# 3R - 084 2013 AGWMR 03/21/2014

Terry S. Lauck Program Manager

ConocoPhillips Company Risk Management & Remediation 1380G Plaza Office Building 315 Johnstone Avenue Bartlesville, OK 74004 Phone: 918.661.0935 E-mail: Terry.S.Lauck@cop.com



Mr. Glenn von Gonten New Mexico Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

March 21, 2014

Re: NMOCD Case No. 3RP-084, 2013 Annual Groundwater Monitoring Report

Dear Mr. von Gonten:

Enclosed is the 2013 Annual Groundwater Monitoring Report for the Farmington B Com No. 1E site. This report, prepared by Conestoga-Rovers & Associates (CRA), contains the results of groundwater monitoring conducted during April and September 2013.

Please let me know if you have any questions.

Sincerely,

Terry S. Lauck

Enc



## www.CRAworld.com



# 2013 Annual Groundwater Monitoring Report

ConocoPhillips Farmington B Com No. 1E San Juan County, New Mexico API# 30-045-24774 NMOCD# 3R0084

Prepared for: ConocoPhillips Company

**Conestoga-Rovers & Associates** 

6121 Indian School Road, NE Suite 200 Albuquerque, New Mexico 87110



January 2014 • 074938 • Report No. 4

# **Table of Contents**

### Page

| Section 1.0 | Intro | duction                                               | 1 |
|-------------|-------|-------------------------------------------------------|---|
|             | 1.1   | Background                                            | 1 |
| Section 2.0 | Grou  | ndwater Monitoring Methodology and Analytical Results | 2 |
|             | 2.1   | Groundwater Monitoring Summary                        | 2 |
|             | 2.2   | Groundwater Monitoring Methodology                    | 2 |
|             | 2.3   | Groundwater Monitoring Analytical Results             | 3 |
| Section 3.0 | Conc  | lusions and Recommendations                           | 4 |
| Section 4.0 | Refe  | rences                                                | 4 |

# List of Figures (Following Text)

- Figure 1 Site Vicinity Map
- Figure 2 Site Plan
- Figure 3 Generalized Geological Cross Section
- Figure 4 April 2013 Groundwater Potentiometric Surface Map
- Figure 5 September 2013 Groundwater Potentiometric Surface Map

# List of Tables (Following Text)

- Table 1 Site History Timeline
- Table 2
   Monitor Well Specifications and Groundwater Elevations
- Table 3
   Groundwater Laboratory Analytical Results Summary



# List of Appendices

- Appendix A 2013 Semi-Annual Groundwater Sampling Field Forms
- Appendix B 2013 Semi-Annual Groundwater Laboratory Analytical Reports
- Appendix C Souder Miller & Associates Historical Analytical Data



# Section 1.0 Introduction

This report presents the results of the April 4, 2013 semi-annual groundwater monitoring event, and the September 30, 2013 semi-annual groundwater monitoring and supplemental metals treatability study sampling events completed by Conestoga-Rovers & Associates, Inc. (CRA) at the Farmington B Com No. 1E remediation site in Farmington, New Mexico (Site). The Site is located on private property in southeast Farmington, New Mexico, near the corner of East Murray Drive and South Carlton Avenue. Geographical coordinates for the Site are 36.721137° North and 108.190501° West. The Site consists of a natural gas well and associated equipment and installations. The location and general features of the Site are presented as **Figures 1 and 2**, respectively. A generalized geological cross section of the Site is included as **Figure 3**.

# 1.1 Background

Conoco Inc., predecessor to ConocoPhillips Company (ConocoPhillips), owned the property and operated the gas well between July 1991 and January 1997. Merrion Oil & Gas Company is the current property owner and well operator. A Phase II Environmental Site Assessment associated with the property transfer was conducted by On Site Technologies, Limited (On Site) in March 1997. Soil hydrocarbon impacts were confirmed north of a production storage tank and west of a separator/dehydrator pit (**Figure 2**). Impacts were described by On Site as limited to a former unlined pit area with hydrocarbon migration primarily occurring vertically through the soil profile due to the porous and permeable subsurface soils; lateral migration was considered minimal (On Site, 1997). Soil excavation of the two impacted areas occurred in September 1997. A total of 906 cubic yards of impacted soil were removed from the two excavation areas. Of the 906 cubic yards, 328 were transported offsite and 578 were screened and placed back into the excavated areas along with clean fill. During backfill activities, approximately 10 gallons of liquid fertilizer was sprayed into both excavations to enhance in situ degradation of residual hydrocarbons (On Site, 1997).

Groundwater Monitor Wells MW-1, MW-2, MW-3, MW-4, MW-5, and MW-6 were installed at the Site in February and August 1998 under the supervision of On Site. During 1998 and 1999, results from groundwater samples collected from MW-2 through MW-6 did not have benzene, toluene, ethylbenzene, and xylenes (BTEX) concentrations in excess of New Mexico Water Quality Control Commission (NMWQCC) groundwater quality standards. On Site then requested that groundwater quality monitoring in Monitor Wells MW-2 through MW-6 be discontinued. The request was approved by the New Mexico Energy, Minerals, and Natural Resources Department (NMEMNRD) in a letter to Ms. Shirley Ebert of Conoco Inc. (NMEMNRD, 2000).

Although Monitor Wells MW-2 through MW-6 showed no hydrocarbon impacts during 1998 and 1999, light non-aqueous phase liquid (LNAPL) has been present in MW-1 since its installation and recovery has been ongoing. Souder Miller and Associates (SMA) placed active and passive skimmers in MW-1 in May 2004.



The passive skimmer collected a small amount of LNAPL; the active skimmer did not collect any LNAPL. SMA determined that an active skimmer was not a viable method of LNAPL recovery in MW-1 and proposed passive skimming or periodic hand bailing.

Tetra Tech, Inc. (Tetra Tech) began groundwater quality monitoring at the Site in May 2005. Tetra Tech monitored MW-1 and MW-6, which is located downgradient of MW-1. Quarterly groundwater pumping events were conducted at MW-1 from October 2004 to March 2008.

On June 15, 2011, Site consulting responsibilities were transferred from Tetra Tech to CRA of Albuquerque, NM. Quarterly groundwater sampling of MW-1 and MW-6 was continued by CRA. After 12 consecutive quarters of sampling with BTEX constituents below NMWQCC standards, BTEX analysis was discontinued following the December 2011 sampling event and annual sampling for dissolved iron and dissolved manganese, the two remaining constituents of concern above standards, was initiated. A summary of the Farmington B Com No. 1E Site history can be seen in **Table 1**.

# Section 2.0 Groundwater Monitoring Methodology and Analytical Results

# 2.1 Groundwater Monitoring Summary

Groundwater sampling events were conducted by CRA on April 4 and September 30, 2013. Groundwater elevation measurements were collected from all Site monitor wells. An LNAPL sheen was present in the purged water from MW-1 prior to sampling during both the April and September events. As a result, no field groundwater quality parameters were collected for MW-1. Groundwater samples were collected from Monitor Wells MW-1, MW-2, MW-3, MW-4, MW-5 and MW-6 during the sampling events.

In addition to routine activities, a groundwater sample collected from Monitor Well MW-1 during the September 30, 2013 event was submitted to CRA's Innovative Technology Group (ITG) to assess potential in situ technologies to address solubilization of iron and manganese in the reducing groundwater of the Site.

# 2.2 Groundwater Monitoring Methodology

# Groundwater Elevation Measurements

During each sampling event groundwater elevation measurements were recorded for Monitor Wells MW-1 through MW-6 using an oil/water interface probe. Groundwater elevations are detailed in **Table 2**. Groundwater potentiometric surface maps are presented as **Figures 4 and 5**. Based on monitoring data, groundwater flow during the April and September 2013 events was southwest to west-southwest. The data are consistent with recent and historical records at this Site. An irrigation canal is located immediately south of the Site, comprising a portion of its southern boundary.



The Animas River is approximately ¾ miles northwest of the Site and flows west. Flow in both of these surface water features likely affects seasonal groundwater elevations and flow direction as measured in Site monitor wells.

# Groundwater sampling

The April and September 2013 sampling events represent the second and third, sampling events, respectively, with BTEX analysis discontinued. For each event, approximately three well volumes were purged from each monitor well with a dedicated polyethylene 1.5-inch disposable bailer. During purging, field parameters including pH, conductivity, dissolved oxygen, temperature and oxidation/reduction potential were measured periodically and recorded on field sampling forms. Collected groundwater samples were placed in laboratory prepared bottles, packed on ice, and shipped under chain-of-custody documentation to Pace Analytical Services, Inc. of Lenexa, Kansas. The samples were analyzed for the presence of dissolved iron and manganese according to EPA Method 6010. Groundwater sampling field forms are included as **Appendix A**.

The metals treatability sample collected from Monitor Well MW-1 was submitted to CRA's ITG for evaluation for potential groundwater treatment by pH adjustment, biosparging and oxidant injection.

# 2.3 Groundwater Monitoring Analytical Results

The New Mexico Water Quality Control Commission (NMWQCC) mandates that groundwater quality in New Mexico be protected, and has issued groundwater quality standards in Title 20, Chapter 6, Part 2, Section 3103 of the New Mexico Administrative Code (20.6.2.3103 NMAC). Groundwater quality standards have been set for the protection of human health, domestic water supply, and irrigation use. Above-standard results of the April and September 2013 semi-annual sampling events are discussed below:

- Dissolved Manganese
  - The groundwater quality standard for dissolved manganese is 0.2 mg/L. The groundwater samples collected from Monitor Well MW-1 during the April and September 2013 sampling events were found to contain dissolved manganese at concentrations of 0.47 mg/L and 0.29 mg/L respectively. The groundwater samples collected from Monitor Wells MW-3 and MW-6 during the April 2013 sampling event were found to contain dissolved manganese at concentrations of 0.28 mg/L and 0.33 mg/L, respectively.



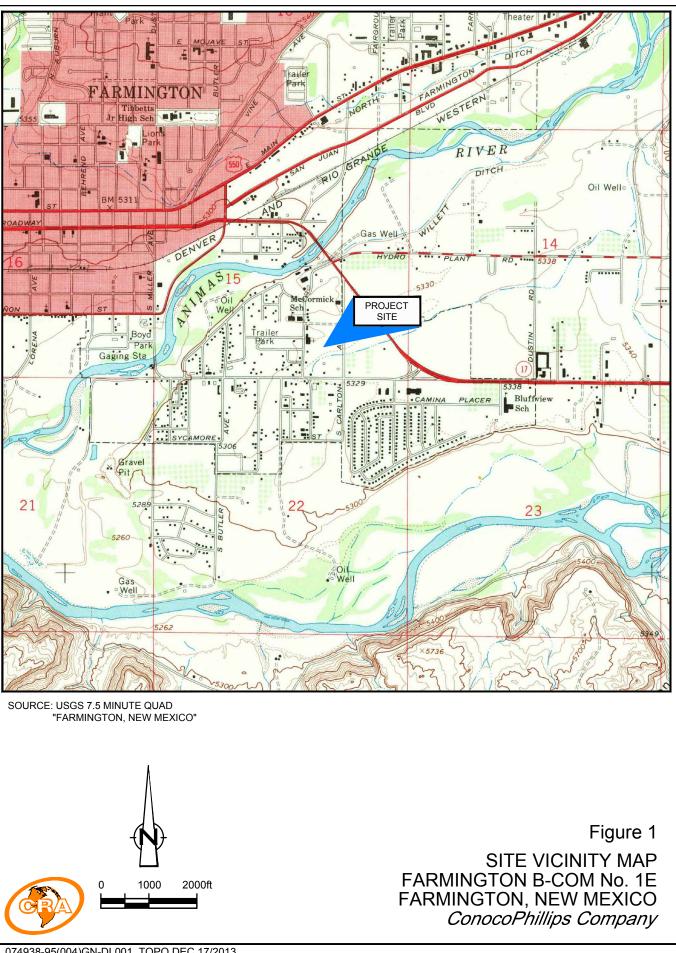
- Dissolved Iron
  - The groundwater quality standard for dissolved iron is 1.0 mg/L. Groundwater analysis of the sample collected from Monitor Well MW-1 during the April and September 2013 sampling event indicated dissolved iron concentrations of 1.8 mg/L, and 1.7 mg/L, respectively.

Laboratory analytical results are summarized in **Table 3**. The laboratory analytical report is included in **Appendix B**. A table of the SMA historical analytical data is attached as **Appendix C**.

# Section 3.0 Conclusions and Recommendations

BTEX in Site groundwater have naturally attenuated and have not been detected above NMWQCC standards since 2006. Analysis of these constituents at the Site was discontinued following the December 2011 sampling event. The anaerobic conditions caused by the biodegradation of hydrocarbons in groundwater may have led to the solubilization of iron and manganese. These constituents presently occur in Site groundwater at concentrations above NMWQCC standards in the vicinity of Monitor Well MW-1. The groundwater treatability study conducted by the ITG determined that pH adjustment would be the most cost-effective method for dissolved metals remediation. Evaluation of the available oxidant injection technologies is recommended to address both dissolved metals and the residual hydrocarbon sheen on the groundwater in the vicinity of MW-1.

If one of the recommended in situ technologies is implemented, CRA recommends groundwater monitoring and laboratory analysis of dissolved iron and manganese concentrations be conducted on a quarterly basis to monitor effectiveness of the remedial action. In the absence of a remedial action at the Site, continuation of annual monitoring is recommended. The next annual sampling event is scheduled for September 2014.


# Section 4.0 References

New Mexico Energy, Minerals, and Natural Resources Department. (2000). Re: Farmington B Com #1E Well Site. Letter to Ms. Shirley Ebert, Conoco, Inc. December 13, 2000.

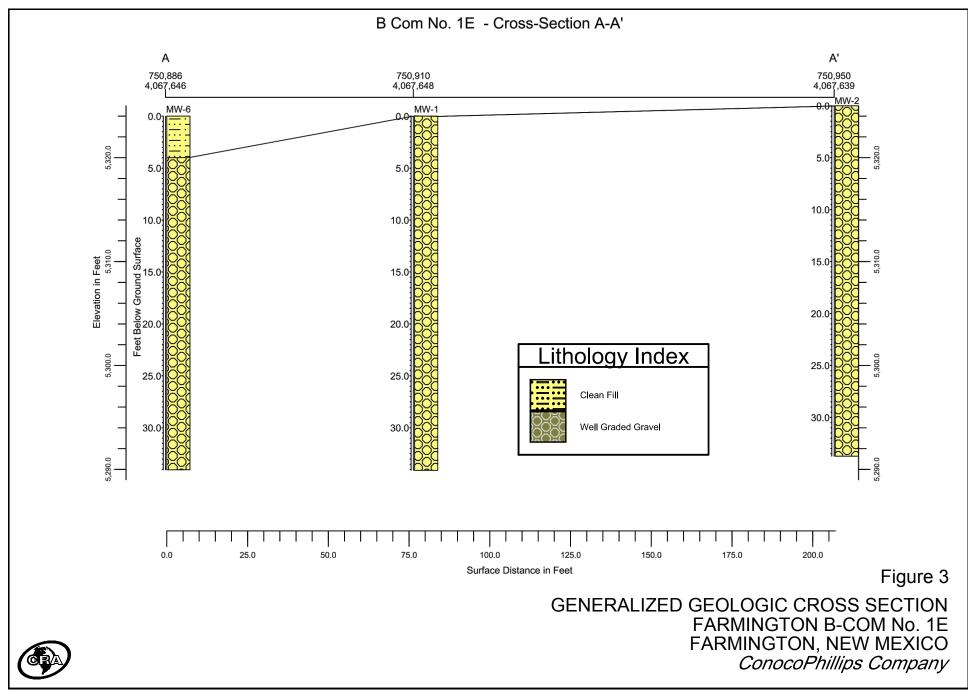
On-Site Technologies, Ltd. (1997). Annual Summary, Pit Closures and Groundwater Impact Updates, State of New Mexico, 1996. Prepared for Conoco Inc., Midland Division. Report dated April 22, 1997. 21 pp.

On-Site Technologies, Ltd. (1997). Re: Remediation Summary Farmington B Com #1E. . Letter Attn: Mr. Neal Goates, Senior Environmental Specialist, Conoco, Inc. November 26, 1997.



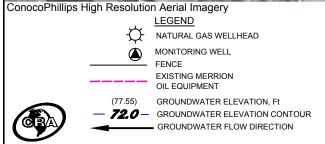


074938-95(004)GN-DL001\_TOPO DEC 17/2013




ConocoPhillips High Resolution Aerial Imagery

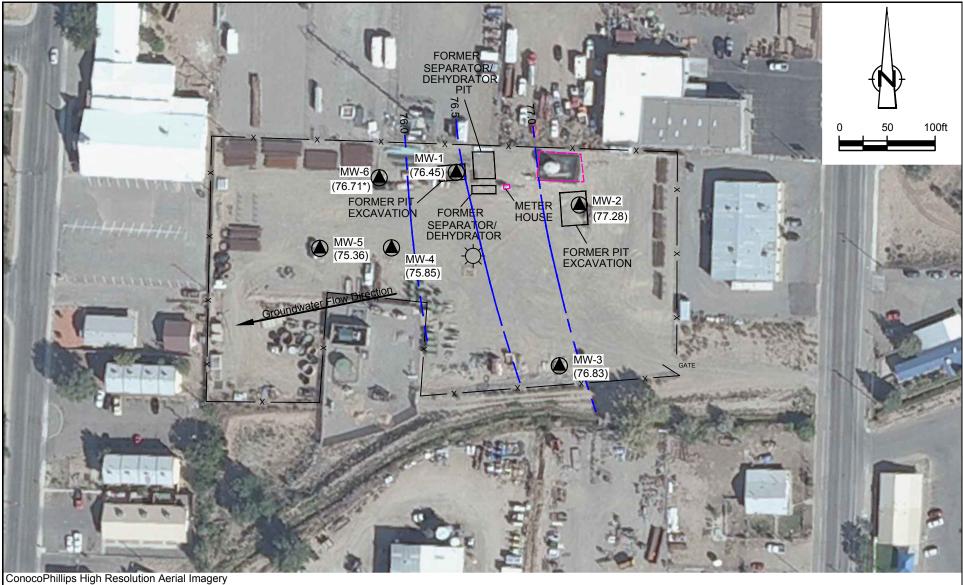



Figure 2 SITE PLAN FARMINGTON B-COM No. 1E FARMINGTON, NEW MEXICO ConocoPhillips Company

074938-95(004)GN-DL002\_SD DEC 17/2013



074938-95(004)GN-DL003\_XSEC DEC 17/2013






APRIL 2013 GROUNDWATER POTENTIOMETRIC SURFACE MAP FARMINGTON B-COM No. 1E FARMINGTON, NEW MEXICO *ConocoPhillips Company* 

Figure 4

074938-95(004)GN-DL005 JAN 9/2014



ConocoPhillips High Resolution Aerial Imagery
LEGEND
NATURAL GAS WELLHEAD
MONITORING WELL
FENCE
EXISTING MERRION
OIL EQUIPMENT
(77.55) GROUNDWATER ELEVATION, Ft
(76.71\*) NOT USED IN CONTOURING
72.0
GROUNDWATER ELEVATION CONTOUR
GROUNDWATER FLOW DIRECTION

SEPTEMBER 2013 GROUNDWATER POTENTIOMETRIC SURFACE MAP FARMINGTON B-COM No. 1E FARMINGTON, NEW MEXICO ConocoPhillips Company

Figure 5

074938-95(004)GN-DL004\_GG DEC 20/2013

#### SITE HISTORY TIMELINE CONOCOPHILLIPS COMPANY FARMINGTON B COM No. 1E SAN JUAN COUNTY, NEW MEXICO

| DATE                     | Event/Action                                                               | ACTIVITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| February 18, 1982        | Well Completed                                                             | Pioneer Production Corp. completed the Farmington B-COM No.<br>1E gas production well.                                                                                                                                                                                                                                                                                                                                                                                              |
| July 1, 1991             | Conoco Inc. well purchase                                                  | Conoco Inc. purchases wellsite from Mesa Operating Limited<br>Partnership of Amarillo, Texas.                                                                                                                                                                                                                                                                                                                                                                                       |
| January 1, 1997          | Change of ownership                                                        | Conoco Inc. sold the property and mineral lease to Merrion Oil & Gas Co.                                                                                                                                                                                                                                                                                                                                                                                                            |
| March, 1997              | Site Assessment                                                            | Phase II Environmental Site Assessment is conducted by On Site<br>Technologies.Three test holes advanced with Auger refusal<br>encountered at 7 feet below ground surface (bgs) due to gravel and<br>cobbles. No samples collected. On Site Technologies later excavates<br>four additional test holes ranging in depth from 14 to 19 feet bgs.<br>Soil samples are collected from each excavation. TPH and BTEX<br>contamination is found in the vicinity of a former unlined pit. |
| September, 1997          | Soil Excavation                                                            | On Site Technologies oversees soil excavation of two pits. 906 cubic<br>yards of impacted soil were removed; of which 328 were disposed<br>of offsite and 578 cubic yards were placed back in the pits along<br>with clean fill. Approximately 10 gallons of liquid fertilizer was<br>sprayed into each pit during backfill.                                                                                                                                                        |
| February and August 1998 | Monitor Well Installation                                                  | Six monitor wells (MW-1 through MW-6) installed at the site under the supervision of On Site.                                                                                                                                                                                                                                                                                                                                                                                       |
| October 29, 2004         | Groundwater Removal from<br>Monitor Well MW-1                              | First removal of groundwater - 160 gallons removed by vacuum truck operated by Riley Industrial Services of Farmington, NM.                                                                                                                                                                                                                                                                                                                                                         |
| November 1, 2004         | Groundwater Removal from<br>Monitor Well MW-1                              | 40 gallons removed by vacuum truck operated by Riley Industrial<br>Services of Farmington, NM.                                                                                                                                                                                                                                                                                                                                                                                      |
| December 3, 2004         | Groundwater Removal from<br>Monitor Well MW-1                              | 150 gallons removed by vacuum truck operated by Riley Industrial<br>Services of Farmington, NM.                                                                                                                                                                                                                                                                                                                                                                                     |
| May 9th and 10th, 2005   | Monitor Well Sampling                                                      | Tetra Tech begins quarterly monitoring at the site. Groundwater<br>samples collected from monitor wells MW-1 and MW-6. A sheen is<br>noted in MW-1; an oil absorbant sock is placed in the well.                                                                                                                                                                                                                                                                                    |
| July 6, 2005             | Groundwater Removal from<br>Monitor Well MW-1                              | 138 gallons removed by vacuum truck operated by Riley Industrial<br>Services of Farmington, NM.                                                                                                                                                                                                                                                                                                                                                                                     |
| October 19, 2005         | Groundwater Removal from<br>Monitor Well MW-1 and<br>Monitor Well Sampling | Groundwater samples collected from monitor wells MW-1 and<br>MW-6. 186 gallons removed from MW-1; a sheen is observed in<br>purge water and oil absorbant sock is replaced.                                                                                                                                                                                                                                                                                                         |
| February 16, 2006        |                                                                            | 144 gallons removed by vacuum truck operated by Riley Industrial<br>Services of Farmington, NM.                                                                                                                                                                                                                                                                                                                                                                                     |
| May 15, 2006             | Groundwater Removal from                                                   | 152 gallons removed by vacuum truck operated by Riley Industrial<br>Services of Farmington, NM.                                                                                                                                                                                                                                                                                                                                                                                     |
| August 2, 2006           | Monitor Well MW-1                                                          | 457 gallons removed by vacuum truck operated by Riley Industrial<br>Services of Farmington, NM.                                                                                                                                                                                                                                                                                                                                                                                     |
| November 14, 2006        |                                                                            | 423 gallons removed by vacuum truck operated by Riley Industrial<br>Services of Farmington, NM.                                                                                                                                                                                                                                                                                                                                                                                     |
| November 14, 2006        | Monitor Well Sampling                                                      | Third sampling of monitor wells MW-1 and MW-6 conducted by Tetra Tech.                                                                                                                                                                                                                                                                                                                                                                                                              |
| February 20, 2007        |                                                                            | 220 gallons removed by vacuum truck operated by Riley Industrial<br>Services of Farmington, NM.                                                                                                                                                                                                                                                                                                                                                                                     |
| May 15, 2007             | Groundwater Removal from                                                   | 364 gallons removed by vacuum truck operated by Riley Industrial<br>Services of Farmington, NM.                                                                                                                                                                                                                                                                                                                                                                                     |
| August 21, 2007          | Monitor Well MW-1                                                          | 684 gallons removed by vacuum truck operated by Riley Industrial<br>Services of Farmington, NM.                                                                                                                                                                                                                                                                                                                                                                                     |
| November 7, 2007         |                                                                            | 651 gallons removed by vacuum truck operated by Riley Industrial<br>Services of Farmington, NM.                                                                                                                                                                                                                                                                                                                                                                                     |

#### SITE HISTORY TIMELINE CONOCOPHILLIPS COMPANY FARMINGTON B COM No. 1E SAN JUAN COUNTY, NEW MEXICO

| DATE               | Event/Action                                    | ACTIVITY                                                                                                                                                                                                                                                                                                                                             |  |  |  |
|--------------------|-------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| November 7, 2007   | Monitor Well Sampling                           | Fourth sampling of monitor wells MW-1 and MW-6 conducted by Tetra Tech.                                                                                                                                                                                                                                                                              |  |  |  |
| January 16, 2008   | Groundwater Removal from<br>Monitor Well MW-1   | 149 gallons removed by vacuum truck operated by Riley Industrial Services of Farmington, NM.                                                                                                                                                                                                                                                         |  |  |  |
| March 18, 2008     | Groundwater Removal from<br>Monitor Well MW-1   | 93 gallons removed by vacuum truck operated by Riley Industrial<br>Services of Farmington, NM.                                                                                                                                                                                                                                                       |  |  |  |
| July 24, 2008      | Monitor Well Sampling                           | Initiation of quarterly sampling for monitor wells MW-1 and MW-6.                                                                                                                                                                                                                                                                                    |  |  |  |
| October 22, 2008   | Monitor Well Sampling                           | Continuation of quarterly sampling for monitor wells MW-1 and MW-6.                                                                                                                                                                                                                                                                                  |  |  |  |
| January 21, 2009   | Monitor Well Sampling                           | Continuation of quarterly sampling for monitor wells MW-1 and<br>MW-6. MW-1 not sampled due to presence of free product. Oil<br>absorbent sock placed in the well.                                                                                                                                                                                   |  |  |  |
| April 1, 2009      | Monitor Well Sampling                           | Continuation of quarterly sampling for monitor wells MW-1 and<br>MW-6. No free product detected in MW-1. First quarter of<br>compliance for all BTEX constituents.                                                                                                                                                                                   |  |  |  |
| June 10, 2009      | Monitor Well Sampling                           | Continuation of quarterly sampling for monitor wells MW-1 and<br>MW-6. No free product detected in MW-1. Second quarter of<br>compliance for all BTEX constituents.                                                                                                                                                                                  |  |  |  |
| October 1, 2009    | Monitor Well Sampling                           | Continuation of quarterly sampling for monitor wells MW-1 and<br>MW-6. No free product detected in MW-1. Third quarter of<br>compliance for all BTEX constituents.                                                                                                                                                                                   |  |  |  |
| December 17, 2009  | Monitor Well Sampling                           | Continuation of quarterly sampling for monitor wells MW-1 and<br>MW-6. No free product detected in MW-1. Fourth quarter of<br>compliance for all BTEX constituents.                                                                                                                                                                                  |  |  |  |
| March 29, 2010     | Monitor Well Sampling                           | Continuation of quarterly sampling for monitor wells MW-1 and<br>MW-6. A thin hydrocarbon sheen is detected in MW-1. Fifth<br>quarter of compliance for all BTEX constituents.                                                                                                                                                                       |  |  |  |
| June 11, 2010      | Monitor Well Sampling                           | Continuation of quarterly sampling for monitor wells MW-1 and<br>MW-6. A thin hydrocarbon sheen is detected in MW-1. Sixth<br>quarter of compliance for all BTEX constituents.                                                                                                                                                                       |  |  |  |
| September 24, 2010 | Monitor Well Sampling                           | Continuation of quarterly sampling for monitor wells MW-1 and<br>MW-6. A thin hydrocarbon sheen is detected in MW-1. Seventh<br>quarter of compliance for all BTEX constituents.                                                                                                                                                                     |  |  |  |
| February 7, 2011   | Monitor Well Sampling                           | Continuation of quarterly sampling for monitor wells MW-1 and<br>MW-6. A thin hydrocarbon sheen is detected in MW-1. Eighth<br>quarter of compliance with NMWQCC standards for BTEX;<br>however, dissolved manganese concentrations in MW-1 and MW-6<br>were above standards.                                                                        |  |  |  |
| March 18, 2011     | Monitor Well Sampling                           | Continuation of quarterly groundwater sampling for monitor wells<br>MW-1 and MW-6. Nineth quarter of compliance with NMWQCC<br>standards for BTEX; however, dissolved manganese concentration<br>in MW-1 was above standard.                                                                                                                         |  |  |  |
| June 15, 2011      | Transfer of Site Consulting<br>Responsibilities | Site consulting responsibilities were transferred from Tetra Tech of<br>Albuquerque, NM to Conestoga-Rovers & Associates of<br>Albuquerque, NM.                                                                                                                                                                                                      |  |  |  |
| June 20, 2011      | Monitor Well Sampling                           | Continuation of quarterly groundwater sampling for monitor wells<br>MW-1 and MW-6. Tenth quarter of compliance with NMWQCC<br>standards for BTEX; however, dissolved manganese concentration<br>in both MW-1 and MW-6 were above standard. LNAPL sheen<br>present in MW-1.                                                                           |  |  |  |
| September 30, 2011 | Monitor Well Sampling                           | Continuation of quarterly groundwater sampling for monitor wells<br>MW-1 and MW-6. 11th quarter of compliance with NMWQCC<br>standards for BTEX; however, dissolved manganese and dissolved<br>iron concentrations were above standards in MW-1. LNAPL sheen<br>present in MW-1.                                                                     |  |  |  |
| December 15, 2011  | Monitor Well Sampling                           | Continuation of quarterly groundwater sampling for monitor wells<br>MW-1 and MW-6. 12th quarter of compliance with NMWQCC<br>standards for BTEX; however, dissolved manganese and dissolved<br>iron concentrations were above standards in MW-1 and dissolved<br>manganese concentration was above standard in MW-6. LNAPL<br>sheen present in MW-1. |  |  |  |

#### SITE HISTORY TIMELINE CONOCOPHILLIPS COMPANY FARMINGTON B COM No. 1E SAN JUAN COUNTY, NEW MEXICO

| DATE               | Event/Action          | ACTIVITY                                                                                                                                                                                                                              |
|--------------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| September 21, 2012 | Monitor Well Sampling | Analysis for BTEX discontinued. Monitor Wells MW-1 and MW-6<br>sampled and analyzed for dissolved manganese and dissolved<br>iron. LNAPL sheen present in MW-1.                                                                       |
| April 4, 2013      | Monitor Well Sampling | Monitor Wells MW-1, MW-2, MW-3, MW-4, MW-5 and MW-6<br>sampled and analyzed for dissolved manganese and dissolved<br>iron. LNAPL sheen present in MW-1.                                                                               |
| September 30, 2013 | Monitor Well Sampling | Monitor Wells MW-1, MW-2, MW-3, MW-4, MW-5 and MW-6<br>sampled and analyzed for dissolved manganese and dissolved<br>iron. LNAPL sheen present in MW-1. Monitor Well MW-1 also<br>sampled and analyzed for metals treatability study. |

#### MONITOR WELL SPECIFICATIONS AND GROUNDWATER ELEVATIONS CONOCOPHILLIPS COMPANY FARMINGTON B COM No. 1E SAN JUAN COUNTY, NEW MEXICO

| Well ID | Total Depth (ft) | Surface<br>Elevation* | Screen Interval<br>(ft bgs) | Date Measured          | Depth to<br>Product (ft<br>below TOC) | Depth to<br>Groundwater<br>(ft below TOC) | Relative Water<br>Level* |
|---------|------------------|-----------------------|-----------------------------|------------------------|---------------------------------------|-------------------------------------------|--------------------------|
|         |                  |                       |                             | 5/9/2005               | Sheen                                 | 28.30                                     | 73.07                    |
|         |                  |                       |                             | 7/6/2005               | -                                     | 26.50                                     | 74.87                    |
|         |                  |                       |                             | 10/19/2005             | Sheen                                 | 25.12                                     | 76.25                    |
|         |                  |                       |                             | 2/16/2006              | -                                     | 28.23                                     | 73.14                    |
|         |                  |                       |                             | 5/15/2006              | -                                     | 27.02                                     | 74.35                    |
|         |                  |                       |                             | 8/2/2006               | -                                     | 24.37                                     | 77.00                    |
|         |                  |                       |                             | 11/14/2006             | Sheen                                 | 26.48                                     | 74.89                    |
|         |                  |                       |                             | 2/20/2007              | Sheen                                 | 29.03                                     | 72.34                    |
|         |                  |                       |                             | 5/15/2007              | -<br>Sheen                            | 26.97                                     | 74.40                    |
|         |                  |                       |                             | 8/21/2007              | 26.1                                  | 25.20<br>26.30                            | 76.17<br>75.07           |
|         |                  |                       |                             | 11/7/2007<br>1/16/2008 | 27.88                                 | 29.24                                     | 72.13                    |
|         |                  |                       |                             | 3/18/2008              | 29.27                                 | 29.24                                     | 72.13                    |
|         |                  |                       |                             | 7/24/2008              | Sheen                                 | 29.27                                     | 75.64                    |
|         |                  |                       |                             | 10/22/2008             | Sheen                                 | 25.35                                     | 75.04                    |
| MW-1    | 34.09            | 101.37                | 19.09 - 34.09               | 1/21/2009              | 27.9                                  | 28.25                                     | 73.12                    |
| 10100-1 | 34.09            | 101.57                | 19.09 - 34.09               |                        | -                                     | 29.47                                     |                          |
|         |                  |                       |                             | 4/1/2009<br>6/10/2009  | -                                     | 29.47                                     | 71.90<br>74.62           |
|         |                  |                       |                             | 6/10/2009<br>10/1/2009 | -                                     | 26.75                                     | 74.62                    |
|         |                  |                       |                             | 12/17/2009             | -                                     | 26.31                                     | 75.06                    |
|         |                  |                       |                             | 3/29/2010              | - 28.68                               | 28.71                                     | 75.06                    |
|         |                  |                       |                             | 6/11/2010              | Sheen                                 | 25.98                                     | 75.39                    |
|         |                  |                       |                             | 9/24/2010              | Sheen                                 | 25.26                                     | 76.11                    |
|         |                  |                       |                             | 2/7/2011               | Sheen                                 | 28.83                                     | 70.11                    |
|         |                  |                       |                             | 3/18/2011              | 29.71                                 | 29.73                                     | 71.64                    |
|         |                  |                       |                             | 6/20/2011              | Sheen                                 | 29.73                                     | 74.37                    |
|         |                  |                       |                             | 9/30/2011              | Sheen                                 | 24.32                                     | 77.05                    |
|         |                  |                       |                             | 12/15/2011             | Sheen                                 | 24.32                                     | 74.47                    |
|         |                  |                       |                             | 9/21/2012              | Sheen                                 | 24.52                                     | 76.85                    |
|         |                  |                       |                             | 4/4/2013               | Sheen                                 | 29.74                                     | 70.83                    |
|         |                  |                       |                             | 9/30/2013              | Sheen                                 | 24.92                                     | 76.45                    |
|         |                  |                       |                             | 5/9/2005               | -                                     | 27.28                                     | 74.29                    |
|         |                  |                       |                             | 7/6/2005               | -                                     | 25.52                                     | 76.05                    |
|         |                  |                       |                             | 10/19/2005             | -                                     | 24.30                                     | 77.27                    |
|         |                  |                       |                             | 2/16/2006              | -                                     | 27.38                                     | 74.19                    |
|         |                  |                       |                             | 5/15/2006              | -                                     | 25.62                                     | 75.95                    |
|         |                  |                       |                             | 8/2/2006               | -                                     | 23.51                                     | 78.06                    |
|         |                  |                       |                             | 11/14/2006             | -                                     | 26.08                                     | 75.49                    |
|         |                  |                       |                             | 2/20/2007              | -                                     | 28.13                                     | 73.44                    |
|         |                  |                       |                             | 5/15/2007              |                                       | 25.86                                     | 75.71                    |
|         |                  |                       |                             | 8/21/2007              | -                                     | 24.45                                     | 77.12                    |
|         |                  |                       |                             | 11/7/2007              | -                                     | 25.31                                     | 76.26                    |
|         |                  |                       |                             | 1/16/2008              | -                                     | 27.27                                     | 74.30                    |
|         |                  |                       |                             | 3/18/2008              | -                                     | 28.68                                     | 72.89                    |
|         |                  |                       |                             | 7/24/2008              | -                                     | 24.77                                     | 76.80                    |
|         |                  |                       |                             | 10/22/2008             | -                                     | 24.55                                     | 77.02                    |
| MW-2    | 33.72            | 101.57                | 18.72 - 33.72               | 1/21/2009              | -                                     | 27.23                                     | 74.34                    |
|         |                  |                       | 10.72 - 33.72               | 4/1/2009               | -                                     | 28.76                                     | 72.81                    |
|         |                  |                       |                             | 6/10/2009              | -                                     | 25.76                                     | 75.81                    |
|         |                  |                       |                             | 10/1/2009              | -                                     | 22.22                                     | 79.35                    |
|         |                  |                       |                             | 12/17/2009             | -                                     | 25.62                                     | 75.95                    |
|         |                  |                       |                             | 3/29/2010              | -                                     | 27.96                                     | 73.61                    |
|         |                  |                       |                             | 6/11/2010              | -                                     | 24.99                                     | 76.58                    |
|         |                  |                       |                             | 9/24/2010              | -                                     | 24.54                                     | 77.03                    |
|         |                  |                       |                             | 2/7/2011               | -                                     | 28.22                                     | 73.35                    |
|         |                  |                       |                             | 3/18/2011              | -                                     | 29.14                                     | 72.43                    |
|         |                  |                       |                             | 6/20/2011              | -                                     | 26.20                                     | 75.37                    |
|         |                  |                       |                             | 9/30/2011              | -                                     | 23.51                                     | 78.06                    |
|         |                  |                       |                             | 12/15/2011             | -                                     | 26.22                                     | 75.35                    |
|         |                  |                       |                             | 9/21/2012              | -                                     | 23.81                                     | 77.76                    |
|         |                  |                       |                             | 4/4/2013               | -                                     | 29.16                                     | 72.41                    |
|         |                  |                       |                             | 9/30/2013              | -                                     | 24.29                                     | 77.28                    |

#### MONITOR WELL SPECIFICATIONS AND GROUNDWATER ELEVATIONS CONOCOPHILLIPS COMPANY FARMINGTON B COM No. 1E SAN JUAN COUNTY, NEW MEXICO

| Well ID | Total Depth (ft) | Surface<br>Elevation* | Screen Interval<br>(ft bgs) | Date Measured           | Depth to<br>Product (ft<br>below TOC) | Depth to<br>Groundwater<br>(ft below TOC) | Relative Water<br>Level* |
|---------|------------------|-----------------------|-----------------------------|-------------------------|---------------------------------------|-------------------------------------------|--------------------------|
|         |                  |                       |                             | 5/9/2005                | -                                     | 27.81                                     | 74.29                    |
|         |                  |                       |                             | 7/6/2005                | -                                     | 26.03                                     | 76.07                    |
|         |                  |                       |                             | 10/19/2005              | -                                     | 25.06                                     | 77.04                    |
|         |                  |                       |                             | 2/16/2006               | -                                     | 28.57                                     | 73.53                    |
|         |                  |                       |                             | 5/15/2006               | -                                     | 26.15                                     | 75.95                    |
|         |                  |                       |                             | 8/2/2006                | -                                     | 23.83                                     | 78.27                    |
|         |                  |                       |                             | 11/14/2006              | -                                     | 26.75                                     | 75.35                    |
|         |                  |                       |                             | 2/20/2007               | -                                     | 29.31                                     | 72.79                    |
|         |                  |                       |                             | 5/15/2007               | -                                     | 26.23                                     | 75.87                    |
|         |                  |                       |                             | 8/21/2007               | -                                     | 25.00                                     | 77.10                    |
|         |                  |                       |                             | 11/7/2007               | -                                     | 26.12                                     | 75.98                    |
|         |                  |                       |                             | 1/16/2008               | -                                     | 28.46                                     | 73.64                    |
|         |                  |                       |                             | 3/18/2008               | -                                     | 29.97                                     | 72.13<br>76.83           |
|         |                  |                       |                             | 7/24/2008<br>10/22/2008 | -                                     | 25.27<br>25.35                            | 76.75                    |
| MW-3    | 32.44            | 102.1                 | 17.44 - 32.44               |                         | -                                     | 28.56                                     | 78.75                    |
| 10100-5 | 32.44            | 102.1                 | 17.44 - 32.44               | 1/21/2009               | -                                     |                                           |                          |
|         |                  |                       |                             | 4/1/2009<br>6/10/2009   | -                                     | 30.20<br>26.55                            | 71.90<br>75.55           |
|         |                  |                       |                             | 10/1/2009               | -                                     | 28.55                                     | 75.55                    |
|         |                  |                       |                             | 12/17/2009              | -                                     | 23.00                                     | 79.10                    |
|         |                  |                       |                             | 3/29/2010               | -                                     | 29.41                                     | 75.24                    |
|         |                  |                       |                             | 6/11/2010               | -                                     | 25.62                                     | 76.48                    |
|         |                  |                       |                             | 9/24/2010               | -                                     | 25.23                                     | 76.87                    |
|         |                  |                       |                             | 2/7/2010                | -                                     | 29.47                                     | 72.63                    |
|         |                  |                       |                             | 3/18/2011               | -                                     | 30.40                                     | 72.03                    |
|         |                  |                       |                             | 6/20/2011               | -                                     | 26.83                                     | 75.27                    |
|         |                  |                       |                             | 9/30/2011               | -                                     | 23.95                                     | 78.15                    |
|         |                  |                       |                             | 12/15/2011              | -                                     | 27.41                                     | 74.69                    |
|         |                  |                       |                             | 9/21/2012               | -                                     | 24.55                                     | 77.55                    |
|         |                  |                       |                             | 4/4/2013                | -                                     | 30.52                                     | 71.58                    |
|         |                  |                       |                             | 9/30/2013               | -                                     | 25.27                                     | 76.83                    |
|         |                  |                       |                             | 5/9/2005                | -                                     | 28.73                                     | 72.67                    |
|         |                  |                       |                             | 7/6/2005                | -                                     | 26.66                                     | 74.74                    |
|         |                  |                       |                             | 10/19/2005              | -                                     | 25.62                                     | 75.78                    |
|         |                  |                       |                             | 2/16/2006               | -                                     | 28.91                                     | 72.49                    |
|         |                  |                       |                             | 5/15/2006               | -                                     | 26.86                                     | 74.54                    |
|         |                  |                       |                             | 8/2/2006                | -                                     | 24.59                                     | 76.81                    |
|         |                  |                       |                             | 11/14/2006              | -                                     | 27.02                                     | 74.38                    |
|         |                  |                       |                             | 2/20/2007               | -                                     | 29.61                                     | 71.79                    |
|         |                  |                       |                             | 5/15/2007               | -                                     | 27.25                                     | 74.15                    |
|         |                  |                       |                             | 8/21/2007               | -                                     | 25.56                                     | 75.84                    |
|         |                  |                       |                             | 11/7/2007               | -                                     | 26.50                                     | 74.90                    |
|         |                  |                       |                             | 1/16/2008               | -                                     | 28.55                                     | 72.85                    |
|         |                  |                       |                             | 3/18/2008               | -                                     | 29.99                                     | 71.41                    |
|         |                  |                       |                             | 7/24/2008               | -                                     | 26.02                                     | 75.38                    |
|         |                  |                       |                             | 10/22/2008              | -                                     | 25.84                                     | 75.56                    |
| MW-4    | 32.72            | 101.4                 | 17.72 - 32.72               | 1/21/2009               | -                                     | 28.69                                     | 72.71                    |
|         |                  |                       |                             | 4/1/2009                | -                                     | 30.22                                     | 71.18                    |
|         |                  |                       |                             | 6/10/2009               | -                                     | 27.31                                     | 74.09                    |
|         |                  |                       |                             | 10/1/2009               | -                                     | 23.80                                     | 77.60                    |
|         |                  |                       |                             | 12/17/2009              | -                                     | 27.07                                     | 74.33                    |
|         |                  |                       |                             | 3/29/2010               | -                                     | 29.51                                     | 71.89                    |
|         |                  |                       |                             | 6/11/2010               | -                                     | 26.43                                     | 74.97                    |
|         |                  |                       |                             | 9/24/2010               | -                                     | 25.70                                     | 75.70                    |
|         |                  |                       |                             | 2/7/2011                | -                                     | 29.49                                     | 71.91                    |
|         |                  |                       |                             | 3/18/2011               | -                                     | 30.38                                     | 71.02                    |
|         |                  |                       |                             | 6/20/2011               | -                                     | 27.34                                     | 74.06                    |
|         |                  |                       |                             | 9/30/2011               | -                                     | 24.68                                     | 76.72                    |
|         |                  |                       |                             | 12/15/2011              | -                                     | 27.58                                     | 73.82                    |
|         |                  |                       |                             | 9/21/2012               | -                                     | 25.01                                     | 76.39                    |
|         |                  |                       |                             | 4/4/2013                | -                                     | 30.46                                     | 70.94                    |
|         | 1                |                       | 1                           | 9/30/2013               | -                                     | 25.55                                     | 75.85                    |

# MONITOR WELL SPECIFICATIONS AND GROUNDWATER ELEVATIONS CONOCOPHILLIPS COMPANY FARMINGTON B COM No. 1E SAN JUAN COUNTY, NEW MEXICO

| Well ID | Total Depth (ft) | Surface<br>Elevation* | Screen Interval<br>(ft bgs) | Date Measured | Depth to<br>Product (ft<br>below TOC) | Depth to<br>Groundwater<br>(ft below TOC) | Relative Water<br>Level* |
|---------|------------------|-----------------------|-----------------------------|---------------|---------------------------------------|-------------------------------------------|--------------------------|
|         |                  |                       |                             | 5/9/2005      | -                                     | 28.50                                     | 72.02                    |
|         |                  |                       |                             | 7/6/2005      | -                                     | 26.32                                     | 74.20                    |
|         |                  |                       |                             | 10/19/2005    | -                                     | 25.30                                     | 75.22                    |
|         |                  |                       |                             | 2/16/2006     | -                                     | 28.62                                     | 71.90                    |
|         |                  |                       |                             | 5/15/2006     | -                                     | 26.55                                     | 73.97                    |
|         |                  |                       |                             | 8/2/2006      | -                                     | 24.23                                     | 76.29                    |
|         |                  |                       |                             | 11/14/2006    | -                                     | 27.67                                     | 72.85                    |
|         |                  |                       |                             | 2/20/2007     | -                                     | 29.34                                     | 71.18                    |
|         |                  |                       |                             | 5/15/2007     | -                                     | 27.04                                     | 73.48                    |
|         |                  |                       |                             | 8/21/2007     | -                                     | 25.21                                     | 75.31                    |
|         |                  |                       |                             | 11/7/2007     | -                                     | 26.13                                     | 74.39                    |
|         |                  |                       |                             | 1/16/2008     | -                                     | 28.18                                     | 72.34                    |
|         |                  |                       |                             | 3/18/2008     | -                                     | 29.65                                     | 70.87                    |
|         |                  |                       |                             | 7/24/2008     | -                                     | 25.73                                     | 74.79                    |
|         |                  |                       |                             | 10/22/2008    | -                                     | 25.49                                     | 75.03                    |
| MW-5    | 34.09            | 100.52                | 19.09 - 34.09               | 1/21/2009     | -                                     | 28.38                                     | 72.14                    |
|         |                  |                       |                             | 4/1/2009      | -                                     | 29.92                                     | 70.60                    |
|         |                  |                       |                             | 6/10/2009     | -                                     | 27.09                                     | 73.43                    |
|         |                  |                       |                             | 10/1/2009     | -                                     | 23.50                                     | 77.02                    |
|         |                  |                       |                             | 12/17/2009    | -                                     | 26.77                                     | 73.75                    |
|         |                  |                       |                             | 3/29/2010     | -                                     | 29.21                                     | 71.31                    |
|         |                  |                       |                             | 6/11/2010     | -                                     | 26.16                                     | 74.36                    |
|         |                  |                       |                             | 9/24/2010     | -                                     | 25.31                                     | 75.21                    |
|         |                  |                       |                             | 2/7/2011      | -                                     | 29.13                                     | 71.39                    |
|         |                  |                       |                             | 3/18/2011     | -                                     | 30.10                                     | 70.42                    |
|         |                  |                       |                             | 6/20/2011     | -                                     | 27.03                                     | 73.49                    |
|         |                  |                       |                             | 9/30/2011     | -                                     | 24.35                                     | 76.17                    |
|         |                  |                       |                             | 12/15/2011    | -                                     | 27.25                                     | 73.27                    |
|         |                  |                       |                             | 9/21/2012     | -                                     | 24.65                                     | 75.87                    |
|         |                  |                       |                             | 4/4/2013      | -                                     | 30.10                                     | 70.42                    |
|         |                  |                       |                             | 9/30/2013     | -                                     | 25.16                                     | 75.36                    |
|         |                  |                       |                             |               | -                                     | 29.94                                     | 72.20                    |
|         |                  |                       |                             | 5/9/2005      |                                       |                                           |                          |
|         |                  |                       |                             | 7/6/2005      | -                                     | 27.89                                     | 74.25                    |
|         |                  |                       |                             | 10/19/2005    | -                                     | 26.70                                     | 75.44                    |
|         |                  |                       |                             | 2/16/2006     | -                                     | 29.85                                     | 72.29                    |
|         |                  |                       |                             | 5/15/2006     | -                                     | 28.11                                     | 74.03                    |
|         |                  |                       |                             | 8/2/2006      | -                                     | 25.83                                     | 76.31                    |
|         |                  |                       |                             | 11/14/2006    | -                                     | 27.91                                     | 74.23                    |
|         |                  |                       |                             | 2/20/2007     | -                                     | 30.52                                     | 71.62                    |
|         |                  |                       |                             | 5/15/2007     | -                                     | 28.61                                     | 73.53                    |
|         |                  |                       |                             | 8/21/2007     | -                                     | 26.67                                     | 75.47                    |
|         |                  |                       |                             | 11/7/2007     | -                                     | 27.52                                     | 74.62                    |
|         |                  |                       |                             | 1/16/2008     | -                                     | 29.43                                     | 72.71                    |
|         |                  |                       |                             | 3/18/2008     | -                                     | 30.85                                     | 71.29                    |
|         |                  |                       |                             | 7/24/2008     | -                                     | 27.26                                     | 74.88                    |
| 1000    |                  | 405                   | 10.00 01.00                 | 10/22/2008    | -                                     | 26.85                                     | 75.29                    |
| MW-6    | 34.02            | 102.14                | 19.02 - 34.02               | 1/21/2009     | -                                     | 29.52                                     | 72.62                    |
|         |                  |                       |                             | 4/1/2009      | -                                     | 31.00                                     | 71.14                    |
|         |                  |                       |                             | 6/10/2009     | -                                     | 28.44                                     | 73.70                    |
|         |                  |                       |                             | 10/1/2009     | -                                     | 24.75                                     | 77.39                    |
|         |                  |                       |                             | 12/17/2009    | -                                     | 27.90                                     | 74.24                    |
|         |                  |                       |                             | 3/29/2010     | -                                     | 30.29                                     | 71.85                    |
|         |                  |                       |                             | 6/11/2010     | -                                     | 27.58                                     | 74.56                    |
|         |                  |                       |                             | 9/24/2010     | -                                     | 26.74                                     | 75.40                    |
|         |                  |                       |                             | 2/7/2011      | -                                     | 30.35                                     | 71.79                    |
|         |                  |                       |                             | 3/18/2011     | -                                     | 31.21                                     | 70.93                    |
|         |                  |                       |                             | 6/20/2011     | -                                     | 28.50                                     | 73.64                    |
|         |                  |                       |                             | 9/30/2011     | -                                     | 25.85                                     | 76.29                    |
|         |                  |                       |                             | 12/15/2011    | -                                     | 28.41                                     | 73.73                    |
|         |                  |                       |                             | 9/21/2012     | -                                     | 26.03                                     | 76.11                    |
|         |                  |                       |                             | 4/4/2013      | -                                     | 31.24                                     | 70.90                    |
|         |                  |                       |                             | 9/30/2013     | -                                     | 25.43                                     | 76.71                    |

Notes: 1. bgs = feet below ground surface

2. ft = Feet 3. TOC = Top of casing

4. \* Elevations relative to an arbitrary point set at 100 feet

#### GROUNDWATER LABORATORY ANALYTICAL RESULTS SUMMARY CONOCOPHILLIPS COMPANY FARMINGTON B COM No. 1E SAN JUAN COUNTY, NEW MEXICO

| Well<br>ID | Sample ID                | Date       | Sample<br>Type | Benzene<br>(mg/L) | Toluene<br>(mg/L) | Ethylbenzene<br>(mg/L) | Xylenes<br>(total)<br>(mg/L) | Iron<br>(dissolved)<br>(mg/L) | Manganese<br>(dissolved)<br>(mg/L) | Nitrate<br>(as N)<br>(mg/L) | Sulfate<br>(mg/L) |
|------------|--------------------------|------------|----------------|-------------------|-------------------|------------------------|------------------------------|-------------------------------|------------------------------------|-----------------------------|-------------------|
|            | MW-1                     | 2/19/1998  | (orig)         | 0.21              | 0.034             | 0.37                   | 2.044                        |                               |                                    |                             |                   |
|            | MW-1                     | 12/29/1998 | (orig)         | 0.35              | ND                | 0.42                   | 2.8                          |                               |                                    | -                           |                   |
|            | MW-1                     | 5/9/2005   | (orig)         | 0.017             | < 0.0007          | 0.074                  | 0.25                         |                               |                                    | < 0.40                      | 77.8              |
|            | MW-1                     | 10/19/2005 | (orig)         | 0.034             | < 0.001           | 0.17                   | 1.4                          |                               |                                    | 0.15                        | 39.9              |
|            | MW-1                     | 11/14/2006 | (orig)         | 0.018             | < 0.0007          | 0.19                   | 1.6                          |                               |                                    | < 0.015                     | 145               |
|            | MW-1                     | 11/7/2007  | (orig)         | 0.007             | < 0.0007          | 0.12                   | 0.25                         |                               |                                    | < 0.015                     | 38.4              |
|            | MW-1                     | 7/24/2008  | (orig)         | < 0.005           | < 0.005           | 0.09                   | 0.035                        |                               |                                    | < 0.5                       | 4.76              |
|            | MW-1 Duplicate           | 7/24/2008  | (orig)         | < 0.005           | < 0.005           | 0.11                   | 0.059                        |                               |                                    |                             |                   |
|            | MW-1                     | 10/22/2008 | (orig)         | < 0.005           | < 0.005           | 0.088                  | 0.165                        |                               |                                    | < 0.5                       | 17                |
|            | MW-1 Duplicate           | 10/22/2008 | (orig)         | < 0.005           | < 0.005           | 0.095                  | 0.186                        |                               |                                    |                             |                   |
|            | MW-1                     | 1/21/2009  |                |                   |                   | Free Prod              | uct - Not                    | Sampled                       |                                    |                             |                   |
|            | MW-1                     | 4/1/2009   | (orig)         | < 0.005           | < 0.005           | 0.011                  | < 0.005                      |                               |                                    |                             |                   |
|            | MW-1                     | 6/10/2009  | (orig)         | < 0.005           | < 0.005           | 0.096                  | < 0.005                      |                               |                                    |                             |                   |
|            | MW-1                     | 10/1/2009  | (orig)         | 0.0013            | < 0.001           | 0.058                  | 0.142                        | 0.233                         |                                    |                             |                   |
| MW-1       | MW-1                     | 12/17/2009 | (orig)         | 0.0014            | < 0.001           | 0.1                    | 0.0028                       | 0.521                         |                                    |                             |                   |
|            | MW-1                     | 3/29/2010  | (orig)         | < 0.001           | < 0.001           | 0.051                  | < 0.001                      | 0.0803                        |                                    |                             |                   |
|            | MW-1                     | 6/11/2010  | (orig)         | 0.0011            | < 0.001           | 0.098                  | 0.0018                       | 0.0217                        |                                    |                             |                   |
|            | MW-1                     | 9/24/2010  | (orig)         | < 0.001           | < 0.001           | 0.092                  | 0.0278                       | 0.0285                        |                                    |                             |                   |
|            | MW-1                     | 2/7/2011   | (orig)         | < 0.001           | < 0.001           | 0.026                  | < 0.001                      |                               | 0.459                              |                             |                   |
|            | MW-1                     | 3/18/2011  | (orig)         | < 0.001           | < 0.001           | 0.01                   | < 0.001                      | < 0.02                        | 0.477                              |                             |                   |
|            | GW-BCOM-062011-CMB-002   | 6/20/2011  | (orig)         | < 0.0010          | < 0.0010          | 0.0912                 | 0.0018                       | 0.157                         | 0.424                              |                             |                   |
|            | GW-BCOM-062011-CMB-003   | 6/20/2011  | (Duplicate)    | < 0.0010          | < 0.0010          | 0.0952                 | < 0.0030                     |                               |                                    |                             |                   |
|            | GW-074938-093011-CM-005  | 9/30/2011  | (orig)         | < 0.001           | < 0.001           | 0.058                  | 0.0048                       | 4.1                           | 0.268                              |                             |                   |
|            | GW-074938-093011-CM-006  | 9/30/2011  | (Duplicate)    | < 0.001           | < 0.001           | 0.0618                 | 0.0052                       |                               |                                    |                             |                   |
|            | GW-074938-121511-CB-MW-1 | 12/15/2011 | (orig)         | < 0.001           | < 0.001           | 0.0848                 | 0.0095                       | 1.91                          | 0.35                               |                             |                   |
|            | GW-074938-121511-CB-DUP  | 12/15/2011 | (Duplicate)    | < 0.001           | < 0.001           | 0.0807                 | 0.0092                       |                               |                                    |                             |                   |
|            | GW-074938-092112-JP-MW-1 | 9/21/2012  | (orig)         |                   |                   |                        |                              | 2.9                           | 0.27                               |                             |                   |
|            | GW-074938-040413-CM-MW-1 | 4/4/2013   | (orig)         |                   |                   |                        |                              | 1.8                           | 0.47                               |                             |                   |
|            | GW-074938-093013-CM-MW-1 | 9/30/2013  | (orig)         |                   |                   |                        |                              | 1.7                           | 0.29                               |                             |                   |
| 1 (147.2   | GW-074938-040413-CM-MW-2 | 4/4/2013   | (orig)         |                   |                   |                        |                              | < 0.05                        | 0.046                              |                             |                   |
| MW-2       | GW-074938-093013-CM-MW-2 | 9/30/2013  | (orig)         |                   |                   |                        |                              | < 0.05                        | 0.0077                             |                             |                   |

#### GROUNDWATER LABORATORY ANALYTICAL RESULTS SUMMARY CONOCOPHILLIPS COMPANY FARMINGTON B COM No. 1E SAN JUAN COUNTY, NEW MEXICO

| Well<br>ID | Sample ID                    | Date       | Sample<br>Type | Benzene<br>(mg/L) | Toluene<br>(mg/L) | Ethylbenzene<br>(mg/L) | Xylenes<br>(total)<br>(mg/L) | Iron<br>(dissolved)<br>(mg/L) | Manganese<br>(dissolved)<br>(mg/L) | Nitrate<br>(as N)<br>(mg/L) | Sulfate<br>(mg/L) |
|------------|------------------------------|------------|----------------|-------------------|-------------------|------------------------|------------------------------|-------------------------------|------------------------------------|-----------------------------|-------------------|
|            | GW-074938-121511-CB-MW-3     | 12/15/2011 | (orig)         |                   |                   |                        |                              | 0.246                         | 0.112                              |                             |                   |
| MW-3       | GW-074938-040413-CM-MW-3     | 4/4/2013   | (orig)         |                   |                   |                        |                              | 0.34                          | 0.28                               |                             |                   |
|            | GW-074938-093013-CM-MW-3     | 9/30/2013  | (orig)         |                   |                   |                        |                              | < 0.05                        | 0.047                              |                             |                   |
| MW-4       | GW-074938-040413-CM-MW-4     | 4/4/2013   | (orig)         |                   |                   |                        |                              | < 0.05                        | 0.069                              |                             |                   |
| 10100-4    | GW-074938-093013-CM-MW-4     | 9/30/2013  | (orig)         |                   |                   |                        |                              | < 0.05                        | < 0.005                            |                             |                   |
|            | GW-074938-040413-CM-MW-5     | 4/4/2013   | (orig)         |                   |                   |                        | -                            | < 0.05                        | < 0.005                            |                             |                   |
| MW-5       | GW-074938-040413-CM-DUP      | 4/4/2013   | (Duplicate)    |                   |                   |                        |                              | 0.62*                         | 0.025*                             |                             |                   |
|            | GW-074938-093013-CM-MW-5     | 9/30/2013  | (orig)         |                   |                   |                        |                              | < 0.05                        | < 0.005                            |                             |                   |
|            | MW-6                         | 9/15/1998  | (orig)         | ND                | ND                | ND                     | ND                           |                               |                                    |                             |                   |
|            | MW-6                         | 12/29/1998 | (orig)         | ND                | ND                | ND                     | ND                           |                               |                                    |                             |                   |
|            | MW-6                         | 3/3/1999   | (orig)         | ND                | ND                | ND                     | ND                           |                               |                                    |                             |                   |
|            | MW-6                         | 6/15/1999  | (orig)         | ND                | ND                | ND                     | ND                           |                               |                                    |                             |                   |
|            | MW-6                         | 9/15/1999  | (orig)         | ND                | 0.0007            | 0.0011                 | ND                           |                               |                                    |                             |                   |
|            | MW-6                         | 12/14/1999 | (orig)         | ND                | 0.0018            | 0.0007                 | 0.0019                       |                               |                                    |                             |                   |
|            | MW-6                         | 1/22/2004  | (orig)         | ND                | ND                | ND                     | ND                           |                               |                                    |                             |                   |
|            | MW-6                         | 5/9/2005   | (orig)         | < 0.0005          | < 0.0007          | < 0.0008               | < 0.0008                     |                               |                                    | < 0.4                       | 97                |
| l l        | MW-6                         | 10/19/2005 | (orig)         | < 0.0005          | < 0.0007          | < 0.0008               | < 0.0008                     |                               |                                    | 5.4                         | 52.6              |
| l l        | MW-6                         | 11/14/2006 | (orig)         | < 0.0005          | < 0.0007          | < 0.0008               | 0.001                        |                               |                                    | < 0.015                     | 159               |
| l l        | MW-6                         | 11/7/2007  | (orig)         | < 0.0005          | < 0.0007          | < 0.0008               | < 0.0008                     |                               |                                    | < 0.015                     | 112               |
| Í          | MW-6                         | 7/24/2008  | (orig)         | < 0.005           | < 0.005           | < 0.005                | < 0.005                      |                               |                                    | < 0.5                       | 44.4              |
|            | MW-6                         | 10/22/2008 | (orig)         | < 0.005           | < 0.005           | < 0.005                | < 0.005                      |                               |                                    | < 0.5                       | 43.7              |
|            | MW-6                         | 1/21/2009  | (orig)         | < 0.005           | < 0.005           | < 0.005                | < 0.005                      |                               |                                    | < 0.5                       | 31.1              |
|            | MW-6                         | 4/1/2009   | (orig)         | < 0.005           | < 0.005           | < 0.005                | < 0.005                      |                               |                                    |                             |                   |
| MW-6       | MW-6                         | 6/10/2009  | (orig)         | < 0.005           | < 0.005           | < 0.005                | < 0.005                      |                               |                                    |                             |                   |
|            | MW-6                         | 10/1/2009  | (orig)         | < 0.001           | < 0.001           | < 0.001                | < 0.001                      | < 0.02                        |                                    |                             |                   |
| l l        | MW-6                         | 12/17/2009 | (orig)         | < 0.001           | < 0.001           | < 0.001                | < 0.001                      | 0.0511                        |                                    |                             |                   |
| Í          | MW-6                         | 3/29/2010  | (orig)         | < 0.001           | < 0.001           | < 0.001                | < 0.001                      | < 0.0200                      |                                    |                             |                   |
| l l        | MW-6                         | 6/11/2010  | (orig)         | < 0.001           | < 0.001           | < 0.001                | < 0.001                      | < 0.0200                      |                                    |                             |                   |
|            | MW-6                         | 9/24/2010  | (orig)         | < 0.001           | < 0.001           | < 0.001                | < 0.001                      | < 0.0200                      |                                    |                             |                   |
|            | MW-6                         | 2/7/2011   | (orig)         | < 0.001           | < 0.001           | < 0.001                | < 0.001                      |                               | 0.543                              |                             |                   |
| l l        | MW-6                         | 3/18/2011  | (orig)         | < 0.001           | < 0.001           | < 0.001                | < 0.001                      | < 0.02                        | 0.0679                             |                             |                   |
| Í          | GW-BCOM-062011-CMB-001       | 6/20/2011  | (orig)         | < 0.0010          | < 0.0010          | < 0.0010               | < 0.0030                     | < 0.1                         | 0.43                               |                             |                   |
| l l        | GW-074938-093011-CM-004      | 9/30/2011  | (orig)         | < 0.001           | < 0.001           | < 0.001                | < 0.003                      | < 0.05                        | 0.0261                             |                             |                   |
|            | GW-074938-121511-CB-MW-6     | 12/15/2011 | (orig)         | < 0.001           | < 0.001           | < 0.001                | < 0.003                      | 0.429                         | 1.06                               |                             |                   |
|            | GW-074938-092112-JP-MW-6     | 9/21/2012  | (orig)         |                   |                   |                        |                              | < 0.05                        | 0.058                              |                             |                   |
|            | GW-074938-092112-JP-DUP      | 9/21/2012  | (Duplicate)    |                   |                   |                        |                              | < 0.06                        | 0.055                              |                             |                   |
|            | GW-074938-040413-CM-MW-6     | 4/4/2013   | (orig)         |                   |                   |                        |                              | 0.056                         | 0.33                               |                             |                   |
|            | GW-074938-093013-CM-MW-6     | 9/30/2013  | (orig)         |                   |                   |                        |                              | < 0.05                        | 0.17                               |                             |                   |
|            | GW-074938-093013-CM-DUP      | , ,        | (Duplicate)    |                   |                   |                        |                              | < 0.05                        | 0.17                               |                             |                   |
| NMW        | QCC Groundwater Quality Stan |            | , . r          | 0.01              | 0.75              | 0.75                   | 0.62                         | 1.0                           | 0.2                                | 10                          | 600               |

Notes: 1. MW = monitoring well 2. NMWQCC = New Mexico Water Quality Control Commission 3. Constituents in **BOLD** are in excess of NMWQCC groundwater quality standards

4. mg/L = milligrams per liter (parts per million)5. < 1.0 = Below laboratory detection limit of 1.0 mg/L6. ND = Below laboratory detection limit

7. -- = not sampled

8. \* = anomolous data

| WELL SAMPLING FIELD INFORMATION FORM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SITE/PROJECT NAME: <u>B-Com #1E</u> JOB# <u>074938</u><br>SAMPLE ID: GW-074938-048413-CM-MW-1 WELL# <u>MW-1</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| HHH     HHH     HHH     Well purging information     Or     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L <thl< th="">     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     <thl< th=""> <thl< th=""> <thl< th=""> <thl< th=""> <thl< th=""></thl<></thl<></thl<></thl<></thl<></thl<> |
| PURGING AND SAMPLING EQUIPMENT<br>PURGING EQUIPMENTDEDICATED<br>N<br>(CIRCLE ONE)<br>CIRCLE ONE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| PURGING DEVICE       A - SUBMERSIBLE PUMP       D - GAS LIFT PUMP       G - BAILER       X=         B - PERISTALITIC PUMP       B - PURGE PUMP       H - WATERRA®       PURGING DEVICE OTHER (SPECIFY)         SAMPLING DEVICE       C - BLADDER PUMP       F - DIPPER BOTTLE       X - OTHER       X=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PURGING MATERIAL       A - TEFLON       D - PVC       X=         B - STAINLESS STEEL       B - POLYETHYLENE       PURGING MATERIAL OTHER (SPECIFY)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| SAMPLING MATERIAL C-POLYPROPYLENE X-OTHER X=<br>SAMPLING MATERIAL OTHER (SPECIFY)<br>PURGE TUBING C-COMBINATION X=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| SAMPLING TUBING UBING OTHER (SPECIFY)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| FILTERING DEVICES 0.45 A - IN-LINE DISPOSABLE B - PRESSURE C - VACUUM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| FIELD MEASUREMENTS         DEPTH TO WATER       29       74       (feet)       WELL ELEVATION       (feet)         WELL DEPTH       34       09       (feet)       GROUNDWATER ELEVATION       (feet)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (°C) (std) (g/L) (uS/cm) (mV) (gal)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| AMPLE APPEARANCE:<br>ZEATHER CONDITIONS:<br>PECIFIC COMMENTS;<br>PECIFIC COMMENTS;<br>AMULTING AND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0,696×3= 2.088                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ICERTIFY THAT SAMPLING PROCEDURES WERE IN ACCORDANCE WITH APPLICABLE CRA PROTOCOUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

۰.

|                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1      |
|------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
|                                                | WELL SAMPLING FIELD INFORMATION FORM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        |
| SITE/PROJECT NAM                               | IE: <u>B-Con#IE</u> JOB# 074938                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |
| SAMPLE 1                                       | D: GW-074938-040413-0M-MW-6 WELL# MU-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
| 4/4/13<br>PURGE DATE<br>(MM DD YY)             | 4/4/13     Well PURGING INFORMATION     0.445     1.5       SAMPLE DATE<br>(MM DD YY)     SAMPLE TIME     WATER VOL. IN CASING<br>(GALLONS)     ACTUAL VOL. PURGED<br>(GALLONS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |
| PURGING EQUIPMENTDE                            | PURGING AND SAMPLING EQUIPMENT<br>EDICATEI Y N SAMPLING EQUIPMENTDEDICATEI Y N<br>(CIRCLE ONE) (CIRCLE ONE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |
| PURGING DEVICE                                 | A - SUBMERSIBLE PUMP D - GAS LIFT PUMP G - BAILER X=<br>B - PERISTALTIC PUMP E - PURGE PUMP H - WATERRA® PURGING DEVICE OTHER (SPECIFY)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |
| SAMPLING DEVICE                                | B - PERISTALTIC PUMP E - PURGE PUMP H - WATERRA® PURGING DEVICE OTHER (SPECIFY)<br>C - BLADDER PUMP F - DIPPER BOTTLE X - OTHER X - OTHER X =<br>SAMPLING DEVICE OTHER (SPECIFY)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |
| PURGING MATERIAL                               | A-TEFLON D-PVC X=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |
| SAMPLING MATERIAL                              | B - STAINLESS STEEL     E - POLYETHYLENE     PURGING MATERIAL OTHER (SPECIFY)       C - POLYPROPYLENE     X - OTHER     X=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |
| PURGE TUBING                                   | A - TEFLON       D - POLYPROPYLENE       G - COMBINATION       X=         B - TYGON       B - POLYETHYLENE       TEFLON/POLYPROPYLENE       PURGE TUBING OTHER (SPECIFY)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |
| SAMPLING TUBING                                | C-ROPE F-SILICONE X-OTHER X=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |
| FILTERING DEVICES 0.45                         | SAMPLING TUBING OTHER (SPECIFY)<br>A - IN-LINE DISPOSABLE B - PRESSURE C - VACUUM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |
|                                                | FIELD MEASUREMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |
| DEPTH TO WATER                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |
| WELL DEPTH                                     | pH     TDS     CONDUCTIVITY SC     ORP     VOLUME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | De my/ |
| $\left[ \frac{1}{10}, \frac{1}{5} \right]$ (c) | $\begin{bmatrix} 137 \\ (std) \end{bmatrix} \underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}_{l}\underbrace{0}$ | 2.30   |
| $\frac{10}{10}, \frac{31}{40}$                 | $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,53   |
| (°C)                                           | (g/L) (mV) (g/L) (g/L) (g/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |
| (°C)                                           | (std) (g/L) (µS/cm) (mV) (gal)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |
|                                                | FIELD COMMENTS     I//// Wingsheen y/n       Cloudy     odor:     Mml     color:     Mml     Wingsheen y/n     Mono       TEMPERATURE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |
| SPECIFIC COMMENTS:                             | - no recharge issues bailers 3/4 to till throughout                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |
|                                                | parging                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |
| 0,445 X3=                                      | 1.334                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |
| I CERTIFY THAT SAMPLING PR                     | ROCEDURES WERE IN ACCORPANCE WITH APPLICABLE CRA PROTOCOLES (MCCORE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        |

| SAMPLE ID:       GUID 174736-04001/3.0000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SITE/PROJECT NAM                                                                        | ле: B-Can #IE JOB# 074930                                                                                                                                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 414113       414113       6015       62.023       62.02         PUIGED ART       SAMPLET THAN       WATE VOLL NOARDS       ACTUAL VOL. FUGED         MAND TO TO       PUIGEND AND SAMPLET THAN       WATE VOLL NOARDS       ACTUAL VOL. FUGED         PUIGEND ATTER TO       PUIGEND AND SAMPLING EQUIPMENT       SAMPLING EQUIPMENT       SAMPLING EQUIPMENT       DEDICATED (N)         PUIGEND EQUIPMENT       DEDICATED (N)       N       CIRCLE FORM       SAMPLING EQUIPMENT       SAMPLING EQUIPMENT       SAMPLING EQUIPMENT       DEDICATED (N)         PUIGEND EQUIPMENT       DEDICATED (N)       N       CIRCLE ADDR       PUIGEND EQUIPMENT       SAMPLING EQUIPMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                       |                                                                                                                                                                |
| PURCING BQUIEMENTDEDICATED (V)       N       SAMPLING EQUIEMENTDEDICATED (V)       N         PURCING DEVICE       A-SUMMISSING PUMP       D-GAS LIT PUMP       G-MAIRE       X*         PURCING DEVICE       B-REMARKED EVMP       P-DIRER PUMP       G-MAIRE       X*         PURCING DEVICE       B-REMARKED EVMP       P-DIRER PUMP       G-MAIRE       X*         PURCING MATERIAL       B-ASIDER PUMP       P-DIRER PUMP       G-MAIRE       Y         PURCING MATERIAL       A-STRINGSSTREL       P-DOUTRER CONTR       X-OTHER       X*         PURCING MATERIAL       A-TERICON       D-PVC       X*       Y*         SAMPLING MATERIAL       B-STAINARESSTREL       X-OTHER       X*       TRECONTROLVENCY         AMPLING TUBING       A-TERICON       D-POLYPROPYLENE       G-COMBINATION       X*         AMPLING TUBING       A-TERICON       D-POLYPROPYLENE       G-COMBINATION       X*         MURG TUBING       C-BOR       F-SELICONE       X-OTHER       X*       TRECONTOOLYPLENE         AMPLING TUBING       C-BOR       F-SELICONE       X-OTHER       X*       TRECONTOOLYPLENE         LITERING DEVICES 0.45       A-IN-INFIDERCOABLE       S-PRESULE       C-ONDUCTIVITY       X*       TRECONTOOLYPLENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                         | SAMPLE DATE SAMPLE TIME WATER VOL, IN CASING ACTUAL VOL. PURGED (GALLONS) (GALLONS)                                                                            |
| PURGING DEVICE       A. SUBMERSIBLE FUMP       D. OAS LEFT FUMP       G. BAILAR       X=         TURGING DEVICE       B. SUBMERSIBLE FUMP       H. WATERCAM       TURGING DEVICE OTHER (SPECIFY)         SAMPLING DEVICE       C. BLODPERE OTHER       X- OTHER       X=         TURGING DEVICE       B. STAINLES STUEL       B. OLASTERIAL       X=         B. STAINLES STUEL       B. OLASTERIAL       D. PVC         B. STAINLESS STUEL       B. OLASTERIAL       X=         C. INDUPORT OFFICE       X-OTHER       X=         B. STAINLESS STUEL       B. OLASTERIAL       X=         C. INDUPORT OFFICE       X=       SAMPLING MATERIAL         E. C. INDUPORT OFFICE       X=       SAMPLING MATERIAL       X=         SAMPLING MATERIAL       E. OLASTERIAL       X=       SAMPLING MATERIAL OTHER (SPECIFY)         VICE TUBING       C. A. THEON       D. POLYPROPYLENE       G. COMBINATION       X=         C. BLOCONE       X=       TURGE TUBING       C. ACAUUM       Y=       TURGE TUBING OTHER (SPECIFY)         TILEEN DESTING       DEPTH TO WATER       SOLONDY       SAMPLING TUBING OTHER (SPECIFY)       X=         TILEND COMMENTER       SOLONDY       CONDUCTIVETY       SC       OUR       Y=         DEPTH TO WATER </td <td>PURGING EQUIPMENTD</td> <td>DEDICATED (Y) N SAMPLING EQUIPMENTDEDICATED Y N</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PURGING EQUIPMENTD                                                                      | DEDICATED (Y) N SAMPLING EQUIPMENTDEDICATED Y N                                                                                                                |
| SAMPLING DEVICE       G       C - BLADDER PUMP       P - DIPPER BOTTLE       X - OTHER       X - THER       X - SAMPLING DEVICE OTHER (SPECIFY)         SAMPLING MATERIAL       E       A - THEON       D - PVC       X - THER       X - THER       X - THER       X - THER (SPECIFY)         SAMPLING MATERIAL       E       C - FOLMPROPYLENE       X - OTHER       S - POLYBOPYLENE       X - OTHER       X - THER (SPECIFY)         SAMPLING MATERIAL       E       C - FOLMPROPYLENE       X - OTHER       X - OTHER       X - THER (SPECIFY)         VURGE TUBING       C - ROLFROPYLENE       X - OTHER       X - OTHER       X - OTHER       X - OTHER         AMPLING TUBING       C - ROLE       N - FOLMPROPYLENE       X - OTHER       X - OTHER       X - OTHER         AMPLING TUBING       C - ROE       P - SULCONE       X - OTHER       X - OTHER       X - OTHER         AMPLING TUBING       C - ROE       N - IN-LINE DEFORABLE       N - PRESSURE       C - VACUUM       X - SAMPLING TUBING OTHER (SPECIFY)         ILLERING DEVICES 0.45       A - IN-LINE DEFORABLE       N - PRESSURE       C - VACUUM       X - SAMPLING TUBING OTHER (SPECIFY)         ILLERING DEVICES 0.45       A - IN-LINE DEFORABLE       N - PRESSURE       C - VACUUM       X - SAMPLING TUBING OTHER (SPECIFY)         ILLE ELL DEV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PURGING DEVICE                                                                          | A - SUBMERSIBLE PUMP D - GAS LIFT PUMP G - BAILER X=                                                                                                           |
| VERGING MATERIAL       L       A TREICON       D - PYC       TURGING MATERIAL       TURGING MATERIAL       TURGING MATERIAL       TURGING MATERIAL       TURGING MATERIAL       TURGING MATERIAL OTHER (SPECIPY)         AMPLING MATERIAL       E       C - FOLYPROPYLINE       X - OTHER       TURGING MATERIAL OTHER (SPECIPY)         VURGE TUBING       A - TRELON       D - FOLYPROPYLINE       C - COMBINATION       Yurget TUBING MATERIAL OTHER (SPECIPY)         VURGE TUBING       B - TRIGON       B - TRIGON       D - FOLYPROPYLINE       C - COMBINATION         AMPLING TUBING       B - TRIGON       B - FOLYPROPYLINE       C - COMBINATION       Yurget TUBING OTHER (SPECIPY)         AMPLING TUBING       C - ROFE       F - SULCONE       X - OTHER       YURGET TUBING OTHER (SPECIPY)         ALLERING DEVICES 0.45       A - IN-LINE DESPOSABLE       B - PRESSURE       C - VACUUM       X=         MELL DEPTH       TOW       G (set)       WELL ELEVATION       (feet)       (feet)         VELL DEPTH       TOW       G (set)       ORP       ORP       ORP       ORP         TEMPERATURE       PH       TDS       COMPUTITY       ORP       ORP       ORP       G (set)       ORP       (feet)       (feet)       (feet)       (feet)       (feet)       (feet)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SAMPLING DEVICE                                                                         | C-BLADDER PUMP F-DIPPER BOTTLE X-OTHER X=                                                                                                                      |
| PURCE TUBING       A-TEPLON       D-POLYPROPYLENE       G-COMBINATION       X=         AMPLING TUBING       C-ROPE       F-SILCONE       X-OTHER       TEPLON/POLYPROPYLENE       X=         AMPLING TUBING       C-ROPE       F-SILCONE       X-OTHER       X=       TEPLON/POLYPROPYLENE       X=         AMPLING TUBING       C-ROPE       F-SILCONE       X-OTHER       X=       SAMPLING TUBING OTHER (SPECIPY)         ILTERING DEVICES 0.45       A-IN-LINE DEPOSABLE       B-PRESSURE       C-VACUUM       X=         HELD MEASUREMENTS       DEPTH TO WATER       30       10       (feel)       (feel)         WELL DEPTH       34       07       (feel)       GROUNDWATER ELEVATION       (feel)       (feel)         TEMPFERATURE       PH       TDS       COMPUCITVITY       ORP       VQUME       (feel)       (feel)         10.1 (2 (C)       7.2 (feid)       0.7 74.1 (fe/L)       11/37.1 (fi/S/cm)       11/37.5 (mv)       12.5 (fe/R)       11/37.1 (fi/S/cm)       11/37.1 (fi/S/c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                         | A - TEFLON     D - PVC     X=       B - STAINLESS STEEL     E - POLYETHYLENE     PURGING MATERIAL OTHER (SPECIFY)       C - POLYPROPYLENE     X - OTHER     X= |
| AMPLING TUBING $C$ - ROPE P-SULCONE X-OTHER X-<br>SAMPLING TUBING TUBING OTHER (SPECTPY)<br>ILTERING DEVICES 0.45 A-IN-LINE DISPOSABLE B-PRESSURE C-VACUUM<br>FIELD MEASUREMENTS<br>DEPTH TO WATER 30 10 (see) WELL ELEVATION (see) (see) (see) WELL DEPTH 34 09 (see) GROUNDWATER ELEVATION (see) (see | PURGE TUBING                                                                            | A-TEFLON D-POLYPROPYLENE G-COMBINATION X=                                                                                                                      |
| ILLERING DEVICES 0.45       A - IN-LINE DESCRABLE       B - PRESSURE       C - VACUUM         FIELD MEASUREMENTS         DEPTH TO WATER $30 10$ (feel)       (feel)       (feel)         WELL DEPTH $34 09$ (feel)       WELL ELEVATION       (feel)       (feel)         TEMPERATURE       pH       TDS       CONDUCTIVITY $5C$ ORP       VOLUME         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | AMPLING TUBING                                                                          | C-ROPE F-SILICONE X-OTHER X=                                                                                                                                   |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ILTERING DEVICES 0.45                                                                   |                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TEMPERATURE<br>$\left[\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                         |

•

| and the second |                                          |                                                           |                                         | • • •                                                                |                |
|------------------------------------------------------------------------------------------------------------------|------------------------------------------|-----------------------------------------------------------|-----------------------------------------|----------------------------------------------------------------------|----------------|
| v                                                                                                                | VELL SAMPLIN                             | G FIELD IN                                                | FORMATION FO                            | ORM                                                                  |                |
| SITE/PROJECT NAME:                                                                                               | B-Co                                     | NHE                                                       | јов# ()                                 | 74938                                                                |                |
| SAMPLE ID:                                                                                                       | GW-074938                                | -840413-(W                                                | 7-1114-4/WELL# M                        | w-4                                                                  |                |
| 4/4/13<br>PURGE DATE<br>(MM DD YY)                                                                               | 444/B<br>SAMPLE DATE<br>(MM DD YY)       | WELL PURGING IN<br><u>9955</u><br>SAMPLE TIN<br>(24 HOUR) | HORMATION                               | ASING ACTUAL VOL. PURGED<br>(GALLONS)                                | ]              |
| PURGING EQUIPMENTDEDIC                                                                                           | / A                                      | IGING AND SAMPI                                           |                                         | G EQUIPMENTDEDICATED                                                 | )<br>N<br>DNE) |
| PURGING DEVICE                                                                                                   | A - SUBMERSIBLE PUMP                     | D - GAS LIFT PUMP                                         | G - BAILER                              | X=                                                                   |                |
| SAMPLING DEVICE                                                                                                  | B - PERISTALTIC PUMP<br>C - BLADDER PUMP | E - PURGE PUMP<br>F - DIPPER BOTTLE                       | H - WATERRA®<br>X - OTHER               | PURGING DEVICE OTHER (SPECIFY<br>X=<br>SAMPLING DEVICE OTHER (SPECIF |                |
| PURGING MATERIAL                                                                                                 | A-TEFLON                                 | D-PVC                                                     |                                         | -<br>X=                                                              | · · · · ·      |
| SAMPLING MATERIAL                                                                                                | B - STAINLESS STEEL<br>C - POLYPROPYLENE | E - POLYETHYLENE<br>X - OTHER •                           | •                                       | PURGING MATERIAL OT HER (SPEC<br>X=                                  |                |
| PURGE TUBING                                                                                                     | A - TEFLON<br>B - TYGON                  | D - POLYPROPYLENE<br>E - POLYETHYLENE                     | G - COMBINATION<br>TEFLON/POLYPROPYLENE | X=<br>                                                               |                |
| SAMPLING TUBING                                                                                                  | C-ROPE                                   | F - SILĮCONE                                              | X-OTHER                                 | X=<br>SAMPLING TUBING OTHER (SPECIE                                  | FY)            |
| FILTERING DEVICES 0.45                                                                                           | A - IN-LINE DISPOSAE                     | BLE B - PRESSURE                                          | C-VACUUM                                | •                                                                    |                |
|                                                                                                                  | an lu                                    | FIELD MEASUR                                              | EMENTS                                  |                                                                      |                |
| DEPTH TO WATER                                                                                                   | 1 0 46                                   | (feet)                                                    | WELL ELEVATION                          | (feet)                                                               |                |
| WELL DEPTH                                                                                                       | 32.72                                    |                                                           | DWATER ELEVATION                        | (feet)                                                               | De De          |
| TEMPERATURE                                                                                                      | pH 16                                    | rDs () 1615                                               | CONDUCTIVITY SC                         | ORF VOLUM                                                            |                |
| · [0, 9](0)                                                                                                      | 1124 (std) 40                            | <u>90</u> (g/L) [                                         | - <u>1029</u> (µS/cm)                   |                                                                      | (gal) 3.       |
| 1654 ro 1                                                                                                        | 2,30 (std) OU                            | 677 (g/L)                                                 | <u>μ</u> (μS/cm)                        | 175,2 (mV) 0,15                                                      | )(gal) 3,;     |
| 16.55 (ro) 1                                                                                                     | 7,33 (std) 0,1                           | 676 (g/L)                                                 | (04) (µS/cm)                            | 158.7 (mv) 10                                                        | (gal) Zi       |
|                                                                                                                  | 100 0                                    | 190.                                                      | to then                                 | 1293100 177                                                          | - 00           |
| <u>T0:44</u> (°C)                                                                                                | 175 (std) + 0t                           |                                                           | $\frac{10.9}{10.2}$ (µS/cm)             | 13003 (mV) 110                                                       | 0.             |
| 16.38 mg                                                                                                         | 203 (std) 01                             | 013 (g/L)                                                 | 1038 (µS/cm)                            | 1300 (mV) 1128                                                       | 5 (gal)        |
|                                                                                                                  |                                          | FIELD COMM                                                | IENTS / /                               | (2)                                                                  |                |
|                                                                                                                  | PERATURE 450                             | <u>MONE</u><br>WINDY Y/N                                  |                                         | sheen y/n <u>170</u><br>ation y/n (ff y type) <u>nor (e</u>          |                |
| PECIFIC COMMENTS:                                                                                                | - kg Wit                                 | baiters                                                   | white pure                              | sing                                                                 |                |
|                                                                                                                  |                                          |                                                           | •                                       | <u> </u>                                                             |                |
| A.362×3=1                                                                                                        | 025                                      |                                                           |                                         |                                                                      | -              |
| ICERTIFYTHAT SAMPLING PROCE                                                                                      | DURES WEREAN ACCORDANCE W                | TH APPLICABLE CRA PR                                      | OTACIESTIC BIO                          | M                                                                    |                |
| DATE 111                                                                                                         | PRINT                                    | SIGI                                                      | vAfuke CC                               | $\mathbf{V}$                                                         |                |
|                                                                                                                  |                                          |                                                           |                                         |                                                                      |                |
|                                                                                                                  |                                          |                                                           |                                         |                                                                      |                |
|                                                                                                                  |                                          | _                                                         |                                         |                                                                      |                |
|                                                                                                                  |                                          | ••                                                        |                                         |                                                                      |                |
|                                                                                                                  |                                          |                                                           |                                         |                                                                      |                |
|                                                                                                                  |                                          |                                                           |                                         |                                                                      |                |
|                                                                                                                  |                                          |                                                           |                                         |                                                                      |                |
|                                                                                                                  |                                          |                                                           |                                         |                                                                      |                |

|                                                        | ·····                                                                                                                                                                                                                                    |
|--------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                        | WELL SAMPLING FIELD INFORMATION FORM                                                                                                                                                                                                     |
| SITE/PROJECT NAM                                       | ME: $B_{0}(0) # F = JOB # 074938$                                                                                                                                                                                                        |
| SAMPLE                                                 | All and a with the part of the part of                                                                                                                                                                                                   |
| 4/4/13<br>PURGE DATE<br>(MM DD YY)                     | WELL PURGING INFORMATION<br>44473<br>SAMPLE DATE<br>(MM DD YY) WELL PURGING INFORMATION<br>SAMPLE TIME<br>(24 HOUR) WATER VOL IN CASING<br>(GALLONS) (GALLONS) (GALLONS) (GALLONS)                                                       |
| PURGING EQUIPMENT                                      | DEDICATED Y N<br>(CIRCLE ONE) SAMPLING EQUIPMENT<br>(CIRCLE ONE) (CIRCLE ONE)                                                                                                                                                            |
| PURGING DEVICE                                         | A-SUBMERSIBLE PUMP D-GAS LIFT PUMP G-BAILER X=                                                                                                                                                                                           |
| SAMPLING DEVICE                                        | B - PERISTALTIC PUMP     E - PURGE PUMP     H - WATERRA®     PURGING DEVICE OTHER (SPECIFY)       C - BLADDER PUMP     F - DIPPER BOTTLE     X - OTHER     X =       SAMPLING DEVICE OTHER (SPECIFY)     SAMPLING DEVICE OTHER (SPECIFY) |
| PURGING MATERIAL                                       | A-TEFLON D-PVC X=                                                                                                                                                                                                                        |
| SAMPLING MATERIAL                                      | B - STAINLESS STEEL B - POLYETHYLENE PURGING MATERIAL OTHER (SPECIFY)<br>C - POLYPROPYLENE X - OTHER X - OTHER X - OTHER SAMPLING MATERIAL OTHER (SPECIFY)                                                                               |
| PURGE TUBING                                           | A-TEFLON D-POLYPROPYLENE G-COMBINATION X=                                                                                                                                                                                                |
| SAMPLING TUBING                                        | B - TYGON     E - POLYETHYLENE     TEFLON/POLYPROPYLENE     PURGE TUBING OTHER (SPECIFY)       C - ROPE     F - SILICONE     X - OTHER     X=       A     SAMPLING TUBING OTHER (SPECIFY)                                                |
| FILTERING DEVICES 0.45                                 | A - IN-LINE DISPOSABLE B - PRESSURE C - VACUUM                                                                                                                                                                                           |
|                                                        | FIELD MEASUREMENTS                                                                                                                                                                                                                       |
| DEPTH TO WATE                                          |                                                                                                                                                                                                                                          |
| WELL DEPTI                                             | JZ     44     (feet)     GROUNDWATER ELEVATION     (feet)       pH     TDS     CONDUCTIVITY     ORP     VOLUME                                                                                                                           |
| $\frac{1}{1} \frac{15}{5} \frac{5}{6} \frac{100}{100}$ | $\frac{1}{1.35} (\text{stat}) = \frac{1.5}{0.1653} (\text{g/L}) = \frac{1}{1.600} (0.5) (\text{mv}) = \frac{219.7}{0.169} (\text{mv}) = 0.25 (\text{gal})^{-1}$                                                                          |
| 15.72 1cg                                              | $7_{132}$ (std) 0, 6/8 (g/L) 1/29 (us/cm) 181, 5 (mv) 0, 5 (gal)                                                                                                                                                                         |
| <u> </u>                                               | $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                   |
|                                                        |                                                                                                                                                                                                                                          |
| <u>[5,59</u> (c)                                       |                                                                                                                                                                                                                                          |
| (°C)                                                   | (std) (g/L) (µS/cm) (mV) (gal)                                                                                                                                                                                                           |
|                                                        | FIELD COMMENTS                                                                                                                                                                                                                           |
| AMPLE APPEARANCE:<br>/EATHER CONDITIONS:               | <u>VIA / DNWN D</u> GOOR: <u>NOW</u> COLOR: <u>VII DI UM</u> SHEEN Y/N <u>NO</u><br>TEMPERATURE <u>45</u> WINDY Y/N <u>DVI / LO</u> PRECIPITATION Y/N (IFY TYPE) <u>N</u>                                                                |
| PECIFIC COMMENTS:                                      | 1 1 10 Put and the for the                                                                                                                                                                                                               |
| TV3                                                    | t payler healt stall, remainder 14 ar less far                                                                                                                                                                                           |
|                                                        |                                                                                                                                                                                                                                          |
| 0.3612 x 2                                             | = 0.9716                                                                                                                                                                                                                                 |
| ICERTIFY THAT SAMPLING I                               | PROCEEDURES WERE IN ACCORDANCE WITH APPLICABLE CRA PROTOCOLS                                                                                                                                                                             |
| DATE                                                   | PRINT SIGNATURE                                                                                                                                                                                                                          |
|                                                        |                                                                                                                                                                                                                                          |
|                                                        |                                                                                                                                                                                                                                          |
|                                                        |                                                                                                                                                                                                                                          |
|                                                        | $\cdot$                                                                                                                                                                                                                                  |
|                                                        |                                                                                                                                                                                                                                          |
|                                                        |                                                                                                                                                                                                                                          |
|                                                        |                                                                                                                                                                                                                                          |
|                                                        |                                                                                                                                                                                                                                          |
|                                                        |                                                                                                                                                                                                                                          |

|                                     | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                          |
|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                     | WELL SAMPLING FIELD INFORMATION FORM                                                                                                                                                                                           |
| SITE/PROJECT NAM                    | ие: <u>B-Can H-1</u> JOB# <u>074939</u>                                                                                                                                                                                        |
| SAMPLE                              | ID: <u>GW-074938-040413-(M-MW-2</u> WELL# <u>MW-2</u>                                                                                                                                                                          |
| OUDUNIS<br>PURGE DATE<br>(MM DD YY) | WELL PURGING INFORMATION<br>44413<br>SAMPLE DATE SAMPLE TIME WATER VOL. IN CASING<br>(MM DD YY) (24 HOUR) (GALLONS) . (GALLONS)                                                                                                |
| PURGING EQUIPMENTD                  | PURGING AND SAMPLING EQUIPMENT<br>MEDICATED (Y) N<br>(CIRCLE ONE) (CIRCLE ONE)                                                                                                                                                 |
| PURGING DEVICE                      | A - SUBMERSIBLE PUMP D - GAS LIFT PUMP G - BAILER X=<br>B - PERISTALTIC PUMP E - PURGE PUMP H - WATERRA® PURGING DEVICE OTHER (SPECIFY)                                                                                        |
| SAMPLING DEVICE                     | G     C - BLADDER PUMP     F - DIPPER BOTTLE     X - OTHER     X=       SAMPLING DEVICE OTHER (SPECIFY)                                                                                                                        |
| PURGING MATERIAL                    | A-TEFLON D-PVC X=                                                                                                                                                                                                              |
| SAMPLING MATERIAL                   | E       B - STAINLESS STEEL       E - POLYETHYLENE       PURGING MATERIAL OTHER (SPECIFY)         C - POLYPROPYLENE       X - OTHER       X=         SAMPLING MATERIAL OTHER (SPECIFY)       SAMPLING MATERIAL OTHER (SPECIFY) |
| PURGE TUBING                        | A-TEFLON D-POLYPROPYLENE G-COMBINATION X=                                                                                                                                                                                      |
| SAMPLING TUBING                     | B - TYGON     B - POLYBTHYLENE     TEFLON/POLYPROPYLENE     PURGE TUBING OTHER (SPECIFY)       C - ROPE     F - SILICONE     X - OTHER     X=       SAMPLING TUBING OTHER (SPECIFY)     SAMPLING TUBING OTHER (SPECIFY)        |
| FILTERING DEVICES 0.45              | A - IN-LINE DISPOSABLE B - PRESSURE C - VACUUM                                                                                                                                                                                 |
|                                     | FIELD MEASUREMENTS                                                                                                                                                                                                             |
| DEPTH TO WATER                      |                                                                                                                                                                                                                                |
| WELL DEPTH<br>TEMPERATURE           | H 3372 (feet) GROUNDWATER ELEVATION (feet)                                                                                                                                                                                     |
| -1.16,20 (°C)                       | $\int \frac{1}{6} \frac{1}{94} \int \frac{1}{6} \frac{1}{1645} \int \frac{1}{6} \frac{1}{100} \int \frac{1}{100} \frac{1}{1000} \int \frac{1}{10000} \frac{1}{10000000000000000000000000000000000$                             |
| 16.00 (0)                           | 7,09 (std) 0,645 (g/L) 994 (µS/cm) 253,2 (mV) 1,75 (gal) 4                                                                                                                                                                     |
| 16.12 (c)                           | Zo 2 (std) (1645 (g/L) 992 (us/cm) 8206 (mV) 2125 (gal) 4                                                                                                                                                                      |
| (°C)                                | (std)         (g/L)         (μS/cm)         (mV)         (gal)           (std)         (g/L)         (μS/cm)         (mV)         (gal)                                                                                        |
| (°C)                                |                                                                                                                                                                                                                                |
|                                     | DRWN GIL SCI WULL TIBLE CONVINIENTS<br>DRWN GIL SCI WULL COLOR: MRUN SHEEN Y/N<br>TEMPERATURE 45 WINDY Y/N NO. PRECIPITATION Y/N (IF Y TYPE)                                                                                   |
| PECIFIC COMMENTS:                   | 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                         |
| NO                                  | 1/4 Dailers for remainder of plurye                                                                                                                                                                                            |
| 0.7296×3=                           | 2.19                                                                                                                                                                                                                           |
| 4/4/13                              | ROCEDURES WERE IN ACCORDANCE WITH APPLICABLE CRA PROTOCOLS                                                                                                                                                                     |
| DATE                                | PRINT CCA SIGNATURE                                                                                                                                                                                                            |

.

|                                                                                                                                  | WELL SAM                      | PLING FIE                             | LD INFORMATION FOR                                | M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|----------------------------------------------------------------------------------------------------------------------------------|-------------------------------|---------------------------------------|---------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SITE/PROJECT NAME<br>SAMPLE ID                                                                                                   | Farming                       | tan B-<br>093013- (n                  | (cm/E job#(<br>n-mw-I well#                       | 174938<br>MW-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 93013<br>PURGE DATE<br>(MM DD YY)                                                                                                | 9303                          | WELL PURG                             |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PURGING EQUIPMENTDED                                                                                                             | ICATED V N<br>(CIRCLE ONE)    | PURGING AND                           | SAMPLING EQUIPMENT                                | LING EQUIPMENTDEDICATER Y N<br>(CIRCLE ONE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| PURGING DEVICE                                                                                                                   | $\Box$                        | D - GAS LIFT PUMP                     | G - BAILER                                        | X=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| SAMPLING DEVICE                                                                                                                  |                               | E - PURGE PUMP<br>F - DIPPER BOTTLE   | H - WATERRA®<br>X - OTHER                         | PURGING DEVICE OTHER (SPECIFY) X= SAMPLING DEVICE OTHER (SPECIFY)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| PURGING MATERIAL                                                                                                                 | B - STAINLESS STEEL           | D-PVC<br>E-POLYETHYLENE               |                                                   | X=<br>PURGING MATERIAL OTHER (SPECIFY)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| SAMPLING MATERIAL                                                                                                                | C - POLYPROPYLENE             | X - OTHER                             |                                                   | X=<br>SAMPLING MATERIAL OTHER (SPECIFY)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| PURGE TUBING                                                                                                                     |                               | D - POLYPROPYLENE<br>E - POLYETHYLENE | G - COMBINATION<br>TEFLON/POLYPROPYLENE           | X=<br>PURGE TUBING OTHER (SPECIFY)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| SAMPLING TUBING                                                                                                                  | C-ROPE                        | F - SILICONE                          | X-OTHER                                           | X=<br>SAMPLING TUBING OTHER (SPECIFY)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| FILTERING DEVICES 0.45                                                                                                           | A - IN-LINE DISPOSABLE        | B - PRESSURE                          | U. 46 micron                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| DEPTH TO WATE                                                                                                                    | R 24,92                       | FIELD N<br>(feet)                     | MEASUREMENTS WELL ELEVATION                       | (feet)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| WELL DEPT                                                                                                                        | 34.04                         | (feet)                                | GROUNDWATER ELEVATION                             | (feet)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| TEMPERATURE                                                                                                                      | рн тт                         | $\langle \circ \rangle$               | sc DO                                             | ORP VOLUME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 18.10 m                                                                                                                          | 6.15 (std) U.                 | 64(g/L)                               | (10) (µS/cm) $(102$ (m                            | (g/1) $(mV)$ $(3,5)$ $(gal)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 19.04 m                                                                                                                          | 7,14 (std) $0,0$              | 249 <sub>(g/l.)</sub>                 | <u>184</u> (µ5/cm) 0.08 (m<br>999 (µ5/cm) 0.06 (m | $\frac{1}{2} \frac{1}{2} \frac{1}$ |
|                                                                                                                                  | (std)                         | (g/L)                                 |                                                   | ig/L) (mV) (gal)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (°C)                                                                                                                             | [(std)                        | (g/L)                                 | (µS/cm) (m                                        | 1g/ <u>L) (m</u> V) [gal]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                  |                               | FIELI                                 | D COMMENTS                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SAMPLE APPEARANCE:<br>WEATHER CONDITIONS:<br>SPECIFIC COMMENTS:                                                                  | 1010 dor A<br>temperature 250 | WINDY Y/N                             | COLOR YELDW<br>                                   | SHEEN Y/N Y/S<br>TATION Y/N (IF Y TYPE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1.459×3=                                                                                                                         | 4.377                         |                                       |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| I CERTIFY THAT SAMPLING PROCEDURES WERE TRACCORDANCE WITH APPLICABLE CRA PROTOCOLS<br>DATE 9730113 PRINT MATTAL MATTER SIGNATURE |                               |                                       |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| SITE/PROJECT NAME<br>SAMPLE II                                  |                                                                                                                                                                                                                                                                                               |
|-----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PURGE DATE<br>(MM DD YY)                                        | Well purging information     Image: Constraint of the same information     Image: Constraint of the same information     Image: Constraint of the same information       Sample Date (MM DD YY)     Sample Time (24 Hour)     Water vol. in casing (Gallons)     Actual vol. purged (Gallons) |
| PURGING EQUIPMENTDEI                                            | PURGING AND SAMPLING EQUIPMENT<br>DICATED Y N<br>(CIRCLE ONE) (CIRCLE ONE)                                                                                                                                                                                                                    |
| PURGING DEVICE                                                  | A - SUBMERSIBLE PUMP     D - GAS LIFT PUMP     G - BAILER     X=       B - PERISTALTIC PUMP     E - PURGE PUMP     H - WATERRA®     PURGING DEVICE OTHER (SPECIFY)       C - BLADDER PUMP     F - DIPPER BOTTILE     X - OTHER     X=                                                         |
| PURGING MATERIAL                                                | A - TEFLON D - PVC X=                                                                                                                                                                                                                                                                         |
| SAMPLING MATERIAL                                               | B - STAINLESS STEEL     E - POLYETHYLENE     PURGING MATERIAL OTHER (SPECIFY)       C - POLYPROPYLENE     X - OTHER     X=       SAMPLING MATERIAL OTHER (SPECIFY)     SAMPLING MATERIAL OTHER (SPECIFY)                                                                                      |
| PURGE TUBING<br>SAMPLING TUBING                                 | A - TEFLON D - POLYPROPYLENE G - COMBINATION X=<br>B - TYCON E - POLYEIHYLENE TEFLON/POLYPROPYLENE PURGE TUBING OTHER (SPECIFY)<br>C - ROPE F - SILICONE X - OTHER X=                                                                                                                         |
| FILTERING DEVICES 0.45                                          | A - IN-LINE DISPOSABLE B - PRESSURE OT 45M CVCM                                                                                                                                                                                                                                               |
| DEPTH TO WATE                                                   | R 2429 (feet) WELL ELEVATION (feet)                                                                                                                                                                                                                                                           |
| WELL DEPTH<br>TEMPERATURE                                       | H (feet) GROUNDWATER ELEVATION (feet)                                                                                                                                                                                                                                                         |
| 20.18 m                                                         | 6-75 (std) 0.450 (g/L) 691 (us/cm) 5.26 (mg/L)68.9 (mv) 4.25 (gal)                                                                                                                                                                                                                            |
| 19.90 ro                                                        | (6.76) (std) $(0.505)$ (g/L) $(776)$ (µS/cm) $(3.85)$ (mg/L) $(73.9)$ (mV) $(4.75)$ (gal)                                                                                                                                                                                                     |
| 19.97 ro                                                        | 6.77 (std) 0.496 (g/L) 763 (uS/cm) 3.62 (mg/L) 76.1 (mv) 5.12 (gal)                                                                                                                                                                                                                           |
| (°C)                                                            | (std)     (g/L)     (µS/cm)     (mg/L)     (mV)     (gal)                                                                                                                                                                                                                                     |
| SAMPLE APPEARANCE:<br>WEATHER CONDITIONS:<br>SPECIFIC COMMENTS: | FIELD COMMENTS                                                                                                                                                                                                                                                                                |
| 1.688×3                                                         | -5.064                                                                                                                                                                                                                                                                                        |
| I CERTIFY THATSAMPLING PR                                       | PRINT MITHAPPLICABLE CRA PROTOCOLS                                                                                                                                                                                                                                                            |

| Well SAMPLING FIELD INFORMATION FORM                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
|-----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| SITE/PROJECT NAME<br>SAMPLE II                                  | All And A Market And A Market |  |  |
| PURGE DATE<br>(MM DD YY)                                        | 9     30     B     18/2     14/25       SAMPLE DATE<br>(MM DD YY)     SAMPLE TIME<br>(24 HOUR)     WATER VOL IN CASING<br>(GALLONS)     ACTUAL VOL PURGED<br>(GALLONS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| PURGING EQUIPMENTDEC                                            | PURGING AND SAMPLING EQUIPMENT<br>ICATEON N SAMPLING EQUIPMENTDEDICATED N<br>(CIRCLE ONE) (CIRCLE ONE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| PURGING DEVICE                                                  | A - SUBMERSIBLE PUMP D - GAS LIFT PUMP G - BAILER X=<br>B - PERISTALTIC PUMP E - PURGE PUMP H - WATERRA® PURGING DEVICE OTHER (SPECIFY)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| SAMPLING DEVICE                                                 | C - BLADDER PUMP F - DIPPER BOTTLE X - OTHER X=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| PURGING MATERIAL                                                | A - TEFLON D - PVC X=<br>B - STAINLESS STEEL E - POLYETHYLENE PURGING MATERIAL OTHER (SPECIFY)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| SAMPLING MATERIAL                                               | C - POLYPROPYLENE X - OTHER X=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| PURGE TUBING                                                    | A - TEFLON D - POLYPROPYLENE G - COMBINATION X=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| SAMPLING TUBING                                                 | C - ROPE F - SILICONE X - OTHER X=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| FILTERING DEVICES 0,45                                          | A-IN-LINE DISPOSABLE B- PRESSURE (), 45 Micron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| DEPTH TO WATEI                                                  | R 25.27 (feet) WELL ELEVATION (feet)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| WELL DEPTH                                                      | I HOZ (feet) GROUNDWATER ELEVATION (feet)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| TEMPERATURE                                                     | pH TDS SC DO ORP VOLUME<br>6.87 (std) $0.477$ (g/L) $734$ (uS/cm) $4.12$ (mg/L) $88.5$ (mV) $3.25$ (gal)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| 17.06 C                                                         | $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| 17.02 (0)                                                       | 6-79 (std) 0455 (g/L) 699 (uS/cm) 41.25 (mg/L) 93.5 (mv) 425 (gal)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| (°C)                                                            | (std) (g/L) (µS/cm) (mg/L) (mV) (gal)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| (°C)                                                            | (std) (g/L) (µS/cm) (my/L) (gal)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| SAMPLE APPEARANCE:<br>WEATHER CONDITIONS:<br>SPECIFIC COMMENTS: | FIELD COMMENTS       JODOR     ODOR                                                                                                                                                                                                          |  |  |
| 1:40 X 3 =                                                      | -412                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| icertify that sampling pro<br>date 9730/13                      | CEDURES WERE IN ACCORDANCE WITH APPLICABLE CRA PROTOCOLS<br>PRINT WHEN IN A FULTSIGNATURE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |

i.

| STEPPROFECT NAME     TATION TO B - ON IE     1089     ON 4938       SAMPLE ID:     GUIDED 3000     IIII COM     IIII COM     IIII COM       IIII COM     IIII COM     IIII COM     IIII COM     IIII COM       IIII COM     IIII COM     IIII COM     IIII COM     IIII COM       IIII COM     IIII COM     IIII COM     IIII COM     IIIII COM       IIII COM     IIIII COM     IIIII COM     IIIII COM     IIIII COM       IIIII COM     IIIII COM     IIIII COM     IIIII COM     IIIIII COM       IIIII COM     IIIII COM     IIIII COM     IIIIII COM     IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ION FORM                          | IELD INFORMATIO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | L SAMPLING F                 | WE                      |                                         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------------------------|-----------------------------------------|
| SAMPLE ID;       GUI_DIARGE CPECID: (M_MEDU)       MUL H       MUL H         Image: Diardian in the second of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ANVARO                            | - 175                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | inita B-Ca                   | Ta                      | SITE/PROJECT NAME                       |
| Image: Note that is a service of the service of th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                   | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , _ | 074938-09301                 | 1711                    |                                         |
| Image: Note that is a service of the service of th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                   | RGING INFORMATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | WELL PIL                     |                         |                                         |
| DALEDYY         DILECTY         DILECTY <t< td=""><td>1.136 1 3.5</td><td>100 1 1</td><td>3110</td><td>19/30/</td><td>19/30/13</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.136 1 3.5                       | 100 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3110                         | 19/30/                  | 19/30/13                                |
| PURCING CAND SAMPLING EQUITION         SAMPLING EQUITION         DEPORT OF CONTROL         DEPORT OF CONTROL CONT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                              |                         |                                         |
| CITCLE CONF.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                              | (1111 0 0 **)           | ((((((((((((((((((((((((((((((((((((((( |
| PURCEND DEVICE       A - STANDAMENDER PLANE       D - CALLET TEND       C - BALER       Xxx         SAMPLING DEVICE       B - PRESENTATION       C - RECERPTOR       H - NEXTERIANCE       N - STANDAMENDER PROCESS         SAMPLING DEVICE       B - PRESENTATION       P. DEPRESENTATION       Xxx       N - STANDAMENDER PROCESS         SAMPLING DEVICE       B - PRESENTATION       P. DEPRESENTATION       Xxx       N - STANDAMENDER PROCESS         SAMPLING DEVICE       B - PRESENTATION       D - PRC       Xxx       N - STANDAMENDER PROCESS         SAMPLING MATERIAL OFFICE       B - STANDAMENDER       D - PRC PROCESS       N - STANDAMENDER PROCESS         SAMPLING THERE       B - TERLON       D - PRC PROCESS       N - STANDAMENDER PROCESS       N - STANDAMENDER PROCESS         PURCENT TERLON       C - STANDAMENDER       D - PRC PROCESS       N - TERLON TERLON TERLON TERLON TERLON       N - STANDAMENDER PROCESS         PURCENT TERLON       C - STANDAMENDER       D - PRC PROCESS       N - TERLON TERL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                              | 0                       | PURGING EQUIPMENTDEL                    |
| COLUMN VERVEL         B - PEREITATELY FUND         E - PEREITY FUND         E - PEREITY FUND         E - PEREITY FUND         E - PEREITATELY FUND         E - PEREITY FUND         E - PERE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (CIRCLE ONE)                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ONE)                         | (CIRCLE                 |                                         |
| SAMPLING DEVICE     Image: second secon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                              |                         | PURGING DEVICE                          |
| PURCEINS MATERIAL       Image: A - TOPLON       D - PYC       Xn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                              | 1 hair 1                | SAMPLING DEVICE                         |
| CONSIGNOUNDER       B. FORNERS STELL       B. FORNERS STELL       B. FORNERS         SAMPLING MATERIAL       G. FORNERS STELL       B. FORNERS       CONSTRUCTION         SAMPLING MATERIAL       G. FORNERS       D. FORNERS       G. COMBINITION         PURCE TUBING       A. TEFLON       D. FORNERS       G. COMBINITION         SAMPLING TUBING       B. TINGON       B. FORNERS       G. COMBINITION         SAMPLING TUBING       B. TINGON       B. FORNERS       G. COMBINITION         SAMPLING TUBING       G. COMBINITION       J. COMBINITION       J. COMBINITION         SAMPLING TUBING       D. FORNERS       J. TELEDON       D. FORNERS       J. TELEDON         SAMPLING TUBING OTHER CONCERNATION       G. COMBINITION       J. TELEDON       J. TELEDON       J. TELEDON         BETTH TO WATER       25.55       G. G. J. MELANTINON       G. G. GROUNDWATER ELEVATION       G. G. G. GROUNDWATER ELEVATION       G. G. G. GROUNDWATER ELEVATION       G. G. G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SAMPLING DEVICE OTHER (SPECIFY)   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                              |                         |                                         |
| SAMPLING MATRIAL     C - POLYMOPULSE     X-OTHER     X-OTHER       PURCE TURING     A - THELON     D - POLYMOPULSE     C - CONDENSATION       PURCE TURING     B - TRUNCE PURCE     B - POLYMOPULSE     C - CONDENSATION       SAMPLING TURING     B - POLYMOPULSE     C - CONDENSATION     X=       PURCE TURING     B - TRUNCE PURCE     PURCE TURING OFHER GERCIPY     X=       SAMPLING TURING     B - POLYMOPULSE     X - OTHER     X=       PURCE TURING     C - ROPE     P - STLICON     X - OTHER       PURCE TURING DEVICES 0AS     A - Instandame DeviceABLE     B - PRESENTER     Q + 45       PURCE TURING DEVICES 0AS     A - Instandame DeviceABLE     B - PRESENTER     Q + 45       PURCE TURING DEVICES 0AS     A - Instandame DeviceABLE     B - PRESENTER     Q + 45       PURCE TURING DEVICES 0AS     A - Instandame DeviceABLE     B - PRESENTER     Q + 45       PURCE TURING DEVICES 0AS     A - Instandame DeviceABLE     B - PRESENTER     Q + 45       PURCE TURING DEVICES 0AS     PILTE DIVATER     25 - 55     (feed)     VIEL ELEVATION       DEPTH TO WATER     27 - 67     (feed)     Q + 103     (feed)     Q + 103       TEMPERATURE     PH     TDS     SC     DO     ONP     VOLDM       TEMPERATURE     PH     TDS     S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | χ=                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | D - PVC                      | A-TEFLON                | PURGING MATERIAL                        |
| SAMPLING MITHON       SAMPLING MITHON       SAMPLING MITHON         PURCE TURING       A - 191/00       B - 700/98/97/12018       C - COMENATION       X*         SAMPLING TURING       B - 700/98       FEELON/FEENE       X- OTHER       X*         SAMPLING TURING       B - 700/98       FEELON       DEVICES OUT       FEELON         SAMPLING TURING       A - 191/06       FEELON       DEVICES OUT       SAMPLING OTHER (SECIFY)         PELEENING DEVICES OUT       A - 191/06       FEELO MEASUREMENTS       SAMPLING TURING OTHER (SECIFY)         PELEENING DEVICES OUT       A - 191/06       GROUNDWATER LEVATION       (feed)         VELL DEFTH       32.65       (feed)       VELL DEVATION       (feed)         VELL DEFTH       32.65       (feed)       GROUNDWATER ELEVATION       (feed)         VIELDEFTH       32.65       (feed)       (feed)       (feed)       (feed)         VIELDEFTH       10.65       (feed)       (feed)       (feed) <td< td=""><td>PURGING MATERIAL OTHER (SPECIFY)</td><td></td><td></td><td>If I</td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PURGING MATERIAL OTHER (SPECIFY)  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                              | If I                    |                                         |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SAMPLING MATERIAL OTHER (SPECIFY) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                              |                         | JAWITLING WATERIAL                      |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Х=                                | G - COMBINATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | D - POLYPROPYLENE            |                         | PURCE TURING                            |
| SAMPLENC TURENCOTHER OPECHY<br>RELEASING DEVICES 0.45 A - IN-LINE DESPOSABLE IN-PRESUME (). 45 MILLYAND<br>DEPTH TO WATER 25.55 (6ee) INELLELEVATION (6ee) (6ee) (6ee) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10) (7.10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PURGE TUBING OTHER (SPECIFY)      | TEFLON/POLYPROPYLENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                              |                         |                                         |
| FIELD MEASUREMENTS         DEPTH TO WATER $25.55$ (feet)       IVELL ELEVATION       (feet)         WELL DEPTH $32.65$ (feet)       GROUNDWATER ELEVATION       (feet)         TEMPERATURE       pH       TDS       SC       DO       ORP       VOLUM         [17].75       (for) $(f_1.74)$ (sd) $0.6594$ (g/L) $1013$ (g/cm) $2.594$ (mv) $2.5$ [17].75       (for) $7.071$ (sd) $0.6666$ (g/L) $10255$ (g/cm) $2.1255$ (mv) $3.125$ [17].793       (for) $7.071$ (sd) $0.16711$ (g/L) $10325$ (g/cm) $2.1255$ (mv) $3.55$ [18].00       (for) $7.071$ (sd) $0.16711$ (g/L) $10325$ (g/L)       (mv) $3.55$ [18].00       (for) $0.16711$ (g/L) $0.05/cm$ $2.1600$ (mv) $3.55$ [19].00       (for)       (for) $0.66/cm$ (mv) $0.66/cm$ (mv) $0.60/cm$ $0.60/cm$ $0.60/cm$ $0.60/cm$ $0.60/cm$ <td></td> <td>X - OIHER</td> <td>F - SILICONE</td> <td>C-ROPE</td> <td>5AMPLING TUBING</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                   | X - OIHER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | F - SILICONE                 | C-ROPE                  | 5AMPLING TUBING                         |
| FIELD MEASUREMENTS         DEPTH TO WATER $25.55$ (feet)       IVELL ELEVATION       (feet)         WELL DEPTH $32.65$ (feet)       GROUNDWATER ELEVATION       (feet)         TEMPERATURE       pH       TDS       SC       DO       ORP       VOLUM         [17].75       (for) $(f_1.74)$ (sd) $0.6594$ (g/L) $1013$ (g/cm) $2.594$ (mv) $2.5$ [17].75       (for) $7.071$ (sd) $0.6666$ (g/L) $10255$ (g/cm) $2.1255$ (mv) $3.125$ [17].793       (for) $7.071$ (sd) $0.16711$ (g/L) $10325$ (g/cm) $2.1255$ (mv) $3.55$ [18].00       (for) $7.071$ (sd) $0.16711$ (g/L) $10325$ (g/L)       (mv) $3.55$ [18].00       (for) $0.16711$ (g/L) $0.05/cm$ $2.1600$ (mv) $3.55$ [19].00       (for)       (for) $0.66/cm$ (mv) $0.66/cm$ (mv) $0.60/cm$ $0.60/cm$ $0.60/cm$ $0.60/cm$ $0.60/cm$ <td><math>\sim</math></td> <td>RE 0.45 MICVA</td> <td>DISPOSABLE B - PRESSU</td> <td>A - IN-LINI</td> <td>FILTERING DEVICES 0.45</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\sim$                            | RE 0.45 MICVA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DISPOSABLE B - PRESSU        | A - IN-LINI             | FILTERING DEVICES 0.45                  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | FIELD                        | 00                      |                                         |
| TEMPERATURE PH TDS SC DO ORP VOLUM<br>$\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (feet)                            | WELL ELEVATIO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (feet)                       | er 20                   | DEPTH TO WATE                           |
| $\frac{17.75}{1.75} = 0  (a.74 \ (ad)  0.1659 \ (a/1)  1013 \ (a.5/cm)  2.59 \ (mg/1)  3.0 \ (mv)  2.59 \ (mg/1)  3.0 \ (mv)  3.10 \ (mv) \ (mv) \ 3.10 \ (mv) \ 3.10 \ (mv) \ 3.10 \ (mv) \ 3.10$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TON (feet)                        | GROUNDWATER ELEVATIO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 65 (feet)                    | н 32.                   | WELL DEPTI                              |
| $\frac{11773}{113}$ $\frac{17707}{113}$ $\frac{1000}{100}$ $$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DO ORP VOLUME                     | SC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TDS                          | pH                      | TEMPERATURE                             |
| $\frac{11773}{113}$ $\frac{17707}{113}$ $\frac{1000}{100}$ $$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2,59 (mor) 3,0 (my 25)            | $M3_{wsm} 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10,659                       | 16174 (std)             | 17.750                                  |
| $\frac{18.00}{19.00} \text{ (mo)}  \frac{7.13}{13} \text{ (std)}  \frac{0.671}{10.000} \text{ (g/L)}  \frac{10.32}{10.000} \frac{2.160}{10.0000} \text{ (mo)}  \frac{3.5}{10.000} \frac{10.000}{10.0000} \text{ (mo)}  \frac{3.5}{10.0000} \frac{10.000}{10.0000} \text{ (mo)}  \frac{10.000}{10.0000} \frac{10.000}{10.0000} \text{ (mo)}  \frac{10.000}{10.000} \text{ (mo)}  \frac{10.000}{10.000} \text{ (mo)}  \frac{10.000}{$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1251 - 031 + 3.01                 | 1025 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Aldala                       | 7,07                    | 17 93                                   |
| $\frac{\left( \begin{array}{c} 0 \end{array}\right)}{\left( \begin{array}{c} 0 \end{array}\right)} \left( \begin{array}{c} 0 \end{array}\right)} \left( \begin{array}{c} 0 \end{array}\right)} \left( \begin{array}{c} 0 \end{array}\right)}{\left( \begin{array}{c} 0 \end{array}\right)} \left( \begin{array}{c} 0 \end{array})} \left( \begin{array}{c} 0 \end{array}\right)} \left( $ | 1/- //                            | $(\mu S/cm)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (g/L)                        | (std)                   | [] 1 / mo                               |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (my/L) (mv) 3,5 (g                | 103C (µS/cm) 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | U10   (g/L)                  |                         | $[\delta, \mathcal{O}]_{co}$            |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (mg/L) (mV)                       | (µS/cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (g/L)                        | (std)                   | (°C)                                    |
| AMPLE APPEARANCE:     Image: Contract of the second s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (mg/L) (mV) (g                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                              | <br>  [.                | <br>[]                                  |
| AMPLE APPEARANCE: $(100000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 00$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ](mg/ <u>.)</u> (g                | (µə/cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | [](g/L)                      | [](std)                 | [](°C)                                  |
| ANTELE APPEARANCE $(00000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MIN SHEENVIN MAN                  | h.n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.000                        | Moude                   |                                         |
| $1 \cdot 136 \times 3 = 3.408$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | · 10 A                            | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -120                         | CIVER BU                |                                         |
| 1:136×3 = 3,408                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ÷                            | Å å                     | SPECIFIC COMMENTS:                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                              | = 3,408                 | 1136×3                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                              |                         | -                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                              |                         |                                         |
| I CERTIFY THAT SAMPLING PROCEDURES WERE IN ACCORDANCE WITH APPLICABLE CRAPROTOCOLS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C.N. Morton                       | ocols                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NCE WITH APPLICABLE CRA PROT | ROCEDURES WERE N ACCORD | I CERTIFY THAT SAMPLING PR              |

| SITE/PROJECT NAME<br>SAMPLE II                                 |                                                                                                                                                                                                                                                                             |
|----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PURGE BATE<br>(MINI DD YY)                                     | 93013     Well Runging Information       sample date<br>(MM dD yy)     sample time<br>(24 HOUR)                                                                                                                                                                             |
| PURGING EQUIPMENTDEE                                           | PURGING AND SAMPLING EQUIPMENT<br>ICATED V N SAMPLING EQUIPMENTDEDICATED V N<br>(CIRCLE ONE) (CIRCLE ONE)                                                                                                                                                                   |
| PURGING DEVICE<br>SAMPLING DEVICE                              | A - SUBMERSIBLE PUMP     D - GAS LIFT PUMP     G - BAILER     X=       B - PERISTALTIC PUMP     E - PURGE PUMP     H - WATERRA®     PURGING DEVICE OTHER (SPECIFY)       C - BLADDER PUMP     F - DIPPER BOTTLE     X - OTHER     X=                                        |
| PURGING MATERIAL                                               | A - TEFLON     D - PVC     X=       J     B - STAINLESS STEEL     E - POLYETHYLENE       PURGING MATERIAL OTHER (SPECIFY)                                                                                                                                                   |
| SAMPLING MATERIAL<br>PURGE TUBING                              | C - POLYPROPYLENE X - OTHER X=                                                                                                                                                                                                                                              |
| SAMPLING TUBING                                                | B - TYGON     E - POLYETHYLENE     PURGE TUBING OTHER (SPECIFY)       C - ROPE     F - SILICONE     X - OTHER     X =                                                                                                                                                       |
| FILTERING DEVICES 0.45                                         | A-IN-LINE DISPOSABLE B- PRESSURE D, 45 MICHON                                                                                                                                                                                                                               |
|                                                                | 37.32                                                                                                                                                                                                                                                                       |
| (°)                                                            | (std) (g/L) (µS/cm) (mg/L) (mV) (gal)                                                                                                                                                                                                                                       |
| SAMPLE APPEARANCE<br>WEATHER CONDITIONS:<br>SPECIFIC COMMENTS: | FIELD COMMENTS $ODUCH_{odor}$ $ODM_{odor}$ $ODM_{odor}$ $OD_{odor}$ TEMPERATURE       75       WINDY Y/N $ODCR_{odor}$ $ODUCh_{odor}$ 3 = 3, 437 $ODCR_{odor}$ $ODCR_{odor}$ $ODCR_{odor}$ $ODCR_{odor}$ 3 = 3, 437 $ODCR_{odor}$ $ODCR_{odor}$ $ODCR_{odor}$ $ODCR_{odor}$ |
| I CERTIFY THAT BAMPLING PRO<br>DATE 43013                      | PRINT AND WITH APPLICABLE CRA PROTOCOLS<br>PRINT AND AND ALLOSGNATURE ALLOSGNATURE                                                                                                                                                                                          |

| SITE/PROJECT NAME<br>SAMPLE II                                  | his make a har when he had he |
|-----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PURGE DATE<br>(MM DD YY)                                        | Image: Market date (MM dd yy)     Image: Market date (24 hour)     Image: Market date (24 hour)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| PURGING EQUIPMENT,DEL                                           | PURGING AND SAMPLING EQUIPMENT DICATED Y N CIRCLE ONE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| PURGING DEVICE<br>SAMPLING DEVICE                               | A - SUBMERSIBLE PUMP D - GAS LIFT PUMP G - BAILER X=<br>B - PERISTALTIC PUMP E - PURGE PUMP H - WATERRA© PURGING DEVICE OTHER (SPECIFY)<br>C - BLADDER PUMP F - DIPPER BOTTLE X - OTHER X- OTHER X=<br>SAMPLING DEVICE OTHER (SPECIFY)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| PURGING MATERIAL<br>SAMPLING MATERIAL                           | Image: Line stainless steel     D-PVC     X=       Image: Line stainless steel     E-POLYETHYLENE     PURGING MATERIAL OTHER (SPECIFY)       Image: Line stainless steel     X-OTHER     X=       Image: Line stainless steel     X-OTHER     SAMPLING MATERIAL OTHER (SPECIFY)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| PURGE TUBING<br>SAMPLING TUBING                                 | A - TEFLON D - POLYPROPYLENE G - COMBINATION TEFLON/POLYPROPYLENE PURGE TUBING OTHER (SPECIFY)<br>C - ROPE F - SILICONE X - OTHER X - OTHER X - OTHER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| FILTERING DEVICES 0.45                                          | A-IN-LINE DISPOSABLE B- PRESSURE 0,45 M/LWW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| DEPTH TO WATEI<br>WELL DEPTH<br>TEMPERATURE                     | 340)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 17,98 co                                                        | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| SAMPLE APPEARANCE:<br>WEATHER CONDITIONS:<br>SPECIFIC COMMENTS: | (std)     (g/L)     (uS/cm)     (mg/L)     (mV)     (gal)       FIELD COMMENTS       CldY     ODOR:     No     color:     If hun     sheen y/n     No       TEMPERATURE     TS     WINDY Y/N     OD     PRECIPITATION Y/N (IF Y TYPE)     AO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| I CERTIFY THAT/SAMPLING PRC                                     | XEDURES WERE IN ACORDANCE WITH APPLICABLE CRA PROTOCOLS<br>PRINT MY MM ALL BIOMATURE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

# Appendix B

# APRIL and SEPTEMBER 2013 SEMI-ANNUAL GROUNDWATER LABORATORY ANALYTICAL REPORTS





Pace Analytical Services, Inc. 9608 Loiret Blvd. Lenexa, KS 66219 (913)599-5665

April 22, 2013

Christine Matthews CRA 6121 Indian School Rd NE Suite 200 Albuquerque, NM 87110

RE: Project: 074938 BCOM NO.1 E FARMINGTON Pace Project No.: 60141975

Dear Christine Matthews:

Enclosed are the analytical results for sample(s) received by the laboratory on April 06, 2013. The results relate only to the samples included in this report. Results reported herein conform to the most current TNI standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Alice Flanagan

Alice Flanagan

alice.flanagan@pacelabs.com Project Manager

Enclosures

cc: Kelly Blanchard, COP Conestoga-Rovers & Associa Angela Bown, COP Conestoga-Rovers & Associa Cassie Brown, COP Conestoga-Rovers & Associa Jason Ploss, COP Conestoga-Rovers & Associa



# **REPORT OF LABORATORY ANALYSIS**



#### CERTIFICATIONS

Project: 074938 BCOM NO.1 E FARMINGTON

Pace Project No.: 60141975

#### **Kansas Certification IDs**

9608 Loiret Boulevard, Lenexa, KS 66219 A2LA Certification #: 2456.01 Arkansas Certification #: 12-019-0 Illinois Certification #: 002885 Iowa Certification #: 118 Kansas/NELAP Certification #: E-10116 Louisiana Certification #: 03055 Nevada Certification #: KS000212008A Oklahoma Certification #: 9205/9935 Texas Certification #: T104704407-12-3 Utah Certification #: KS000212012-2 Illinois Certification #: 003097



# SAMPLE SUMMARY

Project: 074938 BCOM NO.1 E FARMINGTON

Pace Project No.: 60

|   | 074000 DOOMINO.TETA |
|---|---------------------|
| : | 60141975            |

| Lab ID      | Sample ID                  | Matrix | Date Collected | Date Received  |
|-------------|----------------------------|--------|----------------|----------------|
| 60141975001 | GW-074938-040413-CM-MW-1   | Water  | 04/04/13 10:55 | 04/06/13 08:40 |
| 60141975002 | GW-074938-040413-CM-MW-2   | Water  | 04/04/13 09:05 | 04/06/13 08:40 |
| 60141975003 | GW-074938-040413-CM-MW-3   | Water  | 04/04/13 09:25 | 04/06/13 08:40 |
| 60141975004 | GW-074938-040413-CM-MW-4   | Water  | 04/04/13 09:55 | 04/06/13 08:40 |
| 60141975005 | GW-074938-040413-CM-MW-5   | Water  | 04/04/13 10:10 | 04/06/13 08:40 |
| 60141975006 | GW-074938-040413-CM-MW-6   | Water  | 04/04/13 10:35 | 04/06/13 08:40 |
| 60141975007 | GW-074938-040413-CM-MW-DUP | Water  | 04/04/13 10:20 | 04/06/13 08:40 |



# SAMPLE ANALYTE COUNT

Project:074938BCOM NO.1 E FARMINGTONPace Project No.:60141975

| Lab ID      | Sample ID                  | Method   | Analysts | Analytes<br>Reported |
|-------------|----------------------------|----------|----------|----------------------|
| 60141975001 | GW-074938-040413-CM-MW-1   | EPA 6010 | SMW      | 2                    |
| 60141975002 | GW-074938-040413-CM-MW-2   | EPA 6010 | SMW      | 2                    |
| 60141975003 | GW-074938-040413-CM-MW-3   | EPA 6010 | SMW      | 2                    |
| 60141975004 | GW-074938-040413-CM-MW-4   | EPA 6010 | SMW      | 2                    |
| 60141975005 | GW-074938-040413-CM-MW-5   | EPA 6010 | SMW      | 2                    |
| 60141975006 | GW-074938-040413-CM-MW-6   | EPA 6010 | SMW      | 2                    |
| 60141975007 | GW-074938-040413-CM-MW-DUP | EPA 6010 | SMW      | 2                    |



#### **PROJECT NARRATIVE**

Project: 074938 BCOM NO.1 E FARMINGTON

Pace Project No.: 60141975

#### Method: EPA 6010

Description:6010 MET ICP, DissolvedClient:COP Conestoga-Rovers & Associates, Inc. NMDate:April 22, 2013

#### General Information:

7 samples were analyzed for EPA 6010. All samples were received in acceptable condition with any exceptions noted below.

#### Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

#### Sample Preparation:

The samples were prepared in accordance with EPA 3010 with any exceptions noted below.

#### Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

#### Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

#### Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

#### Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

#### Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

#### Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.



Project: 074938 BCOM NO.1 E FARMINGTON

Pace Project No.: 60141975

| Sample: GW-074938-040413-CM-<br>MW-1 | Lab ID:    | 60141975001 | Collecte | d: 04/04/13 | 3 10:55 | Received: 04/  | 06/13 08:40 M  | atrix: Water |      |
|--------------------------------------|------------|-------------|----------|-------------|---------|----------------|----------------|--------------|------|
|                                      |            |             | Report   |             |         |                |                |              |      |
| Parameters                           | Results    | Units       | Limit    | MDL         | DF      | Prepared       | Analyzed       | CAS No.      | Qual |
| 6010 MET ICP, Dissolved              | 6010 Prepa | ration Meth | od: EPA  | 3010        |         |                |                |              |      |
| Iron, Dissolved                      | 1.8        | mg/L        | 0.050    | 0.012       | 1       | 04/10/13 15:30 | 04/17/13 11:21 | 7439-89-6    |      |
| Manganese, Dissolved                 | 0.47       | mg/L        | 0.0050   | 0.00049     | 1       | 04/10/13 15:30 | 04/17/13 11:21 | 7439-96-5    |      |



Project: 074938 BCOM NO.1 E FARMINGTON

Pace Project No.: 60141975

| Sample: GW-074938-040413-CM-<br>MW-2 | Lab ID:        | 60141975002 | Collecte | d: 04/04/13 | 3 09:05 | 05 Received: 04/06/13 08:40 Matrix: Water |                |           |      |  |
|--------------------------------------|----------------|-------------|----------|-------------|---------|-------------------------------------------|----------------|-----------|------|--|
|                                      |                |             | Report   |             |         |                                           |                |           |      |  |
| Parameters                           | Results        | Units       | Limit    | MDL         | DF      | Prepared                                  | Analyzed       | CAS No.   | Qual |  |
| 6010 MET ICP, Dissolved              | 6010 Prepa     | ration Meth | od: EPA  | 3010        |         |                                           |                |           |      |  |
| Iron, Dissolved                      | ND r           | mg/L        | 0.050    | 0.012       | 1       | 04/10/13 15:30                            | 04/17/13 11:29 | 7439-89-6 |      |  |
| Manganese, Dissolved                 | <b>0.046</b> r | mg/L        | 0.0050   | 0.00049     | 1       | 04/10/13 15:30                            | 04/17/13 11:29 | 7439-96-5 |      |  |



Project: 074938 BCOM NO.1 E FARMINGTON

Pace Project No.: 60141975

| Sample: GW-074938-040413-CM-<br>MW-3 | Lab ID                                           | 60141975003 | Collecte | d: 04/04/13 | 3 09:25 | Received: 04/  |                |           |      |
|--------------------------------------|--------------------------------------------------|-------------|----------|-------------|---------|----------------|----------------|-----------|------|
|                                      |                                                  |             | Report   |             |         |                |                |           |      |
| Parameters                           | Results                                          | Units       | Limit    | MDL         | DF      | Prepared       | Analyzed       | CAS No.   | Qual |
| 6010 MET ICP, Dissolved              | 6010 MET ICP, Dissolved Analytical Method: EPA 6 |             |          |             |         | 3010           |                |           |      |
| Iron, Dissolved                      | 0.34                                             | mg/L        | 0.050    | 0.012       | 1       | 04/10/13 15:30 | 04/17/13 11:30 | 7439-89-6 |      |
| Manganese, Dissolved                 | 0.28                                             | mg/L        | 0.0050   | 0.00049     | 1       | 04/10/13 15:30 | 04/17/13 11:30 | 7439-96-5 |      |



Project: 074938 BCOM NO.1 E FARMINGTON

Pace Project No.: 60141975

| Sample: GW-074938-040413-CM-<br>MW-4             | Lab ID: | 60141975004 | Collecte | d: 04/04/13 | 3 09:55 | Received: 04/  | : 04/06/13 08:40 Matrix: Water |           |      |  |
|--------------------------------------------------|---------|-------------|----------|-------------|---------|----------------|--------------------------------|-----------|------|--|
|                                                  |         |             | Report   |             |         |                |                                |           |      |  |
| Parameters                                       | Results | Units       | Limit    | MDL         | DF      | Prepared       | Analyzed                       | CAS No.   | Qual |  |
| 6010 MET ICP, Dissolved Analytical Method: EPA 6 |         |             |          | ration Meth | od: EPA | 3010           |                                |           |      |  |
| Iron, Dissolved                                  | ND I    | mg/L        | 0.050    | 0.012       | 1       | 04/10/13 15:30 | 04/17/13 11:32                 | 7439-89-6 |      |  |
| Manganese, Dissolved                             | 0.069   | mg/L        | 0.0050   | 0.00049     | 1       | 04/10/13 15:30 | 04/17/13 11:32                 | 7439-96-5 |      |  |



Project: 074938 BCOM NO.1 E FARMINGTON

Pace Project No.: 60141975

| Sample: GW-074938-040413-CM-<br>MW-5                     | Lab ID: | 60141975005 | Collecte | d: 04/04/13 | 4/13 10:10 Received: 04/06/13 08:40 Matrix: Water |                |                |           |      |  |
|----------------------------------------------------------|---------|-------------|----------|-------------|---------------------------------------------------|----------------|----------------|-----------|------|--|
|                                                          |         |             | Report   |             |                                                   |                |                |           |      |  |
| Parameters                                               | Results | Units       | Limit    | MDL         | DF                                                | Prepared       | Analyzed       | CAS No.   | Qual |  |
| 6010 MET ICP, Dissolved         Analytical Method: EPA 6 |         |             |          | ration Meth | od: EPA                                           | 3010           |                |           |      |  |
| Iron, Dissolved                                          | ND I    | mg/L        | 0.050    | 0.012       | 1                                                 | 04/10/13 15:30 | 04/17/13 11:34 | 7439-89-6 |      |  |
| Manganese, Dissolved                                     | ND I    | mg/L        | 0.0050   | 0.00049     | 1                                                 | 04/10/13 15:30 | 04/17/13 11:34 | 7439-96-5 |      |  |



Project: 074938 BCOM NO.1 E FARMINGTON

Pace Project No.: 60141975

| Sample: GW-074938-040413-CM-<br>MW-6 | Lab ID:    | 60141975006 | Collecte | d: 04/04/13 | 3 10:35 | Received: 04/06/13 08:40 Matrix: Water |                |           |      |
|--------------------------------------|------------|-------------|----------|-------------|---------|----------------------------------------|----------------|-----------|------|
|                                      |            |             | Report   |             |         |                                        |                |           |      |
| Parameters                           | Results    | Units       | Limit    | MDL         | DF      | Prepared                               | Analyzed       | CAS No.   | Qual |
| 6010 MET ICP, Dissolved              | 6010 Prepa | ration Meth | od: EPA  | 3010        |         |                                        |                |           |      |
| Iron, Dissolved                      | 0.056      | mg/L        | 0.050    | 0.012       | 1       | 04/10/13 15:30                         | 04/17/13 11:40 | 7439-89-6 |      |
| Manganese, Dissolved                 | 0.33       | mg/L        | 0.0050   | 0.00049     | 1       | 04/10/13 15:30                         | 04/17/13 11:40 | 7439-96-5 |      |



Project: 074938 BCOM NO.1 E FARMINGTON

Pace Project No.: 60141975

| Sample: GW-074938-040413-CM-<br>MW-DUP | Lab ID:                                          | 60141975007 | Collecte | d: 04/04/13 | 3 10:20 | Received: 04/  | 06/13 08:40 M  | atrix: Water |      |
|----------------------------------------|--------------------------------------------------|-------------|----------|-------------|---------|----------------|----------------|--------------|------|
|                                        |                                                  |             | Report   |             |         |                |                |              |      |
| Parameters                             | Results                                          | Units       | Limit    | MDL         | DF      | Prepared       | Analyzed       | CAS No.      | Qual |
| 6010 MET ICP, Dissolved                | 6010 MET ICP, Dissolved Analytical Method: EPA 6 |             |          |             |         | 3010           |                |              |      |
| Iron, Dissolved                        | 0.62                                             | mg/L        | 0.050    | 0.012       | 1       | 04/10/13 15:30 | 04/17/13 11:42 | 7439-89-6    |      |
| Manganese, Dissolved                   | 0.025                                            | mg/L        | 0.0050   | 0.00049     | 1       | 04/10/13 15:30 | 04/17/13 11:42 | 7439-96-5    |      |



# **QUALITY CONTROL DATA**

| Project:           | 074938   | BCOM NO.1 E F   | ARMINGTO  | N          |                        |            |             |            |            |           |     |     |      |
|--------------------|----------|-----------------|-----------|------------|------------------------|------------|-------------|------------|------------|-----------|-----|-----|------|
| Pace Project No .: | 601419   | 975             |           |            |                        |            |             |            |            |           |     |     |      |
| QC Batch:          | MPR      | P/22239         |           | Analys     | is Method:             | E          | PA 6010     |            |            |           |     |     |      |
| QC Batch Method:   | EPA 3    | 3010            |           | Analys     | is Descript            | ion: 6     | 010 MET Dis | ssolved    |            |           |     |     |      |
| Associated Lab San | nples:   | 60141975001, 60 | 141975002 | , 60141975 | 003, 6014 <sup>-</sup> | 1975004, 6 | 0141975005  | 5, 6014197 | 5006, 6014 | 41975007  |     |     |      |
| METHOD BLANK:      | 116768   | 32              |           | N          | latrix: Wat            | ter        |             |            |            |           |     |     |      |
| Associated Lab San | nples:   | 60141975001, 60 | 141975002 | , 60141975 | 003, 6014 <sup>-</sup> | 1975004, 6 | 0141975005  | 5, 6014197 | 5006, 6014 | 41975007  |     |     |      |
|                    |          |                 |           | Blank      |                        | eporting   |             |            |            |           |     |     |      |
| Paran              | neter    |                 | Units     | Result     | t                      | Limit      | Analyz      | ed         | Qualifiers |           |     |     |      |
| Iron, Dissolved    |          | mg/L            |           |            | ND                     | 0.050      |             |            |            |           |     |     |      |
| Manganese, Dissolv | /ed      | mg/L            |           |            | ND                     | 0.0050     | 04/17/13    | 11:18      |            |           |     |     |      |
| LABORATORY COM     | NTROLS   | SAMPLE: 11676   | 83        |            |                        |            |             |            |            |           |     |     |      |
|                    |          |                 |           | Spike      | LCS                    | ;          | LCS         | % Red      | <b>;</b>   |           |     |     |      |
| Paran              | neter    |                 | Units     | Conc.      | Resu                   | lt         | % Rec       | Limits     | Q          | ualifiers |     |     |      |
| Iron, Dissolved    |          | mg/L            |           | 10         |                        | 10.3       | 103         | 80         | -120       |           | -   |     |      |
| Manganese, Dissolv | ved      | mg/L            |           | 1          |                        | 1.1        | 108         | 80         | -120       |           |     |     |      |
| MATRIX SPIKE & M   | IATRIX S | SPIKE DUPLICATE | E: 116768 | 34         |                        | 1167685    |             |            |            |           |     |     |      |
|                    |          |                 |           | MS         | MSD                    |            |             |            |            |           |     |     |      |
|                    |          | 601             | 41975001  | Spike      | Spike                  | MS         | MSD         | MS         | MSD        | % Rec     |     | Max |      |
| Paramet            | er       | Units           | Result    | Conc.      | Conc.                  | Result     | Result      | % Rec      | % Rec      | Limits    | RPD | RPD | Qual |
| Iron, Dissolved    |          | mg/L            | 1.8       | 10         | 10                     | 12.1       | 11.9        | 103        | 101        | 75-125    | 1   | 20  |      |
| Manganese, Dissolv | /ed      | mg/L            | 0.47      | 1          | 1                      | 1.5        | 1.5         | 104        | 105        | 75-125    | 0   | 20  |      |



# QUALIFIERS

Project: 074938 BCOM NO.1 E FARMINGTON

Pace Project No.: 60141975

#### DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PRL - Pace Reporting Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine (8270 listed analyte) decomposes to Azobenzene.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.



# QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: 074938 BCOM NO.1 E FARMINGTON

Pace Project No.: 60141975

| Lab ID      | Sample ID                  | QC Batch Method | QC Batch   | Analytical Method | Analytical<br>Batch |
|-------------|----------------------------|-----------------|------------|-------------------|---------------------|
| 60141975001 | GW-074938-040413-CM-MW-1   | EPA 3010        | MPRP/22239 | EPA 6010          | ICP/17724           |
| 60141975002 | GW-074938-040413-CM-MW-2   | EPA 3010        | MPRP/22239 | EPA 6010          | ICP/17724           |
| 60141975003 | GW-074938-040413-CM-MW-3   | EPA 3010        | MPRP/22239 | EPA 6010          | ICP/17724           |
| 60141975004 | GW-074938-040413-CM-MW-4   | EPA 3010        | MPRP/22239 | EPA 6010          | ICP/17724           |
| 60141975005 | GW-074938-040413-CM-MW-5   | EPA 3010        | MPRP/22239 | EPA 6010          | ICP/17724           |
| 60141975006 | GW-074938-040413-CM-MW-6   | EPA 3010        | MPRP/22239 | EPA 6010          | ICP/17724           |
| 60141975007 | GW-074938-040413-CM-MW-DUP | EPA 3010        | MPRP/22239 | EPA 6010          | ICP/17724           |



# Sample Condition Upon Receipt ESI Tech Spec Client

# WO#:60141975

60141975

| 6 A                                                       |                                                                                |
|-----------------------------------------------------------|--------------------------------------------------------------------------------|
| Client Name: <u>CCP CRA</u>                               | Optional                                                                       |
| Courier: Fed Ex 🗗 UPS 🗆 USPS 🗆 Client 🗆 Commercial 🗆      | □ Pace □ Other □ Proj Due Date: 4/22<br>Label Used? Yes □ No/□ Proj Name: 4/22 |
| Tracking #: 799460248596 Pace Shipping I                  | Label Used? Yes 🗆 No 🖾 🛛 Proj Name: 1[22                                       |
| Custody Seal on Cooler/Box Present: Yes 🗹 No 🗆 Seals inta | act: Yes 🖉 No 🗆                                                                |
|                                                           | Foam None Other 2 2 P/C                                                        |
| Thermometer Used: (T-112) / T-194 Type of Ice: (N         | Vet) Blue None Samples received on ice, cooling process has begun.             |
| Cooler Temperature: <u>3-4</u>                            | (circle one) Date and initials of person examining contents:                   |
| Temperature should be above freezing to 6°C               |                                                                                |
| Chain of Custody present:                                 | DN/A 1. 1055                                                                   |
| Chain of Custody filled out:                              |                                                                                |
| Chain of Custody relinquished:                            |                                                                                |
| Sampler name & signature on COC:                          | □N/A 4. 0955                                                                   |
| Samples arrived within holding time:                      | □N/A 5. (010                                                                   |
| Short Hold Time analyses (<72hr):                         | □N/A 6. 1035                                                                   |
| Rush Turn Around Time requested:                          | DN/A 7. 1020                                                                   |
| Sufficient volume:                                        | □N/A 8.                                                                        |
| Correct containers used:                                  |                                                                                |
| Pace containers used: Øyes □No                            | □N/A 9.                                                                        |
| Containers intact:                                        | □N/A 10.                                                                       |
| Unpreserved 5035A soils frozen w/in 48hrs?                | ZN/A 11.                                                                       |
| Filtered volume received for dissolved tests?             | ZN/A 12.                                                                       |
| Sample labels match COC:                                  |                                                                                |
| Includes date/time/ID/analyses Matrix:                    | 13.                                                                            |
| All containers needing preservation have been checked.    |                                                                                |
| All containers needing preservation are found to be in    |                                                                                |
| compliance with EPA recommendation.                       | Initial when Lot # of added                                                    |
| Phenolics Lives 4No                                       | completed preservative                                                         |
| Trip Blank present:                                       | 1/Inva                                                                         |
| Pace Trip Blank lot # (if purchased):                     | 15.                                                                            |
| Headspace in VOA vials ( >6mm):                           |                                                                                |
|                                                           | 16.                                                                            |
| Project sampled in USDA Regulated Area:                   | A F1                                                                           |
| Client Notification/ Resolution: Copy COC to Client?      | Y N Field Data Required? Y / N                                                 |
| Person Contacted: Date/Time:                              | Temp Log: Record start and finish times<br>when unpacking cooler, if >20 min,  |
| Comments/ Resolution:                                     | recheck sample temps                                                           |
|                                                           | Start: 925 Start:                                                              |
|                                                           | End: 927 End:                                                                  |
| Project Manager Review:                                   | Date XID Temp: Temp:                                                           |

Pace Analytical

# CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

| Reacting Topologic for the contract of the contract on                                                                                                                                                                                                                                                                                                                                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Required Project Information.<br>Terror To Christine Matthews<br>Copy To: Kelly Blanchard, Angela Bown, Cassie Brown<br>Company Name.<br>Project Name                                     |
| Required Project Information.<br>Terror To Christine Matthews<br>Copy To: Kelly Blanchard, Angela Bown, Cassie Brown<br>Company Name.<br>Project Name                                     |
| Required Project triformation:<br>Report To: Christine Mathews<br>Copy To: Kelly Blanchard, Angela Bown, Cassie Brown<br>Project Name: B Com No. 1 E Farmington<br>Project Name: B Com No. 1 E Farmington<br>Project Name: DAR<br>Revolution<br>Project Name: DAR<br>Revolution<br>Project Name: DAR<br>Revolution<br>Revolution<br>Revolution<br>Revolution<br>Revolution<br>Revolution<br>Revolution<br>Revolution<br>Revolution<br>Revolution<br>Revolution<br>Revolution<br>Revolution<br>Revolution<br>Revolution<br>Revolution<br>Revolution<br>Revolution<br>Revolution<br>Revolution<br>Revolution<br>Revolution<br>Revolution<br>Revolution<br>Revolution<br>Revolution<br>Revolution<br>Revolution<br>Revolution<br>Revolution<br>Revolution<br>Revolution<br>Revolution<br>Revolution<br>Revolution<br>Revolution<br>Revolution<br>Revolution<br>Revolution<br>Revolution<br>Revolution<br>Revolution<br>Revolution<br>Revolution<br>Revolution<br>Revolution<br>Revolution<br>Revolution<br>Revolution<br>Revolution<br>Revolution<br>Revolution<br>Revolution<br>Revolution<br>Revolution<br>Revolution<br>Revolution<br>Revolution<br>Revolution<br>Revolution<br>Revolution<br>Revolution<br>Revolution<br>Revolution<br>Revolution<br>Revolution<br>Revolution<br>Revolution<br>Revolution<br>Revolution<br>Revolution<br>Revolution<br>Revolution<br>Revolution<br>Revolution<br>Revolution<br>Revolution<br>Revolution<br>Revolution<br>Revolution<br>Revolution<br>Revolution<br>Revolution<br>Revolution<br>Revolution<br>Revolution<br>Revolution<br>Revolution<br>Revolution<br>Revolution<br>Revolution<br>Revolution<br>Revolution<br>Revolution<br>Revolution<br>Revolution<br>Revolution<br>Revolution<br>Revolution<br>Revolution<br>Revolution<br>Revolution<br>Revolution<br>Revolution<br>Revolution<br>Revolution<br>Revolution<br>Revolution<br>Revolution<br>Revolution<br>Revolution<br>Revolution<br>Revolution<br>Revolution<br>Revolution<br>Revolution<br>Revolution<br>Revolution<br>Revolution<br>Revolution<br>Revolution<br>Revolution<br>Revolution<br>Revolution<br>Revolution<br>Revolution<br>Revolution<br>Revolution<br>Revolution<br>Revolution<br>Revolution<br>Revolution<br>Revolution<br>Revolution<br>Revolution<br>Revolution<br>Revolution<br>Revolution |
| Required P<br>Report To:<br>Copy To:<br>Copy To:<br>Copy To:<br>Project Num<br>Project Num<br>Project Num<br>Project Num<br>Project Num                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Required Client Information:     Required Client Information:       Compary     COP CRA NIM       Formpary     6121 Indian School Rd NE, Ste 200       Address:     6121 Indian School Rd NE, Ste 200       Email Tr     Albequerque, NM       Email Tr     Compary       Email Tr     Contathews@craworld.com       Phore:     (505)884-0672       Fraguested Due Date/TAT:     Fandard       Requested Due Date/TAT:     Standard       Section D     MATRIX       Required Client Information     Valid Matrix Codes       Requested Due Date/TAT:     Standard       Section D     MATRIX       Section D     MATRIX       Required Client Information     Valid Matrix Codes       Requised Due Date/TAT:     Standard       Section D     MATRIX       Sample IDs MUST BE UNIQUE     Texus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |



Pace Analytical Services, Inc. 9608 Loiret Blvd. Lenexa, KS 66219 (913)599-5665

October 11, 2013

Christine Matthews CRA 6121 Indian School Rd NE Suite 200 Albuquerque, NM 87110

RE: Project: 074938 B COM NO. 1 E FARMING Pace Project No.: 60154515

Dear Christine Matthews:

Enclosed are the analytical results for sample(s) received by the laboratory on October 02, 2013. The results relate only to the samples included in this report. Results reported herein conform to the most current TNI standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Alice Flanazan

Alice Flanagan

alice.flanagan@pacelabs.com Project Manager

Enclosures

cc: Angela Bown, COP Conestoga-Rovers & Associa Jeff Walker, COP Conestoga-Rovers & Associa





#### CERTIFICATIONS

Project: 074938 B COM NO. 1 E FARMING

Pace Project No.: 60154515

#### **Kansas Certification IDs**

9608 Loiret Boulevard, Lenexa, KS 66219 WY STR Certification #: 2456.01 Arkansas Certification #: 13-012-0 Illinois Certification #: 003097 Iowa Certification #: 118 Kansas/NELAP Certification #: E-10116 Louisiana Certification #: 03055 Nevada Certification #: KS000212008A Oklahoma Certification #: 9205/9935 Texas Certification #: T104704407-13-4 Utah Certification #: KS000212013-3 Illinois Certification #: 003097



# SAMPLE SUMMARY

Project: 074938 B COM NO. 1 E FARMING

Pace Project No.: 60

|    | 074930 B COM NO. T E FAR | 1 |
|----|--------------------------|---|
| .: | 60154515                 |   |

| Lab ID      | Sample ID                  | Matrix | Date Collected | Date Received  |
|-------------|----------------------------|--------|----------------|----------------|
| 60154515001 | GW-074938-093013-CM-MW-1   | Water  | 09/30/13 18:25 | 10/02/13 08:45 |
| 60154515002 | GW-074938-093013-CM-MW-2   | Water  | 09/30/13 18:00 | 10/02/13 08:45 |
| 60154515003 | GW-074938-093013-CM-MW-3   | Water  | 09/30/13 18:12 | 10/02/13 08:45 |
| 60154515004 | GW-074938-093013-CM-MW-4   | Water  | 09/30/13 19:00 | 10/02/13 08:45 |
| 60154515005 | GW-074938-093013-CM-MW-5   | Water  | 09/30/13 18:40 | 10/02/13 08:45 |
| 60154515006 | GW-074938-093013-CM-MW-6   | Water  | 09/30/13 19:10 | 10/02/13 08:45 |
| 60154515007 | GW-074938-093013-CM-MW-DUP | Water  | 09/30/13 19:15 | 10/02/13 08:45 |



# SAMPLE ANALYTE COUNT

 Project:
 074938 B COM NO. 1 E FARMING

 Pace Project No.:
 60154515

| Lab ID      | Sample ID                  | Method   | Analysts | Analytes<br>Reported |
|-------------|----------------------------|----------|----------|----------------------|
| 60154515001 |                            | EPA 6010 | NDJ      | 2                    |
| 60154515002 | GW-074938-093013-CM-MW-2   | EPA 6010 | NDJ      | 2                    |
| 60154515003 | GW-074938-093013-CM-MW-3   | EPA 6010 | NDJ      | 2                    |
| 60154515004 | GW-074938-093013-CM-MW-4   | EPA 6010 | NDJ      | 2                    |
| 60154515005 | GW-074938-093013-CM-MW-5   | EPA 6010 | NDJ      | 2                    |
| 60154515006 | GW-074938-093013-CM-MW-6   | EPA 6010 | NDJ      | 2                    |
| 60154515007 | GW-074938-093013-CM-MW-DUP | EPA 6010 | NDJ      | 2                    |



#### **PROJECT NARRATIVE**

Project: 074938 B COM NO. 1 E FARMING

Pace Project No.: 60154515

#### Method: EPA 6010

Description:6010 MET ICP, DissolvedClient:COP Conestoga-Rovers & Associates, Inc. NMDate:October 11, 2013

#### General Information:

7 samples were analyzed for EPA 6010. All samples were received in acceptable condition with any exceptions noted below.

#### Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

#### Sample Preparation:

The samples were prepared in accordance with EPA 3010 with any exceptions noted below.

#### Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

#### Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

#### Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

#### Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

#### Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

#### Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.



Project: 074938 B COM NO. 1 E FARMING

Pace Project No.: 60154515

| Sample: GW-074938-093013-CM-<br>MW-1 | Lab ID:   | 60154515001      | Collecte   | ollected: 09/30/13 18:25 |         | Received: 10/  | Received: 10/02/13 08:45 Ma |           |      |
|--------------------------------------|-----------|------------------|------------|--------------------------|---------|----------------|-----------------------------|-----------|------|
|                                      |           |                  | Report     |                          |         |                |                             |           |      |
| Parameters                           | Results   | Units            | Limit      | MDL                      | DF      | Prepared       | Analyzed                    | CAS No.   | Qual |
| 6010 MET ICP, Dissolved              | Analytica | al Method: EPA 6 | 6010 Prepa | ration Meth              | od: EPA | 3010           |                             |           |      |
| Iron, Dissolved                      | 1.7       | mg/L             | 0.050      | 0.012                    | 1       | 10/03/13 17:10 | 10/04/13 13:05              | 7439-89-6 |      |
| Manganese, Dissolved                 | 0.29      | mg/L             | 0.0050     | 0.00049                  | 1       | 10/03/13 17:10 | 10/04/13 13:05              | 7439-96-5 |      |



Project: 074938 B COM NO. 1 E FARMING

Pace Project No.: 60154515

| Sample: GW-074938-093013-CM-<br>MW-2 | Lab ID:                                                                          | 60154515002 | Collecte | d: 09/30/13 | 3 18:00 | Received: 10/  | 02/13 08:45 Ma | atrix: Water |      |  |  |
|--------------------------------------|----------------------------------------------------------------------------------|-------------|----------|-------------|---------|----------------|----------------|--------------|------|--|--|
|                                      |                                                                                  |             | Report   |             |         |                |                |              |      |  |  |
| Parameters                           | Results                                                                          | Units       | Limit    | MDL         | DF      | Prepared       | Analyzed       | CAS No.      | Qual |  |  |
| 6010 MET ICP, Dissolved              | 6010 MET ICP, Dissolved Analytical Method: EPA 6010 Preparation Method: EPA 3010 |             |          |             |         |                |                |              |      |  |  |
| Iron, Dissolved                      | ND mg/L                                                                          |             | 0.050    | 0.012       | 1       | 10/03/13 17:10 | 10/04/13 13:07 | 7439-89-6    |      |  |  |
| Manganese, Dissolved                 | 0.0077                                                                           | 0.0077 mg/L |          | 0.00049     | 1       | 10/03/13 17:10 | 10/04/13 13:07 | 7439-96-5    |      |  |  |



Project: 074938 B COM NO. 1 E FARMING

Pace Project No.: 60154515

| Sample: GW-074938-093013-CM-<br>MW-3 | Lab ID:   | 60154515003     | <b>3</b> Collected: 09/30/13 18:12 R |             |         | Received: 10/  | Received: 10/02/13 08:45 Matrix: Water |           |      |
|--------------------------------------|-----------|-----------------|--------------------------------------|-------------|---------|----------------|----------------------------------------|-----------|------|
|                                      |           |                 | Report                               |             |         |                |                                        |           |      |
| Parameters                           | Results   | Units           | Limit                                | MDL         | DF      | Prepared       | Analyzed                               | CAS No.   | Qual |
| 6010 MET ICP, Dissolved              | Analytica | I Method: EPA 6 | 6010 Prepa                           | ration Meth | od: EPA | 3010           |                                        |           |      |
| Iron, Dissolved                      | ND mg/L   |                 | 0.050                                | 0.012       | 1       | 10/03/13 17:10 | 10/04/13 13:09                         | 7439-89-6 |      |
| Manganese, Dissolved                 | 0.047     | 0.047 mg/L      |                                      | 0.00049     | 1       | 10/03/13 17:10 | 10/04/13 13:09                         | 7439-96-5 |      |



Project: 074938 B COM NO. 1 E FARMING

Pace Project No.: 60154515

| Sample: GW-074938-093013-CM-<br>MW-4 | Lab ID:   | 60154515004     | Collected: 09/30/13 19:00 R |             |         | Received: 10/  | Received: 10/02/13 08:45 Matrix: Water |           |      |
|--------------------------------------|-----------|-----------------|-----------------------------|-------------|---------|----------------|----------------------------------------|-----------|------|
|                                      |           |                 | Report                      |             |         |                |                                        |           |      |
| Parameters                           | Results   | Units           | Limit                       | MDL         | DF      | Prepared       | Analyzed                               | CAS No.   | Qual |
| 6010 MET ICP, Dissolved              | Analytica | I Method: EPA 6 | 6010 Prepa                  | ration Meth | od: EPA | 3010           |                                        |           |      |
| Iron, Dissolved                      | ND        | mg/L            | 0.050                       | 0.012       | 1       | 10/03/13 17:10 | 10/04/13 13:16                         | 7439-89-6 |      |
| Manganese, Dissolved                 | ND        | mg/L            | 0.0050                      | 0.00049     | 1       | 10/03/13 17:10 | 10/04/13 13:16                         | 7439-96-5 |      |



Project: 074938 B COM NO. 1 E FARMING

Pace Project No.: 60154515

| Sample: GW-074938-093013-CM-<br>MW-5                                                   | <b>3013-CM-</b> Lab ID: 60154515005 Collected: 09/30/13 18:40 Rec |       |        | Received: 10/ | Received: 10/02/13 08:45 Matrix: Water |                |                |           |      |  |
|----------------------------------------------------------------------------------------|-------------------------------------------------------------------|-------|--------|---------------|----------------------------------------|----------------|----------------|-----------|------|--|
|                                                                                        |                                                                   |       | Report |               |                                        |                |                |           |      |  |
| Parameters                                                                             | Results                                                           | Units | Limit  | MDL           | DF                                     | Prepared       | Analyzed       | CAS No.   | Qual |  |
| 6010 MET ICP, Dissolved       Analytical Method: EPA 6010 Preparation Method: EPA 3010 |                                                                   |       |        |               |                                        |                |                |           |      |  |
| Iron, Dissolved                                                                        | ND                                                                | mg/L  | 0.050  | 0.012         | 1                                      | 10/03/13 17:10 | 10/04/13 13:18 | 7439-89-6 |      |  |
| Manganese, Dissolved                                                                   | ND                                                                | mg/L  | 0.0050 | 0.00049       | 1                                      | 10/03/13 17:10 | 10/04/13 13:18 | 7439-96-5 |      |  |



Project: 074938 B COM NO. 1 E FARMING

Pace Project No.: 60154515

| Sample: GW-074938-093013-CM-<br>MW-6 | Lab ID:   | 60154515006      | Collecte   | Collected: 09/30/13 19:10 |         |                | 02/13 08:45 Ma | atrix: Water |      |
|--------------------------------------|-----------|------------------|------------|---------------------------|---------|----------------|----------------|--------------|------|
|                                      |           |                  | Report     |                           |         |                |                |              |      |
| Parameters                           | Results   | Units            | Limit      | MDL                       | DF      | Prepared       | Analyzed       | CAS No.      | Qual |
| 6010 MET ICP, Dissolved              | Analytica | al Method: EPA 6 | 6010 Prepa | ration Meth               | od: EPA | 3010           |                |              |      |
| Iron, Dissolved                      | ND mg/L   |                  | 0.050      | 0.012                     | 1       | 10/03/13 17:10 | 10/04/13 13:20 | 7439-89-6    |      |
| Manganese, Dissolved                 | 0.17      | 0.17 mg/L        |            | 0.00049                   | 1       | 10/03/13 17:10 | 10/04/13 13:20 | 7439-96-5    |      |



Project: 074938 B COM NO. 1 E FARMING

Pace Project No.: 60154515

| Sample: GW-074938-093013-CM-<br>MW-DUP | Lab ID: 60154515007 Coll                                                         |           |        | d: 09/30/13 | 3 19:15 | Received: 10/  | Received: 10/02/13 08:45 Matrix: Water |           |      |  |  |
|----------------------------------------|----------------------------------------------------------------------------------|-----------|--------|-------------|---------|----------------|----------------------------------------|-----------|------|--|--|
|                                        |                                                                                  |           | Report |             |         |                |                                        |           |      |  |  |
| Parameters                             | Results                                                                          | Units     | Limit  | MDL         | DF      | Prepared       | Analyzed                               | CAS No.   | Qual |  |  |
| 6010 MET ICP, Dissolved                | 6010 MET ICP, Dissolved Analytical Method: EPA 6010 Preparation Method: EPA 3010 |           |        |             |         |                |                                        |           |      |  |  |
| Iron, Dissolved                        | ND I                                                                             | mg/L      | 0.050  | 0.012       | 1       | 10/03/13 17:10 | 10/04/13 13:22                         | 7439-89-6 |      |  |  |
| Manganese, Dissolved                   | 0.17                                                                             | 0.17 mg/L |        | 0.00049     | 1       | 10/03/13 17:10 | 10/04/13 13:22                         | 7439-96-5 |      |  |  |



# **QUALITY CONTROL DATA**

| Project:<br>Pace Project No.:         | 074938 B<br>60154515 | COM NO. 1 E F               | ARMING       |                     |              |                        |            |            |              |          |     |     |      |
|---------------------------------------|----------------------|-----------------------------|--------------|---------------------|--------------|------------------------|------------|------------|--------------|----------|-----|-----|------|
| QC Batch:                             | MPRP/2               | 4558                        |              | Analys              | is Method:   | E                      | PA 6010    |            |              |          |     |     |      |
| QC Batch Method:                      | EPA 301              | 0                           |              | Analys              | is Descript  | ion: 6                 | 010 MET Di | ssolved    |              |          |     |     |      |
| Associated Lab Sam                    | nples: 60            | 0154515001, 60 <sup>2</sup> | 154515002    | , 60154515          | 003, 60154   | 1515004, 6             | 015451500  | 5, 6015451 | 5006, 6015   | 4515007  |     |     |      |
| METHOD BLANK:                         | 1265504              |                             |              | N                   | latrix: Wat  | er                     |            |            |              |          |     |     |      |
| Associated Lab Sam                    | nples: 60            | 0154515001, 60 <sup>-</sup> | 154515002    | , 60154515<br>Blank |              | 1515004, 6<br>eporting | 015451500  | 5, 6015451 | 5006, 6015   | 4515007  |     |     |      |
| Param                                 | neter                | ι                           | Jnits        | Result              | t            | Limit                  | Analyz     | ed         | Qualifiers   |          |     |     |      |
| Iron, Dissolved<br>Manganese, Dissolv | ved                  | mg/L<br>mg/L                |              |                     | ND<br>ND     | 0.050<br>0.0050        |            | -          |              | _        |     |     |      |
| LABORATORY CON                        | NTROL SAI            | MPLE: 126550                | )5           |                     |              |                        |            |            |              |          |     |     |      |
| Dama                                  |                      |                             | 1            | Spike               | LCS          |                        | LCS        | % Red      |              |          |     |     |      |
| Param                                 | neter                |                             | Jnits        | Conc.               | Resu         |                        | % Rec      | Limits     |              | alifiers | -   |     |      |
| Iron, Dissolved<br>Manganese, Dissolv | ved                  | mg/L<br>mg/L                |              | 10<br>1             |              | 9.4<br>0.97            | 94<br>97   |            | -120<br>-120 |          |     |     |      |
| MATRIX SPIKE & M                      | IATRIX SPI           | IKE DUPLICATE               | : 126550     | 06                  |              | 1265507                |            |            |              |          |     |     |      |
|                                       |                      | 6015                        | 54273001     | MS<br>Spike         | MSD<br>Spike | MS                     | MSD        | MS         | MSD          | % Rec    |     | Max |      |
| Paramet                               | er                   | Units                       | Result       | Conc.               | Conc.        | Result                 | Result     | % Rec      | % Rec        | Limits   | RPD | RPD | Qual |
| Iron, Dissolved                       |                      | mg/L                        | 467<br>ug/L  | 10                  | 10           | 9.6                    |            | 91         | 93           | 75-125   | 2   | 20  |      |
| Manganese, Dissolv                    | ved                  | mg/L                        | 1160<br>ug/L | 1                   | 1            | 2.1                    | 2.1        | 94         | 93           | 75-125   | 0   | 20  |      |



# QUALIFIERS

Project: 074938 B COM NO. 1 E FARMING

Pace Project No.: 60154515

#### DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PRL - Pace Reporting Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine (8270 listed analyte) decomposes to Azobenzene.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.



# QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: 074938 B COM NO. 1 E FARMING

Pace Project No.: 60154515

| Lab ID      | Sample ID                  | QC Batch Method | QC Batch   | Analytical Method | Analytical<br>Batch |
|-------------|----------------------------|-----------------|------------|-------------------|---------------------|
| 60154515001 | GW-074938-093013-CM-MW-1   | EPA 3010        | MPRP/24558 | EPA 6010          | ICP/19111           |
| 60154515002 | GW-074938-093013-CM-MW-2   | EPA 3010        | MPRP/24558 | EPA 6010          | ICP/19111           |
| 60154515003 | GW-074938-093013-CM-MW-3   | EPA 3010        | MPRP/24558 | EPA 6010          | ICP/19111           |
| 60154515004 | GW-074938-093013-CM-MW-4   | EPA 3010        | MPRP/24558 | EPA 6010          | ICP/19111           |
| 60154515005 | GW-074938-093013-CM-MW-5   | EPA 3010        | MPRP/24558 | EPA 6010          | ICP/19111           |
| 60154515006 | GW-074938-093013-CM-MW-6   | EPA 3010        | MPRP/24558 | EPA 6010          | ICP/19111           |
| 60154515007 | GW-074938-093013-CM-MW-DUP | EPA 3010        | MPRP/24558 | EPA 6010          | ICP/19111           |

| 1 (f ) (i )                                                                                                                                     |                                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
|                                                                                                                                                 | WO#:60154515                                                 |
| Pace Analytical Sample Condition Upon Receipt                                                                                                   |                                                              |
| Pace Analytical ESI Tech Spec Client                                                                                                            |                                                              |
|                                                                                                                                                 | 60154515                                                     |
|                                                                                                                                                 |                                                              |
| Client Name                                                                                                                                     |                                                              |
| Client Name: <u>COPCRA</u>                                                                                                                      | Optional                                                     |
| Courier: Fed Ex X UPS USPS Client Commercial Parallel                                                                                           |                                                              |
| Tracking #:       Evel 368279487       Pace Shipping Label 0         Custody Seal on Cooler/Box Present:       Yes       No       Seals intact: |                                                              |
| Packing Material: Bubble Wyrap D Bubble Bags D Foam                                                                                             |                                                              |
| - 12                                                                                                                                            | ue None Samples received on ice, cooling process has begun.  |
|                                                                                                                                                 |                                                              |
| Temperature should be above freezing to 6°C                                                                                                     | Date and initials of person examining contents: _/1/ 0/ 2//3 |
| Chain of Custody present:                                                                                                                       | 1.                                                           |
| Chain of Custody filled out:                                                                                                                    | 2.                                                           |
| Chain of Custody relinquished:                                                                                                                  | 3.                                                           |
| Sampler name & signature on COC:                                                                                                                | 4                                                            |
| Samples arrived within holding time:                                                                                                            | 5                                                            |
| Short Hold Time analyses (<72hr):                                                                                                               | 6                                                            |
| Rush Turn Around Time requested:                                                                                                                | 7                                                            |
| Sufficient volume:                                                                                                                              | 8.                                                           |
|                                                                                                                                                 | 0.                                                           |
|                                                                                                                                                 |                                                              |
| Pace containers used:                                                                                                                           | 9.                                                           |
| Containers intact:                                                                                                                              | 10.                                                          |
| Unpreserved 5035A soils frozen w/in 48hrs?                                                                                                      |                                                              |
| Filtered volume received for dissolved tests?                                                                                                   | 12.                                                          |
| Sample labels match COC:                                                                                                                        |                                                              |
| Includes date/time/ID/analyses Matrix:                                                                                                          | 13.                                                          |
| All containers needing preservation have been checked.                                                                                          |                                                              |
| All containers needing preservation are found to be in compliance with EPA recommendation.                                                      | 14.                                                          |
| Exceptions: VOA, coliform, TOC, O&G, WI-DRO (water),                                                                                            | Initial when Lot # of added<br>completed preservative        |
| Trip Blank present:                                                                                                                             |                                                              |
| Pace Trip Blank lot # (if purchased):                                                                                                           | 15.                                                          |
| Headspace in VOA vials ( >6mm):                                                                                                                 |                                                              |
|                                                                                                                                                 | 16.                                                          |
| Project sampled in USDA Regulated Area:                                                                                                         |                                                              |
| Client Notification/ Resolution: Copy COC to Client? Y                                                                                          | N Field Data Required? Y / N                                 |
|                                                                                                                                                 | Temp Log: Record start and finish times                      |
| Person Contacted: Date/Time:<br>Comments/ Resolution;                                                                                           | when unpacking cooler, if >20 min,<br>recheck sample temps.  |
|                                                                                                                                                 | Start: (25° Start:                                           |
| NAC.                                                                                                                                            | End: 1252 End:                                               |
| Project Manager Review:                                                                                                                         | Date: 7_3 Temp: Temp:                                        |
|                                                                                                                                                 | 10 - 10                                                      |

Face Analytical

# CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT, All relevant fields must be completed accurately.

| Page: of                                   |                              | REGULATORY AGENCY                            | 1 NPDES X GROUND WATER 7 DRINKING WATER | I UST T RCRA I OTHER            | Site Location                             | STATE: NIM                       | Requested Analysis Filtered (YIN) |                      | (N/X) ƏI                                                              | Residual Chloric<br>Residual Chloric<br>Pace Project No. Lab I.D.                                                                                            | 100 100 100 NHZ 001        |                           | co3-                       | Hvv)             | 502                |                      | *                 |                    | DATE TIME SAMPLE CONDITIONS        | 10/2/13 0845 7.9 Y Y Y     | F-ALL-Q-020rev 08, 12-Oct-2007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------------------------------------------|------------------------------|----------------------------------------------|-----------------------------------------|---------------------------------|-------------------------------------------|----------------------------------|-----------------------------------|----------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|---------------------------|----------------------------|------------------|--------------------|----------------------|-------------------|--------------------|------------------------------------|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Section C<br>Invoice Information:          | Attention: COP epayables     | Company Name:                                | Address:                                | Pace Quote<br>Reference:        | Pace Project Alice Flanagan               | Pace Profile #: 5514, 19         | Requested /                       | Preservatives        | <u>†</u> 1                                                            | # OF CONTRINEF<br>Unpreserved<br>H <sub>2</sub> SO <sub>4</sub><br>HUO <sub>3</sub><br>NaOH<br>MaCH<br>Mathanol<br>Other<br>Other<br>Other<br>Other<br>Other |                            | ×                         | X                          | ×                | ×                  | ×>                   |                   |                    | TIME ACCEPTED BY / AFFILIATION     | 0920 Phr Paly              | The second s |
| Section B<br>Required Project Information: | Report To: Christine Mathews | Copy To: Jeff Walker, Angela Bown            | 4                                       | Purchase Order No.: 4517680460  | Project Name: B Com No. 1 E Farmington    | Project Number: 074938           |                                   | odes<br>CODE<br>CODE |                                                                       | D) ERPELE TYPE (G                                                                                                                                            | 3 1825                     | 1-2 117 G 9 2012          | G 91-20                    | -4 127 6 9 20/13 | MW-5 WT6 9130 1640 | 1. 1. 1. C 5 38/3    | SIM SWELL DIM ANO |                    | RELINQUISHED BY / AFFILIATION DATE | Concentration (CRA 3/3/13) | SAMPLER NAME AND SIGNATURE<br>PRINT Name of SAMPLER.<br>SIGNATURE of SAMPLER:<br>(Important Note By signing this form you are accepting Pace's NET 30 day payment terms and agreeing to late charges of 1.5% per month formy invoices not paid within 30 days                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Section A<br>Required Client Information   | Company: COP CRA NM          | Address: 6121 Indian School Rd NE, Ste 200 0 | Albequerque, NM 87110                   | Email To: cmathews@craworld.com | Phone: (505)884-0672 Fax: (505)884-4932 F | Requested Due Date/TAT: standard |                                   |                      | DRINKING WATER<br>WATER<br>WAJTE WATER<br>PRODUCT<br>SOILSOLID<br>OIL | SAMPLE IU WITE AN<br>(A-Z, 0-9.1,-) OTHER A<br>NUST BE UNIQUE TISSUE 1-<br>TISSUE 1-1                                                                        | 1 54 074939-093013-0M- MIL | 2 612-674932-093013rm Mil | 1510 - 074932 - (33013-0M- | à                | 593013-UM-         | GW-074938-093013-CM- | n mb              | 8<br>9<br>10<br>11 | ADDITIONAL COMMENTS                | Metals were field          | ed 6utideoora are nov turbioduri.<br>Page 17 of 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

# Appendix C

# SOUDER MILLER & ASSOCIATES HISTORICAL ANALYTICAL DATA



Table 2 BTEX Ground Water Analytical Summary Farmington B Com 1E Unit O, Sec. 15 T29N, R13W

ļ

ø

2

Total-Xylene 620.0 2044.0 2800.0 470.0 171.0 119.0 33.3 35.0 68.1 36.4 BDL 56.0 BDL BDL BDL BDL BDL 5.3 2.0 BDL BDL **BTEX per EPA 8020** 1 Ethylbenzene 750.0 370.0 39.0 (qdd) 16.0 32.0 1.6 0.5 BDL 420 BDL 1.8 BDL BDL BDL BDL BDL BDI 3.1 2.1 2 41 i i j. Toluene 750.0 1999 34.0 0.6 BDL BDL BDL BDL 6.0 0.0 BDL 2.5 BDL BDL BDL 12 BDL BDL 5.3 BDL 2.7 BDL Benzene 350.0 210.0 10.0 BDL BDL BDL BDL BD BDL BDL BDL BDL 2.4 0.8 1.3 BDL BDL BDL BDL BDL BDL .⊑ 작습 사 On Site Lab. lina ba Lab On Site Lab. On Site Lab. lina ba Lab Remarks Taken in well in well Levels free product free product in the bailer Monitor Samples Well **MW#3** MW#1 **MW#2** 0401011-002A 0401011-004A 9912018-04A 9806055-01A 9912018-05A 9812053-06A 9903012-04A 9906055-04A 9909054-04A 9802020-02A 9809035-01A 9812053-05A 9903012-05A 9906055-05A 9909054-05A 9802020-03A 9809035-02A 9812053-04A 9806055-02A 9802020-01A Not Sampled Not Sampled Sample ID# Action 3" of free product Water Sample Date 9/15/98 12/29/98 1/22/04 WQCC 06/12/98 6/15/99 12/14/99 2/19/98 6/12/98 12/29/98 9/15/98 12/29/98 12/14/99 9/15/99 6/12/98 9/15/98 6/15/99 9/15/99 2/19/98 2/19/98 1/22/04 3/3/99 1/22/04 3/3/99 å

Table 2 BTEX Ground Water Analytical Summary Farmington B Com 1E Unit O, Sec. 15 T29N, R13W

•

J.

ŋ

9

| 020               |                    | BDL          | BDL         | BDL         | BDL         | BDL         | BDL         | BDL         | BDL         | BDL         | BDL          | BDL          | BDL         | BDL         | BDL         | BDL         | BDL         | BDL         | BDL         | 36,4        | BDL          |                                                                                                                                                                                                                                     | BDL          | BDL         | BDL         | BDL         | BDL         | 1.9         | BDL          | 620 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------------|--------------------|--------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|--------------|--------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------|-------------|-------------|-------------|-------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BTEX per EPA 8020 | (ppb)              | BDL          | 0.6         | BDL          | TICIB        | BDL         | 1.8         | BDL          |                                                                                                                                                                                                                                     | BDL          | BDL         | BDL         | BDL         | 1.1         | 0.7         | BDL          | 750.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| BT                |                    | BDL          | BDL         | BDL         | BDL         | BDL         | 0.7         | BDL         | BDL         | BDL         | BDL          | BDL          | BDL         | BDL         | BDL         | BDL         | 0.8         | BDL         | BDL         | BDL         | BDL          |                                                                                                                                                                                                                                     | BDL          | BDL         | BDL         | BDL         | 0.7         | 1.8         | BDL          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                   |                    | BDL          | BDL         | BDL         | BDL         | BDL         | BDL         | BDL         | BDL         | BDL         | BDL          | BDL          | BDL         | BDL         | BDL         | BDL         | BDL         | BDL         | BDL         | BDL         | BDL          |                                                                                                                                                                                                                                     | BDL          | BDL         | BDL         | BDL         | BDL         | BDL         | BDL          | 10 UL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Remarks           |                    | On Site Lab. |             |             |             |             |             |             |             |             | lina ba Lab  | On Site Lab. |             |             |             |             |             |             |             |             | lina ba Lab  |                                                                                                                                                                                                                                     | On Site Lab. |             |             |             |             |             | lina ba Lab  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Monitor           | · · · · Well · · · | MW#4         |             |             |             |             |             |             |             |             |              | MW#5         |             |             |             |             |             |             |             |             |              |                                                                                                                                                                                                                                     | MW#6         |             |             |             |             |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Sample ID#        |                    | 9809035-03A  | 9812053-03A | 9903012-03A | 9906055-03A | 9909054-03A | 9912018-03A | 0003041-01A | 0006009-02A | 0009020*01A | 0401011-003A | 9809035-04A  | 9812053-02A | 9903012-02A | 9906055-02A | 9909054-02A | 9912018-02A | 0003041-02A | 0006009-01A | 9912018-05A | 0401011-005A | a da ser a con adres a construction da construction de la construction de la construction de la construction d<br>La ser a construction de la construct | 9809035-05A  | 9812053-01A | 9903012-01A | 9906055-01A | 9909054-01A | 9912018-01A | 0401011-006A |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Sample Date       |                    | 9/15/98      | 12/29/98    | 3/3/99      | 6/15/99     | 9/15/99     | 12/14/99    | 3/27/00     | 6/5/00      | 9/11/00     | 1/22/04      | 9/15/98      | 12/29/98    | 3/3/99      | 6/15/99     | 9/15/99     | 12/14/99    | 3/27/00     | 6/5/00      | 12/14/99    | 1/22/04      |                                                                                                                                                                                                                                     | 9/15/98      | 12/29/98    | 3/3/99      | 6/15/99     | 9/15/99     | 12/14/99    | 1/22/04      | Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice<br>Notice |

# Table 2 BTEX Ground Water Analytical Summary Farmington B Com 1E Unit O, Sec. 15 T29N, R13W

\_

j

. \_\_\_\_

ŋ

.6

| 1. S. S.        |             | 1           | <u> </u>    | T           |             |             |
|-----------------|-------------|-------------|-------------|-------------|-------------|-------------|
| COD             |             |             |             |             |             |             |
| BOD             | Not Sampled | -           |             |             |             |             |
| lron<br>pom     | Not S       | BDL         | BDL         | BDL         | BDL         | 0.194       |
| Anions          |             | 65.1        | 73.3        | 67.7        | 86.8        | 28.2        |
| Remarks         | lina ba Lab |             |             |             |             |             |
| Monitor<br>Well | MW#1        | MW#2        | MW#3        | MW#4        | MW#5        | 9#MM        |
| Sample ID#      |             | 0401011-004 | 0401011-002 | 0401011-003 | 0401011-005 | 0401011-006 |
| Sample Date     | 1/22/04     | 1/22/04     | 1/22/04     | 1/22/04     | 1/22/04     | 1/22/04     |

# Appendix D

# CONESTOGA-ROVERS & ASSOCIATES REMEDIAL TECHNOLOGY ASSESSMENT AND TREATABILITY STUDY MEMO





14496 Sheldon Road, Suite #200 Plymouth, Michigan 48170 Telephone: (734) 453-5123 Fax: (734) 453-5201 www.CRAworld.com

# DRAFT MEMORANDUM

# **INTRODUCTION**

At six ConocoPhillips Company Sites located in New Mexico, historic benzene, toluene, ethylbenzene and xylenes (BTEX) and petroleum hydrocarbon contamination has been remediated such that these compounds are no longer detected in groundwater. However, the anaerobic conditions caused by the presence of these compounds in groundwater has potentially lead to the solubilization of iron and manganese and; therefore, while the organic compounds are no longer an issue at the Sites, the Sites cannot be closed because these metals exceed New Mexico Water Quality Control Commission (NMWQCC) criteria. Both iron and manganese are more soluble in their reduced forms. When they are oxidized they tend to form ferric or manganese oxides which are not soluble and precipitate out of groundwater. Information for the six sites is summarized in the table below:

| Site                            | Howell K No. 1                                  | Faye Burdette<br>No. 1                            | Sategna No. 2E                              | Randleman<br>No. 1                           | San Juan 27-5<br>No. 34A                           | Farmington B<br>Com No. 1E                 |
|---------------------------------|-------------------------------------------------|---------------------------------------------------|---------------------------------------------|----------------------------------------------|----------------------------------------------------|--------------------------------------------|
| Full name and location          | Howell K No. 1<br>Natural Gas<br>Well Site, San | Faye Burdette<br>No. 1 Gas Well<br>Site, San Juan | Sategna No. 2E<br>Natural Gas<br>Well Site, | Randleman<br>No. 1 Natural<br>Gas Well Site, | San Juan 27-5<br>No. 34A Natural<br>Gas Well Site, | Farmington B-<br>Com No. 1E<br>Natural Gas |
|                                 | Juan County,<br>NM                              | County, NM                                        | Bloomfield, NM                              | San Juan<br>County, NM                       | Rio Arriba<br>County, NM                           | Well Site,<br>Farmington,<br>NM            |
| NMOCD No.                       | 3R-431                                          | 3R-434                                            | 3R-428                                      | 3R-340                                       | 3R-426                                             | 3R-084                                     |
| CRA Project<br>No.              | 074928                                          | 074929                                            | 074932                                      | 074933                                       | 074934                                             | 074938                                     |
| Wells with Fe<br>above criteria | MW-1, MW-4                                      | None                                              | None                                        | None                                         | None                                               | MW-1                                       |
| Wells with Mn<br>above criteria | MW-1, MW-3,<br>MW-4                             | MW-1                                              | MW-1, MW-2,<br>MW-3                         | MW-2, MW-3,<br>MW-4, MW-5                    | MW-1, MW-3                                         | MW-1                                       |
| pH/ORP                          | n/a                                             | pH 6.85 S.U.<br>ORP -2.7 mV                       | pH 5.6-6.5 S.U.<br>ORP 6.4-49.9<br>mV       | pH 6.3-8.3 S.U.<br>ORP -262 -<br>-209 mV     | pH 6.2 - 6.4 S.U.<br>ORP -10996                    | pH 7.3 S.U.<br>ORP -119 mV                 |
| Depth to<br>Groundwater         | 25-30 feet                                      | 8-9 feet                                          | 6-9 feet                                    | 13-16 feet                                   | 21 feet                                            | 28 feet                                    |
| Lithology                       | Sand/clayey<br>sand                             | Sand/silty sand                                   | Clay;<br>sand/cobbles                       | Sand/cobbles                                 | Clay; sand                                         | Gravel                                     |
| Other issues                    | Sulfate exceeds criteria                        | n/a                                               | Sulfate, TDS<br>exceed criteria             | Sulfate, TDS<br>exceed criteria              | n/a                                                | n/a                                        |



Notes: S.U. – standard units ORP – oxidation reduction potential mV – millivolts

Conestoga-Rovers & Associates' (CRA's) Innovative Technology Group (ITG) was requested to review the Site data and identify potential technologies to reduce concentrations of iron and manganese in groundwater. The following sections provide a brief description of potential remedial technologies and conceptual designs for treatment options at the Site.

# POTENTIAL REMEDIAL TECHNOLOGIES

The following in situ technologies were considered for groundwater treatment:

- pH Adjustment
- Biosparging
- Oxidant Injection

# **TECHNOLOGY DESCRIPTIONS**

# <u>pH Adjustment</u>

One of the main variables in environmental systems that determine the solubility of most metals in water is their pH. Typically metals are less soluble at higher pH. However, some metals exhibit **amphoteric** (able to act as either an acid or a base) behavior causing the metal to be soluble at both high and low pH values. High rates of microbial activity can lower groundwater pH due to the production of organic acids and carbon dioxide. The cause of the low pH at these Sites was likely this biological activity associated with the biodegradation of BTEX and petroleum hydrocarbons. Both iron and manganese are more soluble under reducing conditions; however, at lower pH levels they are soluble under less reducing conditions. Iron and manganese will precipitate at a lower ORP if the pH is higher. pH can be adjusted using a base such as sodium hydroxide (NaOH) if the pH is too low or using an acid such as hydrochloric acid (HCl) if the pH is too high. Proprietary buffers specifically formulated for adjustment of groundwater pH are also commercially available. Increasing the pH could be performed by injecting NaOH or sodium bicarbonate (NaHCO<sub>3</sub>) or by injecting a commercially available buffer such as CoBupH which is manufactured by EOS Remediation. Using CoBupH would increase the treatment cost by a factor of at least 5 as compared to NaOH or NaHCO<sub>3</sub>; therefore, it will not be considered further. The use of NaOH could result in overtreatment to slightly basic conditions while the use of NaHCO<sub>3</sub> would not.

# Applicability for Groundwater Treatment

The pH at all of the Sites is below 7 standard units (S.U.), and in most cases below 6.5 S.U. Typical groundwater pH levels in the state of New Mexico are around pH 8. Adjustment of pH would be effective for lowering the solubility of iron and manganese at the Site. Dilute solutions of NaOH or NaHCO<sub>3</sub> would be injected using existing monitoring wells if permitted or by direct push into the area at each Site where low pH groundwater has been detected. A series of injection events spaced at least 3 months apart would be conducted to increase pH until that the iron and manganese precipitate out of solution. The treatment would require one year. The effectiveness of this technology for precipitation of iron and manganese from groundwater from the Sites would be confirmed by a treatability study.

# <u>Biosparging</u>

In situ biosparging involves injection of pressurized gases into the subsurface at very low flow rates to enhance biodegradation. Oxygen or air is injected to enhance aerobic conditions. Injection of oxygen is controlled such that vapors are not generated or accumulated in the vadose zone.

iSOC, or In situ Submerged Oxygen Curtain, is an innovative biosparging technique developed for oxygen injection that can be used to inject other gases. Super-saturated oxygen can be delivered to the subsurface at low flow rates such that the gases are infused into the groundwater without the formation of bubbles. The gases can be injected into the groundwater at a low flow rate using injection points or vertical wells.

# Applicability for Groundwater Treatment

The injection of air/oxygen into the groundwater would create aerobic conditions in the groundwater that would lead to the oxidation of iron and manganese into their more oxidized and less soluble forms. In their oxidized forms iron and manganese will form oxides and precipitate out of groundwater. Air/oxygen injection would be performed using either air spargers or iSOC units installed in air sparge wells in the areas where iron and/or manganese exceed criteria. It may be possible to use some of the existing monitoring wells as air sparge wells. The biosparge units would sparge air into the groundwater while the iSOC units would inject dissolved oxygen. For iSOC, treatment for 1 year would likely be sufficient to reduce metals concentrations to criteria. For biosparging, treatment for 2 years would likely be required since lower concentrations of oxygen are introduced into the groundwater. The effectiveness of this technology for precipitation of iron and manganese from groundwater from the Sites would be confirmed by a treatability study.

# **Oxidant Injection**

In situ chemical oxidation (ISCO) is an effective method for destroying localized high concentrations of a wide range of organic compounds, as well as oxidizing and precipitating metals such as iron and manganese. In an oxidation reaction, the oxidizing agent oxidizes iron and manganese to their insoluble forms. Commonly used oxidizing reagents include KMnO<sub>4</sub>, Fenton's Reagent (hydrogen peroxide in a solution of ferrous salts), ozone, and sodium persulfate.

KMnO<sub>4</sub>, sodium persulfate, and Fenton's Reagent are effective when delivered in an aqueous solution and react with a wide range of organic compounds. These oxidants are inexpensive and readily available in large quantities. ISCO is Site-specific, and successful treatment is typically a function of the effectiveness of the delivery system (being able to deliver sufficient amounts of oxidant to the impacted soil and groundwater and making sufficient "contact") and subsequent transport of the oxidant within the soil and groundwater. The treatment performance is dependent to a great extent on the soil and groundwater chemistry. A critical factor in the evaluation of ISCO treatment is determining the dosages of oxidant that are required to effectively oxidize the metals present (referred to as stoichiometric demand) as well as the competing reactions. The competing reactions are typically caused by the presence of natural organic materials such as humates and fulvates. The consumption of oxidants by these non-target compounds is defined as natural oxidant demand (NOD). In order to determine the optimum dosage, treatability studies are required. Large quantities of oxidizing chemicals require regulated handling and pose health and safety concerns. Chemical oxidation may cause mobilization of metals, possible formation of toxic by-products, heat, gas, and biological perturbation.

# Applicability for Groundwater Treatment

Oxidant injection would be effective for creating oxidizing conditions in the groundwater so that iron and manganese would be oxidized into their more oxidized and less soluble forms. Potassium permanganate, Fenton's Reagent, hydrogen peroxide, sodium persulfate and ozone would all be effective oxidants for this application; however, the injection of potassium permanganate would introduce more soluble manganese into the groundwater which already contains excess manganese therefore this oxidant is not recommended. The injection of sodium persulfate would lead to increased sulfate concentrations and since sulfate exceeds criteria at some of the Sites, this oxidant is also not recommended. The use of ozone would involve the installation of an ozone sparge system, which given the minor nature of the contamination would not be cost effective; therefore, the injection of Fenton's reagent is recommended. A dilute solution of Fenton's reagent would be injected using existing monitoring wells if permitted or by direct push into the area where low pH groundwater has been detected. 2-3 injection events, spaced 3 months apart would be required to oxidize metals such that the iron and manganese precipitate out of solution. The effectiveness of this technology for precipitation of iron and manganese from groundwater from the Sites would be confirmed by a treatability study.

# **CONCEPTUAL DESIGNS**

The following technologies were selected as effective treatments for iron and manganese in groundwater:

- pH Adjustment
- Biosparging
- Oxidant Injection

# <u>pH Adjustment</u>

pH adjustment would involve the injection of either a 2 percent NaOH solution or a 5 percent solution of NaHCO<sub>3</sub>. If permitted in the state of New Mexico, treatment would be performed using the monitoring wells as injection wells. At some sites additional injection points would also be required. If not permitted injections would be performed by direct push. Two injection events, spaced at least 3 months apart would be required for treatment of the Sites. The treatment areas, number of injection wells/points, and injection doses, volumes and frequencies are shown in the table below.

# **Biosparging**

Biosparging would involve the injection of air at each Site. If permitted in the state of New Mexico, treatment would be performed using the monitoring wells as air injection wells. At some sites additional air sparge wells would also be required. If not permitted, 2-inch diameter polyvinyl chloride (PVC) air injection wells would be installed at each Site. iSOC treatment would involve installation of an iSOC unit into the wells. For traditional biosparging, sparge units consisting of 1/4-inch x 1/8-inch tubing and an air stone, would be installed in each well. The sparge units would be manifolded to an air compressor. Air sparging would be performed for approximately 10-12 hours per day. For iSOC treatment t treatment for 1 year would likely be sufficient to reduce metals concentrations. For biosparging treatment, at least two years may be required. The treatment areas and number of sparge wells proposed are shown in the table below.

# **Oxidant Injection**

Oxidant injection would involve the injection of a low concentration of Fenton's reagent consisting of 5 percent hydrogen peroxide and a 7.5 percent solution of ferrous sulfate. The volume of ferrous sulfate solution would be small therefore this solution would not introduce a significant amount of sulfate into the groundwater. If permitted in the state of New Mexico, treatment would be performed using the monitoring wells as injection wells. At some sites additional injection points would also be required. If not, permitted injections would be performed by direct push. Two to three injection events, spaced at least 3 months apart would be required for treatment of the Sites. The treatment areas, number of injection wells/points, and estimated injection volumes and frequencies are shown in the table below.

| Site                                                    | Howell K No.<br>1                                                                                    | Faye Burdette<br>No. 1                                                                               | Sategna No. 2E                                                                                       | Randleman No.<br>1                                                                                   | San Juan 27-5<br>No. 34A                                                                             | Farmington B<br>Com No. 1E                                                                           |
|---------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| Treatment Area                                          | 1,650 sq ft<br>encompassing<br>wells MW-1,<br>MW-3 and<br>MW-4                                       | 700 sq ft<br>encompassing<br>well MW-1                                                               | 6,050 sq ft<br>encompassing<br>wells MW-1,<br>MW-2 and MW-3                                          | 7,850 sq ft<br>encompassing<br>wells MW-1, MW-<br>2, MW-3 and MW-4                                   | 2,060 sq ft<br>encompassing<br>wells MW-1 and<br>MW-3                                                | 700 sq ft<br>encompassing<br>well MW-1                                                               |
| Number of Injection<br>Wells/Points<br>Required         | 3                                                                                                    | 1                                                                                                    | 9                                                                                                    | 11                                                                                                   | 3                                                                                                    | 1                                                                                                    |
| Monitoring Well to<br>use for injection if<br>permitted | MW-1, MW-3<br>and MW-4                                                                               | MW-1                                                                                                 | MW-1, MW-2<br>and MW-3                                                                               | MW-1, MW-2,<br>MW-3 and MW-4                                                                         | MW-1 and MW-3                                                                                        | MW-1                                                                                                 |
| Number of<br>Additional<br>Wells/Points Needed          | None                                                                                                 | None                                                                                                 | 6                                                                                                    | 7                                                                                                    | 1                                                                                                    | None                                                                                                 |
| Injection Interval                                      | between 30 and<br>40 ft bgs                                                                          | between 9 and 19<br>ft bgs                                                                           | between 9 and 19<br>ft bgs                                                                           | between 16 and 26<br>ft bgs                                                                          | between 21 and 31<br>ft bgs                                                                          | between 28 and 38<br>ft bgs                                                                          |
| Volumes for pH<br>adjustment                            | 1,600 gallons of<br>2% NaOH or<br>1,600 gallons of<br>5% NaHCO <sub>3</sub>                          | 1,600 gallons of<br>2% NaOH or<br>1,600 gallons of<br>5% NaHCO <sub>3</sub>                          | 1,600 gallons of<br>2% NaOH or<br>1,600 gallons of<br>5% NaHCO <sub>3</sub>                          | 1,600 gallons of 2%<br>NaOH or 1,600<br>gallons of 5%<br>NaHCO <sub>3</sub>                          | 1,600 gallons of<br>2% NaOH or<br>1,600 gallons of<br>5% NaHCO <sub>3</sub>                          | 1,600 gallons of<br>2% NaOH or<br>1,600 gallons of<br>5% NaHCO <sub>3</sub>                          |
| Number of Injection<br>Events for pH<br>Adjustment      | 2                                                                                                    | 2                                                                                                    | 2                                                                                                    | 2                                                                                                    | 2                                                                                                    | 2                                                                                                    |
| Biosparge Time                                          | 1 year for iSOC<br>1-2 years for<br>biosparging                                                      |
| Volumes of Oxidant                                      | 1,600 gallons of<br>5% H <sub>2</sub> O <sub>2</sub> and<br>60 gallons of<br>7.5 % FeSO <sub>4</sub> | 1,600 gallons of<br>5% H <sub>2</sub> O <sub>2</sub> and 60<br>gallons of 7.5 %<br>FeSO <sub>4</sub> | 1,600 gallons of<br>5% H <sub>2</sub> O <sub>2</sub> and 60<br>gallons of 7.5 %<br>FeSO <sub>4</sub> | 1,600 gallons of 5%<br>H <sub>2</sub> O <sub>2</sub> and 60<br>gallons of 7.5 %<br>FeSO <sub>4</sub> | 1,600 gallons of<br>5% H <sub>2</sub> O <sub>2</sub> and 60<br>gallons of 7.5 %<br>FeSO <sub>4</sub> | 1,600 gallons of<br>5% H <sub>2</sub> O <sub>2</sub> and 60<br>gallons of 7.5 %<br>FeSO <sub>4</sub> |
| Number of Injection<br>Events for oxidant<br>addition   | 2-3                                                                                                  | 2-3                                                                                                  | 2-3                                                                                                  | 2-3                                                                                                  | 2-3                                                                                                  | 2-3                                                                                                  |

Notes: S.U. - standard units

ORP - oxidation reduction potential

mV - millivolts

# RECOMMENDATION

Based on the above assessment, pH adjustment would likely be the most cost effective method for metals precipitation; however, the effectiveness of this technology should be verified by a treatability study. If the study confirms that this treatment would be effective then pH adjustment would be the recommended technology. Since NaOH and NaHCO<sub>3</sub> treatment costs tend to be similar, treatment with NaHCO<sub>3</sub> is recommended since there is no risk of overtreatment. If the study shows that pH adjustment is not

effective for the precipitation of iron and manganese from groundwater then oxidant injection using dilute Fenton's reagent would be the recommended technology.