
1R - 339

2013 GWMR

SEP 2013

www.**CRA**world.com

REPORT

SITE STATUS REPORT

HOLLY ENERGY PARTNERS HOBBS SOUTH GSA SE1/4 of the SW1/4 of SECTION 15 T19S; R38E LEA COUNTY, NEW MEXICO

Prepared for: William Green

Conestoga-Rovers & Associates 14998 West 6th Avenue, Suite 800 Golden, Colorado 80401

September 2013 • #078807 Report Number:3

TABLE OF CONTENTS

<u>Page</u>

1.0	INTRODU	JCTION	1
	1.1	SITE BACKGROUND	1
	1.2	SITE SETTING	1
	1.3	SUMMARY OF PREVIOUS INVESTIGATIONS	1
	1.4	SITE CONCEPTUAL MODEL	2
2.0	SITE ACT	IVITIES	5
	2.1	WELL EVALUATIONS AND ABANDONMENTS	5
	2.2	GROUNDWATER MONITORING PROCEDURES AND RESULTS	6
	2.3	REMEDIATION WELL INSTALLATION AND SOIL BORINGS	7
	2.4	SUBSURFACE SOIL SAMPLING PROCEDURES AND RESULTS	9
	2.5	QA/QC RESULTS	10
	2.6	INVESTIGATIVE DERIVED WASTE	
3.0	CONCLU	SION AND RECOMMENDATIONS	11

LIST OF FIGURES

- FIGURE 1 SITE LOCATION MAP
- FIGURE 2 SITE MAP (JANUARY 2012)
- FIGURE 3 PRODUCT THICKNESSES DECEMBER 2012
- FIGURE 4 GROUNDWATER POTENTIOMETRIC SURFACE AND GROUNDWATER ANALYTICAL RESULTS MAP – DECEMBER 2012
- FIGURE 5 PRODUCT THICKNESSES JUNE 2013
- FIGURE 6 GROUNDWATER POTENTIOMETRIC SURFACE AND GROUNDWATER ANALYTICAL RESULTS MAP – JUNE 2013
- FIGURE 7 SUBSURFACE SOIL ANALYTICAL RESULTS
- FIGURE 8 WELL CONSTRUCTION DETAILS

LIST OF TABLES

- TABLE 1QA/QC RESULTS FOR GROUNDWATER
- TABLE 2QA/QC RESULTS FOR SOIL
- TABLE 3INVESTIGATIVE DERIVED WASTE RESULTS

LIST OF APPENDICES

- APPENDIX A AUGUST 2012 WELL EVALUATIONS AND FLUID LEVELS
- APPENDIX B ABANDONED BOREHOLES WELLS
- APPENDIX C DECEMBER 2012 FLUID LEVELS
- APPENDIX D JUNE 2013 FLUID LEVELS
- APPENDIX E GROUNDWATER SAMPLING FIELD FORMS
- APPENDIX F SUMMARY OF GROUNDWATER ANALYTICAL RESULTS
- APPENDIX G GROUNDWATER LABORATORY REPORTS
- APPENDIX H WELL COMPLETION DETAILS AND BORING LOGS
- APPENDIX I SUMMARY OF SUBSURFACE SOIL ANALYTICAL RESULTS
- APPENDIX J SUBSURFACE SOIL LABORATORY REPORTS

1.0 <u>INTRODUCTION</u>

This status report is submitted on behalf of Holly Energy Partners (HEP) for the Hobbs South GSA pipeline leak (Site) located in Lea County, New Mexico (Figure 1). On March 27, 2002 a leak was reported by Plains personnel from the 8-inch pipeline owned by Navajo Refining Company. There is no record of the leak being reported to New Mexico Oil Conservation Division (NMOCD) for this time. This report covers activities at the Site for the period from August 2012 to June 2013. This report contains information on the status of the crude oil found on groundwater in the area of the release, groundwater monitoring activities, installation of the crude oil recovery wells and abandonment of borehole wells, as described in the Stage 2 Abatement Plan that was submitted to the New Mexico Oil Conservation Division (NMOCD) in November 2012.

1.1 <u>SITE BACKGROUND</u>

On March 27, 2002, a leak was discovered in an 8-inch pipeline operated by Navajo Refining Company. An unknown volume of crude oil was released to subsurface soils. The leak was discovered when the pipeline was exposed for trenching for an electrical line. The soil in the excavation trench was saturated with crude oil. The pipeline was shut down and a 150 foot section of the pipeline was replaced in the area. This pipeline has remained inactive since this leak was discovered in 2002.

1.2 <u>SITE SETTING</u>

The Site is located approximately 3 miles south of Hobbs, NM in an area where several crude oil storage facilities are clustered. The Site is located in the SE ¹/₄ of the SW ¹/₄ of Section 15, Township 19 South, Range 38 East in Lea County, New Mexico (32.654949° North, 103.137432° West). The topography at the Site is relatively flat and the average elevation is approximately 3,598 feet mean sea level (Figure 1). The Site is located on Plains Pipeline property at 214 County Road 61, Hobbs, NM. The surrounding land contains crude oil storage tanks, rural residences and open range land.

1.3 <u>SUMMARY OF PREVIOUS INVESTIGATIONS</u>

In 2002, impacted soil was removed from the area of the pipeline repair and expanded to remove additional petroleum-stained soil. In January 2003, an additional excavation to remove impacted soil was completed in the area east of the pipeline. Soil could not be removed to the west due the presence of a Plains pipeline and pipeline valves and

manifolds. These excavations removed a total of approximately 4,033 cubic yards of impacted soil at the Site.

Four groundwater monitoring wells (MW-1, MW-2, MW-3, and MW-4) and 13 boreholes (BH-1 to BH-13) were used to characterize the Site in late 2002 and early 2003. The closest monitoring well to the leak area (MW-4) is approximately 200 feet to the west and down-gradient of the historical leak. The remaining two down-gradient wells are greater than 200 feet east of the historical leak. Initial boreholes were located in the area of the leak and approximately 150 feet east of the leak. There is no documentation available as to when approximately 50 additional boreholes, which were converted to temporary fluid measurement 2-inch wells, were installed at the Site. In addition, there is no documentation available when the fifteen 4-inch wells were installed at the Site, and there is no available information pertaining to the construction of any of these wells.

Total fluid pumps were used in the boreholes and as of May 2008, approximately 879 barrels (bbls) of crude oil had been recovered at the Site. Crude oil recovery efforts continued at the Site until 2012 with the total amount recovered reported as 1,061.4 bbls.

The analytical results of soil obtained from the excavations and soil borings indicated that the soil was impacted in the area of the leak to the depth of groundwater and approximately 150 feet east of the excavation area.

The maximum thickness of the oil accumulation on top of groundwater was measured at 6 feet in well BH-404 during the August 2012 well evaluation. The dissolved phase hydrocarbon concentrations in down-gradient groundwater monitor wells have been below the New Mexico Water Quality Control Commission (NMWQCC) standards for benzene, toluene, ethylbenzene, and total xylenes (BTEX) since 2002.

1.4 <u>SITE CONCEPTUAL MODEL</u>

The Site was impacted by crude oil from a leak in a pipeline. The crude oil on groundwater has remained in the same location since 2002 and currently has a maximum thickness of approximately 6 feet. The crude oil is predominantly found in the area of the leak. The primary chemicals of concern are hydrocarbon constituents that originated from the crude oil. Hydrocarbon impacts at the Site appear to be limited to soil and groundwater within 150 feet of the location of the leak. Petroleum impacted soil remains in this area below 17 feet-below ground surface (ft-bgs) to the top of groundwater at approximately 54 ft-bgs. The impacts to groundwater. Dissolved phase hydrocarbons have not impacted the groundwater monitoring wells or drinking water

wells located in the area down-gradient from the release or near the residences located in this area (*Stage 2 Abatement Plan*, November 2012).

There appears to be no immediate threat to the environment or to drinking water wells located in the area caused by the release and any remaining impacts. The crude oil and associated impacts have remained in the area of the leak since 2002. This type of crude oil has a very low mobility and does not readily desorb nor dissolve and therefore, any remaining impacts are only in the immediate area of the release. The low mobility rate may be attributed to the high percentage of paraffin in the crude oil which is characteristic of this type of crude oil found in the eastern New Mexico Permian Basin area. The crude oil thickness has been measured at the Site since 2002 and has not migrated from the area, suggesting that most of the soil impacts have been generally mitigated and the released crude oil has a low mobility rate and is not readily dissolved in groundwater.

The Site is located in area of multiple crude oil storage tanks and is about 3 miles south of Hobbs, NM. The closest residences are located approximately 625 feet from the area and the closet drinking water well is located within 1,000 feet of the leak. The well is used for drinking water supply for the nearby residences and has not been impacted by the leak, as determined by analytical testing of these wells and the groundwater monitoring wells which are situated as sentinels for these supply wells.

The NMOCD recommended remediation action levels for soil are dependent upon site specific ranking criteria outlined in the Guidelines for Remediation of Leaks, Spill, and Releases (August 1993) of:

- depth to groundwater;
- proximity of the wellhead to water sources or private domestic wells; and
- distance to surface water bodies to include but not limited to perennial rivers, streams, creeks, irrigation canals and ditches, lakes, ponds and playas.

The depth to groundwater at the Site is approximately 55 ft-bgs. The closest water well is approximately 600 feet east of the Site. There are no surface-water bodies within 1,000 feet of the Site. Due to the depth of groundwater (55 ft-bgs), it is unlikely that any perennial stream would exist at any time within 1,000 feet of the Site.

At the Site, groundwater is greater than 50 feet, the domestic well is less than 1,000 feet from the release and the distance to a surface-water body is greater than 1,000 feet from the Site. Based on these ranking criteria and the Guidelines for Remediation of Leaks, Spills and Releases (August 1993), the ranking score for groundwater is 10, for the domestic well it is 20 and for the surface-water body it is 0, for a total ranking score of

30. If the total ranking score is over 19, the following NMOCD recommended remediation action levels for hydrocarbons for soil at the Site are:

- 10 milligrams per kilogram (mg/kg) for benzene;
- 50 mg/kg for total BTEX;
- 100 mg/kg for TPH; and

The NMWQCC standards for hydrocarbons in groundwater are as follows:

- 0.01 milligrams per liter (mg/L) for benzene;
- 0.75 mg/L for toluene;
- 0.75 mg/L for ethylbenzene; and
- 0.62 mg/L for total xylenes.

2.0 <u>SITE ACTIVITIES</u>

On-site well evaluations were conducted in August 2012. Groundwater monitoring was conducted at the Site in December 2012 and June 2013. Monitoring included obtaining groundwater samples for laboratory analysis for BETX and measuring fluid levels in all monitor wells and borehole wells. In February 2013, 42 borehole wells were abandoned on the Site and two 4-inch recovery wells were installed for use in the recovery of the crude oil.

2.1 WELL EVALUATIONS AND ABANDONMENTS

An initial evaluation of all of the monitor and borehole wells located at the Site was conducted in August 2012. The evaluation included the validation of all well locations as shown in the January 2012 Site Map (Figure 2), measurement of the fluid levels and the total well depths and a search of the available records for well and borehole logs. Appendix A contains the August 2012 well evaluation information.

The January 2012 map (Figure 2) shows 65 borehole wells and four monitor wells. The August 2012 field evaluation found all 65 borehole wells and the four monitor wells. The August 2012 field evaluation showed total well depths ranging from 38.57 ft-bgs to 68.20 ft-bgs and saturated thickness in the wells varied from dry to 13.90 feet in BH-407 (Appendix A).

The borehole wells selected for abandonment were based on whether the well was dry or lacked saturated thickness of greater than one foot, incomplete or no records of completion, lack of crude oil, integrity of the surface seal and location of the well. The evaluation of the temporary borehole wells indicated that many of the wells were outside of the impacted area, lacked a saturated thickness of greater than one foot and would not be needed for the Stage 2 abatement activities. Based on these criteria, 42 wells were slated for abandonment. In January 2013, two 4-inch borehole wells were abandoned and 40 two-inch borehole wells were abandoned (Appendix B).

Well abandonments were completed per State guidelines (NMAC19.27.4.30). To plug each well, the entire well casing and screen was filled from the bottom of the well upwards to ground surface with a tremie pipe using neat cement slurry consisting of bentonite based cement plugging material approved by the State Engineer. The superficial PVC blank was removed from the well. The slurry was then allowed to settle and the wells were topped off with the same neat cement slurry.

2.2 <u>GROUNDWATER MONITORING PROCEDURES AND RESULTS</u>

Groundwater monitoring was conducted at the Site in December 2012 and June 2013 and included fluid level measurements of all monitor wells and existing borehole wells. Groundwater samples were collected from all five monitor wells during both sampling events. Prior to purging of the monitor wells and obtaining groundwater samples, fluid levels were measured using an oil/water level indicator.

Crude oil was not measured in any of the monitor wells during the December 2012 monitoring event, but was measured in 33 borehole wells. Product thickness varied from 0.03 feet to 5.90 (BH-408) feet with the majority of the crude oil found in the central portion of the Site near the release. The crude oil thicknesses for December 2012 are shown in Figure 3 and detailed in Appendix C.

Water levels in December 2012 were similar to the water levels measured in August 2012. For the December monitoring period, the depth to groundwater across the Site varied from 50.36 ft-bgs (BH-51) to 58.00 ft-bgs (BH-408) (Appendix C). The groundwater flow in December was towards the east and the groundwater gradient was relatively flat with a gradient of 0.0013 feet/foot (Figure 4).

During the June 2013 monitoring period, crude oil was again not measured in any of the four monitor wells but was measured in 20 of the remaining 23 borehole wells and in both new recovery wells. Product thickness varied from 0.04 feet to 5.87 feet (BH-404) with the majority of the crude oil again found in the central portion of the Site near the release. The crude oil thicknesses for June 2013 are shown in Figure 5 and detailed in Appendix D

For the June 2013 monitoring period, the depth to groundwater across the Site varied from 50.66 ft-bgs (BH-3A) to 59.03 ft-bgs (BH-408) (Appendix D). As in the December monitoring period the groundwater flow in June 2013 was towards the east and the groundwater gradient was 0.0005 feet/foot (Figure 6).

Prior to purging of the wells and obtaining groundwater samples, fluid levels were measured in all monitor wells using a water level indicator. During both sampling events, the monitor wells were purged at a rate of 160 ml/min and groundwater samples were collected using the low flow purging technique following stabilization of the field parameters (Appendix E). The meters used for the field parameters were calibrated prior to use. Field parameters obtained during purging included temperature, specific conductance, pH, dissolved oxygen and oxidation reduction potential (ORP) and the final readings for both sampling events are summarized in Appendix F.

All four monitor wells (MW-1, MW-2, MW-3R, and MW-4) were sampled in December 2012 and June 2013 for BTEX analysis by Method 8260. Groundwater samples were immediately placed into the appropriate laboratory provided containers following field parameter measurements and placed in an ice-chilled cooler for transport to the DHL laboratory under chain-of-custody procedures. The laboratory reports for both sampling events are contained in Appendix G.

The December 2012 hydrocarbon concentrations for each monitor well are shown in Figure 4 and summarized in Appendix F. The concentrations of dissolved BTEX in groundwater during December 2012 at the Site were generally similar to concentrations detected in December 2011. There were no detections of any of the BTEX constituents above the NMWQCC standards in the four monitor wells sampled at the Site during the December 2012 sampling event.

The hydrocarbon concentrations for each monitor well sampled in June 2013 are shown in Figure 6 and summarized in Appendix F. The concentrations of dissolved BTEX in groundwater during June 2013 at the Site were generally similar to concentrations detected in December 2012. There were no detections of any of the BTEX constituents above the NMWQCC standards in the four monitor wells sampled at the Site during the June 2013 sampling event. Benzene was detected above the lower laboratory reporting limit, at a concentration of 0.25 micrograms per liter (μ g/L) for MW-2 and 0.24 μ g/L at MW-4.

2.3 <u>REMEDIATION WELL INSTALLATION AND SOIL BORINGS</u>

In February 2013, two recovery wells were installed at the Site and eight soil borings were completed to characterize the subsurface soil conditions. Soil analytical results are shown on Figure 7.

The final recovery well locations and soil boring locations were based on historical crude oil thickness data, utility clearances and were finalized by the site geologist. Prior to drilling, private and public utilities were cleared. The NMOCD was notified approximately one week prior to drilling activities, as required by 19.15.30.14.B NMAC. Well permits were obtained from the New Mexico State Engineer and site access and permission to install the recovery wells was obtained from Plains.

The wells were installed according to New Mexico Office of the State Engineer rules (19.27.4 NMAC) using an air rotary drill rig. The boring diameter was 7^{7/8} inches and the total depths of the wells were approximately 10 feet below the top of the fluid, as observed during the drilling by the site geologist. The well borings were logged by the on-site geologist based on the cuttings and spilt spoon samples. Each boring was logged

for the unified soil classification, moisture content, Munsell color, staining, and vapor content.

In the unsaturated zone at the Site, backfill material was encountered consisting of silt and sand overlying caliche with sand and silty sand to the top of groundwater. In the saturated zone at the Site, caliche, sand and gravel were encountered at each location. Odor and/or staining were observed from approximately 13 ft-bgs to the top of groundwater in Well HSRW-1 and from 35 ft-bgs to the top of groundwater in Well HSRW-2.

In soil borings SB-1 and SB-8 odor and/or staining was observed from 3 ft-bgs to the top of groundwater. In SB-6 odor and/or staining was observed from approximately 17 ft-bgs to the top of groundwater. In borings SB-2, SB-3, SB-4, SB-5 and SB-7 odor and/or staining was observed from approximately 37 ft-bgs to the top of groundwater. Well construction details, well logs and the borehole logs are contained in Appendix H.

The recovery wells were constructed with 4-inch diameter schedule 40 PVC casing and 20 feet of 20-slot (0.020 inch) PVC screen with approximately 10 feet of the screen above the observed fluid level and 10 feet below the observed fluid level (Figure 8). A 10/20 sand filter pack was placed in the borings from the bottom of the boring to approximately two feet above the well screen. A hydrated bentonite seal was placed from the top of the sand pack to approximately five feet above the sand pack. A grout seal was placed from the top of the bentonite seal to approximately 3 ft-bgs. A 3-foot manhole cover was placed on each well and cemented in place. The selected screen interval was used to allow for soil vapor extraction if needed, the fluctuation in fluid levels and for the collection of fluids from any future surfactant injection, if needed. In addition, a 1-inch piezometer was installed alongside the 4-inch well and constructed in the same manner as the 4-inch well (Figure 8). These piezometers will be used to measure fluid levels so that the oil recovery pumps will not have to be removed for fluid level measurements.

Product thickness was not measured in either of the new wells immediately following installation; therefore, each well was surged with a surge block assembly to develop the well. These wells were again checked after well development and product was measured in HSRW-2.

All drilling and well development equipment was cleaned prior to initiation of drilling activities and in between all borings using a high pressure washer.

2.4 SUBSURFACE SOIL SAMPLING PROCEDURES AND RESULTS

During drilling for the well installations and boreholes, soil samples were collected continuously from ground surface to the top of groundwater or to approximately 54 ft-bgs, using a two-foot split-spoon sampler, or a core sampler when the split-spoon hit refusal. If the core sampler hit refusal, the boring was logged using cuttings. Headspace samples were collected in re-sealable plastic bags every two feet and measured approximately 30 minutes after collection for of volatiles using a photo-ionization detector (PID). Subsurface soil samples were collected for he eight boreholes and from the recovery well locations. Samples were collected for laboratory analyses relative to the highest detected headspace reading of each boring and analyzed for BTEX compounds by Method 8260, TPH-GRO and TPH-DRO by Method 8015.

The data shows vadose zone soil impacts based on head space data above NMOCD recommended remediation action levels in recovery well HSRW-1 and in boreholes SB-1, SB-6 and SB-8. There appears to be impacts based on head space readings from the capillary zone, which is approximately six feet above the top of the water at both recovery well locations and all eight borehole locations. The soil data is summarized in Appendix I and shown on Figure 7. Historically, groundwater has dropped in the area of the Site with fluid levels in the four monitor wells dropping an average of 4.91 from 2003 to 2011. From 2011 to the most recent monitoring event in June 2013, the water level in the four monitor wells has dropped another 1.44 feet on average.

Soil analytical results have been compared to the NMOCD recommended remediation actions levels as described above in Section 1.4. The subsurface soil results indicated that impacts start at approximately 4 ft-bgs at boring SB-1 and continued to the top of the water and are generally within the capillary zone (48 to 54 ft-bgs) in the other locations. Laboratory reports for the soil data are contained in Appendix J.

The subsurface soil results are summarized as follows:

- BTEX constituents were detected in the subsurface soil above the NMOCD recommended remediation action levels in the 50-52 foot sample from well HSRW-2 with a concentration of Total BTEX of 108.65 milligrams per Liter (mg/L);
- TPH was detected above the recommended remediation action level of 100 mg/kg in all eight boreholes; SB-1 at 4-6 ft-bgs and 42-44 ft-bgs, SB-2 at 40-42 ft-bgs, SB-3 at 40-42 ft-bgs and 50-52 ft-bgs, SB-4 at 40-42 ft-bgs and 50-52 ft-bgs, SB-5 at 40-42 ft-bgs and 50-52 ft-bgs, SB-6 at 28-30 ft-bgs and 50-52 ft-bgs, SB-7 at 44-46 ft-bgs and 50-52 ft-bgs and SB-8 at 16-18 ft-bgs and 48-50 ft-bgs; and

• Head space readings above the recommended remediation action level of 100 ppm were found in wells HSRW-1 and HSRW-2 and in boreholes SB--1, SB-6 and SB-8 above the capillary zone and below the capillary zone in both recovery well borings and all eight boreholes.

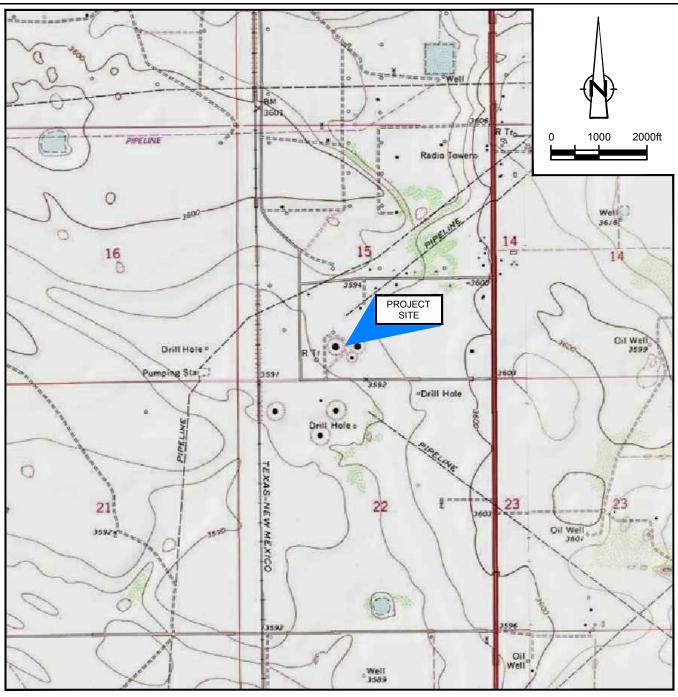
2.5 <u>QA/QC RESULTS</u>

The field PID was calibrated daily using 100 ppm isobutylene and groundwater field measurement instruments were calibrated to manufactures recommendation. QA/QC samples included trip blanks and duplicate groundwater sample. The results of the QA/QC samples for groundwater are summarized in Table 1 and the results for the QA/QC sample for soil are summarized in Table 2. The groundwater duplicate samples and trip blanks were analyzed for BTEX by Method 8260. The duplicate groundwater sample showed no variation in the results. There were no detections above the lower laboratory reporting limit for BTEX in any of the trip blanks.

2.6 <u>INVESTIGATIVE DERIVED WASTE</u>

The cuttings were separated on-site into impacted and non-impacted soil, based on visual observation and head space analysis. The impacted cuttings were collected and containerized in a plastic lined roll-off container. The impacted cuttings were sampled for BTEX, total petroleum hydrocarbons (TPH) and RCRA metals analyses at the conclusion of drilling activities. The results indicated the waste is above state standards for TPH; the waste was handled and disposed of properly at the Sundance disposal facility. The results of the investigative derived waste are summarized in Table 3.

3.0 <u>CONCLUSION AND RECOMMENDATIONS</u>


Groundwater hydrocarbon concentrations have remained stable since 2010. The measured thicknesses of the crude oil have increased as much as two feet since the suspension of the crude oil recovery activities in 2011.

CRA will continue to monitor groundwater at the Site on a semi-annual basis. The next groundwater sampling event is scheduled to occur in December 2013. Groundwater samples will be collected from all site monitor wells and analyzed for BTEX.

The remedial strategy for site closure is based on the current NMOCD requirements. To close the Site with no further action, the crude oil would first have to be removed separately from groundwater (19.15.17.13 NMAC). The proposed remedial technology for the Site uses a crude oil only skimming system that does not depress the groundwater table to remove the crude oil. This system is designed to shut down automatically when water is encountered in the pump and can be restarted remotely without visiting the Site. This system is scheduled to be installed and in operation by September 2013.

Once the phase-separated hydrocarbons (crude oil) have been removed to a *de minimis* thickness, remedial actions would then focus on the low-level dissolved phase concentrations. Based on existing conditions, the Site closure strategy to meet State standards would be based on natural attenuation of contaminant parameters and monitoring of the dissolved phase hydrocarbons.

FIGURES

SOURCE: USGS 7.5 MINUTE QUAD "HOBBS WEST AND HOBBS EAST, NEW MEXICO"

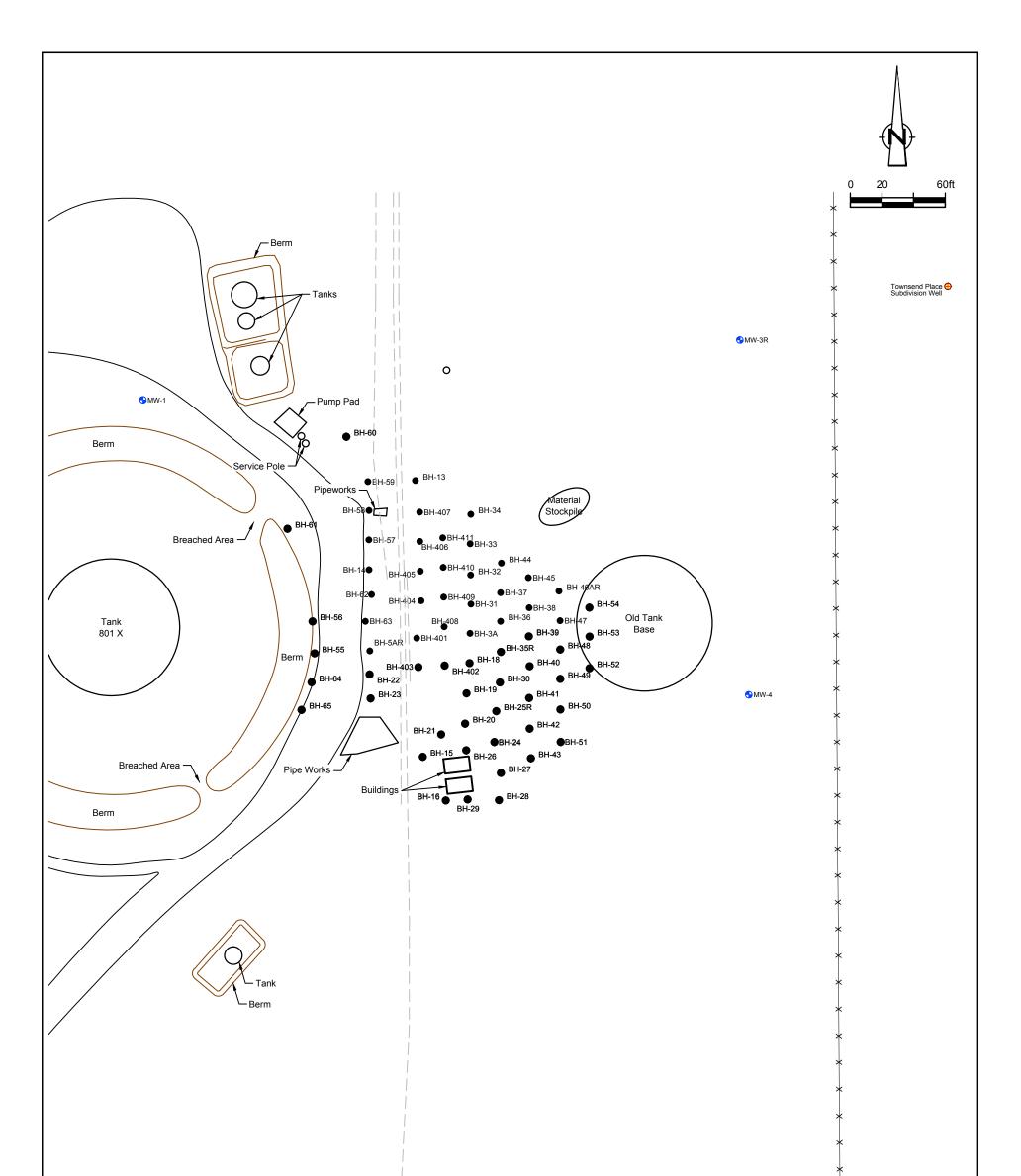

LAT/LONG: 32.6549° NORTH, 103.1382° WEST COORDINATE: NAD83 DATUM, U.S. FOOT STATE PLANE ZONE - NEW MEXICO EAST

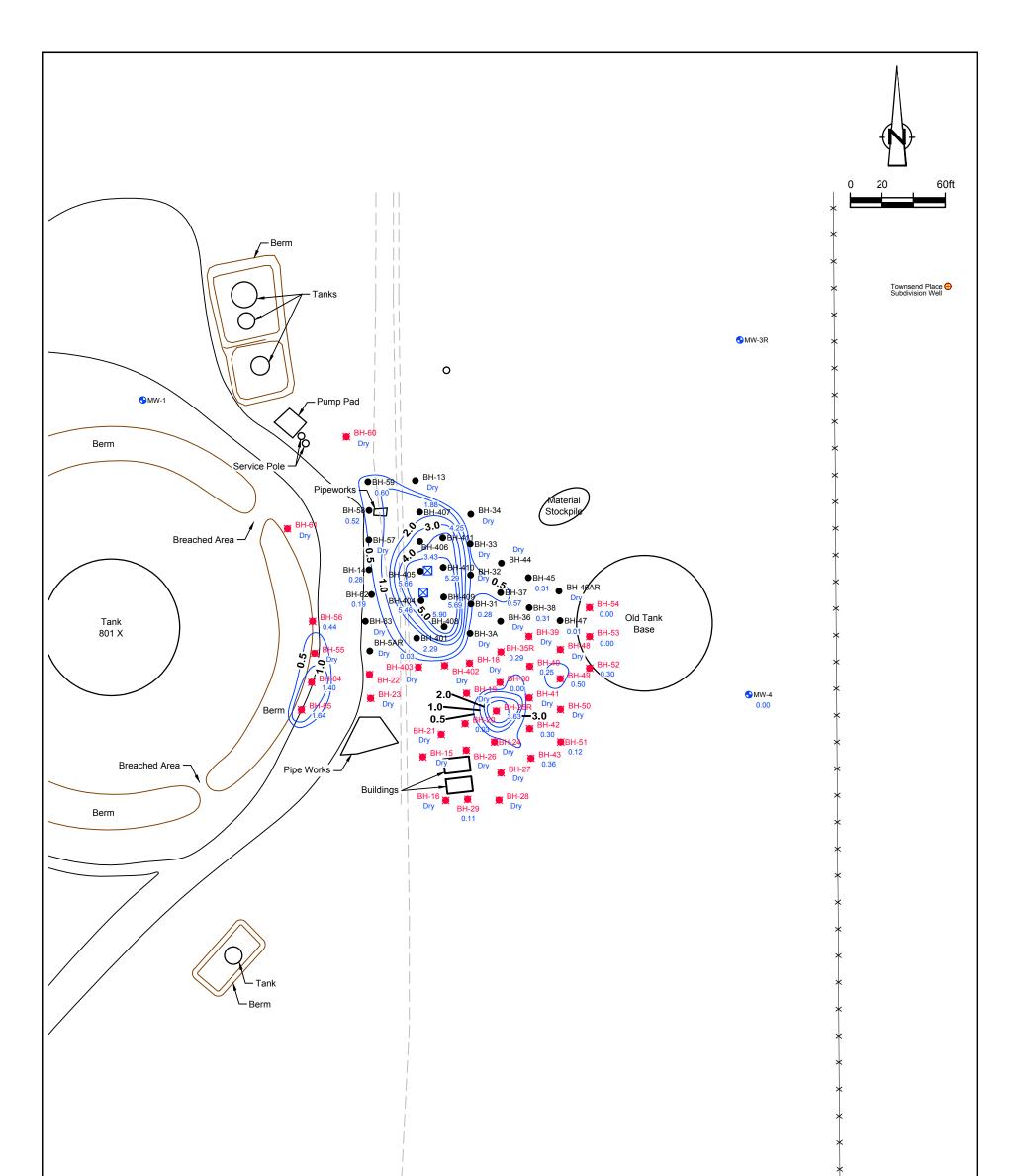
figure 1

SITE TOPOGRAPHIC MAP HOBBS SOUTH GSA 8" HOBBS, NEW MEXICO *Holly Energy Partners*

078807-01(000)GN-DL001 MAY 16/2013

😌 MW-2

LEGEND

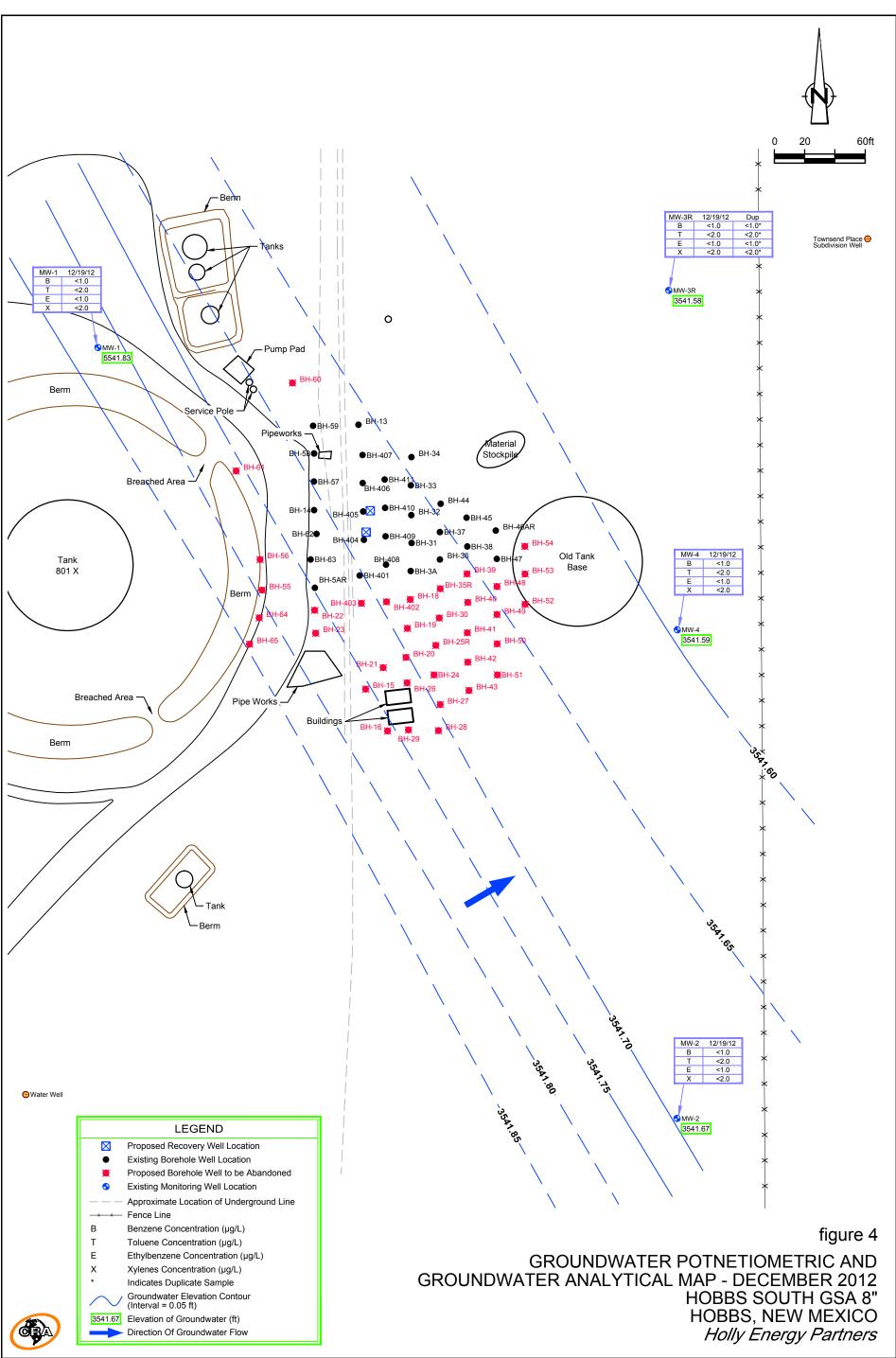

- S Existing Monitoring Well Location
- Existing Borehole Well Location
- — Approximate Location of Underground Line

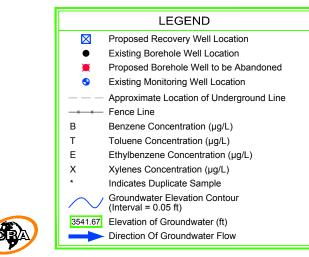
CRA

078807-01(000)GN-DL001 AUG 30/2013

figure 2

SITE MAP (JANUARY 2012) HOBBS SOUTH GSA 8" HOBBS, NEW MEXICO *Holly Energy Partners*



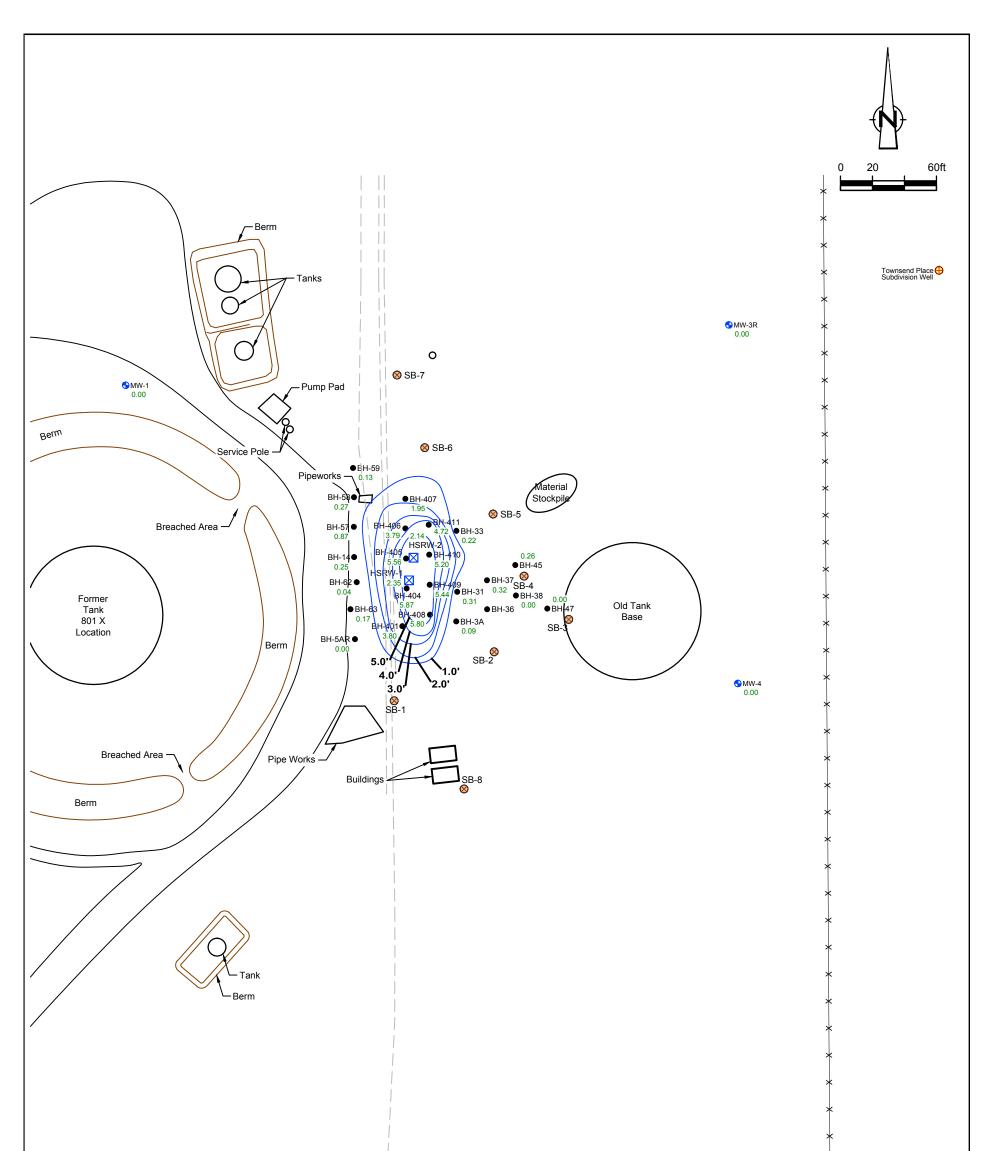
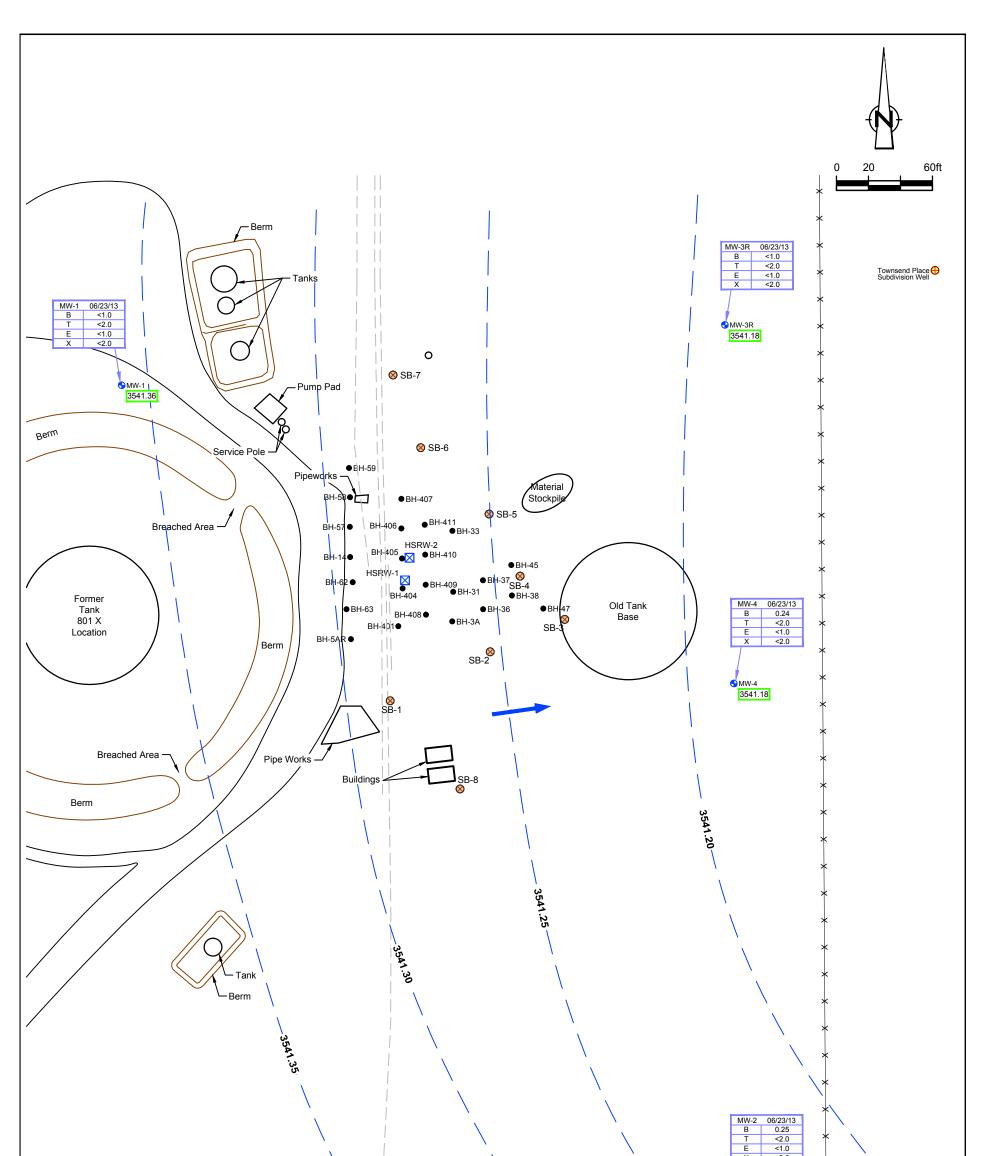

LEGEND Image: Constraint of the system Image: Constre system Imag

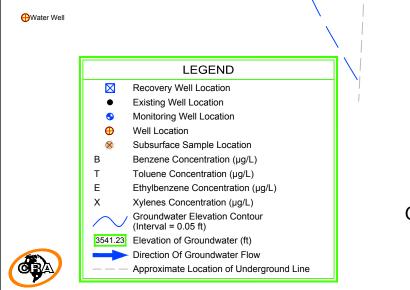
078807-01(000)GN-DL003 AUG 30/2013

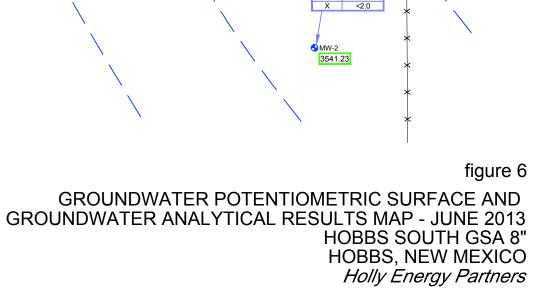
figure 3

PRODUCT THICKNESS - DECEMBER 2012 HOBBS SOUTH GSA 8" HOBBS, NEW MEXICO *Holly Energy Partners*

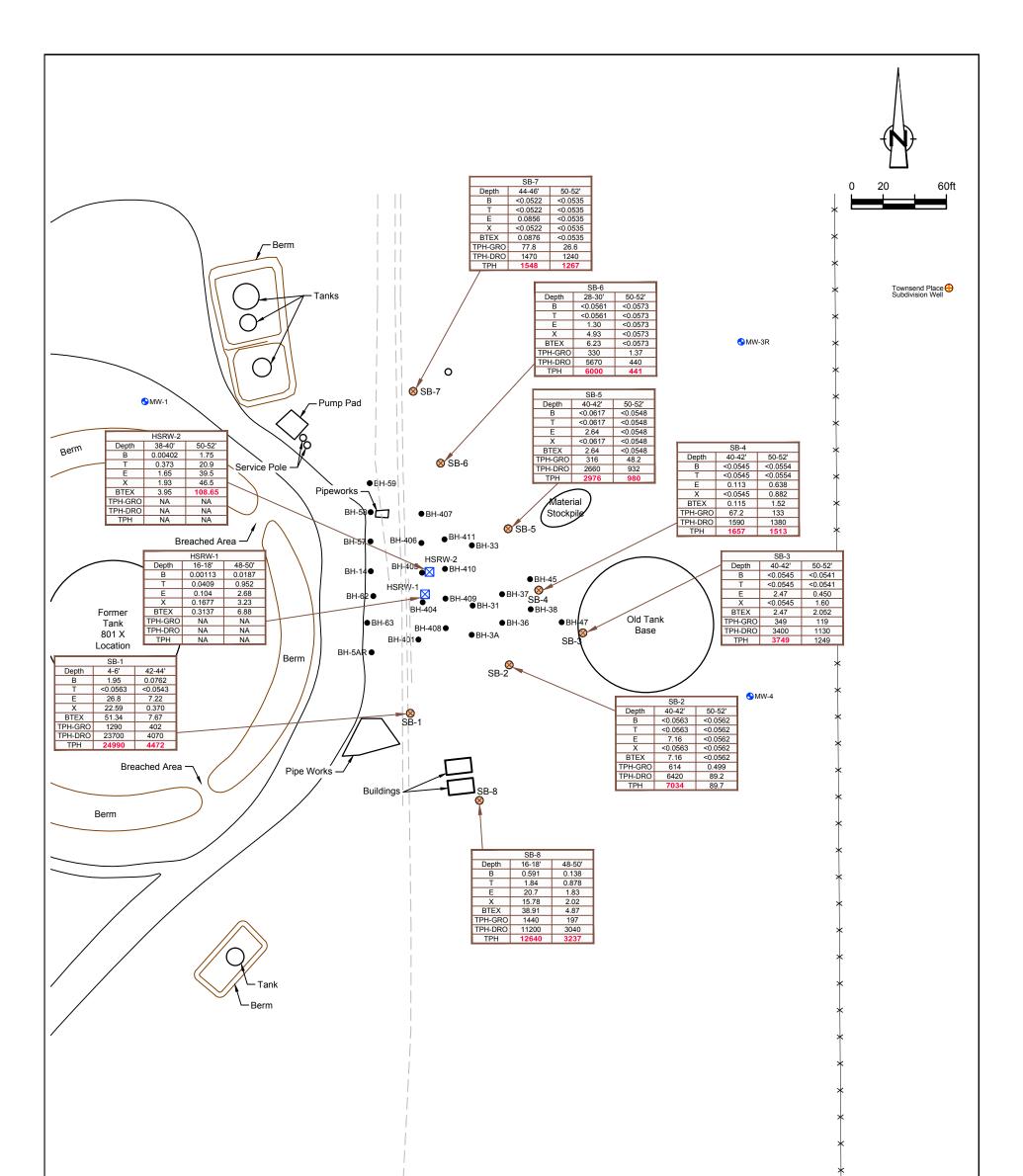
078807-01(000)GN-DL003 AUG 30/2013




figure 5

Holly Energy Partners


078807-00(000)GN-DL001 AUG 30/2013

078807-00(000)GN-DL001 AUG 30/2013

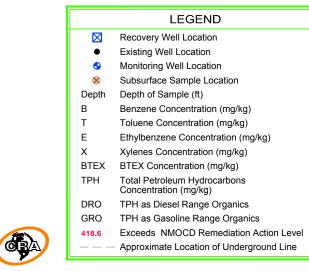
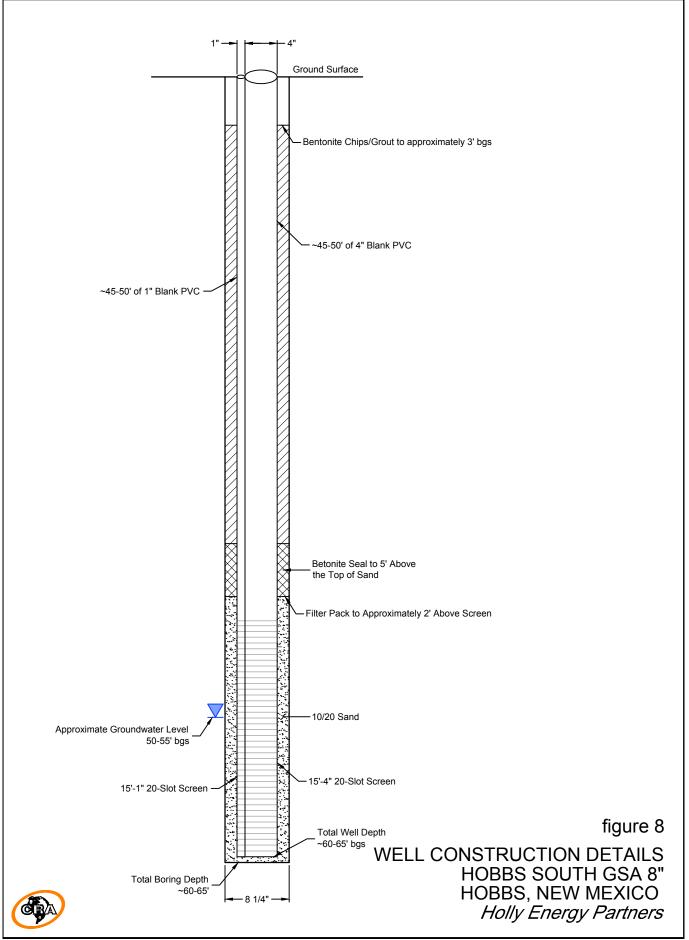



figure 7 SUBSURFACE SOIL ANALYTICAL RESULTS - FEBRUARY 2013 HOBBS SOUTH GSA 8" HOBBS, NEW MEXICO Holly Energy Partners

€MW-2

078807-00(000)GN-DL001 AUG 30/2013

078807-98(000)GN-DL002 AUG 30/2013

TABLES

Table 1Summary of Groundwater QA/QC ResultsDecember 2012 and June 2013Holly Energy - Hobbs South CSA - Lea County, New Mexico

		Laboratory Analytical Results							
Well No.	Date Sampled	Benzene	Toluene	Ethyl-benzene	Total Xylenes				
		(mg/L)	(mg/L)	(mg/L)	(mg/L)				
NMWQC G	iroundwater Standard	10	750	750	620				
MW-3	12/19/2012	< 0.001	<0.002	<0.001	<0.002				
duplicate	12/19/2012	<0.001	<0.002	<0.001	<0.002				
Trip Blank	12/19/2012	<0.001	<0.001	<0.001	<0.002				
MW-1	6/23/2013	<0.001	<0.001	<0.001	<0.002				
duplicate	6/23/2013	<0.001	<0.001	<0.001	<0.002				
Trip Blank	6/23/2013	<0.001	<0.001	<0.001	<0.002				

mg/L = milligrams per liter

< = Not detected above indicated level

BTEX = Benzene, Toluene, Ethylbenzene and Xylenes

BTEX analyzed by Method EPA 8260

NMOCD= New Mexico Oil Conservation Division

Table 2 Summary of QA/QC Results for Soil Holly Energy - Hobbs South CSA - Lea County, New Mexico

		Laboratory Analytical Results						
Sample ID	Date Sampled	Benzene	Toluene	Ethyl-	Total	BTEX		
Sample ID		benzene	Toluelle	benzene	Xylenes	DIEA		
		(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)		
NMOCD Remed	iation Action Levels	10				50		
TRIP BLANK	2/21/13	< 0.0002	< 0.0006	< 0.0003	< 0.0003	< 0.0002		

NOTES:

NMOCD= New Mexico Oil & Conservation Division

BTEX = Benzene, Toluene, Ethylbenzene & Total Xylenes

mg/L = milligrams per Liter

< = analyte not detected above method reporting limit

BTEX analyzed by EPA Method 8260B

Table 3Summary of Investigative Derived Waste Results for SoilHolly Energy - Hobbs South CSA - Lea County, New Mexico

		Laboratory Analytical Results									
Sample ID	Date Sampled	Benzene	Toluene	Ethyl- benzene	Total Xylenes	BTEX	TPH- GRO	TPH- DRO	TPH		
		(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)		
NMOCD Remediation Action Levels		10				50.00			100		
SH-WCS-1	2/21/2013	< 0.000991	< 0.000991	0.0154	0.1448	0.1622	170	1990	2160		

Sample ID	Dete	Laboratory Analytical Results								
	Date Sampled	Arsenic	Barium	Cadmium	Chromiun	Lead	Selenium	Silver	Mercury	
		(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	
		0.39	5,400	37	210	400	390	390	23	
SH-WCS-1	2/21/2013	1.69	128	<0.107	4.64	2.43	0.325	0.200	<0.0173	

NOTES:

NMOCD= New Mexico Oil Conservation Division

mg/kg = milligrams per kilogram

BTEX = Benzene, Toluene, Ethylbenzene & Total Xylenes

TPH-GRO = Total Petroleum Hydrocarbons- Gasoline Range Organics

TPH-DRO = Total Petroleum Hydrocarbons - Diesel Range Organics

BOLD (RED) - concentration greater than NMOCD Remediation Action Levels

< = analyte not detected above method reporting limit

BTEX analyzed by EPA Method 8260B

TPH-GRO analyzed by EPA Method 8260B

TPH-DRO analyzed by EPA Method 8015M

APPENDIX A

AUGUST 2012 WELL EVALUATIONS AND FLUID LEVELS

Appendix A -August 2012 Well Evaluations and Fluid Levels Holly Energy - South Hobbs GSA - Lea County, New Mexico

Well ID	Date	PID	Casing Dia	DTP	DTW	Thickness	TD	Saturated	Stick up	DTW	Well Marked	Surface Condition	Comments
Wenib	Date	(ppm)	(in)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft) Y/N	(ft-bgs)	Y/N	Surface condition	comments
BH-19	8/2/2012	3	2	dry	dry		51.58	0.00	1.92		Y	No concrete collar	
BH-30	8/2/2012	99	2	,	52.48		52.82	0.34	1.75	50.73	Y	No concrete collar	
BH-49	8/1/2012	103.2	2	53.25	53.68	0.43	53.84	0.59	1.86	51.82	Y	No concrete collar	
BH-52	8/1/2012	0	2	51.79	51.93	0.14	52.40	0.61	1.46	50.47	Y	No concrete collar	
BH-48	8/1/2012	0	2	52.30			52.40	0.10	1.72		Y	No concrete collar	
BH-53	8/1/2012	0	2		52.99	52.99	53.40	0.41	1.77	51.22	Y	No concrete collar	
BH-54	8/1/2012	0	2	F2.00	54.35	54.35	55.83	1.48	???		Y	No concrete collar	
BH-47 BH-46R	8/1/2012 8/1/2012	0	2 4	52.99 54.99	55.14	0.15	53.50 53.20	0.51	1.64 2.86	52.28	Y Y	No concrete collar No concrete collar	
BH-40K BH-40	8/2/2012	65	2	53.32	53.83	0.15	53.93	0.61	1.92	51.91	Y	No concrete collar	
BH-39	8/2/2012	44	2	dry	dry	0.01	53.60	0.00	1.50	51.51	Ŷ	No concrete collar	
BH-38	8/2/2012	69	2	52.92	. /		53.23	0.31	1.70		Y	No concrete collar	
BH-45	8/2/2012	82	2	53.43	53.92	0.49	54.60	1.17	1.75	52.17	Y	No concrete collar	
BH-35R	8/2/2012	55	4	54.54	55.00	0.46	55.03	0.49	2.98	52.02	Y	No concrete collar	
BH-36	8/2/2012	71	2	dry	dry		52.00	0.00	1.58		Y	No concrete collar	
BH-37	8/2/2012	100	2	53.30			54.05	0.75	1.82		Y	No concrete collar	
BH-44	8/2/2012	47	2	dry	dry		53.21	0.00	2.00		Y	No concrete collar	
BH-18	8/2/2012	39	2	52.18			52.31	0.13	2.00		Y Y	No concrete collar	
BH-3A BH-31	8/2/2012 8/2/2012	9 50	2	62.65 53.12	53.51	0.39	62.73 53.51	0.08	2.12 1.96	51.55	Y	No concrete collar No concrete collar	
BH-31 BH-32	8/2/2012 8/2/2012	3	2	53.12	53.51	0.39	52.18	0.39	1.96	51.55	Y	No concrete collar No concrete collar	
BH-32 BH-34	8/2/2012	2	2	dry	dry	5.02	50.29	0.00	1.58	50.10	Y	No concrete collar	
BH-13	8/2/2012	23	2	dry	dry		51.31	0.00	1.13		Ŷ	No concrete collar	
BH-407	8/2/2012		4	53.61	55.56	1.95	67.51	13.90	1.88	53.69	Y	No concrete collar	
BH-411	8/2/2012	2	4	54.61	57.81	3.20	68.20	13.59	2.54	55.27	Y	No concrete collar	
BH-406	8/2/2012	41	4	53.79	56.94	3.15	65.93	12.14	2.02	54.92	Y	No concrete collar	
BH-410	8/2/2012	6	4	53.61	58.54	4.93	63.14	9.53	2.00	56.54	Y	No concrete collar	
BH-65	8/2/2012	54	2	53.36	55.36	2.00	55.56	2.20	2.29	53.07	Y	No concrete collar	
BH-64	8/2/2012	115 115	2	53.29	54.95	1.66	55.43 53.10	2.14	1.96 2.04	52.99	Y Y	No concrete collar	
BH-55 BH-56	8/2/2012 8/2/2012	34	2	dry 53.16	dry 53.96	0.80	54.24	1.08	1.91	52.05	Y	No concrete collar No concrete collar	
BH-61	8/2/2012	59	2	dry	dry	0.00	53.30	1.00	2.00	52.05	Y	No concrete collar	
BH-23	8/2/2012	100	2	dry	dry		52.48		1.13		Ŷ	No concrete collar	
BH-22	8/2/2012	83	2	dry	dry		53.06		1.79		Y	No concrete collar	
BH-5AR	8/2/2012	71	4	dry	dry		53.76		???		Y	No concrete collar	
BH-63	8/2/2012	62	2	53.20			54.40	1.20	2.50		Y	No concrete collar	
BH-57	8/2/2012	99	2	53.22	55.20	1.98	55.21	1.99	2.00	53.20	Y	No concrete collar	
BH-58	8/2/2012	98	2	53.90	53.96	0.06	54.10	0.20	2.00	51.96	Y	No concrete collar	
BH-59	8/2/2012	116	2	53.09	alas i		54.00	0.91	1.83		Y	No concrete collar	
BH-60 BH-62	8/2/2012 8/2/2012	17 61	2	dry 53.43	dry 53.99	0.56	52.99 54.30	0.87	1.50 2.03	51.96	Y Y	No concrete collar No concrete collar	
BH-14	8/2/2012	26	2	53.01	53.38	0.37	53.38	0.37	2.25	51.13	Ŷ	No concrete collar	
BH-16	8/2/2012	91	2	dry	dry		51.84		2.50		Ŷ	No concrete collar	
BH-15	8/2/2012	34	2	dry	dry		47.70		0.00		Y	No concrete collar	Casing broke off
BH-29	8/2/2012	61	2	52.49	52.61	0.12	52.86	0.37	1.58	51.03	Y	No concrete collar	
BH-28	8/2/2012	65	2	dry	dry		51.56		1.70		Y	No concrete collar	
BH-27	8/2/2012	0.1	2	dry	dry		51.76		1.75		Y	No concrete collar	
BH-26	8/2/2012	7	2	dry	dry		41.72		1.47		Y	No concrete collar	casing crushed
BH-21	8/2/2012 8/2/2012	4	2	dry	dry		48.80		???		Y Y	No concrete collar	casing off
BH-24 BH-20	8/2/2012 8/2/2012	2 42	2	dry dry	dry dry		38.57 52.41		1.37 2.21		Y Y	No concrete collar No concrete collar	cracked bad
BH-43	8/2/2012	144	2	53.15	53.61	0.46	53.38	0.23	2.21	51.21	Y	No concrete collar	
BH-51	8/1/2012	2	2	51.68	51.82	0.14	51.84	0.16	1.54	50.28	Ŷ	No concrete collar	
BH-42	8/1/2012	22	2	53.17	53.55	0.38	53.81	0.64	1.72	51.83	Ŷ	No concrete collar	
BH-25R	8/2/2012	144	2	54.81	56.55	1.74	63.30	8.49	2.92	53.63	Y	No concrete collar	
BH-50	8/1/2012	123.2	2	52.00			53.02	1.02	2.01		Y	No concrete collar	
BH-41	8/2/2012	2	2	52.83	52.92	0.09	52.94	0.11	1.66	51.26	Y	No concrete collar	
BH-409	8/2/2012	24	4	54.41	60.10	5.69	67.02	12.61	2.75	57.35	Y	No concrete collar	
BH-408	8/2/2012	4	4	54.29	60.24	5.95	67.76	13.47	2.58	57.66	Y	No concrete collar	
BH-402 BH-403	8/2/2012	72 34	4	dry 53.68	dry 53.70	0.02	52.62 53.91	0.23	2.83 2.88	50.83	Y Y	No concrete collar	
BH-403 BH-401	8/2/2012 8/2/2012	67	4	53.68 55.10	53.70 55.45	0.02	64.14	9.04	3.00	50.83	Y	No concrete collar No concrete collar	
BH-401 BH-404	8/2/2012	61	4	53.31	59.38	6.07	66.52	13.21	1.94	57.44	Y	No concrete collar	
BH-405	8/2/2012	65	4	53.53	59.38	5.85	66.11	12.58	2.08	57.30	Ŷ	No concrete collar	
BH-33	8/2/2012	4	4	52.75			52.96	0.21	1.58		Y	No concrete collar	
MW-1	8/1/2012	0	2		52.94		64.24	11.30	2.44	50.50	Y	No concrete collar	
MW-2	8/1/2012	0	2		54.77		60.38	5.61	2.38	52.39	Y	No concrete collar	
MW-3R	8/1/2012	1	2		56.84		65.24	8.40	2.43	54.41	Y	No concrete collar	
MW-4	8/1/2012	1	2		56.14		68.18	12.04	2.86	53.28	Y	No concrete collar	

APPENDIX B

ABANDONED WELLS

Appendix B -Abandoned Wells Holly Energy - South Hobbs GSA - Lea County, New Mexico

Well ID	Abandoned
BH-19	01/24/13
BH-30	01/24/13
BH-49	01/24/13
BH-52	01/24/13
BH-48	01/24/13
BH-53	01/24/13
BH-54	01/24/13
BH-46R	01/24/13
BH-40	01/24/13
BH-39	01/24/13
BH-35R	01/24/13
BH-36	01/24/13
BH-44	01/24/13
BH-18	01/24/13
BH-32	01/24/13
BH-34	01/24/13
BH-13	01/24/13
BH-65	01/25/13
BH-64	01/25/13
BH-55	01/25/13
BH-56	01/25/13
BH-61	01/25/13
BH-23	01/24/13
BH-22	01/24/13
BH-60	01/25/13
BH-16	01/24/13
BH-15	01/24/13
BH-29	01/24/13
BH-28	01/24/13
BH-27	01/24/13
BH-26	01/24/13
BH-21	01/24/13
BH-24	01/24/13
BH-20	01/24/13
BH-43	01/24/13
BH-51	02/12/13
BH-42	01/24/13
BH-25R	01/24/13
BH-50	01/24/13
BH-41	01/24/13
BH-402	01/24/13
BH-403	01/24/13

APPENDIX C

DECEMBER 2012 FLUID LEVELS

Well ID Date DTP DTW **Prod Thick** TD Saturated Stick up DTW DTP (ft-bmp) (ft-bmp) (ft) (ft-bmp) (ft) (ft) Y/N (ft-bgs) (ft-bgs) 12/19/2012 51.58 0.00 BH-19 drv drv drv 1.92 drv drv BH-30 12/19/2012 52.53 0.00 52.82 0.29 1.75 50.78 BH-49 12/19/2012 53.40 53.90 0.50 53.84 0.44 1.86 52.04 51.54 51.88 0.52 50.42 BH-52 12/19/2012 52.18 0.30 52.40 1.46 50.72 BH-48 12/19/2012 dry dry 52.40 0.00 1.72 dry dry dry 53.40 1.77 BH-53 12/19/2012 53.10 0.00 0.30 51.33 BH-54 12/19/2012 54.51 0.00 55.83 1.32 BH-47 12/19/2012 53.38 53.39 0.01 53.50 0.12 1.64 51.75 51.74 BH-46R 12/19/2012 55.47 55.58 0.11 53.20 -2.27 2.86 52.72 52.61 BH-40 12/19/2012 53.60 53.85 0.25 53.93 0.33 1.92 51.93 51.68 BH-39 0.00 1.50 12/19/2012 dry dry dry 53.60 dry dry BH-38 12/19/2012 53.00 53.31 0.31 53.23 0.23 1.70 51.61 51.30 53.77 53.97 0.20 0.83 1.75 52.22 52.02 BH-45 12/19/2012 54.60 0.30 BH-35R 12/19/2012 54.73 55.02 0.2955.03 2.98 52.04 51.75 12/19/2012 0.00 1.58 BH-36 dry dry dry 52.00 dry dry BH-37 12/19/2012 53.64 54.21 0.57 54.05 0.41 1.82 52.39 51.82 BH-44 12/19/2012 dry dry dry 53.21 0.00 2.00 dry dry BH-18 12/19/2012 52.31 0.00 2.00 dry dry dry dry dry BH-3A 12/19/2012 drv drv 62.74 0.00 2.12 drv drv drv BH-31 12/19/2012 53.46 0.28 53.51 0.33 1.96 51.50 51.22 53.18 BH-32 12/19/2012 52.18 0.00 1.63 dry dry dry dry dry BH-34 12/19/2012 dry dry dry 50.29 0.00 1.58 dry dry 12/20/2012 51.31 0.00 1.13 BH-13 dry dry dry dry dry BH-407 67.51 13.54 52.10 12/20/2012 53.97 55.85 1.88 1.88 53.98 BH-411 4.25 2.54 12/19/2012 54.78 59.03 68.20 13.42 56.49 52.24 BH-406 12/20/2012 54.16 57.59 3.43 65.93 11.77 2.0255.57 52.14 BH-410 12/19/2012 53.96 59.25 5.29 63.14 9.18 2.00 57.25 51.96 53.75 55.39 55.56 2.29 51.46 BH-65 12/20/2012 1.64 1.81 53.10 BH-64 12/20/2012 53.70 55.10 1.40 55.43 1.73 1.96 53.14 51.74 BH-55 12/20/2012 dry dry dry 53.10 dry 2.04 dry dry BH-56 12/20/2012 53.60 54.04 0.44 54.24 0.64 1.91 52.13 51.69 BH-61 12/20/2012 dry dry 53.30 dry 2.00 dry dry dry BH-23 12/20/2012 dry 52.48 dry 1.13 dry dry dry dry 12/20/2012 BH-22 dry dry dry 53.06 dry 1.79 dry dry BH-5AR 12/20/2012 53.76 dry dry dry dry dry dry BH-63 12/20/2012 dry dry dry 54.40 0.00 2.50 dry dry BH-57 12/20/2012 dry dry dry 55.21 0.00 2.00dry dry BH-58 12/20/2012 53.32 53.84 0.52 54.10 0.78 2.00 51.84 51.32 BH-59 12/20/2012 53.46 54.06 0.60 54.00 0.54 1.83 52.23 51.63 52.99 BH-60 12/20/2012 dry dry 1.50 dry dry dry dry BH-62 12/20/2012 53.86 54.05 0.19 54.30 0.44 2.03 52.02 51.83 BH-14 12/20/2012 53.10 53.38 0.28 53.38 0.28 2.25 51.13 50.85 BH-16 12/20/2012 2.50 dry dry dry 51.84 dry dry dry BH-15 12/19/2012 47.70 dry drv dry dry dry dry BH-29 12/19/2012 52.51 52.62 0.11 52.86 0.35 1.58 51.04 50.93 BH-28 1.70 12/19/2012 dry dry dry 51.56 dry dry dry BH-27 12/19/2012 1.75 dry dry dry 51.76 dry dry dry BH-26 12/19/2012 41.72 1.47 dry dry dry dry dry dry BH-21 12/19/2012 dry dry dry 48.80 dry dry dry BH-24 12/19/2012 dry dry dry 38.57 dry 1.37 dry dry

Appendix C - December 2012 Fluid Levels Holly Energy - South Hobbs GSA - Lea County, New Mexico

Well ID	Date	DTP	DTW	Prod Thick	TD	Saturated	Stick up	DTW	DTP
		(ft-bmp)	(ft-bmp)	(ft)	(ft-bmp)	(ft)	(ft) Y/N	(ft-bgs)	(ft-bgs)
BH-20	12/19/2012	52.62	52.65	0.03	52.41	dry	2.21	50.44	50.41
BH-43	12/19/2012	53.34	53.70	0.36	53.38	0.04	2.40	51.30	50.94
BH-51	12/19/2012	51.78	51.90	0.12	51.84	0.06	1.54	50.36	50.24
BH-42	12/19/2012	53.38	53.68	0.30	53.81	0.43	1.72	51.96	51.66
BH-25R	12/19/2012	54.90	58.53	3.63	63.30	8.40	2.92	55.61	51.98
BH-50	12/19/2012	dry	dry	dry	53.02	0.00	2.01	dry	dry
BH-41	12/19/2012	dry	dry	dry	52.94	0.00	1.66	dry	dry
BH-409	12/19/2012	54.72	60.35	5.63	67.02	12.30	2.75	57.60	51.97
BH-408	12/19/2012	54.68	60.58	5.90	67.76	13.08	2.58	58.00	52.10
BH-402	12/20/2012	dry	dry	dry	52.62	dry	2.83	dry	dry
BH-403	12/20/2012	53.67	53.70	0.03	53.91	0.24	2.88	50.83	50.80
BH-401	12/20/2012	55.26	57.55	2.29	64.14	8.88	3.00	54.55	52.26
BH-404	12/20/2012	53.72	59.68	5.96	66.52	12.80	1.94	57.74	51.78
BH-405	12/20/2012	53.90	59.56	5.66	66.11	12.21	2.08	57.48	51.82
BH-33	12/19/2012	dry	dry	dry	52.96	0.00	1.58	dry	dry
MW-1	12/19/2012		53.36	0.00	64.24	10.88	2.44	50.92	
MW-2	12/19/2012		55.17	0.00	60.38	5.21	2.38	52.79	
MW-3R	12/19/2012		57.22	0.00	65.24	8.02	2.43	54.79	
MW-4	12/19/2012		56.53	0.00	68.18	11.65	2.86	53.67	

Appendix C - December 2012 Fluid Levels Holly Energy - South Hobbs GSA - Lea County, New Mexico

APPENDIX D

JUNE 2013 FLUID LEVELS

Appendix D - June 2013 Fluid Levels

Well ID	Date	DTP	DTW	Prod Thick	DTW	TD
		(ft-bmp)	(ft-bmp)	(ft)	(ft-bgs)	(ft-bmp)
BH-47	6/20/2013	dry	dry	0.00	dry	53.59
BH-38	6/20/2013	dry	dry	0.00	dry	53.23
BH-45	6/20/2013	53.72	53.98	0.26	52.53	53.98
BH-37	6/20/2013	53.83	54.15	0.32	52.33	54.15
BH-3A	6/20/2013	52.69	52.78	0.09	50.66	52.78
BH-31	6/20/2013	53.13	53.44	0.31	51.48	53.44
BH-407	6/20/2013	54.40	56.35	1.95	54.47	67.51
BH-411	6/20/2013	55.16	59.88	4.72	57.34	68.20
BH-406	6/20/2013	54.58	58.37	3.79	56.35	65.93
BH-410	6/20/2013	54.43	59.63	5.20	57.63	63.14
BH-5AR	6/20/2013	dry	dry	0.00	dry	53.76
BH-63	6/20/2013	54.03	54.20	0.17	51.7	54.20
BH-57	6/20/2013	53.43	54.30	0.87	52.3	55.21
BH-58	6/20/2013	53.49	53.76	0.27	51.76	54.10
BH-59	6/20/2013	53.87	54.00	0.13	52.17	54.00
BH-62	6/20/2013	53.98	54.02	0.04	51.99	54.30
BH-14	6/20/2013	53.07	53.32	0.25	51.07	53.38
BH-409	6/20/2013	55.21	60.65	5.44	57.9	67.02
BH-408	6/20/2013	55.17	60.97	5.80	59.03	67.76
BH-401	6/20/2013	55.53	59.33	3.80	56.33	64.14
BH-404	6/20/2013	54.22	60.09	5.87	58.15	66.52
BH-405	6/20/2013	54.37	59.93	5.56	57.85	66.11
BH-33	6/20/2013	52.74	52.96	0.22	51.38	52.96
MW-1	6/23/2013		53.53	0.00	51.09	64.24
MW-2	6/23/2013		55.61	0.00	53.23	60.38
MW-3R	6/23/2013		57.62	0.00	55.19	65.24
MW-4	6/23/2013		56.94	0.00	54.08	68.18
HRW-1	6/20/2013	54.58	56.93	2.35	56.93	64.34
HRW-2	6/20/2013	53.48	55.62	2.14	55.62	63.97

Holly Energy - South Hobbs GSA - Lea County, New Mexico

APPENDIX E

GROUNDWATER SAMPLING FIELD FORMS

			ĊIJ	e well bottom. /2) and L are in : visually turbid be	ccumulated at th nL, where r (r=D, 00 mL/min. 3e water remains ia and appear to	 The pump intake will be placed at the well screen mid-point or at a minimum of 0.6 m (2 ft) above any sediment accumulated at the well bottom. The well screen volume will be based on a 1.52 metres (5-foot) screen length (L). For metric units, V_s=n[*](r²)*L in mL, where r (r=D/2) and L are in cm. For Imperial units, V_s=n[*](r²)*L is 2.54)³, where r and L are in inches The drawdown from the initial water level should not exceed 0.1 m (0.3 ft). The pumping rate should not exceed 600 mL/min. Purging will continue until stabilization is achieved or until 20 well screen volumes have been purged (unless purge water remains visually turbid and appears to be clearing, or unless stabilization parameters are varying slightly outside of the stabilization criteria and appear to be stabilizing). No. of Well Screen Volumes Purged= Vp/Vs. For conductivity the average transformed to the conductivity of the stabilization of the stabilization criteria and appear to be stabilization parameters are varying slightly outside of the stabilization criteria and appear to be stabilization criteria and appear to be stabilized to the stabilization criteria and appear to be stabilized to the stabilization criteria and appear to be stabilized to the stabilization criteria and appear to be stabilized to the stabilization criteria and appear to be stabilized to the stabilization criteria and appear to be stabilized to the stabilization criteria and appear to be stabilized to the stabilization criteria and appear to be stabilized to the stabilization criteria and appear to be stabilized to the stabilization criteria and appear to be stabilized to the s	imum of 0.6 m (2 ft) ngth (L). For metric ft). The pumping r en volumes have be g slightly outside o	d-point or at a min s (5-foot) screen let are in inches t exceed 0.1 m (0.3 t exceed 0.1 m (0.3 r until 20 well scre ameters are varyin / Vs.	The pump intake will be placed at the well screen mid-point or at a The well screen volume will be based on a 1.52 metres (5-foot) scree For Imperial units, $V_s=n^*(r^2*L^*$ (2.54) ³ , where r and L are in inches The drawdown from the initial water level should not exceed 0.1 m Purging will continue until stabilization is achieved or until 20 well and appears to be clearing, or unless stabilization parameters are v stabilizing). No. of Well Screen Volumes Purged= Vp/Vs.	e will be placed at volume will be bas ts, $V_s=\pi^*(r^2)^*L^*$ (2. from the initial wa trinue until stabiliz trinue until stabiliz trinue until stabiliz of Well Screen Vol of Well Screen volume the avorace volume	00 00	$ \begin{array}{c} (1) \\ (2) \\ (4) \\ (5) \end{array} $
												Z
					\setminus					-		
~												
		-302	50. t	2.12	***	0.713	65.27		25.76		1 nai	
		- 300	30 t	2.23	and the part		65.36		58.45		1043	
		-297	1.09	2.05	94. 94.	0.913	65.32		57.43		1040	
		- 284	7.13	2.14	7	0.914	65.22		3 \$ 52	une	\$E04	
		±10 mV	±0.1 Units	±10 %	£10 %	±0.005 or 0.01 ^(b)	±3 %	Precision Required ⁽³⁾	Pre			
No. of Well Screen Volumes Purged '''	Volume Purged, Vp (L)	(<i>mV</i>)	рН	DO (mg/L)	Turbidity NTU	Conductivity (mS/cm)	Temperature °C	Drawdown from Initial Water Level ^{wr} (m/ft)	Depth to Water (m/ft)	Pumping Rate (mL/min)	Time	
		1	0	53.36	Vater (m/ft):	Initial Depth to Water (m/ft):	I			Depth of Sediment (m/ft):	Depth of S	
	3 1	v.20 e.			$V_{s}(L)^{(2)}$	Well Screen Volume, V _s (L) ⁽²⁾				ll Depth (m/ft)	Measured Well Depth (m/ft):	
	11			2	r. D (cm/in):	Well Diameter, D (cm/in):	1			ll Depth (m/ft	Constructed Well Depth (m/ft):	0
		ang nagan ang nagan			ength (m/ft): ake (m/ft) ⁽¹⁾ :	Saturated Screen Length (m/ft): Depth to Pump Intake (m/ft) ⁽¹⁾ :	- 10		700	Vapour PID (ppm): Measurement Point:	Vap Meat	
		ing i Nesderð			-				: MW-1	Well No.:		
			1050	tive = 1	Sur tu					Well Data:	Monitoring Well Data	
	-	-9-20-20-4-631-532-5000-849558066		5-	12-19-12	- Date: Personnel:		Hobbs South	: Hobbs	n: Project Name: / Ref. No.:	r toject Dutu.	
		Monardan (),	G	DW PURGIN	OR LOW-FLO	MONITORING WELL RECORD FOR LOW-FLOW PURGING	NITORING W	MC		į	Dural and Dat	
												7

Notes: (1) T (2) T (2) F (3) T (4) P (4) P (5) F			C en
s: The pump intal The well screen For Imperial ur The drawdowill co Purging will co Purging will co and appears to stabilizing), No For conductiviți	1109	Time	Project Data: Monitoring W Vapo Measu Instructed Well Aeasured Well Depth of Sed
s: The pump intake will be placed at the well screen mid-point or at a The well screen volume will be based on a 1.52 metres (5-foot) scree For Imperial units, $V_{\mu}=\pi^{*}(r_{\nu}^{*})t_{\nu}^{*}(2.54)^{3}$, where r and L are in inches The drawdown from the initial water level should not exceed 0.1 m Purging will continue until stabilization is achieved or until 20 well and appears to be clearing, or unless stabilization parameters are va- stabilizing). No. of Well Screen Volumes Purged = Vp/Vs. For conductivity, the average value of three readings <1 mS/cm ±0.		Pumping Rate (mL/min)	Project Data: Project Name: Ref. No.: Ref. No.: Well Data: Well No.: Vapour PID (ppm): Measurement Point: Constructed Well Depth (m/ft): Measured Well Depth (m/ft):
the well screen mid ed on a 1.52 metres ed on a 1.52 metres eta) ³ , where r and L er level should not ation is achieved or ation is achieved or ation is achieved or s stabilization para s stabilization para s stabilization para s stabilization para	25. t.S	Depth to Water (m/ft) Pree	
-point or at a minii (5-foot) screen leny are in inches exceed 0.1 m (0.3 f r until 20 well scree r until 20 well scree anmeters are varying Vs. <1 mS/cm ±0.005 r		Drawdown from Initial Water Level ^w (m/ft) Precision Required ⁽⁵⁾ :	Hebbs South MW-3 (Dup
num of 0.6 m (2 ft) gth (L). For metric gth, The pumping ra the pumping ra n volumes have be slightly outside of S/cm or where cor	(07.01 107.03	Temperature °C ±3%	S
 Votes: (1) The pump intake will be placed at the well screen mid-point or at a minimum of 0.6 m (2 ft) above any sediment accumulated at the well bottom. (2) The well screen volume will be based on a 1.52 metres (5-foot) screen length (L). For metric units, V_s=n*(r²)*L in mL, where r (r=D/2) and L are in cm. For Imperial units, V_s=n*(r²)*L[*] (2.54)³, where r and L are in inches (3) The drawdown from the initial water level should not exceed 0.1 m (0.3 ft). The pumping rate should not exceed 600 mL/min. (4) Furging will continue until stabilization is achieved or until 20 well screen volumes have been purged (unless purge water remains visually turbid and appears to be clearing, or unless stabilization parameters are varying slightly outside of the stabilization criteria and appear to be stabilizing). No. of Well Screen Volumes the reged Vp/Vs. 5) For conductivity, the average value of three readings <1 mS/cm ±0.005 mS/cm or where conductivity >1 mS/cm ±0.01 mS/cm. 	0.774 0.774	Conductivity (mS/cm) ±0.005 or 0.01 ^(b) ぐ. ア ア リ	MONITORING WELL RECORD FOR LOW-FLOW PURGING Date: $(\mathcal{Z} -)\mathcal{G} \sim)\mathcal{E}$ Personnel: $\mathcal{UE}, D\mathcal{A}$ \mathcal{L} \mathcal{L} Saturated Screen Length (m/ft): \mathcal{L} Depth to Pump Intake (m/ft) ⁽¹⁾ ; \mathcal{L} Well Diameter, D (cm/in); \mathcal{L} Well Screen Volume, V _s (L)(²⁾ ; \mathcal{L} Initial Depth to Water (m/ft); \mathcal{L}
accumulated at th mL, where r (r=D 600 mL/min. ruge water remain: eria and appear to eria and appear to		Turbidity NTU ±10 %	FOR LOW-FLOW P $\frac{ \mathcal{L}- \mathcal{T} ^2}{ \mathcal{L} ^2}$ $\frac{ \mathcal{L} \mathcal{L} ^2}{ \mathcal{L} ^2}$ $\frac{ \mathcal{L} ^2}{ \mathcal{L} ^2}$ Water (m/ft): \mathcal{I}
e well bottom. /2) and L are in s visually turbic be	2. 0 2. 0 2. 0	DO (mg/L) ±10 %	DW PURGIN
		рН ±0.1 Units	
	-279	ORP (mV) ±10 mV	
		Volume Purged, Vp (L)	
		No. of Well Screen Volumes Purged ''	

(5) a	(3) T (4) P		(2) E	Notes:		1			T				· ·		1		- <u></u>	- , 1		iwikinesesi	Z	Con	*****				and the state of the		
nd appears to tabilizing), No or conductivit	he drawdown urging will co	or Imperial un	he well screen												1209	1206	1203		Time	Depth of S	easured We	structed We	Mea	Vaj		Monitoring		Project Data:	5 - 5
and appears to be clearing, or unless stabilization parame stabilizing), No. of Well Screen Volumes Purged= Vp/Vs. For conductivity, the average value of three readings <1 n	from the initial wat ntinue until stabiliz	For Imperial units, $V_s = \pi^* (r^3)^* L^* (2.54)^3$, where r and L are in inches	volume will be bas												160	160	1120		Pumping Rate (mL/min)	Depth of Sediment (m/ft):	Measured Well Depth (m/tt):	Constructed Well Depth (m/ft):	Measurement Point:	Vapour PID (ppm):	Well No.:	Monitoring Well Data:	Ref. No.:	Proje	· ·
ss stabilization pai umes Purged= Vp of three readings	ter level should no ation is achieved of	³⁴) ³ , where r and l	ed on a 1.52 metre												156.58	291.95	56.60	Pre	Depth to Water (m/ft)				700		: MW-L	٠		L.	•
ameters are varyir /Vs. <1 mS/cm ±0.005	r until 20 well scre	L are in inches	u-point or at a mir is (5-foot) screen le	•														Precision Required ⁽³⁾	Drawdown Ĵrom Initial Water Level ⁽¹⁾ (m/ft)			- ·			7			Houbs South	M
ng slightly outside mS/cm or where c	ft). The pumping en volumes have b		umum or 0.6 m (2 t ngth (L), For metri												107,23	67.22	67.19	: ±3 %	Temperature " C	1		ا ،		1 · ·	р 1 2 ⁷ г.	4	a	· ·	DNITORING V
and appears to be clearing, or unless stabilization parameters are varying slightly outside of the stabilization criteria and appear to be stabilizing). No. of Well Screen Volumes Purged= Vp/Vs. For conductivity, the average value of three readings <1 mS/cm ±0.005 mS/cm or where conductivity >1 mS/cm ±0.01 mS/cm.	The drawdown from the initial water level should not exceed 0.1 m (0.3 ft). The pumping rate should not exceed 600 mL/min. Purging will continue until stabilization is achieved or until 20 well screen volumes have been purged (unless purge water remains visually turbid		 (2) The well screen volume will be based on a 1.52 metres (5-foot) screen length (L). For metric units; V_s=π*(r²)*L in mL, where r (r=D/2) and L are in cm. 												L. ILG	1.110	1.110	±0.005 or 0.01 ^(b)	Conductivity (mS/cm)	Initial Depth t	Well Screen Vo	Well Diame	Depth to Pump Intake (m/ft) ⁽¹⁾ :	Saturated Screen Length (m/ft)	•		Personnel:	Date:	MONITORING WELL RECORD FOR LOW-FLOW PURGING
iteria and appear to m ±0.01 mS/cm.	ed 600 mL/min. ourge water remair		n mL, where r (r=I						/	- / ·							1	±10 %	Turbidity NTU	Initial Depth to Water (m/ft):	plume, $V_s (L)^{(2)}$	Well Diameter, D (cm/in):	Intake (m/ft) ⁽¹⁾	Length (m/ft)	•	- Samp	al: CE/♪	e: 12-17	FOR LOW-FL
 o be	ıs visually turbic		he well bottom. D/2) and L are in												2.24	2,30	5,19	±10 %	DO (mg/L)	54,		2				time =	A	21-	OW PURGIN
,			t cm.												U.83	الح جا	6.86	±0.1 Units	pH	53						1210			NG
		•	- - -	•	-									*	-252	152-	- 250.7	±10 mV	ORP (mV)	-									•
•								z				۲.	-			-			Volume Purged, Vp (L)		- , '								
			<i>.</i>		10 A				e N				ŝ.,						No. of Well Screen Volumes Purged	د البریز		-							
	· 1					1	l		l			l						1											

Notes: (1) TT (2) TT (2) T FQ (3) TT (4) P FQ (5) FQ (5) FQ	 	i da de sectión en en esta de manada							
es: The pump intal The well screen For Imperial ur The drawdown Purging will co and appears to stabilizing). No For conductivit				1232	1221	1226	Time	Monitoring Well Data: Monitoring Well Data: Well Vapour PID (p) Measurement P nstructed Well Depth (m Measured Well Depth (m Depth of Sediment (m	Project Data:
 Notes: (1) The pump intake will be placed at the well screen mid-point or at a minimum of 0.6 m (2 ft) above any sediment accumulated at the well bottom. (2) The well screen volume will be based on a 1.52 metres (5-foot) screen length (L). For metric units, V_s=n*(r²)*L in mL, where r (r=D/2) and L are in cm For Imperial units, V_s=n*(r²)*L (2.54)³, where r and L are in inches (3) The drawdown from the initial water level should not exceed 0.1 m (0.3 ft). The pumping rate should not exceed 600 mL/min. (4) Purging will continue until stabilization parameters are varying slightly outside of the stabilization criteria and appear to be the stabilization parameters are varying slightly outside of the stabilization criteria and appear to be the stabilization parameters are varying slightly outside of the stabilization criteria and appear to be the stabilization parameters are varying slightly outside of the stabilization criteria and appear to be three readings <1 mS/cm ±0.05 mS/cm or where conductivity >1 mS/cm ±0.01 mS/cm. 				Ĩ.G	9) j.	liec	Pumping Rate (mL/min)	Antitoring Well Data: Monitoring Well Data: Well No.: Vapour PID (ppm): Measurement Point: Constructed Well Depth (m/ft): Measured Well Depth (m/ft): Depth of Sediment (m/ft):	n N
e well screen mi d on a 1.52 metre) ³ , where r and r level should no ion is achieved a stabilization pa stabilization pa mes Purged= V _I three readings				52.30	65.26	12 35	Depth to Water (nVft) Pre	Tec 2	N .
id-point or at a mini 25 (5-foot) screen ler L are in inches 21 exceed 0.1 m (0.3 21 or until 20 well scre rameters are varyin 21 VS. 5 <1 mS/ cm ±0.005 i						×.	Drawdown from Initial Water Level ^{wr} (nfft) Precision Required ⁽⁵⁾ :		-
imum of 0.6 m (2 ft) ngth (L). For metric ft). The pumping r ten volumes have b ng slightly outside o ng/cm or where co				lele-h3	iele. 40	44.34	Temperature ° C ±3 %		NITORING W
above any sedimen : units, $V_s=n^*(\mathbf{r}^2)^*L$ ic ate should not excee een purged (unless p f the stabilization cr f the stabilization cr			-	1.108	1.109	1,108	Conductivity (m\$/cm) ±0.005 or 0.01 ^(b)	Personnel: $2 $ 4 $5 $ 4 $5 $ 4 $5 $ 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 1 1 1 1 1 1 1 1 1 1	MONITORING WELL RECORD FOR LOW-FLOW PURGING
r mL, where r (r=D n mL, where r (r=D d 600 mL/min. ourge water remain- urge water remain- iteria and appear to iteria and appear to						> >	Turbidity NTU ±10 %	Personnel: 2 4 3 4 3 4 4 3 4 4 4 4 4 4 4 4 4 4	FOR LOW-FLO
e well bottom. /2) and L are ir s visually turbio b be				1, 5	1.02	10.7	DO (mgL) ±10 %	$\frac{1}{1000} = \frac{1}{1000} = \frac{1}{1000} = \frac{1}{1000} = \frac{1}{1000} = \frac{1}{1000} = \frac{1}{10000} = \frac{1}{10000000000000000000000000000000000$	W PURGIN
d 1 cm.				18-91	1.0	6.83	pH ±0.1 Units		
				-236	-234	-234	ORP (mV) ±10 mV	12 32	
							Volume Purged, Vp (L)	· · · · · · · · · · · · · · · · · · ·	
							No. of Well Screen Volumes Purged'''		

Hedo Arrive oner Fersonnel: SC MW-2 MW-2 MW-2 · Cover 225 59019H 可じ inne ansar 57,67 57,62 55.61 23,83 DTW South Seinglung 1840 1840 1840 Le, 23.15 AZO Mob affile Hobbs 103820 Mr rac OR 6, 23.13 1720 1725-200 5281 1720 00 RU

APPENDIX F

SUMMARY OF GROUNDWATER ANALYTICAL RESULTS

Appendix F - Summary of Groundwater Analitical Results Holly Energy - Hobbs South - Lea County, New Mexico

Monitoring Well	Sample Date	Benzene (µg/L)	Toluene (μg/L)	Ethyl- benzene (μg/L)	Total Xylenes (μg/L)	Total BTEX (μg/L)	Chloride (mg/L)	Total Dissolved Solids (mg/L)	Depth to Water (ft bmp)	Groundwater Elevation (ft- msl)	Temperature (deg-C)	Conductivity (mS/cm)	DO (mg/L)	рH	ORP (mV)
MW-1	12/04/02	<2	<2	<2	<6	<2	104	795			(3)				· , ,
MP =	05/20/03	<2	<2	<2	<6	<2	128	686							
3,595.19	11/12/03	<2	<2	<2	<6	<2									
	06/02/04	<2	<2	<2	<6	<2	108	749							
	10/12/04	<2	<2	<2	<6	<2	84	956							
	01/11/05	<2	<2	<2	<6	<2	88	890							
	10/26/05	<2	<2	<2	<6	<2	100	990							
	03/08/06	<2	<2	<2	<6	<2	128	1,160							
	07/11/06	<2	<2	<2	<6	<2	120	1,245							
	09/07/06	<0.5	<0.5	<0.5	<1	<0.5	88	1,000							
	12/19/06	<0.5	<0.5	<0.5	<1.0	<0.5	160	1,100							
	03/13/07	<0.5	<0.5	<0.5	<1.0	<0.5	85	1,100							
	06/21/07	<0.5	<0.5	<0.5	<1.0	<0.5	29	820							
	09/21/07	<0.5	<0.5	<0.5	<1.0	<0.5	62	700							
	12/07/07	<0.5	<0.5	<0.5	<1.0	<0.5	68	510							
	03/04/08	<0.5	<0.5	<0.5	<1.0	<0.5	60	590							
	06/03/08	<0.5	<0.5	<0.5	<1.0	<0.5	76	750							<u> </u>
	09/23/08	<0.5	<0.5	<0.5	<1.0	<0.5	78	590							
	12/18/08	<0.5	<0.5	<0.5	<1.0	<0.5	66	530							<u> </u>
	03/19/09	<0.5	<0.5	<0.5	<1.0	<0.5	72	580							<u> </u>
	06/22/09	<1.0	<1.0	<1.0	<2.0	<1.0	79	600							ļ'
	09/08/09	<1.0	<1.0	<1.0	<2.0	<1.0	82	637							ļ'
	12/17/09	<1.0	<1.0	<1.0	<2.0	<1.0	72	631							
	03/09/10	<1.0	<1.0	<1.0	<1.5	<1.0	83	634							ļ'
	06/18/10	<1.0	<1.0	<1.0	<2.0	<1.0	77	656							ļ'
	09/01/10	<1.0	<1.0	<1.0	<2.0	<1.0	86	678							ļ'
	12/06/10	<1.0	<1.0	<1.0	<2.0	<1.0	86	769							ļ'
	03/18/11	<1.0	<1.0	<1.0	<2.0	<1.0	83	798							ļ'
	06/23/11	<1.0	<1.0	<1.0	<2.0	<1.0	79	800							'
	10/07/11	<1.0	<1.0	<1.0	<2.0	<1.0	85	826							ļ'
	12/08/11	<1.0	<1.0	<1.0	<2.0	<1.0	94	852	ļ						
	12/19/12	<1.0	<2.0	<1.0	<2.0	<2.0	NA	NA	53.36	3,541.83	18.4	0.913	2.12	7.06	-302
	06/23/13	<1.0	<2.0	<1.0	<2.0	<2.0	NA	NA	53.83	3,541.36	20.5	1.211	2.17	6.8	248.9
duplicate	06/23/13	<1.0	<2.0	<1.0	<2.0	<2.0	NA	NA	53.83	3,541.36	20.5	1.211	2.17	6.8	248.9

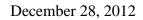
Appendix F - Summary of Groundwater Analitical Results Holly Energy - Hobbs South - Lea County, New Mexico

Monitoring Well	Sample Date	Benzene (µg/L)	Toluene (μg/L)	Ethyl- benzene (μg/L)	Total Xylenes (μg/L)	Total BTEX (μg/L)	Chloride (mg/L)	Total Dissolved Solids (mg/L)	Depth to Water (ft- bmp)	Groundwater Elevation (ft- msl)	Temperature (deg-C)	Conductivity (mS/cm)	DO (mg/L)	рН	ORP (mV)
MW-2	12/04/02	<2	<2	<2	<6	<2	96	722							
MP =	05/20/03	<2	<2	<2	<6	<2	96	755							
3,596.84	11/12/03	<2	<2	<2	<6	<2									
	12/19/12	<1.0	<2.0	<1.0	<2.0	<2.0	NA	NA	55.17	3,541.67	19.1	1.108	1.15	6.81	-236
	06/23/13	0.25	<2.0	<1.0	<2.0	<2.0	NA	NA	55.61	3,541.23	22.8	1.307	2.3	6.58	-10.1
MW-3R ²	12/04/02	<2	<2	<2	<6	<2	60	587							
MP =	05/20/03	<2	<2	<2	<6	<2	64	633							
3,598.80	11/12/03	<2	<2	<2	<6	<2									
	06/02/04	<2	<2	<2	<6	<2	64	639							
	10/12/04	<2	<2	<2	<6	<2	60	685							
	01/11/05	<2	<2	<2	<6	<2	68	798							
	10/26/05	<2	<2	<2	11	<2	51	560							
	03/08/06	<2	<2	<2	<6	<2	48	562							
	07/11/06	<2	<2	<2	<6	<2	60	634							
	09/07/06	<0.5	<0.5	<0.5	<1	<0.5	47	560							
	12/19/06	<0.5	<0.5	<0.5	<1	<0.5	44	570							
	03/13/07	<0.5	<0.5	<0.5	<1	<0.5	49	630							
	06/21/07	<0.5	0.6	<0.5	1.1	1.7	58	520							
	09/21/07	<0.5	<0.5	<0.5	2.2	2.2	50	630							
	12/07/07	<0.5	<0.5	<0.5	<1.0	<0.5	51	550							
	03/04/08	<0.5	<0.5	<0.5	<1.0	<0.5	40	530							
	06/03/08	<0.5	<0.5	<0.5	<1.0	<0.5	51	700							
	09/23/08	<0.5	<0.5	<0.5	<1.0	<0.5	50	560							
	12/18/08	<0.5	<0.5	<0.5	<1.0	<0.5	44	520							
	03/19/09	<0.5	<0.5	<0.5	<1.0	<0.5	43	580							
	06/22/09	<1.0	<1.0	<1.0	<2.0	<1.0	54	570							
	09/08/09	<1.0	<1.0	<1.0	<2.0	<1.0	57	594							L
	12/17/09	<1.0	<1.0	<1.0	<2.0	<1.0	50	595							L
	03/09/10	<1.0	<1.0	<1.0	<1.5	<1.0	55	590							
	06/18/10	<1.0	<1.0	<1.0	<2.0	<1.0	52	594							
	09/01/10	<1.0	<1.0	<1.0	<2.0	<1.0	60	549							Ļ
	12/06/10	<1.0	<1.0	<1.0	<2.0	<1.0	55	582							
	03/18/11	<1.0	<1.0	<1.0	<2.0	<1.0	51	595	<u> </u>						<u> </u>
	06/23/11	<1.0	<1.0	<1.0	<2.0	<1.0	53	591	<u> </u>						<u> </u>
	10/07/11	<1.0	<1.0	<1.0	<2.0	<1.0	50	613							──
	12/08/11	<1.0	<1.0	<1.0	<2.0	<1.0	53	631	57.00	0.544.55	10.5	0.774	0.74	0.00	070
de un lla seta	12/19/12	<1.0	<2.0	<1.0	<2.0	<2.0	NA	NA	57.22	3,541.58	19.5	0.774	0.74	6.98	-279
duplicate	12/19/12	<1.0	<2.0	<1.0	<2.0	<2.0	NA	NA	57.22	3,541.58	19.5	0.774	0.74	6.98	-279
	06/23/13	<1.0	<2.0	<1.0	<2.0	<2.0	NA	NA	57.62	3,541.18	22.2	0.936	1.00	6.67	12.8

Appendix F - Summary of Groundwater Analitical Results Holly Energy - Hobbs South - Lea County, New Mexico

Monitoring Well	Sample Date	Benzene (µg/L)	Toluene (μg/L)	Ethyl- benzene (µg/L)	Total Xylenes (μg/L)	Total BTEX (μg/L)	Chloride (mg/L)	Total Dissolved Solids (mg/L)	Depth to Water (ft- bmp)	Groundwater Elevation (ft- msl)	Temperature (deg-C)	Conductivity (mS/cm)	DO (mg/L)	рH	ORP (mV)
MW-4	01/13/03	<2	<2	<2	<6	<2	124	646	Sinp)		(deg o)	(mo/om)	(mg/=)	PII	(
MP =	05/20/03	<2	<2	<2	<6	<2	120	781							
3,598.12	11/12/03	<2	<2	<2	<6	<2									
,	06/02/04	<2	<2	<2	<6	<2	128	639							
	10/12/04	<2	<2	<2	<6	<2	124	921							
	01/11/05	<2	<2	<2	<6	<2	124	971							
	10/26/05	<2	<2	<2	<6	<2	99	710							
	03/08/06	<2	<2	<2	<6	<2	116	729							
	07/11/06	<2	<2	<2	<6	<2	124	823							
	09/07/06	<0.5	<0.5	<0.5	<1	<0.5	120	760							
	12/19/06	<0.5	2.1	0.9	2.9	5.9	110	750							
	03/13/07	<0.5	1.7	<0.5	2.4	4.1	130	840							
	06/21/07	<0.5	1.8	0.8	1.5	4.1	130	760							
	09/21/07	<0.5	2.4	1.2	2.2	5.8	140	800							
	12/07/07	0.8	1.7	0.8	19	22.3	120	760							
	03/04/08	<0.5	<0.5	<0.5	<1.0	<0.5	50	750							
	06/03/08	<0.5	1.5	0.8	18	20.3	120	910							
	09/23/08	<0.5	1.1	<0.5	5.5	6.6	130	730							
	12/18/08	<0.5	0.9	<0.5	7.7	8.6	94	700							
	03/19/09	<0.5	1.3	0.6	5.6	7.5	90	740							
	06/22/09	<1.0	<1.0	<1.0	<2.0	<1.0	120	770							
	09/08/09	<1.0	<1.0	<1.0	<2.0	<1.0	120	803							
	12/17/09	<1.0	<1.0	<1.0	21	21	130	822							
	03/09/10	<1.0	<1.0	<1.0	<1.5	<1.0	130	830							Ļ
	06/18/10	<1.0	<1.0	<1.0	6.2	6.2	130	843							
	09/01/10	<1.0	<1.0	<1.0	5.0	5.0	140	789							
	12/06/10	<1.0	<1.0	<1.0	5.8	5.8	140	850	<u> </u>						┣───
	03/18/11	<1.0	<1.0	<1.0	<2.0	<1.0	140	865							───
	06/23/11	<1.0	<1.0	<1.0	7.4	7.4	140	861	L						───
	10/07/11	<1.0	<1.0	<1.0	4.9	4.9	130	861	<u> </u>						┣───
	12/08/11	<1.0	<1.0	<1.0	2.9	2.9	120	843							<u> </u>
	12/19/12	<1.0	<2.0	<1.0	<2.0	<2.0	NA	NA	56.53	3,541.59	19.6	1.116	2.26	6.83	-252
NMWQCC	06/23/13 Groundwater	0.24	<2.0	<1.0	<2.0	<2.0	NA	NA	56.94	3,541.18	22.8	1.317	0.69	6.59	-50.1
	Standard	10	750	750	620		250	1,000							

Notes:


Quality Control

BOLD (RED) - concentration greater than NMWQCC Groundwater Standard

µg/L = micrograms/Liter mg/L = milligrams/Liter ft-bmp = feet - below measuring point ft-msl = feet - mean sea level deg-C = degrees Celcius mS/cm = milliSiemens/ centimeter mV = millivolts DO = dissolved Oxygen ORP = oxygen reduiction potential < = analyte not detected above reporting limit BTEX = Benzene, Toluene, Ethylbenzene & Total Xylenes BTEX analyzed by EPA Method 8260B NA = not analyzed

APPENDIX G

GROUNDWATER LABORATORY REPORTS

Bill Green Holly Energy Partners 1602 W. Main Artesisa, NM 88210 TEL: (575) 748-8968 FAX (575) 748-4052 RE: Hobbs South

Order No.: 1212221

Dear Bill Green:

DHL Analytical, Inc. received 6 sample(s) on 12/20/2012 for the analyses presented in the following report.

There were no problems with the analyses and all data for associated QC met EPA or laboratory specifications except where noted in the Case Narrative and all estimated uncertainties of results are within method specifications.

If you have any questions regarding these tests results, please feel free to call.

Sincerely,

John DuPont General Manager

This report was performed under the accreditation of the State of Texas Laboratory Certification Number: T104704211-12-9

2300 Double Creek Drive • Round Rock, TX 78664 • Phone (512) 388-8222 • FAX (512) 388-8229 www.dhlanalytical.com

Table of Contents

Miscellaneous Documents	
CaseNarrative 1212221	6
Analytical Report 1212221	7
AnalyticalQCSummaryReport 1212221	

2300 Double Creek Dr. ■ Round Rock, TX 78664 Phone (512) 388-8222 IFAX (512) 388-8229 Web: www.dhlanalytical.com Image: Comparison of the comparison	
ADDRESS: 14978 W. GHA Ave., #800 Colden,	
ADDRESS: 14998 W. 6th Ave. #800 Colden, Co. 8040, con PHONE: (203) 941-615C, FAX/E-MAIL: 85t-phenson @ cawodd.con FAX/E-MAIL: 85t-phenson @ cawodd.con Data REPORTED TO: Brad Stephenson Fax/E-MAIL: 85t-phenson @ cawodd.con Authorize 5% S=SOIL P=PAINT Surcharge for TRRP Report? S=SOIL P=PAINT L=LIQUID SO=SOLID PRESERVATION Sample I.D. DHL Date Time MW-1 01 12-19-12 1050 W WOA 3 × X X MW-3 02 12-19-12 1050 W VOA 3 × X X V V MW-3 03 12-19-12 120 W VOA 3 × X X V V V MW-4 v4 v4 12-19-12 1050 W VOA 3 × X V	OF
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	221
surcharge for TRRP Report? W=WATER SL=SLUDGE A=AIR O=OTHER D=OTHER L=LIQUID PRESERVATION Yes No Field Sample I.D. DHL Lab # Date Time Matrix Container Type PRESERVATION PRESERVATION WW-1 O1 12-19-12 1050 W WOA 3 X <td></td>	
MW-1 O1 12-19-12 1050 W VOA 3 × X × Image: Second sec	
MW-3 O2 12-19-12 III5 V VOA 3 × X X N I	FIELD NOTES
MW-3 O2 12-19-12 III5 W VOA 3 × X X I	· · ·
MW-4 04 12-19-12 1210 W VOA 3X X X I I I I I I I I I I I I I I I I	
MW-2 05 12-19-12 1235 W VOA 3 X X X	
Trip au w voA z x x x x	
Image: Second	
Interview Date/Time Received BY: (Signature) TURN AROUND TIME LABORATORY USE ONLY: Interview 12-19-12/1500 Interview	57 ACT CINOT USED
IELINQUISHED BY: (Signature) DATE/TIME RECEIVED BY: (Signature) 2 DAY D NORMAL D	
DHL DISPOSAL @ \$5.00 each Return OTHER HAND DELIVERED	
3	

Express US Airbill) Recipient's Cop
1 From Date 12-19-12	4a Express Package Service Packages up to 150 lb
	FedEX Priority Overnight Next business moring * fridar unless SATURDAY Delivery is selected.
Sender's Chris EVGINS Phone 432 686-0086	FedEx 2Day Second business day.* Thurdrey unises SAUURAV Delivery is adjusted. E-E-ERV Express Saver Saturdsy Delivery NOT available.
Company CRA	4b Express Freight Service
Address 2135 5. Loop 250 W.	FedEx 1Day Freight Nextusiness day." Friday unless SATURDAY Delivery is selected.
City HI clight State X - 710-79703	Cell for Continuation: ** To most locatio S Packaging
2 Your Internal Billing Reference	FedEx Envelope* FedEx Pak* FedEx Smell Pak FedEx Large Pak, and FedEx Sturdy Pak, Box Tube *Oeclared value Imit SS0
	6 Special Handling
3 To Recipient's Name Phone	SATURDAY Delivery Net available for redEX finet Overnight, redEX finet Overnight, redEX Express Savar, or Fedex 30% reight. HOLD Saturday at FedEX Location Net available for redEX finet Overnight, redEX Express Savar, or Fedex 30% reight.
Company	Does this shipment contain dangerous goods? One box must be checked. Yes Yes Shipper's Operation Dry Ice Shipper's Operation
Recipient's Address	Dangerous goods (including dry loal cannot be shipped in FedEx packaging, Cargo Aircraft Only
Address	7 Payment Bill to: Obtain Recip. Obtain Recip. Obtain Recip. Acct. No. or Gredit Card No. below. Obtain Recip. Acct. No. or Gredit Card No. below. Acct. No. Section 1 Valled. Cast/Check Section 1 Valled.
To request a package be held at a specific FedEx location, print FedEx address here.	
City State ZIP	Total Packages Total Weight Total Declared Value† Total Charges
	TOur liability is limited to \$100 unless you declare a higher value, See back for details.
	8 NEW Residential Delivery Signature Options Hypergedigenergy Signature Check Director Indire
	No Signature Required Peckage may be left with Peckage may be left with
L	Package may be left with, autoress inters sign to oververy, to recipiant's accreas, anymen to recipiant'
	Rev. Date 805-Part #156281-©1994-2005 FedEx-PRINTED IN U.S.A. SRY

4

•

	Sample	Receipt (Checklist		
Client Name Holly Energy Partners			Date Rec	eived: 12	/20/2012
Work Order Number 1212221			Received	by JB	
Checklist completed by:	12/20/20 Date	12	Reviewed	by (DV)	12/20/2012 Date
	Carrier name:	<u>FedEx 1d</u> a	īΥ		
Shipping container/cooler in good condition?		Yes 🔽	No 🗌	Not Present	-
Custody seals intact on shippping container/co	oler?	Yes 🗹	No 🗌	Not Present	7
Custody seals intact on sample bottles?		Yes 🗌	No 🗌	Not Present	
Chain of custody present?		Yes 🔽	No 🗔		
Chain of custody signed when relinquished and	I received?	Yes 🗹	No 🗌		
Chain of custody agrees with sample labels?		Yes 🗹	No 🗌		
Samples in proper container/bottle?		Yes 🗹	No 🗔		
Sample containers intact?		Yes 🗹	No 🗔		
Sufficient sample volume for indicated test?		Yes 🗹	No 🗌		
All samples received within holding time?		Yes 🗹	No 🗔		
Container/Temp Blank temperature in compliar	ice?	Yes 🗹	No 🗔	3.2 °C	
Water - VOA vials have zero headspace?		Yes 🗹	No 🗌	No VOA vials sub	mitted
Water - pH acceptable upon receipt?		Yes 🗌	No 🗌	Not Applicable 🗹	2
	Adjusted?		Checked by		
Any No response must be detailed in the comm	ents section below.				
Client contacted	Date contacted:		Pe	rson contacted	
Contacted by:	Regarding:				
Comments:					
· · · · · · · · · · · · · · · · · · ·					
Corrective Action					

V

CLIENT:Holly Energy PartnersProject:Hobbs SouthLab Order:1212221

CASE NARRATIVE

Samples were analyzed using the methods outlined in the following references:

Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW846, 3rd Edition.

All method blanks, laboratory spikes, and/or matrix spikes met quality assurance objectives.

Date: 28-Dec-12

CLIENT:	Holly Energy Partners	Client Sample ID: MW-1
Project:	Hobbs South	Lab ID: 1212221-01
Project No:		Collection Date: 12/19/12 10:50 AM
Lab Order:	1212221	Matrix: AQUEOUS

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
8260 WATER VOLATILES BY GC/MS		SW82	260C				Analyst: KL
Benzene	ND	0.000200	0.00100		mg/L	1	12/21/12 03:58 PM
Ethylbenzene	ND	0.000300	0.00100		mg/L	1	12/21/12 03:58 PM
m,p-Xylene	ND	0.000600	0.00200		mg/L	1	12/21/12 03:58 PM
o-Xylene	ND	0.000300	0.00100		mg/L	1	12/21/12 03:58 PM
Toluene	ND	0.000600	0.00200		mg/L	1	12/21/12 03:58 PM
Surr: 1,2-Dichloroethane-d4	103	0	72-119		%REC	1	12/21/12 03:58 PM
Surr: 4-Bromofluorobenzene	105	0	76-119		%REC	1	12/21/12 03:58 PM
Surr: Dibromofluoromethane	105	0	85-115		%REC	1	12/21/12 03:58 PM
Surr: Toluene-d8	99.4	0	81-120		%REC	1	12/21/12 03:58 PM

Qualifiers:

Value exceeds TCLP Maximum Concentration Level

- С Sample Result or QC discussed in the Case Narrative
- Е TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit

RL Reporting Limit

*

Parameter not NELAC certified Ν

- В Analyte detected in the associated Method Blank
- DF **Dilution Factor**
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit

Date: 28-Dec-12

CLIENT:	Holly Energy Partners	Client Sample ID: MW-3
Project:	Hobbs South	Lab ID: 1212221-02
Project No:		Collection Date: 12/19/12 11:15 AM
Lab Order:	1212221	Matrix: AQUEOUS

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed
8260 WATER VOLATILES BY GC/MS		SW82	60C			Analyst: KL
Benzene	ND	0.000200	0.00100	mg/L	1	12/21/12 04:23 PM
Ethylbenzene	ND	0.000300	0.00100	mg/L	1	12/21/12 04:23 PM
m,p-Xylene	ND	0.000600	0.00200	mg/L	1	12/21/12 04:23 PM
o-Xylene	ND	0.000300	0.00100	mg/L	1	12/21/12 04:23 PM
Toluene	ND	0.000600	0.00200	mg/L	1	12/21/12 04:23 PM
Surr: 1,2-Dichloroethane-d4	102	0	72-119	%REC	1	12/21/12 04:23 PM
Surr: 4-Bromofluorobenzene	103	0	76-119	%REC	1	12/21/12 04:23 PM
Surr: Dibromofluoromethane	106	0	85-115	%REC	1	12/21/12 04:23 PM
Surr: Toluene-d8	102	0	81-120	%REC	1	12/21/12 04:23 PM

Qualifiers:

* Value exceeds TCLP Maximum Concentration Level

- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit

RL Reporting Limit

N Parameter not NELAC certified

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit

Date: 28-Dec-12

CLIENT:	Holly Energy Partners	Client Sample ID: MW-3D
Project:	Hobbs South	Lab ID: 1212221-03
Project No:		Collection Date: 12/19/12 11:15 AM
Lab Order:	1212221	Matrix: AQUEOUS

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed
8260 WATER VOLATILES BY GC/MS		SW82	260C			Analyst: KL
Benzene	ND	0.000200	0.00100	mg/L	1	12/21/12 04:47 PM
Ethylbenzene	ND	0.000300	0.00100	mg/L	1	12/21/12 04:47 PM
m,p-Xylene	ND	0.000600	0.00200	mg/L	1	12/21/12 04:47 PM
o-Xylene	ND	0.000300	0.00100	mg/L	1	12/21/12 04:47 PM
Toluene	ND	0.000600	0.00200	mg/L	1	12/21/12 04:47 PM
Surr: 1,2-Dichloroethane-d4	103	0	72-119	%REC	1	12/21/12 04:47 PM
Surr: 4-Bromofluorobenzene	105	0	76-119	%REC	1	12/21/12 04:47 PM
Surr: Dibromofluoromethane	106	0	85-115	%REC	1	12/21/12 04:47 PM
Surr: Toluene-d8	101	0	81-120	%REC	1	12/21/12 04:47 PM

Qualifiers:

* Value exceeds TCLP Maximum Concentration Level

- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit

RL Reporting Limit

N Parameter not NELAC certified

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit

Date: 28-Dec-12

CLIENT:	Holly Energy Partners	Client Sample ID: MW-4
Project:	Hobbs South	Lab ID: 1212221-04
Project No:		Collection Date: 12/19/12 12:10 PM
Lab Order:	1212221	Matrix: AQUEOUS

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed
8260 WATER VOLATILES BY GC/MS		SW82	60C			Analyst: KL
Benzene	ND	0.000200	0.00100	mg/L	1	12/21/12 05:11 PM
Ethylbenzene	ND	0.000300	0.00100	mg/L	1	12/21/12 05:11 PM
m,p-Xylene	ND	0.000600	0.00200	mg/L	1	12/21/12 05:11 PM
o-Xylene	ND	0.000300	0.00100	mg/L	1	12/21/12 05:11 PM
Toluene	ND	0.000600	0.00200	mg/L	1	12/21/12 05:11 PM
Surr: 1,2-Dichloroethane-d4	102	0	72-119	%REC	1	12/21/12 05:11 PM
Surr: 4-Bromofluorobenzene	103	0	76-119	%REC	1	12/21/12 05:11 PM
Surr: Dibromofluoromethane	105	0	85-115	%REC	1	12/21/12 05:11 PM
Surr: Toluene-d8	102	0	81-120	%REC	1	12/21/12 05:11 PM

Qualifiers:

* Value exceeds TCLP Maximum Concentration Level

- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit

RL Reporting Limit

N Parameter not NELAC certified

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit

Analyses

Date: 28-Dec-12

DF

Date Analyzed

Units

CLIENT:	Holly Energy Partners	Client Sample ID: MW-2
Project:	Hobbs South	Lab ID: 1212221-05
Project No:		Collection Date: 12/19/12 12:35 PM
Lab Order:	1212221	Matrix: AQUEOUS

RL

Oual

MDL

Result

	1105410	11212	112	Quan onno	21	2 400 11141 9 204
8260 WATER VOLATILES BY GC/MS		SW82	260C			Analyst: KL
Benzene	ND	0.000200	0.00100	mg/L	1	12/21/12 05:37 PM
Ethylbenzene	ND	0.000300	0.00100	mg/L	1	12/21/12 05:37 PM
m,p-Xylene	ND	0.000600	0.00200	mg/L	1	12/21/12 05:37 PM
o-Xylene	ND	0.000300	0.00100	mg/L	1	12/21/12 05:37 PM
Toluene	ND	0.000600	0.00200	mg/L	1	12/21/12 05:37 PM
Surr: 1,2-Dichloroethane-d4	101	0	72-119	%REC	1	12/21/12 05:37 PM
Surr: 4-Bromofluorobenzene	106	0	76-119	%REC	1	12/21/12 05:37 PM
Surr: Dibromofluoromethane	104	0	85-115	%REC	1	12/21/12 05:37 PM
Surr: Toluene-d8	102	0	81-120	%REC	1	12/21/12 05:37 PM

Qualifiers:

* Value exceeds TCLP Maximum Concentration Level

- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit

RL Reporting Limit

N Parameter not NELAC certified

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit

Analyses

Date: 28-Dec-12

DF

Date Analyzed

Units

CLIENT:	Holly Energy Partners	Client Sample ID: Trip
Project:	Hobbs South	Lab ID: 1212221-06
Project No:		Collection Date: 12/19/12
Lab Order:	1212221	Matrix: TRIP BLANK

RL

Oual

MDL

Result

				2		
8260 WATER VOLATILES BY GC/MS		SW82	260C			Analyst: KL
Benzene	ND	0.000200	0.00100	mg/L	1	12/21/12 03:32 PM
Ethylbenzene	ND	0.000300	0.00100	mg/L	1	12/21/12 03:32 PM
m,p-Xylene	ND	0.000600	0.00200	mg/L	1	12/21/12 03:32 PM
o-Xylene	ND	0.000300	0.00100	mg/L	1	12/21/12 03:32 PM
Toluene	ND	0.000600	0.00200	mg/L	1	12/21/12 03:32 PM
Surr: 1,2-Dichloroethane-d4	103	0	72-119	%REC	1	12/21/12 03:32 PM
Surr: 4-Bromofluorobenzene	105	0	76-119	%REC	1	12/21/12 03:32 PM
Surr: Dibromofluoromethane	106	0	85-115	%REC	1	12/21/12 03:32 PM
Surr: Toluene-d8	102	0	81-120	%REC	1	12/21/12 03:32 PM

Qualifiers:

* Value exceeds TCLP Maximum Concentration Level

- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit

RL Reporting Limit

N Parameter not NELAC certified

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit

Page 1 of 2

CLIENT: Work Order:	Holly Ene	ergy Partne	ers		AN	JALYTI	ICAL (QC SU	U MMAR	XY REPORT
Work Order: Project:	1212221 Hobbs Sor	uth					RunII	-	GCMS5_12	
· ·			ollowing sa	amples: 1212	221-01A, 1212	221-02A, 12 ²			_	1-05A, 1212221-06A
Sample ID: LCS-		Batch ID:		•	TestNo		3260C		Units:	mg/L
SampType: LCS		Run ID:		_121221B		is Date: 12/2		29·00 A	Prep Date:	12/21/2012
				_						
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit 9	6RPD RPDLimit Qua
Benzene			0.0257	0.00100	0.0232	0	111	81	122	
Ethylbenzene			0.0247	0.00100	0.0232	0	107	80	120	
m,p-Xylene			0.0507	0.00200	0.0464	0	109	80	120	
o-Xylene			0.0234	0.00100	0.0232	0	101	80	120	
Toluene			0.0241	0.00200	0.0232	0	104	80	120	
Surr: 1,2-Dichlo	roethane-d4		201		200.0		101	72	119	
Surr: 4-Bromofle	uorobenzene		195		200.0		97.4	76	119	
Surr: Dibromoflu	uoromethane		211		200.0		105	85	115	
Surr: Toluene-d	8		200		200.0		100	81	120	
Sample ID: MB-5	5291	Batch ID:	55291		TestNo	swa	3260C		Units:	mg/L
SampType: MBL	K	Run ID:	GCMS5	_121221B	Analys	is Date: 12/2	1/2012 10:5	56:00 A	Prep Date:	12/21/2012
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD RPDLimit Qu
Benzene			ND	0.00100						
Ethylbenzene			ND	0.00100						
m,p-Xylene			ND	0.00200						
o-Xylene			ND	0.00100						
Toluene			ND	0.00200						
Surr: 1,2-Dichlo	roethane-d4		202		200.0		101	72	119	
Surr: 4-Bromofle	uorobenzene		208		200.0		104	76	119	
Surr: Dibromoflu	uoromethane		211		200.0		105	85	115	
Surr: Toluene-d	8		203		200.0		101	81	120	
Sample ID: 12121	195-01AMS	Batch ID:	55291		TestNo	: SW 8	3260C		Units:	mg/L
SampType: MS		Run ID:	GCMS5	_121221B	Analys	is Date: 12/2 *	1/2012 6:27	7:00 PM	Prep Date:	12/21/2012
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD RPDLimit Qu
Benzene			0.0261	0.00100	0.0232	0.000600	110	81	120	
Ethylbenzene			0.0248	0.00100	0.0232	0	107	80	120	
m,p-Xylene			0.0499	0.00200	0.0464	0	108	80	120	
o-Xylene			0.0231	0.00100	0.0232	0	99.7	80	120	
Toluene			0.0258	0.00200	0.0232	0.00194	103	80	120	
	roethane-d4		204		200.0		102	72	119	
Surr: 1,2-Dichlo			201		200.0		101	76	119	
Surr: 1,2-Dichlo Surr: 4-Bromofli	uoropenzene						105	85	115	
-			210		200.0		105	00	115	

Qualifiers:

B Analyte detected in the associated Method Blank

- J Analyte detected between MDL and RL ND Not Detected at the Method Detection Limit
- RL Reporting Limit
- J Analyte detected between SDL and RL

DF Dilution Factor MDL Method Detection Limit

- R RPD outside accepted control limits
- S Spike Recovery outside control limits
- N Parameter not NELAC certified

CLIENT:Holly Energy PartnersWork Order:1212221Project:Hobbs South

ANALYTICAL QC SUMMARY REPORT

RunID: GC

GCMS5_121221B

Sample ID: 1212195-01AMSD	Batch ID:	55291		TestN	D: SW 8	8260C		Units:	mg/l	L
SampType: MSD	Run ID:	GCMS	5_121221B	Analys	sis Date: 12/2	1/2012 6:53	3:00 PM	Prep Date	e: 12/2	1/2012
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD	RPDLimit Qual
Benzene		0.0253	0.00100	0.0232	0.000600	107	81	120	2.88	20
Ethylbenzene		0.0241	0.00100	0.0232	0	104	80	120	2.86	20
m,p-Xylene		0.0490	0.00200	0.0464	0	106	80	120	1.78	20
o-Xylene		0.0230	0.00100	0.0232	0	99.1	80	120	0.607	20
Toluene		0.0253	0.00200	0.0232	0.00194	101	80	120	1.84	20
Surr: 1,2-Dichloroethane-d4		201		200.0		101	72	119	0	0
Surr: 4-Bromofluorobenzene		204		200.0		102	76	119	0	0
Surr: Dibromofluoromethane		209		200.0		104	85	115	0	0
Surr: Toluene-d8		201		200.0		101	81	120	0	0

Qualifiers:

B Analyte detected in the associated Method BlankJ Analyte detected between MDL and RL

J Analyte detected between MDL and RL ND Not Detected at the Method Detection Limit

- RL Reporting Limit
- J Analyte detected between SDL and RL
- DF Dilution Factor
- MDL Method Detection Limit
 - R RPD outside accepted control limits

Page 2 of 2

- S Spike Recovery outside control limits
- N Parameter not NELAC certified

July 02, 2013

Bill Green Holly Energy Partners 1602 W. Main Artesisa, NM 88210 TEL: (575) 748-8968 FAX (575) 748-4052 RE: Hobbs South CSA (Holly Energy Partners)

Order No.: 1306234

Dear Bill Green:

DHL Analytical, Inc. received 6 sample(s) on 6/26/2013 for the analyses presented in the following report.

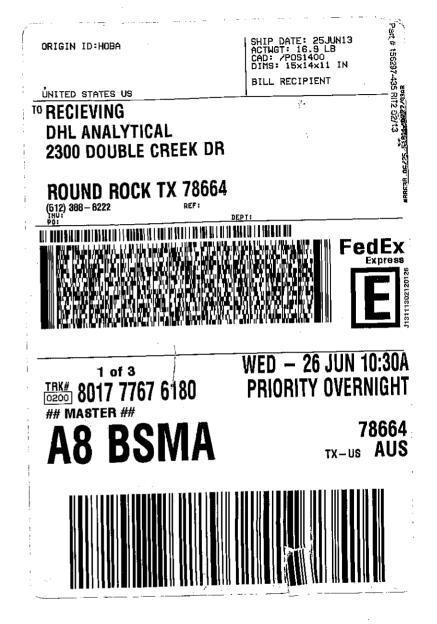
There were no problems with the analyses and all data for associated QC met EPA or laboratory specifications except where noted in the Case Narrative and all estimated uncertainties of results are within method specifications.

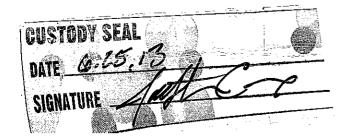
If you have any questions regarding these tests results, please feel free to call.

Sincerely,

John DuPont General Manager

This report was performed under the accreditation of the State of Texas Laboratory Certification Number: T104704211-13-11


2300 Double Creek Drive • Round Rock, TX 78664 • Phone (512) 388-8222 • FAX (512) 388-8229 www.dhlanalytical.com


Table of Contents

Miscellaneous Documents	3
CaseNarrative 1306234	6
Analytical Report 1306234	7
AnalyticalQCSummaryReport 1306234	13

			0 Double Cr Phone (512)	388-8 ₩ E-M	222 ■ FAX (/eb: <i>www.dh</i> ail: <i>login@dh</i>	512) 388 Ianalytic Ianalytic	-8229 al.com al.com	helap	· · · · · · · · · · · · · · · · · · ·	≌ 60091 N-OF-CUSTODY
CLIENT: CRA ADDRESS: 14998 W 644 Ave #800, Golden, (1) 80401 PHONE: 720,974.0935 FAX/E-MAIL: 6-stephenson@ Claudor for cource DATA REPORTED TO: Brad Stephenson ADDITIONAL REPORT COPIES TO: Bill Green 9 100454 B. CROWON A. COM							CT LOCA	3, 13 ATION OR NAI	DHL WORK ORDER # ME: Hobbs South Co 7 COLLECT	PAGE OF / 306234 / Bolly Entry Earthors) FOR: _J COVEY
Authorize 5% surcharge for TRRP Report? Yes No Field Sample I.D.	W=WATER SL= A=AIR O=0	AINT SLUDGE DTHER SOLID	Container Type		H ₂ SO ₄ D NaOH D ICE UNPRESERVED					The second secon
MW-1 DUP-1 MW-Z MW-4 MW-3R TRIP BLANK	01 673,13 02 03 04 05 04 05 04	1720 W 1725 1750 1825 1905 1905 1905 1905								BTEX ONLY SZUD
TOTAL RELADUJSTED BY: (Sjonature)		DATE/TIME	RECEIVED	Y: (Şignat	ure)					
RELINQUISHED BY: (Signature) FLQ-EX RELINQUISHED BY: (Signature)	10/24		P	Y: tsignat Y: (Signat	Jack	3	RUSH C	CALL FIRST CALL FIRST	RECEIVING TEMP: 1.5	THERM #: <u>57</u> DKEN XINTACT I NOT USED

÷

Sam	ole Receipt Che	cklist
Client Name Holly Energy Partners		Date Received: 6/26/2013
Work Order Number 1306234		Received by JB
Checklist completed by: 6/26/.	ate	Reviewed by 6/26/2013 Initials Date
Shipping container/cooler in good condition?	Yes 🔽	No 🗌 Not Present 🛄
Custody seals intact on shippping container/cooler?	Yes 🔽	No 🗌 Not Present 🗍
Custody seals intact on sample bottles?	Yes	No 🔲 🔹 Not Present 🗹
Chain of custody present?	Yes 🗹	No 🗔
Chain of custody signed when relinquished and received?	Yes 🗹	No 🗔
Chain of custody agrees with sample labels?	Yes 🗹	No 🗔
Samples in proper container/bottle?	Yes 🗹	No 🗔
Sample containers intact?	Yes 🗹	No 🗌
Sufficient sample volume for indicated test?	Yes 🗹	Νο
All samples received within holding time?	Yes 🗹	No 🗔
Container/Temp Blank temperature in compliance?	Yes 🗹	No 🗌 1.5 °C
Water - VOA vials have zero headspace?	Yes 🗹	No Do VOA vials submitted
Water - pH<2 acceptable upon receipt?	Yes	No 🗌 NA 🗹 LOT #
	Adjusted?	Checked by
Water - ph>9 (S) or ph>12 (CN) acceptable upon receipt?	Yes 🗌	
	Adjusted?	Checked by
Any No response must be detailed in the comments section below	<u>. </u>	
Client contacted Date contacted:		Person contacted
Contacted by: Regarding		
Comments:		
Corrective Action		

Page 1 of 1

....

CLIENT:Holly Energy PartnersProject:Hobbs South CSA (Holly Energy Partners)Lab Order:1306234

CASE NARRATIVE

Samples were analyzed using the methods outlined in the following references:

Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW846, 3rd Edition.

All method blanks, laboratory spikes, and/or matrix spikes met quality assurance objectives except where noted in the following.

Date: 02-Jul-13

CLIENT:	Holly Energy Partners	Client Sample ID: MW-1				
Project:	Hobbs South CSA (Holly Energy Partners)	Lab ID: 1306234-01				
Project No:	078807	Collection Date: 06/23/13 05:20 PM				
Lab Order:	1306234	Matrix: AQUEOUS				
Analyses	Result MDL	RL Qual Units DF Date Analyzed				

3260 WATER VOLATILES BY GC/MS		SW82	260C			Analyst: KL
Benzene	ND	0.000200	0.00100	mg/L	1	06/27/13 09:58 PN
Ethylbenzene	ND	0.000300	0.00100	mg/L	1	06/27/13 09:58 PN
m,p-Xylene	ND	0.000600	0.00200	mg/L	1	06/27/13 09:58 PN
o-Xylene	ND	0.000300	0.00100	mg/L	1	06/27/13 09:58 PN
Toluene	ND	0.000600	0.00200	mg/L	1	06/27/13 09:58 PM
Surr: 1,2-Dichloroethane-d4	99.9	0	72-119	%REC	1	06/27/13 09:58 PM
Surr: 4-Bromofluorobenzene	106	0	76-119	%REC	1	06/27/13 09:58 PM
Surr: Dibromofluoromethane	104	0	85-115	%REC	1	06/27/13 09:58 PN
Surr: Toluene-d8	101	0	81-120	%REC	1	06/27/13 09:58 PM

Qualifiers:

- * Value exceeds TCLP Maximum Concentration Level
- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit

RL Reporting Limit

N Parameter not NELAC certified

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- S Spike Recovery outside control limits

Date: 02-Jul-13

CLIENT:	Holly Energy Partners	Client Sample ID: DUP-1				
Project:	Hobbs South CSA (Holly Energy Partners)	Lab ID: 1306234-02				
Project No:	078807	Collection Date: 06/23/13 05:25 PM				
Lab Order:	1306234	Matrix: AQUEOUS				
Analyses	Result MDL	RL Qual Units DF Date Analyzed				

8260 WATER VOLATILES BY GC/MS		SW82	260C			Analyst: KL
Benzene	ND	0.000200	0.00100	mg/L	1	06/27/13 10:25 PM
Ethylbenzene	ND	0.000300	0.00100	mg/L	1	06/27/13 10:25 PM
m,p-Xylene	ND	0.000600	0.00200	mg/L	1	06/27/13 10:25 PM
o-Xylene	ND	0.000300	0.00100	mg/L	1	06/27/13 10:25 PM
Toluene	ND	0.000600	0.00200	mg/L	1	06/27/13 10:25 PM
Surr: 1,2-Dichloroethane-d4	100	0	72-119	%REC	1	06/27/13 10:25 PM
Surr: 4-Bromofluorobenzene	105	0	76-119	%REC	1	06/27/13 10:25 PM
Surr: Dibromofluoromethane	102	0	85-115	%REC	1	06/27/13 10:25 PM
Surr: Toluene-d8	101	0	81-120	%REC	1	06/27/13 10:25 PM

- * Value exceeds TCLP Maximum Concentration Level
- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit

RL Reporting Limit

N Parameter not NELAC certified

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit

Date: 02-Jul-13

CLIENT:	Holly Energy Partners	Client Sample ID: MW-2				
Project:	Hobbs South CSA (Holly Energy Partners)	Lab ID: 1306234-03				
Project No:	078807	Collection Date: 06/23/13 05:50 PM				
Lab Order:	1306234	Matrix: AQUEOUS				
Analyses	Result MDL	RL Qual Units DF Date Analyzed				

3260 WATER VOLATILES BY GC/MS	SW8260C					Analyst: KL	
Benzene	0.000250	0.000200	0.00100	J	mg/L	1	06/27/13 10:52 PM
Ethylbenzene	ND	0.000300	0.00100		mg/L	1	06/27/13 10:52 PM
m,p-Xylene	ND	0.000600	0.00200		mg/L	1	06/27/13 10:52 PM
o-Xylene	ND	0.000300	0.00100		mg/L	1	06/27/13 10:52 PM
Toluene	ND	0.000600	0.00200		mg/L	1	06/27/13 10:52 PM
Surr: 1,2-Dichloroethane-d4	102	0	72-119		%REC	1	06/27/13 10:52 PM
Surr: 4-Bromofluorobenzene	105	0	76-119		%REC	1	06/27/13 10:52 PM
Surr: Dibromofluoromethane	105	0	85-115		%REC	1	06/27/13 10:52 PM
Surr: Toluene-d8	102	0	81-120		%REC	1	06/27/13 10:52 PM

Qualifiers:

- * Value exceeds TCLP Maximum Concentration Level
- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit

RL Reporting Limit

N Parameter not NELAC certified

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit

Date: 02-Jul-13

CLIENT:	Holly Energy Partners	Client Sample ID: MW-4
Project:	Hobbs South CSA (Holly Energy Partners)	Lab ID: 1306234-04
Project No:	078807	Collection Date: 06/23/13 06:25 PM
Lab Order:	1306234	Matrix: AQUEOUS
Analyses	Result MDL	RL Qual Units DF Date Analyzed

3260 WATER VOLATILES BY GC/MS		SW82	260C		Analyst: KL		
Benzene	0.000240	0.000200	0.00100	J	mg/L	1	06/27/13 11:20 PM
Ethylbenzene	ND	0.000300	0.00100		mg/L	1	06/27/13 11:20 PM
m,p-Xylene	ND	0.000600	0.00200		mg/L	1	06/27/13 11:20 PM
o-Xylene	ND	0.000300	0.00100		mg/L	1	06/27/13 11:20 PM
Toluene	ND	0.000600	0.00200		mg/L	1	06/27/13 11:20 PM
Surr: 1,2-Dichloroethane-d4	102	0	72-119		%REC	1	06/27/13 11:20 PM
Surr: 4-Bromofluorobenzene	104	0	76-119		%REC	1	06/27/13 11:20 PM
Surr: Dibromofluoromethane	105	0	85-115		%REC	1	06/27/13 11:20 PM
Surr: Toluene-d8	102	0	81-120		%REC	1	06/27/13 11:20 PM

Quanners:	Qı	alifiers:	
-----------	----	-----------	--

- * Value exceeds TCLP Maximum Concentration Level
- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit

RL Reporting Limit

N Parameter not NELAC certified

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit

S Spike Recovery outside control limits

Date: 02-Jul-13

CLIENT:	Holly Energy Partners	Client Sample ID: MW-3R
Project:	Hobbs South CSA (Holly Energy Partners)	Lab ID: 1306234-05
Project No:	078807	Collection Date: 06/23/13 07:05 PM
Lab Order:	1306234	Matrix: AQUEOUS
Analyses	Result MDL	RL Qual Units DF Date Analyzed

260 WATER VOLATILES BY GC/MS		SW82	260C		Analyst: KL		
Benzene	ND	0.000200	0.00100	mg/L	1	06/27/13 11:45 PM	
Ethylbenzene	ND	0.000300	0.00100	mg/L	1	06/27/13 11:45 PN	
m,p-Xylene	ND	0.000600	0.00200	mg/L	1	06/27/13 11:45 PM	
o-Xylene	ND	0.000300	0.00100	mg/L	1	06/27/13 11:45 PN	
Toluene	ND	0.000600	0.00200	mg/L	1	06/27/13 11:45 PM	
Surr: 1,2-Dichloroethane-d4	100	0	72-119	%REC	1	06/27/13 11:45 PM	
Surr: 4-Bromofluorobenzene	104	0	76-119	%REC	1	06/27/13 11:45 PM	
Surr: Dibromofluoromethane	104	0	85-115	%REC	1	06/27/13 11:45 PN	
Surr: Toluene-d8	99.5	0	81-120	%REC	1	06/27/13 11:45 PM	

* Value exceeds TCLP Maximum Concentration Level

- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit

RL Reporting Limit

N Parameter not NELAC certified

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit

S Spike Recovery outside control limits

Date: 02-Jul-13

Analyses	Result MDI	RL Oual Units	s DF Date Analyzed
Lab Order:	1306234	Matrix:	TRIP BLANK
Project No:	078807	Collection Date:	06/23/13
Project:	Hobbs South CSA (Holly Energy Partners)	Lab ID:	1306234-06
CLIENT:	Holly Energy Partners	Client Sample ID:	TRIP BLANK

3260 WATER VOLATILES BY GC/MS		SW82	260C		Analyst: KL		
Benzene	ND	0.000200	0.00100	mg/L	1	06/27/13 11:59 AN	
Ethylbenzene	ND	0.000300	0.00100	mg/L	1	06/27/13 11:59 AM	
m,p-Xylene	ND	0.000600	0.00200	mg/L	1	06/27/13 11:59 AM	
o-Xylene	ND	0.000300	0.00100	mg/L	1	06/27/13 11:59 AM	
Toluene	ND	0.000600	0.00200	mg/L	1	06/27/13 11:59 AM	
Surr: 1,2-Dichloroethane-d4	98.1	0	72-119	%REC	1	06/27/13 11:59 AM	
Surr: 4-Bromofluorobenzene	104	0	76-119	%REC	1	06/27/13 11:59 AM	
Surr: Dibromofluoromethane	101	0	85-115	%REC	1	06/27/13 11:59 AN	
Surr: Toluene-d8	101	0	81-120	%REC	1	06/27/13 11:59 AM	

Qualifiers:

- * Value exceeds TCLP Maximum Concentration Level
- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit

RL Reporting Limit

N Parameter not NELAC certified

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit

S Spike Recovery outside control limits

Page 1 of 3

CLIENT: Holly Energy Partners

Work Order: 1306234

ANALYTICAL QC SUMMARY REPORT

Project: Hobbs South CSA (Holly Energy Partners)

GCMS5_130627A

The QC data in batch 58130 app	olies to the fo	ollowing sa	mples: 1306	234-06A					
Sample ID: LCS-58130	Batch ID:	58130		TestNo	SW8	3260C		Units:	mg/L
SampType: LCS	Run ID:	GCMS5	_130627A	Analysi	s Date: 6/27	/2013 11:10	0:00 AM	Prep Date:	6/27/2013
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	6RPD RPDLimit Qua
Benzene		0.0269	0.00100	0.0232	0	116	81	122	
Ethylbenzene		0.0249	0.00100	0.0232	0	107	80	120	
m,p-Xylene		0.0512	0.00200	0.0464	0	110	80	120	
o-Xylene		0.0260	0.00100	0.0232	0	112	80	120	
Toluene		0.0262	0.00200	0.0232	0	113	80	120	
Surr: 1,2-Dichloroethane-d4		201		200.0		100	72	119	
Surr: 4-Bromofluorobenzene		200		200.0		99.8	76	119	
Surr: Dibromofluoromethane		206		200.0		103	85	115	
Surr: Toluene-d8		199		200.0		99.5	81	120	
Sample ID: MB-58130	Batch ID:	58130		TestNo	SW8	3260C		Units:	mg/L
SampType: MBLK	Run ID:	GCMS5	_130627A	Analysi	s Date: 6/27	/2013 11:35	5:00 AM	Prep Date:	6/27/2013
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	6RPD RPDLimit Qua
Benzene		ND	0.00100						
Ethylbenzene		ND	0.00100						
m,p-Xylene		ND	0.00200						
o-Xylene		ND	0.00100						
o-Xylene Toluene		ND ND	0.00100 0.00200						
				200.0		98.6	72	119	
Toluene		ND		200.0 200.0		98.6 105	72 76	119 119	
Toluene Surr: 1,2-Dichloroethane-d4		ND 197							

Qualifiers:	В	Analyte detected in the associated Method Blank	DF	Dilution Factor
	J	Analyte detected between MDL and RL	MDL	Method Detection Limit
	ND	Not Detected at the Method Detection Limit	R	RPD outside accepted control limits
	RL	Reporting Limit	S	Spike Recovery outside control limits
	J	Analyte detected between SDL and RL	Ν	Parameter not NELAC certified

	olly Enei 306234	rgy Partner	rs		ANALYTICAL QC SUMMARY REPORT							
Project: He	obbs Sou	uth CSA (l	Holly En	ergy Partner	ers) RunID: GCMS5_130627A							
The QC data in batch 5	8131 appl	lies to the fo	llowing sa	amples: 1306	234-01A, 1306	234-02A, 13	06234-03A,	1306234	I-04A, 130623	4-05A		
Sample ID: LCS-58131	1	Batch ID: 58131			TestNo	: SW	8260C		Units:	mg/L		
SampType: LCS		Run ID:	GCMS5	_130627A	Analys	is Date: 6/27	//2013 2:02:	00 PM	Prep Date:	6/27/2013		
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	nit HighLimit %	RPD RPDLimit Qua		
Benzene		(0.0261	0.00100	0.0232	0	113	81	122			
Ethylbenzene		(0.0246	0.00100	0.0232	0	106	80	120			
m,p-Xylene		(0.0495	0.00200	0.0464	0	107	80	120			
o-Xylene		(0.0249	0.00100	0.0232	0	107	80	120			
Toluene		(0.0259	0.00200	0.0232	0	112	80	120			
Surr: 1,2-Dichloroeth	ane-d4		197		200.0		98.7	72	119			
Surr: 4-Bromofluorob	enzene		199		200.0		99.6	76	119			
Surr: Dibromofluorom	nethane		203		200.0		102	85	115			
Surr: Toluene-d8			197		200.0		98.4	81	120			
Sample ID: MB-58131		Batch ID:	58131		TestNo: SW8260C				Units:	mg/L		
SampType: MBLK		Run ID:	GCMS5	_130627A	Analys	is Date: 6/27	//2013 2:28:	00 PM	Prep Date:	6/27/2013		
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLin	nit HighLimit %	SRPD RPDLimit Qua		
Benzene			ND	0.00100								
Ethylbenzene			ND	0.00100								
m,p-Xylene			ND	0.00200								
o-Xylene			ND	0.00100								
Toluene			ND	0.00200								
Surr: 1,2-Dichloroeth	ane-d4		196		200.0		98.0	72	119			
Surr: 4-Bromofluorob	enzene		206		200.0		103	76	119			
Surr: Dibromofluorom	nethane		203		200.0		102	85	115			
Surr: Toluene-d8			201		200.0		100	81	120			
Sample ID: 1306233-0	1AMS	Batch ID:	58131		TestNo	SW	8260C		Units:	mg/L		
SampType: MS		Run ID:	GCMS5	_130627A	Analys	is Date: 6/27	//2013 5:49:	00 PM	Prep Date:	6/27/2013		
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	nit HighLimit %	RPD RPDLimit Qua		
Benzene		(0.0257	0.00100	0.0232	0	111	81	122			
Ethylbenzene		(0.0243	0.00100	0.0232	0	105	80	120			
m,p-Xylene		(0.0496	0.00200	0.0464	0	107	80	120			
o-Xylene		(0.0244	0.00100	0.0232	0	105	80	120			
Toluene		(0.0258	0.00200	0.0232	0	111	80	120			
Surr: 1,2-Dichloroeth	ane-d4		200		200.0		100	72	119			
Surr: 4-Bromofluorob	enzene		194		200.0		96.9	76	119			
Surr: Dibromofluorom	nethane		203		200.0		102	85	115			
Surr: Toluene-d8			203		200.0		102	81	120			

Page 2 of 3

Qualifiers: В Analyte detected in the associated Method Blank DF Dilution Factor Analyte detected between MDL and RL MDL Method Detection Limit J ND Not Detected at the Method Detection Limit R RL Reporting Limit S

> J Analyte detected between SDL and RL

RPD outside accepted control limits

Spike Recovery outside control limits

Ν Parameter not NELAC certified

CLIENT:Holly Energy PartnersWork Order:1306234Project:Hobbs South CSA (Holly Energy Partners)

ANALYTICAL QC SUMMARY REPORT

RunID:

GCMS5_130627A

Sample ID: 1306233-01AMSD	Batch ID:	58131		TestNo	: SW	/8260C		Units:	mg/L	
SampType: MSD	Run ID:	GCMS	5_130627A	Analys	is Date: 6/2	7/2013 6:13:	00 PM	Prep Date	e: 6/27	2013
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD	RPDLimit Qual
Benzene		0.0259	0.00100	0.0232	0	112	81	120	0.620	20
Ethylbenzene		0.0241	0.00100	0.0232	0	104	80	120	0.702	20
m,p-Xylene		0.0493	0.00200	0.0464	0	106	80	120	0.748	20
o-Xylene		0.0244	0.00100	0.0232	0	105	80	120	0.205	20
Toluene		0.0257	0.00200	0.0232	0	111	80	120	0.272	20
Surr: 1,2-Dichloroethane-d4		199		200.0		99.6	72	119	0	0
Surr: 4-Bromofluorobenzene		197		200.0		98.6	76	119	0	0
Surr: Dibromofluoromethane		202		200.0		101	85	115	0	0
Surr: Toluene-d8		200		200.0		100	81	120	0	0

Qualifiers:

В

Analyte detected in the associated Method Blank Analyte detected between MDL and RL

J Analyte detected between MDL and RL ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

Page 3 of 3

S Spike Recovery outside control limits

N Parameter not NELAC certified

APPENDIX H

WELL COMPLETION DETAILS AND BORING LOGS

LOC	ATION	MAP																		
											TEST H	OLE					Page	1	C	of 4
							-				SRW-1		-	Hobbs So		Holly	(Energy)			
							Date			/ 6 tin Cov	/ 2013		, v	Number: 07						
							-	<u> </u>		l: Air F	•			By: B. Adk ng Method:		m				
Grou	ind Elev	ation::			Detector	: PID				entonite		42'		Grout Inter		to	40'			
	r Pack S		/20 sa	and							Interval:			Hole Dia:			th water End	counter	red du	ıring
	ng Type						Dia	meter:	1 & 4	4 in.	Interval:	0		DTW: 53.			ing: 53' bgs			
Scree	en Type:	Sch. 4	0	I	Slot: 20	1	Dia	meter:	1&4	1 in.	Interval:	44	to 64'	Well Depth	n: 64' bgs	Tota	l depth: 65'	bgs		
Depth	Soil/Rock Type	Moisture Content	% Fines	Color	Vapor (ppm)	Staining	Sample #	Soil Recovery	Water Level		L	ІТНО	LOGY/F	REMARKS			Fabric	CO	WEI MPLI	LL ETION
$ \begin{array}{c} \square \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 7 \\ 8 \\ 9 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 18 \\ \end{array} $	<u> </u>	Z O dry dry	< 5	5YR 4/4	 > 1.3 1.4 2.3 2.8 3.1 3.7 30.1 25.6 22 	N N N N N N N N N N	(HSRW-1-16 @ 1600) St	× Cut. Cut. Cut. Cut. Cut. Cut. Image: Cut		graded Calicl SANI graded preser	he – $(10.5 - 0) - (12 - 26)$	12') · 5.5') -	own (Fil - sandsto - loose, r / caliche,		ined, poorly				1" fluid level monitor	
19 20				10YR 8/1	16	Ν	Sample ()	6"										/////		/////
l		cement grou	ıt	>	bentonite seal			filter pac	k											

LOC	CATION	MAP																
												IOLE	/ WELL			Page	2	of 4
											ISRW-1		-	Hobbs South GSA	A (H	(olly Energy)		
							Dat				6 / 2013			Number: 078807				
							_	ged by			-			By: B. Adkins		_		
Grou	and Elev	otion			Detector				Int: Be		Rotary te 40 to	42'		ng Method: Split Sp Grout Interval:		to 40'		
_	r Pack S		20 6	and	Detector	FID		Seal	IIII. De	intoini	Interval:			Hole Dia: 7-7/8''		Depth water Enc	ountere	d during
_	ng Type			anu			Dia	meter:	1&	l in	Interval:	42		DTW: 53.66' bgs		drilling: 53' bgs	Junicie	u uuring
	en Type:				Slot: 20			meter:			Interval:			Well Depth: 64' bg			ogs	
Sere							2				inter vui		10 01	Wen Depuit of Sg	50		-8-	
Depth	Soil/Rock Type	Moisture Content	% Fines	Color	Vapor (ppm)	Staining	Sample #	Soil Recovery	Water Level		Ι	ITHC	DLOGY/I	REMARKS		Fabric		WELL IPLETION
20			< 5	10YR 7/2				6"		-	@ 20' few	sands	tone, pin	kish white				
21				112	601	Ν		0										
22					001													
-				10YR						-	@ 22' trace	chert	becomes	s yellowish brown				
23	.			5/4				Cut.						5				
					1124	Ν											\mathbb{N}	
24																	N	
25								Cut.										
					1154	Ν												
26																		
27		dry	<5	10YR				16"					fine grai	ined, cemented sand	tone	÷,		
	_			8/1	1096	Ν				weatl	hered, white	•						
28	SP		.5							CAN	D (20 2)	50			1			
20	SP	moist	<2	10YR 6/4				13"						grained, loose, poorl prown, few caliches	IY			
29				6/4	1120	N		15			stone fragm			nown, rew canciles				
30	 				1120	19						, .						$ $
30																		
31	 							6"										ΙK
					1150	Ν		-										
32	†																	
	1	1		10YR			1			-	@ 32' bec	omes	light yell	owish brown			\mathbb{N}	$ \land$
33	[1		7/4				15"									\mathbb{N}	
					1133	Ν	1										\mathbb{N}	
34							1										\mathbb{N}	
ļ	<u> </u>						1											
35		dry	<5	10YR			1	11"				38') -	fine grai	ined sandstone, weat	there	ed,		
ļ	 			8/1	1142	Ν	1			white	e							
36	ļ										0.07							
	 						1			-	- @ 36' trac	e cher	t				\mathbb{N}	
37					0.00			Cut									\mathbb{N}	
20	 				960		1	Cut.									\mathbb{N}	$ \rangle$
38	SP	moist	-5	10YR			1			SAN	D - (38 - 60)') _ fir	ne oraina	d, loose, poorly grad	led		\mathbb{N}	
39		moist	~5	10YR 8/3			1				t, brown, tra				.cu,		\mathbb{N}	
37				0/5	418						.,,,	511		Branch			\mathbb{N}	
40	 				710		1	18"									\mathbb{N}	$\mid K$
10																	\mathbb{N}	IK
 	t	1					1										\mathbb{N}	
		cement grou	t	\sim	bentonite seal	•		filter pac	ĸ	•						•		• •
				\sim	4		ـــــ											

LOC	CATION	MAP																		
											TEST HO	DLE					Page	3	of	4
1							-				HSRW-1		-	Hobbs South		Holly	y Energy)			
1							Date			; / tin (<u>6 / 2013</u> Covey		-	Number: 07880 By: B. Adkins						
							_				ir Rotary			ng Method: Spli		m				
Grou	ind Elev	ation::			Detector	: PID			Int: Be			42'		Grout Interval:		to	40'			
	r Pack S			and							Interval:	42		Hole Dia: 7-7/			th water Enc		red duri	ng
	ng Type								1&4			0		DTW: 53.66'			ing: 53' bgs			
Scre	en Type:	: Sch. 4	0	1	Slot: 20	1	Dia		1&4	4 in.	Interval:	44	to 64'	Well Depth: 6	4' bgs	Tota	al depth: 65'	bgs		
05 Depth	Soil/Rock Type	Moisture Content	% Fines	Color	Vapor (ppm)	Staining	Sample #	Soil Recovery	Water Level		Lľ	ГНС	DLOGY/I	REMARKS			Fabric	co	WELL MPLET	
41					402	N		Cut.												$\left \right $
42					402	1		12"										\otimes		
43 44					656	N		12"												
45					639	N	@1615)	17"											= === = ==== = ====	@ ~44' bgs
46 47				7.5YR 5/4				16"			- @ 46' beco	nes	brown						= === = ====	top of screen
47				5/4	315	N	Sample (HSRW-1-48	10											= ===	ţ
49	SP				710	N	Samp	21"											= === = === = ===	
50 51								16"											= === = ==== = ====	
52					416	Ν					- @ 52' beco	nes	medium	grained					= === = ===	
53		wet 53'				N		16"			- @ 53' becom			<u></u>					= === = ===	
54 55								Cut.											= === = === = ===	
56	 			10YR		N					- @ 56' beco	nes	very pale	brown					= ==== = ==== = ====	
57				7/3				Cut.											= ====	
58 59			<5					Cut.			- @ 58' becon	nes	well grad	ed w/ trace silt					= === = === = ===	
60																			= === = === = ===	
		1						·····											= ===	
	\sim	cement grou	it	\sim	bentonite seal			filter pac	:ĸ											

LOC	CATION	MAP																	
												OLE	/ WELL			Page	4	of	4
1											HSRW-1			Hobbs South GSA	A (H	olly Energy)			
							Date			/	6 / 2013			Number: 078807					
									y: Just					By: B. Adkins					
Grou	and Elev	otion			Detector				lethod Int: Be		r Rotary nite 40 to	42'		ng Method: Split Sp Grout Interval:		to 40'			
	r Pack S		20 5	and	Delector	. 1 10		Seal/1	IIII. De	mon	Interval:			Hole Dia: 7-7/8''		Depth water End	rounte	red duri	nσ
	ng Type			inu			Dia	meter:	1&4	l in.	Interval:	0		DTW: 53.66' bgs		rilling: 53' bgs		icu uuri	115
	en Type:				Slot: 20				1 & 4		Interval:	44		Well Depth: 64' b					
					(r			ery	Ĩ					· · ·					
Depth	Soil/Rock Type	Moisture Content	% Fines	Color	Vapor (ppm)	Staining	Sample #	Soil Recovery	Water Level		L	ITHC	DLOGY/H	REMARKS		Fabric	СС	WELL MPLET	
60																		= ===	s
											- @ 60' no sa	mple	recovery					= ===	64' bgs
61																		= ===	0 64
62						Ν													@ u
62																			Icree
63																			of a
						Ν												= ===	bottom of acreen
64																		= ===	
																		TD = 6	4'
65																			
											TD = 65 ft-bg	S							
66																			
67																			
67																			
68																			
69																			
70																			
71																			
72			1																
12			1																
73																			
74	[1																
75			1																
76			1																
76			1																
77	 		1																
//																			
78	†		1																
			1																
79			1																
			1																
80			1																
	 		1																
	\sim	cement grou	ıt	>	bentonite seal			niter pac	k										

LOCATIO	N MAP																
										IOLE	/ WELL			Page	1	0	f 4
						-			ber: HSRW-2		-	Hobbs South GS	A (1	Holly Energy)			
						Date			/ 5 / 2013		-	Number: 078807					
									tin Covey I: Air Rotary			By: B. Adkins	-				
Ground Ele	wation			Detector	. PID				entonite 40 t	4 2		ng Method: Split S Grout Interval:		to 40'			
Filter Pack		/20 s:	and	Dettettol	. 1 10		Scal/1	m. D	Interval			Hole Dia: 7-7/8"		Depth water En	counte	red du	rino
Casing Ty						Dia	meter:	1&4				DTW: 53.44' bgs		drilling: 54' bg		ica aa	ing
Screen Typ				Slot: 20			meter:					Well Depth: 64'					
				(1			sry	Π				•			Ĩ		
Depth Soil/Rock Tvne	Moisture Content	% Fines	Color	Vapor (ppm)	Staining	Sample #	Soil Recovery	Water Level]	LITHO	DLOGY/	REMARKS		Fabric	со	WEL MPLE	
SP 1	dry	< 5	5YR 4/6	0.4	N		23"		SAND – (0-22 yellowish red, tr			ed, poorly graded, l l)	loose	e,		l monitor	
2				2.2	N		23"									1" fluid level monitor	
4		5		2.2	1		23"		- @ ~4.5' - ().1' SI	LT seam	- medium plasticit	у,		111		111
6				0	N		23"								111		
8				1.2	N		23		- @ ~8' trac	e calic	he				111		
9 10				0.1	N		20"								111		
11 12		< 5	5YR 6/4	5.7	N		20"		- @ ~10.5 n brown, w/ s			se grained, light rec on	ldish	1	111		////
13				4.1	N		6"		- @ ~12 san (12 - 14.5')	dstone	e interbec	lded with sand as a	bove	e	////		
14 15			5YR 8/4	5.6	N		19"		- @ ~14.5' - cemented	no sa	ndstone,	becomes pink and	50%		111		111
16 17				6.5	N		20"		- @ ~16' - o	dor							
18 19				0.5	N		6"								111		111
20				4.6													
				<u> </u>		<u> </u>											
	cement grou	ıt	>	bentonite seal			filter paci	ĸ									

LOC	ATION	MAP																	
							_				TEST HO	DLE				Page	2	of	4
											HSRW-2		°	Hobbs South GSA (Hol	ly Energy)			
							Dat			2 /	5 / 2013 Covey			Number: 078807 By: B. Adkins					
							_				Lir Rotary			ng Method: Split Spo	n				
Grou	nd Eleva	ation::			Detector	: PID			Int: Be			42'	Sampin			40'			_
_	Pack S		'20 sa	and	2000000					Unite	Interval:		to 64'	Hole Dia: 7-7/8''		pth water Enc	ountere	d during	
	ng Type:						Dia	meter:	1&4	4 in		0		DTW: 53.44' bgs		ling: 54' bgs		0	
	en Type:				Slot: 20			meter:				44		Well Depth: 64' bgs					
					(r			ery	К										
05 Depth	Soil/Rock Type	Moisture Content	% Fines	Color	Vapor (ppm)	Staining	Sample #	Soil Recovery	Water Level		Lľ	ТНО	LOGY/I	REMARKS		Fabric		WELL IPLETIO	N
20			< 5								- @ 20' few sa	andst	one (cali	iche)					\mathbb{N}
21								10"			0 20 100 5		one (eu						$\overline{\ }$
					8.5	Ν													$\overline{\ }$
22																	N		$\overline{\ }$
											@ 22 3' refu	eal w	/ enliten	oon and rockcore sam	alare				\searrow
23		SP < 5																	$\overline{\ }$
	SP		< 5	5YR	7.6		n				$\overline{\ }$								
24																			
																			\mathbb{N}
25								Cut.											\mathbb{N}
26					7.1	Ν													\mathbb{N}
26								<u> </u>											\mathbb{N}
27								Cut.											\mathbb{N}
27					6.7	Ν		Cut.											\mathbb{N}
28					0.7	19													\backslash
20	SP	moist	<5	10YR						SA	AND - (28 - 38')	- fir	e graine	d, loose, poorly graded	1.				\backslash
29	~		~~	6/4				12"						he (mineralization)	-,				$\overline{\ }$
					4.8	Ν													$\overline{\ }$
30																			$\overline{\ }$
																	N		\searrow
31								11"											\searrow
					2	Ν													$\overline{\ }$
32																			
							1	1.07											\mathbb{N}
33							1	10"									\mathbb{N}		\mathbb{N}
24					2.2	N	1										\mathbb{N}		\mathbb{N}
34							1	┣──┤			- @ 34' odor						\mathbb{N}		\mathbb{N}
35		dry	<5					18"			- @ 54 000r						\mathbb{N}		\mathbb{N}
55		ury			21.3	Ν	1	10									\mathbb{N}		\backslash
36					21.5		5)										\mathbb{N}		\backslash
50							@1045)										\mathbb{N}		\backslash
37																	\mathbb{N}		$\overline{\ }$
					53.1		(HSRW-2-38	16"		Ca	aliche - (37 - 38') - lii	mestone	and calcium carbonate	e		\mathbb{N}		$\overline{\ }$
38							M-										\mathbb{N}		J
	SP	moist	<5	5YR			ISR							ained, loose, poorly			\mathbb{N}		\checkmark
39				6/2			e (F				aded, moist, pin						\mathbb{N}		\searrow
					463		Sample	16"		Ca	aliche - (39 - 42') - lii	mestone	and calcium carbonate	e				\smallsetminus
40							Sai												\mathbb{N}
ļ																			\mathbb{N}
							<u> </u>										\mathbb{N}		\geq
		cement grou	t	>	bentonite seal			filter pac	к										

LOCA	ATION	MAP																		
											TEST H	OLE					Page	3	0	f 4
							Tes	t/Well			r: HSRW-2		-	Hobbs South G	SA (Holly	Energy)			
							Dat			2 /				Number: 078807						
							_				n Covey			By: B. Adkins	~					
Carry	d Eleva				Detector	DID		- č			Air Rotary tonite 40 to	42'		ng Method: Split Grout Interval:		on to 4	101			
		ize: 10/	/ 2 0 a	and	Detector	PID		Seal/	Int: B	sent	Interval:			Hole Dia: 7-7/8	-		h water End	ount	arad du	ring
		Sch. 4		anu			Dia	meter:	18	4 ii		42		DTW: 53.44' b g		-	ng: 54' bg s		eleu uu	ing
		Sch. 4			Slot: 20			meter:				-		Well Depth: 64'						
	<u>/ r</u>	~	Ī	[T					Т					~ 8-	<u> </u>				
40 Depth	Soil/Rock Type	Moisture Content	% Fines	Color	Vapor (ppm)	Staining	Sample #	Soil Recovery	Water Level		L	THC	LOGY/I	REMARKS			Fabric	СС	WEL OMPLE	
40					02.2	N		Cut.			- @ ~40' son	ne ch	ert and fi	ne grained sandst	one			\mathbb{X}	*	\mathbb{X}
42	SG	mosit	< 5		93.3	N		22"						medium grained, y, trace caliche, oo		e,		Ŕ		X
43				6/2	425	N				v	ven graded, mois	, pin	kisii giu	y, trace canene, or	101					SS
45 46					244	N		17"											 = == 	 een @ ~44' bgs
40					202	N		1"			- @ 46.3' sar	npler	refusal ((sandstone)					= ==	top of screen
48					202	1		20"			- @ 48' some	e che	t						= ==	=
49 50					166	N		20"											= == = ==	=
51	SP		< 5	5YR 6/4		N	(2 @1100)	12"		gı	raded, moist, rec	ldish	brown, t	grained, loose, po race cemented sar	nd				= == = == = ==	=
52 53							Sample (HSRW-2-52	Cut.			Caliche - (51.5 - 5 ome chert, reddis			e grained sandstor	ne an	nd			= == = ==	=
54	SP	wet	< 5	5YR		N	Sample (F		2	S.	AND - (54 - 60') - fir	ne graine	d, loose, poorly gi	radec	ł,			= == = ==	=
55 56		54'		7/2		N		Cut.		w	vet, pinkish gray								= ==	=
57						N		Cut.			- @ 56' beco	mes	medium	to coarse grained					= ==	=
58											- @ 58' beco	mes	well grad	ed w/ trace silt					= ==	=
59 60						N		Cut.											= == = ==	- = -
							<u> </u>												= ==	=
C		cement grou	ıt	\times	bentonite seal			filter pac	k											

LOCATION I	MAP																			
										TEST H	IOLE	/ WELL					Page	4	0	f 4
						Test	t/Well			SRW-2		, i i i i i i i i i i i i i i i i i i i				Holly	v Energy)			
						Date				/ 2013				r: 07880	7					
						_			tin Cov	-		Drilled								
				D	DID				: Air F		101			nod: Spli			401			
Ground Eleva Filter Pack Siz		0		Detector	PID		Seal/I	nt: Be	entonite	e 40 to Interval:		to 64'		Interval:		to	40 [.] th water End			
Casing Type:			na			Dia	meter:	1 & 4	l in	Interval:				53.44' k			ing: 54' bgs		ieu uu	mg
Screen Type:				Slot: 20			meter:			Interval:					0		l depth: 64'			
bereen Type.		, 				Dia				inter vui.		10 04	Well B	opui. o		100				
	Moisture Content	% Fines	Color	Vapor (ppm)	Staining	Sample #	Soil Recovery	Water Level		I	LITHC)LOGY/I	REMAF	RKS			Fabric	CO	WEL MPLE	L ETION
60 GS 61	wet	< 5	5YR 6/3		N		Cut.			GRAVEI l, wet, pin			fine grai	ned, loos	se, poo	orly			= ==	@ 64' bgs
62 SP 63			5YR 6/2		N		Cut.			GRAVEI l, wet, pin			fine grai	ned, loos	se, poo	orly				bottom of acreen 6
64									T) = 64 ft-bį	-								= == = == TD =	
65									12		55								10 -	01
66 67																				
68																				
69																				
70																				
72																				
73																				
74																				
76																				
77							······													
78																				
80																				
	ement grout	[1	\sim	bentonite seal			filter pac	k												

LOC	CATION	MAP															
										TEST HOLE				Page	1	of	3
							-			per: SB-1	, i	: Hobbs South GSA (Holl	y Energy)			
							Dat			/ 3 / 2013	č	Number: 078807					
							_	· .		tin Covey		By: B. Adkins					
Creat	ind Eleva				Detector	DID				: Air Rotary	Sampli	ng Method: Split Spo Grout Interval: 0	on to	551			
	r Pack S		20 66	nd	Detector	PID		Seal	Int: Be	entonite to Interval:	to	Hole Dia: 7-7/8 "		oth water End	ounto	rod dur	ina
	ng Type:			illu			Dia	meter:	1&4		to	DTW: N/A		ling: 53' bgs		ieu uui	mg
	en Type:				Slot: 20				1&4		to	Well Depth: N/A		al depth: 55'			
Sere	en rype.	Sent .	, ,		T						10	Weil Depuil 1012	100		~8~		
Depth	Soil/Rock Type	Moisture Content	% Fines	Color	Vapor (ppm)	Staining	Sample #	Soil Recovery	Water Level	LITHO	DLOGY/	REMARKS		Fabric	со	WELI MPLE	
	ML	dry	5	10YR						SILT - (0 - 2') - low pl	lasticity	hard dry brown trac	e				
1				4/3				20"		caliche, odor	lusticity,	nurd, dry, brown, due	C				
					47.2	Ν				- @ ~0.8' - Caliche	e seam ~	0.15'					
2																	
	SP	dry	< 5	10YR			6			SAND - (2 - 4') - fine		loose, poorly graded, o	dry,				
3				6/2	516	N	@1345)	20"		light brownish gray, oc	lor						
4	CM	,	~														
5	SM	dry	5	10YR 5/6													
5				3/0													
6																	
0				10YR													
7				6/1	ed cemented sand, dry,	gray	,										
8																	
						eathered crude present											
9								6"		within fractures							
					247	Y											
10																	
11								4.11									
11					151	Y		4"									
12					151	I											
12										- @ ~12 becomes a	weathere	ed and brittle, no staini	ng				
13								5"				in the critic, no stalling	5				
					479	Ν											
14																	
										- @ ~14' some fine	e grained	l sand					
15								10"									
ļ					557	Ν											
16																	
17								17"									
17					70.4	N.T.		17"									
18	.				724	N											
10	SP	dry	< 5	10YR				 		SAND - (18 - 22') - me	edium a	rained loose poorly					
19	51	ury	~ 3	10YR 5/3		N		6"		graded, dry, brown, few							
				5,5	154	14		0		,,,, io							
20					104												
		cement grou	t	\sim	bentonite seal			filter pac	:ĸ								

TEST HOLE / VIEL LOG Page 2 of 3 Test/Well Number 38-1 Project Holds South GSA (Holds Karray) Interview	LOC	CATION	MAP					I												
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $																	ě	2	0	f 3
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$								Tes	t/Well	Num						Hol	lly Energy)			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $								-												
								_												
Filter Pack Size: 10/20 andInterval: 10Interval: 10Interval: 10Interval: 10Consist press Sch. 40Slot: 20Diameter: 1 & 4 In.Interval: 10DTW: NATotal depti: S5 bgs $\frac{1}{20}$ <t< td=""><td>C</td><td>1.51</td><td></td><td></td><td></td><td></td><td>DID</td><td></td><td></td><td></td><td></td><td></td><td></td><td>pliı</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	C	1.51					DID							pliı						
Casing Type: Sch. 40Slot: 20Diameter: I & 4 In.Intervat:toDTW: N/Aduiling: 53 hgsScreen Type: Sch. 40Slot: 20Diameter: I & 4 In.Intervat:toWell Depti: N/ATotal depti: 55 hgs $\frac{1}{20}$ $\frac{1}{99}$ 20 $\frac{1}{99}$ <td< td=""><td>_</td><td></td><td></td><td>20 ~</td><td>nd</td><td>Detector</td><td>: PID</td><td></td><td>Seal/</td><td>Int: Be</td><td>entonit</td><td></td><td></td><td></td><td></td><td></td><td></td><td>t</td><td>anad du</td><td></td></td<>	_			20 ~	nd	Detector	: PID		Seal/	Int: Be	entonit							t	anad du	
Strem Type:Sch. 40Ski: 20Diameter: 1 & 4 in: Interval:toWell Depti: N/ATotal depti: S5 bgs $\frac{9}{9}$ <td></td> <td></td> <td></td> <td></td> <td>and</td> <td></td> <td></td> <td>Die</td> <td>motor</td> <td>18.</td> <td>1 in</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>ered du</td> <td>ring</td>					and			Die	motor	18.	1 in								ered du	ring
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						Slot: 20														
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Bere	en rype.				I		Diu			1	inter vai.	10		Weir Depui. 1971	10		153		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Depth 50	Soil/Rock Type	Moisture Content	% Fines	Color	Vapor (ppm	Staining	Sample #	Soil Recove	Water Level		L	ITHOLOGY	Y/F	REMARKS		Fabric	С		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	21			< 5					1"		-	@ 20' sand	becomes ce	eme	ented					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						253	Ν			2										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	22			< 5	10YR				<u> </u>		Calic	he - (22 - 30)') - fine gra	ine	ed cemented sand, poo	orly				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	23					564	N		Cut.							-				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	24					304	IN													
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	25								Cut.											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						409	Ν													
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	26																			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	27								Cut.											
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	20					300	N													
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	20	SP	moist	<5	10YR								-			1,				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	29				6/4	202	N		Cut.		moist	, pinkish wł	nite, few cal	licł	he (mineralization)					
31 $6/4$ 111 N 16° moist, light yellowish brown, trace cemented sand, odor 32 33 G $G/4$ 111 N $G/4$ $G/4$ $G/4$ $G/4$ 33 $G/4$ $G/4$ $G/4$ $G/4$ $G/4$ $G/4$ $G/4$ $G/4$ 33 $G/4$ $G/4$ $G/4$ $G/4$ $G/4$ $G/4$ $G/4$ 34 $G/4$ $G/4$ $G/4$ $G/4$ $G/4$ $G/4$ 36 $G/4$ $G/4$ $G/4$ $G/4$ $G/4$ $G/4$ 38 $G/4$ $G/4$ $G/4$ $G/4$ $G/4$ $G/4$ 39 $G/4$ $G/4$ $G/4$ $G/4$ $G/4$ $G/4$ 40 $G/4$	30					383	IN													
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		SP	moist	< 5	10YR															
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	31				6/4				16"		moist	, light yellov	wish brown	, tr	ace cemented sand, oc	lor				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						111	Ν													
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	32																			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	33																			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	34					312	N													
36 $10YR$ 125 N $-@ \sim 36'$ becomes grayish brown, trace silt $-@ \sim 36.5'$ Caliche layer (0.15') 37 GP $5/2$ 455 Y $-@ \sim 36.5'$ Caliche layer (0.15') 38 $-@ \sim 36.5'$ Caliche layer (0.15')Sandy GRAVEL - (36.65 - 40') - fine grained, loose, poorly graded, moist, staining, odor, fine grained sand, few chert 39 $-@ \sim 46.7'$ Y $16''$ 40 $-@ \sim 100000000000000000000000000000000000$																				
36 $10YR$ $10YR$ $- @ ~36'$ becomes grayish brown, trace silt 37 GP moist 5 $5/2$ 455 Y 38 $- @ ~36.5'$ Caliche layer (0.15')Sandy GRAVEL - (36.65 - 40') - fine grained, loose, poorly graded, moist, staining, odor, fine grained sand, few chert 39 $- @ ~16''$ $- @ ~16''$ 40 $- @ ~16''$ $- @ ~16''$	35					125	N		Cut.											
37 GP moist 5 5/2 455 Y 16" - @ ~36.5' Caliche layer (0.15') 38	36					123	IN													
38 455 Y Sandy GRAVEL - (36.65 - 40') - fine grained, loose, poorly graded, moist, staining, odor, fine grained sand, few chert 39 647 Y 16" 40 — — — … … … …		05		-					1											
38	37	GP	moist	5	5/2	455	Y		16"				-							
39 647 Y 16" 40	38										poorl	y graded, me				d,				
40 647 Y 16"	30										tew c	nert								
	39					647	Y		16"											
cement grout bentonite seal initer pack	40																			
cement grout bentonite seal Initer pack																				
			cement grou	t	\sim	bentonite seal			filter pac	:k										

		MAP																
												OLE / WELL			Page	3	of	3
									Numb	ber: S		ě	: Hobbs South GSA ((Hol	ly Energy)			
							Date				3 / 2013		Number: 078807					
							_			tin Co			By: B. Adkins					
											Rotary	Sampli	ng Method: Split Spo					
	und Eleva				Detector	: PID		Seal/	Int: Be	entonit					55'			
	r Pack S			and							Interval:	to	Hole Dia: 7-7/8"		pth water Enco	ounter	ed duri	ng
	ng Type:							meter:			Interval:	to	DTW: N/A		lling: 53' bgs			
Scre	en Type:	Sch. 4	-0	-	Slot: 20		Dia	meter:	1&4	1 in.	Interval:	to	Well Depth: N/A	Tot	tal depth: 55' l	ogs		
05 Depth	Soil/Rock Type	Moisture Content	% Fines	Color	Vapor (ppm)	Staining	Sample #	Soil Recovery	Water Level		LI	THOLOGY/	REMARKS		Fabric		WELL 1PLET	
41	SC	moist	<5	10YR 5/3	491	Y	@1400)	22"				(40 - 41.5') - bist, brown, o	medium grained, dens dor,	se,				
42 43	SP	mosit	< 5	6/2			Sample (SB-1-42	20"		grade		k yellowish t	m grained, dense, poor prown, few chert and	rly				
44					883	Y	Sample			-	@ ~43.5' Ca	aliche layer (().2')					
45 46					440	N		17"										
47					389	N		18"										
48					389	N												
49 50					352	N		13"										
51 52	SP		< 5	5YR 6/4	245	N		14"										
53		wat				N		6"										
54		wet				N			<u> </u>	-	@ ~53' becc	omes wet						
55 56																Т	D = 5	5'
57																		
58 59																		
59 60																		
		cement grou	ıt	\geq	bentonite seal			niter pac	ĸ									

LOC	ATION	MAP															
										TEST HOLE				Page	1	of	3
							Tes	t/Well	Numł	ber: SB-2	-	: Hobbs South GSA (Holly	y Energy)			
							Dat			/ 2 / 2013	-	Number: 078807					
										tin Covey		By: B. Adkins					
								- <u> </u>		: Air Rotary	Sampli	ng Method: Split Spoo					
_	nd Eleva				Detector	: PID		Seal/	Int: Be	entonite to			to				
	Pack S			and						Interval:	to	Hole Dia: 7-7/8"		th water Enc		ed duri	ng
	ng Type:							meter:			to	DTW: N/A		ing: 55.5' bg			
Scree	en Type:	Sch. 4	0		Slot: 20		Dia	meter:	1&4	in. Interval:	to	Well Depth: N/A	Tota	al depth: 57' I	ogs		
Depth	Soil/Rock Type	Moisture Content	% Fines	Color	Vapor (ppm)	Staining	Sample #	Soil Recovery	Water Level	LITHC)LOGY/	REMARKS		Fabric		WELL 1PLET	
	ML	dry	5	5YR						-	lasticity,	stiff, dry, reddish brov	vn,				
1				4/3				20"		few caliche							
					0.0	Ν											
2										- @ ~1.5' -trace fir							
		dry	< 5	7.5YR							ne graine	ed cemented sand, dens	e,				
3				8/1	0.2	NT		23"		angular, dry, white							
					0.2	Ν											
4																	
5								21"									
5					0.0	Ν		21									
6					0.0	11											
-				5YR						- @ ~6' -becomes	pink						
7				7/3				18"			L						
					0.3	Ν											
8																	
											have we	eathered crude present					
9								18"		within fractures							
					0.2	Ν											
10																	
				7.5YR						- @ ~10' becomes	dense ar	nd pinkish white					
11				8/2				20"									
12					0.1	Ν											
12							1			- @ ~12 trace oran	100 m-41	ling			1		
13							1	10"		- w ~12 trace oran	ige mottl	ung			1		
13					0.7	N		10							1		
14					0.7	14	1								1		
				5YR						- @ ~14' becomes	white. n	o mottling					
15				8/1				6"			,	e de la constante de			1		
					0.3	Ν	1								1		
16															1		
															1		
17							1	4"							1		
					0.0	Ν											
18															1		
							1								1		
19						Ν	1	10"							1		
ļļ					1.0										1		
20							1								1		
ļ																	
							<u> </u>										
ſ		cement grou	t	\sim	bentonite seal			filter pac	k								

LOCATION MAP			
	TEST HOLE /		Page 2 of 3
		Project: Hobbs South GSA ((Holly Energy)
	Date: 2 / 2 / 2013	Project Number: 078807	
	Logged by: Justin Covey	Drilled By: B. Adkins	
	Drilling Method: Air Rotary	Sampling Method: Split Spo	
Ground Elevation:: Detector: PII			to 57'
Filter Pack Size: 10/20 sand	Interval: Diameter: 1 & 4 in. Interval:		Depth water Encountered during drilling: 55.5' bgs
Casing Type: Sch. 40 Screen Type: Sch. 40 Slot: 20	Diameter: 1 & 4 in.Interval:Diameter: 1 & 4 in.Interval:	toDTW: N/AtoWell Depth: N/A	Total depth: 57' bgs
			Total depuit. 57 bgs
02 Depth Soil/Rock Type Moisture Content % Fines Color Vapor (ppm)	Sample # Soil Recovery Water Level	LOGY/REMARKS	E COMPLETION
21 7.5YR 7/3 1.1	- @ 20' becomes pi	ink	
22 5YR 23 8/2	- @ 22' becomes pi	inkish white, trace chert	
24 0.8 N	- @ 24' becomes w	hite	
25 8/1 26 0.6 N	Cut.		
27 0.5 N 28	Cut.		
29 10YR 6/4 0.8 30 0.8	- @ 28' no chert pr	esent	
31 10YR 6/4 1.2 32 1.2	<u> </u>		
33 0.3 N 34	6"		
35 1.6 N	- @ 34' trace odor		
36 10YR 37 GP 5 5/2 37 3.7 N	- @ ~36' few chert 12" - @ ~37' some grav	present vel size angular caliche	
38 39 39 354 N	Cut.		
cement grout bentonite seal	Tuter pack		

LOC	ATION	MAP																	
											TEST HOL					Page	3	of	3
										ber: SB-2			: Hobbs South		Holly	y Energy)			
							Date				2013		Number: 0788						
							-			tin Covey			By: B. Adkins						
Crow	ind Elev	otionu			Detector	. DID				l: Air Rot entonite	ary to	Sampli	ng Method: Sp Grout Interval		on to	571			
	r Pack S		20 6	and	Detector	PID		Seal/	Int: Be		nterval:	to	Hole Dia: 7-2			th water End	counter	od dur	ina
	ng Type			anu			Dia	meter:	1&4		nterval:	to	DTW: N/A	//0		ing: 55.5' b		cu uur	ing
	en Type				Slot: 20			meter:			nterval:	to	Well Depth:	N/A		Il depth: 57'			
Sere	en rype.				I		2						i en Depui		1000	li depuit e i	~5~		
6 Depth	Soil/Rock Type	Moisture Content	% Fines	Color	Vapor (ppm)	Staining	Sample #	Soil Recovery	Water Level		LITH	IOLOGY/	REMARKS			Fabric	CO	WELI MPLEI	
40	SP	moist	~5	7.5YR						SAND	(40 52)	madium a	rained, stiff, po	orly and	dad				
41	51	moist	\sim	7.51K			@1015)	14"			(40 - 32) -			ony gra	ueu,				
-11				5/0	1434	Ν				1110130, 50	iong brown,	concarve,	odor						
42		1			1.51														
F		1					B-2.												
43		1					Sample (SB-2-40	Cut.											
		1			27	Ν	nplé												
44		1					Sar												
45								17"											
					1	Ν													
46																			
47								12"											
10					0.3	Ν													
48							_				402	@ 1"							
49)30)	1"		- @ ~	-48' refusal	w I							
49					1.2	N	@ 1030)	1											
50					1.2	1	50												
50		1					Sample (SB-2-50												
51							(SI	Cut.											
					3.1	Ν	nple												
52		1					San												
		moist		5YR						Caliche ·	- (52 - 55.5') - fine gra	ained cemented	sand,					
53]		8/1				Cut.			ngular, dry, v								
		l			4.2	Ν													
54]																	
55		ļ						16"											
	CD.		-		8.2	Ν			2					_					
56	SP	wet	<5										ned, loose, poo	orly grade	ed,				
57		-		7/3						wet, pink	, trace odor								
57			-				-										7	TD = 5	7'
58		1																כ = ט	/
50		1																	
59		1																	
59		1																	
60		1																	
		1																	
		1																	
		cement grou	ıt.	\sim	bentonite seal			filter pac	k										
		-					·												

LOC	ATION	MAP															
										TEST HOLI				Page	1	of	f 3
							Test	/Well		ber: SB-3	-	t: Hobbs South GSA	(Hol	lly Energy)			
							Date			/ 3 / 2013		t Number: 078807					
							_			tin Covey		By: B. Adkins					
C					D	DID				: Air Rotary	Sample	ing Method: Split Spo		- 50			
	nd Elev	ation:: ize: 10/	20 ~		Detector	: PID		Seal/	Int: Be	entonite to Interval:	40	Grout Interval: Hole Dia: 7-7/8''		56' The water Enc			
		: Sch. 4		ina			Dia	meter:	1 8- /		to to	DTW: N/A		epth water Enc		rea aui	ng
		Sch. 4			Slot: 20			meter:			to	Well Depth: N/A		otal depth: 56'			
Seree	II Type.	. 5cn. 4			T		Dia			m. mervar.	10	well Depui. IVA	10	hai uepui. 50	ugs		
Depth	Soil/Rock Type	Moisture Content	% Fines	Color	Vapor (ppm)	Staining	Sample #	Soil Recovery	Water Level	LITH	OLOGY/	REMARKS		Fabric	CO	WELI MPLE	
	ML	dry	80	-								lasticity, very stiff, dry					
1				3/3				18"		dark reddish brown,	trace calic	che, few fine grained s	and				
					0	Ν											
2										- @ ~2' becomes	hard						
3								12"		- @ ~2 becomes	naru						
5					0	Ν		12									
4					0	11											
		dry	<5	10YR						Caliche - (4 - 12') - f	ine graine	ed sand, angular, dry,	verv				
5)		5/2				16"		pale brown	ine grund	sund, ungulur, ury,	very				
					0	Ν				1							
6																	
7								6"									
					0	Ν											
8																	
9								6"									
					1	Y											
10																	
11					0.4	37		12"									
12					9.4	Y											
12	SP	dry	<5	5VD						SAND - (12 17 2)	fine area	ined, loose, poorly grad	ded		1		
13	51	ary	\sim	5YR 6/4				20"				angular gravel caliche					
15				0/7	0.9	Ν		20		,, <u>.</u> ,	,	garan garan eurone			1		
14					0.7	- '											
		1															
15		1		5YR				16"		- @ ~14.5' becon	nes 5YR 7	7/3			1		
		1		7/3	1.1	Ν											
16		1													1		
17								10"									
		dry	<5	10YR	3.3	Ν						ained cemented sand,			1		
18				8/2						angular, dry, very pal	e brown						
ļ																	
19						Ν		4"							1		
					13.1												
20																	
			I			1	<u> </u>			<u> </u>							
		cement grou	L	\sim	bentonite seal		L	filter pac	r								

LOC	ATION	MAP																
											TEST HOLE				Page	2	of	3
							-	t/Well				-	t: Hobbs South GSA	(Holl	ly Energy)			
							Date			/	3 / 2013		t Number: 078807					
								ged by					By: B. Adkins					
C	1.51				D / /	DID		-			Rotary	Sampli	ing Method: Split Spo	on 0 to	50			
	ind Elev r Pack S		/ 20 at	and	Detector	: PID		Seal	Int: Be	enton	ite to Interval:	to	Grout Interval: Hole Dia: 7-7/8''		pth water End	ounto	od dur	
	ng Type			ana			Dia	meter:	1 &	1 in	Interval:	to to	DTW: N/A		pin water End lling: 53.5' b		ed dur	ing
	en Type:				Slot: 20			meter:			Interval:	to	Well Depth: N/A		al depth: 56'			
Bere	en rype.	Jen I	Ī				Dia				intervui.	10	Weir Deptil. 1011	100		250		
05 Depth	Soil/Rock Type	Moisture Content	% Fines	Color	Vapor (ppm)	Staining	Sample #	Soil Recovery	Water Level		LITH	OLOGY/	REMARKS		Fabric	CO	WELI MPLE	
			< 5															
21								4"										
					1.2	Ν												
22																		
			< 5				1	<i>.</i>		1 .	- @ 22' becomes	pinkish g	gray					
23				7/2				Cut.										
24	5YR - @ 24' becomes white 8/1 Cut.																	
24	5YR - @ 24' becomes white 8/1 Cut.																	
25																		
25																		
26	8/1 0.7 N Cut.																	
	0.7 N																	
27	0.7 N Cut.																	
	0.7 N																	
28		Cut.																
29								Cut.										
					1	Ν												
30																		
				5YR							- @ 30' becomes	pinkish v	white					
31			1	8/2	1.2	NT	1	Cut.		1								
32					1.3	N												
32			1				1			1								
33								Cut.										
			1		1.1	Ν	1			1								
34					1													
			1				1			.	- @ 34' becomes	pinkish g	gray					
35					1			Cut.										
			1		1.3	Ν	1			1								
36			1				1			1								
]			1	5YR			1			·	- @ ~36' become	s light gra	ay, trace odor					
37			1	7/1			1	Cut		1								
					477	Ν												
38			1				1			1								
39					1			10"										
39	SP	dry	<5	5VD	742	N		10		SAN	JD - (39 - 40') f	ine oraina	ed, loose, poorly grade	d				
40	51	ary		5YR 5/2	/42	11	1	·			reddish gray, trac		a, ioose, poorty grade	ч,				
40			1	512			1			, , , , , , , , , , , , , , , , , , ,								
h								·····										
·	<	cement grou	ıt		bentonite seal			tilter pac	ĸ									
		grou		\sim			<u>ــــــ</u>											

LOCATION	N MAP																
										TEST HOLE				Page	3	of	3
						Tes	t/Well			: SB-3	-	:: Hobbs South GSA ((Holl	y Energy)			
						Dat			2 /		-	t Number: 078807					
						_				Covey		By: B. Adkins					
G 1 E1					DID					Air Rotary	Sampli	ing Method: Split Spo		-			
Ground Ele Filter Pack		20		Detector	: PID		Seal/	Int: Be	ento	onite to Interval:	40	Grout Interval: 0 Hole Dia: 7-7/8'') to	56' oth water End			
Casing Typ			ana			Die	meter:	1 8.	/ in		to to	DTW: N/A		ling: 53.5' b		ea aur	ing
Screen Typ				Slot: 20			meter:				to	Well Depth: N/A		al depth: 56'			
Sciecii Typ	. 5011. 4								1		10	Wen Depui. 10A	100		bgs		
05 Depth Soil/Rock Type	Moisture Content	% Fines	Color	Vapor (ppm)	Staining	Sample #	Soil Recovery	Water Level		LITHO	DOGY/	REMARKS		Fabric	CO	WELI MPLE	
41				873	N	@1530)	18"			- @ ~40' few grave	el size ch	hert fragments					
42 43	-		5YR 6/3			Sample (SB-3-40	20"			- @ ~42' becomes]	light red	ldish brown					
44	-			612	Ν	Sampl											
45 46				140	N		22"			- @ ~44.8' few con	ncretions	5					
47				51.9	N		14"			- @ ~46' trace cond brown	cretions,	, no chert, becomes red	ldish				
48	-		5YR 7/1	222	N	@1545)	12"			- @ ~48' few horiz layers, becomes lig		laminated limestone ca trace concretions	liche				
50	-		5YR 6/2	333	N	ple (SB-3-50 (12"			- @ ~50' becomes j	pinkish	gray					
51 52 SM		-5		891	N	Sample	12		C:	14. SAND (52 56)) fina	grained, loose, poorly					
53 54	wet	<5	5YR 6/2	984	N		12"			aded, moist, pinkish - @ ~53.5' become	gray, tra						
55							8"				2						
56	-																
57						T										ΓD = 5	56'
58	-																
59	-																
60																	
	<u> </u>	<u> </u>															
\sim	cement grou	it	>	bentonite seal			filter pac	ĸ									

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	LOCATI	ON MAP															
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$														-	1	of	3
$ \begin{array}{ c $							Tes	t/Well			-		Holly	y Energy)			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							-										
Cound Lievation: Deletor: PD Seal Int Beatonic Cound Interval: 0 Cound Interval: 0 S4* Casing Type: Sch. 40 Solution: Solutio																	
Pitter Pack Stype:1020 sandInterval:toHole Pits. 7-78"Deprivator Hacontrol during: during:Caster Type:Sch. 40Slot:20Diameter:1 & 4 in.Interval:toWell Depti:NAdolling:51 bgsScreen Type:Sch. 40Slot:20Diameter:1 & 4 in.Interval:toWell Depti:NATotal depti:54' bgs $\frac{1}{90}$ $\frac{1}{$	C				D	DID					Sampli			5.41			
Caster Type: Sch. 40Slot 20Diameter: 18 4 in.Interval:toPTW: NAdrifting: \$37 bgsScreen Type:Sch. 40Slot 20Diameter: 18 4 in.Interval:toPTW: NATotal depth: \$47 bgsgg <thg< th="">g</thg<>			/20 a	and	Detector	PID		Seal	Int: Be		to				ountor	ad duri	na
Seven Type:Sch. 40Site: 20Diameter: 1.4 4 inInterval:toWell Depth: NATotal depth: 54' bgs $\frac{1}{2}$ $\frac{1}$				anu			Dia	meter:	1&4						Junter		ng
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					Slot: 20										ogs		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	~	r	Γ												8		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Depth Soil/Rock	1 ype Moisture Content	% Fines	Color	Vapor (ppm	Staining	Sample #	Soil Recove	Water Leve	LITHO	DLOGY/	REMARKS		Fabric			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	M	_ dry	70	5YR						SILT - (0 - 2.4') - low	plasticit	y, very stiff, dry, dark					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				3/3													
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					0	Ν											
3	2																
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2	dry	10					10"					ted,				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	5			8/2	0.2	N		18		dry, very pare brown, e	Unesive	, iew concretions					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4																
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	SN	5/6 22"															
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	5			5/6													
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					1.2	Ν											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	6																
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								Cut		@ . 6.5' higher p		of organization	tion				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	/			0/1	0.4	N		Cut.		- @ ~0.5 higher pi	esence	or crystamme mineraliza	ation	L			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	8				0.4	1											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $																	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	9							Cut.									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					0.2	Ν											
111N $-@ \sim 10.6'$ minimal crystalline mineralization, non-cohesive125YR- $-@ \sim 12$ becomes hard, and white130.5N-14-0N150N-16-0N170.5N-180.2N-190.2N-20-0.2N	10							<u> </u>									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	11									@ 10.6' minima	1 om istal	line mineralization nor					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	11				1	N		Cut.			li ci ystai	nne mineranzation, noi	1-				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					1	11											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			1	5YR						- @ ~12 becomes l	hard, and	d white					
14	13		1	8/1			1										
15 0 N Cut. 16 0 N Cut. 17 0.5 N Cut. 18 0.5 N Cut. 19 0.2 N Cut. 20 0.2 N Cut.			1	1	0.5	Ν	1										
16 0 N - @ ~16 becomes very stiff and blocky 17 0.5 N - @ ~16 becomes very stiff and blocky 18 0.5 N - . . 19 0.2 N . . . 20 	14	_	1	1			1	<u> </u>									
16 0 N - @ ~16 becomes very stiff and blocky 17 0.5 N - @ ~16 becomes very stiff and blocky 18 0.5 N - . . 19 0.2 N . . . 20 	15		1	1			1	Cut									
16 - @ ~16 becomes very stiff and blocky 17 0.5 N 18 - @ ~16 becomes very stiff and blocky 19 0.2 N 20 - @ -16 becomes very stiff and blocky	15	_	1	1	0	N	1	Cut.									
17 0.5 N Cut. 18 0.5 N Cut. 19 0.2 N Cut.	16		1	1		- 1	1										
0.5 N 18 0.5 19 0.2 0.2 N			1							- @ ~16 becomes v	very stift	f and blocky					
18 19 0.2 N	17		1	1			1	Cut.									
19 0.2 N Cut. 20			1		0.5	Ν											
20 0.2 N	18	_	1	1			1	<u> </u>									
20 0.2 N	10		1					C174									
	17		1	1	0.2	N	1	Cut.									
	20		1		0.2	11											
			1														
cement grout bentonite seal initer pack		cement grou	ıt	\sim	bentonite seal			tilter pac	k								

LOCATION MAP														
		TEST HOLE			Page	2 of 3								
	Test/Well Num		-	: Hobbs South GSA (Holly Energy)									
		2 / 1 / 2013		t Number: 078807										
	Logged by: Jus			By: B. Adkins										
	Drilling Metho	-	Sampli	ing Method: Split Spoo Grout Interval: 0										
Ground Elevation:: Detector: Pl Filter Pack Size: 10/20 sand	D Seal/Int: B	Bentonite to Interval:	to	Hole Dia: 7-7/8''	to 54'	ncountered during								
Casing Type: Sch. 40	Diameter: 1 &		to	DTW: N/A	drilling: 53' b									
Screen Type: Sch. 40 Slot: 20	Diameter: 1 &		to	Well Depth: N/A	Total depth: 54									
				F										
07 Depth Soil/Rock Type Moisture Content % Fines Color Vapor (ppm)	Sample # Soil Recovery Water Level	LITHC	DLOGY/	REMARKS	Fabric	WELL COMPLETION								
21	14"													
0.2 M														
22 5YR		- @ 22' becomes p	inkich u	shita										
23 31K 8/2	6"	- @ 22 becomes p	IIIKISII W	Ante										
0.1														
24														
		- @ 24' becomes w	hite											
	8/1 0 N													
26														
27														
0 1														
28														
29	10"													
0.3 M														
30 5YR		- @ 30' becomes p	inkich u	vhita										
31 31 31 8/2	8"	- @ 50 becomes p	IIIKISII W	Ante										
0.2 M														
32														
33	10"	- @ 32.6' limeston	e seam (2.5" thick)										
0 N														
34														
35 SP dry <5 5YR	20"	SAND - (34.5 - 2.4') -	fine gra	ined, loose, poorly grad	led,									
50 51 ary 6 51 k 5/4 0.6 M		dry, reddish brown,	6 .											
36		- @ ~35.6' trace m	edium g	ravel size caliche										
37 5YR	16"		es pinkis	sh gray, few chert, trace										
6/2 118 N		odor												
38														
39	12"													
53.4 M														
40														
cement grout bentonite seal	filter pack													

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	LOC	ATION	MAP																
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$																-	3	of	3
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$								-					-		Holl	y Energy)			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$													-						
Consistence PUDScalute: Beacher PUDScalute: Beacher PUDScalute: Beacher PUDScalute: Beacher PUDConstant Type: Sch. 40Solut: 20Diameter: 1 & 4 in.Intervai: toDTW: N/ATotal depth sets Encounceed during during 53' bgsScreen Type: Sch. 40Slot: 20Diameter: 1 & 4 in.Intervai: toDTW: N/ATotal depth: 54' bgsgg40G7,5YR66125Yggggg41G7,5YR66125Ygggggg43GGNGGGG- @-42' becomes light brown.trace chert4415.6NGGGG- @- G-45' caliche scam (1.5')- @43GGNGGG- @- G- G- G- G44GNGGGG- @- G- G- G- G43GGNGGG- G- G-																			
Ther PLA: Size: 10/20 sundInterval: 10/2 Dimeter: 1.8.4 in.Interval: 10/20 Interval: 10	C	1.51				D ()	DID						Sampli			5.41			
Casing Type: Sch. 40Solv. 20Diameter: 1 & & 4 in.Interval: toUPU: NAduiling: 53' bgsSereen Type:Sch. 40Slot. 20Diameter: 1 & & 4 in.Interval:toWell Depth: N/ATotal depth: 54' bgs $\frac{1}{22}$ $\frac{1}{23}$				20 ~	d	Detector	: PID		Seal/	Int: Be	entoni		40					نسبه اس	
Screen Type: Sch. 40 Soit: 20 Diameter: It A 4 in. Interval: to Well Depth: NA Total depth: 54 bg $\frac{4}{9}$ $\frac{4}{9}$ $\frac{4}{9}$ $\frac{4}{9}$ $\frac{4}{9}$ $\frac{4}{9}$ $\frac{6}{9}$ $\frac{6}{9}$ $\frac{6}{9}$ $\frac{6}{9}$ $\frac{6}{9}$ $\frac{1}{9}$ $\frac{1}{10}$ $1000000000000000000000000000000000000$					and			Die	motor	1 8. /	lin								ng
wet suggested sugg						Slot: 20													
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Bere	en rype.	. 5 c n, 4								·	intervai.	10	Wen Depui. 10/A	100		ugs		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	05 Depth	Soil/Rock Type	Moisture Content	% Fines	Color	Vapor (ppm)	Staining	Sample #	Soil Recover	Water Level		LITHO	DLOGY/	REMARKS		Fabric			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							V	@1025)	22"		-	@ ~40' becomes	light bro	own, trace chert					
45 7.5YR 15.6 N 177 - @ ~44' becomes light brown 46 61.8 N 15.6 N 18° - @ ~45' caliche scam (1.5") 47 61.8 N 18° - @ ~48' becomes pink - @ ~48' becomes pink 49 61.8 N 61.8 N 61.8 N 61.8 N 50 $57R$ 168 N 61.8 N 61.8 N 61.8 N 61.8 N 61.8 N 61.8 61.8 N 61.8 61.8 N 61.8 61.8 61.8 61.8 7.578 61.8 7.578 61.8	42				7.5YR		Ŷ				-	@ ~42' becomes	reddish	yellow					
45 7.5YR 15.6 N 177 - @ ~44' becomes light brown 46 61.8 N 15.6 N 18° - @ ~45' caliche scam (1.5") 47 61.8 N 18° - @ ~48' becomes pink - @ ~48' becomes pink 49 61.8 N 61.8 N 61.8 N 61.8 N 50 $57R$ 168 N 61.8 N 61.8 N 61.8 N 61.8 N 61.8 N 61.8 61.8 N 61.8 61.8 N 61.8 61.8 61.8 61.8 7.578 61.8 7.578 61.8	43				6/6	19	Y	Sample (\$	20"										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	45					15.6	N		17"				-						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						13.0	IN				-	[™] ~45 canche s	eam (1.5)					
49 7.5YR 7.5YR 168 N Image: Sign of the system	47					61.8	N												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							Ŋ	۵ 1035)	13"		-	@ ~48' becomes	pink						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	50				5YR	168	N	B-4-50 (
53 wet N $6"$ \bullet 54 \bullet \bullet \bullet \bullet 55 \bullet \bullet \bullet 55 \bullet \bullet \bullet 56 \bullet \bullet \bullet 57 \bullet \bullet \bullet 58 \bullet \bullet \bullet					6/4	460	N	sample (S	14"										
54			Trick				NT					@ . 52' harrow	wot						
55 I I I TD = 55' 56 I I I 57 I I I 58 I I I			wet				IN				_	w ~ در س	wet						
57																	Г	'D = 5	5'
58																			
59	58																		
	60																		
cement grout bentonite seal Initer pack	L		cement grou	t	\sim	bentonite seal			filter pac	:k	1								

LOCATION MAP					
		LE / WELL		Page	1 of 3
	Test/Well Number: SB-5		: Hobbs South GSA (Holly Energy)	
	Date: 2 / 1 / 2013		t Number: 078807		
	Logged by: Justin Covey		By: B. Adkins		
	Drilling Method: Air Rotary	Sampli	ing Method: Split Spoo		
Ground Elevation:: Detector: PID				to 56'	
Filter Pack Size: 10/20 sand	Interval:	to	Hole Dia: 7-7/8"		countered during
Casing Type: Sch. 40	Diameter: 1 & 4 in. Interval:	to	DTW: N/A	drilling: 54.5' b	
Screen Type: Sch. 40 Slot: 20	Diameter: 1 & 4 in. Interval:	to	Well Depth: N/A	Total depth: 56'	bgs
Depth Soil/Rock Type Moisture Content % Fines Color Vapor (ppm) Staining	Sample # Soil Recovery Water Level	HOLOGY/	REMARKS	Fabric	WELL COMPLETION
ML dry 55 7.5YR 3/7 1 0 N 2 0 N	20" brown, trace calich	e, trace fine	-		
3 dry < 5	20" Caliche - (2 - 4') - poorly graded, dry		ium grained sand, loose ite	2,	
SM dry 5 10YR 5 5/6 5/6 0.3 N 6 6 6 0.3 N	- @ ~4' becom	es dense			
7 0.8 N 8	- @ ~6' few co				
9 1 N	<u> </u>				
11 1.1 N 12	- @ ~10' becon	-	nse		
13 7.5YR 13 8/1 14 2.1	- @ ~12' becon	nes white			
15 2.1 N	10"				
17 5.1 N	17"				
19 0.9 N 20	<u> </u>				
cement grout Dentonite seal	niler pack				

LOCATION MAP						
		TEST HOLE /			Page	2 of 3
	Test/Well Number:		-	: Hobbs South GSA (1	Holly Energy)	
	Date: 2 /			Number: 078807		
	Logged by: Justin			By: B. Adkins		
	Drilling Method: A		Sampli	ng Method: Split Spoo		
Ground Elevation:: Detector: PID	Seal/Int: Bento		4-		to 56'	
Filter Pack Size: 10/20 sand	Diameter: 1 & 4 in	Interval:	to		Depth water Enc drilling: 54.5' b	
Casing Type: Sch. 40 Screen Type: Sch. 40 Slot: 20	Diameter: 1 & 4 in		to to		Total depth: 56'	
		1. Interval.	10	Weil Depui. 14/A	Total depuit. 50	ugs
02 Depth Soil/Rock Type Moisture Content % Fines Color Vapor (ppm)	Sample # Soil Recovery Water Level	LITHO	LOGY/I	REMARKS	Fabric	WELL COMPLETION
5YR 21	1"	- @ 20' becomes li	ght gray	,		
5.2 N	·····					
22 7.5YR		- @ 22' pinkish wh	ito			
23 8/2	Cut.	- @ 22 plitkisii wh	inc			
0.8 N						
24						
		- @ 24' with fine g	ravel			
25	Cut.					
1 N						
26						
		- @ 26' becomes tr	ace fine	gravel		
27	Cut.					
1.8 N	·····					
28		- @ 28' trace silt				
29	8"	- @ 20 trace she				
1.3 N	<u> </u>					
30						
31	18"					
1.9 N						
32						
7.5YR		- @ 32' becomes p	ink			
33 7/3	18"					
3.9 N						
35	16"					
10 N						
36						
7.5YR		- @ ~36' becomes	white, fo	ew 0.5" to 1" chert piec	ces	
37 8/1	10"	present, trace odor		-		
151 N						
38						
39	12"					
79.6 N						
40						
						<u> </u>
cement grout bentonite seal	filter pack					

TEST HOLE / VELL LOG Page: 3 of 3 Test/Well Number: Sil-5 Project Rubbs South GSA (LUGK Exercy) -	LOCATION	MAP																
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$																3	of	3
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$														(Hol	y Energy)			
												-						
Ideal Ideal <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>· · · · · · · · · · · · · · · · · · ·</td><td></td><td></td><td></td><td></td><td></td></th<>													· · · · · · · · · · · · · · · · · · ·					
Filter Pack Size: 10:20 and Interval: 0 Hule Dia: 7.78" Deputy water Encountered during Gamma transmitter 1 & 4 In. Interval: 0 Hule Dia: 7.78" Deputy water Encountered during Gamma transmitter 1 & 4 In. Interval: 0 Hule Dia: 7.58" Deputy water Encountered during Gamma transmitter 1 & 4 In. Interval: 0 Hule Dia: 7.58" Deputy water Encountered during Gamma transmitter 1 & 4 In. Interval: 0 Hule Dia: 7.58" Deputy water Encountered during Gamma transmitter 1 & 4 In. Interval: 0 Hule Dia: 7.58" Deputy water Encountered during Gamma transmitter 1 & 4 In. Interval: 0 Hule Dia: 7.58" Deputy water Encountered during Gamma transmitter 1 & 4 In. Interval: 0 Hule Dia: 7.58" Deputy water Encountered during Gamma transmitter 1 & 4 In. Interval: 0 Hule Dia: 7.58" Deputy water Encountered during Gamma transmitter 1 & 4 In. Interval: 0 Hule Dia: 7.58" Control Dia: 7.58" <td>Cround Elay</td> <td>otionu</td> <td></td> <td></td> <td>Dataator</td> <td>. DID</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Sampli</td> <td></td> <td></td> <td>50</td> <td></td> <td></td> <td></td>	Cround Elay	otionu			Dataator	. DID						Sampli			50			
Casing Type: Sch. 40 Store Diameter: 1 & 4 in. Incrvat: to DTW: N/A drilling: 54.5 bgs Screen Type: Sch. 40 Slot: 20 Diameter: 1 & 4 in. Incrvat: to Well Dept: N/A Total dept: 56' bgs $\frac{9}{40}$ <			20 6	and	Detector	rib		Seal/1	IIII. De	monn		to				ounto	od dur	ina
Streen Type: Sch. 40 Sht: 20 Diameter: 1 & 4 in. Interval: to Well Depti: N/A Total depti: 56' bgs $\frac{10}{100}$				anu			Dia	meter:	1&4	l in							cu uur	ing
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					Slot: 20													
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	<u>~</u>			[•••				- 8-		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Moisture Content	% Fines	Color	Vapor (ppm	Staining	Sample #	Soil Recove	Water Leve		LITH	OLOGY/	REMARKS		Fabric	CO		
$ \frac{42}{43} - \frac{1}{44} + \frac{1}{54} + \frac{5}{54} + \frac{5}{51} + \frac{5}{51$	40						6											
$ \frac{42}{43} - \frac{1}{44} + \frac{1}{54} + \frac{5}{54} + \frac{5}{51} + \frac{5}{51$		-					1425	20"										
$ \frac{45}{46} - \frac{1}{46} - \frac{1}{47} - \frac{1}{48} - \frac{1}{48} - \frac{1}{49} - \frac{1}{50} - \frac{1}{53} - \frac{1}{57} - \frac{1}{57} - \frac{1}{57} - \frac{1}{57} - \frac{1}{57} - \frac{1}{59} - \frac{1}{59$					875	Ν	8			-	@ ~41' solid lin	nestone c	aliche layer (0.2')					
$ \frac{45}{46} - \frac{1}{46} - \frac{1}{47} - \frac{1}{48} - \frac{1}{48} - \frac{1}{49} - \frac{1}{50} - \frac{1}{53} - \frac{1}{57} - \frac{1}{57} - \frac{1}{57} - \frac{1}{57} - \frac{1}{57} - \frac{1}{59} - \frac{1}{59$]					5-40			-	@ ~41.2' becom			nert				
$ \frac{45}{46} - \frac{1}{46} - \frac{1}{47} - \frac{1}{48} - \frac{1}{48} - \frac{1}{49} - \frac{1}{50} - \frac{1}{53} - \frac{1}{57} - \frac{1}{57} - \frac{1}{57} - \frac{1}{57} - \frac{1}{57} - \frac{1}{59} - \frac{1}{59$				5/4			SB-C			p	resent							
$ \frac{45}{46} - \frac{1}{46} - \frac{1}{47} - \frac{1}{48} - \frac{1}{48} - \frac{1}{49} - \frac{1}{50} - \frac{1}{53} - \frac{1}{57} - \frac{1}{57} - \frac{1}{57} - \frac{1}{57} - \frac{1}{57} - \frac{1}{59} - \frac{1}{59$	43						le (;	18"										
46 88.9 N 88.9 N - @ ~46' trace chert 47 389 N 12' - @ ~46' trace chert 48 352 N 18' - @ ~50' becomes hard 50 57 - @ ~50' becomes wet - @ ~54.5' becomes wet 51 N Cut. - @ ~54.5' becomes wet 55 N N - @ ~54.5' becomes wet 56 N N - @ ~54.5' becomes wet 57 - @ ~54.5' becomes wet TD = 56' 58 - @ -54.5' becomes wet - @ -54.5' becomes wet	44	•			501	Ν	Samp											
46 88.9 N 88.9 N - @ ~46' trace chert 47 389 N 12' - @ ~46' trace chert 48 352 N 18' - @ ~50' becomes hard 50 57 - @ ~50' becomes wet - @ ~54.5' becomes wet 51 N Cut. - @ ~54.5' becomes wet 55 N N - @ ~54.5' becomes wet 56 N N - @ ~54.5' becomes wet 57 - @ ~54.5' becomes wet TD = 56' 58 - @ -54.5' becomes wet - @ -54.5' becomes wet		-																
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	45				00.0			16"										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	16	-			88.9	Ν												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	40									_	@~46' trace ch	ert						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		-						12"		_	e 40 trace en	cit						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	- T /	-			389	Ν												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	48	-			205	- 1												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							0											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	49						144	18"										
52 N F Cut. N Cut. - @ ~54.5' becomes wet 55 - - @ ~54.5' becomes wet - TD = 56' 57 - - - - - 58 - - - - - 60 - - - - -					352	Ν	@ (
52 N F Cut. N Cut. - @ ~54.5' becomes wet 55 - - @ ~54.5' becomes wet - TD = 56' 57 - - - - - 58 - - - - - 60 - - - - -							5-5(
52 N F Cut. N Cut. - @ ~54.5' becomes wet 55 - - @ ~54.5' becomes wet - TD = 56' 57 - - - - - 58 - - - - - 60 - - - - -		-	< 5	-			SB-			-	@ ~50' becomes	s hard						
52 N F Cut. N Cut. - @ ~54.5' becomes wet 55 - - @ ~54.5' becomes wet - TD = 56' 57 - - - - - 58 - - - - - 60 - - - - -	51			6/4			ole (Cut.										
53		-			245	Ν	amp											
53	32						S											
54 N - 55	53	-																
54 wet •						Ν		Jut.										
55 - @ ~54.5' becomes wet 56 - @ ~54.5' becomes wet 56 - @ ~54.5' becomes wet 57 - @ ~54.5' becomes wet 57 - @ ~54.5' becomes wet 58 - @ ~54.5' becomes wet 59 - @ ~60 60 - @ ~60	54																	
55 Cut. - @ ~54.5' becomes wet 56		wet																
56 TD = 56' 57 TD = 56' 58 Image: Constraint of the second]						Cut.		- 1	@ ~54.5' becom	nes wet						
56 TD = 56' 57 TD = 56' 58 Image: Constraint of the second																		
57	56		<u> </u>				<u> </u>											
58		-															D = 5	6'
58	57	-																
		1																
	50																	
	59	1																
		1																
cement grout pentonite seal iiiter pack	60	1																
Cement grout Dentonite seal Iller pack]																
cement grout bentonite seal Initer pack																		
	\sim	cement grou	it	\sim	bentonite seal			filter pac	k									

LOC	ATION	MAP					I												
										TEST HOLE				Page	1	0	f 3		
							Tes	t/Well	Numł	ber: SB-6	-	t: Hobbs South GSA	(Hol	ly Energy)					
							Dat			/ 2 / 2013		t Number: 078807							
							-	<u> </u>		tin Covey	_	l By: B. Adkins							
G	1.51					DID				: Air Rotary	Sampli	ing Method: Split Spo							
	ind Elev		20 ~	d	Detector	: PID		Seal/	lnt: Be	entonite to	40	Grout Interval: (Hole Dia: 7-7/8 ''		56'	~~~~				
	r Pack S ng Type			and			Die	meter:	1 8- /	Interval: Interval:	to to	DTW: N/A		pth water Enc lling: 53.5' b _i		rea au	ring		
	en Type:				Slot: 20			meter:			to	Well Depth: N/A		tal depth: 56'					
berea	en rype.	jen, 4					Dia				10	Weir Depui. 1971	10		55				
Depth	Soil/Rock Type	Moisture Content	% Fines	Color	Vapor (ppm)	Staining	Sample #	Soil Recovery	Water Level	LITH	DLOGY/	REMARKS		Fabric	со	WEL MPLE			
	ML	dry	5	5YR				<u> </u>		SILT - (0 - 2') - low p	olasticity	verv stiff, drv, reddisl	h						
1				4/3				12"		brown, trace caliche	, astroney,	, vory surr, ary, reading							
						Ν													
2																			
		dry		5YR			1				emented	fine sand, interbedded	with	ı					
3				8/1				Cut.		limestone, white									
						Ν													
4							1	┣──┥											
5								Cut.											
5						N		Cut.											
6						1													
-																			
7										Cut.									
						Ν													
8																			
9						N		Cut.											
10						Ν													
10																			
11								Cut.											
						Ν													
12		1																	
	SP	dry	<5	5YR			1					ained sand, poorly gra	ded,						
13				8/2			1	10"		dry, pinkish white	e, few ang	gular fine gravel							
1.4					0.5	Ν													
14							1	┝──┤											
15								10"											
15					1.3	Ν	1												
16							1												
		1					1			- @ ~16 few cher	t and odd	or							
17								8"											
ļ					27.5	Ν	1												
18							1												
10							1	<u> </u>											
19					010	N	1	Cut.											
20					213					- @ ~19.5 become	as coman	ted odor present							
20							1			- w ~17.3 Decome	ls cemen	ica, ouor present							
h							1												
		cement grou	t	\sim	bentonite seal		_	tilter pac	ĸ										
				\sim	-		L												

LOCA	TION	MAP																
											TEST HOLE	/ WELL	LOG		Page	2	of	3
							Test	t/Well	Numl	ber:	: SB-6	-	: Hobbs South GSA (Hol	ly Energy)			
							Date			2 /			Number: 078807					
							_	<u> </u>			Covey		By: B. Adkins					
					-						ir Rotary	Sampli	ng Method: Split Spo					
Groun			• •		Detector	: PID		Seal/	Int: Be	ento					56'			
		ize: 10/		and			D.'		1.0		Interval:	to	Hole Dia: 7-7/8''		pth water End		ed dur	ing
		Sch. 4			<u>61.4.</u> 20			meter:				to	DTW: N/A		lling: 53.5' b			
Screen	i Type:	Sch. 4	U		Slot: 20		Dia	meter:	1&4	4 In	Interval:	to	Well Depth: N/A	10	tal depth: 56'	bgs		
Depth 20	Soil/Rock Type	Moisture Content	% Fines	Color	Vapor (ppm)	Staining	Sample #	Soil Recovery	Water Level		LITHC	DLOGY/	REMARKS		Fabric	CO	WELI MPLE	
21								3"										
					43.2	Ν												
22																		
											- @ 22' becomes v	veathere	d sandstone and limest	one				
23								6"										
					291	Ν												
24				101/0				<u> </u>			- @ 24' becomes v		h					
25				10YR 8/2				Cut.			- @ 24 becomes v	ery pale	brown					
23				0/2	412	N		Cui.										
26					412	IN												
20							$\widehat{}$	<u> </u>										
27							@1510)	Cut.										
					589	Ν	@]											
28							-28											
	SP	moist	<5	10YR			B-6						rained, medium dense,					
29				6/4			e (S	10"				very pale	e brown, few fine grave	el				
					1253	Ν	Sample (SB-6-28			siz	ze caliche, odor							
30							Sa											
ļļ.																		
31								8"										
					780	N												
32				10370				<u> </u>			- @ 32' becomes v	any nolo	brown					
33				10YR 7/4				8"			- w 52 becomes v	ery paie	UIUWII					
55				//4	991	N		0										
34					771													
											- @ 34' becomes f	ine grair	ned					
35								10"				0						
					1099	Ν												
36																		
				10YR						Ca	aliche - (36 - 42') - c	emented	I fine sand, interbedded	t				
37				7/4				2"			ith limestone, vewry							
					410	Ν												
38																		
ļļ.				10YR							- @ 38' becomes v	vhite						
39				8/1				4"										
 					380	Ν												
40																		
							<u> </u>											
C		cement grou	t	\sim	bentonite seal			filter pac	к									

LOC	CATION	MAP																
											TEST HOLE				Page	3	of	3
							Test	/Well	Numl	ber	:: SB-6		t: Hobbs South GSA (Holly	y Energy)			
							Date			2 /		-	t Number: 078807					
											Covey		l By: B. Adkins					
					1						Air Rotary	Sampli	ing Method: Split Spoo					
_	ind Eleva				Detector	: PID		Seal/I	Int: Be	ento				to				
	r Pack S			and							Interval:	to	Hole Dia: 7-7/8"		th water Enc		ed duri	ng
	ng Type:							meter:				to	DTW: N/A		ing: 53.5' b			
Scree	en Type:	Sch. 4	0		Slot: 20		Dia	meter:	1&4	4 in	n. Interval:	to	Well Depth: N/A	Tota	al depth: 56'	bgs		
6 Depth	Soil/Rock Type	Moisture Content	% Fines	Color	Vapor (ppm)	Staining	Sample #	Soil Recovery	Water Level		LITHC	DLOGY/	REMARKS		Fabric		WELI MPLEI	
40 41 42					276	N		Cut.			- @ ~40' few cher	t present	t					
43 44	SP	moist	5	10YR 7/4	299	N		20"		gr	raded, moist, very pa ze caliche	le brown	rained, dense, poorly 1, few fine grained grav	el				
45 46					58.8	N		4"			- @ ~44' trace inte SAND	erbedded	l Caliche layers within					
47 48					45.3	N	@ 1545)	Cut.										
49 50					20.7	N	(SB-6-50	Cut.										
51 52					63.2	N	Sample (Cut.										
53 54		wet			13.2	N		6"										
55 56																		
57 58]	TD = 5	6'
59 60																		
		cement grou	t	X	bentonite seal			filter pac	ĸ									

LOCATION MAP								
				TEST HOLE			Page	1 of 3
		Test/Well	Numb		-	: Hobbs South GSA (I	Holly Energy)	
		Date:		/ 3 / 2013		Number: 078807 By: B. Adkins		
		Logged by						
				: Air Rotary	Sampli	ng Method: Split Spoo		
Ground Elevation:: Det Filter Pack Size: 10/20 sand	ector: PID	Seal/1	int: Be	Interval:	to		to 55' Depth water Enc	ountered during
Casing Type: Sch. 40		Diameter:	1&4		to	DTW: N/A	drilling: 53' bgs	
		Diameter:			to		Total depth: 55'	
						······		- 8
Depth Soil/Rock Type Moisture Content % Fines	v apor (ppm) Staining	Sample # Soil Recovery	Water Level	LITHO	LOGY/	REMARKS	Fabric	WELL COMPLETION
ML dry 5 5YR				SILT - (0 - 2') - low pl	lasticity,	stiff, dry, reddish gray		
1 5/2		18"			-			
	0 N							
2				~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~				
5YR		6"		Caliche - (2 - 12') - cer	mented f	fine sand, white		
3 5/1	1 N	0						
4	1 1							
5		Cut.						
······	0.9 N							
6 SP 5YR				@ 6' haaamaa w	acthora	d fine aminad dance		
SP 5YR 7 8/1		4"		 - @ ~6 becomes w poorly graded, moi 		d, fine grained, dense, e, with interbedded		
	1 N			weathered limeston		, with hiterooddod		
8								
9		4"						
	1 N							
10 5YR				@10' becomes i	ninkich	white and cemented, no		
11 31K 8/2		8"		limestone.	pinkisii	white and cemented, it	,	
	2 N							
12								
				- @ ~12' trace lime	estone pr	resent		
13		5"						
14	0.3 N							
15		17"						
	.2 N							
16						1 1 1 1 1 1 1 1 1 1		
		10"				ded with fine grained ed, dry, pinkish white		
17	5.2 N	18"		SAND, dense, pool	riy grade	cu, ury, pilikish white		
18	11							
19		4"						
	.2 N							
20								
cement grout bento	nite seal	filter paci	ĸ					1
cement grout bento	· · · · · · ·	inter pact						

LOC	CATION	MAP																
											TEST HOLE /				Page	2	of	3
1											SB-7	-	: Hobbs South GSA (Holl	y Energy)			
							Dat			. /	3 / 2013	-	Number: 078807					
											Covey		By: B. Adkins					
0	1.51					DID		Ŭ			ir Rotary	Sampli	ng Method: Split Spoo					
	ind Eleva		20		Detector	: PID		Seal/	Int: Be	ento		4-	Grout Interval: 0 Hole Dia: 7-7/8''		55'			
	r Pack S			and			Die	meter:	1 8- /	1 in	Interval:	to	DTW: N/A		oth water Enc ling: 53' bgs		ed duri	ng
	ng Type: en Type:				Slot: 20			meter:				to to	Well Depth: N/A		al depth: 55'			
3010	en rype.	5cn. 4			T		Dia			+ III.	• Interval.	10	wen Depui. 10/A	100	ai ucpui. 55	ogs		
Depth 50	Soil/Rock Type	Moisture Content	% Fines	Color	Vapor (ppm)	Staining	Sample #	Soil Recovery	Water Level		LITHO	LOGY/	REMARKS		Fabric		WELL /IPLET	
21				5YR 7/2	1.0	Ŋ		12"			- @ 20' becomes fi graded, dry, pinkisl		ned, loose SAND, poor	ly				
22					1.8	Ν	1											
22											- @ 22' becomes co	emented	l. few chert					
23								4"				emented						
					1.1	Ν	1											
24																		
25								Cut.										
					1.5	Ν												
26																		
								0.4										
27					9.8	N		Cut.										
28					9.8	IN												
20																		
29								Cut.										
27					9.7	Ν		e uti										
30																		
											- @ 30' no chert							
31								12"										
					2	Ν												
32							1											
ļ	.									1								
33							1	6"										
	.				3.7	Ν				1								
34	SP	maint	_ F	61/D			1			C A	ND _ (21 101) E.	a arein-	ed, dense, poorly graded	4				
35	ъr	moist	< 3	5YR 6/3			1	20"			Dist, light reddish bro			л,				
- 35				0/3	4.5	N		20			non nem reduish bro							
36					4.5	11				1								
							1				- @ ~36' becomes	interbed	lded with caliche					
37								10"		1								
					63.5	Ν				1								
38							1											
										1	- @ ~38' few chert	present	;					
39								14"		1								
ļ					93.9	Ν	1											
40							1											
 										1								
				I	I		<u> </u>									<u> </u>		
	\sim	cement grou	t	\sim	bentonite seal			filter pac	ĸ									

LOCAT	ΓION	MAP																
											TEST HOLE				Page	3	of	3
							Test	t/Well	Numł	ber:		ē	: Hobbs South GSA (Holl	y Energy)			
							Date			/	3 / 2013	č	Number: 078807					
							-	· ·	y: Just				By: B. Adkins					
-					_						r Rotary	Sampli	ng Method: Split Spo					
Ground			20		Detector	: PID		Seal/	Int: Be	enton) to				
Filter Pa				and			Dia		1&4	1	Interval:	to	Hole Dia: 7-7/8'' DTW: N/A		oth water Enc ling: 53' bgs		ed dur	ing
Casing Screen					Slot: 20				1&4		Interval: Interval:	to to	Well Depth: N/A		al depth: 55'			
Scieen	Type.	501.4		1			Dia			•	Interval.	10	wen Depui. N/A	100	ai uepui. 55	ugs		
05 Depth Soil/Rock	Type	Moisture Content	% Fines	Color	Vapor (ppm)	Staining	Sample #	Soil Recovery	Water Level		LITHC	DLOGY/	REMARKS		Fabric	CO	WELI MPLE	
41				7.5YR 8/2	101			20"			- @ ~40' becomes	pinkish [,]	white					
42				7.5YR	181	N	@ 1030)				- @ ~42' becomes	brown						
43				5/4	121	N	Sample (SB-7-44	14"										
44							Sample (18"			- @ ~44' trace cem	nented sa	nd and chert					
46					469	Ν												
47					76.6	N		19"				(1)						
48 49							@1045)	3"			 - @ ~47.5' caliche - @ ~48' some wea cemented fine grai 	athered,	caliche, chert and trace	e				
50					23.6	N	-7-50 @				@50' becomes	loose m	oist with trace chert					
51						N	mple (SB-7-50	Cut.				10030, 111						
52 53 v	wet						Sam		2									
54									~	1	- @ ~53' becomes	wet						
55																		
56																	TD = 5	5'
57																		
58																		
59 60																		
		cement grou	t	\simeq	bentonite seal			filter pac	ĸ									

LOCATION	N MAP																
											E / WELL LOG Page 1 of 3						
						Test	t/Well	Numl	per: SB-8		: Hobbs South GSA (Holl	y Energy)				
						Dat			/ 4 / 2013		Number: 078807						
									tin Covey		By: B. Adkins						
0 151					DID				: Air Rotary	Sampli	ng Method: Split Spoo		50				
Ground Elev Filter Pack S		20	and	Detector	: PID		Seal	Int: Be	entonite to Interval:	to	Grout Interval: 0 Hole Dia: 7-7/8''	to to	pth water Encountered during				
Casing Type			anu			Dia	meter:	1&		to	DTW: N/A		ling: 52.5' b			ng	
Screen Type				Slot: 20			meter:			to	Well Depth: N/A		al depth: 54'	-			
~		Ī		1										- 8-			
Depth Soil/Rock Type	Moisture Content	% Fines	Color	Vapor (ppm)	Staining	Sample #	Soil Recovery	Water Level	Lr	THOLOGY/	REMARKS		Fabric		WELL APLET		
ML 1 2	dry	5	10YR 4/3	0	N		12"		 SILT - (0 - 2') - low plasticity, very stiff, dry, brown, trace caliche, trace odor - @ ~1' - trace caliche Caliche - (2 - 6') - fine grained cemented SAND, odor 								
3 4 5	-			65.8	Ν		Cut. Cut.										
6 SP 7	dry		10YR 7/4	68 424	N		18"		SAND - (6 - 18') - fine grained, poorly graded, dense, dry, very pale brown, trace cementation, trace caliche, odor								
8 9 10	- - - -			574	N		20"										
11 12 13	- - -		10YR 4/4	449	N		7"			cementation	, trace caliche, trace						
14	-		10YR 6/4	475 410	N	Sample (SB-8-16 @1600)	12"		sandstone, dark yellowish brown - @ ~14' becomes light yellowish brown - @ ~16.5' few caliche								
16 17 18	-			618	N	Sample	14"										
19 20	- - - -			3.3	Ν		Cut.	- @ ~18' becomes interbedded sand and sandstone, odor									
\sim	cement grou	ıt	\simeq	bentonite seal			filter pac	ĸ									

LOCATION MAP										
					E / WELL LOG Page 2 of					
		Test/Well				: Hobbs South GSA (Number: 078807	Holly Energy)			
		Date:	2							
		Logged by								
		Drilling M		on F ai						
Ground Elevation::	Detector: PID	Seal/I	to 56'							
Filter Pack Size: 10/20 sand		Diameter:	1 8. 1	Interval: in. Interval:	to to	Hole Dia: 7-7/8'' DTW: N/A	drilling: 52.5' h	countered during		
Casing Type: Sch. 40 Screen Type: Sch. 40	Slot: 20	Diameter:			to	Well Depth: N/A	Total depth: 54'			
Sciech Type. Sch. 40				m. Interval.	10	Wen Depui. 10/A	Total depuit. 54	lugs		
05 Depth Soil/Rock Type Moisture % Fines Content	Vapor (ppm) Staining	Sample # Soil Recovery	Water Level	LITHC	DLOGY/	REMARKS	Fabric	WELL COMPLETION		
21	369 N	Cut.								
22 10YF 23 8/2	434 N	Cut.		- @ ~22' becomes						
24	610 N	Cut.								
26 27		Cut.								
28 10YF 29 6/4	410 N	6"		- @ ~28' becomes sandstone fragmen		ght yellowish brown, fo	ew			
30	451 N			- @ ~30' becomes						
31	299 N	Cut.		sandstone/chert						
33	164 N	Cut.								
35	192 N	12"		- @ ~34' no chert j - @ ~34.5' - 0.3' C	aliche se					
36	247 N	13"		- @ ~35.5' - SANI sandstone and cher						
38	202 N	Cut.								
40	202 N									
cement grout	bentonite seal	filter pace	ĸ							

LOCATION MAP										
				TEST HOLE	/ WELL	LOG	Page	3 of 3		
	r	Test/Well	Numb		-	: Hobbs South GSA (Holly Energy)			
	-	Date:		/ 4 / 2013		Number: 078807				
				in Covey		By: B. Adkins ing Method: Split Spoo				
		Drilling N			5/1					
Ground Elevation:: Detecto Filter Pack Size: 10/20 sand	r: PID	Seal/	Int: Be	ntonite to	4.0	Grout Interval: 0 Hole Dia: 7-7/8''	to 56'			
	1	Diameter:	1 8- 1	Interval: in. Interval:	to to	DTW: N/A	Depth water Encountered during drilling: 52.5' bgs			
Casing Type: Sch. 40 Screen Type: Sch. 40 Slot: 20		Diameter:			to	Well Depth: N/A	Total depth: 54'			
				m. mervar.	10	Wen Depui. 10/A		ugs		
BepthSoil/RockTypeMoistureContent% FinesColorVapor (ppm)	Staining	Sample # Soil Recovery	Water Level	LITHO	DLOGY/	REMARKS	Fabric	WELL COMPLETION		
41 10YR 5/6		20"		- @ ~40' - become brown, odor, trace		m grained, yellowish ne				
365	Ν									
42					1	1 .				
42		Cut		- @ ~42' - 0.2' sand	dstone/c	hert seam				
43 569	Ν	Cut.								
44	1									
45		17"								
509	Ν									
46		[2)								
		@ 1015) 13"								
47		® 13" ∞								
314	Ν	-8-4								
48		(SB		@	interbod	ded with sandstone and				
49		aldr 6"		chert seams.	merbea	ded with sandstone and				
517	Ν	Sample (SB-8-48								
50		•••								
51		Cut.								
393	Ν									
52										
52		Cut	2	- @ ~52.5' - becom	nac mot					
53	Ν	Cut.		- w ~32.3 - Decon	ies wet					
54								TD = 54'		
			1							
55										
56										
57								.		
57										
58										
			1							
59										
			1							
60										
cement grout bentonite sea	' C	filter pac	:K							

APPENDIX I

SUMMARY OF SUBSURFACE SOIL ANALYTICAL RESULTS

			Laboratory Analytical Results									Water Level
Well ID Sample ID	Date Sampled	Sample Depth	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Total BTEX	TPH-GRO	TPH-DRO	TPH	Headspace Reading	Encountered
		(ft-bgs)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	ppm	(ft-bgs)
NMOCD Remed Levels	liation Action		10				50			100	100	
HSRW-1	2/6/2013	0-2									0.5	
-		2-4									1.5	
		4-6									1.1	
		6-8									1	
		8-10									2	
		10-12									0.6	
		12-14									1.5	
		14-16									1.7	
HSRW-1-16	2/6/2013	16-18	0.00113	0.0409	0.104	0.1677	0.3137	NA	NA	NA	127	
		18-20									387	
		20-22									601	
		22-24									1124	
		24-26									1154	
		26-28									1096	
		28-30									1120	
		30-32									1150	
		32-34									1133	
		34-36									1142	
		36-38									960	
		38-40									418	
		40-42									402	
		42-44									656	
		44-46									639	
		46-48									315	
HSRW-1-48	2/6/2013	48-50	0.0187	0.952	2.68	3.23	6.88	NA	NA	NA	710	
		50-52									416	53
HSRW-2	2/5/2013	0-2									0.4	
		2-4									2.2	
		4-6									0	
		6-8									1.2	
		8-10									0.1	
		10-12									5.7	
		12-14									4.1	
		14-16									5.6	
		16-18									6.5	
		18-20									4.6	
		20-22									8.5	
		22-24									7.6	
		24-26									7.1	
		26-28									6.7	
		28-30									4.8	
		30-32									2	
		32-34									2.2	
		34-36									21.3	
		36-38									53.1	
HSRW-2-38	2/5/2013	38-40	0.00402	0.373	1.65	1.93	3.95	NA	NA	NA	463	
		40-42									93.3	
		42-44									425	
		44-46									244	
		46-48									202	
		48-50									166	
HSRW-2-52	2/5/2013	50-52	1.75	20.9	39.5	46.5	108.65	NA	NA	NA	NS	54

			Laboratory Analytical Results									Water Level
Well ID Sample ID	Date Sampled	Sample Depth	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Total BTEX	TPH-GRO	TPH-DRO	ТРН	Headspace Reading	Encountered
		(ft-bgs)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	ppm	(ft-bgs)
NMOCD Remed	liation Action		10				50			100	100	
Levels SB-1	2/3/2013	0-2									47.2	
SB-1	2/3/2013	2-4									47.2 516	
SB-1-4	2/3/2013	4-6	1.95	<0.0563	26.8	22.59	51.34	1290	23700	24990	880	
30-1-4	2/3/2013	6-8	1.55	<0.0505	20.8	22.55	51.54	1250	23700	24330	34.8	
		8-10									147	
		10-12									151	
		12-14									479	
		14-16									557	
		16-18									724	
		18-20									154	
		20-22									253	
		22-24									564	
		24-26									409	
		26-28									300	
		28-30									383	
		30-32									111	
		32-34									312	
		34-36									125	
		36-38									455	
		38-40									647	
CD 4 42	2/2/2012	40-42 42-44	0.0702	-0.05.42	7.00	0.270	7.67	402	4070	4472	491	
SB-1-42	2/3/2013	42-44	0.0762	<0.0543	7.22	0.370	7.67	402	4070	4472	883 440	-
		44-40									389	
		48-50									352	
		50-52									245	53
SB-2	2/2/2013	0-2									0	
55 2	2,2,2010	2-4									0.2	
		4-6									0	
		6-8									0.3	
		8-10									0.2	
		10-12									0.1	
		12-14									0.7	
		14-16									0.3	
		16-18									0	
		18-20									1	
		20-22									1.1	
		22-24									0.8	
		24-26					<u> </u>				0.6	
	-	26-28							L		0.5	
		28-30									0.8	
		30-32									1.2	
		32-34									0.3	
	-	34-36 36-38									3.7	
		36-38					-				3.7 354	
SB-2-40	2/2/2013	40-42	<0.0563	<0.0563	7.16	<0.0563	7.16	614	6420	7034	1434	
00 2 70	2/2/2013	40-42	-0.0000	-0.0000	7.10	-0.0005	7.10	014	0720	, 034	NS	
		44-46					1				NS	
		46-48									NS	
		48-50					1				NS	
SB-2-50	2/2/2013	50-52	< 0.0526	<0.0526	< 0.0526	<0.0526	< 0.0526	0.499	89.2	89.7	NS	55.5

			Laboratory Analytical Results									Water Level
Well ID Sample ID	Date Sampled	Sample Depth	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Total BTEX	TPH-GRO	TPH-DRO	TPH	Headspace Reading	Encountered
		(ft-bgs)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	ppm	(ft-bgs)
NMOCD Remed Levels	liation Action		10				50			100	100	
SB-3	1/31/2013	0-2									0	
30-3	1/31/2013	2-4									0	
		4-6									0	
		6-8									0	
		8-10									1	
		10-12									9.4	
		12-14									0.9	
		14-16									1.1	
		16-18									3.3	
		18-20									13.1	
		20-22									1.2	
		22-24									1.3	
		24-26									0.7	1
		26-28									0.7	1
		28-30									1	1
	-	30-32									1.3	1
		32-34									1.1	
		34-36									1.3	
		36-38									477	
		38-40									742	
SB-3-40	1/31/2013	40-42	< 0.0546	< 0.0546	2.47	< 0.0546	2.47	349	3400	3749	873	
00 0 10	1,01,2010	42-44	10100 10	10100 10	2.17	10100 10	2,	515	5100	0.10	612	
		44-46									140	
		46-48									51.9	
		48-50									333	
SB-3-50	1/31/2013	50-52	< 0.0541	< 0.0541	0.450	1.60	2.052	119	1130	1249	891	53.5
SB-4	2/1/2013	0-2									0	
55 1	2, 1, 2010	2-4									0.2	
		4-6									1.2	
		6-8									0.4	
		8-10									0.2	
		10-12									1	
		12-14									0.5	
		14-16									0	
		16-18			1		1				0.5	
		18-20			1		1				0.2	
		20-22									0.2	
		22-24									0.1	
		24-26									0	
		26-28									0	
		28-30									0.3	
		30-32									0.2	
		32-34									0	
		34-36									0.6	
		36-38									118	
		38-40									53.4	
SB-4-40	2/1/2013	40-42	<0.0545	<0.0545	0.113	<0.0545	0.115	67.2	1590	1657	125	
		42-44									19	
		44-46									15.6	
		46-48									61.8	
		48-50									168	
SB-4-50	2/1/2013	50-52	< 0.0554	<0.0554	0.638	0.882	1.52	133	1380	1513	460	53

			Laboratory Analytical Results									Water Level
Well ID Sample ID	Date Sampled	Sample Depth	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Total BTEX	TPH-GRO	TPH-DRO	TPH	Headspace Reading	Encountered
		(ft-bgs)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	ppm	(ft-bgs)
NMOCD Remed	liation Action		10				50			100	100	
Levels	2/4/2042	0.2									0	
SB-5	2/1/2013	0-2 2-4									0	
		2-4 4-6									0.4	
		4-6 6-8									0.8	
		8-10									1	
		10-12									1.1	
		12-12									2.1	
		14-16									2.1	
		16-18									5.1	
		18-20									0.9	
		20-22									5.2	
		22-24									0.8	
		24-26									1	
		26-28					1				1.8	
		28-30					1				1.3	
		30-32					1				1.9	
		32-34			İ		1	İ			3.9	
		34-36									10	
		36-38									151	
		38-40									79.6	
SB-5-40	2/1/2013	40-42	< 0.0617	< 0.0617	2.64	< 0.0617	2.64	316	2660	2976	875	
		42-44									501	
		44-46									88.9	
		46-48									NS	
		48-50									NS	
SB-5-50	2/1/2013	50-52	<0.0548	<0.0548	<0.0548	<0.0548	<0.0548	48.2	932	980	NS	54.5
SB-6	2/2/2013	0-2									NS	
		2-4									NS	
		4-6									NS	
		6-8									NS	
		8-10									NS	
		10-12									NS	
		12-14									0.5	
		14-16									1.3	
		16-18									27.5	
		18-20					<u> </u>				213	
		20-22					<u> </u>				43.2	
	-	22-24									291	
		24-26									412	
CD C 20	2/2/2012	26-28	-0.0561	-0.0565	1.20	4.02	6.22	220	5670	6000	589	
SB-6-28	2/2/2013	28-30	<0.0561	<0.0561	1.30	4.93	6.23	330	5670	6000	1253	
		30-32 32-34					<u> </u>				780 991	
											1099	
		34-36 36-38									410	
		36-38									380	
		40-42									276	
		40-42					-				276	
		42-44									58.8	
		46-48									45.3	
		40-48									20.7	
SB-6-50	2/2/2013	50-52	<0.0573	<0.0573	<0.0573	<0.0573	<0.0573	1.37	440	441	63.2	53.5

							alytical Res	ults			Headspace	Water Level
Well ID Sample ID	Date Sampled	Sample Depth	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Total BTEX	TPH-GRO	TPH-DRO	трн	Reading	Encountered
		(ft-bgs)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	ppm	(ft-bgs)
NMOCD Remed Levels	liation Action		10				50			100	100	
SB-7	2/3/2013	0-2									0	
	_, =, ====	2-4									1	
		4-6									0.9	
		6-8									1	
		8-10									1	
		10-12									2	
		12-14									0.3	
		14-16									3.2	
		16-18									6.2	
		18-20									2.2	
		20-22									1.8	
		22-24									1.1	
		24-26					<u> </u>				1.5	
		26-28									9.8	
		28-30									9.7	
		30-32 32-34									2 3.7	
		32-34 34-36									3.7 4.5	
		36-38									63.5	
		38-40									93.9	
		40-42									181	
		42-44									121	
SB-7-44	2/3/2013	44-46	< 0.0522	< 0.0522	0.0856	< 0.0522	0.0876	77.8	1470	1548	469	
		46-48									76.6	
		48-50									23.6	
SB-7-50	2/3/2013	50-52	< 0.0535	<0.0535	< 0.0535	< 0.0535	<0.0535	26.6	1240	1267	NS	53
SB-8	2/4/2013	0-2									0	
		2-4									65.8	
		4-6									68	
		6-8									424	
		8-10									574	
		10-12									449	
		12-14									475	
		14-16									410	
SB-8-16	2/4/2013	16-18	0.591	1.84	20.7	15.78	38.91	1440	11200	12640	618	
		18-20									3.3	
		20-22									369	
		22-24									434 610	
		24-26										
		26-28 28-30									410 451	
		30-32									299	
		30-32					-				164	
		34-36									192	
		36-38					1				247	
		38-40									202	
		40-42					1				365	
		42-44					1				569	
		44-46					1				509	
		46-48									314	
SB-8-48	2/4/2013	48-50	0.138	0.878	1.83	2.02	4.87	197	3040	3237	517	
-		50-52									393	52.5

NOTES:

NMOCD= New Mexico Oil Conservation Division

BTEX = Benzene, Toluene, Ethylbenzene & Total Xylenes

TPH-GRO = Total Petroleum Hydrocarbons- Gasoline Range Organics TPH-DRO = Total Petroleum Hydrocarbons - Diesel Range Organics

mg/kg = milligrams per kilogram ft-bgs = feet below ground surface

ppm = parts per million

BOLD (RED) - concentration greater than NMOCD Remediation Action Levels

< = analyte not detected above reporting limit BTEX analyzed by EPA Method 8260B

TPH-GRO analyzed by EPA Method 8260B

TPH-DRO analyzed by EPA Method 8015M

NS = not sampled

APPENDIX J

SUBSURFACE SOIL LABORATORY REPORTS

February 12, 2013

Bill Green Holly Energy Partners 1602 W. Main Artesisa, NM 88210 TEL: (575) 748-8968 FAX (575) 748-4052 RE: South Hobbs GSA

Order No.: 1302037

Dear Bill Green:

DHL Analytical, Inc. received 14 sample(s) on 2/5/2013 for the analyses presented in the following report.

There were no problems with the analyses and all data for associated QC met EPA or laboratory specifications except where noted in the Case Narrative and all estimated uncertainties of results are within method specifications.

If you have any questions regarding these tests results, please feel free to call.

Sincerely,

John DuPont General Manager

This report was performed under the accreditation of the State of Texas Laboratory Certification Number: T104704211-12-9

2300 Double Creek Drive • Round Rock, TX 78664 • Phone (512) 388-8222 • FAX (512) 388-8229 www.dhlanalytical.com

Table of Contents

Miscellaneous Documents	3
CaseNarrative 1302037	6
Analytical Report 1302037	7
AnalyticalQCSummaryReport 1302037 2	21

2 SHIP DATE: 00 ACTWGT: 20.0 CAD: /POS1400 DIMS: 12X12X1 PRIORITY OVERI UE - 05 F BILL RECIPIEN. Rouality Environmental Containers 800-255-3950 • 304-255-3900 E CA DHL ANALYTICAL 2300 DOUBLE CREEK DR ROUND ROCK TX 78664 ALL DESCRIPTION OF A DE A8 BSMA 1714# 8020 3169 6485 UNITED STATES US ORIGIN ID:HOBA 11 11 111 Farm D No vizo. R -] in \Box فا HOLD Weekday FedExtocation address AERUIRED. NOT available lor FedEx First Overnight. HOLD Saturday Feets (poalion actives RECUTRID. Available DNIY'a Feets Planky Overnight and Feets Dayla softect to calitor <u>ý</u>66664-13801 OLOILAI127 Phone 720 837 4845 Phone 512 388-8222 Trease BO20 3169 6485 32% Chur and t0884V dIZ **Depurthon/Suite** ~ 1 State State e: Q I th AW 8020 3169 6485 文語知びひ , over Address Uso this line for the MOLD location address or for continuation of your shippin 3 To Recipients JENNIFER BANKER Name Dompany Di-H., ANAL YTICAL i FedEx. Package US Airbill Address, 2000 D. D. C. M. R. L. K. Wa cannot doffwor to P.D. bexasor P.O. ZIP codes. 2 Vour Internal Billing Reference 112-27 LV ON ROUND ROCK Address 14 9 2 2 10 CIN (DOLDEN) Company (TV) 1 رد. 12 SIGNATURE Sender's 1 From Date .

	Sample	Receipt Che	cklist	
Client Name Holly Energy Partners			Date Re	ceived: 2/5/2013
Work Order Number 1302037			Received	iby JB
	Carrier name	FedEx 1day	Reviewed	d by
Shipping container/cooler in good condition?		Yes 🗹	No 🗌	Not Present
Custody seals intact on shippping container/co	oler?	. Yes 🗹	No 🗔	Not Present
Custody seals intact on sample bottles?		Yes	No 🗔	Not Present
Chain of custody present?		Yes 🗹	No 🗌	
Chain of custody signed when relinquished and	d received?	Yes 🗹	No 🗔	
Chain of custody agrees with sample labels?		Yes 🗹	No 🗌	
Samples in proper container/bottle?		Yes 🗹	No 🗌	
Sample containers intact?		Yes 🗹	No 🗌	
Sufficient sample volume for indicated test?		Yes 🗹	No 🗔	
All samples received within holding time?		Yes 🗹	No 🗔	
Container/Temp Blank temperature in complian	nce?	Yes 🗹	No 🗔	1.2 ℃
Water - VOA vials have zero headspace?		Yes	No 🗔	No VOA vials submitted
Water - pH acceptable upon receipt?		Yes	No 🗔	Not Applicable 🗹
	Adjusted?	Ch	ecked by	
Any No response must be detailed in the comm	nents section below.			
Client contacted	Date contacted:		P	Person contacted
Contacted by:	Regarding			
Comments:				
				
		.11		
Corrective Action				

Page 1 of 1

2

CLIENT:	Holly Energy Partners	
Project:	South Hobbs GSA	
Lab Order:	1302037	

CASE NARRATIVE

Samples were analyzed using the methods outlined in the following references:

Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW846, 3rd Edition, ASTM D2216 and Standard Methods.

Samples were collected on Mountain Standard Time.

All method blanks, laboratory spikes, and/or matrix spikes met quality assurance objectives, except where noted in the following. For TPH 8015 DRO Analysis, the recovery of one surrogate for all of the samples, with the exception of SB-2-40 and SB-1-4, the Matrix Spike and Matrix Spike Duplicate (1302037-01 MS/MSD) was outside of the method control limits, due to matrix. The remaining surrogate was within method control limits. The recoveries of both surrogates for Samples SB-2-40 and SB-1-4 were above the method control limits. These are flagged accordingly in the Analytical Data report and the QC Summary report. No further corrective action was taken.

For TPH 8015 DRO Analysis, the recovery of the Matrix Spike and the RPD of the Matrix Spike Duplicate (130-10 MS/MSD) were above the method control limits, due to nonhomogenous sample. These are flagged accordingly in the QC Summary report. The associated LCS was within method control limits. No further corrective action was taken.

For TPH 8015 DRO Analysis, Diesel range organics were detected below the reporting limit for Method Blank-55947. The associated samples detected greater than 10x the amount detected in the blank. No further corrective action was taken.

For TPH 8015 GRO Analysis, the recovery of surrogate Tetrachloroethene for six of the samples were above the method control limits, due to coelution and confirmed by reanalysis. These are flagged accordingly in the QC Summary report. No further corrective action was taken.

For Volatile Organics Analysis, samples were diluted due to hydrocarbons present in the samples.

For Volatile Organics Analysis, the recovery of one to two surrogates for six of the samples were above the method control limits. These are flagged accordingly in the Analytical Data Report. The remaining surrogates were within method control limits. No further corrective action was taken.

Date: 12-Feb-13

CLIENT:	Holly Energy Partners	Client Sample ID: SB-3-40									
Project:	South Hobbs GSA	Lab ID: 1302037-01									
Project No:		Collection Date: 01/31/13 03:30 PM									
Lab Order:	1302037				N	fatrix: SO	IL				
Analyses		Result	MDL	RL	Qual	Units	DF	Date Analyzed			
TPH EXTRACT	ABLE BY GC - SOIL		M801	5D				Analyst: AJR			
TPH-DRO C10-	C28	3400	32.0	107		mg/Kg-dry	10	02/11/13 12:48 PM			
Surr: Isoprop	ylbenzene	105	0	47-142		%REC	10	02/11/13 12:48 PM			
Surr: Octacos	sane	579	0	25-162	S	%REC	10	02/11/13 12:48 PM			
TPH PURGEAB	BLE BY GC - SOIL		M801	5V				Analyst: DEW			
Gasoline Range	Organics	349	5.46	10.9		mg/Kg-dry	50	02/06/13 11:27 AM			
Surr: Tetrach	lorethene	159	0	70-134	S	%REC	50	02/06/13 11:27 AM			
8260 SOIL VOL	ATILES BY GC/MS		SW82	60C				Analyst: KL			
Benzene		ND	0.0546	0.273		mg/Kg-dry	50	02/06/13 12:35 PM			
Ethylbenzene		2.47	0.0546	0.273		mg/Kg-dry	50	02/06/13 12:35 PM			
m,p-Xylene		ND	0.0546	0.273		mg/Kg-dry	50	02/06/13 12:35 PM			
o-Xylene		ND	0.0546	0.273		mg/Kg-dry	50	02/06/13 12:35 PM			
Toluene		ND	0.0546	0.273		mg/Kg-dry	50	02/06/13 12:35 PM			
Surr: 1,2-Dich	nloroethane-d4	99.9	0	52-149		%REC	50	02/06/13 12:35 PM			
Surr: 4-Bromo	ofluorobenzene	131	0	84-118	S	%REC	50	02/06/13 12:35 PM			
Surr: Dibromo	ofluoromethane	98.7	0	65-135		%REC	50	02/06/13 12:35 PM			
Surr: Toluene-d8		107	0	84-116		%REC	50	02/06/13 12:35 PM			
PERCENT MOI	STURE		D22	16				Analyst: JCG			
Percent Moistur		8.50	0	0		WT%	1	02/12/13 08:50 AM			

Qualifiers:

- * Value exceeds TCLP Maximum Concentration Level
- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- RL Reporting Limit
- N Parameter not NELAC certified

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- S Spike Recovery outside control limits

Date: 12-Feb-13

CLIENT: Project:	Holly Energy Partners South Hobbs GSA	Client Sample ID: SB-3-50 Lab ID: 1302037-02									
Project No:	50000 0011	Collection Date: 01/31/13 03:45 PM									
Lab Order:	1302037	Matrix: SOIL									
Analyses		Result	MDL	RL	Qual	Units	DF	Date Analyzed			
TPH EXTRACT	ABLE BY GC - SOIL		M801	5D				Analyst: AJR			
TPH-DRO C10	-C28	1130	31.9	106		mg/Kg-dry	10	02/11/13 12:57 PM			
Surr: Isoprop	bylbenzene	60.5	0	47-142		%REC	10	02/11/13 12:57 PM			
Surr: Octaco	sane	353	0	25-162	S	%REC	10	02/11/13 12:57 PM			
TPH PURGEA	BLE BY GC - SOIL		5V			Analyst: DEW					
Gasoline Range	e Organics	119	5.41	10.8		mg/Kg-dry	50	02/06/13 11:51 AM			
Surr: Tetrach	hlorethene	114	0	70-134		%REC	50	02/06/13 11:51 AM			
8260 SOIL VOI	LATILES BY GC/MS		SW820	60C				Analyst: KL			
Benzene		ND	0.0541	0.270		mg/Kg-dry	50	02/06/13 01:07 PM			
Ethylbenzene		0.450	0.0541	0.270		mg/Kg-dry	50	02/06/13 01:07 PM			
m,p-Xylene		1.60	0.0541	0.270		mg/Kg-dry	50	02/06/13 01:07 PM			
o-Xylene		ND	0.0541	0.270		mg/Kg-dry	50	02/06/13 01:07 PM			
Toluene		ND	0.0541	0.270		mg/Kg-dry	50	02/06/13 01:07 PM			
Surr: 1,2-Dic	hloroethane-d4	99.3	0	52-149		%REC	50	02/06/13 01:07 PM			
Surr: 4-Brom	ofluorobenzene	113	0	84-118		%REC	50	02/06/13 01:07 PM			
Surr: Dibrom	ofluoromethane	97.6	0	65-135		%REC	50	02/06/13 01:07 PM			
Surr: Toluene	e-d8	101	0	84-116		%REC	50	02/06/13 01:07 PM			
PERCENT MO	STURE		D221	6				Analyst: JCG			
Percent Moistur	re	7.54	0	0		WT%	1	02/12/13 08:50 AM			

Qualifiers:	*	Value exceeds TCLP Maximum Concentration Level
	С	Sample Result or QC discussed in the Case Narrative
	Е	TPH pattern not Gas or Diesel Range Pattern
	MDL	Method Detection Limit

RL Reporting Limit

N Parameter not NELAC certified

B Analyte detected in the associated Method Blank

DF Dilution Factor

- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit

S Spike Recovery outside control limits

Date: 12-Feb-13

CLIENT:	Holly Energy Partners	Client Sample ID: SB-4-40								
Project:	South Hobbs GSA	Lab ID: 1302037-03								
Project No:		Collection Date: 02/01/13 10:25 AM								
Lab Order:	1302037				N	fatrix: SO	L			
Analyses	е. С	Result	MDL	RL	Qual	Units	DF	Date Analyzed		
TPH EXTRACT	ABLE BY GC - SOIL		M801	5D				Analyst: AJR		
TPH-DRO C10-	C28	1590	30.3	101		mg/Kg-dry	10	02/11/13 01:06 PM		
Surr: Isoprop	ylbenzene	80.6	0	47-142		%REC	10	02/11/13 01:06 PM		
Surr: Octacos	sane	400	0	25-162	S	%REC	10	02/11/13 01:06 PM		
TPH PURGEABLE BY GC - SOIL			M801				Analyst: DEW			
Gasoline Range	Organics	67.2	5.45	10.9		mg/Kg-dry	50	02/06/13 12:14 PM		
Surr: Tetrach	lorethene	106	0	70-134		%REC	50	02/06/13 12:14 PM		
8260 SOIL VOL	ATILES BY GC/MS		SW82	60C				Analyst: KL		
Benzene		ND	0.0545	0.272		mg/Kg-dry	50	02/06/13 01:39 PM		
Ethylbenzene		0.113	0.0545	0.272	J	mg/Kg-dry	50	02/06/13 01:39 PM		
m,p-Xylene		ND	0.0545	0.272		mg/Kg-dry	50	02/06/13 01:39 PM		
o-Xylene		ND	0.0545	0.272		mg/Kg-dry	50	02/06/13 01:39 PM		
Toluene		ND	0.0545	0.272		mg/Kg-dry	50	02/06/13 01:39 PM		
Surr: 1,2-Dich	nloroethane-d4	100	0	52-149		%REC	50	02/06/13 01:39 PM		
Surr: 4-Bromo	ofluorobenzene	113	0	84-118		%REC	50	02/06/13 01:39 PM		
Surr: Dibromo	ofluoromethane	97.9	0	65-135		%REC	50	02/06/13 01:39 PM		
Surr: Toluene	e-d8	97.3	0	84-116		%REC	50	02/06/13 01:39 PM		
PERCENT MOI	STURE	D2216			Analyst: JCG					
PERCENT MOISTURE Percent Moisture		8.25	0	0		WT%	1	02/12/13 08:50 AM		

Qualifiers:

- * Value exceeds TCLP Maximum Concentration Level
- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- RL Reporting Limit
- N Parameter not NELAC certified

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- S Spike Recovery outside control limits

Date: 12-Feb-13

CLIENT:	Holly Energy Partners			Clie	ent Sam	ple ID: SB-	4-50			
Project:	South Hobbs GSA	Lab ID: 1302037-04								
Project No:				С	ollection	1 Date: 02/0	01/13 1	0:35 AM		
Lab Order:	1302037				N	Aatrix: SOI	L			
Analyses		Result	MDL	RL	Qual	Units	DF	Date Analyzed		
TPH EXTRACT	ABLE BY GC - SOIL		M801	5D				Analyst: AJR		
TPH-DRO C10	-C28	1380	32.9	110		mg/Kg-dry	10	02/11/13 01:33 PM		
Surr: Isoprop	ylbenzene	93.2	0	47-142		%REC	10	02/11/13 01:33 PM		
Surr: Octaco	sane	312	0	25-162	S	%REC	10	02/11/13 01:33 PM		
TPH PURGEA	BLE BY GC - SOIL		M801	5V				Analyst: DEW		
Gasoline Range	e Organics	133	5.54	11.1		mg/Kg-dry	50	02/06/13 12:37 PM		
Surr: Tetrach	lorethene	119	0	70-134		%REC	50	02/06/13 12:37 PM		
8260 SOIL VOI	ATILES BY GC/MS		SW82	60C				Analyst: KL		
Benzene		ND	0.0554	0.277		mg/Kg-dry	50	02/06/13 02:10 PM		
Ethylbenzene		0.638	0.0554	0.277		mg/Kg-dry	50	02/06/13 02:10 PM		
m,p-Xylene		0.882	0.0554	0.277		mg/Kg-dry	50	02/06/13 02:10 PM		
o-Xylene		ND	0.0554	0.277		mg/Kg-dry	50	02/06/13 02:10 PM		
Toluene		ND	0.0554	0.277		mg/Kg-dry	50	02/06/13 02:10 PM		
Surr: 1,2-Dic	hloroethane-d4	101	0	52-149		%REC	50	02/06/13 02:10 PM		
Surr: 4-Brom	ofluorobenzene	114	0	84-118		%REC	50	02/06/13 02:10 PM		
Surr: Dibrom	ofluoromethane	95.6	0	65-135		%REC	50	02/06/13 02:10 PM		
Surr: Toluene	e-d8	102	0	84-116		%REC	50	02/06/13 02:10 PM		
PERCENT MOI	STURE		D22 ⁻	16		Analyst: JCG				
Percent Moistur	re	9.71	0	0		WT%	1	02/12/13 08:50 AM		

Qualifiers:	*	Value exceeds TCLP Maximum Concentration Level	В	Analyte detected in the associated Method Blank
	С	Sample Result or QC discussed in the Case Narrative	DF	Dilution Factor
	Е	TPH pattern not Gas or Diesel Range Pattern	J	Analyte detected between MDL and RL
	MDL	Method Detection Limit	ND	Not Detected at the Method Detection Limit
	RL	Reporting Limit	S	Spike Recovery outside control limits
	N	Parameter not NELAC certified		

Page 4 of 14

Date: 12-Feb-13

CLIENT:	Holly Energy Partners			Cli	ent Sam	ple ID: SB-	-5-40					
Project:	South Hobbs GSA	Lab ID: 1302037-05										
Project No:			Collection Date: 02/01/13 02:25 PM									
Lab Order:	1302037				N	Aatrix: SO	IL					
Analyses		Result	MDL	RL	Qual	Units	DF	Date Analyzed				
TPH EXTRACT	ABLE BY GC - SOIL		M801	5D				Analyst: AJR				
TPH-DRO C10-	-C28	2660	70.7	236		mg/Kg-dry	20	02/11/13 01:42 PM				
Surr: Isoprop	ylbenzene	96.5	0	47-142		%REC	20	02/11/13 01:42 PM				
Surr: Octaco	sane	527	0	25-162	S	%REC	20	02/11/13 01:42 PM				
TPH PURGEABLE BY GC - SOIL			M801	5V				Analyst: DEW				
Gasoline Range	e Organics	316	6.17	12.3		mg/Kg-dry	50	02/06/13 12:59 PM				
Surr: Tetrach	lorethene	154	0	70-134	S	%REC	50	02/06/13 12:59 PM				
8260 SOIL VOL	ATILES BY GC/MS		SW82	60C				Analyst: KL				
Benzene		ND	0.0617	0.309		mg/Kg-dry	50	02/06/13 02:40 PM				
Ethylbenzene		2.64	0.0617	0.309		mg/Kg-dry	50	02/06/13 02:40 PM				
m,p-Xylene		ND	0.0617	0.309		mg/Kg-dry	50	02/06/13 02:40 PM				
o-Xylene		ND	0.0617	0.309		mg/Kg-dry	50	02/06/13 02:40 PM				
Toluene		ND	0.0617	0.309		mg/Kg-dry	50	02/06/13 02:40 PM				
Surr: 1,2-Dicl	hloroethane-d4	99.4	0	52-149		%REC	50	02/06/13 02:40 PM				
Surr: 4-Brom	ofluorobenzene	127	0	84-118	S	%REC	50	02/06/13 02:40 PM				
Surr: Dibrom	ofluoromethane	98.8	0	65-135		%REC	50	02/06/13 02:40 PM				
Surr: Toluene	ə-d8	115	0	84-116		%REC	50	02/06/13 02:40 PM				
PERCENT MOI	STURE		D22	6				Analyst: JCG				
Percent Moistur	e	19.0	0	0		WT%	1	02/12/13 08:50 AM				

Qualifiers:

*

- Value exceeds TCLP Maximum Concentration Level
- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- RL Reporting Limit
- N Parameter not NELAC certified

B Analyte detected in the associated Method Blank

DF Dilution Factor

- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- S Spike Recovery outside control limits

Page 5 of 14

Date: 12-Feb-13

CLIENT:	Holly Energy Partners			Cli	ent Sam	ple ID: SB-	5-50				
Project:	South Hobbs GSA	Lab ID: 1302037-06									
Project No:		Collection Date: 02/01/13 02:40 PM									
Lab Order:	1302037				N	Iatrix: SO	IL				
Analyses		Result	MDL	RL	Qual	Units	DF	Date Analyzed			
TPH EXTRACT	ABLE BY GC - SOIL		M801	5D				Analyst: AJR			
TPH-DRO C10	932	31.3	104		mg/Kg-dry	10	02/11/13 01:51 PM				
Surr: Isoprop	ylbenzene	63.2	0	47-142		%REC	10	02/11/13 01:51 PM			
Surr: Octaco	sane	266	0	25-162	S	%REC	10	02/11/13 01:51 PM			
TPH PURGEABLE BY GC - SOIL			M801	5V				Analyst: DEW			
Gasoline Range	e Organics	48.2	5.48	11.0		mg/Kg-dry	50	02/06/13 01:22 PM			
Surr: Tetrach	lorethene	121	0	70-134		%REC	50	02/06/13 01:22 PM			
8260 SOIL VOI	ATILES BY GC/MS		SW82	60C				Analyst: KL			
Benzene		ND	0.0548	0.274		mg/Kg-dry	50	02/06/13 03:11 PM			
Ethylbenzene		ND	0.0548	0.274		mg/Kg-dry	50	02/06/13 03:11 PM			
m,p-Xylene		ND	0.0548	0.274		mg/Kg-dry	50	02/06/13 03:11 PM			
o-Xylene		ND	0.0548	0.274		mg/Kg-dry	50	02/06/13 03:11 PM			
Toluene		ND	0.0548	0.274		mg/Kg-dry	50	02/06/13 03:11 PM			
Surr: 1,2-Dic	hloroethane-d4	99.5	0	52-149		%REC	50	02/06/13 03:11 PM			
Surr: 4-Brom	ofluorobenzene	108	0	84-118		%REC	50	02/06/13 03:11 PM			
Surr: Dibrom	ofluoromethane	97.7	0	65-135		%REC	50	02/06/13 03:11 PM			
Surr: Toluene	e-d8	98.0	0	84-116		%REC	50	02/06/13 03:11 PM			
PERCENT MOI	STURE		D22 ⁻	16			Analyst: JCG				
Percent Moistur	re	8.68	0	0		WT%	1	02/12/13 08:50 AM			

Qualifiers:

- * Value exceeds TCLP Maximum Concentration Level
- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- RL Reporting Limit
- N Parameter not NELAC certified

B Analyte detected in the associated Method Blank

DF Dilution Factor

- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- S Spike Recovery outside control limits

Date: 12-Feb-13

CLIENT:	Holly Energy Partners	Client Sample ID: SB-6-28										
Project:	South Hobbs GSA	Lab ID: 1302037-07										
Project No:			Collection Date: 02/02/13 03:10 PM									
Lab Order:	1302037					fatrix: SO						
Analyses		Result	MDL	RL	Qual	Units	DF	Date Analyzed				
TPH EXTRACT	ABLE BY GC - SOIL		M801	5D				Analyst: AJR				
TPH-DRO C10-	-C28	5670	66.2	221		mg/Kg-dry	20	02/11/13 02:01 PM				
Surr: Isoprop	ylbenzene	130	0	47-142		%REC	20	02/11/13 02:01 PM				
Surr: Octaco	sane	891	0	25-162	S	%REC	20	02/11/13 02:01 PM				
TPH PURGEABLE BY GC - SOIL			M801	5V				Analyst: DEW				
Gasoline Range	e Organics	330	5.61	11.2		mg/Kg-dry	50	02/06/13 01:46 PM				
Surr: Tetrachlorethene		140	0	70-134	S	%REC	50	02/06/13 01:46 PM				
8260 SOIL VOI	ATILES BY GC/MS		SW82	60C				Analyst: KL				
Benzene		ND	0.0561	0.280		mg/Kg-dry	50	02/06/13 03:43 PM				
Ethylbenzene		1.30	0.0561	0.280		mg/Kg-dry	50	02/06/13 03:43 PM				
m,p-Xylene		4.12	0.0561	0.280		mg/Kg-dry	50	02/06/13 03:43 PM				
o-Xylene		0.811	0.0561	0.280		mg/Kg-dry	50	02/06/13 03:43 PM				
Toluene		ND	0.0561	0.280		mg/Kg-dry	50	02/06/13 03:43 PM				
Surr: 1,2-Dic	hloroethane-d4	101	0	52-149		%REC	50	02/06/13 03:43 PM				
Surr: 4-Brom	ofluorobenzene	125	0	84-118	S	%REC	50	02/06/13 03:43 PM				
Surr: Dibrom	ofluoromethane	98.3	0	65-135		%REC	50	02/06/13 03:43 PM				
Surr: Toluene	e-d8	109	0	84-116		%REC	50	02/06/13 03:43 PM				
PERCENT MOI	STURE		D22 ⁷	16				Analyst: JCG				
Percent Moistur	re	10.9	0	0		WT%	1	02/12/13 08:50 AM				

Qualifiers:	*	Value exceeds TCLP Maximum Concentration Level	В	A
-	С	Sample Result or QC discussed in the Case Narrative	DF	D
	Е	TPH pattern not Gas or Diesel Range Pattern	J	Α
	MDL	Method Detection Limit	ND	N

RL Reporting Limit

N Parameter not NELAC certified

B Analyte detected in the associated Method Blank

DF Dilution Factor

- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit

S Spike Recovery outside control limits

Date: 12-Feb-13

CLIENT:	Holly Energy Partners			Cli	ent Sam	ple ID: SB-	6-50					
Project:	South Hobbs GSA				L	ab ID: 130	2037-0)8				
Project No:			Collection Date: 02/02/13 03:45 PM									
Lab Order:	1302037				N	Aatrix: SO	IL					
Analyses		Result	MDL	RL	Qual	Units	DF	Date Analyzed				
TPH EXTRACT	ABLE BY GC - SOIL		M801	5D				Analyst: AJR				
TPH-DRO C10-	C28	440	32.3	108		mg/Kg-dry	10	02/11/13 02:23 PM				
Surr: Isoprop	ylbenzene	54.1	0	47-142		%REC	10	02/11/13 02:23 PM				
Surr: Octaco	sane	243	0	25-162	S	%REC	10	02/11/13 02:23 PM				
TPH PURGEAE	BLE BY GC - SOIL		5V			Analyst: DEW						
Gasoline Range	e Organics	1.37	0.107	0.215		mg/Kg-dry	1	02/06/13 06:44 PM				
Surr: Tetrach	lorethene	128	0	70-134		%REC	1	02/06/13 06:44 PM				
8260 SOIL VOL	ATILES BY GC/MS		SW82	60C				Analyst: KL				
Benzene		ND	0.0573	0.287		mg/Kg-dry	50	02/06/13 04:14 PM				
Ethylbenzene		ND	0.0573	0.287		mg/Kg-dry	50	02/06/13 04:14 PM				
m,p-Xylene		ND	0.0573	0.287		mg/Kg-dry	50	02/06/13 04:14 PM				
o-Xylene		ND	0.0573	0.287		mg/Kg-dry	50	02/06/13 04:14 PM				
Toluene		ND	0.0573	0.287		mg/Kg-dry	50	02/06/13 04:14 PM				
Surr: 1,2-Dicl	nloroethane-d4	99.4	0	52-149		%REC	50	02/06/13 04:14 PM				
Surr: 4-Brom	ofluorobenzene	109	0	84-118		%REC	50	02/06/13 04:14 PM				
Surr: Dibrom	ofluoromethane	96.2	0	65-135		%REC	50	02/06/13 04:14 PM				
Surr: Toluene	ə-d8	97.3	0	84-116		%REC	50	02/06/13 04:14 PM				
PERCENT MOI	STURE		D22	16				Analyst: JCG				
Percent Moistur	е	12.8	0	0		WT%	1	02/12/13 08:50 AM				

Qualifiers:	*	Value exceeds TCLP Maximum Concentration Level	В	Analyte detected in the associated Method Blank
	С	Sample Result or QC discussed in the Case Narrative	DF	Dilution Factor
	Е	TPH pattern not Gas or Diesel Range Pattern	J	Analyte detected between MDL and RL
	MDL	Method Detection Limit	ND	Not Detected at the Method Detection Limit
	RL	Reporting Limit	S	Spike Recovery outside control limits

N Parameter not NELAC certified

- IDL and RL
- Detection Limit

Date: 12-Feb-13

CLIENT:	Holly Energy Partners			Cli	ent Sam	ple ID: SB-	2-40		
Project:	South Hobbs GSA				L	ab ID: 130	2037-0)9	
Project No:				C	ollection	1 Date: 02/0	02/13 1	0:15 AM	
Lab Order:	1302037				N	Aatrix: SO	L		
Analyses		Result	MDL	RL	Qual	Units	DF	Date Analyzed	
TPH EXTRACT	ABLE BY GC - SOIL		M801	5D				Analyst: AJR	
TPH-DRO C10	-C28	6420	167	558		mg/Kg-dry	50	02/11/13 02:50 PM	
Surr: Isoprop	bylbenzene	199	0	47-142	S	%REC	50	02/11/13 02:50 PM	
Surr: Octaco	sane	1040	0	25-162	S	%REC	50	02/11/13 02:50 PM	
TPH PURGEA	BLE BY GC - SOIL		M801	5V				Analyst: DEW	
Gasoline Range	e Organics	614	5.63	11.3		mg/Kg-dry	50	02/06/13 02:31 PM	
Surr: Tetrach	hlorethene	191	0	70-134	S	%REC	50	02/06/13 02:31 PM	
8260 SOIL VOI	ATILES BY GC/MS		SW82	60C				Analyst: KL	
Benzene		ND	0.0563	0.281		mg/Kg-dry	50	02/06/13 05:47 PM	
Ethylbenzene		7.16	0.0563	0.281		mg/Kg-dry	50	02/06/13 05:47 PM	
m,p-Xylene		ND	0.0563	0.281		mg/Kg-dry	50	02/06/13 05:47 PM	
o-Xylene		ND	0.0563	0.281		mg/Kg-dry	50	02/06/13 05:47 PM	
Toluene		ND	0.0563	0.281		mg/Kg-dry	50	02/06/13 05:47 PM	
Surr: 1,2-Dic	hloroethane-d4	99.8	0	52-149		%REC	50	02/06/13 05:47 PM	
Surr: 4-Brom	ofluorobenzene	143	0	84-118	S	%REC	50	02/06/13 05:47 PM	
Surr: Dibrom	ofluoromethane	97.5	0	65-135		%REC	50	02/06/13 05:47 PM	
Surr: Toluene	e-d8	133	0	84-116	S	%REC	50	02/06/13 05:47 PM	
PERCENT MOI	STURE		D221	6				Analyst: JCG	
Percent Moistur	re	11.1	0	0		WT%	1	02/12/13 08:50 AM	

Qualifiers:	*	Value exceeds TCLP Maximum Concentration Level	В	Analyte detected in the associated Method Blank
	С	Sample Result or QC discussed in the Case Narrative	DF	Dilution Factor
	Е	TPH pattern not Gas or Diesel Range Pattern	J	Analyte detected between MDL and RL
	MDL	Method Detection Limit	ND	Not Detected at the Method Detection Limit
	RL	Reporting Limit	S	Spike Recovery outside control limits
	N	Parameter not NELAC certified		

Date: 12-Feb-13

CLIENT:	Holly Energy Partners			Clie	ent Sam	ple ID: SB-	2-50				
Project:	South Hobbs GSA				L	Lab ID: 1302037-10					
Project No:				С	ollection	Date: 02/0	02/13 1	0:30 AM			
Lab Order:	1302037				N	latrix: SO	IL				
Analyses		Result	MDL	RL	Qual	Units	DF	Date Analyzed			
TPH EXTRACT	ABLE BY GC - SOIL		M801	5D				Analyst: AJR			
TPH-DRO C10	-C28	89.2	3.06	10.2		mg/Kg-dry	1	02/11/13 02:59 PM			
Surr: Isoprop	ylbenzene	41.1	0	47-142	S	%REC	1	02/11/13 02:59 PM			
Surr: Octaco	sane	140	0	25-162		%REC	1	02/11/13 02:59 PM			
TPH PURGEA	BLE BY GC - SOIL		M801	5V				Analyst: DEW			
Gasoline Range	e Organics	0.499	0.0970	0.194		mg/Kg-dry	1	02/06/13 07:07 PM			
Surr: Tetrach	hlorethene	121	0	70-134		%REC	1	02/06/13 07:07 PM			
8260 SOIL VOI	ATILES BY GC/MS		SW826	60C				Analyst: KL			
Benzene		ND	0.0526	0.263		mg/Kg-dry	50	02/06/13 06:18 PM			
Ethylbenzene		ND	0.0526	0.263		mg/Kg-dry	50	02/06/13 06:18 PM			
m,p-Xylene		ND	0.0526	0.263		mg/Kg-dry	50	02/06/13 06:18 PM			
o-Xylene		ND	0.0526	0.263		mg/Kg-dry	50	02/06/13 06:18 PM			
Toluene		ND	0.0526	0.263		mg/Kg-dry	50	02/06/13 06:18 PM			
Surr: 1,2-Dic	hloroethane-d4	108	0	52-149		%REC	50	02/06/13 06:18 PM			
Surr: 4-Brom	ofluorobenzene	106	0	84-118		%REC	50	02/06/13 06:18 PM			
Surr: Dibrom	ofluoromethane	102	0	65-135		%REC	50	02/06/13 06:18 PM			
Surr: Toluen	e-d8	94.6	0	84-116		%REC	50	02/06/13 06:18 PM			
PERCENT MO	STURE		D221	6				Analyst: JCG			
Percent Moistu	876 - 58375879 (ST-5)	4.89	0	0		WT%	1	02/12/13 08:50 AM			

Qualifiers:	*	Value exceeds TCLP Maximum Concentration Level
	С	Sample Result or QC discussed in the Case Narrative
	Е	TPH pattern not Gas or Diesel Range Pattern
	MDL	Method Detection Limit

RL Reporting Limit

N Parameter not NELAC certified

B Analyte detected in the associated Method Blank

DF Dilution Factor

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

S Spike Recovery outside control limits

Date: 12-Feb-13

CLIENT:	Holly Energy Partners			Cli	ent Sam	ple ID: SB-	7-44				
Project:	South Hobbs GSA				L	ab ID: 130	2037-1	1			
Project No:				С	ollection	Date: 02/	03/13 1	0:30 AM			
Lab Order:	1302037	Matrix: SOIL									
Analyses		Result	MDL	RL	Qual	Units	DF	Date Analyzed			
TPH EXTRACT	ABLE BY GC - SOIL		M801	5D				Analyst: AJR			
TPH-DRO C10-	C28	1470	29.7	99.2		mg/Kg-dry	10	02/11/13 03:08 PM			
Surr: Isoprop	ylbenzene	71.8	0	47-142		%REC	10	02/11/13 03:08 PM			
Surr: Octacos	sane	383	0	25-162	S	%REC	10	02/11/13 03:08 PM			
TPH PURGEAE	BLE BY GC - SOIL		M801	5V				Analyst: DEW			
Gasoline Range	e Organics	77.8	5.22	10.4		mg/Kg-dry	50	02/06/13 04:03 PM			
Surr: Tetrachlorethene		132	0	70-134		%REC	50	02/06/13 04:03 PM			
8260 SOIL VOL	ATILES BY GC/MS		SW82	60C				Analyst: KL			
Benzene		ND	0.0522	0.261		mg/Kg-dry	50	02/06/13 06:49 PM			
Ethylbenzene		0.0856	0.0522	0.261	J	mg/Kg-dry	50	02/06/13 06:49 PN			
m,p-Xylene		ND	0.0522	0.261		mg/Kg-dry	50	02/06/13 06:49 PN			
o-Xylene		ND	0.0522	0.261		mg/Kg-dry	50	02/06/13 06:49 PN			
Toluene		ND	0.0522	0.261		mg/Kg-dry	50	02/06/13 06:49 PN			
Surr: 1,2-Dich	nloroethane-d4	106	0	52-149		%REC	50	02/06/13 06:49 PN			
Surr: 4-Brome	ofluorobenzene	114	0	84-118		%REC	50	02/06/13 06:49 PM			
Surr: Dibromo	ofluoromethane	98.7	0	65-135		%REC	50	02/06/13 06:49 PN			
Surr: Toluene	ə-d8	98.2	0	84-116		%REC	50	02/06/13 06:49 PM			
PERCENT MOI	STURE		D22	16				Analyst: JCG			
Percent Moistur	e	4.13	0	0		WT%	1	02/12/13 08:50 AM			

Qualifiers:	
-------------	--

- * Value exceeds TCLP Maximum Concentration Level
- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- RL Reporting Limit
- N Parameter not NELAC certified

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- S Spike Recovery outside control limits

Date: 12-Feb-13

	-							
CLIENT:	Holly Energy Partners			Cli	ent Sam	ple ID: SB-	7-50	
Project:	South Hobbs GSA				L	ab ID: 130	2037-1	2
Project No:				C	ollection	Date: 02/	03/13 1	0:45 AM
Lab Order:	1302037				N	fatrix: SO	IL	
Analyses		Result	MDL	RL	Qual	Units	DF	Date Analyzed
TPH EXTRACT	ABLE BY GC - SOIL		M801	5D				Analyst: AJR
TPH-DRO C10-	C28	1240	31.5	105		mg/Kg-dry	10	02/11/13 03:17 PM
Surr: Isoprop	ylbenzene	62.5	0	47-142		%REC	10	02/11/13 03:17 PM
Surr: Octaco:	sane	428	0	25-162	S	%REC	10	02/11/13 03:17 PM
TPH PURGEAE	BLE BY GC - SOIL		M801	5V				Analyst: DEW
Gasoline Range	e Organics	26.6	5.35	10.7		mg/Kg-dry	50	02/06/13 04:26 PM
Surr: Tetrach	lorethene	120	0	70-134		%REC	50	02/06/13 04:26 PM
8260 SOIL VOL	ATILES BY GC/MS		SW82	60C				Analyst: KL
Benzene		ND	0.0535	0.268		mg/Kg-dry	50	02/06/13 07:19 PM
Ethylbenzene		ND	0.0535	0.268		mg/Kg-dry	50	02/06/13 07:19 PM
m,p-Xylene		ND	0.0535	0.268		mg/Kg-dry	50	02/06/13 07:19 PM
o-Xylene		ND	0.0535	0.268		mg/Kg-dry	50	02/06/13 07:19 PM
Toluene		ND	0.0535	0.268		mg/Kg-dry	50	02/06/13 07:19 PM
Surr: 1,2-Dicl	nloroethane-d4	104	0	52-149		%REC	50	02/06/13 07:19 PM
Surr: 4-Brom	ofluorobenzene	106	0	84-118		%REC	50	02/06/13 07:19 PM
Surr: Dibrome	ofluoromethane	100	0	65-135		%REC	50	02/06/13 07:19 PM
Surr: Toluene	ə-d8	97.6	0	84-116		%REC	50	02/06/13 07:19 PM
PERCENT MOI	STURE		D22	16				Analyst: JCG
Percent Moistur	e	6.55	0	0		WT%	1	02/12/13 08:50 AM

Qua	lifiers:

- * Value exceeds TCLP Maximum Concentration Level
- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- RL Reporting Limit
- N Parameter not NELAC certified

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- S Spike Recovery outside control limits

Date: 12-Feb-13

CLIENT:	Holly Energy Partners	Client Sample ID: SB-1-4											
Project:	South Hobbs GSA				L	ab ID: 130	2037-1	3					
Project No:				С	ollection	n Date: 02/0	03/13 0	1:45 PM					
Lab Order:	1302037				N	1 atrix: SOI	L						
Analyses		Result	MDL	RL	Qual	Units	DF	Date Analyzed					
TPH EXTRACT	ABLE BY GC - SOIL		M801	5D				Analyst: AJR					
TPH-DRO C10-	-C28	23700	671	2240		mg/Kg-dry	200	02/11/13 03:26 PM					
Surr: Isoprop	ylbenzene	729	0	47-142	S	%REC	200	02/11/13 03:26 PM					
Surr: Octaco	sane	3110	0	25-162	S	%REC	200	02/11/13 03:26 PM					
TPH PURGEAE	BLE BY GC - SOIL		M801	5V				Analyst: DEW					
Gasoline Range	e Organics	1290	5.63	11.3		mg/Kg-dry	50	02/06/13 04:50 PM					
Surr: Tetrach	lorethene	197	0	70-134	S	%REC	50	02/06/13 04:50 PM					
8260 SOIL VOI	ATILES BY GC/MS		SW82	60C				Analyst: KL					
Benzene		1.95	0.0563	0.281		mg/Kg-dry	50	02/06/13 07:51 PM					
Ethylbenzene		26.8	0.0563	0.281		mg/Kg-dry	50	02/06/13 07:51 PM					
m,p-Xylene		22.5	0.0563	0.281		mg/Kg-dry	50	02/06/13 07:51 PM					
o-Xylene		0.0909	0.0563	0.281	J	mg/Kg-dry	50	02/06/13 07:51 PM					
Toluene		ND	0.0563	0.281		mg/Kg-dry	50	02/06/13 07:51 PM					
Surr: 1,2-Dic	hloroethane-d4	103	0	52-149		%REC	50	02/06/13 07:51 PM					
Surr: 4-Brom	ofluorobenzene	136	0	84-118	S	%REC	50	02/06/13 07:51 PM					
Surr: Dibrom	ofluoromethane	97.2	0	65-135		%REC	50	02/06/13 07:51 PM					
Surr: Toluene	e-d8	140	0	84-116	S	%REC	50	02/06/13 07:51 PM					
PERCENT MOI	STURE		D22	16				Analyst: JCG					
Percent Moistur	re	11.1	0	0		WT%	1	02/12/13 08:50 AM					

Qualifiers:

- * Value exceeds TCLP Maximum Concentration Level
- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit

RL Reporting Limit

N Parameter not NELAC certified

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- S Spike Recovery outside control limits

Date: 12-Feb-13

CLIENT:	Holly Energy Partners			Cli	ent Sam	ple ID: SB-	1-42		
Project:	South Hobbs GSA				L	ab ID: 130	2037-1	4	
Project No:				С	ollection	n Date: 02/	03/13 0	2:00 PM	
Lab Order:	1302037				N	Aatrix: SO	IL		
Analyses		Result	MDL	RL	Qual	Units	DF	Date Analyzed	
TPH EXTRACT	ABLE BY GC - SOIL		M801	5D				Analyst: AJR	
TPH-DRO C10-	C28	4070	316	1050		mg/Kg-dry	100	02/11/13 03:35 PM	
Surr: Isoprop	ylbenzene	112	0	47-142		%REC	100	02/11/13 03:35 PM	
Surr: Octacos	sane	961	0	25-162	S	%REC	100	02/11/13 03:35 PM	
TPH PURGEAE	BLE BY GC - SOIL		M801	5V				Analyst: DEW	
Gasoline Range	organics	402	5.43	10.9		mg/Kg-dry	50	02/06/13 05:12 PM	
Surr: Tetrach		154	0	70-134	S	%REC	50	02/06/13 05:12 PM	
8260 SOIL VOL	ATILES BY GC/MS		SW82	60C				Analyst: KL	
Benzene		0.0762	0.0543	0.272	J	mg/Kg-dry	50	02/06/13 08:22 PM	
Ethylbenzene		7.22	0.0543	0.272		mg/Kg-dry	50	02/06/13 08:22 PM	
m,p-Xylene		0.370	0.0543	0.272		mg/Kg-dry	50	02/06/13 08:22 PM	
o-Xylene		ND	0.0543	0.272		mg/Kg-dry	50	02/06/13 08:22 PM	
Toluene		ND	0.0543	0.272		mg/Kg-dry	50	02/06/13 08:22 PM	
Surr: 1,2-Dich	nloroethane-d4	103	0	52-149		%REC	50	02/06/13 08:22 PM	
Surr: 4-Brom	ofluorobenzene	128	0	84-118	S	%REC	50	02/06/13 08:22 PM	
Surr: Dibromo	ofluoromethane	96.5	0	65-135		%REC	50	02/06/13 08:22 PM	
Surr: Toluene	e-d8	118	0	84-116	S	%REC	50	02/06/13 08:22 PM	
PERCENT MO	STURE		D22	16				Analyst: JCG	
Percent Moistur		7.97	0	0		WT%	1	02/12/13 08:50 AM	

Qualifiers:

* Value exceeds TCLP Maximum Concentration Level

- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit

RL Reporting Limit

N Parameter not NELAC certified

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- S Spike Recovery outside control limits

Page 1 of 5

CLIENT:	Holly Ene	rgy Partner	rs		AN	JALVT	TCAL (oc si	UMMAR	8V F	REPO	RT
Work Order:	1302037				1 11			200				LVA
Project:	South Hob	obs GSA					RunII): (GC15_1302	211A		
The QC data in batch 06B, 1302037-07B, 1	55947 app 302037-08E	lies to the fo 3, 1302037-	ollowing sa 09B, 1302	amples: 1302 2037-10B, 13	2037-01B, 1302 02037-11B, 130	037-02B, 13 02037-12B,	302037-03B, 1302037-13	1302037 B, 13020	-04B, 130203 37-14B	7-05B,	1302037	-
Sample ID: LCS-559	47	Batch ID:	55947		TestNo	: M80	015D		Units:	mg/l	٨g	
SampType: LCS		Run ID:	GC15_1	I30211A	Analysi	s Date: 2/1 1	1/2013 12:21	l:53 PM	Prep Date:	2/7/2	2013	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD	RPDLimi	t Qual
TPH-DRO C10-C28			101	10.0	125.0	0	81.0	50	114			
Surr: Isopropylbenz	zene		4.01		7.500		53.5	47	142			
Surr: Octacosane			6.39		7.500		85.2	25	162			
Sample ID: MB-5594	17	Batch ID:	55947		TestNo	: M80	015D		Units:	mg/ł	≺g	
SampType: MBLK		Run ID:	GC15_1	130211A	Analysi	s Date: 2/11	1/2013 12:39):51 PM	Prep Date:	2/7/2	2013	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD	RPDLimi	t Qual
TPH-DRO C10-C28			3.94	10.0								
Surr: Isopropylbenz	zene		4.70		7.500		62.6	47	142			
Surr: Octacosane			6.56		7.500		87.5	25	162			
Sample ID: 1302037	-10BMS	Batch ID:	55947		TestNo	: M80	015D		Units:	mg/ł	۶g-dry	
SampType: MS		Run ID:	GC15_1	30211A	Analysi	s Date: 2/11	1/2013 4:01:	59 PM	Prep Date:	2/7/2	2013	
Analyte		1	Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	%RPD	RPDLimi	t Qual
TPH-DRO C10-C28			287	9.74	121.8	89.19	163	50	114			S
Surr: Isopropylbenz	zene		4.46		7.308		61.0	47	142			
Surr: Octacosane			12.1		7.308		166	25	162			S
Sample ID: 1302037	10BMSD	Batch ID:	55947		TestNo	: M80	015D		Units:	mg/ł	۶g-dry	
SampType: MSD		Run ID:	GC15_1	30211A	Analysi	s Date: 2/1 1	1/2013 4:10:	56 PM	Prep Date:	2/7/2	2013	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	öRPD	RPDLimi	l Qual
TPH-DRO C10-C28			190	10.4	129.6	89.19	78.0	50	114	40.6	30	R
Surr: Isopropylbenz	ene		3.40		7.777		43.8	47	142	0	0	S
Surr: Octacosane			10.5		7.777		136	25	162	0	0	

Qualifiers:

Analyte detected in the associated Method Blank В

Analyte detected between MDL and RL J

Not Detected at the Method Detection Limit ND

RL Reporting Limit

Analyte detected between SDL and RL J

DF **Dilution Factor**

MDL Method Detection Limit R RPD outside accepted control limits

S Spike Recovery outside control limits

Ν Parameter not NELAC certified

CLIENT: Holly Energy Partners

1302037

ANALYTICAL QC SUMMARY REPORT

Project: South Hobbs GSA

Work Order:

RunID: GC4_130206A

The QC data in batch 55931 app 06B, 1302037-07B, 1302037-08									37-05B, 1	1302037-
Sample ID: LCS-55931	Batch ID:	55931		TestNo:	M8	015V		Units:	mg/K	9
SampType: LCS	Run ID:	GC4_1	30206A	Analysis	s Date: 2/6	/2013 8:27:2	0 AM	Prep Date:	2/6/20	13
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD F	RPDLimit Qua
Gasoline Range Organics Surr: Tetrachlorethene		4.76 0.216	0.200	5.000 0.2000	0	95.2 108	68 70	126 134		
Sample ID: MB-55931	Batch ID:	55931		TestNo:	M8	015V		Units:	mg/K	9
SampType: MBLK	Run ID:	GC4_1	30206A	Analysis	a Date: 2/6	/2013 9:12:0	9 AM	Prep Date:	2/6/20	13
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD F	PDLimit Qua
Gasoline Range Organics Surr: Tetrachlorethene		ND 0.232	0.200	0.2000		116	70	134		
Sample ID: LCS-55931 MEOH	Batch ID:	55931		TestNo:	M8	015V		Units:	mg/K	9
SampType: LCS	Run ID:	GC4_1	30206A	Analysis	s Date: 2/6	/2013 7:30:5	9 PM	Prep Date:	2/6/20	13
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit '	%RPD F	PDLimit Qual
Gasoline Range Organics Surr: Tetrachlorethene		4.68 0.237	0.200	5.000 0.2000	0	93.5 119	68 70	126 134		
Sample ID: MB-55931 MEOH	Batch ID:	55931		TestNo:	M8	015V		Units:	mg/Kg	3
SampType: MBLK	Run ID:	GC4_1	30206A	Analysis	a Date: 2/6	/2013 8:17:3	9 PM	Prep Date:	2/6/20	13
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD F	PDLimit Qual
Gasoline Range Organics Surr: Tetrachlorethene		ND 0.238	0.200	0.2000		119	70	134		
Sample ID: 1302037-12BMS	Batch ID:	55931		TestNo:	M8	015V		Units:	mg/Kg	g-dry
SampType: MS	Run ID:	GC4_1	30206A	Analysis	a Date: 2/6	/2013 8:40:4	8 PM	Prep Date:	2/6/20	13
Analyte	1	Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD F	PDLimit Qual
Gasoline Range Organics Surr: Tetrachlorethene		254 11.6	10.7	267.5 10.70	26.57	85.2 109	68 70	126 134		
Sample ID: 1302037-12BMSD	Batch ID:	55931		TestNo:	M8	015V		Units:	mg/Kg	J-dry
SampType: MSD	Run ID:	GC4_1	30206A	Analysis	Date: 2/6	/2013 9:04:0/	04 PM Prep Date: 2/6/2013			
Analyte	1	Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD F	PDLimit Qual
Gasoline Range Organics Surr: Tetrachlorethene		263 12.0	10.7	267.5 10.70	26.57	88.4 112	68 70	126 134	3.31 0	30 0

Qualifiers:

- B Analyte detected in the associated Method Blank
- J Analyte detected between MDL and RL ND Not Detected at the Method Detection Limit
- RL Reporting Limit
- J Analyte detected between SDL and RL
- DF Dilution Factor
- MDL Method Detection Limit R RPD outside accepted control limits

Page 2 of 5

- S Spike Recovery outside control limits
- N Parameter not NELAC certified

CLIENT: Holly Energy Partners

ANALYTICAL QC SUMMARY REPORT

Project:

Work Order: 1302037

ect: South Hobbs GSA

RunID: GCMS1_130206A

06A, 1302037-07A, 1302037-08. Sample ID: LCS-55939	Batch ID:		007 107, 10	TestNo:		8260C	1, 10020	Units:	mg/Kg	
nanonan			4000004				00 014		12.100. 00 .000.000	
SampType: LCS	Run ID:	GCMS1	_130206A	Analysis	s Date: 2/6/	2013 11:30:	00 AM	Prep Date:	2/6/2013	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	RPD RPDLimit Qual	
Benzene		0.0212	0.00500	0.0232	0	91.4	75	125		
Ethylbenzene		0.0196	0.00500	0.0232	0	84.4	75	125		
m,p-Xylene		0.0399	0.00500	0.0464	0	86.1	80	125		
o-Xylene		0.0196	0.00500	0.0232	0	84.5	77	125		
Toluene		0.0216	0.00500	0.0232	0	93.0	75	125		
Surr: 1,2-Dichloroethane-d4		51.8		50.00		104	52	149		
Surr: 4-Bromofluorobenzene		51.7		50.00		103	84	118		
Surr: Dibromofluoromethane		50.1		50.00		100	65	135		
Surr: Toluene-d8		48.8		50.00		97.5	84	116		
Sample ID: MB-55939	Batch ID:	55939		TestNo:	SW	8260C		Units:	mg/Kg	
SampType: MBLK	Run ID:	GCMS1	_130206A	Analysis	a Date: 2/6/	2013 12:04:	00 PM	Prep Date: 2/6/2013		
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	RPD RPDLimit Qual	
Benzene		ND	0.00500							
Ethylbenzene		ND	0.00500							
m,p-Xylene		ND	0.00500							
o-Xylene		ND	0.00500							
Toluene		ND	0.00500							
Surr: 1,2-Dichloroethane-d4		49.4		50.00		98.7	52	149		
Surr: 4-Bromofluorobenzene		52.4		50.00		105	84	118		
Surr: Dibromofluoromethane		50.5		50.00		101	65	135		
Surr: Toluene-d8		49.4		50.00		98.7	84	116		
Sample ID: 1302037-03AMS	Batch ID:	55939		TestNo:	SW	8260C		Units:	mg/Kg-dry	
SampType: MS	Run ID:		_130206A	Analysis	Date: 2/6/	2013 4:46:0	0 PM	Prep Date:	2/6/2013	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	RPD RPDLimit Qual	
Benzene		1.27	0.272	1.26	0	100	73	126		
Ethylbenzene		1.27	0.272	1.26	0.113	91.4	74	120		
m,p-Xylene		2.34	0.272	2.53	0.110	92.6	79	126		
o-Xylene		1.14	0.272	1.26	0	90.4	77	125		
0.0007 - 1 1 🗮 1 0 1 1 0 0 - C 1 1 0 0 0		1.14	0.272	1.26	0	100	71	123		
loluene			0.272		U	99.1	52	149		
		2700								
Toluene Surr: 1,2-Dichloroethane-d4 Surr: 4 Bromofluorobonzono		2700		2725						
		2700 3170 2670		2725 2725 2725		116 98.1	84 65	118 135		

Qualifiers:	В	Analyte detected in the associated Method Blank	DF	Dilution Factor	
	J	Analyte detected between MDL and RL	MDL	Method Detection Limit	Page 3 of 5
	ND	Not Detected at the Method Detection Limit	R	RPD outside accepted control limits	 (2) Sol (2) (3) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2
	RL	Reporting Limit	S	Spike Recovery outside control limits	
	J	Analyte detected between SDL and RL	N	Parameter not NELAC certified	

CLIENT: Holly Energy Partners Work Order: 1302037

ANALYTICAL QC SUMMARY REPORT

Project:

South Hobbs GSA

GCMS1_130206A **RunID**:

Sample ID: 1302037-03AMSD	Batch ID:	55939		TestNo	: SW8	3260C		Units:	mg/l	Kg-dry
SampType: MSD	Run ID:	GCMS1	_130206A	Analys	is Date: 2/6/2	2013 5:17:0	0 PM	Prep Date	e: 2/6/2	2013
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit	%RPD	RPDLimit Qua
Benzene		1.25	0.272	1.26	0	99.2	73	126	0.969	30
Ethylbenzene		1.27	0.272	1.26	0.113	91.5	74	127	0.094	30
m,p-Xylene		2.33	0.272	2.53	0	92.2	79	126	0.439	30
o-Xylene		1.12	0.272	1.26	0	88.9	77	125	1.64	30
Toluene		1.26	0.272	1.26	0	99.4	71	127	0.687	30
Surr: 1,2-Dichloroethane-d4		2780		2725		102	52	149	0	0
Surr: 4-Bromofluorobenzene		3040		2725		111	84	118	0	0
Surr: Dibromofluoromethane		2680		2725		98.5	65	135	0	0
Surr: Toluene-d8		2700		2725		99.1	84	116	0	0

Qualifiers:

Analyte detected in the associated Method Blank

- J Analyte detected between MDL and RL ND Not Detected at the Method Detection Limit
- RL Reporting Limit

в

Analyte detected between SDL and RL J

DF **Dilution Factor**

- MDL Method Detection Limit R
- RPD outside accepted control limits
- Spike Recovery outside control limits S

Ν Parameter not NELAC certified Page 4 of 5

CLIENT: Work Order:	Holly Ene 1302037	rgy Partne	rs		AN	ALYT	ICAL (QC SU	MMA	RY F	EPORT
Project:	South Hob	bs GSA					RunII): P	MOIST_	13021	1A
The QC data in bat 06B, 1302037-07B	ch 56014 app 1302037-08E	lies to the fo 3, 1302037-	ollowing sa 09B, 1302	mples: 1302 037-10B, 130	037-01B, 13020 02037-11B, 130	37-02B, 13 2037-12B,	02037-03B, 1302037-13	1302037- B, 130203	04B, 13020 7-14B	37-05B,	1302037-
Sample ID: 13020: SampType: DUP	37-14B-DUP	Batch ID: Run ID:	56014 PMOIST	_130211A	TestNo: Analysis		16 /2013 8:50:	00 AM	Units: Prep Date	WT%	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD	RPDLimit Qual
Percent Moisture			7.39	0	0	7.968				7.57	30

Qualifiers:	в	Analyte detected in the associated Method Blank	DF	Dilution Factor	
	J	Analyte detected between MDL and RL	MDL	Method Detection Limit	Page 5 of 5
	ND	Not Detected at the Method Detection Limit	R	RPD outside accepted control limits	
	RL	Reporting Limit	S	Spike Recovery outside control limits	
	J	Analyte detected between SDL and RL	Ν	Parameter not NELAC certified	

February 15, 2013

Bill Green
Holly Energy Partners
1602 W. Main
Artesisa, NM 88210
TEL: (575) 748-8968
FAX (575) 748-4052
RE: South Hobbs GSA (Holly Energy Partners)

Order No.: 1302079

Dear Bill Green:

DHL Analytical, Inc. received 6 sample(s) on 2/8/2013 for the analyses presented in the following report.

There were no problems with the analyses and all data for associated QC met EPA or laboratory specifications except where noted in the Case Narrative and all estimated uncertainties of results are within method specifications.

If you have any questions regarding these tests results, please feel free to call.

Sincerely,

John DuPont General Manager

This report was performed under the accreditation of the State of Texas Laboratory Certification Number: T104704211-12-9



2300 Double Creek Drive • Round Rock, TX 78664 • Phone (512) 388-8222 • FAX (512) 388-8229 www.dhlanalytical.com

Table of Contents

Miscellaneous Documents	3
CaseNarrative 1302079	6
Analytical Report 1302079	7
AnalyticalQCSummaryReport 13020791	3

58823 OF-CUSTODY	PAGE OF OF (1302079 (Hally Energy)		FIELD NOTES	F	572	بر	S	24	D			5		тневи #. 57	10	
Nº 5992 CHAIN-OF-(ER #: 5 25A LECTOR:													E ONLY:	DE BROKEN	IVERT ELIVERED
														Ш		
X 78664 88-8229 tical.com tical.com	E E	A A A A A A A A A A A A A A A A A A A	1214 07 1214 07 120 080		X	X			K							OTHER C
2300 Double Creek Dr. Round Rock, TX 78664 Phone (512) 388-8222 B FAX (512) 388-8229 Web: www.dhlanalytical.com E-Mail: login@dhlanalytical.com	DATE: <u>arawork</u> , and #: PROJE		INTER UNPRESI						*						Berl	3
Ibte Creek Dr. I e (512) 388-822 Web E-Mail	RDD 1. betephenson@. Craworld, (b/M		HNO ³ HCI # of Con	L/02 Jars 2		~+			*					RECEIVED BY: (Signature)	RECEIVED BY: (Signature)	D Return
2300 Dou Phone			Time Matrix Type	1600 5 2102		SH01	001	0930	1015 X 2					DATE/TIME R	~	@ \$5.00 each
TICAL	142	S=Soil P=Paint W=Water SL=SLUDGE A=Air 0=Other L=Liquid S0=Solid	Date	2號 3 16	No.	2,5,1310	1	2,6,13	*					2.7.	1.	DHL DISPOSAL @ \$5.00 each
A N A L Y 7	UKH S: 14996 720,974 PORTED TO: DNAL REPORT	Authorize 5% 5=5 surcharge for W= TRRP Report? A=A d=A ces DNo L=L	Field DHL Sample I.D. Lab #	19 01-8	20 84-8	101	1-52	6	TO SH-1-WYCH					TOTAL RELINOVISHED BY (Signature)	RELMQUISHED BY: (Signature)	
	CLIENT: ADDRESS: PHONE: DATA REPO ADDITION	Auth surcl TRRF TRRF	San	53-	53-	H5KW-	HOKW-1	HSK.	HOK					TOTAL RELINQUISH	ELINQUISH	

	Sample	Rece	eipt Check	klist	
Client Name Holly Energy Partners				Date Rece	elved: 2/8/2013
Work Order Number 1302079				Received b	by JB
Checklist completed by:	Carrier name		<u>Ex 1day</u>	Reviewed I	by <u>52/8/2013</u> Initials Date
Shipping container/cooler in good condition?		Yes	\checkmark	No 🗌	Not Present
Custody seals intact on shippping container/cod	bler?	Yes	\checkmark	No 🗔	Not Present
Custody seals intact on sample bottles?		Yes		No 🗌	Not Present 🔽
Chain of custody present?		Yes	\checkmark	No 🗌	e e
Chain of custody signed when relinquished and	received?	Yes		No 🗌	
Chain of custody agrees with sample labels?		Yes		No 🗌	
Samples in proper container/bottle?	9	Yes		No 🗌	
Sample containers intact?		Yes	\checkmark	No 🗌	
Sufficient sample volume for indicated test?		Yes		No 🗀	
All samples received within holding time?		Yes		No 🗀	
Container/Temp Blank temperature in complian	ce?	Yes		No 🗌	2.8 °C
Water - VOA vials have zero headspace?		Yes		No 🗌	No VOA vials submitted
Water - pH acceptable upon receipt?		Yes		No 🗔	Not Applicable 🔽
	Adjusted?		Chec	ked by	
Any No response must be detailed in the comm	ents section below.				
Client contacted	Date contacted:			Pe	rson contacted
Contacted by:	Regarding			4- X	
Comments:					
			WALKER		······································
				0	· · · · · · · · · · · · · · · · · · ·
				3	
Corrective Action	80				
				2 2	
	*	2			
					1 I

Page 1 of 1

.

CLIENT:	Holly Energy Partners
Project:	South Hobbs GSA (Holly Energy Partners)
Lab Order:	1302079

CASE NARRATIVE

Samples were analyzed using the methods outlined in the following references:

Samples were collected on Mountain Standard Time.

Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW846, 3rd Edition, Standard Methods and ASTM D2216.

All method blanks, laboratory spikes, and/or matrix spikes met quality assurance objectives, except where noted in the following. For DRO Analysis, the recovery of surrogate Octacosane for Sample SB-8-16 and the recovery of Isopropylbenzene for the Laboratory Control Spike (LCS-56023) were outside of the method control limits. These are flagged accordingly in the Analytical Data report and the QC Summary report. The remaining surrogate for these samples is within method control limits. No further corrective action was taken.

For DRO Analysis, the recoveries of both surrogates for Sample SB-8-48, the Matrix Spike and Matrix Spike Duplicate (1302079-02 MS/MSD) were outside of the method control limits. These are flagged accordingly in the Analytical Data report and the QC Summary report. No further corrective action was taken.

For DRO Analysis, the recoveries of the Matrix Spike and the Matrix Spike Duplicate (1302079-02 MS/MSD) were above the method control limits. These are flagged accordingly in the QC Summary Report. The associated LCS was within method control limits. No further corrective action was taken.

For DRO Analysis, diesel range organics was detected below the reporting limit for Method Blank-56023. The associated samples detected greater than 10 the amount detected in the blank. No further corrective action was taken.

For GRO Analysis, the recovery of surrogate Tetrachloroethene for Sample SB-8-16 was above the method control limits. This is flagged accordingly in the Analytical Data Report, due to matrix and confirmed by reanalysis. No further corrective action was taken.

For Volatiles Organics Analysis, the recoveries of surrogates 4-Bromofluorobenzene and Toluene-d8 for Sample SB-8-16, HSRW-2-38 and HSRW-1-48 were above the method control limits. These are flagged accordingly in the Analytical Data Report. No further corrective action was taken.

Date: 15-Feb-13

CLIENT:	Holly Energy Partners	Client Sample ID: SB-8-16									
Project: South Hobbs GSA (Holly Energy Partners)					Lab ID: 1302079-01						
Project No:		С	ollection	n Date: 02/	04/13 0	4:00 PM					
Lab Order:	1302079	Matrix: SOIL									
Analyses		Result	MDL	RL	Qual	Units	DF	Date Analyzed			
TPH EXTRACTA	BLE BY GC - SOIL		M801	5D				Analyst: AJR			
TPH-DRO C10-C	28	11200	158	528		mg/Kg-dry	50	02/13/13 02:12 PM			
Surr: Isopropyl	benzene	107	0	47-142		%REC	50	02/13/13 02:12 PM			
Surr: Octacosa	ine	1600	0	25-162	S	%REC	50	02/13/13 02:12 PM			
TPH PURGEABL	E BY GC - SOIL		M801	5V				Analyst: DEW			
Gasoline Range (Organics	1440	11.2	22.4		mg/Kg-dry	100	02/08/13 03:38 PM			
Surr: Tetrachlo	rethene	165	0	70-134	S	%REC	100	02/08/13 03:38 PM			
8260 SOIL VOLA	TILES BY GC/MS		SW82	60C				Analyst: KL			
Benzene		0.591	0.0561	0.281		mg/Kg-dry	50	02/11/13 08:40 PM			
Ethylbenzene		20.7	0.0561	0.281		mg/Kg-dry	50	02/11/13 08:40 PM			
m,p-Xylene		15.0	0.0561	0.281		mg/Kg-dry	50	02/11/13 08:40 PM			
o-Xylene		0.776	0.0561	0.281		mg/Kg-dry	50	02/11/13 08:40 PM			
Toluene		1.84	0.0561	0.281		mg/Kg-dry	50	02/11/13 08:40 PM			
Surr: 1,2-Dichlo	proethane-d4	99.4	0	52-149		%REC	50	02/11/13 08:40 PM			
Surr: 4-Bromof	luorobenzene	160	0	84-118	S	%REC	50	02/11/13 08:40 PM			
Surr: Dibromofl	luoromethane	96.6	0	65-135		%REC	50	02/11/13 08:40 PM			
Surr: Toluene-c	8	137	0	84-116	S	%REC	50	02/11/13 08:40 PM			
PERCENT MOIS	TURE		D22	16				Analyst: MK			
Percent Moisture		10.9	0	0		WT%	1	02/15/13 10:30 AM			

Qualifiers:

- * Value exceeds TCLP Maximum Concentration Level
- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range PatternMDL Method Detection Limit
- RL Reporting Limit
- N Parameter not NELAC certified

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- S Spike Recovery outside control limits

Page 2 of 6

CLIENT:	Holly Energy Partners			Client Sample ID: SB-8-48							
Project:	South Hobbs GSA (Ho	lly Energy Pa	artners) Lab ID: 1302079-02								
Project No:				С	ollection	1 Date: 02/0	04/13 0	4:15 PM			
Lab Order:	1302079				N	latrix: SO	L				
Analyses		Result	MDL	RL	Qual	Units	DF	Date Analyzed			
TPH EXTRACT	ABLE BY GC - SOIL		M801	5D				Analyst: AJR			
TPH-DRO C10-	C28	3040	63.6	212		mg/Kg-dry	20	02/13/13 02:03 PM			
Surr: Isoprop	ylbenzene	8.67	0	47-142	S	%REC	20	02/13/13 02:03 PM			
Surr: Octacos	sane	621	0	25-162	S	%REC	20	02/13/13 02:03 PM			
TPH PURGEAB	BLE BY GC - SOIL		M801	5V				Analyst: DEW			
Gasoline Range	e Organics	197	5.35	10.7		mg/Kg-dry	50	02/08/13 04:00 PM			
Surr: Tetrach	lorethene	114	0	70-134		%REC	50	02/08/13 04:00 PM			
8260 SOIL VOL	ATILES BY GC/MS		SW82	60C				Analyst: KL			
Benzene		0.138	0.0535	0.267	J	mg/Kg-dry	50	02/11/13 09:11 PM			
Ethylbenzene		1.83	0.0535	0.267		mg/Kg-dry	50	02/11/13 09:11 PM			
m,p-Xylene		1.77	0.0535	0.267		mg/Kg-dry	50	02/11/13 09:11 PM			
o-Xylene		0.250	0.0535	0.267	J	mg/Kg-dry	50	02/11/13 09:11 PM			
Toluene		0.878	0.0535	0.267		mg/Kg-dry	50	02/11/13 09:11 PM			
Surr: 1,2-Dich	nloroethane-d4	101	0	52-149		%REC	50	02/11/13 09:11 PM			
Surr: 4-Bromo	ofluorobenzene	118	0	84-118		%REC	50	02/11/13 09:11 PM			
Surr: Dibromo	ofluoromethane	97.5	0	65-135		%REC	50	02/11/13 09:11 PM			
Surr: Toluene	e-d8	101	0	84-116		%REC	50	02/11/13 09:11 PM			
PERCENT MOIS	STURE		D221	16				Analyst: MK			
Percent Moisture	e	6.53	0	0		WT%	1	02/15/13 10:30 AM			

Value exceeds TCLP Maximum Concentration Level Sample Result or QC discussed in the Case Narrative

С Е TPH pattern not Gas or Diesel Range Pattern

MDL Method Detection Limit

RL Reporting Limit

*

Qualifiers:

Parameter not NELAC certified Ν

Analyte detected in the associated Method Blank В

DF **Dilution Factor**

- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit

Spike Recovery outside control limits S

Date: 15-Feb-13

Date:	15-Feb-13

CLIENT:	Holly Energy Partners
Project:	South Hobbs GSA (Holly Energy Partners)
Project No:	
Lab Order:	1302079

Client Sample ID: HSRW-2-38 Lab ID: 1302079-03 Collection Date: 02/05/13 10:45 AM

Matrix: SOIL

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
8260 SOIL VOLATILES BY GC/MS		SW82	60C				Analyst: KL
Benzene	0.00402	0.000924	0.00462	J	mg/Kg-dry	1	02/11/13 02:21 PM
Ethylbenzene	1.65	0.0550	0.275		mg/Kg-dry	50	02/11/13 07:05 PM
m,p-Xylene	1.64	0.0550	0.275		mg/Kg-dry	50	02/11/13 07:05 PM
o-Xylene	0.285	0.0550	0.275		mg/Kg-dry	50	02/11/13 07:05 PM
Toluene	0.373	0.0550	0.275		mg/Kg-dry	50	02/11/13 07:05 PM
Surr: 1,2-Dichloroethane-d4	97.7	0	52-149		%REC	50	02/11/13 07:05 PM
Surr: 1,2-Dichloroethane-d4	112	0	52-149		%REC	1	02/11/13 02:21 PM
Surr: 4-Bromofluorobenzene	118	0	84-118		%REC	50	02/11/13 07:05 PM
Surr: 4-Bromofluorobenzene	206	0	84-118	S	%REC	1	02/11/13 02:21 PM
Surr: Dibromofluoromethane	98.0	0	65-135		%REC	50	02/11/13 07:05 PM
Surr: Dibromofluoromethane	101	0	65-135		%REC	1	02/11/13 02:21 PM
Surr: Toluene-d8	100	0	84-116		%REC	50	02/11/13 07:05 PM
Surr: Toluene-d8	135	0	84-116	S	%REC	1	02/11/13 02:21 PM
PERCENT MOISTURE		D22	16				Analyst: MK
Percent Moisture	9.02	0	0		WT%	1	02/15/13 10:30 AM

Qualifiers:

- * Value exceeds TCLP Maximum Concentration Level
- С Sample Result or QC discussed in the Case Narrative TPH pattern not Gas or Diesel Range Pattern
- Е MDL Method Detection Limit
- RL **Reporting Limit**
- Ν Parameter not NELAC certified

- Analyte detected in the associated Method Blank В
- DF **Dilution Factor**
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- S Spike Recovery outside control limits

Project No:

Lab Order:

J Analyte detected between MDL and RL

Analyte detected in the associated Method Blank

- ND Not Detected at the Method Detection Limit
- S Spike Recovery outside control limits

Dilution Factor

Qualifiers:

Value exceeds TCLP Maximum Concentration Level

- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- RL Reporting Limit

*

N Parameter not NELAC certified

Page /	ot h
Page 4	010
0	

CLIENT:	Holly Energy Partners
Project:	South Hobbs GSA (Holly Energy Partners)

1302079

Client Sample ID: HSRW-2-52 Lab ID: 1302079-04 Collection Date: 02/05/13 11:00 AM

Matrix: SOIL

	unité (05038949), 112 U.S., 3									
Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed			
8260 SOIL VOLATILES BY GC/MS		SW82	60C				Analyst: KL			
Benzene	1.75	0.512	2.56	J	mg/Kg-dry	500	02/13/13 01:30 PM			
Ethylbenzene	39.5	0.512	2.56		mg/Kg-dry	500	02/13/13 01:30 PM			
m,p-Xylene	33.8	0.512	2.56		mg/Kg-dry	500	02/13/13 01:30 PM			
o-Xylene	12.7	0.512	2.56		mg/Kg-dry	500	02/13/13 01:30 PM			
Toluene	20.9	0.512	2.56		mg/Kg-dry	500	02/13/13 01:30 PM			
Surr: 1,2-Dichloroethane-d4	99.9	0	52-149		%REC	500	02/13/13 01:30 PM			
Surr: 4-Bromofluorobenzene	112	0	84-118		%REC	500	02/13/13 01:30 PM			
Surr: Dibromofluoromethane	100	0	65-135		%REC	500	02/13/13 01:30 PM			
Surr: Toluene-d8	101	0	84-116		%REC	500	02/13/13 01:30 PM			
PERCENT MOISTURE		D22	16				Analyst: MK			
Percent Moisture	2.26	0	0		WT%	1	02/15/13 10:30 AM			

Date: 15-Feb-13

В

DF

Date: 15-Feb-13

CLIENT:	Holly Energy Partner	S		Client Sample ID: HSRW-1-16						
Project:	South Hobbs GSA (H	Iolly Energy Pa	rtners)	Lab ID: 1302079-05						
Project No:				Collection Date: 02/06/13 09:30 AM						
Lab Order:	1302079				N	Iatrix: SO	IL			
Analyses		Result	MDL	RL	Qual	Units	DF	Date Analyzed		
8260 SOIL VOL	ATILES BY GC/MS		SW82	60C				Analyst: KL		
Benzene		0.00113	0.00104	0.00518	J	mg/Kg-dry	1	02/11/13 02:52 PM		
Ethylbenzene		0.104	0.00104	0.00518		mg/Kg-dry	1	02/11/13 02:52 PM		
m,p-Xylene		0.154	0.00104	0.00518		mg/Kg-dry	1	02/11/13 02:52 PM		
o-Xylene		0.0137	0.00104	0.00518		mg/Kg-dry	1	02/11/13 02:52 PM		
Toluene		0.0409	0.00104	0.00518		mg/Kg-dry	1	02/11/13 02:52 PM		
Surr: 1,2-Dic	hloroethane-d4	107	0	52-149		%REC	1	02/11/13 02:52 PM		
Surr: 4-Brom	ofluorobenzene	114	0	84-118		%REC	1	02/11/13 02:52 PM		
Surr: Dibrom	ofluoromethane	100	0	65-135		%REC	1	02/11/13 02:52 PM		
Surr: Toluene	ə-d8	101	0	84-116		%REC	1	02/11/13 02:52 PM		
PERCENT MOI	STURE		D22	16				Analyst: MK		
Percent Moistur	е	10.7	0	0		WT%	1	02/15/13 10:30 AM		

Qualifiers:

Value exceeds TCLP Maximum Concentration Level

C Sample Result or QC discussed in the Case Narrative

E TPH pattern not Gas or Diesel Range Pattern

MDL Method Detection Limit

RL Reporting Limit

*

N Parameter not NELAC certified

B Analyte detected in the associated Method Blank

DF Dilution Factor

- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit

S Spike Recovery outside control limits

Date:	15-Feb-13

CLIENT:	Holly Energy Partners
Project:	South Hobbs GSA (Holly Energy Partners)
Project No:	
Lab Order:	1302079

Client Sample ID: HSRW-1-48 Lab ID: 1302079-06 Collection Date: 02/06/13 10:15 AM

Matrix: SOIL

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
8260 SOIL VOLATILES BY GC/MS		SW82	60C				Analyst: KL
Benzene	0.0187	0.000917	0.00458		mg/Kg-dry	1	02/11/13 03:23 PM
Ethylbenzene	2.68	0.0535	0.268		mg/Kg-dry	50	02/11/13 08:08 PM
m,p-Xylene	2.55	0.0535	0.268		mg/Kg-dry	50	02/11/13 08:08 PM
o-Xylene	0.675	0.0535	0.268		mg/Kg-dry	50	02/11/13 08:08 PM
Toluene	0.952	0.0535	0.268		mg/Kg-dry	50	02/11/13 08:08 PM
Surr: 1,2-Dichloroethane-d4	101	0	52-149		%REC	50	02/11/13 08:08 PM
Surr: 1,2-Dichloroethane-d4	106	0	52-149		%REC	1	02/11/13 03:23 PM
Surr: 4-Bromofluorobenzene	115	0	84-118		%REC	50	02/11/13 08:08 PM
Surr: 4-Bromofluorobenzene	208	0	84-118	S	%REC	1	02/11/13 03:23 PM
Surr: Dibromofluoromethane	98.0	0	65-135		%REC	50	02/11/13 08:08 PM
Surr: Dibromofluoromethane	101	0	65-135		%REC	1	02/11/13 03:23 PM
Surr: Toluene-d8	99.0	0	84-116		%REC	50	02/11/13 08:08 PM
Surr: Toluene-d8	132	0	84-116	S	%REC	1	02/11/13 03:23 PM
PERCENT MOISTURE		D22	16				Analyst: MK
Percent Moisture	6.60	0	0		WT%	1	02/15/13 10:30 AM

Qualifiers:

- * Value exceeds TCLP Maximum Concentration Level
- С Sample Result or QC discussed in the Case Narrative
- Е TPH pattern not Gas or Diesel Range Pattern MDL Method Detection Limit
- Reporting Limit RL
- Parameter not NELAC certified N

- В Analyte detected in the associated Method Blank
- DF **Dilution Factor**
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- Spike Recovery outside control limits S

Page 6 of 6

CLIENT:Holly Energy PartnersWork Order:1302079

Project: South Hobbs GSA (Holly Energy Partners)

ANALYTICAL QC SUMMARY REPORT

RunID: GC15_130213A

The QC data in batch 56023 app	olies to the fo	ollowing s	amples: 1302	079-01B, 13020	79-02B						
Sample ID: LCS-56023	Batch ID:	56023		TestNo:	M80)15D		Units:	mg/Kg		
SampType: LCS	Run ID:	GC15_	_130213A	Analysis	Date: 2/13	3/2013 1:18:	19 PM	Prep Date:	2/12/20	13	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD RF	DLimit	Qual
TPH-DRO C10-C28		104	10.0	125.0	0	82.9	50	114			
Surr: Isopropylbenzene		3.37		7.500		44.9	47	142			S
Surr: Octacosane		6.35		7.500		84.7	25	162			
Sample ID: MB-56023	Batch ID:	56023		TestNo:	M80)15D		Units:	mg/Kg		
SampType: MBLK	Run ID:	GC15_	130213A	Analysis	Date: 2/13	3/2013 1:36:	17 PM	Prep Date:	2/12/20	13	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD RF	DLimit	Qual
TPH-DRO C10-C28		3.67	10.0								
Surr: Isopropylbenzene		4.61		7.500		61.4	47	142			
Surr: Octacosane		6.32		7.500		84.2	25	162			
Sample ID: 1302079-02BMS	Batch ID:	56023		TestNo:	M80)15D		Units:	mg/Kg-	dry	
SampType: MS	Run ID:	GC15_	130213A	Analysis	Date: 2/13	8/2013 2:30:	23 PM	Prep Date:	2/12/20	13	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	%RPD RF	DLimit	Qual
TPH-DRO C10-C28		3230	214	100.0	3042	142	50	114			S
			~ · · ·	133.6	3042	142	50	114			
Surr: Isopropylbenzene		0.713	211	8.016	3042	8.89	50 47	142			S
Surr: Isopropylbenzene Surr: Octacosane		0.713 48.8	211		3042						S S
	Batch ID:			8.016		8.89	47	142	mg/Kg-	dry	
Surr: Octacosane	Batch ID: Run ID:	48.8 56023	130213A	8.016 8.016 TestNo:	M80	8.89 609	47 25	142 162	mg/Kg- 2/12/20		
Surr: Octacosane Sample ID: 1302079-02BMSD	Run ID:	48.8 56023		8.016 8.016 TestNo:	M80	8.89 609	47 25 20 PM	142 162 Units:	2/12/20	13	S
Surr: Octacosane Sample ID: 1302079-02BMSD SampType: MSD	Run ID:	48.8 56023 GC15_	_130213A	8.016 8.016 TestNo: Analysis	M80 Date: 2/13	8.89 609 015D 8/2013 2:39:	47 25 20 PM	142 162 Units: Prep Date:	2/12/20	13	S
Surr: Octacosane Sample ID: 1302079-02BMSD SampType: MSD Analyte	Run ID:	48.8 56023 GC15_ Result	130213A RL	8.016 8.016 TestNo: Analysis SPK value	M80 Date: 2/13 Ref Val	8.89 609 015D 0/2013 2:39: %REC	47 25 20 PM LowLim	142 162 Units: Prep Date: it HighLimit %	2/12/20 6RPD RF	13 DLimit	S Qual

Qualifiers:	в	Analyte detected in the associated Method Blank	DF	Dilution Factor	
	J	Analyte detected between MDL and RL	MDL	Method Detection Limit	Page 1 of 6
	ND	Not Detected at the Method Detection Limit	R	RPD outside accepted control limits	
	RL	Reporting Limit	S	Spike Recovery outside control limits	
	J	Analyte detected between SDL and RL	N	Parameter not NELAC certified	

CLIENT: Holly Energy Partners

Work Order: 1302079

The QC data in batch 55984 applies to the following samples: 1302079-01B, 1302079-02B

ANALYTICAL QC SUMMARY REPORT

Project: South Hobbs GSA (Holly Energy Partners)

RunID: GC4_130208A

The GC data in batch 55904 app		Showing s	amples. 1502	079-01D, 13020	079-020					
Sample ID: LCS-55984	Batch ID:	55984		TestNo	: M80	15V		Units:	mg/	Kg
SampType: LCS	Run ID:	GC4_1	30208A	Analysi	s Date: 2/8/2	2013 11:46:	33 AM	Prep Date:	2/8/	2013
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	nit HighLimit	%RPD	RPDLimit Qua
Gasoline Range Organics Surr: Tetrachlorethene		4.69 0.210	0.200	5.000 0.2000	0	93.8 105	68 70	126 134		
Sample ID: MB-55984	Batch ID:	55984		TestNo	: M80	15V		Units:	mg/	Kg
SampType: MBLK	Run ID:	GC4_1	30208A	Analysi	s Date: 2/8/2	2013 12:32:	25 PM	Prep Date:	2/8/:	2013
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	nit HighLimit	%RPD	RPDLimit Qua
Gasoline Range Organics Surr: Tetrachlorethene		ND 0.205	0.200	0.2000		102	70	134		
Sample ID: LCS-55984 MEOH	Batch ID:	55984		TestNo	: M80	15V		Units:	mg/	Kg
SampType: LCS	Run ID:	GC4_13	30208A	Analysi	s Date: 2/8/2	2013 2:28:4	0 PM	Prep Date:	2/8/2	2013
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	nit HighLimit	%RPD	RPDLimit Qua
Gasoline Range Organics Surr: Tetrachlorethene		4.73 0.214	0.200	5.000 0.2000	0	94.6 107	68 70	126 134		
Sample ID: MB-55984 MEOH	Batch ID:	55984		TestNo	: M80	15V		Units:	mg/	Kg
SampType: MBLK	Run ID:	GC4_13	30208A	Analysi	s Date: 2/8/2	2013 3:14:4	1 PM	Prep Date:	2/8/2	2013
Analyte	-	Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD	RPDLimit Qua
Gasoline Range Organics Surr: Tetrachlorethene		ND 0.192	0.200	0.2000		96.0	70	134		
Sample ID: 1302079-02BMS	Batch ID:	55984		TestNo	: M80	15V		Units:	mg/l	Kg-dry
SampType: MS	Run ID:	GC4_13	30208A	Analysi	s Date: 2/8/2	2013 4:22:5	8 PM	Prep Date:	2/8/2	2013
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD	RPDLimit Qua
Gasoline Range Organics Surr: Tetrachlorethene		402 12.0	10.7	267.5 10.70	196.9	76.8 112	68 70	126 134		
Sample ID: 1302079-02BMSD	Batch ID:	55984		TestNo	M80		10	Units:	ma/l	Kg-dry
SampType: MSD	Run ID:	GC4_13	30208A		s Date: 2/8/2		7 PM	Prep Date:		
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit '	%RPD	RPDLimit Qua
Gasoline Range Organics		411	10.7	267.5	196.9	80.1	68	126	2.19	30

Qualifiers:	в	Analyte detected in the associated Method Blank	DF	Dilution Factor	
	J	Analyte detected between MDL and RL	MDL	Method Detection Limit	Page 2 of 6
	ND	Not Detected at the Method Detection Limit	R	RPD outside accepted control limits	
	RL	Reporting Limit	S	Spike Recovery outside control limits	
	J	Analyte detected between SDL and RL	N	Parameter not NELAC certified	

CLIENT: Holly Energy Partners

ANALYTICAL QC SUMMARY REPORT

Work Order: Project:

-

1302079 South Hobbs GSA (Holly Energy Partners)

RunID: GCMS1_130211B

ando to the h						1202070		
		ampies: 1302				1302079		9-05A, 1302079-06A
Batch ID:	56000		TestNo	s sw	8260C		Units:	mg/Kg
Run ID:	GCMS1	_130211B	Analysi	s Date: 2/11	1/2013 10:0	5:00 AM	Prep Date:	2/11/2013
	Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD RPDLimit Qua
	0.0241	0.00500	0.0232	0	104	75	125	
	0.0214	0.00500	0.0232	0	92.4	75	125	
	0.0429	0.00500	0.0464	0	92.5	80	125	
	0.0207	0.00500	0.0232	0	89.1	77	125	
	0.0239	0.00500	0.0232	0	103	75	125	
	53.1		50.00		106	52	149	
	52.1		50.00		104	84	118	
	51.8		50.00		104	65	135	
	47.6		50.00		95.1	84	116	
Batch ID:	56000		TestNo:	swa	8260C		Units:	mg/Kg
Run ID:	GCMS1	_130211B	Analysis	s Date: 2/11	/2013 10:38	3:00 AM	Prep Date:	2/11/2013
	Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	RPD RPDLimit Qu
	ND	0.00500						
	ND	0.00500						
	ND	0.00500						
	ND	0.00500						
	ND	0.00500						
	49.1		50.00		98.2	52	149	
	52.5		50.00					
	49.9		50.00					
	48.2		50.00		96.4	84	116	
Batch ID:	56000		TestNo:	SW8	3260C		Units:	mg/Kg
Run ID:	GCMS1	_130211B	Analysis	a Date: 2/11	/2013 4:26:	00 PM	Prep Date:	2/11/2013
]	Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	RPD RPDLimit Qu
(0.0241	0.00488	0.0227	0	106	73	126	
	0.0224	0.00488	0.0227	0	99.0	74	127	
L L	Second and an and a second second second second second second second second second second second second second							
	0.0445	0.00488	0.0453	0	98.2	79	126	
C						79 77		
(().0445	0.00488	0.0453 0.0227	0	98.2 94.2	77	126 125	
(().0445).0213	0.00488 0.00488	0.0453 0.0227 0.0227	0 0	98.2 94.2 107	77 71	126 125 127	
(().0445).0213).0243	0.00488 0.00488	0.0453 0.0227 0.0227 48.83	0 0	98.2 94.2 107 101	77 71 52	126 125 127 149	
(().0445).0213).0243 49.2	0.00488 0.00488	0.0453 0.0227 0.0227	0 0	98.2 94.2 107	77 71	126 125 127	
	Run ID: Batch ID: Run ID: Batch ID: Run ID:	Run ID: GCMS1 Result 0.0241 0.0214 0.0214 0.0214 0.0214 0.0214 0.0239 53.1 52.1 52.1 51.8 47.6 6000 Run ID: 6CMS1 ND ND ND ND ND ND ND ND ND ND 49.1 52.5 49.9 48.2 Batch ID: 56000	Run ID: GCMS1_J0211B Result RL 0.0241 0.00500 0.0214 0.00500 0.0214 0.00500 0.0207 0.00500 0.0239 0.00500 53.1 52.1 51.8 47.6 Batch ID: 56000 Run ID: 6CMS1_J0211B ND 0.00500 ND 0.00500 <tr< td=""><td>Run ID: GCMS1_30211B Analysis Result RL SPK value 0.0241 0.00500 0.0232 0.0214 0.00500 0.0232 0.0214 0.00500 0.0232 0.0214 0.00500 0.0232 0.0217 0.00500 0.0232 0.0239 0.00500 0.0232 53.1 50.00 55.18 52.1 50.00 55.18 51.8 50.00 47.6 Soloo TestNo: Run ID: 56000 TestNo: ND 0.00500 ND ND 0.00500 ND ND 0.00500 ND ND 0.00500 ND ND 0.00500 49.1 Sol.00 49.1 50.00 49.9 50.00 49.2 Sol.00 49.2 50.00 49.9 50.00 48.2 Batch ID: 56000 TestNo: Run ID: 56000 TestNo: Run ID: 56000<td>Run ID: GCMS1_30211B Analysis Date: 2/14 Result RL SPK value Ref Value 0.0241 0.00500 0.0232 0 0.0214 0.00500 0.0232 0 0.0214 0.00500 0.0232 0 0.0214 0.00500 0.0232 0 0.0217 0.00500 0.0232 0 0.0239 0.00500 0.0232 0 0.0239 0.00500 0.0232 0 53.1 50.00 53.1 50.00 51.8 50.00 47.6 50.00 8atch ID: 56000 TestNo: SWA Run ID: GCMS1_130211B Analysis Date: 2/11 ND 0.00500 ND 1 ND 0.00500 1 1 49.9 50.00 49.9 50.00</td><td>Run ID: GCMS1_130211B Analysis Date: 2/11/2013 10:09 Result RL SPK value Ref Val %REC 0.0241 0.00500 0.0232 0 104 0.0214 0.00500 0.0232 0 92.4 0.0214 0.00500 0.0232 0 92.4 0.0219 0.00500 0.0232 0 89.1 0.0239 0.00500 0.0232 0 103 53.1 50.00 104 10.6 104 52.1 50.00 104 104 51.8 50.00 104 104 51.8 50.00 104 104 51.8 50.00 104 104 51.8 50.00 104 104 51.8 50.00 104 104 51.8 50.00 104 104 51.8 50.00 104 104 MD 0.00500 ND 98.2 ND 0.00500 105 99.9 49.1 50.00 98.2 <</td><td>Run ID: GCMS1_130211B Analysis Date: 2/11/2013 10:0500 0.041 Result RL SPK value Ref Val %REC LowLim 0.0241 0.00500 0.0232 0 104 75 0.0214 0.00500 0.0232 0 92.4 75 0.0214 0.00500 0.0232 0 92.5 80 0.0207 0.00500 0.0232 0 89.1 77 0.0239 0.00500 0.0232 0 89.1 77 0.0207 0.00500 0.0232 0 104 84 53.1 50.00 104 84 51.8 50.00 104 84 51.8 50.00 104 84 51.8 50.00 104 84 S1.8 50.00 104 84 Batch ID: 56000 TestNo: SW8260C Image: Site Site Site Site Site Site Site Site</td><td>Run ID: GCMS1_130211B Analysis Date: 2/11/2013 10:05:00 M Prep Date: Result RL SPK value Ref Val %REC LowLim: HighLimit % 0.0241 0.00500 0.0232 0 104 75 125 0.0214 0.00500 0.0232 0 92.4 75 125 0.0217 0.00500 0.0232 0 89.1 77 125 0.0207 0.00500 0.0232 0 89.1 77 125 0.0239 0.00500 0.0232 0 103 75 125 53.1 50.00 104 84 118 51.8 50.00 104 65 135 47.6 50.00 104 65 135 Batch ID: 56000 TestNo: SW8260C Units: Prep Date: Run ID: 6CMS1_130211B Analysis Date: 2/11/2013 10:213 M Prep Date: Prep Date: ND 0.00500 ND 0.00500 ND SD.00 98.2 52 149 145 <</td></td></tr<>	Run ID: GCMS1_30211B Analysis Result RL SPK value 0.0241 0.00500 0.0232 0.0214 0.00500 0.0232 0.0214 0.00500 0.0232 0.0214 0.00500 0.0232 0.0217 0.00500 0.0232 0.0239 0.00500 0.0232 53.1 50.00 55.18 52.1 50.00 55.18 51.8 50.00 47.6 Soloo TestNo: Run ID: 56000 TestNo: ND 0.00500 ND ND 0.00500 ND ND 0.00500 ND ND 0.00500 ND ND 0.00500 49.1 Sol.00 49.1 50.00 49.9 50.00 49.2 Sol.00 49.2 50.00 49.9 50.00 48.2 Batch ID: 56000 TestNo: Run ID: 56000 TestNo: Run ID: 56000 <td>Run ID: GCMS1_30211B Analysis Date: 2/14 Result RL SPK value Ref Value 0.0241 0.00500 0.0232 0 0.0214 0.00500 0.0232 0 0.0214 0.00500 0.0232 0 0.0214 0.00500 0.0232 0 0.0217 0.00500 0.0232 0 0.0239 0.00500 0.0232 0 0.0239 0.00500 0.0232 0 53.1 50.00 53.1 50.00 51.8 50.00 47.6 50.00 8atch ID: 56000 TestNo: SWA Run ID: GCMS1_130211B Analysis Date: 2/11 ND 0.00500 ND 1 ND 0.00500 1 1 49.9 50.00 49.9 50.00</td> <td>Run ID: GCMS1_130211B Analysis Date: 2/11/2013 10:09 Result RL SPK value Ref Val %REC 0.0241 0.00500 0.0232 0 104 0.0214 0.00500 0.0232 0 92.4 0.0214 0.00500 0.0232 0 92.4 0.0219 0.00500 0.0232 0 89.1 0.0239 0.00500 0.0232 0 103 53.1 50.00 104 10.6 104 52.1 50.00 104 104 51.8 50.00 104 104 51.8 50.00 104 104 51.8 50.00 104 104 51.8 50.00 104 104 51.8 50.00 104 104 51.8 50.00 104 104 51.8 50.00 104 104 MD 0.00500 ND 98.2 ND 0.00500 105 99.9 49.1 50.00 98.2 <</td> <td>Run ID: GCMS1_130211B Analysis Date: 2/11/2013 10:0500 0.041 Result RL SPK value Ref Val %REC LowLim 0.0241 0.00500 0.0232 0 104 75 0.0214 0.00500 0.0232 0 92.4 75 0.0214 0.00500 0.0232 0 92.5 80 0.0207 0.00500 0.0232 0 89.1 77 0.0239 0.00500 0.0232 0 89.1 77 0.0207 0.00500 0.0232 0 104 84 53.1 50.00 104 84 51.8 50.00 104 84 51.8 50.00 104 84 51.8 50.00 104 84 S1.8 50.00 104 84 Batch ID: 56000 TestNo: SW8260C Image: Site Site Site Site Site Site Site Site</td> <td>Run ID: GCMS1_130211B Analysis Date: 2/11/2013 10:05:00 M Prep Date: Result RL SPK value Ref Val %REC LowLim: HighLimit % 0.0241 0.00500 0.0232 0 104 75 125 0.0214 0.00500 0.0232 0 92.4 75 125 0.0217 0.00500 0.0232 0 89.1 77 125 0.0207 0.00500 0.0232 0 89.1 77 125 0.0239 0.00500 0.0232 0 103 75 125 53.1 50.00 104 84 118 51.8 50.00 104 65 135 47.6 50.00 104 65 135 Batch ID: 56000 TestNo: SW8260C Units: Prep Date: Run ID: 6CMS1_130211B Analysis Date: 2/11/2013 10:213 M Prep Date: Prep Date: ND 0.00500 ND 0.00500 ND SD.00 98.2 52 149 145 <</td>	Run ID: GCMS1_30211B Analysis Date: 2/14 Result RL SPK value Ref Value 0.0241 0.00500 0.0232 0 0.0214 0.00500 0.0232 0 0.0214 0.00500 0.0232 0 0.0214 0.00500 0.0232 0 0.0217 0.00500 0.0232 0 0.0239 0.00500 0.0232 0 0.0239 0.00500 0.0232 0 53.1 50.00 53.1 50.00 51.8 50.00 47.6 50.00 8atch ID: 56000 TestNo: SWA Run ID: GCMS1_130211B Analysis Date: 2/11 ND 0.00500 ND 1 ND 0.00500 1 1 49.9 50.00 49.9 50.00	Run ID: GCMS1_130211B Analysis Date: 2/11/2013 10:09 Result RL SPK value Ref Val %REC 0.0241 0.00500 0.0232 0 104 0.0214 0.00500 0.0232 0 92.4 0.0214 0.00500 0.0232 0 92.4 0.0219 0.00500 0.0232 0 89.1 0.0239 0.00500 0.0232 0 103 53.1 50.00 104 10.6 104 52.1 50.00 104 104 51.8 50.00 104 104 51.8 50.00 104 104 51.8 50.00 104 104 51.8 50.00 104 104 51.8 50.00 104 104 51.8 50.00 104 104 51.8 50.00 104 104 MD 0.00500 ND 98.2 ND 0.00500 105 99.9 49.1 50.00 98.2 <	Run ID: GCMS1_130211B Analysis Date: 2/11/2013 10:0500 0.041 Result RL SPK value Ref Val %REC LowLim 0.0241 0.00500 0.0232 0 104 75 0.0214 0.00500 0.0232 0 92.4 75 0.0214 0.00500 0.0232 0 92.5 80 0.0207 0.00500 0.0232 0 89.1 77 0.0239 0.00500 0.0232 0 89.1 77 0.0207 0.00500 0.0232 0 104 84 53.1 50.00 104 84 51.8 50.00 104 84 51.8 50.00 104 84 51.8 50.00 104 84 S1.8 50.00 104 84 Batch ID: 56000 TestNo: SW8260C Image: Site Site Site Site Site Site Site Site	Run ID: GCMS1_130211B Analysis Date: 2/11/2013 10:05:00 M Prep Date: Result RL SPK value Ref Val %REC LowLim: HighLimit % 0.0241 0.00500 0.0232 0 104 75 125 0.0214 0.00500 0.0232 0 92.4 75 125 0.0217 0.00500 0.0232 0 89.1 77 125 0.0207 0.00500 0.0232 0 89.1 77 125 0.0239 0.00500 0.0232 0 103 75 125 53.1 50.00 104 84 118 51.8 50.00 104 65 135 47.6 50.00 104 65 135 Batch ID: 56000 TestNo: SW8260C Units: Prep Date: Run ID: 6CMS1_130211B Analysis Date: 2/11/2013 10:213 M Prep Date: Prep Date: ND 0.00500 ND 0.00500 ND SD.00 98.2 52 149 145 <

Qualifiers:	В	Analyte detected in the associated Method Blank	DF	Dilution Factor	
	J	Analyte detected between MDL and RL	MDL	Method Detection Limit	Page 3 of 6
	ND	Not Detected at the Method Detection Limit	R	RPD outside accepted control limits	0
	RL	Reporting Limit	S	Spike Recovery outside control limits	
	J	Analyte detected between SDL and RL	Ν	Parameter not NELAC certified	

CLIENT: Holly Energy Partners

-

Work Order: 1302079

ANALYTICAL QC SUMMARY REPORT

Project: South Hobbs GSA (Holly Energy Partners)

RunID: GCMS1_130211B

	000 00/1 (iony En	lengy i urtite	15)		itum			0041	
Sample ID: 1302088-02AMSD	Batch ID:	56000		TestN	o: SW	8260C		Units:	mg/	Kg
SampType: MSD	Run ID:	GCMS	1_130211B	Analys	sis Date: 2/1 1	1/2013 4:58	:00 PM	Prep Date:	2/11	/2013
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLin	nit HighLimit	%RPD	RPDLimit Qua
Benzene		0.0231	0.00473	0.0220	0	105	73	126	4.25	30
Ethylbenzene		0.0209	0.00473	0.0220	0	95.1	74	127	7.12	30
m,p-Xylene		0.0417	0.00473	0.0439	0	95.0	79	126	6.45	30
o-Xylene		0.0200	0.00473	0.0220	0	91.0	77	125	6.53	30
Toluene		0.0234	0.00473	0.0220	0	106	71	127	4.01	30
Surr: 1,2-Dichloroethane-d4		49.9		47.35		105	52	149	0	0
Surr: 4-Bromofluorobenzene		50.4		47.35		106	84	118	0	0
Surr: Dibromofluoromethane		48.4		47.35		102	65	135	0	0
Surr: Toluene-d8		45.1		47.35		95.3	84	116	0	0
Sample ID: LCS-56000 MEOH	Batch ID:	56000		TestNo: SW8260C			Units:	mg/	Kg	
SampType: LCS	Run ID: GCMS1_130211B			Analys	sis Date: 2/11	Prep Date:	2/11	/2013		
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLin	nit HighLimit	%RPD	RPDLimit Qual
Benzene		0.0253	0.00500	0.0232	0	109	75	125		
Ethylbenzene		0.0232	0.00500	0.0232	0	100	75	125		
m,p-Xylene		0.0458	0.00500	0.0464	0	98.8	80	125		
o-Xylene		0.0221	0.00500	0.0232	0	95.1	77	125		
Toluene		0.0254	0.00500	0.0232	0	109	75	125		
Surr: 1,2-Dichloroethane-d4		50.3		50.00		101	52	149		
Surr: 4-Bromofluorobenzene		52.9		50.00		106	84	118		
Surr: Dibromofluoromethane		49.6		50.00		99.2	65	135		
Surr: Toluene-d8		49.1		50.00		98.2	84	116		
Sample ID: MB-56000 MEOH	Batch ID:	56000		TestNo	o: SW8	8260C		Units:	mg/l	٢g
SampType: MBLK	Run ID:	GCMS1	l_130211B	Analys	is Date: 2/11	/2013 6:02:	00 PM	Prep Date:	2/11	/2013
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD	RPDLimit Qual
Benzene		ND	0.00500							
Ethylbenzene		ND	0.00500							
m,p-Xylene		ND	0.00500							
o-Xylene		ND	0.00500							
Toluene		ND	0.00500							
Surr: 1,2-Dichloroethane-d4		48.8		50.00		97.6	52	149		
Surr: 4-Bromofluorobenzene		55.0		50.00		110	84	118		
Surr: Dibromofluoromethane		49.1		50.00		98.1	65	135		
Surr: Toluene-d8		49.7		50.00		99.5	84	116		
						0.000333333333	253095	2013年2月2		

Qualifiers:	в	Analyte detected in the associated Method Blank	DF	Dilution Factor	
	J	Analyte detected between MDL and RL	MDL	Method Detection Limit	Page 4 of 6
	ND	Not Detected at the Method Detection Limit	R	RPD outside accepted control limits	U
	RL	Reporting Limit	S	Spike Recovery outside control limits	
	J	Analyte detected between SDL and RL	N	Parameter not NELAC certified	

CLIENT:Holly Energy PartnersWork Order:1302079Project:South Hobbs GSA (Holly Energy Partners)

-

ANALYTICAL QC SUMMARY REPORT

Project: South Hol	obs GSA (I	Iolly En	ergy Partner	s)		Runll): (GCMS1_1	30211B
Sample ID: SYS BLK-130213	Batch ID:	56000		TestNo:	SW	8260C		Units:	mg/Kg
SampType: SBLK	Run ID:	GCMS1	1_130211B	Analysis	Date: 2/13/2013 10:52:00		2:00 AM	Prep Date:	2/13/2013
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD RPDLimit Qual
Benzene		ND	0.00500	0					
Ethylbenzene		ND	0.00500	0					
m,p-Xylene		ND	0.00500	0					
o-Xylene		ND	0.00500	0					
Toluene		ND	0.00500	0					
Surr: 1,2-Dichloroethane-d4		51.8		0					
Surr: 4-Bromofluorobenzene		54.0		0					
Surr: Dibromofluoromethane		49.9		0					
Surr: Toluene-d8		49.2		0					

Qualifiers: B	Analyte detected in the associated Method Blank	DF	Dilution Factor		
	J	Analyte detected between MDL and RL	MDL	Method Detection Limit	Page 5 of 6
	ND	Not Detected at the Method Detection Limit	R	RPD outside accepted control limits	
	RL	Reporting Limit	S	Spike Recovery outside control limits	
	J	Analyte detected between SDL and RL	N	Parameter not NELAC certified	

CLIENT: Work Order:	Holly Ene 1302079	rgy Partne	rs		AN	ALYT	ICAL (QC SU	JMMAR	RY R	EPORT
Project:	South Hol	obs GSA (I	Iolly Ener	gy Partner	rs)		RunII): I	MOIST_1	30214	A
The QC data in bat	ch 56078 app	lies to the fo	ollowing sar	nples: 1302	079-01B, 1302	079-02B, 13	02079-03A,	1302079	-04A, 130207	9-05A, 1	302079-06A
Sample ID: 13020	80-10A-DUP	Batch ID:	56078		TestNo	: D22	16		Units:	WT%	
SampType: DUP		Run ID:	PMOIST	_130214A	Analys	is Date: 2/15	/2013 10:30	:00 AM	Prep Date:	2/14/2	013
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	RPD R	PDLimit Qual
Percent Moisture			18.4	0	0	17.14				7.09	30

Qualifiers:	в	Analyte detected in the associated Method Blank	DF	Dilution Factor	
	J	Analyte detected between MDL and RL	MDL	Method Detection Limit	Page 6 of 6
	ND	Not Detected at the Method Detection Limit	R	RPD outside accepted control limits	B
	RL	Reporting Limit	S	Spike Recovery outside control limits	
	J	Analyte detected between SDL and RL	Ν	Parameter not NELAC certified	