3R – 090 2013 AGWMR

08/22/2014

David C. Hathaway, P.E. Program Manager

ConocoPhillips Company Risk Management & Remediation 1380-E Plaza Office Building 315 Johnstone Avenue Bartlesville, OK 74004 Phone: 918.661.6983 E-mail: David.C.Hathaway@conocophillips.com

Mr. Glenn von Gonten New Mexico Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

August 22, 2014

Re: NMOCD Case No. 3R-090, 2013 Annual Groundwater Monitoring Report

Dear Mr. von Gonten:

Enclosed is the 2013 Annual Groundwater Monitoring Report for the Nell Hall No. 1 site. This report, prepared by Conestoga-Rovers & Associates (CRA), contains the results of groundwater monitoring from March, June, September, and December 2013.

Please let me know if you have any questions.

Sincerely,

atheway

David C. Hathaway, P.E.

Enc

www.CRAworld.com

Final Report

2013 Annual Groundwater Monitoring Report

ConocoPhillips Nell Hall No. 1 San Juan County, New Mexico API# 30-045-09619 NMOCD# 3R-090

Prepared for: ConocoPhillips Company

Conestoga-Rovers & Associates

6121 Indian School Road, NE Suite 200 Albuquerque, New Mexico 87110

September 2014 • 074941 • Report No. 5

Table of Contents

Page

Section 1.0		duction Background	
Section 2.0	Grou	ndwater Monitoring Methodology and Analytical Results	2
	2.1	Groundwater Monitoring Methodology	2
	2.2	Groundwater Monitoring Results	3
Section 3.0	Conc	lusion and Recommendations	4

List of Figures (Following Text)

- Figure 1 Site Vicinity Map
- Figure 2 Site Plan
- Figure 3 Geological Cross Section
- Figure 4 June 2013 Groundwater Potentiometric Surface Map
- Figure 5 September 2013 Groundwater Potentiometric Surface Map
- Figure 6 December 2013 Groundwater Potentiometric Surface Map
- Figure 7 MW-5 Hydrograph (March 2004 December 2013)
- Figure 8 MW-6 Hydrograph (March 2004 December 2013)
- Figure 9 Graph of Benzene Concentrations and Groundwater Elevations in MW-6
- Figure 10 June 2013 Benzene Concentration Map
- Figure 11 September 2013 Benzene Concentration Map
- Figure 12 December 2013 Benzene Concentration Map
- Figure 13 Proposed Monitor Well Location Map

List of Tables (Following Text)

- Table 1 Site History Map
- Table 2Monitor Well Specifications and Groundwater Elevations (March 2004 December
2013)
- Table 3Groundwater Analytical Results Summary (March 2004 December 2013)

List of Appendices

- Appendix A 2013 Quarterly Groundwater Sampling Field Forms
- Appendix B 2013 Quarterly Groundwater Laboratory Analytical Report

Section 1.0 Introduction

This report presents the results of quarterly groundwater monitoring events conducted by Conestoga-Rovers & Associates (CRA) on March 28, June 12, 2013, September 11, 2013, and December 13, 2013 at the ConocoPhillips Company (ConocoPhillips), Nell Hall No. 1 remediation site (Site), located on private land in Section 07, Township 30N, Range 11W of San Juan County, New Mexico, approximately 2 miles west of the city of Aztec. Geographical coordinates for the Site are 36.821659° North, 108.037319° West. The Site consists of a natural gas well and associated equipment. The location and Site layout are presented as **Figures 1** and **2**, respectively.

1.1 Background

The history of the Site is presented in **Table 1** and is summarized in the following paragraphs.

Environmental investigation at the Site began when closure of an unlined dehydrator discharge pit was attempted in the early 1990's. Soil impacts were discovered during earthmoving activities and groundwater Monitor Wells MW-1, MW-2, and MW-3 were subsequently installed to determine if hydrocarbons had impacted groundwater beneath the Site. An ongoing drought caused the water table to fall below the screened intervals of MW-1, MW-2, and MW-3. On February 17 and 18, 2004, Souder Miller and Associates (SMA) installed Monitor Wells MW-4, MW-5, and MW-6 at sufficient depths to intersect the water table and to account for the effects of further seasonal or drought-based water table fluctuations (Souder Miller and Associates, 2004). Boring log data from MW-4 and MW-6 were used to create a geologic cross-section for the Site (**Figure 3**).

Tetra Tech, Inc. (Tetra Tech) began quarterly sampling of Monitor Wells MW-4, MW-5, and MW-6 in 2004, adjusting to a semi-annual sampling schedule in 2005, followed by annual sampling beginning in 2006. Semi-annual sampling was resumed in 2007 due to seasonal groundwater fluctuations.

It should be noted that the March 2004 groundwater sample was collected immediately following installation of MW-6 in February 2004, in which soil samples collected at 25 and 30 feet below ground surface each resulted in an exceedence of the 50 milligram per kilogram (mg/kg) regulatory limit for BTEX, and soil samples collected at 25, 30, and 35 feet bgs were found to contain total petroleum hydrocarbons (TPH) at levels greater than the 100 mg/kg regulatory limit (SMA, 2004).

On June 15, 2011, Site consulting responsibilities were transferred from Tetra Tech to CRA of Albuquerque, NM.

Currently, groundwater sampling is attempted quarterly, but is typically only possible semi-annually due to seasonal groundwater fluctuations which often render some monitor wells dry.

Section 2.0 Groundwater Monitoring Methodology and Analytical Results

2.1 Groundwater Monitoring Methodology

Groundwater Elevation Measurements

Depth to groundwater was gauged at Monitor Wells MW-1, MW-2, MW-3, MW-4, MW-5, and MW-6 using an oil/water interface probe prior to sampling. Groundwater potentiometric surface maps detailing groundwater elevations, groundwater flow direction, and gradient, using data collected during the 2013 quarterly sampling events are presented as **Figures 4, 5,** and **6**, respectively. In March 2013, all monitor wells were dry, therefore no maps for this event were generated.

Hydrographs illustrating groundwater level fluctuations since March 2004 in Monitor Wells MW-5 and MW-6 are presented as **Figure 7** and **Figure 8**, respectively. These data indicate that groundwater elevations are consistently lowest during the late winter and early spring months. Historically, the groundwater flow direction and gradient vary from season to season. These fluctuations are believed to be the result of changes in irrigation rates and/or baseflow conditions in the Animas River, which, at its closest point, lies approximately 0.6 mile to the south/southeast of the Site (**Figure 1**). Additionally, there is an irrigation ditch to the east of the site which may also influence groundwater gradient. Annual variation in groundwater elevation fluctuates as much as 18 feet over the course of a year. Groundwater flow direction at the site also varies in direction from south to southeast.

Groundwater Sampling

During the 2013 quarterly groundwater monitoring events, Site monitor wells were purged of at least 3 casing volumes of groundwater using 1.5-inch diameter, polyethylene, dedicated bailers. While bailing each well, groundwater parameter data, including temperature, pH, conductivity, dissolved oxygen, and oxidation-reduction potential were collected using a YSI 556 multi-parameter Sonde and recorded on CRA Well Sampling Field Information Forms (**Appendix A**).

Groundwater samples were collected from Monitor Wells MW-4, MW-5 and MW-6 during the 2013 sampling events (except in March when Site monitor wells were dry). Approximately three well volumes were purged from each monitor well with a dedicated, polyethylene, 1.5-inch, disposable bailer prior to sampling or monitor wells were bailed dry and sampled following recharge. Purge water generated during the event was disposed of in the on-site produced water tank (**Figure 2**). Groundwater samples were placed in laboratory prepared bottles, packed on ice, and shipped under chain-of-custody documentation to Pace Analytical Services Inc. of Lenexa, KS.

The samples were analyzed for the presence of benzene, toluene, ethylbenzene and xylenes (BTEX) by Environmental Protection Agency (EPA) Method 8260 and for dissolved iron by EPA Method 6010.

2.2 Groundwater Monitoring Results

The New Mexico Water Quality Control Commission (NMWQCC) mandates that groundwater quality in New Mexico be protected, and has issued groundwater quality standards in Title 20, Chapter 6, Part 2, Section 3103 of the New Mexico Administrative Code (20.6.2.3103 NMAC).

Results of 2013 groundwater sampling events are discussed below.

<u>June 2013</u>

Benzene

 The NMWQCC domestic water supply groundwater quality standard for benzene is 0.01 milligrams per liter (mg/L). The groundwater sample collected in June 2013 from Monitor Well MW-6 exceeded this standard with a concentration of 0.442 mg/L.

Dissolved Iron

 The groundwater quality standard for dissolved iron is 1.0 mg/L. The groundwater samples collected in June 2013 from Monitor Wells MW-4 and MW-6 contained dissolved iron at concentrations of 1.46 mg/L and 16.6 mg/L, respectively.

September 2013

Benzene

• The groundwater sample collected in September 2013 from Monitor Well MW-6 exceeded this standard with a concentration of 0.109 mg/L.

Dissolved Iron

• The groundwater sample collected in September 2013 from Monitor Well MW-6 contained dissolved iron at a concentration of 2.26 mg/L.

December 2013

Benzene

• The groundwater sample collected in December 2013 from Monitor Well MW-6 exceeded this standard with a concentration of 0.467 mg/L.

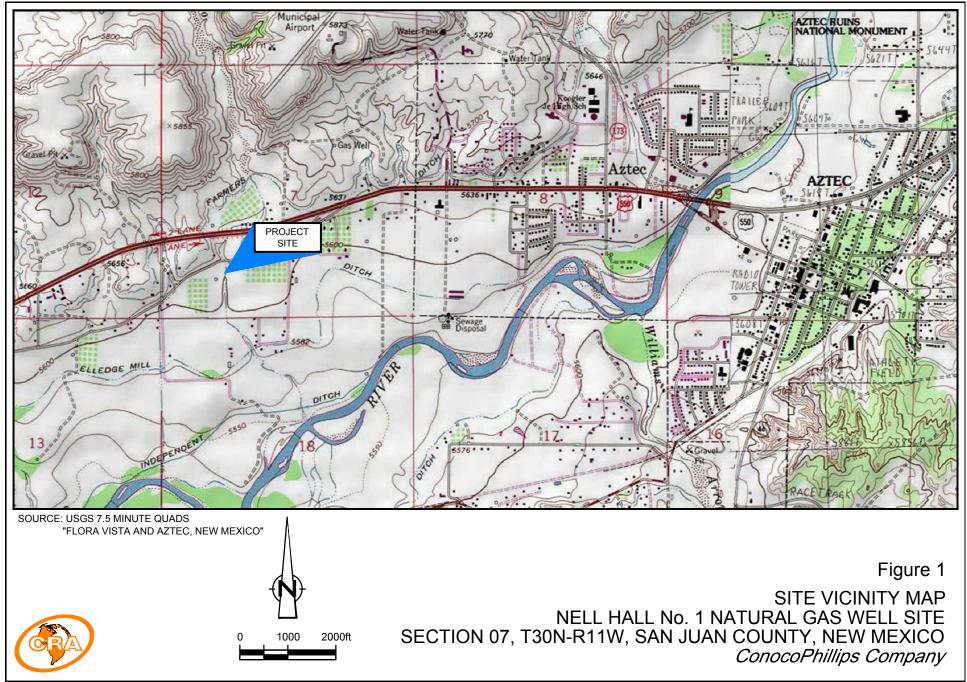
Dissolved Iron

• The groundwater sample collected in December 2013 from Monitor Well MW-6 contained dissolved iron at a concentration of 5.90 mg/L.

Benzene concentrations in MW-6 have fluctuated regularly since monitoring began in March 2004. An inverse correlation between water levels and benzene concentrations has been observed. A graph detailing this relationship is presented as **Figure 9**.

Benzene concentration maps for 2013 quarterly sampling events are presented as Figures 10, 11 and 12.

A summary of historical laboratory analytical results is presented as **Table 3**. Groundwater laboratory analytical reports can be found in **Appendix B**.

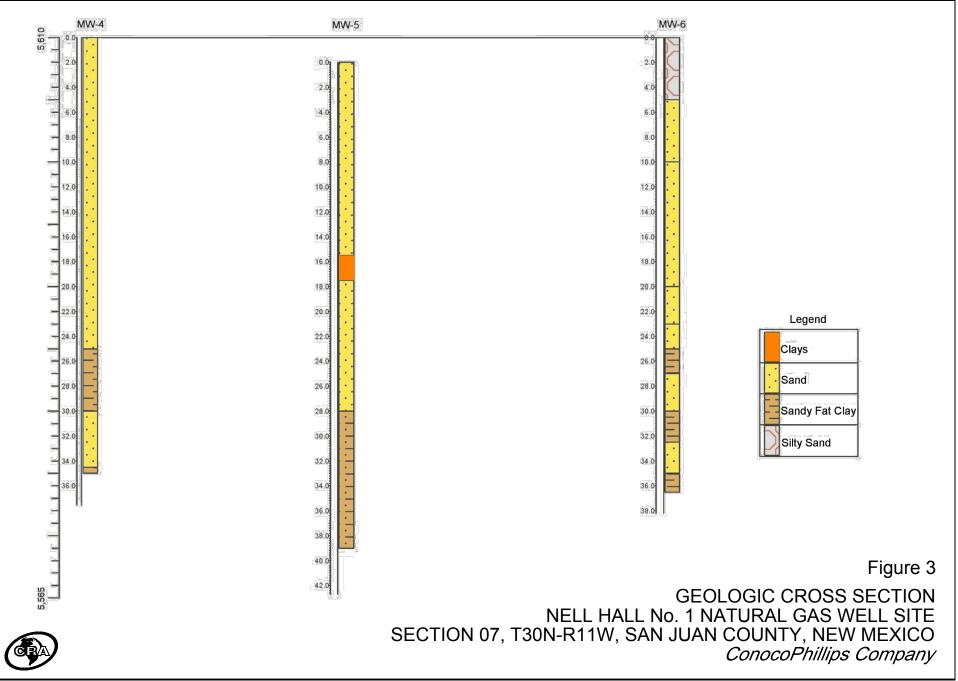

Section 3.0 Conclusion and Recommendations

Based on the detection of BTEX and dissolved iron in MW-6 during 2013 quarterly sampling events, CRA recommends continued groundwater quality monitoring for BTEX and dissolved iron in order to move toward remediation Site closure with NMOCD. Remediation Site closure will be requested when all groundwater quality parameters are below NMWQCC groundwater quality standards, are stable, or are representative of background conditions at the Site.

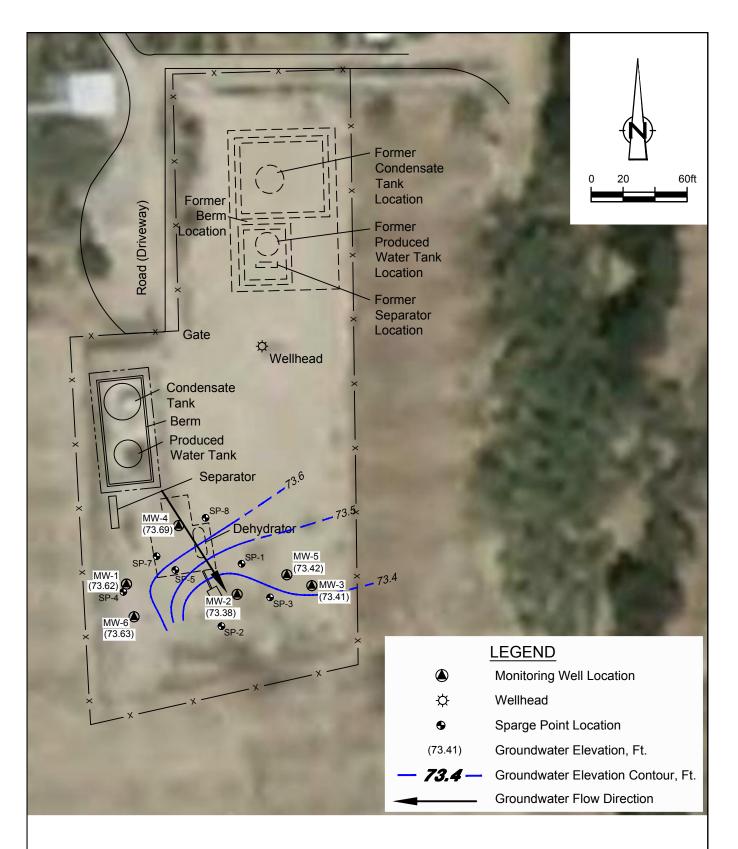
All Site monitor wells will be gauged quarterly. Monitor Wells MW-4, MW-5, and MW-6 will be sampled when possible due to the fluctuating groundwater levels at the Site.

In addition to future groundwater sampling at the site, CRA recommends the installation of additional monitor wells to further delineate groundwater impacts associated with Monitor Well MW-6. A total of three additional monitor wells are being recommended with location of the wells to the west, south, and southeast of MW-6. Proposed boring locations for additional monitor well installation are presented on **Figure 13**.

074941-95(005)GN-DL003_TOPO APR 2/2014

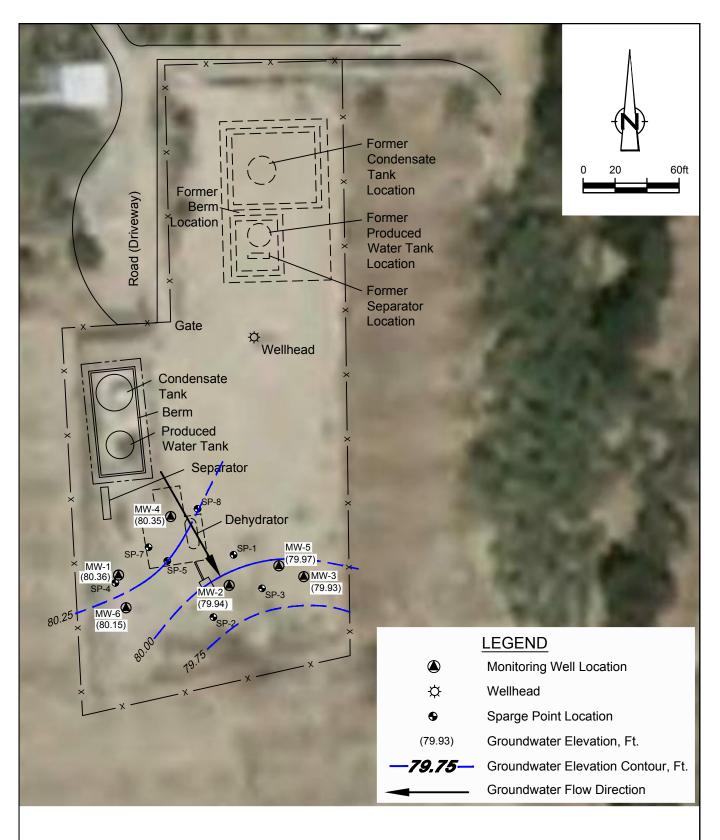


ConocoPhillips high resolution aerial imagery 2008.

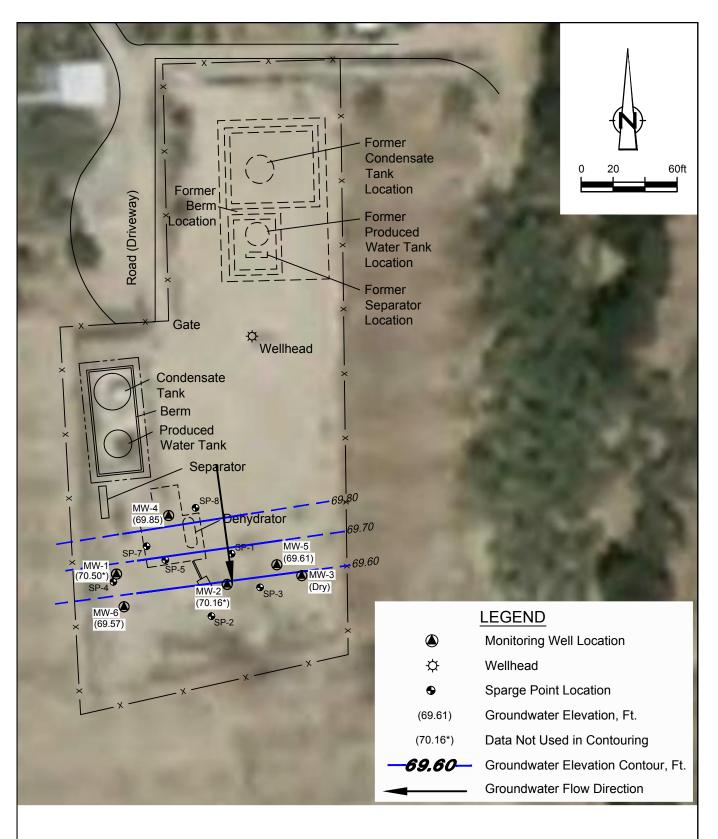

Figure 2

SITE PLAN NELL HALL No. 1 NATURAL GAS WELL SITE SECTION 07, T30N-R11W, SAN JUAN COUNTY, NEW MEXICO *ConocoPhillips Company*

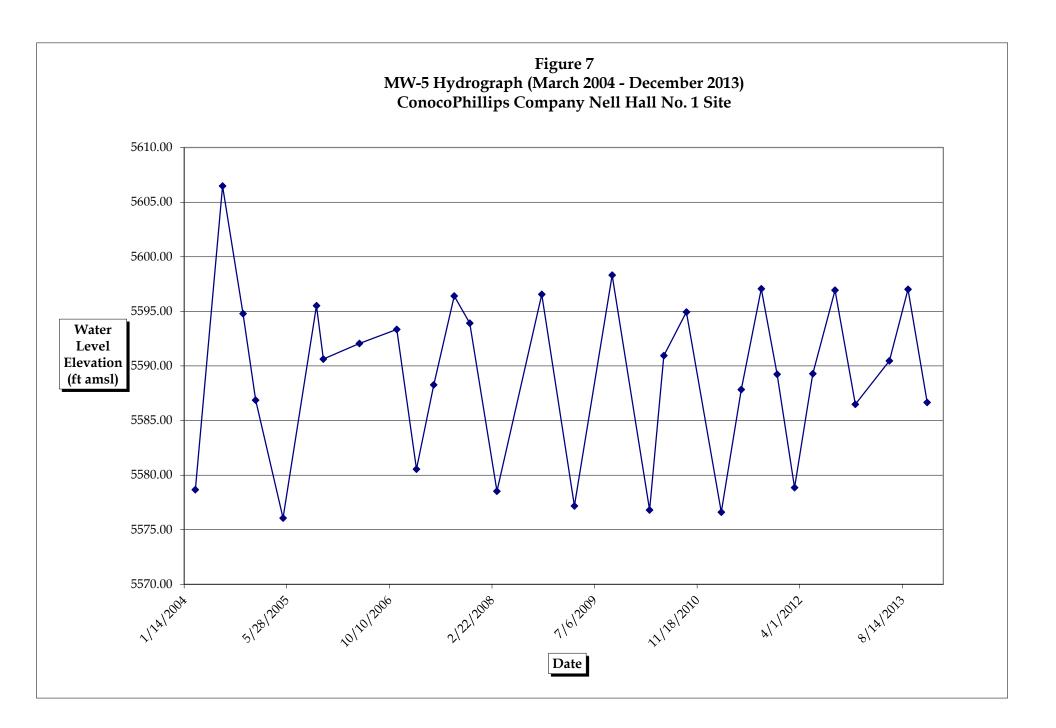
074941-95(005)GN-DL004 APR 2/2014

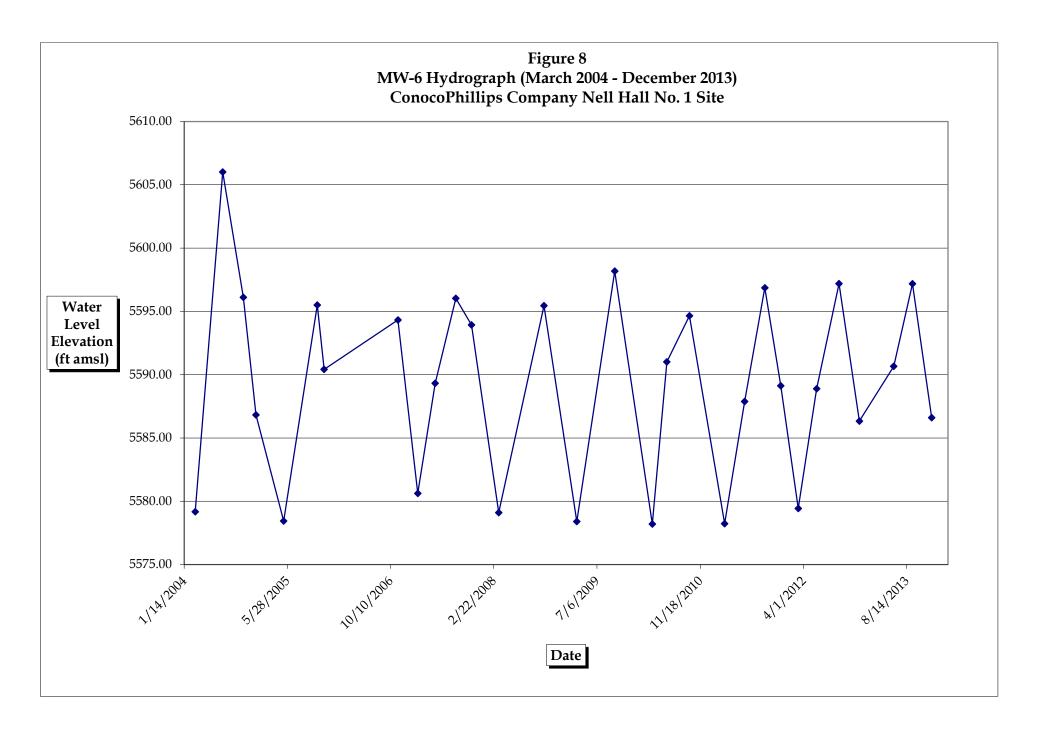


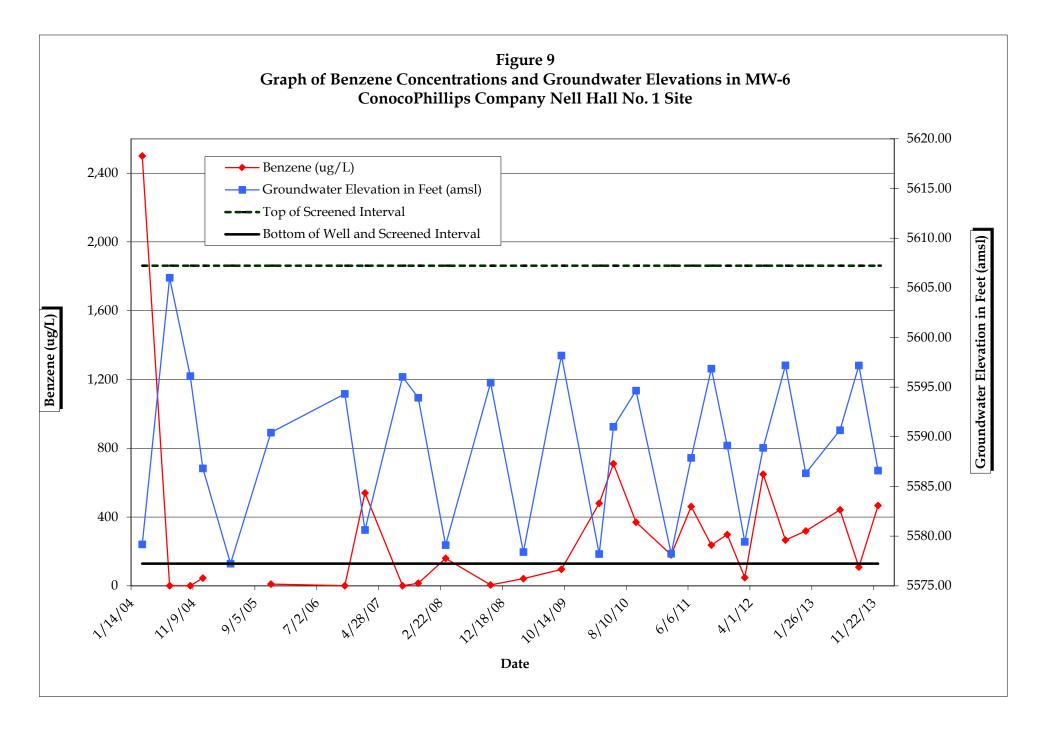
074941-95(005)GN-DL005_XSEC APR 2/2014

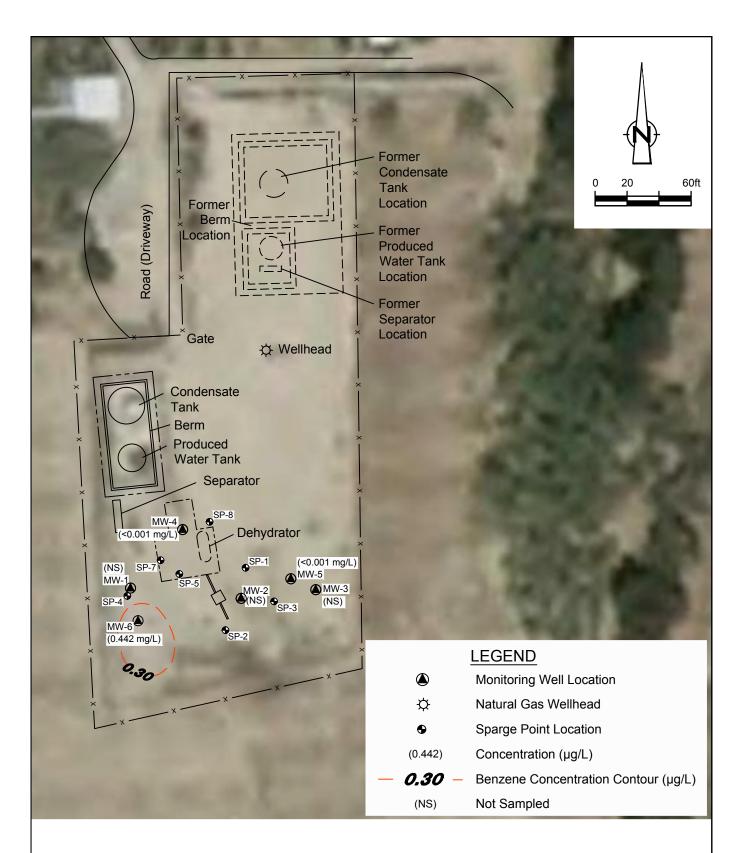

JUNE 2013 GROUNDWATER POTENTIOMETRIC SURFACE MAP NELL HALL No. 1 NATURAL GAS WELL SITE SECTION 07, T30N-R11W, SAN JUAN COUNTY, NEW MEXICO *ConocoPhillips Company*

074941-95(005)GN-DL001 APR 2/2014

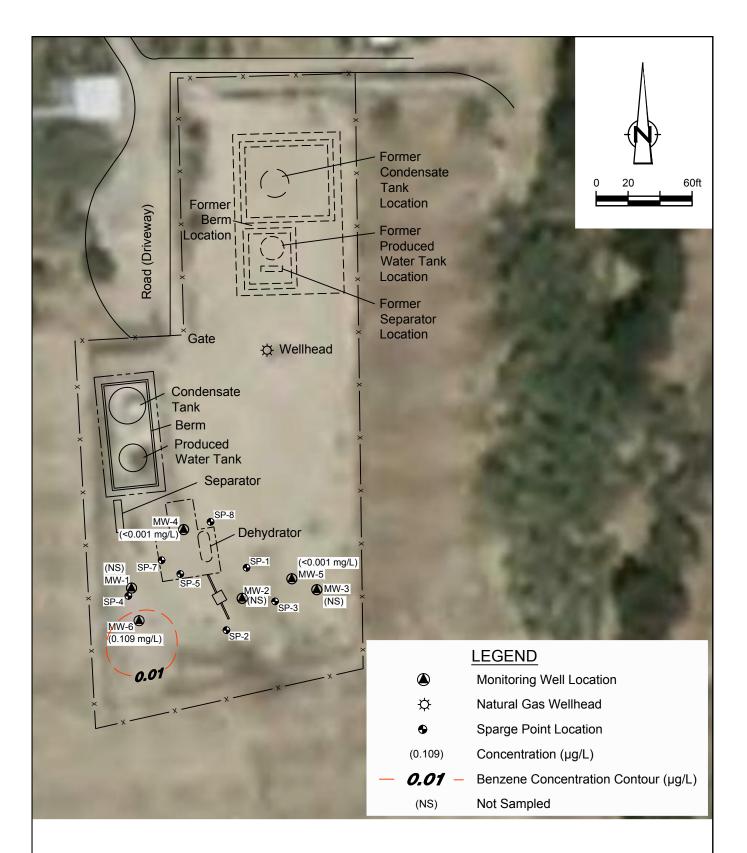

SEPTEMBER 2013 GROUNDWATER POTENTIOMETRIC SURFACE MAP NELL HALL No. 1 NATURAL GAS WELL SITE SECTION 07, T30N-R11W, SAN JUAN COUNTY, NEW MEXICO *ConocoPhillips Company*

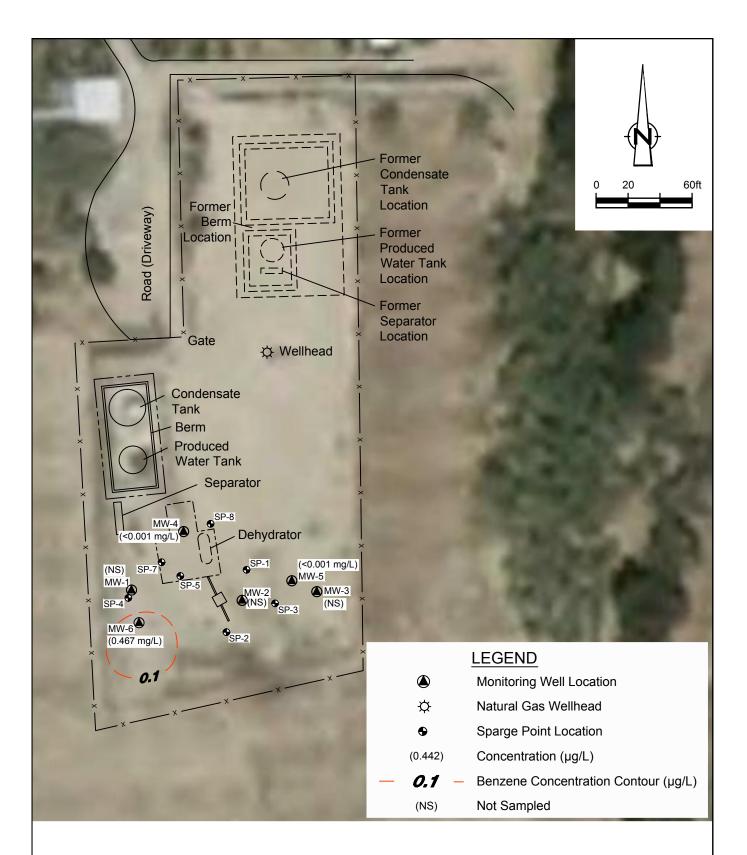

074941-95(005)GN-DL001 APR 2/2014




DECEMBER 2013 GROUNDWATER POTENTIOMETRIC SURFACE MAP NELL HALL No. 1 NATURAL GAS WELL SITE SECTION 07, T30N-R11W, SAN JUAN COUNTY, NEW MEXICO *ConocoPhillips Company*

074941-95(005)GN-DL001 APR 2/2014




JUNE 2013 BENZENE CONCENTRATION MAP NELL HALL No. 1 NATURAL GAS WELL SITE SECTION 07, T30N-R11W, SAN JUAN COUNTY, NEW MEXICO *ConocoPhillips Company*

074941-95(005)GN-DL002 APR 2/2014

SEPTEMBER 2013 BENZENE CONCENTRATION MAP NELL HALL No. 1 NATURAL GAS WELL SITE SECTION 07, T30N-R11W, SAN JUAN COUNTY, NEW MEXICO *ConocoPhillips Company*

074941-95(005)GN-DL002 APR 2/2014

DECEMBER 2013 BENZENE CONCENTRATION MAP NELL HALL No. 1 NATURAL GAS WELL SITE SECTION 07, T30N-R11W, SAN JUAN COUNTY, NEW MEXICO *ConocoPhillips Company*

074941-95(005)GN-DL002 APR 2/2014

Tables

SITE HISTORY TIMELINE CONOCO PHILLIPS COMPANY NELL HALL NO. 1 SAN JUAN COUNTY

Date/Time Period	Event/Action	Description/Comments
February 20, 1961	Well Spudded	Southwest Production Company spudded the Nell Hall No. 1 natural gas production well.
September 1, 1963	Operator Change	Beta Development Company acquired the Nell Hall No. 1 site from Southwest Production Company.
September 15, 1988	Operator Change	Mesa Operating Limited Partnership acquired the Nell Hall No. 1 site from Beta Development Company.
July 1, 1991	Operator Change	Conoco Inc. acquired the Nell Hall No. 1 from Mesa Operating Limited Partnership.
May 3, 1994	Pit Remediation	Conoco stopped flow to the dehydrator, sampled the soil in the unlined dehydrator pit and encountered hydrocarbon-impacted soil.
August 31 through September 1, 1994	Pit Remediation	Conoco removed the dehydrator and Flint Engineering & Construction Co. excavated soil in the vicinity of the former dehydrator pit to a depth of 16 feet. A soil sample at the bottom of the excavation revealed TPH of 380 ppm.
September 21 through October 7, 1994	Pit Remediation	Flint Engineering & Construction Co. landfarmed the excavated soil on site.
June 1 and 2, 1995	Soil Borings and Groundwater Sampling	Phillip Environmental Services Corp. completed initial subsurface assessment (3 temporary monitor wells and 3 additional borings).
June 15, 1995	Soil Borings and Groundwater Sampling	Phillip Environmental Services Corp. completed an additional soil boring.
March 27, 1997	Monitor Well Sampling	On Site Technologies, LTD found insufficient water in the 3 monitor wells for sampling.
June 19, 2002	Groundwater sampling	Souder Miller and Associates (SMA) conducted groundwater sampling at the Site. Samples were collected from MW-1, and sparge points SP-6, SP-7 and SP-8. The only constituent over the NMWQCC standard was benzene in SP-7 at a concentration of 0.018 milligrams per liter (mg/L).
September 17, 2002	Groundwater sampling	SMA conducted groundwater sampling at the Site. Samples were collected from MW-1, and sparge points SP-6, SP-7 and SP-8. The only constituent over the NMWQCC standard was benzene in SP-7 at a concentration of 0.021 mg/L.
January 1, 2003	Operator Name Change	Conoco Inc. and Phillips Petroleum Company merged to form ConocoPhillips Company.
February 17 and 18, 2004	Monitor Well Installation	Monitor Wells MW-4, MW-5, and MW-6 were installed at deeper depths (35 to 39 feet BGS) to adequately intersect the water table, since previously installed groundwater monitoring wells continually went dry. The lowest water levels at the site are found to occur in early spring and late winter. 30 to 35 feet of screen was installed in each well to allow for seasonal groundwater fluctuations of up to 25 feet.
March 8 through December 27, 2004	Monitor Well Sampling	Quarterly groundwater sampling of Monitor Wells MW-4, MW-5, and MW-6; benzene spike in March (MW-6) coincides with MW-6 well installation and discovery of BTEX and TPH impacts to soil at 25-35 feet bgs in MW-6 soil samples collected during drilling.
May 11 through November 22, 2005	Monitor Well Sampling	Semi-annual sampling of monitor wells MW-4, MW-5, and MW-6.
November 15, 2006 February 21, 2007 through October 22, 2008	Monitor Well Sampling Monitor Well Sampling	Annual sampling of monitor wells MW-4, MW-5, and MW-6. Resumption of semi-annual sampling of Monitor Wells MW-4, MW-5, and MW-6 during summer and fall months when water is most likely to be present in wells.
February 6, 2009	BTEX vs. depth to water plotted for MW-6	BTEX concentrations show inverse relationship to water column thickness in MW- 6; plotted from 2/21/07 to 10/22/08.
March 30, 2009	Monitor Well sampling	Monitor Wells MW-5 and MW-6 were sampled. MW-4 was found to be dry during the sampling event. Benzene was reported at a concentration above the groundwater quality standard in MW-6 with a concentration of 0.042 mg/L.
September 30, 2009	Monitor Well Sampling	Groundwater samples were collected from MW-4, MW-5 and MW-6. MW-6 indicated a benzene concentration of 0.096 mg/L and a dissolved iron concentration of 1.06 mg/L.
March 31 and April 1, 2010	Monitor Well Sampling	Groundwater samples collected from MW-5 and MW-6; MW-4 was dry. MW-6 indicated a benzene concentration of 0.480 mg/L and a sample for dissolved iron was not obtained due to low water levels in MW-6.

SITE HISTORY TIMELINE CONOCO PHILLIPS COMPANY NELL HALL NO. 1 SAN JUAN COUNTY

Date/Time Period	Event/Action	Description/Comments
June 9, 2010	Monitor Well Sampling	Groundwater samples collected from MW-4, MW-5 and MW-6 as a continuation of semi-annual sampling event. MW-6 indicated a benzene concentration of 0.710 mg/L and a dissolved iron concentration of 11.4 mg/L.
September 27, 2010	Monitor Well Sampling	Groundwater samples collected from MW-4, MW-5 and MW-6. MW-6 indicated a benzene concentration of 0.30 mg/L and a dissolved iron concentration of 0.676 mg/L.
March 16, 2011	Monitor Well Sampling	Groundwater samples collected from MW-5 and MW-6. MW-4 was observed to be dry during this monitoring event. Laboratory analysis of the groundwater sample from MW-6 indicated a benzene concentration of 0.18 mg/L and a dissolved iron concentration of 8.66 mg/L; however, during the March 2011 sampling event MW-6 contained a very low volume of water and the sample collected may not be representative of actual aguifer conditions.
June 15, 2011	Transfer of Consulting Responsibilities to CRA	On June 15, 2011, Site consulting responsibilities were transferred from Tetra Tech of Albuquerque, NM to CRA of Albuquerque, NM.
June 21, 2011	Monitor Well Sampling	Groundwater samples collected from MW-4, MW-5 and MW-6. Groundwater sampled from MW-6 indicated a benzene concentration of 0.461 mg/L, a xylenes concentration of 0.677 mg/L, and a dissolved iron concentration of 9.45 mg/L.
September 27, 2011	Monitor Well Sampling	Groundwater samples collected from MW-4, MW-5 and MW-6. Groundwater sampled from MW-6 indicated a benzene concentration of 0.237 mg/L, and a dissolved iron concentration of 19.6 mg/L.
December 13, 2011	Monitor Well Sampling	Groundwater samples collected from MW-4, MW-5 and MW-6. Groundwater sampled from MW-6 indicated a benzene concentration of 0.298 mg/L, and a dissolved iron concentration of 11.6 mg/L.
March 7, 2012	Monitor Well Sampling	Groundwater samples collected from MW-4, MW-5 and MW-6. Groundwater sampled from MW-6 indicated a benzene concentration of 0.0477 mg/L, and a dissolved iron concentration of 22.50 mg/L.
June 4, 2012	Monitor Well Sampling	Groundwater samples collected from MW-4, MW-5 and MW-6. Groundwater sampled from MW-6 indicated a benzene concentration of 0.649 mg/L, and a dissolved iron concentration of 19.2 mg/L. The sample from MW-4 indicated a dissolved iron concentration of 1.17 mg/L.
September 20, 2012	Monitor Well Sampling	Groundwater samples collected from MW-4, MW-5 and MW-6. Groundwater sampled from MW-6 indicated a benzene concentration of 0.266 mg/L, and a dissolved iron concentration of 9.53 mg/L.
December 28, 2012	Monitor Well Sampling	Groundwater samples collected from MW-4, MW-5 and MW-6. Groundwater sampled from MW-6 indicated a benzene concentration of 0.319 mg/L, and a dissolved iron concentration of 8.06 mg/L.
March 28, 2013	Groundwater Monitoring	All site wells gauged were dry; no samples collected.
June 12, 2013	Monitor Well Sampling	Groundwater samples collected from MW-4, MW-5 and MW-6. Groundwater sampled from MW-6 indicated a benzene concentration of 0.442 mg/L, and a dissolved iron concentration of 16.6 mg/L. Groundwater sampled from MW-4 indicated a dissolved iron concentration of 1.46 mg/L.
September 11, 2013	Monitor Well Sampling	Groundwater samples collected from MW-4, MW-5 and MW-6. Groundwater sampled from MW-6 indicated a benzene concentration of 0.442 mg/L, and a dissolved iron concentration of 16.6 mg/L. Groundwater sampled from MW-4 indicated a dissolved iron concentration of 1.46 mg/L.
December 13, 2013	Monitor Well Sampling	Groundwater samples collected from MW-4, MW-5 and MW-6. Groundwater sampled from MW-6 indicated a benzene concentration of 0.442 mg/L, and a dissolved iron concentration of 16.6 mg/L. Groundwater sampled from MW-4 indicated a dissolved iron concentration of 1.46 mg/L.

MONITOR WELL SPECIFICATIONS AND GROUNDWATER ELEVATIONS CONOCOPHILLIPS COMPANY NELL HALL NO. 1 SAN JUAN COUNTY, NM

Well ID	Total Depth	Surface Elevation	Screen Interval	Date Measured	Depth to Groundwater	Relative Water Lev
	(ft below TOC)	(amsl)	(ft bgs)	5/10/2005	(ft below TOC) DRY	NA
				10/20/2005	19.25	5596.47
			-	11/22/2005	24.15	5591.57
			-	5/17/2006	NM	NM
			-	11/15/2006	21.40	5594.32
			-	2/19/2007	DRY	NA
				5/14/2007	24.85	5590.87
		5615.72		8/22/2007	24.61	5591.11
		5615.72		11/6/2007	20.87	5594.85
				3/17/2008	DRY	NA
			-	10/22/2008	19.38	5596.34
				3/30/2009	28.25	5587.47
			-	9/30/2009	16.56	5599.16
				3/31/2010	DRY	NA
MW-1	28.55		Unknown	6/9/2010	24.16	5591.56
			-	9/27/2010	20.00	77.95
				3/16/2011	DRY	NA
				6/21/2011	26.80	71.15
				9/27/2011	17.85	80.10
			-	12/13/2011	25.39	72.56
			-	3/7/2012	DRY	NA
		97.95	-	6/4/2012	26.40	71.55
			-	9/20/2012	17.57	80.38
				12/28/2012	DRY	NA
				3/28/2013	DRY	NA
				6/12/2013	24.33	73.62
			+	9/11/2013	17.59	80.36
			F	12/13/2013	27.45	70.50
	1		 	5/10/2005	DRY	NA
				10/20/2005	18.81	5596.13
				11/22/2005	23.74	5591.20
				5/17/2006	22.06	5592.88
				11/15/2006	22.00	5593.93
			-	2/19/2007	DRY	NA
			-	5/14/2007	DRY	NA
		5614.94	-	8/22/2007	18.03	5596.91
				11/6/2007	20.43	5594.51
				3/17/2008	DRY	NA
				10/22/2008	18.83	5596.11
				3/30/2009	27.15	5587.79
			-	9/30/2009	16.01	5598.93
			-	3/31/2010	DRY	NA
MW-2	27.32		Unknown	6/9/2010	23.36	5591.58
			-	9/27/2010	19.42	77.74
			-	3/16/2011	DRY	NA
				6/21/2011	26.43	70.73
			-	9/27/2011	17.28	79.88
			-	12/13/2011	25.10	72.06
			-	3/7/2012	DRY	NA
		97.16	-	6/4/2012	25.17	71.99
				9/20/2012	17.30	79.86
			F	12/28/2012	DRY	NA
				3/28/2013	DRY	NA
				6/12/2013	23.78	73.38
			+	9/11/2013	17.22	79.94
			F	12/13/2013	27.00	70.16
	1		 	5/10/2005	DRY	NA
				10/20/2005	19.36	5596.17
				11/22/2005	24.24	5591.29
			+	5/17/2006	22.82	5592.71
			+	11/15/2006	21.53	5594.00
				2/19/2007	DRY	NA
				5/14/2007	DRY	NA
		5615.53	I F	8/22/2007	18.36	5597.17
				11/6/2007	20.95	5594.58
				3/17/2008	DRY	NA
			F	10/22/2008	19.34	5596.19
				3/30/2009	DRY	NA
				9/30/2009	NM	NM
			I H	3/31/2010	DRY	NA
MW-3	27.45		Unknown	6/9/2010	23.87	5591.66
			1 F	9/27/2010	19.93	77.84
				3/16/2011	DRY	NA
				6/21/2011	27.06	70.71
				9/27/2011	17.82	79.95
				12/13/2011	25.66	79.93
			F	3/7/2012	DRY	NA
		97.77	F	6/4/2012	25.53	72.24
		21.11	I – F	9/20/2012	17.97	72.24
			I – F	12/28/2012	DRY	79.80 NA
			I – F		DRY	NA
			F	3/28/2013 6/12/2013	24.36	73.41
			F	9/11/2013	17.84	73.41 79.93
	1	1		7/11/2013	17.04	/9.93
				12/13/2013	DRY	NA

MONITOR WELL SPECIFICATIONS AND GROUNDWATER ELEVATIONS CONOCOPHILLIPS COMPANY NELL HALL NO. 1 SAN JUAN COUNTY, NM

Well ID	Total Depth (ft below TOC)	Surface Elevation (amsl)	Screen Interval (ft bgs)	Date Measured	Depth to Groundwater (ft below TOC)	Relative Water Leve
				3/8/2004	36.04	5578.83
				7/19/2004	8.44	5606.43
				10/27/2004	19.69	5595.18
				12/27/2004	27.58	5587.29
				5/10/2005	DRY	NA
				10/20/2005	18.87	5596.00
				11/22/2005	23.93	5590.94
				5/17/2006	NM	NM
				11/15/2006	21.02	5593.85
		5614.87		2/19/2007	34.40	5580.47
				5/14/2007	27.56	5587.31
				8/22/2007	18.18	5596.69
				11/6/2007	20.48	5594.39
				3/17/2008	36.08	5578.79
				10/22/2008	18.96	5595.91
MW-4	37.57		7.57 - 37.57	3/30/2009	37.36	5577.51
10100-4	57.57		7.57 - 57.57	9/30/2009	16.15	5598.72
				3/31/2010	DRY	NA
			j ľ	6/9/2010	23.61	5591.26
			ן ו	9/27/2010	19.61	78.14
			3/16/2011	DRY	NA	
				6/21/2011	26.79	70.96
				9/27/2011	17.47	80.28
				12/13/2011	25.35	72.40
				3/7/2012	35.73	62.02
	97.75		6/4/2012	25.39	72.36	
				9/20/2012	17.43	80.32
			12/28/2012	28.02	69.73	
			3/28/2013	DRY	NA	
				6/12/2013	24.06	73.69
				9/11/2013	17.40	80.35
				12/13/2013	27.90	69.85
	-			3/8/2004	37.19	5578.67
				7/19/2004	9.38	5606.48
			-		21.07	5594.79
			-	10/27/2004	28.99	
				12/27/2004		5586.87
				5/10/2005	39.79	5576.07
				10/20/2005	20.34	5595.52
				11/22/2005	25.23	5590.63
				5/17/2006	23.80	5592.06
				11/15/2006	22.51	5593.35
		5615.86		2/19/2007	35.31	5580.55
	1			5/14/2007	27.59	5588.27
				8/22/2007	19.45	5596.41
			l	11/6/2007	21.94	5593.92
	1			3/17/2008	37.33	5578.53
	1			10/22/2008	19.30	5596.56
MW-5	42.7		7.7 - 42.7	3/30/2009	38.68	5577.18
	12.7		14.0	9/30/2009	17.54	5598.32
	1		I Í	3/31/2010	39.05	5576.81
	1		j í	6/9/2010	24.91	5590.95
			[9/27/2010	20.92	77.89
				3/16/2011	39.25	59.56
	1			6/21/2011	28.02	70.79
	1		i i	9/27/2011	18.79	80.02
			i i	12/13/2011	26.62	72.19
				3/7/2012	37.00	61.81
	1	98.81		6/4/2012	26.57	72.24
				9/20/2012	18.92	79.89
	1			12/28/2012	29.37	69.44
				3/28/2013	DRY	NA
	1			6/12/2013	25.39	73.42
	1			9/11/2013	18.84	79.97
				12/13/2013	29.20	69.61

MONITOR WELL SPECIFICATIONS AND GROUNDWATER ELEVATIONS CONOCOPHILLIPS COMPANY NELL HALL NO. 1 SAN JUAN COUNTY, NM

Well ID	Total Depth (ft below TOC)	Surface Elevation (amsl)	Screen Interval (ft bgs)	Date Measured	Depth to Groundwater (ft below TOC)	Relative Water Level
				3/8/2004	36.27	5579.17
				7/19/2004	9.43	5606.01
				10/27/2004	19.33	5596.11
				12/27/2004	28.62	5586.82
				5/10/2005	DRY	NA
				10/20/2005	19.94	5595.50
				11/22/2005	25.02	5606.01 5596.11 5586.82 NA 5595.50 5590.42 NM 5594.32 5580.62 5596.03 5594.32 5596.03 5596.03 5595.45 5579.10 5596.45 5578.40 5597.10 77.62 NA 70.85
				5/17/2006	NM	
			11/15/2006 21.12 5594.32	5594.32		
		5615.44		2/19/2007	34.82	5580.62
				5/14/2007	26.12	82 5580.62 12 5589.32
				8/22/2007	19.41	5596.03
				11/6/2007	21.51	5593.93
				3/17/2008	36.34	5579.10
				10/22/2008	19.99	5595.45
MW-6	38.21		8.21 - 38.21	3/30/2009	37.04	5578.40
10100-0	36.21		0.21 - 30.21	9/30/2009	17.26	5598.18
				3/31/2010	37.24	5578.20
				6/9/2010	24.43	5591.01
				9/27/2010	20.79	77.62
				3/16/2011	DRY	NA
				6/21/2011	27.56	70.85
				9/27/2011	18.58	79.83
				12/13/2011	26.32	72.09
				3/7/2012	36.01	62.40
	1	98.41		6/4/2012	26.55	71.86
	1			9/20/2012	18.25	80.16
				12/28/2012	29.11	69.30
	1			3/28/2013	DRY	NA
	1			6/12/2013	24.78	73.63
	1			9/11/2013	18.26	80.15
				12/13/2013	28.84	69.57

 Notes:

 amsl = Above mean sea level

 bgs = Below ground surface

 ft = Feet

 NM = Not measured

 NA = Not available

 TOC = Top of casing

 * = Top of casing elevation based on an arbitrary reference elevation of 100 feet

GROUNDWATER ANALYTICAL RESULTS SUMMARY CONOCOPHILLIPS COMPANY NELL HALL NO. 1

Well ID	Sample ID	Date	Sample Type	Benzene (mg/L)	Toluene (mg/L)	Ethylbenzene (mg/L)	Xylenes (total) (mg/L)	Sulfate (mg/L)	Iron (dissolved) (mg/L)	Nitrate (as N) (mg/L)
	NMWQCC Groundwater Qu	ality Standards		0.01	0.75	0.75	0.62	600	1	10
	MW-4	3/8/2004	(orig)	0.013	0.012	0.064	1.4			
	MW-4	7/19/2004	(orig)	< 0.0005	< 0.0005	< 0.0005	< 0.0005			
	MW-4	10/27/2004	(orig)	0.011	0.008	0.021	0.13			
	MW-4	12/27/2004	(orig)	< 0.0025	< 0.0025	< 0.0025	< 0.0005			
	MW-4	11/22/2005	(orig)	< 0.0005	< 0.0007	< 0.0008	< 0.0008	105		< 0.40
	MW-4	11/15/2006	(orig)	< 0.0005	< 0.0007	< 0.0008	< 0.0008	110		< 0.25
	MW-4	2/21/2007	(orig)	< 0.0005	< 0.0007	< 0.0008	< 0.0008	59.6		< 0.25
	MW-4	8/22/2007	(orig)	< 0.0005	< 0.0007	< 0.0008	< 0.0008	96.5		< 0.25
	MW-4	11/6/2007	(orig)	< 0.0005	< 0.0007	< 0.0008	< 0.0008	111		3.3
	MW-4	3/17/2008	(orig)	< 0.005	< 0.005	< 0.005	< 0.005	64.5		< 0.5
	MW-4	10/22/2008	(orig)	< 0.005	< 0.005	< 0.005	< 0.005	93.8		1.9
	MW-4	9/30/2009	(orig)	< 0.001	< 0.001	< 0.001	< 0.001		< 0.02	
	MW-4	6/9/2010	(orig)	< 0.001	< 0.001	< 0.001	< 0.001		< 0.02	
MW-4	MW-4	9/27/2010	(orig)	< 0.001	< 0.001	< 0.001	< 0.001		< 0.02	
	GW-74941-062111-CMB-001	6/21/2011	(orig)	< 0.0010	< 0.0010	< 0.0010	< 0.0030		1.21	
	GW-074941-092711-CM-007	9/27/2011	(orig)	< 0.001	< 0.001	< 0.001	< 0.003		< 0.05	
	GW-074941-121311-CB-MW-4	12/13/2011	(orig)	< 0.001	< 0.001	< 0.001	< 0.003		0.201	
	GW-074941-3712-CB-MW-4	3/7/2012	(orig)	< 0.001	< 0.001	< 0.001	< 0.003		< 0.25	
	GW-074941-3712-CB-DUP	3/7/2012	(Duplicate)	< 0.001	< 0.001	< 0.001	< 0.003			
	GW-074941-060412-CB-MW-4	6/4/2012	(orig)	< 0.001	< 0.001	< 0.001	< 0.003		1.17	
	GW-074941-092012-JP-MW-4	9/20/2012	(orig)	< 0.001	< 0.001	< 0.001	< 0.003		< 0.25	
	GW-074941-122812-JMK-MW4	12/28/2012	(orig)	< 0.001	< 0.001	< 0.001	< 0.003		0.748	
	GW-074941-122812-JMK-DUP	12/28/2012	(Duplicate)	< 0.001	< 0.001	< 0.001	< 0.003			
	074941-061213-JK-MW4	6/12/2013	(orig)	< 0.001	< 0.001	< 0.001	< 0.003		1.46	
	074941-061213-JK-DUP	6/12/2013	(Duplicate)	< 0.001	< 0.001	< 0.001	< 0.003			
	GW-074941-091113-CM-MW-4	9/11/2013	(orig)	< 0.001	< 0.001	< 0.001	< 0.003		< 0.050	
	GW-074941-122323-CM-MW4	12/13/2013	(orig)	< 0.001	< 0.001	< 0.001	< 0.003		0.758	

GROUNDWATER ANALYTICAL RESULTS SUMMARY CONOCOPHILLIPS COMPANY NELL HALL NO. 1

Well ID	Sample ID	Date	Sample Type	Benzene (mg/L)	Toluene (mg/L)	Ethylbenzene (mg/L)	Xylenes (total) (mg/L)	Sulfate (mg/L)	Iron (dissolved) (mg/L)	Nitrate (as N) (mg/L)
	MW-5	3/8/2004	(orig)	0.0011	< 0.0005	0.001	0.017			
	MW-5	7/19/2004	(orig)	< 0.0005	0.00055	< 0.0005	0.00072			
	MW-5	10/27/2004	(orig)	< 0.0005	< 0.0005	< 0.0005	< 0.001			
	MW-5	12/27/2004	(orig)	< 0.0005	< 0.0005	< 0.0005	< 0.001			
	MW-5	5/11/2005	(orig)	< 0.0005	< 0.0007	< 0.0008	< 0.0008	139		2.3
	MW-5	11/22/2005	(orig)	< 0.0005	< 0.0007	< 0.0008	< 0.0008	38		< 0.40
	MW-5	11/15/2006	(orig)	< 0.0005	< 0.0007	< 0.0008	< 0.0008	77.9		2.3
	MW-5	2/21/2007	(orig)	< 0.0005	< 0.0007	< 0.0008	< 0.0008	83.3		1.3
	MW-5	8/22/2007	(orig)	< 0.0005	< 0.0007	< 0.0008	< 0.0008	125		5.6
	MW-5	11/6/2007	(orig)	< 0.0005	< 0.0007	< 0.0008	< 0.0008	59		4
	MW-5	3/17/2008	(orig)	< 0.005	< 0.005	< 0.005	< 0.005	69.7		0.986
	MW-5	10/22/2008	(orig)	< 0.005	< 0.005	< 0.005	< 0.005	105		0.532
	MW-5	3/30/2009	(orig)	< 0.005	< 0.005	< 0.005	< 0.005			
	MW-5	9/30/2009	(orig)	< 0.001	< 0.001	< 0.001	< 0.001		< 0.02	
MW-5	MW-5	3/31/2010	(orig)	< 0.001	< 0.001	< 0.001	< 0.001		< 0.02	
	MW-5	6/9/2010	(orig)	< 0.001	< 0.001	< 0.001	< 0.001		< 0.02	
	MW-5	9/27/2010	(orig)	< 0.001	< 0.001	< 0.001	< 0.001		< 0.02	
	MW-5	3/16/2011	(orig)	< 0.001	< 0.001	< 0.001	< 0.001		< 0.02	
	GW-74941-062111-CMB-002	6/21/2011	(orig)	< 0.0010	< 0.0010	< 0.0010	< 0.0030		< 0.1	
	GW-074941-092711-CM-005	9/27/2011	(orig)	< 0.001	< 0.001	< 0.001	< 0.003		0.0835	
	GW-074941-121311-CB-MW-5	12/13/2011	(orig)	< 0.001	< 0.001	< 0.001	< 0.003		< 0.05	
	GW-074941-3712-CB-MW-5	3/7/2012	(orig)	< 0.001	< 0.001	< 0.001	< 0.003		< 0.05	
	GW-074941-060412-CB-MW-5	6/4/2012	(orig)	< 0.001	< 0.001	< 0.001	< 0.003		< 0.05	
	GW-074941-092012-JP-MW-5	9/20/2012	(orig)	< 0.001	< 0.001	< 0.001	< 0.003		< 0.05	
[GW-074941-122812-JMK-MW5	12/28/2012	(orig)	< 0.001	< 0.001	< 0.001	< 0.003		< 0.05	
[074941-061213-JK-MW5	6/12/2013	(orig)	< 0.001	< 0.001	< 0.001	< 0.003		< 0.05	
	GW-074941-091113-CM-MW-5	9/11/2013	(orig)	< 0.001	< 0.001	< 0.001	< 0.003		0.0723	
[GW-074941-122323-CM-MW5	12/13/2013	(orig)	< 0.001	< 0.001	< 0.001	< 0.003		0.0760	

GROUNDWATER ANALYTICAL RESULTS SUMMARY CONOCOPHILLIPS COMPANY NELL HALL NO. 1

Well ID	Sample ID	Date	Sample Type	Benzene (mg/L)	Toluene (mg/L)	Ethylbenzene (mg/L)	Xylenes (total) (mg/L)	Sulfate (mg/L)	Iron (dissolved) (mg/L)	Nitrate (as N) (mg/L)
	MW-6	3/8/2004	(orig)	2.5	0.014	1.6	21.031			
	MW-6	7/19/2004	(orig)	< 0.0005	< 0.0005	0.00098	0.0026			
	MW-6	10/27/2004	(orig)	0.0004	0.0003	0.0005	0.0021			
	MW-6	12/27/2004	(orig)	0.045	0.0068	0.014	0.0717			
	MW-6	11/22/2005	(orig)	0.01	0.0007	0.016	0.15	3.4		< 0.40
	MW-6	11/15/2006	(orig)	< 0.0005	< 0.0007	< 0.0008	< 0.0008	41.3		< 0.25
	MW-6	2/21/2007	(orig)	0.54	< 0.001	0.076	0.81	1.8		< 0.25
	MW-6	8/22/2007	(orig)	< 0.0005	< 0.0007	< 0.0008	< 0.0008	12.6		< 0.25
	MW-6	11/6/2007	(orig)	0.015	< 0.0007	0.047	0.39	5.6		< 0.25
	MW-6	3/18/2008	(orig)	0.16	< 0.005	< 0.005	0.033			
	MW-6	10/22/2008	(orig)	< 0.005	< 0.005	< 0.005	< 0.005	5.15		< 1.0
	MW-6	3/30/2009	(orig)	0.042	< 0.005	< 0.005	0.01			
	MW-6	9/30/2009	(orig)	0.096	0.0047	0.062	0.12		1.06	
	MW-6	4/1/2010	(orig)	0.48	< 0.001	0.078	0.2			
	MW-6	6/9/2010	(orig)	0.71	< 0.001	0.42	0.52		11.4	
	MW-6	9/27/2010	(orig)	0.3	< 0.001	0.25	0.41		0.676	
2.017.6	MW-6	3/16/2011	(orig)	0.18	< 0.001	0.044	0.072		8.66	
MW-6	GW-74941-062111-CMB-003	6/21/2011	(orig)	0.461	0.00048	0.454	0.677		9.45	
	GW-74941-062111-CMB-DUP	6/21/2011	(Duplicate)	0.383	0.00057	0.407	0.607			
	GW-074941-092711-CM-006	9/27/2011	(orig)	0.237	< 0.005	0.197	0.225		19.6	
	GW-074941-092711-CM-008	9/27/2011	(Duplicate)	0.249	< 0.005	0.216	0.248			
	GW-074941-121311-CB-MW-6	12/13/2011	(orig)	0.298	0.0083	0.154	0.141		11.6	
	GW-074941-121311-CB-DUP	12/13/2011	(Duplicate)	0.359	0.0061	0.19	0.183			
	GW-074941-3712-CB-MW-6	3/7/2012	(orig)	0.0477	< 0.001	0.0073	0.0192		22.5	
	GW-074941-060412-CB-MW-6	6/4/2012	(orig)	0.649	< 0.01	0.309	0.314		19.2	
	GW-074941-060412-CB-DUP	6/4/2012	(Duplicate)	0.62	< 0.01	0.267	0.266			
	GW-074941-092012-JP-MW-6	9/20/2012	(orig)	0.266	< 0.005	0.065	0.0355		9.53	
	GW-074941-092012-JP-DUP	9/20/2012	(Duplicate)	0.282	< 0.005	0.0634	0.0348			
	GW-074941-122812-JMK-MW6	12/28/2012	(orig)	0.319	< 0.005	0.0764	0.0452		8.06	
	074941-061213-JK-MW6	6/12/2013	(orig)	0.442	< 0.005	0.159	0.209		16.6	
	GW-074941-091113-CM-MW-6	9/11/2013	(orig)	0.109	< 0.001	0.0208	0.0123		2.260	
	GW-074941-091113-CM-DUP	9/11/2013	(Duplicate)	0.0937	< 0.001	0.0191	0.0114			
	GW-074941-122323-CM-MW6	12/13/2013	(orig)	0.467	< 0.001	0.101	0.0537		5.900	
	GW-074941-122323-CM-DUP	12/13/2013	(Duplicate)	0.456	< 0.001	0.0777	0.0491			

Explanation

mg/L = milligrams per liter (parts per million)

NA = Not Analyzed

NMWQCC = New Mexico Water Quality Control Commission

Appendix A

2013 Quarterly Groundwater Sampling Field Forms

	TO DE CORM
E/PROJECT NAME: SAMPLE ID:	WELL SAMPLING FIELD INFORMATION FORM Nell Har (1 # 1 job# 1:74941 174941-2001213-3K-MWA WELL# MW 4
PURCE DATE (MM DD YY)	WELL PURGING INFORMATION WELL PURGING INFORMATION
RGING EQUIPMENTDEDIC	CATED Y N CIRCLE ONE) Image: CIRCLE ONE) CIRCLE ONE) CIRCLE ONE) Image: CIRCLE ONE) D - GAS LIFT PUMP G - BAILER X= Image: CIRCLE ONE) B - PERISTALTIC PUMP E - PURGEPUMP H - WATERRAS PURGING DEVICE OTHER ©FECIFY) Image: CIRCLE ONE) C - BLADDER PUMP F - DIPPER BOTTLE X - OTHER X= Image: CIRCLE ONE) C - BLADDER PUMP F - DIPPER BOTTLE X - OTHER X=
PURGING MATERIAL SAMPLING MATERIAL	A - TEFLON D - PVC X=
PURGE TUBING SAMPLING TUBING	A - TEFLON D - POLYPROPYLENE G - COMBINATION TEFLON/POLYPROPYLENE X= B - TOGON E - POLYETHYLENE PURGE TUBING OTHER SPECIFY) C - ROPE F - SILICONE X - OTHER X - TOGON E - SILICONE X - OTHER X - TOGON F - SILICONE X - OTHER X - TOGON F - SILICONE X - OTHER X - TOGON F - SILICONE SAMPLING TUBING OTHER (SPECIFY)
FILTERING DEVICES 0.45	FIELD MEASUREMENTS
	ATER 24.06 (feet) WELL ELEVATION (feet)

	WELL SAMPLING FIE	LD INFORMATION FOI	RM
SITE/PROJECT NAME		JOB# <u></u> DIALS WELL#	94 074941
SAMPLE II	1 074941-No1213 JK-M	<u>MWO</u> WELL#	1° 10 - 5
	WELL PURG	SING INFORMATION	
PURGE DATE (MM DD YY)	(MM DĐ YY) (24 H	E TIME WATER VOL IN (CALLON (CALLON	
PURGING EQUIPMENTDED		SAMPLING EQUIPMENT 5AN	IPLING EQUIPMENT DEDICATED Y N
	(CIRCLE ONE)		(CIRCLE ONE)
PURGING DEVICE	A - SUBMERSIBLE PUMP D - GAS LIFT PUMP B - PERISTALTIC PUMP E - PURGE PUMP	G - HAILER H - WATERRAS	X= FURGING DEVICE OTHER (SPECIFY)
SAMPLING DEVICE	C - BLADDER PUMP F - DIPPER BOTTLE	X-OTHER	X*
PURGING MATERIAL	A - TEFLON D - PVC B - STAINI PSS STEEL E - POLYETHYLENE		X
SAMPLING MATERIAL	B - STAINLESS STEEL E - POLYETHYLENE C - POLYPROPYLENE X - OTHER		PURGING MATERIAL OTHER (SPECIFY)
1			SAMPLING MATERIAL OTHER (SPECIPY)
PURGE TUBING	A - TEFLON D - POLYPROPYLENE B - TYCON E - POLYPEINYLENE	G - COMBINATION TEFLON/POLYPROPYLENE	X= Purge tubing other (specipy)
SAMPLING TUBING	C-ROPE F-SILICONE	X - OTHER	X*
FILTERING DEVICES 0.15	A - IN-LINE DISPOSABLE B - PRESSURE		
	FIELD M	IEASUREMENTS	4
DEPTH TO WATER	23.3 ² / (feet)	WELL ELEVATION	(feet)
WELL DEPTH	42.90 (feel)	GROUNDWATER ELEVATION	(feel)
TEMPERATURE	pH TDS	SC DO	ORP VOLUME
15.71 ro	7.07 (std) 1.050 (g/L)	<u>6/6</u> (us/cm) <u>.30</u> (n	-19.6 (mV) 7 (gal)
15.18 0	764 1642	11- 27	$\frac{9, 2}{171}$ (mV) $\frac{7.5}{600}$ (gal)
(***)	(std)		
(9)	(std) (g/L)	(µ5/cm) (n	ng/ <u>L)</u> (mV) (gal)
((C)	(std) (g/L)	(µS/cm) (n	ng/ <u>L) (</u> mV) (gal)
	FIELD	COMMENTS	
SAMPLE APPEARANCE: WEATHER CONDITIONS: SPECIFIC COMMENTS:	$\frac{1}{1500} \frac{1}{1500} \frac{1}{1500$	······	SHEEN Y/N
			· · · · · · · · · · · · · · · · · · ·
<u></u>		N 11 -	
	CEDURES WERE IN ACCORDANCE WITH APPLICABLE CRA PROTOCO	NS I we manual	

(

(

SITE/PROJECT NAI SAMPLE	ME: Nell Ma	LING FIELD INFORM (1) :#= \$5 (213)X-^ MWG	атіоn form јов# <u>()7494)</u> well# <u>(м.с. 40</u>		,
		WELL PURGING INFORMATION			
DIG 1213 PURGE DATE (MM DD YY)	SAMPLE DATE (MM DD YY)	SAMPLE TIME (21 HOUR)	(GALLONS)	G. IS IVAL VOL PURGED (GALLONS)	
PURGING EQUIPMENTE	DEDICATED Y N	PURGING AND SAMPLING EQUIPMEN	SAMPLING EQUIPMENT		
PURGING DEVICE	B-PERISTALTIC PUMP E-1	GAS LIFT PUMP G - BAILER Purge Pump H - Waterraß	X= Purging devic	(CIRCLE ONE)	
SAMPLING DEVICE	C-BLADDER PUMP F-T	DIPPER BOTTLE X - OTHER	X=SAMPLING DEVI	CE OTHER (SPECIFY)	
PURGING MATERIAL SAMPLING MATERIAL	B-STAINLESS STEEL E-I	PVC VOLYETHYLENE DTHER	X= Purging mater X=	NAL OTHER (SPECIFY)	
				ERIAL OTHER (SPECIFY)	
PURGE TUBING SAMPLING TUBING	B-TYGON E-F	OLYPROPYLENE G - COMBINATION TEFLON/POLYPROPYLE OLYETHYLENE ILICONE X - OTHER	PURGE TUBING C X=		
	1 8 4		SAMPLING TUBIN	NG OTHER (SPECIFY)	
DEPTH TO WA		FIELD MEASUREMENTS (feet) WELL ELI (feet) GROUNDWATER EL	1	(feet)	
TEMPERATURE	pH TDS	sc 	DO ORP	VOLUME	
13.5 0	6.53 (std) 1.29			nV) Jakal)	
1543 m	1	3 (g/L) 2053 (us/m)		nV) D. D. (gal)	
[<u>1473</u>]m	6.55 (std) 18352		<u>U.35 (mg/l)</u> -722 (r	nv) 6.25 (gal)	
(°)	(std)	(g/L) (u5/cm)	······································	nV)(gal)	
	ODOR:	FIELD COMMENTS	SHEEN Y/N		
SAMPLE APPEARANCE	TEMPERATURE	WINDY Y/N		·	
SAMPLE APPEARANCE: WEATHER CONDITIONS: SPECIFIC COMMENTS:	13.67 × .150	= 2.05 × 3 = (<u>a.c.</u>		

WELL SAMPLING FIELD INFORMATION FORM SITE/PROJECT NAME: JOB# SAMPLE ID; WELL# WELL PURGING INFORMATION 00 3.25 SAMPLE TIME WATER VOL. IN CASING URGE DATE SAMPLE DATE ACTUAL VOL. PURGED (MM DD YY) (MM DD YY) (24 HOUR) (GALLONS) (GALLONS) PURGING AND SAMPLING EQUIPMENT SAMPLING EQUIPMENT......DEDICATED N (CIRCLE ONE (CIRCLE ONE) A - SUBMERSIBLE PUMP D - GAS LIFT PUMP G - BAILER PURGING DEVICE H - WATERRAD B - PERISTALTIC PUMP E - PURGE PUMP PURGING DEVICE OTHER (SPECIFY) C - BLADDER PUMP F - DIPPER BOTTLE X - OTHER SAMPLING DEVICE X≈ SAMPLING DEVICE OTHER (SPECIFY) A - TEFLON D-PVC PURGING MATERIAL X= E - POLYETHYLENE B - STAINLESS STEEL PURGING MATERIAL OTHER (SPECIFY) C - POLYPROPYLENE X - OTHER SAMPLING MATERIAL X= SAMPLING MATERIAL OTHER (SPECIFY) PURGE TUBING TEFLON D - POLYPROPYLENE G - COMBINATION X= TEFLON/POLYPROPYLENE E - POLYETHYLENE PURGE TUBING OTHER (SPECIFY) B - TYGON X - OTHER F - SILICONE SAMPLING TUBING ROPE X= SAMPLING TUBING OTHER (SPECIFY) B-PRESSURE ().45 FILTERING DEVICES 0.45 A - IN-LINE DISPOSABLE FIELD MEASUREMENTS WELL ELEVATION DEPTH TO WATER (feet) (feet) GROUNDWATER ELEVATION (feet) WELL DEPTH (feet) pН TDS DO ORP VOLUME TEMPERATURE sc 0.597 (g/L) 918 116.57 7.10 (std) 4.0 6.1 0.59 (10) 910 (µS/cm) 0,57 /@_0 Sill ¢ mV) (gal) (µS/cm) (g/L) (mV) (°C) (std) (gal) (std) (g/L)(mV) (°C) uS/cm) mg/L FIELD COMMENTS \mathcal{N} CLOUDY NOR COLOR: BROWN ODOR: SHEEN Y/N SAMPLE APPEARANCE: N 805 VEATHER CONDITIONS: TEMPERATURE WINDY Y/N PRECIPITATION Y/N (IF Y TYPE) ٨ SPECIFIC COMMENTS: I CERTIFY THAT SAMPLING PROCEDURES WERE IN A CORDANCE WITH APPLICABLE CRAPROTOCOLS PRINT CI SCATURE DATE

ŧ

SITE/PROJECT NAME SAMPLE II	A THE ALLO YOU MUS MOULD
PURCE DATE (MM DD YY)	Well PURGING INFORMATION 9/1/3 SAMPLE DATE (MM DD YY) SAMPLE TIME (24 HOUR) WATER VOL IN CASING (CALLONS) (CALLONS) (CALL
PURGING EQUIPMENTDED	PURGING AND SAMPLING EQUIPMENT ICATED Y N SAMPLING EQUIPMENTDEDICATED Y N (CIRCLE ONE) (CIRCLE ONE)
PURGING DEVICE SAMPLING DEVICE	A-SUBMERSIBLE PUMP D-GAS LIFT PUMP G-BAILER X= B-PERISTALTIC PUMP E-PURGE PUMP H-WATERRAD C_BLADDER PUMP F-DIPPER BOTTLE X-OTHER X= SAMPLING DEVICE OTHER (SPECIFY)
PURGING MATERIAL SAMPLING MATERIAL	A - TEFLON D - PVC X= B - STAINLESS STEEL E - POLVETHYLENE PURGING MATERIAL OTHER (SPECIFY) C - POLYPROPYLENE X - OTHER X= SAMPLING MATERIAL OTHER (SPECIFY)
PURGE TUBING SAMPLING TUBING	A - TEFLON D - POLYPROPYLENE G - COMBINATION TEFLON/POLYPROPYLENE PURGE TUBING OTHER (SPECIFY) B - TYGON E - POLYETHYLENE PURGE TUBING OTHER (SPECIFY) C - ROPE F - SILICONE X - OTHER X JSAMPLING TUBING OTHER (SPECIFY)
FILTERING DEVICES 0.45	A-IN-LINE DISPOSABLE B-PRESSURE 0,45 for metals only
DEPTH TO WATE	FIELD MEASUREMENTS
VELL DEPTH TEMPERATURE	105.004
17.46 m	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
17.05 ro	5.86 (std) 0.559 (g/L) 861 (uS/cm) 8.20 (mg/L// 5.7 (mV) 11.75 (gal)
(°C)	(std) (g/L) (µS/cm) (mv) (gal) (std) (g/L) (µS/cm) (my/L) (mv) (gal)
SAMPLE APPEARANCE: WEATHER CONDITIONS: SPECIFIC COMMENTS:	FIELD COMMENTS CLOUDY ODOR NEW K COLOR: BROWN SHEEN Y/N TEMPERATURE 80 S WINDY Y/N N PRECIPITATION Y/N (IF Y TYPE) N = 3,855
3 volume	s= /1.56
	CEDURES WERE VACCORED WITH APPLICABLE RA PROTOCOLS

alla	a11/2	WELL PURGING INFORMATION	3,24, 9.75
PURGE DATE (MM DD YY)	SAMPLE DATE (MM DD YY)		WATER VOL IN CASING (GALLONS) ACTUAL VOL PURGED (GALLONS) (GALLONS)
PURGING EQUIPMENTD	EDICATE Y N (CIRCLE ONE)	PURGING AND SAMPLING EQUIPMENT	SAMPLING EQUIPMENTDEDICATED N (CIRCLE ONE)
PURGING DEVICE	A - SUBMERSIBLE PUMP B - PERISTALTIC PUMP	D - GAS LIFT PUMP G - BAILER E - PURGE PUMP H - WATERRAD	X
SAMPLING DEVICE	C - BLADDER PUMP	F - DIPPER BOTTLE X - OTHER	SAMPLING DEVICE OTHER (SPECIFY)
PURGING MATERIAL	A-TEFLON	D- PVC	X=
AMPLING MATERIAL	B-STAINLESS STEEL C-POLYPROPYLENE	E - POLYETHYLENE X - OTHER	PURGING MATERIAL OTHER (SPECIFY) X=
			SAMPLING MATERIAL OTHER (SPECIFY)
URGE TUBING AMPLING TUBING	B-TYGON C-ROPE	D - POLYPROPYLENE G - COMBINATION E - POLYETHYLENE TEFLON/POLYPROPYLENE F - SILICONIE X - OTHER	X= PURGE TUBING OTHER (SPECIFY) X=
	\wedge		SAMPLING TUBING OTHER (SPECIFY)
ILTERING DEVICES 0.45	A - IN-LINE DISPOSA	able B-pressure 0,45 for	metals only
ILTERING DEVICES 0.45		ABLE B- PRESSURE 0,45 FOR	metals only
ILTERING DEVICES 0.45	18.26		rmetals only
DEPTH TO WA	тек 18,26 ртн 38,48	FIELD MEASUREMENTS (feet) WELL ELEVATIO (feet) GROUNDWATER ELEVATIO	ION (feet)
DEPTH TO WA WELL DEI TEMPERATURE	тек <u>18,26</u> ртн <u>38,48</u> рн	FIELD MEASUREMENTS	TON (feet) DO ORP VOLUME
DEPTH TO WA	тек <u>18,26</u> ртн <u>38,48</u> рн <u>6.51</u> (std) <u>9</u>	FIELD MEASUREMENTS (feet) WELL ELEVATIO (feet) GROUNDWATER ELEVATIO	TON (feet) DO ORP VOLUME $Q_{1}Q_{(mg/L)} = (19.0)$ (mV) $Q_{2}Q_{3} = (gal)$
DEPTH TO WA WELL DEI TEMPERATURE	тек <u>18,26</u> ртн <u>38,48</u> рн <u>6.51</u> (std) <u>9</u>	FIELD MEASUREMENTS $(\text{(eet)} WELL ELEVATION (feet) GROUNDWATER ELEVATION TDS SC \frac{112}{(g/L)} (g/L) (uS/cm) 2$	TON (feet) DO ORP VOLUME $Q_{1}Q_{(mg/L)} = (19.0)$ (mV) $Q_{2}Q_{3} = (gal)$
DEPTH TO WA WELL DEI TEMPERATURE	тек <u>18,26</u> ртн <u>38,48</u> рн <u>6.51</u> (std) <u>9</u>	FIELD MEASUREMENTS $(\text{feet}) \qquad \text{WELL ELEVATIO}$ $(\text{feet}) \qquad \text{GROUNDWATER ELEVATIO}$	TON (feet) DO ORP VOLUME $Q_{1} Q_{1} (mg/L) (119.0) (mV) \qquad \qquad$
DEPTH TO WA WELL DEP TEMPERATURE 15.80 (°C) 16.26 (°C) 16.54 (°C)	TER 18.26 PTH 38.48 6.51 (std) 16.23 (std) 1	FIELD MEASUREMENTS $\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
DEPTH TO WA WELL DEP TEMPERATURE 15.80 (°C) 16.26 (°C) 16.54 (°C)	TER 18.26 PTH 38.48 6.51 (std) 16.23 (std) $1(std)$	FIELD MEASUREMENTS $\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

SITE/PROJECT NAME: SAMPLE ID:	WELL SA NGU GW-07492	MPLING FIE TALL 116, 11-121313-C	LD INFORMATION JOB# M_MU-4 well#	074941
12/13/13 PURGEDATE (MINDD YY)	12/13/13 SAMPLE DATE (MM DD YY)	WELL PURGE SAMPLI (24 HO		39 VOL IN CASING SALLONS) ACTUAL VOL PURGED (GALLONS)
PURGING EQUIPMENTDEDICA	ATECY N (CIRCLE ONE)	PURGING AND S	SAMPLING EQUIPMENT	SAMPLING EQUIPMENTDEDICATER N
PURGING DEVICE	A - SUBMERSIBLE PUMP B - PERISTALTIC PUMP C - BLADDER PUMP	D - GAS LIFT PUMP E - PURGE PUMP F - DIPPER BOTTLE	G - BAILER H - WATERRA® X - OTHER	X= PURGING DEVICE OTHER (SPECIFY) X=
PURGING MATERIAL	A-TEFLON B-STAINLESS STEEL	D - PVC 5 - POLYETHYLENE		SAMPLING DEVICE OTHER (SPECIFY)
SAMPLING MATERIAL		X - OTHER		PURGING MATERIAL OTHER (SPECIFY) X= SAMPLING MATERIAL OTHER (SPECIFY)
PURGE TUBING	A - TEFLON B - TYGON C - ROPE	D - POLYPROPYLENE E - POLYETHYLENE F - SILICONE	G - COMBINATION TEFLON/POLYPROPYLENE X - OTHER	X= PURGE TUBING OTHER (SPECIFY) X=
FILTERING DEVICES 0.45	A - IN-LINE DISPOSABL			Contraction of tubing other (specify)
DEPTH TO WATER WELL DEPTH	27.90 37.52	(feet)	EASUREMENTS WELL ELEVATION GROUNDWATER ELEVATION	(feet)
La OD CO	(1.80 (sta) 0	$\frac{629}{629}$	$\frac{100}{168}$	ORP VOLUME $\frac{109.7}{(mg/L)}$ (mV) 3.75 (gal) 4 - 3.76 (mV) 4.75
$\frac{10110}{1600}$	(1, 74 (std) ()	629 (g/L)	(µS/cm) 170	$\frac{1}{(mg/L)} \frac{1}{37.0} \frac{1}{(mV)} \frac{1}{4.75} \frac{1}{(gal)}$
(C)	(std)	(g/L)	(μS/cm)	(mg/L) (mV) (gal)
SAMPLE APPEARANCE SLEAD WEATHER CONDITIONS: TH SPECIFIC COMMENTS:	ly loudy or or emperature	No cap Windy y/n	сомментя color: <u>СООСЛ</u> ЛО	SHEEN Y/N NO
1.539 X.3 =	4.6176			
	EDURES WERE IN ACORDANCE WITH PRINT	ipelic provided as	NATURE	and Molad

A mark menne sorie so

SITE/PROJECT NAME SAMPLE ID	NellH	mpling fii 711 No . 1-121313-C	eld informa M-MW-5	TION FORM JOB# WELL#	1 14941 NW -5
PURGE DATE (NIM DD YY)	SAMPLE DATE (MM DD YY)	SAME	EING INFORMATION	2,1616 IVATER VOL IN CASI (GALLONS)	NG ACTUAL VOL PURGED (GALLONS)
W PURGING EQUIPMENTDED	ICATED N (CIRCLE ONE)	PURGING AND	SAMPLING EQUIPMENT		NG EQUIPMENTDEDICATED N (CIRCLE ONE)
PURGING DEVICE	A - SUBMERSIBLE PUMP	D - GAS LIFT PUMP	G - BAILER		X=
SAMPLING DEVICE	B - PERISTALTIC PUMP C - BLADDER PUMP	E - PURGE PUMP F - DIPPER BOTTLE	H - WATERRA®		PURGING DEVICE OTHER (SPECIFY)
PURGING MATERIAL SAMPLING MATERIAL	A - TEFLON B - STAINLESS STEEL C - POLYPROPYLENE	D - PVC E - POLYETHYLENE X - OTHER			SAMPLING DEVICE OTHER (SPECIFY) X= PURGING MATERIAL OTHER (SPECIFY) X=
PURGE TUBING SAMPLING TUBING	A - TEFLON B - TYGON C - ROPE	D - POLYFROPYLENE E - POLYETHYLENE F - SILICONE	G - COMBINATION TEFLON/POLYPROPYLEP X - OTHER	NE	SAMPLING MATERIAL OTHER (SPECIFY) X= PURGE TUBING OTHER (SPECIFY) X=
FILTERING DEVICES 0.45	A - IN-LINE DISPOSABI	LE B - PRESSUR	Her Me	tals a	
DEPTH TO WATEH WELL DEPTH TEMPERATURE [14.69] (°C) [15.24] (°C) [15.24] (°C) [15.24] (°C) [15.26] (°C)	pH 6166 (std) 7 6770 (std) 7 6774 (std) 6 (std)	(feet) , (feet) TDS	(µ5/cm)	DO DO <u>6,51</u> (mg/ <u>1</u> <u>5,09</u> (mg/ <u>1</u> (mg/ <u>1</u> (mg/ <u>1</u> (mg/ <u>1</u>) - 26, 3 (mV) 6.0 (gal)) - 26, 3 (mV) 6.5 (gal)) (mV) (gal)
veather conditions: specific comments:	$\frac{25^{\circ}}{3} = \left(\frac{404}{25^{\circ}} \right)$		<u>scotor</u> <u>B</u>	PRECIPITATI	
	PRINT	APPLICAR APPLICATION	ELS C	tudioi	India

I

	SITF/PROJECT NAME: SAMPLE ID:		
	PURGE DATE (MM DD YY)	WELL PURGING INFORMATION 12/13/13 SAMPLE DATE (MM DD YY) WELL PURGING INFORMATION SAMPLE TIME 0930 WATER VOL IN CASING (CA HOUR) WATER VOL IN CASING (CALLONS) CALLONS	
	PURGING EQUIPMENTDEDI	ICATED N SAMPLING EQUIPMENT (CIRCLE ONE) (CIRCLE ONE)	
	PURGING DEVICE	A - SUBMERSIBLE PUMP D - GAS LIFT PUMP G - BAILER X= B - PERISTALTIC PUMP E - PURGE PUMP H - WATERRAØ PURGING DEVICE OTHER (SPECIFY) C - BLADDER PUMP F - DIPPER BOTTLE X - OTHER X= SAMPLING DEVICE OTHER (SPECIFY)	
1	PURGING MATERIAL SAMPLING MATERIAL	Image: Book of the stainless steel D - PVC X= Image: Book of the stainless steel E - POLYETHYLENE PURGING MATERIAL OTHER (SPECIFY) Image: C - POLYPROPYLENE X - OTHER X= Image: Sampling Material other (SPECIFY) Sampling Material other (SPECIFY)	
	PURGE TUBING SAMPLING TUBING	A - TEFLON D - POLYPROPYLENE G - COMBINATION TEFLON/POLYPROPYLENE PURGE TUBING OTHER (SPECIFY) B - TYGON E - POLYETHYLENE Y- OTHER X = C - ROPE F - SILICONE X - OTHER X = A - TEFLON/POLYPROPYLENE X - OTHER X =	
	FILTERING DEVICES 0.45 DEPTH TO WATER	A-IN-LINE DISPOSABLE B- PRESSURE TO WOTALS ONLY 2008 FIELD MEASUREMENTS	
OM	well depth temperature	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1)
	14,73 m 15,20 m 15,32 m	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
	(°C)	(std) (g/L) (µ5/cm) (mg/L) (mV) (gal)	
	sample appearance (1044) weather conditions: specific comments: Daplicate	<u>N Black</u> <u>obse</u> <u>sheen y/n</u> <u>N</u> <u>sheen y/n</u> <u>N</u> <u>N</u> <u>N</u> <u>N</u> <u>N</u> <u>N</u> <u>N</u> <u>N</u>	
		S = 41493 CCOLORES WERE IN CCOLORING WHILE PARAMETERS (CURCO MALLENO) PRINT	

Appendix B

2013 Quarterly Groundwater Laboratory Analytical Reports

Pace Analytical Services, Inc. 9608 Loiret Blvd. Lenexa, KS 66219 (913)599-5665

June 28, 2013

Christine Matthews CRA 6121 Indian School Rd NE Suite 200 Albuquerque, NM 87110

RE: Project: 074941 Nell Hall No. 1 Pace Project No.: 60146960

Dear Christine Matthews:

Enclosed are the analytical results for sample(s) received by the laboratory on June 14, 2013. The results relate only to the samples included in this report. Results reported herein conform to the most current TNI standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Alice Flanazan

Alice Flanagan

alice.flanagan@pacelabs.com Project Manager

Enclosures

cc: Kelly Blanchard, COP Conestoga-Rovers & Associa Angela Bown, COP Conestoga-Rovers & Associa Cassie Brown, COP Conestoga-Rovers & Associa Jason Ploss, COP Conestoga-Rovers & Associa

CERTIFICATIONS

Project: 074941 Nell Hall No. 1

Pace Project No.: 60146960

Kansas Certification IDs

9608 Loiret Boulevard, Lenexa, KS 66219 WY STR Certification #: 2456.01 Arkansas Certification #: 13-012-0 Illinois Certification #: 003097 Iowa Certification #: 118 Kansas/NELAP Certification #: E-10116 Louisiana Certification #: 03055 Nevada Certification #: KS000212008A Oklahoma Certification #: 9205/9935 Texas Certification #: T104704407-13-4 Utah Certification #: KS000212013-3 Illinois Certification #: 003097

SAMPLE SUMMARY

Project: 074941 Nell Hall No. 1

Pace Project No.: 60146960

Lab ID	Sample ID	Matrix	Date Collected	Date Received
60146960001	074941-061213-JK-MW4	Water	06/12/13 14:50	06/14/13 08:50
60146960002	074941-061213-JK-MW5	Water	06/12/13 14:45	06/14/13 08:50
60146960003	074941-061213-JK-MW6	Water	06/12/13 14:55	06/14/13 08:50
60146960004	074941-061213-JK-DUP	Water	06/12/13 08:00	06/14/13 08:50
60146960005	TRIP BLANK	Water	06/12/13 08:00	06/14/13 08:50

SAMPLE ANALYTE COUNT

 Project:
 074941 Nell Hall No. 1

 Pace Project No.:
 60146960

Lab ID	Sample ID	Method	Analysts	Analytes Reported
60146960001	074941-061213-JK-MW4	EPA 6010		1
		EPA 8260	JTS	9
60146960002	074941-061213-JK-MW5	EPA 6010	TJT	1
		EPA 8260	JTS	9
60146960003	074941-061213-JK-MW6	EPA 6010	TJT	1
		EPA 8260	JTS	9
60146960004	074941-061213-JK-DUP	EPA 8260	JTS	9
60146960005	TRIP BLANK	EPA 8260	JTS	9

PROJECT NARRATIVE

Project: 074941 Nell Hall No. 1

Pace Project No.: 60146960

Method: EPA 6010

Description:6010 MET ICP, DissolvedClient:COP Conestoga-Rovers & Associates, Inc. NMDate:June 28, 2013

General Information:

3 samples were analyzed for EPA 6010. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3010 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

PROJECT NARRATIVE

Project: 074941 Nell Hall No. 1

Pace Project No.: 60146960

Method: EPA 8260

Description:8260 MSV UST, WaterClient:COP Conestoga-Rovers & Associates, Inc. NMDate:June 28, 2013

General Information:

5 samples were analyzed for EPA 8260. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable): All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

Project: 074941 Nell Hall No. 1

Pace Project No.: 60146960

Sample: 074941-061213-JK-MW4	Lab ID:	60146960001	Collected	d: 06/12/13	3 14:50	Received: 06/	14/13 08:50 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP, Dissolved	Analytical	Method: EPA 6	010 Prepa	ration Meth	od: EPA	3010			
Iron, Dissolved	1460 u	ıg/L	50.0	11.6	1	06/18/13 14:00	06/21/13 09:58	7439-89-6	
8260 MSV UST, Water	Analytical	Method: EPA 8	260						
Benzene	ND u	ıg/L	1.0	0.060	1		06/25/13 22:36	71-43-2	
Ethylbenzene	ND u	ıg/L	1.0	0.18	1		06/25/13 22:36	100-41-4	
Toluene	ND u	ıg/L	1.0	0.17	1		06/25/13 22:36	108-88-3	
Xylene (Total)	ND u	ıg/L	3.0	0.42	1		06/25/13 22:36	1330-20-7	
Surrogates									
Dibromofluoromethane (S)	95 %	6	80-120		1		06/25/13 22:36	1868-53-7	
Toluene-d8 (S)	96 %	6	80-120		1		06/25/13 22:36	2037-26-5	
4-Bromofluorobenzene (S)	101 %	6	80-120		1		06/25/13 22:36	460-00-4	
1,2-Dichloroethane-d4 (S)	97 %	6	80-120		1		06/25/13 22:36	17060-07-0	
Preservation pH	1.0		1.0	0.10	1		06/25/13 22:36		

Project: 074941 Nell Hall No. 1

Pace Project No.: 60146960

Sample: 074941-061213-JK-MW5	Lab ID:	60146960002	Collected	I: 06/12/13	8 14:45	Received: 06/	14/13 08:50 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP, Dissolved	Analytical	Method: EPA 6	010 Prepar	ation Meth	od: EPA	3010			
Iron, Dissolved	ND u	g/L	50.0	11.6	1	06/18/13 14:00	06/21/13 10:06	7439-89-6	
8260 MSV UST, Water	Analytical	Method: EPA 8	260						
Benzene	ND u	g/L	1.0	0.060	1		06/25/13 22:52	71-43-2	
Ethylbenzene	ND u	g/L	1.0	0.18	1		06/25/13 22:52	100-41-4	
Toluene	ND u	g/L	1.0	0.17	1		06/25/13 22:52	108-88-3	
Xylene (Total)	ND u	g/L	3.0	0.42	1		06/25/13 22:52	1330-20-7	
Surrogates									
Dibromofluoromethane (S)	97 %	, D	80-120		1		06/25/13 22:52	1868-53-7	
Toluene-d8 (S)	99 %	, D	80-120		1		06/25/13 22:52	2037-26-5	
4-Bromofluorobenzene (S)	100 %	, D	80-120		1		06/25/13 22:52	460-00-4	
1,2-Dichloroethane-d4 (S)	100 %	, D	80-120		1		06/25/13 22:52	17060-07-0	
Preservation pH	1.0		1.0	0.10	1		06/25/13 22:52		

Project: 074941 Nell Hall No. 1

Pace Project No.: 60146960

Sample: 074941-061213-JK-MW6	Lab ID:	60146960003	Collected	d: 06/12/13	8 14:55	Received: 06/	14/13 08:50 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP, Dissolved	Analytica	Method: EPA 6	010 Prepa	ration Metho	od: EPA	3010			
Iron, Dissolved	16600 ເ	ıg/L	50.0	11.6	1	06/18/13 14:00	06/21/13 10:13	7439-89-6	
8260 MSV UST, Water	Analytica	Method: EPA 8	260						
Benzene	442 ι	ıg/L	5.0	0.30	5		06/25/13 23:07	71-43-2	
Ethylbenzene	159 ι	ıg/L	5.0	0.90	5		06/25/13 23:07	100-41-4	
Toluene	ND ι	ıg/L	5.0	0.85	5		06/25/13 23:07	108-88-3	
Xylene (Total)	209 ເ	ıg/L	15.0	2.1	5		06/25/13 23:07	1330-20-7	
Surrogates									
Dibromofluoromethane (S)	98 9	%	80-120		5		06/25/13 23:07	1868-53-7	
Toluene-d8 (S)	99 9	%	80-120		5		06/25/13 23:07	2037-26-5	
4-Bromofluorobenzene (S)	100 9	%	80-120		5		06/25/13 23:07	460-00-4	
1,2-Dichloroethane-d4 (S)	98 9	%	80-120		5		06/25/13 23:07	17060-07-0	
Preservation pH	1.0		1.0	0.10	5		06/25/13 23:07		

Project: 074941 Nell Hall No. 1

Pace Project No.: 60146960

Sample: 074941-061213-JK-DUP	Lab ID:	60146960004	Collecte	d: 06/12/13	8 08:00	Received: 06/	/14/13 08:50 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV UST, Water	Analytical	Method: EPA 8	260						
Benzene	ND u	g/L	1.0	0.060	1		06/25/13 23:23	71-43-2	
Ethylbenzene	ND u	g/L	1.0	0.18	1		06/25/13 23:23	100-41-4	
Toluene	ND u	g/L	1.0	0.17	1		06/25/13 23:23	108-88-3	
Xylene (Total)	ND u	g/L	3.0	0.42	1		06/25/13 23:23	1330-20-7	
Surrogates		-							
Dibromofluoromethane (S)	99 %	/ 0	80-120		1		06/25/13 23:23	1868-53-7	
Toluene-d8 (S)	99 %	/ 0	80-120		1		06/25/13 23:23	2037-26-5	
4-Bromofluorobenzene (S)	100 %	0	80-120		1		06/25/13 23:23	460-00-4	
1,2-Dichloroethane-d4 (S)	100 %	6	80-120		1		06/25/13 23:23	17060-07-0	
Preservation pH	1.0		1.0	0.10	1		06/25/13 23:23		

Project: 074941 Nell Hall No. 1

Pace Project No.: 60146960

Sample: TRIP BLANK	Lab ID:	60146960005	Collecte	d: 06/12/13	08:00	Received: 06	/14/13 08:50 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV UST, Water	Analytical	Method: EPA 8	260						
Benzene	ND u	g/L	1.0	0.060	1		06/25/13 21:49	71-43-2	
Ethylbenzene	ND u	g/L	1.0	0.18	1		06/25/13 21:49	100-41-4	
Toluene	ND u	g/L	1.0	0.17	1		06/25/13 21:49	108-88-3	
Xylene (Total)	ND u	g/L	3.0	0.42	1		06/25/13 21:49	1330-20-7	
Surrogates		-							
Dibromofluoromethane (S)	99 %	, 0	80-120		1		06/25/13 21:49	1868-53-7	
Toluene-d8 (S)	100 %	, D	80-120		1		06/25/13 21:49	2037-26-5	
4-Bromofluorobenzene (S)	101 %	, D	80-120		1		06/25/13 21:49	460-00-4	
1,2-Dichloroethane-d4 (S)	100 %	, D	80-120		1		06/25/13 21:49	17060-07-0	
Preservation pH	1.0		1.0	0.10	1		06/25/13 21:49		

QUALITY CONTROL DATA

Project: Pace Project No.:	074941 Nell 60146960	Hall No. 1											
QC Batch:	MPRP/231	27		Analys	is Method:	E	EPA 6010						
QC Batch Method:	EPA 3010			-	is Descript		010 MET Di	ssolved					
Associated Lab San	nples: 6014	46960001, 60	146960002	, 60146960	003								
METHOD BLANK:	1206781			N	latrix: Wat	ter							
Associated Lab San	nples: 6014	46960001, 60	146960002	, 60146960	003								
				Blank	R	eporting							
Paran	neter	ι	Jnits	Result	t	Limit	Analyz	ed	Qualifiers				
Iron, Dissolved		ug/L			ND	50.0	06/20/13	12:56					
LABORATORY COM	NTROL SAMF	PLE: 120678	82										
				Spike	LCS	5	LCS	% Red	;				
Paran	neter	ι	Jnits	Conc.	Resu	llt	% Rec	Limits	a Qi	ualifiers			
Iron, Dissolved		ug/L		10000		9680	97	80	-120		-		
MATRIX SPIKE & M	IATRIX SPIKI	E DUPLICATE	: 120678	83		1206784							
				MS	MSD								
		6014	46960001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Paramet	er	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Iron, Dissolved		ug/L	1460	10000	10000	11400	11300	99	99	75-125	0	20	

QUALITY CONTROL DATA

Project: 074941 Nell Hall No. 1

Pace Project No.: 60146960

QC Batch:	MSV/54541
QC Batch Method:	EPA 8260

Analysis Method:

Analysis Description:

EPA 8260

8260 MSV UST-WATER

Associated Lab Samples: 60146960001, 60146960002, 60146960003, 60146960004, 60146960005

METHOD BLANK: 1210779

Matrix: Water

Associated Lab Samples: 60146960001, 60146960002, 60146960003, 60146960004, 60146960005

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Benzene	ug/L	ND	1.0	06/25/13 21:03	
Ethylbenzene	ug/L	ND	1.0	06/25/13 21:03	
Toluene	ug/L	ND	1.0	06/25/13 21:03	
Xylene (Total)	ug/L	ND	3.0	06/25/13 21:03	
1,2-Dichloroethane-d4 (S)	%	100	80-120	06/25/13 21:03	
4-Bromofluorobenzene (S)	%	101	80-120	06/25/13 21:03	
Dibromofluoromethane (S)	%	98	80-120	06/25/13 21:03	
Toluene-d8 (S)	%	99	80-120	06/25/13 21:03	

LABORATORY CONTROL SAMPLE: 1210780

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Benzene	ug/L	20	20.1	101	73-122	
Ethylbenzene	ug/L	20	21.0	105	76-123	
Toluene	ug/L	20	19.5	98	76-122	
Kylene (Total)	ug/L	60	62.4	104	76-122	
I,2-Dichloroethane-d4 (S)	%			98	80-120	
I-Bromofluorobenzene (S)	%			99	80-120	
Dibromofluoromethane (S)	%			97	80-120	
Foluene-d8 (S)	%			98	80-120	

MATRIX SPIKE & MATRIX SP	IKE DUPLICAT	E: 12107	81		1210782							
			MS	MSD								
	60	147110001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Benzene	ug/L	ND	20	20	20.4	18.4	102	92	48-150	10	31	
Ethylbenzene	ug/L	ND	20	20	21.9	19.8	109	99	50-147	10	31	
Toluene	ug/L	ND	20	20	20.6	18.4	103	92	51-147	11	32	
Xylene (Total)	ug/L	ND	60	60	63.2	58.3	105	97	49-145	8	31	
1,2-Dichloroethane-d4 (S)	%						100	101	80-120			
4-Bromofluorobenzene (S)	%						99	100	80-120			
Dibromofluoromethane (S)	%						99	100	80-120			
Toluene-d8 (S)	%						100	100	80-120			
Preservation pH		1.0			1.0	1.0				0		

QUALIFIERS

Project: 074941 Nell Hall No. 1

Pace Project No.: 60146960

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PRL - Pace Reporting Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine (8270 listed analyte) decomposes to Azobenzene.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project:	074941 Nell Hall No. 1
Pace Project No.:	60146960

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
60146960001	074941-061213-JK-MW4	EPA 3010	MPRP/23127	EPA 6010	ICP/18251
60146960002	074941-061213-JK-MW5	EPA 3010	MPRP/23127	EPA 6010	ICP/18251
60146960003	074941-061213-JK-MW6	EPA 3010	MPRP/23127	EPA 6010	ICP/18251
60146960001	074941-061213-JK-MW4	EPA 8260	MSV/54541		
60146960002	074941-061213-JK-MW5	EPA 8260	MSV/54541		
60146960003	074941-061213-JK-MW6	EPA 8260	MSV/54541		
60146960004	074941-061213-JK-DUP	EPA 8260	MSV/54541		
60146960005	TRIP BLANK	EPA 8260	MSV/54541		

Sample Condition Upon Receipt

WO#:60146960

Client Name: Cop. CRA	Optional
Courier: Fed Ex UPS USPS Client Commercial	tion to be a second
Tracking #: Son 363 7418 Pace Shipping Labe	
Custody Seal on Cooler/Box Present: Yes No D Seals intact:	
	m ∠ None □ Other □
	Blue None Samples received on ice, cooling process has begun.
Cooler Temperature: <u>7-6</u> (c	Date and initials of person examining
Temperature should be above freezing to 6°C	contents: <u>(0 14 13</u>
Chain of Custody present:	A 1.
Chain of Custody filled out:	A 2.
Chain of Custody relinquished:	A 3.
Sampler name & signature on COC:	A 4.
Samples arrived within holding time:	A 5.
Short Hold Time analyses (<72hr):	^{/A} 6.
Rush Turn Around Time requested:	/A 7.
Sufficient volume:	/A β.
Correct containers used:	/A
Pace containers used:	/A 9.
Containers intact:	/A 10.
Unpreserved 5035A soils frozen w/in 48hrs? QYes No	Ā 11.
Filtered volume received for dissolved tests?	IA 12.
Sample labels match COC:	IA
Includes date/time/ID/analyses Matrix: UT	13.
All containers needing preservation have been checked.	/A
All containers needing preservation are found to be in compliance with EPA recommendation.	^{/A} 14.
Exceptions: VØA, coliform, TOC, O&G, WI-DRO (water), VYes 🗆 No	Initial when Lot # of added completed preservative
Trip Blank present:	
Pace Trip Blank lot # (if purchased): 050613.3	15.
Headspace in VOA vials (>6mm):	
	16. 2 of 3 - Dup
Project sampled in USDA Regulated Area:	
Client Notification/ Resolution: Copy COC to Client? Y	N Field Data Required? Y / N
Person Contacted: Date/Time:	
Comments/ Resolution:	<u> </u>
	1.117/12
Project Manager Review:	

Pace Analytical

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Section A Required O	lient information:	Section B Required Project Information:	ormation:			Section C Invoice Information:	mation:						Page:	of		-
Company:	COP CRA NM	Report To: Christine Mathews	e Mathews			Attention:	ePayables	ŝ								. 1
Address:	6121 Indian School Rd NE, Ste 200	Copy To: Kelly BI	Kelly Blanchard, Angela Bown, Cassi	own, Cassie	e Brown	Company Name	ame:			RE	REGULATORY AGENCY	Y AGENCY				
	Albequerque, NM 87110					Address:				L	NPDES	L GROUN	GROUND WATER	F" DRINKI	DRINKING WATER	-
Email To:	cmathews@craworld.com	Purchase Order No .:	4517146284			Pace Quote Reference:					UST	☐ RCRA		Г ОТНЕК		-
Phone:	(505)884-0672 Fax (505)884-4932 F	Project Name: Ne	Nell Hall No.1			Pace Project Manager	Alice Flanagan	lagan		S	Site Location	NIN				
Request	Requested Due Date/TAT: standard	Project Number. 074941	4941			Pace Profile	# 5514, 23				STATE:					
										Requested Analysis Filtered (Y/N)	alysis Filter	(N/A) pa				
	Section D Valid Matrix Codes Required Client Information <u>MATRIX</u> <u>CO</u>	(jî ei o		COLLECTED			Preservatives	ives	1 N /A							mu
	DRINKINS WATER WATER WASTE WATER PRODUCT SCIL/SOLID OIL	l seboo bilav eea	COMPOSITE START	COMPOSITE END/GRAB		S							(N\Y) 9I	(Jo14	(po14694 0	
# W3	E IER SUE				TA 9M9LE TEMP AT 0	OF CONTAINER	190H ICI INO ³ I ⁵ 2O ⁴)ther lethanol letharol	260 BTEX X378 0350 X378 0350	bəvlozziQ 010			Residual Chlorin	Droioro	Dave Drviart No / Lah I D	
л -	ATHONIA IN MAN IN - MANUL	ŤĚ	DATE	M. 1712	1456		+ m +	1	8 🗙				30	3069H 1083	P3F2-001	-
- ~				141213	Str	ナ	8		2					-	200 1	
1 0	-21-17.13	ATA A	etst712	ELUNA Sett	1455	Ţ	13		$\overline{\mathbf{x}}$						× 22	
4	-061213-14	5				m	m		×					(400	_
s	TRIP BUANK	23				3	_							V(T8)	500	
Q																
7													-			T
œ							_		t							-
6 0																<u> </u>
÷																
12											_		_			
	ADDITIONAL COMMENTS	RELING	RELINQUISHED BY / AFFILATION	NON	DATE	TIME	_	ACCEPTED BY / AFFILIATION	BY / AFFIL	IATION	DATE	TIME		SAMPLE CONDITIONS	DITIONS	-
		17g	5		5-13-13	130		FBrackett	Pr.	Ŷ	6 14	0320	220	7	>	
	×															rr-
Pag			SAMPI	SAMPLER NAME A	ND SIGNATURE	₩								(1	tact	-r
e 17 of 1				PRINT Name SIGNATURE	PRINT Name of SAMPLER: SIGNATURE of SAMPLER:	Kelly	w William	ams	T DAT (MN	DATE Signed	12/12/13		ni qməT	Ice (Y/Y) eol Custod Coseled Co O belse2	(MM) II seiqms2 (NYY)	1
7						-	2	3	3		-		F-ALL-0-02	F-AIT-0-020rev 08, 12-Oct-2007	ct-2007	

"Important Note: By signing this form you are accepting Pace's NET 30 day payment terms and agreeing to late charges of 1.5% per month for any involces not paid within 30 days

F-ALL-Q-020rev 08, 12-Oct-2007

Pace Analytical Services, Inc. 9608 Loiret Blvd. Lenexa, KS 66219 (913)599-5665

September 27, 2013

Christine Matthews CRA 6121 Indian School Rd NE Suite 200 Albuquerque, NM 87110

RE: Project: 074941 Nell Hall No. 1 Pace Project No.: 60153068

Dear Christine Matthews:

Enclosed are the analytical results for sample(s) received by the laboratory on September 13, 2013. The results relate only to the samples included in this report. Results reported herein conform to the most current TNI standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Alice Flanazan

Alice Flanagan

alice.flanagan@pacelabs.com Project Manager

Enclosures

cc: Kelly Blanchard, COP Conestoga-Rovers & Associa Angela Bown, COP Conestoga-Rovers & Associa Jeff Walker, COP Conestoga-Rovers & Associa

CERTIFICATIONS

Project: 074941 Nell Hall No. 1

Pace Project No.: 60153068

Kansas Certification IDs

9608 Loiret Boulevard, Lenexa, KS 66219 WY STR Certification #: 2456.01 Arkansas Certification #: 13-012-0 Illinois Certification #: 003097 Iowa Certification #: 118 Kansas/NELAP Certification #: E-10116 Louisiana Certification #: 03055 Nevada Certification #: KS000212008A Oklahoma Certification #: 9205/9935 Texas Certification #: T104704407-13-4 Utah Certification #: KS000212013-3 Illinois Certification #: 003097

SAMPLE SUMMARY

Project: 074941 Nell Hall No. 1

Pace Project No.: 60153068

Lab ID	Sample ID	Matrix	Date Collected	Date Received
60153068001	GW-074941-091113-CM-MW-4	Water	09/11/13 19:00	09/13/13 08:30
60153068002	GW-074941-091113-CM-MW-5	Water	09/11/13 18:45	09/13/13 08:30
60153068003	GW-074941-091113-CM-MW-6	Water	09/11/13 19:10	09/13/13 08:30
60153068004	GW-074941-091113-CM-DUP	Water	09/11/13 19:15	09/13/13 08:30
60153068005	TB-074941-091213-CM-001	Water	09/12/13 12:30	09/13/13 08:30

SAMPLE ANALYTE COUNT

 Project:
 074941 Nell Hall No. 1

 Pace Project No.:
 60153068

Lab ID	Sample ID	Method	Analysts	Analytes Reported
60153068001		EPA 6010	NDJ	1
		EPA 8260	PRG	8
60153068002	GW-074941-091113-CM-MW-5	EPA 6010	NDJ	1
		EPA 8260	PRG	8
60153068003	GW-074941-091113-CM-MW-6	EPA 6010	NDJ	1
		EPA 8260	PRG	8
60153068004	GW-074941-091113-CM-DUP	EPA 8260	SDR	8
60153068005	TB-074941-091213-CM-001	EPA 8260	SDR	8

PROJECT NARRATIVE

Project: 074941 Nell Hall No. 1

Pace Project No.: 60153068

Method: EPA 6010

Description:6010 MET ICP, DissolvedClient:COP Conestoga-Rovers & Associates, Inc. NMDate:September 27, 2013

General Information:

3 samples were analyzed for EPA 6010. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3010 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

PROJECT NARRATIVE

Project: 074941 Nell Hall No. 1

Pace Project No.: 60153068

Method: EPA 8260

Description:8260 MSV UST, WaterClient:COP Conestoga-Rovers & Associates, Inc. NMDate:September 27, 2013

General Information:

5 samples were analyzed for EPA 8260. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable): All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: MSV/56415

A matrix spike/matrix spike duplicate was not performed due to insufficient sample volume.

QC Batch: MSV/56416

A matrix spike/matrix spike duplicate was not performed due to insufficient sample volume.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

Project: 074941 Nell Hall No. 1

Pace Project No.: 60153068

Sample: GW-074941-091113-CM- MW-4	Lab ID:	60153068001	Collecte	d: 09/11/13	19:00	Received: 09/	13/13 08:30 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP, Dissolved	Analytical	Method: EPA 6	010 Prepa	ration Methe	od: EPA	A 3010			
Iron, Dissolved	ND u	g/L	50.0	11.6	1	09/19/13 00:00	09/20/13 12:44	7439-89-6	
8260 MSV UST, Water	Analytical	Method: EPA 8	260						
Benzene	ND u	g/L	1.0	0.060	1		09/20/13 07:03	71-43-2	
Ethylbenzene	ND u	g/L	1.0	0.18	1		09/20/13 07:03	100-41-4	
Toluene	ND u	g/L	1.0	0.17	1		09/20/13 07:03	108-88-3	
Xylene (Total) <i>Surrogates</i>	ND u	g/L	3.0	0.42	1		09/20/13 07:03	1330-20-7	
Toluene-d8 (S)	103 %	6	80-120		1		09/20/13 07:03	2037-26-5	
4-Bromofluorobenzene (S)	101 %	6	80-120		1		09/20/13 07:03	460-00-4	
1,2-Dichloroethane-d4 (S)	89 %	6	80-120		1		09/20/13 07:03	17060-07-0	
Preservation pH	1.0		1.0	0.10	1		09/20/13 07:03		

Project: 074941 Nell Hall No. 1

Pace Project No.: 60153068

Sample: GW-074941-091113-CM- MW-5	Lab ID:	60153068002	Collecte	d: 09/11/13	18:45	Received: 09/	13/13 08:30 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP, Dissolved	Analytical	Method: EPA 6	010 Prepa	ration Meth	od: EPA	 \ 3010			
Iron, Dissolved	72.3 ug	g/L	50.0	11.6	1	09/19/13 00:00	09/20/13 12:46	7439-89-6	
8260 MSV UST, Water	Analytical	Method: EPA 8	260						
Benzene	ND ug	g/L	1.0	0.060	1		09/20/13 07:18	71-43-2	
Ethylbenzene	ND ug	g/L	1.0	0.18	1		09/20/13 07:18	100-41-4	
Toluene	ND ug	g/L	1.0	0.17	1		09/20/13 07:18	108-88-3	
Xylene (Total) <i>Surrogates</i>	ND uç	g/L	3.0	0.42	1		09/20/13 07:18	1330-20-7	
Toluene-d8 (S)	105 %	,	80-120		1		09/20/13 07:18	2037-26-5	
4-Bromofluorobenzene (S)	99 %	,	80-120		1		09/20/13 07:18	460-00-4	
1,2-Dichloroethane-d4 (S)	89 %	,	80-120		1		09/20/13 07:18	17060-07-0	
Preservation pH	1.0		1.0	0.10	1		09/20/13 07:18		

Project: 074941 Nell Hall No. 1

Pace Project No.: 60153068

Sample: GW-074941-091113-CM- MW-6	Lab ID:	60153068003	Collecte	d: 09/11/13	19:10	Received: 09/	13/13 08:30 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
									Quai
6010 MET ICP, Dissolved	Analytical	Method: EPA 6	010 Prepa	ration Methe	od: EPA	3010			
Iron, Dissolved	2260 u	g/L	50.0	11.6	1	09/19/13 00:00	09/20/13 12:48	7439-89-6	
8260 MSV UST, Water	Analytical	Method: EPA 8	260						
Benzene	109 u	g/L	1.0	0.060	1		09/20/13 07:33	71-43-2	
Ethylbenzene	20.8 u	g/L	1.0	0.18	1		09/20/13 07:33	100-41-4	
Toluene	ND u	g/L	1.0	0.17	1		09/20/13 07:33	108-88-3	
Xylene (Total) <i>Surrogates</i>	12.3 u	g/L	3.0	0.42	1		09/20/13 07:33	1330-20-7	
Toluene-d8 (S)	104 %	, D	80-120		1		09/20/13 07:33	2037-26-5	
4-Bromofluorobenzene (S)	99 %	, D	80-120		1		09/20/13 07:33	460-00-4	
1,2-Dichloroethane-d4 (S)	90 %	, D	80-120		1		09/20/13 07:33	17060-07-0	
Preservation pH	1.0		1.0	0.10	1		09/20/13 07:33		

Project: 074941 Nell Hall No. 1

Pace Project No.: 60153068

Sample: GW-074941-091113-CM- DUP	Lab ID:	60153068004	Collecte	d: 09/11/13	19:15	Received: 09	/13/13 08:30 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV UST, Water	Analytical	Method: EPA 8	260						
Benzene	93.7 ι	ıg/L	1.0	0.055	1		09/19/13 15:09	71-43-2	
Ethylbenzene	19.1 ι	ıg/L	1.0	0.056	1		09/19/13 15:09	100-41-4	
Toluene	ND u	ıg/L	1.0	0.066	1		09/19/13 15:09	108-88-3	
Xylene (Total)	11.4 ι	ıg/L	3.0	0.12	1		09/19/13 15:09	1330-20-7	
Surrogates									
Toluene-d8 (S)	102 %	6	80-120		1		09/19/13 15:09	2037-26-5	
4-Bromofluorobenzene (S)	105 %	6	80-120		1		09/19/13 15:09	460-00-4	
1,2-Dichloroethane-d4 (S)	108 %	6	80-120		1		09/19/13 15:09	17060-07-0	
Preservation pH	1.0		1.0	0.10	1		09/19/13 15:09		

Project: 074941 Nell Hall No. 1

Pace Project No.: 60153068

Sample: TB-074941-091213-CM-00	1 Lab ID:	60153068005	Collecte	d: 09/12/13	3 12:30	Received: 09/	(13/13 08:30 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV UST, Water	Analytica	I Method: EPA 8	3260						
Benzene	ND u	ug/L	1.0	0.055	1		09/19/13 15:26	71-43-2	
Ethylbenzene	ND u	ug/L	1.0	0.056	1		09/19/13 15:26	100-41-4	
Toluene	ND u	ug/L	1.0	0.066	1		09/19/13 15:26	108-88-3	
Xylene (Total)	ND u	ug/L	3.0	0.12	1		09/19/13 15:26	1330-20-7	
Surrogates									
Toluene-d8 (S)	100 9	%	80-120		1		09/19/13 15:26	2037-26-5	
4-Bromofluorobenzene (S)	102 9	%	80-120		1		09/19/13 15:26	460-00-4	
1,2-Dichloroethane-d4 (S)	106 9	%	80-120		1		09/19/13 15:26	17060-07-0	
Preservation pH	1.0		1.0	0.10	1		09/19/13 15:26		

QUALITY CONTROL DATA

	74941 Nell Hall No. 1											
Pace Project No.: 60	0153068											
QC Batch:	MPRP/24349		Analysi	s Method:	E	PA 6010						
QC Batch Method:	EPA 3010		Analysi	s Descriptio	on: 6	010 MET Dis	ssolved					
Associated Lab Sample	es: 60153068001, 6	0153068002	, 601530680	03								
METHOD BLANK: 12	256522		М	atrix: Wate	ər							
Associated Lab Sample	es: 60153068001, 6	0153068002	, 601530680	003								
			Blank	Re	porting							
Paramet	er	Units	Result	I	Limit	Analyz	ed	Qualifiers				
Iron, Dissolved	ug/L			ND	50.0	09/20/13	12:26		_			
LABORATORY CONTI	ROL SAMPLE: 1256	523										
LABORATORY CONT	ROL SAMPLE: 1256	523	Spike	LCS		LCS	% Rec	;				
LABORATORY CONTI Paramet		523 Units	Spike Conc.	LCS Result	t	LCS % Rec	% Rec Limits		ualifiers			
			•	Result	t 9500		Limits		ualifiers			
Paramet Iron, Dissolved	erug/L	Units	Conc. 10000	Result	9500	% Rec	Limits	Qu	ualifiers	-		
Paramet	erug/L	Units	24	Result		% Rec	Limits	Qu	ualifiers			
Paramet Iron, Dissolved	rrix spike duplicat	Units E: 12565	24 MS	Result	9500	% Rec 95	Limits 80	Qu 1-120		-	May	
Paramet Iron, Dissolved MATRIX SPIKE & MAT	rer ug/L TRIX SPIKE DUPLICAT	Units E: 12565.	24 MS Spike	Result MSD Spike	9500 1256525 MS	% Rec 95 MSD	Limits 80 MS	Qu -120 MSD	% Rec	RPD	Max	Qual
Paramet Iron, Dissolved	rrix spike duplicat	Units E: 12565	24 MS	Result	9500	% Rec 95	Limits 80	Qu 1-120		RPD 0	RPD	Qual

Project: 074941 Nell Hall No. 1

Pace Project No.: 60153068

QC Batch: MSV/56415 QC Batch Method: EPA 8260

Analysis Method:

Matrix: Water

Analysis Description:

8260 MSV UST-WATER

EPA 8260

Associated Lab Samples: 60153068001, 60153068002, 60153068003

METHOD BLANK: 1256325

Associated Lab Samples: 60153068001, 60153068002, 60153068003

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Benzene	ug/L	ND	1.0	09/20/13 02:33	
Ethylbenzene	ug/L	ND	1.0	09/20/13 02:33	
Toluene	ug/L	ND	1.0	09/20/13 02:33	
Xylene (Total)	ug/L	ND	3.0	09/20/13 02:33	
1,2-Dichloroethane-d4 (S)	%	96	80-120	09/20/13 02:33	
4-Bromofluorobenzene (S)	%	101	80-120	09/20/13 02:33	
Toluene-d8 (S)	%	102	80-120	09/20/13 02:33	

LABORATORY CONTROL SAMPLE: 1256326

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Benzene	ug/L	20	19.5	97	73-122	
Ethylbenzene	ug/L	20	19.6	98	76-123	
Toluene	ug/L	20	19.8	99	76-122	
Xylene (Total)	ug/L	60	59.0	98	76-122	
1,2-Dichloroethane-d4 (S)	%			97	80-120	
4-Bromofluorobenzene (S)	%			103	80-120	
Toluene-d8 (S)	%			99	80-120	

Project: 074941 Nell Hall No. 1

Pace Project No.: 60153068

QC Batch:	MSV/56416
QC Batch Method:	EPA 8260

Analysis Method:

Analysis Description:

8260 MSV UST-WATER

EPA 8260

Associated Lab Samples: 60153068004, 60153068005

METHOD BLANK: 1256328

Matrix: Water

Associated Lab Samples: 60153068004, 60153068005

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Benzene	ug/L	ND	1.0	09/19/13 13:12	
Ethylbenzene	ug/L	ND	1.0	09/19/13 13:12	
Toluene	ug/L	ND	1.0	09/19/13 13:12	
Xylene (Total)	ug/L	ND	3.0	09/19/13 13:12	
1,2-Dichloroethane-d4 (S)	%	105	80-120	09/19/13 13:12	
4-Bromofluorobenzene (S)	%	100	80-120	09/19/13 13:12	
Toluene-d8 (S)	%	101	80-120	09/19/13 13:12	

LABORATORY CONTROL SAMPLE: 1256329

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Benzene	ug/L	20	18.9	95	73-122	
Ethylbenzene	ug/L	20	19.8	99	76-123	
Toluene	ug/L	20	20.0	100	76-122	
Xylene (Total)	ug/L	60	59.0	98	76-122	
1,2-Dichloroethane-d4 (S)	%			103	80-120	
4-Bromofluorobenzene (S)	%			100	80-120	
Toluene-d8 (S)	%			101	80-120	

QUALIFIERS

Project: 074941 Nell Hall No. 1

Pace Project No.: 60153068

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PRL - Pace Reporting Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine (8270 listed analyte) decomposes to Azobenzene.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

BATCH QUALIFIERS

Batch: MSV/56415

[M5] A matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume.

Batch: MSV/56416

[M5] A matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project:	074941 Nell Hall No. 1
Pace Project No.:	60153068

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
60153068001	GW-074941-091113-CM-MW-4	EPA 3010	MPRP/24349	EPA 6010	ICP/18990
60153068002	GW-074941-091113-CM-MW-5	EPA 3010	MPRP/24349	EPA 6010	ICP/18990
60153068003	GW-074941-091113-CM-MW-6	EPA 3010	MPRP/24349	EPA 6010	ICP/18990
60153068001	GW-074941-091113-CM-MW-4	EPA 8260	MSV/56415		
60153068002	GW-074941-091113-CM-MW-5	EPA 8260	MSV/56415		
60153068003	GW-074941-091113-CM-MW-6	EPA 8260	MSV/56415		
60153068004	GW-074941-091113-CM-DUP	EPA 8260	MSV/56416		
60153068005	TB-074941-091213-CM-001	EPA 8260	MSV/56416		

Sample Condition Upon Receipt ESI Tech Spec Client

WO#:60153068

Client Name: COP CRANM		Optional
Courier: Fed Ex D UPS USPS Client Commercial	Pace Other	Proj Due Date:
Tracking #: 6011 3632 2277 Pace Shipping	Label Used? Yes 🖬 No 🛛	
Custody Seal on Cooler/Box Present: Yes V No D Seals in		h <u></u> h.
Packing Material: Bubble Wrap Bubble Bags	Foam 🗆 None 🗆	Other DIPUL
Thermometer Used: (T-112// T-194 Type of Ice:	Vet Blue None 🗆 Samples	received on ice, cooling process has begun.
Cooler Temperature: L.S	(circle one) Da	te and initials of person examining
Temperature should be above freezing to 6°C	co	ntents: 9113113 6A
Chain of Custody present:	□N/A 1.	
Chain of Custody filled out:	□N/A 2,	
Chain of Custody relinquished:	□n/A 3.	
Sampler name & signature on COC:	□N/A 4,	
Samples arrived within holding time:	□n/A 5 .	
Short Hold Time analyses (<72hr):	□n/A 6.	
Rush Turn Around Time requested:	□N/A 7.	
Sufficient volume:	□n/A 8.	
Correct containers used:	□ N/A	
Pace containers used:	□N/A 9.	
Containers intact:	□N/A 10.	
Unpreserved 5035A soils frozen w/in 48hrs?	DN/A 11.	
Filtered volume received for dissolved tests?	■ □N/A 12.	
Sample labels match COC:		
Includes date/time/ID/analyses Matrix: VT	13.	
All containers needing preservation have been checked.	D □N/A	
All containers needing preservation are found to be in compliance with EPA recommendation.	D □N/A 14.	
Exceptions: OA coliform, TOC, O&G, WI-DRO (water),	Initial when completed	Lot # of added preservative
Trip Blank present:		
Pace Trip Blank lot # (if purchased): 0 Sos(3-3	15	
Headspace in VOA vials (>6mm):	D N/A	
	16.	
Project sampled in USDA Regulated Area:	DINA 17. List State:	
Client Notification/ Resolution: Copy COC to Client?	Y (N) Field Data Re	equired? Y / N
Person Contacted: Date/Time: Date/Time:		Temp Log : Record start and finish times when unpacking cooler, if >20 min, recheck sample temps.
		Start: 1140 Start:
11.1	Aliala	End: 1145 End:
Project Manager Review:	Date 411313	Temp: Temp:

	7	,
	ical	1000
	N.	ALC:NO
	Anal	Contraction of the second
	Z	14004
0	Ce	
/	d'	i e
3		ļ.
	1	Ъ

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Page: of	REGULATORY AGENCY	NPDES TKGROUND WATER T DRINKING WATER	UST 🕇 RCRA Γ OTHER	Site Location	STATE:	Requested Analysis Filtered (YIN)	ssidual Chlorine (Y/N)		200 9	400 Y			DATE TIME SAMPLE CONDITIONS C4/13/13 0530 (.5 y y	Temp in °C Cooler (Y/N) Cooler (Y/N) Cooler (Y/N) Cooler (Y/N) Cooler (Y/N)
Attention: ePayables	Company Name: REG	Address:		et Alice Flanagan	Pace Profile #: 5514, 23	Requested Analy	DF CONTRINERS Preserved (0, 20, 00, 00, 00, 00, 00, 00, 0	28 1 1 1 1 1 1 1 1 1 1 1 1 1					TIME ACCEPTED BY AFFILIATION	Michae Mathew Michae Wateres
Required Project Information: In Report To: Christine Mathews	a Bown	A.	r No.: 4517653456	Project Name: Nell Hall No.1	Project Number: 074941		MPLE TYPE (G=GRAB C=COMP)	S DATE TIME PATE TIME S	0/10/ 2/1/10	9/4/13/9/5			RELINQUISHED BY / AFFILIATION DATE	SAMPLER NAME AND SIGNATURE PRINT Name of SAMPLER: SIGNATURE of SAMPLER:
Section A Required Client Information: Rompany: COP CRA NM	chool Rd NE, Ste 200	Albequerque, NM 87110	Email To: cmathews@craworld.com	Phone: (505)884-0672 Fax: (505)884-4932 P	Requested Due Date/TAT: standard P		Section D Required Client Information Required Client Information MATERIX WATER DW WATER DW W	E Subordy Hogilis-Con-Mul-4	2 Si O-GUANI-OBILIZ-CM-MU	4 510-674941-691113-Cm-DL	6 10-0110-0110-0110-0110-0110-0110-0110-	11 12	MUTALS LURE TICLA FILL	Page 18 of

December 30, 2013

Jeff Walker COP Conestoga-Rovers & Associa 6121 Indian School Rd. NE Ste 200 Albuquerque, NM 87110

RE: Project: 074941 NELL HALL NO.1 Pace Project No.: 60159758

Dear Jeff Walker:

Enclosed are the analytical results for sample(s) received by the laboratory on December 17, 2013. The results relate only to the samples included in this report. Results reported herein conform to the most current TNI standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Alice Flanazan

Alice Flanagan

alice.flanagan@pacelabs.com Project Manager

Enclosures

cc: Angela Bown, COP Conestoga-Rovers & Associa Christine Matthews, CRA

CERTIFICATIONS

Project: 074941 NELL HALL NO.1

Pace Project No.: 60159758

Kansas Certification IDs

9608 Loiret Boulevard, Lenexa, KS 66219 WY STR Certification #: 2456.01 Arkansas Certification #: 13-012-0 Illinois Certification #: 003097 Iowa Certification #: 118 Kansas/NELAP Certification #: E-10116 Louisiana Certification #: 03055 Nevada Certification #: KS000212008A Oklahoma Certification #: 9205/9935 Texas Certification #: T104704407-13-4 Utah Certification #: KS000212013-3 Illinois Certification #: 003097

SAMPLE SUMMARY

Project: 074941 NELL HALL NO.1

Pace Project No.: 60159758

,				
Lab ID	Sample ID	Matrix	Date Collected	Date Received
60159758001	GW-074941-122323-CM-MW4	Water	12/13/13 09:20	12/17/13 09:00
60159758002	GW-074941-122323-CM-MW5	Water	12/13/13 09:05	12/17/13 09:00
60159758003	GW-074941-122323-CM-MW6	Water	12/13/13 09:50	12/17/13 09:00
60159758004	GW-074941-122323-CM-DUP	Water	12/13/13 09:35	12/17/13 09:00
60159758005	TRIP BLANK	Water	12/13/13 00:00	12/17/13 09:00

SAMPLE ANALYTE COUNT

 Project:
 074941 NELL HALL NO.1

 Pace Project No.:
 60159758

Lab ID	Sample ID	Method	Analysts	Analytes Reported
60159758001	GW-074941-122323-CM-MW4	EPA 6010	TDS	1
		EPA 8260	JTS	8
60159758002	GW-074941-122323-CM-MW5	EPA 6010	TDS	1
		EPA 8260	JTS	8
60159758003	GW-074941-122323-CM-MW6	EPA 6010	TDS	1
		EPA 8260	JTS	8
60159758004	GW-074941-122323-CM-DUP	EPA 8260	JTS	8
60159758005	TRIP BLANK	EPA 8260	JTS	8

PROJECT NARRATIVE

Project: 074941 NELL HALL NO.1

Pace Project No.: 60159758

Method: EPA 6010

Description:6010 MET ICP, DissolvedClient:COP Conestoga-Rovers & Associates, Inc. NMDate:December 30, 2013

General Information:

3 samples were analyzed for EPA 6010. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3010 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

PROJECT NARRATIVE

Project: 074941 NELL HALL NO.1

Pace Project No.: 60159758

Method: EPA 8260

Description:8260 MSV UST, WaterClient:COP Conestoga-Rovers & Associates, Inc. NMDate:December 30, 2013

General Information:

5 samples were analyzed for EPA 8260. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable): All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: MSV/58448

A matrix spike/matrix spike duplicate was not performed due to insufficient sample volume.

QC Batch: MSV/58457

A matrix spike/matrix spike duplicate was not performed due to insufficient sample volume.

QC Batch: MSV/58486

A matrix spike/matrix spike duplicate was not performed due to insufficient sample volume.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

Project: 074941 NELL HALL NO.1

Pace Project No.: 60159758

Sample: GW-074941-122323-CM- MW4	Lab ID: 6015975800	1 Collected: 12/13/1	3 09:20	Received: 12	/17/13 09:00	Matrix: Water	
Parameters	Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP, Dissolved	Analytical Method: EPA	6010 Preparation Meth	nod: EP/	A 3010			
Iron, Dissolved	758 ug/L	50.0	1	12/18/13 13:30	12/27/13 14:09	7439-89-6	
8260 MSV UST, Water	Analytical Method: EPA	8260					
Benzene	ND ug/L	1.0	1		12/18/13 23:40	71-43-2	
Ethylbenzene	ND ug/L	1.0	1		12/18/13 23:40	100-41-4	
Toluene	ND ug/L	1.0	1		12/18/13 23:40	108-88-3	
Xylene (Total) Surrogates	ND ug/L	3.0	1		12/18/13 23:40	1330-20-7	
Toluene-d8 (S)	100 %	80-120	1		12/18/13 23:40	2037-26-5	
4-Bromofluorobenzene (S)	101 %	80-120	1		12/18/13 23:40		
1,2-Dichloroethane-d4 (S)	101 %	80-120	1		12/18/13 23:40	17060-07-0	
Preservation pH	1.0	1.0	1		12/18/13 23:40		

Project: 074941 NELL HALL NO.1

Pace Project No.: 60159758

Sample: GW-074941-122323-CM- MW5	Lab ID: 60159758002	2 Collected: 12/13/13	3 09:05	5 Received: 12	2/17/13 09:00 N	Aatrix: Water	
Parameters	Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP, Dissolved	Analytical Method: EPA	6010 Preparation Meth	od: EP	A 3010			
Iron, Dissolved	76.0 ug/L	50.0	1	12/18/13 13:30	12/27/13 14:11	7439-89-6	
8260 MSV UST, Water	Analytical Method: EPA	8260					
Benzene	ND ug/L	1.0	1		12/18/13 23:56	71-43-2	
Ethylbenzene	ND ug/L	1.0	1		12/18/13 23:56	100-41-4	
Toluene	ND ug/L	1.0	1		12/18/13 23:56	108-88-3	
Xylene (Total)	ND ug/L	3.0	1		12/18/13 23:56	1330-20-7	
Surrogates	-						
Toluene-d8 (S)	100 %	80-120	1		12/18/13 23:56	2037-26-5	
4-Bromofluorobenzene (S)	100 %	80-120	1		12/18/13 23:56	460-00-4	
1,2-Dichloroethane-d4 (S)	101 %	80-120	1		12/18/13 23:56	17060-07-0	
Preservation pH	1.0	1.0	1		12/18/13 23:56		

Project: 074941 NELL HALL NO.1

Pace Project No.: 60159758

Sample: GW-074941-122323-CM- MW6	Lab ID: 60159758003	3 Collected: 12/13/1	3 09:50) Received: 12	2/17/13 09:00 N	Aatrix: Water	
Parameters	Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP, Dissolved	Analytical Method: EPA	6010 Preparation Meth	nod: EP	A 3010			
Iron, Dissolved	5900 ug/L	50.0	1	12/18/13 13:30	12/27/13 14:13	7439-89-6	
8260 MSV UST, Water	Analytical Method: EPA	8260					
Benzene	467 ug/L	10.0	10		12/19/13 16:43	71-43-2	
Ethylbenzene	101 ug/L	1.0	1		12/19/13 00:12	100-41-4	
Toluene	ND ug/L	1.0	1		12/19/13 00:12	108-88-3	
Xylene (Total)	53.7 ug/L	3.0	1		12/19/13 00:12	1330-20-7	
Surrogates	-						
Toluene-d8 (S)	99 %	80-120	1		12/19/13 00:12	2037-26-5	
4-Bromofluorobenzene (S)	110 %	80-120	1		12/19/13 00:12	460-00-4	
1,2-Dichloroethane-d4 (S)	97 %	80-120	1		12/19/13 00:12	17060-07-0	
Preservation pH	1.0	1.0	1		12/19/13 00:12		

Project: 074941 NELL HALL NO.1

Pace Project No.: 60159758

Sample: GW-074941-122323-CM- DUP	Lab ID: 60 ⁴	Lab ID: 60159758004		Collected: 12/13/13 09:35		Received: 12/17/13 09:00		Matrix: Water	
Parameters	Results	Units	Report	Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV UST, Water	Analytical Me	thod: EPA 82	260						
Benzene	456 u	g/L		10.0	10		12/19/13 16:59	71-43-2	
Ethylbenzene	77.7 u	g/L		1.0	1		12/19/13 02:38	3 100-41-4	
Toluene	ND u	g/L		1.0	1		12/19/13 02:38	3 108-88-3	
Xylene (Total)	49.1 u	g/L		3.0	1		12/19/13 02:38	1330-20-7	
Surrogates									
Toluene-d8 (S)	99 %	D	8	30-120	1		12/19/13 02:38	2037-26-5	
4-Bromofluorobenzene (S)	106 %	, D	8	30-120	1		12/19/13 02:38	3 460-00-4	
1,2-Dichloroethane-d4 (S)	94 %	D	8	30-120	1		12/19/13 02:38	3 17060-07-0	
Preservation pH	1.0			1.0	1		12/19/13 02:38	3	

Project: 074941 NELL HALL NO.1

Pace Project No.: 60159758

Sample: TRIP BLANK	Lab ID: 6015975800	5 Collected: 12/13/	13 00:00	Received: 12	2/17/13 09:00 N	Aatrix: Water	
Parameters	Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV UST, Water	Analytical Method: EPA	8260					
Benzene	ND ug/L	1.0	1		12/19/13 01:49	71-43-2	
Ethylbenzene	ND ug/L	1.0	1		12/19/13 01:49	100-41-4	
Toluene	ND ug/L	1.0	1		12/19/13 01:49	108-88-3	
Xylene (Total)	ND ug/L	3.0	1		12/19/13 01:49	1330-20-7	
Surrogates	-						
Toluene-d8 (S)	99 %	80-120	1		12/19/13 01:49	2037-26-5	
4-Bromofluorobenzene (S)	100 %	80-120	1		12/19/13 01:49	460-00-4	
1,2-Dichloroethane-d4 (S)	100 %	80-120	1		12/19/13 01:49	17060-07-0	
Preservation pH	1.0	1.0	1		12/19/13 01:49		

Project:	074941 N	ELL HALL NO.1											
Pace Project No .:	60159758												
QC Batch:	MPRP/2	5648		Analys	is Method:	: E	PA 6010						
QC Batch Method:	EPA 301	0		Analys	is Descript	tion: 6	010 MET Di	ssolved					
Associated Lab Sar	mples: 60	0159758001, 60	159758002	, 60159758	003								
METHOD BLANK:	1307870			N	latrix: Wa	ter							
Associated Lab Sar	nples: 60	159758001, 60	159758002	, 60159758	003								
				Blank	R	eporting							
Parar	neter	I	Jnits	Resul	t	Limit	Analyz	ed	Qualifiers				
Iron, Dissolved		ug/L			ND	50.0) 12/27/13	13:33					
LABORATORY CO	NTROL SAM	MPLE: 13078	71										
				Spike	LCS	5	LCS	% Rec	>				
Parar	neter	ı	Jnits	Conc.	Resu	ılt	% Rec	Limits	Q	ualifiers			
Iron, Dissolved		ug/L		10000		9720	97	80	-120		-		
MATRIX SPIKE & M	IATRIX SPI	KE DUPLICATE	: 13078	72		1307873							
				MS	MSD								
			59732001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parame	ter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Iron, Dissolved		ug/L	25.4 mg/L	10000	10000	33900	34500	84	90	75-125	2	20	

Project: 074941 NELL HALL NO.1

Pace Project No.: 60159758

QC Batch:	MSV/58448	Analysis Method:	EPA 8260
QC Batch Method:	EPA 8260	Analysis Description:	8260 MSV UST-WATER
Associated Lab Sam	ples: 60159758001, 60159758002, 6	0159758003	

METHOD BLANK: 1307952 Matrix: Water Associated Lab Samples: 60159758001, 60159758002, 60159758003

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Benzene	ug/L	ND	1.0	12/18/13 18:48	
Ethylbenzene	ug/L	ND	1.0	12/18/13 18:48	
Toluene	ug/L	ND	1.0	12/18/13 18:48	
Xylene (Total)	ug/L	ND	3.0	12/18/13 18:48	
1,2-Dichloroethane-d4 (S)	%	101	80-120	12/18/13 18:48	
4-Bromofluorobenzene (S)	%	100	80-120	12/18/13 18:48	
Toluene-d8 (S)	%	100	80-120	12/18/13 18:48	

LABORATORY CONTROL SAMPLE: 1307953

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Benzene	ug/L	20	19.9	99	73-122	
Ethylbenzene	ug/L	20	20.0	100	76-123	
Toluene	ug/L	20	19.8	99	76-122	
Xylene (Total)	ug/L	60	59.6	99	76-122	
1,2-Dichloroethane-d4 (S)	%			100	80-120	
4-Bromofluorobenzene (S)	%			100	80-120	
Toluene-d8 (S)	%			100	80-120	

Project: 074941 NELL HALL NO.1

Pace Project No.: 60159758

QC Batch: MSV	/58457	Analysis Met	had: E	PA 8260	
		2			
QC Batch Method: EPA	8260	Analysis Des	cription: 82	260 MSV UST-WAT	ER
Associated Lab Samples:	60159758004, 60159758005				
METHOD BLANK: 130814	47	Matrix:	Water		
Associated Lab Samples:	60159758004, 60159758005				
		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Benzene		ND	1.0	12/19/13 01:33	
Ethylbenzene	ug/L	ND	1.0	12/19/13 01:33	
Toluene	ug/L	ND	1.0	12/19/13 01:33	
Xylene (Total)	ug/L	ND	3.0	12/19/13 01:33	
, , ,					
1,2-Dichloroethane-d4 (S)	%	101	80-120	12/19/13 01:33	

LABORATORY CONTROL SAMPLE: 1308148

%

Toluene-d8 (S)

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Benzene	ug/L	20	19.5	98	73-122	
Ethylbenzene	ug/L	20	19.6	98	76-123	
Toluene	ug/L	20	18.3	92	76-122	
Xylene (Total)	ug/L	60	59.0	98	76-122	
1,2-Dichloroethane-d4 (S)	%			95	80-120	
4-Bromofluorobenzene (S)	%			101	80-120	
Toluene-d8 (S)	%			94	80-120	

100

80-120 12/19/13 01:33

Project: 074941 NELL HALL NO.1

Pace

QC Batch: MSV/58 QC Batch Method: EPA 826 Associated Lab Samples: 60		Analysis Me Analysis De		EPA 8260 8260 MSV US	ST-WATER		
METHOD BLANK: 1308666		Matrix	: Water				
Associated Lab Samples: 6 Parameter	0159758003, 60159758004 Units	Blank Result	Reporting Limit	Analyz	ed Qua	alifiers	
Benzene 1,2-Dichloroethane-d4 (S) 4-Bromofluorobenzene (S)	ug/L % %	ND 99 101	1. 80-12 80-12		13:14		
Toluene-d8 (S)	%	99	80-12		-		
LABORATORY CONTROL SA	MPLE: 1308667	Calles	1.00	1.00	0/ Dag		
Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers	

Benzene	ug/L	20	19.2	96	73-122	
1,2-Dichloroethane-d4 (S)	%			98	80-120	
4-Bromofluorobenzene (S)	%			102	80-120	
Toluene-d8 (S)	%			100	80-120	

QUALIFIERS

Project: 074941 NELL HALL NO.1

Pace Project No.: 60159758

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PRL - Pace Reporting Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine (8270 listed analyte) decomposes to Azobenzene.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

BATCH QUALIFIERS

Batch: MSV/58448

[M5] A matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume. Batch: MSV/58457

[M5] A matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume.

Batch: MSV/58486

[M5] A matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

 Project:
 074941 NELL HALL NO.1

 Pace Project No.:
 60159758

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
60159758001	GW-074941-122323-CM-MW4	EPA 3010	MPRP/25648	EPA 6010	ICP/19687
60159758002	GW-074941-122323-CM-MW5	EPA 3010	MPRP/25648	EPA 6010	ICP/19687
60159758003	GW-074941-122323-CM-MW6	EPA 3010	MPRP/25648	EPA 6010	ICP/19687
60159758001	GW-074941-122323-CM-MW4	EPA 8260	MSV/58448		
60159758002	GW-074941-122323-CM-MW5	EPA 8260	MSV/58448		
60159758003	GW-074941-122323-CM-MW6	EPA 8260	MSV/58448		
60159758003	GW-074941-122323-CM-MW6	EPA 8260	MSV/58486		
60159758004	GW-074941-122323-CM-DUP	EPA 8260	MSV/58457		
60159758004	GW-074941-122323-CM-DUP	EPA 8260	MSV/58486		
60159758005	TRIP BLANK	EPA 8260	MSV/58457		

Sample Condition Upon Receipt ESI Tech Spec Client

WO#:60159758

Client Name: Cor CRA	Optional
	ace Other Proj Due Date:
Tracking #: 5681127911263 Pace Shipping Label	
Custody Seal on Cooler/Box Present: Yes No Seals intact:	
Packing Material: Bubble Wrap D Bubble Bags Foam	
	lue None Samples received on ice, cooling process has begun.
	Date and initials of person examining
Temperature should be above freezing to 6°C	contents: <u><i>f</i><u></u><u><i>I</i></u><u><i>I</i><u></u><u><i>I</i></u><u><i>I</i></u><u><i>I</i></u><u><i>I</i></u><u><i>I</i></u><u></u></u></u>
Chain of Custody present:	1.
Chain of Custody filled out:	2.
Chain of Custody relinquished:	3. 1 0920
Sampler name & signature on COC:	4. 2 0905
Samples arrived within holding time:	5. 3 0950
Short Hold Time analyses (<72hr):	6. 4 0935
Rush Turn Around Time requested:	7.
	8.
Correct containers used:	
Pace containers used:	9.
Containers intact:	10.
Unpreserved 5035A soils frozen w/in 48hrs?	11.
Filtered volume received for dissolved tests?	12.
Sample labels match COC:	
Includes date/time/ID/analyses Matrix:	13.
All containers needing preservation have been checked.	
All containers needing preservation are found to be in compliance with EPA recommendation.	14.
Exceptions: VOA) colliform, TOC, OSG, WI-DRO (water),	Initial when Lot # of added completed preservative
Trip Blank present:	
Pace Trip Blank lot # (if purchased): /////3-3	15.
Headspace in VOA vials (>6mm):	
/	16.
Project sampled in USDA Regulated Area:	17. List State:
Client Notification/ Resolution: Copy COC to Client?	N Field Data Required? Y / N
Person Contacted: Date/Time:	Temp Log: Record start and finish times
Comments/ Resolution:	when unpacking cooler, if >20 min, recheck sample temps.
	Start: //35 Start:
ANT	End: /190 End:
Project Manager Review:	Date: 11117 Temp: Temp:

AFT

y Sealed y Seal	Custod Coole Sampl	Tem	116/13	12	DATE Signed (MM/DD/YY):	8	Ei	PAL A	N	No.	E.	S.	IPLER	SIGNATURE of SAMPLER	NATURE	SIGI													
Number Section C	(Y/N) dy Sea er (Y/N	p in °C	1			0	to	T	-	3	3	27	IPLER	e of SAM	VT Name	PRIN	0												
Participal Restance Section 2 (monocol restance Sectio	ecl)			-									UATIIS				2												
NUM Section P Section P NUM Reservice Contrainer Section P Reservice P Reservice Contrainer Reservice P Reservice P Reservice P Reservice P <tr< td=""><td></td><td>6.0</td><td>51147</td><td></td><td>X</td><td></td><td></td><td>7</td><td>1</td><td></td><td></td><td>C</td><td>ala</td><td></td><td>TV1</td><td>10</td><td></td><td></td><td>No.W</td><td>Man</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr<>		6.0	51147		X			7	1			C	ala		TV1	10			No.W	Man									
Barting Barting Minimum Statu C months Statu C months Statu C months Statu C months NM Months Marines Marines Marines NM Months Marines Marines Marines Status C Marines Marines Marines Marines Status C Marines Marines Marines Marines Status C Marines Marines Marines Marines Multical Marines Marines Marines Marines Marines Marines Multical Marines Marines Marines Marines Marines Marines Marines Marines Marines Marines Marines Marines Marines Marines Marines		J)AIE	1	TALION	ALAB	1ED	AUCE			IME	2	The second se	DA DA	NO NO	IATION	AFFIL	TOPED B	INQUIS	SPR 1	27			IMENTS	IAL CON	ADDITION			-
Section C COLLECTED NM Section Colspan= C COLLECTED Not		-	+	-				4	E	-	F	ľ	1								5						Γ	12	-
Autor of 10 Autor of 10 Autor of 10 Autor of 10 N/M Figure Visite Millions			1					-		-	-					-												11	-
Section C Section C NN Repart II: Charling Angle Internation NN Repart II: Charling Angle II: Repart II: Repart II: Charling Angle II: Repart II						T	ŀ			-			-			+-												10	
Section B NM Section B INSCRIPTION Section C INSCRIPTION Section C<		-				1		-												T								9	
Section 2 NN Section 2 NN Report Function NN <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td>1</td> <td>-</td> <td></td> <td>h</td> <td></td> <td></td> <td></td> <td>œ</td> <td></td>						1	1	-																h				œ	
Section B NVM Section B NVM Resulted Project Internation: NVM Project Internation: NVM Project Internation: NVM Resulted Project Internation: NVM Project Internation: NVM Project Internation: NVM Resulted Project Internation: NVM Name NVM Resulted Project Internation: NVM Name NVM Resulted Project Internation:						ilwo	L	-		1	-													ľ				7	
Section 8 Section 8 Section 8 N/M Report Roman Name ni School Rd NE, Ste 200 Kay 110 Name N/M Report Roman Name Biologic Rd NE, Ste 200 Kay 110 Name N/M Report Roman Name Biologic Rd NE, Ste 200 Kay 110 Name N/M Report Roman Collisitie Mathema Biologic Rd NE, Ste 200 Kay 110 Name N/M Report Roman Collisitie Mathema Biologic Rd NE, Ste 200 Kay 110 Name N/M Report Roman Collisitie Roman Page 1 Report Roman Report Roman N/M Report Roman		-				100	1	11			F										-							0	
Section B Relative Fright Hommon: Section C Relative Fright Hommon: Section C Relative Fright Hommon: Section C Relative Fright Hommon: Section C Relative Fright Hommon: NM Part 10 Contains Hallhow Ammon: englables In School Rd IE, Ste 200 Contains Hallhow Ammon: englables In School Rd IE, Ste 200 Contains Hallhow Ammon: englables In School Rd IE, Ste 200 Part 10 Contains Hallhow In School Rd IE, Ste 200 Part 10 Contains Hallhow In School Rd IE, Ste 200 Part 10 Contains Hallhow In School Rd IE, Ste 200 Part 10 Contains Hallhow In School Rd IE, Ste 200 Part 10 Market 1 In School Rd IE, Ste 200 Part 10 Statution 1 In School Rd IE, Ste 200 Part 10 Market 1 In School Rd IE, Ste 200 Part 10 Market 1 In School Rd IE, Ste 200 Part 1 Statution 1 In Statution II, Statution 1 Statution 1 Statution 1 In Statution 1 Statution 1 Statution 1 Statution 1 In Statution 1 Statution 1 Statution 1 Statution 1 In Statution 1 Statution 1 Statution 1 Statution 1 In Statution 1 Statution 1<	NAH713	-				-									-													C7	
Section B Section C Bequired Project Hormston Section C Section C Section C Section B Section C Section B Section C Section B Section C Section C Sectio	5	-			2	K	Ľ	-	5	1		5				12			D	Im	E	-Du	B	1313	112	07494	600-	4	
Section B Section C NM Required Priget Hormation Section C NM Required Priget Hormation Figure Hormation NM Priget Harmation Figure Hormat	*	$\left \right $			XX	A	1			-		10			0/61	12			5	, WIT			2000	-	-	07492		ω	
Section B Section C NM Required Fighter Information Reserved Handword Fighter Information Section C NM Rescription RINE, Sie 200 Copy To Left Walker, Angela Bown Rescription Rimes NM Rescription RINE, Sie 200 Copy To Left Walker, Angela Bown Rescription Rimes NM Rescription RINE, Sie 200 Copy To Left Walker, Angela Bown Rescription Rimes NM Rescription Rimes Names Rescription Rimes Rescription Rimes NM Rescription Rimes Rescription Rimes Rescription Rimes Rescription Rimes NM Rescription Rimes Rescription Rimes Rescription Rimes Rescription Rimes NM Rescription Rimes Rescription Rimes Rescription Rimes Rescription Rimes NM Rescription Rimes Rescription Rimes Rescription Rimes Rescription Rimes <td></td> <td>-</td> <td></td> <td>-</td> <td>X</td> <td>下</td> <td>1</td> <td></td> <td>13</td> <td>-</td> <td></td> <td>1</td> <td>-</td> <td></td> <td>13</td> <td>12</td> <td>-</td> <td></td> <td>1</td> <td>W</td> <td>5-2</td> <td>-B</td> <td>5-/M</td> <td></td> <td>1-12</td> <td>1494</td> <td>- NH</td> <td>2</td> <td></td>		-		-	X	下	1		13	-		1	-		13	12	-		1	W	5-2	-B	5-/M		1-12	1494	- NH	2	
Section B Required Project Information Section C Required Project Information NM Required Project Information Required Project Information Recurrent Information NM Repaired Project Information Required Project Information Recurrent Information NM Repaired Project Information Recurrent Information Recurrent Information NM Repaired Project Information Recurrent Information Recurrent Information Information Project Information Recurrent Information Recurrent Information Information Project Information Recurrent Information Recurrent Information Information Project Information Recurrent Information Recurrent Information Information Recurrent Information Recurrent Information Recurrent Information Information Recurrent Information Recurrent Information Recurrent Information Information Recurrent Information Recurrent Information <threcurrent information<="" th=""> Informat</threcurrent>	JEPHN T ISPIC	-			Ŕ	*				NV.S	-	2 ~	UX		CC				0	W	MW-	PP	3-0	10.3	1-1	E	E	-	-
Section B Required Project Information Section C Required Project Information NM Report To: Christine Mathews Section C Invoice Information NM Report To: Christine Mathews Attention: Provide Information In School Rd NE, Sie 200 Corp To: Leff Walker, Angela Bown Company Name: REGULATORY AGENCY ue, NM 87110 Project Nume: Company Name: REGULATORY AGENCY ue, NM 87110 Project Nume: Address: Invoice Information School Rd NE, Sie 200 Corp To: Leff Walker, Angela Bown Company Name: REGULATORY AGENCY ue, NM 87110 Purchase Order No: 4517653456 Reinwinde: Project Name: Invoice Information School Name: Valid Matrix Codes No Matrix Collected Name: Strate: NM Marker: School Name: Order Name: Strate: NM Invoice Information NM Marker: School Name: School Name: Strate: NM Invoice Information School Name: School Name: Order Name: Strate: NM Marker: School Name: School Name: NM Invoice Information School Name: School Name: School Name:	-	Residual Ch							NaOH	HNO ₃		# OF CONTA		TIME	SATE	UN -		DATE	SAMPLE TYPE	MATRIX COD	0.3	= c	TISSUE		T BE UN		Samp	ITEM #	
Section B Required Poject Information: Section C Required Poject Information: NM Report To: Left Walker, Angela Bown Attenuori ePayables In School Rd NE, Sie 200 Copy To: Jeft Walker, Angela Bown Attenuori ePayables In School Rd NE, Sie 200 Copy To: Jeft Walker, Angela Bown Company Name: recultation without water in point water	~	lorine (Y			ved Fe	l'est.						NERS	AT COLL		81				(G=GR/	E (see va	~		SOIL/SOLI OIL WIPE AIR			SAMPI			
Section B Required Project Information: Section C Involves Information: NM Required Project Information: Section C Involves Information: Page: Information: NM Report To: Christine Mathews Attention: Involves Information: Involves Information: In School Rd NE, Ste 200 Copy To: Jeff Walker, Angela Bown Company Name: REGULATORY AGENCY ue, NM 87110 Purphase Order No:: 4517653456 Address: Involves Involves Involves Regulated Project Num WATER I' DRINKING WATER DRINKING WATER I' DRINKING WATER I' DRINKING WATER [Fax: (505)884-4932 Project Number: 074941 Project Number: 074941 Project Number: 074941 Involves State Location NM water If B COLLECTED Collected Analysis Filtered (VIN) NM		(/N)				n ôt)							ECTION	AB TH	COMPOSI END/GR/	1,1	APOSITE FART	SI	AB C=C	alid codes	₹ ⊐ S	ER TER	WATER WASTE W PRODUCT						
Section B Section C Required Project Information: Invoice Information: NM Report To: Christine Mathews Attention Regulated Project Information: In School Rd NE, Ste 200 Copy To: Jeff Walker, Angela Bown Company Name: REGULATORY AGENCY ue, NM 87110 Copy To: Jeff Walker, Angela Bown Company Name: REGULATORY AGENCY @craworld.com Project Name: Address: Invoice Information: [Fax: (505)884-4932 Project Number: 074941 Pace Project Alice Flanagan I'' UST RCRA I'' OTHER stindard Project Number: 074941 Pace Project Alice Flanagan State: NM						Y/ N.		'es	avativ	Prese					TED	JLLECT	2		OMP)	to left)	ODE	atrix Cod	Valid Ma MATRIX		rtion	D Client Informa	Section Required		
Section B Section C Page: Invoice Information: NM Required Project Information: Invoice Information: Invoice Information: In School Rd NE, Ste 200 Corpt To: Jeff Walker, Angela Bown Attention: REGULATORY AGENCY ue, NM 87110 Corpt To: Jeff Walker, Angela Bown Company Name: REGULATORY AGENCY @craworld.com Project Name: Ventrase Order No:: 4517653456 Address: Invoice Flanagan Fax: (505)884-4932 Project Name: Vell Hall No.1 Manager: Alice Flanagan Invoice Interaction standard Project Number: 074941 Page Profile #: 5514, 23 State Location NM			is Filtered (Y/N)	d Analys	Requeste																								1 F
Section B Required Project Information: Section C Invoice Information: Required Project Information: NM Report To: Christine Mathews Attention: Invoice Information: In School Rd NE, Ste 200 Corp To: Jeff Walker, Angela Bown Attention: REGULATORY AGENCY ue, NM 87110 Graworld.com Parc A Gender No: 4517653456 Address: Invoice Flanagan Fax: (505)884-4932 Project Name: Neil Hall No.1 Page: Alice Flanagan Site Location MM			T						, 23		"# alitor	Pace F						41	0749		roject NL	Q.		lard	stanc	ate/TAT:	ed Due D	Request	_
Section B Required Project Information: Section C Invoice Information: Page: of NM Report To: Christine Mathews Attention: ePayables Invoice Information: Invoice Information: NM Report To: Christine Mathews Attention: ePayables ReculaTORY AGENCY Invoice Information: Invoice Information: In School Rd NE, Ste 200 Copy To: Jeff Walker, Angela Bown Attention: ePayables ReculaTORY AGENCY Invoice Information: ue, NM 87110 Copy To: Jeff Walker, Angela Bown Address: Address: I' NDES CROUND WATER I' DRINKING WATER @craworld.com Furchase Order No: 4517653456 Page Quale I' UST I' RCRA I' OTHER		-		Site L				agan	Flan		Project	Pace F Manag					9.1	Hall No	Nell F	ame:	roject Na		84-4932	(505)8	Fax	\$4-0672	(505)8	Phone:	_
Section B Required Project Information: Section C Invoice Information: Page: of NM Report To: Christine Mathews Attention: Regulatory Agency In School Rd NE, Ste 200 Copy To: Jeff Walker, Angela Bown Company Name: Regulatory Agency ue, NM 87110 Image: Address: Address: Image: Ima	L OTHER		-	٦ c				-			hote	Pace (Refere	-				53456	451765		Order N	urchase	ס		rld.com	crawor	nathews@		Email To	-
Section B Required Project Information: Section C Invoice Information: Page: of NM Report To: Christine Mathews Attention: ePayables In School Rd NE, Ste 200 Copy To: Jeff Walker, Angela Bown Company Name: REGULATORY AGENCY	٦	ND WAT	>					11			ss:	Addre												87110	e, NM	oequerqu	A		_
NIX Report To: Christine Mathews Attention: ePayables Page: of		Y	LATORY AGENCY	REGU				0		TIE:	any Nai	Comp				ΠN	jela Bov	er, Ang	Walke	Jeff	ору То:		, Ste 20	I Rd NE	School	21 Indian	61	Address:	
Perform Constraints of the section C Page: of Pa	P						ŝ,	3	ables	ePay	on;	Attent					SA	Vathev	stine I	Chri	eport To	קל			Ĩ	OP CRA N	0 0	Company	-
Section B Section C	9	Page		I		1			ł	hation:	e Inform	Invoic						ation:	Informa	Project	equired	ונק				formation:	I Client In	Required	
	-	,			Ì						on C	Secti								0	ection	'n						Section	12
	of 19		,																						abs com	HIND	rau	T	
			Ĩ	ALC: UNK		ġ			10000																				