69.5	120			S
Surr: BFB	1000	1000		101	89.7	125			
Sample ID LCSD-2397	SampType: LC	SD	Tes	Code: G	RO by 8015	В			
Client ID: LCSS02	Batch ID: 23	97	R	tunNo: 34	464				
Prep Date: 6/14/2012	Analysis Date: 6	15/2012	S	SeqNo: 98	3186	Units: wt%			
Analyte	Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRO)	32 2.5	25.00	0	127	69.5	120	4.99	8.39	S
Surr: BFB	1100	1000		111	89.7	125	0	0	

Qualifiers:

*/X Value exceeds Maximum Contaminant Level.

Value above quantitation range

J Analyte detected below quantitation limits

RPD outside accepted recovery limits

Analyte detected in the associated Method Blank

Η Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Reporting Detection Limit

Page 4 of 7

Hall Environmental Analysis Laboratory, Inc.

WO#: **1206507**

20-Jun-12

Client: Souder, Miller and Associates
Project: MMOCD Maverick/Jackson

Sample ID mb-2397	SampTv	ype: MBLK	Te	TestCode: EPA Method 8260B: Volatiles						
Client ID: PBW	Batch ID: 2397			RunNo: 3493						
Prep Date: 6/14/2012	Analysis Date: 6/17/2012			SeqNo: 98255			Units: mg/Kg			
Analyte	Result	PQL SPK val	ue SPK Ref Va	l %REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Benzene	ND	2.5								
Toluene	ND	2.5								
Ethylbenzene	ND	2.5								
Methyl tert-butyl ether (MTBE)	ND	2.5								
1,2,4-Trimethylbenzene	ND	2.5								
1,3,5-Trimethylbenzene	ND	2.5								
1,2-Dichloroethane (EDC)	ND	2.5								
1,2-Dibromoethane (EDB)	ND	2.5								
Naphthalene	ND	5.0								
1-Methylnaphthalene	ND	10								
2-Methylnaphthalene	ND	10								
Acetone	ND	25								
Bromobenzene	ND	2.5								
Bromodichloromethane	ND	7.5								
Bromoform	ND	2.5								
Bromomethane	ND	7.5								
2-Butanone	ND	25								
Carbon disulfide	ND	25								
Carbon Tetrachloride	ND	2.5								
Chlorobenzene	ND	5.0								
Chloroethane	ND	5.0								
Chloroform	ND	2.5								
Chloromethane	ND	7.5								
2-Chlorotoluene	ND	2.5								
4-Chlorotoluene	ND	2.5								
cis-1,2-DCE	ND	2.5								
cis-1,3-Dichloropropene	ND	2.5								
1,2-Dibromo-3-chloropropane	ND	5.0								
Dibromochloromethane	ND	5.0								
Dibromomethane	ND	2.5								
1,2-Dichlorobenzene	ND	2.5								
1,3-Dichlorobenzene	ND	2.5								
1,4-Dichlorobenzene	ND	2.5								
Dichlorodifluoromethane	ND	2.5								
1,1-Dichloroethane	ND	2.5								
1,1-Dichloroethene	ND	2.5								
1,2-Dichloropropane	ND	2.5								
1,3-Dichloropropane	ND	2.5								
2,2-Dichloropropane	ND	2.5								
1,1-Dichloropropene	ND	2.5								
Hexachlorobutadiene	ND	2.5								

Qualifiers:

*/X Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

RL Reporting Detection Limit

Page 5 of 7

Hall Environmental Analysis Laboratory, Inc.

WO#: 1206507

20-Jun-12

Client: Souder, Miller and Associates **Project:** MMOCD Maverick/Jackson

Sample ID mb-2397	SampT	ype: MBLK	Tes	TestCode: EPA Method 8260B: Volatiles					
Client ID: PBW	Batch	n ID: 2397	1	RunNo: 3493					
Prep Date: 6/14/2012	Analysis Date: 6/17/2012		2 :	SeqNo: 98255	Units: mg/Kg				
Analyte	Result	PQL SPK v	alue SPK Ref Val	%REC LowLimit	HighLimit %RP	D RPDLimit Qual			
2-Hexanone	ND	25							
Isopropylbenzene	ND	2.5							
4-Isopropyltoluene	ND	2.5							
4-Methyl-2-pentanone	ND	25							
Methylene Chloride	ND	7.5							
n-Butylbenzene	ND	2.5							
n-Propylbenzene	ND	2.5							
sec-Butylbenzene	ND	2.5							
Styrene	ND	2.5							
tert-Butylbenzene	ND	2.5							
1,1,1,2-Tetrachloroethane	ND	2.5							
1,1,2,2-Tetrachloroethane	ND	2.5							
Tetrachloroethene (PCE)	ND	2.5							
trans-1,2-DCE	ND	2.5							
trans-1,3-Dichloropropene	ND	2.5							
1,2,3-Trichlorobenzene	ND	2.5							
1,2,4-Trichlorobenzene	ND	2.5							
1,1,1-Trichloroethane	ND	2.5							
1,1,2-Trichloroethane	ND	2.5							
Trichloroethene (TCE)	ND	2.5							
Trichlorofluoromethane	ND	2.5							
1,2,3-Trichloropropane	ND	5.0							
Vinyl chloride	ND	2.5							
Xylenes, Total	ND	2.5							
Surr: 1,2-Dichloroethane-d4	23	2	5.00	91.9 56.8	108				
Surr: 4-Bromofluorobenzene	26	2	5.00	106 83.1	108				
Surr: Dibromofluoromethane	29	2	5.00	116 49.4	117				
Surr: Toluene-d8	23	2	5.00	92.0 88.3	103				

Sample ID Ics-2397	SampType: LCS			Tes	TestCode: EPA Method 8260B: Volatiles					
Client ID: LCSW	Batch ID: 2397			RunNo: 3493						
Prep Date: 6/14/2012	Analysis Date: 6/17/2012			SeqNo: 98256 Units: mg/Kg				(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	53	2.5	50.00	0	105	67.4	102			S
Toluene	42	2.5	50.00	0	83.8	90.5	109			S
Chlorobenzene	47	5.0	50.00	0	93.5	85.7	114			
1,1-Dichloroethene	53	2.5	50.00	0	106	50	114			
Trichloroethene (TCE)	47	2.5	50.00	0	93.1	70	130			
Surr: 1,2-Dichloroethane-d4	23		25.00		93.2	56.8	108			
Surr: 4-Bromofluorobenzene	26		25.00		103	83.1	108			

^{*/}X Value exceeds Maximum Contaminant Level.

Value above quantitation range

RPD outside accepted recovery limits

Analyte detected below quantitation limits J

Analyte detected in the associated Method Blank

Η Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Reporting Detection Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: **1206507**

20-Jun-12

Client: Souder, Miller and Associates

Project: MMOCD Maverick/Jackson

Sample ID Ics-2397 SampType: LCS TestCode: EPA Method 8260B: Volatiles

Client ID: LCSW Batch ID: 2397 RunNo: 3493

Prep Date: 6/14/2012 Analysis Date: 6/17/2012 SeqNo: 98256 Units: mg/Kg

Analyte Result SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Surr: Dibromofluoromethane S 29 25.00 118 49.4 117 Surr: Toluene-d8 22 25.00 89.8 88.3 103

Sample ID Icsd-2397	SampT	SampType: LCSD Batch ID: 2397			tCode: El					
Client ID: LCSS02	Batch				RunNo: 3493					
Prep Date: 6/14/2012	Analysis D	Analysis Date: 6/17/2012			SeqNo: 98257 Units: mg/Kg					
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	53	2.5	50.00	0	105	67.4	102	0.228	20	S
Toluene	44	2.5	50.00	0	88.4	90.5	109	5.32	20	S
Chlorobenzene	47	5.0	50.00	0	93.6	85.7	114	0.150	20	
1,1-Dichloroethene	54	2.5	50.00	0	107	50	114	1.44	20	
Trichloroethene (TCE)	46	2.5	50.00	0	92.4	70	130	0.747	20	
Surr: 1,2-Dichloroethane-d4	23		25.00		90.6	56.8	108	0	0	
Surr: 4-Bromofluorobenzene	27		25.00		107	83.1	108	0	0	
Surr: Dibromofluoromethane	29		25.00		117	49.4	117	0	0	
Surr: Toluene-d8	22		25.00		89.6	88.3	103	0	0	

Qualifiers:

R RPD outside accepted recovery limits

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- RL Reporting Detection Limit

^{*/}X Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87105

TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

Sample Log-In Check List

Client Name: SMA-FARM Work Order Number: 1206507 Received by/date 6/13/2012 10:00:00 AM Logged By: Lindsay Mangin 6/13/2012 10:21:30 AM Completed By: de/13/12 Reviewed By: Chain of Custody Not Present ✓ 1. Were seals intact? No Yes 2. Is Chain of Custody complete? Yes No Not Present 3. How was the sample delivered? Courier Log In NΑ 4. Coolers are present? (see 19. for cooler specific information) NA 5. Was an attempt made to cool the samples? NA Were all samples received at a temperature of >0° C to 6.0°C 7. Sample(s) in proper container(s)? 8. Sufficient sample volume for indicated test(s)? 9 Are samples (except VOA and ONG) properly preserved? 10. Was preservative added to bottles? No NA No VOA Vials No 11. VOA vials have zero headspace? 12. Were any sample containers received broken? # of preserved 13. Does paperwork match bottle labels? bottles checked (Note discrepancies on chain of custody) for pH: 14. Are matrices correctly identified on Chain of Custody? (<2 or >12 unless noted) Adjusted? 15. Is it clear what analyses were requested? No 16 Were all holding times able to be met? (If no, notify customer for authorization.) Checked by: <u>Special Handling (if applicable)</u> 17. Was client notified of all discrepancies with this order? Yes : No : Person Notified: Date: By Whom: Via: eMail Phone Fax In Person Regarding: Client Instructions: 18. Additional remarks: 19 Cooler Information

Seal Intact | Seal No

Seal Date

Cooler No | Temp °C | Condition

HALL ENVIRONMENTAL ANALYSIS LABORATORY www.hallenvironmental.com kins NE - Albuquerque, NM 87109 A45-3975 Fax 505-345-4107 Analysis Request	(V or M)	Time Remarks: R
ENVIRONME YSIS LABOR/ environmental.com Albuquerque, NM 87109 Fax 505-345-4107	(AOV-im92) 07S8	
IALL ENVIRONN INALYSIS LABO www.hallenvironmental.com ns NE - Albuquerque, NM 87 15-3975 Fax 505-345-4107 Analysis Request	8260B (VOV)	
IR IL iental rque, 05-3,	8081 Pesticides / 8082 PCB's	
LYSIS LAE LYSIS LAE allenvironmental.co - Albuquerque, NN - Fax 505-345-	Anions (F,Cl,NO ₃ ,NO ₂ ,PO ₄ ,SO ₄)	
Henvi Albu	RCRA 8 Metals	
HALL ANAL www.halli cins NE - 45-3975	(HA9 % AN9) 01:88	8 January Control of the state
HAN WW kins	EDB (Method 504.1)	
ANAI ANAI ANAI www.ha 4901 Hawkins NE Tel. 505-345-3975	TPH (Method 418.1)	
4901 Tel. (BTEX + MTBE + TPH (Gas only) TPH Method 8015B (Gas/Diesel)	Amarks:
	BTEX + MTBE + TMB's (8021)	Remarks:
Turn-Around Time: U Standard □ Rush Project Name: N.Y. W. C. D M. G. W. C. K. S. Project #:	Project Manager: Sampler: St. Sample Temperature: L. 4 Container Preservative HEAL No. Type and # Type	3 20ml — — — — — — — — — — — — — — — — — — —
Chain-of-Custody Record Client: SMP Mailing Address: AM SM Language Phone #: (B/16) 325-7535	email or Fax#: QA/QC Package: Accreditation □ NELAP □ EDD (Type) Date Time Matrix Sample Request ID	Date: Time: Relinquished by: 12/12 74 b