3R - 431 2013 AGWMR 03 / 21 / 2014

Terry S. Lauck Program Manager

ConocoPhillips Company Risk Management & Remediation 1380G Plaza Office Building 315 Johnstone Avenue Bartlesville, OK 74004 Phone: 918.661.0935 E-mail: Terry.S.Lauck@cop.com

Mr. Glenn von Gonten New Mexico Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

March 21, 2014

Re: NMOCD Case No. 3RP-431, 2013 Annual Groundwater Monitoring Report

Dear Mr. von Gonten:

Enclosed is the 2013 Annual Groundwater Monitoring Report for the Howell K No. 1 site. This report, prepared by Conestoga-Rovers & Associates (CRA), contains the results of groundwater monitoring conducted during September 2013.

Please let me know if you have any questions.

Sincerely, de

Terry S. Lauck

Enc

www.CRAworld.com

2013 Annual Groundwater Monitoring Report

ConocoPhillips Howell K No. 1 San Juan County, New Mexico API# 30-045-09313 NMOCD # 3R-431

Prepared for: ConocoPhillips Risk Management and Remediation

Conestoga-Rovers & Associates

6121 Indian School Road, NE Suite 200 Albuquerque, New Mexico 87110

December 2013 • 074928 • Report No. 5

Table of Contents

Page

Section 1.0	Intro 1.1	duction Background	1
Section 2.0	Grou	Indwater Monitoring Summary, Methodology, and	2
	2 1	Groundwater Monitoring Summary	2
	2.2	Groundwater Monitoring Methodology	3
	2.3	Groundwater Monitoring Analytical Results	
Section 3.0	Con	clusions and Recommendations	4

List of Figures (Following Text)

- Figure 1 Site Vicinity Map
- Figure 2 Site Plan
- Figure 3 Geological Cross Section
- Figure 4 September 2013 Groundwater Potentiometric Surface Map

List of Tables (Following Text)

Table 1	Site History Timeline
Table 2	Monitor Well Specifications and Groundwater Elevations
Table 3	Groundwater Analytical Results Summary

List of Appendices

Appendix ASeptember 2013 Annual Groundwater Sampling Field FormsAppendix BSeptember 2013 Annual Groundwater Laboratory Analytical ReportAppendix CConestoga-Rovers & Associates Treatability Study Memo

Section 1.0 Introduction

This report details the results of the annual groundwater monitoring event, as well as, a supplemental groundwater sampling event for a metals treatability study conducted by Conestoga-Rovers & Associates, Inc. (CRA) on September 17th and October 1st 2013, respectively, at the ConocoPhillips Company (ConocoPhillips) Howell K No. 1 site (Site), located on Bureau of Land Management (BLM) land, approximately ½ mile southeast of Navajo Lake State Park and 10 miles east of Aztec in Unit Letter K, Section 21, Township 30N, Range 8W of San Juan County, New Mexico. Geographical coordinates for the Site are 36° 47' 40.34" North, 107° 41' 4.70" West. The Site consists of a natural gas well and associated equipment and installations. The location and general features of the Site are shown on **Figures 1** and **2**, respectively.

1.1 Background

The environmental investigation at the Site began in August 2005 with the excavation of approximately 4,000 cubic yards of hydrocarbon impacted soil from an area southwest of the Howell K No. 1 wellhead. The hydrocarbon impacted soil was discovered in the area during below grade tank removal activities. The final dimensions of the excavation were 70 feet by 50 feet by 36 feet deep. Groundwater was encountered at a depth of approximately 34 feet below ground surface (bgs). Once this extent had been reached, the excavation was stopped due to the inability of the equipment to operate safely; however, the limits of the hydrocarbon impact had not been delineated. The excavation was backfilled with clean soil. In March 2006, one groundwater monitor well (MW-1) was installed by Envirotech in the area of the backfilled excavation. The location of this monitor well is shown on **Figure 2**.

Due to the transition of Site consulting responsibilities from Lode Star LLC of Farmington, NM, to Tetra Tech, Inc. (Tetra Tech) following the acquisition of Burlington Resources by ConocoPhillips in March 2006, groundwater monitoring was not performed at the Site in March or June 2007. Tetra Tech began sampling groundwater at the Howell K No. 1 site in November 2007 using MW-1 and continued to do so until August of 2008, when 3 additional monitor wells were installed at the Site by WDC Exploration and Wells of Peralta, NM under Tetra Tech supervision. The additional wells were installed in response to a request by the New Mexico Oil Conservation Division (NMOCD) for Site characterization and enhanced laboratory analyses. This request was communicated to Tetra Tech during an April 2008 meeting conducted in Santa Fe, New Mexico with Glenn von Gonten, NMOCD Environmental Bureau Hydrologist.

Groundwater Monitor Well MW-2 was installed upgradient of MW-1 and Monitor Wells MW-3 and MW-4 were installed downgradient of MW-1 (**Figure 2**).

A generalized geologic cross section was compiled using subsurface data collected from each boring location during installation of Monitor Wells MW-2, MW-3 and MW-4. Monitor Wells MW-2 and MW-4 are represented on the cross section which is presented in **Figure 3**.

October 2008 marked the first quarterly groundwater monitoring event to include all 4 monitor wells for groundwater monitoring at the Site. BTEX analysis was discontinued following the December 2010 sampling event which represented eight consecutive quarters of BTEX constituents being below laboratory detection limits in samples from all Site monitor wells. Analysis for dissolved iron, dissolved manganese, sulfate, and fluoride were continued quarterly through October 2011. Sampling for these constituents is currently conducted on an annual basis.

On June 15, 2011, Site consulting responsibilities were transferred from Tetra Tech to CRA of Albuquerque, NM.

Due to settling of soil around the area of Monitor Well MW-1 and resulting damage to the subsurface screen, it was properly plugged and abandoned and a replacement well, MW-1R, was installed during August of 2013 under CRA supervision.

A summary of the Howell K No. 1 site history can be seen in **Table 1**.

Section 2.0 Groundwater Monitoring Summary, Methodology, and Analytical Results

2.1 Groundwater Monitoring Summary

Annual groundwater sampling was conducted by CRA on September 17, 2013. This represents the second annual monitoring event since quarterly monitoring was discontinued. The groundwater sampling event included samples from Monitor Wells MW-1R, MW-2, MW-3, and MW-4. Groundwater levels were measured using an oil/water interface probe prior to sampling and can be found in **Table 2**. Groundwater elevations for Site monitor wells are calculated from top of casing elevations, which were derived from survey data collected by Tetra Tech on August 14, 2008. The groundwater elevation for MW-1R cannot be calculated since the well has not been surveyed in yet. Based on September 2013 groundwater elevation data, groundwater flow direction continues to be to the west. A groundwater potentiometric surface map is presented in **Figure 4**.

Additional groundwater sampling was conducted at the Site on October 1, 2013 to collect groundwater from Monitor Well MW-1 for the purpose of conducting a metals treatability study.

The sample was sent to CRA's Innovative Technology Group (ITG) to assess potential in situ technologies to address solubilization of iron and manganese in the reducing groundwater of the Site.

2.2 Groundwater Monitoring Methodology

Prior to September 2013 sample collection, Monitor Wells MW-1R, MW-2, MW-3, and MW-4 were purged of at least three casing volumes of water. A 1.5-inch, polyethylene, dedicated bailer was used to purge and to collect the groundwater samples. Field parameters of pH, conductivity, dissolved oxygen, temperature and oxidation/reduction potential were measured periodically during purging and recorded. The purge water generated during the event was disposed of in the on-Site produced water tank. The groundwater samples were placed in laboratory prepared bottles, packed on ice, and shipped under chain-of-custody documentation to Pace Analytical Services, Inc. of Lenexa, KS. All groundwater samples collected were analyzed for dissolved iron and dissolved manganese by EPA Method 6010, and fluoride and sulfate by EPA method 300.0.

The metals treatability sample, collected from Monitor Well MW-1 on October 1, 2013, was collected after the same purging and field parameter measurement protocol employed for the annual sampling event conducted in September 2013. The sample was shipped to the ITG for evaluation for potential groundwater treatment by pH adjustment, biosparging and oxidant injection.

2.3 Groundwater Monitoring Analytical Results

The New Mexico Water Quality Control Commission (NMWQCC) mandates that groundwater quality in New Mexico be protected, and has issued groundwater quality standards in Title 20, Chapter 6, Part 2, Section 3103 of the New Mexico Administrative Code (20.6.2.3103 NMAC). Groundwater quality standards have been set for the protection of human health, domestic water supply, and irrigation use. Above-standard results of the September 2013 annual sampling event are discussed below:

• Dissolved Iron

 The NMWQCC groundwater quality standard for dissolved iron is 1.0 mg/L. Groundwater samples collected from Monitor Wells MW-1R and MW-4 were found to contain dissolved iron at concentrations of 2.8 mg/L and 1.2 mg/L, respectively.

• Dissolved Manganese

- The NMWQCC groundwater quality standard for dissolved manganese is 0.2 mg/L. Groundwater samples collected from Monitor Wells MW-1R, MW-3 and MW-4 were found to contain dissolved manganese at concentrations of 3.8 mg/L, 0.32 mg/L, and 16.7 mg/L, respectively.
- Sulfate
 - The NMWQCC groundwater quality standard for sulfate is 600 mg/L.
 Groundwater samples collected from Monitor Wells MW-1R, MW-2, MW-3 and MW-4 were found to contain sulfate at concentrations of 5,100 mg/L, 2,420 mg/L, 2,740 mg/L, and 4,040 mg/L, respectively.
- Fluoride
 - The NMWQCC domestic water supply groundwater quality standard for fluoride is 1.6 mg/L. Groundwater sample collected from Monitor Well MW-4 exceeded this standard with a concentration of 2.2 mg/L.

Table 3 summarizes the analytical results from groundwater sampling completed duringSeptember of 2013. Groundwater sampling field forms detailing collected field parameters canbe found in **Appendix A** and the corresponding laboratory analytical report, including qualitycontrol summaries, can be found in **Appendix B**.

Section 3.0 Conclusions and Recommendations

BTEX compounds in Site groundwater have been below NMWQCC standards since groundwater sampling began in 2006. Analyses for these constituents was discontinued following the December 2010 sampling event. Hydrocarbon impacts were found in soil below the groundwater table during the initial Site investigation soil removal. The anaerobic conditions caused by the biodegradation of hydrocarbons in groundwater may have led to the solubilization of iron and manganese. Dissolved-phase iron and manganese occur in Site groundwater at concentrations above NMWQCC standards. The groundwater treatability study conducted by the ITG determined that pH adjustment would be the most cost-effective method for dissolved metals remediation. Details of the ITG's findings and the specific recommendations for implementation of this remedial technology at the Site are included in **Appendix C**. CRA recommends implementation of the pH adjustment technology to address elevated concentrations of iron and manganese in groundwater.

CRA also recommends continued annual monitoring of fluoride, sulfate, dissolved manganese, and dissolved iron.

If groundwater pH adjustment is implemented, more frequent (quarterly) sampling and analysis of iron and manganese may be warranted to evaluate the effectiveness of the remedial action. The next annual sampling event is scheduled for September 2014.

As discussed with Glenn von Gonten of the NMOCD Environmental Bureau in November of 2012, installation of a replacement well for MW-1 was completed in August of 2013. An attempt to install additional downgradient monitor wells was initiated in June of 2013. An agreement between the Bureau of Land Management and ConocoPhillips regarding land access is in progress, but has yet to be established. Installation of additional downgradient monitor wells to monitor potential migration of dissolved metals from the Site will be evaluated again during 2014.

Figures

074928-95(005)GN-DL004_TOPO DEC 12/2013

074928-95(005)GN-DL001_SD DEC 12/2013

074928-95(004)GN-DL002_X-sec NOV 01/2012

074928-95(005)GN-DL003_GW DEC 12/2013

Tables

SITE HISTORY TIMELINE CONOCOPHILLIPS COMPANY SAN JUAN COUNTY, NEW MEXICO HOWELL K NO. 1

Date/Time Period	Event/Action	Description/Comments
July 26, through August 18, 2005	Initial Site assessment	Environmental investigation began with the excavation of approximately 4000 cubic yards of impacted soil from an area southwest of the Howell K No.1 well head. Impacted soils were discovered during the removal activities of a below grade tank. Dimensions of the excavation were approximately 70 feet long by 50 feet wide by 36 feet deep. Groundwater was encountered at approximately 34 feet and soils were still impacted at 36 feet deep, the point at which excavation machinery was stopped at the practical limit for safe operation. The total vertical extent of hydrocarbon impacts were not completely delineated. Soil was treated with approximately 600 gallons of potassium permanganate solution. The excavation area was backfilled with clean soil.
March 10, 2006	Groundwater monitor well installation	One ground water monitor well, MW-1, was installed in the area of the backfilled excavation by Envirotech.
March 31, 2006	Site transfer	ConocoPhillips Company completed acquisition of Burlington Resources.
March and June 2007	Groundwater monitoring not performed	After the acquisition of Burlington Resources by ConocoPhillips, consulting responsibilities were transferred from Lode Star LLC of Farmington New Mexico to Tetra Tech of Albuquerque.
November 9, 2007 through March 19, 2008	Groundwater monitoring	Tetra Tech began sampling the Howell K No. 1 site quarterly in November 2007. Groundwater was sampled from MW-1 and was analyzed for BTEX constituents. No constituents were detected at levels that exceeded the NMWQCC standards.
April 1, 2008	Additional monitoring requested by OCD	Oil Conservation Division of NM Energy, Minerals, and Resources Dept. indicates additional investigation and sampling is necessary for closure consideration during a meeting with Glenn Von Gonten.
July 23, 2008	Groundwater monitoring postponed	Groundwater monitoring of MW-1 was postponed after it was found that there was an obstruction caused by settling and shifting of the MW-1 casing. It was determined that the obstruction could be avoided by using a smaller bailer to collect samples. Sampling was postponed and was set to follow upcoming monitor well installation so that proper sampling materials could be used.
August 13 and 14, 2008	Groundwater monitor well installation and groundwater monitoring	Three additional groundwater monitor wells (MW-2, MW-3 and MW-4) were installed by WDC and overseen by Tetra Tech. MW-2 was installed upgradient of MW-1. Both MW-3 and MW-4 were installed downgradient of MW-1. All wells were developed by purging approximately 80 gallons of water using a surge block and a purge pump. A sample was collected from MW-1 on August 14th. A 1/2-inch disposable bailer was used to avoid an obstruction in MW-1. The sample was analyzed for BTEX constituents. All constituents were below NMWQCC standards.
October 24, 2008	Groundwater monitoring	Third quarter 2008 groundwater monitoring was completed and was the first quarter of sampling to include all four monitor wells on site. A baseline analytical suite was completed including major ions, total metals, semi- volatile organic compounds (SVOCs), volatile organic compounds (VOCs) including BTEX, diesel range organics, and gasoline range organics. All BTEX constituents were below NMWQCC standards. All four wells were above the standard for sulfate.
January 30, 2009	4th quarter 2008 groundwater monitoring	Tetra Tech conducted fourth quarter 2008 groundwater monitoring at the site for BTEX constituents in all four monitor wells. All wells were below NMWQCC standards for BTEX .
September 25,2009	2009 annual groundwater monitoring	Tetra Tech conducted 2009 annual groundwater monitoring of MW-2, MW-3 and MW-4 for BTEX, dissoved iron, dissolved manganese, sulfate, and fluoride. All three wells were below NMWQCC standards for BTEX. All three wells were above standard for sulfate. Dissolved manganese was above standard in MW-3 and MW-4 and flouride was above standard in MW-4. Dissolved metals analyses conducted for the first time since standards are based on dissolved metals testing. OCD concurred, allowing total metals testing to be discontinued.

SITE HISTORY TIMELINE CONOCOPHILLIPS COMPANY SAN JUAN COUNTY, NEW MEXICO HOWELL K NO. 1

Date/Time Period	Event/Action	Description/Comments
October 18, 2009	Groundwater monitoring	Tetra Tech conducted 2009 annual groundwater monitoring of MW-1 for BTEX, dissoved iron, dissolved manganese, sulfate, and fluoride. MW-1 was below NMWQCC standards for BTEX. Sulfate, dissolved manganese and dissolved iron were above standards in MW-1.
December 15, 2010	Groundwater monitoring	Tetra Tech conducted quarterly groundwater monitoring at the site for BTEX, dissolved iron, dissolved manganese, sulfate and flouride. All four monitor wells were below NMWQCC standards for BTEX. All four monitor wells were above the standard for sulfate. MW-1, MW-3 and MW-4 were above standard for dissolved manganese and MW-1 and MW-3 were also above the standard for dissolved iron.
March 30, 2010	Groundwater monitoring	Tetra Tech conducted quarterly groundwater monitoring at the site for BTEX, dissolved iron, dissolved manganese, and sulfate. All four monitor wells were below NMWQCC standards for BTEX. All four monitor wells were above the standard for sulfate. MW-1, MW-3 and MW-4 were also above the standard for dissolved manganese.
June 8, 2010	Groundwater monitoring	Tetra Tech conducted quarterly groundwater monitoring at the site for BTEX, dissolved iron, dissolved manganese, and sulfate. All four monitor wells were below NMWQCC standards for BTEX. All four monitor wells were above the standard for sulfate. MW-1, MW-3 and MW-4 were above the standard for dissolved manganese. MW-1 was also above the standard for dissolved manganese.
September 23,2010	Groundwater monitoring	Tetra Tech conducted quarterly groundwater monitoring at the site for BTEX, dissolved iron, dissolved manganese, fluoride and sulfate. All four monitor wells were below NMWQCC standards for BTEX. All four monitor wells were above the standard for sulfate. MW-1, MW-3 and MW-4 were above the standard for dissolved manganese. MW-1 was also above standard for dissolved iron.
December 15,2010	Groundwater monitoring	Tetra Tech conducted quarterly groundwater monitoring at the site for BTEX, dissolved iron, dissolved manganese, fluoride and sulfate. MW-3 was observed to be dry during this monitoring event, which was likely due to an interface probe malfunction. MW-1, MW-2 and MW-4 were sampled. All three sampled monitor wells are below NMWQCC standards for BTEX. MW-1 and MW-4 were above the the standards for sulfate, dissolved manganese, and dissolved iron. Monitor well MW-4 was also found to be above the the standard for fluoride.
March 15, 2011	Groundwater monitoring	First quarter of groundwater monitoring with BTEX analysis discontinued due to eight consecutive quarters of data below the standards being reached; MW-1, MW-2, MW-3, and MW-4 were sampled and analyzed for dissolved iron, dissolved manganese, fluoride and sulfate.
June 15, 2011	Transfer of site consulting responsibilities	On June 15, 2011, site consulting responsibilities were transferred from Tetra Tech of Albuquerque, NM to Conestoga-Rovers & Associates (CRA) of Albuquerque, NM.
June 23, 2011	Groundwater monitoring	MW-1, MW-2, MW-3, and MW-4 were sampled and analyzed for dissolved iron, dissolved manganese, fluoride and sulfate.
October 11 and 12, 2011	Groundwater monitoring	MW-1, MW-2, MW-3, and MW-4 were sampled and analyzed for dissolved iron, dissolved manganese, fluoride and sulfate.
October 3, 2012	Groundwater monitoring	MW-1, MW-2, MW-3, and MW-4 were sampled and analyzed for dissolved iron, dissolved manganese, fluoride and sulfate.
July 19,2013	Plugging & Abandoning and Well Installation	National EWP, with CRA oversight, plugged and abandoned MW-1 and drilled and installed MW-1R.
September 17, 2013	Groundwater monitoring	MW-1R, MW-2, MW-3, and MW-4 were sampled and analyzed for dissolved iron, dissolved manganese, fluoride and sulfate.
October 1, 2013	Groundwater monitoring	MW-1R sampled and analyzed for metals treatability study.

Well ID	Total Depth	Elevation* (ft) (TOC)	Screen Interval (ft	Date Measured	Depth to Groundwater (ft	Relative Water Level
	(ft bgs)	<i>y</i> · · · ·	below TOC)	2 / 22 / 2007	below TOC)	(0.20
				5/22/2006	20.54	69.50
				0/21/2000	29.13	70.01
				10/19/2006	27.65	70.01
				2 /1 /2007	28.22	69.62
				3/1/2007	INM	NM
				6/1/2007	NM	INM
				11/9/2007	29.03	68.81
				1/15/2008	28.34	69.50
				3/19/2008	NM	NM
				7/23/2008	28.46	69.38
				10/24/2008	29.91	67.93
MW-1	37.47	97.84	21 - 36	1/30/2009	28.37	69.47
				9/25/2009	29.95	67.89
				10/18/2009	29.97	67.87
				12/15/2009	29.51	(1)
				3/30/2010	28.18	(1)
				6/8/2010	28.38	(1)
				9/23/2010	29.51	(1)
				12/15/2010	28.82	(1)
				3/15/2011	28.51	(1)
				6/24/2011	28.92	(1)
				10/11/2011	30.43	(1)
				10/3/2012	31.39	(1)
				7/19/2013	Well Plugg	ged and Abandoned
MW-1R	43.89		22 - 42	9/17/2013	30.83	⁽²⁾
				10/24/2008	25.74	69.54
				1/30/2009	24.74	70.54
				9/25/2009	26.48	68.80
				12/15/2009	25.97	69.31
				3/30/2010	24.67	70.61
				6/8/2010	24.84	70.44
MW-2	39.81	95.28	21 - 36	9/23/2010	26.38	68.90
				12/15/2010	25.68	69.60
				3/15/2011	25.05	70.23
				6/24/2011	26.70	68.58
				10/11/2011	27.10	68.18
				10/3/2012	27.99	67.29
				9/17/2013	28.53	66.75

Well ID	Total Depth (ft bgs)	Elevation* (ft) (TOC)	Screen Interval (ft below TOC)	Date Measured	Depth to Groundwater (ft below TOC)	Relative Water Level
				10/24/2008	26.95	68.49
				1/30/2009	25.92	69.52
				9/25/2009	27.57	67.87
				12/15/2009	27.05	68.39
				3/30/2010	25.79	69.65
				6/8/2010	26.02	69.42
MW-3	37.47	95.44	19 - 34	9/23/2010	27.35	68.09
				12/15/2010	DRY	
				3/15/2011	26.19	69.25
				6/24/2011	26.70	68.74
				10/11/2011	28.15	67.29
				10/3/2012	29.02	66.42
				9/17/2013	29.58	65.86
				10/24/2008	NM	NM
				1/30/2009	26.00	69.36
				9/25/2009	27.64	67.72
				12/15/2009	27.14	68.22
				3/30/2010	25.87	69.49
				6/8/2010	26.09	69.27
MW-4	34.66	95.36	17 - 32	9/23/2010	27.31	68.05
				12/15/2010	26.75	68.61
				3/15/2011	26.26	69.10
				6/24/2011	26.76	68.60
				10/11/2011	28.20	67.16
				10/3/2012	29.06	66.30
				9/17/2013	29.62	65.74

Notes:

*Casing elevations are based on an arbitrary 100 ft relative surface elevation set at the gas well head

ft = Feet

bgs = below ground surface

TOC = Top of casing

NM = Not measured

(1) Groundwater elevations can not be calculated accurately due to continual upward shifting of the PVC casing (see text of section 2.1, Monitoring Summary, of this report for more information).

(2) No survey data available

GROUNDWATER LABORATORY ANALYTICAL RESULTS SUMMARY CONOCOPHILLIPS COMPANY HOWELL K No. 1 SAN JUAN COUNTY, NM

						Xylenes			Iron	Manganese
			Benzene	Toluene	Ethylbenzene	(total)	Fluoride	Sulfate	(dissolved)	(dissolved)
Well ID	Sample ID	Date	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
	MW-1	3/22/2006	ND	ND	0.001	0.002				
	MW-1	6/21/2006	0.0014	0.0014	ND	0.0106				
	MW-1	10/19/2006	ND	ND	ND	0.0011				
	MW-1	12/12/2006	ND	0.0005	0.0004	0.0021				
	MW-1	11/9/2007	< 0.0005	< 0.0007	< 0.0008	< 0.0009				
	MW-1	1/15/2008	< 0.0005	< 0.0007	< 0.0008	< 0.0008				
	MW-1	3/19/2008	< 0.0005	< 0.0005	< 0.0005	< 0.0005				
	MW-1	8/14/2008	< 0.0005	< 0.0005	< 0.0005	< 0.0005				
	MW-1	10/24/2008	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 2.0	2390		
	MW-1	1/30/2009	< 0.0005	< 0.0005	< 0.0005	< 0.0005	- 2.0	2550		
MW-1	MW-1	10/18/2009	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.88	3840	2 24	1740
	MW-1	12/15/2009	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 50	3290	1.70	16.50
	MW 1	2/20/2010	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 30	2950	0.87	14.90
	MAV 1	6/8/2010	< 0.0005	< 0.0005	< 0.0005	< 0.0005		2530	11 20	14.90
	MW 1	0/22/2010	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.5	2570	11.20	14.70
	MW 1	9/23/2010	< 0.001	< 0.001	< 0.001	< 0.001	< 0.5	2740	4.43	13.4
	MW-1	2/15/2010	< 0.001	< 0.001	< 0.001	< 0.001	< 0.5 0 (E4	2230	9.72	11.1
	NIW-1	5/15/2011					0.654	2360	20	11.4
	GW-74928-062311-PG-04	6/23/2011					< 0.50	2970	< 0.1	10.7
	GW-074928-101211-CM-006	10/12/2011					0.28	2940	< 0.05	9.6
	GW-0/4928-100312-CM-MW-1	10/3/2012					0.56	3280	16.7	6.1
MW-1R	GW-074928-091713-CM-MW-1R	9/17/2013					1.1	5100	2.8	3.8
	MW-2	10/24/2008	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 2	1480		
	MW-2	1/30/2009	< 0.0005	< 0.0005	< 0.0005	< 0.0005				
	MW-2	9/25/2009	< 0.0005	< 0.0005	< 0.0005	< 0.0005	1.09	1700	< 0.02	< 0.005
	MW-2	12/15/2009	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 100	1570	< 0.02	< 0.005
	MW-2	3/30/2010	< 0.0005	< 0.0005	< 0.0005	< 0.0005		1410	< 0.02	0.14
	MW-2	6/8/2010	< 0.0005	< 0.0005	< 0.0005	< 0.0005		1460	0.0544	0.00930
MW-2	MW-2	9/23/2010	< 0.001	< 0.001	< 0.001	< 0.001	< 0.5	1760	< 0.02	< 0.005
ļ	MW-2	12/15/2010	< 0.001	< 0.001	< 0.001	< 0.001	1.01	1890	< 0.02	< 0.005
	MW-2	3/15/2011					1.21	1680	< 0.02	0.0096
	GW-74928-062311-PG-01	6/23/2011					1.3	1990	< 0.1	< 0.015
	GW-074928-101211-CM-007	10/12/2011					0.93	1680	0.873	0.0297
	GW-074928-100312-CM-MW-2	10/3/2012					1.1	1850	< 0.05	0.0055
	GW-074928-091713-CM-MW-2	9/17/2013					1.1	2420	< 0.05	< 0.005
	MW-3	10/24/2008	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 2	1480		
	MW-3	1/30/2009	< 0.0005	< 0.0005	< 0.0005	< 0.0005				
	MW-3	9/25/2009	< 0.0005	< 0.0005	< 0.0005	< 0.0005	1.00	1840	< 0.02	0.38
	MW-3	12/15/2009	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 50	2500	1.35	0.32
	MW-3	3/30/2010	< 0.0005	< 0.0005	< 0.0005	< 0.0005		1890	< 0.02	0.43
MM 2	MW-3	6/8/2010	< 0.0005	< 0.0005	< 0.0005	< 0.0005		1630	0.0573	0.383
10100-5	MW-3	9/23/2010	< 0.001	< 0.001	< 0.001	< 0.001	0.751	1960	< 0.02	0.35
	MW-3	3/15/2011					1.11	1890	< 0.02	0.572
	GW-74928-062311-PG-02	6/23/2011					1.2	2190	< 0.1	0.846
	GW-074928-101211-CM-008	10/12/2011					0.81	1980	< 0.05	0.254
	GW-074928-100312-CM-MW-3	10/3/2012					0.95	2080	< 0.05	0.25
	GW-074928-091713-CM-MW-3	9/17/2013					0.91	2740	< 0.05	0.32
	MW-4	10/24/2008	< 0.0005	< 0.0005	< 0.0005	< 0.0005	2.43	3400		
	MW-4	1/30/2009	< 0.0005	< 0.0005	< 0.0005	< 0.0005				
	MW-4	9/25/2009	< 0.001	< 0.001	< 0.001	< 0.001	2.47	3860	< 0.02	7.80
	MW-4	12/15/2009	< 0.001	< 0.001	< 0.001	< 0.001	< 50	4540	0.03	7.40
	MW-4	3/30/2010	< 0.001	< 0.001	< 0.001	< 0.001		3970	< 0.02	7.83
	MW-4	6/8/2010	< 0.001	< 0.001	< 0.001	< 0.001		3490	0.0607	7.97
	MW-4	9/23/2010	< 0.001	< 0.001	< 0.001	< 0.001	1.81	3750	< 0.02	9.73
MW-4	MW-4	12/15/2010	0.0011	< 0.001	< 0.001	< 0.001	2.47	4310	0.223	8.64
	MW-4	3/15/2011					2.76	3990	0.522	11
	GW-74928-062311-PG-03	6/23/2011					2.4	4400	0.492	11.1
	GW-074928-101211-CM-005	10/12/2011					1.9	4120	2.75	15.6
	GW-074928-100312-CM-MW-4	10/3/2012					21	4280	2.0	18.0
	GW-074928-100312-CM-DUP	10/3/2012							2.0	18.4
	GW-074928-091713-CM-MW-4	9/17/2012					22	4040	11	15.4
	GW-074928-091713-CM-DUP	9/17/2013							12	16.7
NIA	WOCC Groundwater Quality St	andards	0.01	0.75	0.75	0.62	16	600	1	0.2

Notes: MW = monitoring well NMWQCC = New Mexico Water Quality Control Commission Constituents in **BOLD** are in excess of NMWQCC groundwater quality standards mg/L = milligrams per liter (parts per million) < 1.0 = below laboratory detection limit of 1.0 mg/L - = not analyzed ND = not detected

Appendix A

September 2013 Annual Groundwater Sampling Field Forms

SITE/PROJECT NAME SAMPLE II	WELL SAMPLING FIELD INFORMATION FORM HOUPINK NO.1 JOB# 074928 SW-074928-011713-CM-MW-1R WELL# MUS-IR
PURGE DATE (MM DD YY)	9/17/13Well purging information2,612B,OSAMPLE DATE (MM DD YY)SAMPLE TIME (24 HOUR)WATER VOL IN CASING (GALLONS)ACTUAL VOL PURGED (GALLONS)
PURGING EQUIPMENTDEI	PURGING AND SAMPLING EQUIPMENT vicatei N (CIRCLE ONE)
PURGING DEVICE SAMPLING DEVICE	A - SUBMERSIBLE PUMP D - GAS LIFT PUMP G - BAILER X= B - PERISTALTIC PUMP E - PURGE PUMP H - WATERRA® PURGING DEVICE OTHER (SPECIFY) C - BLADDER PUMP F - DIPPER BOTTLE X - OTHER X=
PURGING MATERIAL	SAMPLING DEVICE OTHER (SPECIFY) A - TEFLON D - PVC B - STAINLESS STEEL E - POLYETHYLENE PURGING MATERIAL OTHER (SPECIFY)
SAMPLING MATERIAL	C - FOLYPROPYLENE X-OTHER X- SAMPLING MATERIAL OTHER (SPECIFY)
PURGE TUBING SAMPLING TUBING	A - TEFLON D - POLYPROPYLENE G - COMBINATION X= TEFLON/POLYPROPYLENE DURGE TUBING OTHER (SPECIFY) C - ROPE F - SILICONE X - OTHER X=
FILTERING DEVICES 0.45	A - IN-LINE DISPOSABLE B- PRESSURE 0,45 to we tab My
DEPTH TO WATE	FIELD MEASUREMENTS
WELL DEPTI	i GROUNDWATER ELEVATION (feet)
15,79 (°C)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
15.59	$G.85_{(std)}$ 2.708 $_{(g/L)}$ 4173 $_{(uS/cm)}$ [.87 $_{(mg/L)}$ 239.6 $_{(mV)}$ 2.5 $_{(gal)}$
15.45 ro	G.72 (std) 2.771 (g/L) 4270 (µ5/cm) 1.73 -283.2 (mV) 5.0 (gal)
(°C)	(std) (g/L) (µ5/cm) (mg/L) (mV) (gal)
[](°C)	(std) (g/L) (uS/cm) (mg/L) (gal)
SAMPLE APPEARANCE WEATHER CONDITIONS: SPECIFIC COMMENTS:	CLOUDY NONP COLOR: BROW SHEEN Y/N TEMPERATURE 905 WINDY Y/N PRECIPITATION Y/N (IF Y TYPE) N
I CERTIFY THAT SAMPLING PRO DATE 2417413	CEDURES VERTIN AGEORDANCE WITH APPLICABLE CRA PROTOCOLS

ς.

SITE/PROJECT NAME SAMPLE ID	WELL SAMPLING FIELD INFORMATION FORM HOWEN KNO. JOB# 074928 GW-074928-091713 CM-MW-2 WELL# MW-2
PURCE DATE (MM DD YY)	WELL PURGING INFORMATION 1340 SAMPLE DATE (MN DD YY) SAMPLE TIME (ALLONS) WELL PURGING INFORMATION 1732 SAMPLE TIME (ALLONS) S
PURGING EQUIPMENTDED	ICATED N SAMPLING EQUIPMENT SAMPLING EQUIPMENTDEDICATED N (CIRCLE ONE) (CIRCLE ONE)
PURGING DEVICE	A - SUBMERSIBLE PUMP D - GAS LIFT PUMP G - BAILER X=
SAMPLING DEVICE	B - PERISTALTIC PUMP E - PURGE PUMP H - WATERRA® PURGING DEVICE OTHER (SPECIFY) C - BLADDER PUMP F - DIPPER BOTTLE X - OTHER X
PURGING MATERIAL	B A-TEFLON D-PVC X≠
SAMPLING MATERIAL	C - POLYPROPYLENE X - OTHER X - OTHER X - OTHER (SPECIFY)
PURGE TUBING	A - TEFLON D - POLYPROPYLENE G - COMBINATION X=
SAMPLING TUBING	B - TYGON E - POLYETHYLENE PURGE TUBING OTHER (SPECIFY) C - ROPE F - SILICONE X - OTHER
FILTERING DEVICES 0.45	A - IN-LINE DISPOSABLE B- PRESSURE 0,45 For metals only
DEPIH TO WATER	FIELD MEASUREMENTS
WELL DEPTH	391.36 (feet) GROUNDWATER ELEVATION (feet)
TEMPERATURE	pH TDS SC DO ORP VOLUME
15,53 _{co}	$\begin{bmatrix} 6.97 \\ \text{(std)} \end{bmatrix} \begin{bmatrix} 7.77 \\ \text{(g/L)} \end{bmatrix} \begin{bmatrix} 0.73 \\ \text{(mg/L)} \end{bmatrix} \begin{bmatrix} -22.7 \\ \text{(my)} \end{bmatrix} \begin{bmatrix} 9.95 \\ \text{(gal)} \end{bmatrix}$
[4, 19] _{eo}	$\begin{bmatrix} G : [8] \\ (std) \\ \end{bmatrix} \begin{bmatrix} 1, 829 \\ (g/L) \\ (g/L) \\ \end{bmatrix} \begin{bmatrix} 28/4 \\ (\mu 5/cm) \\ \end{bmatrix} \underbrace{4, 62 \\ (mg/L) \\ (mg/L) \\ (my/L) \\ \end{bmatrix} \underbrace{9, 75}_{(gal)} \underbrace{9, 75}_{(gab)} \underbrace{9, 75}_{(gab)} \underbrace{9, 75}_{(gab)} \underbrace{9, 75}_{($
14.49	$6.20_{(std)}$ $1.852_{(g/L)}$ $2850_{(\mu 5/cm)}$ $3.38_{(mg/L)}$ $158.2_{(mV)}$ $5.25_{(gal)}$
(°C)	(std) (g/L) (µS/cm) (mg/L) (mV) (gal)
(°C)	(std) (g/L) (µS/cm) (mg/L) (mV) (gal)
SAMPLE APPEARANCE WEATHER CONDITIONS: SPECIFIC COMMENTS:	FIELD COMMENTS CLOUDY ODOR: PUONE COLOR: Beaun SHEEN Y/N Y TEMPERATURE 905 WINDY Y/N N PRECIPITATION Y/N (IF Y TYPE) N
I CERTIFY THAT SAMPLING PRO DATE 9/17/13	PRINT MISTING MATHAPPACABLE (RA PROTOCOLS

SITE/PROJECT NAME: SAMPLE ID:	WELL SAN G Howel GW-074928-	APLING FIELD IN K. No. 1 0917/3- CM-M	NFORMATION FO 	км 074928 МW-3		
9/17/13 PURGE DATE (MIM DD YY)	SAMPLE DATE (NIN DD YY)	WELL PURGING INFO 1420 SAMPLE TIME (24 HOUR)	DRMATION 1,42 WATER VOL I (GALLO	H N CASING NS) ACTUAL V (GAL	OL PURGED LONS)	
PURGING EQUIPMENTDEDIC	CATED N (CIRCLE ONE)	PURGING AND SAMPLIN	IG EQUIPMENT Sa	MPLING EQUIPMENTDED	ICATEI	
PURGING DEVICE	A - SUBMERSIBLE PUMP	D - GAS LIFT PUMP G - BAIL	er	X=		
SAMPLING DEVICE	G - BLADDER PUMP	E - PURGE PUMP H - WAT F - DIPPER BOTTLE X - OTHE	ERRAØ	PURGING DEVICE OTH	ER (SPECIFY)	
PURGING MATERIAL	A - TEFLON	D - PVC		X=		
SAMPLING MATERIAL	C - POLYPROPYLENE	E - POLYETHYLENE X - OTHER		PURGING MATERIAL O	THER (SPECIFY)	
PURGE TUBING	A-TEFLON	D - POLYPROPYLENE G - COM TEFL	BINATION DN/FOLYPROPYLENE	X=		
SAMPLING TUBING	B-TYGON C-ROPE	E - POLYETHYLENE F - SILICONE X - OTHE	R	PURGE TUBING OTHER	(SPECIFY)	
FILTERING DEVICES 0.45	A - IN-LINE DISPOSABLE	B-PRESSURE O, 44	5 far metal	SAMPLING TUBING OT	HER (SPECIFY)	
DEPTH TO WATER	29,58	FIELD MEASURE	MENTS WELL ELEVATION		(feet)	
WELL DEPTH	36.70	(feet) GR	DUNDWATER ELEVATION		(feet)	
TEMPERATURE	734 12.2	s sc 748 345	7 284	0RP	VOLUME	,5
15,24	7,16 (std) 2.	$\frac{10}{2.19}_{ _{(g/L)}} = \frac{341}{341}$	3 (uS/cm) 2.3/	(mg/L) 267.0 (mV)		0
15,19	6,94 (std) 2.2	210 3400) (µ5/cm) 2.67	-242.5 (mV)	3.5 (gal) 3	,5
15.33	6,93 (std) 2.2	04 339	2 (µ5/cm) 2.79	(my/L) 233,0	Y a (gal)	
15,18 0	6.91 (std) 2.7	105 (g/L) 3397	A (45/cm) 3.04	<u></u> - 22β 9 (mV)	Y.5 (gal)	
SAMPLE APPEARANCE	Cloudy odor: emperature 90°	FIELD COMME	nts color: <u>H</u> BYOWN D preci	SHEEN Y/N PITATION Y/N (IF Y TYPE)	70 : <u>No</u> :	5 5 1
					``	-
i certify that sampling proc date 9/17/13	edures werfin accordance with ap privit	PLICABLE CRA PROTOCOLS	Puncely	aturo		

7

PURGE DATE (MIM DD YY)	9/17/13 SAMPLEDATE (MN DD YY)	WELL PUL 140 SAN	RGING INFORMATION	TB6 IS5 ER VOL IN CASING (GALLONS) ACTUAL VOL PURGED (GALLONS)
PURGING EQUIPMENTD	EDICATED Y N (CIRCLE ONE)	PURGING AN	ID SAMPLING EQUIPMENT	SAMPLING EQUIPMENTDEDICATE
PURGING DEVICE		P D - GAS LIFT PUMP	G - BAHLER	X=
SAMPLING DEVICE	B - PERISTALTIC PUMP C - BLADDER PUMP	E - PURGE PUMP F - DIPPER BOTTLE	H - WATERRAD X - OTHER	PURGING DEVICE OTHER (SPECIFY)
				SAMPLING DEVICE OTHER (SPECIFY)
PURGING MATERIAL	A - TEFLON B - STAINLESS STEEL	D – PVC E – POLYETHYLENE		X= PURGING MATERIAL OTHER (SPECIFY
SAMPLING MATERIAL	C - POLYPROPYLENE	X - OTHER		X=
PURGE TUBING	A-TEFLON	D - POLYPROPYLENE	G - COMBINATION	X=
SAMPLING TUBING	B - TYGON C - ROPE	E - POLYETHYLENE F - SILICONE	X - OTHER	PURGE TUBING OTHER (SPECIFY)
FILTERING DEVICES 0.45	A - IN-LINE DISPO	SABLE B - PRESSU	RE O. 45 for	metals only
DEPTH TO WAT	er 29,6	FIELD (feet)	MEASUREMENTS WELL ELEVATION	(feet)
WELL DEP	[™] 34.5 [±]	3 (feet)	GROUNDWATER ELEVATION	(feet)
TEMPERATURE	pH	TDS	sc do	
15,57 0		(.508 (g/L) [(uS/cm) 5,7	$\frac{2}{(mg/L)} \frac{2}{2} \frac{1}{2} \frac{1}{2}$
12:20 00	(100 (std)	1,213 (g/L)	1000 (us/cm) 3.0	$\begin{bmatrix} \mathcal{L} \\ (mg/L) \end{bmatrix} = \begin{bmatrix} \mathcal{J} \\ (mV) \end{bmatrix} = \begin{bmatrix} \mathcal{J} \\ \mathcal{J} \end{bmatrix} = \begin{bmatrix} \mathcal{J} \\$
15, 5 m	6710 (std)	,540 (g/L)	/1676 415/cm) 3.8) C/(mg/E) 51 (mV) 4.5
(°C)	(std)	(g/L)	(µS/cm)	(mg/L) (mV)
(°C)	(std)	(g/L)	(µ5/cm)	(mg/L) (mV)
SAMPLE APPEARANCE WEATHER CONDITIONS: SPECIFIC COMMENTS:	CLOVDY ODX	FIE DR: VONE WINDY Y/I	$\frac{10 \text{ comments}}{1000 \text{ color}} = \frac{1000 \text{ color}}{1000 \text{ color}}$	SHEEN Y/N V PRECIPITATION Y/N (IF Y TYPE)
	CORD Q INTO		· •	
DUP COLLE	- 1410 - 141U		H13	

Appendix B

September 2013 Annual Groundwater Laboratory Analytical Report

Pace Analytical Services, Inc. 9608 Loiret Blvd. Lenexa, KS 66219 (913)599-5665

August 07, 2013

Christine Matthews CRA 6121 Indian School Rd NE Suite 200 Albuquerque, NM 87110

RE: Project: 074928 HOWELL K NO 1 Pace Project No.: 60149575

Dear Christine Matthews:

Enclosed are the analytical results for sample(s) received by the laboratory on July 25, 2013. The results relate only to the samples included in this report. Results reported herein conform to the most current TNI standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Alice Flanazan

Alice Flanagan

alice.flanagan@pacelabs.com Project Manager

Enclosures

cc: Kelly Blanchard, COP Conestoga-Rovers & Associa Angela Bown, COP Conestoga-Rovers & Associa Cassie Brown, COP Conestoga-Rovers & Associa Jason Ploss, COP Conestoga-Rovers & Associa

CERTIFICATIONS

Project: 074928 HOWELL K NO 1

Pace Project No.: 60149575

Kansas Certification IDs

9608 Loiret Boulevard, Lenexa, KS 66219 WY STR Certification #: 2456.01 Arkansas Certification #: 13-012-0 Illinois Certification #: 003097 Iowa Certification #: 118 Kansas/NELAP Certification #: E-10116 Louisiana Certification #: 03055 Nevada Certification #: KS000212008A Oklahoma Certification #: 9205/9935 Texas Certification #: T104704407-13-4 Utah Certification #: KS000212013-3 Illinois Certification #: 003097

SAMPLE SUMMARY

Project: 074928 HOWELL K NO 1

Pace Project No.: 60149575

Lab ID	Sample ID	Matrix	Date Collected	Date Received
60149575001	SS-074928-071913-JC-MW1R-25	Solid	07/19/13 12:15	07/25/13 07:20

SAMPLE ANALYTE COUNT

 Project:
 074928 HOWELL K NO 1

 Pace Project No.:
 60149575

Lab ID	Sample ID	Method	Analysts	Analytes Reported
60149575001	SS-074928-071913-JC-MW1R-25	EPA 6010	JGP	2
		ASTM D2974	DWC	1
		EPA 300.0	OL	2

PROJECT NARRATIVE

Project: 074928 HOWELL K NO 1

Pace Project No.: 60149575

Method: EPA 6010

Description:6010 MET ICP Red. InterferenceClient:COP Conestoga-Rovers & Associates, Inc. NMDate:August 07, 2013

General Information:

1 sample was analyzed for EPA 6010. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3050 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: MPRP/23634

A matrix spike and matrix spike duplicate (MS/MSD) were performed on the following sample(s): 60149503003

- M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.
 - MS (Lab ID: 1226230)
 - Iron
 - Manganese
 - MSD (Lab ID: 1226231)
 - Iron

Additional Comments:

Analyte Comments:

QC Batch: MPRP/23634

- 1e: Post Digestion Spike Performed 76% Recovery
 - SS-074928-071913-JC-MW1R-25 (Lab ID: 60149575001)
 - Manganese

PROJECT NARRATIVE

Project: 074928 HOWELL K NO 1

Pace Project No.: 60149575

Method: EPA 300.0

Description:300.0 IC Anions 28 DaysClient:COP Conestoga-Rovers & Associates, Inc. NMDate:August 07, 2013

General Information:

1 sample was analyzed for EPA 300.0. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 300.0 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

Project: 074928 HOWELL K NO 1

Pace Project No.: 60149575

Sample:	SS-074928-071913-JC- MW1R-25	Lab ID:	60149575001	Collecte	d: 07/19/13	3 12:15	Received: 07/	25/13 07:20 Ma	atrix: Solid	
Results	reported on a "dry-weight	" basis								
				Report						
	Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6010 ME	T ICP Red. Interference	Analytical	Method: EPA 6	010 Prepa	ration Meth	od: EPA	3050			
Iron		7350 n	ng/kg	5.1	1.6	1	07/26/13 13:45	07/29/13 14:04	7439-89-6	
Mangane	ese	180 n	ng/kg	0.51	0.021	1	07/26/13 13:45	07/29/13 14:04	7439-96-5	1e
Percent	Moisture	Analytical	Method: ASTM	D2974						
Percent I	Moisture	9.7 %	6	0.50	0.50	1		07/26/13 00:00		
300.0 IC	Anions 28 Days	Analytical	Method: EPA 3	00.0 Prepa	aration Meth	od: EP	A 300.0			
Fluoride		ND n	ng/kg	22.1	0.93	10	08/01/13 10:00	08/01/13 15:30	16984-48-8	
Sulfate		367 n	ng/kg	111	6.0	10	08/01/13 10:00	08/01/13 15:30	14808-79-8	

Project: 074	928 HOWELL	K NO 1											
Pace Project No.: 601	49575												
QC Batch: M	PRP/23634			Analys	is Method:	E	PA 6010						
QC Batch Method: El	PA 3050			Analys	is Descript	ion: 6	010 MET						
Associated Lab Samples	60149575	5001											
METHOD BLANK: 122	6228			N	latrix: Soli	id							
Associated Lab Samples	60149575	5001											
				Blank	R	eporting							
Parameter		U	nits	Resul	t	Limit	Analyz	ed	Qualifiers				
Iron		mg/kg			ND	5.0	07/29/13	12:47					
Manganese		mg/kg			0.50	0.50	07/29/13	12:47					
LABORATORY CONTRO	OL SAMPLE:	122622	9										
				Spike	LCS	;	LCS	% Rec	;				
Parameter		U	nits	Conc.	Resu	lt	% Rec	Limits	Q	ualifiers			
Iron		mg/kg		1000		956	96	80	-120		-		
Manganese		mg/kg		100		93.5	94	80	-120				
MATRIX SPIKE & MATR		PLICATE:	122623	30		1226231							
		-	-	MS	MSD								
		6014	9503003	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	ι	Jnits	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Iron	mg/l	kg	13700	1110	1200	15200	16400	128	221	75-125	8	20	M1
Manganese	mg/l	kg	149	111	120	227	241	70	77	75-125	6	20	M1

Project:	074928 HOWELL	K NO 1						
Pace Project No.:	60149575							
QC Batch:	PMST/8747		Analysis Met	hod: A	STM D2974			
QC Batch Method:	ASTM D2974		Analysis Des	cription: D	ry Weight/Percent N	Moisture		
Associated Lab Sar	nples: 60149575	5001						
METHOD BLANK:	1226105		Matrix:	Solid				
Associated Lab Sar	nples: 60149575	5001						
			Blank	Reporting				
Parar	neter	Units	Result	Limit	Analyzed	Qualifiers		
Percent Moisture		%	ND	0.50	07/26/13 00:00		_	
SAMPLE DUPLICA	TE: 1226106							
			60149503003	Dup		Max		
Parar	neter	Units	Result	Result	RPD	RPD	Qualifiers	
Percent Moisture		%	19.8	19.3	3	20		

Project: 074928 HOWELL K NO 1 Pace Project No.: 60149575 QC Batch: WETA/25646 Analysis Method: EPA 300.0 QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions Associated Lab Samples: 60149575001 METHOD BLANK: 1229044 Matrix: Solid Associated Lab Samples: 60149575001 Blank Reporting Limit Parameter Units Result Analyzed Qualifiers Fluoride ND 20.0 08/01/13 14:11 mg/kg Sulfate mg/kg ND 100 08/01/13 14:11 LABORATORY CONTROL SAMPLE: 1229045 Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Fluoride mg/kg 250 252 101 90-110 mg/kg Sulfate 500 508 102 90-110 MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 1229046 1229047 MSD MS 60149723010 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits RPD RPD Qual Fluoride mg/kg 23.6 39.9 45.9 14 20 Sulfate mg/kg 340 250 250 604 600 105 104 67-127

QUALIFIERS

Project: 074928 HOWELL K NO 1

Pace Project No.: 60149575

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PRL - Pace Reporting Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine (8270 listed analyte) decomposes to Azobenzene.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

1e Post Digestion Spike Performed - 76% Recovery

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

 Project:
 074928 HOWELL K NO 1

 Pace Project No.:
 60149575

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
60149575001	SS-074928-071913-JC-MW1R-25	EPA 3050	MPRP/23634	EPA 6010	ICP/18548
60149575001	SS-074928-071913-JC-MW1R-25	ASTM D2974	PMST/8747		
60149575001	SS-074928-071913-JC-MW1R-25	EPA 300.0	WETA/25646	EPA 300.0	WETA/25647

Sample Condition Upon Receipt ESI Tech Spec Client

WO#:60149575

Client Name: COP (RA NM			L	Define al
	ercial 🛛 🛛 Pa			
Tracking # 7163 Out-6 Jacut				roj Due Date.
Custody Seal on Cooler/Box Prosent: Yes VI No C	ipping Laber U			roj name.
Packing Material: Bubble Wrap [] Bubble Bags	Foam [Other MZ P	اد
Thermometer Used: C-112 / T-194 Type of Ic			les received on ic	e cooling process has begun
Cooler Temperature: 3.3	(circle	one)	Date and initials	of person examining
Temperature should be above freezing to 6°C		ė	contents: 7-2	5-1334
Chain of Custody present:		1		
Chain of Custody filled out:		2		
Chain of Custody relinguished:		3.		
Sampler name & signature on COC:		4.		
Samples arrived within holding time:		5.		
Short Hold Time analyses (<72hr):	⊠No □N/A	6.		
Rush Turn Around Time requested:		7.		
Sufficient volume:		8.		
Correct containers used:				
Pace containers used:	□No □N/A	9.		
Containers intact:		10.		
Unpreserved 5035A soils frozen w/in 48hrs?		11.		
Filtered volume received for dissolved tests?		12.		
Sample labels match COC:	□No □N/A			
Includes date/time/ID/analyses Matrix: SL		13.		
All containers needing preservation have been checked.				
All containers needing preservation are found to be in compliance with EPA recommendation.		14		
Exceptions: VOA, coliform, TOC, O&G, WI-DRO (water), Phenolics	1 No	Initial when completed	Lot # o	of added vative
Trip Blank present:	No DNA	25-12		
Pace Trip Blank lot # (if purchased):		15		
Headspace in VOA vials (>6mm):	□no Øn/a	16.		
Project sampled in USDA Regulated Area:	DNO DNIA	N7. List State: Nr		
Client Notification/ Resolution: Copy COC to Cli	ent? Y	Field Data F	Required? Y	/ N
Person Contacted: Date/Time	»:		Temp Log	: Record start and finish times
Comments/ Resolution:			recheck sa	imple temps.
		1	Start:01	Start:
		Anst	3 End: 68	30 End:
Project Manager Review:		Date:	/ Temp:	Temp

6	PaceAnalytical	www.pacelabs.com
5	PaceA	14/141

C. I.AIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately. N. ANDRY 8.9

3

1

the alt

1

Secti Requi	on A red Client Information:	Section B Required Proje	sct Infon	mation:				Secti. Invoice	on C e Informa	ation:							Page		of		
Comp	any: COP CRA NM	Report To: Ch	Iristine	e Mathew.	s			Attenti	ion:	COP	epaya	bles						ł.			
Addre:	ss: 6121 Indian School Rd NE, Ste 200	Copy To: Ke.	ily Bla	anchard, /	Angela Bc	uwu		Сотра	any Nam	:e:			_		REGULAT	ORY AGE!	lcγ	1		63	
	Albequerque, NM 87110	\$						Addree	SS:			10.3		-		C GR	OUND WA	TER	DRINKIN	G WATER	
Email	To: cmathews@craworld.com	Purchase Order	r No :	4517898	3447			Pace Q Referen	Auote Tce:						L UST	L RCI	ξA	L	OTHER	sia o	
Phone	: (505)884-0672 Fax: (505)884-4932	Project Name:	Hov	well K No.	1			Pace P Manade	^a roject er:	Alice	Flana	gan			Site Loca	ion					
Reque	sted Due Date/TAT:	Project Number	r: 749	328				Pace P	rofie #	5514	1	5			STA	TE:					M
														Requested	Analysis F.	Itered (Y/N					
	Section D Valid Matrix C Required Client Information MATRIX	CODE CODE	(awc		COLL	ECTED				Prese	ervative	S	1 N /A								
	DRINKING WATER WATER WATER PRODUCT SOUSOLD	및 주 및 약 의	RAB C=CC	COMF	OSITE RT	COMPOS	Ea Ea	NOUCT						e & Mn oride			(N/A)	(51(1))			
	SAMPLE ID WIPE AR (A-Z, 0-9 /, -) OTHER Sample IDS MUST BE UNIQUE TISSUE	우 중 중 은 566 CODE (see	LYPE (G=G						рәли			ļc	tisəT eis	- T bevloss ul∃ ,etstlu			1 Chlorine		0H100	K	
# WƏTI		XIATAM	SYMPLE	DATE	TIME	DATE	U DI IONIVS E E	# OE CO	H ⁵ SO4 Nubrese	HCI HNO ³	HOGN	Methano	VienA	9109 8 0.008			SubiseA	Pac	e Project I	No./ Lab I.D.	
-	11 MM-JL-FIPTED-82 P4-F0-22	R-25 50	00			7.19.13	1215	3	×	E				XX				JWG	FU	60	F
2																		ZVGAN	((118)	60	2
e													l					_			
4																					Τ
2													-								
9																					Τ
2											_									53	
80												_	_								
מ													-							39	Т
7 9																					
12																		_		1	Τ
	ADDITIONAL COMMENTS	RE	ILINQU	ISHED BY	AFFILIATI	NO	DATE	F	IME		A O	CCEPTE	D BY / A	VEFILIATION	DATI	TIME		SAN	IPLE CONDIT	LIONS	
										Y	Ken	2 m	S	(pack	7-25-	3 072.	3.3	5	2	>	
								_							1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	_	_				
	Pro				SAMPLE	ER NAME A	ND SIGNATI	JRE									р.	() UO	(N/)	nlact	
JU 1-1	ae 14					PRINT Nam	e of SAMPLE	N.	ZI	1:		12		DATE Signed	1 mg/l	2	ni qməT	eceivec	S (tooler () Teloo(l səlqme (N/Y)	
J						SIGNALURE	- OT SAMPLE	ł	5	いい	1	1<1V	LI AN	:KW/DD/WW/	121 11	J		Я) n()	s	

of 14

Important Note: By signing this form you are accepting Pace's NET 30 day payment terms and agreeing to late charges of 1.5% per month for any invoices not paid within 30 days

F-ALL-Q-020rev.08, 12-Oct-2007

Pace Analytical Services, Inc. 9608 Loiret Blvd. Lenexa, KS 66219 (913)599-5665

October 07, 2013

Christine Matthews CRA 6121 Indian School Rd NE Suite 200 Albuquerque, NM 87110

RE: Project: 074928 HOWELL K NO. 1 Pace Project No.: 60153646

Dear Christine Matthews:

Enclosed are the analytical results for sample(s) received by the laboratory on September 20, 2013. The results relate only to the samples included in this report. Results reported herein conform to the most current TNI standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Alice Flanazan

Alice Flanagan

alice.flanagan@pacelabs.com Project Manager

Enclosures

cc: Angela Bown, COP Conestoga-Rovers & Associa Jeff Walker, COP Conestoga-Rovers & Associa

CERTIFICATIONS

Project: 074928 HOWELL K NO. 1

Pace Project No.: 60153646

Kansas Certification IDs

9608 Loiret Boulevard, Lenexa, KS 66219 WY STR Certification #: 2456.01 Arkansas Certification #: 13-012-0 Illinois Certification #: 003097 Iowa Certification #: 118 Kansas/NELAP Certification #: E-10116 Louisiana Certification #: 03055 Nevada Certification #: KS000212008A Oklahoma Certification #: 9205/9935 Texas Certification #: T104704407-13-4 Utah Certification #: KS000212013-3 Illinois Certification #: 003097

SAMPLE SUMMARY

Project: 074928 HOWELL K NO. 1

Pace Project No.: 60153646

-

Lab ID	Sample ID	Matrix	Date Collected	Date Received
60153646001	GW-074928-091713-CM-MW-1R	Water	09/17/13 13:55	09/20/13 08:30
60153646002	GW-074928-091713-CM-MW-2	Water	09/17/13 13:40	09/20/13 08:30
60153646003	GW-074928-091713-CM-MW-3	Water	09/17/13 14:20	09/20/13 08:30
60153646004	GW-074928-091713-CM-MW-4	Water	09/17/13 14:05	09/20/13 08:30
60153646005	GW-074928-091713-CM-MW-DUP	Water	09/17/13 14:01	09/20/13 08:30

SAMPLE ANALYTE COUNT

 Project:
 074928 HOWELL K NO. 1

 Pace Project No.:
 60153646

Lab ID	Sample ID	Method	Analysts	Analytes Reported
60153646001	GW-074928-091713-CM-MW-1R	EPA 6010	NDJ	2
		EPA 300.0	OL	2
60153646002	GW-074928-091713-CM-MW-2	EPA 6010	NDJ	2
		EPA 300.0	OL	2
60153646003	GW-074928-091713-CM-MW-3	EPA 6010	NDJ	2
		EPA 300.0	OL	2
60153646004	GW-074928-091713-CM-MW-4	EPA 6010	NDJ	2
		EPA 300.0	OL	2
60153646005	GW-074928-091713-CM-MW-DUP	EPA 6010	NDJ	2

PROJECT NARRATIVE

Project: 074928 HOWELL K NO. 1

Pace Project No.: 60153646

Method: EPA 6010

Description:6010 MET ICP, DissolvedClient:COP Conestoga-Rovers & Associates, Inc. NMDate:October 07, 2013

General Information:

5 samples were analyzed for EPA 6010. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3010 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

PROJECT NARRATIVE

Project: 074928 HOWELL K NO. 1

Pace Project No.: 60153646

Method: EPA 300.0

Description:300.0 IC Anions 28 DaysClient:COP Conestoga-Rovers & Associates, Inc. NMDate:October 07, 2013

General Information:

4 samples were analyzed for EPA 300.0. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: WETA/26476

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 60153603001,60153603002

- M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.
 - MS (Lab ID: 1265089)
 - Fluoride

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

Project: 074928 HOWELL K NO. 1

Pace Project No.: 60153646

Sample: GW-074928-091713-CM- MW-1R	Lab ID:	60153646001	Collecte	d: 09/17/13	3 13:55	Received: 09/	20/13 08:30 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP, Dissolved	Analytical	Method: EPA 6	6010 Prepa	ration Meth	od: EP/	A 3010			
Iron, Dissolved	2.8 m	ng/L	0.050	0.012	1	09/26/13 10:25	09/27/13 10:44	7439-89-6	
Manganese, Dissolved	3.8 m	ng/L	0.0050	0.00049	1	09/26/13 10:25	09/27/13 10:44	7439-96-5	
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	300.0						
Fluoride	1.1 m	ng/L	0.20	0.047	1		10/04/13 20:15	16984-48-8	
Sulfate	5100 m	ng/L	500	80.0	500		10/04/13 20:29	14808-79-8	

Project: 074928 HOWELL K NO. 1

Pace Project No.: 60153646

Sample: GW-074928-091713-CM- MW-2	Lab ID:	60153646002	Collecte	d: 09/17/13	3 13:40	Received: 09/	20/13 08:30 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP, Dissolved	Analytical	Method: EPA 6	010 Prepa	ration Metho	od: EPA	A 3010			
Iron, Dissolved	ND n	ng/L	0.050	0.012	1	09/26/13 10:25	09/27/13 10:53	7439-89-6	
Manganese, Dissolved	ND n	ng/L	0.0050	0.00049	1	09/26/13 10:25	09/27/13 10:53	7439-96-5	
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	0.00						
Fluoride	1.1 n	ng/L	0.20	0.047	1		10/04/13 21:13	16984-48-8	
Sulfate	2420 n	ng/L	200	32.0	200		10/04/13 21:27	14808-79-8	

Project: 074928 HOWELL K NO. 1

Pace Project No.: 60153646

Sample: GW-074928-091713-CM- MW-3	Lab ID:	60153646003	Collecte	d: 09/17/13	8 14:20	Received: 09/	20/13 08:30 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP, Dissolved	Analytical	Method: EPA 6	010 Prepa	ration Metho	od: EPA	3010			
Iron, Dissolved	ND n	ng/L	0.050	0.012	1	09/26/13 10:25	09/27/13 10:57	7439-89-6	
Manganese, Dissolved	0.32 n	ng/L	0.0050	0.00049	1	09/26/13 10:25	09/27/13 10:57	7439-96-5	
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	0.00						
Fluoride	0.91 n	ng/L	0.20	0.047	1		10/04/13 21:41	16984-48-8	
Sulfate	2740 n	ng/L	200	32.0	200		10/04/13 21:56	14808-79-8	

Project: 074928 HOWELL K NO. 1

Pace Project No.: 60153646

Sample: GW-074928-091713-CM- MW-4	Lab ID:	60153646004	Collecte	d: 09/17/13	8 14:05	Received: 09/	20/13 08:30 Ma	trix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP, Dissolved	Analytical	Method: EPA 6	010 Prepa	ration Metho	od: EPA	A 3010			
Iron, Dissolved	1.1 m	ng/L	0.050	0.012	1	09/26/13 10:25	09/27/13 11:00	7439-89-6	
Manganese, Dissolved	15.6 m	ng/L	0.0050	0.00049	1	09/26/13 10:25	09/27/13 11:00	7439-96-5	
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	0.00						
Fluoride	2.2 m	ng/L	0.20	0.047	1		10/04/13 22:25	16984-48-8	
Sulfate	4040 m	ng/L	500	80.0	500		10/04/13 22:10	14808-79-8	

Project: 074928 HOWELL K NO. 1

Pace Project No.: 60153646

Sample: GW-074928-091713 MW-DUP	-CM- Lab ID	: 6015364600	5 Collecte	d: 09/17/13	3 14:01	Received: 09/	20/13 08:30 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP, Dissolved	Analytica	al Method: EPA	6010 Prepa	ration Meth	od: EPA	3010			
Iron, Dissolved	1.2	mg/L	0.050	0.012	1	09/26/13 10:25	09/27/13 11:04	7439-89-6	
Manganese, Dissolved	16.7	mg/L	0.0050	0.00049	1	09/26/13 10:25	09/27/13 11:04	7439-96-5	

Project:	074928 HOWE	LL K NO. 1											
Pace Project No.:	60153646												
QC Batch:	MPRP/24442			Analys	is Method:	: E	PA 6010						
QC Batch Method:	EPA 3010			Analys	is Descript	tion: 6	010 MET Di	ssolved					
Associated Lab Sar	mples: 601536	46001, 601	53646002	, 60153646	003, 60153	3646004, 6	60153646005	5					
METHOD BLANK:	1260460			N	latrix: Wa	ter							
Associated Lab Sar	mples: 601536	46001, 601	53646002	, 60153646	003, 6015	3646004, 6	60153646005	5					
				Blank	R	eporting							
Parar	neter	U	nits	Result	t	Limit	Analyz	ed	Qualifiers				
Iron, Dissolved		mg/L			ND	0.050	09/27/13	10:15					
Manganese, Dissol	ved	mg/L			ND	0.0050	09/27/13	10:15					
LABORATORY CO	NTROL SAMPLE	126046	1										
			•	Spike	LCS	\$	LCS	% Rec	2				
Parar	neter	Uı	nits	Conc.	Resu	ılt	% Rec	Limits	a Qi	ualifiers			
Iron, Dissolved		mg/L		10		10.1	101	80)-120		-		
Manganese, Dissol	ved	mg/L		1		1.0	101	80)-120				
			10004	60		1000400							
MATRIA SPIRE & N	AT KIA SPIKE D	UPLICATE:	120040	02 MC	MOD	1200403							
		60153	3641001	Snike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parame	ter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Iron, Dissolved		g/L	ND	10	10	10	9.9	100	99	75-125	0	20	
Manganese Dissol	ved m	a/L	0.89	1	1	1.8	1.8	94	95	75-125	1	20	

Project: Pace Project No.:	074928 HOWEL 60153646	L K NO. 1											
QC Batch:	WETA/26476			Analys	sis Method	: E	EPA 300.0						
QC Batch Method:	EPA 300.0			Analys	sis Descrip	tion: 3	300.0 IC Anio	ns					
Associated Lab Sam	ples: 6015364	6001, 60	153646002	, 60153646	6003, 6015	3646004							
METHOD BLANK:	1265087			Ν	Matrix: Wa	ter							
Associated Lab Sam	ples: 6015364	6001, 60	153646002	, 60153646	6003, 6015	3646004							
				Blank	K R	eporting							
Param	neter	ι	Jnits	Resu	lt	Limit	Analyz	ed	Qualifiers				
Fluoride		mg/L			ND	0.20	0 10/04/13	17:37					
Sulfate		mg/L			ND	1.(0 10/04/13	17:37					
LABORATORY CON	ITROL SAMPLE:	12650	38										
				Spike	LCS	6	LCS	% Rec	;				
Param	ieter	l	Jnits	Conc.	Resu	ult	% Rec	Limits	Q.	ualifiers	_		
Fluoride		mg/L		2.5	5	2.3	92	90	-110				
Sulfate		mg/L		5	5	4.8	97	90	-110				
MATRIX SPIKE & M	ATRIX SPIKE DU	IPLICATE	: 126508	89		1265090	1						
				MS	MSD								
		601	53603001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	- ·
Paramete	er	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Fluoride	mg	/L	ND	50	50	39.6	39.9	79	80	80-120	1	15	M1
Sulfate	mg	/L	1760	1000	1000	2620) 2650	86	89	80-120	1	15	
MATRIX SPIKE SAM	IPLE:	12650	91										
				601536	03002	Spike	MS	Μ	IS	% Rec			
Param	neter		Jnits	Res	ult	Conc.	Result	% F	Rec	Limits		Quali	fiers
Fluoride		mg/L			ND	50	45	5.7	91	80-1	120		
Sulfate		mg/L			1110	1000	200	00	89	80-1	120		

QUALIFIERS

Project: 074928 HOWELL K NO. 1

Pace Project No.: 60153646

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PRL - Pace Reporting Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine (8270 listed analyte) decomposes to Azobenzene.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: 074928 HOWELL K NO. 1

Pace Project No.: 60153646

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
60153646001	GW-074928-091713-CM-MW-1R	EPA 3010	MPRP/24442	EPA 6010	ICP/19045
60153646002	GW-074928-091713-CM-MW-2	EPA 3010	MPRP/24442	EPA 6010	ICP/19045
60153646003	GW-074928-091713-CM-MW-3	EPA 3010	MPRP/24442	EPA 6010	ICP/19045
60153646004	GW-074928-091713-CM-MW-4	EPA 3010	MPRP/24442	EPA 6010	ICP/19045
60153646005	GW-074928-091713-CM-MW-DUP	EPA 3010	MPRP/24442	EPA 6010	ICP/19045
60153646001	GW-074928-091713-CM-MW-1R	EPA 300.0	WETA/26476		
60153646002	GW-074928-091713-CM-MW-2	EPA 300.0	WETA/26476		
60153646003	GW-074928-091713-CM-MW-3	EPA 300.0	WETA/26476		
60153646004	GW-074928-091713-CM-MW-4	EPA 300.0	WETA/26476		

Sample Condition Upon Receipt ESI Tech Spec Client

WO#:60153646

Client Name: Col Cora NM				Optional]
	Commercial D P	ace 🗆 Other 🗆		Proi Due Date	
Tracking #: $\beta_{0}23$ 68 27 938 4	Pace Shipping Label	Used? Yes 12	No 🗆	Proj Name:	
Custody Seal on Cooler/Box Present: Yes 20 No	Seals intact:	Yes 🗵 No 🗆			-
Packing Material: Bubble Wrap 🎢 Bubble Ba	igs 🗆 🛛 Foam	None 🗆	Other 🗆		
Thermometer Used: (T-112) T-194 Ty	pe of Ice: (Ve) BI	lue None 🗆 San	ples received on	ice, cooling process has begun.	
Cooler Temperature: 4.3	(circl	le one)	Date and initial	s of person examining]
Temperature should be above freezing to 6°C			contents: WO	9/20/13 1130	
Chain of Custody present:	Ares No N/A	1.			
Chain of Custody filled out:		2.			
Chain of Custody relinquished:	YZYes □No □N/A	3.			
Sampler name & signature on COC:	Yes No N/A	4.			
Samples arrived within holding time:	₽Yes □No □N/A	15.			
Short Hold Time analyses (<72hr):	□Yes 72 No □N/A	6			
Rush Turn Around Time requested:		7.			
Sufficient volume:		8.			
Correct containers used:					
Pace containers used:	☐ Yes □No □N/A	9.			
Containers intact:		10.		2:	
Unpreserved 5035A soils frozen w/in 48hrs?		11.			
Filtered volume received for dissolved tests?		12.			
Sample labels match COC:					
Includes date/time/ID/analyses Matrix: (water	13.			
All containers needing preservation have been checked.	Yes No N/A				1
All containers needing preservation are found to be in	Yes □No ଢN/A	14			
Exceptions: VOA, coliform, TOC, O&G, WI-DRO (water),	ØPYes ⊡No	Initial when	Lot #	of added	
Trip Blank present:		completed	prese		1
Pace Trip Blank lot # (if purchased):	7	15			
Headspace in VOA vials (>6mm):	□Yes □No ♀N/A				
	· ·	16			
Project sampled in USDA Regulated Area:	Yes No PN/A	17. List State]A1
Client Notification/ Resolution: Copy C	OC to Client? Y	N Field Dat	a Required? Y	/ N	
Person Contacted: D	ate/Time:	\cup	Temp Lo	g: Record start and finish times	1
Comments/ Resolution			recheck s	sample temps	
			Start:	120 Start:	-
BAR		A70	13 End: 1	130 End:	
Project Manager Review:		Date 100	Temp.	Temp:	

Pace Analytical

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Сонтактор ОСО Средны (СПО СПО СПО СПО СПО СПО СПО СПО СПО СПО	Required Client Information:	Required	Project Infor	mation:				Invoice Info	rmation:				Γ		_		-	Ì	-
новин 0121 Лашан Stood HXLE Star 20 Set for Life Life Life Life Life Life Life Life	Company: COP CRA NM	Report To	Christine	∋ Mathews				Attention:	COP	epayables					-				
Allegendering, Mill 10 Allegendering, Mill 110 Allegendering 110 Allegenderingendering, Mill 110 Allegendering	Address 6121 Indian School Rd NE, Ste	3 200 Copy To:	Jeff Wal	ker, Angel	a Bown			Company h	lame:				REGU	LATORY	AGENCY	XIL	16-		
Unit is Operation	Albequerque, NM 87110							Address:	n,				z L	SEC	GROUN	D WATER	1_ 1_	RINKING W	ATER
Thom Tool Tool <th< td=""><td>Email To: cmathews@craworld.com</td><td>Purchase</td><td>Order No.:</td><td>45178984</td><td>147</td><td></td><td></td><td>Pace Quote Reference:</td><td></td><td></td><td></td><td></td><td></td><td>ST</td><td>RCRA</td><td></td><td>5</td><td>HER</td><td></td></th<>	Email To: cmathews@craworld.com	Purchase	Order No.:	45178984	147			Pace Quote Reference:						ST	RCRA		5	HER	
Generation Titler Right Titler Right <td>Phone: (505)884-0672 Fax: (505)884-45</td> <td>932 Project Na</td> <td>ame: Hov</td> <td>vell K No.</td> <td>1</td> <td></td> <td></td> <td>Pace Project Manager</td> <td>Alice</td> <td>Flanagan</td> <td></td> <td></td> <td>Site L</td> <td>ocation</td> <td>1414</td> <td>711</td> <td></td> <td></td> <td></td>	Phone: (505)884-0672 Fax: (505)884-45	932 Project Na	ame: Hov	vell K No.	1			Pace Project Manager	Alice	Flanagan			Site L	ocation	1414	711			
Image: Section of the secti	Requested Due Date/TAT:	Project Nr	umber: 749	128				Pace Profile	#: 5514,	15			e di	STATE:					
Number Contraction Marking Contraction Market Contraction												Request	ed Analys	is Filtere	(N/A)				
1) absolute	Section D Valid Required Client Information MATR	d Matrix Codes	MP) o let()		COLLEC	TED	-		Presei	rvatives	1 N /A								
CARPTEID Colspan="2">Colspan="2" Colspan="2">Colspan="2" Colspan="2">Colspan="2" Colspan="2">Colspan="2" Colspan="2">Colspan="2" Colspan="2">Colspan="2" Colspan="2">Colspan="2" Colspan="2">Colspan="2" Colspan="2"	DRINKI WATE WATE PRODU PRODU	ING WATER DW ER WT TE WATER WW ULCT P SOLID SL OLID OL	ee valid codes (COMPC	े तम्	COMPOSITE END/GRAB	OLLECTION	S			ţ1	Iuoride Fe & Mn	91 			(N\Y) ə			
Отави Отави <t< td=""><td>SAMPLE ID WIPE (A-Z, 0-9 / .) OTHE Sample IDS MUST BE UNIQUE TISSUE</td><td>NP AR AR OT TS</td><td>LABE (G= CODE ⁽⁸</td><td></td><td></td><td></td><td>TEMP AT C</td><td>язиідти рэгле</td><td>2.0</td><td>0 3</td><td>seT sis</td><td>iulfate, F issolved</td><td></td><td></td><td></td><td>ninolri) Ia</td><td></td><td>1</td><td></td></t<>	SAMPLE ID WIPE (A-Z, 0-9 / .) OTHE Sample IDS MUST BE UNIQUE TISSUE	NP AR AR OT TS	LABE (G= CODE ⁽⁸				TEMP AT C	язиідти рэгле	2.0	0 3	seT sis	iulfate, F issolved				ninolri) Ia		1	
1 Cw. 0745, 367173 - CM-AW - 1, K WT 6 9-17-9 7.55 3-1 1 X X 1 1 2 E. W- 0745, 267173 - CM-AW - 1, K WT 6 9-77-3 18-40 3-1 1 X X 1 1 3 E. W- 0745, 267173 - CM-AW - 3 WT 6 9-77-3 18-40 3-1 1 1 X X 4 E. W- 07143, 2671713 - CM - AW - 4 WT 6 9-17-3 1410 1 1 1 1 X X 5 E. W-07143, 2671713 - CM - AW - 4 WT 6 9-17-3 1410 1 1 1 1 X X 6 9-17-3 1410 1 1 1 1 1 X X 1 6 9-17-3 1410 1 1 1 1 X X 1 1 1 1 1 1 1 1 1 X 1 6 9-17-3 1410 1 1 1 1 1 X 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	# MƏTI		XIATAM 3J9MA2	DATE	TIME	DATE	SAMPLE .	A OF CO	HCI HNO ³ H ⁵ 20 ⁴	HO6N NacHon	Other Uther	2 0.005 200.0 S				Residus	Pace Pr	oject No.	(O Lab I.D.
2 6.4-071413C-041742-04173-04144-3 M 6 9-1743 1540 3-11 1 M × N </td <td>- MO-EILIG-SCH20-MJ 1</td> <td>-HW-IR</td> <td>WT 6</td> <td></td> <td>4</td> <td>1 8-11-</td> <td>355</td> <td>100</td> <td>-</td> <td></td> <td>25</td> <td>XX</td> <td></td> <td></td> <td></td> <td></td> <td>(MEB)</td> <td>(3535)</td> <td>nel a</td>	- MO-EILIG-SCH20-MJ 1	-HW-IR	WT 6		4	1 8-11-	355	100	-		25	XX					(MEB)	(3535)	nel a
3 6w-014938-91113-crt1-ptw-3 M C 1+7-13 1400 5-1 1 1 X X 1 <	2 6W-074928-091713-CI	R-WM-W	20		6	51 Er-24	04		-			×			-				207
4 6w-074938-091713.CM-rNw-4 WT 6 7-7713 14/10 1	3 6W-074928-091713-01	M-Mar. 3	MC	8	9	12-13 14	oct					×							(m
5 6w-014939-09113-CA-DVP WTG 9-1713 1410 1	4 6W-074928-091713-CH	M-Mw-cl	WT 6		6	17-13 14	Sot	3	~			×			-	_	1	CA / 011	Cert
Particle Name of Sampler And Signatures BY AFFLATION DATE THE ACCEPTED BY AFFLATION DATE THE	5 BW-074928-091713-0	M-DUP	5		a.	-12-12 10	\$10	~	~			×				-		(1649)	5-20
2. I all of the participant of the part of	۵										T		+			-			
11 12 13 14 14 15 14 15 15 15 15 15 15 15 15 15 15	2								_	-	i.		_			-			
9 10 10 11 12 12 12 12 12 11 11 11 13 METRIC METRIC METRIC METRIC METRIC 14 12 12 12 12 12 15 12 12 14 14 14 14 14 14 15 12 14 14 16 16 16 16 16 17 12 16 16 16 18 16 16 16 16 17 16 16 16 16 18 16 16 16 16 19 16 16 16 16 11 12 16 16 16 11 16 16 16 16 11 16 16 16 16 11 16 16 16 16 12 16 16 16 16 14 16 16 16 16 15 16 16 16 16 16 16 16 16 16 <td>ω</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>+</td> <td></td> <td></td> <td></td> <td></td> <td>+</td> <td></td> <td></td> <td></td>	ω										+					+			
10 10 12 ADDITIONAL COMMENTS 12 ADDITIONAL COMMENTS 12 ADDITIONAL COMMENTS 13 ADDITIONAL COMMENTS 14 ADITIONAL COMMENTS 15 ADDITIONAL COMMENTS 16 ADITIONAL COMMENTS 17 ADITIONAL COMMENTS 18 ACCEPTED BY AFFLIATION 17 ADITIONAL COMMENTS 18 ADITIONAL COMMENTS 19 ADITIONAL COMMENTS 11 ADITIONAL COMMENTS 12 ALE 12 ADITIONAL COMMENTS 13 ADITIONAL COMMENTS 14 ADITIONAL COMMENTS 14 ADITIONAL COMMENTS 14 ADITIONAL COMMENTS 15 ADITIONAL COMMENTS 16 ADITIONAL COMMENTS 17 ADITIONAL COMMENTS 18 ADITIONALINE	6						-												
1 12 12 12 12 ADDITIONAL COMMENTS RELINGUISHED BY (AFFILIATION DATE THE ACCEPTED BY (AFFILIATION DATE TIME ADDITIONAL COMMENTS RELINGUISHED BY (AFFILIATION DATE TIME ADDITIONAL COMMENTS RELINGUISHED BY (AFFILIATION DATE TIME ADDITIONAL COMMENTS RELINGUISHED BY (AFFILIATION DATE TIME ACCEPTED FILT RELINGUISHED BY (AFFILIATION DATE ADDITIONAL COMMENTS RELINGUISHED BY (AFFILIATION ACCEPTED FILT RELINGUISHED BY (AFFILIATION DATE ACCEPTED FILT RELINGUISHED BY (AFFILIATION DATE ACCEPTED FILT RELINGUISHED BY (AFFILIATION DATE ACCEPTED FILT RELIN <	10						-				Ŧ				-				
12 ADDITIONAL CONNENTS ADD	11																		
Abrild Activity of the line of sampler. CRA P-17-13 9:00 Min. Park 4:3 Print Grant CRA P-17-13 9:00 Min. Park 4:3 Print Among CRA P-17-13 9:00 Min. Park 4:3 Print Among CRA P-17-13 9:00 Min. Park 4:3 Print Among CRA P-17-13 9:00 Min. Park 4:3 Park 1:1 ERED Print Among CRA P-17-13 9:00 Min. Park 1:00			Abel Wat	I AD USA	ACCULATION		DATE	TIME		ACCE	PTED BY			DATE	TIME		SAMPLE	CONDITION	s
Page 17	METHIS WERE	3	lu lu	2	CRI	4	-17-13	6:00		Mar 1	am	100	6	21/00	820	4.3	7	7	X
Sampler Name of Sampler:	FIELD FILTERED	3		5						lal	1 mil			5			_		
SamPLER NAME AND SIGNATURE PRINT Name of SAMPLER: CALE (1975)												-						p	1
PRINT Name of SAMPLER: CALE WALVECK DATE Simed A. J. J.	Pa				SAMPLER	NAME AN	O SIGNATUI	RE								J. ((N) UO p	(N/Y) Intac
DATE Sinned & (A/3)	ge ¹				βĄ	INT Name	AMPLER	CAL	th Th	NACK						n qm	197195 (Y) 9;	oler (səlqr N/Y)
SIGNATURE of SAMPLER: /2/// /2// //////////////////////////	17 c				N.	SNATURE	If SAMPLER.	Gall	1 al			DATE Sign	ed of	2/13		I9 [이 SeX	ojsn) o)	meS

"Important Note By signing this form you are accepting Pace's NET 30 day payment terms and agreeing to late charges of 1.5% per month for any invoices not paid within 30 days

F-ALL-Q-020rev.08, 12-Oct-2007

Appendix C

Conestoga-Rovers & Associates Treatability Study Memo

2055 Niagara Falls Blvd., Suite #3 Niagara Falls, New York 14304 Telephone: (716) 297-6150 Fax: (716) 297-2265 www.CRAworld.com

MEMORANDUM

То:	Jeffrey Walker	Ref. No.:	074928, 074933, 074938
FROM:	Alan Weston/Sophia Dore/adh/2	DATE:	October 22, 2013
CC:	Bernie Bockisch		
RE:	pH Adjustment for Metals Precipitation, Laboratory Treatability St Three ConocoPhillips Company Sites in New Mexico	tudy	

INTRODUCTION

Six ConocoPhillips Company Sites located in New Mexico were recently assessed by the Conestoga-Rovers & Associates' (CRA's) Innovative Technology Group (ITG). At these Sites, historic benzene, toluene, ethylbenzene, and xylenes (BTEX) and petroleum hydrocarbon presence has been remediated such that these compounds are no longer detected in groundwater. However, the anaerobic conditions caused by the presence of these compounds in groundwater has potentially led to the solubilization of iron and manganese; therefore, while the organic compounds are no longer an issue at the Sites, the Sites cannot be closed because these metals exceed New Mexico Water Quality Control Commission (NMWQCC) criteria. Both iron and manganese are more soluble in their reduced forms. When they are oxidized, they tend to form ferric or manganese oxides, which are not soluble and precipitate out of groundwater. Information for the six Sites is summarized in the table below:

Site	Howell K No. 1	Faye Burdette	Sategna No. 2E	Randleman No. 1	San Juan 27-5	Farmington B
		No. 1			No. 34A	Com No. 1E
Full Name and	Howell K No. 1	Faye Burdette	Sategna No. 2E	Randleman No. 1	San Juan 27-5 No.	Farmington B-
Location	Natural Gas Well	No. 1 Gas Well	Natural Gas Well	Natural Gas Well	34A Natural Gas	Com No. 1E
	Site, San Juan	Site, San Juan	Site, Bloomfield,	Site, San Juan	Well Site, Rio	Natural Gas
	County, NM	County, NM	NM	County, NM	Arriba County,	Well Site,
					NM	Farmington, NM
NMOCD No.	3R-431	3R-434	3R-428	3R-340	3R-426	3R-084
CRA Project No.	074928	074929	074932	074933	074934	074938
Wells with Fe	MW-1, MW-4	None	None	None	None	MW-1
above Criteria						
Wells with Mn	MW-1, MW-3,	MW-1	MW-1, MW-2,	MW-2, MW-3,	MW-1, MW-3	MW-1
above Criteria	MW-4		MW-3	MW-4, MW-5		
pH/ORP	N/A	pH 6.85 S.U.	pH 5.6-6.5 S.U.	pH 6.3-8.3 S.U.	pH 6.2-6.4 S.U.	pH 7.3 S.U.
		ORP -2.7 mV	ORP 6.4-49.9 mV	ORP -262 to	ORP -109 to -96	ORP -119 mV
				-209 mV		
Depth to	25-30 feet	8-9 feet	6-9 feet	13-16 feet	21-21 feet	28 feet
Groundwater						
Lithology	Sand/clayey sand	Sand/silty sand	Clay; sand/cobbles	Sand/cobbles	Clay; sand	Gravel

Site	Howell K No. 1	Faye Burdette No. 1	Sategna No. 2E	Randleman No. 1	San Juan 27-5 No. 34A	Farmington B Com No. 1E
Other Issues	Sulfate exceeds criteria	N/A	Sulfate, TDS exceed criteria	Sulfate, TDS exceed criteria	N/A	N/A

Notes:

S.U. - Standard unit.

ORP - Oxidation reduction potential.

mV - Millivolts.

Mn - Manganese.

Fe - Iron.

N/A - Not applicable.

TDS - Total dissolved solids.

Based on the ITG assessment, pH adjustment was determined to be the most cost-effective method for metals precipitation; however, it was recommended that the effectiveness of this technology be verified by a treatability study.

A laboratory treatability study was performed on samples from three of the Sites described above (Howell K No. 1, Randleman No. 1, and Farmington B Com No. 1E) to assess the effectiveness of pH adjustment for metals precipitation.

pH Adjustment

One of the main variables in environmental systems that determine the solubility of most metals in water is their pH. Typically, metals are less soluble at higher pH. However, some metals exhibit amphoteric (able to act as either an acid or a base) behavior causing the metal to be soluble at both high and low pH values. High rates of microbial activity can lower groundwater pH due to the production of organic acids and carbon dioxide. The cause of the low pH at these Sites is likely due to this biological activity associated with the biodegradation of BTEX and petroleum hydrocarbons. Both iron and manganese are more soluble under reducing conditions; however, at lower pH levels, they are soluble under less reducing conditions. Iron and manganese will precipitate at a lower ORP if the pH is higher. pH can be adjusted using a base such as sodium hydroxide (NaOH) if the pH is too low, or using an acid such as hydrochloric acid (HCl) if the pH is too high. Proprietary buffers specifically formulated for adjustment of groundwater pH are also commercially available. Increasing the pH could be performed by injecting NaOH or sodium bicarbonate (NaHCO3) or by injecting a commercially available buffer such as CoBupH, which is manufactured by EOS Remediation. Using CoBupH would increase the treatment cost by a factor of at least 5 as compared to NaOH or NaHCO3; therefore, it will not be considered further. The use of NaOH could result in overtreatment to slightly basic conditions while the use of NaHCO3 would not.

LABORATORY TREATABILITY STUDY

Objectives

The objectives of the laboratory treatability study were:

- To assess the effectiveness of increasing the pH for the precipitation of iron and manganese from groundwater
- To determine the most effective reagent and dose for pH adjustment

Sample Acquisition

The treatability study was performed using groundwater samples collected from the Howell K No. 1, Randleman No. 1, and Farmington B Com No. 1E Sites. Two gallons of groundwater from each Site were received in the CRA laboratory located in Niagara Falls, New York on October 2nd and 3rd, 2013.

Task 1 – Initial Characterization

The groundwater sample was analyzed for pH and dissolved iron and manganese. The Howell K No. 1 groundwater sample had a pH of 7.3 S.U. and contained 157 micrograms per liter (μ g/L) iron and 3,650 μ g/L manganese. The manganese level exceeded the NMWQCC criterion of 200 μ g/L. The Randleman No. 1 groundwater sample had a pH of 7.3 S.U. and contained 114 μ g/L iron and 1,130 μ g/L manganese, which again exceeded the NMWQCC criterion for manganese. The Farmington B Com No. 1E groundwater sample had a pH of 7.5 S.U. and contained 657 μ g/L iron and 271 μ g/L manganese, which also exceeded the criterion for manganese. These data are shown in Table 1.

Task 2 – pH Adjustment Tests

The pH of the three groundwater samples was adjusted with a target of pH 8.5. Initially, a sodium bicarbonate solution was used for pH adjustment since this reagent was recommended for the safe adjustment of pH in the field; however, testing showed that it was not able to overcome the acidity of the groundwater and was not able to adjust the pH of the water without using a volume that would not be practical in the field. Therefore, a 0.1 N solution of sodium hydroxide (NaOH) was used to adjust the pH of the groundwater. For all three groundwater samples, it was observed that the pH could be adjusted to 8.5 S.U. with a relatively small amount of NaOH; however, upon standing, the pH of the groundwater samples dropped. Several rounds of pH adjustment were required in order to increase the pH of the groundwater samples such that the pH remained at or above 8.5 S.U. After the pH adjustment was complete, the water samples were analyzed for dissolved iron and manganese.

For the Howell K No. 1 groundwater sample, 4.75 milliliters (mL) of 0.1 N NaOH were required to raise the pH above 8.5 S.U. After pH adjustment, a 77-percent reduction in dissolved iron and a 93-percent reduction in dissolved manganese were observed. The dissolved manganese was reduced to 246 μ g/L, which is close to the NMWQCC criterion for manganese and would attenuate naturally within a short time.

For the Randleman No. 1 groundwater, 9 mL of 0.1 N NaOH were required to raise the pH above 8.5 S.U. After pH adjustment, a 93-percent reduction in dissolved iron and a 99-percent reduction in dissolved manganese were observed. The dissolved manganese was reduced to 11.3 μ g/L, which is well below the NMWQCC criterion for manganese.

For the Farmington B Com No. 1E groundwater, 2.35 mL of 0.1 N NaOH were required to raise the pH above 8.5 S.U. After pH adjustment, a 48-percent reduction in dissolved iron and a 97-percent reduction in dissolved manganese were observed. The dissolved manganese was reduced to 9.33 µg/L, which is well below the NMWQCC criterion for manganese.

SUMMARY

• Increasing the pH to above 8.5 S.U. was an effective treatment for reducing concentrations of dissolved iron and manganese in the Site's groundwater to below or close to NMWQCC criteria.

- Sodium bicarbonate was not an effective treatment for increasing the groundwater pH using volumes that could be applied in the field.
- NaOH was effective for increasing the pH of the groundwater.
- The amounts of NaOH in grams (g) of NaOH per liter (L) of groundwater are shown in the table below:

	Howell K	Randleman No.	Farmington B
	No. 1	1	Com No. 1
NaOH dose (g NaOH/L groundwater)	0.19	0.36	0.094
NaOH dose (g NaOH/cubic yard saturated matrix)	43.6	82.6	21.6

RECOMMENDATION

The results of this study showed that pH adjustment using NaOH would be an effective treatment for reducing concentrations of iron and manganese in groundwater at the Sites.

For the Howell K No. 1 Site, 43.6 g of NaOH would be required per cubic yard of saturated matrix. This would be applied as approximately 6 gallons of a 0.2-percent solution per cubic yard of saturated matrix.

For the Randleman No. 1 Site, 82.6 g of NaOH would be required per cubic yard of saturated matrix. This would be applied as approximately 6 gallons of a 0.36-percent solution per cubic yard of saturated matrix.

For the Farmington B Com No. 1E Site, 21.6 g of NaOH would be required per cubic yard of saturated matrix. This would be applied as approximately 6 gallons of a 0.09-percent solution per cubic yard of saturated matrix.