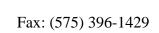
1R-2136


Plains DCP Plant to Lea Station 6-inch #2

Annual Report 2013

Basin Environmental Service Technologies, LLC

3100 Plains Highway P. O. Box 301 Lovington, New Mexico 88260 bjarguijo@basinenv.com

Office: (575) 396-2378 Fax: (575) 39

2013 ANNUAL MONITORING REPORT

PLAINS MARKETING, LP
DCP Plant to Lea Station 6-Inch #2
Unit Letter "F" (SE/NW), Section 31, Township 20 South, Range 37 East
Latitude 32.5316667° North, Longitude 103.2911111° West
Lea County, New Mexico
Plains SRS # 2009-039
NMOCD Reference # 1RP-2136

Prepared For:

Plains Marketing, LP 333 Clay Street, Suite 1600 Houston, Texas 77002

Prepared By:

Basin Environmental Service Technologies, LLC P. O. Box 301 Lovington, New Mexico 88260

March 2014

Ben J. Arguijo Project Manager

TABLE OF CONTENTS

INTRODUCTION	1
SITE DESCRIPTION AND BACKGROUND INFORMATION	1
FIELD ACTIVITIES	2
LABORATORY RESULTS	4
SUMMARY5	5
ANTICIPATED ACTIONS	5
LIMITATIONS	7
DISTRIBUTION	8
FIGURES	
Figure 1 – Site Location Map	
Figure 2A – Inferred Groundwater Gradient Map – 1Q2013 Figure 2B – Inferred Groundwater Gradient Map – 2Q2013 Figure 2C – Inferred Groundwater Gradient Map – 3Q2013 Figure 2D – Inferred Groundwater Gradient Map – 4Q2013	
Figure 3A – Groundwater Concentration & Inferred PSH Extent Map – 1Q2013 Figure 3B – Groundwater Concentration & Inferred PSH Extent Map – 2Q2013 Figure 3C – Groundwater Concentration & Inferred PSH Extent Map – 3Q2013 Figure 3D – Groundwater Concentration & Inferred PSH Extent Map – 4Q2013	
TABLES	
Table 1 – 2013 Groundwater Elevation Data Table 2 – 2013 Concentrations of Benzene & BTEX in Groundwater Table 3 – Concentrations of RCRA & NMWQCC Metals in Groundwater Table 4 – Concentrations of Volatile Organic Compounds Groundwater Table 5 – Concentrations of Semi-Volatile Compounds in Groundwater Table 6 – Concentrations of Anions/Cations in Groundwater	
APPENDICES	
Appendix A – Laboratory Analytical Reports Appendix B – Release Notification and Corrective Action (Form C-141) Appendix C – Soil Boring & Monitor Well Logs	

INTRODUCTION

Basin Environmental Service Technologies, LLC (Basin Environmental), on behalf of Plains Marketing, LP (Plains), is pleased to submit this *Annual Monitoring Report* in compliance with the New Mexico Oil Conservation Division (NMOCD) letter of May 1998, requiring submittal of an Annual Monitoring Report by April 1st of each year. This report is intended to be viewed as a complete document with text, figures, tables, and appendices. This report presents the results of the quarterly groundwater monitoring events conducted in calendar year 2013 only. For reference, a "Site Location Map" is provided as Figure 1.

Groundwater monitoring was conducted during each quarter of 2013 to assess the levels and extent of dissolved phase constituents and Phase-Separated Hydrocarbon (PSH). The groundwater monitoring events consisted of measuring static water levels in the monitor wells, checking for the presence of PSH, and purging and sampling of each well exhibiting sufficient recharge. Monitor wells containing a thickness of PSH greater than 0.01 feet were not sampled.

SITE DESCRIPTION AND BACKGROUND INFORMATION

The legal description of the DCP Plant to Lea Station 6" #2 release site is Unit Letter "F" (SE/NW), Section 31, Township 20 South, Range 37 East, in Lea County, New Mexico. The property affected by the release is owned by The State of New Mexico and administered by the New Mexico State Land Office (NMSLO). The geographic coordinates of the release site are 32.5316667° North latitude and 103.2911111° West longitude.

On February 12, 2009, Plains discovered a crude oil release from a six-inch (6") steel pipeline. During initial response activities, Plains installed a temporary clamp on the pipeline to mitigate the release. Approximately twenty-five barrels (25 bbls) of crude oil was released from the Plains pipeline, resulting in a surface stain measuring approximately ten feet (10') in width and twelve feet (12') in length. Plains notified the NMOCD Hobbs District Office of the release, and a "Release Notification and Corrective Action" (Form C-141) was submitted. The cause of the release was attributed to external corrosion of the pipeline.

On February 17, 2009, following initial response activities, excavation of hydrocarbon-impacted soil began at the site. Excavated soil was stockpiled on-site on a plastic liner to mitigate the potential leaching of contaminants into the vadose zone. Approximately two thousand, seven hundred cubic yards (2,700 yd³) of soil was stockpiled on-site during excavation activities. The final dimensions of the excavation were approximately sixty-six feet (66') in width, approximately eighty feet (80') in length, and approximately fifteen feet (15') in depth. Upon completion of the excavation activities, confirmation soil samples were collected from the excavation and stockpiles. Review of laboratory analytical results indicated soil samples collected from the excavation and stockpiles were less than NMOCD regulatory standards.

On April 15, 2009, a soil boring (SB-1) was advanced at the release site to evaluate the vertical extent of soil impact. During the advancement of the soil boring, groundwater was encountered at approximately sixty-one feet (61') drilling depth, or approximately seventy-six feet (76') below ground surface (bgs). A temporary casing was installed in the soil boring to allow a groundwater

sample to be collected for analysis. During the collection of the groundwater sample, a measurable thickness of PSH was observed on the groundwater. Plains immediately notified NMOCD representatives in the Hobbs District Office and the NMOCD Environmental Bureau (Santa Fe) of the impact to groundwater at the release site. On April 16, 2009, soil boring SB-1 was converted to a-inch (4") monitor well (MW-1).

On June 29, 2009, three (3) additional monitoring wells (MW-2, MW-3, and MW-4) were installed to evaluate the status of the groundwater at the site. Monitor well MW-2 is located approximately one hundred and thirty-five feet (135') to the northwest (up-gradient) of monitor well MW-1. The monitor well was installed to a total depth of approximately ninety feet (90') bgs. Monitor well MW-3 is located approximately eighty feet (80') to the southwest (cross-gradient) of monitor well MW-1. The monitor well was installed to a total depth of approximately ninety feet (90') bgs. Monitor well MW-4 is located approximately one hundred and fifteen feet (115') to the southeast (down-gradient) of monitor well MW-1. The monitor well was installed to a total depth of approximately eighty-eight feet (88') bgs. PSH was not observed in monitor wells MW-2, MW-3, or MW-4.

On August 25, 2009, a twenty (20) mil polyurethane liner was installed in the excavation. Monitor well (MW-1), located within the excavation, was extended to the top of the excavation using a four-inch (4") diameter PVC riser. The riser was fitted with a forty (40) mil boot, which was chemically welded to the twenty (20) mil liner to ensure impermeability of the liner. The liner was cushioned by a six-inch (6") layer of sand above and below the liner to protect the liner from damage during backfilling. The excavation was backfilled with the stockpiled soil and compacted in twelve-inch (12") lifts. The disturbed areas were contoured to fit the surrounding topography and seeded with an NMSLO-approved seeding mixture. Supplemental seeding occurred on October 12, 2010.

On January 24, 2011, one (1) additional monitoring well (MW-5) was installed to further monitor the down-gradient migration of the PSH plume. Monitor well MW-5 is located approximately fifty feet (50') to the southeast (down-gradient) of monitor well MW-1. The monitor well was installed to a total depth of approximately ninety-five feet (95') bgs. PSH was not observed in monitor well MW-5. Laboratory analytical results of soil samples collected during the installation of monitor well MW-5 indicated benzene, BTEX, and TPH concentrations were less than NMOCD regulatory standards in all submitted soil samples.

On September 10, 2013, two (2) additional monitoring wells (MW-6 and MW-7) were installed to further monitor the down-gradient migration of the dissolved-phase plume and to delineate the horizontal extent of PSH. Monitor well MW-6 is located approximately one hundred and twenty-five feet (125') to the east-southeast (cross-gradient) of monitor well MW-1. The monitor well was installed to a total depth of approximately ninety-five feet (95') bgs. PSH was not observed in monitor well MW-6. Monitor well MW-7 is located approximately one hundred and seventy-five feet (175') to the southeast (down-gradient) of monitor well MW-1. Laboratory analytical results of soil samples collected during the installation of monitor wells MW-6 and MW-7 indicated benzene, BTEX, and TPH concentrations were less than NMOCD regulatory standards in all submitted soil samples.

Currently, a total of seven (7) monitor wells are located at the DCP Plant to Lea Station 6-Inch #2 release site. Monitor wells MW-2 through MW-7 are gauged and sampled on a quarterly schedule, while MW-1 is gauged weekly but not sampled due to the presence of PSH.

FIELD ACTIVITIES

Product Recovery Efforts

A measurable thickness of PSH was detected in monitor well MW-1 during the initial site investigation. Basin Environmental began manual, bi-weekly gauging and recovery of PSH from MW-1 in April 2009. Approximately 3,995 gallons (95.1 barrels) of PSH has been recovered from MW-1 since recovery operations began in 2009, and approximately 607 gallons (14.4 barrels) of PSH was recovered from MW-1 during the 2013 reporting period. The average PSH thickness measured in MW-1 during the reporting period was 3.50 feet, and the maximum PSH thickness was 3.75 feet on April 15, 2013. All recovered fluids are disposed of at an NMOCD-approved disposal facility near Monument, New Mexico.

On July 18, 2012, a Mobile Dual-Phase Extraction (MDPE) unit was installed on monitor well MW-1 by Talon LPE. The MDPE unit is shared with the nearby release site known as DCP Plant to Lea Station 6-Inch Sec. 31 (NMOCD Reference #1RP-2166), and the location of the unit is alternated monthly. During the 2013 reporting period, approximately 1,374 gallons (32.7 barrels) of PSH in the vapor phase and approximately 380 gallons (9.0 barrels) of PSH in the liquid phase were recovered by the MDPE unit, for a total of approximately 1,754 equivalent gallons (41.8 barrels) of PSH. To date, approximately 3,258 equivalent gallons (77.6 barrels) of PSH has been recovered from monitor well MW-1 by MDPE.

Groundwater Monitoring

The on-site monitor wells were gauged and sampled on February 5 (1Q2013), May 8 (2Q2013), August 5 (3Q2013), and November 13, 2013 (4Q2013). During these quarterly sampling events, the monitoring wells were purged using a PVC bailer or electrical Grundfos pump of a minimum of three (3) well volumes of water or until the wells were dry. Groundwater was allowed to recharge, and samples were obtained using disposable Teflon bailers. Water samples were stored in clean, glass containers provided by the laboratory and placed on ice in the field. Purge water was collected in a trailer-mounted polystyrene tank and disposed of at an NMOCD-approved disposal facility near Monument, New Mexico.

A yearly monitoring event for polyaromatic hydrocarbons (PAH) was conducted on December 23, 2013. Based on sampling criteria provided by the NMOCD, only monitor well MW-5 was subject to PAH monitoring during the 2013 calendar year.

Locations of the groundwater monitoring wells and the inferred groundwater elevations, which were constructed from measurements collected during the 2013 quarterly sampling events, are depicted in Figures 2A through 2D. The "Groundwater Gradient Map" from the most recent sampling event (Figure 2D, November 13, 2013) indicates a general gradient of approximately 0.002 feet/foot to the southeast as measured between monitor wells MW-2 and MW-4.

On November 13, 2013, the corrected groundwater elevation ranged between 3,459.12 and 3,459.69 feet above mean sea level in monitor wells MW-4 and MW-1, respectively. The "2013 Groundwater Elevation Data" is provided as Table 1.

LABORATORY RESULTS

Groundwater samples collected from the monitor wells during the during the quarterly and yearly monitoring events were delivered to Xenco Laboratories in Odessa, Texas, for determination of BTEX and/or PAH constituent concentrations by EPA Methods SW846-8021b and SW846-80270C, respectively. A summary of benzene and BTEX constituent concentrations is presented in Table 2, "2013 Concentrations of Benzene & BTEX in Groundwater". A summary of PAH constituent concentrations is presented in Table 3, "Concentrations of Semi-Volatile Compounds in Groundwater". Laboratory analytical reports are provided as Appendix A. "Groundwater Concentration & Inferred PSH Extent" maps are provided as Figures 3A through 3D.

Baseline sampling of monitor wells MW-6 and MW-7 was conducted on September 25, 2013. Laboratory analytical results from the baseline monitoring are summarized in Tables 3 through 6. Monitor Well Logs are provided as Appendix C.

Laboratory analytical results were compared to NMOCD regulatory limits based on the New Mexico groundwater standards found in section 20.6.2.3103 of the New Mexico Administrative Code (NMAC).

Monitor well MW-1

Monitor well MW-1 was not sampled during the 2013 reporting period due to the presence of PSH in the monitor well.

Monitor well MW-2

Laboratory analytical results indicated benzene concentrations ranged from less than the laboratory method detection limit (MDL) in 1Q2013, 3Q2013, and 4Q2013 to 0.0079 mg/L in 2Q2013. Toluene concentrations ranged from less than the laboratory MDL in 1Q2013, 3Q2013, and 4Q2013 to 0.0027 mg/L in 2Q2013. Ethylbenzene concentrations ranged from less than the laboratory MDL in 1Q2013, 3Q2013, and 4Q2013 to 0.0026 mg/L in 2Q2013. Total xylene concentrations ranged from less than the laboratory MDL in 1Q2013, 3Q2013, and 4Q2013 to 0.0167 mg/L in 2Q2013. Benzene and BTEX constituent concentrations were less than NMOCD regulatory standards during all four quarters of the reporting period.

Monitor well MW-3

Laboratory analytical results indicated benzene, ethylbenzene, toluene, and total xylene concentrations were both less than the appropriate laboratory MDL and less than NMOCD regulatory standards during all four quarters of the reporting period.

Monitor well MW-4

Laboratory analytical results indicated benzene concentrations ranged from 0.0014 mg/L in 4Q2013 to 0.0181 mg/L in 1Q2013. Toluene, ethylbenzene, and total xylene concentrations were less than the appropriate laboratory MDL in all submitted groundwater samples. Benzene concentrations exceeded NMOCD regulatory standards in 1Q2013. Toluene, ethylbenzene, and total xylene concentrations were less than NMOCD regulatory standards during all four quarters of the reporting period.

Monitor well MW-5

Laboratory analytical results indicated benzene concentrations ranged from 0.011 mg/L in 3Q2013 to 6.50 mg/L in 4Q2013. Toluene concentrations ranged from less than the laboratory MDL in 1Q2013, 3Q2013, and 4Q2013 to 0.242 mg/L in 2Q2013. Ethylbenzene concentrations ranged from less than the laboratory MDL in 1Q2013, 3Q2013, and 4Q2013 to 0.132 mg/L in 2Q2013. Total xylene concentrations ranged from less than the laboratory MDL in 1Q2013, 3Q2013, and 4Q2013 to 0.138 mg/L in 2Q2013. Benzene concentrations exceeded NMOCD regulatory standards during all four quarters of the reporting period. Toluene, ethylbenzene, and total xylene concentrations were less than NMOCD regulatory standards during all four quarters of the reporting period.

PAH constituent concentrations in the groundwater sample collected on December 23, 2013, were both less than the appropriate laboratory MDL and NMOCD regulatory standards, with the exception of naphthalene, which exhibited a concentration of 0.00054 mg/L.

Monitor well MW-6

Laboratory analytical results indicated benzene concentrations ranged from less than the laboratory MDL in 3Q2013 to 0.0047 mg/L in 4Q2013. Toluene, ethylbenzene, and total xylene concentrations were less than the appropriate laboratory MDL in all submitted groundwater samples. Benzene, toluene, ethylbenzene, and total xylene concentrations were less than NMOCD regulatory standards during all four quarters of the reporting period.

Monitor well MW-7

Laboratory analytical results indicated benzene, ethylbenzene, toluene, and total xylene concentrations were both less than the appropriate laboratory MDL and less than NMOCD regulatory standards during all four quarters of the reporting period.

SUMMARY

This report presents the results of groundwater monitoring activities for the 2013 annual monitoring period. Currently, there are seven (7) groundwater monitor wells (MW-1 through MW-7) on-site. Monitor well MW-1 was not sampled in 2013 due to the presence of PSH in the monitor well. Monitor wells MW-2, MW-3, MW-4, and MW-5 were sampled during all four quarters of the monitoring period. Monitor wells MW-6 and MW-7 were installed on September

10, 2013, and sampled during the third and fourth quarters of 2013. The results of these sampling events are summarized above.

The "Groundwater Gradient Map" from the most recent sampling event (Figure 2D, November 13, 2013) indicates a general gradient of approximately 0.002 feet/foot to the southeast as measured between monitor wells MW-2 and MW-4.

A measurable thickness of PSH was detected in monitor well MW-1 throughout the 2013 reporting period. The average PSH thickness measured in MW-1 during the reporting period was 3.50 feet, and the maximum PSH thickness was 3.75 feet on April 15, 2013.

During the reporting period, approximately 607 gallons (14.4 barrels) of PSH was recovered, by manual recovery, from monitor well MW-1. A total of 1,754 equivalent gallons (41.8 barrels) of PSH was recovered by Mobile Dual-Phase Extraction.

Review of laboratory analytical results generated from analysis of groundwater samples collected in 2013 indicated benzene concentrations were less than the NMOCD regulatory standard in monitor wells MW-2, MW-3, MW-6, and MW-7. However, benzene concentrations above NMOCD standards were detected in the groundwater samples from monitor wells MW-4 (1Q2013) and MW-5 (all four quarters of the reporting period).

ANTICIPATED ACTIONS

PSH recovery by Mobile Dual-Phase Extraction from monitor well MW-1 will continue on an alternating monthly basis during the 2014 monitoring period. During months when the MDPE unit is not active at the site, manual PSH recovery from monitor well MW-1 will be conducted on a semi-weekly schedule. All fluids recovered from MW-1 will be disposed of at an NMOCD-permitted disposal facility.

Monitor wells MW-2 through MW-7 will be monitored and sampled quarterly. Results of the 2014 sampling events will be reported in the 2014 *Annual Monitoring Report*, which will be submitted to the NMOCD by April 1, 2015.

LIMITATIONS

Basin Environmental Service Technologies, LLC, has prepared this *Annual Monitoring Report* to the best of its ability. No other warranty, expressed or implied, is made or intended. Basin Environmental has examined and relied upon documents referenced in the report and on oral statements made by certain individuals. Basin Environmental has not conducted an independent examination of the facts contained in referenced materials and statements. Basin Environmental has presumed the genuineness of these documents and statements and that the information provided therein is true and accurate. Basin Environmental has prepared this report in a professional manner, using the degree of skill and care exercised by similar environmental consultants. Basin Environmental notes that the facts and conditions referenced in this report may change over time, and the conclusions and recommendations set forth herein are applicable only to the facts and conditions as described at the time of this report.

This report has been prepared for the benefit of Plains Marketing, LP. The information contained in this report, including all exhibits and attachments, may not be used by any other party without the express consent of Basin Environmental Service Technologies, LLC, and/or Plains Marketing, LP.

DISTRIBUTION

Copy 1: Jim Griswold

New Mexico Energy, Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Drive Santa Fe, New Mexico 87505 jim.griswold@state.nm.us

Copy 2: Geoff Leking

New Mexico Oil Conservation Division

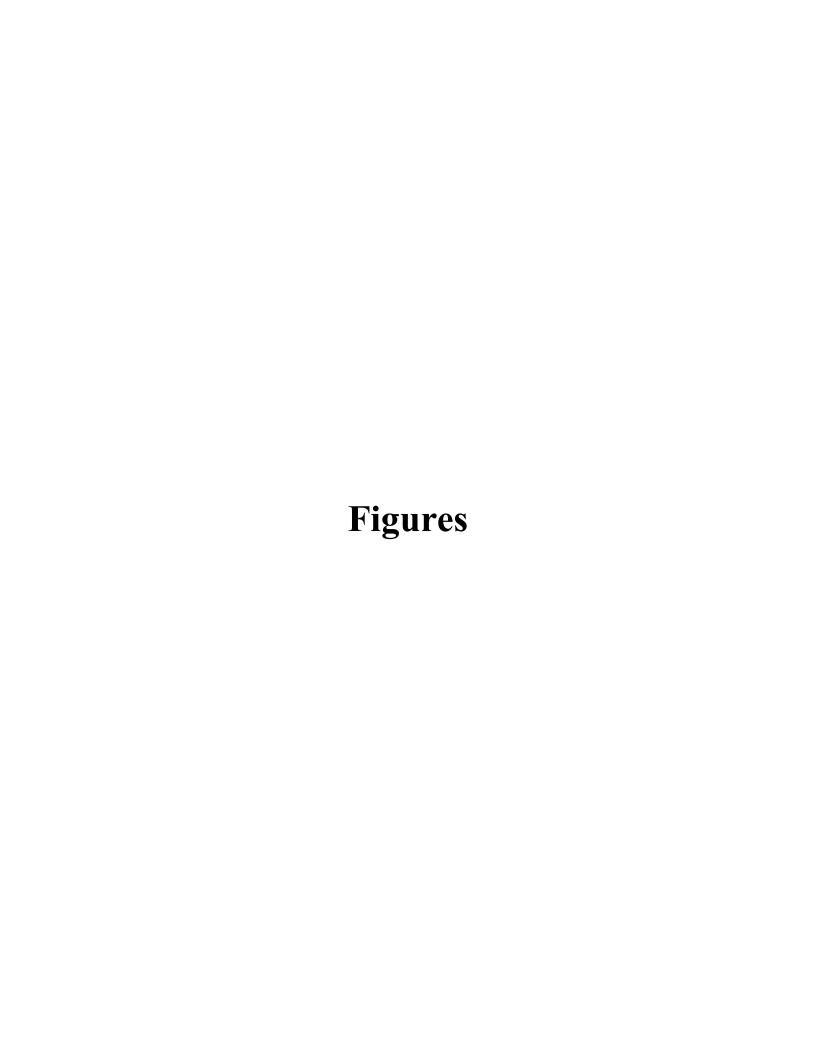
1625 N. French Drive Hobbs, New Mexico 88240 GeoffreyR.Leking@state.nm.us

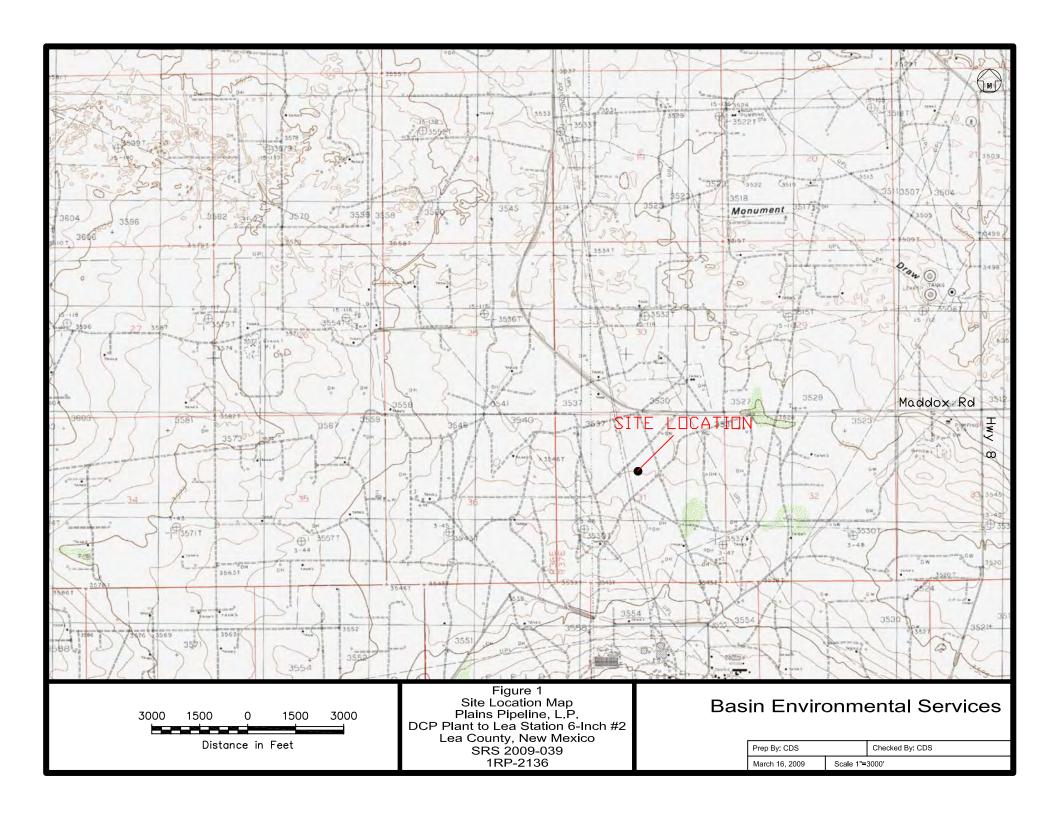
Copy 3: Jeff Dann

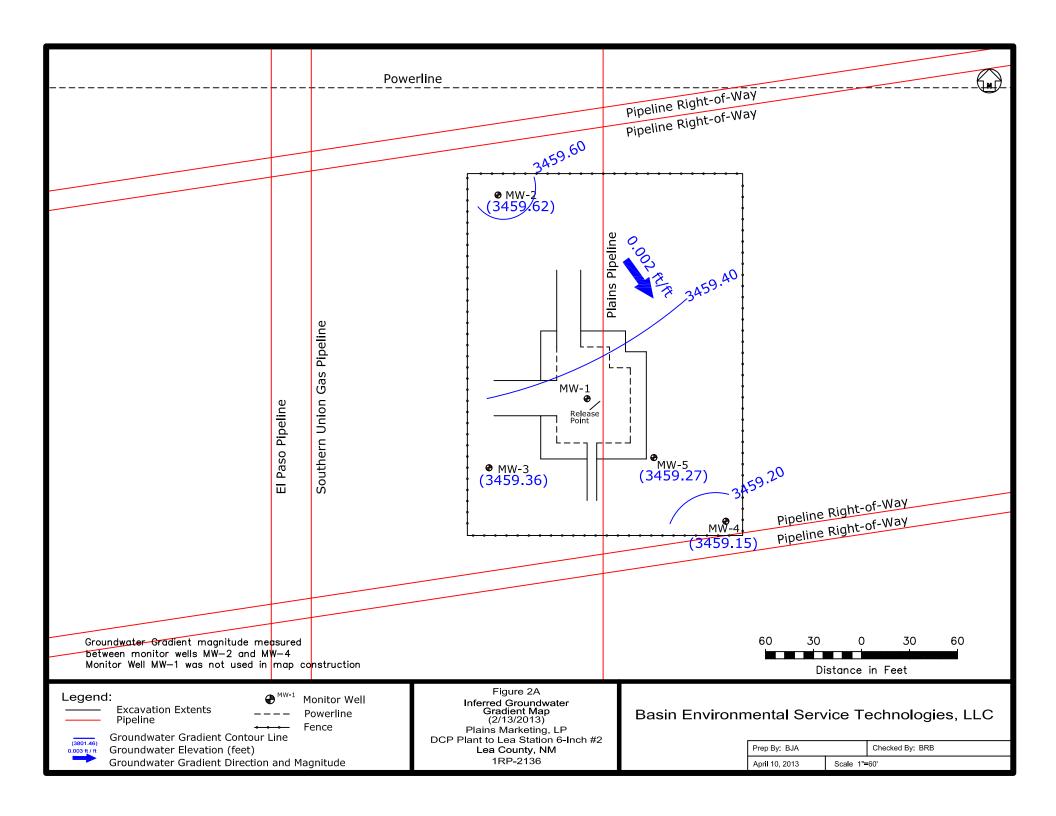
Plains Marketing, L.P.

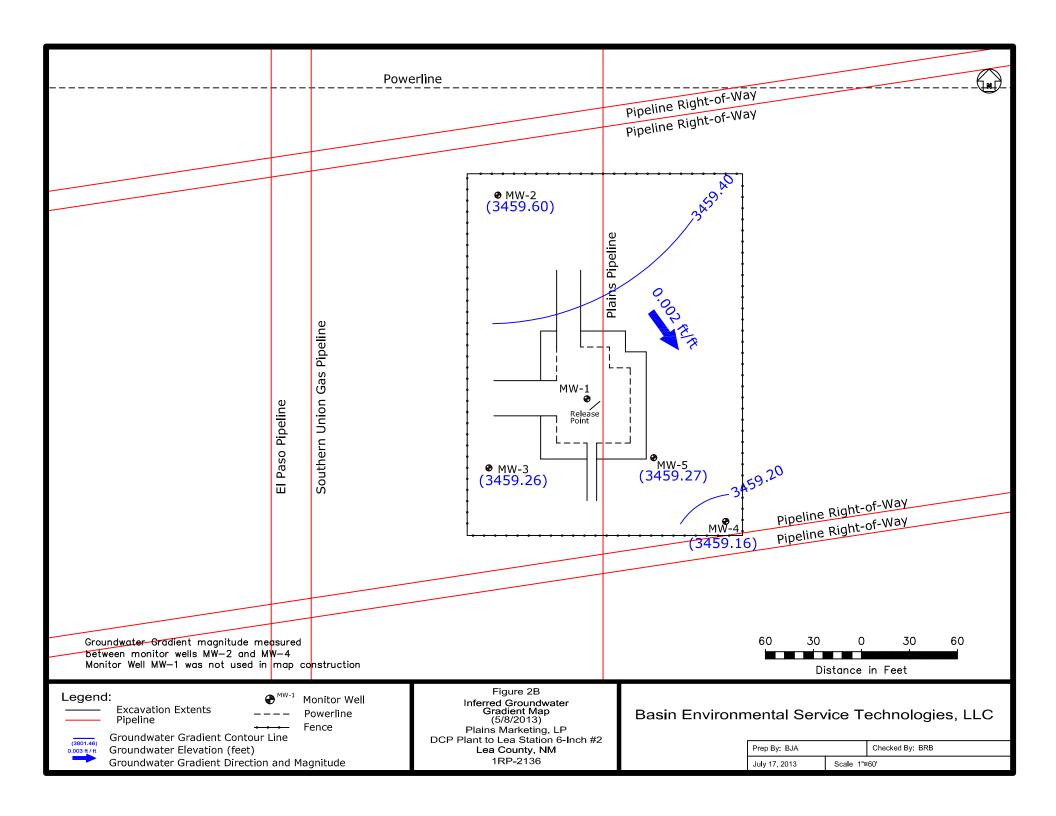
333 Clay Street Suite 1600

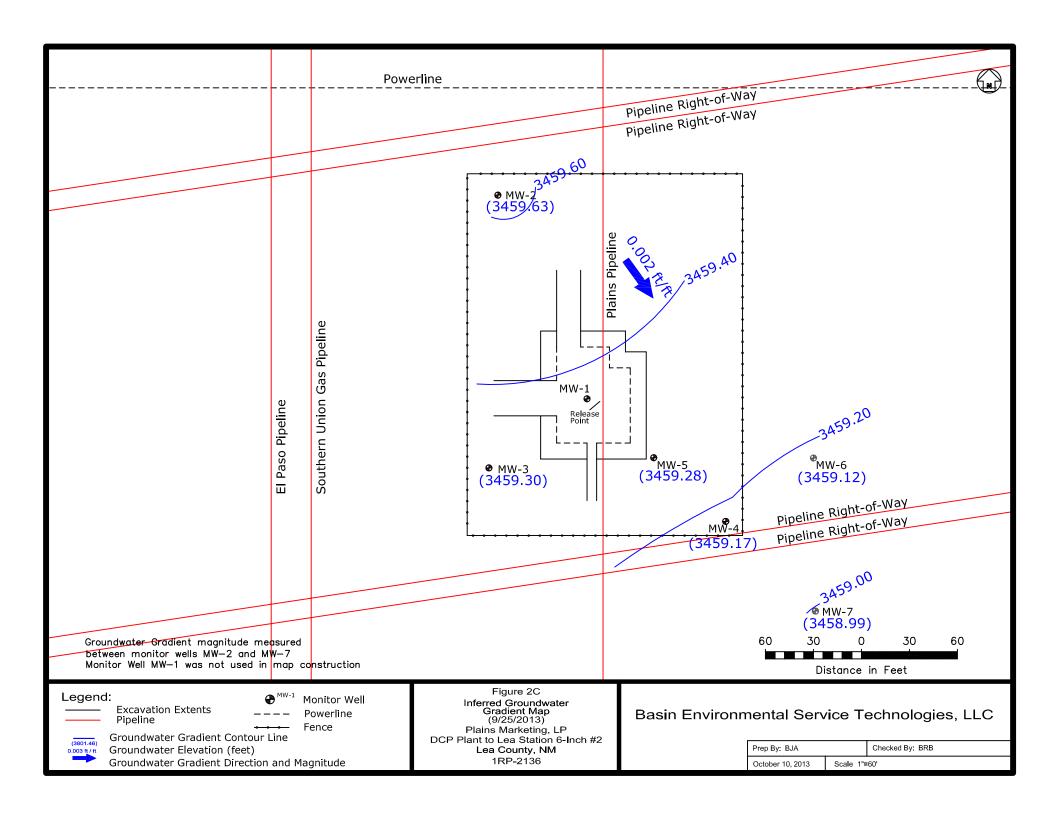
Houston, Texas 77002 jpdann@paalp.com

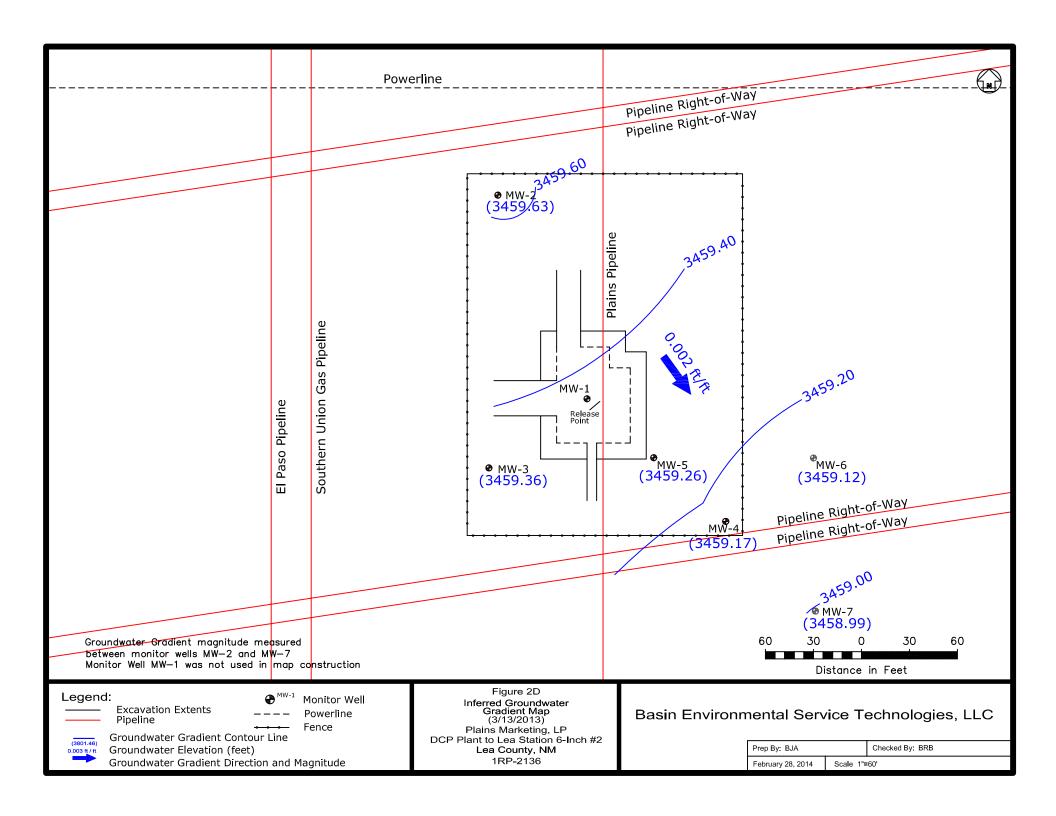

Copy 4: Camille Bryant

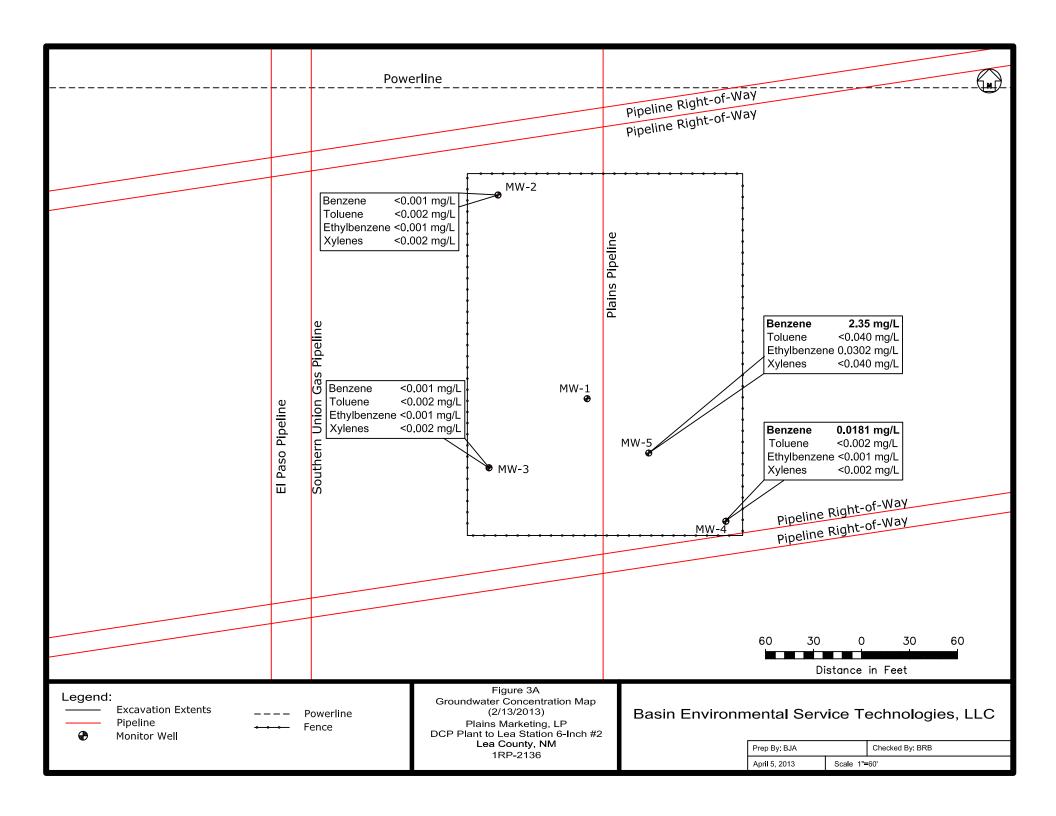

Plains Marketing, L.P. 2530 State Highway 214 Denver City, Texas 79323 cjbryant@paalp.com

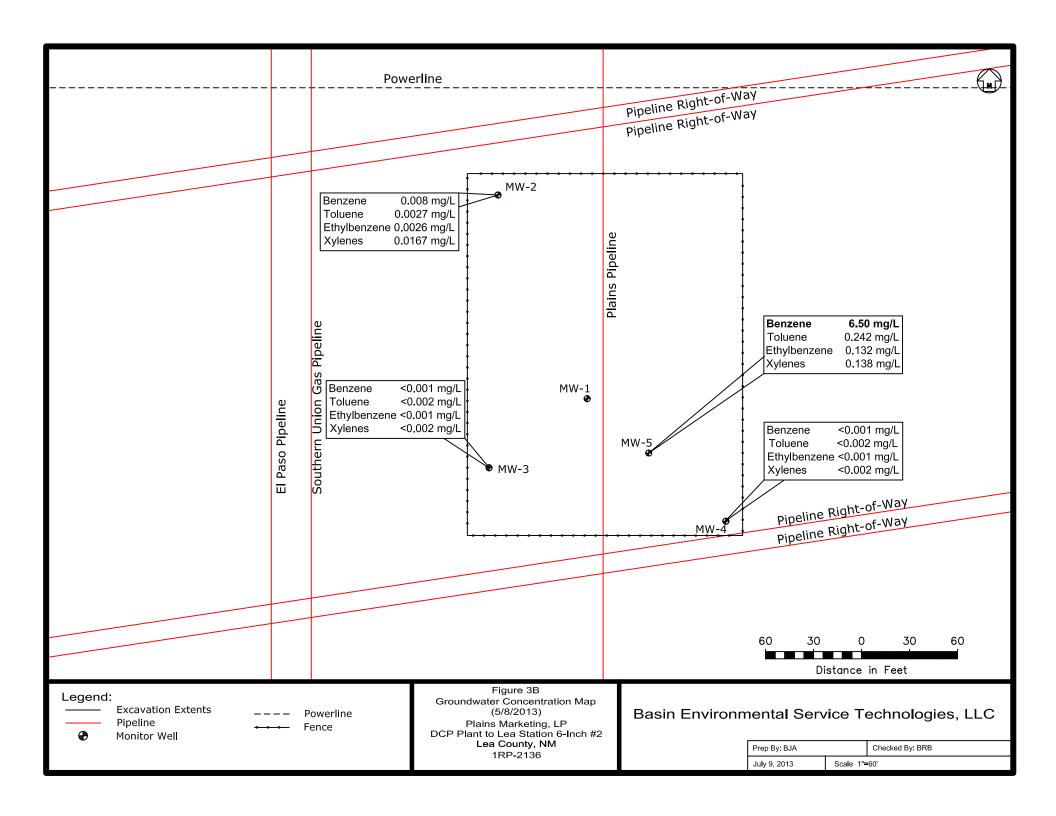

Copy 5: Basin Environmental Service Technologies, LLC

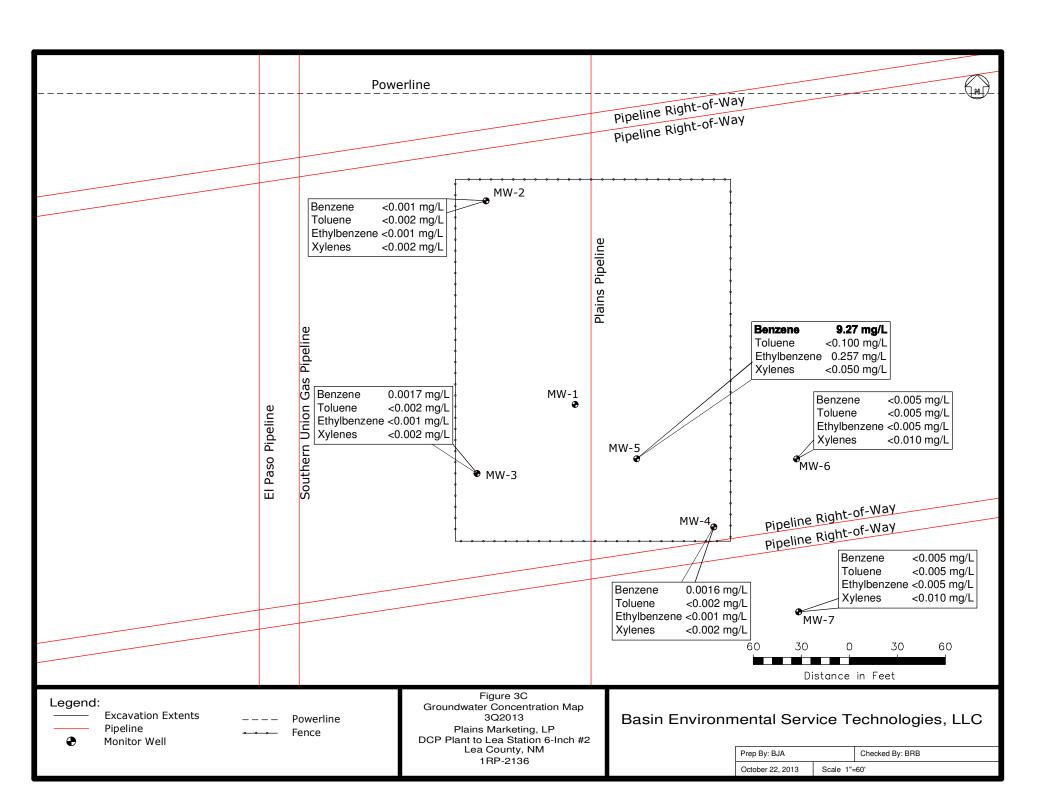

P. O. Box 301

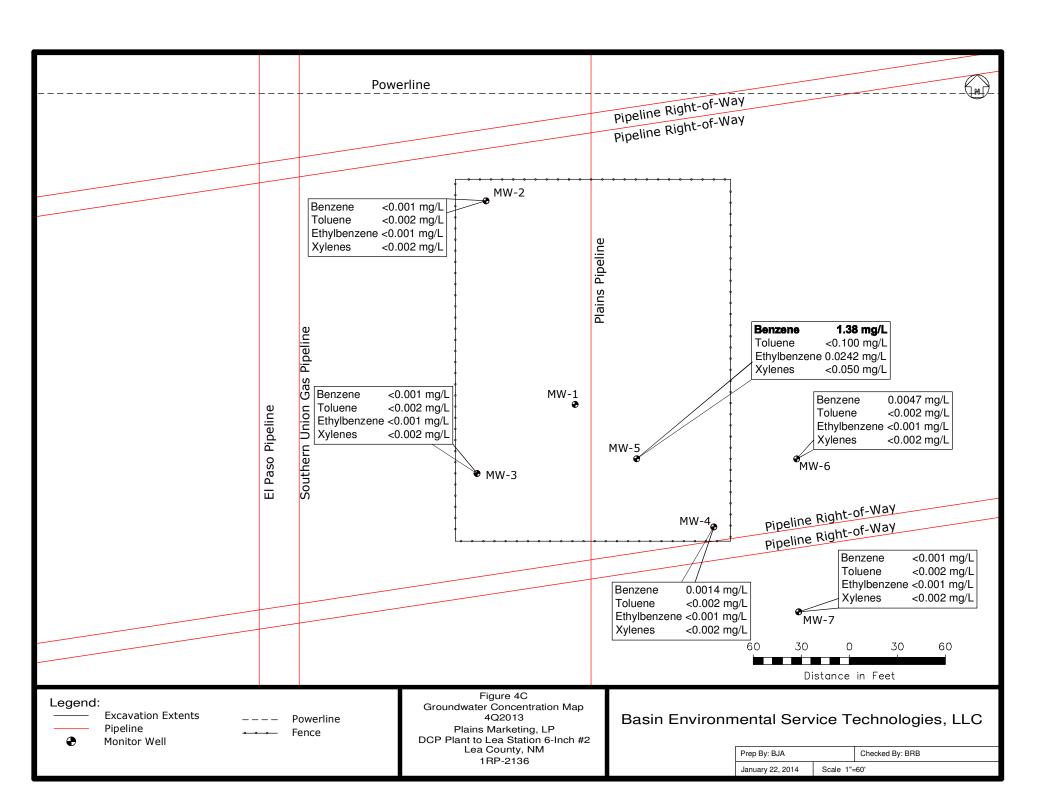

Lovington, New Mexico 88260











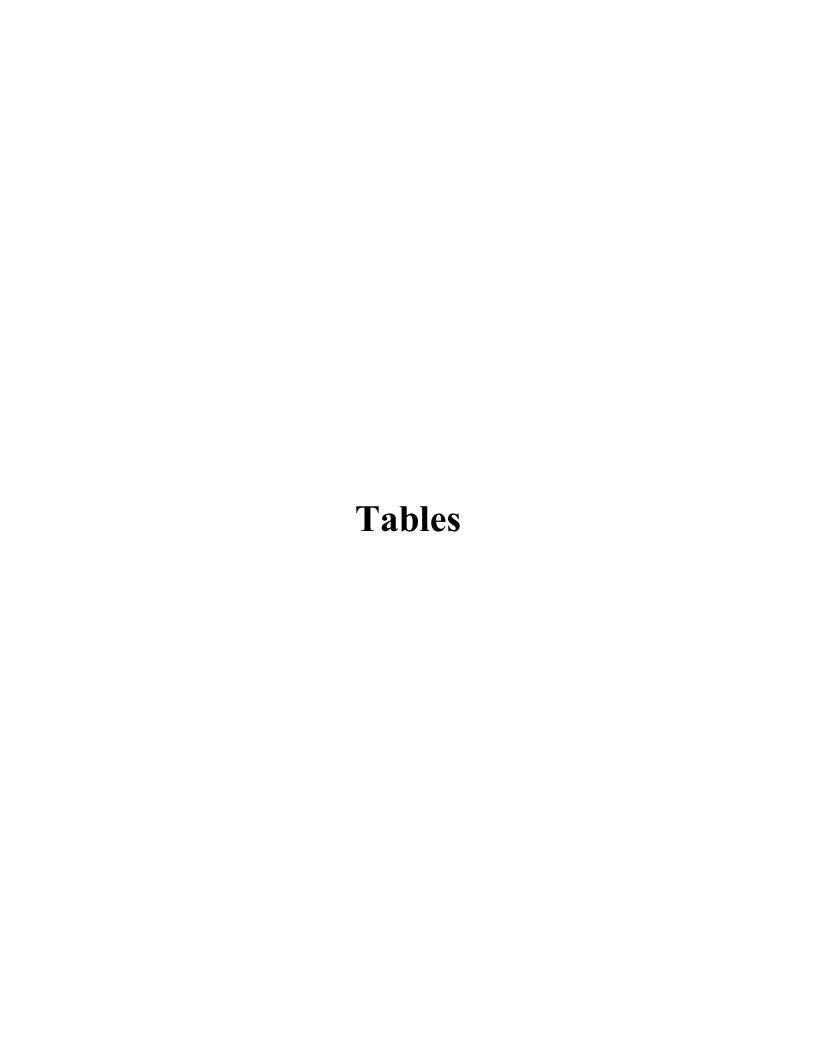


TABLE 1

2013 GROUNDWATER ELEVATION DATA

PLAINS PIPELINE, L.P. DCP PLANT TO LEA STATION 6-INCH #2 LEA COUNTY, NEW MEXICO PLAINS SRS NO: 2009-039

NMOCD REF NO: 1RP-2136

WELL NUMBER	DATE MEASURED	CASING WELL ELEVATION	DEPTH TO PRODUCT	DEPTH TO WATER	PSH THICKNESS	CORRECTED GROUNDWATER ELEVATION
MW-1	02/13/13	3,540.25	*	*	*	*
	05/08/13	3,540.25	79.92	83.46	3.54	3,459.80
	08/05/13	3,540.25	80.01	83.63	3.62	3,459.70
	09/25/13	3,540.25	80.02	83.62	3.60	3,459.69
	11/13/13	3,540.25	80.02	83.62	3.60	3,459.69
MW-2	02/13/13	3,538.31	-	78.69	ı	3,459.62
	05/08/13	3,538.31	-	78.71	-	3,459.60
	08/05/13	3,538.31	-	78.65	-	3,459.66
	09/25/13	3,538.31	ı	78.68	1	3,459.63
	11/13/13	3,538.31	ı	78.68	1	3,459.63
MW-3	02/13/13	3,538.94	-	79.67	ı	3,459.27
	05/08/13	3,538.94	-	79.68	ı	3,459.26
	08/05/13	3,538.94	-	79.56	-	3,459.38
	09/25/13	3,538.94	-	79.64	-	3,459.30
	11/13/13	3,538.94	-	79.58	-	3,459.36
MW-4	02/13/13	3,539.67	-	80.51	-	3,459.16
	05/08/13	3,539.67	-	80.51	-	3,459.16
	08/05/13	3,539.67	-	80.49	i	3,459.18
	09/25/13	3,539.67	-	80.50	-	3,459.17
	11/13/13	3,539.67	-	80.50	-	3,459.17
MW-5	02/13/13	3,539.55	-	80.28	-	3,459.27
	05/08/13	3,539.55	-	80.28	-	3,459.27
	08/05/13	3,539.55	-	80.26	-	3,459.29
	09/25/13	3,539.55	-	80.27	-	3,459.28
	11/13/13	3,539.55	-	80.29	ı	3,459.26
MW-6	09/25/13	3,539.22	-	80.10	ı	3,459.12
	11/13/13	3,539.22	-	80.10	ı	3,459.12
MW-7	09/25/13	3,538.97	-	79.98	-	3,458.99
	11/13/13	3,538.97	-	79.98	-	3,458.99

Elevations based on the North American Vertical Datum of 1988

^{- =} Not applicable

^{*} Due to the presence of a Mobile Dual Phase Extraction (MDPE) unit, monitor well MW-1 was not gauged during the 1Q2013 quarterly monitoring event.

TABLE 2 2013 CONCENTRATIONS OF BENZENE & BTEX IN GROUNDWATER

PLAINS PIPELINE, L.P. DCP PLANT TO LEA STATION 6-INCH #2 LEA COUNTY, NEW MEXICO PLAINS SRS NO. 2009-039 NMOCD REFERENCE NO: 1R-2136

				METH	ODS: EPAS	W 846-8021b		
SAMPLE LOCATION	SAMPLE DATE	BENZENE (mg/L)	TOLUENE (mg/L)	ETHYL- BENZENE (mg/L)	M,P- XYLENES (mg/L)	O-XYLENES (mg/L)	TOTAL XYLENES (mg/L)	TOTAL BTEX (mg/L)
MW-2	02/05/13	< 0.0010	< 0.0020	< 0.0010	< 0.0020	<0.0010	< 0.0020	< 0.0020
	05/08/13	0.0079	0.0027	0.0026	0.0102	0.0065	0.0167	0.0298
	08/05/13	< 0.0010	< 0.0020	< 0.0010	< 0.0020	< 0.0010	< 0.0020	< 0.0020
	11/13/13	< 0.0010	< 0.0020	< 0.0010	< 0.0020	< 0.0010	< 0.0020	< 0.0020
MW-3	02/05/13	< 0.0010	< 0.0020	< 0.0010	< 0.0020	< 0.0010	< 0.0020	< 0.0020
	05/08/13	< 0.0010	<0.0020	< 0.0010	< 0.0020	< 0.0010	< 0.0020	<0.0020
	08/05/13	< 0.0010	< 0.0020	< 0.0010	<0.0020	< 0.0010	< 0.0020	<0.0020
	11/13/13	<0.0010	<0.0020	<0.0010	<0.0020	<0.0010	<0.0020	<0.0020
MW-4	02/05/13	0.0181	<0.0020	<0.0010	<0.0020	<0.0010	<0.0020	0.0181
	05/08/13	<0.0010	<0.0020	<0.0010	<0.0020	<0.0010	<0.0020	<0.0020
	08/05/13	0.0033	<0.0020	<0.0010	<0.0020	<0.0010	<0.0020	0.0331
	11/13/13	0.0014	<0.0020	<0.0010	<0.0020	<0.0010	<0.0020	0.0014
MW-5	02/05/13	2.35	<0.0400	0.0302	<0.0400	<0.0200	<0.0400	2.38
	05/08/13	6.50	0.242	0.132	0.138	<0.0500	0.1380	7.01
	08/05/13	0.011	<0.0020	<0.0010	<0.0020	<0.0010	<0.0020	0.011
	11/13/13	1.38	<0.0020	0.0242	<0.0020	<0.0010	<0.0020	1.40
MW-6	09/25/13	<0.0050	<0.0050	<0.0050	<0.0100	<0.0050	<0.0100	<0.0100
	11/13/13	0.0047	<0.0020	<0.0010	<0.0020	<0.0010	<0.0020	0.0047
MW-7	09/25/13	<0.0050	<0.0050	<0.0050	<0.0100	<0.0050	<0.0100	<0.0100
	11/13/13	<0.0010	<0.0020	<0.0010	<0.0020	<0.0010	<0.0020	<0.0020
NIA 000 001555		0.01			TOTAL 300	L ENEG A CO		
NMOCD CRITERIA	MOCD CRITERIA		0.75	0.75	TOTAL XY	LENES 0.62		

TABLE 3

CONCENTRATIONS OF RCRA & NMWQCC METALS IN GROUNDWATER

PLAINS PIPELINE, L.P.

DCP PLANT TO LEA STATION 6-INCH #2

LEA COUNTY, NEW MEXICO

NMOCD REFERENCE NUMBER 1RP-2136

All water concentrations are reported in mg/L

								EF	PA SW846	-6020A, E	PA 7470	A						
SAMPLE LOCATION	SAMPLE DATE	Aluminum	Arsenic	Barium	Boron	Cadmium	Chromium	Cobalt	Copper	Iron	Lead	Manganese	Molybdenum	Nickel	Selenium	Silver	Zinc	Mercury
MW-6	9/25/2013	25.6	0.0223	0.559	0.613	<0.010	0.0219	0.0139	< 0.020	19.3	0.031	0.768	0.0298	0.0331	0.033	<0.020	0.0627	< 0.0002
MW-7	9/25/2013	1.80	< 0.020	0.103	0.584	<0.010	<0.010	<0.010	<0.020	1.26	0.015	0.0542	0.0347	< 0.010	0.0391	<0.020	<0.030	< 0.0002
Maximum Conta from NM WQCC water standards 101.UU and 3-10	Drinking Sections 1-	5.0 mg/L	0.1 mg/L	1.0 mg/L	0.75 mg/L	0.01 mg/L	0.05 mg/L	0.05 mg/L	1.0 mg/L	1.0 mg/L	0.05 mg/L	0.2 mg/L	1.0 mg/L	0.2 mg/L	0.05 mg/L	0.05 mg/L	10 mg/L	0.002 mg/L

CONCENTRATIONS OF VOLATILE ORGANIC COMPOUNDS IN GROUNDWATER PLAINS PIPELINE, LP

DCP PLANT TO LEA STATION 6-INCH #2 LEA COUNTY, NEW MEXICO

NMOCD REFERENCE NUMBER 1R9-2136

Date Sampled	Sample Location	Benzene	Bromobenzene	Bromochloromethane	Bromodichloromethane	Bromoform	Bromomethane	2-Butanone	МТВЕ	n-Butylbenzene	sec-Butylbenzene	tert-Butylbenzene	Carbon Disulfide	Carbon Tetrachloride	Chlorobenzene	Chloroethane
9/25/2013	MW-6	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.05	< 0.005	< 0.005	< 0.005	< 0.005	< 0.05	< 0.005	< 0.005	< 0.01
9/25/2013	MW-7	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.05	< 0.005	< 0.005	< 0.005	< 0.005	<0.05	< 0.005	< 0.005	< 0.01
Maximum Contam NMWQCC Drinking Sections 1-101.	g water standards	. = .			•									0.01 mg/L		

CONCENTRATIONS OF VOLATILE ORGANIC COMPOUNDS IN GROUNDWATER PLAINS PIPELINE, LP

DCP PLANT TO LEA STATION 6-INCH #2 LEA COUNTY, NEW MEXICO

NMOCD REFERENCE NUMBER 1RP-2136

Date Sampled	Sample Location	2-Chloroethyl vinyl ether	Chloroform	Chloromethane	2-Chlorotoluene	4-Chlorotoluene	p-Cymene(p- Isopropyltoluene)	Dibromochloromethane	1,2-Dibromo-3- chloropropane	1,2-Dibromoethane (EDB)	Dibromomethane (methylene bromide)	1,2-Dichlorobenzene	1,3-Dichlorobenzene	1,4-Dichlorobenzene	Dichlorodifluormethane	1,1-Dichloroethane	1,2-Dichloroethane	1,1-Dichloroethene	cis-1,2-Dichloroethene
9/25/2013	MW-6	< 0.005	< 0.005	< 0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
9/25/2013	MW-7	< 0.005	< 0.005	<0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Maximum Contam NMWQCC Drinking Sections 1-101.U	g water standards		0.1mg/L							0.0001 mg/L						0.005 mg/L	0.01 mg/L	0.005 mg/L	0.1mg/L

CONCENTRATIONS OF VOLATILE ORGANIC COMPOUNDS IN GROUNDWATER PLAINS PIPELINE, LP

DCP PLANT TO LEA STATION 6-INCH #2 LEA COUNTY, NEW MEXICO

NMOCD REFERENCE NUMBER 1RP-2136

Date Sampled	Sample Location	trans-1,2-Dichloroethene	1,2-Dichloropropane	1,3-Dichloropropane	2,2-Dichloropropane	1,1-Dichloropropane	cis-1,3-Dichloropropene	trans-1,3-Dichloropropene	Ethylbenzene	Hexachlorobutadiene	2-Hexanone	Isopropylbenzene	Methylene chloride	4-Methyl-2-pentanone (MIBK)	Naphthalene	n-Propylbenzene	Styrene	1,1,1,2-Tetrachloroethane
9/25/2013	MW-6	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.05	< 0.005	< 0.005	< 0.05	< 0.01	< 0.005	< 0.005	< 0.005
9/25/2013	MW-7	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	< 0.05	< 0.005	< 0.005	< 0.05	<0.01	< 0.005	< 0.005	< 0.005
Maximum Contam NMWQCC Drinkin Sections 1-101.	g water standards								0.75 mg/L		•		0.1mg/L		0.03 mg/L			

CONCENTRATIONS OF VOLATILE ORGANIC COMPOUNDS IN GROUNDWATER PLAINS PIPELINE, LP

DCP PLANT TO LEA STATION 6-INCH #2 LEA COUNTY, NEW MEXICO

NMOCD REFERENCE NUMBER 1RP-2136

Date Sampled	Sample Location	1,1,2,2-Tetrachloroethane	Tetrachloroethene (PCE)	Toluene	1,2,3-Trichlorobenzene	1,2,4-Trichlorobenzene	1,1,1-Trichloroethane	1,1,2-Trichloroethane	Trichloroethene (TCE)	Trichlorofluoromethane	1,2,3-Trichloropropane	1,2,4-Trimethylbenzene	1,3,5-Trimethylbenzene	o-Xylene	m,p-Xylene	Vinyl Chloride
9/25/2013	MW-6	< 0.005	< 0.005	0.0676	< 0.0099	< 0.0099	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.010	< 0.0020
9/25/2013	MW-7	< 0.005	< 0.005	0.0676	< 0.0099	< 0.0099	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.010	< 0.0020
Maximum Contam NMWQCC Drinking Sections 1-101.	g water standards	0.02 mg/L		0.75 mg/L			0.06 mg/L		0.01 mg/ L					Total Xylene	0.62 mg/L	0.001 mg/L

TABLE 5 CONCENTRATIONS OF SEMI-VOLATILE COMPOUNDS IN GROUNDWATER

PLAINS PIPELINE, L.P. DCP PLANT TO LEA STATION 6-INCH #2 LEA COUNTY, NEW MEXICO

PLAINS SRS NO: 2009-039 NMOCD REF NO: 1RP-2136

All water concentrations are reported in mg/L

									E	PA SW846	-8270C, 351	10							
SAMF LOCAT		-	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(k)fluoranthene	Benzo(g,h,i)perylene	Chrysene	Dibenz(a,h)anthracene	Fluoranthene	Fluorene	Indeno(1,2,3-cd)pyrene	1-Methylnaphthalene	2-Methylnaphthalene	Naphthalene	Phenanthrene	Pyrene
MW-	5 12/23/1	3 <0.00004	9 <0.000049	<0.000049	< 0.000049	<0.000049	<0.000049	<0.000049	<0.000049	<0.000049	<0.000049	<0.000049	<0.000049	<0.000049	< 0.000049	<0.000049	0.000535	<0.000049	<0.000049

TABLE 6 CONCENTRATIONS OF ANIONS/CATIONS IN GROUNDWATER

PLAINS PIPELINE, L.P.

DCP PLANT TO LEA STATION 6-INCH #2 LEA COUNTY, NEW MEXICO

NMOCD REFERENCE NUMBER 1RP -2136

All water concentrations are reported in mg/L

SAMPLE	SAMPLE				EPA	SW375.4, 32	5,3, 310, 160	.1 SW846 6010)B			
DATE	LOCATION	Calcium	Magnesium	Potassium	Sodium	Chloride	Sulfate	Bicarbonate	Carbonate	Nitrate	Phosphate	Flouride
9/25/2013	MW-6	266	109	22.8	711	1,000	752	224	<4.00	1.18	<0.0408	1.00
9/25/2013	MW-7	177	99.2	17.4	683	921	679	214	<4.00	1.21	<0.0408	0.811
_						250 mg/L	900 mg/L			10 mg/L		1.6 mg/L

Appendix A Laboratory Analytical Reports

Analytical Report 457614

for PLAINS ALL AMERICAN EH&S

Project Manager: Ben Arguijo

Dcp Plant to Lea Station 6" #2 SRS #2009-039

19-FEB-13

Collected By: Client

12600 West I-20 East Odessa, Texas 79765

Xenco-Houston (EPA Lab code: TX00122):

Texas (T104704215-10-6-TX), Arizona (AZ0765), Arkansas (08-039-0), Connecticut (PH-0102), Florida (E871002) Illinois (002082), Indiana (C-TX-02), Iowa (392), Kansas (E-10380), Kentucky (45), Louisiana (03054) New Hampshire (297408), New Jersey (TX007), New York (11763), Oklahoma (9218), Pennsylvania (68-03610) Rhode Island (LAO00312), USDA (S-44102), DoD (L11-54)

Xenco-Atlanta (EPA Lab Code: GA00046): Florida (E87429), North Carolina (483), South Carolina (98015), Kentucky (85), DoD (L10-135) Louisiana (04176), USDA (P330-07-00105)

Xenco-Tampa Mobile (EPA Lab code: FL01212): Florida (E84900)

Xenco-Lakeland: Florida (E84098)

Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400-TX)

Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295-TX) Xenco Phoenix (EPA Lab Code: AZ00901): Arizona(AZ0757)

Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757)

Xenco Tucson (EPA Lab code:AZ000989): Arizona (AZ0758)

19-FEB-13

Project Manager: **Ben Arguijo PLAINS ALL AMERICAN EH&S**1301 S. COUNTY ROAD 1150
Midland, TX 79706

Reference: XENCO Report No(s): 457614

Dcp Plant to Lea Station 6" #2 SRS #2009-039

Project Address: Lovington

Ben Arguijo:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 457614. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 457614 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Nicholas Straccione

Project Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Odessa - San Antonio - Tampa - Lakeland - Atlanta - Phoenix - Oklahoma - Latin America

Sample Cross Reference 457614

PLAINS ALL AMERICAN EH&S, Midland, TX

Dcp Plant to Lea Station 6" #2 SRS #2009-039

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
MW-2	W	02-13-13 12:40		457614-001
MW-3	W	02-13-13 12:15		457614-002
MW-4	W	02-13-13 11:55		457614-003
MW-5	W	02-13-13 11:30		457614-004

CASE NARRATIVE

Client Name: PLAINS ALL AMERICAN EH&S

Project Name: Dcp Plant to Lea Station 6" #2 SRS #2009-039

Project ID: Report Date: 19-FEB-13
Work Order Number(s): 457614
Date Received: 02/13/2013

Sample receipt non conformances and comments:
None
Sample receipt non conformances and comments per sample:

None

Certificate of Analysis Summary 457614

PLAINS ALL AMERICAN EH&S, Midland, TX

Project Id:

Project Location: Lovington

Project Name: Dcp Plant to Lea Station 6" #2 SRS #2009-039

Contact: Ben Arguijo

Date Received in Lab: Wed Feb-13-13 01:55 pm

Report Date: 19-FEB-13

Project Manager: Nicholas Straccione

						THEHOIRS BURGETONE
	Lab Id:	457614-001	457614-002	457614-003	457614-004	
Analysis Requested	Field Id:	MW-2	MW-3	MW-4	MW-5	
Anatysis Requestea	Depth:					
	Matrix:	WATER	WATER	WATER	WATER	
	Sampled:	Feb-13-13 12:40	Feb-13-13 12:15	Feb-13-13 11:55	Feb-13-13 11:30	
BTEX by EPA 8021B	Extracted:	Feb-18-13 07:50	Feb-18-13 07:50	Feb-18-13 07:50	Feb-18-13 07:50	
	Analyzed:	Feb-18-13 14:42	Feb-18-13 14:59	Feb-18-13 15:15	Feb-18-13 16:04	
	Units/RL:	mg/L RL	mg/L RL	mg/L RL	mg/L RL	
Benzene		ND 0.00100	ND 0.00100	0.0181 0.00100	2.35 0.0200	
Toluene		ND 0.00200	ND 0.00200	ND 0.00200	ND 0.0400	
Ethylbenzene		ND 0.00100	ND 0.00100	ND 0.00100	0.0302 0.0200	
m_p-Xylenes		ND 0.00200	ND 0.00200	ND 0.00200	ND 0.0400	
o-Xylene		ND 0.00100	ND 0.00100	ND 0.00100	ND 0.0200	
Total Xylenes		ND 0.00100	ND 0.00100	ND 0.00100	ND 0.0200	
Total BTEX		ND 0.00100	ND 0.00100	0.0181 0.00100	2.38 0.0200	
						'

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Worl Ctr

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantiation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- H The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.

BRL Below Reporting Limit.

RL Reporting Limit

MDL Method Detection Limit SDL Sample Detection Limit LOD Limit of Detection

PQL Practical Quantitation Limit MQL Method Quantitation Limit LOQ Limit of Quantitation

DL Method Detection Limit

NC Non-Calculable

- + NELAC certification not offered for this compound.
- * (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Atlanta - Midland/Odessa - Tampa/Lakeland - Phoenix - Latin America

Phone Fax 4143 Greenbriar Dr. Stafford, TX 77477 (281) 240-4280 (281) 240-4200 9701 Harry Hines Blvd , Dallas, TX 75220 (214) 902 0300 (214) 351-9139 5332 Blackberry Drive, San Antonio TX 78238 (210) 509-3334 (210) 509-3335 2505 North Falkenburg Rd, Tampa, FL 33619 (813) 620-2000 (813) 620-2033 12600 West I-20 East, Odessa, TX 79765 (432) 563-1800 (432) 563-1713 6017 Financial Drive, Norcross, GA 30071 (770) 449-8800 (770) 449-5477 3725 E. Atlanta Ave, Phoenix, AZ 85040 (602) 437-0330

Page 6 of 12

Final 1.000

^{*} Surrogate recovered outside laboratory control limit.

Project Name: Dcp Plant to Lea Station 6" #2 SRS #2009-039

Work Orders: 457614, Project ID:

Lab Batch #: 907262 **Sample:** 457614-001 / SMP **Batch:** 1 **Matrix:** Water

Units: mg/L Date Analyzed: 0	2/18/13 14:42	SU	RROGATE RE	COVERY S	STUDY	
BTEX by EPA 8021B		mount 'ound [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes				[D]		
1,4-Difluorobenzene	0.	0307	0.0300	102	80-120	
4-Bromofluorobenzene	0.	0293	0.0300	98	80-120	

Lab Batch #: 907262 **Sample:** 457614-002 / SMP **Batch:** 1 **Matrix:** Water

SURROGATE RECOVERY STUDY Units: mg/L Date Analyzed: 02/18/13 14:59 Amount True Control BTEX by EPA 8021B Recovery Found Amount Limits **Flags** [A] [B] %R %R [D] **Analytes** 1,4-Difluorobenzene 0.0254 0.0300 80-120 4-Bromofluorobenzene 0.0257 0.0300 86 80-120

Lab Batch #: 907262 **Sample:** 457614-003 / SMP **Batch:** 1 **Matrix:** Water

Units: mg/L Date Analyzed: 02/18/13 15:15	SU	RROGATE RI	ECOVERY S	STUDY	
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes			[D]		
1,4-Difluorobenzene	0.0270	0.0300	90	80-120	
4-Bromofluorobenzene	0.0309	0.0300	103	80-120	

Lab Batch #: 907262 **Sample:** 457614-004 / SMP **Batch:** 1 **Matrix:** Water

Units: mg/L	Date Analyzed: 02/18/13 16:04	SU	RROGATE RI	ECOVERY S	STUDY	
BTE	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes			[D]		
1,4-Difluorobenzene		0.0270	0.0300	90	80-120	
4-Bromofluorobenzene		0.0267	0.0300	89	80-120	

Lab Batch #: 907262 Sample: 633992-1-BLK / BLK Batch: 1 Matrix: Water

Units: mg/L Date Analyzed: 02/18/13 09:14	SU	RROGATE RI	ECOVERY S	STUDY	
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes			[D]		
1,4-Difluorobenzene	0.0304	0.0300	101	80-120	
4-Bromofluorobenzene	0.0337	0.0300	112	80-120	

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

4-Bromofluorobenzene

Form 2 - Surrogate Recoveries

Project Name: Dcp Plant to Lea Station 6" #2 SRS #2009-039

0.0300

103

80-120

Work Orders: 457614,

Lab Batch #: 907262

Sample: 633992-1-BKS / BKS

Batch: 1 Matrix: Water

SURROGATE RECOVERY STUDY Units: mg/L Date Analyzed: 02/18/13 08:41 Amount True Control BTEX by EPA 8021B Flags **Found** Amount Recovery Limits %R [A] [B] %R [D] **Analytes** 1,4-Difluorobenzene 0.0289 0.0300 96 80-120

0.0308

Lab Batch #: 907262 **Sample:** 633992-1-BSD / BSD **Batch:** 1 **Matrix:** Water

SURROGATE RECOVERY STUDY Units: mg/L Date Analyzed: 02/18/13 08:58 Amount True Control BTEX by EPA 8021B Found Amount Recovery Limits **Flags** [A] [B] %R %R [D] **Analytes** 1,4-Difluorobenzene 0.0265 0.0300 88 80-120 4-Bromofluorobenzene 0.0285 0.0300 95 80-120

Lab Batch #: 907262 **Sample:** 457601-001 S / MS **Batch:** 1 **Matrix:** Water

Units: mg/L Date Analyzed: 02/18/13 14:10	Su	RROGATE RI	ECOVERY	STUDY	
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes			[D]		
1,4-Difluorobenzene	0.0309	0.0300	103	80-120	
4-Bromofluorobenzene	0.0315	0.0300	105	80-120	

Lab Batch #: 907262 **Sample:** 457601-001 SD / MSD **Batch:** 1 **Matrix:** Water

Units: mg/L Date Analyzed: 02/18/13 14:	26 St	JRROGATE RI	ECOVERY S	STUDY	
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes			[D]		
1,4-Difluorobenzene	0.0317	0.0300	106	80-120	
4-Bromofluorobenzene	0.0321	0.0300	107	80-120	

Surrogate Recovery [D] = 100 * A / B

^{*} Surrogate outside of Laboratory QC limits

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

BS / BSD Recoveries

Project Name: Dcp Plant to Lea Station 6" #2 SRS #2009-039

Work Order #: 457614

Project ID:

Analyst: KEB

Date Prepared: 02/18/2013

Date Analyzed: 02/18/2013

Lab Batch ID: 907262

Sample: 633992-1-BKS **Batch #:** 1

Matrix: Water

Units: mg/L

BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY

BTEX by EPA 8021B	Blank Sample Result [A]	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate	Blk. Spk Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes		[B]	[C]	[D]	[E]	Result [F]	[G]				
Benzene	< 0.00100	0.100	0.0825	83	0.100	0.0901	90	9	70-125	25	
Toluene	< 0.00200	0.100	0.0813	81	0.100	0.0913	91	12	70-125	25	
Ethylbenzene	< 0.00100	0.100	0.0808	81	0.100	0.0907	91	12	71-129	25	
m_p-Xylenes	< 0.00200	0.200	0.159	80	0.200	0.176	88	10	70-131	25	
o-Xylene	< 0.00100	0.100	0.0761	76	0.100	0.0832	83	9	71-133	25	

Form 3 - MS / MSD Recoveries

Project Name: Dcp Plant to Lea Station 6" #2 SRS #2009-039

Work Order #: 457614 Project ID:

Lab Batch ID: 907262 **QC- Sample ID:** 457601-001 S **Batch #:** 1 **Matrix:** Water

Reporting Units: mg/L		N	IATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY		
BTEX by EPA 8021B	Parent Sample	Spike	Spiked Sample Result	Sample	Spike	Duplicate Spiked Sample	-	RPD	Control Limits	Control Limits	Flag
Analytes	Result [A]	Added [B]	[C]	%R [D]	Added [E]	Result [F]	%R [G]	%	%R	%RPD	
Benzene	< 0.00100	0.100	0.100	100	0.100	0.0983	98	2	70-125	25	
Toluene	< 0.00200	0.100	0.0953	95	0.100	0.0991	99	4	70-125	25	
Ethylbenzene	< 0.00100	0.100	0.0982	98	0.100	0.0990	99	1	71-129	25	
m_p-Xylenes	< 0.00200	0.200	0.188	94	0.200	0.193	97	3	70-131	25	
o-Xylene	< 0.00100	0.100	0.0938	94	0.100	0.0994	99	6	71-133	25	

XENCO Laboratories

CHAIN OF CUSTODY RECORD

Houston: 4143 Greenbriar Dr. Stafford, TX 77477 (281)240-4200 Odessa: 12600 West I-20 East Odessa, TX 79765 (432)563-1800 Hobbs: 4008 N Grimes Hobbs, NM 88240 (575)392-7550

Page 1 of 1 AB W O# 4501/14

VA Vial Amber ES
VC Vial Clear AC
VP Vial Pre-preserved AC
GA Glass Amber TB
GC Glass Clear ZB
PA Plastic Amber PC
PC Plastic Clear

Encore Sampler
TerraCore Sampler
TerraCore Sampler
C Air Canister
Tedlar Bag
Zip Lock Bag
C Plastic Clear

Continer Type Codes

Compa	inv. –	 		Inhanai				T		- 1 -		<u> </u>	Field b	illable H	rs:	<u> </u>			PA Plastic Amber PC Plastic Clear PC Plastic Clear
		nnologies, LL	С	Phone:	(575	5)396-2	378	TAT W	ork Day	ys = D	Need r	esults l	by:		<u> </u>	Tim	ie:	<u> </u>	Other
Addres	s: 3100 Plains Hwy.			Fax:	(575	396-1	429	7.1.1	Std (5-	7D) 5H	rs 1D 2	2D 3D	4D 슚	70)10[14D	Other	:	11.1	Size(s): 2oz, 4oz, 8oz, 16oz, 32oz , 1Gal 40ml, 125 ml, 250 ml, 500 ml, 1L, Other
City:	Lovington		State: NM	Zip:	8826	60					AM	ALYS	ES RE	() () () ()	IJ(Z(B)			V 53	*** Preservative Type Codes
PM/Attr	n: Ben Arguijo		Email:	- bjarguijo	@basi	nenv.co	m :	300 370 75		VP									A. None (HC) (Ice)
Project	ID: DCP Plant to Lea Station 6" #2 SRS #2009-039			PO#:	PAA	-J. Henr	у	ing the											B. HNO ₃ F. MeOH J. MCAA C H ₂ SO ₄ G. Na ₂ S ₂ O ₃ K. ZnAc&NaOH
Invoice	To:	: : : : : : : : : : : : : : : :	<u> </u>	Quote #	:	<u> </u>		(E)		E,I				: .		1 111	1 11		D. NaOH H. NaHSO ₄ L Asbc Acid&NaOH O
	Jason Henry Plains All Ameri							6,540									:	6.P.(#	△ Mătrix Type Codes
Sample M	r Signature:	Circle One Semi-Annua	Event: Daily Il Annual	Weekly N/A	Mont	thly Q	uartely	Stantelle S Wei St	TPH	BTEX	Chloride							illu (S)	GW Ground Water S Soil/Sediment/Solid WW Waste Water W Wipe DW Drinking Water A Air
atomostic #	Semple (E)	Callegi Date	College Ture -	Vene Cios		110,6910) 90,000)	1000110000 3000110000	Exemple Wole(Nes lay, 826)		m.	ច់							(6/3/10) (6/3/10) (6/3/10)	SW Surface Water O Oil OW Ocean/Sea Water T Tissue PL Product-Liquid U Urine PS Product-Solid B Blood SL Sludge Other
Ø								/SOR()	Lab Onl	у:									REMARKS
_1	MW-2	2/13/13	12:40	GW		·	3			X									
2	MW-3	2/13/13		GW			3			х									
3	MW-4	2/13/13	11:55				3			Х									
	MW-5	2/13/13	11:30	GW			3					. ::							
	INIVV-5	2/13/13	(1,70	GVV			ა 			X							1		
_5			11.1						# #:			11							
6		. ::	:. ::								1	. ::							
_7																			
8																			
9							:					: ::							
0																<u> </u>			
	- বিজ্ঞা শক্তিৰাল গাটোল্যান্থাৰ জীৱা	STATE	Or Care &	Rees	- Ĉ	4V(@(@)	. (a) (a)	& Geriffe	ation		\$1010\s		0008	isalaria		ออไอเละ	iane C		Laio Use Only YES NO MA
CTLs T Other:	RRP DW NPDES LPST DryCin	FL TX GA N	IC SC NJ PA	OK LA	1 <u>2</u>	3 4	CLP	AFCEE QA		ADaPT	SEDD E	RPIMS	Match in	complete	1100				Non-Conformances found?
	Relinquished by	AL NW OTH	ar. Aviiliat	(OF)	NELA	C DoD-	ELAP	Otner:	(e)	XLS Othe	ic Jesty (Gill	ō\//	Absent Affilia	Unclear	1 U P	e z	_3	16	Samples intact upon arrival? Received on Wet Ice?
1	Monodain		13.3	3	<u>J.</u>	13.	13	13:	55	JR.	Mh		Ms		9/13	113	15	< ^	Labeled with proper preservatives? Received within holding time?
2			Busin E							7 0	^				~ 	, ,		411)	Custody seals intact? VOCs rec'd w/o headspace?
3										Box	Luni	un			2/14	1/13	13:	40	Proper containers used? pH verified-acceptable, excl VOCs?
4												::			7		1.1.	,)	Received on time to meet HTs?
29 A L	shoretorios, Habba EZE 200 ZEEO	D-II 04	4 000 0000	11															<u> </u>

B&A Laboratories: Hobbs 575-392-7550 Dallas 214-902-0300 Houston 281-242-4200 Odessa 432-563-1800 San Antonio 210-509-3334 Phoenix 602-437-0330 FTS Service Centers: Atlanta 770-449-8800 Lakeland 863-646-8526 Tampa 803-543-8099 Philadelphia 610-955-5649 South Carolina 803-543-8099

C.O.C. Serial #

Execution of this document by client creates a legal and binding agreement between client and Xenco for analytical and testing services provided by Xenco to client under Xenco's standard terms and conditions unless previously agreed in writing. Terms of payment are Net 30 days, and all past due amounts shall accrue interest at 1.5% per month until paid in full. All laboratory analytical data and reports generated by Xenco remain the exclusive property of Xenco until invoices for such data are paid in full. Revision Date: Nov 12, 2009

XENCO Laboratories

Prelogin/Nonconformance Report- Sample Log-In

Client: PLAINS ALL AMERICAN EH&S

Date/ Time Received: 02/14/2013 01:40:00 PM

Acceptable Temperature Range: 0 - 6 degC Air and Metal samples Acceptable Range: Ambient

Temperature Measuring device used :

Vork Order #: 457614	1 em	nperature Measuring device used :	
	Sample Receipt Ch	necklist Comments	s
#1 *Temperature of co	oler(s)?	2.8	
#2 *Shipping containe	r in good condition?	Yes	
#3 *Samples received	on ice?	Yes	
#4 *Custody Seals inta	act on shipping container/ cooler?	Yes	
#5 Custody Seals inta	ct on sample bottles?	Yes	
#6 *Custody Seals Sig	gned and dated?	Yes	
#7 *Chain of Custody	present?	Yes	
8 Sample instruction	s complete on Chain of Custody?	Yes	
#9 Any missing/extra	samples?	No	
10 Chain of Custody	signed when relinquished/ received?	Yes	
#11 Chain of Custody	agrees with sample label(s)?	Yes	
#12 Container label(s)	legible and intact?	Yes	
#13 Sample matrix/ pr	operties agree with Chain of Custody?	Yes	
14 Samples in prope	r container/ bottle?	Yes	
#15 Samples properly	preserved?	Yes	
#16 Sample container	(s) intact?	Yes	
17 Sufficient sample	amount for indicated test(s)?	Yes	
#18 All samples receiv	ved within hold time?	Yes	
#19 Subcontract of sa	mple(s)?	Yes	
#20 VOC samples hav	ve zero headspace (less than 1/4 inch bubbl	ole)? Yes	
21 <2 for all samples	preserved with HNO3,HCL, H2SO4?	Yes	
#22 >10 for all sample	es preserved with NaAsO2+NaOH, ZnAc+Na	aOH? Yes	
flust be completed fo	or after-hours delivery of samples prior to	o placing in the refrigerator	
Analyst:	PH Device/Lot#:		
Checklist	completed by:	 Date:	
Checklist	reviewed by:		

Date: _____

Analytical Report 462809

for PLAINS ALL AMERICAN EH&S

Project Manager: Ben Arguijo SRS #2009-039 DCP Plant to Lea Station 6" #2 14-MAY-13

Collected By: Client

12600 West I-20 East Odessa, Texas 79765

Xenco-Houston (EPA Lab code: TX00122):

Texas (T104704215-10-6-TX), Arizona (AZ0765), Arkansas (08-039-0), Connecticut (PH-0102), Florida (E871002) Illinois (002082), Indiana (C-TX-02), Iowa (392), Kansas (E-10380), Kentucky (45), Louisiana (03054) New Hampshire (297408), New Jersey (TX007), New York (11763), Oklahoma (9218), Pennsylvania (68-03610) Rhode Island (LAO00312), USDA (S-44102), DoD (L11-54)

Xenco-Atlanta (EPA Lab Code: GA00046): Florida (E87429), North Carolina (483), South Carolina (98015), Kentucky (85), DoD (L10-135) Louisiana (04176), USDA (P330-07-00105)

Xenco-Tampa Mobile (EPA Lab code: FL01212): Florida (E84900)

Xenco-Lakeland: Florida (E84098)

Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400-TX)

Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295-TX) Xenco Phoenix (EPA Lab Code: AZ00901): Arizona(AZ0757)

Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757)

Xenco Tucson (EPA Lab code: AZ000989): Arizona (AZ0758)

14-MAY-13

Project Manager: **Ben Arguijo PLAINS ALL AMERICAN EH&S**1301 S. COUNTY ROAD 1150
Midland, TX 79706

Reference: XENCO Report No(s): 462809

SRS #2009-039

Project Address: Lovington,NM

Ben Arguijo:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 462809. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 462809 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Kelsey Brooks

Project Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Odessa - San Antonio - Tampa - Lakeland - Atlanta - Phoenix - Oklahoma - Latin America

Sample Cross Reference 462809

PLAINS ALL AMERICAN EH&S, Midland, TX

SRS #2009-039

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
MW-2	W	05-08-13 11:25		462809-001
MW-3	W	05-08-13 11:35		462809-002
MW-4	W	05-08-13 11:45		462809-003
MW-5	W	05-08-13 11:10		462809-004

CASE NARRATIVE

Client Name: PLAINS ALL AMERICAN EH&S

Project Name: SRS #2009-039

Project ID: DCP Plant to Lea Station Report Date: 14-MAY-13 Work Order Number(s): 462809 Date Received: 05/08/2013

Sample receipt non conformances and comments:
Sample receipt non conformances and comments per sample:
None

Certificate of Analysis Summary 462809

PLAINS ALL AMERICAN EH&S, Midland, TX

Project Id: DCP Plant to Lea Station 6" #2 Project Name: SRS #2009-039

Contact: Ben Arguijo

Project Location: Lovington,NM

Report Date: 14-MAY-13

Project Manager: Kelsey Brooks

Date Received in Lab: Wed May-08-13 01:20 pm

Lab Id: 462809-001 462809-002 462809-003 Field Id: MW-2 MW-3 MW-4	462809-004 MW-5
Field Id: MW-2 MW-3 MW-4	MW 5
	IVI VV -3
Analysis Requested Depth:	
Matrix: WATER WATER WATER	WATER
Sampled: May-08-13 11:25 May-08-13 11:35 May-08-13 11:45 M	May-08-13 11:10
BTEX by EPA 8021B	May-13-13 17:00
Analyzed: May-13-13 19:01 May-13-13 19:17 May-13-13 19:34 M	May-14-13 12:47
Units/RL: mg/L RL mg/L RL mg/L RL	mg/L RL
Benzene 0.00790 0.00100 ND 0.00100 ND 0.00100	6.50 0.0500
Toluene 0.00267 0.00200 ND 0.00200 ND 0.00200	0.242 0.100
Ethylbenzene 0.00257 0.00100 ND 0.00100 ND 0.00100	0.132 0.0500
m_p-Xylenes 0.0102 0.00200 ND 0.00200 ND 0.00200	0.138 0.100
o-Xylene 0.00648 0.00100 ND 0.00100 ND 0.00100	ND 0.0500
Total Xylenes 0.0167 0.00100 ND 0.00100 ND 0.00100	0.138 0.0500
Total BTEX 0.0298 0.00100 ND 0.00100 ND 0.00100	7.01 0.0500

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Kelsey Brooks

Project Manager

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantiation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- H The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.

BRL Below Reporting Limit.

RL Reporting Limit

MDL Method Detection Limit SDL Sample Detection Limit LOD Limit of Detection

PQL Practical Quantitation Limit MQL Method Quantitation Limit LOQ Limit of Quantitation

DL Method Detection Limit

NC Non-Calculable

- + NELAC certification not offered for this compound.
- * (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Atlanta - Midland/Odessa - Tampa/Lakeland - Phoenix - Latin America

	Phone	Fax
4143 Greenbriar Dr, Stafford, TX 77477	(281) 240-4200	(281) 240-4280
9701 Harry Hines Blvd, Dallas, TX 75220	(214) 902 0300	(214) 351-9139
5332 Blackberry Drive, San Antonio TX 78238	(210) 509-3334	(210) 509-3335
2505 North Falkenburg Rd, Tampa, FL 33619	(813) 620-2000	(813) 620-2033
12600 West I-20 East, Odessa, TX 79765	(432) 563-1800	(432) 563-1713
6017 Financial Drive, Norcross, GA 30071	(770) 449-8800	(770) 449-5477
3725 E. Atlanta Ave, Phoenix, AZ 85040	(602) 437-0330	

Page 6 of 12

Final 1.000

^{*} Surrogate recovered outside laboratory control limit.

Project Name: SRS #2009-039

Work Orders: 462809, Project ID: DCP Plant to Lea Station 6" #2

Lab Batch #: 913641 **Sample:** 462809-001 / SMP **Batch:** 1 **Matrix:** Water

Units: mg/L Date Analyzed: 05/13/13 19:01	SURROGATE RECOVERY STUDY				
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes			[D]		
1,4-Difluorobenzene	0.0279	0.0300	93	80-120	
4-Bromofluorobenzene	0.0319	0.0300	106	80-120	

Lab Batch #: 913641 **Sample:** 462809-002 / SMP **Batch:** 1 **Matrix:** Water

Units: mg/L Date Analyzed: 05/13/13 19:17	SURROGATE RECOVERY STUDY				
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes			[D]		
1,4-Difluorobenzene	0.0343	0.0300	114	80-120	
4-Bromofluorobenzene	0.0307	0.0300	102	80-120	

Lab Batch #: 913641 **Sample:** 462809-003 / SMP **Batch:** 1 **Matrix:** Water

Units: mg/L Date Analyzed: 05/13/13 19:34	SURROGATE RECOVERY STUDY				
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes			[D]		
1,4-Difluorobenzene	0.0280	0.0300	93	80-120	
4-Bromofluorobenzene	0.0328	0.0300	109	80-120	

Lab Batch #: 913641 **Sample:** 462809-004 / SMP **Batch:** 1 **Matrix:** Water

Units: mg/L	Date Analyzed: 05/14/13 12:47	SURROGATE RECOVERY STUDY				
вте	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes			[D]		
1,4-Difluorobenzene		0.0318	0.0300	106	80-120	
4-Bromofluorobenzene		0.0289	0.0300	96	80-120	

Lab Batch #: 913641 Sample: 638024-1-BLK / BLK Batch: 1 Matrix: Water

Units: mg/L Date Analyzed: 05/13/13 18:44	SURROGATE RECOVERY STUDY				
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes			[D]		
1,4-Difluorobenzene	0.0255	0.0300	85	80-120	
4-Bromofluorobenzene	0.0301	0.0300	100	80-120	

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Project Name: SRS #2009-039

Work Orders: 462809, Project ID: DCP Plant to Lea Station 6" #2

Lab Batch #: 913641 Sample: 638024-1-BKS / BKS Batch: 1 Matrix: Water

Units: mg/L Date Analyzed: 05/13/13 18:11	SU	SURROGATE RECOVERY STUDY				
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			[D]			
1,4-Difluorobenzene	0.0308	0.0300	103	80-120		
4-Bromofluorobenzene	0.0281	0.0300	94	80-120		

Lab Batch #: 913641 Sample: 638024-1-BSD / BSD Batch: 1 Matrix: Water

Units: mg/L	Date Analyzed: 05/13/13 18:28	SURROGATE RECOVERY STUDY				
BTE	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes			[D]		
1,4-Difluorobenzene		0.0302	0.0300	101	80-120	
4-Bromofluorobenzene		0.0279	0.0300	93	80-120	

Lab Batch #: 913641 **Sample:** 462809-002 S / MS **Batch:** 1 **Matrix:** Water

Units: mg/L Date Analyzed: 05/14/13 12:14	5/14/13 12:14 SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			[D]			
1,4-Difluorobenzene	0.0336	0.0300	112	80-120		
4-Bromofluorobenzene	0.0259	0.0300	86	80-120		

Lab Batch #: 913641 **Sample:** 462809-002 SD / MSD **Batch:** 1 **Matrix:** Water

Units: mg/L Date Analyzed: 05/14/13 12:30	SU	RROGATE RI	ECOVERY	STUDY	
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes			[D]		
1,4-Difluorobenzene	0.0312	0.0300	104	80-120	
4-Bromofluorobenzene	0.0322	0.0300	107	80-120	

Surrogate Recovery [D] = 100 * A / B

^{*} Surrogate outside of Laboratory QC limits

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

BS / BSD Recoveries

Project Name: SRS #2009-039

Work Order #: 462809

Project ID: DCP Plant to Lea Station 6" #2

Analyst: DYV

Date Prepared: 05/13/2013

Date Analyzed: 05/13/2013

Lab Batch ID: 913641

Sample: 638024-1-BKS **Batch #:** 1 Matrix: Water

Units:	mg/L
---------------	------

BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY

BTEX by EPA 8021B Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Benzene	< 0.00100	0.100	0.102	102	0.100	0.108	108	6	70-125	25	
Toluene	< 0.00200	0.100	0.109	109	0.100	0.112	112	3	70-125	25	
Ethylbenzene	< 0.00100	0.100	0.115	115	0.100	0.114	114	1	71-129	25	
m_p-Xylenes	< 0.00200	0.200	0.211	106	0.200	0.218	109	3	70-131	25	
o-Xylene	<0.00100	0.100	0.103	103	0.100	0.110	110	7	71-133	25	

Form 3 - MS / MSD Recoveries

Project Name: SRS #2009-039

Work Order #: 462809

Project ID: DCP Plant to Lea Station 6" #2

Lab Batch ID: 913641

mg/L

013641

QC- Sample ID: 462809-002 S **Batch #:** 1 **Matrix:** Water

Date Analyzed: 05/14/2013

Reporting Units:

Date Prepared: 05/13/2013

Analyst: DYV

MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY

BTEX by EPA 8021B Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Benzene	< 0.00100	0.100	0.0917	92	0.100	0.107	107	15	70-125	25	
Toluene	< 0.00200	0.100	0.0937	94	0.100	0.110	110	16	70-125	25	
Ethylbenzene	< 0.00100	0.100	0.0986	99	0.100	0.117	117	17	71-129	25	
m_p-Xylenes	< 0.00200	0.200	0.182	91	0.200	0.220	110	19	70-131	25	
o-Xylene	< 0.00100	0.100	0.0882	88	0.100	0.111	111	23	71-133	25	

CHAIN OF CUSTODY RECORD Atorics Houston: 4143 Greenbriar Dr. Stafford, TX 77477 (281)240-4200 Odessa: 12600 West 1-20 East Odessa, TX 79765 (432)563-1800 Hobbs: 4008 N Grimes Hobbs, NM 88240 (575)392-7550	CHAIN . 77477 (281) . (575)392-75	V OF 1240-4200 550	Odessa: 12600 We	CHAIN OF CUSTODY RECORD Page 1 of 1 X77477 (281)240-4200 Odessa: 12800 West 1-20 East Odessa, TX 79765 (432)563-1800 LAB W.O#: 4008809 to (575)392-7550 Field billable Hrs:	* Container Type Codes VA Vial Amber ES Encore Sampler VC Vial Clear TS TerraCore Sampler VP Vial Pre-preserved AC Air Canister GA Glass Amber TB Tedlar Bag GC Glass Clear ZB Zip Lock Bag PA Plastic Alber PC Plastic Clear
Basin Environmental Service Technologies, LLC		Phone:	Phone: (575)396-2378	TAT Work Days = D Need results by: Time:	
3100 Plains Hwy.		Fax:	(575)396-1429	Std (5-7D) 5Hrs 1D 2D 3D 4D 5D 7D 10D 14D Other	Size(s): 2oz, 4oz, 8oz, 16oz, 32oz, 1Gal 40ml, 125 ml, 250 ml, 500 ml, 1L, Other
Lovington	State: NM Zip:	Zip:	88260	ANALYSES REQUESTED	** Preservative Type Codes
Ben Arguijo E	Email:	bjarguijo(bjarguijo@basinenv.com	Cont Type* VP	A. None E. HCL I. Ice

4 3 2 1	3 2 1	1	1		Service Constitution	Other:	1000	0	9	_∞	_7	6	5	4	ω	_2		S	ample #	Sampler Signature:	Invoice To:	Project ID:	PM/Attn:	City:	Address:	Company:	Environmental Adv	XE
				Who Synchol	Relinquished by	DW NPDES LPST DryCln	Program / Cle							MW-5	MW-4	MW-3	MW-2		Sample ID	gnature:	Jason Henry Plains All American	DCP Plant to Lea Station 6" #2 SRS #2009-039	Ben Arguijo	Lovington	3100 Plains Hwy.	Basin Environmental Service Technologies, LLC	Hobbs: 4008 N Grimes Hobbs, NM 88240 (575)392-7550	CHAIN OF Houston: 4143 Greenbriar Dr. Stafford, TX 77477 (281)240-4200
					1	AL NM Other:								2-8-13	5813	58-13	5-8-13		Collect Date	Circle One Event: Semi-Annual Annu	än					nologies, LLC	obbs, NM 8824	Dr. Stafford, T
				Rasin	Affiliation	C SC NJ PA OK	STATE for Certs & Regs							01.71	Sh: I	11:35	1.25		Collect Time	Daily Jal		-	Email:	State: NM		.,	10 (575)392-75	CHAIN OF X 77477 (281)240-4200
				2	on	5	100							GW	GW	GW	GW		Matrix Code ^	Weekly M N/A	Quote #:	PO#: P/	bjarguijo@basinenv.com	Zip: 88		Phone: (5	50	
				9.8.13	Date	1 2 3 4 CLP NELAC DoD-ELAP	QA/QC Le											1	Filtered Integrity OK (Y/N) Total # of	Monthly Quartely		PAA-J. Henry	asinenv.com	88260	(575)396-1429	(575)396-2378		CUST(
				132	T	AFCEE Other:	1 & Cer							3	3	ω	3	#Cont	containers Ex Volatile	ample	260	Pres Type** E, I	Cont Type *			TAT		CUSTODY RECORD Odessa: 12600 West 1-20 East Odessa, TX 79765 (432)563-1800
-				0	Time	QAPP ×	77											t Lab Only:		ТРН			•		Std (5-7D) 5Hrs	Work Days =		ECOR t Odessa, TX
			Jow	2 los	Recei	ADaPT SEDD XLS Other:	EDDs							×	×	×	×			BTEX		Ę,	VΡ		SHr.	0		79765 (432)
			16 Manual	Rage	Received by	D ERPIMS													- Ci	nloride				ANALYS	1D 2D 3D	Need results by:		63-1800
			er ex	ms	Affiliation	Match Inco	COC & Labels																	ES REQ	4D 5D 7D	oy:	LAB W.O#: Field billable Hrs:	
			35	5-	on	Unclear 1	abels																	REQUESTED	0 10D 14D		.0 # : able Hrs :	Page 1
			27	8-13	Date	52	Coolers																		D Other_	Time:	7600	of 1
		(13:30	2:81	Time	3	Temp °C		2-12										Hol	d Sample	e					e: 	800	3
	Receiv	Proper pH ver	Custoo	Labele Receiv		· 0 t Non-C Sampl	- L			Carl I									(CALL) on Highest	TPH (n PAH Only if	D. N. S.	· >	*	Size(40ml	Other	PAGA	ić\$
	Received on time to meet HTs?	Proper containers used? pH verified-acceptable, excl VOCs?	Custody seals intact? VOCs rec'd w/o headspace?	Labeled with proper preservatives? Received within holding time?	Received on Wet Ice?	Non-Conformances found? Samples intact upon arrival?	_ab Use Only											R	V Surface Water V Ocean/Sea Water Product-Liquid Product-Solid Sludge	Grou	^ Matr	H ₂ SO ₄ G. Na ₂ S ₂ O ₃ K D. NaOH H. NaHSO ₄	one E. HCL	** Preservative Type Codes	Size(s): 2oz, 4oz, 8oz, 16oz, 32oz , 1Gal 40ml, 125 ml, 250 ml, 500 ml, 1L, Other	lastic Clear	GA Glass Amber GC Glass Clear PA Plastic Amber	* Containe Vial Amber Vial Clear
	et HTs?	excl VOCs?	ace?	servatives? time?		ind? rival?					,							REMARKS	Water T Tissue Jid U Urine B Blood) > ≤ ω	Matrix Type Codes	درة		ative Typ	z, 16oz, 32oz , ; l, 500 ml, 1L, C		8 E E E	ner Ty
			7 7	< K	7		YES NO N/A											U)	- · · · ·	Soil/Sediment/Solid Wipe Air	odes	Asbc Acid&NaOH		e Codes	ither		Tedlar Bag Zip Lock Bag Plastic Clear	pe Codes Encore Sampler TerraCore Sampler

Page 11 of 12

Final 1.000

Execution of this document by client creates a legal and binding agreement between client and Xenco for analytical and testing services provided by Xenco to client under Xenco's standard terms and conditions unless previously agreed in writing. Terms of payment are Net 30 days, and all past due amounts shall accrue interest at 1.5% per month until paid in full. All laboratory analytical data and reports generated by Xenco remain the exclusive property of Xenco until invoices for such data are paid in full.

Revision Date: Nov 12, 2009

Work Order #: 462809

XENCO Laboratories

Client: PLAINS ALL AMERICAN EH&S

Date/ Time Received: 05/08/2013 01:20:00 PM

Acceptable Temperature Range: 0 - 6 degC Air and Metal samples Acceptable Range: Ambient

Temperature Measuring device used :

s	Sample Receipt Checklist	Comments
#1 *Temperature of cooler(s)?	1.5	
#2 *Shipping container in good condition?	Yes	
#3 *Samples received on ice?	Yes	
#4 *Custody Seals intact on shipping contain	ner/ cooler? Yes	
#5 Custody Seals intact on sample bottles?	Yes	
#6 *Custody Seals Signed and dated?	Yes	
#7 *Chain of Custody present?	Yes	
#8 Sample instructions complete on Chain o	f Custody? Yes	
#9 Any missing/extra samples?	No	
#10 Chain of Custody signed when relinquish	hed/ received? Yes	
#11 Chain of Custody agrees with sample la	bel(s)? Yes	
#12 Container label(s) legible and intact?	Yes	
#13 Sample matrix/ properties agree with Ch	ain of Custody? Yes	
#14 Samples in proper container/ bottle?	Yes	
#15 Samples properly preserved?	Yes	
#16 Sample container(s) intact?	Yes	
#17 Sufficient sample amount for indicated to	est(s)? Yes	
#18 All samples received within hold time?	Yes	
#19 Subcontract of sample(s)?	Yes	
#20 VOC samples have zero headspace (les	ss than 1/4 inch bubble)? Yes	
#21 <2 for all samples preserved with HNO3	,HCL, H2SO4? Yes	
#22 >10 for all samples preserved with NaAs	SO2+NaOH, ZnAc+NaOH? Yes	

Analyst:	PH D	evice/Lot#:	
Checklist comple	ted by:	Kelsey Brooks	Date: 05/09/2013
Checklist review	ed by:	Mms Hoah Kelsey Brooks	Date: 05/09/2013

Analytical Report 468120

for PLAINS ALL AMERICAN EH&S

Project Manager: Ben Arguijjo
DCP Plant to Lea Station 6" Sec. 31
SRS#2009-084
13-AUG-13

Collected By: Client

12600 West I-20 East Odessa, Texas 79765

Xenco-Houston (EPA Lab code: TX00122):

Texas (T104704215-13-14-TX), Arizona (AZ0765), Arkansas (08-039-0), Connecticut (PH-0102), Florida (E871002) Illinois (002082), Indiana (C-TX-02), Iowa (392), Kansas (E-10380), Kentucky (45), Louisiana (03054) New Hampshire (297408), New Jersey (TX007), New York (11763), Oklahoma (9218), Pennsylvania (68-03610) Rhode Island (LAO00312), USDA (S-44102), DoD (L11-54)

Xenco-Atlanta (EPA Lab Code: GA00046): Florida (E87429), North Carolina (483), South Carolina (98015), Kentucky (85), DoD (L10-135) Louisiana (04176), USDA (P330-07-00105)

> Xenco-Tampa Mobile (EPA Lab code: FL01212): Florida (E84900) Xenco-Lakeland: Florida (E84098)

> Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400-TX)

Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295-TX)

Xenco Phoenix (EPA Lab Code: AZ00901): Arizona(AZ0757)

Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757)

Xenco Tucson (EPA Lab code:AZ000989): Arizona (AZ0758)

13-AUG-13

Project Manager: **Ben Arguijjo PLAINS ALL AMERICAN EH&S**1301 S. COUNTY ROAD 1150
Midland, TX 79706

Reference: XENCO Report No(s): 468120

DCP Plant to Lea Station 6" Sec. 31 Project Address: Lovington, NM

Ben Arguijjo:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 468120. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 468120 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Kelsey Brooks

Project Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Odessa - San Antonio - Tampa - Lakeland - Atlanta - Phoenix - Oklahoma - Latin America

Sample Cross Reference 468120

PLAINS ALL AMERICAN EH&S, Midland, TX

DCP Plant to Lea Station 6" Sec. 31

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
MW-2	W	08-05-13 09:30		468120-001
MW-3	W	08-05-13 10:00		468120-002
MW-4	W	08-05-13 10:30		468120-003
MW-5	W	08-05-13 11:00		468120-004

CASE NARRATIVE

Client Name: PLAINS ALL AMERICAN EH&S Project Name: DCP Plant to Lea Station 6" Sec. 31

 Project ID:
 SRS#2009-084
 Report Date:
 13-AUG-13

 Work Order Number(s):
 468120
 Date Received:
 08/07/2013

Sample receipt non conformances and comments:
Sample receipt non conformances and comments per sample:
None

Certificate of Analysis Summary 468120

PLAINS ALL AMERICAN EH&S, Midland, TX

Project Id: SRS#2009-084
Contact: Ben Arguijjo

Project Location: Lovington, NM

Project Name: DCP Plant to Lea Station 6" Sec. 31

Date Received in Lab: Wed Aug-07-13 02:00 pm

Report Date: 13-AUG-13

Project Manager: Kelsey Brooks

				Project Manager:	Reisey Diooks
Lab Id:	468120-001	468120-002	468120-003	468120-004	
Field Id:	MW-2	MW-3	MW-4	MW-5	
Depth:					
Matrix:	WATER	WATER	WATER	WATER	
Sampled:	Aug-05-13 09:30	Aug-05-13 10:00	Aug-05-13 10:30	Aug-05-13 11:00	
Extracted:	Aug-12-13 09:00	Aug-12-13 09:00	Aug-09-13 09:00	Aug-09-13 09:00	
Analyzed:	Aug-12-13 12:29	Aug-12-13 15:27	Aug-09-13 12:15	Aug-09-13 12:31	
Units/RL:	mg/L RL	mg/L RL	mg/L RL	mg/L RL	
	ND 0.00100	ND 0.00100	0.00331 0.00100	0.0107 0.00100	
	ND 0.00200	ND 0.00200	ND 0.00200	ND 0.00200	
	ND 0.00100	ND 0.00100	ND 0.00100	ND 0.00100	
	ND 0.00200	ND 0.00200	ND 0.00200	ND 0.00200	
	ND 0.00100	ND 0.00100	ND 0.00100	ND 0.00100	
	ND 0.00100	ND 0.00100	ND 0.00100	ND 0.00100	
	ND 0.00100	ND 0.00100	0.00331 0.00100	0.0107 0.00100	
	Field Id: Depth: Matrix: Sampled: Extracted: Analyzed:	Field Id: MW-2 Depth: Matrix: WATER Sampled: Aug-05-13 09:30 Extracted: Aug-12-13 09:00 Analyzed: Aug-12-13 12:29 Units/RL: mg/L RL ND 0.00100 ND 0.00200 ND 0.00200 ND 0.00100 ND 0.00100 ND 0.00100 ND 0.00100 ND 0.00100 ND 0.00100	Field Id: MW-2 MW-3 Depth: Watex WATER WATER Sampled: Aug-05-13 09:30 Aug-05-13 10:00 Extracted: Aug-12-13 09:00 Aug-12-13 09:00 Analyzed: Aug-12-13 12:29 Aug-12-13 15:27 Units/RL: mg/L RL mg/L RL ND 0.00100 ND 0.00100 ND 0.00200 ND 0.00200 ND 0.00200 ND 0.00200 ND 0.00100 ND 0.00100 ND 0.00100 ND 0.00100 ND 0.00100 ND 0.00100 ND 0.00100 ND 0.00100	Field Id: MW-2 MW-3 MW-4 Depth: Matrix: WATER WATER WATER Sampled: Aug-05-13 09:30 Aug-05-13 10:00 Aug-05-13 10:30 Extracted: Aug-12-13 09:00 Aug-12-13 09:00 Aug-09-13 09:00 Analyzed: Aug-12-13 12:29 Aug-12-13 15:27 Aug-09-13 12:15 Units/RL: mg/L RL mg/L RL ND 0.00100 ND 0.00100 ND 0.00200 ND 0.00200 ND 0.00200 ND 0.00200 ND 0.00200 ND 0.00200 ND 0.00200 ND 0.00100 ND 0.00100 ND 0.00100 ND 0.00100 ND 0.00100 ND 0.00100 ND 0.00100 ND 0.00100 ND 0.00100	Lab Id: 468120-001 468120-002 468120-003 468120-004 Field Id: MW-2 MW-3 MW-4 MW-5 Depth: Matrix: WATER WATER WATER WATER Sampled: Aug-05-13 09:30 Aug-05-13 10:00 Aug-05-13 10:30 Aug-05-13 11:00 Extracted: Aug-12-13 09:00 Aug-12-13 09:00 Aug-09-13 09:00 Aug-09-13 09:00 Aug-09-13 09:00 Analyzed: Aug-12-13 12:29 Aug-12-13 15:27 Aug-09-13 12:15 Aug-09-13 12:31 Units/RL: mg/L RL mg/L RL mg/L RL ND 0.00100 ND 0.00100 ND 0.00200 ND 0.00200 ND 0.00200 ND 0.00200 ND 0.00200 ND 0.00200 ND 0.00100 ND 0.00100 ND 0.00100 ND 0.00100 ND 0.00100 ND 0.00100 ND 0.00100 ND 0.00100 ND 0.00100

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Kelsey Brooks Project Manager

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantiation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- **K** Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- ** Surrogate recovered outside laboratory control limit.
- BRL Below Reporting Limit.
- **RL** Reporting Limit

MDL Method Detection Limit SDL Sample Detection Limit LOD Limit of Detection

PQL Practical Quantitation Limit MQL Method Quantitation Limit LOQ Limit of Quantitation

DL Method Detection Limit

NC Non-Calculable

- + NELAC certification not offered for this compound.
- * (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Atlanta - Midland/Odessa - Tampa/Lakeland - Phoenix - Latin America

	Phone	Fax
4143 Greenbriar Dr, Stafford, TX 77477	(281) 240-4200	(281) 240-4280
9701 Harry Hines Blvd , Dallas, TX 75220	(214) 902 0300	(214) 351-9139
5332 Blackberry Drive, San Antonio TX 78238	(210) 509-3334	(210) 509-3335
2505 North Falkenburg Rd, Tampa, FL 33619	(813) 620-2000	(813) 620-2033
12600 West I-20 East, Odessa, TX 79765	(432) 563-1800	(432) 563-1713
6017 Financial Drive, Norcross, GA 30071	(770) 449-8800	(770) 449-5477
3725 E. Atlanta Ave, Phoenix, AZ 85040	(602) 437-0330	

Project Name: DCP Plant to Lea Station 6" Sec. 31

Work Orders: 468120, **Project ID:** SRS#2009-084

Lab Batch #: 920355 **Sample:** 468120-003 / SMP **Batch:** 1 **Matrix:** Water

Units: mg/L	Date Analyzed: 08/09/13 12:15	SURROGATE RECOVERY STUDY					
ВТЕ	EX by EPA 8021	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
	Analytes			[D]			
1,4-Difluorobenzene		0.0308	0.0300	103	80-120		
4-Bromofluorobenzene		0.0249	0.0300	83	80-120		

Lab Batch #: 920355 **Sample:** 468120-004 / SMP **Batch:** 1 **Matrix:** Water

Units: mg/L Date Analyzed: 08/09/13 12:31	SU	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags		
Analytes			[D]				
1,4-Difluorobenzene	0.0306	0.0300	102	80-120			
4-Bromofluorobenzene	0.0250	0.0300	83	80-120			

Lab Batch #: 920411 **Sample:** 468120-001 / SMP **Batch:** 1 **Matrix:** Water

Units: mg/L Date Analyzed: 08/12/13 12:29	SU	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags		
Analytes			[D]				
1,4-Difluorobenzene	0.0312	0.0300	104	80-120			
4-Bromofluorobenzene	0.0248	0.0300	83	80-120			

Lab Batch #: 920411 **Sample:** 468120-002 / SMP **Batch:** 1 **Matrix:** Water

Units: mg/L	Date Analyzed: 08/12/13 15:27	SU	SURROGATE RECOVERY STUDY					
ВТЕ	EX by EPA 8021	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags		
	Analytes			[D]				
1,4-Difluorobenzene		0.0307	0.0300	102	80-120			
4-Bromofluorobenzene		0.0247	0.0300	82	80-120			

Lab Batch #: 920355 Sample: 642345-1-BLK / BLK Batch: 1 Matrix: Water

Units: mg/L Date Analyzed: 08/09/13 10:34	SURROGATE RECOVERY STUDY				
BTEX by EPA 8021	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes			[D]		
1,4-Difluorobenzene	0.0313	0.0300	104	80-120	
4-Bromofluorobenzene	0.0244	0.0300	81	80-120	

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Project Name: DCP Plant to Lea Station 6" Sec. 31

Work Orders: 468120, **Project ID:** SRS#2009-084

Lab Batch #: 920411 Sample: 642386-1-BLK / BLK Batch: 1 Matrix: Water

Units: mg/L Date Analyzed: 08/12/13 11:40	SU	SURROGATE RECOVERY STUDY						
BTEX by EPA 8021	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags			
Analytes			[D]					
1,4-Difluorobenzene	0.0309	0.0300	103	80-120				
4-Bromofluorobenzene	0.0249	0.0300	83	80-120				

Lab Batch #: 920355 Sample: 642345-1-BKS / BKS Batch: 1 Matrix: Water

Units: mg/L	Date Analyzed: 08/09/13 09:46	SURROGATE RECOVERY STUDY				
BTE	EX by EPA 8021	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes			[D]		
1,4-Difluorobenzene		0.0350	0.0300	117	80-120	
4-Bromofluorobenzene		0.0255	0.0300	85	80-120	

Lab Batch #: 920411 Sample: 642386-1-BKS / BKS Batch: 1 Matrix: Water

Units: mg/L Date Analyzed: 08/12/13 10:53	SURROGATE RECOVERY STUDY						
BTEX by EPA 8021	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags		
Analytes			[D]				
1,4-Difluorobenzene	0.0347	0.0300	116	80-120			
4-Bromofluorobenzene	0.0259	0.0300	86	80-120			

Lab Batch #: 920355 Sample: 642345-1-BSD / BSD Batch: 1 Matrix: Water

Units: mg/L	Date Analyzed: 08/09/13 10:02	SURROGATE RECOVERY STUDY					
ВТЕ	EX by EPA 8021	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
	Analytes			[D]			
1,4-Difluorobenzene		0.0343	0.0300	114	80-120		
4-Bromofluorobenzene		0.0253	0.0300	84	80-120		

Lab Batch #: 920411 **Sample:** 642386-1-BSD / BSD **Batch:** 1 **Matrix:** Water

Units: mg/L Date Analyzed: 08/12/13 11:08	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			[D]			
1,4-Difluorobenzene	0.0351	0.0300	117	80-120		
4-Bromofluorobenzene	0.0259	0.0300	86	80-120		

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Project Name: DCP Plant to Lea Station 6" Sec. 31

Work Orders: 468120, **Project ID:** SRS#2009-084

Lab Batch #: 920355 **Sample:** 468122-001 S / MS **Batch:** 1 **Matrix:** Water

Units: mg/L Date Analyzed: 08/09/13 13:36	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			[D]			
1,4-Difluorobenzene	0.0359	0.0300	120	80-120		
4-Bromofluorobenzene	0.0277	0.0300	92	80-120		

Lab Batch #: 920411 **Sample:** 468120-001 S / MS **Batch:** 1 **Matrix:** Water

Units: mg/L Date Analyzed: 08/12/13 14:23	SU	SURROGATE RECOVERY STUDY				
BTEX by EPA 8021	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			[D]			
1,4-Difluorobenzene	0.0357	0.0300	119	80-120		
4-Bromofluorobenzene	0.0265	0.0300	88	80-120		

Lab Batch #: 920355 **Sample:** 468122-001 SD / MSD **Batch:** 1 **Matrix:** Water

Units: mg/L Date Analyzed: 08/09/13 13:52	SU	RROGATE RI	ECOVERY S	STUDY	
BTEX by EPA 8021	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes			[D]		
1,4-Difluorobenzene	0.0350	0.0300	117	80-120	
4-Bromofluorobenzene	0.0278	0.0300	93	80-120	

Units: mg/L Date Analyzed: 08/12/13 14::	39 SU	RROGATE RI	ECOVERY S	STUDY	
BTEX by EPA 8021	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes			[D]		
1,4-Difluorobenzene	0.0315	0.0300	105	80-120	
4-Bromofluorobenzene	0.0262	0.0300	87	80-120	

Surrogate Recovery [D] = 100 * A / B

^{*} Surrogate outside of Laboratory QC limits

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

BS / BSD Recoveries

Project Name: DCP Plant to Lea Station 6" Sec. 31

Work Order #: 468120

Date Prepared: 08/09/2013

Project ID: SRS#2009-084

Analyst: KEB

Date Trepareu. 00/09/201

Date Analyzed: 08/09/2013

Lab Batch ID: 920355

Sample: 642345-1-BKS **Batch #:** 1

Matrix: Water

Units: mg/L

BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY

BTEX by EPA 8021 Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Benzene	< 0.00100	0.100	0.0978	98	0.100	0.0970	97	1	70-125	25	
Toluene	<0.00200	0.100	0.0912	91	0.100	0.0911	91	0	70-125	25	
Ethylbenzene	< 0.00100	0.100	0.0900	90	0.100	0.0905	91	1	71-129	25	
m_p-Xylenes	<0.00200	0.200	0.178	89	0.200	0.179	90	1	70-131	25	
o-Xylene	< 0.00100	0.100	0.0894	89	0.100	0.0898	90	0	71-133	25	

Analyst: KEB **Date Prepared:** 08/12/2013 **Date Analyzed:** 08/12/2013

Lab Batch ID: 920411 Sample: 642386-1-BKS Batch #: 1 Matrix: Water

Units: mg/L BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY

BTEX by EPA 8021	Blank Sample Result [A]	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate	Blk. Spk Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes		[B]	[C]	[D]	[E]	Result [F]	[G]				
Benzene	< 0.00100	0.100	0.103	103	0.100	0.105	105	2	70-125	25	
Toluene	< 0.00200	0.100	0.0950	95	0.100	0.0966	97	2	70-125	25	
Ethylbenzene	< 0.00100	0.100	0.0929	93	0.100	0.0945	95	2	71-129	25	
m_p-Xylenes	<0.00200	0.200	0.184	92	0.200	0.187	94	2	70-131	25	
o-Xylene	<0.00100	0.100	0.0914	91	0.100	0.0928	93	2	71-133	25	

Relative Percent Difference RPD = 200*|(C-F)/(C+F)|Blank Spike Recovery [D] = 100*(C)/[B]Blank Spike Duplicate Recovery [G] = 100*(F)/[E]All results are based on MDL and Validated for QC Purposes

Form 3 - MS / MSD Recoveries

Project Name: DCP Plant to Lea Station 6" Sec. 31

Work Order #: 468120

Project ID: SRS#2009-084

Lab Batch ID: 920355

355 **QC- Sample ID:** 468122-001 S

Batch #:

Matrix: Water

Date Analyzed: Reporting Units: 08/09/2013

mg/L

Date Prepared: 08/09/2013 **Analyst:** KEB

MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY

BTEX by EPA 8021	Parent Sample	Spike	Spiked Sample Result	Sample	Spike	Duplicate Spiked Sample		RPD	Control Limits	Control Limits	Flag
Analytes	Result [A]	Added [B]	[C]	%R [D]	Added [E]	Result [F]	%R [G]	%	%R	%RPD	
Benzene	< 0.00100	0.100	0.107	107	0.100	0.102	102	5	70-125	25	
Toluene	< 0.00200	0.100	0.0990	99	0.100	0.0955	96	4	70-125	25	
Ethylbenzene	< 0.00100	0.100	0.0999	100	0.100	0.0970	97	3	71-129	25	
m_p-Xylenes	< 0.00200	0.200	0.196	98	0.200	0.192	96	2	70-131	25	
o-Xylene	< 0.00100	0.100	0.0991	99	0.100	0.0973	97	2	71-133	25	

Lab Batch ID: 920411 **QC- Sample ID:** 468120-001 S **Batch #:** 1 **Matrix:** Water

Date Analyzed: 08/12/2013 **Date Prepared:** 08/12/2013 **Analyst:** KEB

Reporting Units: mg/L MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY

BTEX by EPA 8021 Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Benzene	<0.00100	0.100	0.109	109	0.100	0.108	108	1	70-125	25	
Toluene	< 0.00200	0.100	0.0998	100	0.100	0.0995	100	0	70-125	25	
Ethylbenzene	< 0.00100	0.100	0.0970	97	0.100	0.0967	97	0	71-129	25	
m_p-Xylenes	< 0.00200	0.200	0.192	96	0.200	0.192	96	0	70-131	25	
o-Xylene	< 0.00100	0.100	0.0955	96	0.100	0.0957	96	0	71-133	25	

Matrix Spike Percent Recovery [D] = 100*(C-A)/B Relative Percent Difference RPD = 200*|(C-F)/(C+F)| Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

XENCO Laboratories

Prelogin/Nonconformance Report- Sample Log-In

Acceptable Temperature Range: 0 - 6 degC Air and Metal samples Acceptable Range: Ambient

Client: PLAINS ALL AMERICAN EH&S

Date/ Time Received: 08/07/2013 02:00:00 PM

Temperature Measuring device used: Work Order #: 468120

	Sample Receipt Checklist		Comments
#1 *Temperature of cooler(s)?		1	
#2 *Shipping container in good co	ndition?	Yes	
#3 *Samples received on ice?		Yes	
#4 *Custody Seals intact on shipp	ing container/ cooler?	Yes	
#5 Custody Seals intact on sample	e bottles?	Yes	
#6 *Custody Seals Signed and da	ted?	Yes	
#7 *Chain of Custody present?		Yes	
#8 Sample instructions complete of	on Chain of Custody?	Yes	
#9 Any missing/extra samples?		No	
#10 Chain of Custody signed whe	n relinquished/ received?	Yes	
#11 Chain of Custody agrees with	sample label(s)?	Yes	
#12 Container label(s) legible and	intact?	Yes	
#13 Sample matrix/ properties agr	ee with Chain of Custody?	Yes	
#14 Samples in proper container/	bottle?	Yes	
#15 Samples properly preserved?		Yes	
#16 Sample container(s) intact?		Yes	
#17 Sufficient sample amount for	indicated test(s)?	Yes	
#18 All samples received within ho	old time?	Yes	
#19 Subcontract of sample(s)?		Yes	
#20 VOC samples have zero head	dspace (less than 1/4 inch bubble)?	Yes	
#21 <2 for all samples preserved	with HNO3,HCL, H2SO4?	Yes	
#22 >10 for all samples preserved	with NaAsO2+NaOH, ZnAc+NaOH?	N/A	

Analyst:	PH Device/Lot#:	
Checklist completed	by: Mmy Moah Kelsey Brooks	Date: <u>08/07/2013</u>
Checklist reviewed	by: Many Moah Kelsey Brooks	Date: <u>08/07/2013</u>

B&AL	4	з	2	_		CTLs Other:		0	9	8	_7	6	5	4	u	2	_	Sa	ample #	Sample	Invoice To:	Project ID:	PM/Attn:	City:	Address:	Company:	Environment	5	X
B&A Laboratories: Hobbs 575-392-7550 Dallas 214-902-0300 Houston			1	Mu & Capur	Relinquished by	TRRP DW NPDES LPST DryCin	Reg. Program / Clean-up Std							MW-5					Sample ID	Sampley Signature:	To: Jason Henry Plains All American	ID: DCP Plant to Lea Station 6" Sec. 31 SRS #2009-084	1: Ben Arguijo	Lovington	s: 3100 Plains Hwy.	ny: Basin Environmental Service Technologies, LLC	al Asbestas Radiochemistry	Houston: 4143 Greenbriar Dr. Stafford, TX 77477 (281)240-4200 Aboratorics Hobbs: 4008 N Grimes Hobbs, NM 88240 (575)392-7550	
Dallas 214					The state of the s	FL TX GA NC AL NM Other	STATE							8/5/13	8/5/13 8/5/13 8/5/13				Collect Date	Circle One Event: Daily Semi-Annual Annual	an					nologies, LLC		Dr. Stafford, T	
1-902-0300					Affiliation	SC N	for Certs & Regs							11:00					Collect Time	Annual			Email:	State: NM		V	,	X 77477 (281) In (575)392-75	CHAIN
Houstor					ion	PA OK LA	Regs							GW	GW GW				Matrix Code ^	Weekly N	Quote #:	P0#: F	bjarguijo@l	Zip: 8	O COMPANIE	Б.		0-4200	C
				8-6-13	Date	1 2 3 4 CLP NELAC DoD-ELAP	QA/QC Le							ω	ω	ω	ω		Field Filtered Integrity OK (Y/N) Total # of	Monthly Quartely		PAA-J. Henry	bjarguijo@basinenv.com	88260	(575)396-1429	(575)396-2378		Odessa: 12600	CUSTODY
281-242-4200 Odessa 432-563-1800				Sedanos 4	Time	CLP AFCEE QAPP ELAP Other:	QA/QC Level & Certification										W I	# Cont	containers Ex Volatil	kample es by 8	260	Pres Type** E, 1	Cont Type * VC			TAT		Odessa: 12600 West I-20 East Odessa, TX 79765 (432)563-1800	
432-563				34. 38a	æ		ation													TPH					Std (5-7D) 5Hrs	Work Days = D		Odessa, TX	RECORD
	Supp			rerta 1	Recei	ADaPT SEDD XLS Other:	EDDs				-			×	×	×	×			BTEX		E,I	Ş	1)) 5Hrs 1			79765 (432)5	
	Curcus			Reservo	Received by	D ERPIMS	Ds													hloride				ANALYS	1D 2D 3D	Need results t		563-1800	
210-509-3334 Phoenix 602-437-0330					Affiliation	Match Incomplete Absent Unclear	COC & Labels																	ES REQUESTED	4D 5D 7D 10D	by:	Field billable Hrs :	LAB W.O#:	Pa
Phoenix 602-	87-1:			8-6-13	Date	1	Coolers																	STED	D 14D Other				Page 1 of 1
437-0330	3 (4:0			381	Time	3	Temp °C												Į,	old Samp	do.				er	Time:		118,Th	<u> </u>
C.	U))	pH ·	Voc	Rec	1	Non		2						337					on Highes	t TPH	un PAH Only if	0 0,7 !	B A		Siz 40	93	PAG	े १६६	S
C.O.C. Serial #	Received on time to meet HTs?	Proper containers used? pH verified-acceptable, excl VOCs?	Custody seals intact? VOCs rec'd w/o headspace?	Received within holding time?	Received on Wet Ice?	Non-Conformances found? Samples intact upon arrival?	Lab Use Only											REMARKS	B ⊂ ∃	Ground Water S Waste Water W Drinking Water A Surface Water O	^ Matrix Type	H ₂ SO ₄ G. Na ₂ S ₂ O ₃ K. ZnAc D. NaOH H. NaHSO ₄ L A: O.	None E. HCL I. Ice	** Preservative Type Codes	Size(s): 2oz, 4oz, 8oz, 16oz, 32oz , 1Gal 40ml, 125 ml, 250 ml, 500 ml, 1L, Other	Other	PC PC	Vial Clear TS Vial Pre-preserved AC Glass Amber TB	ES
						 	YES NO N/A											ŝ	Tissue Urine Blood	Soil/Sediment/Solid Wipe Air Oil	Type Codes	<. ZnAc&NaOH L Asbc Acid&NaOH	CAA C	pe Codes	Other		Zip Lock Bag Plastic Clear	TerraCore Sampler Air Canister Tedlar Bag	ncore Sampler

Execution of this document by client creates a legal and binding agreement between client and Xenco for analytical and testing services provided by Xenco to client under Xenco's standard terms and conditions unless previously agreed in writing. Terms of payment are Net 30 days, and all past due amounts shall accrue interest at 1.5% per month until paid in full. All laboratory analytical data and reports generated by Xenco remain the exclusive property of Xenco until invoices for such data are paid in full. Revision Date: Nov 12, 2009

FTS Service Centers: Atlanta 770-449-8800 Lakeland 863-646-8526 Tampa 803-543-8099 Philadelphia 610-955-5649 South Carolina 803-543-8099

XENCO Laboratories

Prelogin/Nonconformance Report- Sample Log-In

Client: PLAINS ALL AMERICAN EH&S

Date/ Time Received: 08/07/2013 02:00:00 PM

Temperature Measuring device used :

Acceptable Temperature Range: 0 - 6 degC Air and Metal samples Acceptable Range: Ambient

Work Order #: 468120

Samp	le Receipt Checklist	Comments
#1 *Temperature of cooler(s)?	1	
#2 *Shipping container in good condition?	Yes	
#3 *Samples received on ice?	Yes	
#4 *Custody Seals intact on shipping container/ co	ooler? Yes	
#5 Custody Seals intact on sample bottles?	Yes	
#6 *Custody Seals Signed and dated?	Yes	
#7 *Chain of Custody present?	Yes	
#8 Sample instructions complete on Chain of Cust	tody? Yes	
#9 Any missing/extra samples?	No	
#10 Chain of Custody signed when relinquished/ r	eceived? Yes	
#11 Chain of Custody agrees with sample label(s)	? Yes	
#12 Container label(s) legible and intact?	Yes	
#13 Sample matrix/ properties agree with Chain of	Custody? Yes	
#14 Samples in proper container/ bottle?	Yes	
#15 Samples properly preserved?	Yes	
#16 Sample container(s) intact?	Yes	
#17 Sufficient sample amount for indicated test(s)	? Yes	
#18 All samples received within hold time?	Yes	
#19 Subcontract of sample(s)?	Yes	
#20 VOC samples have zero headspace (less tha	n 1/4 inch bubble)? Yes	
#21 <2 for all samples preserved with HNO3,HCL,		
#22 >10 for all samples preserved with NaAsO2+N	NaOH, ZnAc+NaOH? N/A	

alyst:	PH D	evice/Lot#:	
Checklist	completed by:	Huns Hoah Kelsey Brooks	Date: 08/07/2013
Checklis	t reviewed by:	Kelsey Brooks	Date: 08/07/2013

Analytical Report 471127

for PLAINS ALL AMERICAN EH&S

Project Manager: Ben Arguijo DCP Plant to Lea Station 6" #2 SRS#2009-039 02-OCT-13

Collected By: Client

12600 West I-20 East Odessa, Texas 79765

Xenco-Houston (EPA Lab code: TX00122):

Texas (T104704215-13-15-TX), Arizona (AZ0765), Arkansas (08-039-0), Connecticut (PH-0102), Florida (E871002) Illinois (002082), Indiana (C-TX-02), Iowa (392), Kansas (E-10380), Kentucky (45), Louisiana (03054) New Hampshire (297408), New Jersey (TX007), New York (11763), Oklahoma (9218), Pennsylvania (68-03610) Rhode Island (LAO00312), USDA (S-44102), DoD (L11-54)

Xenco-Atlanta (EPA Lab Code: GA00046): Florida (E87429), North Carolina (483), South Carolina (98015), Kentucky (85), DoD (L10-135) Louisiana (04176), USDA (P330-07-00105)

Xenco-Tampa Mobile (EPA Lab code: FL01212): Florida (E84900)

Xenco-Lakeland: Florida (E84098)

Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400-TX) Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295-TX)

Xenco Phoenix (EPA Lab Code: AZ00901): Arizona(AZ0757)

Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757) Xenco Tucson (EPA Lab code: AZ000989): Arizona (AZ0758)

02-OCT-13

Project Manager: **Ben Arguijo PLAINS ALL AMERICAN EH&S**1301 S. COUNTY ROAD 1150
Midland, TX 79706

Reference: XENCO Report No(s): 471127

DCP Plant to Lea Station 6" #2 Project Address: Lea County, NM

Ben Arguijo:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 471127. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 471127 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Kelsey Brooks

Knis Hoah

Project Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Odessa - San Antonio - Tampa - Lakeland - Atlanta - Phoenix - Oklahoma - Latin America

Sample Cross Reference 471127

PLAINS ALL AMERICAN EH&S, Midland, TX

DCP Plant to Lea Station 6" #2

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
MW-6	W	09-25-13 11:30		471127-001
MW-7	W	09-25-13 12:00		471127-002

CASE NARRATIVE

Client Name: PLAINS ALL AMERICAN EH&S Project Name: DCP Plant to Lea Station 6" #2

 Project ID:
 SRS#2009-039
 Report Date:
 02-OCT-13

 Work Order Number(s):
 471127
 Date Received:
 09/25/2013

Sample receipt non conformances and comments:

Sample receipt non conformances and comments per sample:

None

Analytical non conformances and comments:

Batch: LBA-923833 Inorganic Anions by EPA 300/300.1

E300

Batch 923833, Fluoride recovered below QC limits in the Matrix Spike and Matrix Spike Duplicate.

Samples affected are: 471127-002, -001.

The Laboratory Control Sample for Fluoride is within laboratory Control Limits

Batch: LBA-923979 TCLP SVOCs

SW8270C

Batch 923979, 3,3-Dichlorobenzidine, 4-Chloroaniline, Aniline (Phenylamine, Aminobenzene), Phenol recovered below QC limits in the Matrix Spike. Benzoic Acid, di-n-Octyl Phthalate recovered above QC limits in the Matrix Spike.

Samples affected are: 471127-002, -001.

The Laboratory Control Sample for Benzoic Acid, 4-Chloroaniline, di-n-Octyl Phthalate, Aniline (Phenylamine, Aminobenzene), 3,3-Dichlorobenzidine, Phenol is within laboratory Control Limits

SW8270C

Batch 923979, Benzo(b)fluoranthene recovered above QC limits in the Blank Spike Duplicate. Samples affected are: 471127-002, -001.

Mercury

Project Location: Lea County, NM

Certificate of Analysis Summary 471127

PLAINS ALL AMERICAN EH&S, Midland, TX

Project Id: SRS#2009-039 Project Name: DCI

Project Name: DCP Plant to Lea Station 6" #2

Contact: Ben Arguijo

Date Received in Lab: Wed Sep-25-13 04:30 pm

Report Date: 02-OCT-13

Project Manager: Kelsey Brooks

						Project Manager:	Kelsey Brooks	
	Lab Id:	471127-0	001	471127-0	02			
Analusia Banuartad	Field Id:	MW-6	;	MW-7				
Analysis Requested	Depth:							
	Matrix:	WATE	R	WATER	₹			
	Sampled:	Sep-25-13	11:30	Sep-25-13 1	2:00			
Alkalinity by SM2320B	Extracted:							
SUB: TX104704215	Analyzed:	Sep-27-13	11:56	Sep-27-13 1	1:56			
	Units/RL:	mg/L	RL	mg/L	RL			
Alkalinity, Bicarbonate (as CaCO3)		224	4.00	214	4.00			
Alkalinity, Carbonate (as CaCO3)		ND	4.00	ND	4.00			
Inorganic Anions by EPA 300/300.1	Extracted:	Sep-27-13	10:30	Sep-27-13 1	0:30			
SUB: TX104704215	Analyzed:	Sep-27-13	18:17	Sep-27-13 1	9:13			
	Units/RL:	mg/L	RL	mg/L	RL			
Chloride		1000 D	10.0	921 D	10.0			
Fluoride		1.000	0.100	0.811	0.100			
Nitrite as N		1.18	0.0300	1.21	0.0300			
Sulfate		752 D	10.0	679 D	10.0			
Orthophosphate (as P)		ND	0.0408	ND	0.0408			
Mercury by SW-846 7470A	Extracted:	Sep-30-13	11:15	Sep-30-13 1	1:15			
SUB: TX104704215	Analyzed:	Sep-30-13	14:48	Sep-30-13 1	4:51			
	Units/RL:	mg/L	RL	mg/L	RL			

ND 0.000200

ND 0.000200

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Contact: Ben Arguijo

Project Location: Lea County, NM

Certificate of Analysis Summary 471127

PLAINS ALL AMERICAN EH&S, Midland, TX

Project Id: SRS#2009-039 Project Name: DCP Plant to Lea Station 6" #2

Date Received in Lab: Wed Sep-25-13 04:30 pm

Report Date: 02-OCT-13

Project Manager: Kelsey Brooks

						Project Manager:	Kelsey Brooks	
	Lab Id:	471127-0	001	471127-0	002			
Analusia Banuastad	Field Id:	MW-6	5	MW-7				
Analysis Requested	Depth:							
	Matrix:	WATE	R	WATEI	R			
	Sampled:	Sep-25-13	11:30	Sep-25-13	12:00			
Metals per ICP by EPA 200.7	Extracted:	Sep-27-13	09:00	Sep-27-13 (09:00			
SUB: TX104704215	Analyzed:	Sep-30-13	14:39	Sep-30-13	14:45			
	Units/RL:	mg/L	RL	mg/L	RL			
Aluminum		25.6	0.200	1.80	0.200			
Arsenic		0.0223	0.0200	ND	0.0200			
Barium		0.559	0.0100	0.103	0.0100			
Boron		0.613	0.0500	0.584	0.0500			
Cadmium		ND	0.0100	ND	0.0100			
Calcium		266	0.200	177	0.200			
Chromium		0.0219	0.0100	ND	0.0100			
Cobalt		0.0139	0.0100	ND	0.0100			
Copper		ND	0.0200	ND	0.0200			
Iron		19.3	0.200	1.26	0.200			
Lead		0.0310	0.0100	0.0150	0.0100			
Magnesium		109	0.200	99.2	0.200			
Manganese		0.768	0.0200	0.0542	0.0200			
Molybdenum		0.0298	0.0100	0.0347	0.0100			
Nickel		0.0331	0.0100	ND	0.0100			
Potassium		22.8	0.500	17.4	0.500			
Selenium		0.0330	0.0300	0.0391	0.0300			
Silver		ND	0.0200	ND	0.0200			
Sodium		711	50.0	683	50.0			
Zinc		0.0627	0.0300	ND	0.0300			

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

PLAINS ALL AMERICAN EH&S, Midland, TX

Project Id: SRS#2009-039

Project Name: DCP Plant to Lea Station 6" #2

Contact: Ben Arguijo

Project Location: Lea County, NM

Date Received in Lab: Wed Sep-25-13 04:30 pm **Report Date:** 02-OCT-13

Project Manager: Kelsey Brooks

2.4-Dinitrotoluene ND 0.00500 ND 0.00500 ND 0.00500 2.6-Dinitrotoluene ND 0.00500 ND 0.00500 ND 0.00500 2-Chloronaphthalene ND 0.00500 ND 0.00500 ND 0.00500 2-Methylnaphthalene ND 0.00500 ND 0.00500 ND 0.00500 2-methylphenol ND 0.00500 ND 0.00500 ND 0.00500 2-Nitroaniline ND 0.00500 ND 0.00500 ND 0.00500 3-Wethylphenol ND 0.00500 ND 0.00500 ND 0.00500 2-Nitrophenol ND 0.00500 ND 0.00500 ND 0.00500 3-Wethylphenol ND 0.00500 ND 0.00500 ND 0.00500 3-Shitrophenol ND 0.00500 ND 0.00500 ND 0.00500 3-Nitroaniline ND 0.0100 ND 0.0100 ND 0.0100 4-G-dinitro-2-methyl phenol ND 0.0100 ND 0.0100 ND 0.0100 4-Bromophenyl-phenylether ND 0.00500 ND 0.00500 ND 0.00500					 roject Manager:	Reisey Brooks	1
Naming N		Lab Id:	471127-001	471127-002			
Natrix N	Analysis Pagyastad	Field Id:	MW-6	MW-7			
Sampled Sep 25-13 1-30 Sep 25-13 1-20 Sep 30-13	Analysis Requesiea	Depth:					
SVOAs by SW-846 8270C SUB: TX104704215 Analyzed: Sep-30-13 10-21 Sep-30-13 19-15 Sep-30-13 1		Matrix:	WATER	WATER			
SVOAs by SW-846 8270C SUB: TX104704215 Analyzed: Sep-30-13 10-21 Sep-30-13 19-15 Sep-30-13 1		Sampled:	Sep-25-13 11:30	Sep-25-13 12:00			
SUB: TX104704215 Analyzeit Units/RL: sep-30-13 18-56 mg/L RL mg/L mg/L RL mg/L mg/L RL mg/L mg/L mg/L RL mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/	SVOAs by SW-846 8270C			_			
No.	•		-	_			
1,2.4-Trichlorobenzene			-	-			
1.3-Dichlorobenzene	1047711111	Units/RL:		U			
1,3-Dichlorobenzene							
1,4-Dichlorobenzene	,						
2,4,5-Trichlorophenol ND 0,00500 ND 0,00500 ND 0,00500 2,4,6-Trichlorophenol ND 0,00500 ND 0,00500 ND 0,00500 2,4-Dinitrophenol ND 0,00500 ND 0,00500 ND 0,00500 2,6-Dinitrophenol ND 0,00500 ND 0,00500 ND 0,00500 2-Chlorophenol ND 0,00500 ND 0,00500 ND 0,00500 2-Methylaphthalene ND 0,00500 ND 0,00500 ND 0,00500 2-methylphenol ND 0,00500 ND 0,00500 ND 0,00500 2-Nitrophenol ND 0,00500 ND 0,00500 ND 0,00500 3,3-Dichlorobenzidine ND 0,00500 ND 0,00500 ND 0,00500 3,3-Dichlorobenzidine ND 0,00500 ND 0,00500	7-						
2,4,6-Trichlorophenol ND 0.00500 ND 0.00500 ND 0.00500 2,4-Dichlorophenol ND 0.00500 ND 0.00500 ND 0.00500 2,4-Dinitrophenol ND 0.00500 ND 0.00500 ND 0.00500 2,4-Dinitrotoluene ND 0.00500 ND 0.00500 ND 0.00500 2,6-Dinitrotoluene ND 0.00500 ND 0.00500 ND 0.00500 2,6-Dinitrotoluene ND 0.00500 ND 0.00500 ND 0.00500 2-Chlorophenol ND 0.00500 ND 0.00500 ND 0.00500 2-Chlorophenol ND 0.00500 ND 0.00500 ND 0.00500 2-Methylaphthalene ND 0.00500 ND 0.00500 ND 0.00500 2-methylphenol ND 0.00500 ND 0.00500 ND 0.00500 2-methylphenol ND 0.00500 ND 0.00500 ND 0.00500 2-Nitroaniline ND 0.00500 ND 0.00500 ND 0.00500 3,3-Dichlorobenzidine ND 0.00500 ND 0.00500 ND 0.00500 3-Nitroaniline ND 0.00500 ND 0.00500 ND 0.00500 ND 0.00500 4-Bromophenyl-phenylether ND 0.00500 <	,		· · · · · · · · · · · · · · · · · · ·				
2.4-Dichlorophenol ND 0.00500 ND 0.00500 ND 0.00500 2.4-Dinethylphenol ND 0.00500 ND 0.00500 ND 0.00500 2.4-Dinitrophenol ND 0.00500 ND 0.00500 ND 0.00500 2.4-Dinitrotoluene ND 0.00500 ND 0.00500 ND 0.00500 2.6-Dinitrotoluene ND 0.00500 ND 0.00500 ND 0.00500 2-Chlorophenol ND 0.00500 ND 0.00500 ND 0.00500 2-Methylnaphthalene ND 0.00500 ND 0.00500 ND 0.00500 2-methylphenol ND 0.00500 ND 0.00500 ND 0.00500 2-Nitrophenol ND 0.00500 ND 0.00500 ND 0.00500 2-Nitrophenol ND 0.00500 ND 0.00500 ND 0.00500 3-Nitrophenol ND 0.00500 ND 0.00500 ND 0.00500 3-3-Dichlorobenzidine ND 0.00500 ND 0.00500 ND 0.00500 3-Nitropalline ND 0.0100 ND 0.0100 ND 0.0100 3-Nitrophenol ND 0.0100 ND 0.0100 ND 0.0100 3-Nitrophenol ND 0.00500 ND 0.00500 ND 0.00500 3-Nitrophenol ND 0.00500 ND 0.00500 ND 0.0050			· ·				
2.4-Dimethylphenol ND 0.00500 ND 0.00500 ND 0.00500 ND 0.00500 2.4-Dinitrophenol ND 0.00500 ND 0.00500 ND 0.00500 ND 0.00500 2.4-Dinitrotoluene ND 0.00500 ND 0.00500 ND 0.00500 ND 0.00500 2-Chloronaphthalene ND 0.00500 ND 0.00500 ND 0.00500 ND 0.00500 2-Chlorophenol ND 0.00500 ND 0.00500 ND 0.00500 ND 0.00500 2-Methylnaphthalene ND 0.00500 ND 0.00500 ND 0.00500 ND 0.00500 2-Methylphenol ND 0.00500 ND 0.00500 ND 0.00500 ND 0.00500 2-Nitroaniline ND 0.00500 ND 0.00500 ND 0.00500 ND 0.00500 3-Nitroaniline ND 0.00500 ND 0.00500 ND 0.00500 ND 0.00500 4-G-dinitro-2-methyl phenol ND 0.00500 ND 0.00500 ND 0.00500 ND 0.00500 4-Romophenyl-phenylether ND 0.00500 ND 0.00500 ND 0.00500 ND 0.00500 4-Chloro-3-methylphenol ND 0.00500 ND 0.00500 ND 0.00500 ND 0.00500			· · · · · · · · · · · · · · · · · · ·				
2.4-Dinitrophenol ND 0.0100 ND 0.0100 ND 0.00500 ND			ND 0.00500	·			
2.4-Dinitrotoluene ND 0.00500 ND 0.00500 <td< td=""><td>2,4-Dimethylphenol</td><td></td><td>ND 0.00500</td><td></td><td></td><td></td><td></td></td<>	2,4-Dimethylphenol		ND 0.00500				
2.6-Dinitrotoluene ND 0.00500 ND 0.00500 ND 0.00500 ND 0.00500 2-Chloronaphthalene ND 0.00500 ND 0.00500 ND 0.00500 2-Chlorophenol ND 0.00500 ND 0.00500 ND 0.00500 2-Methylnaphthalene ND 0.00500 ND 0.00500 ND 0.00500 2-methylphenol ND 0.00500 ND 0.00500 ND 0.00500 2-Nitroaniline ND 0.00500 ND 0.00500 ND 0.00500 2-Nitrophenol ND 0.00500 ND 0.00500 ND 0.00500 3&4-Methylphenol ND 0.00500 ND 0.00500 ND 0.00500 3,3-Dichlorobenzidine ND 0.0100 ND 0.0100 ND 0.0100 3,-Nitroaniline ND 0.0100 ND 0.0100 ND 0.0100 4,6-dinitro-2-methyl phenol ND 0.0100 ND 0.0100 ND 0.0100 4-Bromophenyl-phenylether ND 0.00500 ND 0.00500 ND 0.00500 4-Chloro-3-methyl phenol ND 0.00500 ND 0.00500 ND 0.00500 4-Chloro-3-methylphenol ND 0.00500 ND 0.00500 ND 0.00500	2,4-Dinitrophenol ND		ND 0.0100	ND 0.0100			
2-Chloronaphthalene	2,4-Dinitrotoluene		ND 0.00500	ND 0.00500			
2-Chlorophenol ND 0.00500 ND	2,6-Dinitrotoluene		ND 0.00500	ND 0.00500			
2-Methylnaphthalene ND 0.00500 ND 0.00500 <t< td=""><td>2-Chloronaphthalene</td><td></td><td>ND 0.00500</td><td>ND 0.00500</td><td></td><td></td><td></td></t<>	2-Chloronaphthalene		ND 0.00500	ND 0.00500			
2-methylphenol ND 0.00500 ND 0.00500 ND 0.00500 2-Nitroaniline ND 0.0100 ND 0.00500 ND 0.00500 2-Nitrophenol ND 0.00500 ND 0.00500 ND 0.00500 3,3-Dichlorobenzidine ND 0.0100 ND 0.0100 ND 0.0100 3-Nitroaniline ND 0.0100 ND 0.0100 ND 0.0100 4-G-dinitro-2-methyl phenol ND 0.0100 ND 0.0100 ND 0.0100 4-Bromophenyl-phenylether ND 0.00500 ND 0.00500 ND 0.00500 4-chloro-3-methylphenol ND 0.00500 ND 0.00500 ND 0.00500 4-Chloroaniline ND 0.00500 ND 0.00500 ND 0.00500	2-Chlorophenol		ND 0.00500	ND 0.00500			
2-Nitrophenol ND 0.0100 ND 0.00500 ND 0.00500 S4-Methylphenol ND 0.00500 ND 0.00500 ND 0.00500 S3-Dichlorobenzidine ND 0.0100 ND 0.0100 ND 0.0100 ND 0.0100 S-Nitroaniline ND 0.0100 ND 0.0100 ND 0.0100 ND 0.0100 ND 0.0100 ND 0.0100 S-Nitroaniline ND 0.0100 S-Nitroaniline ND 0.00500 N	2-Methylnaphthalene		ND 0.00500	ND 0.00500			
2-Nitrophenol ND 0.00500 ND 0.00500 ND 0.00500 S4-Methylphenol ND 0.00500 ND 0.00500 ND 0.00500 S3-Dichlorobenzidine ND 0.0100 ND 0.0100 ND 0.0100 S-Nitroaniline ND 0.0100 ND 0.0100 ND 0.0100 ND 0.0100 S4-Ginitro-2-methyl phenol ND 0.0100 ND 0.0100 ND 0.0100 ND 0.0100 S4-Bromophenyl-phenylether ND 0.00500 ND 0.00500 ND 0.00500 S4-Chloro-3-methylphenol ND 0.00500 ND 0.00500 ND 0.00500 SD 0.0050	2-methylphenol		ND 0.00500	ND 0.00500			
3&4-Methylphenol ND 0.00500 ND 0.00500 ND 0.00500 3,3-Dichlorobenzidine ND 0.0100 ND 0.0100 ND 0.0100 3-Nitroaniline ND 0.0100 ND 0.0100 ND 0.0100 4,6-dinitro-2-methyl phenol ND 0.0100 ND 0.0100 ND 0.0100 4-Bromophenyl-phenylether ND 0.00500 ND 0.00500 ND 0.00500 4-chloro-3-methylphenol ND 0.00500 ND 0.00500 ND 0.00500 4-Chloroaniline ND 0.0100 ND 0.0100 ND 0.0100	2-Nitroaniline		ND 0.0100	ND 0.0100			
3,3-Dichlorobenzidine ND 0.0100 0.0100 ND 0.00500 0.0100 ND 0.00500 0.00500 ND 0.00500 0.00500<	2-Nitrophenol		ND 0.00500	ND 0.00500			
3-Nitroaniline	3&4-Methylphenol		ND 0.00500	ND 0.00500			
4,6-dinitro-2-methyl phenol	3,3-Dichlorobenzidine		ND 0.0100	ND 0.0100			
4-Bromophenyl-phenylether	3-Nitroaniline		ND 0.0100	ND 0.0100			
4-chloro-3-methylphenol ND 0.00500 ND 0.00500 A-Chloroaniline ND 0.0100 ND 0.0100 ND 0.0100	4,6-dinitro-2-methyl phenol		ND 0.0100	ND 0.0100			
4-Chloroaniline ND 0.0100 ND 0.0100	4-Bromophenyl-phenylether		ND 0.00500	ND 0.00500			
	4-chloro-3-methylphenol		ND 0.00500	ND 0.00500			
4-Chlorophenyl Phenyl Ether ND 0.00500 ND 0.00500	4-Chloroaniline		ND 0.0100	ND 0.0100			
	4-Chlorophenyl Phenyl Ether		ND 0.00500	ND 0.00500			

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

PLAINS ALL AMERICAN EH&S, Midland, TX

Project Id: SRS#2009-039

Project Location: Lea County, NM

Project Name: DCP Plant to Lea Station 6" #2 Contact: Ben Arguijo

Date Received in Lab: Wed Sep-25-13 04:30 pm

Report Date: 02-OCT-13

Project Manager: Kelsey Brooks

				Project Manager:	Reisey Diooks	
	Lab Id:	471127-001	471127-002			
A sa alasia D a sa asta d	Field Id:	MW-6	MW-7			
Analysis Requested	Depth:					
	Matrix:	WATER	WATER			
	Sampled:	Sep-25-13 11:30	Sep-25-13 12:00			
SVOAs by SW-846 8270C	Extracted:	Sep-30-13 10:21	Sep-30-13 10:24			
SUB: TX104704215	Analyzed:	Sep-30-13 18:56	Sep-30-13 19:15			
	Units/RL:	mg/L RL	mg/L RL			
4-Nitroaniline	Unus/KL:	ND 0.0100	ND 0.0100			
4-Nitrophenol		ND 0.0100	ND 0.0100			
Acenaphthene		ND 0.00500	ND 0.00500			
Acenaphthylene		ND 0.00500	ND 0.00500			
Aniline (Phenylamine, Aminobenzene)		ND 0.0100	ND 0.0100			
Anthracene		ND 0.00500	ND 0.00500			
Benzo(a)anthracene		ND 0.00500	ND 0.00500			
Benzo(a)pyrene		ND 0.00500	ND 0.00500			
Benzo(b)fluoranthene		ND 0.00500	ND 0.00500			
Benzo(g,h,i)perylene		ND 0.00500	ND 0.00500			
Benzo(k)fluoranthene		ND 0.00500	ND 0.00500			
Benzoic Acid		ND 0.0300	ND 0.0300			
Benzyl Butyl Phthalate		ND 0.00500	ND 0.00500			
bis(2-chloroethoxy) methane		ND 0.00500	ND 0.00500			
bis(2-chloroethyl) ether		ND 0.00500	ND 0.00500			
bis(2-chloroisopropyl) ether		ND 0.00500	ND 0.00500			
bis(2-ethylhexyl) phthalate		ND 0.00500	ND 0.00500			
Chrysene		ND 0.00500	ND 0.00500			
Dibenz(a,h)anthracene		ND 0.00500	ND 0.00500			
Dibenzofuran		ND 0.00500	ND 0.00500			
Diethylphthalate		ND 0.00500	ND 0.00500			
Dimethyl Phthalate		ND 0.00500	ND 0.00500			
Di-n-butylphthalate		ND 0.00500	ND 0.00500			
di-n-Octyl Phthalate		ND 0.00500	ND 0.00500			
Fluoranthene		ND 0.00500	ND 0.00500			

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

PLAINS ALL AMERICAN EH&S, Midland, TX

Project Id: SRS#2009-039

Contact: Ben Arguijo

Project Location: Lea County, NM

Project Name: DCP Plant to Lea Station 6" #2

Date Received in Lab: Wed Sep-25-13 04:30 pm

Report Date: 02-OCT-13

Project Manager: Kelsey Brooks

	Lab Id:	471127-0			I	1	1	
		4/112/-0)01	471127-0	002			
Amaluaia Daguagead	Field Id:	MW-6	5	MW-7	,			
Analysis Requested	Depth:							
	Matrix:	WATE	R	WATE	R			
	Sampled:	Sep-25-13	11:30	Sep-25-13	12:00			
SVOAs by SW-846 8270C	Extracted:	Sep-30-13	10:21	Sep-30-13	10:24			
SUB: TX104704215	Analyzed:	Sep-30-13	18:56	Sep-30-13	19:15			
	Units/RL:	mg/L	RL	mg/L	RL			
Fluorene		ND	0.00500	ND	0.00500			
Hexachlorobenzene		ND	0.00500	ND	0.00500			
Hexachlorobutadiene		ND	0.00500	ND	0.00500			
Hexachlorocyclopentadiene		ND	0.00500	ND	0.00500			
Hexachloroethane		ND	0.00500	ND	0.00500			
Indeno(1,2,3-c,d)Pyrene		ND	0.00500	ND	0.00500			
Isophorone		ND	0.00500	ND	0.00500			
Naphthalene		ND	0.00500	ND	0.00500			
Nitrobenzene		ND	0.00500	ND	0.00500			
N-Nitrosodi-n-Propylamine		ND	0.00500	ND	0.00500			
N-Nitrosodiphenylamine		ND	0.00500	ND	0.00500			
Pentachlorophenol		ND	0.0100	ND	0.0100			
Phenanthrene		ND	0.00500	ND	0.00500			
Phenol		ND	0.0100	ND	0.0100			
Pyrene		ND	0.00500	ND	0.00500			
Pyridine		ND	0.0100	ND	0.0100			

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Contact: Ben Arguijo

Project Location: Lea County, NM

Certificate of Analysis Summary 471127

PLAINS ALL AMERICAN EH&S, Midland, TX

Project Name: DCP Plant to Lea Station 6" #2 **Project Id:** SRS#2009-039

Date Received in Lab: Wed Sep-25-13 04:30 pm

Report Date: 02-OCT-13

				Project Manager:	Kelsey Brooks
	Lab Id:	471127-001	471127-002		
Analusia Paguastad	Field Id:	MW-6	MW-7		
Analysis Requested	Depth:				
	Matrix:	WATER	WATER		
	Sampled:	Sep-25-13 11:30	Sep-25-13 12:00		
VOAs by SW-846 8260B	Extracted:	Sep-29-13 17:17	Sep-29-13 17:24		
SUB: TX104704215	Analyzed:	Sep-29-13 20:34	Sep-29-13 23:28		
	Units/RL:	mg/L RL	mg/L RL		
Benzene		ND 0.00500	ND 0.00500		
Bromobenzene		ND 0.00500	ND 0.00500		
Bromochloromethane		ND 0.00500	ND 0.00500		
Bromodichloromethane		ND 0.00500	ND 0.00500		
Bromoform		ND 0.00500	ND 0.00500		
Methyl bromide		ND 0.00500	ND 0.00500		
n-Butylbenzene		ND 0.00500	ND 0.00500		
Sec-Butylbenzene		ND 0.00500	ND 0.00500		
tert-Butylbenzene		ND 0.00500	ND 0.00500		
Carbon Tetrachloride		ND 0.00500	ND 0.00500		
Chlorobenzene		ND 0.00500	ND 0.00500		
Chloroethane		ND 0.0100	ND 0.0100		
Chloroform		ND 0.00500	ND 0.00500		
Methyl Chloride		ND 0.0100	ND 0.0100		
2-Chlorotoluene		ND 0.00500	ND 0.00500		
4-Chlorotoluene		ND 0.00500	ND 0.00500		
p-Cymene (p-Isopropyltoluene)		ND 0.00500	ND 0.00500		
Dibromochloromethane		ND 0.00500	ND 0.00500		
1,2-Dibromo-3-Chloropropane		ND 0.00500	ND 0.00500		
1,2-Dibromoethane		ND 0.00500	ND 0.00500		
Methylene bromide		ND 0.00500	ND 0.00500		
1,2-Dichlorobenzene		ND 0.00500	ND 0.00500		
1,3-Dichlorobenzene		ND 0.00500	ND 0.00500		
1,4-Dichlorobenzene		ND 0.00500	ND 0.00500		
Dichlorodifluoromethane		ND 0.00500	ND 0.00500	n	

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

PLAINS ALL AMERICAN EH&S, Midland, TX

Project Name: DCP Plant to Lea Station 6" #2

Project Id: SRS#2009-039 **Date Received in Lab:** Wed Sep-25-13 04:30 pm Contact: Ben Arguijo

Report Date: 02-OCT-13 Project Location: Lea County, NM Project Manager: Kelsey Brooks

				Project Manager:	Kelsey Brooks
	Lab Id:	471127-001	471127-002		
An alore Demonstral	Field Id:	MW-6	MW-7		
Analysis Requested	Depth:				
	Matrix:	WATER	WATER		
	Sampled:	Sep-25-13 11:30	Sep-25-13 12:00		
VOA a by CW 946 9260D	-		1		
VOAs by SW-846 8260B SUB: TX104704215	Extracted:	Sep-29-13 17:17	Sep-29-13 17:24		
SOB. 1A104704213	Analyzed:	Sep-29-13 20:34	Sep-29-13 23:28		
	Units/RL:	mg/L RL	mg/L RL		
1,1-Dichloroethane		ND 0.00500	ND 0.00500		
1,2-Dichloroethane		ND 0.00500	ND 0.00500		
1,1-Dichloroethene		ND 0.00500	ND 0.00500		
cis-1,2-Dichloroethylene		ND 0.00500	ND 0.00500		
trans-1,2-dichloroethylene		ND 0.00500	ND 0.00500		
1,2-Dichloropropane		ND 0.00500	ND 0.00500		
1,3-Dichloropropane		ND 0.00500	ND 0.00500		
2,2-Dichloropropane		ND 0.00500	ND 0.00500		
1,1-Dichloropropene		ND 0.00500	ND 0.00500		
cis-1,3-Dichloropropene		ND 0.00500	ND 0.00500		
trans-1,3-dichloropropene		ND 0.00500	ND 0.00500		
Ethylbenzene		ND 0.00500	ND 0.00500		
Hexachlorobutadiene		ND 0.00500	ND 0.00500		
Isopropylbenzene		ND 0.00500	ND 0.00500		
Methylene Chloride		ND 0.00500	ND 0.00500		
MTBE		ND 0.00500	ND 0.00500		
Naphthalene		ND 0.0100	ND 0.0100		
n-Propylbenzene		ND 0.00500	ND 0.00500		
Styrene		ND 0.00500	ND 0.00500		
1,1,1,2-Tetrachloroethane		ND 0.00500	ND 0.00500		
1,1,2,2-Tetrachloroethane		ND 0.00500	ND 0.00500		
Tetrachloroethylene		ND 0.00500	ND 0.00500		
Toluene		ND 0.00500	ND 0.00500		
1,2,3-Trichlorobenzene		ND 0.00500	ND 0.00500		
1,2,4-Trichlorobenzene		ND 0.00500	ND 0.00500		

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

PLAINS ALL AMERICAN EH&S, Midland, TX

Project Id: SRS#2009-039
Contact: Ben Arguijo

Project Location: Lea County, NM

Project Name: Do

Project Name: DCP Plant to Lea Station 6" #2

Date Received in Lab: Wed Sep-25-13 04:30 pm

Report Date: 02-OCT-13

Project Manager: Kelsey Brooks

Analysis Requested Lab Id: 471127-001 471127-002 MW-7 Field Id: Depth: Matrix: WATER Sampled: Sep-25-13 11:30 Sep-25-13 12:00 WATER Sep-25-13 17:17 Sep-29-13 17:24	
Analysis Requested Depth: Matrix: WATER WATER Sampled: Sep-25-13 11:30 Sep-25-13 12:00	
Depth: Matrix: WATER WATER Sampled: Sep-25-13 11:30 Sep-25-13 12:00	
Sampled: Sep-25-13 11:30 Sep-25-13 12:00	
VOAg by SW 946 9260P	
VOAs by SW-846 8260B Extracted: Sep-29-13 17:17 Sep-29-13 17:24	
SUB: TX104704215 Analyzed: Sep-29-13 20:34 Sep-29-13 23:28	
Units/RL: mg/L RL mg/L RL	
1,1,1-Trichloroethane ND 0.00500 ND 0.00500	
1,1,2-Trichloroethane ND 0.00500 ND 0.00500	
Trichloroethylene ND 0.00500 ND 0.00500	
Trichlorofluoromethane ND 0.00500 ND 0.00500	
1,2,3-Trichloropropane ND 0.00500 ND 0.00500	
1,2,4-Trimethylbenzene ND 0.00500 ND 0.00500	
1,3,5-Trimethylbenzene ND 0.00500 ND 0.00500	
o-Xylene ND 0.00500 ND 0.00500	
m,p-Xylenes ND 0.0100 ND 0.0100	
Vinyl Chloride ND 0.00200 ND 0.00200	

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantiation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- H The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- **K** Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- ** Surrogate recovered outside laboratory control limit.
- **BRL** Below Reporting Limit.
- **RL** Reporting Limit

MDL Method Detection Limit SDL Sample Detection Limit LOD Limit of Detection

PQL Practical Quantitation Limit MQL Method Quantitation Limit LOQ Limit of Quantitation

DL Method Detection Limit

NC Non-Calculable

- + NELAC certification not offered for this compound.
- * (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Atlanta - Midland/Odessa - Tampa/Lakeland - Phoenix - Latin America

	Phone	Fax
4143 Greenbriar Dr, Stafford, TX 77477	(281) 240-4200	(281) 240-4280
9701 Harry Hines Blvd, Dallas, TX 75220	(214) 902 0300	(214) 351-9139
5332 Blackberry Drive, San Antonio TX 78238	(210) 509-3334	(210) 509-3335
2505 North Falkenburg Rd, Tampa, FL 33619	(813) 620-2000	(813) 620-2033
12600 West I-20 East, Odessa, TX 79765	(432) 563-1800	(432) 563-1713
6017 Financial Drive, Norcross, GA 30071	(770) 449-8800	(770) 449-5477
3725 E. Atlanta Ave, Phoenix, AZ 85040	(602) 437-0330	

Project Name: DCP Plant to Lea Station 6" #2

Work Orders: 471127, **Project ID:** SRS#2009-039

Lab Batch #: 923905 **Sample:** 471127-001 / SMP **Batch:** 1 **Matrix:** Water

Units: mg/L Date Analyzed: 09/29/13 20:34	SU	RROGATE RE	ECOVERY S	STUDY	
VOAs by SW-846 8260B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes			[D]		
Dibromofluoromethane	0.0515	0.0500	103	75-131	
1,2-Dichloroethane-D4	0.0535	0.0500	107	63-144	
Toluene-D8	0.0512	0.0500	102	80-117	
4-Bromofluorobenzene	0.0503	0.0500	101	74-124	

Lab Batch #: 923905 **Sample:** 471127-002 / SMP **Batch:** 1 **Matrix:** Water

SURROGATE RECOVERY STUDY Date Analyzed: 09/29/13 23:28 Units: mg/L Amount True Control **VOAs by SW-846 8260B** Limits Found Amount Recovery Flags [B] %R %R [A] [D] **Analytes** Dibromofluoromethane 0.0544 109 75-131 0.0500 1,2-Dichloroethane-D4 0.0535 0.0500 107 63-144 Toluene-D8 0.0512 0.0500 102 80-117 4-Bromofluorobenzene 0.0499 0.0500 100 74-124

Units: mg/L	Date Analyzed: 09/30/13 18:56	SU	RROGATE RI	ECOVERY	STUDY	
	SW-846 8270C nalytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
2-Fluorophenol		25.1	50.0	50	30-100	
Phenol-d6		15.8	50.0	32	15-94	
Nitrobenzene-d5		42.8	50.0	86	46-111	
2-Fluorobiphenyl		44.0	50.0	88	44-117	
2,4,6-Tribromophenol		47.1	50.0	94	48-117	
Terphenyl-D14		46.9	50.0	94	46-126	

Surrogate Recovery [D] = 100 * A / B

^{*} Surrogate outside of Laboratory QC limits

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Project Name: DCP Plant to Lea Station 6" #2

Work Orders: 471127, **Project ID:** SRS#2009-039

Units: mg/L	Date Analyzed: 09/30/13 19:15	SURROGATE RECOVERY STUDY					
SVOAs	s by SW-846 8270C	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
	Analytes			[D]			
2-Fluorophenol		21.5	50.0	43	30-100		
Phenol-d6		13.1	50.0	26	15-94		
Nitrobenzene-d5		34.3	50.0	69	46-111		
2-Fluorobiphenyl		36.5	50.0	73	44-117		
2,4,6-Tribromophenol		37.9	50.0	76	48-117		
Terphenyl-D14		39.6	50.0	79	46-126		

Lab Batch #: 923905 Sample: 644575-1-BLK / BLK Batch: 1 Matrix: Water

Units: mg/L Date Analyzed: 09/29/13 15:24	SU	SURROGATE RECOVERY STUDY					
VOAs by SW-846 8260B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags		
Analytes			[D]				
Dibromofluoromethane	0.0495	0.0500	99	75-131			
1,2-Dichloroethane-D4	0.0517	0.0500	103	63-144			
Toluene-D8	0.0480	0.0500	96	80-117			
4-Bromofluorobenzene	0.0497	0.0500	99	74-124			

Lab Batch #: 923979 Sample: 644548-1-BLK / BLK Batch: 1 Matrix: Water

Units: mg/L Da	te Analyzed: 09/30/13 17:56	SURROGATE RECOVERY STUDY					
SVOAs by SV Analy		Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
2-Fluorophenol	,	31.6	50.0	63	30-100		
Phenol-d6		23.0	50.0	46	15-94		
Nitrobenzene-d5		39.1	50.0	78	46-111		
2-Fluorobiphenyl		41.7	50.0	83	44-117		
2,4,6-Tribromophenol		43.2	50.0	86	48-117		
Terphenyl-D14		46.5	50.0	93	46-126		

Surrogate Recovery [D] = 100 * A / B

^{*} Surrogate outside of Laboratory QC limits

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Project Name: DCP Plant to Lea Station 6" #2

Work Orders: 471127, **Project ID:** SRS#2009-039

Lab Batch #: 923905 Sample: 644575-1-BKS / BKS Batch: 1 Matrix: Water

Units: mg/L Date Analyzed: 09/29/13 14:08	SU	SURROGATE RECOVERY STUDY					
VOAs by SW-846 8260B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags		
Analytes			[D]				
Dibromofluoromethane	0.0514	0.0500	103	75-131			
1,2-Dichloroethane-D4	0.0502	0.0500	100	63-144			
Toluene-D8	0.0492	0.0500	98	80-117			
4-Bromofluorobenzene	0.0502	0.0500	100	74-124			

Lab Batch #: 923979 Sample: 644548-1-BKS / BKS Batch: 1 Matrix: Water

Units: mg/L Date Analyzed: 09/30/13 18:16	SU	SURROGATE RECOVERY STUDY					
SVOAs by SW-846 8270C Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
2-Fluorophenol	30.2	50.0	60	30-100			
Phenol-d6	21.2	50.0	42	15-94			
Nitrobenzene-d5	40.1	50.0	80	46-111			
2-Fluorobiphenyl	43.3	50.0	87	44-117			
2,4,6-Tribromophenol	47.4	50.0	95	48-117			
Terphenyl-D14	46.6	50.0	93	46-126			

Lab Batch #: 923979 Sample: 644548-1-BSD / BSD Batch: 1 Matrix: Water

Units: mg/L Date Analyzed: 09/30/13 18:36	SURROGATE RECOVERY STUDY						
SVOAs by SW-846 8270C Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
2-Fluorophenol	29.8	50.0	60	30-100			
Phenol-d6	20.4	50.0	41	15-94			
Nitrobenzene-d5	40.8	50.0	82	46-111			
2-Fluorobiphenyl	44.2	50.0	88	44-117			
2,4,6-Tribromophenol	49.3	50.0	99	48-117			
Terphenyl-D14	47.3	50.0	95	46-126			

Surrogate Recovery [D] = 100 * A / B

^{*} Surrogate outside of Laboratory QC limits

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Project Name: DCP Plant to Lea Station 6" #2

Work Orders: 471127, **Project ID:** SRS#2009-039

Lab Batch #: 923905 **Sample:** 470940-007 S / MS **Batch:** 1 **Matrix:** Water

Units: mg/L Date Analyzed: 09/29/13 21:48	SU	SURROGATE RECOVERY STUDY					
VOAs by SW-846 8260B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags		
Analytes			[D]				
Dibromofluoromethane	0.0523	0.0500	105	75-131			
1,2-Dichloroethane-D4	0.0511	0.0500	102	63-144			
Toluene-D8	0.0497	0.0500	99	80-117			
4-Bromofluorobenzene	0.0510	0.0500	102	74-124			

Units: mg/L Date Analyzed: 10/01/13 16:23	SURROGATE RECOVERY STUDY					
SVOAs by SW-846 8270C Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
2-Fluorophenol	38.8	50.0	78	30-100		
Phenol-d6	8.00	50.0	16	15-94		
Nitrobenzene-d5	39.7	50.0	79	46-111		
2-Fluorobiphenyl	38.2	50.0	76	44-117		
2,4,6-Tribromophenol	49.6	50.0	99	48-117		
Terphenyl-D14	45.2	50.0	90	46-126		

Lab Batch #: 923905 **Sample:** 470940-007 SD / MSD **Batch:** 1 **Matrix:** Water

Units: mg/L Date Analyzed: 09/29/13 22:13	SU	SURROGATE RECOVERY STUDY					
VOAs by SW-846 8260B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags		
Analytes			[D]				
Dibromofluoromethane	0.0542	0.0500	108	75-131			
1,2-Dichloroethane-D4	0.0543	0.0500	109	63-144			
Toluene-D8	0.0497	0.0500	99	80-117			
4-Bromofluorobenzene	0.0506	0.0500	101	74-124			

Surrogate Recovery [D] = 100 * A / B

^{*} Surrogate outside of Laboratory QC limits

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Blank Spike Recovery

Project Name: DCP Plant to Lea Station 6" #2

Work Order #: 471127 SRS#2009-039 **Project ID:**

Lab Batch #: 923833 Sample: 644470-1-BKS Matrix: Water **Date Analyzed:** 09/27/2013 **Date Prepared:** 09/27/2013 Analyst: RKO

Reporting Units: mg/L Batch #: 1 BLANK /BLANK SPIKE RECOVERY STUDY

Inorganic Anions by EPA 300/300.1 Analytes	Blank Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Control Limits %R	Flags
Fluoride	< 0.100	4.00	3.75	94	90-110	
Nitrite as N	< 0.0300	6.08	6.07	100	90-110	

Lab Batch #: 923947 Sample: 644569-1-BKS Matrix: Water **Date Analyzed:** 09/30/2013 **Date Prepared:** 09/30/2013 Analyst: ANS

Reporting Units: mg/L Batch #: BLANK /BLANK SPIKE RECOVERY STUDY Blank Blank Blank Spike Control Mercury by SW-846 7470A Added Spike Spike Limits Result Flags [A] [B] Result %R %R **Analytes** [D] [C] < 0.000200 0.00212 Mercury 0.00200 106 80-120

Blank Spike Recovery [D] = 100*[C]/[B] All results are based on MDL and validated for QC purposes. BRL - Below Reporting Limit

Blank Spike Recovery

Project Name: DCP Plant to Lea Station 6" #2

Work Order #: 471127 **Project ID:** SRS#2009-039

 Lab Batch #: 923905
 Sample: 644575-1-BKS
 Matrix: Water

 Date Analyzed: 09/29/2013
 Date Prepared: 09/29/2013
 Analyst: ZHO

Reporting Units: mg/L Batch #: 1 BLANK /BLANK SPIKE RECOVERY STUDY

Reporting Units: mg/L	Batch #: 1	BLANK /BLANK SPIKE RECOVERY ST				STUDY
VOAs by SW-846 8260B Analytes	Blank Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Control Limits %R	Flags
Benzene	< 0.00500	0.0500	0.0531	106	68-123	
Bromobenzene	< 0.00500	0.0500	0.0540	108	83-124	
Bromochloromethane	< 0.00500	0.0500	0.0534	107	68-119	
Bromodichloromethane	< 0.00500	0.0500	0.0578	116	72-132	
Bromoform	< 0.00500	0.0500	0.0512	102	65-136	
Methyl bromide	< 0.00500	0.0500	0.0470	94	48-120	
n-Butylbenzene	< 0.00500	0.0500	0.0554	111	82-128	
Sec-Butylbenzene	< 0.00500	0.0500	0.0575	115	83-130	
tert-Butylbenzene	< 0.00500	0.0500	0.0560	112	83-131	
Carbon Tetrachloride	< 0.00500	0.0500	0.0565	113	68-135	
Chlorobenzene	< 0.00500	0.0500	0.0528	106	78-124	
Chloroethane	< 0.0100	0.0500	0.0544	109	55-120	
Chloroform	< 0.00500	0.0500	0.0547	109	71-119	
Methyl Chloride	< 0.0100	0.0500	0.0508	102	54-114	
2-Chlorotoluene	< 0.00500	0.0500	0.0541	108	83-128	
4-Chlorotoluene	< 0.00500	0.0500	0.0546	109	81-125	
p-Cymene (p-Isopropyltoluene)	< 0.00500	0.0500	0.0559	112	85-129	
Dibromochloromethane	< 0.00500	0.0500	0.0560	112	74-135	
1,2-Dibromo-3-Chloropropane	< 0.00500	0.0500	0.0541	108	62-134	
1,2-Dibromoethane	< 0.00500	0.0500	0.0550	110	77-129	
Methylene bromide	< 0.00500	0.0500	0.0554	111	71-124	
1,2-Dichlorobenzene	< 0.00500	0.0500	0.0537	107	81-123	
1,3-Dichlorobenzene	< 0.00500	0.0500	0.0534	107	82-126	
1,4-Dichlorobenzene	< 0.00500	0.0500	0.0525	105	80-119	
Dichlorodifluoromethane	< 0.00500	0.0500	0.0528	106	59-121	
1,1-Dichloroethane	< 0.00500	0.0500	0.0546	109	75-125	
1,2-Dichloroethane	< 0.00500	0.0500	0.0537	107	64-130	
1,1-Dichloroethene	< 0.00500	0.0500	0.0527	105	68-116	
cis-1,2-Dichloroethylene	< 0.00500	0.0500	0.0534	107	74-130	
trans-1,2-dichloroethylene	< 0.00500	0.0500	0.0513	103	64-109	
1,2-Dichloropropane	< 0.00500	0.0500	0.0541	108	72-127	
1,3-Dichloropropane	< 0.00500	0.0500	0.0538	108	79-133	
2,2-Dichloropropane	< 0.00500	0.0500	0.0593	119	71-134	

Blank Spike Recovery [D] = 100*[C]/[B]

All results are based on MDL and validated for QC purposes.

 $\ensuremath{\mathsf{BRL}}$ - Below Reporting Limit

Blank Spike Recovery

Project Name: DCP Plant to Lea Station 6" #2

Work Order #: 471127 Project ID: SRS#2009-039

 Lab Batch #: 923905
 Sample: 644575-1-BKS
 Matrix: Water

 Date Analyzed: 09/29/2013
 Date Prepared: 09/29/2013
 Analyst: ZHO

Reporting Units: mg/L

VOAs by SW-846 8260B

Result
[A]

Blank
Result
[A]

[B]

Result
[C]

[D]

Result
Spike
Spik

Analytes	Result [A]	Added [B]	Spike Result [C]	Spike %R [D]	Limits %R	Flags
1,1-Dichloropropene	< 0.00500	0.0500	0.0529	106	69-124	
cis-1,3-Dichloropropene	< 0.00500	0.0500	0.0604	121	74-138	
trans-1,3-dichloropropene	< 0.00500	0.0500	0.0592	118	70-132	
Ethylbenzene	< 0.00500	0.0500	0.0548	110	69-131	
Hexachlorobutadiene	< 0.00500	0.0500	0.0522	104	74-130	
Isopropylbenzene	< 0.00500	0.0500	0.0568	114	66-133	
Methylene Chloride	< 0.00500	0.0500	0.0508	102	60-121	
MTBE	< 0.00500	0.100	0.116	116	60-152	
Naphthalene	< 0.0100	0.0500	0.0531	106	69-140	
n-Propylbenzene	< 0.00500	0.0500	0.0548	110	86-129	
Styrene	< 0.00500	0.0500	0.0565	113	79-128	
1,1,1,2-Tetrachloroethane	< 0.00500	0.0500	0.0581	116	78-131	
1,1,2,2-Tetrachloroethane	< 0.00500	0.0500	0.0574	115	80-133	
Tetrachloroethylene	< 0.00500	0.0500	0.0516	103	79-122	
Toluene	< 0.00500	0.0500	0.0527	105	62-132	
1,2,3-Trichlorobenzene	< 0.00500	0.0500	0.0514	103	76-126	
1,2,4-Trichlorobenzene	< 0.00500	0.0500	0.0522	104	77-127	
1,1,1-Trichloroethane	< 0.00500	0.0500	0.0572	114	72-124	
1,1,2-Trichloroethane	< 0.00500	0.0500	0.0556	111	71-135	
Trichloroethylene	< 0.00500	0.0500	0.0535	107	74-123	
Trichlorofluoromethane	< 0.00500	0.0500	0.0588	118	70-143	
1,2,3-Trichloropropane	< 0.00500	0.0500	0.0580	116	75-134	
1,2,4-Trimethylbenzene	< 0.00500	0.0500	0.0551	110	79-132	
1,3,5-Trimethylbenzene	< 0.00500	0.0500	0.0551	110	72-139	
o-Xylene	< 0.00500	0.0500	0.0554	111	67-132	
m,p-Xylenes	< 0.0100	0.100	0.109	109	69-132	
Vinyl Chloride	< 0.00200	0.0500	0.0525	105	59-124	

Blank Spike Recovery [D] = 100*[C]/[B]All results are based on MDL and validated for QC purposes.

BRL - Below Reporting Limit

Project Name: DCP Plant to Lea Station 6" #2

Work Order #: 471127

Date Prepared: 09/27/2013

Batch #: 1

Project ID: SRS#2009-039 **Date Analyzed:** 09/30/2013

Analyst: MKO Lab Batch ID: 923948

Sample: 644458-1-BKS

Matrix: Water

Units: mg/L

BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY

Cints. ing 2											
Metals per ICP by EPA 200.7 Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Aluminum	< 0.200	5.00	5.19	104	5.00	5.17	103	0	85-115	20	
Arsenic	< 0.0200	1.00	1.02	102	1.00	1.02	102	0	85-115	20	
Barium	< 0.0100	1.00	0.971	97	1.00	0.974	97	0	85-115	20	
Boron	< 0.0500	1.00	1.07	107	1.00	1.07	107	0	85-115	20	
Cadmium	< 0.0100	1.00	0.981	98	1.00	0.980	98	0	85-115	20	
Calcium	< 0.200	25.0	24.5	98	25.0	24.4	98	0	85-115	20	
Chromium	< 0.0100	1.00	1.01	101	1.00	1.02	102	1	85-115	20	
Cobalt	< 0.0100	1.00	1.02	102	1.00	1.02	102	0	85-115	20	
Copper	< 0.0200	1.00	0.996	100	1.00	0.998	100	0	85-115	20	
Iron	< 0.200	5.00	5.23	105	5.00	5.11	102	2	85-115	20	
Lead	< 0.0100	1.00	1.04	104	1.00	1.04	104	0	85-115	20	
Magnesium	< 0.200	25.0	25.5	102	25.0	24.5	98	4	85-115	20	
Manganese	< 0.0200	1.00	0.946	95	1.00	0.954	95	1	85-115	20	
Molybdenum	< 0.0100	1.00	1.04	104	1.00	1.04	104	0	85-115	20	
Nickel	< 0.0100	1.00	1.06	106	1.00	1.07	107	1	85-115	20	
Potassium	< 0.500	10.0	10.5	105	10.0	10.4	104	1	85-115	20	
Selenium	< 0.0300	1.00	1.04	104	1.00	1.04	104	0	85-115	20	
Silver	< 0.0200	0.500	0.494	99	0.500	0.491	98	1	85-115	20	
Sodium	< 0.500	25.0	26.4	106	25.0	26.2	105	1	85-115	20	
Zinc	< 0.0300	1.00	1.00	100	1.00	1.00	100	0	85-115	20	

Relative Percent Difference RPD = 200*|(C-F)/(C+F)|
Blank Spike Recovery [D] = 100*(C)/[B]
Blank Spike Duplicate Recovery [G] = 100*(F)/[E]
All results are based on MDL and Validated for QC Purposes

Project Name: DCP Plant to Lea Station 6" #2

Work Order #: 471127

Date Prepared: 09/30/2013

Batch #: 1

Project ID: SRS#2009-039 **Date Analyzed:** 09/30/2013

Analyst: CYE Lab Batch ID: 923979

Sample: 644548-1-BKS

Matrix: Water

Units: mg/L

BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY

SVOAs by SW-846 8270C	Blk. Spk Dup. %R [G] 83 81	RPD % 0 2	Control Limits %R	Control Limits %RPD	Flag
1,2-Dichlorobenzene <0.00500 0.0500 0.0412 82 0.0500 0.0403 1,3-Dichlorobenzene <0.00500 0.0500 0.0408 82 0.0500 0.0402 1,4-Dichlorobenzene <0.00500 0.0500 0.0405 81 0.0500 0.0399 2,4,5-Trichlorophenol <0.00500 0.0500 0.0461 92 0.0500 0.0466 2,4,6-Trichlorophenol <0.00500 0.0500 0.0452 90 0.0500 0.0455 2,4-Dichlorophenol <0.00500 0.0500 0.0433 87 0.0500 0.0429 2,4-Dimethylphenol <0.00500 0.0500 0.0413 83 0.0500 0.0419 2,4-Dinitrophenol <0.0100 0.0500 0.0347 69 0.0500 0.0377 2,4-Dinitrotoluene <0.00500 0.0500 0.0430 86 0.0500 0.0433 2,6-Dinitrotoluene <0.00500 0.0500 0.0430 86 0.0500 0.0434 2-Chloronaphthalene <0.00500<	81		3/1117		
1,3-Dichlorobenzene <0.00500 0.0500 0.0408 82 0.0500 0.0402 1,4-Dichlorobenzene <0.00500		2	34-11/	30	
1,4-Dichlorobenzene <0.00500	80	_	38-111	30	
2,4,5-Trichlorophenol <0.00500 0.0500 0.0461 92 0.0500 0.0466 2,4,6-Trichlorophenol <0.00500		1	37-111	30	
2,4,6-Trichlorophenol <0.00500	80	1	37-111	30	
2,4-Dichlorophenol <0.00500	93	1	39-125	30	
2,4-Dimethylphenol <0.00500 0.0500 0.0413 83 0.0500 0.0419 2,4-Dinitrophenol <0.0100	91	1	42-125	30	
2,4-Dinitrophenol <0.0100 0.0500 0.0347 69 0.0500 0.0377 2,4-Dinitrotoluene <0.00500	86	1	38-120	30	
2,4-Dinitrotoluene <0.00500 0.0500 0.0430 86 0.0500 0.0433 2,6-Dinitrotoluene <0.00500	84	1	39-117	30	
2,6-Dinitrotoluene <0.00500	75	8	13-152	40	
2-Chloronaphthalene <0.00500	87	1	41-128	30	
2-Chlorophenol	87	1	42-127	30	
2-Methylnaphthalene <0.00500 0.0500 0.0297 59 0.0500 0.0298	43	0	40-118	30	
	79	2	41-108	30	
2-methylphenol <0.00500 0.0500 0.0376 75 0.0500 0.0368	60	0	37-112	30	
	74	2	36-105	30	
2-Nitroaniline <0.0100 0.0500 0.0423 85 0.0500 0.0429	86	1	34-121	40	
2-Nitrophenol <0.00500 0.0500 0.0418 84 0.0500 0.0421	84	1	38-125	30	
3&4-Methylphenol <0.00500 0.0500 0.0362 72 0.0500 0.0347	69	4	35-96	30	
3,3-Dichlorobenzidine <0.0100 0.0500 0.0466 93 0.0500 0.0480	96	3	29-141	40	
3-Nitroaniline <0.0100 0.0500 0.0421 84 0.0500 0.0422		0	42-123	40	

Relative Percent Difference RPD = 200*|(C-F)/(C+F)| Blank Spike Recovery [D] = 100*(C)/[B] Blank Spike Duplicate Recovery [G] = 100*(F)/[E]

Project Name: DCP Plant to Lea Station 6" #2

Work Order #: 471127

Analyst: CYE Date Prepared: 09/30/2013

Sample: 644548-1-BKS

Project ID: SRS#2009-039 **Date Analyzed:** 09/30/2013

Matrix: Water

Units: mg/L

Lab Batch ID: 923979

SVOAs by SW-846 8270C	Blank Sample Result [A]	Spike Added	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes		[D]	[C]	נעו	[E]	Kesuit [F]	[G]				
4,6-dinitro-2-methyl phenol	< 0.0100	0.0500	0.0439	88	0.0500	0.0467	93	6	12-157	40	
4-Bromophenyl-phenylether	< 0.00500	0.0500	0.0458	92	0.0500	0.0463	93	1	40-126	30	
4-chloro-3-methylphenol	< 0.00500	0.0500	0.0427	85	0.0500	0.0426	85	0	40-119	30	
4-Chloroaniline	< 0.0100	0.0500	0.0382	76	0.0500	0.0393	79	3	39-111	40	
4-Chlorophenyl Phenyl Ether	< 0.00500	0.0500	0.0422	84	0.0500	0.0436	87	3	40-122	30	
4-Nitroaniline	< 0.0100	0.0500	0.0413	83	0.0500	0.0416	83	1	42-125	40	
4-Nitrophenol	< 0.0100	0.0500	0.0272	54	0.0500	0.0270	54	1	14-82	40	
Acenaphthene	< 0.00500	0.0500	0.0422	84	0.0500	0.0428	86	1	41-116	30	
Acenaphthylene	< 0.00500	0.0500	0.0419	84	0.0500	0.0424	85	1	41-118	30	
Aniline (Phenylamine, Aminobenzene)	< 0.0100	0.0500	0.0326	65	0.0500	0.0327	65	0	31-100	40	
Anthracene	< 0.00500	0.0500	0.0437	87	0.0500	0.0444	89	2	39-127	30	
Benzo(a)anthracene	<0.00500	0.0500	0.0455	91	0.0500	0.0467	93	3	40-129	30	
Benzo(a)pyrene	< 0.00500	0.0500	0.0617	123	0.0500	0.0626	125	1	36-141	30	
Benzo(b)fluoranthene	< 0.00500	0.0500	0.0649	130	0.0500	0.0724	145	11	34-139	30	Н
Benzo(g,h,i)perylene	< 0.00500	0.0500	0.0648	130	0.0500	0.0652	130	1	32-141	30	
Benzo(k)fluoranthene	< 0.00500	0.0500	0.0568	114	0.0500	0.0525	105	8	31-139	30	
Benzoic Acid	< 0.0300	0.150	0.0542	36	0.150	0.0658	44	19	27-71	50	
Benzyl Butyl Phthalate	< 0.00500	0.0500	0.0462	92	0.0500	0.0459	92	1	44-133	30	
bis(2-chloroethoxy) methane	< 0.00500	0.0500	0.0403	81	0.0500	0.0408	82	1	36-113	30	
bis(2-chloroethyl) ether	< 0.00500	0.0500	0.0405	81	0.0500	0.0399	80	1	38-111	30	

Batch #: 1

Relative Percent Difference RPD = 200*|(C-F)/(C+F)|
Blank Spike Recovery [D] = 100*(C)/[B]
Blank Spike Duplicate Recovery [G] = 100*(F)/[E]
All results are based on MDL and Validated for QC Purposes

Project Name: DCP Plant to Lea Station 6" #2

Work Order #: 471127

Analyst: CYE Date Prepared: 09/30/2013

< 0.00500

0.0500

0.0411

Sample: 644548-1-BKS

Project ID: SRS#2009-039 **Date Analyzed:** 09/30/2013

Matrix: Water

Lab Batch ID: 923979
Units: mg/L

SVOAs by SW-846 8270C Blank Spike Blank Blank Blank Blk. Spk Control Control Spike Sample Result Added Spike Spike Spike Dup. **RPD** Flag Limits Limits Added Result %R Duplicate %R % %R %RPD [A] [B] [C] [D] Result [F] [G] [E] **Analytes** bis(2-chloroisopropyl) ether 0.0500 0.0500 0.0388 78 < 0.00500 0.0397 79 2 32-110 30 bis(2-ethylhexyl) phthalate < 0.00500 0.0500 0.0471 94 0.0475 44-136 30 0.0500 95 1 Chrysene < 0.00500 0.0500 0.0468 94 0.0500 0.0469 94 0 41-124 30 Dibenz(a,h)anthracene < 0.00500 0.0500 0.0653 131 0.0500 0.0667 133 2 35-143 30 Dibenzofuran < 0.00500 0.0500 0.0429 86 0.0500 0.0434 87 1 41-119 30 Diethylphthalate 41-125 < 0.00500 0.0500 0.0430 86 0.0500 0.0445 89 3 30 Dimethyl Phthalate < 0.00500 0.0500 0.0426 85 0.0500 0.0433 87 2 42-123 30 Di-n-butylphthalate < 0.00500 0.0500 0.0442 88 0.0500 0.0452 90 2 41-133 30 di-n-Octyl Phthalate 34-145 30 < 0.00500 0.0500 0.0639 128 0.0500 0.0642 128 0 Fluoranthene 0.0445 38-132 30 < 0.00500 0.0500 0.0436 87 0.0500 89 2 Fluorene 0.0431 < 0.00500 0.0500 0.0419 84 0.0500 86 3 41-121 30 Hexachlorobenzene 0.0500 90 0.0459 92 2 39-128 30 < 0.00500 0.0450 0.0500 Hexachlorobutadiene < 0.00500 0.0500 0.0417 83 0.0500 0.0420 84 1 31-120 30 Hexachlorocyclopentadiene < 0.00500 0.0500 0.0233 47 0.0500 0.0242 48 4 15-117 30 Hexachloroethane < 0.00500 0.0500 0.0396 79 0.0500 0.0390 78 2 37-109 30 Indeno(1,2,3-c,d)Pyrene 2 30 < 0.00500 0.0500 0.0648 130 0.0500 0.0662 132 35-141 Isophorone < 0.00500 0.0500 0.0416 83 0.0500 0.0416 83 0 40-115 30 82 82 Naphthalene < 0.00500 0.0500 0.0409 0.0500 0.0410 0 37-113 30 Nitrobenzene < 0.00500 0.0500 0.0407 81 0.0500 0.0405 81 0 37-114 30

Batch #: 1

Relative Percent Difference RPD = 200*|(C-F)/(C+F)|Blank Spike Recovery [D] = 100*(C)/[B]Blank Spike Duplicate Recovery [G] = 100*(F)/[E]All results are based on MDL and Validated for QC Purposes

N-Nitrosodi-n-Propylamine

82

0.0500

0.0404

2

38-117

30

Project Name: DCP Plant to Lea Station 6" #2

Work Order #: 471127

Date Prepared: 09/30/2013

Project ID: SRS#2009-039 **Date Analyzed:** 09/30/2013

Analyst: CYE Lab Batch ID: 923979

Sample: 644548-1-BKS Batch #: 1

Matrix: Water

Units: mg/L

SVOAs by SW-846 8270C	Blank Sample Result [A]	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate	Blk. Spk Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes		[B]	[C]	[D]	[E]	Result [F]	[G]				
N-Nitrosodiphenylamine	< 0.00500	0.0500	0.0438	88	0.0500	0.0453	91	3	40-127	30	
Pentachlorophenol	< 0.0100	0.0500	0.0464	93	0.0500	0.0479	96	3	10-137	40	
Phenanthrene	<0.00500	0.0500	0.0430	86	0.0500	0.0442	88	3	39-126	30	
Phenol	< 0.0100	0.0500	0.0230	46	0.0500	0.0220	44	4	15-64	40	
Pyrene	<0.00500	0.0500	0.0460	92	0.0500	0.0463	93	1	40-130	30	
Pyridine	< 0.0100	0.0500	0.0331	66	0.0500	0.0293	59	12	16-135	40	

Form 3 - MS Recoveries

Work Order #: 471127

Project ID: SRS#2009-039 **Lab Batch #:** 923948

Date Analyzed: 09/30/2013 **Date Prepared:** 09/27/2013 Analyst: MKO **QC- Sample ID:** 471130-001 S Batch #: Matrix: Water

MATRIX / MATRIX SPIKE RECOVERY STUDY Reporting Units: mg/L

reporting cines. ing 2				RECO	LICIOIC	<i>D</i> I
Metals per ICP by EPA 200.7 Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	%R [D]	Control Limits %R	Flag
Aluminum	0.869	5.00	6.40	111	70-130	
Arsenic	0.0265	1.00	1.08	105	70-130	
Barium	0.0361	1.00	0.995	96	70-130	
Boron	0.503	1.00	1.57	107	70-130	
Cadmium	< 0.0100	1.00	0.959	96	70-130	
Calcium	49.0	25.0	73.3	97	70-130	
Chromium	< 0.0100	1.00	0.987	99	70-130	
Cobalt	< 0.0100	1.00	1.02	102	70-130	
Copper	< 0.0200	1.00	1.01	101	70-130	
Iron	0.517	5.00	5.68	103	70-130	
Lead	0.0138	1.00	0.987	97	70-130	
Magnesium	21.7	25.0	45.4	95	70-130	
Manganese	0.0274	1.00	0.999	97	70-130	
Molybdenum	0.0429	1.00	1.08	104	70-130	
Nickel	< 0.0100	1.00	1.07	107	70-130	
Potassium	7.19	10.0	18.0	108	70-130	
Selenium	0.0897	1.00	1.13	104	70-130	
Silver	< 0.0200	0.500	0.481	96	70-130	
Sodium	155	25.0	179	96	70-130	
Zinc	< 0.0300	1.00	0.998	100	70-130	

Matrix Spike Percent Recovery [D] = 100*(C-A)/B Relative Percent Difference [E] = 200*(C-A)/(C+B)All Results are based on MDL and Validated for QC Purposes

BRL - Below Reporting Limit

Form 3 - MS Recoveries

Project Name: DCP Plant to Lea Station 6" #2

Work Order #: 471127

Lab Batch #: 923979 **Project ID:** SRS#2009-039

 Date Analyzed:
 10/01/2013
 Date Prepared:
 10/01/2013
 Analyst: CYE

 QC- Sample ID:
 471065-001 S
 Batch #:
 1
 Matrix:
 Solid

Reporting Units: mg/L MATRIX SPIKE RECOVERY STUDY

Reporting Units: mg/L	MATI	RIX / MA	TRIX SPIKE	RECO	VERY STU	DY
SVOAs by SW-846 8270C Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	%R [D]	Control Limits %R	Flag
1,2,4-Trichlorobenzene	< 0.0250	0.250	0.181	72	34-117	
1,2-Dichlorobenzene	< 0.0250	0.250	0.181	72	38-111	
1,3-Dichlorobenzene	< 0.0250	0.250	0.175	70	37-111	
1,4-Dichlorobenzene	< 0.0250	0.250	0.177	71	37-111	
2,4,5-Trichlorophenol	< 0.0250	0.250	0.229	92	39-125	
2,4,6-Trichlorophenol	< 0.0250	0.250	0.227	91	42-125	
2,4-Dichlorophenol	< 0.0250	0.250	0.221	88	38-120	
2,4-Dimethylphenol	< 0.0250	0.250	0.221	88	39-117	
2,4-Dinitrophenol	< 0.0500	0.250	0.229	92	13-152	
2,4-Dinitrotoluene	< 0.0250	0.250	0.216	86	41-128	
2,6-Dinitrotoluene	< 0.0250	0.250	0.219	88	42-127	
2-Chloronaphthalene	< 0.0250	0.250	0.195	78	40-118	
2-Chlorophenol	< 0.0250	0.250	0.207	83	41-108	
2-Methylnaphthalene	< 0.0250	0.250	0.184	74	37-112	
2-methylphenol	< 0.0250	0.250	0.210	84	36-105	
2-Nitroaniline	< 0.0500	0.250	0.231	92	34-121	
2-Nitrophenol	< 0.0250	0.250	0.218	87	38-125	
3&4-Methylphenol	< 0.0250	0.250	0.210	84	35-96	
3,3-Dichlorobenzidine	< 0.0500	0.250	< 0.0500	0	29-141	X
3-Nitroaniline	< 0.0500	0.250	0.121	48	42-123	
4,6-dinitro-2-methyl phenol	< 0.0500	0.250	0.208	83	12-157	
4-Bromophenyl-phenylether	< 0.0250	0.250	0.214	86	40-126	
4-chloro-3-methylphenol	< 0.0250	0.250	0.223	89	40-119	
4-Chloroaniline	< 0.0500	0.250	< 0.0500	0	39-111	X
4-Chlorophenyl Phenyl Ether	< 0.0250	0.250	0.200	80	40-122	
4-Nitroaniline	< 0.0500	0.250	0.169	68	42-125	
4-Nitrophenol	< 0.0500	0.250	0.0946	38	14-82	
Acenaphthene	< 0.0250	0.250	0.189	76	41-116	
Acenaphthylene	< 0.0250	0.250	0.191	76	41-118	
Aniline (Phenylamine, Aminobenzene)	< 0.0500	0.250	0.0607	24	31-100	X
Anthracene	< 0.0250	0.250	0.212	85	39-127	
Benzo(a)anthracene	< 0.0250	0.250	0.219	88	40-129	
Benzo(a)pyrene	< 0.0250	0.250	0.298	119	36-141	
Benzo(b)fluoranthene	< 0.0250	0.250	0.305	122	34-139	

Matrix Spike Percent Recovery [D] = 100*(C-A)/B Relative Percent Difference [E] = 200*(C-A)/(C+B)

All Results are based on MDL and Validated for QC Purposes

BRL - Below Reporting Limit

Form 3 - MS Recoveries

Project Name: DCP Plant to Lea Station 6" #2

Work Order #: 471127

Lab Batch #: 923979 **Project ID:** SRS#2009-039

 Date Analyzed:
 10/01/2013
 Date Prepared:
 10/01/2013
 Analyst: CYE

 QC- Sample ID:
 471065-001 S
 Batch #:
 1
 Matrix:
 Solid

MATRIX / MATRIX SPIKE RECOVERY STUDY Reporting Units: mg/L Spiked Sample **SVOAs by SW-846 8270C** Control Spike %R Result Limits Flag Added [**D**] %R [C] [B] **Analytes** Benzo(g,h,i)perylene < 0.0250 0.250 0.263 105 32-141 Benzo(k)fluoranthene < 0.0250 0.250 0.321 128 31-139 X Benzoic Acid 0.879 0.750 1.95 143 27-71 Benzyl Butyl Phthalate < 0.0250 0.250 0.245 98 44-133 < 0.0250 0.250 0.204 36-113 bis(2-chloroethoxy) methane 82 bis(2-chloroethyl) ether < 0.0250 0.250 0.201 80 38-111 bis(2-chloroisopropyl) ether < 0.0250 0.250 0.191 76 32-110 < 0.0250 bis(2-ethylhexyl) phthalate 0.250 0.246 44-136 98 Chrysene < 0.0250 0.250 0.215 86 41-124 Dibenz(a,h)anthracene < 0.0250 0.250 0.274 110 35-143 0.250 0.194 Dibenzofuran < 0.0250 78 41-119 Diethylphthalate < 0.0250 0.250 0.225 90 41-125 Dimethyl Phthalate < 0.0250 0.250 0.212 42-123 85 Di-n-butylphthalate < 0.0250 0.250 0.234 94 41-133 di-n-Octyl Phthalate < 0.0250 0.250 0.367 147 34-145 X Fluoranthene < 0.0250 0.250 0.213 85 38-132 Fluorene < 0.0250 0.250 0.200 80 41-121 Hexachlorobenzene < 0.0250 0.250 0.198 79 39-128 < 0.0250 Hexachlorobutadiene 0.250 0.182 73 31-120 Hexachlorocyclopentadiene < 0.0250 0.250 0.0932 37 15-117 Hexachloroethane < 0.0250 0.250 0.186 74 37-109 Indeno(1,2,3-c,d)Pyrene < 0.0250 0.250 0.273 109 35-141 Isophorone < 0.0250 0.250 0.203 81 40-115 < 0.0250 37-113 Naphthalene 0.250 0.186 74 Nitrobenzene < 0.0250 0.250 0.150 60 37-114 0.203 81 38-117 N-Nitrosodi-n-Propylamine < 0.0250 0.250 40-127 N-Nitrosodiphenylamine < 0.0250 0.250 0.205 82 Pentachlorophenol < 0.0500 0.250 0.278 111 10-137 Phenanthrene < 0.0250 0.250 0.212 85 39-126 Phenol < 0.0500 0.250 < 0.0500 0 15-64 X < 0.0250 0.250 0.221 40-130 Pyrene 88

Matrix Spike Percent Recovery [D] = 100*(C-A)/B Relative Percent Difference [E] = 200*(C-A)/(C+B) All Results are based on MDL and Validated for QC Purposes

BRL - Below Reporting Limit

Pyridine

< 0.0500

0.250

0.0523

21

16-135

Project Name: DCP Plant to Lea Station 6" #2

Work Order #: 471127

Project ID: SRS#2009-039

Lab Batch ID: 923833

23833

QC- Sample ID: 471125-001 S

Batch #:

Matrix: Ground Water

Date Analyzed: Reporting Units:

09/27/2013

mg/L

Date Prepared: 09/27/2013

Analyst: RKO

MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY

Inorganic Anions by EPA 300/300.1 Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Fluoride	0.125	4.00	3.03	73	4.00	3.11	75	3	80-120	20	X
Nitrite as N	0.104	6.08	6.14	99	6.08	6.25	101	2	80-120	20	

Lab Batch ID: 923833 QC- Sample ID: 471125-002 S Batch #: 1 Matrix: Ground Water

Date Analyzed: 09/27/2013 **Date Prepared:** 09/27/2013 **Analyst:** RKO

Reporting Units: mg/L MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY

Inorganic Anions by EPA 300/300.1 Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Fluoride	< 0.100	4.00	3.09	77	4.00	3.13	78	1	80-120	20	X
Nitrite as N	0.0976	6.08	6.36	103	6.08	6.30	102	1	80-120	20	

Lab Batch ID: 923947 **QC- Sample ID:** 470880-001 S **Batch #:** 1 **Matrix:** Water

Reporting Units: mg/L MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY

Mercury by SW-846 7470A Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Mercury	< 0.000200	0.00200	0.00205	103	0.00200	0.00207	104	1	75-125	20	

Matrix Spike Percent Recovery [D] = 100*(C-A)/B Relative Percent Difference RPD = 200*|(C-F)/(C+F)|

Project Name: DCP Plant to Lea Station 6" #2

Work Order #: 471127 **Project ID:** SRS#2009-039

923948 Lab Batch ID:

Reporting Units:

QC- Sample ID: 470864-001 S

Batch #: Matrix: Water

09/30/2013 **Date Analyzed:**

mg/L

Date Prepared: 09/27/2013

Analyst: MKO

MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY

Metals per ICP by EPA 200.7 Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Aluminum	< 0.200	5.00	5.18	104	5.00	5.13	103	1	70-130	20	
Arsenic	< 0.0200	1.00	1.04	104	1.00	1.03	103	1	70-130	20	
Barium	< 0.0100	1.00	0.967	97	1.00	0.963	96	0	70-130	20	
Boron	< 0.0500	1.00	1.07	107	1.00	1.07	107	0	70-130	20	
Cadmium	< 0.0100	1.00	0.965	97	1.00	0.958	96	1	70-130	20	
Calcium	0.354	25.0	24.3	96	25.0	24.1	95	1	70-130	20	
Chromium	< 0.0100	1.00	1.00	100	1.00	0.991	99	1	70-130	20	
Cobalt	< 0.0100	1.00	1.03	103	1.00	1.02	102	1	70-130	20	
Copper	< 0.0200	1.00	1.04	104	1.00	1.03	103	1	70-130	20	
Iron	< 0.200	5.00	5.06	101	5.00	5.01	100	1	70-130	20	
Lead	0.0120	1.00	1.02	101	1.00	1.00	99	2	70-130	20	
Magnesium	< 0.200	25.0	24.7	99	25.0	23.9	96	3	70-130	20	
Manganese	< 0.0200	1.00	0.956	96	1.00	0.969	97	1	70-130	20	
Molybdenum	< 0.0100	1.00	1.03	103	1.00	1.02	102	1	70-130	20	
Nickel	< 0.0100	1.00	1.09	109	1.00	1.08	108	1	70-130	20	
Potassium	19.3	10.0	29.4	101	10.0	29.8	105	1	70-130	20	
Selenium	< 0.0300	1.00	1.04	104	1.00	1.03	103	1	70-130	20	
Silver	< 0.0200	0.500	0.490	98	0.500	0.487	97	1	70-130	20	
Sodium	97.9	25.0	120	88	25.0	122	96	2	70-130	20	
Zinc	< 0.0300	1.00	1.01	101	1.00	1.00	100	1	70-130	20	

Matrix Spike Percent Recovery [D] = 100*(C-A)/B Relative Percent Difference RPD = 200*|(C-F)/(C+F)|

Project Name: DCP Plant to Lea Station 6" #2

Work Order #: 471127

Project ID: SRS#2009-039

Lab Batch ID: 923905

QC- Sample ID: 470940-007 S

Batch #: 1 **Matrix:** Water

Date Analyzed: 09/29/2013

mg/L

Reporting Units:

Date Prepared: 09/29/2013

Analyst: ZHO

MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY

VOAs by SW-846 8260B Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Benzene	< 0.00500	0.0500	0.0478	96	0.0500	0.0484	97	1	66-142	25	
Bromobenzene	< 0.00500	0.0500	0.0503	101	0.0500	0.0500	100	1	75-125	25	
Bromochloromethane	< 0.00500	0.0500	0.0509	102	0.0500	0.0519	104	2	60-140	25	
Bromodichloromethane	< 0.00500	0.0500	0.0518	104	0.0500	0.0515	103	1	75-125	25	
Bromoform	< 0.00500	0.0500	0.0442	88	0.0500	0.0451	90	2	75-125	25	
Methyl bromide	< 0.00500	0.0500	0.0455	91	0.0500	0.0479	96	5	60-140	25	
n-Butylbenzene	< 0.00500	0.0500	0.0469	94	0.0500	0.0469	94	0	75-125	25	
Sec-Butylbenzene	< 0.00500	0.0500	0.0511	102	0.0500	0.0511	102	0	75-125	25	
tert-Butylbenzene	< 0.00500	0.0500	0.0492	98	0.0500	0.0497	99	1	75-125	25	
Carbon Tetrachloride	< 0.00500	0.0500	0.0497	99	0.0500	0.0521	104	5	62-125	25	
Chlorobenzene	< 0.00500	0.0500	0.0470	94	0.0500	0.0465	93	1	60-133	25	
Chloroethane	< 0.0100	0.0500	0.0467	93	0.0500	0.0496	99	6	60-140	25	
Chloroform	< 0.00500	0.0500	0.0514	103	0.0500	0.0526	105	2	70-130	25	
Methyl Chloride	< 0.0100	0.0500	0.0439	88	0.0500	0.0468	94	6	60-140	25	
2-Chlorotoluene	< 0.00500	0.0500	0.0507	101	0.0500	0.0514	103	1	73-125	25	
4-Chlorotoluene	< 0.00500	0.0500	0.0492	98	0.0500	0.0496	99	1	74-125	25	
p-Cymene (p-Isopropyltoluene)	< 0.00500	0.0500	0.0486	97	0.0500	0.0493	99	1	75-125	25	
Dibromochloromethane	< 0.00500	0.0500	0.0485	97	0.0500	0.0489	98	1	73-125	25	
1,2-Dibromo-3-Chloropropane	< 0.00500	0.0500	0.0536	107	0.0500	0.0547	109	2	59-125	25	
1,2-Dibromoethane	< 0.00500	0.0500	0.0490	98	0.0500	0.0490	98	0	73-125	25	
Methylene bromide	< 0.00500	0.0500	0.0508	102	0.0500	0.0494	99	3	69-127	25	
1,2-Dichlorobenzene	< 0.00500	0.0500	0.0497	99	0.0500	0.0497	99	0	75-125	25	
1,3-Dichlorobenzene	< 0.00500	0.0500	0.0481	96	0.0500	0.0476	95	1	75-125	25	

Matrix Spike Percent Recovery [D] = 100*(C-A)/B Relative Percent Difference RPD = 200*|(C-F)/(C+F)|

Project Name: DCP Plant to Lea Station 6" #2

Work Order #: 471127 **Project ID:** SRS#2009-039

923905 Lab Batch ID:

QC- Sample ID: 470940-007 S

Batch #: Matrix: Water

Date Analyzed: 09/29/2013 **Date Prepared:** 09/29/2013 Analyst: ZHO

Reporting Units: mg/L VOAs by SW-846 8260B Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
1,4-Dichlorobenzene	< 0.00500	0.0500	0.0471	94	0.0500	0.0472	94	0	75-125	25	
Dichlorodifluoromethane	< 0.00500	0.0500	0.0482	96	0.0500	0.0502	100	4	70-130	25	
1,1-Dichloroethane	< 0.00500	0.0500	0.0503	101	0.0500	0.0517	103	3	72-125	25	
1,2-Dichloroethane	< 0.00500	0.0500	0.0487	97	0.0500	0.0493	99	1	68-127	25	
1,1-Dichloroethene	< 0.00500	0.0500	0.0482	96	0.0500	0.0512	102	6	59-172	25	
cis-1,2-Dichloroethylene	< 0.00500	0.0500	0.0498	100	0.0500	0.0508	102	2	75-125	25	
trans-1,2-dichloroethylene	< 0.00500	0.0500	0.0476	95	0.0500	0.0487	97	2	75-125	25	
1,2-Dichloropropane	< 0.00500	0.0500	0.0490	98	0.0500	0.0483	97	1	74-125	25	
1,3-Dichloropropane	< 0.00500	0.0500	0.0473	95	0.0500	0.0469	94	1	75-125	25	
2,2-Dichloropropane	< 0.00500	0.0500	0.0513	103	0.0500	0.0544	109	6	75-125	25	
1,1-Dichloropropene	< 0.00500	0.0500	0.0476	95	0.0500	0.0484	97	2	75-125	25	
cis-1,3-Dichloropropene	< 0.00500	0.0500	0.0485	97	0.0500	0.0478	96	1	74-125	25	
trans-1,3-dichloropropene	< 0.00500	0.0500	0.0478	96	0.0500	0.0469	94	2	66-125	25	
Ethylbenzene	< 0.00500	0.0500	0.0482	96	0.0500	0.0482	96	0	75-125	25	
Hexachlorobutadiene	< 0.00500	0.0500	0.0468	94	0.0500	0.0460	92	2	75-125	25	
Isopropylbenzene	< 0.00500	0.0500	0.0496	99	0.0500	0.0496	99	0	75-125	25	
Methylene Chloride	< 0.00500	0.0500	0.0489	98	0.0500	0.0500	100	2	75-125	25	
MTBE	< 0.00500	0.100	0.112	112	0.100	0.113	113	1	65-135	25	
Naphthalene	< 0.0100	0.0500	0.0508	102	0.0500	0.0521	104	3	70-130	25	
n-Propylbenzene	< 0.00500	0.0500	0.0499	100	0.0500	0.0509	102	2	75-125	25	
Styrene	< 0.00500	0.0500	0.0492	98	0.0500	0.0486	97	1	75-125	25	
1,1,1,2-Tetrachloroethane	< 0.00500	0.0500	0.0517	103	0.0500	0.0526	105	2	72-125	25	
1,1,2,2-Tetrachloroethane	< 0.00500	0.0500	0.0577	115	0.0500	0.0582	116	1	74-125	25	
Tetrachloroethylene	< 0.00500	0.0500	0.0458	92	0.0500	0.0464	93	1	71-125	25	

Matrix Spike Percent Recovery [D] = 100*(C-A)/B Relative Percent Difference RPD = 200*|(C-F)/(C+F)|

Project Name: DCP Plant to Lea Station 6" #2

Work Order #: 471127 **Project ID:** SRS#2009-039

923905 Lab Batch ID:

QC- Sample ID: 470940-007 S

Batch #:

Matrix: Water

Date Analyzed:

09/29/2013

Date Prepared: 09/29/2013

Reporting Units: mg/L VOAs by SW-846 8260B Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Toluene	< 0.00500	0.0500	0.0459	92	0.0500	0.0464	93	1	59-139	25	
1,2,3-Trichlorobenzene	< 0.00500	0.0500	0.0478	96	0.0500	0.0485	97	1	75-137	25	
1,2,4-Trichlorobenzene	< 0.00500	0.0500	0.0455	91	0.0500	0.0467	93	3	75-135	25	
1,1,1-Trichloroethane	< 0.00500	0.0500	0.0516	103	0.0500	0.0533	107	3	75-125	25	
1,1,2-Trichloroethane	< 0.00500	0.0500	0.0494	99	0.0500	0.0488	98	1	75-127	25	
Trichloroethylene	< 0.00500	0.0500	0.0468	94	0.0500	0.0472	94	1	62-137	25	
Trichlorofluoromethane	< 0.00500	0.0500	0.0523	105	0.0500	0.0537	107	3	60-140	25	
1,2,3-Trichloropropane	< 0.00500	0.0500	0.0526	105	0.0500	0.0539	108	2	75-125	25	
1,2,4-Trimethylbenzene	< 0.00500	0.0500	0.0492	98	0.0500	0.0495	99	1	75-125	25	
1,3,5-Trimethylbenzene	< 0.00500	0.0500	0.0495	99	0.0500	0.0500	100	1	70-125	25	
o-Xylene	< 0.00500	0.0500	0.0498	100	0.0500	0.0495	99	1	75-125	25	
m,p-Xylenes	< 0.0100	0.100	0.0965	97	0.100	0.0954	95	1	75-125	25	
Vinyl Chloride	< 0.00200	0.0500	0.0454	91	0.0500	0.0496	99	9	60-140	25	

Matrix Spike Percent Recovery [D] = 100*(C-A)/B Relative Percent Difference RPD = 200*|(C-F)/(C+F)|

Sample Duplicate Recovery

Project Name: DCP Plant to Lea Station 6" #2

Work Order #: 471127

Lab Batch #: 923806 **Project ID:** SRS#2009-039

 Date Analyzed:
 09/27/2013 11:56
 Date Prepared:
 09/27/2013
 Analyst: ALA

 QC- Sample ID:
 471011-001 D
 Batch #:
 1
 Matrix: Water

Reporting Units: mg/L	SAMPLE /	SAMPLE	DUPLIC	ATE REC	OVERY
Alkalinity by SM2320B	Parent Sample Result [A]	Sample Duplicate Result	RPD	Control Limits %RPD	Flag
Analyte		[B]			
Alkalinity, Bicarbonate (as CaCO3)	<4.00	<4.00	0	20	U
Alkalinity, Carbonate (as CaCO3)	<4.00	<4.00	0	20	U

Lab Batch #: 923806

 Date Analyzed:
 09/27/2013 11:56
 Date Prepared:
 09/27/2013
 Analyst: ALA

 QC- Sample ID:
 471127-001 D
 Batch #: 1
 Matrix: Water

Reporting Units: mg/L	SAMPLE A	SAMPLE 1	DUPLIC	ATE REC	OVERY
Alkalinity by SM2320B	Parent Sample Result [A]	Sample Duplicate Result	RPD	Control Limits %RPD	Flag
Analyte		[B]			
Alkalinity, Bicarbonate (as CaCO3)	224	224	0	20	
Alkalinity, Carbonate (as CaCO3)	<4.00	<4.00	0	20	U

Work Order #: 471127

XENCO Laboratories

Prelogin/Nonconformance Report- Sample Log-In

Client: PLAINS ALL AMERICAN EH&S

Date/ Time Received: 09/25/2013 04:30:00 PM

Acceptable Temperature Range: 0 - 6 degC Air and Metal samples Acceptable Range: Ambient

Temperature Measuring device used:

San	nple Receipt Checklist	Comments
#1 *Temperature of cooler(s)?	11	
#2 *Shipping container in good condition?	Yes	
#3 *Samples received on ice?	Yes	
#4 *Custody Seals intact on shipping container/	cooler? N/A	
#5 Custody Seals intact on sample bottles?	N/A	
#6 *Custody Seals Signed and dated?	N/A	
#7 *Chain of Custody present?	Yes	
#8 Sample instructions complete on Chain of C	ustody? Yes	
#9 Any missing/extra samples?	No	
#10 Chain of Custody signed when relinquished	d/ received? Yes	
#11 Chain of Custody agrees with sample label	(s)? Yes	
#12 Container label(s) legible and intact?	Yes	
#13 Sample matrix/ properties agree with Chair	of Custody? Yes	
#14 Samples in proper container/ bottle?	Yes	
#15 Samples properly preserved?	Yes	
#16 Sample container(s) intact?	Yes	
#17 Sufficient sample amount for indicated test	(s)? Yes	
#18 All samples received within hold time?	Yes	
#19 Subcontract of sample(s)?	Yes	
#20 VOC samples have zero headspace (less t	han 1/4 inch bubble)? Yes	
#21 <2 for all samples preserved with HNO3,H0	CL, H2SO4? Yes	
#22 >10 for all samples preserved with NaAsO2	2+NaOH, ZnAc+NaOH? N/A	

Analyst:	PH Device/Lot#:	
Checklist completed	I by: Candau James Candace James	Date: <u>09/26/2013</u>
Checklist reviewed	by: Mushoah Kelsey Brooks	Date: <u>09/27/2013</u>

	,			Collidation	·yw	o cour
	Page 1	of 2	'A Vial	Amber	ES E	ncore Samp
Houston: 4143 Greenbriar Dr. Stafford, TX 77477 (281)240-4200 Odessa: 12600 West I-20 East Odessa, TX 79765 (432)563-1800		V	VC Vial	al Clear	STS	arraCore Sa
Hobbs: 4008 N Grimes Hobbs, NM 88240 (575)392-7550	LAB W.O#:	10 L C - L L	വ ≤		E 2	edlar Bag
	!	GC	C Glas	s Clear .	ZB Z	ip Lock Bag
	Field billable Hrs:	P)	PA Plastic Amb	er	PC	Plastic Clear

-											-	age	1		S	d ES	are Sampler
Labo	Laboratorics Hobbs: 4008 N Grimes Hobbs, NM 88240 (575)392-7550	or. Stafford, Tobbs, NM 88240	x 77477 (281): 0 (575)392-75:	0-4200	Odessa: 12600 West I-20 East Odessa, IX /9/65 (432)563-1800	/est I-20 East	Odessa,	X /9/65 (432)563-180		LAB W.O#:	**	7	177	G S S	VP Vial Pre-preserved AC Air C GA Glass Amber TB Tedla	Air Canister Tedlar Bag
Environmental	Asbestos Radiochemistry										Field billable Hrs:	Hrs:		ć	P P G	r PC	Lock Bag stic Clear
Company:	Basin Environmental Service Technologies, LLC	ologies, LLC		Phone:	(575)396-2378	TAT W	TAT Work Days = D	/s = D	Need results by:	sults by:			_ Time:		Other	eriasuc Ciear	
Address:	3100 Plains Hwy.			Fax:	(575)396-1429	\	Std (5-7D)	.7D) 5Hrs	's 1D 2D	3D 4D	5D 7D 10D	14D	Other		Size 40n	Size(s): 2oz, 4oz, 8oz, 16oz, 32oz , 1Gal 40ml, 125 ml, 250 ml, 500 ml, 1L, Other	Gal ther
City:	Lovington	- (0	State: NM	Zip:	88260				ANA	ANALYSES	REQUESTED	STED				** Preservative Type Codes	e Codes
PM/Attn:	Ben Arguijo	-	Email:	bjarguijo@	bjarguijo@basinenv.com	Cont Type *	PC	VΡ	GA	PC					πÞ		
Project ID:	DCP Plant to Lea Station 6" #2 SRS #2009-039			PO#:	PAA-S. Harris	Pres Type** E, I	В,I	E,I	_	-,	- 1			10 m	0 D ± !	H ₂ SO ₄ G. Na ₂ S ₂ O ₃ K. ZnAc&NaOH D. NaOH H. NaHSO ₄ L Asbc Acid	ZnAc&NaOH L Asbc Acid&NaOH
Invoice To:	o: Shawn Harris Plains All American	an		Quote #:		260	VQCC)	0	0	stry	1			e n PAH	Only if	^ Matrix Type Codes	odes
Samples	Sample Signature:	Circle One Event: Daily Weekly Semi-Annual Annual N/A	vent: Daily Annual N	Weekly N/A	Monthly Quartely	ample	RA, NMV	s by 826	s by 827	l Chemi				ld Sampl	TPH	Sround Water S Vaste Water W Vrinking Water A Surface Water O	Soil/Sediment/Solid Wipe Air Oil
imple #	Sample ID	Collect Date	Collect Time	Matrix Code ^	Field Filtered Integrity OK (Y/N) Total # of containers	N 1995	Metals (RC	VOC's	SOC's	Genera				Ho (CALL)	on Highest	OW Ocean/Sea Water T Tissue PL Product-Liquid U Urine PS Product-Solid B Blood SL Sludge Other	6
Sa						# Cont	Lab Only:	ly:						12		REMARKS	5 ,
7	MW-6	9.25	11:30	GW	7		×	×	×	×					See	See attached sheet for specific requested.	fic analyses
_2	MW-7	4-25	12:00	GW	7		×	×	×	×							
3															(vs	Please report all SVOC's down to the MDL (vs. the RL).	vn to the MDL
4														7 7			
5						B											
6														1 - S.			
_7																	
8														1000			
9														70			
0																	
T	Reg. Program / Clean-up Std	STATE	STATE for Certs & Regs	Regs	QA/QC Level & Certification	/el & Certif	ication	1	EDDs		COC & Labels		Coolers T	Temp °C		Lab Use Only Y	YES NO N/A
CTLs T Other:	TRRP DW NPDES LPST DryCin	FL TX GA NC AL NM Other:	C SC NJ PA OK	Σ	1 2 3 4 CLP NELAC DoD-ELAP	P AFCEE QAPP AP Other:	DAPP	ADaPT S XLS Other:	EDD	ERPIMS	Match Incomplete Absent Unclear		2 1/00	ω	Non-	Non-Conformances found? Samples intact upon arrival?	
	Relinquished by		Affiliation	ion	Date		Time	R	Received t	by	Affiliation	Da	te	Time	Reco	Received on Wet Ice?	
1	Dr. I Mille		7		9-25-13	3.	0	E A		1	3	200	3	33	Rec	Labeled with proper preservatives? Received within holding time?	
B	1 -							1	and the	3	Karo	9.71	12	1450	Voc	Custody seals intact? VOCs rec'd w/o headspace?	
3								217	FULLEX				(Prop	Proper containers used? pH verified-acceptable, excl VOCs?	
4															Rec	Received on time to meet H1s?	
FTS Se	B&A Laboratories: Hobbs 575-392-7550 Dallas 214-902-0300 Houston 281-242-4200 Odessa 432-563-1800 San Antonio 210-509-3334 Phoenix 6 FTS Service Centers: Atlanta 770-449-8800 Lakeland 863-646-8526 Tampa 803-543-8099 Philadelphia 610-955-5649 South Carolina 803-543-8099	Dallas 21 ₄ 800 Lakela	1-902-0300 Ind 863-646	Housto 5-8526 T	ampa 803-543-8099 Philadelphia 610-955-5649 Sout	3-8099 Ph	sa 432-	ia 610-9	San An 55-5649	South	210-509-3334 Phoenix 602-437-0330 1 Carolina 803-543-8099	3-543-809	9	0330	ç	C.O.C. Serial #	

Execution of this document by client creates a legal and binding agreement between client and Xenco for analytical and testing services provided by Xenco to client under Xenco's standard terms and conditions unless previously agreed in writing. Terms of payment are Net 30 days, and all past due amounts shall accrue interest at 1.5% per month until paid in full. All laboratory analytical data and reports generated by Xenco remain the exclusive property of Xenco until invoices for such data are paid in full.

Revision Date: Nov 12, 2009

NMOCD -Analytical Parameters for Initial Groundwater Sampling (3-12-08)

- 1. All compounds listed in US EPA SW-846 Method 8260 (VOC's)
- 2. All compounds listed in US EPA SW-846 Method 8270 (SVOC's)

3. General Chemistry:

Sulfate muibo2 Potassium Phosphate Nitrate Magnesium Fluoride Chloride Carbonate Alkalinity Calcium Bicarbonate Alkalinity

4. RCRA Metals:

Silver Selenium Mercury read Chromium Cadmium Barium Arsenic

5. NMWQCC Metals:

munimulA

Zinc Nickel Molybdenum Manganese Iron Copper Cobalt Boron

Work Order #: 471127

XENCO Laboratories

Prelogin/Nonconformance Report- Sample Log-In

Client: PLAINS ALL AMERICAN EH&S

Date/ Time Received: 09/25/2013 04:30:00 PM

Acceptable Temperature Range: 0 - 6 degC
Air and Metal samples Acceptable Range: Ambient

Temperature Measuring device used:

Sample Receipt Checklist		Comments
#1 *Temperature of cooler(s)?	11	
#2 *Shipping container in good condition?	Yes	
#3 *Samples received on ice?	Yes	
#4 *Custody Seals intact on shipping container/ cooler?	N/A	
#5 Custody Seals intact on sample bottles?	N/A	
#6 *Custody Seals Signed and dated?	N/A	
#7 *Chain of Custody present?	Yes	
#8 Sample instructions complete on Chain of Custody?	Yes	
#9 Any missing/extra samples?	No	
#10 Chain of Custody signed when relinquished/ received?	Yes	
#11 Chain of Custody agrees with sample label(s)?	Yes	
#12 Container label(s) legible and intact?	Yes	
#13 Sample matrix/ properties agree with Chain of Custody?	Yes	
#14 Samples in proper container/ bottle?	Yes	
#15 Samples properly preserved?	Yes	
#16 Sample container(s) intact?	Yes	
#17 Sufficient sample amount for indicated test(s)?	Yes	
#18 All samples received within hold time?	Yes	
#19 Subcontract of sample(s)?	Yes	
#20 VOC samples have zero headspace (less than 1/4 inch bubble)?	Yes	
#21 <2 for all samples preserved with HNO3,HCL, H2SO4?	Yes	
#22 >10 for all samples preserved with NaAsO2+NaOH, ZnAc+NaOH?	N/A	

Analyst:	PH D	evice/Lot#:	
Checklist comp	leted by:	Candaci James Candace James	Date: <u>09/26/2013</u>
Checklist revie	ewed by:	Mmy froah Kelsey Brooks	Date: <u>09/27/2013</u>

Analytical Report 474180

for PLAINS ALL AMERICAN EH&S

Project Manager: Ben Arguijo DCP Plant to Lea Station 6" #2 SRS#2009-039 25-NOV-13

Collected By: Client

12600 West I-20 East Odessa, Texas 79765

Xenco-Houston (EPA Lab code: TX00122):

Texas (T104704215-13-15-TX), Arizona (AZ0765), Arkansas (08-039-0), Connecticut (PH-0102), Florida (E871002) Illinois (002082), Indiana (C-TX-02), Iowa (392), Kansas (E-10380), Kentucky (45), Louisiana (03054) New Hampshire (297408), New Jersey (TX007), New York (11763), Oklahoma (9218), Pennsylvania (68-03610) Rhode Island (LAO00312), USDA (S-44102), DoD (L11-54)

Xenco-Atlanta (EPA Lab Code: GA00046): Florida (E87429), North Carolina (483), South Carolina (98015), Kentucky (85), DoD (L10-135) Louisiana (04176), USDA (P330-07-00105)

Xenco-Tampa Mobile (EPA Lab code: FL01212): Florida (E84900)

Xenco-Lakeland: Florida (E84098)

Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400-TX) Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295-TX) Xenco Phoenix (EPA Lab Code: AZ00901): Arizona(AZ0757)

Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757)

Xenco Tucson (EPA Lab code:AZ000989): Arizona (AZ0758)

25-NOV-13

Project Manager: **Ben Arguijo PLAINS ALL AMERICAN EH&S**1301 S. COUNTY ROAD 1150
Midland, TX 79706

Reference: XENCO Report No(s): 474180

DCP Plant to Lea Station 6" #2 Project Address: New Mexico

Ben Arguijo:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 474180. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 474180 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Kelsey Brooks

Knis Hoah

Project Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Odessa - San Antonio - Tampa - Lakeland - Atlanta - Phoenix - Oklahoma - Latin America

Sample Cross Reference 474180

PLAINS ALL AMERICAN EH&S, Midland, TX

DCP Plant to Lea Station 6" #2

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
MW-2	W	11-13-13 11:00		474180-001
MW-3	W	11-13-13 11:15		474180-002
MW-4	W	11-13-13 11:30		474180-003
MW-5	W	11-13-13 12:00		474180-004
MW-6	W	11-13-13 10:30		474180-005
MW-7	W	11-13-13 10:45		474180-006

CASE NARRATIVE

Client Name: PLAINS ALL AMERICAN EH&S Project Name: DCP Plant to Lea Station 6" #2

 Project ID:
 SRS#2009-039
 Report Date:
 25-NOV-13

 Work Order Number(s):
 474180
 Date Received:
 11/15/2013

San	ample receipt non conformances and comments:		
San	ample receipt non conformances and comments per	sample:	
Nor	one		

Project Id: SRS#2009-039

Contact: Ben Arguijo

Project Location: New Mexico

Certificate of Analysis Summary 474180

PLAINS ALL AMERICAN EH&S, Midland, TX

Date Received in Lab: Fri Nov-15-13 03:02 pm

Report Date: 25-NOV-13

Project Manager: Kelsev Brooks

								1 Toject Ma	inger.	Keisey Diook			
	Lab Id:	474180-0	001	474180-0	002	474180-0	003	474180-0	004	474180-	005	474180-	006
Analusia Daguastad	Field Id:	MW-2	.	MW-3	3	MW-4	1	MW-5		MW-6	5	MW-	7
Analysis Requested	Depth:												
	Matrix:	WATE	R	WATE	R	WATE	R	WATE	R	WATE	R	WATE	ER
	Sampled:	Nov-13-13	11:00	Nov-13-13	11:15	Nov-13-13	11:30	Nov-13-13	12:00	Nov-13-13	10:30	Nov-13-13	10:45
BTEX by EPA 8021	Extracted:	Nov-21-13	15:00	Nov-21-13	15:00	Nov-21-13	15:00	Nov-21-13	15:00	Nov-22-13	12:00	Nov-22-13	12:00
	Analyzed:	Nov-21-13	19:46	Nov-21-13	20:02	Nov-21-13	21:38	Nov-22-13	12:53	Nov-22-13	17:08	Nov-22-13	17:25
	Units/RL:	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL
Benzene		ND	0.00100	ND	0.00100	0.00135	0.00100	1.38	0.0100	0.00465	0.00100	ND	0.00100
Toluene		ND	0.00200	ND	0.00200	ND	0.00200	ND	0.0200	ND	0.00200	ND	0.00200
Ethylbenzene		ND	0.00100	ND	0.00100	ND	0.00100	0.0242	0.0100	ND	0.00100	ND	0.00100
m_p-Xylenes		ND	0.00200	ND	0.00200	ND	0.00200	ND	0.0200	ND	0.00200	ND	0.00200
o-Xylene		ND	0.00100	ND	0.00100	ND	0.00100	ND	0.0100	ND	0.00100	ND	0.00100
Xylenes, Total		ND	0.00100	ND	0.00100	ND	0.00100	ND	0.0100	ND	0.00100	ND	0.00100
Total BTEX		ND	0.00100	ND	0.00100	0.00135	0.00100	1.40	0.0100	0.00465	0.00100	ND	0.00100

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Kelsey Brooks

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- **K** Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- ** Surrogate recovered outside laboratory control limit.
- **BRL** Below Reporting Limit.
- **RL** Reporting Limit

MDL Method Detection Limit SDL Sample Detection Limit LOD Limit of Detection

PQL Practical Quantitation Limit MQL Method Quantitation Limit LOQ Limit of Quantitation

DL Method Detection Limit

NC Non-Calculable

- + NELAC certification not offered for this compound.
- * (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Atlanta - Midland/Odessa - Tampa/Lakeland - Phoenix - Latin America

	Phone	Fax
4143 Greenbriar Dr, Stafford, TX 77477	(281) 240-4200	(281) 240-4280
9701 Harry Hines Blvd , Dallas, TX 75220	(214) 902 0300	(214) 351-9139
5332 Blackberry Drive, San Antonio TX 78238	(210) 509-3334	(210) 509-3335
2505 North Falkenburg Rd, Tampa, FL 33619	(813) 620-2000	(813) 620-2033
12600 West I-20 East, Odessa, TX 79765	(432) 563-1800	(432) 563-1713
6017 Financial Drive, Norcross, GA 30071	(770) 449-8800	(770) 449-5477
3725 E. Atlanta Ave. Phoenix, AZ 85040	(602) 437-0330	

4-Bromofluorobenzene

Form 2 - Surrogate Recoveries

Project Name: DCP Plant to Lea Station 6" #2

Project ID: SRS#2009-039 Work Orders: 474180,

Lab Batch #: 928301 Matrix: Water **Sample:** 474180-001 / SMP Batch:

Units:	mg/L	Date Analyzed: 11/21/13 19:46	SU	RROGATE RE	ECOVERY S	STUDY	
	BT	EX by EPA 8021 Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1.4-Difluoro	benzene	Analytes	0.0253	0.0300	84	80-120	
4-Bromofluo			0.0287	0.0300	96	80-120	

Matrix: Water **Lab Batch #:** 928301 Sample: 474180-002 / SMP Batch: 1

Units: mg/L **Date Analyzed:** 11/21/13 20:02 SURROGATE RECOVERY STUDY **Amount** True Control BTEX by EPA 8021 Found Limits Amount Recovery Flags [A] [B] %R %R [D] **Analytes** 1,4-Difluorobenzene 0.0259 0.0300 86 80-120

0.0278

0.0300

80-120

93

Lab Batch #: 928301 Sample: 474180-003 / SMP Matrix: Water Batch:

mg/L **Units: Date Analyzed:** 11/21/13 21:38 SURROGATE RECOVERY STUDY

BTEX by EPA 8021 Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	0.0249	0.0300	83	80-120	
4-Bromofluorobenzene	0.0275	0.0300	92	80-120	

Lab Batch #: 928301 **Sample:** 474180-004 / SMP Batch: Matrix: Water

Units:	mg/L	Date Analyzed: 11/22/13 12:53	SU	RROGATE R	ECOVERY S	STUDY	
	BT	EX by EPA 8021	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluor	robenzene	Analytes	0.0326	0.0300	109	80-120	
4-Bromoflu	uorobenzene		0.0285	0.0300	95	80-120	

Lab Batch #: 928368 **Sample:** 474180-005 / SMP Batch: Matrix: Water

Units: mg/	L Dat	e Analyzed: 11/22/13 17:08	SU	RROGATE RE	ECOVERY S	STUDY	
	BTEX by E		Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene			0.0298	0.0300	99	80-120	
4-Bromofluorobenze	ene		0.0326	0.0300	109	80-120	

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Project Name: DCP Plant to Lea Station 6" #2

Work Orders: 474180, Project ID: SRS#2009-039

Units:	mg/L	Date Analyzed: 11/22/13 17:25	SU	RROGATE RE	ECOVERY S	STUDY	
	BT	EX by EPA 8021	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
		Analytes			[D]		
1,4-Difluoro	benzene		0.0295	0.0300	98	80-120	
4-Bromofluo	orobenzene		0.0329	0.0300	110	80-120	

 Lab Batch #: 928301
 Sample: 647366-1-BLK / BLK
 Batch: 1
 Matrix: Water

Units: mg/L **Date Analyzed:** 11/21/13 18:06 SURROGATE RECOVERY STUDY **Amount** True Control BTEX by EPA 8021 Found Limits Flags Amount Recovery [A] [B] %R %R [D] **Analytes** 1,4-Difluorobenzene 0.0261 0.0300 87 80-120 4-Bromofluorobenzene 0.0285 0.0300 80-120 95

Lab Batch #: 928368 Sample: 647436-1-BLK / BLK Batch: 1 Matrix: Water

Units: mg/L Date Analyzed: 11/22/13 16:52 SURROGATE RECOVERY STUDY

BTEX by EPA 8021 Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	0.0296	0.0300	99	80-120	
4-Bromofluorobenzene	0.0327	0.0300	109	80-120	

Lab Batch #: 928301 Sample: 647366-1-BKS / BKS Batch: 1 Matrix: Water

Units: mg/L Date Analyzed: 11/21/13 16:47 SURROGATE RECOVERY STUDY Amount True Control BTEX by EPA 8021 Found Amount Recovery Limits **Flags** [B] %R %R [A] [D] **Analytes** 1,4-Difluorobenzene 0.0278 0.0300 93 80-120 4-Bromofluorobenzene 0.0318 0.0300 106 80-120

Lab Batch #: 928368 Sample: 647436-1-BKS / BKS Batch: 1 Matrix: Water

Units:	mg/L	Date Analyzed: 11/22/13 15:30	SU	RROGATE RI	ECOVERY S	STUDY	
	BTI	EX by EPA 8021	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
		Analytes			[D]		
1,4-Difluore	obenzene		0.0285	0.0300	95	80-120	
4-Bromoflu	orobenzene		0.0325	0.0300	108	80-120	

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Project Name: DCP Plant to Lea Station 6" #2

Work Orders: 474180, Project ID: SRS#2009-039

mg/L Units: Date Analyzed: 11/21/13 17:03 SURROGATE RECOVERY STUDY True Amount Control BTEX by EPA 8021 **Found** Amount Recovery Limits Flags [A] [B] %R %R [D]**Analytes** 1,4-Difluorobenzene 0.0285 0.0300 80-120 95 4-Bromofluorobenzene 0.0329 0.0300 110 80-120

Units: mg/L Date Analyzed: 11/22/13 15:46 SURROGATE RECOVERY STUDY **Amount** True Control BTEX by EPA 8021 Found Limits Amount Recovery Flags [A] [B] %R %R [D] **Analytes** 1,4-Difluorobenzene 0.0270 0.0300 90 80-120 4-Bromofluorobenzene 0.0321 0.0300 107 80-120

Lab Batch #: 928301 **Sample:** 474260-017 S / MS **Batch:** 1 **Matrix:** Water

Units: mg/L Date Analyzed: 11/21/13 17:19 SURROGATE RECOVERY STUDY

BTEX by EPA 8021 Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	0.0277	0.0300	92	80-120	
4-Bromofluorobenzene	0.0328	0.0300	109	80-120	

Lab Batch #: 928368 **Sample:** 474413-001 S / MS **Batch:** 1 **Matrix:** Water

Units:	mg/L	Date Analyzed: 11/22/13 16:03	SURROGATE RECOVERY STUDY						
	ВТ	EX by EPA 8021 Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1,4-Difluor	obenzene	Thairtes	0.0309	0.0300	103	80-120			
4-Bromoflu	orobenzene		0.0326	0.0300	109	80-120			

Units:	mg/L	Date Analyzed: 11/21/13 17:35	SURROGATE RECOVERY STUDY						
	BT	EX by EPA 8021	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1,4-Difluor	obenzene	Analytes	0.0274	0.0300	91	80-120			
4-Bromoflu	iorobenzene		0.0327	0.0300	109	80-120			

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Project Name: DCP Plant to Lea Station 6" #2

Work Orders : 474180, **Project ID:** SRS#2009-039

Lab Batch #: 928368 **Sample:** 474413-001 SD / MSD **Batch:** 1 **Matrix:** Water

Units: Date Analyzed: 11/22/13 16:19 mg/L SURROGATE RECOVERY STUDY Amount True Control BTEX by EPA 8021 Found Amount Recovery Limits Flags [A] [B] %R %R [D] **Analytes** 1,4-Difluorobenzene 0.0289 0.0300 96 80-120 4-Bromofluorobenzene 0.0322 0.0300 107 80-120

Surrogate Recovery [D] = 100 * A / B

^{*} Surrogate outside of Laboratory QC limits

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

BS / BSD Recoveries

Project Name: DCP Plant to Lea Station 6" #2

Work Order #: 474180 **Project ID:** SRS#2009-039

Date Prepared: 11/21/2013 **Date Analyzed:** 11/21/2013 **Analyst:** ARM

Lab Batch ID: 928301 Sample: 647366-1-BKS **Batch #:** 1 Matrix: Water

Units: mg/L		BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY										
BTEX by EPA 8021 Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag	
Benzene	< 0.00100	0.100	0.0937	94	0.100	0.0936	94	0	70-125	25		
Toluene	< 0.00200	0.100	0.0966	97	0.100	0.0964	96	0	70-125	25		
Ethylbenzene	< 0.00100	0.100	0.105	105	0.100	0.104	104	1	71-129	25		
m_p-Xylenes	< 0.00200	0.200	0.213	107	0.200	0.212	106	0	70-131	25		
o-Xylene	< 0.00100	0.100	0.106	106	0.100	0.107	107	1	71-133	25		

Date Prepared: 11/22/2013 **Date Analyzed:** 11/22/2013 **Analyst:** ARM

Lab Batch ID: 928368 Sample: 647436-1-BKS **Batch #:** 1 Matrix: Water

Units: mg/L BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY

BTEX by EPA 8021 Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Benzene	< 0.00100	0.100	0.0906	91	0.100	0.0931	93	3	70-125	25	
Toluene	< 0.00200	0.100	0.0944	94	0.100	0.0951	95	1	70-125	25	
Ethylbenzene	< 0.00100	0.100	0.0910	91	0.100	0.0902	90	1	71-129	25	
m_p-Xylenes	< 0.00200	0.200	0.205	103	0.200	0.205	103	0	70-131	25	
o-Xylene	< 0.00100	0.100	0.0990	99	0.100	0.0991	99	0	71-133	25	

Relative Percent Difference RPD = 200*|(C-F)/(C+F)| Blank Spike Recovery [D] = 100*(C)/[B]Blank Spike Duplicate Recovery [G] = 100*(F)/[E]All results are based on MDL and Validated for QC Purposes

Form 3 - MS / MSD Recoveries

Project Name: DCP Plant to Lea Station 6" #2

Work Order #: 474180 Project ID: SRS#2009-039

Lab Batch ID: 928301 **QC- Sample ID:** 474260-017 S **Batch #:** 1 **Matrix:** Water

Date Analyzed: 11/21/2013 **Date Prepared:** 11/21/2013 **Analyst:** ARM

Reporting Units: mg/L MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY

BTEX by EPA 8021 Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Benzene	< 0.00100	0.100	0.0963	96	0.100	0.0984	98	2	70-125	25	
Toluene	< 0.00200	0.100	0.0994	99	0.100	0.103	103	4	70-125	25	
Ethylbenzene	< 0.00100	0.100	0.108	108	0.100	0.113	113	5	71-129	25	
m_p-Xylenes	< 0.00200	0.200	0.220	110	0.200	0.229	115	4	70-131	25	
o-Xylene	< 0.00100	0.100	0.110	110	0.100	0.114	114	4	71-133	25	

Lab Batch ID: 928368 **QC- Sample ID:** 474413-001 S **Batch #:** 1 **Matrix:** Water

Date Analyzed: 11/22/2013 **Date Prepared:** 11/22/2013 **Analyst:** ARM

Reporting Units: mg/L MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY

BTEX by EPA 8021 Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Benzene	0.0241	0.100	0.116	92	0.100	0.112	88	4	70-125	25	
Toluene	< 0.00200	0.100	0.0978	98	0.100	0.0925	93	6	70-125	25	
Ethylbenzene	< 0.00100	0.100	0.0933	93	0.100	0.0901	90	3	71-129	25	
m_p-Xylenes	< 0.00200	0.200	0.213	107	0.200	0.204	102	4	70-131	25	
o-Xylene	< 0.00100	0.100	0.101	101	0.100	0.0980	98	3	71-133	25	

Work Order #: 474180

XENCO Laboratories Prelogin/Nonconformance Report- Sample Log-In

Client: PLAINS ALL AMERICAN EH&S

Acceptable Temperature Range: 0 - 6 degC Air and Metal samples Acceptable Range: Ambient

Date/ Time Received: 11/15/2013 03:02:00 PM

Temperature Measuring device used:

S	ample Receipt Checklist	Comments
#1 *Temperature of cooler(s)?		5
#2 *Shipping container in good condition?		Yes
#3 *Samples received on ice?		Yes
#4 *Custody Seals intact on shipping contained	r/ cooler?	N/A
#5 Custody Seals intact on sample bottles?		N/A
#6 *Custody Seals Signed and dated?		N/A
#7 *Chain of Custody present?	•	Yes
#8 Sample instructions complete on Chain of	Custody?	Yes
#9 Any missing/extra samples?		No
#10 Chain of Custody signed when relinquished	ed/ received?	Yes
#11 Chain of Custody agrees with sample lab	el(s)?	Yes
#12 Container label(s) legible and intact?	•	Yes
#13 Sample matrix/ properties agree with Cha	in of Custody?	Yes
#14 Samples in proper container/ bottle?	•	Yes
#15 Samples properly preserved?	•	Yes
#16 Sample container(s) intact?	•	Yes
#17 Sufficient sample amount for indicated tes	st(s)?	Yes
#18 All samples received within hold time?	•	Yes
#19 Subcontract of sample(s)?		No
#20 VOC samples have zero headspace (less	than 1/4 inch bubble)?	Yes
#21 <2 for all samples preserved with HNO3,h	HCL, H2SO4?	Yes
#22 >10 for all samples preserved with NaAso	D2+NaOH, ZnAc+NaOH?	N/A

			rior to placing in the refrigerator	•
Analyst:	PH C	evice/Lot#:		
	Checklist completed		Date: 11/18/201	3
		Candace C	ames	
	Checklist reviewed	by: Musy Hoan Kelsey Bi	Date: 11/18/201:	3

011H 5 of LAB W.O#: Odessa: 12600 West I-20 East Odessa, TX 79765 (432)563-1800 CHAIN OF CUSTODY RECORD Houston: 4143 Greenbriar Dr. Stafford, TX 77477 (281)240-4200 ;roool-c Laboratories

* Container Type Codes

o X Encore Sampler TerraCore Sampler Air Canister Tedlar Bag Zip Lock Bag Plastic Clear I. Ice J. MCAA K. ZnAc&NaOH J. L. Asbc Acid&NaOH ** Preservative Type Codes YES NO A Matrix Type Codes Size(s): 2oz, 4oz, 8oz, 16oz, 32oz, 1Gal 40ml, 125 ml, 250 ml, 500 ml, 1L, Other REMARKS Ground Water S S V waste Water W V Drinking Water A Surface Water O Cean/Sea Water T T Product-Liquid U L Product-Soild B B RES A S E S A. None E. HCL
B. HNO₃ F. MeOH
H₂SO₄ G. Na₂S₂O₃ K.
D. NaOH H. NaHSO₄ VA Vial Amber
VV Vial Clear
VP Vial Pre-preserved
GA Glass Amber
T
GC Glass Clear
PA Prastic Amber
PC Plastic Clear Von-Conformances found? Lab Use Only SP P WWW on Highest TPH i VinO _ HA9 nuR (Hold Sample ပ္ Temp Time: Coolers Other 7.82 14D ANALYSES REQUESTED Field billable Hrs 10D COC & Labels Match Incomplete 5D 7D 3D 4D Need results by: SEDD ERPIMS 5Hrs 1D 2D **EDDs** Chloride ADaPT 7 TAT Work Days = D × × ш × × × × **BTEX** Std (5-7D) Lab Only QA/QC Level & Certification HdT 3 4 CLP AFCEE QAPP DoD-ELAP Other: Pres Type™ E, I # Cont Cont Type ' Volatiles by 8260 Example confainers Quartely 3 3 3 3 3 3 (575)396-2378 (575)396-1429 to # listo? PAA-C. Bryant bjarguijo@basinenv.com (N/A) NO ntegrity 1 2 NELAC Monthly Htered plai: Quote #: Matrix Code ^ 4 Circle One Event: Daily Weekly Semi-Annual Annual N/A Ø βW Ø₩ GW ØN Ø STATE for Certs & Regs PO#: Fax: SC NJ PA OK Zip: Σ Collect 1100 1115 1130 1200 1030 1045 Time State: Email: GA NC Basin Environmental Service Technologies, LLC 11/13/13 11/13/13 11/13/13 11/13/13 11/13/13 11/13/13 Collect Date ΧŽ Plains All American H H DCP Plant to Lea Station 6" #2 NPDES LPST DryCln Reg. Program / Clean-up Std SIN Sample ID 9-WM MW-4 MW-5 MW-2 MW-3 MW-7 3100 Plains Hwy. SRS #2009-039 Camille Bryant Ben Arguijo DW Sampler Signature: TRRP invoice To: Company: Project ID: Address: PM/Attn: N. 3 4 S. 9 1 ∞ 0 CTLs Sample #

B&A Laboratories: Hobbs 575-392-7550 Dallas 214-902-0300 Houston 281-242-4200 Odessa 432-563-1800 San Antonio 210-509-3334 Phoenix 602-437-0330 FTS Service Centers: Atlanta 770-449-8800 Lakeland 863-646-8526 Tampa 803-543-8099 Philadelphia 610-955-5649 South Carolina 803-543-8099

500 Temp C.O.C. Serial # 一つい

pH verified-acceptable, excl VOCs?

15:15

eceived on time to meet HTs?

Received on Wet Ice? Labeled with proper preservatives?

Samples intact upon arrival?

3

Unclear

Received within holding time?

VOCs rec'd w/o headspace?

B

1/5 xero

Keres

0

100

C

11/15/15 15/3 (1-91-11

usin Enu Affiliation

Date

Received by

7:30 ani

11-15-13

11/12/11

10

1806,71

2 3

Date

Affiliation

Relinquished by

Other

XLS Other:

Custody seals intact?

roper containers used?

and this document by client creates a legal and binding agreement between client and Xenco for analytical and testing services provided by Xenco to client under Xenco's standard terms and conditions unless previously agreed in writing. Terms of payment are Net 30 days, and Revision Date: Nov 12, 2009 all past due amounts shall accue interest at 1.5% per month until paid in full. All laboratory analytical data and reports generated by Xenco remain the exclusive property of Xenco until invoices for such data are paid in full.

XENCO Laboratories Prelogin/Nonconformance Report- Sample Log-In

Client: PLAINS ALL AMERICAN EH&S

Date/ Time Received: 11/15/2013 03:02:00 PM

Acceptable Temperature Range: 0 - 6 degC Air and Metal samples Acceptable Range: Ambient

Work Order #: 474180

Temperature Measuring device used:

	Sample Receipt Checklist	Comments
#1 *Temperature of cooler(s)?		5
#2 *Shipping container in good condition	า?	Yes
#3 *Samples received on ice?		Yes
#4 *Custody Seals intact on shipping co	ntainer/ cooler?	N/A
#5 Custody Seals intact on sample bottl	es?	N/A
#6 *Custody Seals Signed and dated?		N/A
#7 *Chain of Custody present?		Yes
#8 Sample instructions complete on Cha	ain of Custody?	Yes
#9 Any missing/extra samples?		No
#10 Chain of Custody signed when relin	quished/ received?	Yes
#11 Chain of Custody agrees with samp	le label(s)?	Yes
#12 Container label(s) legible and intact	?	Yes
#13 Sample matrix/ properties agree wit	h Chain of Custody?	Yes
#14 Samples in proper container/ bottle	?	Yes
#15 Samples properly preserved?		Yes
#16 Sample container(s) intact?		Yes
#17 Sufficient sample amount for indica	ted test(s)?	Yes
#18 All samples received within hold tim	ie?	Yes
#19 Subcontract of sample(s)?		No
#20 VOC samples have zero headspace	e (less than 1/4 inch bubble)?	Yes
#21 <2 for all samples preserved with H	NO3,HCL, H2SO4?	Yes
#22 >10 for all samples preserved with I	NaAsO2+NaOH, ZnAc+NaOH?	N/A
#22 >10 for all samples preserved with l		
Analyst: PH Devic	e/Lot#:	
		Date: 11/18/2013
Analyst: PH Devic Checklist completed by: Checklist reviewed by:		Date: <u>11/18/2013</u>

Analytical Report 476575

for PLAINS ALL AMERICAN EH&S

Project Manager: Ben Arguijo DCP PLant to Lea Station 6" #2 SRS#2009-039 03-JAN-14

Collected By: Client

12600 West I-20 East Odessa, Texas 79765

Xenco-Houston (EPA Lab code: TX00122):

Texas (T104704215-13-15-TX), Arizona (AZ0765), Arkansas (08-039-0), Connecticut (PH-0102), Florida (E871002) Illinois (002082), Indiana (C-TX-02), Iowa (392), Kansas (E-10380), Kentucky (45), Louisiana (03054) New Hampshire (297408), New Jersey (TX007), New York (11763), Oklahoma (9218), Pennsylvania (68-03610) Rhode Island (LAO00312), USDA (S-44102), DoD (L11-54)

Xenco-Atlanta (EPA Lab Code: GA00046): Florida (E87429), North Carolina (483), South Carolina (98015), Kentucky (85), DoD (L10-135) Louisiana (04176), USDA (P330-07-00105)

Xenco-Tampa Mobile (EPA Lab code: FL01212): Florida (E84900)

Xenco-Lakeland: Florida (E84098)

Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400-TX) Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295-TX)

Xenco Phoenix (EPA Lab Code: AZ00901): Arizona(AZ0757) Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757)

Xenco Tucson (EPA Lab code:AZ000989): Arizona (AZ0758)

03-JAN-14

Project Manager: **Ben Arguijo PLAINS ALL AMERICAN EH&S**1301 S. COUNTY ROAD 1150
Midland, TX 79706

Reference: XENCO Report No(s): 476575

DCP PLant to Lea Station 6" #2 Project Address: Lea County, NM

Ben Arguijo:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 476575. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 476575 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Kelsey Brooks

Knis Hoah

Project Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Odessa - San Antonio - Tampa - Lakeland - Atlanta - Phoenix - Oklahoma - Latin America

Sample Cross Reference 476575

PLAINS ALL AMERICAN EH&S, Midland, TX

DCP PLant to Lea Station 6" #2

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
MW-5	W	12-23-13 10:15		476575-001

CASE NARRATIVE

Client Name: PLAINS ALL AMERICAN EH&S Project Name: DCP PLant to Lea Station 6" #2

 Project ID:
 SRS#2009-039
 Report Date:
 03-JAN-14

 Work Order Number(s):
 476575
 Date Received:
 12/26/2013

S	Sample receipt non conformances and comments:
-	Sample receipt non conformances and comments per sample:
1	None

Certificate of Analysis Summary 476575

PLAINS ALL AMERICAN EH&S, Midland, TX

Project Id: SRS#2009-039

Project Name: DCP PLant to Lea Station 6" #2

Contact: Ben Arguijo **Project Location:** Lea County, NM

Date Received in Lab: Thu Dec-26-13 08:50 am

Report Date: 03-JAN-14

Project Manager: Kelsey Brooks

				1 Toject Manager.	Treise) Brooms	
	Lab Id:	476575-001				
Analysis Paguested	Field Id:	MW-5				
Analysis Requested	Depth:					
	Matrix:	WATER				
	Sampled:	Dec-23-13 10:15				
PAHs by GCMS SIM	Extracted:	Dec-30-13 09:21				
SUB: TX104704215	Analyzed:	Dec-30-13 19:40				
	Units/RL:	mg/L RL				
Acenaphthene		ND 0.0000490				
Acenaphthylene		ND 0.0000490				
Anthracene		ND 0.0000490				
Benzo(a)anthracene		ND 0.0000490				
Benzo(a)pyrene		ND 0.0000490				
Benzo(b)fluoranthene		ND 0.0000490				
Benzo(g,h,i)perylene		ND 0.0000490				
Benzo(k)fluoranthene		ND 0.0000490				
Chrysene		ND 0.0000490				
Dibenz(a,h)anthracene		ND 0.0000490				
Dibenzofuran		ND 0.0000490				
Fluoranthene		ND 0.0000490				
Fluorene		ND 0.0000490				
Indeno(1,2,3-c,d)Pyrene		ND 0.0000490				
Naphthalene		0.000535 0.000490				
Phenanthrene		ND 0.0000490				
Pyrene		ND 0.0000490				

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Kelsey Brooks Project Manager

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- **K** Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- ** Surrogate recovered outside laboratory control limit.
- BRL Below Reporting Limit.
- **RL** Reporting Limit

MDL Method Detection Limit SDL Sample Detection Limit LOD Limit of Detection

PQL Practical Quantitation Limit MQL Method Quantitation Limit LOQ Limit of Quantitation

DL Method Detection Limit

NC Non-Calculable

- + NELAC certification not offered for this compound.
- * (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Atlanta - Midland/Odessa - Tampa/Lakeland - Phoenix - Latin America

	Phone	Fax
4143 Greenbriar Dr, Stafford, TX 77477	(281) 240-4200	(281) 240-4280
9701 Harry Hines Blvd , Dallas, TX 75220	(214) 902 0300	(214) 351-9139
5332 Blackberry Drive, San Antonio TX 78238	(210) 509-3334	(210) 509-3335
2505 North Falkenburg Rd, Tampa, FL 33619	(813) 620-2000	(813) 620-2033
12600 West I-20 East, Odessa, TX 79765	(432) 563-1800	(432) 563-1713
6017 Financial Drive, Norcross, GA 30071	(770) 449-8800	(770) 449-5477
3725 E. Atlanta Ave, Phoenix, AZ 85040	(602) 437-0330	

Project Name: DCP PLant to Lea Station 6" #2

Work Orders: 476575, Project ID: SRS#2009-039

mg/L **Units:** Date Analyzed: 12/30/13 19:40 SURROGATE RECOVERY STUDY Amount True Control PAHs by GCMS SIM Recovery **Found** Amount Limits Flags [A] [B] %R %R [D]**Analytes** Nitrobenzene-d5 0.871 1.00 87 35-114 2-Fluorobiphenyl 1.00 0.864 86 43-116 Terphenyl-D14 0.882 1.00 88 33-141

Lab Batch #: 931134 Sample: 649072-1-BLK / BLK Batch: 1 Matrix: Water

Units: mg/L Date Analyzed: 12/30/13 15:18 SURROGATE RECOVERY STUDY Amount True Control PAHs by GCMS SIM **Found** Amount Recovery Limits Flags [B] %R %R [A] [D] **Analytes** Nitrobenzene-d5 0.791 1.00 79 35-114 2-Fluorobiphenyl 1.00 0.745 75 43-116 Terphenyl-D14 1.00 0.836 84 33-141

Lab Batch #: 931134 Sample: 649072-1-BKS / BKS Batch: 1 Matrix: Water

Units: mg/L Date Analyzed: 12/30/13 17:53 SURROGATE RECOVERY STUDY True Control Amount PAHs by GCMS SIM Found Amount Recovery Limits Flags [A] [B] %R %R [D] **Analytes** Nitrobenzene-d5 0.767 1.00 77 35-114 2-Fluorobiphenyl 0.734 1.00 73 43-116 Terphenyl-D14 0.756 1.00 76 33-141

Lab Batch #: 931134 Sample: 649072-1-BSD / BSD Batch: 1 Matrix: Water

Units: mg/L Date Analyzed: 12/30/13 18:10 SURROGATE RECOVERY STUDY Amount True Control PAHs by GCMS SIM Found Amount Recovery Limits Flags [B] %R %R [A] [D] **Analytes** Nitrobenzene-d5 0.762 1.00 76 35-114 2-Fluorobiphenyl 0.718 1.00 72 43-116 Terphenyl-D14 0.794 1.00 79 33-141

Surrogate Recovery [D] = 100 * A / B

^{*} Surrogate outside of Laboratory QC limits

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

mg/L

Units:

BS / BSD Recoveries

BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY

Project Name: DCP PLant to Lea Station 6" #2

Work Order #: 476575 Project ID: SRS#2009-039

Analyst: PKH Date Prepared: 12/30/2013 Date Analyzed: 12/30/2013

 Lab Batch ID: 931134
 Sample: 649072-1-BKS
 Batch #: 1
 Matrix: Water

us. mg L		BLANK BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY										
PAHs by GCMS SIM Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flaș	
Acenaphthene	< 0.0000500	0.00100	0.000738	74	0.00100	0.000778	78	5	57-90	25	+	
Acenaphthylene	< 0.0000500	0.00100	0.000720	72	0.00100	0.000745	75	3	47-95	25	+	
Anthracene	< 0.0000500	0.00100	0.000713	71	0.00100	0.000770	77	8	56-90	25		
Benzo(a)anthracene	< 0.0000500	0.00100	0.000771	77	0.00100	0.000811	81	5	51-100	25	†	
Benzo(a)pyrene	< 0.0000500	0.00100	0.000854	85	0.00100	0.000902	90	5	49-97	25		
Benzo(b)fluoranthene	< 0.0000500	0.00100	0.000846	85	0.00100	0.000857	86	1	41-114	25		
Benzo(g,h,i)perylene	< 0.0000500	0.00100	0.000819	82	0.00100	0.000857	86	5	51-105	25		
Benzo(k)fluoranthene	< 0.0000500	0.00100	0.000732	73	0.00100	0.000800	80	9	54-103	25		
Chrysene	< 0.0000500	0.00100	0.000713	71	0.00100	0.000774	77	8	60-101	25		
Dibenz(a,h)anthracene	< 0.0000500	0.00100	0.000879	88	0.00100	0.000931	93	6	50-109	25		
Dibenzofuran	< 0.0000500	0.00100	0.000739	74	0.00100	0.000810	81	9	55-91	25		
Fluoranthene	< 0.0000500	0.00100	0.000739	74	0.00100	0.000779	78	5	58-93	25		
Fluorene	< 0.0000500	0.00100	0.000733	73	0.00100	0.000782	78	6	58-93	25		
Indeno(1,2,3-c,d)Pyrene	< 0.0000500	0.00100	0.000814	81	0.00100	0.000849	85	4	52-108	25	\top	
Naphthalene	< 0.000500	0.00100	0.000764	76	0.00100	0.000737	74	4	51-100	25	\top	
Phenanthrene	< 0.0000500	0.00100	0.000753	75	0.00100	0.000868	87	14	43-97	25		
Pyrene	< 0.0000500	0.00100	0.000779	78	0.00100	0.000823	82	5	51-95	25	1	

Relative Percent Difference RPD = 200*|(C-F)/(C+F)|Blank Spike Recovery [D] = 100*(C)/[B]Blank Spike Duplicate Recovery [G] = 100*(F)/[E]All results are based on MDL and Validated for QC Purposes

Page 1 of 1 0#: 476575 ··LAB W.O#: Houston: 4143 Greenbriar Dr. Stafford, TX 77477 (281)240-4200 Odessa: 12600 West I-20 East Odessa, TX 79765 (432)563-1800 CHAIN OF CUSTODY RECORD

* Container Type Codes

	7			Z Z Z Z Z	L C		CHAIN OF CHATCORY RECORD			C	4	t	1011	CONCE
	2 4	9			5			1000	000	Fage	ю		ES	Encore Sampler TerraCore Sampler
	Labo	Laboratories Houston: 4143 Greenbrar Dr. Stattord, 1X //4// (281)240-4200 Odessa: 12000 West I-20 East Odessa, 1X /9/03 (452)305-1000 Industries Ironol-c	Dr. Stafford, I.	X (14() (281)	240-4200	Jaessa: 12600 We	st I-zu East Odessa, I	A 19705 (432/5)		*·LAB W.O#	47	76515	AC TB	Air Canister Tedlar Bag
	Environmental A	invitonmental Achestos Rodiochemistry								Field billable Hrs	: s.		PC	Zip Lock Bag Plastic Clear
	Company:	Basin Environmental Service Technologies, LLC	iologies, LLC		Phone: ((575)396-2378	TAT Work Days =	۵	Need results by:		Time:		PC Plastic Clear Other	
	Address:	3100 Plains Hwy.			Fax: ((575)396-1429	-Std (5-	Std (5-7D) 5Hrs 1D 2D 3D (D 5D	D 2D 3D 4	0 50 70 100	14D Other		Size(s): 2oz, 4oz, 8oz, 16oz, 32oz , 1Gal 40ml, 125 ml, 250 ml, 500 ml, 1L, Other	1Gal Other
	City:	Lovington		State: NM	Zip: 8	88260		7	ANALYSE	ANALYSES REQUESTED	LED		** Preservative Type Codes	se Codes
	PM/Attn:	Ben Arguijo		Email:	bjarguijo@k	bjarguijo@basinenv.com	Cont Type * VC		GA				A. None E. HCL I. Ice B. HNO. F. MpOH MO	AA C
	Project ID:	: DCP Plant to Lea Station 6" #2 SRS #2009-039			PO#:	PAA-C. Bryant	Pres Type** E, I		_				H ₂ SO ₄ G. Na ₂ S ₂ O ₃ K. ZnAc8 D. NaOH H. NaHSO ₄ L Asi O.	K. ZnAc&NaOH
	Invoice To:	Camille Bryant Plains All American	ican		Quote #:		097					HA9 ni ti ylnO	^ Matrix Type Codes	Codes
	Sampler Signature:	Mayber	Circle One E Semi-Annual	Circle One Event: Daily Weekly Semi-Annual Annual N/A		Monthly Quartely	ample ss by 82 H9T	YEX nloride	НА				GW Ground Water S Soil/S WW Waste Water W Wipe DW Drinking Water A Air SW Surface Water O Oil	Soil/Sediment/Solid Wipe Air
	# əldw	Sample ID	Collect Date	Collect	Matrix Code ^	Field ntegnty OK (Y/N) Total # of containers	Ex: Volatile	E.				Ho (CALL	Ocean/Sea Water Product-Liquid Product-Solid Sludge	nue od
	leS						#Cont Lab Only						REMARKS	S
	_	MW-5	12/23/13	10:15	GW				×					
Page	2													
9 of	က													
10	4													
	2													
	9													
	7													
	ω													
	0													
Final	0													
1.00	Ä	Reg. Program / Clean-up Std	STATE	STATE for Certs & Regs	Regs	QA/QC Leve	QA/QC Level & Certification	ED	EDDs	COC & Labels	Coolers	Temp °C	Lab Use Only	YES NO N/A
00	CTLs TR	TRRP DW NPDES LPST DryCln	FL TX GA NC	NC SC NJ PA OK	5	1 2 3 4 CLP NELAC DoD-ELAP	AFCEE QAPP	ADaPT SEDD XLS Other:	D ERPIMS	Match Incomplete Absent Unclear	1 2	34.3	Non-Conformances found? Samples intact upon arrival?	
		Relinquished by		Affiliation		Date	Time	Recei	Received by	Affiliation	Date	Time	Received on Wet Ice?	
	-	July 1 1 mg		67		12-26-13	8:50	Yes	Confeered	MS	J-26-13	8,50	Labeled with proper preservatives? Received within holding time?	
	1												Custody seals intact?	

C.O.C. Serial # B&A Laboratories: Hobbs 575-392-7550 Dallas 214-902-0300 Houston 281-242-4200 Odessa 432-563-1800 San Antonio 210-509-3334 Phoenix 602-437-0330 FTS Service Centers: Atlanta 770-449-8800 Lakeland 863-646-8526 Tampa 803-543-8099 Philadelphia 610-955/5649 South Carolina 803-543-8099

4

pH verified-acceptable, excl VOCs?

VOCs rec'd w/o headspace? Proper containers used? eceived on time to meet HTs?

10:30

61-17-11

1200

Execution of this document by client creates a legal and binding agreement between client and Xenco for analytical and testing services provided by Xenco to client under Xenco's standard terms and conditions unless previously agreed in writing. Terms of payment are Net 30 days, and all past due amounts shall accrue interest at 1.5% per month until paid in full. All laboratory analytical data and reports generated by Xenco remain the exclusive property of Xenco until invoices for such data are paid in full.

Work Order #: 476575

XENCO Laboratories Prelogin/Nonconformance Report- Sample Log-In

Client: PLAINS ALL AMERICAN EH&S

Date/ Time Received: 12/26/2013 08:50:00 AM

Acceptable Temperature Range: 0 - 6 degC Air and Metal samples Acceptable Range: Ambient

Temperature Measuring device used:

Sample Rec	ceipt Checklist	Comments
#1 *Temperature of cooler(s)?	4.3	
#2 *Shipping container in good condition?	Yes	
#3 *Samples received on ice?	Yes	
#4 *Custody Seals intact on shipping container/ cooler?	N/A	
#5 Custody Seals intact on sample bottles?	N/A	
#6 *Custody Seals Signed and dated?	N/A	
#7 *Chain of Custody present?	Yes	
#8 Sample instructions complete on Chain of Custody?	Yes	
#9 Any missing/extra samples?	No	
#10 Chain of Custody signed when relinquished/ received	? Yes	
#11 Chain of Custody agrees with sample label(s)?	Yes	
#12 Container label(s) legible and intact?	Yes	
#13 Sample matrix/ properties agree with Chain of Custod	y? Yes	
#14 Samples in proper container/ bottle?	Yes	
#15 Samples properly preserved?	Yes	
#16 Sample container(s) intact?	Yes	
#17 Sufficient sample amount for indicated test(s)?	Yes	
#18 All samples received within hold time?	Yes	
#19 Subcontract of sample(s)?	Yes	
#20 VOC samples have zero headspace (less than 1/4 inc	ch bubble)? N/A	
#21 <2 for all samples preserved with HNO3,HCL, H2SO4	? N/A	
#22 >10 for all samples preserved with NaAsO2+NaOH, Z	nAc+NaOH? N/A	

Analyst:	PH Device	e/Lot#:	
Che	ecklist completed by:	Candau James Candace James	Date: 12/27/2013
Cł	necklist reviewed by:	Kelsey Brooks	Date: 12/27/2013

Appendix B Release Notification & Corrective Action (Form C-141)

District I 625 N. French Dr., Hobbs, NM 88240 District II 301 W. Grand Avenue, Artesia, NM 88210 District III 000 Rio Brazos Road, Aztec, NM 87410 District IV 220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico **Energy Minerals and Natural Resources**

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

Form C-141 Revised October 10, 2003

Submit 2 Copies to appropriate District Office in accordance with Rule 116 on back side of form

Release Notification and Corrective Action

					OPERA?	FOR	\boxtimes	Initia	l Report		Final Repor
Name of Company	Plains Pipel				Contact	Jason Henry	1				
Address	2530 Hwy 2	14 - Dei	nver City, Tx 7932			No. (575) 441-1	099				
Facility Name	DCP Plant to	o Lea Sta	ntion 6-inch #2		Facility Typ	e Pipeline				-111	
Surface Owner NM	SLO		Mineral Ow	ner			Le	ase N	lo. 30-02	15-0	6283
	b1		LOCAT	TIO	N OF REI	EASE			Closes	+ Fo	0.1.4
Unit Letter Section	Township	Range			/South Line	Feet from the	East/West	Line	County		
F 38	208	37E							Lea		
AND THE RESIDENCE AND		L	atitude N 32.531	6667	7° Longitude	W 103.29111	110	evyyle orod ledgal tool	<u>(</u>	en-en-estado de la Ambiena anti-	
			NATI	RE	OF REL	EASE					
Type of Release C	rude Oil		1778	****		Release 25 bbls	Vol	ume R	tecovered	0 bbls	***************************************
	" Steel Pipeline	h			Date and F 02/12/2009	lour of Occurrence			Hour of Dis 9 12:30	covery	(
Was Immediate Notice Given? ☐ Yes ☑ No ☐ Not Required				If YES, To Whom? Larry Johnson (revised release volume on 02/25/2009)							
By Whom? Jason Henry					Date and F	lour 02/25/200	09 @ 14:00				
Was a Watercourse Reached? ☐ Yes ☑ No				If YES, Volume Impacting the Watercourse.							
If a Watercourse was Impacted, Describe Fully.*						And the Character of th	RECE	EIV	ED		atting distribution of the second section of distributions and second section of the section of the second section of the section o
							MAR 2	13 1	(103		
Describe Cause of Pro	blem and Rama	dial Actio	n Taken *				HOBE	350	CU	-	A002-10-00-00-00-00-00-00-00-00-00-00-00-00-
External corrosion of a subject line is 660 bble H2S concentration in	s/day and the op	erating pr	essure of the pipelin	e is 4	5 psi. The de	lled on the pipeli pth of the pipelin	ne to mitigate e at the releas	the rese poi	elease. Threat is approx	oughpu imately	t for the 2' bgs. The
Describe Area Affecte	d and Cleanup	Action Ta	ken.* ,	the glass are a second	The second se	was drawn de de land till till see open seen an over tree o					Control of the Contro
The released crude res	ulted in a surfac	ce stain th	at measured approxi	matel	ly 10' x 12'.	The impacted are	a will be reme	ediate	d per applic	able gu	idelines.
I hereby certify that the regulations all operator public health or the en- should their operations or the environment. In federal, state, or local	ors are required to vironment. The s have failed to addition, NMO	o report a acceptan adequatel OCD acce	nd/or file certain relace of a C-141 report	ease r by the	notifications a ne NMOCD m te contaminat	nd perform corre parked as "Final Final Fi	ctive actions Report* does reat to ground responsibilit	for rel not rel d wate y for c	eases which ieve the ope r, surface we compliance	erator o ater, hi	endanger of liability uman health
\cap	9/			-		OIL CON	ISERVAT	ION	DIVISIO	ON	
Signature:	son Den	ry			Amaz d h	District Connection	** ^ 5"	1			
Printed Name: Jason	Henry	0			Approved by	District Supervi	301,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	<u></u>	***************************************	
Title: Remediation C	Coordinator	the state of the s			Approval Da	te:	Expi	ration	Date:		ethoppenhaudi calasiin jip opper makkiild oo oo oo jimaa qaay
E-mail Address: jhen	ry@paalp.com				Conditions of			^	Attache	d 🗆	
Date: 03/23/	2009	Phone	e· (575) 441-1099			Δ	RP. 21:	30			

Date: 03/23/2009 Attach Additional Sheets If Necessary

Phone: (575) 441-1099

Appendix C """"Monitor Well Logs

Monitor Well MW-6

Petroleum Petroleum Drilling Soil Soil Description Depth Columns <u>Odor</u> Stain None None 0' - 7' bgs - Light brown fine sand, caliche None None None None 7'- 23' bgs - Dull orange fine sand w/ caliche nodules None None None None None None 23' - 34' bgs - Pale orange fine sand w/ caliche nodules None None 34' - 37' bgs - Dull orange very fine sand w/ caliche nodules None None None None None None 37' - 62' bgs - Dull orange very fine sand None 62' - 93' bgs - Reddish-brown very fine sand None None None None None None None None 93' - 100' bgs - Red fine clay

Monitor Well MW-6

Date Drilled	Septembe	r 10, 2013
Thickness of Be	entonite Seal_	45 Ft
Depth of Explor	atory Boring _	100 Ft bgs
Depth to Groun	dwater	80 Ft bgs
Ground Water I	levation	

Indicates the PSH level measured

Grout Surface Seal

Bentonite Pellet Seal

Sand Pack

Completion Notes

- The monitor well was advanced on date using air rotary drilling techniques.
- The well was constructed with 2" ID, 0.020 inch factory slotted, threaded joint, schedule 40 PVC pipe.
- The well is protected with a locked stick-up steel cover and compression cap.
- The lines between material types shown on the profile log represent approximate boundaries. Actual transitions may be gradual.
- The depths indicated are referenced from ground surface.

Monitor Well MW-6 DCP Plant to Lea Station 6-Inch #2 Lea County, New Mexico Plains Marketing, LP

Basin Environmental Service Technologies, LLC

Prep By: BJA	Checked By: BRB
February 28, 2014	

Monitor Well MW-7

Drilling	Soil	Petroleum Pe	etroleum	
Depth C	olumns	<u>Odor</u>	<u>Stain</u>	Soil Description
E o		None	None	
10		None	None	0' - 13' bgs - Pale orange fine sand w/ caliche nodules
15		None	None	
20		None	None	13' -24' bgs -Dull orange fine sand w/ caliche nodules
25		None	None	
30		None	None	24' - 33' bgs - Pale orange fine sand w/ caliche nodules
35		None	None	
40		None	None	33' - 43' bgs - Pale to dull orange very fine sand
45		None None	None None	
50		None	None	
55		None	None	
60		None	None	43' - 74' bgs - Dull orange very fine sand
65		None	None	
70		None	None	
75		None	None	
E ₈₀		None	None	741 001 has Daddish has us you fine and
85		None	None	74' - 88' bgs - Reddish brown very fine sand
90		None	None	88' - 92' bgs - Red fine sand, clay
95		None	None	
E 100	TD	None	None	92' - 100' bgs - Red fine clay

Monitor Well MW-7

Date Drilled	September	10, 2013
Thickness of Ber	ntonite Seal_	45 Ft
Depth of Explora	tory Boring _	100 Ft bgs
Depth to Ground		80 Ft bgs
Ground Water El		

Indicates the PSH level measured

Grout Surface Seal

Bentonite Pellet Seal

Sand Pack

Completion Notes

- The monitor well was advanced on date using air rotary drilling techniques.
- The well was constructed with 4" ID, 0,020 inch factory slotted, threaded joint, schedule 40 PVC pipe.
- The well is protected with a locked stick-up steel cover and compression cap.
- The lines between material types shown on the profile log represent approximate boundaries. Actual transitions may be gradual.
- The depths indicated are referenced from ground surface.

Monitor Well MW-7 DCP Plant to Lea Station 6-Inch #2 Lea County, New Mexico Plains Marketing, LP

Basin Environmental Service Technologies, LLC

Prep By: BJA		Checked By: BRB	
February 28, 2014			