1R – 258 2013 AGWMR 05 / 30 / 2014

www.CRAworld.com

2013 Annual Groundwater Monitoring Report

Former New Mexico "F" State Tank Battery Case NO. 1R258 OGRID NO. 4323 NE/4, SE, SECTION 24, T-19-S, R-36-E Latitude: N 32 38' 34.9" Longitude: W 103 18' 0.49" Lea County, New Mexico

Prepared for: Chevron Environmental Management Company

Conestoga-Rovers & Associates

6320 Rothway, Suite 100 Houston, Texas 77040

April 2014 • 039122 • Report No. 10

www.CRAworld.com

2013 Annual Groundwater Monitoring Report

Former New Mexico "F" State Tank Battery Case NO. 1R258 OGRID NO. 4323 NE/4, SE, SECTION 24, T-19-S, R-36-E Latitude: N 32° 38' 34.9" Longitude: W 103° 18' 0.49" Lea County, New Mexico

Prepared for: Chevron Environmental Management Company

Conestoga-Rovers & Associates

6320 Rothway, Suite 100 Houston, Texas, 77040

April 2014 • 039122 • Report No. 10

Table of Contents

Section 1.0	Introdu	Introduction						
Section 2.0	Regulat	tory Framework	2					
Section 3.0	Ground	lwater Sampling and Analysis	3					
	3.1	Potentiometric Surface Elevation and Gradient	4					
	3.2	Analytical Results	4					
Section 4.0	Correct	ive Action	5					
Section 5.0	Planne	d Activities	5					
Section 6.0	Summa	ary of Findings	6					

List of Figures (Following Text)

Figure 1	Site Location Map
----------	-------------------

- Figure 2 Site Details Map
- Figure 3 Groundwater Gradient Map- March 2013
- Figure 4 Groundwater Gradient Map- June 2013
- Figure 5 Groundwater Gradient Map- September 2013
- Figure 6 Groundwater Gradient Map- November 2013
- Figure 7 LNAPL Thickness Map- March 2013
- Figure 8 LNAPL Thickness Map- June 2013
- Figure 9 LNAPL Thickness Map- November 2013
- Figure 10 LNAPL Thickness Map- November 2013
- Figure 11 Groundwater BTEX and Chloride Concentrations Map- March 2013
- Figure 12 Groundwater BTEX and Chloride Concentrations Map- June 2013
- Figure 13 Groundwater BTEX and Chloride Concentrations Map- September 2013
- Figure 14 Groundwater BTEX and Chloride Concentrations Map- November 2013

List of Tables (Following Text)

- Table 1 Groundwater Gauging Summary
- Table 2Groundwater Analytical Summary
- Table 3
 Summary of Field Duplicate Sample Results

List of Appendices

- Appendix A Certified Laboratory Reports
- Appendix B MDPE Reports

Section 1.0 Introduction

This Annual Groundwater Monitoring Report presents groundwater data collected during the 2013 reporting period by Conestoga-Rovers & Associates (CRA) on behalf of Chevron Environmental Management Company (CEMC) at the former New Mexico State "F" Tank Battery (Site). Groundwater gauging and sampling events were performed in March, June, September and November 2013.

The Site is located on Lea County Road 41 (Maddox Road), approximately 3.1 miles northwest of Monument, New Mexico and situated in the northeast quarter (NE/4) of the southeast quarter (SE/4), Section 24, Township 19 South, Range 36 East, Lea County, New Mexico. Site Location and Site Details maps are illustrated on Figures 1 and 2, respectively. Historically, Texaco Exploration and Production, Inc. (Texaco) operated the Site as an oil field tank battery. An earthen emergency reserve pit was located approximately 175 feet north of the tank battery. The tank battery and reserve pit are visible in aerial photographs dated February 1949, July 1983, and June 1986. Sometime after 1986, the tank battery and associated equipment were removed from the Site. The former reserve pit was subsequently unearthed during construction of a production facility immediately south of the pit by the Amerada-Hess Corporation.

The former pit was excavated and approximately 7,400 cubic yards of soil and caliche rock were stockpiled adjacent to the excavated pit. In 1998, Highlander Environmental Corporation (Highlander) performed a subsurface assessment at the Site. The assessment activities included collection of soil samples from the sidewalls and bottom of the excavation and from the stockpiled soil generated during excavation activities. Chemical analyses of the soil samples confirmed that concentrations of all constituents of concern were below the New Mexico Oil Conservation Division (NMOCD) recommended remediation action levels for the Site. The soil sampling activities and laboratory analyses are documented in the *Subsurface Investigation Report, New Mexico "F" State Tank Battery, Lea County, New Mexico (Larson and Associates, Inc., 2005) indicates that the pit was closed between September 1998 and November 2003 according to closure requirements stipulated by the NMOCD in correspondence dated January 20, 1999. The bottom of the excavated pit was lined with two feet of compacted clay, the stockpiled soil was returned to the excavation and the backfilled excavation was contoured to natural grade.*

In addition to the soil assessment activities, nine monitor wells (MW-1 through MW-9) were installed at the Site between 1998 and 1999. Light non-aqueous phase liquid (LNAPL) was observed in wells MW-1 and MW-2. In November 1999, monitor wells (MW-1, MW-2 and MW-9) were plugged and abandoned and replaced with recovery wells (RW-1, RW-2 and RW-3). On

February 17, 2003, New Mexico Office of the State Engineer (NMOSE) approved applications (File No. L-11029, L-11030 and L-11031) submitted by Texaco to divert underground water for remediation of LNAPL. The remediation system was installed from October 2004 through February 2005 and was activated on February 14, 2005. Excluding brief periods for routine maintenance, the groundwater recovery/gradient control system operated from February 14, 2005 to November 20, 2006. In November 2006, LNAPL recovery methods were re-evaluated and the total fluids groundwater recovery/gradient control system was shut down. An LNAPL skimmer pump system was installed in RW-1 and absorbent socks were installed in RW-2 and RW-3 on November 28, 2006. This system is currently in operation at the Site. In addition, two Mobile Dual Phase Extraction (MDPE) events were conducted in 2012 using the newly installed RW-4. A skimmer pump was installed in RW-4 in October 2012. Semi-annual groundwater monitoring and weekly operation and maintenance (O&M) activities have been performed by CRA since 2005 along with annual reporting to the NMOCD for this Site.

Section 2.0 Regulatory Framework

The NMOCD guidelines require groundwater to be analyzed for potential contaminants as defined by the New Mexico Water Quality Control Commission (NMWQCC) regulations. In addition, the NMWQCC regulations provide the Human Health Standards for Groundwater. The constituent of concern (COC) in affected groundwater at the Site is LNAPL in the form of crude oil. In this report, groundwater analytical results for benzene, toluene, ethylbenzene, total xylenes (BTEX) and chloride are compared to the NMWQCC standards as shown in the following table:

Analyte	NMWQCC Standard for Groundwater (mg/L)
Benzene ¹	0.01
Toluene ¹	0.75
Ethylbenzene ¹	0.75
Total Xylenes ¹	0.62
Chloride ²	250

Notes:

- 1) ¹NMWQCC Human Health Standards per NMAC 20.6.2.3103A
- 2) ²NMWQCC Other Standards for Domestic Water Supply per NMAC 20.6.2.3103B

Section 3.0 Groundwater Sampling and Analysis

The Site is monitored with a network of six monitor wells (MW-3, MW-4, MW-5, MW-6, MW-7 and MW-8), two offsite water wells (WW-1 and WW-2) and four recovery wells (RW-1, RW-2, RW-3 and RW-4). Two semi-annual monitoring and sampling events were performed during the 2013 calendar year. The first (June) and second (November) semi-annual 2013 events included the collection of static fluid levels and LNAPL thicknesses (if present) in the six monitor wells and the four recovery wells and the collection of groundwater samples from all six monitor wells and the two offsite water wells. Static fluid levels are not collected from the two offsite water wells (WW-1 and WW-2). In addition, monitor well MW-6 was sampled in March and September 2013 to ensure the plume is not moving toward the offsite water wells (WW-1 and WW-2). At the request of the NMOCD, groundwater samples are collected from beneath the LNAPL in the recovery wells annually. This was conducted during the monitoring event for the first half of 2013 in June.

The semi-annual monitoring and sampling activities were performed on June 14 and November 27, 2013. Monitor well MW-6 was also sampled on March 14 and September 13, 2013. Prior to purging, static fluid levels and LNAPL thicknesses were measured and recorded from top of casing (TOC) with an electronic oil/water interface probe to the nearest hundredth of a foot. Purging was considered complete when three well volumes had been removed or the wells were purged dry. Geochemical field parameters including pH, temperature and conductivity were collected during the purging/sampling process. All non-disposable groundwater sampling equipment was decontaminated with a soap (Liquinox[®]) and potable water wash, a potable water rinse and a final deionized water rinse to minimize potential cross-contamination between each monitor well. Subsequent to the purging process, groundwater samples were collected using clean, disposable PVC bailers. During the third and fourth quarters, samples were collected using a non-purge method of Hydrosleeves[™]. Laboratory-supplied sample containers were then filled directly from the disposable PVC bailers or Hydrosleeve[™].

Wells that contained measurable (>0.01 foot) LNAPL were not purged or sampled during the sampling events. Recovery wells were sampled beneath the product using Hydrosleeve[™] to ensure that only water was collected rather than product. The groundwater samples were placed on ice in an insulated cooler and chilled to a temperature of approximately 4°C (40°F). The coolers were sealed for shipment and proper chain-of-custody documentation accompanied the samples to the laboratory (Xenco Laboratories located in Odessa, Texas) for analyses of BTEX by EPA Method 8021B and chlorides by EPA-approved methods. The fluids recovered and generated during the sampling events were containerized onsite in labeled drums and subsequently managed at an NMOCD-permitted salt water disposal (SWD) facility by Nabors Well Services LTD. (Nabors).

3.1 Potentiometric Surface Elevation and Gradient

Groundwater elevation data are presented in Table I. Groundwater gradient maps for each event (March, June, September and November 2013) are presented on Figures 3, 4, 5 and 6, respectively. Depth to groundwater ranged from 51.02 feet (RW-3) to 65.96 feet (MW-6) below TOC on March 14, 2013; from 51.41 feet (RW-3) to 67.08 (MW-6) feet below TOC on June 14, 2013; from 51.70 feet (RW-3) to 66.75 feet (MW-6) below TOC on September 13, 2013; and from 50.93 feet (RW-3) to 65.94 feet (MW-6) below TOC on November 20, 2013. Groundwater elevations at the Site appear to be consistent with historical levels with groundwater flow to the southeast. The maximum gradient observed during the 2013 calendar year was 0.007 feet/foot.

LNAPL was detected in monitor well MW-3 during the first semi-annual monitoring period in June 2013. LNAPL was detected in the four onsite recovery wells. Recovery wells RW-1 and RW-4 were not gauged in November and June, respectively, but historically contained measurable amounts of LNAPL. LNAPL was not detected in recovery wells RW-2 and RW-3 in March 2013. LNAPL thickness during the 2013 monitoring period ranged from 0.03 feet in RW-2 during the November event to 4.12 feet in RW-4 during the September event. LNAPL thickness maps for March, June, September and November 2013 are presented as Figures 7, 8, 9, and 10, respectively. LNAPL thickness data are summarized in Table I.

3.2 Analytical Results

Analytical results are summarized in Table II. Groundwater BTEX and chloride concentration maps for March, June, September and November 2013 are presented as FIGURES 11, 12, 13, and 14, respectively. BTEX and chloride concentrations were below the NMWQCC standards in the samples collected from the monitor wells, recovery wells and offsite water wells (WW-1 and WW-2) during the 2013 monitoring events with the exception of benzene in RW-4 during the June event (0.0245 mg/L). This data indicates any dissolved phase hydrocarbon plume at the site is small and stable in nature. It should be noted that the off-site water wells were sampled during the June event only.

Overall precision for both the sample collection and laboratory procedures were monitored using the results of the field duplicate samples. The relative percent differences (RPDs) between the results for the duplicate samples must be less than 30 percent. Two duplicate samples were collected during the 2013 monitoring period – one during the June event and one during the November event. All duplicate RPDs were within the 30 percent criterion. Duplicate and parent sample results are summarized on Table III. Copies of the certified analytical reports and chain-of-custody documentation are attached in Appendix A.

Section 4.0 Corrective Action

Excluding brief periods for routine maintenance, the Xitech[®] LNAPL skimmer pump system installed in RW-1 has operated continuously since installation. A Xitech[®] LNAPL skimmer pump was installed in RW-4 in October 2012 and, excluding brief periods for routine maintenance, has operated continuously from October to present. The best course of action for the two other recovery wells (RW-2 and RW-3) was determined to be absorbent socks based on trace amounts of LNAPL observed in both wells.

Operation and maintenance (O&M) activities were performed on a semi-monthly basis. Approximately 174 gallons of LNAPL were recovered in 2013 from the LNAPL recovery system connected to RW-1 and RW-4. Additionally, approximately 2,284 gallons of LNAPL have been recovered since November 28, 2006 when the skimmer system was installed in recovery well RW-1.

Eight 8-hour Mobile Dual Phase Extraction (MDPE) events were conducted in 2013 (February 14, March 22, April 9, May 15, June 14, July 10, October 21 and November 25) by AcuVac Remediation Inc. (AcuVac) to assist in reduction of LNAPL. The events were conducted on recovery well RW-1. Groundwater and LNAPL samples were frequently taken in 2,000 ml beakers to determine average LNAPL percentage of total volume.

During the eight MDPE events conducted throughout 2013, approximately 15,576 gallons of fluid were recovered, including 1,006 gallons of LNAPL. A total of 43 gallons of LNAPL vapors were recovered and burned as internal combustion engine fuel. This resulted in a total LNAPL recovery of 1,049 gallons. AcuVac reports for each event are located in Appendix B.

Collectively, approximately 3,779 gallons of LNAPL has been recovered through the remediation system and the MDPE events.

Section 5.0 Planned Activities

The Xitech[®] skimmer pump system will continue to be utilized for LNAPL recovery at the Site in 2014. The recovered product will be pumped into the 225-gallon tank which is situated inside a secondary containment structure. The remedial system will be analyzed to assess the potential benefit of enhancing the LNAPL recovery with the aid of a soil vapor extraction unit (SVE).

Semi-annual groundwater sampling events are scheduled to be performed during June and December 2014. Groundwater samples will be collected from all wells that do not contain measurable LNAPL and from the two offsite water wells (WW-1 and WW-2) during the semi-

annual groundwater sampling events. In addition, quarterly gauging and monitor well (MW-6) sampling activities will be performed to monitor the groundwater gradient and the potential for offsite plume migration. Semi-monthly O&M activities will also be performed to monitor the performance of the LNAPL recovery system and to periodically replace the absorbent socks in the other two recovery wells (RW-2 and RW-3) as necessary.

Section 6.0 Summary of Findings

Based on groundwater monitoring activities performed at the Site, CRA presents the following summary:

- Depth to groundwater ranged from 51.02 feet to 65.96 feet below TOC on March 14; from 51.41 feet to 67.08 feet below TOC on June 14; from 51.70 feet to 66.75 feet below TOC on September 13; and from 50.93 feet to 65.94 feet below TOC on November 20. Groundwater elevations at the Site appear to be consistent with historical levels with groundwater flow to the southeast. The maximum gradient observed during the 2013 calendar year was 0.007 feet/foot.
- LNAPL was detected in monitoring well MW-3 during June 2013 monitoring period. Historically, four onsite recovery wells have contained measurable amounts of LNAPL. LNAPL thickness during the 2013 monitoring period ranged from 0.03 feet in RW-2 during the November event to 4.12 feet in RW-4 during the September event.
- BTEX and chloride concentrations were below the NMWQCC standards in all samples collected from the monitor wells, recovery wells and offsite water wells (WW-1 and WW-2) during the 2013 monitoring events with the exception of benzene in RW-4 during the June event (0.0245 mg/L). This data indicates any dissolved phase hydrocarbon plume at the site is small and stable in nature.
- Approximately 174 gallons of LNAPL were recovered in 2013 from RW-1 and RW-4. Additionally, approximately 2,284 gallons of LNAPL have been recovered since November 28, 2006 when the skimmer system was installed in recovery well RW-1.
- MDPE events conducted in 2013 resulted in approximately 15,576 gallons of fluid recovery, including 1,006 gallons of liquid LNAPL. A total of 43 gallons of LNAPL vapors were recovered and burned as internal combustion engine fuel. This resulted in a total LNAPL recovery of 1,049 gallons.

• Collectively, approximately 3,779 gallons of LNAPL has been recovered through the remediation system and the MDPE events.

Respectfully Submitted,

CONESTOGA – ROVERS & ASSOCIATES

3.6E

J. Scott Christ Project Manager

0

Joe Cruseturner Principal

FIGURES

SOURCE: USGS 7.5 MINUTE QUAD "MONUMENT NORTH, NEW MEXICO"

LAT/LONG: 32.6429° NORTH, 103.3013° WEST COORDINATE: NAD83 DATUM, U.S. FOOT STATE PLANE ZONE - NEW MEXICO EAST

figure 1

SITE LOCATION MAP NEW MEXICO "F" STATE GROUNDWATER REMEDIATION PROJECT LEA COUNTY, NEW MEXICO Chevron Environmental Management Company

039122-00(010)GN-DL001 APR 23/2013

figure 2

SITE MAP NEW MEXICO "F" STATE GROUNDWATER REMEDIATION PROJECT *Chevron Environmental Management Company*

039122-00(010)GN-DL002 APR 23/2013

039122-00(010)GN-DL003 OCT 18/2013

039122-00(010)GN-DL003 MAR 25/2014

039122-00(010)GN-DL003 MAR 25/2014

039122-00(010)GN-DL003 DEC 20/2013

⁰³⁹¹²²⁻⁰⁰⁽⁰¹⁰⁾GN-DL004 MAR 25/2014

039122-00(010)GN-DL004 MAR 25/2014

039122-00(010)GN-DL004 MAR 25/2014

039122-00(010)GN-DL004 MAR 25/2014

039122-00(010)GN-DL005 APR 17/2014

039122-00(010)GN-DL005 APR 17/2014

Chevron Environmental Management Company

039122-00(010)GN-DL005 APR 17/2014

039122-00(010)GN-DL005 APR 17/2014

Chevron Environmental Management Company

TABLES

		Denth		IY, NEW ME		T-1-1	147-11 C
Well ID	Callertan	Depth to	Depth to	LNAPL	Groundwater	Total	Well Screen
TOC	Collection	Groundwater	LNAPL	Thickness	Elevation	Well Depth	Interval
Elevation	Date	(ft TOC ²)	(ft TOC)	(ft)	(ft above MSL ³)	(ft TOC)	(ft bgs⁴) 55 - 75
MW-3	7/28/98	59.53			3637.32	70.15	
3696.85	6/25/99	59.06			3637.79		
	2/16/01	59.53			3637.32		
	6/11/02	59.18			3637.67		
	11/26/02	59.54			3637.31		
	6/5/03	59.45 59.47			3637.40		
	12/3/03				3637.38		
	7/1/04	59.24 58.83			3637.61		
	12/20/04				3638.02		
	6/6/05	58.53			3638.32		
	12/12/05	57.83			3639.02		
	1/25/06	57.85			3639.00		
	5/1/06	57.59			3639.26		
	6/26/06	57.66			3639.19		
	12/18/06	57.54			3639.31		
	3/16/07	57.43			3639.42		
	6/26/07	57.31			3639.54		
	9/27/07	57.89			3638.96		
	12/13/07	57.61			3639.24		
	3/6/08	57.70			3639.15		
	6/4/08	57.33			3639.52		
	9/4/08	57.45			3639.40		
	11/13/08	57.26			3639.59		
	3/5/09	57.65			3639.20		
	6/15/09	57.40			3639.45		
	9/9/09	57.64			3639.21		
	11/19/09	57.59			3639.26		
	3/23/10	57.60			3639.25		
	6/29/10	58.34			3638.51		
	9/22/10	58.35			3638.50		
	11/8/10	57.61			3639.24		
	6/2/11	57.49			3639.36		
	12/1/11	58.42			3638.43		
	3/7/12	57.92			3638.93		
	6/26/12	57.89			3638.96		
	9/20/12	58.14			3638.71		
	11/26/12	58.15			3638.70		
	3/14/13	58.10			3638.75		
	6/14/13	58.64	58.63	0.01	3638.22		
	9/13/13	58.48			3638.37		
	11/20/13	58.02			3638.83		
	, -0, 10						

Well ID		Depth to	Depth to	LNAPL	Groundwater	Total	Well Screen
TOC	Collection	Groundwater	LNAPL	Thickness	Elevation	Well Depth	Interval
Elevation	Date	(ft TOC ²)	(ft TOC)	(ft)	(ft above MSL ³)	(ft TOC)	(ft bgs ⁴)
MW-4	7/28/98	69.72			3629.78	68.74	55 - 75
3699.50	6/25/99	62.31			3637.19		
	2/16/01	62.52			3636.98		
	6/11/02	62.39			3637.11		
	11/26/02	62.76			3636.74		
	6/5/03	62.71			3636.79		
	12/3/03	62.67			3636.83		
	7/1/04	62.43			3637.07		
	12/20/04	62.02			3637.48		
	6/6/05	61.67			3637.83		
	12/12/05	61.11			3638.39		
	1/25/06	61.11			3638.39		
	5/1/06	60.89			3638.61		
	6/26/06	60.93			3638.57		
	12/18/06	60.79			3638.71		
	3/16/07	60.72			3638.78		
	6/26/07	60.60			3638.90		
	9/27/07	61.02			3638.48		
	12/13/07	60.88			3638.62		
	3/6/08	60.96			3638.54		
	6/4/08	60.65			3638.85		
	9/4/08	60.75			3638.75		
	11/13/08	60.61			3638.89		
	3/5/09	60.75			3638.75		
	6/15/09	60.70			3638.80		
	9/9/09	60.89			3638.61		
	11/19/09	60.83			3638.67		
	3/23/10	60.91			3638.59		
	6/29/10	61.54			3637.96		
	9/22/10	61.53			3637.97		
	11/8/10	60.96			3638.54		
	6/2/11	60.85			3638.65		
	12/1/11	61.63			3637.87		
	3/7/12	61.16			3638.34		
	6/26/12	61.16			3638.34		
	9/20/12	61.33			3638.17		
	11/26/12	61.40			3638.10		
	3/14/13	61.75			3637.75		
	6/14/13	61.80			3637.70		
	9/13/13	61.70			3637.80		
	11/20/13	61.18			3638.32		

Well ID		Depth to	Depth to	LNAPL	Groundwater	Total	Well Screen
TOC	Collection	Groundwater	LNAPL	Thickness	Elevation	Well Depth	Interval
Elevation	Date	(ft TOC ²)				-	
MW-5	7/28/98	56.53	(ft TOC)	(ft)	(ft above MSL ³) 3636.99	(ft TOC) 66.80	(ft bgs⁴) 48 - 68
3693.52	3/23/99	56.30			3637.22		40 - 00
3093.32							
	6/25/99	56.21			3637.31		
	2/16/01	56.31 56.29			3637.21		
	6/11/02				3637.23		
	11/26/02	56.13			3637.39		
	6/5/03	56.53			3636.99		
	12/3/03	56.57			3636.95		
	7/1/04	54.34			3639.18		
	12/20/04	55.86			3637.66		
	6/6/05	55.60			3637.92		
	12/12/05	55.04			3638.48		
	1/25/06	55.07			3638.45		
	5/1/06	54.87			3638.65		
	6/26/06	54.86			3638.66		
	12/18/06	54.61			3638.91		
	3/16/07	54.51			3639.01		
	6/26/07	54.49			3639.03		
	9/27/07	54.84			3638.68		
	12/13/07	54.74			3638.78		
	3/6/08	54.77			3638.75		
	6/4/08	54.58			3638.94		
	9/4/08	54.68			3638.84		
	11/13/08	54.57			3638.95		
	3/5/09	54.70			3638.82		
	6/15/09	54.69			3638.83		
	9/9/09	54.86			3638.66		
	11/19/09	54.81			3638.71		
	3/23/10	54.80			3638.72		
	6/29/10	55.38			3638.14		
	9/22/10	55.40			3638.12		
	11/8/10	54.84			3638.68		
	6/2/11	55.79			3637.73		
	12/1/11	55.49			3638.03		
	3/7/12	54.14			3639.38		
	6/26/12	55.14			3638.38		
	9/20/12	55.28			3638.24		
	11/26/12	55.37			3638.15		
	3/14/13	55.30			3638.22		
	6/14/13	55.60			3637.92		
	9/13/13	55.54			3637.98		
	11/20/13	55.34			3638.18		
	1	1		1	1		

Well ID		Depth to	Depth to	LNAPL	Groundwater	Total	Well Screen
TOC	Collection	Groundwater	LNAPL	Thickness	Elevation	Well Depth	Interval
Elevation	Date	(ft TOC ²)	(ft TOC)	(ft)	(ft above MSL ³)	(ft TOC)	(ft bgs⁴)
MW-6	7/28/98	67.86			3636.95	78.25	56 - 76
3704.81	6/25/99	67.25			3637.56		
	2/16/01	67.45			3637.36		
	6/11/02	67.19			3637.62		
	11/26/02	67.09			3637.72		
	6/5/03	67.57			3637.24		
	12/3/03	67.61			3637.20		
	7/1/04	67.43			3637.38		
	12/20/04	67.55			3637.26		
	6/6/05	66.41			3638.40		
	12/12/05	65.80			3639.01		
	1/25/06	65.88			3638.93		
	5/1/06	65.57			3639.24		
	6/26/06	65.82			3638.99		
	12/18/06	65.67			3639.14		
	3/16/07	65.69			3639.12		
	6/26/07	65.41			3639.40		
	9/27/07	66.46			3638.35		
	12/13/07	65.85			3638.96		
	3/6/08	65.68			3639.13		
	6/4/08	65.39			3639.42		
	9/4/08	65.56			3639.25		
	11/13/08	65.32			3639.49		
	3/5/09	65.88			3638.93		
	6/15/09	65.38			3639.43		
	9/9/09	65.67			3639.14		
	11/19/09	65.70			3639.11		
	3/23/10	65.69			3639.12		
	6/29/10	66.69			3638.12		
	9/22/10	66.72			3638.09		
	11/8/10	65.75			3639.06		
	3/3/11	65.52			3639.29		
	6/2/11	65.28			3639.53		
	9/27/11	67.49			3637.32		
	12/1/11	66.55			3638.26		
	3/7/12	66.00			3638.81		
	6/26/12	65.92			3638.89		
	9/20/12	66.53			3638.28		
	11/26/12	66.19			3638.62		
	3/14/13	65.96			3638.85		
	6/14/13	67.08			3637.73		
	9/13/13	66.75			3638.06		
	11/20/13	65.94			3638.87		

TOC Elevation Collection Date Groundwater (#TOC) LNAPL (#TOC) Thickness (#TOC) Elevation (#TOC) Well Depth (#TOC) Intern (#Bg MW-7 728/98 58.08 3636.520 68.88 49 3694.58 6/25/99 57.96 3636.62 4/16/01 58.09 3636.64 11/26/02 57.92 3636.65 11/26/03 58.829 3636.29 12/20/04 57.62 3636.26 12/20/04 57.62 3637.30 12/210/05 56.84 3637.72 1/25/06 56.66 3637.89 1/21/10/05 56.14 3637.8	Well ID		Domth to		LNAPL	Groundwater	Total	Well Screen
		Callection	Depth to	Depth to				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							-	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$,	,	· • • •
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$								49 - 09
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	3094.30							
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$								
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$								
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$								
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$								
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$								
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$								
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$								
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$								
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$								
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$								
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$								
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$								
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$								
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$								
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$								
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$								
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$								
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$								
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$								
3/7/12 56.92 3637.66 6/26/12 56.93 3637.65 9/20/12 57.01 3637.57 11/26/12 57.13 3637.45								
6/26/12 56.93 3637.65 9/20/12 57.01 3637.57 11/26/12 57.13 3637.45								
9/20/12 57.01 3637.57 11/26/12 57.13 3637.45								
11/26/12 57.13 3637.45								
3/14/13 57.02 3637.56								
		3/14/13	57.02			3637.56		
6/14/13 57.26 3637.32		6/14/13	57.26			3637.32		
9/13/13 57.30 3637.28		9/13/13	57.30			3637.28		
11/20/13 56.93 3637.65		11/20/13	56.93			3637.65		

Well ID		Depth to	Depth to	LNAPL	Groundwater	Total	Well Screen
TOC	Collection	Groundwater	LNAPL	Thickness	Elevation	Well Depth	Interval
Elevation	Date	(ft TOC ²)	(ft TOC)	(ft)	(ft above MSL ³)	(ft TOC)	(ft bgs ⁴)
MW-8	7/28/98	56.84			3637.74	66.91	46 - 66
3694.58	6/25/99	56.56			3638.02		
	2/16/01	56.49			3638.09		
	6/11/02	56.56			3638.02		
	11/26/02	56.88			3637.70		
	6/5/03	56.89			3637.69		
	12/3/03	56.91			3637.67		
	7/1/04	56.70			3637.88		
	12/20/04	56.23			3638.35		
	6/6/05	55.86			3638.72		
	12/12/05	55.29			3639.29		
	1/25/06	55.30			3639.28		
	5/1/06	55.03			3639.55		
	6/26/06	54.96			3639.62		
	12/18/06	54.80			3639.78		
	3/16/07	54.68			3639.90		
	6/26/07	54.67			3639.91		
	9/27/07	54.95			3639.63		
	12/13/07	54.82			3639.76		
	3/6/08	54.82			3639.76		
	6/4/08	54.70			3639.88		
	9/4/08	54.77			3639.81		
	11/13/08	54.73			3639.85		
	3/5/09	55.05			3639.53		
	6/15/09	54.96			3639.62		
	9/9/09	55.14			3639.44		
	11/19/09	55.12			3639.46		
	3/23/10	55.16			3639.42		
	6/29/10	55.66			3638.92		
	9/22/10	55.65			3638.93		
	11/8/10	55.12			3639.46		
	6/2/11	55.02			3639.56		
	12/1/11	55.73			3638.85		
	3/7/12	55.46			3639.12		
	6/26/12	55.46			3639.12		
	9/20/12	55.50			3639.08		
	11/26/12	55.57			3639.01		
	3/14/13	55.38			3639.20		
	6/14/13	55.61			3638.97		
	9/13/13 11/20/13	55.65 55.43			3638.93 3639.15		
	11/20/13	55.45			3039.13		

Well ID		Depth to	Depth to	LNAPL	Groundwater	Total	Well Screen
TOC	Collection	Groundwater	LNAPL	Thickness	Elevation	Well Depth	Interval
Elevation	Date	(ft TOC ²)			(ft above MSL ³)	(ft TOC)	
RW-1	11/3/99	62.17	(ft TOC)	(ft)	3637.75	71.60	(ft bgs⁴) 55 - 75
3699.92	2/16/01	62.37	62.33	0.04	3637.59	71.00	
0000.02	6/11/02	62.26	61.86	0.40	3638.01		
	11/26/02	62.60	62.07	0.40	3637.79		
	6/5/03	63.00	62.84	0.16	3637.06		
	12/3/03	63.26	62.61	0.65	3637.23		
	7/1/04	63.10	62.33	0.77	3637.50		
	12/20/04	61.80	60.96	0.77	3638.86		
	3/1/05			ter extraction			
	1/25/06	61.44	58.67	2.77	3640.92		
	5/1/06	61.56	58.38	3.18	3641.16		
	6/26/06	61.59	58.43	3.16	3641.11		
	12/18/06	58.78	58.55	0.23	3641.34		
	3/16/07	58.74	58.30	0.23	3641.57		
	6/26/07	58.52	58.37	0.15	3641.53		
	9/27/07	59.40	58.72	0.13	3641.13		
	12/13/07	60.90	58.44	2.46	3641.23		
	3/6/08	59.24	58.76	0.48	3641.11		
	6/4/08	59.24	58.59	0.48	3641.25		
	9/4/08	58.82	58.59	0.78	3641.38		
	9/4/08	60.59	58.51	2.49	3641.56		
	3/5/09	60.82	58.50	2.49	3641.38		
	6/15/09	60.62	58.30	2.32	3641.40		
	9/9/09 11/19/09	60.77 58.96	58.50 58.63	2.27 0.33	3641.19 3641.26		
	3/23/10	61.51	58.80	2.71	3640.84		
	6/29/10	62.18	59.00	3.18	3640.59		
	9/22/10	60.80	59.00	2.40	3640.39		
	9/22/10	61.16	58.40	2.40	3641.27		
	6/2/11	61.16	58.39	2.77	3641.24		
	9/27/11 12/2/11	62.44 62.24	59.43 58.95	3.01 3.29	3640.18 3640.63		
	3/7/12	61.10	58.80	2.30	3640.88		
	6/26/12	60.80	58.80	2.00	3640.91		
	9/20/12	62.09	58.84	3.25	3640.75		
	11/26/12	62.24	58.85	3.39	3640.72		
	3/14/13	61.96	58.72	3.24	3640.87		
	6/14/13	62.51	59.12	3.39	3640.45		
	9/13/13	62.91	60.05	2.86	3639.58		
	11/20/13			no	t gauged		

Well ID		Depth to	Depth to	LNAPL	Groundwater	Total	Well Screen
TOC	Collection	Groundwater	LNAPL	Thickness	Elevation	Well Depth	Interval
Elevation	Date	(ft TOC ²)	(ft TOC)	(ft)	(ft above MSL ³)	(ft TOC)	(ft bgs ⁴)
RW-2	10/14/99	53.28	(it IOC) 		3638.84	67.55	47 - 67
3692.12	11/3/99	53.95			3638.17		47 07
5052.12	2/16/01	54.01			3638.11		
	6/11/02	54.01	53.98	0.03	3638.14		
	11/26/02	54.28	54.07	0.21	3638.02		
	6/5/03	53.24	53.23	0.01	3638.89		
	12/3/03	54.51	54.38	0.13	3637.72		
	7/1/04	54.51	54.12	0.39	3637.95		
	12/20/04	53.69	53.52	0.17	3638.58		
	3/1/05			ter extraction			
	1/25/06	51.55	51.14	0.41	3640.93		
	5/1/06	51.34	50.91	0.43	3641.16		
	6/26/06	51.02	50.94	0.08	3641.17		
	11/28/06			k installed in v			
	12/18/06	51.15	50.75	0.40	3641.32		
	3/16/07	50.69			3641.43		
	6/26/07	50.63			3641.49		
	9/27/07	51.00			3641.12		
	12/13/07	50.92			3641.20		
	3/6/08	50.90			3641.22		
	6/4/08	50.65			3641.47		
	9/4/08	50.73			3641.39		
	11/13/08	50.67			3641.45		
	3/5/09	51.03			3641.09		
	6/15/09	50.80			3641.32		
	9/9/09	51.02	50.97	0.05	3641.14		
	11/19/09	50.99	50.95	0.04	3641.17		
	3/23/10	51.16			3640.96		
	6/29/10	51.70	51.56	0.14	3640.55		
	9/22/10	51.65			3640.47		
	11/8/10	50.95	50.94	0.01	3641.18		
	11/29/10	50.89			3641.23		
	2/4/11	50.82			3641.30		
	6/2/11	50.91			3641.21		
	9/27/11	51.97			3640.15		
	12/2/11	51.85			3640.27		
	3/7/12	51.33			3640.79		
	6/26/12	51.35	51.27	0.08	3640.84		
	9/20/12	51.54	51.40	0.14	3640.71		
	11/26/12	55.26			3636.86		
	3/14/13	51.50			3640.62		
	6/14/13	52.20	51.73	0.47	3640.34		
	9/13/13	51.89	51.74	0.15	3640.36		
	11/20/13	51.29	51.26	0.03	3640.86		
				Y, NEW MEX			
-----------	------------	------------------------	----------------	------------------	------------------------------	------------	-------------
Well ID		Depth to	Depth to	LNAPL	Groundwater	Total	Well Screen
тос	Collection	Groundwater	LNAPL	Thickness	Elevation	Well Depth	Interval
Elevation	Date	(ft TOC ²)	(ft TOC)	(ft)	(ft above MSL ³)	(ft TOC)	(ft bgs⁴)
RW-3	10/14/99	45.82			3645.04	68.65	47 - 67
3690.86	11/3/99	52.82			3638.04		
	2/16/01	52.88			3637.98		
	6/11/02	52.91			3637.95		
	11/26/02	53.22	53.15	0.07	3637.70		
	6/5/03	54.56	54.40	0.16	3636.44		
	12/3/03	53.23			3637.63		
	7/1/04	53.19	52.98	0.21	3637.85		
	12/20/04	52.50	52.09	0.41	3638.72		
	3/1/05		-up groundwa	ter extraction	-		
	1/25/06	50.71			3640.15		
	5/1/06	50.49			3640.37		
	6/26/06	50.50			3640.36		
	11/28/06	A	Absorbant sock	k installed in w	vell		
	12/18/06	50.31			3640.55		
	3/16/07	50.22			3640.64		
	6/26/07	50.15			3640.71		
	9/27/07	50.49			3640.37		
	12/13/07	52.38			3638.48		
	3/6/08	50.42			3640.44		
	6/4/08	50.32			3640.54		
	9/4/08	50.90			3639.96		
	11/13/08	50.15			3640.71		
	3/5/09	50.49			3640.37		
	6/15/09	50.35			3640.51		
	9/9/09	50.52			3640.34		
	11/19/09	50.50			3640.36		
	3/23/10	51.73			3639.13		
	6/29/10	51.10			3639.76		
	9/22/10	51.22			3639.64		
	11/8/10	50.65	50.64	0.01	3640.22		
	2/4/11	50.39			3640.47		
	6/2/11	54.01			3636.85		
	9/27/11	51.55			3639.31		
	12/2/11	51.39			3639.47		
	3/7/12	51.00	50.85	0.15	3639.99		
	6/26/12	50.90	50.84	0.06	3640.01		
	9/20/12				Obstruction in Wel	1	
	11/26/12			0	Obstruction in Wel		
	3/14/13	51.02			3639.84	51.10	
	6/14/13	51.41	51.25	0.16	3640.85		
	9/13/13	51.70	51.02	0.68	3641.03		
	11/20/13	50.93	50.86	0.07	3641.25		
	, , , -			-			

GROUNDWATER GAUGING SUMMARY CHEVRON ENVIRONMENTAL MANAGEMENT COMPANY FORMER NEW MEXICO "F" STATE TANK BATTERY

LEA COUNTY, I	NEW MEXICO
---------------	------------

Well ID		Depth to	Depth to	LNAPL	Groundwater	Total	Well Screen
тос	Collection	Groundwater	LNAPL	Thickness	Elevation	Well Depth	Interval
Elevation	Date	(ft TOC²)	(ft TOC)	(ft)	(ft above MSL ³)	(ft TOC)	(ft bgs⁴)
RW-4	6/2/11	60.44	59.40	1.04	3640.43	75.00	35-75
3699.94	6/21/11	63.15	59.35	3.80	3640.20		
	9/27/11	65.66	59.95	5.71	3639.40		
	12/2/11	63.54	59.82	3.72	3639.74		
	3/7/12	60.21	59.90	0.31	3640.01		
	6/26/12	63.06	59.55	3.51	3640.03		
	9/20/12	63.10	56.08	7.02	3643.14		
	11/26/12	63.67	59.70	3.97	3639.83		
	3/14/13	63.68	59.98	3.70	3639.58		
	6/14/13		not g	gauged	·		
	9/13/13	63.14	59.02	4.12	3640.50		
	11/20/13	62.98	59.56	3.42	3640.03		
WW-1	6/11/02	66.35			3637.82	Unknown	Unknown
3704.17	6/5/03	68.25			3635.92		
WW-2	6/11/02	66.18			3637.66	Unknown	Unknown
3703.84	11/26/02	66.18			3637.66		
	6/5/03	68.54			3635.30		

Notes:

- 1. Data through June 6, 2005 provided by Larson & Associates, Inc.
- 2. TOC Top of Casing.
- 3. MSL Mean Sea Level.
- 4. bgs Below ground surface.
- 5. Corrected groundwater elevations from July 1998 to December 2006 were calculated using LNAPL specific gravity of 0.88.
- 6. Corrected groundwater elevations from January 2007 to current were calculated using LNAPL specific gravity of 0.897.
- 7. MW-1, MW-2 and MW-9 were plugged and abandoned and replaced with RW-1, RW-2 and RW-3 in November 1999.
- 8. Monitor wells (MWs) are 2-inch in diameter; Recovery wells (RWs) are 4-inch in diameter.

Sample ID	Sample Date	Benzene	Toluene	Ethyl-benzene	Total Xylenes	Chloride
	New M	exico Water Quality	v Control Commiss	ion Groundwater St	tandard	
		0.011	0.75 ¹	0.75 ¹	0.621	250.0 ²
MW-3	7/28/98	0.003	< 0.001	< 0.001	0.002	36.0
	2/16/01	< 0.005	< 0.005	< 0.005	<0.005	31
	6/12/02	< 0.005	< 0.005	< 0.005	<0.005	27.1
	11/26/03	< 0.001	< 0.001	<0.001	<0.001	31.9
	6/6/03	<0.001	< 0.001	< 0.001	<0.001	27.5
	12/4/03	< 0.001	<0.001	<0.001	0.0017	26.1
	7/2/04	< 0.005	< 0.005	< 0.005	< 0.005	28.0
	12/21/04	< 0.005	< 0.005	< 0.005	<0.005	32.3
	6/6/05	< 0.00100	<0.00100	<0.00100	<0.00100	34.3
	12/13/05	< 0.005	< 0.005	<0.005	<0.010	29.3
	6/27/06	< 0.000500	<0.000500	<0.000500	<0.001	31.1
	12/19/06	< 0.005	< 0.005	< 0.005	<0.001	28.0
	6/27/07	<0.000500	<0.000500	<0.000500	< 0.00100	31.0
	12/14/07	<0.000500	<0.000500	<0.000500	< 0.00100	31
	6/5/08	< 0.00037	<0.00039	< 0.00042	<0.00035	30
DUP	11/14/08	< 0.00037	<0.00039	< 0.00042	<0.00035	32
	11/14/08	< 0.00037	<0.00039	< 0.00042	<0.00035	32
	6/16/09	< 0.00037	<0.00039	< 0.00042	<0.00035	35
	11/20/09	< 0.00037	<0.00039	< 0.00042	<0.00035	40
	7/1/10	<0.00020	<0.00020	<0.00020	<0.00070	50.4
	11/9/10	< 0.00010	<0.00010	< 0.00010	<0.00030	64.0
	6/2/11	0.00053J	0.00061J	<0.0010	<0.0030	90.7
	12/2/11	<0.00010	<0.00010	<0.00010	<0.00030	85.0
DUP	12/2/11	< 0.00010	<0.00010	<0.00010	<0.00030	85.7
	6/26/12	< 0.000100	< 0.000100	<0.000100	<0.000100	114
	11/26/12	< 0.000100	<0.000200	0.00116	0.00345	94.6
	6/14/13	< 0.001	<0.002	< 0.001	< 0.001	79.0
	11/27/13	< 0.001	<0.002	< 0.001	<0.001	101

Sample ID	Sample Date	Benzene	Toluene	Ethyl-benzene	Total Xylenes	Chloride			
	New Mexico Water Quality Control Commission Groundwater Standard								
		0.01 ¹	0.75 ¹	0.75 ¹	0.621	250.0 ²			
MW-4	7/28/98	< 0.001	< 0.001	< 0.001	<0.001	94.0			
	2/16/01	< 0.005	< 0.005	< 0.005	0.008	170			
	6/12/02	< 0.005	< 0.005	< 0.005	<0.005	85.6			
	11/26/03	0.002	< 0.001	< 0.001	<0.005	160.0			
	6/6/03	< 0.001	< 0.001	< 0.001	0.0026	111.0			
	12/4/03	0.0015	< 0.001	< 0.001	<0.001	104.0			
	7/2/04	< 0.001	< 0.001	< 0.001	<0.001	72.4			
	12/21/04	< 0.005	<0.005	< 0.005	<0.005	59.7			
	6/6/05	<0.00100	<0.00100	<0.00100	<0.00100	58.4			
	12/13/05	< 0.005	<0.005	< 0.005	<0.010	55.3			
	6/27/06	0.000597	<0.000500	<0.000500	<0.001	48.8			
	12/19/06	< 0.005	<0.005	< 0.005	<0.001	34.0			
	6/27/07	<0.000500	<0.000500	<0.000500	<0.00100	39.0			
	12/13/07	0.000968	<0.000500	<0.000500	0.00254	63.1			
	6/5/08	<0.00037	<0.00039	<0.00042	<0.00035	61.0			
	11/14/08	<0.00037	<0.00039	< 0.00042	<0.00035	52.0			
	6/16/09	<0.00037	<0.00039	< 0.00042	<0.00035	59.0			
	11/20/09	<0.00037	<0.00039	< 0.00042	<0.00035	58.0			
	7/1/10	0.00032J	<0.00020	<0.00020	<0.00070	54.5			
	11/9/10	<0.00010	<0.00010	<0.00010	<0.00030	57.5			
DUP	11/9/10	<0.00010	<0.00010	<0.00010	<0.00030	58.4			
	6/2/11	<0.00010	<0.00010	<0.00010	<0.00030	49.8			
	12/2/11	<0.00010	<0.00010	<0.00010	<0.00030	142.0			
	6/26/12	< 0.000100	<0.000100	< 0.000100	<0.000100	73.7			
	11/26/12	< 0.000100	<0.000200	< 0.000100	<0.000100	69.3			
	6/14/13	< 0.001	< 0.002	< 0.001	<0.001	59.5			
	11/27/13	< 0.001	< 0.002	< 0.001	<0.001	65.1			

Sample ID	Sample Date	Benzene	Toluene	Ethyl-benzene	Total Xylenes	Chloride			
	New Mexico Water Quality Control Commission Groundwater Standard								
	0.01 ¹ 0.75 ¹ 0.75 ¹ 0.62 ¹ 250.0 ²								
MW-5	7/28/98	< 0.001	< 0.001	<0.001	<0.001	360.0			
	2/16/01	< 0.005	< 0.005	<0.005	< 0.005	120			
	6/12/02	< 0.005	< 0.005	<0.005	< 0.005	90.2			
	11/26/03	0.002	< 0.001	0.003	< 0.002	59.1			
	6/6/03	<0.001	< 0.001	< 0.001	< 0.001	48.6			
	12/4/03	< 0.001	< 0.001	<0.001	<0.001	36.5			
	7/2/04	< 0.005	< 0.005	<0.005	<0.005	32.9			
	12/21/04	< 0.005	< 0.005	< 0.005	< 0.005	39.8			
	6/6/05	< 0.00100	< 0.00100	<0.00100	<0.00100	41.1			
	12/13/05	< 0.005	<0.005	< 0.005	<0.010	39.7			
	6/27/06	<0.000500	<0.000500	<0.000500	<0.001	43.2			
	12/19/06	< 0.005	<0.005	< 0.005	< 0.001	51.0			
	6/27/07	<0.000500	<0.000500	<0.000500	<0.00100	67			
	12/14/07	<0.000500	<0.000500	<0.000500	<0.00100	101			
	6/4/08	<0.00037	<0.00039	<0.00042	<0.00035	78.7			
	11/14/08	< 0.00037	<0.00039	< 0.00042	<0.00035	100			
	6/16/09	< 0.00037	<0.00039	<0.00042	<0.00035	140			
	11/20/09	< 0.00037	<0.00039	< 0.00042	<0.00035	110			
	7/1/10	<0.00020	<0.00020	<0.00020	<0.00070	115			
	11/9/10	<0.00010	<0.00010	<0.00010	<0.00030	168			
	6/2/11	<0.00010	<0.00010	<0.00010	<0.00030	134			
	12/2/11	< 0.00010	<0.00010	<0.00010	<0.00030	172			
	6/26/12	<0.000100	<0.000100	<0.000100	<0.000100	137			
	11/26/12	< 0.000100	<0.000200	< 0.000100	< 0.000100	110			
	6/14/13	< 0.001	< 0.002	<0.001	<0.001	66.6			
	11/27/13	< 0.001	< 0.002	< 0.001	< 0.001	72.3			

Sample ID	Sample Date	Benzene	Toluene	Ethyl-benzene	Total Xylenes	Chloride
	New Me	exico Water Quality	Control Commiss	ion Groundwater St	tandard	
		0.011	0.75 ¹	0.75 ¹	0.62 ¹	250.0 ²
MW-6	7/28/98	< 0.001	< 0.001	< 0.001	< 0.001	43.0
	2/16/01	< 0.005	< 0.005	0.006	0.006	52
	6/12/02	< 0.001	< 0.001	< 0.001	<0.001	54.1
	11/26/03	< 0.001	< 0.001	< 0.001	< 0.002	65.0
	6/6/03	< 0.001	< 0.001	<0.001	< 0.001	43.7
	12/4/03	< 0.001	< 0.001	< 0.001	< 0.001	45.3
	7/2/04	< 0.001	< 0.001	< 0.001	< 0.001	57.5
	12/21/04	< 0.005	< 0.005	< 0.005	< 0.005	61.3
	6/6/05	< 0.00100	<0.00100	<0.00100	<0.00100	66.7
	12/13/05	< 0.005	< 0.005	< 0.005	<0.010	80.9
	6/27/06	< 0.000500	<0.000500	<0.000500	< 0.001	86.4
	12/19/06	< 0.005	< 0.005	< 0.005	<0.001	88.0
	3/16/07	< 0.000500	<0.000500	<0.000500	<0.001	92.2
	6/27/07	< 0.000500	<0.000500	<0.000500	<0.00100	110
	9/27/07	< 0.000500	< 0.000500	<0.000500	<0.00100	99.5
	12/14/07	< 0.000500	<0.000500	<0.000500	<0.00100	99.2
	3/6/08	< 0.000370	<0.000390	<0.000420	<0.000350	88.8
	6/4/08	< 0.00037	<0.00039	< 0.00042	< 0.00035	117
	9/4/08	< 0.00037	<0.00039	< 0.00042	< 0.00035	130
	11/14/08	< 0.00037	<0.00039	< 0.00042	< 0.00035	130
	3/5/09	< 0.00037	<0.00039	< 0.00042	< 0.00035	140
	6/16/09	< 0.00037	<0.00039	< 0.00042	< 0.00035	160
	9/9/09	< 0.00037	<0.00039	< 0.00042	< 0.00035	160
	11/20/09	< 0.00037	<0.00039	< 0.00042	< 0.00035	140
	3/23/10	<0.00020	<0.00020	<0.00020	<0.00070	169
	7/1/10	<0.00020	<0.00020	<0.00020	<0.00070	161
DUP	7/1/10	<0.00020	<0.00020	<0.00020	<0.00070	169
	9/22/10	0.00033J	< 0.00010	<0.00010	<0.00030	157
	11/9/10	<0.00010	< 0.00010	0.0010	<0.00030	182
	3/3/11	<0.00010	< 0.00010	<0.00010	<0.00030	225
	6/2/11	<0.00010	< 0.00010	<0.00010	<0.00030	215
DUP	6/2/11	<0.00010	< 0.00010	< 0.00010	< 0.00030	221
	9/27/11	<0.00010	< 0.00010	< 0.00010	<0.00030	222
	12/2/11	<0.00010	<0.00010	< 0.00010	< 0.00030	198
	3/7/12	<0.000100	<0.000200	<0.000100	<0.000100	189
	6/26/12	<0.000100	<0.000100	<0.000100	<0.000100	259
DUP	6/26/12	<0.000100	<0.000100	<0.000100	<0.000100	260
-	9/20/12	<0.000100	<0.000200	< 0.000100	<0.000100	221
	11/26/12	<0.000100	<0.000200	< 0.000100	<0.000100	176
	3/14/13	<0.001	< 0.002	<0.001	<0.001	195
	6/14/13	<0.001	<0.002	<0.001	<0.001	219
	9/13/13	<0.001	<0.002	<0.001	<0.001	209
	.,10,10	-0.001	-0.002	-0.001	-0.001	
	11/27/13	<0.001	<0.002	<0.001	<0.001	220

Sample ID	Sample Date	Benzene	Toluene	Ethyl-benzene	Total Xylenes	Chloride			
	New Mexico Water Quality Control Commission Groundwater Standard								
		0.01 ¹	0.75 ¹	0.75 ¹	0.62 ¹	250.0 ²			
MW-7	7/28/98	< 0.001	<0.001	<0.001	<0.001	82.0			
	2/16/01	< 0.005	<0.005	<0.005	<0.005	150			
	6/12/02	< 0.005	<0.005	<0.005	<0.005	96.7			
	11/26/03	<0.001	<0.001	<0.001	<0.002	133.0			
	6/6/03	< 0.001	<0.001	<0.001	<0.001	199.0			
	12/4/03	< 0.001	<0.001	<0.001	<0.001	230.0			
	7/2/04	< 0.001	<0.001	<0.001	<0.001	215.0			
	12/21/04	<0.005	<0.005	<0.005	<0.005	274.0			
	6/6/05	< 0.00100	<0.00100	<0.00100	<0.00100	221.0			
	12/13/05	<0.005	<0.005	<0.005	<0.010	204.0			
	6/27/06	< 0.000500	<0.000500	<0.000500	<0.001	158.0			
	12/19/06	<0.005	< 0.005	< 0.005	< 0.001	130.0			
	6/27/07	<0.000500	<0.000500	<0.000500	<0.00100	110			
	12/13/07	<0.000500	<0.000500	<0.000500	<0.00100	135			
	6/5/08	< 0.00037	< 0.00039	< 0.00042	< 0.00035	72.4			
	11/14/08	< 0.00037	<0.00039	< 0.00042	<0.00035	66			
	6/16/09	<0.00037	<0.00039	< 0.00042	<0.00035	58			
	11/20/09	<0.00037	<0.00039	< 0.00042	<0.00035	47			
	7/1/10	<0.00020	<0.00020	<0.00020	<0.00070	51.2			
	11/9/10	<0.00010	<0.00010	<0.00010	<0.00030	67.1			
	6/2/11	<0.00010	<0.00010	<0.00010	<0.00030	69.4			
	12/2/11	<0.00010	<0.00010	<0.00010	<0.00030	76.6			
	6/26/12	<0.000100	<0.000100	<0.000100	<0.000100	91.5			
	11/26/12	<0.000100	<0.000200	<0.000100	<0.000100	67.7			
	6/14/13	< 0.001	<0.002	<0.001	<0.001	56.4			
	11/27/13	< 0.001	<0.002	<0.001	<0.001	78.1			

Sample ID	Sample Date	Benzene	Toluene	Ethyl-benzene	Total Xylenes	Chloride			
	New Mexico Water Quality Control Commission Groundwater Standard								
		0.011	0.75 ¹	0.751	0.621	250.0 ²			
MW-8	7/28/98	< 0.001	< 0.001	< 0.001	<0.001	29.0			
	2/16/01	<0.005	<0.005	< 0.005	<0.005	94			
	6/12/02	<0.005	<0.005	< 0.005	<0.005	180.0			
	11/26/03	< 0.001	< 0.001	< 0.001	<0.002	239.0			
	6/6/03	< 0.001	< 0.001	< 0.001	< 0.001	244.0			
	12/4/03	< 0.001	< 0.001	< 0.001	<0.001	251.0			
	7/2/04	< 0.005	< 0.005	< 0.005	< 0.005	206.0			
	12/21/04	< 0.005	< 0.005	< 0.005	< 0.005	244.0			
	6/6/05	<0.00100	< 0.00100	< 0.00100	<0.00100	227.0			
	12/13/05	< 0.005	< 0.005	< 0.005	<0.010	144.0			
	6/27/06	< 0.000500	<0.000500	<0.000500	<0.001	92.6			
	12/19/06	< 0.005	< 0.005	< 0.005	<0.001	83.0			
	6/27/07	<0.000500	<0.000500	<0.000500	<0.00100	79			
	12/13/07	<0.000500	<0.000500	<0.000500	<0.00100	82.9			
	6/4/08	< 0.00037	< 0.00039	< 0.00042	<0.00035	54.9			
	11/14/08	< 0.00037	<0.00039	< 0.00042	<0.00035	47			
	6/16/09	<0.00037	<0.00039	< 0.00042	<0.00035	45			
	11/20/09	<0.00037	<0.00039	< 0.00042	<0.00035	36			
	7/1/10	<0.00020	<0.00020	<0.00020	<0.00070	38.4			
	11/9/10	<0.00010	<0.00010	<0.00010	<0.00030	47.6			
	6/2/11	<0.00010	<0.00010	<0.00010	<0.00030	51.8			
	12/2/11	<0.00010	<0.00010	<0.00010	<0.00030	72.7			
	6/26/12	< 0.000100	<0.000100	<0.000100	<0.000100	95.7			
	11/26/12	< 0.000100	<0.000200	<0.000100	<0.000100	77.6			
	6/14/13	< 0.001	< 0.002	< 0.001	< 0.001	83.3			
DUP	6/14/13	<0.001	< 0.002	<0.001	<0.001	84.3			
-	11/27/13	< 0.001	< 0.002	<0.001	< 0.001	72.2			
DUP	11/27/13	< 0.001	<0.002	< 0.001	<0.001	71.3			

Sample ID	Sample Date	Benzene	Toluene	Ethyl-benzene	Total Xylenes	Chloride				
	New Me	exico Water Quality	V Control Commissi	ion Groundwater St	andard					
	0.01^1 0.75^1 0.75^1 0.62^1 250.0^2									
WW-1	7/28/98	< 0.001	<0.001	<0.001	<0.001	100.0				
	6/12/02	<0.001	<0.001	<0.001	<0.001	43.6				
	11/26/02	< 0.001	<0.001	<0.001	<0.002	80.0				
	6/6/03	<0.001	<0.001	<0.001	<0.001	73.4				
	12/4/03	<0.001	<0.001	<0.001	<0.001	65.3				
	7/2/04	<0.001	<0.001	<0.001	<0.001	66.5				
	12/21/04	< 0.005	<0.005	<0.005	<0.005	74.3				
	6/6/05	<0.00100	< 0.00100	<0.00100	<0.00100	63.4				
	12/13/05	< 0.005	<0.005	<0.005	<0.010	41.1				
	6/27/06	< 0.000500	<0.000500	<0.000500	<0.001	50.0				
	12/19/06	< 0.005	<0.005	< 0.005	<0.001	80.0				
	6/27/07	< 0.000500	<0.000500	<0.000500	< 0.00100	52				
	12/14/07	< 0.000500	<0.000500	<0.000500	<0.00100	59.8				
	6/4/08	<0.00037	<0.00039	<0.00042	<0.00035	64.1				
DUP	6/4/08	<0.00037	< 0.00039	< 0.00042	<0.00035	64.4				
	11/14/08	< 0.00037	<0.00039	< 0.00042	<0.00035	73				
	6/17/09	< 0.00037	<0.00039	< 0.00042	<0.00035	60				
	11/20/09	< 0.00037	<0.00039	< 0.00042	<0.00035	64				
	7/1/10	<0.00020	<0.00020	<0.00020	<0.00070	41.0				
	11/9/10	<0.00010	<0.00010	<0.00010	<0.00030	77.0				
	6/2/11	<0.00010	<0.00010	<0.00010	<0.00030	73.6				
	12/2/11	<0.00010	<0.00010	<0.00010	<0.00030	50.2				
	6/26/12	<0.000100	< 0.000100	<0.000100	<0.000100	90.0				
	11/26/12	<0.000100	< 0.000200	< 0.000100	< 0.000100	69.9				
	6/14/13	< 0.001	<0.002	< 0.001	< 0.001	53.7				
	11/27/13			Not Sampled						

Sample ID	Sample Date	Benzene	Toluene	Ethyl-benzene	Total Xylenes	Chloride		
	New Me	exico Water Quality	v Control Commiss	ion Groundwater St	tandard			
		0.01 ¹	0.75 ¹	0.75 ¹	0.62 ¹	250.0 ²		
WW-2	6/12/02	<0.001	<0.001	<0.001	<0.001	53.7		
	11/26/02	< 0.001	<0.001	< 0.001	<0.002	70.9		
	6/6/03	< 0.001	<0.001	< 0.001	<0.001	71.1		
	12/4/03	<0.001	< 0.001	< 0.001	<0.001	52.4		
	7/2/04	<0.001	<0.001	<0.001	<0.001	51.0		
	12/21/04	<0.005	< 0.005	< 0.005	<0.005	55.6		
	6/6/05	<0.00100	<0.00100	<0.00100	<0.00100	55.3		
	12/13/05	< 0.005	< 0.005	< 0.005	<0.010	75.3		
	6/27/06	< 0.000500	<0.000500	<0.000500	<0.001	69.7		
	12/19/06	< 0.005	< 0.005	< 0.005	<0.001	57.0		
	6/27/07	< 0.000500	<0.000500	<0.000500	<0.00100	46		
	12/14/07	< 0.000500	<0.000500	<0.000500	<0.00100	83.1		
	6/4/08	< 0.00037	<0.00039	< 0.00042	<0.00035	65.9		
	11/14/08	< 0.00037	<0.00039	< 0.00042	<0.00035	73		
	6/17/09	< 0.00037	<0.00039	< 0.00042	<0.00035	60		
	11/20/09		<0.00037 <0.00039 <0.00042 <0.00035 60 Not Sampled - Pump Not Working					
	7/1/10	<0.00020	<0.00020	<0.00020	<0.00070	66.3		
	11/9/10	<0.00010	<0.00010	<0.00010	<0.00030	77.2		
	6/2/11	<0.00010	<0.00010	<0.00010	<0.00030	74.9		
	12/2/11	< 0.00010	<0.00010	<0.00010	<0.00030	76.5		
	6/26/12	< 0.000100	<0.000100	<0.000100	<0.000100	63.1		
	11/26/12	< 0.000100	<0.000200	<0.000100	<0.000100	50.3		
	6/14/13	<0.001	< 0.002	< 0.001	<0.001	81.1		
	11/27/13		Į	Not Sampled	11			
RW-1 ³	6/5/08	0.0119	< 0.0039	< 0.0042	<0.0035	36.2		
	6/17/09	0.012	0.0055	0.0018	0.012	49.0		
	7/1/10	0.022	0.000701	0.0027	0.017	41.1		
	6/26/12	0.0113	<0.00100	0.00514	0.0350	44.1		
	6/27/13	0.00745	0.00963	0.0101	0.0549	33.8		
RW-2	6/27/07	0.00287	< 0.0025	< 0.00250	0.0303	60		
	6/5/08	<0.0037	< 0.0039	< 0.0042	< 0.0035	51.1		
	6/17/09	<0.00037	0.0046	< 0.00042	0.016	44		
	7/1/10	0.0016	<0.00020	<0.00020	0.0067	30.1		
	6/26/12	< 0.00100	< 0.00100	< 0.00100	0.00362	43.9		
	6/14/13	0.00178	0.00268	0.00171	0.0262	30		

GROUNDWATER ANALYTICAL SUMMARY CHEVRON ENVIRONMENTAL MANAGEMENT COMPANY FORMER NEW MEXICO "F" STATE TANK BATTERY LEA COUNTY, NEW MEXICO

Sample ID	Sample Date	Benzene	Toluene	Ethyl-benzene	Total Xylenes	Chloride				
	New Mexico Water Quality Control Commission Groundwater Standard									
		0.01 ¹	0.75 ¹	0.75 ¹	0.621	250.0 ²				
RW-3	6/11/02	<0.005	< 0.005	< 0.005	<0.005	25.9				
	12/3/04	<0.001	< 0.001	<0.001	<0.001	36.6				
	6/27/07	0.00855	<0.00250	0.0122	0.0270	130				
	6/5/08	<0.0037	<0.0039	< 0.0042	0.0129	90.6				
	6/17/09	0.0052	0.0042	0.011	0.0250	74				
	11/20/09	<0.00037	0.001	0.0027	0.0076	60				
DUP	11/20/09	<0.00037	0.0013	0.003	0.0080	60				
	7/1/10	0.0065	<0.00020	0.0066	0.0030	68.3				
	6/26/12	0.00682	<0.00100	<0.00100	<0.00100	55.4				
	6/14/13	0.0092	0.0291	0.0253	0.138	37.3				
RW-4	6/26/12	0.00221	<0.00100	0.00410	0.0188	65.1				
	6/27/13	0.0245	0.0396	0.0779	0.196	43.1				

Notes:

1. Result shown in mg/L.

- 2. Data through June 6, 2005 provided by Larson & Associates, Inc.
- 3. Bold indicates detection above method detection limit.

4. Shaded cells indicate New Mexico Water Quality Control Commission (NMWQCC) exceedance.

- 5. ¹Human Health Standards for Groundwater.
- 6. ²Other Standards for Domestic Water Supply.

7. $^3\text{RW-1}$ was sampled by dropping a disposable PVC bailer below 3.18 feet of LNAPL.

SUMMARY OF FIELD DUPLICATE SAMPLE RESULTS CHEVRON ENVIRONMENTAL MANAGEMENT COMPANY F STATE LEA COUNTY, NEW MEXICO

Date	Original	Chloride Sample	Duplicate	Chloride Sample	RPD ¹
Date	Sample ID	Result (mg/L)	Sample ID	Result (mg/L)	M D
6/4/08	WW-1	64.1	DUP	64.4	0.4669
11/14/08	MW-3	32	DUP	32	0.0000
11/20/10	RW-3	60	DUP	60	0.0000
7/1/10	MW-6	161	DUP	169	4.8485
11/9/10	MW-4	57.5	DUP	58.4	1.5531
6/2/11	MW-6	215	DUP	221	2.7523
12/2/11	MW-3	85	DUP	85.7	0.8202
6/26/12	MW-6	259	DUP	260	0.3854
6/14/13	MW-8	83.3	DUP	84.0	0.8368
11/27/13	MW-8	72.2	DUP	71.3	1.2544

Notes:

1) RPD - relative percent differences

039122 (10)

APPENDICES

Appendix A

Certified Laboratory Reports

Analytical Report 459349

for

Conestoga Rovers & Associates

Project Manager: Brittany Ford

New Mexico F State

039122

25-MAR-13

Collected By: Client

12600 West I-20 East Odessa, Texas 79765

Xenco-Houston (EPA Lab code: TX00122): Texas (T104704215-10-6-TX), Arizona (AZ0765), Arkansas (08-039-0), Connecticut (PH-0102), Florida (E871002) Illinois (002082), Indiana (C-TX-02), Iowa (392), Kansas (E-10380), Kentucky (45), Louisiana (03054) New Hampshire (297408), New Jersey (TX007), New York (11763), Oklahoma (9218), Pennsylvania (68-03610) Rhode Island (LAO00312), USDA (S-44102), DoD (L11-54)

Xenco-Atlanta (EPA Lab Code: GA00046): Florida (E87429), North Carolina (483), South Carolina (98015), Kentucky (85), DoD (L10-135) Louisiana (04176), USDA (P330-07-00105)

> Xenco-Tampa Mobile (EPA Lab code: FL01212): Florida (E84900) Xenco-Lakeland: Florida (E84098) Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400-TX) Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295-TX) Xenco Phoenix (EPA Lab Code: AZ00901): Arizona (AZ0757) Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757) Xenco Tucson (EPA Lab code:AZ000989): Arizona (AZ0758)

25-MAR-13

TNI PACCREONE

Project Manager: **Brittany Ford Conestoga Rovers & Associates** 2135 S Loop 250 W Midland, TX 79703

Reference: XENCO Report No(s): **459349** New Mexico F State Project Address:

Brittany Ford:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 459349. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 459349 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully

Nicholas Straccione Project Manager

> Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Odessa - San Antonio - Tampa - Lakeland - Atlanta - Phoenix - Oklahoma - Latin America

Sample Cross Reference 459349

Conestoga Rovers & Associates, Midland, TX

New Mexico F State

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
MW6 031413	W	03-14-13 10:10		459349-001

CASE NARRATIVE

Client Name: Conestoga Rovers & Associates Project Name: New Mexico F State

Project ID:039122Work Order Number(s):459349

Report Date: 25-MAR-13 Date Received: 03/15/2013

Sample receipt non conformances and comments: None

Sample receipt non conformances and comments per sample:

None

Project Id: 039122

Contact: Brittany Ford

Project Location:

Certificate of Analysis Summary 459349

Conestoga Rovers & Associates, Midland, TX

Project Name: New Mexico F State

Date Received in Lab:Fri Mar-15-13 09:43 amReport Date:25-MAR-13

Project Manager: Nicholas Straccione

	Lab Id:	459349-001			
Analysis Requested	Field Id:	MW6 031413			
Analysis Kequestea	Depth:				
	Matrix:	WATER			
	Sampled:	Mar-14-13 10:10			
BTEX by EPA 8021B	Extracted:	Mar-22-13 13:00			
	Analyzed:	Mar-22-13 15:27			
	Units/RL:	mg/L l	L		
Benzene		ND 0.00	100		
Toluene		ND 0.00	200		
Ethylbenzene		ND 0.00	100		
m,p-Xylenes		ND 0.00	200		
o-Xylene		ND 0.00	100		
Total Xylenes		ND 0.00	100		
Total BTEX		ND 0.00	100		
Inorganic Anions by EPA 300/300.1	Extracted:	Mar-18-13 10:00			
	Analyzed:	Mar-19-13 05:22			
	Units/RL:	mg/L l	L		
Chloride		195 1	0.0		

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

ch Nul

Nicholas Straccione Project Manager

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- H The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- JN A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- * Surrogate recovered outside laboratory control limit.
- **BRL** Below Reporting Limit.
- **RL** Reporting Limit
- MDL Method Detection Limit **SDL** Sample Detection Limit LOD Limit of Detection
- PQL Practical Quantitation Limit MQL Method Quantitation Limit
- **DL** Method Detection Limit
- NC Non-Calculable
- NELAC certification not offered for this compound.
- (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

LOQ Limit of Quantitation

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Atlanta - Midland/Odessa - Tampa/Lakeland - Phoenix - Latin America

4143 Greenbriar Dr. Stafford, TX 77477 9701 Harry Hines Blvd , Dallas, TX 75220 5332 Blackberry Drive, San Antonio TX 78238 2505 North Falkenburg Rd, Tampa, FL 33619 12600 West I-20 East, Odessa, TX 79765 6017 Financial Drive, Norcross, GA 30071 3725 E. Atlanta Ave, Phoenix, AZ 85040

Phone	Fax
(281) 240-4200	(281) 240-4280
(214) 902 0300	(214) 351-9139
(210) 509-3334	(210) 509-3335
(813) 620-2000	(813) 620-2033
(432) 563-1800	(432) 563-1713
(770) 449-8800	(770) 449-5477
(602) 437-0330	

Final 1.000

Form 2 - Surrogate Recoveries

Project Name: New Mexico F State

7 ork Orders : 459349 Lab Batch #: 909649), Sample: 459349-001 / SMP	Batch	Project II h: ¹ Matrix											
Units: mg/L	Date Analyzed: 03/22/13 15:27		RROGATE RI		STUDY									
	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags								
	Analytes			[D]										
1,4-Difluorobenzene		0.0281	0.0300	94	80-120									
4-Bromofluorobenzene		0.0289	0.0300	96	80-120									
Lab Batch #: 909649	Sample: 635521-1-BLK / BL	BLK Batch: 1 Matrix: Water												
Units: mg/L	Date Analyzed: 03/22/13 13:49	SU	RROGATE RI	ECOVERYS	STUDY									
BTE	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags								
1.4-Difluorobenzene	Anarytes	0.0259	0.0300	86	80-120									
4-Bromofluorobenzene		0.0250	80-120											
Lab Batch #: 909649	Sample: 635521-1-BKS / Bk	CS Batch	h: ¹ Matrix	Water	1 1									
Units: mg/L	Date Analyzed: 03/22/13 13:16		RROGATE RI	ECOVERY	STUDY									
BTE	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags								
1.4-Difluorobenzene	Analytes	0.0225	0.0200		80-120									
4-Bromofluorobenzene		0.0325	0.0300	108 98	80-120									
	S				00 120									
Lab Batch #: 909649	Sample: 635521-1-BSD / BS Date Analyzed: 03/22/13 13:33		h: 1 Matrix RROGATE RI	-	STUDY									
Units: mg/L BTE2	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags								
	Analytes			[D]										
1,4-Difluorobenzene		0.0315	0.0300	105	80-120									
4-Bromofluorobenzene		0.0288	0.0300	96	80-120									
Lab Batch #: 909649	Sample: 459386-002 S / MS	Batch												
Units: mg/L	Date Analyzed: 03/22/13 14:55	SU	RROGATE RI	ECOVERY	STUDY									
BTE	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags								
	ranaly its													
1,4-Difluorobenzene		0.0318	0.0300	106	80-120									

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / BAll results are based on MDL and validated for QC purposes.

Form 2 - Surrogate Recoveries

Project Name: New Mexico F State

Work Orders: 459349),		Project II	D: 039122										
Lab Batch #: 909649	Sample: 459386-002 SD / M	MSD Batch: 1 Matrix: Water												
Units: mg/L	Date Analyzed: 03/22/13 16:00	SURROGATE RECOVERY STUDY												
BTE	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags								
	Analytes			[2]										
1,4-Difluorobenzene		0.0326	0.0300	109	80-120									
4-Bromofluorobenzene		0.0296	0.0300	99	80-120									

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / BAll results are based on MDL and validated for QC purposes.

Project Name: New Mexico F State

Work Order #: 459349							Pro	ject ID: (39122				
Analyst: KEB	Da	ate Prepar	ed: 03/22/201	.3			Date A	nalyzed: (3/22/2013				
Lab Batch ID: 909649 Sample: 635521-1-E	BKSBatch #: 1Matrix: Water												
Units: mg/L		BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY											
BTEX by EPA 8021B Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag		
Benzene	<0.00100	0.100	0.0895	90	0.100	0.0864	86	4	70-125	25			
Toluene	< 0.00200	0.100	0.0875	88	0.100	0.0858	86	2	70-125	25			
Ethylbenzene	< 0.00100	0.100	0.0969	97	0.100	0.0913	91	6	71-129	25			
m,p-Xylenes	<0.00200	0.200	0.183	92	0.200	0.177	89	3	70-131	25			
o-Xylene	<0.00100	0.100	0.0878	88	0.100	0.0831	83	6	71-133	25			
Analyst: AMB	Da	ate Prepar	ed: 03/18/201	3			Date A	nalyzed: ()	3/19/2013				
Lab Batch ID: 909499 Sample: 635438-1-E	SKS	Batcl	n #: 1					Matrix: V	Water				
Units: mg/L	BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY												
Inorganic Anions by EPA 300/300.1 Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag		
Chloride	<1.00	25.0	25.8	103	25.0	26.2	105	2	80-120	20			

Relative Percent Difference RPD = $200^{*}|(C-F)/(C+F)|$ Blank Spike Recovery [D] = $100^{*}(C)/[B]$ Blank Spike Duplicate Recovery [G] = $100^{*}(F)/[E]$ All results are based on MDL and Validated for QC Purposes

Form 3 - MS Recoveries

Project Name: New Mexico F State

Work Order #: 459349					
Lab Batch #: 909499		Pr	oject ID:	039122	
Date Analyzed: 03/19/2013 D	ate Prepared: 03/18/2013	I	Analyst: A	MB	
QC- Sample ID: 459402-021 S	Batch #: 1		Matrix: W	ater	
Reporting Units: mg/L	MATRIX / N	IATRIX SPIKE	RECO	VERY STU	DY
Inorganic Anions by EPA 300	Parent Sample Spike Result Adde		%R [D]	Control Limits %R	Flag
Analytes	[A] [B]	- [-]	[-]	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Chloride	1990 1250	3280	103	80-120	

Matrix Spike Percent Recovery $[D] = 100^{*}(C-A)/B$ Relative Percent Difference $[E] = 200^{*}(C-A)/(C+B)$ All Results are based on MDL and Validated for QC Purposes

BRL - Below Reporting Limit

Form 3 - MS / MSD Recoveries

Project Name: New Mexico F State

Work Order #: 459349						Project II	D: 039122	2			
	QC- Sample ID: Date Prepared:	03/22/2	013	An		KEB	k: Water				
				-	RIX SPI	KE DUPLICA		OVERY		1	
BTEX by EPA 8021B	Parent Sample	Spike	Spiked Sample Result	Spiked Sample	Spike	Duplicate Spiked Sample	Spiked Dup.	RPD	Control Limits	Control Limits	Flag
Analytes	Result [A]	Added [B]	[C]	%R [D]	Added [E]	Result [F]	%R [G]	%	%R	%RPD	U
Benzene	<0.00100	0.100	0.0903	90	0.100	0.0820	82	10	70-125	25	
Toluene	<0.00200	0.100	0.0918	92	0.100	0.0879	88	4	70-125	25	
Ethylbenzene	<0.00100	0.100	0.0943	94	0.100	0.0858	86	9	71-129	25	
m,p-Xylenes	<0.00200	0.200	0.174	87	0.200	0.161	81	8	70-131	25	
o-Xylene	< 0.00100	0.100	0.0886	89	0.100	0.0841	84	5	71-133	25	

Matrix Spike Percent Recovery [D] = 100*(C-A)/BRelative Percent Difference RPD = 200*|(C-F)/(C+F)| Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not ApplicableN = See Narrative, EQL = Estimated Quantitation Limit

Page 11 of 13

Laboratories									1260	00 We	est I-2	o Ea	ist, Od	essa	, TX 7	79765	- 43 	14-902 82-563	-0300	S	erial	#:	32	26	<u>83</u>	<u>34</u>	P	Page (of	1		
Company-City CRA	- Midland			Ph	one M	32	-686-0	086		L	ab O	nly:			4	5	72	54	9	* .												
Project Name-Location		sly done at X	ENCO)		<u> </u>	Project 6 391)	D												7d and 1												
Proj. State: TX, AL, FL, C NJ, PA, SC, TN, UT Othe	GA, LA, MS, NC,	Proj. Man	ager (PM)	F	-01	<u>م</u>							CALL		Ŕ	(s)													Rer	nark	s
E-mail Results to BFOR C crow	r XPM and or(J- (Jm		(432				-0 Fax No: /86			VOHs VOAs				Appdx-2 C/		c1 Appdx2	erb. PCBs)					- - -					7d (10d) 21d	Highest Hit	proved)			Ī
Invoice to Accounting Bill to:	☐ Inc. Invoice v	vith Final Re	port [_] In	voice	oice must have a P.O.							Ŧ	PP App	esticide	Appdx 1	SVOCs Pest. Herb.				· · .	-				1.1		S High	e pre-ap	needed		
Quote/Pricing:		P.O. No:									dx-2	1	ΗdΛ			3TAL	L L L								-	1.1	20	Ъ В	dar	nee		
Reg Program: UST DI QAPP Per-Contract CL											App	F I	MA EPH MA	E TCLP	1 11	Pb 13PP 23TAL											48h 3d	V, mg/Kg	apply ar	are pre-approved as		
Special DLs (GW DW (QAPP MDLs RL	s See Lab I	PM In	ncluc	ided Call PM)					Ш	Appdx-1	8270	AA E	BN&AE	erbic	đ	ő		l.	0							24h	mg/L W,	s wil	-app		
`										15	₹	8				\$44	> >		2	2002						1 1		, ۳	arge	e pre		
Sampler Name Jus	tin Nixon	Signatu	re ()	Q.	_1	X				BTEX-MTBE	No.	8310	GRO	M	1.5	ЪЪ.	Aetal		1208	4	* s s						1 ²		nch.			
Sample ID	Sampling Date	Time	Depth ft' In" m	Matrix	Composite	Grab	# Containers Container Size	Container Type	Preservatives			PAHs SIM 8	DRO	SVOCs: Full-List	OC Pesticides	Metals: RCRA-8 RCRA-4	SPLP - TCLP (Metals VOCs	EDB / DBCP	BTEX SO	Chloride							TATASAP 5h	Addn: PAH above	Hold Samples (Surcharges will apply and are pre-approved)	Sample Clean-ups		
pub 03/4/3	3-14-13	1010		M 3		_	# <u></u> 0 3	0	HCL	>				0		2	0	ш	X	X								▲		<u></u>		-
														ľ											-							
									¹ .														4.14									
	â																	1				1										
			3																													
														2							4										1	
									4 4 4																						$x = x^{-1}$	
																				· · ·												
													1		1						1											
																н.,																Τ
Relinquished by (Initia		Date &				linq	uished t	o (Ini	tials a	ind S	Sign)).		Da	te &	Tim	ie .			ntaine				3				[emp		<u>0 °c</u>		
1) In prepa	hally -	3/15/13	09	43						<u></u>		•	 		· · · · · ·					-				•					•.	erty of X		2
3)					4)	17		1	11			-	12	717	~71	20	'43	- C							•					nailed ui ipproved		:dr
5) Preservatives: Various (V		1 12804 nH-2	(S) L			2 · · ·	M) Ashr	Acid	<u>8</u> N20)H (A) 7r	ነልሶጾ	Na Na					-				-	· · · ·							<u></u>		
Cont. Size: 4oz (4), 8oz (8), 32oz (32), 40	ml VOA (40)	1L (1	i), 5	00ml	(5),	Tedlar I	Bag (E	3), Va	ariou	s (V)	, Ot	her .		—), (C			, (c)	Con	it. Typ	e: G	ass /	(E) (mb)	A),	Glass	s Cle	ar (C	2), F	lasti	c (P), V	arious	3 (
Matrix: Air (A), Product (F			/# \ · ·			ei ter		Co	mmi	ittor	1 to	Eve	ollo	no	o in	Sal	nice	a on	d O	uality	<i>i</i> .					· .			14/14	vw.xer	100 C	;0

age

XENCO Laboratories

Prelogin/Nonconformance Report- Sample Log-In

Client: Conestoga Rovers & AssociatesAcceptable Temperature Range: 0 - 6 degCDate/ Time Received: 03/15/2013 09:43:00 AMAir and Metal samples Acceptable Range: AmbientWork Order #: 459349Temperature Measuring device used :

Sample Receipt Checklist	hecklist						
#1 *Temperature of cooler(s)?	1						
#2 *Shipping container in good condition?	Yes						
#3 *Samples received on ice?	Yes						
#4 *Custody Seals intact on shipping container/ cooler?	Yes						
#5 Custody Seals intact on sample bottles?	Yes						
#6 *Custody Seals Signed and dated?	Yes						
#7 *Chain of Custody present?	Yes						
#8 Sample instructions complete on Chain of Custody?	Yes						
#9 Any missing/extra samples?	No						
#10 Chain of Custody signed when relinquished/ received?	Yes						
#11 Chain of Custody agrees with sample label(s)?	Yes						
#12 Container label(s) legible and intact?	Yes						
#13 Sample matrix/ properties agree with Chain of Custody?	Yes						
#14 Samples in proper container/ bottle?	Yes						
#15 Samples properly preserved?	Yes						
#16 Sample container(s) intact?	Yes						
#17 Sufficient sample amount for indicated test(s)?	Yes						
#18 All samples received within hold time?	Yes						
#19 Subcontract of sample(s)?	Yes						
#20 VOC samples have zero headspace (less than 1/4 inch bubble)?	Yes						
#21 <2 for all samples preserved with HNO3,HCL, H2SO4?	Yes						
#22 >10 for all samples preserved with NaAsO2+NaOH, ZnAc+NaOH?	Yes						

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst:

PH Device/Lot#:

Checklist completed by:

Date: _____

Checklist reviewed by:

Date: _____

Analytical Report 465163

for

Conestoga Rovers & Associates

Project Manager: Brittany Ford

Midland Odessa Discounted Fee Schedule

039122

24-JUN-13

Collected By: Client

12600 West I-20 East Odessa, Texas 79765

Xenco-Houston (EPA Lab code: TX00122): Texas (T104704215-10-6-TX), Arizona (AZ0765), Arkansas (08-039-0), Connecticut (PH-0102), Florida (E871002) Illinois (002082), Indiana (C-TX-02), Iowa (392), Kansas (E-10380), Kentucky (45), Louisiana (03054) New Hampshire (297408), New Jersey (TX007), New York (11763), Oklahoma (9218), Pennsylvania (68-03610) Rhode Island (LAO00312), USDA (S-44102), DoD (L11-54)

Xenco-Atlanta (EPA Lab Code: GA00046): Florida (E87429), North Carolina (483), South Carolina (98015), Kentucky (85), DoD (L10-135) Louisiana (04176), USDA (P330-07-00105)

> Xenco-Tampa Mobile (EPA Lab code: FL01212): Florida (E84900) Xenco-Lakeland: Florida (E84098) Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400-TX) Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295-TX) Xenco Phoenix (EPA Lab Code: AZ00901): Arizona (AZ0757) Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757) Xenco Tucson (EPA Lab code:AZ000989): Arizona (AZ0758)

24-JUN-13

TNI PBORATORI

Project Manager: **Brittany Ford Conestoga Rovers & Associates** 2135 S Loop 250 W Midland, TX 79703

Reference: XENCO Report No(s): 465163 Midland Odessa Discounted Fee Schedule Project Address:

Brittany Ford:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 465163. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 465163 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully.

Kelsey Brooks Project Manager

> Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Odessa - San Antonio - Tampa - Lakeland - Atlanta - Phoenix - Oklahoma - Latin America

Sample Id

RW02-061413
RW03-061413
MW05-061413
MW06-061413
MW07-061413
MW08-061413
WW01-061413
WW02-061413
DUP1-061413
MW03-061413
MW04-061413

Sample Cross Reference 465163

Conestoga Rovers & Associates, Midland, TX

Midland Odessa Discounted Fee Schedule

Matrix	Date Collected	Sample Depth	Lab Sample Id
W	06-14-13 15:00		465163-001
W	06-14-13 15:30		465163-002
W	06-14-13 10:40		465163-003
W	06-14-13 11:00		465163-004
W	06-14-13 11:20		465163-005
W	06-14-13 09:20		465163-006
W	06-14-13 10:00		465163-007
W	06-14-13 10:20		465163-008
W	06-14-13 09:20		465163-009
W	06-14-13 09:40		465163-010
W	06-14-13 11:40		465163-011

CASE NARRATIVE

Client Name: Conestoga Rovers & Associates Project Name: Midland Odessa Discounted Fee Schedule

Project ID:039122Work Order Number(s):465163

Report Date:24-JUN-13Date Received:06/17/2013

Sample receipt non conformances and comments:

Sample receipt non conformances and comments per sample:

None

Project Id: 039122

Contact: Brittany Ford

Project Location:

Certificate of Analysis Summary 465163

Conestoga Rovers & Associates, Midland, TX

Project Name: Midland Odessa Discounted Fee Schedule

Date Received in Lab: Mon Jun-17-13 10:13 am

Report Date: 24-JUN-13

								Project Ma	nager:	Kelsey Brook	CS		
	Lab Id:	465163-	001	465163-002		465163-003		465163-004		465163-005		465163-006	
A se se los sis D a ser a set a l	Field Id:	RW02-06	RW02-061413		RW03-061413		MW05-061413		MW06-061413		1413	MW08-061413	
Analysis Requested	Depth:												
	Matrix:	WATE	ĒR	WATE	R	WATE	R	WATE	R	WATE	R	WATE	ER
	Sampled:	Jun-14-13	15:00	Jun-14-13	15:30	Jun-14-13	10:40	Jun-14-13	11:00	Jun-14-13	11:20	Jun-14-13	09:20
BTEX by EPA 8021B	Extracted:	Jun-20-13	14:30	Jun-20-13	14:30	Jun-20-13	14:30	Jun-20-13 14:30		Jun-20-13 14:30		Jun-20-13 14:30	
	Analyzed:	Jun-21-13	09:45	Jun-21-13	10:17	Jun-21-13	09:29	Jun-20-13	19:18	Jun-20-13	19:34	Jun-20-13	19:50
	Units/RL:	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL
Benzene		0.00178	0.00100	0.00920	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100
Toluene		0.00268	0.00200	0.0291	0.00200	ND	0.00200	ND	0.00200	ND	0.00200	ND	0.00200
Ethylbenzene		0.00171	0.00100	0.0253	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100
m,p-Xylenes		0.0150	0.00200	0.134	0.00200	ND	0.00200	ND	0.00200	ND	0.00200	ND	0.00200
o-Xylene		0.0112	0.00100	0.00400	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100
Total Xylenes		0.0262	0.00100	0.138	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100
Total BTEX		0.0324	0.00100	0.202	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100
Inorganic Anions by EPA 300/300.1	Extracted:	Jun-18-13 10:00		Jun-18-13	10:00	0 Jun-18-13 10:00		Jun-18-13 10:00		Jun-18-13 10:00		Jun-18-13 10:00	
	Analyzed:	Jun-18-13 12:55		Jun-18-13	1-18-13 13:38 Jun-18-13 14:00		14:00	Jun-18-13 14:22		Jun-18-13 14:43		Jun-18-13 15:05	
	Units/RL:	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL
Chloride		30.0	5.00	37.3	5.00	66.6	5.00	219	10.0	56.4	5.00	83.3	5.00

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Huns Boah

Kelsey Brooks Project Manager

Project Id: 039122

Contact: Brittany Ford

Project Location:

Certificate of Analysis Summary 465163

Conestoga Rovers & Associates, Midland, TX

Project Name: Midland Odessa Discounted Fee Schedule

Date Received in Lab: Mon Jun-17-13 10:13 am

Report Date: 24-JUN-13

Toject Location:								Project Ma	nager:	Kelsey Brook	S	
	Lab Id:	465163-007		465163-008		465163-009		465163-010		465163-011		
Analysis Degreested	Field Id:	WW01-06	1413	WW02-06	1413	DUP1-06	1413	MW03-06	1413	MW04-06	1413	
Analysis Requested	Depth:											
	Matrix:	WATE	R									
	Sampled:	Jun-14-13	0:00	Jun-14-13	10:20	Jun-14-13	09:20	Jun-14-13	09:40	Jun-14-13	11:40	
BTEX by EPA 8021B	Extracted:	Jun-24-13	08:00	Jun-24-13 08:00		Jun-24-13 08:00		Jun-24-13 08:00		Jun-24-13 08:00		
	Analyzed:	Jun-24-13	16:08	Jun-24-13	10:45	Jun-24-13	15:46	Jun-24-13	11:02	Jun-24-13	11:18	
	Units/RL:	mg/L	RL									
Benzene	ene		0.00100	ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	
Toluene		ND	0.00200									
Ethylbenzene		ND	0.00100									
m,p-Xylenes		ND	0.00200									
o-Xylene		ND	0.00100									
Total Xylenes		ND	0.00100									
Total BTEX		ND	0.00100									
Inorganic Anions by EPA 300/300.1	Extracted:	Jun-18-13 10:00		Jun-18-13	10:00	Jun-18-13 10:00		Jun-18-13 10:00		Jun-18-13 10:00		
	Analyzed:	Jun-18-13	16:10	Jun-18-13	16:32	Jun-18-13	16:54	Jun-18-13 17:15		Jun-18-13 17:37		
	Units/RL:	mg/L	RL									
Chloride		53.7	2.00	81.1	5.00	84.0	5.00	79.0	5.00	59.5	5.00	

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Huns Boah

Kelsey Brooks Project Manager

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.

LOD Limit of Detection

Phone

(281) 240-4200

(214) 902 0300

(210) 509-3334

(813) 620-2000

(432) 563-1800

(770) 449-8800

(602) 437-0330

* Surrogate recovered outside laboratory control limit.

- **BRL** Below Reporting Limit.
- RL Reporting Limit
- MDL Method Detection Limit
 SDL Sample Detection Limit
- PQL Practical Quantitation Limit MQL Method Quantitation Limit LOQ Limit of Quantitation
- **DL** Method Detection Limit
- NC Non-Calculable
- + NELAC certification not offered for this compound.
- * (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Atlanta - Midland/Odessa - Tampa/Lakeland - Phoenix - Latin America

4143 Greenbriar Dr, Stafford, TX 77477
9701 Harry Hines Blvd , Dallas, TX 75220
5332 Blackberry Drive, San Antonio TX 78238
2505 North Falkenburg Rd, Tampa, FL 33619
12600 West I-20 East, Odessa, TX 79765
6017 Financial Drive, Norcross, GA 30071
3725 E. Atlanta Ave, Phoenix, AZ 85040

Fax

(281) 240-4280

(214) 351-9139

(210) 509-3335

(813) 620-2033

(432) 563-1713

(770) 449-5477

Form 2 - Surrogate Recoveries

Project Name: Midland Odessa Discounted Fee Schedule

ork Orders : 465163 Lab Batch #: 916808	, Sample: 465163-004 / SMP	Batc		D: 039122 c: Water					
Units: mg/L	Date Analyzed: 06/20/13 19:18	SURROGATE RECOVERY STUDY							
BTEX by EPA 8021B		Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flage			
	Analytes			[D]					
1,4-Difluorobenzene		0.0338	0.0300	113	80-120				
4-Bromofluorobenzene		0.0242	0.0300	81	80-120				
Lab Batch #: 916808	Sample: 465163-005 / SMP	Batc	h: ¹ Matrix	w :Water					
Units: mg/L	Date Analyzed: 06/20/13 19:34	SU	RROGATE R	ECOVERY S	STUDY				
BTEX	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags			
1,4-Difluorobenzene	Analytes	0.0351	0.0300	117	80-120				
4-Bromofluorobenzene		0.0245	0.0300	82	80-120				
Lab Batch #: 916808	Sample: 465163-006 / SMP	Batc	h: 1 Matriv	water					
Units: mg/L	Date Analyzed: 06/20/13 19:50		RROGATE R		STUDY				
BTEX by EPA 8021B Analytes		Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags			
1.4-Difluorobenzene	Tindy tes	0.0338	0.0300	113	80-120				
4-Bromofluorobenzene		0.0240	0.0300	80	80-120				
Lab Batch #: 916808	Sample: 465163-003 / SMP	Batc	h: 1 Matrix	: Water	I				
Units: mg/L	Date Analyzed: 06/21/13 09:29	SU	RROGATE R	ECOVERY S	STUDY				
втех	K by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags			
	Analytes			[D]					
1,4-Difluorobenzene		0.0324	0.0300	108	80-120				
4-Bromofluorobenzene		0.0244	0.0300	81	80-120				
Lab Batch #: 916808	Sample: 465163-001 / SMP	Batc		: Water					
Units: mg/L	Date Analyzed: 06/21/13 09:45	SU	RROGATE R	ECOVERY S	STUDY				
BTEX	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags			
1,4-Difluorobenzene		0.0349	0.0300	116	80-120				
,		0.0017	0.0000		00120				

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / BAll results are based on MDL and validated for QC purposes.

Form 2 - Surrogate Recoveries

Project Name: Midland Odessa Discounted Fee Schedule

'ork Orders : 465163 Lab Batch #: 916808	, Sample: 465163-002 / SMP	Batc		D: 039122 :: Water					
Units: mg/L	Date Analyzed: 06/21/13 10:17	SURROGATE RECOVERY STUDY							
BTEX	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flage			
	Analytes			[D]					
1,4-Difluorobenzene		0.0248	0.0300	83	80-120				
4-Bromofluorobenzene		0.0246	0.0300	82	80-120				
Lab Batch #: 916886	Sample: 465163-008 / SMP	Batch	h: ¹ Matrix	:Water					
Units: mg/L	Date Analyzed: 06/24/13 10:45	SU	RROGATE R	ECOVERY S	STUDY				
BTE	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flage			
1,4-Difluorobenzene	Anaryus	0.0350	0.0300	117	80-120				
4-Bromofluorobenzene		0.0256	0.0300	85	80-120				
Lab Batch #: 916886	Sample: 465163-010 / SMP	Batc	h: 1 Matrix	:Water					
Units: mg/L	Date Analyzed: 06/24/13 11:02		RROGATE R	ECOVERY S	STUDY				
BTEX by EPA 8021B Analytes		Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flage			
1.4-Difluorobenzene		0.0349	0.0300	116	80-120				
4-Bromofluorobenzene		0.0252	0.0300	84	80-120				
Lab Batch #: 916886	Sample: 465163-011 / SMP	Batc	h: 1 Matrix	Water	1				
Units: mg/L	Date Analyzed: 06/24/13 11:18	SU	RROGATE R	ECOVERY S	STUDY				
BTE	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flage			
1.4-Difluorobenzene	Analytes	0.0222	0.0200		80-120				
4-Bromofluorobenzene		0.0333	0.0300	84	80-120 80-120				
Lab Batch #: 916886	Sample: 465163-009 / SMP								
Units: mg/L	Date Analyzed: 06/24/13 15:46	P Batch: 1 Matrix: Water SURROGATE RECOVERY STUDY							
	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flage			
	maryus								
1,4-Difluorobenzene		0.0332	0.0300	111	80-120				

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / BAll results are based on MDL and validated for QC purposes.

Form 2 - Surrogate Recoveries

Project Name: Midland Odessa Discounted Fee Schedule

, Sample: 465163-007 / SMP	Batch	=			
Date Analyzed: 06/24/13 16:08	SU	RROGATE R	ECOVERY S	STUDY	
	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flag
Analytes			[D]		
	0.0359	0.0300	120	80-120	
	0.0248	0.0300	83	80-120	
Sample: 640019-1-BLK / BI		-			
Date Analyzed: 06/20/13 18:46	SU	RROGATE R	ECOVERY S	STUDY	
	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flag
Analytes	0.0242	0.0200		80.120	
				00-120	
, I					
Date Analyzed: 06/24/13 09:14	SU	RROGATE R	ECOVERYS	STUDY	
	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flag
	0.0347	0.0300	116	80-120	
	0.0249	0.0300	83	80-120	
Sample: 640019-1-BKS / BI	KS Batel	n· 1 Matrix	•Water	1	
· · · · · ·				STUDY	
-	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flag
			1 101		
Analytes			[D]		
Analytes	0.0311	0.0300	[D] 104	80-120	
Analytes		0.0300		80-120 80-120	
Analytes Sample: 640115-1-BKS / BB	0.0311 0.0242	0.0300	104 81		
	0.0311 0.0242 CS Batch	0.0300	104 81 • Water	80-120	
Sample: 640115-1-BKS / BI Date Analyzed: 06/24/13 08:25 X by EPA 8021B	0.0311 0.0242 CS Batch	0.0300 n: 1 Matrix	104 81 :Water ECOVERY S Recovery %R	80-120	Flag
Sample: 640115-1-BKS / BI Date Analyzed: 06/24/13 08:25	0.0311 0.0242 XS Batch SU Amount Found	0.0300 n: 1 Matrix RROGATE R True Amount	104 81 :Water ECOVERY S	80-120 STUDY Control Limits	Flag
	Sample: 465163-007 / SMP Date Analyzed: 06/24/13 16:08 X by EPA 8021B Analytes Sample: 640019-1-BLK / BI Date Analyzed: 06/20/13 18:46 X by EPA 8021B Analytes Sample: 640115-1-BLK / BI Date Analyzed: 06/24/13 09:14 X by EPA 8021B Analytes	Sample: 465163-007 / SMP Batcl Date Analyzed: 06/24/13 16:08 SU X by EPA 8021B Amount Found [A] Found [A] Found [A] Analytes 0.0359 0.0248 Sample: 640019-1-BLK / BLK Batcl Date Analyzed: 06/20/13 18:46 SU X by EPA 8021B Amount Found [A] Amount Found [A] SU Analytes 0.0343 0.0240 Sample: Sample: 640115-1-BLK / BLK Batcl Date Analyzed: 06/24/13 0.0343 0.0240 Sample: 640115-1-BLK / BLK Batcl SU X by EPA 8021B Amount Found [A] SU SU X by EPA 8021B Amount Found [A] Amount Sample: 640019-1-BKS / BKS Batcl Date Analyzed: 06/20/13 17:58 SU X by EPA 8021B Amount Kanount SU	Sample:465163-007 / SMP Jate Analyzed:Batch:1Matrix MatrixDate Analyzed:06/24/13 16:08SURROGATE RX by EPA 8021BAmount [A]True Amount [B]Analytes0.03590.03000.03590.03000.02480.0300Sample:640019-1-BLK / BLK 640019-1-BLK / BLKBatch:1Matrix Date Analyzed:06/20/13 18:46SURROGATE RX by EPA 8021BAmount Found [A]True Amount [B]Analytes0.03430.0300Sample:640115-1-BLK / BLK 640115-1-BLK / BLKBatch:1Matrix Date Analyzed:06/24/13 09:14SURROGATE RX by EPA 8021BAmount Found [A]True Amount [B]Analytes0.03470.0300Sample:640019-1-BKS / BKS 0.0249Batch:1Matrix Date Analyzed:06/20/13 17:58SURROGATE RX by EPA 8021BAmount Found [A]True Amount [B]Analytes0.03470.0300Sample:640019-1-BKS / BKS 0.0249Batch:1Matrix Date Analyzed:06/20/13 17:58SURROGATE RX by EPA 8021BAmount Found [A]True Amount [B]	Date Analyzed: 06/24/13 16:08SURROGATE RECOVERY SX by EPA 8021BAmount Found [A]True Amount [A]Recovery %R [D]Analytes0.03590.03001200.02480.030083Sample: 640019-1-BLK / BLK Date Analyzed: 06/20/13 18:46Batch: 1 YMatrix: WaterDate Analyzed: 06/20/13 18:46SURROGATE RECOVERY SX by EPA 8021BAmount Found [A]True Amount [B]Recovery %R (D]Analytes0.03430.03001140.02400.030080Sample: 640115-1-BLK / BLK Date Analyzed: 06/24/13 09:14Batch: 1 SURROGATE RECOVERY SX by EPA 8021BAmount Found [A]True Amount [B]Recovery %R (D]Analytes0.03470.03001160.03470.03001160.02490.030083Sample: 640019-1-BKS / BKS Date Analyzed: 06/20/13 17:58Batch: 1 Matrix: WaterDate Analyzed: 06/20/13 17:58SURROGATE RECOVERY S Amount [A]K by EPA 8021BAmount Found [A]True Matrix: WaterDate Analyzed: 06/20/13 17:58Batch: 1 Matrix: WaterDate Analyzed: 06/20/13 17:58Batch: 1 Matrix: Water	Sample: 465163-007 / SMPBatch:1Matrix: WaterDate Analyzed: 06/24/13 16:08SURROGATE RECOVERY STUDYX by EPA 8021BAmount Found [A]True Amount [B]Recovery %R [D]Control Limits %R (D]Analytes0.03590.030012080-1200.03590.03008380-120Sample: 640019-1-BLK / BLKBatch:1Matrix: WaterDate Analyzed: 06/20/13 18:46SURROGATE RECOVERY STUDYX by EPA 8021BAmount Found [A]True [B]Recovery %R [D]Analytes0.03430.030011480-1200.02400.03008080-120Sample: 640115-1-BLK / BLKBatch:1Matrix: WaterDate Analyzed: 06/24/13 09:14SURROGATE RECOVERY STUDYLimits %R [D]K by EPA 8021BAmount Found [A]True [B]Recovery %R [D]Analytes0.03430.030011480-120Sample: 640115-1-BLK / BLKBatch:1Matrix: WaterDate Analyzed: 06/24/13 09:14SURROGATE RECOVERY STUDYYang %R [D]Nang %R (D]Analytes0.03470.030011680-120Sample: 640019-1-BKS / BKSBatch:1Matrix: WaterDate Analyzed: 06/20/13 17:58SURROGATE RECOVERY STUDYXang %RK by EPA 8021BAmount Found [A]True Amount Found [A]Recovery %RControl Limits %RSurePA 8021BAmount Found

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / BAll results are based on MDL and validated for QC purposes.

Form 2 - Surrogate Recoveries

Project Name: Midland Odessa Discounted Fee Schedule

ork Orders : 465163 Lab Batch #: ⁹¹⁶⁸⁰⁸	Sample: 640019-1-BSD / BS	SD Batcl	Project II n: ¹ Matrix			
Units: mg/L	Date Analyzed: 06/20/13 18:14	SU	RROGATE RI	ECOVERY S	STUDY	
BTE	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flag
	Analytes			[D]		
1,4-Difluorobenzene		0.0322	0.0300	107	80-120	
4-Bromofluorobenzene		0.0242	0.0300	81	80-120	
Lab Batch #: 916886	Sample: 640115-1-BSD / B		-			
Units: mg/L	Date Analyzed: 06/24/13 08:42	SU	RROGATE RI	ECOVERY S	STUDY	
BTE	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flag
1.4-Difluorobenzene	Anarytes	0.0339	0.0300	113	80-120	
4-Bromofluorobenzene		0.0290	0.0300	97	80-120	
Lab Batch #: 916808	Sample: 465199-001 S / MS	Batch	n: ¹ Matrix	• Water		
Units: mg/L	Date Analyzed: 06/20/13 22:47		RROGATE RI		STUDY	
BTE	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flag
	Analytes					
1,4-Difluorobenzene		0.0352	0.0300	117	80-120	
4-Bromofluorobenzene		0.0243	0.0300	81	80-120	
Lab Batch #: 916886	Sample: 465367-002 S / MS					
Units: mg/L	Date Analyzed: 06/24/13 12:32	SU	RROGATE RI	ECOVERY S	STUDY	
BTE	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flag
1,4-Difluorobenzene	Analytes	0.0207	0.0200		80.120	
4-Bromofluorobenzene		0.0296	0.0300	99 81	80-120 80-120	
					00 120	
Lab Batch #: 916886	Sample: 465367-002 SD / M		n: 1 Matrix RROGATE RI		TUDV	
Units: mg/L	Date Analyzed: 06/24/13 12:49					
BTE	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flag
1.4-Difluorobenzene		0.0336	0.0300	112	80-120	
1,4-Dilluolobelizelle	1					

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / BAll results are based on MDL and validated for QC purposes.

Project Name: Midland Odessa Discounted Fee Schedule

Work Order #: 465163	Project ID: 039122 Date Prepared: 06/20/2013 Date Analyzed: 06/20/2013										
Analyst: DYV	Da	ite Prepar	ed: 06/20/201	13			Date Ar	nalyzed: ())6/20/2013		
Lab Batch ID: 916808 Sample: 640019-	I-BKS	Batch	ı#: 1					Matrix: V	Nater		
Units: mg/L		BLAN	K /BLANK S	SPIKE / E	SLANK S	PIKE DUPI	JCATE I	RECOVE	ERY STUD	Y	
BTEX by EPA 8021B Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Benzene	<0.00100	0.100	0.119	119	0.100	0.120	120	1	70-125	25	
Toluene	<0.00200	0.100	0.0975	98	0.100	0.0964	96	1	70-125	25	
Ethylbenzene	<0.00100	0.100	0.0867	87	0.100	0.0862	86	1	71-129	25	
m,p-Xylenes	<0.00200	0.200	0.171	86	0.200	0.170	85	1	70-131	25	
o-Xylene	< 0.00100	0.100	0.0865	87	0.100	0.0861	86	0	71-133	25	
Analyst: DYV			ed: 06/24/201					nalyzed: 0)6/24/2013	<u> </u>	
Analyst: DYV Lab Batch ID: 916886 Sample: 640115-	Da		ed: 06/24/201				Date Ar	nalyzed: () Matrix: V		<u> </u>	<u> </u>
·	Da	ate Prepar Batcł	ed: 06/24/201	13		I	Date Ar	Matrix: V	Water	Y	
Lab Batch ID: 916886 Sample: 640115- Units: ^{mg/L} BTEX by EPA 8021B	Da	ate Prepar Batcł	ed: 06/24/201 n #: 1 K /BLANK S Blank Spike Result	13	BLANK S Spike Added	I	Date Ar	Matrix: V	Water	DY Control Limits %RPD	Flag
Lab Batch ID: 916886 Sample: 640115- Units: ^{mg/L} BTEX by EPA 8021B Analytes	Da 1-BKS Blank Sample Result [A]	ate Prepar Batch BLAN Spike Added [B]	ed: 06/24/201 n #: 1 K /BLANK S Blank Spike Result [C]	13 SPIKE / B Blank Spike %R [D]	BLANK S Spike Added [E]	BIKE DUPI Blank Spike Duplicate Result [F]	Date An LICATE I Blk. Spk Dup. %R [G]	Matrix: V RECOVE RPD %	Water ERY STUD Control Limits %R	Control Limits %RPD	Flag
Lab Batch ID: 916886 Sample: 640115- Units: ^{mg/L} BTEX by EPA 8021B Analytes Benzene	Da 1-BKS Blank Sample Result [A] <0.00100	ate Prepar Batch BLAN Spike Added [B] 0.100	ed: 06/24/201 n #: 1 K /BLANK S Blank Spike Result [C] 0.102	I3 SPIKE / B Blank Spike %R [D] 102	Spike Added [E] 0.100	Blank Spike Duplicate Result [F] 0.120	Date An LICATE I Blk. Spk Dup. %R [G] 120	Matrix: V RECOVE RPD % 16	Water ERY STUD Control Limits %R 70-125	Control Limits %RPD 25	Flag
Lab Batch ID: 916886 Sample: 640115- Units: ^{mg/L} BTEX by EPA 8021B Analytes Benzene Toluene	Da 1-BKS Blank Sample Result [A] <0.00100 <0.00200	ate Prepar Batch BLAN Spike Added [B] 0.100 0.100	ed: 06/24/201 n #: 1 K /BLANK S Blank Spike Result [C] 0.102 0.0889	I3 SPIKE / B Blank Spike %R [D] 102 89	3LANK S Spike Added [E] 0.100 0.100	Blank Spike Duplicate Result [F] 0.120 0.101	Date A1 LICATE I Blk. Spk Dup. %R [G] 120 101	Matrix: V RECOVE RPD % 16 13	Water ERY STUD Control Limits %R 70-125 70-125	Control Limits %RPD 25 25	Flag
Lab Batch ID: 916886 Sample: 640115- Units: mg/L BTEX by EPA 8021B Analytes Benzene Toluene Ethylbenzene	Da 1-BKS Blank Sample Result [A] <0.00100 <0.00200 <0.00100	Ate Prepar Batch BLAN Spike Added [B] 0.100 0.100 0.100	ed: 06/24/201 n #: 1 K /BLANK S Blank Spike Result [C] 0.102 0.0889 0.0837	Blank SPIKE / B Blank Spike %R [D] 102 89 84	Spike Added [E] 0.100 0.100	Blank Spike Duplicate Result [F] 0.120 0.101 0.0927	Date An LICATE I Blk. Spk Dup. %R [G] 120 101 93	Matrix: V RECOVE % 16 13 10	Water ERY STUD Control Limits %R 70-125 70-125 71-129	Control Limits %RPD 25 25 25 25	Flag
Lab Batch ID: 916886 Sample: 640115- Units: ^{mg/L} BTEX by EPA 8021B Analytes Benzene Toluene	Da 1-BKS Blank Sample Result [A] <0.00100 <0.00200	ate Prepar Batch BLAN Spike Added [B] 0.100 0.100	ed: 06/24/201 n #: 1 K /BLANK S Blank Spike Result [C] 0.102 0.0889	I3 SPIKE / B Blank Spike %R [D] 102 89	3LANK S Spike Added [E] 0.100 0.100	Blank Spike Duplicate Result [F] 0.120 0.101	Date A1 LICATE I Blk. Spk Dup. %R [G] 120 101	Matrix: V RECOVE RPD % 16 13	Water ERY STUD Control Limits %R 70-125 70-125	Control Limits %RPD 25 25	Flag

Relative Percent Difference RPD = $200^{*}|(C-F)/(C+F)|$ Blank Spike Recovery [D] = $100^{*}(C)/[B]$ Blank Spike Duplicate Recovery [G] = $100^{*}(F)/[E]$ All results are based on MDL and Validated for QC Purposes

Project Name: Midland Odessa Discounted Fee Schedule

Work Order #: 465163		_				Project ID: 039122 Date Analyzed: 06/18/2013						
Analyst: AMB		Da	ate Prepar	red: 06/18/201	13			Date A	nalyzed: (6/18/2013		
Lab Batch ID: 916702	Sample: 639978-1-B	KS	Batel	h #: 1					Matrix: V	Vater		
Units: mg/L	[BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STU										
Inorganic Anions by H	EPA 300/300.1	Blank Sample Result [A]	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate	Blk. Spk Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes			[B]	[C]	[D]	[E]	Result [F]	[G]				
Chloride		<1.00	25.0	23.2	93	25.0	23.2	93	0	80-120	20	

Relative Percent Difference RPD = $200^{*}|(C-F)/(C+F)|$ Blank Spike Recovery [D] = $100^{*}(C)/[B]$ Blank Spike Duplicate Recovery [G] = $100^{*}(F)/[E]$ All results are based on MDL and Validated for QC Purposes

Form 3 - MS Recoveries

Project Name: Midland Odessa Discounted Fee Schedule

Work Order #: 465163							
Lab Batch #: 916808				Pro	oject ID:	039122	
Date Analyzed: 06/20/2013	Date P	repared: 06/2	0/2013	Α	nalyst: D	θYV	
QC- Sample ID: 465199-001 S		Batch #: 1		Ν	Aatrix: V	Vater	
Reporting Units: mg/L		MATE	RIX / MA	TRIX SPIKE	RECO	VERY STU	JDY
BTEX by EPA 8021B Analytes		Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	%R [D]	Control Limits %R	Flag
Benzene		< 0.00100	0.100	0.119	119	70-125	
Toluene		< 0.00200	0.100	0.0959	96	70-125	
Ethylbenzene		< 0.00100	0.100	0.0834	83	71-129	1
m,p-Xylenes		< 0.00200	0.200	0.164	82	70-131	
o-Xylene		< 0.00100	0.100	0.0841	84	71-133	1
QC- Sample ID: 465163-001 S Reporting Units: mg/L		Batch #: 1 MATE	RIX / MA	MATRIX SPIKE	Aatrix: V RECO		JDY
Inorganic Anions by EPA 300 Analytes		Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	%R [D]	Control Limits %R	Flag
Chloride		30.0	125	157	102	80-120	
Lab Batch #: 916702	I		1	<u> </u>			<u> </u>
Date Analyzed: 06/18/2013	Date P	repared: 06/1	8/2013	А	nalyst: A	MB	
QC- Sample ID: 465163-011 S		Batch #: 1		Ν	Aatrix: V	Vater	
Reporting Units: mg/L	MATRIX / MATRIX SPIKE RECOVERY STUDY						
Inorganic Anions by EPA 300		Parent Sample Result	Spike Added	Spiked Sample Result [C]	%R [D]	Control Limits %R	Flag
Analytes		[A]	[B]				

Matrix Spike Percent Recovery $[D] = 100^{*}(C-A)/B$ Relative Percent Difference $[E] = 200^{*}(C-A)/(C+B)$ All Results are based on MDL and Validated for QC Purposes

BRL - Below Reporting Limit

Form 3 - MS / MSD Recoveries

Project Name: Midland Odessa Discounted Fee Schedule

Work Order # :	465163						Project ID	: 039122	2			
Lab Batch ID:	916886	QC- Sample ID:	465367-	-002 S	Ba	tch #:	1 Matrix	: Water				
Date Analyzed:	06/24/2013	Date Prepared:	06/24/20	013	An	alyst: I	DYV					
Reporting Units:	mg/L		Μ	ATRIX SPIKI	E / MAT	RIX SPI	KE DUPLICA'	FE REC	OVERY S	STUDY		
B	BTEX by EPA 8021B	Parent Sample	Spike	Spiked Sample Result	Sample	Spike	Duplicate Spiked Sample	Spiked Dup.	RPD	Control Limits	Control Limits	Flag
	Analytes	Result [A]	Added [B]	[C]	%R [D]	Added [E]	Result [F]	%R [G]	%	%R	%RPD	
Benzene		<0.00100	0.100	0.120	120	0.100	0.120	120	0	70-125	25	
Toluene		<0.00200	0.100	0.101	101	0.100	0.101	101	0	70-125	25	
Ethylbenzene		<0.00100	0.100	0.0950	95	0.100	0.0939	94	1	71-129	25	
m,p-Xylenes		<0.00200	0.200	0.188	94	0.200	0.186	93	1	70-131	25	
o-Xylene		<0.00100	0.100	0.0960	96	0.100	0.0951	95	1	71-133	25	

Matrix Spike Percent Recovery $[D] = 100^{\circ}(C-A)/B$ Relative Percent Difference RPD = $200^{\circ}|(C-F)/(C+F)|$ Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

Company-City	5332, Blackberry Dri	ve, San Antor				09-333 0086	4			600 We		0 East,	. 7	essa, TX		43	2-563	1800	Se	erial #	: 3	22	84	15	Pa	age of	ich
Project Name-Location		done at XI		9. C		Project 3912	ID							h 48	n 3d	5d											
		D	(D)	-	0	912	2		It is t	ypical	ly 5-1		king	Days	for le	vel II	and 1	0+ Wa	orking	days	for lev	el III a	and I	/ data	a.		
Proj. State: TX, AL, FL, C NJ, PA, SC, TN, UT Othe		Proj. Mana	iger (Pi	") ~ F	Pord				S			CALL		Appdx2 PCBs)									21d		Î	Remar	KS
BE	APM and Forde crass,	-12. (om	4	32-	686	Tax No			S	Uther:		K-2	SS	4		r		1		1			10d	Highest Hit	and are pre-approved)		
Invoice to Accounting Bill to:	□ Inc. Invoice wi	th Final Re	port 🗖	Invoid	e mu	st have	a P.O			CALL	H		Pesticides	Ap st.									pZ I	S Hig	e pre-a	ded	Erom.
Quote/Pricing:		P.O. No:				Ca Ca	II for P.	0.	Oxyg	Z-XI	HdV						-						5d	Kg	nd ar	sue	
Reg Program: UST Df QAPP Per-Contract CL							RP		EtoH	X-XDQDX-Z	MA EPH MA		Herbicides OP	SVC			0.0						48h 3d	_W, mg/Kg	vill apply ar	pproved as	Dev hv
Special DLs (GW DW (QAPP MDLs RLs	See Lab F	M Incl	uded	Call	PM)	_		BTEX-MTBE	Appdx-1 8270	MA	BN8	Hert	VOCs		5	300						24h	mg/L W,	ges v	ore-a	
		Classet	-		1	-			N-XI	21	0	MO	PCBs	Metals (Metals			L)						12h		charg	arep	4
Sampler Name	n Mixon	Signatu		7	The	-		-	1.1.1	. 8	1.1	ist [icox	5							ove	(Sur	sdn	Date
Sample ID	Sampling Date	Time	Depth ft' in" m	Composite	Grab	# Containers	Container Size	Preservatives	VOA: Full-List	PAHS SIM	1 õ	SVOCs: Full-List	OC Pesticides	Metals: RCRA-8 SPLP - TCLP (I	EDB / DBCP	BTEX S	Chlori						TATASAP 5h	Addn: PAH above	Hold Samples (Surcharges will apply	Sample Clean-ups are pre-approved as needed	Adda.
Kw02-061413	6-14-13	1500		-		3	1		Í		T				T	X	X	+	1				H				
Ruo3-061413		1530			(1	1										
mw 05061413		1040														Π									1		
mwob-061413		1100														11											
muon - 001413		1120														11							,				
mw08-061413	- X.	920			1.									1													
JW01-06/413		1000		1																							
mw02-061413		1020			1											1							19				
Dup1-061413		920												1			T										
MW03-061413		940						1								1											
Relinquished by (Initi	als and Sign)	Date &		_	Relinc	uished	to (Init	ials a	nd Sig	n)		Date	& 7	Time				rs per				Co	oler	[emp	: 5	5 °C	
1) 1 1 1 hop	An	6-17-13	1030	-		1.5						-														erty of XENC nailed unless	
3)	/			4)							1				unit	II pal	. Jail	HIGS W	III De I	ICIU JU	Judys	and	anal le	PULL	0 0-11	aneu unies:	2

Preservatives: Various (V), HCl pH<2 (H), H2SO4 pH<2 (S), HNO3 pH<2 (N), Asbc Acid&NaOH (A), ZnAc&NaOH (Z), (Cool, <4C) (C), None (NA), See Label (L), Other (O) ______ Cont. Size: 4oz (4), 8oz (8), 32oz (32), 40ml VOA (40), 1L (1), 500ml (5), Tedlar Bag (B), Various (V), Other ______ Cont. Type: Glass Amb (A), Glass Clear (C), Plastic (P), Various (V)

Matrix: Air (A), Product (P), Solid (S), Water (W), Liquid (L)

Committed to Excellence in Service and Quality

www.xenco.com

Notice: Signature of this document and relinquishment of these samples constitutes a valid purchase order from client company to Xenco Laboratories and its affiliates, subcontractors and assigns under Xenco's standard terms and conditions of service unless previously negotiated under a fully executed client contract.

Final 1.000

mpany-City Ject Name-Location □ Previo Mon Great, NM j. State: TX, AL, FL, GA, LA, MS, NO	usly done at X	-		~1>	2-00	16-u	080			only:		4	+	65	510	05											
		ENCO	7	D	Proje	ect ID															ard TA for lev		-				
PA, SC, TN, UT Other	Proj. Man		PM)	n	Fo,	d			As 			CALL		Appdx2	PCBs)	T							21d	_	(p	Rema	rks
nail Results to BFord C	Crowood	an		4	Fax 32-t	No:	5186		VOAs Other:			X-2	10.1	4									10d	est Hi	Drove		
oice to Accounting Inc. Invoic	the second s] Invo			_		E'	CALL		Н	PP Appdx-2	0	Apl	Pest. Herb.								ΡĹ	S Highest Hit	and are pre-approved)	ded	
ote/Pricing:	P.O. No:				- V		or P.O).	Oxyg dx-2		HAV V		OP P	3TAL									d 5d	mg/Kg	nd ar	s nee	
g Program: UST DRY-CLEAN La						TRRP			EtOH Oxyg 1 Appdx-2		MA		o so	PP 2	svocs		0						3d	gm		/ed a	
PP Per-Contract CLP AGCEE N	VY DOE D	OD U	SAC	E OT	HER:			-	×-1 Щ		EPH	AE	Herbicides	b 13			3						48h	×,	vill ap	oprov	d
ecial DLs (GW DW QAPP MDLs	Ls See Lab	PM In	clude	d Ca	all. Ph	(N)	1	_	Appdx-1	8270	MA	BN&AE	Herb	4 P	VOCS	SIL	m			Ċ,			24h	mg/L	ges w	pre-al	
mpler Name Justignikon	Signatu	ire 1	7		hy				BTEX-MTBE DW Appd	1 22	GRO	t DW	PCBs	RCR/	(Metals	20							12h	e	Surchar	ps are	
Sample ID Sampling Date	Time	Depth Official m	Matrix	Grab	# Containers	Container Size	Container Type	Preservatives	VOA: Full-List I VOA: PP TCL	M	TX-1005 DRO	.03	OC Pesticides	γ	SPLP - TCLP (KTEX	Chlorist						TATASAP 5h	Addn: PAH above	Hold Samples (Surcharges will apply	Sample Clean-ups are pre-approved as needed	
1W04-061413 6-14-1	3 1140		V	X	3									6		X	X										
A CONTRACTOR OF A	er		5									1	x												1.		
			0		367																						
																				1						<u> </u>	
								-					4	-	-	-						1.	Ŧ				_
	1.000			·			19	-	1				-	-	-	-					-	-					_
				-			1	-		-	-		-	-	-	+		-	-		-	+			-		-
	-	-	-	-				-		-	-		-	-	-	-		-	-		-	+			-		
	-						-	-		-			-	-	-	-	-	+	-	-	-	+-			-+		+
Relinguished by (Initials and Sign)	Date &	Time		Reli	auish	ned to	(Initia	ls an	d Sign			Date	T & 1	ime	T	tal C	Intain	rs per l		3	_			- 5×	5%	5°C	_
	6-17-1		and the second s		quior	.50 10	Innua	ile an	a orgn	,	1	2010											-			erty of XEN	ICO

Matrix: Air (A), Product (P), Solid (S), Water (W), Liquid (L)

Committed to Excellence in Service and Quality

www.xenco.com

Notice: Signature of this document and relinquishment of these samples constitutes a valid purchase order from client company to Xenco Laboratories and its affiliates, subcontractors and assigns under Xenco's standard terms and conditions of service unless previously negotiated under a fully executed client contract.

Final 1.000

XENCO Laboratories

Prelogin/Nonconformance Report- Sample Log-In

Client: Conestoga Rovers & Associates Acceptable Temperature Range: 0 - 6 degC Air and Metal samples Acceptable Range: Ambient Date/ Time Received: 06/17/2013 10:13:00 AM **Temperature Measuring device used :** Work Order #: 465163

Sample Receipt Checklist	Comments
#1 *Temperature of cooler(s)?	5.5
#2 *Shipping container in good condition?	Yes
#3 *Samples received on ice?	Yes
#4 *Custody Seals intact on shipping container/ cooler?	Yes
#5 Custody Seals intact on sample bottles?	Yes
#6 *Custody Seals Signed and dated?	Yes
#7 *Chain of Custody present?	Yes
#8 Sample instructions complete on Chain of Custody?	Yes
#9 Any missing/extra samples?	No
#10 Chain of Custody signed when relinquished/ received?	Yes
#11 Chain of Custody agrees with sample label(s)?	Yes
#12 Container label(s) legible and intact?	Yes
#13 Sample matrix/ properties agree with Chain of Custody?	Yes
#14 Samples in proper container/ bottle?	Yes
#15 Samples properly preserved?	Yes
#16 Sample container(s) intact?	Yes
#17 Sufficient sample amount for indicated test(s)?	Yes
#18 All samples received within hold time?	Yes
#19 Subcontract of sample(s)?	No
#20 VOC samples have zero headspace (less than 1/4 inch bubble)?	Yes
#21 <2 for all samples preserved with HNO3,HCL, H2SO4?	Yes
#22 >10 for all samples preserved with NaAsO2+NaOH, ZnAc+NaOH?	N/A

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst:

PH Device/Lot#:

Checklist completed by: Mmg Koah Kelsey Brooks Checklist reviewed by: Mmg Koah Kelsey Brooks

Date: 06/17/2013

Date: 06/17/2013

Analytical Report 465916

for

Conestoga Rovers & Associates

Project Manager: Scott Christ

F Slate

039122

08-JUL-13

Collected By: Client

12600 West I-20 East Odessa, Texas 79765

Xenco-Houston (EPA Lab code: TX00122): Texas (T104704215-10-6-TX), Arizona (AZ0765), Arkansas (08-039-0), Connecticut (PH-0102), Florida (E871002) Illinois (002082), Indiana (C-TX-02), Iowa (392), Kansas (E-10380), Kentucky (45), Louisiana (03054) New Hampshire (297408), New Jersey (TX007), New York (11763), Oklahoma (9218), Pennsylvania (68-03610) Rhode Island (LAO00312), USDA (S-44102), DoD (L11-54)

Xenco-Atlanta (EPA Lab Code: GA00046): Florida (E87429), North Carolina (483), South Carolina (98015), Kentucky (85), DoD (L10-135) Louisiana (04176), USDA (P330-07-00105)

> Xenco-Tampa Mobile (EPA Lab code: FL01212): Florida (E84900) Xenco-Lakeland: Florida (E84098) Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400-TX) Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295-TX) Xenco Phoenix (EPA Lab Code: AZ00901): Arizona (AZ0757) Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757) Xenco Tucson (EPA Lab code:AZ000989): Arizona (AZ0758)

08-JUL-13

TNI BORATORI

Project Manager: **Scott Christ Conestoga Rovers & Associates** 2135 S Loop 250 W Midland, TX 79703

Reference: XENCO Report No(s): 465916 F Slate Project Address: TX

Scott Christ:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 465916. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 465916 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully.

Kelsey Brooks Project Manager

> Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Odessa - San Antonio - Tampa - Lakeland - Atlanta - Phoenix - Oklahoma - Latin America

Sample Cross Reference 465916

Conestoga Rovers & Associates, Midland, TX

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
RW 1	W	06-27-13 10:00		465916-001
RW 4	W	06-27-13 10:20		465916-002

CASE NARRATIVE

Client Name: Conestoga Rovers & Associates Project Name: F Slate

Project ID:039122Work Order Number(s):465916

Report Date: 08-JUL-13 Date Received: 06/28/2013

This laboratory is NELAC accredited under the Texas Laboratory Accreditation Program for all the methods, analytes, and matrices reported in this data package except as noted. The data have been reviewed and are technically compliant with the requirements of the methods used, except where noted by the laboratory.

Sample receipt non conformances and comments:

Sample receipt non conformances and comments per sample:

None

Certificate of Analytical Results 465916

Conestoga Rovers & Associates, Midland, TX

Sample Id: RW 1		Matrix:	Water		Sample	e Depth:		
Lab Sample Id: 465916-001		Date Collecte	ed: 06.27.13	10.00	Date R	eceived: 06.28.1	3 10.	10
Analytical Method: Inorganic Anions b	y EPA 300/300.1				Prep M	lethod: E300P		
Analyst: AMB		% Moist:			Tech:	AMB		
Seq Number: 917907		Date Prep: 07	7.02.13 10.00)				
		Prep seq: 64	40752					
Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
Chloride	16887-00-6	33.8	5.00	0.140	mg/L	07.03.13 09:21		5
Analytical Method: BTEX by EPA 802 Analyst: DYV	1B	% Moist:			Prep M Tech:	Iethod: 5030B DYV		
Seq Number: 917708		Date Prep: 07	7.02.13 15.30)				
		Prep seq: 64	40597					
Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
Benzene	71-43-2	0.00745	0.00100	0.000500	mg/L	07.03.13 14:21		1
Toluene	108-88-3	0.00963	0.00200	0.00100	mg/L	07.03.13 14:21		1
Ethylbenzene	100-41-4	0.0101	0.00100	0.000700	mg/L	07.03.13 14:21		1
m,p-Xylenes	179601-23-1	0.0534	0.00200	0.00140	mg/L	07.03.13 14:21		1
o-Xylene	95-47-6	0.00145	0.00100	0.000700	mg/L	07.03.13 14:21		1
Total Xylenes	1330-20-7	0.0549		0.000700	mg/L	07.03.13 14:21		
Total BTEX		0.0820		0.000500	mg/L	07.03.13 14:21		
Surrogate		% Recovery		Limits	Un	its Analysis	Date	Flag
1,4-Difluorobenzene		90		80 - 1	120 %	ó		
4-Bromofluorobenzene		98		80 - 3	120 %	Ď		

Certificate of Analytical Results 465916

Conestoga Rovers & Associates, Midland, TX

Sample Id: RW 4		Matrix:	Water		Sample	e Depth:		
Lab Sample Id: 465916-002		Date Collecte	ed: 06.27.13	10.20	Date R	eceived: 06.28.1	3 10.	10
Analytical Method: Inorganic Anions by E	PA 300/300.1				Prep M	lethod: E300P		
Analyst: AMB		% Moist:			Tech:	AMB		
Seq Number: 917907		Date Prep: 07	7.02.13 10.00)				
-		Prep seq: 64						
Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
Chloride	16887-00-6	43.1	5.00	0.140	mg/L	07.03.13 10:04		5
Analytical Method: BTEX by EPA 8021B Analyst: DYV		% Moist:			Prep M Tech:	lethod: 5030B DYV		
Seq Number: 917708		Date Prep: 07	7.02.13 15.30)				
-		Prep seq: 64	40597					
Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
Benzene	71-43-2	0.0245	0.0100	0.00500	mg/L	07.03.13 11:41		10
Toluene	108-88-3	0.0396	0.0200	0.0100	mg/L	07.03.13 11:41		10
Ethylbenzene	100-41-4	0.0779	0.0100	0.00700	mg/L	07.03.13 11:41		10
m,p-Xylenes	179601-23-1	0.196	0.0200	0.0140	mg/L	07.03.13 11:41		10
o-Xylene	95-47-6	ND	0.0100	0.00700	mg/L	07.03.13 11:41	U	10
Total Xylenes	1330-20-7	0.196		0.00700	mg/L	07.03.13 11:41		
Total BTEX		0.338		0.00500	mg/L	07.03.13 11:41		
Surrogate		% Recovery		Limits	Un	its Analysis	Date	Flag
1,4-Difluorobenzene		110		80 - 1	120 %			
4-Bromofluorobenzene		98		80 - 1	120 %	b		

Certificate of Analytical Results 465916

Conestoga Rovers & Associates, Midland, TX

Sample Id: 640597-1-BL	K	Matrix:	Water		Sample	e Depth:		
Lab Sample Id: 640597-1-BL	K	Date Collecte	ed:		Date R	eceived:		
Analytical Method: BTEX by	y EPA 8021B				Prep M	lethod: 5030B		
Analyst: DYV		% Moist:			Tech:	DYV		
Seq Number: 917708		Date Prep: 07	7.02.13 15.30					
5041101110011 911700		Prep seq: 64						
Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
Benzene	71-43-2	ND	0.00100	0.000500	mg/L	07.02.13 20:32	U	1
Toluene	108-88-3	ND	0.00200	0.00100	mg/L	07.02.13 20:32	U	1
Ethylbenzene	100-41-4	ND	0.00100	0.000700	mg/L	07.02.13 20:32	U	1
m,p-Xylenes	179601-23-1	ND	0.00200	0.00140	mg/L	07.02.13 20:32	U	1
o-Xylene	95-47-6	ND	0.00100	0.000700	mg/L	07.02.13 20:32	U	1
Surrogate		% Recovery		Limits	Uni	its Analysis	Date	Flag
Surrogate		% Recovery 120		Limits 80 -	-		Date	Flag
0		•			120 %	b	Date	Flag
1,4-Difluorobenzene	К	120	Water	80 -	120 % 120 %	b	Date	Flag
1,4-Difluorobenzene 4-Bromofluorobenzene		120 83		80 -	120 % 120 % Sample		Date	Flag
1,4-Difluorobenzene 4-Bromofluorobenzene Sample Id: 640752-1-BL	K	120 83 Matrix:		80 -	120 % 120 % Sample	Depth: eccived:	Date	Flag
1,4-Difluorobenzene 4-Bromofluorobenzene Sample Id: 640752-1-BL Lab Sample Id: 640752-1-BL	K	120 83 Matrix:		80 -	120 % 120 % Sample Date R	Depth: eccived:	Date	Flag
1,4-Difluorobenzene 4-Bromofluorobenzene Sample Id: 640752-1-BL Lab Sample Id: 640752-1-BL Analytical Method: Inorganie	K	120 83 Matrix: Date Collecte	ed:	80 -	120 % 120 % Sample Date R Prep M	Depth: eceived: lethod: E300P	Date	Flag
1,4-Difluorobenzene 4-Bromofluorobenzene Sample Id: 640752-1-BL Lab Sample Id: 640752-1-BL Analytical Method: Inorgania Analyst: AMB	K	120 83 Matrix: Date Collecte % Moist:	ed: 7.02.13 10.00	80 -	120 % 120 % Sample Date R Prep M	Depth: eceived: lethod: E300P	Date	Flag
1,4-Difluorobenzene 4-Bromofluorobenzene Sample Id: 640752-1-BL Lab Sample Id: 640752-1-BL Analytical Method: Inorgania Analyst: AMB	K	120 83 Matrix: Date Collecte % Moist: Date Prep: 07	ed: 7.02.13 10.00	80 -	120 % 120 % Sample Date R Prep M	Depth: eceived: lethod: E300P	Date	Flag Dil Factor

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.

LOD Limit of Detection

Phone

(281) 240-4200

(214) 902 0300

(210) 509-3334

(813) 620-2000

(432) 563-1800

(770) 449-8800

(602) 437-0330

- ** Surrogate recovered outside laboratory control limit.
- **BRL** Below Reporting Limit.
- RL Reporting Limit
- MDL Method Detection Limit
 SDL Sample Detection Limit
- PQL Practical Quantitation Limit MQL Method Quantitation Limit LOQ Limit of Quantitation
- **DL** Method Detection Limit
- NC Non-Calculable
- + NELAC certification not offered for this compound.
- * (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Atlanta - Midland/Odessa - Tampa/Lakeland - Phoenix - Latin America

4143 Greenbriar Dr, Stafford, TX 77477
9701 Harry Hines Blvd , Dallas, TX 75220
5332 Blackberry Drive, San Antonio TX 78238
2505 North Falkenburg Rd, Tampa, FL 33619
12600 West I-20 East, Odessa, TX 79765
6017 Financial Drive, Norcross, GA 30071
3725 E. Atlanta Ave, Phoenix, AZ 85040

Fax

(281) 240-4280

(214) 351-9139

(210) 509-3335

(813) 620-2033

(432) 563-1713

(770) 449-5477

Form 2 - Surrogate Recoveries

Project Name: F Slate

Vork Orders : 465916 Lab Batch #: 917708	5, Sample: 640597-1-BKS / B	KS Batcl	Project II			
Units: mg/L	Date Analyzed: 07/02/13 19:44		RROGATE RI		STUDY	
-	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes			[D]		
1,4-Difluorobenzene		0.0298	0.0300	99	80-120	
4-Bromofluorobenzene		0.0245	0.0300	82	80-120	
Lab Batch #: 917708	Sample: 640597-1-BSD / B	SD Batch	n: ¹ Matrix	:Water		
Units: mg/L	Date Analyzed: 07/02/13 20:00	SU	RROGATE RI	ECOVERY S	STUDY	
BTE	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1.4-Difluorobenzene	Analytes	0.0206	0.0200		80-120	
4-Bromofluorobenzene		0.0296	0.0300	99 82	80-120	
					00 120	
Lab Batch #: 917708	Sample: 640597-1-BLK / B		n: ¹ Matrix RROGATE RI		STUDY	
Units: mg/L	Date Analyzed: 07/02/13 20:32	50	KRUGATE RI			
BTE	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene		0.0359	0.0300	120	80-120	
4-Bromofluorobenzene		0.0249	0.0300	83	80-120	
Lab Batch #: 917708	Sample: 465713-014 S / MS	S Batcl	n: 1 Matrix	:Water		
Units: mg/L	Date Analyzed: 07/02/13 23:26	SU	RROGATE RI	ECOVERY S	STUDY	
BTE	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
				[D]		
	Analytes					
1,4-Difluorobenzene	Analytes	0.0283	0.0300	94	80-120	
1,4-Difluorobenzene 4-Bromofluorobenzene	Analytes	0.0283 0.0253	0.0300		80-120 80-120	
4-Bromofluorobenzene	Analytes Sample: 465713-014 SD / M	0.0253	0.0300	94 84		
4-Bromofluorobenzene		0.0253 ASD Batch	0.0300	94 94 84 :Water	80-120	
4-Bromofluorobenzene Lab Batch #: 917708 Units: mg/L	Sample: 465713-014 SD / M Date Analyzed: 07/02/13 23:42 X by EPA 8021B	0.0253 ASD Batch	0.0300	94 84 :Water ECOVERY S Recovery %R	80-120	Flags
4-Bromofluorobenzene Lab Batch #: 917708 Units: mg/L	Sample: 465713-014 SD / M Date Analyzed: 07/02/13 23:42	0.0253 ASD Batcl SU Amount Found	0.0300 n: 1 Matrix RROGATE RI True Amount	94 84 :Water ECOVERY S Recovery	80-120 STUDY Control Limits	Flags

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / BAll results are based on MDL and validated for QC purposes.

Project Name: F Slate

Work Order #: 465916	D	(D	1 07/02/201	2				ject ID: (
Analyst: DYV		-	ed: 07/02/201	3				Matrix: \	07/02/2013		
Lab Batch ID: 917708 Sample: 640597-1-E	sks		h #: 1								
Units: mg/L		BLAN	K /BLANK S	SPIKE / E	BLANK S	SPIKE DUPI	LICATE 1	RECOVE	ERY STUD	Y	
BTEX by EPA 8021B	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes											
Benzene	<0.000500	0.100	0.117	117	0.100	0.115	115	2	70-125	25	
Toluene	< 0.00100	0.100	0.0920	92	0.100	0.0918	92	0	70-125	25	
Ethylbenzene	< 0.000700	0.100	0.0819	82	0.100	0.0813	81	1	71-129	25	
m,p-Xylenes	< 0.00140	0.200	0.162	81	0.200	0.160	80	1	70-131	25	
o-Xylene	<0.000700	0.100	0.0838	84	0.100	0.0814	81	3	71-133	25	
Analyst: AMB	Da	ate Prepar	ed: 07/02/201	3			Date A	nalyzed: (07/03/2013		
Lab Batch ID: 917907 Sample: 640752-1-E	BKS	Batcl	h#: 1					Matrix: \	Water		
Units: mg/L		BLAN	K /BLANK S	SPIKE / E	BLANK S	SPIKE DUPI	LICATE 1	RECOVE	ERY STUD	Y	
Inorganic Anions by EPA 300/300.1 Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Chloride	<0.0280	25.0	22.8	91	25.0	22.7	91	0	80-120	20	

Relative Percent Difference RPD = $200^{*}|(C-F)/(C+F)|$ Blank Spike Recovery [D] = $100^{*}(C)/[B]$ Blank Spike Duplicate Recovery [G] = $100^{*}(F)/[E]$ All results are based on MDL and Validated for QC Purposes

Chloride

Form 3 - MS Recoveries

Project Name: F Slate

Work Order #: 465916							
Lab Batch #: 917907				Pr	oject ID:	039122	
Date Analyzed: 07/03/2013	Date P	repared: 07/0	2/2013	A	Analyst: A	MB	
QC- Sample ID: 465916-001 S		Batch #: 1			Matrix: W	/ater	
Reporting Units: mg/L		MATE	RIX / MA	TRIX SPIKE	RECO	VERY STU	DY
Inorganic Anions by EPA 300		Parent Sample Result	Spike Added	Spiked Sample Result [C]	%R [D]	Control Limits %R	Flag
Analytes		[A]	[B]				
Chloride		33.8	125	153	95	80-120	
Lab Batch #: 917907							
Date Analyzed: 07/03/2013	Date F	repared: 07/0	2/2013	A	Analyst: A	MB	
QC- Sample ID: 465966-013 S		Batch #: 1			Matrix: W	/ater	
Reporting Units: mg/L		MATE	RIX / MA	TRIX SPIKE	RECO	VERY STU	DY
Inorganic Anions by EPA 300		Parent Sample Result	Spike Added	Spiked Sample Result [C]	%R [D]	Control Limits %R	Flag
Analytes		[A]	[B]				

275

125

415

112

80-120

Matrix Spike Percent Recovery [D] = 100*(C-A)/BRelative Percent Difference [E] = 200*(C-A)/(C+B)All Results are based on MDL and Validated for QC Purposes

BRL - Below Reporting Limit

Form 3 - MS / MSD Recoveries

Project Name: F Slate

Work Order # : 465916						Project ID	: 039122	2			
Lab Batch ID: 917708	QC- Sample ID:	465713	-014 S	Ba	tch #:	1 Matrix	: Water				
Date Analyzed: 07/02/2013	Date Prepared:	07/02/2	013	An	alyst: I	DYV					
Reporting Units: mg/L		Μ	ATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	FE RECO	OVERY	STUDY		
BTEX by EPA 8021B	Parent Sample	Spike	Spiked Sample Result	Sample	-	Duplicate Spiked Sample	Spiked Dup.	RPD	Control Limits	Control Limits	Flag
Analytes	Result [A]	Added [B]	[C]	%R [D]	Added [E]	Result [F]	%R [G]	%	%R	%RPD	
Benzene	0.00449	0.100	0.119	115	0.100	0.119	115	0	70-125	25	
Toluene	<0.00100	0.100	0.0938	94	0.100	0.0929	93	1	70-125	25	
Ethylbenzene	<0.000700	0.100	0.0812	81	0.100	0.0807	81	1	71-129	25	
m,p-Xylenes	<0.00140	0.200	0.161	81	0.200	0.160	80	1	70-131	25	
o-Xylene	<0.000700	0.100	0.0818	82	0.100	0.0820	82	0	71-133	25	

Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

	KENCO									÷.,	_											ST	& C	HAI	N O	FC	USI	OD	YR	RECO	RD	
Company-City Phone Lab Only: Use of State Project Name-Location Previously done at XENCO Project Name-Location Project Name-Prove Name-Name-Norking days for level II and IV data. NJ, PA, SC, TN, UT Other Mander PM Scarbe chrvister Scorbe chrvister <td< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>18.1</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>s</th><th>erial</th><th>#:</th><th>32</th><th>78</th><th>88</th><th>30</th><th>P</th><th>age</th><th>of</th><th>ſ</th></td<>													18.1									s	erial	#:	32	78	88	30	P	age	of	ſ
Project Name-Location Proviously done at XENCO Project ID TAT: ASAP 5h 12h 24h 48h 3d 6d 7d 10d 21d Standard TAT is project specific. Proj. State: C3(122 C3(122 C3(122 TAT: ASAP 5h 12h 2d 12h							le c	086	0		Lab	Onl	ly:		L	HO	50	7/1	0													
NJ, PA, SC, TN, UT Other Num Scoppe character Scop	Project Name-Location F State			ENCO			Proj	ect ID																						1		
Bandary	NJ, PA, SC, TN, UT Other E-mail Results to	r nm ZIPM and	Scol	=== .	cho		Fax					Other:				1 Appdx2												est Hit	proved)	Re	mark	(s
Quote/Pricing: P.O. No: Call for P.O. Call for P.O. Reg Program: USI DRY-CLEAN Land-Fill Waste-Disp NPDES DW TRRP Matrix Matrix Matrix QAPP Per-Contract CP Addee Conntainer 1/ype Matrix Matrix Matrix Special DLs Gen Markins Signature Matrix Matrix Matrix Matrix Sample ID Sample Cleant-lips are breadinges will apply and Cleant-lips are breadinges will apply apply and Cleant-lips are breadinges will apply and Cleant-lips are breadinges will apply apply and Cleant-lips are breadinges will apply apply apply and Cleant-lips are breadinges will apply apply and Cleant-lips are breadinges will apply			vith Final Re	port [] Invo	ice n	nust h	ave a l	P.O.		g VOHs	CALL	ī			L Appdx											p/		re pre-ap	eded		Erom.
Sample Clean-ups are pro- Samples (Surcharges Surcharges Surg Surg Surcharges Surg Surg Surg Surg Surg Surg Surg Surg	Reg Program: UST DF		-Fill Waste-				DW 1	TRRP	or P.C	D.	tOH			A MA	es OP	3PP 23TA											3d		and	as		Bey by
Sample Cleanups Sample Cleanups <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td>- E</td><td>8270</td><td>RN8</td><td></td><td></td><td>VOCs</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>24h</td><td>mg/L W,</td><td>arges will a</td><td>e pre-appro</td><td></td><td></td></th<>										_		- E	8270	RN8			VOCs										24h	mg/L W,	arges will a	e pre-appro		
Image: State of the state o	Sampler Name Dan	elArcher	Signatu	re 🖊	h	8					BTEX	- 13	λíΙ		PCB		Metal		20%	M							12h	e/e	Surcha			Date
PUL ZTEURIS 1000 W X 4 UCA HLL ZSEMI DZE VIENCE VIENCETZE	Sample ID		Time	Depth fť ln" m	Matrix	Grab	# Containers	Container Size	Container Type	Preservatives		PP TCI	SIM	SVOCs: Full-Lis	OC Pesticides	Metals: RCRA-8		۹.								- 1		Addn: PAH abov		Sample Clean-u		Addr.
	RWI	27JUNIJ	1000			X	4 2	ioA Som	1	HLI								2								P	X					
	Rw 4	27Juniz	1020		w	X	4 2												4	×						_	X		-			\perp
				$\left \right $		+			-+	+	+	+	+	+	+		+	+	+	+	+-	\vdash	-	-	$\left \right $	+	-	+	+			+
				+		+	$\left \right $		\rightarrow		+	+	+	+	+			+	+	+	+	┢	+	-	\vdash	+	+	+	+	-	1	+
						\uparrow					+	+	1		+			+	+	+	+	+	\uparrow			+	+	+	+			\uparrow
																																T
										ĺ.																						
						h				1			_	_									0							0		
Relinquished by (Initials and Sign) Date & Time Relinquished to (Initials and Sign) Date & Time Total Containers per COC: Cooler Temp: 3 (O ° C 1) 1) 20 10 <t< td=""><td>1) And</td><td>als and Sign)</td><td>28344</td><td>13</td><td></td><td>X</td><td>au</td><td>Ined to</td><td>9</td><td>ans an</td><td>VC</td><td>A,</td><td>3 (</td><td></td><td></td><td></td><td>2:10</td><td>Other</td><td>vise</td><td>agree</td><td>ed on</td><td>writin</td><td>g. Re</td><td>ports</td><td>are th</td><td>ne Int</td><td>tellec</td><td>ctual F</td><td>Prope</td><td>erty of</td><td>XENC</td><td></td></t<>	1) And	als and Sign)	28344	13		X	au	Ined to	9	ans an	VC	A,	3 (2:10	Other	vise	agree	ed on	writin	g. Re	ports	are th	ne Int	tellec	ctual F	Prope	erty of	XENC	
3) 4) until paid. Samples will be held so days after final reports e-mailed unless 5) 6) hereby requested. Rush Charges and Collection Fees are pre-approved if n					6)				5	-		+																			

Preservatives: Various (V), HCl pH<2 (H), H2SO4 pH<2 (S), HNO3 pH<2 (N), Asbc Acid&NaOH (A), ZnAc&NaOH (Z), (Cool, <4C) (C), None (NA), See Label (L), Other (O) ________ Cont. Size: 402 (4), 802 (8), 3202 (32), 40ml VOA (40), 1L (1), 500ml (5), Tedlar Bag (B), Various (V), Other ______ Cont. Type: Glass Amb (A), Glass Clear (C), Plastic (P), Various (V)

Matrix: Air (A), Product (P), Solid (S), Water (W), Liquid (L)

1

Committed to Excellence in Service and Quality

www.xenco.com

Final 1.000

Page 13 of 14

Notice: Signature of this document and relinquishment of these samples constitutes a valid purchase order from client company to Xenco Laboratories and its affiliates,

subcontractors and assigns under Xenco's standard terms and conditions of service unless previously negotiated under a fully executed client contract.

XENCO Laboratories

Comments

Prelogin/Nonconformance Report- Sample Log-In

Client: Conestoga Rovers & Associates Acceptable Temperature Range: 0 - 6 degC Air and Metal samples Acceptable Range: Ambient Date/ Time Received: 06/28/2013 10:10:00 AM **Temperature Measuring device used :** Work Order #: 465916

Sample R	eceipt Checklist
#1 *Temperature of cooler(s)?	3
#2 *Shipping container in good condition?	Yes
#3 *Samples received on ice?	Yes
#4 *Custody Seals intact on shipping container/ cooler?	Yes
#5 Custody Seals intact on sample bottles?	Yes
#6 *Custody Seals Signed and dated?	Yes
<pre>#7 *Chain of Custody present?</pre>	Yes
#8 Sample instructions complete on Chain of Custody?	Yes
#9 Any missing/extra samples?	No
#10 Chain of Custody signed when relinquished/ receiv	red? Yes
#11 Chain of Custody agrees with sample label(s)?	Yes
#12 Container label(s) legible and intact?	Yes
#13 Sample matrix/ properties agree with Chain of Cus	tody? Yes
#14 Samples in proper container/ bottle?	Yes
#15 Samples properly preserved?	Yes
#16 Sample container(s) intact?	Yes
#17 Sufficient sample amount for indicated test(s)?	Yes
#18 All samples received within hold time?	Yes
#19 Subcontract of sample(s)?	Yes
#20 VOC samples have zero headspace (less than 1/4	inch bubble)? Yes
#21 <2 for all samples preserved with HNO3,HCL, H2S	O4? Yes
#22 >10 for all samples preserved with NaAsO2+NaOF	I, ZnAc+NaOH? Yes

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst:

PH Device/Lot#:

Checklist completed by: Mmg Moah Kelsey Brooks Checklist reviewed by: Mmg Moah Kelsey Brooks

Date: 06/28/2013

Date: 06/28/2013

Analytical Report 470310

for

Conestoga Rovers & Associates

Project Manager: Brittany Ford

F State

039122.2013.01

20-SEP-13

Collected By: Client

12600 West I-20 East Odessa, Texas 79765

Xenco-Houston (EPA Lab code: TX00122): Texas (T104704215-13-14-TX), Arizona (AZ0765), Arkansas (08-039-0), Connecticut (PH-0102), Florida (E871002) Illinois (002082), Indiana (C-TX-02), Iowa (392), Kansas (E-10380), Kentucky (45), Louisiana (03054) New Hampshire (297408), New Jersey (TX007), New York (11763), Oklahoma (9218), Pennsylvania (68-03610) Rhode Island (LAO00312), USDA (S-44102), DoD (L11-54)

Xenco-Atlanta (EPA Lab Code: GA00046): Florida (E87429), North Carolina (483), South Carolina (98015), Kentucky (85), DoD (L10-135) Louisiana (04176), USDA (P330-07-00105)

> Xenco-Tampa Mobile (EPA Lab code: FL01212): Florida (E84900) Xenco-Lakeland: Florida (E84098) Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400-TX) Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295-TX) Xenco Phoenix (EPA Lab Code: AZ00901): Arizona (AZ0757) Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757) Xenco Tucson (EPA Lab code:AZ000989): Arizona (AZ0758)

20-SEP-13

SLP ACCREOLE TNI

Project Manager: **Brittany Ford Conestoga Rovers & Associates** 2135 S Loop 250 W Midland, TX 79703

Reference: XENCO Report No(s): 470310 F State Project Address: New Mexico

Brittany Ford:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 470310. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 470310 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully.

Julian Martinez Project Manager

> Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Odessa - San Antonio - Tampa - Lakeland - Atlanta - Phoenix - Oklahoma - Latin America

Sample Cross Reference 470310

Conestoga Rovers & Associates, Midland, TX

F State

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
MW-6	W	09-13-13 13:15		470310-001

CASE NARRATIVE

Client Name: Conestoga Rovers & Associates Project Name: F State

 Project ID:
 039122.2013.01

 Work Order Number(s):
 470310

Report Date: 20-SEP-13 Date Received: 09/13/2013

Sample receipt non conformances and comments:

Sample receipt non conformances and comments per sample:

None

Analytical non conformances and comments: Batch: LBA-922962 Inorganic Anions by EPA 300/300.1 E300

Batch 922962, Chloride recovered below QC limits in the Matrix Spike and Matrix Spike Duplicate. Samples affected are: 470310-001.

The Laboratory Control Sample for Chloride is within laboratory Control Limits

Project Id: 039122.2013.01

Contact: Brittany Ford

Project Location: New Mexico

Certificate of Analysis Summary 470310

Conestoga Rovers & Associates, Midland, TX

Project Name: F State

Date Received in Lab: Fri Sep-13-13 04:34 pm Report Date: 20-SEP-13

Project Manager: Kelsey Brooks

	Lab Id:	470310-001			
Analysis Requested	Field Id:	MW-6			
Analysis Kequestea	Depth:				
	Matrix:	WATER			
	Sampled:	Sep-13-13 13:15			
BTEX by EPA 8021B	Extracted:	Sep-19-13 17:00			
	Analyzed:	Sep-19-13 20:42			
	Units/RL:	mg/L RL			
Benzene		ND 0.00100			
Toluene		ND 0.00200			
Ethylbenzene		ND 0.00100			
m_p-Xylenes		ND 0.00200			
o-Xylene		ND 0.00100			
Total Xylenes		ND 0.00100			
Total BTEX		ND 0.00100			
Inorganic Anions by EPA 300/300.1	Extracted:	Sep-17-13 12:30			
SUB: TX104704215	Analyzed:	Sep-17-13 21:36			
	Units/RL:	mg/L RL			
Chloride		209 1.00			

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Julian Martinez Project Manager

Page 5 of 13

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- **F** RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- ** Surrogate recovered outside laboratory control limit.
- **BRL** Below Reporting Limit.
- RL Reporting Limit
- MDL Method Detection Limit
 SDL Sample Detection Limit
- PQL Practical Quantitation Limit MQL Method Quantitation Limit LOQ Limit of Quantitation
- **DL** Method Detection Limit
- NC Non-Calculable
- + NELAC certification not offered for this compound.
- * (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Atlanta - Midland/Odessa - Tampa/Lakeland - Phoenix - Latin America

4143 Greenbriar Dr, Stafford, TX 77477
9701 Harry Hines Blvd , Dallas, TX 75220
5332 Blackberry Drive, San Antonio TX 78238
2505 North Falkenburg Rd, Tampa, FL 33619
12600 West I-20 East, Odessa, TX 79765
6017 Financial Drive, Norcross, GA 30071
3725 E. Atlanta Ave, Phoenix, AZ 85040

(770) 449-8800 (602) 437-0330

Phone

(281) 240-4200

(214) 902 0300

(210) 509-3334

(813) 620-2000

(432) 563-1800

LOD Limit of Detection

Fax

(281) 240-4280

(214) 351-9139

(210) 509-3335

(813) 620-2033

(432) 563-1713

(770) 449-5477

Form 2 - Surrogate Recoveries

Project Name: F State

Vork Orders : 470310 Lab Batch #: 923164), Sample: 470310-001 / SMP	Project ID: 039122.2013.01 Batch: 1 Matrix: Water												
Units: mg/L	Date Analyzed: 09/19/13 20:42	SURROGATE RECOVERY STUDY												
BTE	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags								
	Analytes			[D]										
1,4-Difluorobenzene		0.0288	0.0300	96	80-120									
4-Bromofluorobenzene		0.0287	0.0300	96	80-120									
Lab Batch #: 923164	Sample: 644114-1-BLK / BL	K Batch	n: ¹ Matrix	Water										
Units: mg/L	Date Analyzed: 09/19/13 19:38	SURROGATE RECOVERY STUDY												
BTE	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags								
1.4-Difluorobenzene	Anarytes	0.0296	0.0300	99	80-120									
4-Bromofluorobenzene		0.0294	0.0300	98	80-120									
Lab Batch #: 923164	Sample: 644114-1-BKS / BK	S Batch	n: ¹ Matrix	:Water										
Units: mg/L	Date Analyzed: 09/19/13 18:50		RROGATE R		STUDY									
BTE	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags								
1,4-Difluorobenzene		0.0282	0.0300	94	80-120									
4-Bromofluorobenzene		0.0301	0.0300	100	80-120									
Lab Batch #: 923164	Sample: 644114-1-BSD / BS	D Batch	n: 1 Matrix	:Water	1									
Units: mg/L	Date Analyzed: 09/19/13 19:06	SURROGATE RECOVERY STUDY												
BTE	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags								
1,4-Difluorobenzene		0.0298	0.0300	99	80-120									
4-Bromofluorobenzene		0.0296	0.0300	99	80-120									
Lab Batch #: 923164	Sample: 470446-004 S / MS	Batch	n: 1 Matrix	:Water	I									
Units: mg/L	Date Analyzed: 09/19/13 22:33		RROGATE R		STUDY									
-	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags								
1,4-Difluorobenzene	· · · · · · · · · · · · · · · · · · ·	0.0313	0.0300	104	80-120									
,					100 80-120									

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / BAll results are based on MDL and validated for QC purposes.

Form 2 - Surrogate Recoveries

Project Name: F State

Work Orders: 470310	Project ID: 039122.2013.01												
Lab Batch #: 923164	Sample: 470446-004 SD / M	MSD Batch: 1 Matrix: Water											
Units: mg/L	Date Analyzed: 09/19/13 22:49	SURROGATE RECOVERY STUDY											
BTE	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags							
1,4-Difluorobenzene	-	0.0310	0.0300	103	80-120								
4-Bromofluorobenzene		0.0292	0.0300	97	80-120								

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / BAll results are based on MDL and validated for QC purposes.

Project Name: F State

Work Order #: 470310			Pro		039122.2013.01		
Lab Batch #: 922962	Sa	ample: 643929-	1-BKS	Matrix:	Water		
Date Analyzed: 09/17/2013	Date Pre	pared: 09/17/20)13	Analyst:	RKO		
Reporting Units: mg/L	Ba	atch #: 1	BLANK /B	BLANK SPI	KE REC	COVERY S	STUDY
Inorganic Anions by EPA 300/300	0.1	Blank Result	Spike Added	Blank Spike	Blank Spike	Control Limits	Flags
Analytes		[A]	[B]	Result [C]	%R [D]	%R	
Chloride		<1.00	100	101	101	90-110	

Blank Spike Recovery [D] = 100*[C]/[B] All results are based on MDL and validated for QC purposes. BRL - Below Reporting Limit

Project Name: F State

Work Order #: 470310 Analyst: ARM Lab Batch ID: 923164	Sample: 644114-1-E		-	ed: 09/19/201 h #: 1	3		Project ID: 039122.2013.01 Date Analyzed: 09/19/2013 Matrix: Water									
Units: mg/L		BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY														
BTEX by EPA Analytes	A 8021B	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag				
Benzene		<0.00100	0.100	0.112	112	0.100	0.110	110	2	70-125	25					
Toluene		<0.00200	0.100	0.114	114	0.100	0.110	110	4	70-125	25					
Ethylbenzene		< 0.00100	0.100	0.109	109	0.100	0.105	105	4	71-129	25					
m_p-Xylenes		< 0.00200	0.200	0.217	109	0.200	0.209	105	4	70-131	25					
o-Xylene		<0.00100	0.100	0.108	108	0.100	0.104	104	4	71-133	25					

Relative Percent Difference RPD = $200^{*}|(C-F)/(C+F)|$ Blank Spike Recovery [D] = $100^{*}(C)/[B]$ Blank Spike Duplicate Recovery [G] = $100^{*}(F)/[E]$ All results are based on MDL and Validated for QC Purposes

Form 3 - MS / MSD Recoveries

Project Name: F State

Work Order # : 470310						Project II): 039122	2.2013.01						
Lab Batch ID: 923164	QC- Sample ID:	470446	-004 S	Ba	tch #:	1 Matrix	k: Water							
Date Analyzed: 09/19/2013	Date Prepared:	09/19/2	013	Ar	Analyst: ARM									
Reporting Units: mg/L		Μ	IATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY					
BTEX by EPA 8021B	Parent Sample Result	Spike Added	Spiked Sample Result [C]	Spiked Sample %R	Spike Added	Duplicate Spiked Sample Result [F]	Spiked Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag			
Analytes	[A]	[B]		[D]	[E]		[G]							
Benzene	< 0.00100	0.100	0.108	108	0.100	0.0993	99	8	70-125	25				
Toluene	< 0.00200	0.100	0.108	108	0.100	0.0997	100	8	70-125	25				
Ethylbenzene	< 0.00100	0.100	0.102	102	0.100	0.0954	95	7	71-129	25				
m_p-Xylenes	<0.00200	0.200	0.205	103	0.200	0.191	96	7	70-131	25				
o-Xylene	< 0.00100	0.100	0.102	102	0.100	0.0954	95	7	71-133	25				
Lab Batch ID: 922962	QC- Sample ID:	470110	-009 S	Ba	tch #:	1 Matrix	K: Water							
Date Analyzed: 09/18/2013	Date Prepared:	09/17/2	013	Ar	nalyst: F	RKO								
Reporting Units: mg/L		Μ	IATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY					
Inorganic Anions by EPA 300/300.1	Parent Sample Result	Spike	Spiked Sample Result	Spiked Sample	Spike	Duplicate Spiked Sample	Spiked Dup.	RPD	Control Limits	Control Limits	Flag			
Analytes	[A]	Added [B]	[C]	%R [D]	Added [E]	Result [F]	%R [G]	%	%R	%RPD				
Chloride	<1.00	100	98.4	98	100	97.6	98	1	80-120	20				
Lab Batch ID: 922962	QC- Sample ID:	470365	-001 S	Ba	tch #:	1 Matrix	K: Waste	Water	-					
Date Analyzed: 09/17/2013	Date Prepared:	09/17/2	013	Ar	alyst: F	RKO								
Reporting Units: mg/L		Μ	IATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY					
Inorganic Anions by EPA 300/300.1 Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag			
rxnary us	L**J	լոյ	1	ועו		1	101	1	1	1	1			

XENCO Laboratories

Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not Applicable N = See Narrative, EQL = Estimated Quantitation Limit, NC = Non Calculable - Sample amount is > 4 times the amount spiked.

	ebeen ti	Dioved	re-ap	are p	səə٦	ection	lloD b	ns səl	Срагд	ysny	sted. F	ənbə	ιepλ ι	рег	- 11												(9							(9
	ujezz (ENCO					after fin									あえり	_	2)-4	(14)				2	A	m	yen	h	(7)	7	ഹ	51703511			m	(1
								Senor			iets pe		-			_	ete		7	(uɓ	is pu	ie sie	ețiul)	ot bər	/					Date &	(ngiS bns s	leitinl) V	(d benainpnile	
·							Ţ									Ī	Í			Ĺ														
																																		_
																						1												
											Π								Τ															
											Π						Τ																	_
\square											\square					Τ										Π		Τ						
\square											\square					T										Π								
\square			\top								\square	>	~			T					X	174	^	Λ	ε			m		_5121	51993551		2-01	v
Addn:		Sample Clean-ups are pre-approved as needed	Hold Samples (Surcharges will apply and are pre-approved)	Addn: PAH above	TATASAP 5h							1	11 5		SPLP - TCLP (Motole: DCDA 6	SVOCs: Full-List	TX-1005 DRO	MIS	PP TC	VOA: Full-List BTEXMTBE	Preservatives	Container Type	Container Size	# Containers	Grab	Composite	Matrix	Depth ft' In" m	əmiT	Sampling Date	(0l əlqms2	
Date		a sdr	Surc	Ve	12h							-	PA		21				100	DW	BI		Φ						ə	nisengis			pler Name	lu
Ű		re pr	narg												1.5				1_	100	¥													
		e-ap	W Se	mg/L W,	24h							C	300				BN&AE	MA EPH	8270	Appdx-1	TBE		<u>,</u>	(M	d lle	вЭ	pəp	npu	n M	9 deJ ee2 a	sla slom 99A	ו םא מי	WD) slai DLs (GW	be
Rcv.		prov	ll ap	 ₹	48h										SS			1 -		1	EtOH								Per-Contra	Ы				
/. by:		ed as	oly a	mg/Kg	3d										DCs SVOCs Pe			MA		Appdx-2	¥			ЧЯЯТ	M	l S	DE	AP	qsiQ	Fill Waste-	-CLEAN Land-	ST DR	Program: U	6
		s nee	nd ar	1	5d										S P			10		1x-2	Oxyg	.0	or P.C	t llbD						:oN .O.q			:e/Pricing:	ło
From:		ded	e pre-ap	S Highest Hit	7d										Pest. Herb.	D C	P Appdx-2			CALL	VOHs		.O.q	6 976	y jsni	w əc	piovr) hot	ith Final Rep	محرام ، دحد اامد. امرود wi	6uitruno		io to
			prov	est H	10d										· 1	- 1	×-2			Other:				:oN	XEI						Pus M9		of stluses lin	
			-d)	Ŧ	21d										PCBs)	Anndyo	CALL			Ä	VOAs					-				12	mu	T Other	N, SC, TN, U	Р
5	narks	Rer													<u> </u>	_		_	(up)		01.11	1.		102	7-	711			ger (Proj. Mana	(, LA, MS, NC,	<u>ר' דר, פ∕</u>	State: TX, Al	>je
						ris pr 11 a																		lect ID					SON	y done at XE	(Isuoivar9		od-emsN toe	
					-									0	19	0	L	h		uO d				130			ص عuoi	28	57			-	bany-City	lu
	ło	af	еЧ	Т	20	54	C	:# JB	1120		93-180			0	XT ,68			/						1				-			5332, Blackberry Dri		oratories	

Cont. Size: 4oz (4), 8oz (8), 32oz (32), 40ml VOA (40), 1L (1), 500ml (5), Tedlar Bag (B), Various (V), Other Cont. Type: Glass Amb (A), Glass Clear (C), Plastic (P), Various (V) Preservatives: Various (V), HCI pH<2 (H), H2SO4 pH<2 (S), HUO3 pH<2 (N), Asbc Acid&NaOH (A), ZnAc&NaOH (Z), (Cool, <4C) (C), None (NA), See Label (L), Other (O)

шор.орлех.www

ANALYSIS REQUEST & CHAIN OF CUSTODY RECORD

Committed to Excellence in Service and Quality

Matrix: Air (A), Product (P), Solid (S), Water (W), Liquid (L)

subcontractors and assigns under Xenco's standard terms and conditions of service unless previously negotiated under a fully executed client contract. Notice: Signature of this document and relinquishment of these samples constitutes a valid purchase order from client company to Xenco Laboratories and its affiliates,

XENCO Laboratories

Comments

Prelogin/Nonconformance Report- Sample Log-In

Client: Conestoga Rovers & Associates	Acceptable Temperature Range: 0 - 6 degC
Date/ Time Received: 09/13/2013 04:34:00 PM	Air and Metal samples Acceptable Range: Ambient
Work Order #: 470310	Temperature Measuring device used :

Sample Receipt Chec	klist
#1 *Temperature of cooler(s)?	.5
#2 *Shipping container in good condition?	Yes
#3 *Samples received on ice?	Yes
#4 *Custody Seals intact on shipping container/ cooler?	N/A
#5 Custody Seals intact on sample bottles?	N/A
#6 *Custody Seals Signed and dated?	N/A
#7 *Chain of Custody present?	Yes
#8 Sample instructions complete on Chain of Custody?	Yes
#9 Any missing/extra samples?	No
#10 Chain of Custody signed when relinquished/ received?	Yes
#11 Chain of Custody agrees with sample label(s)?	Yes
#12 Container label(s) legible and intact?	Yes
#13 Sample matrix/ properties agree with Chain of Custody?	Yes
#14 Samples in proper container/ bottle?	Yes
#15 Samples properly preserved?	Yes
#16 Sample container(s) intact?	Yes
#17 Sufficient sample amount for indicated test(s)?	Yes
#18 All samples received within hold time?	Yes
#19 Subcontract of sample(s)?	Yes
#20 VOC samples have zero headspace (less than 1/4 inch bubble)?	Yes
#21 <2 for all samples preserved with HNO3,HCL, H2SO4?	Yes
#22 >10 for all samples preserved with NaAsO2+NaOH, ZnAc+NaOH	H? N/A

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst:

PH Device/Lot#:

Checklist completed by: Candau James

Candace James

Date: 09/13/2013

Checklist reviewed by:

Date: 09/13/2013
Analytical Report 475032

for Conestoga Rovers & Associates

Project Manager: Brittany Ford

F-State

09-DEC-13

Collected By: Client

12600 West I-20 East Odessa, Texas 79765

Xenco-Houston (EPA Lab code: TX00122): Texas (T104704215-13-15-TX), Arizona (AZ0765), Arkansas (08-039-0), Connecticut (PH-0102), Florida (E871002) Illinois (002082), Indiana (C-TX-02), Iowa (392), Kansas (E-10380), Kentucky (45), Louisiana (03054) New Hampshire (297408), New Jersey (TX007), New York (11763), Oklahoma (9218), Pennsylvania (68-03610) Rhode Island (LAO00312), USDA (S-44102), DoD (L11-54)

Xenco-Atlanta (EPA Lab Code: GA00046): Florida (E87429), North Carolina (483), South Carolina (98015), Kentucky (85), DoD (L10-135) Louisiana (04176), USDA (P330-07-00105)

> Xenco-Tampa Mobile (EPA Lab code: FL01212): Florida (E84900) Xenco-Lakeland: Florida (E84098) Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400-TX) Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295-TX) Xenco Phoenix (EPA Lab Code: AZ00901): Arizona (AZ0757) Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757) Xenco Tucson (EPA Lab code:AZ000989): Arizona (AZ0758)

09-DEC-13

Project Manager: **Brittany Ford Conestoga Rovers & Associates** 2135 S Loop 250 W Midland, TX 79703

Reference: XENCO Report No(s): 475032 F-State Project Address: New Mexico

Brittany Ford:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 475032. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 475032 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Kms Boah

 Kelsey Brooks

 Project Manager

 Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies.

 A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Odessa - San Antonio - Tampa - Lakeland - Atlanta - Phoenix - Oklahoma - Latin America

Sample Cross Reference 475032

Conestoga Rovers & Associates, Midland, TX

F-State

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
MW-8-112713	W	11-27-13 13:15		475032-001
MW-3-112713	W	11-27-13 13:25		475032-002
MW-6-112713	W	11-27-13 13:40		475032-003
MW-4-112713	W	11-27-13 14:00		475032-004
MW-7-112713	W	11-27-13 14:15		475032-005
MW-5-112713	W	11-27-13 14:35		475032-006
DUP-1-112713	W	11-27-13 00:00		475032-007

CASE NARRATIVE

Client Name: Conestoga Rovers & Associates Project Name: F-State

Project ID: Work Order Number(s): 475032
 Report Date:
 09-DEC-13

 Date Received:
 12/02/2013

Sample receipt non conformances and comments:

Sample receipt non conformances and comments per sample:

None

Project Id:

Contact: Brittany Ford **Project Location:** New Mexico

Conestoga Rovers & Associates, Midland, TX

Project Name: F-State

Date Received in Lab: Mon Dec-02-13 09:34 am

Report Date: 09-DEC-13

oject Location: New Mexico								1.						
								Project Ma	nager:	Kelsey Brook	CS			
	Lab Id:	475032-	001	475032-0	002	475032-	003	475032-	004	475032-	005	475032-	-006	
Anglusia Dogu satod	Field Id:	MW-8-11	MW-8-112713		2713	MW-6-112713		MW-4-112713		MW-7-11	2713	MW-5-112713		
Analysis Requested	Depth:													
	Matrix:	WATE	WATER		WATER		WATER		WATER		WATER		ER	
	Sampled:	Nov-27-13	Nov-27-13 13:15 No		13:25	Nov-27-13	13:40	Nov-27-13	14:00	Nov-27-13	14:15	Nov-27-13	3 14:35	
BTEX by EPA 8021B	Extracted:	Dec-02-13	Dec-02-13 11:00 D		11:00	Dec-02-13	11:00	Dec-02-13	Dec-02-13 11:00		Dec-02-13 11:00		Dec-02-13 11:00	
	Analyzed:	Dec-02-13	Dec-02-13 22:52 De		23:08	Dec-02-13 23:24		Dec-02-13 23:40		Dec-02-13 23:56		Dec-03-13 00:43		
	Units/RL:	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	
Benzene		ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	
Toluene		ND	0.00200	ND	0.00200	ND	0.00200	ND	0.00200	ND	0.00200	ND	0.00200	
Ethylbenzene		ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	
m,p-Xylenes		ND	0.00200	ND	0.00200	ND	0.00200	ND	0.00200	ND	0.00200	ND	0.00200	
o-Xylene		ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	
Total Xylenes		ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	
Total BTEX		ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	
Inorganic Anions by EPA 300/300.1	Extracted:	Dec-03-13	10:00	Dec-03-13	10:00	Dec-03-13	10:00	Dec-03-13	10:00	Dec-03-13	10:00	Dec-03-13	10:00	
	Analyzed:	Dec-03-13	Dec-03-13 23:17		Dec-04-13 01:33 Dec-04-13 0		Dec-04-13 02:18 Dec-04-13		Dec-04-13 02:41 Dec-04-13 03:03		03:03	Dec-04-13 03:26		
	Units/RL:	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	
Chloride		72.2	5.00	101	5.00	220	5.00	65.1	5.00	78.1	5.00	72.3	5.00	

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Huns Boah

Kelsey Brooks Project Manager

Project Id:

Project Location: New Mexico

Contact: Brittany Ford

Certificate of Analysis Summary 475032

Conestoga Rovers & Associates, Midland, TX

Project Name: F-State

Date Received in Lab: Mon Dec-02-13 09:34 am Report Date: 09-DEC-13

Project Manager: Kelsey Brooks

	Lab Id:	475032-007			
Analysis Requested	Field Id:	DUP-1-112713			
Analysis Kequesiea	Depth:				
	Matrix:	WATER			
	Sampled:	Nov-27-13 00:00			
BTEX by EPA 8021B	Extracted:	Dec-02-13 11:00			
	Analyzed:	Dec-03-13 00:59			
	Units/RL:	mg/L RL			
Benzene		ND 0.00100			
Toluene		ND 0.00200			
Ethylbenzene		ND 0.00100			
m,p-Xylenes		ND 0.00200			
o-Xylene		ND 0.00100			
Total Xylenes		ND 0.00100			
Total BTEX		ND 0.00100			
Inorganic Anions by EPA 300/300.1	Extracted:	Dec-03-13 10:00			
	Analyzed:	Dec-04-13 03:49			
	Units/RL:	mg/L RL			
Chloride		71.3 5.00			

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Huns Boah

Kelsey Brooks Project Manager

Final 1.000

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- **F** RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- JN A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- ** Surrogate recovered outside laboratory control limit.
- **BRL** Below Reporting Limit.
- RL Reporting Limit

MDL Method Detection Limit	SDL Sample Detection Limit	LOD Limit of Detection
PQL Practical Quantitation Limit	MQL Method Quantitation Limit	LOQ Limit of Quantitation

- **DL** Method Detection Limit
- NC Non-Calculable
- + NELAC certification not offered for this compound.
- * (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Atlanta - Midland/Odessa - Tampa/Lakeland - Phoenix - Latin America

4143 Greenbriar Dr, Stafford, TX 77477
9701 Harry Hines Blvd , Dallas, TX 75220
5332 Blackberry Drive, San Antonio TX 78238
2505 North Falkenburg Rd, Tampa, FL 33619
12600 West I-20 East, Odessa, TX 79765
6017 Financial Drive, Norcross, GA 30071
3725 E. Atlanta Ave, Phoenix, AZ 85040

(210) 509-3334	(210)
(813) 620-2000	(813)
(432) 563-1800	(432)
(770) 449-8800	(770)
(602) 437-0330	

Phone

(281) 240-4200

(214) 902 0300

Fax

(281) 240-4280

(214) 351-9139

(210) 509-3335 (813) 620-2033 (432) 563-1713 (770) 449-5477

Form 2 - Surrogate Recoveries

Project Name: F-State

	:ders : 47503 #: 928985	2, Sample: 475032-001 / SMP	Batcl	Project ID	: Water		
Units:	mg/L	Date Analyzed: 12/02/13 22:52	SU	RROGATE R	ECOVERY S	STUDY	
	ВТЕУ	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
		Analytes			[D]		
1,4-Difluor	obenzene		0.0274	0.0300	91	80-120	
4-Bromoflu	orobenzene		0.0282	0.0300	94	80-120	
Lab Batch	#: 928985	Sample: 475032-002 / SMP	Batcl	h: 1 Matrix	: Water		
Units:	mg/L	Date Analyzed: 12/02/13 23:08	SU	RROGATE R	ECOVERY S	STUDY	
	BTEX	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluoro	hanzana	Analytes	0.0261	0.0300	87	80-120	
4-Bromoflu			0.0261	0.0300	91		
	#: 928985	Sample: 475032-003 / SMP	Batcl		Water	80-120	
Units:	mg/L	Date Analyzed: 12/02/13 23:24		RROGATE R	-	TUDV	
c must	ing 2	Dute 11111/2001 12/02/10 2012 1	50	RRUGAIE R			1
	втеу	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
		Analytes			[D]		
1,4-Difluoro	obenzene		0.0263	0.0300	88	80-120	
4-Bromoflu			0.0279	0.0300	93	80-120	
Lab Batch	#: 928985	Sample: 475032-004 / SMP	Batch	h: 1 Matrix	: Water		
Units:	mg/L	Date Analyzed: 12/02/13 23:40	SU	RROGATE R	ECOVERY S	STUDY	
	втех	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
		Analytes					
1,4-Difluor			0.0277	0.0300	92	80-120	
4-Bromoflu		Sample: 475032-005 / SMP	0.0286	0.0300	95	80-120	
	#: 928985	•	Batcl		: Water		
Units:	mg/L	Date Analyzed: 12/02/13 23:56	SU	RROGATE R	ECOVERY S	STUDY	-
	BTEX	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluoro	obenzene		0.0270	0.0300	90	80-120	
	orobenzene		0.0270	0.0500	20	80-120	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

Form 2 - Surrogate Recoveries

Project Name: F-State

ate Analyzed: 12/03/13 00:43 EPA 8021B ytes Sample: 475032-007 / SMP ate Analyzed: 12/03/13 00:59	Amount Found [A] 0.0272 0.0294 Batcl	RROGATE R True Amount [B] 0.0300 0.0300 h: 1 Matrix	Recovery %R [D] 91	Control Limits %R	Flags		
ytes Sample: 475032-007 / SMP	Found [A] 0.0272 0.0294 Batcl	Amount [B] 0.0300 0.0300	%R [D] 91	Limits	Flags		
Sample: 475032-007 / SMP	0.0294 Batcl	0.0300	91				
•	0.0294 Batcl	0.0300					
•	Batcl		6.0	80-120			
•		h• 1 Matriv	98	80-120			
ate Analyzed: 12/03/13 00:59	CT.		: Water				
	SU	RROGATE R	TE RECOVERY STUDY				
EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags		
ytes	0.0270	0.0200		00.120			
G				80-120			
-							
ate Analyzed: 12/02/13 21:16	SU	RROGATE R	ECOVERY S	STUDY			
EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags		
ytes	[]	[2]	[D]	,011			
	0.0283	0.0300	94	80-120			
	0.0269	0.0300	90	80-120			
Sample: 647762-1-BKS / Bk	KS Batel	h: 1 Matrix	Water	11			
ate Analyzed: 12/02/13 19:57	SU	RROGATE R	ECOVERY S	STUDY			
	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
ytes	0.0206	0.0200		80.120			
Sample: 647762-1-RSD / RS				00-120	. <u> </u>		
-				TUDV			
are many 200, 12/02/13 20.13	50	RAUGAIE K					
	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
yus	0.0211	0.0200		80.120			
		1					
	ate Analyzed: 12/02/13 21:16 EPA 8021B ytes Sample: 647762-1-BKS / BF ate Analyzed: 12/02/13 19:57 EPA 8021B ytes Sample: 647762-1-BSD / BS ate Analyzed: 12/02/13 20:13 EPA 8021B ytes	[A] ytes 0.0272 0.0275 Sample: 647762-1-BLK / BLK Batcl ate Analyzed: 12/02/13 21:16 EPA 8021B Amount Found [A] ytes 0.0283 0.0269 Sample: 647762-1-BKS / BKS Batcl ate Analyzed: 12/02/13 19:57 SU EPA 8021B Amount Found [A] ytes 0.0306 0.0299 Sample: 647762-1-BSD / BSD Batcl ate Analyzed: 12/02/13 20:13 SU EPA 8021B Amount Found [A] ytes 0.0306 0.0299 Sample: 647762-1-BSD / BSD Batcl ate Analyzed: 12/02/13 20:13 SU EPA 8021B Amount Found [A] ytes 0.0311 0.0309	[A] [B] 9,0272 0.0300 0.0275 0.0300 Sample: 647762-1-BLK / BLK Batch: 1 Matrix ate Analyzed: 12/02/13 21:16 SURROGATE R EPA 8021B Amount Found [A] True Amount [B] ytes 0.0283 0.0300 0.0269 0.0300 Sample: 647762-1-BKS / BKS Batch: 1 Matrix ate Analyzed: 12/02/13 19:57 SURROGATE R EPA 8021B Amount [A] True Amount [B] ytes 0.0306 0.0300 Sample: 647762-1-BKS / BKS Batch: 1 Matrix ate Analyzed: 12/02/13 19:57 SURROGATE R EPA 8021B Amount [A] True Amount [A] Matrix state Analyzed: 12/02/13 20:13 SURROGATE R True Amount [A] Matrix gtes 0.0311 0.0300 0.0300	[A] [B] %R [D] 0.0272 0.0300 91 0.0275 0.0300 92 Sample: 647762-1-BLK / BLK Batch: 1 Matrix: Water ate Analyzed: 12/02/13 21:16 SURROGATE Recovery %R %R [D] 2PA 8021B Amount [A] True Amount [B] Recovery %%R %R [D] 2PA 8021B Amount [A] True Amount [B] Recovery stample: 647762-1-BKS / BKS Batch: 1 Matrix: Water ate Analyzed: 12/02/13 19:57 SURROGATE Recovery %k %k EPA 8021B Amount Found [A] True Amount [B] Recovery %k %k gtes 0.0306 0.0300 102 0.0299 0.0300 100 Sample: 647762-1-BSD / BSD Batch: 1 Matrix: Water ate Analyzed: 12/02/13 20:13 SURROGATE Recovery %kR [D] %kR [D] [Amount [A] <t< td=""><td>[A] [B] %R [D] %R [D] %R [D] 0.0272 0.0300 91 80-120 0.0275 0.0300 92 80-120 Sample: 647762-1-BLK / BLK Batch: 1 Matrix: Water ate Analyzed: 12/02/13 21:16 SURROGATE RECOVERY STUDY EPA 8021B Amount [A] True Amount [B] Recovery %R [D] Control Limits %R ytes 0.0283 0.0300 94 80-120 0.0269 0.0300 90 80-120 Sample: 647762-1-BKS / BKS Batch: 1 Matrix: Water ate Analyzed: 12/02/13 19:57 SURROGATE RECOVERY STUDY EPA 8021B Amount Found [A] True Amount [B] Recovery %R [D] Control Limits %R ytes 0.0306 0.0300 102 80-120 Sample: 647762-1-BSD / BSD Batch: 1 Matrix: Water ate Analyzed: 12/02/13 20:13 SURROGATE RECOVERY STUDY Surrol Sample: 647762-1-BSD / BSD Batch: 1 Matrix: Water ate Analyzed: 12/02/13 20:13</td></t<>	[A] [B] %R [D] %R [D] %R [D] 0.0272 0.0300 91 80-120 0.0275 0.0300 92 80-120 Sample: 647762-1-BLK / BLK Batch: 1 Matrix: Water ate Analyzed: 12/02/13 21:16 SURROGATE RECOVERY STUDY EPA 8021B Amount [A] True Amount [B] Recovery %R [D] Control Limits %R ytes 0.0283 0.0300 94 80-120 0.0269 0.0300 90 80-120 Sample: 647762-1-BKS / BKS Batch: 1 Matrix: Water ate Analyzed: 12/02/13 19:57 SURROGATE RECOVERY STUDY EPA 8021B Amount Found [A] True Amount [B] Recovery %R [D] Control Limits %R ytes 0.0306 0.0300 102 80-120 Sample: 647762-1-BSD / BSD Batch: 1 Matrix: Water ate Analyzed: 12/02/13 20:13 SURROGATE RECOVERY STUDY Surrol Sample: 647762-1-BSD / BSD Batch: 1 Matrix: Water ate Analyzed: 12/02/13 20:13		

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

Form 2 - Surrogate Recoveries

Project Name: F-State

Work Orders : 4	75032,		Project ID:			
Lab Batch #: 92898	5 Sample: 474800-001 S / MS	S Bate	h: 1 Matrix:	Water		
Units: mg/L	Date Analyzed: 12/02/13 20:29	SU	RROGATE RI	ECOVERY S	STUDY	
E	BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes			[D]		
1,4-Difluorobenzene		0.0301	0.0300	100	80-120	
4-Bromofluorobenzene		0.0325	0.0300	108	80-120	
Lab Batch #: 92898	5 Sample: 474800-001 SD / M	MSD Bate	h: 1 Matrix:	Water		
Units: mg/L	Date Analyzed: 12/02/13 20:45	SU	RROGATE RI	ECOVERY	STUDY	
F	BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes			[D]		
1,4-Difluorobenzene		0.0308	0.0300	103	80-120	
4-Bromofluorobenzene	:	0.0327	0.0300	109	80-120	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

BS / BSD Recoveries

Project Name: F-State

Work Order #: 475032							Proj	ject ID:			
Analyst: ARM	D	ate Prepar	red: 12/02/202	13			Date A	nalyzed: 1	12/02/2013		
Lab Batch ID: 928985 Sample: 647762-1-E	BKS	Batc	h #: 1					Matrix: V	Water		
Units: mg/L		BLAN	K /BLANK	SPIKE /]	BLANK S	SPIKE DUP	LICATE	RECOV	ERY STUI	DY	
BTEX by EPA 8021B	Blank Sample Result [A]	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate	Blk. Spk Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes		[B]	[C]	[D]	[E]	Result [F]	[G]				
Benzene	< 0.00100	0.100	0.110	110	0.100	0.116	116	5	70-125	25	
Toluene	< 0.00200	0.100	0.107	107	0.100	0.113	113	5	70-125	25	
Ethylbenzene	< 0.00100	0.100	0.101	101	0.100	0.107	107	6	71-129	25	
m,p-Xylenes	< 0.00200	0.200	0.202	101	0.200	0.214	107	6	70-131	25	
o-Xylene	< 0.00100	0.100	0.103	103	0.100	0.109	109	6	71-133	25	
Analyst: AMB	D	ate Prepar	red: 12/03/20	13	4		Date A	nalyzed:	2/03/2013	*	
Lab Batch ID: 929056 Sample: 647851-1-H	3KS	Bate	h #: 1					Matrix: V	Water		
Units: mg/L		0200 0.100 0.107 107 0.100 0.113 113 5 70-125 25 0100 0.100 0.101 101 0.100 0.107 107 6 71-129 25 0200 0.200 0.202 101 0.200 0.214 107 6 70-131 25									
Inorganic Anions by EPA 300/300.1 Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Chloride	<1.00	25.0	22.9	92	25.0	23.1	92	1	80-120	20	

Relative Percent Difference RPD = $200^{*}|(C-F)/(C+F)|$ Blank Spike Recovery [D] = $100^{*}(C)/[B]$ Blank Spike Duplicate Recovery [G] = $100^{*}(F)/[E]$ All results are based on MDL and Validated for QC Purposes

BS / BSD Recoveries

Project Name: F-State

Work Order #: 475032		Project ID:									
Analyst: AMB	D	ate Prepar	red: 12/03/201	3	Date Analyzed: 12/04/2013						
Lab Batch ID: 929328 Sample: 647852-1-B	KS	Batcl	h #: 1					Matrix: \	Water		
Units: mg/L BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY											
Inorganic Anions by EPA 300/300.1 Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Chloride	<1.00	25.0	23.2	93	25.0	23.2	93	0	80-120	20	

Relative Percent Difference RPD = $200^{*}|(C-F)/(C+F)|$ Blank Spike Recovery [D] = $100^{*}(C)/[B]$ Blank Spike Duplicate Recovery [G] = $100^{*}(F)/[E]$ All results are based on MDL and Validated for QC Purposes

XENCO Laboratories Project	Form 3 - MS Recoveries Project Name: F-State							
Work Order #: 475032				Duci	aat ID.			
Lab Batch #: 929056		Project ID: Date Prepared: 12/03/2013 Analyst: AMB						
Date Analyzed: 12/03/2013		-	5/2015	Analyst: AMB				
QC- Sample ID: 475007-010 S	В	atch #: 1		Matrix: Water				
Reporting Units: mg/L		MATH	RIX / MA	TRIX SPIKE	RECO	VERY STU	JDY	
Inorganic Anions by EPA 300 Analytes		Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	%R [D]	Control Limits %R	Flag	
Chloride		261	250	502	96	80-120		
Lab Batch #: 929056							1	
Date Analyzed: 12/03/2013	Date Pro	te Prepared: 12/03/2013 Analyst: AMB						
QC- Sample ID: 475080-001 S	В	atch #: 1		r	Matrix: W	Vater		
Reporting Units: mg/L	Γ	MATH	RIX / MA	TRIX SPIKE	RECO	VERY STU	DY	
Inorganic Anions by EPA 300		Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	%R [D]	Control Limits %R	Flag	
Analytes							1	
Chloride Lab Batch #: 929328		2050	2500	4550	100	80-120		
	Data Dw	epared: 12/0	2/2012		nolvate A	MD		
Date Analyzed: 12/04/2013 QC- Sample ID: 475032-002 S		atch #: 1	5/2015		Analyst: A Matrix: W			
	D							
Reporting Units: mg/L		MATH	RIX / MA	TRIX SPIKE	RECO	VERY STU	JDY	
Inorganic Anions by EPA 300 Analytes		Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	%R [D]	Control Limits %R	Flag	
Chloride		101	125	215	91	80-120	ľ	

Matrix Spike Percent Recovery [D] = 100*(C-A)/BRelative Percent Difference [E] = 200*(C-A)/(C+B)All Results are based on MDL and Validated for QC Purposes

BRL - Below Reporting Limit

Form 3 - MS / MSD Recoveries

Project Name: F-State

Work Order # :	475032	Project ID:										
Lab Batch ID:	928985	QC- Sample ID:	474800-001	S	Ba	tch #:	1 Matr	x: Water				
Date Analyzed:	12/02/2013	Date Prepared:	12/02/2013		An	alyst: A	RM					
Reporting Units:	mg/L	MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY										
]	BTEX by EPA 8021B	Parent Sample Result	Spike	ed Sample Result	Spiked Sample		Duplicate Spiked Sample		RPD %	Control Limits	Control Limits	Flag
	Analytes	[A]	Added [B]	[C]	%R [D]	Added [E]	Result [F]	%R [G]	70	%R	%RPD	
Benzene		<0.00100	0.100	0.117	117	0.100	0.116	116	1	70-125	25	
Toluene		< 0.00200	0.100	0.115	115	0.100	0.114	114	1	70-125	25	
Ethylbenzene		< 0.00100	0.100	0.110	110	0.100	0.109	109	1	71-129	25	
m,p-Xylenes		< 0.00200	0.200	0.222	111	0.200	0.218	109	2	70-131	25	
o-Xylene		< 0.00100	0.100	0.112	112	0.100	0.111	111	1	71-133	25	

Matrix Spike Percent Recovery $[D] = 100^{\circ}(C-A)/B$ Relative Percent Difference RPD = $200^{\circ}|(C-F)/(C+F)|$ Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not Applicable N = See Narrative, EQL = Estimated Quantitation Limit, NC = Non Calculable - Sample amount is > 4 times the amount spiked.

Mana			ANALYSIS REQUEST & CHAIN OF CUSTODY RECOR	
	ve, Stafford, TX 77477 ive, San Antonio, TX 7823		9701 Harry Hines Blvd., Dallas, TX 75220 214-902-0300 12600 West I-20 East, Odessa, TX 79765 432-563-1800 Serial #: 316678	of
Company-City		none	Lab Only: 475032	
Conestoga - Lovers + As Project Name-Location Previous	done at XENCO	Project ID	TAT: ASAP 5h 12h 24h 48h 3d 5d 7d 10d 21d Standard TAT is project specific.	
F-State		i rojoot ib	t is typically 5-7 Working Days for level II and 10+ Working days for level III and IV data.	
Proj. State: TX, AL, FL, GA, LA, MS, NC,	Proj Manager (PM) 		narks
NJ, PA, SC, TN, UT Other	Brittany	Ford	Wods PCBs) PCBs -2 CALL -2 -2 CALL -2 -2 CALL -2 -2 -2 CALL -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2	
E-mail Results to PM and		Fax No:		
Invoice to Accounting Inc. Invoice w	ith Final Report 🔲 Ir	nvoice must have a P.O.	g VOHs PPH Appdx Pesticides NL Appdx 1 Pest. Herb Sd 7d 10 5 fd 10 seded	From:
Bill to:				
Quote/Pricing:	P.O. No:	□ Call for P.O.		
Reg Program: UST DRY-CLEAN Land-	Fill Waste-Disp NF	PDES DW TRRP	EtOH 0) 1 Appdx	Rcv. by:
QAPP Per-Contract CLP AGCEE NAV	Y DOE DOD USA	ACE OTHER:		Rc
Special DLs (GW DW QAPP MDLs RLs	See Lab PM Inclu	ided Call PM)	Full-List BTEX-MTBE Ef PP TCL DW Appdx-1 s SIM 8310 8270 005 DRO GRO MA EPH CS: Full-List DW BN&AE esticides PCBs Herbicid esticides PCBs Herbicid esticides PCBs Herbicid - TCLP (Metals VOCS 4 - TCL	
			DW Ay GRO N Ay GRO N E DW E CBS H RCRA4 RCRA4 RCRA4 Ietals V 12h 2 12h 2 12h 2 sare pre	0
Sampler Name Vairen Maurer	Signature	f w m	BTEX-M BTEX-M B310 0 GR0 0 GR0 0 GR0 0 GR0 0 GR0 1 Metals (Metals (Metals (Metals (Metals (Surchari (Surchari (Surchari	Date
		es ype	III-List BT P TCL D SIM 831 SIM 831 Full-List Full-List Full-List RCRA-8 R RCRA-8 R RCRA-8 R RCRA-8 R RCRA-8 R RCRA-8 R RCP (Me BCP (Me) (Me BCP (Me) (Me) (Me) (Me) (Me) (Me) (Me) (Me)	
Sampling		Composite Grab # Containers Container Size Container Type Preservatives	VOA: Full-List BTEX-MTI VOA: PP TCL DW Ap PAHS SIM 8310 82 TX-1005 DRO GRO M SVOCS: Full-List DW B OC Pesticides PCBs H4 Metals: RCRA-8 RCRA-4 Metals: RCRA-8 RCRA-4 RCRA-8 RCRA-8 RCRA-8 RCRA-4 RCRA-8 RCRA-8 RCRA-8 RCRA-4 RCRA-8 RCRA-8 RCRA-8 RCRA-8 RCRA-4 RCRA-8 RCRA-8 RCRA-8 RCRA-8 RCRA-4 RCRA-8 RCRA-8 R	
Sample ID Date	Time	tain tain	VOA: Full-L VOA: PP PAHS SIN TX-1005 I SVOCS: Fu OC Pestici Metals: RCf Metals: RCf Metals: RCf Metals: RCf Metals: RCf Addn: PAH Addn: PAH Hold Samp Hold Samp Sample Clk	
	Depth ft' ln" m Matrix	Composite Grab # Containe Container	VOA: Ful VOA: PF PAHS S SVOCS: 1 SVOCS: 1 SVOCS: 1 SPLP - T SPLP - T Addn: PA Addn: PA Addn: PA Addn: PA Addn: PA	Addn:
1 MW-8-112713 11127/13	1315 W			
2 MW-3-112713	1325 1			
3 MW- 6-112713	1340			
4 mw-4-112713	1400			
5 MW-7-112713	1415			
6 MW-5- 112713	1435			
7 Dup-1- 112713				
8				
9	 	++++-		
Relinquished by (Initials and Sign)	Date & Time	Relinquished to (Initials a	d Sign) Date & Time Total Containers per COC: 1 Cooler Temp: 1+ 0 °C 0:39 12/1/15 Otherwise agreed on writing. Reports are the Intellectual Property of X	
1 1) RWM Ruf WM	89:34 12/24	4) Curdun for	until paid. Samples will be held 30 days after final report is e-mailed ur	
2 3) 3 5)		6)	hereby requested. Rush Charges and Collection Fees are pre-approved	
		1-7	(A), ZnAc&NaOH (Z), (Cool, <4C) (C), None (NA),See Label (L), Other (O)	

Cont. Size: 4oz (4), 8oz (8), 32oz (32), 40ml VOA (40), 1L (1), 500ml (5), Tedlar Bag (B), Various (V), Other _____ Cont. Type: Glass Amb (A), Glass Clear (C), Plastic (P), Various (V)

Matrix: Air (A), Product (P), Solid (S), Water (W), Liquid (L)

Page 15 of 16

Final 1.000

Committed to Excellence in Service and Quality

www.xenco.com

8 9 10

VALA PRALIPAR A ALLAND AR ALLARADY PRAADE

Notice: Signature of this document and relinquishment of these samples constitutes a valid purchase order from client company to Xenco Laboratories and its affiliates, subcontractors and assigns under Xenco's standard terms and conditions of service unless previously negotiated under a fully executed client contract.

XENCO Laboratories Prelogin/Nonconformance Report- Sample Log-In

Comments

Client: Conestoga Rovers & Associates Acceptable Temperature Range: 0 - 6 degC Air and Metal samples Acceptable Range: Ambient Date/ Time Received: 12/02/2013 09:34:00 AM **Temperature Measuring device used :** Work Order #: 475032 Sample Receipt Checklist 0 #1 *Temperature of cooler(s)? #2 *Shipping container in good condition? Yes #3 *Samples received on ice? Yes #4 *Custody Seals intact on shipping container/ cooler? N/A #5 Custody Seals intact on sample bottles? N/A #6 *Custody Seals Signed and dated? N/A #7 *Chain of Custody present? Yes #8 Sample instructions complete on Chain of Custody? Yes #9 Any missing/extra samples? No #10 Chain of Custody signed when relinquished/ received? Yes #11 Chain of Custody agrees with sample label(s)? Yes #12 Container label(s) legible and intact? Yes #13 Sample matrix/ properties agree with Chain of Custody? Yes #14 Samples in proper container/ bottle? Yes #15 Samples properly preserved? Yes #16 Sample container(s) intact? Yes #17 Sufficient sample amount for indicated test(s)? Yes #18 All samples received within hold time? Yes #19 Subcontract of sample(s)? No #20 VOC samples have zero headspace (less than 1/4 inch bubble)? Yes #21 <2 for all samples preserved with HNO3,HCL, H2SO4? Yes #22 >10 for all samples preserved with NaAsO2+NaOH, ZnAc+NaOH? N/A

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst:

PH Device/Lot#:

Date: 12/02/2013

Checklist completed by: Candau James Candace James Checklist reviewed by: Mary Moak Kelsey Brooks

Date: 12/02/2013

Appendix B

MDPE Reports

1656-H Townhurst, Houston, Texas 77043 713.468.6688 • fax:713.468.6689 • www.acuvac.com

February 14, 2013

Ms. Brittany Ford Project Manager Conestoga-Rovers & Associates 2135 S. Loop 250 W. Midland, TX 79703

Dear Brittany:

Re: Event #7: "F" State Site, Lea County, NM

The following is the Report and a copy of the Operating Data collected during the Mobile Dual Phase (MDP) Event #7 at the above location on February 11, 2013. Table #1 is the Well Data Information on well RW-1. PSH is referred to as NAPL in this report. GW samples are frequently taken in 2,000 ml beakers to determine the average NAPL percentage and volume.

Summary of MDP Event #7 - Well RW-1

The total Event time was 8.0 hours. The data is compared to Event #6 conducted on November 13, 2012 which had a total Event time of 7.5 hours.

- The total GW/NAPL recovered was 1,995 gals of which 4.72% or 94.1gals were NAPL.
- Total NAPL vapors burned as IC engine fuel was 5.30 gals, resulting in a total liquid and vapor NAPL recovery of 99.4 gals, or 4.98%. This equates to 12.42 gal/hr, which is an decrease of 1.15 gals/hr.
- Average HORIBA Analytical Data from the influent vapor samples was: HC = 14,557 ppmv, CO₂ = 9.89%, CO = 0%, O₂ = 5.6% and H₂S = 3.11%.
- Compared with MDP Event #6 data, the TPH levels increased 1,003 ppmv, CO₂ increased 0.34%, CO was equal, O₂ decreased 0.9% and H₂S decreased 0.51%.
- The Average Induced Vacuum was 67.94"H₂O and the average EW vapor flow was 6.71 scfm. The average induced vacuum increased 9.25"H₂O and the average well flow increased 0.25 scfm.
- The GW pump was set at 62.0 ft BTOC. The average GW/NAPL pump rate was 4.15gpm. The average GW pump rate decreased 0.13 gpm.
- The average GW depression was estimated at 2.0 ft below static level, which was steady with Event #6. This estimate is based on the GW pump position and GW rate.

• At the start of Event #7, the static NAPL level was 3.68 ft and 0.21 ft of NAPL was estimated at the conclusion of the Event. The static GW level decreased 12.73 ft based on hydro-equivalent.

Summary and Observations:

During each Event, the test data is compared to the previous Event to evaluate the progress for this remediation project.

The HORIBA Analytical instrument is calibrated with HEXANE and CO2.

The formula used to calculate the Emission Rate is: $ER = HC \text{ (ppmv) x MW (Hexane) x Flow Rate (scfm) x 1.58E^{-7} (\underline{\min})(\underline{lb mole}) = \underline{lbs/hr}$ (hr)(ppmv)(ft³)

The total NAPL removed, including liquid and vapor, during the 8.0 hour Event #7 (well RW-1), was 99.4 gals, or 4.98 % of the total liquid volume of 1,995 gals. This equates to 12.42 gals/hr.

During the seven Events totaling 52.3 hours, the total NAPL removed, including liquid and vapor, equals 599.6 gals, or 4.68 % of a total liquid volume of 12,798 gals. This equates to a NAPL recovery rate of 11.46 gals/hr.

Additional Information:

- The average liquid and vapor NAPL recovery from well RW-1 decreased slightly from 13.56 to 12.42 gal/hr.
- The induced vacuum was higher than Event #6, but the GW/NAPL pump rate decreased by 0.63 gpm. These changes were necessary to maintain a constant liquid depression at approximately 2.0 ft.
- At the conclusion of the Event, the well was gauged and 0.21" of NAPL remained in the well.

We appreciate you selecting AcuVac to provide this service. We have schedule Event #8 for Thursday March 14, 2013. Should you have any questions, please contact me.

Sincerely,

adle

James E. Sadler, VP Engineering/Environmental 130006.REP

Well and Recovery Data Information - Event #7 February 11, 2013

EVENT NO		7
WELL NO.		RW-1
Total Event Hours		8.0
TD	ft	90.0
Well Size	in	4.0
DTGW - Static - Start Event #7	ft	62.59
DTNAPL - Static - Start Event #7	ft	58.91
NAPL	ft	3.68
DTGW - End Event #7	ft	59.52
DTNAPL - End Event #7	ft	59.31
NAPL	ft	0.21
Average Extraction Well Vacuum	"H ₂ O	67.94
Average Extraction Well Vapor Flow	scfm	6.71
Average GW/NAPL Pump Rate	gpm	4.15
Average TPH	ppmv	14,557
Average CO ₂	%	9.89
Average CO	%	0
Average O ₂	%	5.6
Average H ₂ S	%	3.11
Total Liquid Volume Recovered	gals	1,995
Total Liquid NAPL Recovered	gals	94.10
Total Liquid NAPL Recovered	%	4.98
Total Vapor and Liquid NAPL Recovered	gals	99.4
Total NAPL Recovered	%	4.72
Total NAPL Recovered	lbs	695.8
Total Volume of Well Vapors	cu.ft	3,222

130006.REP

OPERATING DATA - EVENT # 7

PAGE # (

ACUVAC MOBILE DUAL PHASE SYSTEM

Location	Location: "F" STATE, Lea County, NM Project Managers: Sadler/Faucher									
	Date:	2-11-13	~	-	-	-	a			
	Parameters	Time 0745	Time OSIS Hr Meter	Time OG45	Time	Time CG4S	Time 1015			
	WELL # RW-1	Hr Meter 6219,5	6220.0	Hr Meter 6220,5	Hr Meter 6221.0	Hr Meter Gaalis	Hr Meter 622210			
	R.P.M.	1800	1800	1800	1800	1900	1800			
VER	Oil Pressure psi	50	30	50	30	50	50			
ENGINE/BLOWER	Water Temp °F	140	150	150	160	160	160			
GINE/	Volts	13	13	13	13	13	13			
ENC	Intake Vacuum "Hg	20	20	20	20	20	20			
	Gas Flow Fuel/Propane cfh	110	110	110	110	110	110			
	GW Pump ON/OFF	ON	40	ON	ON	on	OW			
VAIR	Extraction Well Flow scfm	5.29	509	5.29	5,29	5,73	5.73			
ATMOSPHERE/VACUUM/AIR PUMP/VOLUME	Extraction Well Vacuum "H ₂ O	60	60	60	60	60	60			
PUMP/VOLUME	Pump Rate gals/min	4.0	4.0	40	4.0	4.0	4,0			
HERE MP/V	Total Volume gals	~	120	240	360	480	600			
IdSOI	Influent Vapor Temp. °F	68	68	68	68	68	68			
ATN	Air Temperature °F	3.4.6	35.8	363	38.5	40.1	42.7			
	Barometric Pressure "Hg	29.96	29.96	29.95	29,95	2996	29.96			
L	HC ppmv	15,870	-	12,620	-	14,200				
VAPOR /INFLUENT	CO ₂ / CO %	9,440	-	9.72/0	*	10.32/0				
VAI	O ₂ %	6.4	~	6,6	~	6-1				
	H ₂ S ppm	3.0	-	3,0	-	3.0				
	SET GWARE PU									
	Vaeuum set @	60"1	tao, Vape	nr well fl	ou (vu,	F) = 5.299	sefm			
S	0945- NOTE- UWF@ 3.7352 AM									
NOTES										
			e.							
	NAPL % Vol Gals	-	11/13,2	10/12.0	7 / 8,4	1 84	6/7.2			
DLD	Data Logger ft	N/A	~	· ~	-	-	-			
MANIFOLD	Depth of GW Depression ft	-210	-2.0	-2.0	-2.0	-2.0	-2:0			
Σ	Extraction Well DTNAPL ft	58.9.1								
	Extraction Well DTGW ft	62.59								

NAPL = 3.68'

7FORMS/TestForms/1210018

AR

OPERATING DATA - EVENT # 7

PAGE # 2

ACUVAC MOBILE DUAL PHASE SYSTEM

Location:	"F" STATE, Lea County	"F" STATE, Lea County, NM Project Managers: Sadler/Faucher								
	Date:	2-11-13	-		-	-	-			
	Parameters	Time 1045	Time [[15	Time 1145	Time 1213	Time 1245	Time 1315			
	WELL # RW-1	Hr Meter	Hr Meter 62230	Hr Meter 67,23,5	Hr Meter 6274.0	Hr Meter 6224.5	Hr Meter G235.0			
	R.P.M.	1800	1800	1800	1800	1800	1800			
VER	Oil Pressure psi	50	30	50	30	50	50			
BLOW	Water Temp °F	160	160	160	160	160	160			
ENGINE/BLOWER	Volts	(3	13	13	13	13	13			
ENG	Intake Vacuum "Hg	20	20	19	19	19	19			
	Gas Flow Fuel/Propane cfh	(10 .	[10	(00	100	(00	100			
	GW Pump ON/OFF	00	ON	002	00	06	05			
VAIR	Extraction Well Flow scfm	6.18	6.18	7,68	2,68	7.68	7,68			
ATMOSPHERE/VACUUM/AIR PUMP/VOLUME	Extraction Well Vacuum "H ₂ O	60	60	75 -	75	75	75			
OLUI	Pump Rate gals/min	4.0	4.0	4.0	4.0	4.0	4.0			
HERE	Total Volume gals	720	840	960	1080	1200	1320			
IOSPI	Influent Vapor Temp. °F	69	69	69	69	69	69			
ATN	Air Temperature °F	44.6	46.2	482	49.1	50.6	51.9			
	Barometric Pressure "Hg	29.94	.29.92	29.89	29.87	29.87	29.86			
L	HC ppmv	14,840	1	12,130	r	13,340	-			
VAPOR /INFLUENT	CO ₂ / CO %	10,560	~	9.54 0	•	9.36 0	*			
VAJ	O ₂ %	6.5	~	3.4	<u>_</u>	4.8	1			
	H ₂ S ppm	3.0	۵	3.0	-	3,0	~			
	EW induced ucer	uan stea	dy @- 60"	Hro, VW	F C. Gilbs	c.fm-PR:	4. Ogipin			
	1115HRS- TWOREASED EW VOLUM = 73"Hrv, UWF= 8.5452Cm									
s	PR= 4.0gpm									
NOTES										
2										
					25-000-05-00-00-00-00-00-00-00-00-00-00-0					
			đ							
	NAPL % Vol Gals	5/40	4 / 4.8	4 /4.8	4 4.8	4/4.8	4/418			
	Data Logger ft	N(A	-	-	-	-	-			
MANIFOLD	Depth of GW Depression ft	- 2.0	-2.0	- 2-0	-2.0	-2.0	- 2.0			
W	Extraction Well DTNAPL ft	*								
-	Extraction Well DTGW ft					· · · · · · · · · · · · · · · · · · ·				
]					

() Indicates Well Pressure

7FORMS/TestForms/1210018

OPERATING DATA - EVENT #7

PAGE # 3 ACUVAC MOBILE DUAL PHASE SYSTEM

Location:	cation: "F" STATE, Lea County, NM Project Managers: Sadler/Faucher						er/Faucher			
	Date:	2-11-13	-	-	-	1				
	Parameters	Time (345	Time 1415	Time 1445	Time 1515	Time 1545	Time			
	WELL # RW-1	Hr Meter 6225.5	Hr Meter 6226.0	Hr Meter 6226.5	Hr Meter 6227.0	Hr Meter 6727.5	Hr Meter			
	R.P.M.	1800	1800	1800	1800	1800				
VER	Oil Pressure psi	50	50	50	30	50				
BLOY	Water Temp °F	160	160	160	160	160				
ENGINE/BLOWER	Volts	(3	13	(3	13	(3				
ENC	Intake Vacuum "Hg	19	19	19	19	19				
	Gas Flow Fuel/Propane cfh	100	100	100	(00)	(00)				
	GW Pump ON/OFF	00	00	00	02	ON				
/AIR	Extraction Well Flow scfm	7.68	7.68	7,68	1.6%	7.68				
UUM	Extraction Well Vacuum "H ₂ O	75	75	25	25	15				
VAC	Pump Rate gals/min	4.5	4.5	4.5	4.5	4.5				
SPHERE/VACUU PUMP/VOLUME	Total Volume gals	1455	1590	1225	1860	1995				
ATMOSPHERE/VACUUM/AIR PUMP/VOLUME	Influent Vapor Temp. °F	69	69	69	69	69				
ATM	Air Temperature 🔪 °F	523	5311	35.6	567	57.2				
-	Barometric Pressure "Hg	29.83	29.83	29.80	29.79	29.78				
5	HC ppmv	14,700	m	16,550	-	16,710				
VAPOR /INFLUENT	CO ₂ / CO %	9.25/0	~	10.02/0	-	1006 0				
VAI	O ₂ %	4.8	~	5.0	-	5.1				
`	H ₂ S ppm	4.0	-	3.0	-	3.0				
	EW vocuum and	l uwf	steady a	0 75° H	20, 7168	schu - PR:	= 4.5gpm			
	1345 HRS - AR :	4. Sqpm	- 1076	- HAAL	recovery a	on deeveo	ing trend			
10	NOTE: HORINA HE levels continue on on increasing trend-									
NOTES	Induced vocca	in NOI appears to be increasing to bette								
z			ic freeting		(
	an an an an an an an an Anna an									
Ī						84.3				
	NAPL % Vol Gals	3/40	3 4.1	2/217	2/2.7	1 1.4				
9	Data Logger ft	NA	-	-	-	-				
MANIFOLD	Depth of GW Depression ft	-20	-2.0	-20	-2.0	-20				
W	Extraction Well DTNAPL ft		-			59.31				
	Extraction Well DTGW ft					59.52				
) Indicates	Well Pressure				terra de las 1850 Ministerra de	7FORMS/TestFo	(1010010			

1656-H Townhurst, Houston, Texas 77043 713.468.6688 • fax:713.468.6689 • www.acuvac.com

March 22, 2013

Ms. Brittany Ford Project Manager Conestoga-Rovers & Associates 2135 S. Loop 250 W. Midland, TX 79703

Dear Brittany:

Re: Event #8: "F" State Site, Lea County, NM

The following is the Report and a copy of the Operating Data collected during the Mobile Dual Phase (MDP) Event #8 at the above location on March 14, 2013. Table #1 is the Well Data Information on well RW-1. PSH is referred to as NAPL in this report. GW samples are frequently taken in 2,000 ml beakers to determine the average NAPL percentage and volume.

Summary of MDP Event #8 - Well RW-1

The total Event time was 7.5 hours. The data is compared to Event #7 conducted on February 11, 2013, which had a total Event time of 8.0 hours.

- The total GW/NAPL recovered was 2,046 gals of which 5.80% or 118.6 gals were NAPL.
- Total NAPL vapors burned as IC engine fuel was 6.71 gals, resulting in a total liquid and vapor NAPL recovery of 125.3 gals, or 6.12%. This equates to 15.66 gal/hr, which is an increase of 3.24 gals/hr.
- Average HORIBA Analytical Data from the influent vapor samples was: HC = 15,168 ppmv, $CO_2 = 9.79\%$, CO = 0%, $O_2 = 5.5\%$ and $H_2S = 2.88\%$.
- Compared with MDP Event #7 data, the TPH levels increased 611 ppmv, CO₂ decreased 0.10%, CO was equal, O₂ decreased 0.2% and H₂S decreased 0.24%.
- The Average Induced Vacuum was 82.50"H₂O and the average EW vapor flow was 8.15 scfm. The average induced vacuum increased 14.56"H₂O and the average well flow increased 1.44 scfm.
- The GW pump was set at 62.0 ft BTOC. The average GW/NAPL pump rate was 4.58 gpm. The average GW pump rate increased 0.44 gpm.
- The average GW depression was estimated at 2.0 ft below static level, which was consistent with Event #7. This estimate is based on the GW pump position and GW rate.

• At the start of Event #8, the static NAPL level was 3.24 ft and 0.02 ft of NAPL was estimated at the conclusion of the Event. The static GW level decreased 0.38 ft based on hydro-equivalent.

Summary and Observations:

During each Event, the test data is compared to the previous Event to evaluate the progress for this remediation project.

The HORIBA Analytical instrument is calibrated with HEXANE and CO₂.

The formula used to calculate the Emission Rate is: $ER = HC \text{ (ppmv) x MW (Hexane) x Flow Rate (scfm) x 1.58E^{-7} (\underline{\min})(\underline{\text{lb mole}}) = \underline{\text{lbs/hr}}$ (hr)(ppmv)(ft³)

The total NAPL removed, including liquid and vapor, during the 8.0 hour Event #8 (well RW-1), was 125.3 gals, or 6.12% of the total liquid volume of 2,046 gals. This equates to 15.66 gals/hr.

During the eight Events totaling 60.3 hours, the total NAPL removed, including liquid and vapor, equals 724.9 gals, or 4.88% of a total liquid volume of 14,844 gals. This equates to a NAPL recovery rate of 12.02 gals/hr.

Additional Information:

- The average liquid and vapor NAPL recovery from well RW-1 increased significantly from 12.42 to 15.66 gal/hr.
- The induced vacuum was higher than Event #7, and the GW/NAPL pump rate increased by 0.44 gpm. These changes were necessary to maintain a constant liquid depression at approximately 2.0 ft.
- At the conclusion of the Event, the well was gauged and 0.02" of NAPL remained in the well.

We appreciate you selecting AcuVac to provide this service. We have scheduled Event #9 for Tuesday, April 16, 2013. Should you have any questions, please contact me.

Sincerely,

James E. Sadler, VP Engineering/Environmental

Well and Recovery Data Information - Event #8 March 12, 2013

ę

*

EVENT NO		8
WELL NO.		RW-1
Total Event Hours		7.5
TD	ft	90.0
Well Size	in	4.0
DTGW - Static - Start Event #8	ft	61.96
DTNAPL - Static - Start Event #8	ft	58.72
NAPL	ft	3.24
DTGW - End Event #8	ft	59.14
DTNAPL - End Event #8	ft	59.12
NAPL	ft	0.02
Average Extraction Well Vacuum	"H ₂ O	82.50
Average Extraction Well Vapor Flow	scfm	8.15
Average GW/NAPL Pump Rate	gpm	4.58
Average TPH	ppmv	15,168
Average CO ₂	%	9.79
Average CO	%	0
Average O ₂	%	5.5
Average H ₂ S	%	2.88
Total Liquid Volume Recovered	gals	2,046
Fotal Liquid NAPL Recovered	gals	118.6
Fotal Liquid NAPL Recovered	%	5.80
Fotal Vapor and Liquid NAPL Recovered	gals	125.3
Total NAPL Recovered	%	6.12
Fotal NAPL Recovered	lbs	724.9
Total Volume of Well Vapors	cu.ft	3,912

AVR	OPERATING DATA - E	VENT #8	PAG	E# [ACUVAC MO	BILE DUAL PH	ASE SYSTEM
Locati	on: "F" State Site, Lea (County, NM				gers: Sadler/Lu	
	Date:	03/14/2013	03/14/2013	03/14/2013	03/14/2013	03/14/2013	03/14/2013
	Parameters	Time 0745	Time 0 BLS	Time 0845	Time Octi S	Time 2×44 S	Time LOIS
	WELL # DW -	Hr Meter 6239.5	Hr Meter	Hr Meter	Hr Meter	Hr Meter $6' \neq 41_1 \leq$	Hr Meter
	R.P.M.	1800	1800	1900	1800	1900	1900
/ER	Oil Pressure psi	50	50	so	50	50	50
BLOV	Water Temp °F	140	160	160	160	160	(60
ENGINE/BLOWER	Volts	13	13	13	(3	13	13
ENG	Intake Vacuum "Hg	19	19	19	19	19	14
	Gas Flow Fuel/Propane cfh	110	(10	110	110	110	1(0
	GW Pump ON/OFF	on	ON	ON	ON	OW	OW
/AIR	Extraction Well Flow scfm	6.47	6.91	7,34	7,34	7.18	7,78
ATMOSPHERE/VACUUM/AIR PUMP/VOLUME	Extraction Well Vacuum "H ₂ O	73	75	75	75	75	75
SPHERE/VACUU PUMP/VOLUME	Pump Rate gals/min	4.2	4.2	4.2	4.2	4.2	4.2
HERE	Total Volume gals	day	126	252	378	504	630
nd Idsoj	Influent Vapor Temp. °F	68	62	68	68	ତନ୍ତ	68
ATM	Air Temperature °F	46.4	48.6	50,3	520	538	55,9
	Barometric Pressure "Hg	30.70	30.20	30.21	30.21	30.21	30.20
L	HC ppmv	13,810	~	14,950	-	15,070	ſ
POR	CO ₂ / CO %	9.32/,01	~	9.38/0	-	9.620	•
VAPOR	O ₂ %	6.3	1	4.9	~	4.7	,
	H ₂ S %	2.0	5	3.0	-	3.0	1
	SET GU WAR	- pemp a	e 620f	+ Broc -	- Initial	Eeu induc	col
	Vienam @ 75	Hrc Vu	F= 6.47	sctm - ind	creasing te	6.41se	Sm
s	Panys Rate = 4:						
NOTES		P					
2							
		1994 (Arrange)					
	NAPL % Vol Gals	~	10/126	10/12.6	20/10.1	7.5 9.5	7.0 8.8
ſIJ	Data Logger ft	NA	-	~	-	-	-
MANIFOLD	Depth of GW Depression ft	- 2.0	-2.0	~J.O	- 2.0	-20	-210
Ŵ	Extraction Well DTNAPL ft	58,72					
-	Extraction Well DTGW ft	61,96					
() Indicates	Well Pressure		es i la suprementa della companya della companya della companya della companya della companya della companya d			7FORMS/TestFo	

NAPL = 3.24"

.

٠

7FORMS/TestForms/1210018

XIVIS **OPERATING DATA - EVENT #8** .7 PAGE # **ACUVAC MOBILE DUAL PHASE SYSTEM** "F" State Site, Lea County, NM Location: **Project Managers: Sadler/Lundgren** Date: 03/14/2013 03/14/2013 03/14/2013 03/14/2013 03/14/2013 03/14/2013 Parameters Time Time Time Time Time Time 1315 1045 1145 1115 1715 1245 Hr Meter Hr Meter Hr Meter Hr Meter Hr Meter Hr Meter WELL# Deurs 67425 62430 6744.3 6243,3 6244.0 62450 R.P.M. 1800 1800 1800 1800 1800 1800 **Oil Pressure** ENGINE/BLOWER psi SU 50 50 50 50 50 Water Temp °F 160 160 160 160 160 160 Volts (3 13 13 13 13 13 Intake Vacuum "Hg 19 19 19 19 19 19 Gas Flow Fuel/Propane cfh 10 10 110 110 (10 (10 **GW** Pump **ON/OFF** 00 OH ON ON 20 ON ATMOSPHERE/VACUUM/AIR Extraction Well Flow scfm 7,18 7,78 7.78 1.78 7.78 7,78 Extraction Well Vacuum "H₂O 13 25 75 75 **PUMP/VOLUME** 75 75 Pump Rate gals/min 42 4.2 4.2 4.2 4.2 4,2 Total Volume 156 gals 882 1000 1134 1260 1396 Influent Vapor Temp. °F 69 69 69 69 69 64 Air Temperature °F 58.1 74.8 616 64.3 690 72 3 Barometric Pressure "Hg 30.20 30.16 30.20 3019 30.19 30.17 HC ppmv 870 -14 15,260 -15,640 VAPOR CO₂ / CO -% 9.94 10 9.46 10.02 6 0 - O_2 % 5,4 Sile 5.6 H₂S % 3.0 30 30 -EW indiced avenum and une steader Q. 75° Hrd. 7.78 celm PR = 4.2 grm - NAPL 7% of volume stealy e EW NEEDERAL = 90'Hro 1315 414 INC MEANAD UWF = 7.78 SCFM NOTES NAPL % Vol 8.8 7 8.9 6 7.6 5 63 1.5 5.7 63 5 Gals Data Logger MANIFOLD ft NIA Depth of GW Depression ft -20 -2.0 -20 -2.0 - 2.0 -200 Extraction Well DTNAPL ft Extraction Well DTGW ft

() Indicates Well Pressure

7FORMS/TestForms/1210018

AVR

....

OPERATING DATA - EVENT #8 "E" State Site Lea County NTN A

PAGE # 3 ACUVAC MOBILE DUAL PHASE SYSTEM -· G 11 1.

×	Date Parameters WELL # DW - 1	: 03/14/2013 Time t345	03/14/2013	03/14/2013	03/14/2013	03/14/2013	03/14/2013		
x		Time					00/14/201		
×	WELL# Data i	1345	Time 14(5	Time 1445	Time 1515	Time (345	Time		
R	1600 - 1	Hr Meter 6245.5	Hr Meter 6246,0	Hr Meter 6 246.5	Hr Meter	Hr Meter	Hr Meter		
×	R.P.M.	1800	(800	1800	(800	•			
A.	Oil Pressure ps	30	50	50	50	-			
BLOW	Water Temp ºI	160	(60	160	160	-			
ENGINE/BLOWER	Volts	13	13	(3	13	-			
ENG	Intake Vacuum "H	18	(8	18	18	-			
	Gas Flow Fuel/Propane cfl		110	(10)	(10				
	GW Pump ON/OFF	000	ew	odo	ON	-			
AIR	Extraction Well Flow scfm	8.34	8.81	8.81	8.81	-7-			
NE NE	Extraction Well Vacuum "H ₂ O	90	90	90	90	-			
PUMP/VOLUME	Pump Rate gals/min	5.5	5.5	5.3	5.3	-			
MP/V	Total Volume gals	1551	1716	1281	2046	~			
A I MOSPHERE/VACUUM/AIR PUMP/VOLUME	Influent Vapor Temp. °F	69	69	69	69	-			
AIM	Air Temperature °F	75,5	21.2	77.4	74.0	~			
	Barometric Pressure "Hg	30.13	30.13	30,12	30.10	-			
	HC ppmv		-	15,120	-	<u>ب</u>			
DENI	CO ₂ / CO %	10.06/0	10	10.00 10	-	-			
AFUK	O ₂ %	5.2	<u>`</u>	5.9	-	1			
4	H ₂ S %	3.0	-	30	-	6			
	BW indexed va 1415 UNg - UU			CRAME AND AND		PR = 5.569	2-28		
NOTES	15134125- MOP discontinued, maximum volume of holding tante								
-	NAPL % Vol Gals	4/6.6	4 6.6	3 5.0	2. 3.3				
OLD	Data Logger ft	NA	1	4-7	~				
MANIFOLD	Depth of GW Depression ft	-2.0	-+10	-20	-2.0				
W J	Extraction Well DTNAPL ft				59.12				
1	Extraction Well DTGW ft				39.14				

NAPL OOLSE

1

AR

AcuVac Remediation, LLC.

1656-H Townhurst, Houston, Texas 77043 713.468.6688 • Fax: 713.468.6689 • www.acuvac.com

April 9, 2013

Ms. Brittany Ford Project Manager Conestoga-Rovers & Associates 2135 S. Loop 250 W. Midland, TX 79703

Dear Brittany:

Re: Event #9: "F" State Site, Lea County, NM

The following is the Report and a copy of the Operating Data collected during the Mobile Dual Phase (MDP) Event #9 at the above location on April 9, 2013. Table #1 is the Well Data Information on well RW-1. PSH is referred to as NAPL in this report. GW samples are frequently taken in 2,000 ml beakers to determine the average NAPL percentage and volume.

Summary of MDP Event #9 - Well RW-1

The total Event time was 7.0 hours. The data is compared to Event #8 conducted on March 14, 2013, which had a total Event time of 7.5 hours.

- The total GW/NAPL recovered was 1,950 gals of which 5.92% or 115.5 gals were NAPL.
- Total NAPL vapors burned as IC engine fuel were 5.51 gals, resulting in a total liquid and vapor NAPL recovery of 121.0 gals, or 6.21%. This equates to 17.29 gal/hr, which is an increase of 1.62 gals/hr.
- Average HORIBA Analytical Data from the influent vapor samples was: HC = 14,816 ppmv, CO₂ = 7.43%, CO = 0%, O₂ = 7.7% and H₂S = 3.00%.
- Compared with MDP Event #8 data, the TPH levels decreased 351 ppmv, CO₂ decreased 2.36%, CO was equal, O₂ increased 2.2% and H₂S increased 0.13%.
- The Average Induced Vacuum was 82.14"H₂O and the average EW vapor flow was 7.83 scfm. The average induced vacuum decreased 0.36"H₂O and the average well flow decreased 0.32 scfm.
- The GW pump was set at 62.0 ft BTOC. The average GW/NAPL pump rate was 5.00 gpm. The average GW pump rate increased 0.42 gpm.
- The average GW depression was estimated at 2.0 ft below static level, which was consistent with Event #8. This estimate is based on the GW pump position and GW rate.

• At the start of Event #9, the static NAPL level was 3.21 ft and 0.20 ft of NAPL was estimated at the conclusion of the Event. The static GW level decreased 0.38 ft based on hydro-equivalent.

Summary and Observations:

During each Event, the test data is compared to the previous Event to evaluate the progress for this remediation project.

The HORIBA Analytical instrument is calibrated with HEXANE and CO₂.

The formula used to calculate the Emission Rate is: $ER = HC (ppmv) \times MW (Hexane) \times Flow Rate (scfm) \times 1.58E^{-7} (min)(lb mole) = lbs/hr$ (hr)(ppmv)(ft³)

The total NAPL removed, including liquid and vapor, during the 7.5 hour Event #9 (well RW-1), was 115.5 gals, or 5.92% of the total liquid volume of 1,950 gals. This equates to 17.29 gals/hr.

During the eight Events totaling 67.8 hours, the total NAPL removed, including liquid and vapor, equals 845.9 gals, or 5.04% of a total liquid volume of 16,794 gals. This equates to a NAPL recovery rate of 12.57 gals/hr.

Additional Information:

- The average liquid and vapor NAPL recovery from well RW-1 increased significantly from 15.66 to 17.29 gal/hr. The increase is most likely the result of the increased groundwater pump rate.
- The induced vacuum was slightly lower than Event #8, and the GW/NAPL pump rate increased by 0.42 gpm. These changes were necessary to maintain a constant liquid depression at approximately 2.0 ft.
- At the conclusion of the Event, the well was gauged and 0.20" of NAPL remained in the well.

We appreciate you selecting AcuVac to provide this service. We have scheduled Event #10 for Tuesday, May 21, 2013. Should you have any questions, please contact me.

Sincerely,

= alles

James E. Sadler, VP Engineering/Environmental

cc: Scott Christ CRA- Houston

Well and Recovery Data Information - Event #9 April 9, 2013

EVENT NO		9
WELL NO.		RW-1
Total Event Hours		7.0
TD	ft	90.0
Well Size	in	4.0
DTGW - Static - Start Event #9	ft	61.63
DTNAPL - Static - Start Event #9	ft	58.42
NAPL	ft	3.21
DTGW - End Event #9	ft	59.32
DTNAPL - End Event #9	ft	59.12
NAPL	ft	0.20
Average Extraction Well Vacuum	"H ₂ O	82.14
Average Extraction Well Vapor Flow	scfm	7.83
Average GW/NAPL Pump Rate	gpm	5.00
Average TPH	ppmv	14,816
Average CO ₂	%	7.43
Average CO	%	0
Average O ₂	%	7.7
Average H ₂ S	%	3.00
Total Liquid Volume Recovered	gals	1,950
Total Liquid NAPL Recovered	gals	115.5
Total Liquid NAPL Recovered	%	5.92
Total Vapor and Liquid NAPL Recovered	gals	121.0
Total NAPL Recovered	%	6.21
Total NAPL Recovered	lbs	845.9
Total Volume of Well Vapors	cu.ft	3,289

AVR	OPERATING DATA - E	VENT #9	PAGI	E #	ACUVAC MOE	BILE DUAL PH	ASE SYSTEM	
Locatio					Project Manag			
	Date:	04/09/2013	04/09/2013	04/09/2013	04/09/2013	04/09/2013	04/09/2013	
	Parameters	Time 0730	Time	Time 0930	Time 0900	Time 0930	Time 1000	
	WELL # Rw-1	Hr Meter 6309.0	Hr Meter 6309.5	Hr Meter 6310.0	Hr Meter 63/0.5	Hr Meter 6311-0	Hr Meter 6311.5	
	R.P.M.	1900	1900	1900	1900	1900	1900	
ENGINE/BLOWER	Oil Pressure psi	50	50	50	50	50	50	
	Water Temp °F	130	130	130	130	130	130	
	Volts	14	14	14	14	14	14	
	Intake Vacuum "Hg	19	19	19	19	۱۹	19	
	Gas Flow Fuel/Propane cfh	120	120	120	120	120	120	
'AIR	GW Pump ON/OFF	ON	ON	5 m	ON	ON	0~	
	Extraction Well Flow scfm	7.83	7.93	7-93	7.83	7.83	7.83	
UUM	Extraction Well Vacuum "H ₂ O	90	20	90	80	80	80	
NAC	Pump Rate gals/min	5.0	5.0	5.0	5.0	5.0	5.0	
ATMOSPHERE/VACUUM/AIR PUMP/VOLUME	Total Volume gals	_	150	300	450	600	750	
	Influent Vapor Temp. °F	60	68	68	68	68	68	
	Air Temperature °F	66.0	67.0	67.3	71.0	74.8	1.75	
	Barometric Pressure "Hg	29.40	29.40	29.40	29.40	29.40	29.40	
r.,	HC ppmv	13,750	11,490	-	9890	-	10,720	
VAPOR /INFLUENT	CO ₂ / CO %	9.36/.03	8.421.01	•	7.0/0.0	1	8.06/0.0	
VAF	O ₂ %	5.6	5.7	L.	5.5	(5.6	
1	H ₂ S %	3	2	-	3	-	3	
	STATINO @ 07 Tuduco WELL V							
s	GW PUMP RATE SETC 5.0GPM							
NOTES	AT 0900 HES REDUCED INDUCED WELL VACUUM TO BO"HZO, VAPOR WELL							
2	FLOW REMAINED C 7. 83 SCFM							
	NAPL % Vol Gals	-	9/13.5	9 (13.5	8/12.0	8/12.0	8/12.0	
ΓD	Data Logger ft	-2.0	-2.0	-20	-2.0	-20	-2.0	
MANIFOLD	Depth of GW Depression ft	2.5	2.5	2.5	2.5	2.5	2.5	
MA	Extraction Well DTNAPL ft	58.42						
-	Extraction Well DTGW ft	61.63						
() Indicated	Well Pressure	3.21				7FORMS/TestF	orms/1210018	

NAPL 3.21

OPERATING DATA - EVENT #9

PAGE # 2

ACUVAC MOBILE DUAL PHASE SYSTEM

Locatio	on: "F" State Site, Lea C	County, NM	TAG		Project Manag	ers: Sadler/Fa	ucher/Wells	
	Date:	04/09/2013	04/09/2013	04/09/2013	04/09/2013	04/09/2013	04/09/2013	
	Parameters	Time 1030	Time 1100	Time 1130	Time 1200	Time 1230_	Time 1300	
	WELL # Rw-1	Hr Meter 6312.0	Hr Meter 6312.5	Hr Meter 6313.0	Hr Meter 6313.5	Hr Meter 6314.0	Hr Meter 6314.5	
	R.P.M.	1900	1900	1900	1900	1900	1900	
/ER	Oil Pressure psi	50	50	50	50	50	50	
ENGINE/BLOWER	Water Temp °F	140	140	140	140	140	140	
INE/B	Volts	14	14	14	14	14	14	
ENGINH	Intake Vacuum "Hg	20	20	20	20	20	20	
	Gas Flow Fuel/Propane cfh	120	120	120	120	120	120	
	GW Pump ON/OFF	ON	ON	on	on	ON	ON	
AIR	Extraction Well Flow scfm	7.93	7.83	7.83	7.83	7.83	7.93	
ATMOSPHERE/VACUUM/AIR PUMP/VOLUME	Extraction Well Vacuum "H ₂ O	80	80	80	80	80	80	
	Pump Rate gals/min	5.0	5.0	5.0	4.5	4.0	4.0	
	Total Volume gals	900	1050	1200	1335	1455	1575	
	Influent Vapor Temp. °F	68	68	68	68	68	68	
ATM	Air Temperature °F	79.4	78.8	81.1	84.2	81.3	88.1	
	Barometric Pressure "Hg	29.42	29.42	29.42	29.42	29.42	29.42	
	HC ppmv	(8090	-	6340	-	9210	
VAPOR /INFLUENT	CO ₂ / CO %	(6.06/0,0	-	6.12/0,0	-	6.90/0.0	
VAP NFL(O ₂ %	(9.6	-	10.0	(9.7	
~	H ₂ S %	-	4	-	3	1	3	
	AT 1030 HRS BA				FEY TO 29			
	AT 1200 HRS RED				1		o Raduca	
ES	GW PUMP RATE TO 4.0 GPM TO ENSURE AN SHE EVENT							
NOTES	1200 HR. DUFLUENT VAPOR READINGS WERE LOWER DUE TO							
	TEMPORARY REDUCTION IN WELL VAC.							
	NAPL % Vol Gals	6/9.0	5/7.5	4/6.0	4/5.4	4/4.8	4/4.8	
OLD	Data Logger ft	-2.0	- 2.0	-2.0	-2.0	-2.0	-2-0	
MANIFOLD	Depth of GW Depression ft	2.5	2.5	2.5	2.5	2.5	2.5	
W	Extraction Well DTNAPL ft							
	Extraction Well DTGW ft							
	s Well Pressure					7EORMS/TestE		

() Indicates Well Pressure

OPERATING DATA - EVENT #9

PAGE #	3
FAGE #	

-

ACUVAC MOBILE DUAL PHASE SYSTEM . . . AX7 11 G 11 00 . .

٦

Locatio	n: "F" State Site, Lea C	te, Lea County, NM Project Managers: Sadler/Faucher/Well			ucher/Wells		
	Date:	04/09/2013	04/09/2013	04/09/2013	04/09/2013	04/09/2013	04/09/2013
	Parameters	Time 1330	Time 1 4 00	Time 1430	Time	Time	Time
	WELL # Pw-1	Hr Meter 6315.0	Hr Meter 6315.5	Hr Meter 63(6.0	Hr Meter	Hr Meter	Hr Meter
	R.P.M.	1900	1900	1.900			
ENGINE/BLOWER	Oil Pressure psi	50	50	50			14
	Water Temp °F	140	140	140			
INE	Volts	14	14	14			
ENG	Intake Vacuum "Hg	20	20	20			
	Gas Flow Fuel/Propane cfh	120	120	120			
	GW Pump ON/OFF	ON	20	02			
/AIR	Extraction Well Flow scfm	7.83	7.93	7.83			
UUM	Extraction Well Vacuum "H ₂ O	30	80	80			
SPHERE/VACUU PUMP/VOLUME	Pump Rate gals/min	4-0	4.0	4.0			
HERE MP/V	Total Volume gals	1695	1815	1950			
ATMOSPHERE/VACUUM/AIR PUMP/VOLUME	Influent Vapor Temp. °F	68	68	68			
ATM	Air Temperature °F	83.6	81.6	82.7			
	Barometric Pressure "Hg	29.41	29.41	29.41			
-	HC ppmv	-	9050	1			
OR	CO ₂ / CO %	-	7.60/0.0	-			
VAPOR /INFLUENT	O ₂ %	-	9.5	1			
`	H ₂ S %	-	3	-			
							2
NOTES			() 2 10 (
ž							
					- 62,		
	NAPL % Vol Gals	3/6	3/6	3/6			
ΓD	Data Logger ft	-2.0	-2.0	-2.0			
MANIFOLD	Depth of GW Depression ft	2.50	2.50	2,50			
W	Extraction Well DTNAPL ft			59.12			
	Extraction Well DTGW ft			59.32			
() Indiantes						7EODMC/TeetE	

() Indicates Well Pressure

NAPL 0.20

AcuVac Remediation, LLC.

1656-H Townhurst, Houston, Texas 77043 713.468.6688 • Fax: 713.468.6689 • www.acuvac.com

May 15, 2013

Mr. Scott Christ Project Manager Conestoga-Rovers & Associates 6320 Rothway, Suite 100 Houston, Texas 77040

Dear Scott:

Re: Event #10: "F" State Site, Lea County, NM

The following is the Report and a copy of the Operating Data collected during the Mobile Dual Phase (MDP) Event #10 at the above location on May 15, 2013. Table #1 is the Well Data Information on well RW-1. PSH is referred to as NAPL in this report. GW samples are frequently taken in 2,000 ml beakers to determine the average NAPL percentage and volume.

Summary of MDP Event #10 - Well RW-1

The total Event time was 7.0 hours. The data is compared to Event #9 conducted on April 9, 2013, which had a total Event time of 7.0 hours.

- The total GW/NAPL recovered was 1,935 gals of which 5.92% or 109.8 gals were NAPL.
- Total NAPL vapors burned as IC engine fuel were 4.89 gals, resulting in a total liquid and vapor NAPL recovery of 114.7 gals, or 5.93%. This equates to 16.38 gal/hr, which is a decrease of 0.90 gals/hr.
- Average HORIBA Analytical Data from the influent vapor samples was: HC = 11,856 ppmv, CO₂ = 8.58%, CO = 0%, O₂ = 10.1% and H₂S = 1.75%.
- Compared with MDP Event #9 data, the TPH levels decreased 2,960 ppmv, CO₂ increased 1.15%, CO was equal, O₂ increased 2.5% and H₂S decreased 1.25%.
- The Average Induced Vacuum was 100.00"H₂O and the average EW vapor flow was 8.68 scfm. The average induced vacuum increased 17.86"H₂O and the average well flow increased 0.85 scfm.
- The GW pump was set at 62.0 ft BTOC. The average GW/NAPL pump rate was 4.61 gpm. The average GW pump rate decreased 0.39 gpm.
- The average GW depression was estimated at 1.0 ft below static level, which was consistent with Event #9. This estimate is based on the GW pump position and GW rate.

• At the start of Event #10, the static NAPL level was 3.89 ft and 0.11 ft of NAPL remained at the conclusion of the Event. The static GW level decreased 0.34 ft based on hydro-equivalent.

Summary and Observations:

During each Event, the test data is compared to the previous Event to evaluate the progress for this remediation project.

The HORIBA Analytical instrument is calibrated with HEXANE and CO₂.

The formula used to calculate the Emission Rate is: $ER = HC \text{ (ppmv) x MW (Hexane) x Flow Rate (scfm) x 1.58E^{-7} (min)(lb mole) = lbs/hr (hr)(ppmv)(ft^3)$

The total NAPL removed, including liquid and vapor, during the 7.0 hour Event #10 (well RW-1), was 114.7 gals, or 5.93% of the total liquid volume of 1,935 gals. This equates to 16.38 gals/hr.

During the ten Events totaling 74.3 hours, the total NAPL removed, including liquid and vapor, equals 960.6 gals, or 5.13% of a total liquid volume of 18,729 gals. This equates to a NAPL recovery rate of 12.93 gals/hr.

Additional Information:

- The average liquid and vapor NAPL recovery from well RW-1 decreased from 17.29 to 16.38 gal/hr.
- The induced vacuum was set higher, and the average GW/NAPL pump rate was slightly decreased by 0.39 gpm. These changes were necessary to maintain a liquid recovery volume in the 1,950 gallon range over a 7.0 hour Event period. The 2,000 gallon collection tank is a limiting factor for this site. With a larger capacity collection tank, the induced vacuum, liquid pump rate and NAPL recovery could be increased.

We appreciate you selecting AcuVac to provide this service. We have scheduled Event #11 for Thursday, June 13, 2013. Should you have any questions, please contact me.

Sincerely,

Sodle

James E. Sadler, VP Engineering/Environmental

cc: Brittany Ford CRA- Dallas

Well and Recovery Data Information - Event #10 May 15, 2013

EVENT NO		10
		RW-1
Total Event Hours		7.0
TD	ft	90.0
Well Size	in	4.0
DTGW - Static - Start Event #10	ft	62.71
DTNAPL - Static - Start Event #10	ft	58.82
NAPL	ft	3.89
DTGW - End Event #10	ft	59.27
DTNAPL - End Event #10	ft	59.16
NAPL	ft	0.11
Average Extraction Well Vacuum	"H ₂ O	100.00
Average Extraction Well Vapor Flow	scfm	8.68
Average GW/NAPL Pump Rate	gpm	4.61
Average TPH	ppmv	11,856
Average CO ₂	%	8.58
Average CO	%	0
Average O ₂	%	10.1
Average H ₂ S	%	1.75
Total Liquid Volume Recovered	gals	1,935
Total Liquid NAPL Recovered	gals	109.8
Total Liquid NAPL Recovered	%	5.92
Total Vapor and Liquid NAPL Recovered	gals	114.7
Total NAPL Recovered	%	5.93
Total NAPL Recovered	lbs	802.8
Total Volume of Well Vapors	cu.ft	3,647

Avr	OPERATING DATA - E	VENT #10	PAG	E# /	ACUVAC MO	RILE DUAL PE	IASE SYSTEM	
Locati		and the second se	A STREET PRODUCTION STREET	the second data and the second data and the		Concerning and the second s	icher/Hendley	
	Date:	5/15/13	5/15/13	5/15/13	5/15/13	5/15/13	5/15/13	
	Parameters	Time 0715	Time 0745	Time 0815	Time 0845	Time OF15	Time 0945	
	WELL# MW-1	Hr Meter 6350.0	Hr Meter 6350, 5	Hr Meter 6357-0	Hr Meter 6357.6	Hr Meter 6352-0	Hr Meter 6352.5	
WER	R.P.M.	2300	2100	2100	2100	2100	2100	
	Oil Pressure psi	50	50	60	50	50	50	
BLOW	Water Temp °F	130	140	140	140	140	150	
INEA	Volts	13	13	13	13	13	13	
ENGINE/BLOWER	Intake Vacuum "Hg	19	19	19	19	19	15	
	Gas Flow Fuel/Propane cfh	150	120	120	120	120	120	
	GW Pump ON/OFF	ON	ON	ond	ON	02	ION	
ATMOSPHERE/VACUUM/AIR PUMP/VOLUME	Extraction Well Flow scfm	8.68	8.68	8.68	8.68	8.68	8.68	
	Extraction Well Vacuum "H ₂ O	100	100	(00	(00)	100	100	
	Pump Rate gals/min	4.5	4.5	4.5	4.5	4.5	.4.5	
HERE	Total Volume gals	-	135	270	405	540	675	
IdSOI	Influent Vapor Temp. °F	68	68	68	68	68	.68	
ATM	Air Temperature °F	58.1	60.2	66.0	73.2	73.9	76.8	
	Barometric Pressure "Hg	29.84	29.84	29.84	25.84	29.84	29.84	
<u> </u>	HC ppmv	11,030	~	10,160		12.340	-	
VAPOR	CO ₂ / CO %	8.63/0.0	-	8.46/0.0	tize.	9.27/0.0	-	
VA) /INFL	O ₂ %	8,4	-	.8.2	~	9.8	-	
	H ₂ S %	2	-	2	-	-	-	
	STATTED EVEN	AT 67	15 Has. 2	SET GW P	UMP DULE	5063.5	OFT BOC	
	WELL VAC SET C	: 100"Hz	O REMAIN	NED CONSTA	NT FOR F	ARST FEW	Hovizs	
2	GW PUMP RATE SET @ 4.5GPM. WELL VAPOR FLOW OF 8.68 SCFM							
NOTES	RESULTED FROM	IND UCOD	VACUUM					
L I								
	NAPL % Vol Gals	-	8/10.8	8/10.8	8/10.8	7/ 9.45	7/9.45	
)LD	Data Logger ft	-	_	-	-	-		
MANIFOLD	Depth of GW Depression ft	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	
W	Extraction Well DTNAPL ft	58,92						
	Extraction Well DTGW ft	62.71						

() Indicates Well Pressure	NAPL	3.09
		-

ANS

-	OPERATING DATA - H		PA	GE # Z	ACUVAC M	OBILE DUAL P	HASE SYSTEM		
Loca	tion: "F" State Site, Lea						ucher/Hendley		
	Date:	000000	3 5/13/15	- 5/18/15	5/13/15	5/13/15	5/13/5		
	Parameters	Time 1015	Time 1045	Time 1115	Time 1/45	Time 12.15	Time 1245		
	WELL #	Hr Meter 6353.0	Hr Meter 6353.5	Hr Meter 6354.0	Hr Meter 6354.5	Hr Meter 6355. υ	Hr Meter ,6355,5		
	R.P.M.	2100	2100	2100	2100	2100	0015 .		
VER	Oil Pressure psi	50	50	60	60	50	50		
ENGINE/BLOWER	Water Temp °F	160	160	160	160	160	160		
GINE/	Volts	13	13	13	3	13	13		
ENG	Intake Vacuum "Hg	19	19	19	19	15	18		
	Gas Flow Fuel/Propane cfh	120	120	120	120	120	120		
	GW Pump ON/OFF	and	ON	Dad	ON	ON	ON		
VAIR	Extraction Well Flow scfm	8.68	8.68	8.68	8.68	8.68	8.68		
NE	Extraction Well Vacuum "H ₂ O	100	.100	100	(00)	(00)	1.00		
ATMOSPHERE/VACUUM/AIR PUMP/VOLUME	Pump Rate gals/min	4.5	4.5	4.5	4.5	4.5	- 5.0		
HERE	Total Volume gals	810	945	1080	1215	1350	1485		
IdSO) DA	Influent Vapor Temp. °F	68	68	68	68	70	70		
ATM	Air Temperature °F	83.4	86.7	89.3	82.0	94.0	94.0		
	Barometric Pressure "Hg	29.84	29.92	29.92	28.82	29.82	29.82		
	НС ррти	14,680	~	12,320		11,170	-		
VAPOR	CO ₂ / CO %	10.2/0.04	-	8.7 10.01	-	6.9/0.0	~		
VAF	O ₂ %	12.5	~	11.6	-	10.2	-		
1	H ₂ S %	2	-	Z	-	7.	-		
	AT 1045 HOURS	BAREme	TRIC PRE	1	CREASED	SLIGHTEN			
	HE CONTENT S								
10									
NOTES	AT 1245 HOVIES GW PUMP RATE INCREASED TO SOGPM								
ž	INDUCED VACUUM AND WELL VARDZ FLOW REMAINED STEADY.								
						<u> </u>			
	NAPL % Vol 4	5/	-	~/					
-		5/6.75	5/6.75	5/6.75	5/6.75	5/6.75	5/6.75		
FOLI	Data Logger ft		-		-	-	-		
MANIFOLD	Depth of GW Depression ft	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0		
r I	Extraction Well DTNAPL ft	-	-	-	-	-	-		
	Extraction Well DTGW ft	-	-	-	-	-	-		

() Indicates Well Pressure

AM	OPERATING DATA - H	EVENT #10	PAG	E#3	ACUVAC MOI	BILE DUAL PH	ASE SYSTEM
Locati	on: "F" State Site, Lea	County, NM		Р	roject Manage	rs: Sadler/Fau	cher/Hendley
	Date:	5/15/13	5/15/13	5/15/13	5/15/13	5/15/13	
	Parameters	Time 1315	Time 1345	Time 1415	Time 1445	Time 1515	Time
	WELL # MW-1	Hr Meter 6354.0	Hr Meter 6356-5	Hr Meter 6357.0	Hr Meter 6357-5	Hr Meter	Hr Meter
	R.P.M.	2100	2100	2100			
VER	Oil Pressure psi	50	50	.50			
ENGINE/BLOWER	Water Temp °F	160	160	160			
INE	Volts	13	13	13			
ENG	Intake Vacuum "Hg	19	19	19			
	Gas Flow Fuel/Propane cfh	120	120	120			
	GW Pump ON/OFF	0~	·ON	OFF			
/AIR	Extraction Well Flow scfm	8.68	8.68	8.68			
UUM	Extraction Well Vacuum "H ₂ O	100	100	100			
VAC	Pump Rate gals/min	5.0	5.0	5.0			
ATMOSPHERE/VACUUM/AIR PUMP/VOLUME	Total Volume gals	1635	1785	1935			
IdSO	Influent Vapor Temp. °F	70	70	70			
ATM	Air Temperature °F	94	95	95			
	Barometric Pressure "Hg	29.74	29.74	29.74			
	HC ppmv	11.730	*	11,420			
VAPOR	CO ₂ / CO %	7.30/0.0	-	8.60 10.0			
VAF	O ₂ %	10.2		9.4			
-	H ₂ S %	2	-	2			
	Ar 1315 HZS BAS	20MENGR	PZESSUZE	DECREAS	ED SLIGH	NY.	
	INDUCES VACUUM	And W	ELL VAPOR	2 FLOW RE	EMATNED 5	Y GACK	
NOTES	INDUCED VACUUM AT 1415 HZS CO	WELTION	TANK RE	Acted Cr	APACITY A	ND EVENT	GRDD,
2			11				
	NAPL % Vol Gals	5/7.5	\$ 6.0	4/6.0			
OLD	Data Logger ft		_				
MANIFOLD	Depth of GW Depression ft	-1.0	-1-0	-1.0			
W	Extraction Well DTNAPL ft			59.16			
	Extraction Well DTGW ft			59.21			
Indicates	Well Pressure			- / (7FORMS/TestFo	

AR

AcuVac Remediation, LLC.

1656-H Townhurst, Houston, Texas 77043 713.468.6688 • Fax: 713.468.6689 • www.acuvac.com

June 14, 2013

Mr. Scott Christ Project Manager Conestoga-Rovers & Associates 6320 Rothway, Suite 100 Houston, Texas 77040

Dear Scott:

Re: Event #11: "F" State Site, Lea County, NM

The following is the Report and a copy of the Operating Data collected during the Mobile Dual Phase (MDP) Event #11 at the above location on June 14, 2013. Table #1 is the Well Data Information on well RW-1. PSH is referred to as NAPL in this report. GW samples are frequently taken in 2,000 ml beakers to determine the average NAPL percentage and volume.

Summary of MDP Event #11 - Well RW-1

The total Event time was 7.5 hours. The data is compared to Event #10 conducted on May 15, 2013, which had a total Event time of 7.0 hours.

- The total GW/NAPL recovered was 1,965 gals of which 5.63% or 116.7 gals were NAPL.
- Total NAPL vapors burned as IC engine fuel were 5.20 gals, resulting in a total liquid and vapor NAPL recovery of 121.9 gals, or 6.20%. This equates to 16.25 gal/hr, which is a decrease of 0.13 gals/hr.
- Average HORIBA Analytical Data from the influent vapor samples was: HC = 9,999 ppmv, CO₂ = 7.35%, CO = 0%, O₂ = 10.1% and H₂S = 1.75%.
- Compared with MDP Event #10 data, the TPH levels decreased 1,857 ppmv, CO₂ decreased 1.23%, CO, O₂, and H₂S were equal.
- The Average Induced Vacuum was 113.75"H₂O and the average EW vapor flow was 10.22 scfm. The average induced vacuum increased 13.75"H₂O and the average well flow increased 1.54 scfm.
- The GW pump was set at 62.0 ft BTOC. The average GW/NAPL pump rate was 4.41 gpm. The average GW pump rate decreased 0.20 gpm.
- The average GW depression was estimated at 1.0 ft below static level, which was consistent with Event #10. This estimate is based on the GW pump position and GW rate.

• At the start of Event #11, the static NAPL level was 3.39 ft and 0.02 ft of NAPL remained at the conclusion of the Event. The static GW level decreased 0.25 ft based on hydro-equivalent.

Summary and Observations:

During each Event, the test data is compared to the previous Event to evaluate the progress for this remediation project.

The HORIBA Analytical instrument is calibrated with HEXANE and CO₂.

The formula used to calculate the Emission Rate is: $ER = HC \text{ (ppmv) x MW (Hexane) x Flow Rate (scfm) x 1.58E^{-7} (min)(lb mole) = lbs/hr (hr)(ppmv)(ft^3)$

The total NAPL removed, including liquid and vapor, during the 7.5 hour Event #11 (well RW-1), was 121.9 gals, or 6.20% of the total liquid volume of 1,965 gals. This equates to 16.25 gals/hr.

During the eleven Events totaling 81.8 hours, the total NAPL removed, including liquid and vapor, equals 1,082.5 gals, or 5.23% of a total liquid volume of 20,694 gals. This equates to a NAPL recovery rate of 13.23 gals/hr.

Additional Information:

- The average liquid and vapor NAPL recovery from well RW-1 decreased slightly from 16.38 to 16.25 gal/hr.
- The induced vacuum was set higher, and the average GW/NAPL pump rate was slightly decreased by 0.24 gpm. These changes were necessary to maintain a liquid recovery volume in the 1,815 gallon range over a 7.5 hour Event period. The 2,000 gallon collection tank is a limiting factor for this site. With a larger capacity collection tank, the induced vacuum, liquid pump rate and NAPL recovery could be increased.

We appreciate you selecting AcuVac to provide this service. We have scheduled Event #12 for Wednesday, July 10, 2013. Should you have any questions, please contact me.

Sincerely,

تعلمت

James E. Sadler, VP Engineering/Environmental

cc: Brittany Ford CRA- Dallas

Well and Recovery Data Information - Event #11 June 14, 2013

EVENT NO		11
		RW-1
Total Event Hours		7.5
TD	ft	90.0
Well Size	in	4.0
DTGW - Static - Start Event #11	ft	62.51
DTNAPL - Static - Start Event #11	ft	59.12
NAPL	ft	3.39
DTGW - End Event #11	ft	59.95
DTNAPL - End Event #11	ft	59.93
NAPL	ft	0.02
Average Extraction Well Vacuum	"H ₂ O	113.75
Average Extraction Well Vapor Flow	scfm	10.22
Average GW/NAPL Pump Rate	gpm	4.41
Average TPH	ppmv	9,999
Average CO ₂	%	7.35
Average CO	%	0
Average O ₂	%	10.1
Average H ₂ S	%	1.75
Total Liquid Volume Recovered	gals	1,965
Total Liquid NAPL Recovered	gals	116.7
Total Liquid NAPL Recovered	%	5.63
Total Vapor and Liquid NAPL Recovered	gals	121.9
Total NAPL Recovered	%	6.20
Total NAPL Recovered	lbs	853.3
Total Volume of Well Vapors	cu.ft	4,600

1		N	0
1	46	A	X
Х	11	70	P
~	2		')

OPERATING DATA - EVENT #11

PAGE # /

ACUVAC MOBILE DUAL PHASE SYSTEM

Location: "F" State Site, Lea County, NM Project Mana						ers: Faucher/Hendley					
	Date:	6/14/13	6/14/13	6/14/13	6/14/13	6/14/13	6/14/13				
	Parameters	Time 0630	Time 0700	Time 0730	Time OSOO	Time 0830	Time 0700				
	WELL # RW-1	Hr Meter 6407.0	Hr Meter 6407.5	Hr Meter 640820	Hr Meter 6408, 5	Hr Meter 6409, O	Hr Meter 6409-5				
	R.P.M.	2100	2100	2100	2100	2100	2100				
VER	Oil Pressure psi	50	50	50	50	50					
ENGINE/BLOWER	Water Temp °F	130	130	130	130	130	140				
INE	Volts	13	13	13	13	13	13				
ENG	Intake Vacuum "Hg	19	19	19	19	19	19				
	Gas Flow Fuel/Propane cfh	120	120	120	120	120	120				
	GW Pump ON/OFF	GN	ON	ON	on	on	ON				
(/AIR	Extraction Well Flow scfm	7.11	9,47	9,47	10.26	10.26	10.63				
ATMOSPHERE/VACUUM/AIR PUMP/VOLUME	Extraction Well Vacuum "H ₂ O	100	100	100	100	100	120				
SPHERE/VACUU PUMP/VOLUME	Pump Rate gals/min	-	4.5	4.5	4.5	4.5	4.5				
HERE MP/V	Total Volume gals		135	270	405	540	675				
IdSOI	Influent Vapor Temp. °F	68	68	68	68	68	68				
ATM	Air Temperature °F	72.2	72.4	72.4	76.0	77.4	77.4				
	Barometric Pressure "Hg	30,12	30,12	30,12	30,12	30,12	30.12				
2	HC ppmv	11,120]	9230	_	9060	(
VAPOR /INFLUENT	CO ₂ / CO %	7.46/0.01	(6-98/0.0	<u>`</u>	6.98/0.0	~				
VA) (INFL	O ₂ %	10,9	<u>_</u>	8.2	(12.5	(
	H ₂ S %	2	~	2		Z	-				
	STARTED EVENT AT OG30 Hiss. SET GW PUMP C 62:017 Broc.										
	WELLVAL SOT AT 100"HZO. REMAINED CONGTANT UNTIL 0900 HZS 1120"HZO										
s	GW PUMP PATE SET @ 4.5 GPM. WELL VAPON PLOW STATED @ 7.11 SIAM										
NOTES	AND INCREASED TO 10,26 SCFM @ 100" H20. INCREASED TO 10.63 SCFM@ 120" H20										
				1							
	NAPL % Vol Gals	(9/	8/	8/	7/	7/				
OLD	Data Logger ft	-	~	-	_	-	-				
MANIFOLD	Depth of GW Depression ft	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0				
W/	Extraction Well DTNAPL ft	59.12									
	Extraction Well DTGW ft	62.51									

() Indicates Well Pressure

NAPL 3.39

ParametersTime 0930 Time 1000 Time 1030 Time 1100 Time 1130 Time 1200 WELL# 0930 1000 1000 1130 1200 WELL# 0000 1000 1100 1130 1200	AVR				-			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		OPERATING DATA - EV	VENT #11	PAGI	E# 2	ACUVAC MOB	BILE DUAL PH	ASE SYSTEM
ParametersTime 0930 Time 1000 Time 1030 Time 1100 Time 1130 Time 1200 WELL # $R \omega - 1$ Time $6410, 0$ Time $6410, 5$ Time $6411, 0$ Time $6411, 0$ Time $6411, 5$ Time $6412, 0$	Location: "F" State Site, Lea County, NM Project Managers: Faucher/Hendley							endley
0930 1000 1030 1130 1200 WELL# $RW - 1$ Hr Meter Hr Hr Meter Hr Meter Hr Hr Meter		Date:	6/14/13	Clivilis	6/14/13	c/14/13	6/14/13	6/14/13
WELL# KW-1 6410,0 6410,5 6411.0 6411.5 6412.0 6412.		Parameters	Time 0930					
R.P.M. 2100 2100 2100 2100 2100 2100 2100		WELL # RW-1						Hr Meter 6.412,5
		R.P.M.	2100	2100	2100	2100	2100	2/00

	WELL # RW-1		Hr Meter 6410,0	Hr Meter 6410,5	Hr Meter 6411.0	Hr Meter G 411.5	Hr Meter 64/2.0	Hr Meter 6.412,5		
	R.P.M.		2100	2100	2100	2100	2100	2/00		
VER	Oil Pressure	psi	50	50	50	50	50	50		
ENGINE/BLOWER	Water Temp	°F	160	160	(60	160	160	160		
INE	Volts		13	13	13	13	13	13		
ENG	Intake Vacuum "	Hg	19	19	19	19	19	19		
	Gas Flow Fuel/Propane	cfh	120	120	120	120	120	(20		
	GW Pump ON/OF	F	ON	DN	on	لده	.on	OFF		
/AIR	Extraction Well Flow sc	fm	10.63	10.63	10,63	10.63	10.63	-		
UUM	Extraction Well Vacuum "H	20 ²	120	120	120	120	120	-		
VAC	Pump Rate gals/m	nin	4.5	4.5	4.5	5,0	5.0	-		
HERE MP/V	Total Volume g	als	810	945	1080	1215	1350			
ATMOSPHERE/VACUUM/AIR PUMP/VOLUME	Influent Vapor Temp.	°F	68	68	68	68	68	68		
ATM	Air Temperature	°F	81.2	79.2	76.4	76.6	74.2	74.6		
	Barometric Pressure	Hg	30.10	30.10	30.10	30.10	30,10	30.10		
	НС рр	mv	8860	-	12,610	~	11830	-		
OR	CO ₂ / CO	%	6.56.10.0	-	8.48 10.01	-	8.21/0.0	-		
VAPOR /INFLUENT	O ₂	%	7.7	1	10.2	ł	9.4	-		
4	H ₂ S	%	Z	-	Z	-	1	-		
NOTES	WELL VACUUM AND FLOW REMAINED STOADY AT 120" H20 AND 10, 63 AT 1200 H2S MERHANILA ISSUE STOPPED TEST. TEST RESTANDED @ 1230 H2S									
MANIFOLD		ıls ft	6/ _{8.1}	6/ 8.1	e/ 8.(5/ 6.75	5/0.75	5/ c.75		
IANII	· ·	ft								
2	Extraction Well DTNAPL	ft								

Extraction Well DTGW

ft

7FORMS/TestForms/1210018

AVR

OPERATING DATA - EVENT #11

PAGE # 3

ACUVAC MOBILE DUAL PHASE SYSTEM

Location: "F" State Site, Lea County, NM Project Managers: Faucher/Hendley									
	Date:	6/14/13	6/14/13	6/14/13	6/14/13				
	Parameters	Time 1230	Time 1300	Time 1330	Time 1400	Time	Time		
	WELL # RW-1	Hr Meter 6413.0	Hr Meter 6413, 5	Hr Meter 6414.0	Hr Meter 6414.5	Hr Meter	Hr Meter		
	R.P.M.	2100	2100	2100	2100				
VER	Oil Pressure psi	50	50	50	50				
ENGINE/BLOWER	Water Temp °F	160	160	160	160				
INEV	Volts	13	13	13	13				
ENG	Intake Vacuum "Hg	19	19	19	19				
	Gas Flow Fuel/Propane cfh	120	120	120	120				
	GW Pump ON/OFF	ON	50	0~	077				
//AIR	Extraction Well Flow scfm	10.63	10.63	10.63	10,63				
ATMOSPHERE/VACUUM/AIR PUMP/VOLUME	Extraction Well Vacuum "H ₂ O	120	120	120	120				
OLU	Pump Rate gals/min	5.0	5.0	5.0	OFF				
HERE MP/V	Total Volume gals	1500	1650	(800	1950				
IOSDI	Influent Vapor Temp. °F	68	68	68	68				
ATN	Air Temperature °F	702.2	70.8	70.2	72.4				
	Barometric Pressure "Hg	30.08	30.06	30.04	30.04				
E	НС ррту	10,020		7260	(
VAPOR	CO ₂ / CO %	7.14/0.0	_	6.96/0.0	~				
VAI	O ₂ %	7,8	1	14.2	-				
`	H ₂ S %	1	-	2	-				
ES	INDUCED WELL VAL AND VAPOR FLOW REMAINED STEADY. AT 1400 HES COLLECTION TANK REACHED CAPACITY AND EVENT ENDED								
NOTES			North March 1990 March		1				
						11 12 1 11 11 11 11 11 11 11 11 11 11 11			
		n			19				
				/					
	NAPL % Vol Gals	4/6.0	4/6.0	4/6.0	4/6.0				
OLD	Data Logger ft								
MANIFOLD	Depth of GW Depression ft	-1.0	-1.0	-1.0					
M	Extraction Well DTNAPL ft				59,93				
	Extraction Well DTGW ft				59.95				

() Indicates Well Pressure

NAPL .02

AcuVac Remediation, LLC.

1656-H Townhurst, Houston, Texas 77043 713.468.6688 • Fax: 713.468.6689 • www.acuvac.com

July 10, 2013

Mr. Scott Christ Project Manager Conestoga-Rovers & Associates 6320 Rothway, Suite 100 Houston, Texas 77040

Dear Scott:

Re: Event #12: "F" State Site, Lea County, NM

The following is the Report and a copy of the Operating Data collected during the Mobile Dual Phase (MDP) Event #12 at the above location on July 10, 2013. Table #1 is the Well Data Information on well RW-1. PSH is referred to as NAPL in this report. GW samples are frequently taken in 2,000 ml beakers to determine the average NAPL percentage and volume.

Summary of MDP Event #12 - Well RW-1

The total Event time was 6.5 hours. The data is compared to Event #11 conducted on June 14, 2013, which had a total Event time of 7.5 hours.

- The total GW/NAPL recovered was 1,905 gals of which 6.39% or 121.65 gals were NAPL.
- Total NAPL vapors burned as IC engine fuel were 4.67 gals, resulting in a total liquid and vapor NAPL recovery of 126.32 gals, or 6.63%. This equates to 19.43 gal/hr, which is a increase of 3.18 gals/hr.
- Average HORIBA Analytical Data from the influent vapor samples was:
 - $HC = 11,181 \text{ ppmv}, CO_2 = 7.59\%, CO = 0\%, O_2 = 10.1\% \text{ and } H_2S = 2.43\%.$
- Compared with MDP Event #11 data, the TPH levels increased 1,182 ppmv, CO₂ increased 0.24%, CO was equal at 0%, O₂ was steady at 10.1%, and H₂S increased 0.68%.
- The Average Induced Vacuum was 100.00"H₂O and the average EW vapor flow was 9.47 scfm. The average induced vacuum decreased 13.75"H₂O and the average well flow decreased 0.75 scfm.
- The GW pump was set at 62.0 ft BTOC. The average GW/NAPL pump rate was 4.59 gpm. The average GW pump rate increased 0.18 gpm.
- The average GW depression was estimated at 1.0 ft below static level, which was consistent with Event #11. This estimate is based on the GW pump position and GW rate.
- At the start of Event #12, the static NAPL level was 3.76 ft and 0.02 ft of NAPL remained at the conclusion of the Event. The static GW level decreased 0.25 ft based on hydro-equivalent.

Summary and Observations:

During each Event, the test data is compared to the previous Event to evaluate the progress for this remediation project.

The HORIBA Analytical instrument is calibrated with HEXANE and CO₂.

The formula used to calculate the Emission Rate is: $ER = HC \text{ (ppmv) x MW (Hexane) x Flow Rate (scfm) x 1.58E^{-7} (min)(lb mole) = lbs/hr (hr)(ppmv)(ft^3)$

The total NAPL removed, including liquid and vapor, during the 6.5 hour Event #12 (well RW-1), was 126.32 gals, or 6.63% of the total liquid volume of 1,905 gals. This equates to 19.43 gals/hr.

During the eleven Events totaling 88.3 hours, the total NAPL removed, including liquid and vapor, equals 1,208.83 gals, or 5.35% of a total liquid volume of 22,599 gals. This equates to a NAPL recovery rate of 13.69 gals/hr.

Additional Information:

- The average liquid and vapor NAPL recovery from well RW-1 increased from 16.25 to 19.43 gal/hr.
- The induced vacuum was set lower, and the average GW/NAPL pump rate was slightly increased by 0.18 gpm. These changes were necessary to maintain a liquid recovery volume in the 1,900 gallon range over a 7.0 hour Event period. The 2,000 gallon collection tank is a limiting factor for this site. With a larger capacity collection tank, the induced vacuum, liquid pump rate and NAPL recovery could be increased.

This was the last Event we have scheduled for this site. We are preparing a final report with more data and recommendations on how to increase the LNAPL recovery rate through the Event process at this site. Once we compile all the data, we would like to schedule a conference with both of you, perhaps in your Houston office.

We appreciate you selecting AcuVac to provide this service.

Sincerely,

James E. Sadler, VP Engineering/Environmental

cc: Brittany Ford CRA- Dallas

Well and Recovery Data Information - Event #12 July 10, 2013

EVENT NO		12
Well Number		RW-1
Total Event Hours		6.5
TD	ft	90.0
Well Size	in	4.0
DTGW - Static - Start Event #12	ft	62.80
DTNAPL - Static - Start Event #12	ft	59.04
NAPL	ft	3.76
DTGW - End Event #12	ft	59.95
DTNAPL - End Event #12	ft	59.93
NAPL	ft	0.02
Average Extraction Well Vacuum	"H ₂ O	100.00
Average Extraction Well Vapor Flow	scfm	9.47
Average GW/NAPL Pump Rate	gpm	4.59
Average TPH	ppmv	11,181
Average CO ₂	%	7.59
Average CO	%	0
Average O ₂	%	10.1
Average H ₂ S	%	2.43
Total Liquid Volume Recovered	gals	1,905
Total Liquid NAPL Recovered	gals	121.65
Total Liquid NAPL Recovered	%	6.39
Total Vapor and Liquid NAPL Recovered	gals	126.32
Total NAPL Recovered	%	6.63
Total NAPL Recovered	lbs	884.2
Total Volume of Well Vapors	cu.ft	3,693

OPERATING DATA - EVENT #12

PAGE # |

ACUVAC MOBILE DUAL PHASE SYSTEM

Locati	Location: "F" State Site, Lea County, NM Project Managers: Faucher/Hendley									
	Date:	07/10/2013	07/10/2013	07/10/2013	07/10/2013	07/10/2013	07/10/2013			
	Parameters	Time 0630	Time 0700	Time 0730	Time 0800	Time 0830	Time 0900			
	WELL# MW-1	Hr Meter 6447.5	Hr Meter 6448.0	Hr Meter 6448.5	Hr Meter 6449.0	Hr Meter 6449.5	Hr Meter 6450,0			
	R.P.M.	2400	2200	2200	2200	2200	2200			
VER	Oil Pressure psi	50	50	50	50	50	50			
ENGINE/BLOWER	Water Temp °F	130	130	140	140	140	140			
INE/	Volts	13	13	13	13	13	13			
ENG	Intake Vacuum "Hg	19	19	15	19	19	19			
	Gas Flow Fuel/Propane cfh	130	130	130	130	130	130			
	GW Pump ON/OFF	ON	on	ON	on	on	ON			
//AIR	Extraction Well Flow scfm	9.47	9.47	9.47	9.47	9.47	9.47			
ATMOSPHERE/VACUUM/AIR PUMP/VOLUME	Extraction Well Vacuum "H ₂ O	100	100	100	100	100	100			
SPHERE/VACUU PUMP/VOLUME	Pump Rate gals/min	4.0	4.0	4.0	4.0	5.0	5.0			
HERE	Total Volume gals	-	120	240	360	480	630			
IdSOI Dd	Influent Vapor Temp. °F				-	-				
ATN	Air Temperature °F	74.2	75.4	76.0	80.4	82.4	83.8			
	Barometric Pressure "Hg	30.10	30.10	30.10	30.10	30.10	30.10			
5	HC ppmv	10,040	-	10,840	1	9.340	_			
VAPOR /INFLUENT	CO ₂ / CO %	5:84/0.0	-	7,20/0,0	-	7:62/00	-			
VA /INFI	O ₂ %	10,3	-	10.9	-	14.7	-			
	H ₂ S %	3	-	2	-	2	_			
	POLFORMOS ALL SAFOT CHECKS STARTED EVENT @ 0630 Has									
	SET GW PUMP CGLOF BTOC FUTTA WELL VAL SET C 100" HZO									
S	RESULTING FUA WELL VAPOR FLOW OF 9.47 SCFM									
NOTES	WELL VAC AND VAPOR FLOW REMAINED CONSTANT									
-	AT 0830 HIZS INCROTSOD GW PUMP PLATE TO 5.0 GPM.									
			and the second second							
	NAPL % Vol Gals	1	9/10.8	8/9.6	8/9.6	7/8.4	7/8.4			
ILD	Data Logger ft	-	-	-	-	-	-			
MANIFOLD	Depth of GW Depression ft	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0			
M	Extraction Well DTNAPL ft	59.04								
	Extraction Well DTGW ft	62.30								
Indicates	s Well Pressure	276				7FORMS/TestFo	rms/1210018			

NAPL 3.76

AVR

OPERATING DATA - EVENT #12

PA	GE	#`	2
	~~		

ACUVAC MOBILE DUAL PHASE SYSTEM

Location: "F" State Site, Lea County, NM Project Managers: Faucher/Hendley						endley				
	Date:	07/10/2013	07/10/2013	07/10/2013	07/10/2013	07/10/2013	07/10/2013			
	Parameters	Time 0930	Time 1000	Time 1030	Time 1/00	Time 1130	Time 1200			
	WELL # MW-1	Hr Meter 6450.5	Hr Meter 6451.0	Hr Meter 6457.5	Hr Meter 6452.0	Hr Meter 6452.5	Hr Meter 6453.0			
	R.P.M.	2000	2000	2000	7000	2000	2000			
VER	Oil Pressure psi	50	60	50	50	50	50			
BLOV	Water Temp °F	140	140	140	140	140	140			
ENGINE/BLOWER	Volts	13	13	13	13	13	13			
ENG	Intake Vacuum "Hg	19	19	19	19	19	19			
	Gas Flow Fuel/Propane cfh	12	12	12	12	12	12			
	GW Pump ON/OFF	0~	ON	on	0~	ON	0~			
AIR	Extraction Well Flow scfm	9.47	9.47	9,47	9.47	5.47	9.47			
UUM	Extraction Well Vacuum "H ₂ O	100	100	100	100	100	100			
SPHERE/VACUU PUMP/VOLUME	Pump Rate gals/min	5.0	5.0	5.5	5.5	5.5	5-5			
HERE MP/V	Total Volume gals	780	930	1080	1245	1410	1575			
ATMOSPHERE/VACUUM/AIR PUMP/VOLUME	Influent Vapor Temp. °F	-	-	-			-			
ATM	Air Temperature °F	86.2	88.8	91.4	92.6	95.4	96.6			
	Barometric Pressure "Hg	30.10	30.10	30.10	30.10	30.10	30.10			
L.	HC ppmv	9980	200	11730	~	12,120	1			
VAPOR /INFLUENT	CO ₂ / CO %	7.52/0,0		7:64/0.0	-	8.25/0.0	-			
VAI	O ₂ %	7,5	-	7.8	~	8.7	<u> </u>			
,	H ₂ S %	2	-	2	-	:3	· · · · ·			
	INDUCED WELL VAC AND WELL VAPOR PLOW REMAINED CONSTANT									
	DURING THIS PAZIOD.									
s	TACROASED THE GW PUMP RATE TO S.SGPMC 1030 Has.									
NOTES										
2				e contra dana da ar						
	NAPL % Vol Gals	1/10.50	7/10.50	7/10.50	6/9.9	6. 9.9	5/8.25			
)LD	Data Logger ft	-	-	-	_		-			
MANIFOLD	Depth of GW Depression ft	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0			
W	Extraction Well DTNAPL ft			., -						
	Extraction Well DTGW ft									

() Indicates Well Pressure

R		
	OPERATING	1

ERATING DATA - EVENT #12

		1
DIOD		
PAGE	#	_)
I INGL		-

ACUVAC MOBILE DUAL PHASE SYSTEM

Location: "F" State Site, Lea County, NM Project Managers: Faucher/Hendley										
	Date:	07/10/2013	07/10/2013	07/10/2013	07/10/2013	07/10/2013	07/10/2013			
	Parameters	Time (230)	Time 1300	Time	Time	Time	Time			
	WELL # MW-1	Hr Meter 6453.5	Hr Meter 6454.0	Hr Meter	Hr Meter	Hr Meter	Hr Meter			
	R.P.M.	2000	2000							
/ER	Oil Pressure psi	50	50							
BLOW	Water Temp °F	140	140							
ENGINE/BLOWER	Volts	13	13							
ENG	Intake Vacuum "Hg	19	19							
	Gas Flow Fuel/Propane cfh	12	12							
	GW Pump ON/OFF	لده	on							
/AIR	Extraction Well Flow scfm	9.47	9.47							
ATMOSPHERE/VACUUM/AIR PUMP/VOLUME	Extraction Well Vacuum "H ₂ O	100	100							
SPHERE/VACUU PUMP/VOLUME	Pump Rate gals/min	5.5	5.5							
HERE MP/V	Total Volume gals	1740	1905							
N d IdSOJ	Influent Vapor Temp. °F	_								
ATM	Air Temperature °F	97.4	97.8							
	Barometric Pressure "Hg	30.10	30.10							
L.	НС ррту	14,220								
OR	CO ₂ / CO %	9.010.0	-							
VAPOR /INFLUENT	O ₂ %	10.9	-							
`	H ₂ S %	3	-	-						
	WELL FLOW AND VAC REMANNED STEADY THROUGHOUT THE PO2400. AT 1300 HRS COLLECTION TANK REACHED CAPACITY AND EVENT									
	AT 1300 HAS COLLECTION TANK REACHED CAPACITY AND EVENT									
S	Concluso.									
NOTES										
-										
						1				
	NAPL % Vol Gals	4/6.6	4/ 0.6							
ILD	Data Logger ft									
MANIFOLD	Depth of GW Depression ft	-1.0	-1.0							
M.	Extraction Well DTNAPL ft		5993							
	Extraction Well DTGW ft		59.95							

() Indicates Well Pressure

NAPL :02

AcuVac Remediation, LLC.

1656-H Townhurst, Houston, Texas 77043 713.468.6688 • Fax: 713.468.6689 • www.acuvac.com

October 21, 2013

Mr. Scott Christ Project Manager Conestoga-Rovers & Associates 6320 Rothway, Suite 100 Houston, Texas 77040

Dear Scott:

Re: Event #13: "F" State Site, Lea County, NM

The following is the Report and a copy of the Operating Data collected during the Mobile Dual Phase (MDP) Event #13 at the above location on October 17, 2013. Table #1 is the Well Data Information on well RW-1. PSH is referred to as NAPL in this report. GW samples are frequently taken in 2,000 ml beakers to determine the average NAPL percentage and volume.

Summary of MDP Event #13 - Well RW-1

The total Event time was 7.0 hours. The data is compared to Event #12 conducted on July 10, 2013, which had a total Event time of 6.5 hours.

- The total GW/NAPL recovered was 1,890 gals of which 8.68% or 164.03 gals were NAPL.
- Total NAPL vapors burned as IC engine fuel were 5.45 gals, resulting in a total liquid and vapor NAPL recovery of 169.48 gals, or 8.97%. This equates to 24.21 gal/hr, which is an increase of 4.78 gals/hr.
- Average HORIBA Analytical Data from the influent vapor samples was: HC = 12,316 ppmv, $CO_2 = 7.35\%$, CO = 0%, $O_2 = 9.4\%$ and $H_2S = 2.63$ ppm.
- Compared with MDP Event #12 data, the TPH levels increased 1,135 ppmv, CO₂ decreased 0.24%, CO was equal at 0%, O₂ decreased 0.7%, and H₂S increased 0.20 ppm.
- The Average Induced Vacuum was 93.33"H₂O and the average EW vapor flow was 9.32 scfm. The average induced vacuum decreased 6.67"H₂O and the average well flow decreased 0.15 scfm.
- The GW pump was set at 62.0 ft BTOC. The average GW/NAPL pump rate was 4.50 gpm. The average GW pump rate decreased 0.09 gpm.
- The average GW depression was estimated at 1.0 ft below static level, which was consistent with Event #12. This estimate is based on the GW pump position and GW rate.
- At the start of Event #13, the static NAPL level was 3.73 ft and 0.01 ft of NAPL remained at the conclusion of the Event. The static GW level decreased 0.25 ft based on hydro-equivalent.

Additional Information- Event #13

- During the Event period the Induced Well Vacuum was varied to increase the recovery of NAPL as
 a percentage of the total liquid volume. This cycle of increasing and decreasing the Induced Well
 Vacuum every 30 minutes continued for the remainder of the Event period. Based on our
 observations of the amount of NAPL visible in the site gauge, the NAPL recovery increased to
 approximately 12.5%. We recommend the installation of a new, more shallow, well that will
 increase the percentage of NAPL recovery further as less groundwater will be included in the liquid
 recovery.
- The GW pump rate remained steady throughout the Event period at 4.5 gpm as the 2,000 gallon collection tank is a limiting factor. In order to compensate for the tank size, the Induced Well Vacuum was varied, as described above, in order to reduce the GW upwelling and enable the GW pump to capture more NAPL.
- Based on the use of the above methods, the average liquid and vapor NAPL recovery from well RW-1 increased from 19.43 to 24.21 gal/hr.

NAPL Recovery Data:

The total NAPL removed, including liquid and vapor, during the 7.0 hour Event #13 (well RW-1), was 169.48 gals, or 8.97% of the total liquid volume of 1,890 gals. This equates to 24.21 gals/hr.

During the thirteen Events totaling 95.3 hours, the total NAPL removed, including liquid and vapor, equals 1,378.31 gals, or 5.63% of a total liquid volume of 24,489 gals. This equates to a NAPL recovery rate of 14.46 gals/hr.

Method of Calibration and Calculations

During each Event, the test data is compared to the previous Event to evaluate the progress for this remediation project.

The HORIBA Analytical instrument is calibrated with HEXANE and CO₂.

The formula used to calculate the Emission Rate is: $ER = HC \text{ (ppmv) x MW (Hexane) x Flow Rate (scfm) x 1.58E^{-7} (min)(lb mole) = lbs/hr (hr)(ppmv)(ft^3)$

Information included with Report

- Recorded Data
- Photographs of the MDP System and well RW-1

We have tentatively scheduled the next Event for November 14, 2013. Once we review our schedule we can confirm this date with you.

We appreciate you selecting AcuVac to provide this service.

Sincerely,

ACUVAC REMEDIATION, LLC

wallaude

Paul D. Faucher Vice President, Operations

cc: Brittany Ford CRA- Dallas

Well and Recovery Data Information - Event #13

October 17, 2013

Table #1

EVENT		1A
Well Number		MW-8
Total Event Hours		7.0
TD	ft	90.0
Well Size	in	4.0
DTGW - Static - Start Event	ft	62.49
DTNAPL - Static - Start Event	ft	58.76
NAPL	ft	3.73
DTGW - End Event	ft	59.32
DTNAPL - End Event	ft	59.31
NAPL	ft	0.01
Average Extraction Well Vacuum	"H ₂ O	93.33
Average Extraction Well Vapor Flow	scfm	9.32
Average GW/NAPL Pump Rate	gpm	4.50
Average TPH	ppmv	12,316
Average CO ₂	%	7.35
Average CO	%	0
Average O ₂	%	9.4
Average H ₂ S	ppm	2.63
Total Liquid Volume Recovered	gals	1,890
Total Liquid NAPL Recovered	gals	164.03
Total Liquid NAPL Recovered	%	8.68
Total Vapor and Liquid NAPL Recovered	gals	169.48
Total NAPL Recovered	%	8.97
Total NAPL Recovered	lbs	1,186
Total Volume of Well Vapors	cu.ft	3,914

	OPERATING DATA -	EVENT #13	р	PAGE #	ACUVAC MOI		ASE SVSTEM	
Locatio		And the second		AGE #		gers: Faucher/		
	Date:							
	Parameters	Time 6700	Time 0730	Time	Time 0830	Time 0 900	Time OSZO	
	WELL #	Hr Meter	Hr Meter 6578.0	Hr Meter 6578.5	Hr Meter 6579.0	Hr Meter 6579.5	Hr Meter	
	R.P.M.	2000	2000	2000	2000	2000	2000	
VER	Oil Pressure psi	50	50	50	50	50	50	
BLOV	Water Temp °F	130	130	130	130	130	130	
ENGINE/BLOWER	Volts	13	13	13	13	13	13	
ENG	Intake Vacuum "Hg	18	18	18	18	18	18	
	Gas Flow Fuel/Propane cfh	120	120	120	120	120	120	
	GW Pump ON/OFF	ON	0N	02	0~	ON	ON	
R	Extraction Well Flow scfm	9.47	9.47	9.47	9.47	9.47	9.47	
M/AI	Extraction Well Vacuum "H ₂ O	100	100	100	100	100	100	
UME	Pump Rate gals/min	4.5	4.5	4.5	4.5	4.5	4.5	
SPHERE/VACUU PUMP/VOLUME	Total Volume gals	~	135	270	405	540	675	
PHER UMP/	Influent Vapor Temp. °F	-	-	-	-	-	-	
ATMOSPHERE/VACUUM/AIR PUMP/VOLUME	Air Temperature °F	41000	44	46	49	51	52	
АТ	Barometric Pressure "Hg	30.08	30.08	30.08	30.08	30.08	30.08	
	Absolute Pressure "Hg	-	-	-	-	-	-	
ENT	HC ppmv	12,580	-	12,760	-	12,460	-	
LUEN	CO ₂ %	6.84		7.32	-	7.48	-	
VAPOR /INFLU	CO %	0.0	(0.0	-	0.0	-	
POR	O ₂ %	10.5	-	9.7	~	9.6	-	
VA	H ₂ S ppm	2.0	-	3.0	-	2.0	_	
NOTES	AZZIVED AT THE SITE AT 0600 HZS. MOBILIZED THE HOW VAL MOP SYSTEM. PETZFIRMES ALL SAFET CHECKS. THILGIATE SAFET MEETING. STATTED EVENT AT OTOCHES. SET TWITTAL INDICEDUEL VALCE 100" H2O RESULTING IN A WELL PLON OF 9.475CFM SET TOTAL PLUIDS FUMP & 62.0 FT BTOL. SET INITAL GW PUMP RATEC 4.5 GPM.							
	INDUCED WELL VA	te, well F	Low And G	W PUMP TO	ASE REMAS	NED CONSTA	NT	
	THROUGHOUT THE PERSO							
e	LNAPL % Vol Gals	- /-	10/13.5	5/ 12.15	8/10.8	3/ 10.8	7/9.45	
MANIFOLD	Depth of GW Depression ft	-1.0	-1.0	-1-0	-1-0	-1.0	-1.0	
MAN	Extraction Well DTLNAPL ft	58.76						
	Extraction Well DTGW ft	62.49						
() Indicates	s Well Pressure	3.73				7FORMS/Tes	stForms/121001	

NAPL 3.73

1	OPERATING DATA - I	EVENT #13	Р	AGE # Z	ACUVAC MOI	BILE DUAL PH	ASE SYSTEM		
Locatio	on: "F" State Site, Lea	County, NM	1		Project Mana	gers: Faucher/	Hendley		
	Date:	10/17/2013							
	Parameters	Time /000	Time 1030	Time 1100	Time 1130	Time 1200	Time 1230		
	WELL #	Hr Meter 6580.5	Hr Meter 6581. 0	Hr Meter 6581.5	Hr Meter 6582.0	Hr Meter 65 82:50	Hr Meter 65 83.0		
	R.P.M.	2000	2000	2,000	2000	2000	2000		
VER	Oil Pressure psi	50	56	50	50	50	50		
ENGINE/BLOWER	Water Temp °F	130	130	130	130	130	130		
INE/B	Volts	13	13	13	13	13	13		
ENG	Intake Vacuum "Hg	18	18	18	18	18	18		
	Gas Flow Fuel/Propane cfh	120	120	120	120	120	120		
	GW Pump ON/OFF	ON	ON	ON	02	ON	ON		
~	Extraction Well Flow scfm	9.0	9.47	9.0	9.47	9.0	5.47		
M/AI	Extraction Well Vacuum "H ₂ O	80	100	80	100	80	100		
CUU	Pump Rate gals/min	4.5	4.5	4.5	4.5	4.5	4.5		
ATMOSPHERE/VACUUM/AIR PUMP/VOLUME	Total Volume gals	810	945	1080	1215	1350	1485		
UMP/	Influent Vapor Temp. °F	-	-	-	-	-	-		
ISOM	Air Temperature °F	50	50	51	52	55	SUNAY 60		
AT	Barometric Pressure "Hg	30,08	30.08	30.10	30.10	30.10	30.10		
	Absolute Pressure "Hg	-	-	-	-	-	-		
L	HC ppmv	11,820		12,970		12,530	-		
LUENT	CO ₂ %	6.32	-	7.62	-	7.34	-		
/INF]	CO %	0.0	_	0.0	-	6.0	-		
VAPOR /INFLU	O ₂ %	10.7	(9.4	-	8.9	-		
VA	H ₂ S ppm	30	-	3.0	-	3.0	-		
	AT 1000 His Reduced Induced WER VAC TO 80" HZD WHICH LOW FROM THE WATER COLUMN								
	IJ THE WELL RESULTING IN INCREASED PRODUCT RECOVERY. BASED UPON TIMED								
ES	VISUAL INSPECTION OF THE CLEAR SIDE GAUGE, PRODUCT RECOVERY INCREASED TO								
NOTES	APPROXIMATELY 1								
	APPROXIMATELY 20								
6	INDUCED WELL VAC				THIS CICLE	CONTINUED	For		
		THE REMAINDER OF THE EVENT PARW.							
		2	1		0 4 1	12.5/	1-11		
	LNAPL % Vol Gals	12.5/16.9	5.0/6.75	12.5/16.9	5.0 6.75	16.9	5.0 6.75		
EOLD	LNAPL % Vol		5.0/6.75	-1.0	-1.0	-1.0			
MANIFOLD	LNAPL % Vol Gals	/16.9	16.75	/16.9	16.75	/16.9	6.75		

() Indicates Well Pressure

7FORMS/TestForms/1210017B

OPERATING DATA - EVENT #13 PAGE # 3 ACUVAC MOBILE DUAL PHASE SYSTEM										
Locatio	Location: "F" State Site, Lea County, NM Project Managers: Faucher/Hendley									
	Date:	10/17/2013								
	Parameters	Time 1300	Time 1330	Time 1400	Time	Time	Time			
	WELL #	Hr Meter 6583.5	Hr Meter 6584.0	Hr Meter 6584.5	Hr Meter	Hr Meter	Hr Meter			
	R.P.M.	2000	2006	2000						
ENGINE/BLOWER	Oil Pressure psi	50	50	50						
BLO	Water Temp °F	130	130	130						
INE/	Volts	13	13	13						
ENG	Intake Vacuum "Hg	18	18	18						
	Gas Flow Fuel/Propane cfh	120	120	120						
	GW Pump ON/OFF	on	on	on						
¥	Extraction Well Flow scfm	9.0	9.47	9.0						
M/AI	Extraction Well Vacuum "H ₂ O	30	100	80						
UME	Pump Rate gals/min	4.5	4.5	4.5						
VOL	Total Volume gals									
ATMOSPHERE/VACUUM/AIR PUMP/VOLUME	Influent Vapor Temp. °F	-	-	-						
NOSI	Air Temperature °F	50000×	68	72			1			
AT	Barometric Pressure "Hg	3010	30.10	30.10						
	Absolute Pressure "Hg	-	-	-						
E	HC ppmv	11,930		(1,480						
FLUENT	CO ₂ %	8.34		7.56						
	CO %	0.0		0.0						
VAPOR /IN	O ₂ %	8.4		7.8						
VA	H ₂ S ppm	2.0	deta da atxado	3.0						
	AT 1400 HIRS THE CONECTION TANK WAS NOAR CAPADITY. THE VACUUM WAS									
	STOPPED. CONTINUED TO PUMP THE WELL DOWN UNTIL 1410 HZS. AT WHICH POINT									
10	THE PUMP WHS SHOT OFF. DEMOBILIZED THE SITE, PERFORMED HOUSEKEEPING,									
NOTES	LOCAED THE GASE. AT 1500 HRS LEFT THE SITE.									
z										
						1. OH				
	LNAPL % Vol	12.50/	5.0/	12.50						
rp	Gals	/16.9	16.75	/16.9						
MANIFOLD	Depth of GW Depression ft									
MAÌ	Extraction Well DTLNAPL ft	56.31								
	Extraction Well DTGW ft	59.32								
() Indicates	s Well Pressure	1.0-				7FORMS/Te	estForms/1210017B			

NAPL . UI

4

AcuVac Remediation, LLC.

1656-H Townhurst, Houston, Texas 77043 713.468.6688 • Fax: 713.468.6689 • www.acuvac.com

November 25, 2013

Mr. Scott Christ Project Manager Conestoga-Rovers & Associates 6320 Rothway, Suite 100 Houston, Texas 77040

Dear Scott:

Re: Event #14: "F" State Site, Lea County, NM

The following is the Report and a copy of the Operating Data collected during the Mobile Dual Phase (MDP) Event #14 at the above location on November 21, 2013. Table #1 is the Well Data Information on well RW-1. PSH is referred to as NAPL in this report. GW samples are frequently taken in 2,000 ml beakers to determine the average NAPL percentage and volume.

Summary of MDP Event #14- Well RW-1

The total Event time was 7.0 hours. The data is compared to Event #13 conducted on October 17, 2013, which had a total Event time of 7.0 hours.

- The total GW/NAPL recovered was 1,890 gals of which 8.75% or 165.38 gals were NAPL.
- Total NAPL vapors burned as IC engine fuel were 5.33 gals, resulting in a total liquid and vapor NAPL recovery of 170.71 gals, or 9.03%. This equates to 24.39 gal/hr, which is an increase of 0.18 gals/hr.
- Average HORIBA Analytical Data from the influent vapor samples was: HC = 12,763 ppmv, $CO_2 = 8.92\%$, CO = 0%, $O_2 = 9.4\%$ and $H_2S = 2.13$ ppm.
- Compared with MDP Event #13 data, the TPH levels increased 447 ppmv, CO₂ increased 1.57%, CO was equal at 0%, O₂ was equal at 9.4%, and H₂S decreased 0.50 ppm.
- The Average Induced Vacuum was 88.67"H₂O and the average EW vapor flow was 8.80 scfm. The average induced vacuum decreased 4.66"H₂O and the average well flow decreased 0.52 scfm.
- The GW pump was set at 62.0 ft BTOC. The average GW/NAPL pump rate was 4.50 gpm. The average GW pump rate was equal at 4.50 gpm.
- The average GW depression was estimated at 1.0 ft below static level, which was consistent with Event #13. This estimate is based on the GW pump position and GW rate.
- At the start of Event #14, the static NAPL level was 3.35 ft and 0.04 ft of NAPL remained at the conclusion of the Event. The static GW level decreased 0.25 ft based on hydro-equivalent.

Additional Information- Event #14

- During the Event period the Induced Well Vacuum was varied to increase the recovery of NAPL as a percentage of the total liquid volume. This cycle of increasing and decreasing the Induced Well Vacuum every 30 minutes continued for the Event period. Based on our observations of the amount of NAPL visible in the site gauge, the NAPL recovery increased to approximately 12.5%.
- A recommendation is to install a new, more shallow, well that will increase the percentage of NAPL recovery further as less groundwater will be included in the liquid recovery.
- A liquid sample was taken at 1030 hours to illustrate the amount of NAPL in the groundwater/NAPL mixture. A photo is included for reference purposes.
- At the conclusion of the Event, the collection tank was gauged. There was not a clean separation of the groundwater and NAPL at this point. However, it is concluded that 0.60 ft of NAPL was detected. Based on the dimensions of the collection tank, this is approximately 150 gals. A total of 1,890 gals were recovered, leaving 1,740 gals of a groundwater/NAPL emulsion still in suspension. Based on the liquid sample collected, it is estimated that the groundwater/NAPL emulsion contained approximately 1.0 1.50% NAPL, increasing the NAPL recovery by approximately 20 gals for a total NAPL recovery of 170 gals. This exceeds the measured amounts of NAPL recovered during the Event.
- The GW pump rate remained steady throughout the Event period at 4.5 gpm as the 2,000 gallon collection tank is a limiting factor. In order to compensate for the tank size, the Induced Well Vacuum was varied, as described above, in order to reduce the GW upwelling and enable the GW pump to capture more NAPL.
- Based on the use of the above methods, the average liquid and vapor NAPL recovery from well RW-1 increased from 24.21 to 24.39 gal/hr.
- A Summary of Events #4 through #14 is included to illustrate the NAPL at the start and conclusion of each Event, the total NAPL recovered during each Event and the resulting cost per gallon to recover.

NAPL Recovery Data:

The total NAPL removed, including liquid and vapor, during the 7.0 hour Event #14 (well RW-1), was 170.71 gals, or 9.03% of the total liquid volume of 1,890 gals. This equates to 24.39 gals/hr.

During the fourteen Events totaling 102.3 hours, the total NAPL removed, including liquid and vapor, equals 1,549.02 gals, or 5.87% of a total liquid volume of 26,379 gals. This equates to a NAPL recovery rate of 15.14 gals/hr.

Method of Calibration and Calculations

During each Event, the test data is compared to the previous Event to evaluate the progress for this remediation project.

The HORIBA Analytical instrument is calibrated with HEXANE and CO₂.

The formula used to calculate the Emission Rate is: $ER = HC \text{ (ppmv) x MW (Hexane) x Flow Rate (scfm) x 1.58E^{-7} (min)(lb mole) = lbs/hr (hr)(ppmv)(ft^3)$

Information included with Report

- Summary of Events #4 to #14
- Recorded Data
- Photographs of the MDP System and well RW-1

We have tentatively scheduled the next Event for December 13, 2013. Once we review our schedule we can confirm this date with you.

We appreciate you selecting AcuVac to provide this service.

Sincerely, ACUVAC REMEDIATION, LLC

wouch

Paul D. Faucher Vice President, Operations

cc: Brittany Ford CRA- Dallas

Well and Recovery Data Information - Event #14

November 21, 2013

Table #1

EVENT		14
Well Number		RW-1
Total Event Hours		7.0
TD	ft	90.0
Well Size	in	4.0
DTGW - Static - Start Event	ft	61.98
DTNAPL - Static - Start Event	ft	58.63
NAPL	ft	3.35
DTGW - End Event	ft	59.24
DTNAPL - End Event	ft	59.20
NAPL	ft	0.04
Average Extraction Well Vacuum	"H2O	88.67
Average Extraction Well Vapor Flow	scfm	8.80
Average GW/NAPL Pump Rate	gpm	4.50
Average TPH	ppmv	12,763
Average CO ₂	%	8.92
Average CO	%	0
Average O ₂	%	9.4
Average H ₂ S	ppm	2.13
Total Liquid Volume Recovered	gals	1,890
Total Liquid NAPL Recovered	gals	165.38
Total Liquid NAPL Recovered	%	8.75
Total Vapor and Liquid NAPL Recovered	gals	170.71
Total NAPL Recovered	%	9.03
Total NAPL Recovered	lbs	1,195
Fotal Volume of Well Vapors	cu.ft	3,696

"F" STATE SITE LEA COUNTY, NM SUMMARY OF EVENTS #4 THROUGH #14

OPERATING DATA - EVENT #14 PAGE # 1 **ACUVAC MOBILE DUAL PHASE SYSTEM** Location: "F" State Site, Lea County, NM **Project Managers: Faucher/Hendley** Date: 11/21/2013 Time Time Parameters Time Time Time Time 0630 0830 0730 0800 0700 Hr Meter Hr Meter Hr Meter Hr Meter Hr Meter Hr Meter WELL # 6607.0 6606.5 6605.0 6605.0 6607.50 6605.5 R.P.M. 2000 2000 2000 2000 2000 2000 ENGINE/BLOWER Oil Pressure 50 psi 50 50 50 50 50 °F Water Temp 130 130 130 130 130 130 Volts 13 13 13 13 13 13 16 Intake Vacuum "Hg 16 16 16 16 16 Gas Flow Fuel/Propane 120 120 cfh 120 120 120 120 02 on **GW** Pump **ON/OFF** ON SNO on no 8.68 Extraction Well Flow scfm 8.18 9.47 9.47 8.18 8.18 ATMOSPHERE/VACUUM/AIR 80 Extraction Well Vacuum "H2O 80 80 100 100 100 PUMP/VOLUME 4.5 Pump Rate 4.5 4.5 gals/min 4.5 4.5 4.5 540 Total Volume gals 405 135 270 675 Influent Vapor Temp. °F --SUN 54 Air Temperature CLOUDY °F 54 55 56 60 56 30,04 **Barometric** Pressure "Hg 30.02 30.02 30.04 30.04 30,02 Absolute Pressure "Hg 12,810 HC ppmv 10,230 12,550 VAPOR /INFLUENT 5.28 CO_2 % -7.68 8.78 CO % .02 ø -,02 -- O_2 % 7.1 8.2 10.8 -H₂S ppm 2 2 1 SEE PAGE 1A. NOTES . LNAPL % Vol 12.50 12.54 12,50 3/6.75 6.75 16.98 116.98 16.88 Gals MANIFOLD Depth of GW Depression ft -1.0 -1:0 -1.0 -1.0 -1.0 -1.0 58.63 Extraction Well DTLNAPL ft 1 61.98 Extraction Well DTGW ft 3.35 () Indicates Well Pressure 7FORMS/TestForms/1210017B NAPL

(1	D
V	44	18
Υ		(V V)
· ·	~	1

DETAILED OPERATING DATA - EVENT #14 PAGE # /A

ACUVAC MOBILE DUAL PHASE SYSTEM

Location: "F" State Site, Lea County, NM Project Managers: Faucher/Hendley							
	Date:	11/21/13	-	-	-	-	-
	Parameters	Time	Time	Time	Time	Time	Time
	WELL# MW-1	Hr Meter	Hr Meter	Hr Meter	Hr Meter	Hr Meter	Hr Meter
NOTES	Parameters	Time Hr Meter D THE MP. ADV EDS FUL ESITE AN HED TO O 630 DCH TES DICED DE DICED DE	Hr Meter SITE ON ISOD BY CA ISOD BY CA ISOD BY CA ISOD BY CA OGOS ON MILGATE S HES. IS HES. IS HES. IS NELL VA SED SIGNA OPAQUE INDUCED LA HEL RECON	Hr Meter Hr Met	Hr Meter LAYING OUT HAT THE C LATE THE C LATE THE C LATE THE C LATE THE COMPLETED TG. DUCED WE INTOR FLOW SET INIT SET INIT SET INIT LATE SC LATE S. TO 100 " He O	Hr Meter Hr Meter MoBE: Pe MoBE: Pe NOBE:	Hr Meter

AR

OPERATING

DATA - EVENT #14	PAGE # Z

Z ACUVAC MOBILE DUAL PHASE SYSTEM

Location: "F" State Site, Lea County, NM Project Managers: Faucher/Hendley								
	Date:	11/21/2013	-	-		-	_	
Lots -	Parameters	Time 0930	Time	Time (030	Time	Time 1130	Time 1200	
	WELL #	Hr Meter	Hr Meter 6608.5	Hr Meter 6609.0	Hr Meter 66 09.5	Hr Meter 6610-0	Hr Meter 66/0.5	
	R.P.M.	2000	2000	2000	2000	2000	2000	
ENGINE/BLOWER	Oil Pressure psi	50	50	50	50	50	50	
BLO	Water Temp °F	140	140	140	140	140	140	
INE/	Volts	13	13	13	13	13	13	
ENG	Intake Vacuum "Hg	16	18	18	18	18	18	
	Gas Flow Fuel/Propane cfh	120	120	120	120	120	120	
	GW Pump ON/OFF	ON	60	on	ON	ON	00	
R	Extraction Well Flow scfm	8.18	9.47	8-18	9.47	7.49	9.47	
IA/M	Extraction Well Vacuum "H ₂ O	80	100	80	100	70	100	
CUU	Pump Rate gals/min	4.5	4.5	4.5	4.5	4.5	4.5	
ATMOSPHERE/VACUUM/AIR PUMP/VOLUME	Total Volume gals	810	945	1,080	1215	1350	1485	
PHEI	Influent Vapor Temp. °F	~	-		-	-	-	
MOS	Air Temperature °F	68	72	BREEF	72	74	78	
AT	Barometric Pressure "Hg	30.06	30.06	30.06	30.06	30.04	30.04	
	Absolute Pressure "Hg	-	-	-	-	-	-	
F	HC ppmv	14,910	-	15,160	~	13,710	-	
VAPOR /INFLUENT	CO ₂ %	9.32	_	9.68	-	9.54	~	
/INF	CO %	.04	~	.04	•	.05	-	
POR	O ₂ %	12.1	~	9.0	-	9.4	-	
VA	H ₂ S ppm	2	-	2	-	2	-	
NOTES	CYCLE OF INCREASING AND DECREASING THE INDUCED WELL VAR WAS REPEATED THROUGHOUT THIS PORTOD OF THE EVOUT. AT 1030 Has OBTAINED A LIOUID SAMPLE, SEE ATTACHED PHOTO,							
2.	LNAPL % Vol		2~1			_/	2 57	
	LNAPL % Vol Gals	5.0/6.75	12.50/16.98	5.0/6.75	12.50/16.98	5/6.75	12.50/1681	
MANIFOLD	Depth of GW Depression ft	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	
MAN	Extraction Well DTLNAPL ft							
	Extraction Well DTGW ft							
Indicates	Well Pressure					TEOD MO/T	stForms/1210017F	

() Indicates Well Pressure

7FORMS/TestForms/1210017B

X

	OPERATING DATA - E			AGE # 🕇			HASE SYSTEM			
Locatio		· · · · · · · · · · · · · · · · · · ·			Project Man	agers: Fauche	r/Hendley			
	Date:	11/21/2013 Time	Time	Time	Time	Time	Time			
		1230	Time 1300	Time 1330						
	WELL #	Hr Meter 66110	Hr Meter	Hr Meter 6612-0	Hr Meter	Hr Meter	Hr Meter			
	R.P.M.	2000	2000	2200						
WER	Oil Pressure psi	50	50	50						
ENGINE/BLOWER	Water Temp °F	140	140	140						
INE/	Volts	13	13	13						
ENG	Intake Vacuum "Hg	18	18	18						
	Gas Flow Fuel/Propane cfh	120	120	120						
	GW Pump ON/OFF	ON	00	OFF						
×	Extraction Well Flow scfm	7.49	9.47	7.49						
M/AI	Extraction Well Vacuum "H ₂ O	70	100	70						
CUU	Pump Rate gals/min	4.5	4.5	4.5		1				
PUMP/VOLUME	Total Volume gals	1620	1755	1890						
PHER UMP/	Influent Vapor Temp. °F	-	-	-						
ATMOSPHERE/VACUUM/AIR PUMP/VOLUME	Air Temperature °F	78	79	80						
AT	Barometric Pressure "Hg	30.04	30.02	30.00						
	Absolute Pressure "Hg	-	_	-						
TY	НС ррти	11,370	~	11,360						
VAPOR /INFLUENT	CO ₂ %	8.40	~	8.68						
INF	CO %	.01	~	,01						
POR	O ₂ %	5.6	~	8.6						
VA	H ₂ S ppm	3	~	3						
	THE CYCLE OF ENCREASING AND DECREASING THE WELL VAC CONTINUED DURING									
	THIS PETGOD. AT ISBO HIZS VAC WAS DISCONTINUED. TOTAL FLUNDS PUMP									
Ś	WAS DISCONTINUED C 1340 HAS. RW-1 WAS GAUGED.									
NOTES	DE-MOBED THE SITE, DEPARTED SITE AT 1430 Hirs.									
Z										
	ADDITIONAL COM	ADDITIONAL COMMEANS ON PAGE 33.								
	LNAPL % Vol Gals	5/6.75	12.50/16.88	5/6.75						
OLD	Depth of GW Depression ft	-1.0								
MANIFOLD		-1.0	-1.0	-1-0						
MA	Extraction Well DTLNAPL ft			59.20						
	Extraction Well DTGW ft			59.24						
() Indicate	s Well Pressure			.1		7FORMS/1	TestForms/1210017B			

NAPL .04

AVR	DETAILED OPERATING	C DATA - EV	FNT #14 P	AGE # 3A	ACUVAC MOR	BILE DUAL PHA	ASE SVSTEM			
Locatio	Location: "F" State Site, Lea County, NM Project Managers: Faucher/Hendley									
	Date:	11/2/13	-	-	-	-	-			
	Parameters	Time	Time	Time	Time	Time	Time			
	WELL# MW-1	Hr Meter	Hr Meter	Hr Meter	Hr Meter	Hr Meter	Hr Meter			
NOTES	AT 1415 THE C THE NAPL THICK THE TANK OPENIN AT 1.6 PT BELOW THE CONTESS OF CALCULATION T THE CONTESS OF TANK HERGHT NAPL THICKNESS: 7.2" & 20.83 TOTAL VOLUMIS I NAPL FROM AB ESTIMATED NAPL THE ABOVE CAU EVENT PERIOD T	WESS. 7 NG. 77HE N THE TO , 6 FT 2 THE EN 96". 7 GAL = 2200022 dVE CONTENT 149.98 CULATION	THE NAPL E BOTTOM ANIC OPEN ANIC OPEN ANIC OPEN OR 7.2" CHE / PRO NENT. ING. 486 D OF REMAN LIQUE + 17.40 SUPPORTS	WAS APPRO DF THE NI NG. THE '. THE PE VE THE E JME ZION AL [1, 8] (19 JING D. 2 167.38 THE ESTIM	× (FT BEL APL THICK AP INDICA DUDWING (2577MASS GAL. 70.00 GAL 190 17.40 GAL SH MASES US	LOW THE TOP NESS WAS E ATES A NA S A TBASIC MADE DU 0/96 = 20, 0/96 = 20, 100 GA	PL STIMATED PL RING 23 GAN STU 44			

