

Kegan W. Boyer, P.G. Project Manager

Upstream Business Unit Environmental Management Company 1400 Smith Street Room 07076 Houston, Texas 77002 Tel 713-372-7705 kegan.boyer@chevron.com

February 17, 2015

Mr. Glenn von Gonten Senior Hydrologist Environmental Bureau New Mexico Oil Conservation Division 1220 South Saint Francis Drive Santa Fe, New Mexico 87505

Re: Cooper-Jal Unit South Injection Station, Case No. 1R289 G.L. Erwin "A&B" federal NCT-2 Tank Battery, Case No. 1R254 2014 Annual Groundwater Monitoring Reports

Dear Mr. Von Gonten,

As Operator of the environmental projects at the Cooper-Jal Unit South Injection Station and the G.L. Erwin "A&B" Federal NCT-2 Tank Battery, Chevron Environmental Management Company (CEMC) is pleased to submit electronic versions of the following reports:

- 2014 Annual Groundwater Monitoring Report, Cooper-Jal Unit South Injection Station, Case No. 1R289, OGRID No. 4323, Section 24, Township 24 South, Range 36 East, Lea County, New Mexico
- 2014 Annual Groundwater Monitoring Report, G.L. Erwin "A&B" Federal NCT-2 Tank Battery, Case No. 1R254, OGRID No. 4323, Section 35, Township 24 South, Range 37 East, Lea County, New Mexico

These reports were prepared by Conestoga-Rovers & Associates (CRA) on behalf of CEMC to document the results of groundwater monitoring activities conducted at the above referenced sites in 2014.

Previously, Luke Welch maintained project management responsibilities for both of these projects; however, as of January 2105, I have assumed project responsibility and future correspondence should be addressed to me. Should you have any questions, please do not hesitate to contact me by phone at 713-372-7705 or via e-mail at kegan.boyer@chevron.com.

Sincerely,

Kegan W. Boyer, P.G.

hego- For

Environmental Project Manager

cc: Dr. Tomas Oberding, NMOCD Nancy Forster, CRA

www.CRAworld.com

Final Report

2014 Annual Groundwater Monitoring Report

G.L. Erwin "A & B" Federal NCT-2 Tank Battery Case No. 1R254, OGRID No. 4323 Section 35, Township 24 South, Range 37 East Lea County, New Mexico

Prepared for: Chevron Environmental Management Company

Conestoga-Rovers & Associates

6320 Rothway, Suite 100 Houston, Texas 77040

www.CRAworld.com

2014 Annual Groundwater Monitoring Report

G.L. Erwin "A & B" Federal NCT-2 Tank Battery Case No. 1R254, OGRID No. 4323 Section 35, Township 24 South, Range 37 East Lea County, New Mexico

Prepared for: Chevron Environmental Management Company
Upstream Business Unit
1400 Smith Street, Room 07086

Houston, Texas 77025

Submitted By:

Conestoga-Rovers & Associates

Ricardo Banda, P.G., Senior Geologist

Nancy Forster, Senior Project Manager

Manay Forster

Conestoga-Rovers & Associates

6320 Rothway, Suite 100 Houston, Texas 77040

Table of Contents

			Page							
Section 1.0	Introdu	ction	1							
Section 2.0	Regulat	cory Framework	2							
	2.1 2.2	New Mexico Oil Conservation Division New Mexico Office of the State Engineer								
Section 3.0	Ground	ndwater Sampling and Analysis								
	3.1	Field Methodology	4							
	3.2 3.3	Potentiometric Surface and GradientGroundwater Results								
Section 4.0	Summa	ry of Findings	6							
Section 5.0	Planne	d Activities	7							
		List of Figures (Following Text)								
Figure 1	Site Loc	ration Map								
Figure 2	Site Det	tails Map								
Figure 3	Ground	water Gradient Map – April 2014								
Figure 4	Ground	water Gradient Map – October 2014								
Figure 5	Chlorid	e Concentration Map – April and October 2014								
Figure 6	Chlorid	e Isoconcentration Map – April 2014								
Figure 7	Chlorid	e Isoconcentration Map – October 2014								
		List of Tables (Following Text)								
Table 1	2014 Gı	roundwater Gauging Measurements								
Table 2	2014 Gı	roundwater Analytical Results								

List of Appendices

Appendix A	New Mexico Office of the State Engineer Submittals
Appendix B	Cumulative Summary of Groundwater Gauging Measurements
Appendix C	Charts of Chloride/TDS Concentrations versus Time
Appendix D	Cumulative Summary of Groundwater Analytical Results
Appendix E	Certified Laboratory Results

Section 1.0 Introduction

This Annual Groundwater Monitoring Report presents groundwater data collected during the 2014 reporting period at the G.L. Erwin "A & B" Federal NCT-2 Tank Battery (hereafter referred to as the "Site"). On April 2-3 and October 9-10, 2014, Conestoga-Rovers & Associates (CRA) conducted the semi-annual groundwater monitoring events on behalf of Chevron Environmental Management Company (CEMC).

The Site is located on Lea County Road J4, approximately 3 miles northeast of Jal, New Mexico in the southwest quarter (SW/4) of the southeast quarter (SE/4), Section 35, Township 24 South, Range 37 East, Lea County, New Mexico. The Site's coordinates are latitude N 32° 10′ 11.9″ and longitude W 103° 07′ 46.9″. The Site is relatively flat and improved with bermed, above ground storage tanks (ASTs), caliche roadways and oil and gas production equipment. The production equipment includes pipelines, ASTs of various capacities and active production wells. Land use in the vicinity of the Site includes rangeland with indigenous grass, livestock ranching, oil and gas production. The topography slopes gently southeast toward Monument Draw located approximately 1.5 miles east of the Site. A Site Location Map is presented as Figure 1. A Site Details Map is presented as Figure 2

Site assessment activities were initiated in 1993. In September 1993, Environmental Spill Control, Inc. (ESCI) of Hobbs, New Mexico performed a subsurface investigation in and around an unlined earthen produced water emergency pit which was located adjacent to the west edge of the Site. During the investigation, 16 boreholes ranging from 30 to 100 feet below ground surface (bgs) were installed to evaluate soil and groundwater at the Site. Analytical results indicated hydrocarbon impacts to the soil and chloride impacts to the groundwater. In September 1994, ESCI excavated the former pit to approximately 62 feet bgs and removed approximately 40,000 cubic yards of hydrocarbon affected soil. The excavation was lined from 62.5 feet up to 55.0 feet with a mixture of clean sand and clay and was backfilled with clean soil to the surface. ESCI submitted the pit closure report to Texaco Exploration and Production, Inc. (Texaco) in October 1994.

In February 1995, Texaco submitted a work plan to the New Mexico Oil Conservation Division (NMOCD) to assess affected groundwater at the Site. On March 28, 1995, the work plan was conditionally approved by the NMOCD. Two monitoring wells (west and southwest) were installed and sampled in 1997. Analytical results demonstrated groundwater chloride concentrations were at or above the New Mexico Water Quality Control Commission (NMWQCC) Standards. In January 1998, Highlander Environmental Corp. (Highlander) performed an electromagnetic (EM-34) terrain conductivity survey. Additionally, Highlander installed eight monitoring wells (MW-1 through MW-8) from February 1998 to January 1999 in order to further evaluate the extent of affected groundwater.

Texaco submitted a corrective action proposal plan in 2004 to the New Mexico Office of the State Engineer (NMOSE) to recover groundwater from the recovery well (RW-1). From September 2001 through October 2003, nine additional monitor wells were installed under the direction of Larson and Associates, Inc. (LA). On September 9, 2004, the NMOSE issued Permit CP 00886 to Divert Underground Waters from recovery well RW-1. An allocation for 6.5 acrefeet per annum was granted by the NMOSE in the permit. Monitor wells (MW-18 through MW-20) were installed under the direction of LA in November 2004. A total fluids groundwater recovery system was installed at RW-1 under CRA's direct supervision in September 2006. At the request of the NMOCD, two groundwater monitoring wells (MW-21 and MW-22) were installed at the Site on November 19, 2007 to further evaluate the extent of affected groundwater. Two additional monitoring wells (MW-23 and MW-24) were installed to the southeast of the Site on October 10-11, 2011. Also, on April 2-3, 2012 three monitor wells (MW-25, MW-26 and MW-27) were installed to facilitate the delineation of the chloride plume.

Semi-annual groundwater monitoring activities and annual reporting to the NMOCD for this Site have been performed by CRA since 2005.

Section 2.0 Regulatory Framework

2.1 New Mexico Oil Conservation Division

The NMOCD of the New Mexico Energy, Minerals, and Natural Resources Department has regulatory jurisdiction over corrective actions conducted at the Site. Corrective actions follow guidance given by the NMOCD in *Guidelines for Remediation of Leaks, Spills, and Releases (August 13, 1993)*. These guidelines require remediation of groundwater to the human health standards of the NNWQCC set forth in New Mexico Administrative Code 20.6.2.3103B as follows:

Analyte	NMWQCC Standard for Groundwater (mg/L)		
Chloride	250		
Total Dissolved Solids (TDS)	1000		

On September 24, 2014, CRA and CEMC met with the NMOCD to provide site updates and to discuss plans for delineating the chloride plume and evaluating alternative remedial options for the Site. As discussed in the meeting, the installation of additional upgradient wells was being considered to aid in assessing background conditions and/or identifying a possible offsite source. Additional downgradient wells would also be evaluated to aid in determining the downgradient extent of the chloride plume. Per recommendation of the NMOCD, CRA and

CEMC would consider conducting aquifer testing for determining aquifer characteristics for the GWBU at the Site. The information from the aquifer testing would aid in optimizing the efficiency of the current groundwater recovery system and/or evaluating alternative remedial options. A work plan for future assessment activities will be submitted to the NMOCD.

During the meeting, it was also discussed that CRA and CEMC would like to consider reducing the number of wells sampled during future monitoring events, and reducing the analysis of parameters to only primary chemicals of concern (chlorides and TDS only). Generally, chloride is one of the ions that represent the greatest percentage of the dissolved particulate components of TDS in produced water. Other constituents such as fluoride, nitrate, sulfate, calcium, magnesium, potassium, and sodium have for the most part been non-detect and are not considered to be representative of the type of produced water present in the Site area. In addition to specific constituents, well locations and concentrations were evaluated to determine which wells were critical for continuing to monitor the extent of the chloride plume and concentration trends. It was determined that the following monitoring wells would provide sufficient data for the monitoring program: WW-1, West, MW-1, MW-2, MW-7, MW-9, MW-14, MW-18 (if water present), MW-21, MW-23, MW-24, MW-25, MW-26, and MW-27 (if water present).

In a letter dated December 15, 2014, CRA requested to eliminate the following wells from the monitoring program: Southwest, MW-3, MW-4, MW-5, MW-6, MW-8, MW-10, MW-11, MW-12, MW-13, MW-15, MW-16, MW-17, MW-19, MW-20 and MW-22. Reducing the number of wells sampled and reducing the analyses to only chlorides and TDS would assist in minimizing groundwater usage at the Site, while still providing sufficient data for monitoring purposes.

2.2 New Mexico Office of the State Engineer

The New Mexico Office of the State Engineer (NMOSE) governs water usage in the State of New Mexico. Applications for permit to appropriate groundwater were submitted to the NMOSE and were approved in September 2004. Usage of groundwater for remediation purposes was granted by the NMOSE under well permit CP 00886 for a total of 65 acre-feet (ac-ft.) per annum from recovery well RW-1. Correspondence submitted to the NMOSE in 2014 includes NMOSE Meter Reading Forms for January, April, July and October2014. Copies of the forms are provided in Appendix A. The next NMOSE Meter Reading Form will be submitted to the NMOSE in January 2015.

Section 3.0 Groundwater Sampling and Analysis

Groundwater at the Site is monitored semi-annually with a network of 31 wells. Monitoring well locations are shown on Figure 2 – Site Details Map. CRA performed ground water sampling events on April 2-3, 2014 and October 9-10, 2014 at the Site.

3.1 Field Methodology

Static fluid levels were measured with an electronic interface probe to the nearest hundredth of a foot and recorded. In addition, a conductivity probe was used to record the conductivity levels every two feet in each well to evaluate the vertical distribution of chloride-impacted groundwater. After recording conductivity levels, discreet samples were collected at the interval of highest conductivity using a Hydrosleeve[™]. Geochemical Water quality parameters (pH, temperature and conductivity) were recorded at the sampling depth. All non-disposable groundwater sampling equipment was decontaminated with a soap (Liquinox[®]) and potable water wash, a potable water rinse and a final de-ionized water rinse. Laboratory-supplied sample containers were filled directly from the Hydrosleeve[™].

Groundwater samples were placed on ice in insulated coolers and chilled to a temperature of approximately 4°C (40°F). The coolers were sealed for shipment and proper chain-of-custody documentation accompanied the April 2014 samples to ALS Laboratory Group (ALS) in Houston, Texas for analysis of major cations, anions and TDS by various Environmental Protection Agency (EPA) Methods. Samples from the October 2014 event were submitted to Xenco Laboratories (Xenco) in Midland, Texas. Any fluids recovered during the sampling events were containerized and subsequently disposed of at a CEMC–approved and OCD-permitted salt water disposal (SWD) facility by a third party contractor.

3.2 Potentiometric Surface and Gradient

The aquifer or water-bearing zone monitored at the Site appears at the interface of a sandy gravel and underlying shale. Groundwater gradient maps for April and October 2014 are presented as Figures 3 and 4, respectively. Groundwater elevations ranged from 3,064.39 feet (MW-23) to 3,109.99 feet (MW-26) in April 2014 and from 3,064.35 feet (MW-23) to 3,109.82 feet (MW-26) in October 2014. Groundwater flow at the Site is to the southeast at a gradient of 0.012 feet/foot (ft/ft). Groundwater elevation data are presented in Table 1 and generally fall within historical ranges. A cumulative table of groundwater elevation data is presented in Appendix B.

3.3 Groundwater Results

The 2014 analytical results generally fall within historical ranges. In April 2014, twenty-nine (29) wells were sampled. In October 2014, twenty-eight wells were sampled. Monitor wells MW-18 and MW-27 were dry during the April and October sampling events, and MW-11 did not have sufficient water column to be sampled in October 2014. The absence of groundwater in MW-18 and MW-27 indicates the sandy gravel aquifer pinches out where the wells are screened across a less permeable sandy clay and/or shale bedrock appearing higher in the stratigraphic column.

In April 2014, chloride concentrations in twenty-six (26) monitoring wells were detected above the NMWQCC standard of 250 mg/L. Chloride concentrations ranged from 228 mg/L to 8,710 mg/L. In October 2014, chloride concentrations in twenty-five (25) monitoring wells were detected above the NMWQCC standard. Chloride concentrations ranged from 186 mg/L to 7,610 mg/L.

Generally, TDS concentrations exceeded the NMWQCC standard of 1000 mg/L in monitoring wells exhibiting exceeding concentrations for chloride. Chloride concentrations for the April and October 2014 groundwater monitoring events are depicted on Figure 5. Isoconcentration maps of chloride concentrations for the April and October sampling events are presented as Figures 6 and 7, respectively. Historic trend graphs of groundwater concentrations (TDS, chlorides) over time for RW-1, MW-7, MW-9, and MW-14 are provided in Appendix C.

An evaluation of chloride concentrations indicate that the extent of the chloride plume has not been delineated downgradient to the southeast or in upgradient or crossgradient directions. Higher chloride concentrations in upgradient and cross gradient wells indicate that there is likely chloride impacts related to other sources that could be commingled with the chloride plume related to the former produced water emergency pit at the Site. The aerial base map used in Figures 2 through 7 shows the abundance of oil and gas exploration and production activities surrounding the Site that could be contributing to the chloride impacts.

Analytical results from MW-21, in the April and October 2014 events (Figure 5) demonstrate chloride concentrations are below MNWQCC standards. However, chloride concentrations up gradient, cross gradient and down gradient (MW-19, MW-15 and MW-24, respectively) all exhibit chloride concentrations above the NMWQCC standard of 250 mg/L.

The other cations and anions analyzed (including fluoride, nitrate, sulfate, calcium, magnesium, potassium, and sodium) have for the most part been non—detect and are believed to not be representative of the type of produced water present in the Site area. During the April 2014 sampling event, fluoride was detected at a concentration above the NMWQCC standard of 1.6

mg/L in seven of the wells including MW-6, MW-7, MW-8, MW-9, MW-13, MW-17, MW-21. In October 2014, fluoride concentrations exceeded the NMWQCC standard in only four wells (MW-7, MW-8, MW-9, and MW-14). In April 2014, sulfate exceeded the NMWQCC standard of 600 mg/L in only one well (MW-14). No other sampled wells exceeded the NMWQCC groundwater standards for fluoride, sulfate, nitrate, calcium, magnesium, potassium and sodium. A cumulative summary table of groundwater analytical results is presented in Appendix D.

The certified analytical reports were reviewed by a CRA analytical chemist for laboratory and field method quality assurance/quality control (QA/QC). Based on data review, the data produced by the laboratories were deemed acceptable. Copies of the certified analytical reports, chain-of-custody documentation, and data validation memorandums are provided in Appendix E.

The distribution of chloride concentrations and the unpredictable nature of the aquifer will be considered for any future assessment and remediation activities associated with this Site. Additional wells will be installed to further delineate the extent of the chloride plume. Additional assessment activities proposed for 2015 are described in Section 5.0 below.

Section 4.0 Summary of Findings

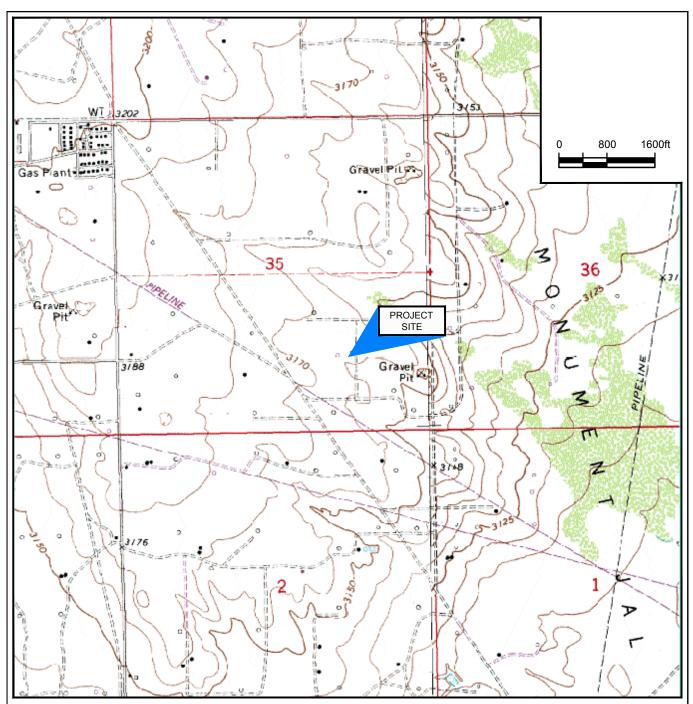
Based on the groundwater monitoring activities performed at the Site, CRA presents the following summary:

- On September 24, 2014, CRA and CEMC met with the NMOCD to provide Site updates and
 to discuss plans for additional assessment and evaluating alternative remedial options for
 the Site. Additional assessment activities discussed during the meeting included:
 installation of additional wells to aid in delineating the chloride plume, aquifer testing for
 determining aquifer characteristics, and reducing the number of wells and analyses in the
 monitoring program.
- In a letter dated December 15, 2014, CRA requested eliminating the following wells from the monitoring program: Southwest, MW-3, MW-4, MW-5, MW-6, MW-8, MW-10, MW-11, MW-12, MW-13, MW-15, MW-16, MW-17, MW-19, MW-20 and MW-22. CRA also requested reducing the analyses to chlorides and TDS only.
- NMOSE Meter Reading Forms were submitted to the NMOSE for January, April, July and October 2014.

- Groundwater elevations ranged from 3,064.39 feet (MW-23) to 3,109.99 feet (MW-26) in April 2014 and from 3,064.35 feet (MW-23) to 3,109.82 feet (MW-26) in October 2014.
 Groundwater flow at the Site is to the southeast at a gradient of 0.012 ft/ft.
- The analytical results generally fall within historical ranges. Monitoring wells MW-18 and MW-27 were dry during the April and October 2014 sampling events, and MW-11 did not have sufficient water column to be sampled in October.
- During the April 2014 sampling event, chloride concentrations in twenty-six (26) monitoring wells were detected above the NMWQCC standard.
- In October 2014, chloride concentrations were detected above the NMWQCC standard in twenty-five (25) monitoring wells.
- During the April 2014 sampling event, fluoride was detected at a concentration above the NMWQCC standard in seven of the wells including MW-6, MW-7, MW-8, MW-9, MW-13, MW-17, MW-21. In October 2014, fluoride concentrations exceeded the NMWQCC standard in only four wells (MW-7, MW-8, MW-9, and MW-14). In April 2014, sulfate exceeded the NMWQCC standard in only one well (MW-14). No other sampled wells exceeded the NMWQCC groundwater standards for fluoride, sulfate, nitrate, calcium, magnesium, potassium, and sodium.
- The other cations and anions analyzed (including fluoride, nitrate, sulfate, calcium, magnesium, potassium, and sodium) have for the most part been non-detect and are believed to not be representative of impacts from the type of produced water present in the Site area. In a letter dated December 15, 2014, CRA requested eliminating fluoride, nitrate-N, sulfate, calcium, magnesium, potassium, and sodium from the monitoring program at the Site.
- Chloride concentrations indicate that the extent of the chloride plume has not been delineated. Higher chloride concentrations detected in wells upgradient and cross gradient of the Site indicate that there are likely chloride impacts related to other sources that could be commingled with the chloride plume related to the former produced water emergency pit.
- Additional wells will be installed to further delineate the extent of the chloride plume.

Section 5.0 Proposed Activities

Based upon the summary and conclusions presented in this report, the following is recommended for the 2015 calendar year:


 Submit NMOSE Meter Reading forms to the NMOSE in January, April, July, and October 2015.

- Pending approval from the NMOCD to reduce the number of wells, sample WW-1, West, MW-1, MW-2, MW-7, MW-9, MW-14, MW-18 (if water present), MW-21, MW-23, MW-24, MW-25, MW-26, and MW-27 (if water present) during the 2015 semi-annual groundwater monitoring events scheduled for April and October 2015.
- Analyze groundwater samples for chlorides and TDS only, pending approval from the NMOCD to eliminate analysis of other cations and anions.
- Install additional downgradient monitoring wells, to aid in determining the downgradient
 extent of the chloride plume. Also, install additional upgradient wells to aid in assessing
 background conditions or identifying a possible offsite source. If concentrations indicate a
 possible offsite source area, an alternate source demonstration will be evaluated.
- Conduct an aquifer pump test to determine aquifer characteristics at the Site to aid in optimizing the efficiency of the current groundwater recovery system and/or evaluating alternative remedial options.

Figures

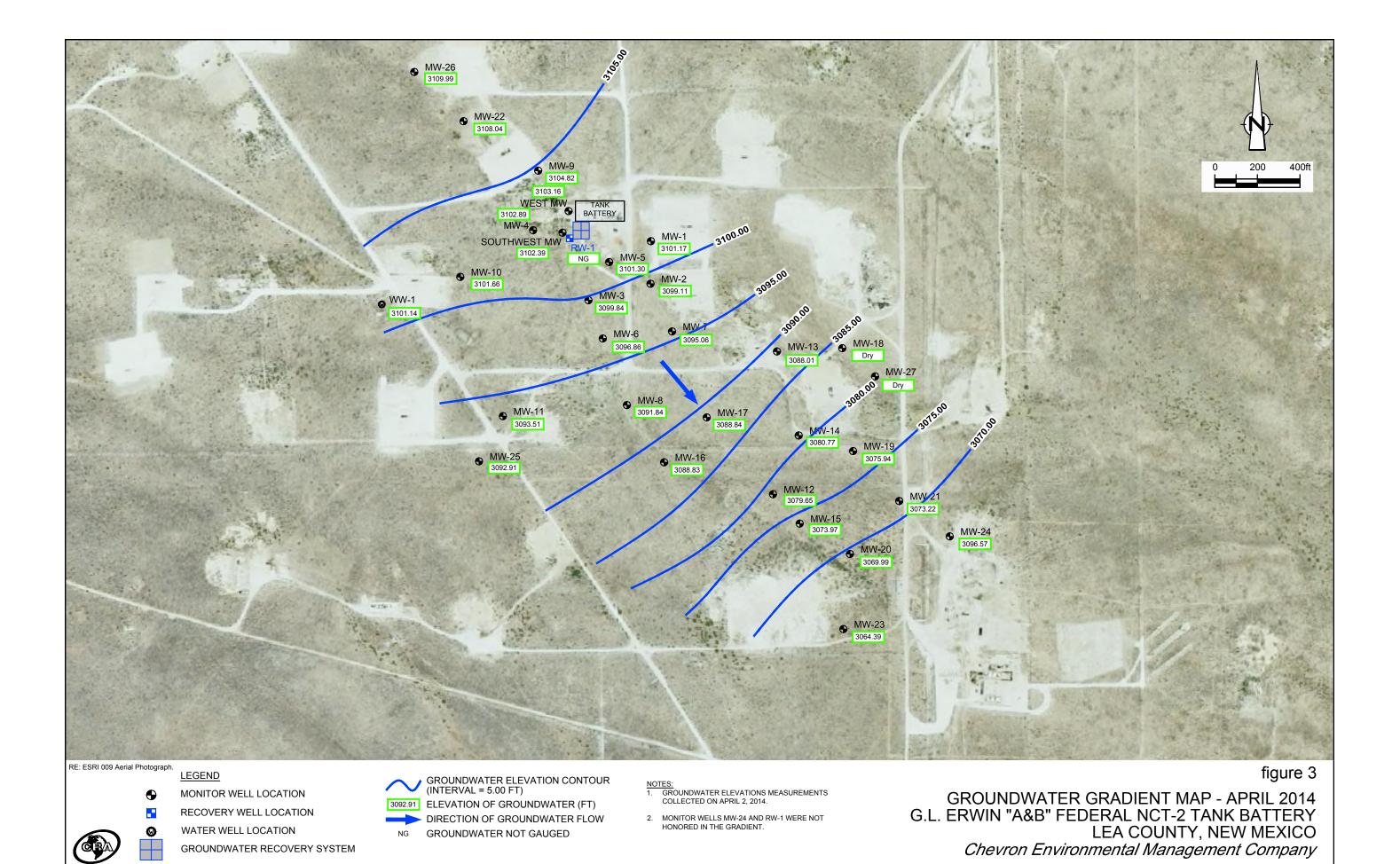

SOURCE: USGS 7.5 MINUTE QUADS
"JAL NW AND JAL NE, NEW MEXICO"

LAT/LONG: 32.170° NORTH, 103.129° WEST COORDINATE: NAD27 DATUM, U.S. FOOT STATE PLANE ZONE - NEW MEXICO EAST

figure 1

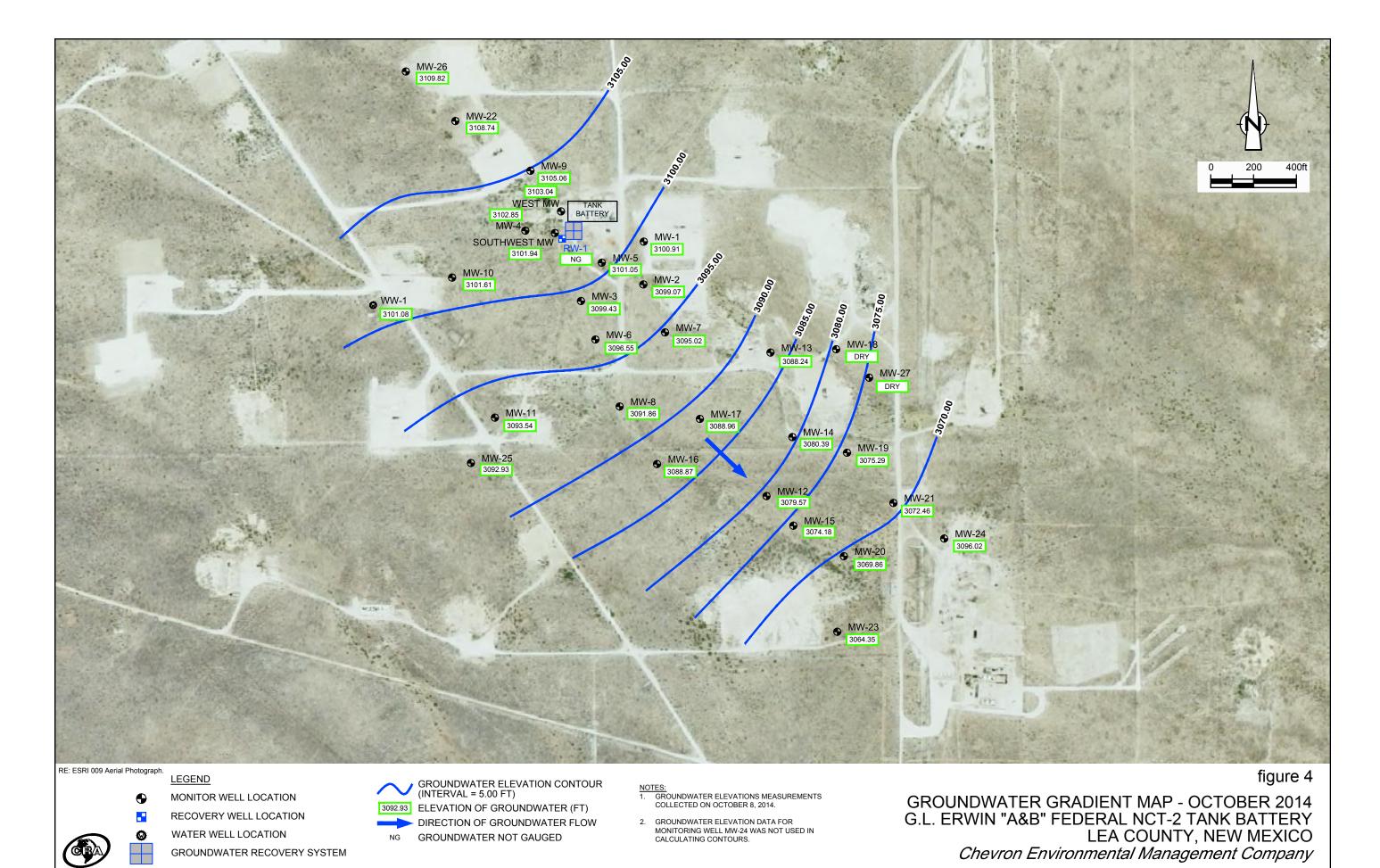
SITE LOCATION MAP G.L. ERWIN "A&B" FEDERAL NCT-2 TANK BATTERY LEA COUNTY, NEW MEXICO Chevron Environmental Management Company

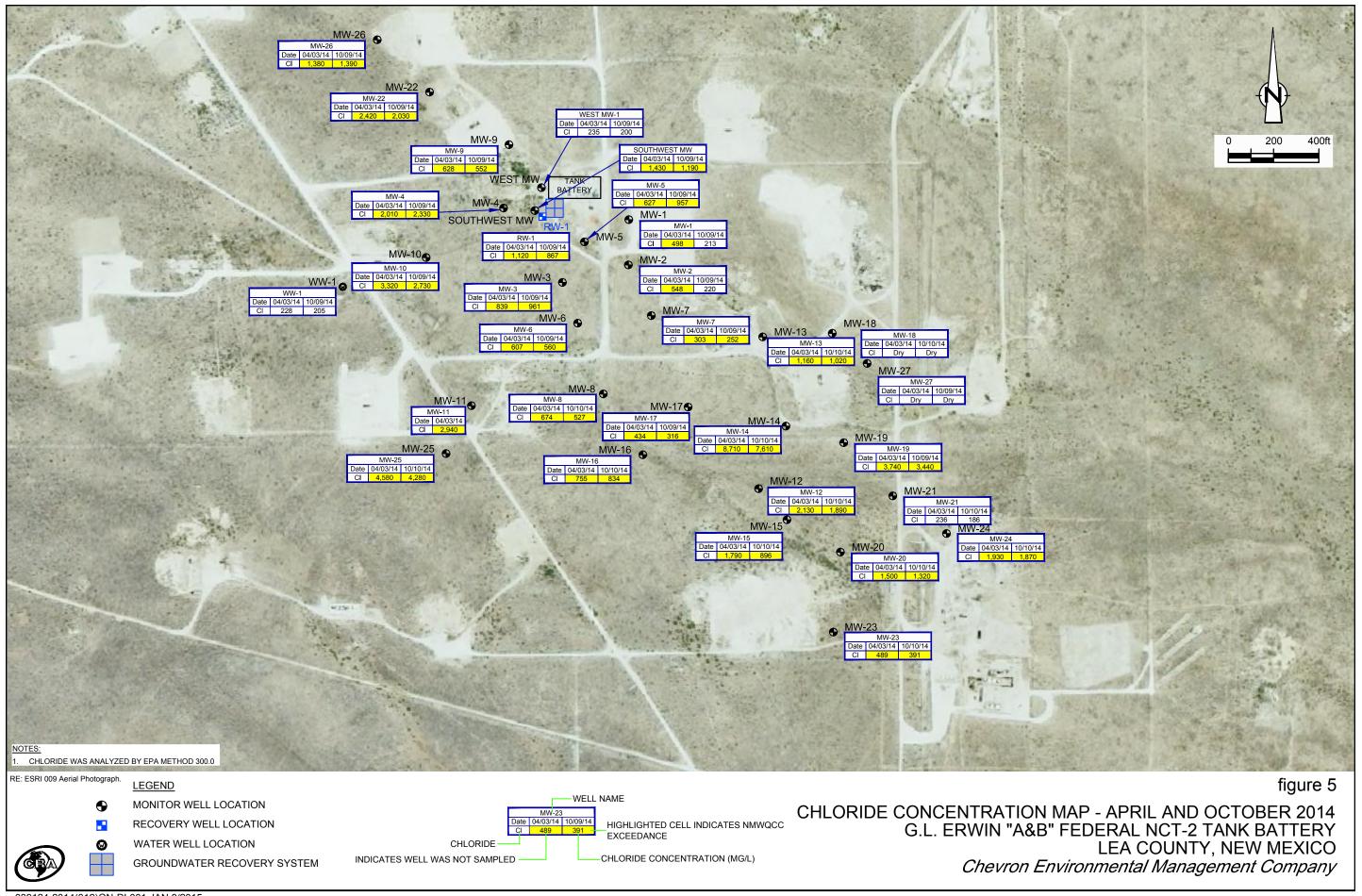
LEGEND

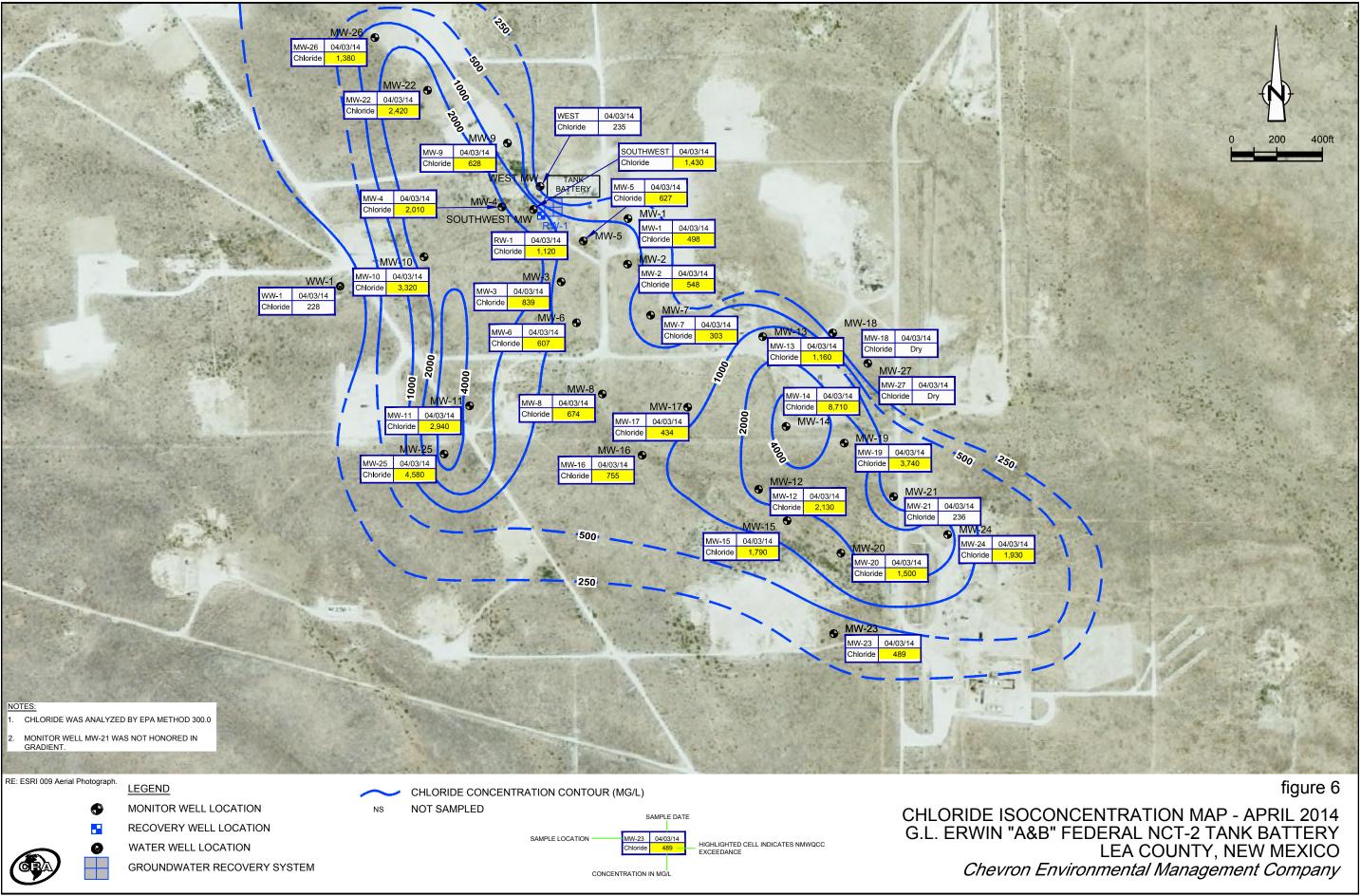

MONITOR WELL LOCATION RECOVERY WELL LOCATION

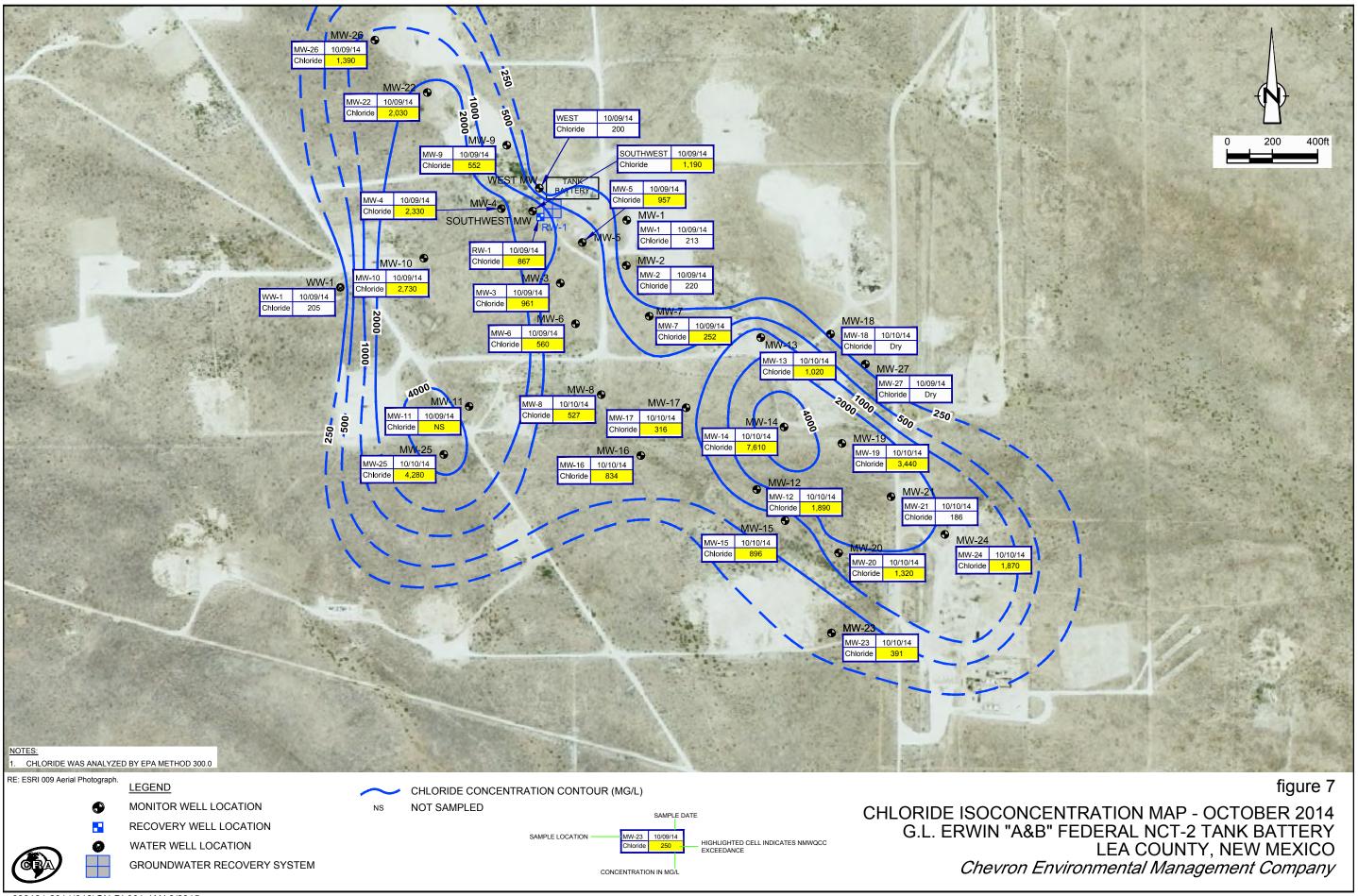
WATER WELL LOCATION GROUNDWATER RECOVERY SYSTEM

- 1. MONITOR WELL LOCATIONS AND TOP OF CASING ELEVATIONS ARE BASED ON A PROFESSIONAL SURVEY CONDUCTED BY PIPER SURVEYING COMPANY IN FEBRUARY AND JULY 1998, OCTOBER 2001, OCTOBER 2003, AND DECEMBER 2004, AND BY WEST COMPANY NOVEMBER 2011 AND JUNE 2012.
- 2. PUMP AND DISPOSE GROUNDWATER RECOVERY SYSTEM WAS INSTALLED IN SEPTEMBER 2006.
- 3. MONITOR WELLS MW-25, MW-26 AND MW-27 WERE INSTALLED IN APRIL 2012.


figure 2


SITE DETAILS MAP G.L. ERWIN "A&B" FEDERAL NCT-2 TANK BATTERY LEA COUNTY, NEW MEXICO Chevron Environmental Management Company




039124-2014(012)GN-DL001 JAN 5/2015

GROUNDWATER RECOVERY SYSTEM

Tables

TABLE 1

2014 GROUNDWATER GAUGING MEASUREMENTS CHEVRON ENVIRONMENTAL MANAGEMENT COMPANY G.L. ERWIN "A & B" FEDERAL NCT-2 TANK BATTERY SW/4, SE/4, SECTION 35, TOWNSHIP 24 SOUTH, RANGE 37 EAST LEA COUNTY, NEW MEXICO

WELL ID		Corrected
TOC¹ elevation	DATE	Groundwater Elevation
Diameter (in)	57172	(ft above MSL²)
MW-01	4/2/14	3101.17
3,161.69	10/8/14	3100.91
2	10/0/14	3100.51
MW-02	4/2/14	3099.11
3,159.89	10/8/14	3099.07
2	20,0,2.	3633167
MW-03	4/2/14	3099.84
3,164.08	10/8/14	3099.43
2		
MW-04	4/2/14	3102.89
3,165.65	10/8/14	3102.85
2		
MW-05	4/2/14	3101.30
3,160.75	10/8/14	3101.05
2		
MW-06	4/2/14	3096.86
3,164.18	10/8/14	3096.55
2		
MW-07	4/2/14	3095.06
3,162.06	10/8/14	3095.02
2		
MW-08	4/2/14	3091.84
3,159.66	10/8/14	3091.86
2	1/2/11	2121.22
MW-09	4/2/14	3104.82
3,167.07	10/8/14	3105.06
2 MW-10	4/2/14	3101.66
3,170.99	10/8/14	3101.66
3,170.33	10/6/14	3101.01
MW-11	4/2/14	3093.51
3,168.24	10/8/14	3093.54
2	10/0/14	3033.54
MW-12	4/2/14	3079.65
3,152.48	10/8/14	3079.57
2	-, -,	
MW-13	4/2/14	3088.01
3,154.92	10/8/14	3088.24
2		
MW-14	4/2/14	3080.77
3,151.91	10/8/14	3080.39
2		
MW-15	4/2/14	3073.97
3,152.48	10/8/14	3074.18
2		
MW-16	4/2/14	3088.83
3,157.25	10/8/14	3088.87
2	. (- 1:::	
MW-17	4/2/14	3088.84
3,158.37	10/8/14	3088.96
2		

TABLE 1

2014 GROUNDWATER GAUGING MEASUREMENTS CHEVRON ENVIRONMENTAL MANAGEMENT COMPANY G.L. ERWIN "A & B" FEDERAL NCT-2 TANK BATTERY SW/4, SE/4, SECTION 35, TOWNSHIP 24 SOUTH, RANGE 37 EAST LEA COUNTY, NEW MEXICO

WELL ID		Corrected
TOC¹ elevation	DATE	Groundwater Elevation
Diameter (in)		(ft above MSL²)
MW-18	4/2/14	DRY
3,151.08	10/8/14	DRY
2		
MW-19	4/2/14	3075.94
3,147.79	10/8/14	3075.29
2		
MW-20	4/2/14	3069.99
3,151.56	10/8/14	3069.86
2		
MW-21	4/2/14	3073.22
3,145.87	10/8/14	3072.46
2		
MW-22	4/2/14	3108.04
3,170.64	10/8/14	3108.74
2		
MW-23	4/2/14	3064.39
3,154.38	10/8/14	3064.35
2	1-1-1	
MW-24	4/2/14	3096.57
3,146.07	10/8/14	3096.02
2	1/2/44	2002.04
MW-25	4/2/14	3092.91
3,171.32	10/8/14	3092.93
2 MW-26	4/2/14	3109.99
3,172.84	10/8/14	3109.82
3,172.84	10/6/14	3109.82
MW-27	4/2/14	DRY
3,146.60	10/8/14	DRY
2	10/0/17	5.01
WW-1	4/2/14	3101.14
3,170.21	10/8/14	3101.08
4	, -,	
West MW	4/2/14	3103.16
3,164.44	10/8/14	3103.04
2		
Southwest MW	4/2/14	3102.39
3,164.54	10/8/14	3101.94
2		
RW-1	4/2/14	NG
3,163.52	10/8/14	NG
4		

Notes:

- 1 Top of Casing
- 2 Mean Sea Level
- 3 Below ground surface

NG - Not Gauged

All depths were measured from the TOC

Professional Surveys were conducted by Piper Surveying Company in February and July 1998, October 2001, October 2003 and December 2004

Professional Surveys were conducted by West Company in November 2011 and June 2012.

TABLE 2

2014 GROUNDWATER ANALYTICAL RESULTS CHEVRON ENVIRONMENTAL MANAGEMENT COMPANY G.L. ERWIN "A & B" FEDERAL NCT-2 TANK BATTERY SW/4, SE/4, SECTION 35, TOWNSHIP 24 SOUTH, RANGE 37 EAST LEA COUNTY, NEW MEXICO

			Total Dissolved Solids
Monitoring Well ID	Sample Date	Chloride (mg/L)	(mg/L)
NMWQCC S	· · · · · · · · · · · · · · · · · · ·	250	1000
MW-1	04/03/14	498	1160
	10/09/14	213 J	554
Dup-2	10/09/14	427 J	559
MW-2	04/03/14	548	132
	10/09/14	220	939
MW-3	04/03/14	839	2280
	10/09/14	961	3400
MW-4	04/06/14	2010	3360
	10/09/14	2330	5870
MW-5	04/03/14	627	1460
	10/09/14	957	3750
MW-6	04/03/14	607	1880
	10/09/14	560	1730
MW-7	04/03/14	303	1020
	10/09/14	252	955
MW-8	04/03/14	674	1560
	10/09/14	527	1550
MW-9	04/03/14	628	1560
	10/09/14	552	2020
MW-10	04/03/14	3320	9500
	10/09/14	2730	7930
MW-11	04/03/14	2940	9080
	10/09/14		nt Water Column
MW-12	04/03/14	2130	1300*
	10/09/14	1890	6290
MW-13	04/03/14	1160	4360
	10/10/14	1020	3500
MW-14	04/03/14	8710	8460*
DUP-1	04/03/14	9430	19900
101/45	10/10/14	7610	19000
MW-15	04/03/14	1790	3620
DUP- 2	04/03/14	1030	3560
101/46	10/10/14	896	1830
MW-16	04/03/14	755	2180
NAVA 47	10/10/14	834	1550
MW-17	04/03/14 10/10/14	434	7360
DUP-3	10/10/14	316 313	1790 1140
MW-18	04/03/14		DRY
IAIAA-TO	10/10/14		DRY
MW-19	04/03/14	3740	13100
IVIVV-IJ	10/10/14	3440	7560
MW-20	04/03/14	1500	5140
IVIVV-ZU	04/03/14	1300	5140

TABLE 2

2014 GROUNDWATER ANALYTICAL RESULTS CHEVRON ENVIRONMENTAL MANAGEMENT COMPANY G.L. ERWIN "A & B" FEDERAL NCT-2 TANK BATTERY SW/4, SE/4, SECTION 35, TOWNSHIP 24 SOUTH, RANGE 37 EAST LEA COUNTY, NEW MEXICO

			Total Dissolved Solids
Monitoring Well ID	Sample Date	Chloride (mg/L)	(mg/L)
NMWQCC S	Standards	250	1000
	10/10/14	1320	4180
MW-21	04/03/14	236	1010
	10/10/14	186	1080
MW-22	04/03/14	2420	4660
	10/09/14	2030	5150
MW-23	04/03/14	489	1500
	10/10/14	391	1010
MW-24	04/03/14	1930	7300
	10/10/14	1870	5850
MW-25	04/03/14	4580	12200
	10/10/14	4280	11400
MW-26	04/03/14	1380	3300
	10/09/14	1390	3920
MW-27	04/03/14		DRY
	10/09/14		DRY
West	04/03/14	235	680
	10/09/14	200	861
Southwest	04/03/14	1430	2760
	10/09/14	1190	5210
RW-1	04/03/14	1280	1840
DUP-3	04/03/14	1120	2300
	10/09/14	867	2190
DUP-1	10/09/14	847	2290
WW-1	04/03/14	228	792
	10/09/14	205	916
	10/09/14	205	916

NOTES:

- 1. NMWQCC New Mexico Water Quality Control Commission
- 2. mg/L milligrams per liter
- 3. NA Not Analyzed
- 4. J Reported as an estimate
- 5. Cells shaded yellow indicate that concentration exceeds NMWQCC standard.
- 6. NS Not sampled
- 7. * Reported TDS concentration includes a low bias. Not used in trend comparison.

Appendices

Appendix A

New Mexico Office of the State Engineer Submittals

OSE File Number: CP-886 **OSE Well/POD Number:** CP-886

Meter Record Number: Add this item for multiple meters/wells

(If Known)¹

WELL OWNER or CONTACT ADDRESS:

Check here if this is a new address Name: Chevron USA

Contact: Kim Lambert (Conestoga Rovers & Associates, Agent)

Address: 2135 S. Loop 250 W.

City: Midland State: TX Zip: 79703

Work Phone (432) 686-0086 Home Phone (432) 272-9700

Email Address: klambert@craworld.com

1. WATER METER INFORMATION:

Serial Number: 1101203

Meter Make: Niagara Liquid Meters

Meter Model: 122 Number of Dials: 8 Multiplier: 1

Unit of Measure: Gallons

2. METER READING INFORMATION:

Meter Reading: 0278193.8 Reading Date: 12/20/13

3. COMMENTS: The remediation system is operational.

Submitted by: Kim Lambert

OSE File Number: CP-886 **OSE Well/POD Number:** CP-886

Meter Record Number: Add this item for multiple meters/wells

(If Known)¹

WELL OWNER or CONTACT ADDRESS:

Check here if this is a new address Name: Chevron USA

Contact: Nancy Forster (Conestoga Rovers & Associates, Agent)

Address: 6320 Rothway Street, Suite 100

City: Houston State: TX Zip: 77040

Work Phone (713) 734-3090 Cell Phone (832) 799-4288

Email Address: nforster@craworld.com

1. WATER METER INFORMATION:

Serial Number: 1101203

Meter Make: Niagara Liquid Meters

Meter Model: 122 Number of Dials: 8 Multiplier: 1

Unit of Measure: Gallons

2. METER READING INFORMATION:

Meter Reading: 0298905.6 Reading Date: 4/3/14

3. COMMENTS: A new meter was installed within the last 3 months. The meter reading was adjusted to reflect the last reading on the prior meter (0278193.8) and the current reading on the new meter (0020711.8). The remediation system is operational.

Submitted by: Nancy Forster

OSE File Number: CP-886 **OSE Well/POD Number:** CP-886

Meter Record Number: Add this item for multiple meters/wells

(If Known)¹

WELL OWNER or CONTACT ADDRESS:

Check here if this is a new address Name: Chevron USA

Contact: Nancy Forster (Conestoga Rovers & Associates, Agent)

Address: 6320 Rothway Street, Suite 100

City: Houston State: TX Zip: 77040

Work Phone (713) 734-3090 Cell Phone (832) 799-4288

Email Address: nforster@craworld.com

1. WATER METER INFORMATION:

Serial Number: 1101203

Meter Make: Niagara Liquid Meters

Meter Model: 122 Number of Dials: 8 Multiplier: 1

Unit of Measure: Gallons

2. METER READING INFORMATION:

Meter Reading: 0340885.3 Reading Date: 6/27/14

3. COMMENTS: The above meter reading reflects the reading on the new meter (0062691.5) replaced within the last 6 months added to the last reading on the prior meter (0278193.8). The remediation system is operational.

Submitted by: Nancy Forster

OSE File Number: CP-886 **OSE Well/POD Number:** CP-886

Meter Record Number: Add this item for multiple meters/wells

(If Known)¹

WELL OWNER or CONTACT ADDRESS:

Check here if this is a new address Name: Chevron USA

Contact: Nancy Forster (Conestoga Rovers & Associates, Agent)

Address: 6320 Rothway Street, Suite 100

City: Houston State: TX Zip: 77040

Work Phone (713) 734-3090 Cell Phone (832) 799-4288

Email Address: nforster@craworld.com

1. WATER METER INFORMATION:

Serial Number: 1101203

Meter Make: Niagara Liquid Meters

Meter Model: 122 Number of Dials: 8 Multiplier: 1

Unit of Measure: Gallons

2. METER READING INFORMATION:

Meter Reading: 0418755.7 Reading Date: 10/10/14

3. COMMENTS: The above meter reading reflects the reading on the new meter (0140561.9) replaced within the last 10 months added to the last reading on the prior meter (0278193.8). The remediation system is operational.

Submitted by: Nancy Forster

Appendix B

Cumulative Summary of Groundwater Gauging Measurements

APPENDIX B

CUMULATIVE SUMMARY OF GROUNDWATER GAUGING MEASUREMENTS CHEVRON ENVIRONMENTAL MANAGEMENT COMPANY G.L. ERWIN "A & B" FEDERAL NCT-2 TANK BATTERY SW/4, SE/4, SECTION 35, TOWNSHIP 24 SOUTH, RANGE 37 EAST LEA COUNTY, NEW MEXICO

WELL ID		Depth to	Depth to	LNAPL	Corrected		Screen
TOC¹ elevation	DATE	Water	LNAPL	Thickness	Groundwater Elevation	Total Depth	Interval
Diameter (in)		(ft)	(ft)	(ft)	(ft above MSL²)	(ft)	(bgs³)
MW-01	2/4/98	64.15			3097.54	87.70	55'-85'
3,161.69	2/7/01	61.40			3100.29		
2	4/30/02	61.43			3100.26		
	10/11/02	61.43			3100.26		
	12/26/02	61.43			3100.26		
	2/17/03	61.42			3100.27		
	5/29/03	61.58			3100.11		
	8/22/03	61.37			3100.32		
	11/5/03	61.35			3100.34		
	2/3/04	61.34			3100.35		
	5/5/04	61.13			3100.56		
	8/2/04	61.08			3100.61		
	11/23/04	60.61			3101.08		
	2/9/05	60.46			3101.23		
	8/4/05	60.62			3101.07		
	2/22/06	60.30			3101.39	84.60	
	8/24/06	60.46			3101.23	84.60	
	2/27/07	60.12			3101.57		
	8/23/07	59.88			3101.81		
	2/18/08	59.95			3101.74	84.59	
	8/11/08	59.99			3101.70	84.59	
	2/16/09	60.44			3101.25		
	7/27/09	60.57			3101.12		
	2/22/10	60.73			3100.96		
	7/26/10	60.48			3101.21		
	2/15/11	60.42			3101.27		
	8/16/11	60.39			3101.30	84.60	
	2/20/12	60.52			3101.17	82.05	
	8/23/12	60.56			3101.13	81.91	
	2/18/13	60.51			3101.18	81.87	
	8/13/13	60.76			3100.93	81.87	
	4/2/14	60.52			3101.17	81.66	
	10/9/14	60.78			3100.91	81.85	

APPENDIX B

CUMULATIVE SUMMARY OF GROUNDWATER GAUGING MEASUREMENTS CHEVRON ENVIRONMENTAL MANAGEMENT COMPANY G.L. ERWIN "A & B" FEDERAL NCT-2 TANK BATTERY SW/4, SE/4, SECTION 35, TOWNSHIP 24 SOUTH, RANGE 37 EAST LEA COUNTY, NEW MEXICO

WELL ID TOC¹ elevation Diameter (in)	DATE	Depth to Water (ft)	Depth to LNAPL (ft)	LNAPL Thickness (ft)	Corrected Groundwater Elevation (ft above MSL²)	Total Depth (ft)	Screen Interval (bgs³)
MW-02	2/4/98	61.33			3098.56	72.94	50'-70'
3,159.89	2/7/01	61.45			3098.44		
2	4/30/02	61.47			3098.42		
	10/11/02	61.46			3098.43		
	12/26/02	61.52			3098.37		
	2/17/03	61.53			3098.36		
	5/29/03	61.48			3098.41		
	8/22/03	61.41			3098.48		
	11/5/03	61.38			3098.51		
	2/3/04	61.35			3098.54		
	5/5/04	61.20			3098.69		
	8/2/04	61.11			3098.78		
	11/23/04	60.52			3099.37		
	2/9/05	60.45			3099.44		
	8/4/05	66.60			3093.29		
	2/22/06	60.26			3099.63	72.81	
	8/24/06	60.42			3099.47	72.81	
	2/27/07	60.04			3099.85		
	8/23/07	59.80			3100.09		
	2/18/08	59.83			3100.06	72.82	
	8/11/08	59.89			3100.00	72.81	
	2/16/09	60.42			3099.47		
	7/27/09	60.55			3099.34		
	2/22/10	60.56			3099.33		
	7/26/10	60.73			3099.16		
	2/15/11	60.50			3099.39		
	8/16/11	60.43			3099.46	72.81	
	2/20/12	60.56			3099.33	72.76	
	8/23/12	60.85			3099.04	72.86	
	2/18/13	60.86			3099.03	72.85	
	8/13/13	60.85			3099.04		
	4/2/14	60.78			3099.11	72.34	
	10/9/14	60.82			3099.07	72.91	

APPENDIX B

CUMULATIVE SUMMARY OF GROUNDWATER GAUGING MEASUREMENTS CHEVRON ENVIRONMENTAL MANAGEMENT COMPANY G.L. ERWIN "A & B" FEDERAL NCT-2 TANK BATTERY SW/4, SE/4, SECTION 35, TOWNSHIP 24 SOUTH, RANGE 37 EAST LEA COUNTY, NEW MEXICO

WELL ID		Depth to	Depth to	LNAPL	Corrected		Screen
TOC¹ elevation	DATE	Water	LNAPL	Thickness	Groundwater Elevation	Total Depth	Interval
Diameter (in)	27112	(ft)	(ft)	(ft)	(ft above MSL²)	(ft)	(bgs³)
MW-03	2/4/98	65.18			3098.90	73.26	50'-70'
3,164.08	2/7/01	65.22			3098.86		
2	4/30/02	65.11			3098.97		
	10/11/02	65.14			3098.94		
	12/26/02	65.15			3098.93		
	2/17/03	65.15			3098.93		
	5/29/03	65.19			3098.89		
	8/22/03	65.09			3098.99		
	11/5/03	65.09			3098.99		
	2/3/04	65.06			3099.02		
	5/5/04	64.97			3099.11		
	8/2/04	64.54			3099.54		
	11/23/04	64.47			3099.61		
	2/9/05	64.18			3099.90		
	8/4/05	64.30			3099.78		
	2/22/06	63.93			3100.15	73.14	
	8/24/06	64.09			3099.99	73.14	
	2/27/07	63.74			3100.34		
	8/23/07	63.54			3100.54		
	2/18/08	63.55			3100.53	73.13	
	8/11/08	63.61			3100.47	73.13	
	2/16/09	64.09			3099.99		
	7/27/09	64.22			3099.86		
	2/22/10	64.15			3099.93		
	7/26/10	64.46			3099.62		
	2/15/11	64.16			3099.92	73.15	
	8/16/11	64.04			3100.04	73.13	
	2/20/12	64.20			3099.88	73.06	
	8/24/12	64.44			3099.64	73.11	
	2/18/13	64.27			3099.81	73.10	
	8/13/13	64.49			3099.59		
	4/2/14	64.24			3099.84	72.87	
	10/9/14	64.65			3099.43	73.20	
	10/3/11	0 1.03			3033.13	75.20	
MW-04	2/4/98	63.94			3101.71	73.31	50'-70'
3,165.65	10/19/00	63.80			3101.85		-
2	2/7/01	63.78			3101.87		
	4/30/02	63.72			3101.93		
	10/11/02	63.74			3101.91		
	12/26/02	63.74			3101.91		
	2/17/03	63.74			3101.91		
	5/29/03	63.83			3101.82		
	8/22/03	63.71			3101.94		
	11/5/03	63.68			3101.97		
	2/3/04	63.64			3102.01		

WELL ID TOC¹ elevation Diameter (in)	DATE	Depth to Water (ft)	Depth to LNAPL (ft)	LNAPL Thickness (ft)	Corrected Groundwater Elevation (ft above MSL²)	Total Depth (ft)	Screen Interval (bgs³)
MW-04 (cont)	5/5/04	63.55			3102.10		
	8/2/04	63.45			3102.20		
	11/23/04	62.91			3102.74		
	2/9/05	62.83			3102.82		
	8/4/05	63.12			3102.53		
	2/23/06	62.80			3102.85	73.11	
	8/25/06	62.97			3102.68	73.11	
	2/27/07	62.60			3103.05		
	8/23/07	62.33			3103.32		
	2/18/08	62.35			3103.30	73.1	
	8/11/08	62.38			3103.27	73.11	
	2/16/09	62.73			3102.92		
	7/27/09	62.85			3102.80		
	2/22/10	62.72			3102.80		
					3102.66		
	7/26/10	62.99					
	2/15/11	62.70			3102.95	72.44	
	8/16/11	62.64			3103.01	73.11	
	2/20/12		I.	NG	1		
	8/24/12	63.41			3102.24	73.12	
	2/18/13	64.27			3101.38	73.11	
	8/13/13	62.93			3102.72		
	4/2/14	62.76			3102.89	73.03	
	10/9/14	62.80			3102.85	73.08	
MW-05	2/4/98	60.33			3100.42	73.10	50'-70'
3,160.75	10/19/00	60.25			3100.50		
2	2/7/01	60.58			3100.17		
	4/30/02	62.27			3098.48		
	10/11/02	60.29			3100.46		
	12/26/02	60.29			3100.46		
	2/17/03	60.30			3100.45		
	5/29/03	60.33			3100.42		
	8/22/03	60.24			3100.51		
	11/5/03	60.24			3100.51		
	2/3/04	60.20			3100.55		
	5/5/04	60.04			3100.71		
	8/2/04	59.97			3100.78		
	11/23/04	59.51			3101.24		
	2/9/05	59.32			3101.43		
	8/4/05	59.55			3101.20		
	2/22/06	59.22			3101.53	72.95	
	8/24/06	59.39			3101.36	72.95	
	2/27/07	59.03			3101.72		
	8/23/07	58.84			3101.91		
	2/18/08	58.83			3101.92	72.95	
	8/11/08	58.84			3101.91	72.95	
	2/16/09	59.36			3101.39		
	7/27/09	59.50			3101.25		
	2/22/10	59.35			3101.40		
	7/26/10	59.72			3101.03		
	2/15/11		1	NG	I		

WELL ID		Depth to	Depth to	LNAPL	Corrected		Screen
TOC¹ elevation	DATE	Water	LNAPL	Thickness	Groundwater Elevation	Total Depth	Interval
Diameter (in)	271.72	(ft)	(ft)	(ft)	(ft above MSL²)	(ft)	(bgs³)
MW-05 (cont)	8/16/11	59.28			3101.47	72.95	
, ,	2/20/12	59.46			3101.29	72.86	
	8/24/12	59.47			3101.28	72.69	
	2/18/13	59.51			3101.24	72.88	
	8/13/13	59.71			3101.04		
	4/2/14	59.45			3101.30	72.68	
	10/9/14	59.70			3101.05	72.85	
MW-06	2/7/01	68.00			3096.18	77.24	59'-74'
3,164.18	4/30/02	68.10			3096.08		
2	10/11/02	68.04			3096.14		
	12/26/02	68.03			3096.15		
	2/17/03	68.03			3096.15		
	5/29/03	68.38			3095.80		
	8/22/03	67.99			3096.19		
	11/5/03	67.99			3096.19		
	2/3/04	67.92			3096.26		
	5/5/04	67.88			3096.30		
	8/2/04	67.78			3096.40		
	11/23/04	67.31			3096.87		
	2/9/05	67.17			3097.01		
	8/4/05	63.13			3101.05		
	2/22/06	66.72			3097.46	77.00	
	8/24/06	66.93			3097.25	77.00	
	2/27/07	66.58			3097.60		
	8/27/07	66.35			3097.83		
	2/18/08	66.35			3097.83	77.00	
	8/11/08	66.39			3097.79	77.00	
	2/16/09	66.94			3097.24		
	7/27/09	67.04			3097.14		
	2/22/10	67.10			3097.08		
	7/26/10	67.32			3096.86		
	2/15/11	67.15			3097.03	77.05	
	8/16/11	67.09			3097.09	77.00	
	2/20/12	67.14			3097.04	76.95	
	8/24/12	67.53			3096.65	76.87	
	2/18/13	67.68			3096.50	76.91	
	8/13/13	67.41			3096.77		
	4/2/14	67.32			3096.86	76.80	
	10/9/14	67.63			3096.55	77.01	

WELL ID		Depth to	Depth to	LNAPL	Corrected		Screen
TOC¹ elevation	DATE	Water	LNAPL	Thickness	Groundwater Elevation	Total Depth	Interval
Diameter (in)		(ft)	(ft)	(ft)	(ft above MSL²)	(ft)	(bgs³)
MW-07	2/7/01	67.25			3094.81	73.45	55'-70'
3,162.06	4/30/02	67.50			3094.56		
2	10/11/02	67.53			3094.53		
	12/26/02	67.53			3094.53		
	2/17/03	67.53			3094.53		
	5/29/03	67.61			3094.45		
	8/22/03	67.49			3094.57		
	11/5/03	67.47			3094.59		
	2/3/04	67.46			3094.60		
	5/5/04	67.44			3094.62		
	8/2/04	67.34			3094.72		
	11/23/04	67.02			3095.04		
	2/9/05	67.74			3094.32		
	8/4/05	66.62			3095.44		
	2/22/06	66.31			3095.75	72.56	
	8/24/06	66.37			3095.69	72.56	
	2/27/07	66.05			3096.01		
	8/23/07	65.87			3096.19		
	2/18/08	65.88			3096.18	72.55	
	8/11/08	65.91			3096.15	72.55	
	2/16/09	66.35			3095.71		
	7/27/09	66.51			3095.55		
	2/22/10	66.70			3095.36		
	7/26/10	66.86			3095.20		
	2/15/11	66.74			3095.32	72.22	
	8/16/11	66.73			3095.33	72.30	
	2/20/12	66.74			3095.32		
	8/23/12	66.98			3095.08	71.87	
	2/18/13	66.97			3095.09	71.86	
	8/13/13	67.03			3095.03		
	4/2/14	67.00			3095.06	71.79	
	10/9/14	67.04			3095.02	71.90	
MW-08	2/3/99	68.21			3091.45	70.66	50'-70'
3,159.66	2/7/01	68.30			3091.36		
2	4/30/02	68.42			3091.24		
	10/11/02	68.30			3091.36		
	12/26/02	68.30			3091.36		
	2/17/03	68.30			3091.36		
	5/29/03	68.36			3091.30		
	8/22/03	68.26			3091.40		

WELL ID		Depth to	Depth to	LNAPL	Corrected		Screen
TOC¹ elevation	DATE	Water	LNAPL	Thickness	Groundwater Elevation	Total Depth	Interval
Diameter (in)		(ft)	(ft)	(ft)	(ft above MSL²)	(ft)	(bgs³)
MW-08 (cont)	11/5/03	68.26			3091.40		
	2/3/04	68.24			3091.42		
	5/5/04	68.24			3091.42		
	8/2/04	68.17			3091.49		
	11/23/04	67.72			3091.94		
	2/9/05	67.41			3092.25		
	8/4/05	67.39			3092.27		
	2/22/06	67.04			3092.62	73.40	
	8/24/06	67.29			3092.37	73.40	
	2/27/07	66.87			3092.79		
	8/23/07	66.77			3092.89		
	2/18/08	66.79			3092.87	73.40	
	8/11/08	66.81			3092.85	73.40	
	2/16/09	67.31			3092.35		
	7/27/09	67.40			3092.26		
	2/22/10	67.53			3092.13		
	7/26/10	67.65			3092.01		
	2/15/11	67.65			3092.01	73.43	
	8/16/11	67.59			3092.07	73.40	
	2/20/12	67.59			3092.07	73.38	
	8/23/12	67.73			3091.93	73.40	
	2/19/13	67.86			3091.80	73.42	
	8/13/13	67.76			3091.90		
	4/2/14	67.82			3091.84	73.35	
	10/9/14	67.80			3091.86	73.60	
	-,-,						
MW-09	4/30/02	63.65			3103.42	70.39	55'-70'
3,167.07	10/11/02	63.59			3103.48		
2	12/26/02	63.59			3103.48		
	2/17/03	63.60			3103.47		
	5/29/03	63.73			3103.34		
	8/22/03	63.56			3103.51		
	11/5/03	63.55			3103.52		
	2/3/04	63.47			3103.60		
	5/5/04	63.27			3103.80		
	8/2/04	63.24			3103.83		
	11/23/04	62.40			3104.67		
	2/9/05	62.50			3104.57		
	8/4/05	62.89			3104.18		
	2/23/06	62.48			3104.59	69.60	
	8/25/06	62.68			3104.39	69.60	

WELL ID		Depth to	Depth to	LNAPL	Corrected		Screen
TOC¹ elevation	DATE	Water	LNAPL	Thickness	Groundwater Elevation	Total Depth	Interval
Diameter (in)	27172	(ft)	(ft)	(ft)	(ft above MSL²)	(ft)	(bgs³)
MW-09 (cont)	2/27/07	62.23			3104.84		
, ,	8/23/07	61.88			3105.19		
	2/18/08	61.90			3105.17	69.59	
	8/11/08	61.91			3105.16	69.59	
	2/16/09	62.33			3104.74		
	7/27/09	62.42			3104.65		
	2/22/10	62.33			3104.74		
	7/26/10	62.53			3104.54		
	2/15/11	62.25			3104.82		
	8/16/11	62.29			3104.78	69.59	
	2/20/12		,	NG	•		
	8/24/12	62.53			3104.54	68.67	
	2/19/13	62.45			3104.62	68.60	
	8/13/13	62.43			3104.64		
	4/2/14	62.25			3104.82	68.53	
	10/9/14	62.01			3105.06	68.45	
MW-10	4/30/02	70.35			3100.64	69.16	54'-69'
3,170.99	10/11/02	70.49			3100.50		
2	12/26/02	70.50			3100.49		
	2/17/03	70.50			3100.49		
	5/29/03	70.37			3100.62		
	8/22/03	70.47			3100.52		
	11/5/03	70.49			3100.50		
	2/3/04	70.43			3100.56		
	5/5/04	70.38			3100.61		
	8/2/04	70.26			3100.73		
	11/23/04	69.78			3101.21		
	2/9/05		l	NG	ı		
	8/4/05	69.89			3101.10		
	2/22/06	69.59			3101.40	71.95	
	8/25/06	69.65			3101.34	71.95	
	2/27/07	69.29			3101.70		
	8/23/07	69.06			3101.93		
	2/18/08	69.06			3101.93	71.94	
	8/11/08	69.05			3101.94	71.94	
	2/16/09	69.74			3101.25		
	7/27/09	69.27			3101.72		
	2/22/10	69.30			3101.69		
	7/26/10	69.40		NG	3101.59		
	2/15/11	<u> </u>		ING			

WELL ID		Depth to	Depth to	LNAPL	Corrected		Screen
TOC¹ elevation	DATE	Water	LNAPL	Thickness	Groundwater Elevation	Total Depth	Interval
Diameter (in)	27172	(ft)	(ft)	(ft)	(ft above MSL²)	(ft)	(bgs³)
MW-10 (cont)	8/16/11	69.28			3101.71	71.95	1-3-7
WW-10 (cont)	2/20/12	03.20		NG	3101.71	71.95	
	8/24/12	69.41			3101.58	71.97	
	2/19/13	69.40			3101.59	71.95	
	8/13/13	69.34			3101.65	71.94	
	4/2/14	69.33			3101.66	71.91	
	10/9/14	69.38			3101.61	72.20	
	,-,-						
MW-11	4/30/02			DRY		72.78	58'-73'
3,168.24	10/11/02			DRY			
2	12/26/02			DRY			
	2/17/03			DRY			
	5/29/03			DRY			
	8/22/03			DRY			
	11/5/03			DRY			
	2/3/04			DRY			
	5/5/04			DRY			
	8/2/04			DRY			
	11/23/04			DRY			
	2/9/05			DRY			
	8/4/05	61.91			3106.33		
	2/22/06	74.71			3093.53	75.45	
	8/24/06	74.71			3093.53	75.45	
	2/27/07	74.51			3093.73		
	8/23/07	74.38			3093.86		
	2/18/08	74.21			3094.03	75.45	
	8/11/08	74.38			3093.86	75.44	
	2/16/09	74.46			3093.78		
	7/27/09	74.45			3093.79		
	2/22/10	74.52			3093.72		
	7/26/10	74.61			3093.63		
	2/15/11	74.56			3093.68	75.50	
	8/16/11	74.63			3093.61	75.50	
	2/20/12		i.	NG	ı		
	8/23/12	74.62			3093.62	75.55	
	2/18/13	74.65			3093.59	75.45	
	8/13/13	74.66			3093.58	75.44	
	4/2/14	74.73			3093.51	75.40	
	10/9/14	74.7			3093.54	75.60	

WELL ID		Depth to	Depth to	LNAPL	Corrected		Screen
TOC¹ elevation	DATE	Water	LNAPL	Thickness	Groundwater Elevation	Total Depth	Interval
Diameter (in)	27172	(ft)	(ft)	(ft)	(ft above MSL²)	(ft)	(bgs³)
MW-12	4/30/02	72.80			3079.68	74.37	59'-74'
3,152.48	10/11/02	72.81			3079.67		
2	12/26/02	72.82			3079.66		
	2/17/03	72.82			3079.66		
	5/29/03	72.77			3079.71		
	8/22/03	72.81			3079.67		
	11/5/03	72.81			3079.67		
	2/3/04	72.83			3079.65		
	5/5/04	72.78			3079.70		
	8/2/04	72.81			3079.67		
	11/23/04	72.69			3079.79		
	2/9/05	72.83			3079.65		
	8/4/05	72.48			3080.00		
	2/22/06	72.15			3080.33	77.60	
	8/24/06	71.91			3080.57	77.60	
	2/27/07	71.75			3080.73		
	8/23/07	71.51			3080.97		
	2/18/08	71.42			3081.06	77.60	
	8/11/08	71.46			3081.02	77.60	
	2/16/09	73.13			3079.35		
	7/27/09	71.59			3080.89		
	2/22/10	71.94			3080.54		
	7/26/10	72.21			3080.27		
	2/15/11	72.36			3080.12	77.57	
	8/16/11	72.50			3079.98	77.67	
	2/20/12	72.45			3080.03	77.52	
	8/22/12	72.71			3079.77	77.50	
	2/19/13	72.65			3079.83	77.63	
	8/13/13	72.59			3079.89		
	4/2/14	72.83			3079.65	77.35	
	10/9/14	72.91			3079.57	77.81	
NAVA/ 12	4/20/02	66.07			2007.05	67.00	E31 C01
MW-13	4/30/02	66.97			3087.95	67.90	53'-68'
3,154.92	10/11/02	66.38			3088.54		
2	12/26/02	66.37			3088.55		
	2/17/03	66.37			3088.55		
	5/29/03	66.68			3088.24		
	8/22/03	67.06 67.36			3087.86 3087.56		
	11/5/03 2/3/04	67.36			3087.56		
	2/3/04 5/5/04	67.11			3087.81		
<u> </u>	3/3/04	07.05			3007.07		

WELL ID		Depth to	Depth to	LNAPL	Corrected		Screen
TOC¹ elevation	DATE	Water	LNAPL	Thickness	Groundwater Elevation	Total Depth	Interval
Diameter (in)		(ft)	(ft)	(ft)	(ft above MSL²)	(ft)	(bgs³)
MW-13 (cont)	8/2/04	67.21			3087.71		
	11/23/04	66.82			3088.10		
	2/9/05	66.50			3088.42		
	8/4/05	66.11			3088.81		
	2/22/06	65.73			3089.19	70.54	
	8/24/06	65.45			3089.47	70.54	
	2/27/07	65.22			3089.70		
	8/23/07	65.06			3089.86		
	2/18/08	65.10			3089.82	70.54	
	8/11/08	65.12			3089.80	70.54	
	2/16/09	64.74			3090.18		
	7/27/09	64.89			3090.03		
	2/22/10	65.19			3089.73		
	7/26/10	65.45			3089.47		
	2/15/11	65.60			3089.32	70.50	
	8/16/11	65.79			3089.13	70.50	
	2/20/12	65.83			3089.09	70.49	
	8/23/12	66.01			3088.91	70.55	
	2/19/13	66.11			3088.81	70.53	
	8/13/13	66.17			3088.75		
	4/2/14	66.91			3088.01	70.47	
	10/9/14	66.68			3088.24	70.51	
MW-14	11/5/03	71.60			3080.31	92.43	79.5'-89.5'
3,151.91	2/3/04	71.62			3080.31	92.43	79.5 -69.5
2	5/5/04 5/5/04	71.67			3080.24		
2	8/2/04	71.69			3080.22		
	11/23/04	71.60			3080.22		
	2/9/05	71.30			3080.61		
	8/4/05	70.90			3081.01		
	2/22/06	70.49			3081.42	92.30	
	8/24/06	70.24			3081.67	92.3	
	2/27/07	70.05			3081.86		
	8/23/07	69.78			3082.13		
	2/18/08	69.68			3082.23	92.29	
	8/11/08	69.72			3082.19	92.30	
	2/16/09	69.31			3082.60		
	7/27/09	69.37			3082.54		
	2/22/10	69.65			3082.26		
	7/26/10	69.95			3081.96		
	2/15/11	70.20			3081.71	92.15	

WELL ID		Depth to	Depth to	LNAPL	Corrected		Screen
TOC¹ elevation	DATE	Water	LNAPL	Thickness	Groundwater Elevation	Total Depth	Interval
Diameter (in)	271.72	(ft)	(ft)	(ft)	(ft above MSL²)	(ft)	(bgs³)
MW-14 (cont)	8/16/11	70.39			3081.52	89.50	
	2/20/12	70.48			3081.43	92.07	
	8/23/12	70.81			3081.10	91.99	
	2/19/13	70.97			3080.94	91.79	
	8/13/13	70.92			3080.99		
	4/2/14	71.14			3080.77	92.82	
	10/9/14	71.52			3080.39	91.90	
MW-15	11/5/03			DRY		87.45	64.5'-84.5'
3,152.48	2/3/04			DRY			
2	5/5/04			DRY			
	8/2/04			DRY			
	11/23/04			DRY			
	2/9/05		i	DRY	i		
	8/4/05	86.91			3065.57		
	2/22/06	86.54			3065.94	87.40	
	8/24/06	86.34			3066.14	87.40	
	2/27/07	85.73			3066.75		
	8/23/07	85.26			3067.22		
	2/18/08	81.90			3070.58	87.40	
	8/11/08	81.99			3070.49	87.42	
	2/16/09	77.83			3074.65		
	7/27/09	77.19			3075.29		
	2/22/10	77.06			3075.42		
	7/26/10	77.05			3075.43		
	2/15/11	77.08			3075.40	87.50	
	8/16/11	77.23			3075.25	84.50	
	2/20/12	77.31			3075.17	87.38	
	8/22/12	77.50			3074.98	87.28	
	2/19/13	77.61			3074.87	87.40	
	8/13/13	77.78			3074.70		
	4/2/14	78.51			3073.97	87.30	
	10/9/14	78.30			3074.18	87.41	
MW-16	11/5/03	65.68			3091.57	77.22	59.5'-74.5'
3,157.25	2/3/04	68.67			3088.58		
2	5/5/04	68.69			3088.56		
	8/2/04	68.65			3088.60		
	11/23/04	68.10			3089.15		
	2/9/05	67.53			3089.72		
	8/4/05	67.77			3089.48		

WELL ID		Depth to	Depth to	LNAPL	Corrected		Screen
TOC¹ elevation	DATE	Water	LNAPL	Thickness	Groundwater Elevation	Total Depth	Interval
Diameter (in)		(ft)	(ft)	(ft)	(ft above MSL²)	(ft)	(bgs³)
MW-16 (cont)	2/22/06	67.24			3090.01	74.42	
	8/24/06	67.66			3089.59	74.42	
	2/27/07	67.09			3090.16		
	8/23/07	67.10			3090.15		
	2/18/08	67.03			3090.22	74.42	
	8/11/08	67.09			3090.16	74.42	
	2/16/09	67.85			3089.40		
	7/27/09	67.92			3089.33		
	2/22/10	68.10			3089.15		
	7/26/10	68.20			3089.05		
	2/15/11	68.18			3089.07	74.47	
	8/16/11	68.16			3089.09	74.50	
	2/20/12	68.12			3089.13	74.41	
	8/23/12	68.20			3089.05	74.41	
	2/19/13	68.43			3088.82	74.48	
	8/13/13	68.25			3089.00		
	4/2/14	68.42			3088.83	74.45	
	10/9/14	68.38			3088.87	74.61	
MW-17	11/5/03	69.51			3088.86	79.37	57'-77'
3,158.37	2/3/04	69.53			3088.84		3, ,,
2	5/5/04	69.52			3088.85		
_	8/2/04	70.12			3088.25		
	11/23/04	69.31			3089.06		
	2/9/05	69.04			3089.33		
	8/4/05	68.90			3089.47		
	2/22/06	68.72			3089.65	80.10	
	8/24/06	68.78			3089.59	80.10	
	2/27/07	68.55			3089.82		
	8/23/07	68.50			3089.87		
	2/18/08	68.41			3089.96	80.10	
	8/11/08	68.43			3089.94	80.10	
	2/16/09	68.87			3089.50		
	7/27/09	68.99			3089.38		
	2/22/10	69.14			3089.23		
	7/26/10	69.22			3089.15		
	2/15/11	69.23			3089.14	79.82	
	8/16/11	69.23			3089.14	79.96	
	2/20/12	69.19			3089.18	76.95	
	8/23/12	69.36			3089.01	77.02	
	2/19/13	69.49			3088.88	76.93	

WELL ID		Depth to	Depth to	LNAPL	Corrected		Screen
TOC¹ elevation	DATE	Water	LNAPL	Thickness	Groundwater Elevation	Total Depth	Interval
Diameter (in)		(ft)	(ft)	(ft)	(ft above MSL²)	(ft)	(bgs³)
MW-17 (cont)	8/13/13	69.31			3089.06		
	4/2/14	69.53			3088.84	76.95	
	10/9/14	69.41			3088.96	76.98	
MW-18	11/23/04			DRY		76.98	54.5'-74.5
3,151.08	2/9/05			DRY			31.3 71.3
2	8/4/05			DRY			
_	2/22/06			DRY		78.43	
	8/24/06			DRY		78.43	
	2/27/07			DRY			
	8/23/07			DRY			
	2/18/08			DRY		78.44	
	8/11/08			DRY		78.44	
	2/16/09			DRY			
	7/27/09			DRY			
	2/22/10			DRY			
	7/26/10			DRY			
	2/15/11			DRY			
	8/16/11			DRY		74.50	
	2/20/12			DRY		78.40	
	8/23/12			DRY		78.41	
	2/18/13			DRY			
	8/13/13			DRY			
	4/2/14			DRY		78.35	
	10/9/14			DRY		78.35	
MW-19	11/23/04	72.63			3075.16	104.41	82.5'-102.5'
3,147.79	2/9/05	72.36			3075.43		
2	8/4/05	72.18			3075.61		
	2/22/06	71.83			3075.96	105.55	
	8/24/06	71.57			3076.22	105.55	
	2/27/07	71.28			3076.51		
	8/23/07	70.75			3077.04		
	2/18/08	70.29			3077.50	105.53	
	8/11/08	70.33			3077.46	105.50	
	2/16/09	71.54			3076.25		
	7/27/09	70.71			3077.08		
	2/22/10	69.91			3077.88		
	7/26/10	70.15			3077.64		
	2/15/11	70.26			3077.53	105.60	
	8/16/11	70.50			3077.29	102.50	

WELL ID		Depth to	Depth to	LNAPL	Corrected		Screen
TOC¹ elevation	DATE	Water	LNAPL	Thickness	Groundwater Elevation	Total Depth	Interval
Diameter (in)		(ft)	(ft)	(ft)	(ft above MSL²)	(ft)	(bgs³)
MW-19 (cont)	2/20/12	70.61			3077.18	105.52	
	8/23/12	70.01			3077.78	105.61	
	2/19/13	71.34			3076.45	105.52	
	8/13/13	71.31			3076.48		
	4/2/14	71.85			3075.94	105.37	
	10/9/14	72.50			3075.29	105.40	
	/ /	21.21					
MW-20	11/23/04	81.81			3069.75		72.5'-92.5'
3,151.56	2/9/05	81.85			3069.71		
2	8/4/05	81.81			3069.75		
	2/22/06	81.71			3069.85	92.23	
	8/24/06	81.66			3069.90	92.23	
	2/27/07	81.39			3,070.17		
	8/23/07	81.20			3,070.36		
	2/18/08	80.93			3,070.63	92.21	
	8/11/08	80.96			3070.60	92.20	
	2/16/09	80.58			3070.98		
	7/27/09	80.42			3071.14		
	2/22/10	80.35			3071.21		
	7/26/10	80.39			3071.17		
	2/15/11	80.38			3071.18	90.40	
	8/16/11	80.52			3071.04	92.50	
	2/20/12	80.61			3070.95	89.66	
	8/22/12	80.85			3070.71	89.34	
	2/19/13	81.09			3070.47	89.41	
	8/13/13	81.23			3070.33		
	4/2/14	81.57			3069.99	89.54	
	10/9/14	81.70			3069.86	89.31	
MW-21	11/20/07	71.05			3074.82	99.00	67'-97'
3,145.87	2/18/08	70.96			3074.91	98.60	0, 3,
2	8/11/08	71.01			3074.86	98.60	
_	2/16/09	70.78			3075.09		
	7/27/09	70.71			3075.16		
	2/22/10	70.71			3075.04		
	7/26/10	71.03			3074.84		
	2/15/11	71.03			3074.83	97.68	
	8/16/11	71.31			3074.56	97.00	
	2/20/12	71.50			3074.37	97.44	
	8/22/12	71.79			3074.08	96.98	
	2/19/13	72.06			3074.08	97.05	
	21 131 13	, 2.00			3073.01	57.05	1

WELL ID		Depth to	Depth to	LNAPL	Corrected		Screen
TOC¹ elevation	DATE	Water	LNAPL	Thickness	Groundwater Elevation	Total Depth	Interval
Diameter (in)		(ft)	(ft)	(ft)	(ft above MSL²)	(ft)	(bgs³)
MW-21 (cont)	8/13/13	72.27			3073.60		
	4/2/14	72.65			3073.22	96.88	
	10/9/14	73.41			3072.46	96.98	
MW-22	11/20/07	62.35			3108.29	68.95	46.5'-66.5'
3,170.64	2/18/08	62.59			3108.05	68.60	.0.5 00.5
2	8/11/08	62.62			3108.02	68.60	
	2/16/09	62.68			3107.96		
	7/27/09	62.90			3107.74		
	2/22/10	62.74			3107.90		
	7/26/10	62.80			3107.84		
	2/15/11	62.59			3108.05		
	8/16/11	62.71			3107.93	68.60	
	2/21/12		Į.	NG	I		
	8/24/12	62.91			3107.73	68.21	
	2/19/13	62.61			3108.03	68.10	
	8/13/13	62.60			3108.04		
	4/2/14	62.60			3108.04	68.01	
	10/9/14	61.90			3108.74	67.99	
MW-23	2/20/12	89.59			3064.79	103.52	70-100'
3,154.38	8/22/12	89.54			3064.84	102.01	
2	2/19/13	89.71			3064.67	102.07	
	8/13/13	89.72			3064.66		
	4/2/14	89.99			3064.39	102.07	
	10/9/14	90.03			3064.35	102.03	
MW-24	2/20/12	48.81			3097.26	59.86	30-60'
3,146.07	8/22/12	49.11			3096.96	62.90	30 00
2.00	2/19/13	49.23			3096.84	62.89	
2.00	8/13/13	49.35			3096.72		
	4/2/14	49.50			3096.57	62.65	
	10/9/14	50.05			3096.02	63.01	
	20,5,2.	50.05			3030.02	00.01	
MW-25	4/5/12	78.08			3093.24	97.00	65-95'
3,171.32	5/24/12	77.96			3093.36		
2	8/23/12	77.79			3093.53	96.18	
	2/19/13	78.16			3093.16	96.11	
	8/13/13	78.15			3093.17		
	4/2/14	78.41			3092.91	96.03	
	10/9/14	78.39			3092.93	95.63	

WELL ID		Depth to	Depth to	LNAPL	Corrected		Screen
TOC¹ elevation	DATE	Water	LNAPL	Thickness	Groundwater Elevation	Total Depth	Interval
Diameter (in)	27112	(ft)	(ft)	(ft)	(ft above MSL²)	(ft)	(bgs³)
MW-26	4/5/12	63.02			3109.82	76.58	55-75'
3,172.84	5/24/12	63.02			3109.82		
2	8/24/12	63.02			3109.82	76.61	
	2/19/13	62.98			3109.86	76.45	
	8/13/13	62.89			3109.95		
	4/2/14	62.85			3109.99	76.12	
	10/9/14	63.02			3109.82	75.83	
MW-27	4/5/12	46.30			3100.30	48.80	25-45'
3,146.60	8/23/12			DRY		48.79	
2	2/19/13	48.20			3098.40	48.75	
	8/13/13		ļl	DRY	I	48.56	
	4/2/14			DRY		48.53	
	10/9/14			DRY		48.50	
WW-1	4/30/02	70.21			3100.00		
3,170.21	10/11/02	69.71			3100.50		
4	12/26/02	69.70			3100.51		
	2/17/03	69.70			3100.51		
	5/29/03	67.37			3102.84		
	8/22/03	70.27			3099.94		
	11/5/03	70.23			3099.98		
	2/3/04	70.31			3099.90		
	5/5/04	70.23			3099.98		
	8/2/04	69.47			3100.74		
	11/23/04	69.92			3100.29		
	2/9/05	69.75			3100.46		
	8/4/05	69.89			3100.32		
	2/22/06	69.51			3100.70		
	8/25/06	69.50			3100.71	192.00	
	2/27/07	69.20			3101.01		
	8/23/07	68.99			3101.22		
	2/18/08	69.00			3101.21	192.00	
	8/11/08	68.95			3101.26	191.98	
	2/16/09	69.00			3101.21		
	7/27/09	69.00			3101.21		
	2/22/10	68.89			3101.32		
	7/26/10			NG			
	2/15/11			NG			
	8/16/11			NG			

WELL ID TOC¹ elevation Diameter (in) WW-1 (cont)	DATE	Depth to	Depth to	LNAPL	Corrected		Screen
Diameter (in)	-,	Water	LNAPL	Thickness	Groundwater Elevation	Total Depth	Interval
		(ft)	(ft)	(ft)	(ft above MSL²)	(ft)	(bgs³)
= (00)	2/20/12	69.05			3101.16	195.00	
	8/23/12	69.22			3100.99	180.04	
	2/18/13	69.22			3100.99	180.04	
	8/13/13	69.09			3101.12		
	4/2/14	69.07			3101.14	179.73	
	10/9/14	69.13			3101.08	179.98	
West MW	8/22/97	62.58			3101.86	70.43	
3,164.44	2/4/98	62.50			3101.94		
2 1	10/19/00	62.37			3102.07		
	2/7/01	62.43			3102.01		
	4/30/02	62.37			3102.07		
1	10/11/02	62.35			3102.09		
	12/26/02	62.34			3102.10		
	2/17/03	62.34			3102.10		
	5/29/03	62.22			3102.22		
	8/22/03	62.35			3102.09		
	11/5/03	62.31			3102.13		
	2/3/04	62.27			3102.17		
	5/5/04	62.11			3102.33		
	8/2/04	62.01			3102.43		
	11/23/04	61.40			3103.04		
	2/9/05	61.30			3103.14		
	8/4/05	61.61			3102.83		
	2/23/06	61.24			3103.20	67.28	
	8/25/06	61.43			3103.01	67.28	
	2/27/07	61.03			3103.41		
	8/23/07	60.74			3103.70		
	2/18/08	60.97			3103.47	67.28	
	8/11/08	61.06			3103.38	67.28	
	2/16/09	61.27			3103.17		
	7/27/09	61.42			3103.02		
	2/22/10	61.26			3103.18		
	7/26/10	61.62			3102.82		
	2/15/11	61.20			3103.24		
	8/16/11	61.21			3103.23	67.28	
	2/21/12		ı	NG	I		
	8/24/12	61.52			3102.92	67.24	
	2/18/13	61.43			3103.01	67.28	
	8/13/13	61.56			3102.88		
	4/2/14	61.28			3103.16	67.22	
	10/9/14	61.40			3103.04	67.20	

WELL ID TOC¹ elevation	DATE	Depth to Water	Depth to LNAPL	LNAPL Thickness	Corrected Groundwater Elevation	Total Depth	Screen Interval
Diameter (in)		(ft)	(ft)	(ft)	(ft above MSL²)	(ft)	(bgs³)
Southwest MW	8/22/97	63.25			3101.29	70.45	
3,164.54	2/4/98	63.21			3101.33		
2	10/19/00	63.06			3101.48		
	2/7/01	63.10			3101.44		
	4/30/02	63.06			3101.48		
	10/11/02	62.72			3101.82		
	12/26/02	62.70			3101.84		
	2/17/03	62.70			3101.84		
	5/29/03	62.92			3101.62		
	8/22/03	63.04			3101.50		
	11/5/03	63.03			3101.51		
	2/3/04	62.99			3101.55		
	5/5/04	62.90			3101.64		
	8/2/04	62.71			3101.83		
	11/23/04	62.17			3102.37		
	2/9/05	62.05			3102.49		
	8/4/05	62.33			3102.21		
	2/23/06	61.98			3102.56	70.16	
	8/25/06	62.17			3102.37	70.16	
	2/27/07	61.78			3102.76		
	8/23/07	61.52			3103.02		
	2/18/08	61.9			3102.64	70.16	
	8/11/08	61.93			3102.61	70.16	
	2/16/09	62.10			3102.44		
	7/27/09	62.19			3102.35		
	2/22/10	62.00			3102.54		
	7/26/10	62.64			3101.90		
	2/15/11		i.	NG	i		
	8/16/11	61.94			3102.60		
	2/21/12			NG			
	8/24/12	62.03			3102.51	70.35	
	2/18/13	62.75			3101.79	70.41	
	8/13/13	62.50			3102.04		
	4/2/14	62.15			3102.39	70.37	
	10/9/14	62.60			3101.94	70.35	

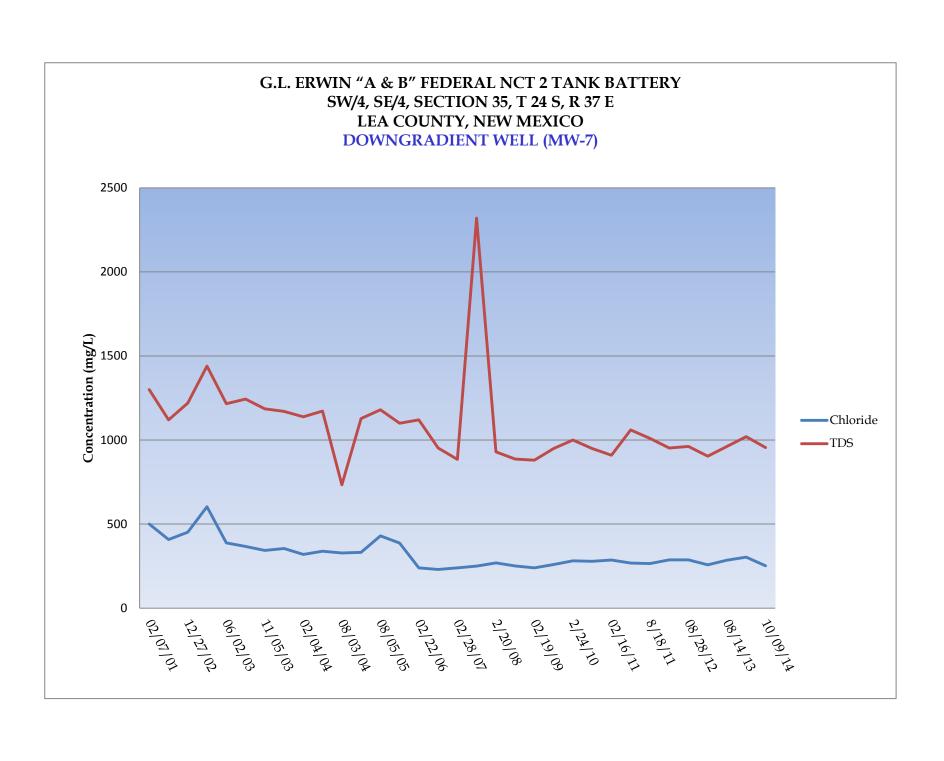
CUMULATIVE SUMMARY OF GROUNDWATER GAUGING MEASUREMENTS CHEVRON ENVIRONMENTAL MANAGEMENT COMPANY G.L. ERWIN "A & B" FEDERAL NCT-2 TANK BATTERY SW/4, SE/4, SECTION 35, TOWNSHIP 24 SOUTH, RANGE 37 EAST LEA COUNTY, NEW MEXICO

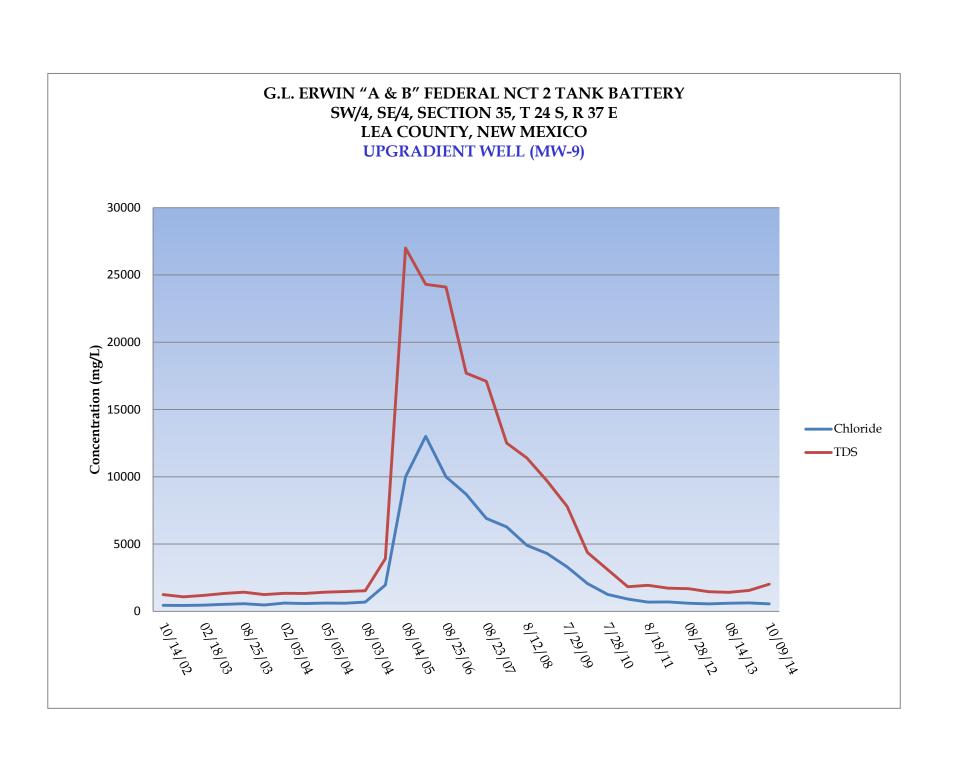
WELL ID TOC¹ elevation Diameter (in)	DATE	Depth to Water (ft)	Depth to LNAPL (ft)	LNAPL Thickness (ft)	Corrected Groundwater Elevation (ft above MSL²)	Total Depth (ft)	Screen Interval (bgs³)
RW-1	1/14/99	50.85			3112.67	76.30	53'-73'
3,163.52	10/19/00	62.33			3101.19		
4	4/30/02	62.28			3101.24		
	10/11/02	62.27			3101.25		
	12/26/02	62.26			3101.26		
	2/17/03	62.26			3101.26		
	5/29/03	62.34			3101.18		
	8/22/03	62.25			3101.27		
	11/5/03	62.25			3101.27		
	2/3/04	62.20			3101.32		
	5/5/04	62.12			3101.40		
	8/2/04	61.96			3101.56		
	11/23/04	61.46			3102.06		
	2/9/05	61.30			3102.22		
	8/4/05	61.51			3102.01		
	2/23/06	61.20			3102.32	75.45	
	8/25/06	61.36			3102.16	75.45	
	2/27/07	62.44			3101.08		
	8/23/07			NG			
	2/18/08			NG			
	2/16/09			NG			
	7/27/09			NG			
	2/22/10			NG			
	7/26/10			NG			
	2/15/11		1	NG	İ		
	8/16/11	61.14			3102.38		
	2/20/12			NG			
	8/24/12		1	NG	İ		
	2/18/13	69.96			3093.56	72.30	
	8/13/13			NG			
	4/2/14			NG			
	10/9/14		i.	NG	i		

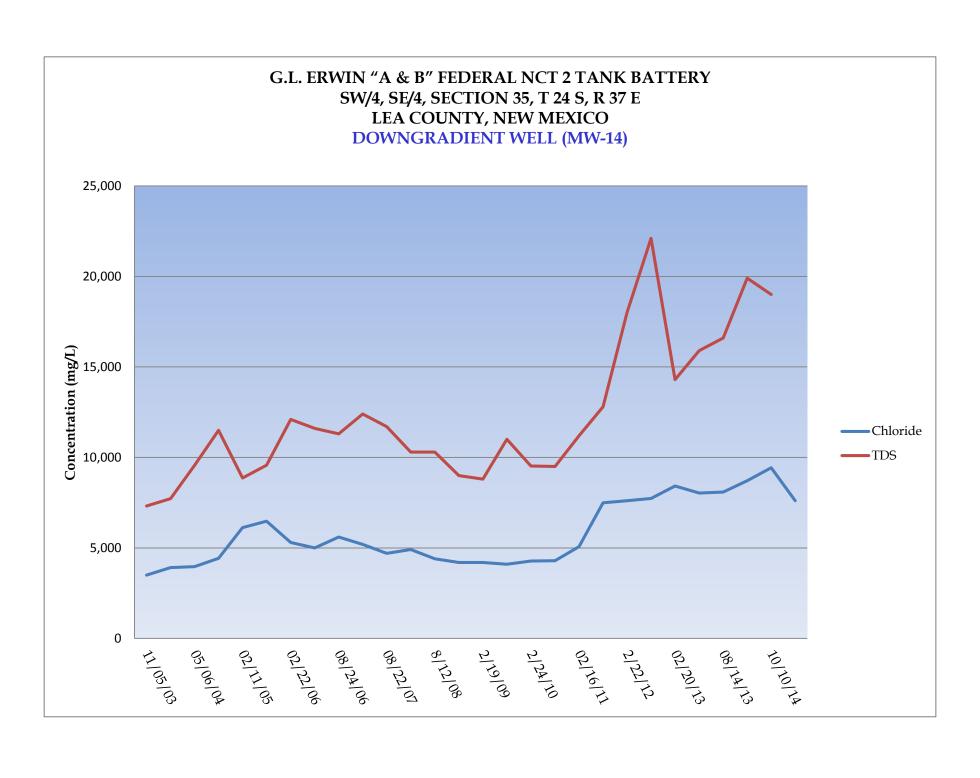
Notes:

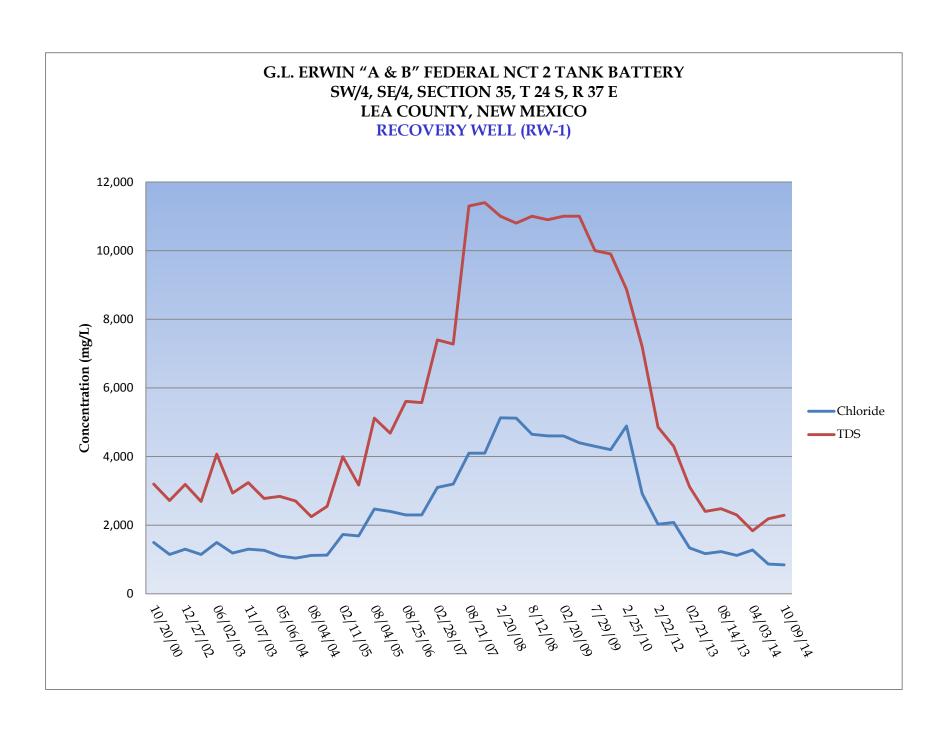
- 1 Top of Casing
- 2 Mean Sea Level
- 3 Below ground surface

NG - Not Gauged


All depths were measured from the TOC


Professional Surveys were conducted by Piper Surveying Company in February and July 1998, October 2001 October 2003 and December 2004


Professional Surveys were conducted by West Company in November 2011 and June 2012


Appendix C

Charts of Chloride/TDS Concentrations versus Time

Appendix D

Cumulative Summary of Groundwater Analytical Results

Well	Sample	Carbonate	Bicarbonate	Chloride	Fluoride	Nitrate - N	Sulfate	Calcium	Magnesium	Potassium	Sodium	TDS	Hardness	Hydroxide
Number	Date	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
	NMWQCC Sta		, 5-	250	1.6	10	600					1,000		
MW-1	02/17/98	<2.0	220	233			92					812	276	
	02/07/01	<1.0	136	440	2.1	2.8	70	15.7	55.8	11.4	115	1,200		
	05/03/02	<1.0	144	428	1.6	3.06	72.5	103	38.7	8.68	105			<1.00
	10/11/02	<0.1	155	230			109	69.3	24.8	7.45	125	737		<0.10
	12/27/02	<0.1	149	248			109	76.6	27.4	5.16	129	728		<0.10
	02/18/03	<0.1	147	213			114	59.1	21.4	5.06	116	713		<0.10
	06/02/03	<1.0	132	434	1.77	2.99	73.3	135	47.8	8.62	118	1,320		<1.00
	08/25/03	<1.0	144	279	1.76	3.39	73.3	92.7	31.3	7.17	118	856		<1.00
	11/05/03	<1.0	162	330	1.94	3.42	78.9	110	37.7	9.03	114	994		<1.00
	02/04/04	<1.0	142	390	1.92	3.25	71.1	117	43.2	10.2	113	940		<1.00
	05/06/04	<1.00	260	403	1.9	4.8	135	60.2	18.3	8.93	302	1,316		<1.00
	08/03/04	<0.1	155	222			83.2	64.1	30.8	6.41	127	431		<0.10
Dup	08/03/04	<0.1	158	301			104	101	45.5	672	436	605		<0.10
	02/11/05	<1.00	146	289	2.68	4.3	79.2	97.9	33.5	8.18	108	840		<1.00
	08/05/05	<1.00	156	245	2.08	4.34	89.6	75.5	26.7	6.99	125	856		<1.00
	02/22/06	<10.0	160	180	1.6	3.5	83	55.9	18.7	5.19	104	707		<10.0
Dup	02/22/06	<10.0	170	160	1.6	3.5	85	57.9	20	5.23	102	840		<10.0
	08/24/06	<10.0	300	180	<2.5	3.11	81	57.4	19.3	4.36	107	660		<10.0
	02/28/07	<10	170	170	1.8	3.6	81	54.6	18.2	<5.0	103	650		<10
	08/23/07	<10	138	420	1.40	2.80	76.0	102	34.8	5.37	101	1,810		138
	2/20/08	<5.0	166	300	1.9	2.92	82.1	111	39.7	7.34	104	860		<5.0
	8/12/08	<1.53	212	217	1.48	3.06	79.6	57.8	19.5	5.2	114	692		<1.53
	02/19/09	<5.0	160	150	2.00	3.00	84.0	55.0	19.0	5.3	120	610		<5.0
	7/29/09	<5.0	79.0	150	0.95	1.40	41.0	67.0	24.0	5.9	110	500		<5.0
	2/25/10	<5	172	167	1.79	3.23	83.1	57.5	21.2	4.3	105	684		<5.0
Dup	2/25/10	<5	192	157	1.68	<0.100	83.9	52.6	17.6	4.3	103	544		<5.1
	7/28/10	<5	168	147	1.88	2.56	84.8	51.1	17.1	3.8	91.6	564		<5.0
	02/16/11	<2.0	165	149	1.74	3.12	82.0	57.5	18.7	3.98	94.4	510		<2.0
Dup 1	02/16/11	<2.0	145	155	1.74	3.25	81.9	55.3	17.9	4.02	91.9	604		<2.0
	8/18/11	<5.0	167	127	1.76	3.34	83.3	50.7	17.2	2.80	91.4	490		<5.0
	02/22/12	<5.00	153	385	1.61	2.70	67.7	96.3	33.5	5.12	96.5	1,280		<5.0
	08/29/12	<10.0	149	456	1.60	1.48	67.4	130	44.3	5.61	90.5	1,340		<10.0
	02/21/13	<6.00	141	452	1.17	2.24	69.9	139	45.6	6.39	104	1,300		<6.00
DUP-3	02/21/13	<6.00	141	454	1.18	2.26	70.8	141	44.4	6.30	101	1,170		<6.00
	08/14/13	<6.00	140	490	1.47	2.33	67.0	158	53.2	7.07	112	1,590		<6.00
	04/03/14	<10.0	182	498	1.30	1.73	66.5	139.0	48.2	6.33	103	1,160		<10.0
	10/09/14	<4.00	168	213 J	1.10	2.89 J	80.3	85.7 J	29.2 J	5.18	105	554		<4.00
Dup-2	10/09/14	<4.00	146	427 J	0.922	2.23 J	73.4	148 J	50.1 J	6.73	107	559		<4.00

Well	Sample	Carbonate	Bicarbonate	Chloride	Fluoride	Nitrate - N	Sulfate	Calcium	Magnesium	Potassium	Sodium	TDS	Hardness	Hydroxide
Number	Date	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
	NMWQCC Sta	indard (mg/L)		250	1.6	10	600					1,000		
MW-2	02/17/98	<2.0	360	423			141					1,257	124	
	02/07/01	<1.0	234	570	2.7	5	130	124	40.7	10.9	359	1,500		
	05/03/02	<1.0	262	349	2.28	5.36	148	21	6.18	8.52	315			<1.00
	10/11/02	10	250	337			176	18.1	4.92	7.49	329	1,120		<0.10
	12/27/02	12	238	319			142	17.8	5.16	6.1	339	1,110		<0.10
	02/18/03	<0.1	228	310			178	19.4	6.02	6.3	331	1,070		<0.10
	06/02/03	<1.0	206	769	2.05	4.43	115	176	52.6	9.94	383	1,955		<1.00
	08/25/03	<1.0	242	374	2.07	5.14	142	36.1	10.8	8.49	333	1,240		<1.00
	11/05/03	<1.0	232	498	2.21	5.13	145	68.7	21.1	10.1	327	1,354		<1.00
	02/04/04	<1.0	230	450	2.06	4.97	131	76.1	25.2	10.7	324	1,424		<1.00
	05/06/04	<1.00	150	341	1.79	3.23	75.3	108	38.5	8.38	102	984		<1.00
	08/03/04	<0.1	236	496			144	50.8	34.7	11	472	811		<0.10
	02/11/05	<1.00	220	604	2.79	5.48	130	103	34.5	11.3	324	1,462		<1.00
	08/05/05	<1.00	228	404	2.24	5.7	154	34.5	10.3	10.7	341	1,120		<1.00
	02/22/06	<10.0	250	320	1.7	5.1	150	19.5	5.84	6.15	259	1,150		<10.0
	8/24/06	<10.0	250	290	<2.5	3.78	140	26.3	7.7	4.23	298	1,610		<10.0
	02/28/07	<10	260	280	2.1	5.4	140	20.9	6.01	6.74	278	950		<10
	08/23/07	<10	226	290	1.70	5.30	140	19	5.6	<5	303	1,280		226
	2/20/08	<5	223	441	1.94	5.11	143	242	83.2	11.8	329	1,190		<5
	8/12/08	<1.53	287	331	2	5.39	144	20.6	5.8	6.5	308	1,080		<1.53
	2/19/09	<5	240	310	1.80	5.30	160	21.0	6.1	7.2	350	1,100		<5
	7/29/09	<5	200	730	1.50	4.60	130	16.0	4.6	3.1	160	1,900		<5
	2/25/10	<5	255	380	1.39	5.78	157	27.4	8.5	4.7	333	1,130		<5
	7/28/10	<5	275	273	1.58	4.68	167	20.8	5.6	4.3	354	1,010		<5
	02/16/11	<2.0	250	305	1.26	5.30	154	47.6	13.9	5.08	276	1,050		<2.0
	8/18/11	<5.0	251	259	1.52	5.56	158	24.6	6.98	3.48	263	1,090		<5.0
Dup 2	8/18/11	<5.0	272	255	1.38	6	135	21.0	5.36	4.08	276	1,090		<5.0
	2/22/12	<5.00	203	857	1.30	4.61	111	22.9	5.96	4.42	251	2,340		<5.00
	08/29/12	<10.0	165	1,180	1.29	2.19	83.9	335	105	8.09	236	3,360		<10.0
	02/21/13	<6.00	185	934	0.989	4.48	106	238	72.8	7.31	282	2,260		<6.00
	08/14/13	<6.00	177	1,140	1.36	4.29	113	292	105	8.41	264	2,780		<6.00
	04/03/14	<10.00	277	548	1.18	4.77	148	57.2	18.6	5.42	297	132		<10.00
	10/09/14	<4.00	260	220	0.81	5.96 J	173	31.5	8.9	5.75	274	939		<4.00

Well	Sample	Carbonate	Bicarbonate	Chloride	Fluoride	Nitrate - N	Sulfate	Calcium	Magnesium	Potassium	Sodium	TDS	Hardness	Hydroxide
Number	Date	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
	NMWQCC Sta	ndard (mg/L)		250	1.6	10	600					1,000		
MW-3	02/17/98	<2.0	410	983			173					2,261	232	
	02/07/01	8.0	278	890	3.4	7.3	200	56.7	18.7	20.4	648	2,100		
	05/02/02	<1.0	298	735	2.84	7.57	213	27.5	8.39	24.7	42.8			<1.00
	05/03/02	<1.0	146	767	2.9	7.39	207	37.9	11.5	25.5	28.2			<1.00
	10/11/02	<0.1	288	753			272	29	9.18	20.6	622	1,960		<0.10
	12/27/02	<0.1	288	727			231	27	7.34	19.9	698	1,950		<0.10
	02/18/03	<0.1	277	762			180	25.2	7.84	16.4	580	1,950		<0.10
	06/02/03	<1.0	270	802	3.07	8.06	203	64.9	20	18.5	728	2,720		<1.00
	08/26/03	<1.0	282	799	3	7.99	198	54.9	18	16.4	597	2,320		<1.00
	11/06/03	<1.0	286	746	2.92	7.26	214	37.4	11.1	24.9	577	2,092		<1.00
Dup	11/06/03	<1.0	132	521	1.85	2.92	98.1	120	39.5	9.15	200	1,392		<1.00
	02/04/04	<1.0	296	755	2.74	7.36	205	42.7	13.1	27.1	546	2,275		<1.00
	05/07/04	<1.00	300	774	2.57	7.02	197	38.8	11.2	22.2	528	2,140		<1.00
	08/03/04	<0.1	291	798			155	21.5	16.7	25.8	794	1,640		<0.10
	02/11/05	<1.00	292	879	4.61	9.47	196	47	14.5	19.1	590	2,240		<1.00
	08/04/05	<1.00	282	922	2.86	8.17	217	48	14.7	21.1	630	1,950		<1.00
	02/22/06	<10.0	250	1,100	1.6	8.5	190	46.8	15.3	15.1	446	3,860		<10.0
	08/24/06	<10	260	750	2.6	6.43	190	25.3	7.68	11.9	565	1,990		<10.0
	02/28/07	<10	270	850	2.2	8.5	190	30.7	9.02	18	516	1,800		<10
	08/23/07	<10	204	1,000	1.50	9.50	190	228	80	<50	673	2,330		204
	2/20/08	<5	246	1,070	3.18	8.38	222	79.7	26.2	19.1	721	2,480		<5
	8/13/08	<5	222	1,180	2.59	8.27	210	46.8	14.3	17.5	896	2,700		<5
	02/19/09	<5	220	1,300	2.00	7.80	220	50.0	16.0	20.0	920	2,800		<5
	7/29/09	<5	190	1,600	1.60	7.60	210	140	47.0	26.0	770	3,400		<5
	2/24/10	<5	237	1,380	1.49	8.81	248	65.0	17.5	15.1	938	2,670		<5
	7/28/10	<5	221	1,230	1.68	7.12	259	84.8	24.6	14.1	857	2,680		<5
	02/16/11	<2.0	238	1,300	1.40	8.97	1,290	135	41.3	14.4	746	2,430		<2.0
	8/18/11	<5.0	227	1,250	1.42	9.18	887	76.3	23.2	11.2	700	2,750		<5.0
	2/22/12	<5.00	235	1,260	1.40	7.39	252	104	32.6	13.2	809	2,800		<5.00
Dup 2	02/22/12	<5.00	230	1,470	1.53	8.75	224	132	39.2	13.4	770	2,940		<5.00
	08/29/12	<10.0	283	1,200	1.72	6.42	271	56.3	16.4	13.1	745	2,600		<10.0
	02/21/13	<6.0	252	1,100	1.26	8.87	261	131	40.2	13.4	770	2,500		<6.00
	08/14/13	<6.0	275	1,330	1.40	7.59	309	254	87.9	12.3	925	2,890		<6.00
	04/03/14	<10.0	356	839	1.52	9.26	346	44.6	12.7	15.3	665	2,280		<10.00
	10/09/14	<4.00	291	961	0.752	7.36 J	300	106	32.8	16.0	671	3,400		<4.00

Well	Sample	Carbonate	Bicarbonate	Chloride	Fluoride	Nitrate - N	Sulfate	Calcium	Magnesium	Potassium	Sodium	TDS	Hardness	Hydroxide
Number	Date	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
	NMWQCC Sta	indard (mg/L)		250	1.6	10	600					1,000		
MW-4	02/17/98	<2.0	510	372			136					1,268		
	02/07/01	<1.0	286	1,200	1.7	4.7	100	248	84.7	24	506	2,600		
	05/03/02	<1.0	250	868	1	4.72	163	137	48.4	40.7	441			<1.00
	10/14/02	<0.1	342	381			124	9.39	2.48	38.4	405	1,220		<0.10
Dup	10/14/02	<0.1	358	372			116	8.82	2.38	37.4	409	1,260		<0.10
	12/27/02	<0.1	288	505			114	21.2	4.42	50.6	461	1,450		<0.10
Dup	12/27/02	<0.1	158	115			139	55.5	23	4.94	94.4	594		<0.10
	02/18/03	<0.1	264	691			118	32.2	7.5	59	474	1,610		<0.10
	05/30/03	<1.0	236	1,020	<2.00	5.53	79.6	113	29.7	59.8	664	2,670		<1.00
	08/25/03	<1.0	192	1,170	<2.00	5.43	72.9	143	35	82.1	616	2,935		<1.00
	11/07/03	<1.0	194	1,620	<2.00	5.48	76.6	228	61.4	83.6	629	3,035		<1.00
	02/05/04	<1.0	170	1,730	<2.00	5.93	79	277	75.9	108	630	3,380		<1.00
	05/06/04	<1.00	158	2,150	<3.00	5.94	88.2	407	99.9	99.7	593	4,090		<1.00
	08/03/04	<0.1	150	2,730			125	632	191	124	832	6,810		<0.10
	02/11/05	<1.00	136	4,520	<1.00	5.19	127	1,060	289	156	983	9,030		<1.00
	08/04/05	<1.00	132	6,580	<1.00	5.34	166	1,650	375	142	1,440	13,200		<1.00
	02/23/06	<10.0	130	9,100	<2.5	10	220	1,510	326	141	1,070	17,900		<10.0
	08/25/06	<10.0	140	12,000	<5	6.13	290	1,550	364	136	1,890	17,500		<10.0
	02/28/07	<10	170	10,000	<250	<200	<2000	1,550	310	160	1,520	21,800		<10
	08/21/07	<10	167	10,000	0.30	9	490	1,630	443	112	3,080	26,000		167
	2/20/08	<5	210	8,220	1.33 B	6.05	587	1,200	372	143	3,160	18,200		<5
	8/13/08	<5	263	6,270	<1.5	6.64	607	770.0	209	97.3	2,510	15,100		<5
	02/19/09	<5	300	4,900	<0.50	5.60	620	580.0	160	72.0	2,200	11,000		<5
	7/29/09	<5	320	3,700	<0.50	6.40	580	380.0	110	63.0	1,800	8,400		<5
	2/25/10	<5	338	3,590	0.23	5.94	478	378.0	107	40.0	1,830	7,940		<5
	7/28/10	<5	283	3,840	0.45	4.00	419	273.0	62.8	30.4	1,840	8,820		<5
	02/16/11	<2.0	337	2,480	0.540	4.08	1,240	179	53.6	30.6	1,300	5,840		<2.0
	8/18/11	<5.0	358	2,530	0.680	5.39	479	156	41.4	23.9	1,240	4,870		<5.0
	2/22/12	<5.00	292	3,250	0.718	5.30	220	656	204	27.8	1,180	8,100		<5.00
	08/28/12	<5.00	227	3,860	0.538	3.06	315	880	263	27.8	1,050	9,420		<5.00
	02/21/13	<6.00	303	2,450	0.581	5.53	331	761	228	27.5	1,070	5,170		<6.00
	08/14/13	<6.00	257	3,420	0.658	3.83	324	711	231	28	1,160	6,500		<6.00
	04/03/14	<10.0	380	2,010	<0.50	3.83	353	185	52.0	23.3	1,140	3,360		<10.0
	10/09/14	<4.00	259	2,330	0.292	3.71 J	312	420	130	26.7	1,020	5,870		<4.00

Well	Sample	Carbonate	Bicarbonate	Chloride	Fluoride	Nitrate - N	Sulfate	Calcium	Magnesium	Potassium	Sodium	TDS	Hardness	Hydroxide
Number	Date	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
	NMWQCC Sta	ndard (mg/L)		250	1.6	10	600					1,000		
MW-5	02/17/98	<2.0	360	408			151					1,219	116	
	02/07/01	<1.0	214	570	1.6	4.8	140	123	40.8	20.3	331	1,500		
	05/03/02	<1.0	238	335	0.96	5.36	162	37.3	11.1	27.3	287			<1.00
	10/11/02	<0.1	232	337			173	31.8	10	20.7	305	1,100		<0.10
	12/27/02	<0.1	232	337			171	31.3	8.55	20.6	319	1,210		<0.10
	02/18/03	<0.1	210	319			176	27.2	8.48	16.5	231	1,110		<0.10
	06/02/03	<1.0	196	588	1.23	4.86	142	132	40.5	21.2	364	1,644		<0.10
	08/26/03	<1.0	210	447	1.32	4.85	141	95.1	29	23.4	291	1,480		<1.00
	11/06/03	<1.0	214	456	1.43	5.11	152	94	29.3	24.8	282	1,430		<1.00
	02/04/04	<1.0	206	504	1.38	5.31	147	95.1	31.4	27.3	289	1,410		<1.00
	05/07/04	<1.00	222	381	1.02	5.98	151	55.9	16.3	25.7	301	1,250		<1.00
Dup	05/07/04	<1.00	242	330	1.04	5.75	152	50.7	14.6	27.4	292	1,168		<1.00
	08/03/04	<0.1	229	461			155	47.9	31.3	31.1	435	968		<0.10
	02/11/05	<1.0	288	408	2.58	8.36	243	46.2	13.3	30.6	433	1,598		<1.0
	08/04/05	<1.00	256	423	1.83	6.82	201	60.5	18.6	20.3	354	1,334		<1.00
Dup 1	08/04/05	<1.00	242	394	1.82	6.74	200	49.2	14.8	21.5	341	1,220		<1.00
	02/22/06	<10.0	220	800	1.3	6.6	160	222	69.4	14	274	2,670		<10.0
	08/24/06	<10.0	190	930	<5	5.09	140	145	47.6	13.1	295	1,280		<10.1
	02/28/07	<10	300	730	3.5	5.2	340	36.9	10.6	18.4	301	1,310		<10.2
	08/23/07	<10	115	360	1.80	5.20	170	50.1	18.4	16.4	291	2,500		<10.3
	2/20/08	<5	255	505	2.9	5.61	168	127	42.1	19.6	353	1,500		<10.4
	8/13/08	<5	220	438	1.77	6.20	191	62.8	19.3	23.9	362	1,300		<10.5
	02/19/09	<5	220	390	1.60	6.20	200	63.0	19.0	25.0	310	1,200		<10.6
	7/29/09	<5	210	490	1.40	6.20	200	110	35.0	23.0	280	1,500		<10.7
	2/25/10	<5	223	326	1.02	6.27	195	58.0	19.0	16.5	232	1,120		<10.8
	7/28/10	<5	235	272	1.15	4.61	189	51.3	14.6	13.8	257	1,130		<10.9
Dup 2	7/28/10	<5	233	283	1.11	5.17	192	60.9	19.2	16.7	269	1,180		<10.10
	02/16/11	<2.0	206	272	1.12	5.87	413	64.7	18.8	14.9	240	1,010		<2.0
	8/18/11	<5.0	224	325	1.22	<0.0300	175	59.4	17.6	13.2	233	1,160		<5.0
	2/22/12	<5.00	174	1,140	0.860	4.06	94.6	55.4	16.0	14.9	272	3,330		<5.00
	08/29/12	<10.0	186	1,380	1.04	2.92	93.7	319	102	7.45	246	3,640		<10.0
	02/21/13	<6.0	159	1,350	0.762	3.99	101	224	69.2	10.5	339	3,110		<6.00
	08/14/13	<6.0	161	1470	1.01	3.57	102	370	125	9.47	281	3,780		<6.00
	04/03/14	<10.0	263	627	1.33	5.91	165	172	56.6	11.7	296	1,460		<10.0
	10/09/14	<4.00	185	957	0.572	3.99 J	124	263	84.8	11.1	344	3,750		<4.00

Well	Sample	Carbonate	Bicarbonate	Chloride	Fluoride	Nitrate - N	Sulfate	Calcium	Magnesium	Potassium	Sodium	TDS	Hardness	Hydroxide
Number	Date	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
	NMWQCC Sta	ndard (mg/L)		250	1.6	10	600					1,000		
MW-6	02/07/01	<1.0	200	1,800	3.3	5.4	140	323	108	18.8	657	3,800		
	05/02/02	<1.0	264	503	3.68	7.04	183	24.9	7.29	17.4	475			<1.00
	10/14/02	<0.1	262	620			206	18.6	5.34	17.5	556	1,670		<0.10
	12/27/02	36	218	620			192	21.2	6.08	13.6	584	1,650		<0.10
	02/18/03	16	238	638			298	22.1	6.43	11.8	524	1,700		<0.10
	06/02/03	<1.0	244	772	3.24	6.62	181	68.7	23.3	14.4	614	2,040		<1.00
	08/26/03	<1.0	246	607	2.95	6.65	179	35.9	11.6	12.2	525	2,370		<1.00
	11/06/03	<1.0	250	649	3.28	6.89	191	46	13.9	18.1	503	1,932		<1.00
	02/04/04	<1.0	266	713	3.15	7.2	189	48.9	15.4	19.9	517	2,210		<1.00
	05/07/04	<1.00	266	696	2.92	6.74	182	54.8	16.1	16	503	2,095		<1.00
	08/03/04	<0.1	260	718			240	22.7	21.7	21.7	825	1,430		<0.10
	02/11/05	<1.00	270	660	3.76	7.84	192	30.1	9.13	19.5	531	1,774		<1.00
	08/04/05	<1.00	268	764	3.16	7.83	206	56.6	18.8	15.3	576	1,650		<1.00
	02/22/06	<10.0	270	610	2.4	7.9	180	23.9	7.41	10.9	380	1,570		<10.0
	08/24/06	<10.0	260	590	3	5.96	170	108	35	9.38	448	1,880		<10.0
	02/28/07	<10	280	530	3	7.8	170	21	6.14	12.8	397	1,550		<10
	08/23/07	<10	265	1,100	2.30	7.60	150	29.8	11.7	8.35	440	3,970		265
	2/20/08	<5	227	799	3.05	7.43	163	181	62.4	15.7	492	1,930		<5
	8/13/08	<5	238	563	2.56	7.83	176	22.6	6.6	14.4	558	1,640		<5
	02/19/09	<5	370	1,200	2.00	6.10	150	140	47.0	16.0	590	3,200		<6
	7/29/09	<5	210	1,200	2.10	7.00	160	37.0	11.0	16.0	550	2,700		<5
	2/24/10	<5	243	780	2.07	7.89	193	39.7	10.6	9.0	558	1,910		<5
	7/28/10	<5	247	702	2.23	8.99	204	30.7	8.9	10.3	591	1,740		<5
	02/16/11	<2.0	214	768	1.56	6.36	385	30.8	8.32	9.81	539	1,800		<2.0
	8/18/11	<5.0	243	657	2.00	8.73	205	80.6	25.2	7.68	492	1,830		<5.0
	2/22/12	<5.00	273	685	2.28	9.03	228	85.5	27.7	8.62	504	1,810		<5.00
	08/29/12	<10.0	315	849	2.20	5.30	207	91.4	27.3	7.54	498	1,930		<10.0
	02/21/13	<6.00	253	812	1.71	8.30	221	25.8	7.77	8.68	496	1,900		<6.00
	08/14/13	<6.00	245	865	2.06	7.96	241	214	74.9	8.92	628	1,870		<6.00
	04/03/14	<10.0	329	607	2.34	9.32	265	41.1	12.2	9.04	517	1,880		<10.0
	10/09/14	<4.00	286	560	1.21	8.11 J	265	42.1	12.8	10.0	532	1,730		<4.00

Well	Sample	Carbonate	Bicarbonate	Chloride	Fluoride	Nitrate - N	Sulfate	Calcium	Magnesium	Potassium	Sodium	TDS	Hardness	Hydroxide
Number	Date	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
	NMWQCC Sta	indard (mg/L)	, 5- /	250	1.6	10	600					1,000		
MW-7	02/07/01	<1.0	238	500	3.2	4.1	100	80.3	27.3	10.4	326	1,300		
	05/02/02	<1.0	244	466	2.94	4.18	106	46.6	17	8.42	307			<1.00
	10/11/02	<0.1	242	408			128	39.7	13.5	6.7	316	1,120		<0.10
	12/27/02	<0.1	232	452			109	56.2	19.2	5.82	353	1,220		<0.10
	02/17/03	<0.1	200	603			134	90.6	30.9	5.86	339	1,440		<0.10
	06/02/03	<1.0	242	388	3.23	4.33	115	39.5	12.5	6.16	370	1,216		<1.00
	08/25/03	<1.0	232	367	2.77	4.07	105	39.3	12.3	7.14	309	1,244		<1.00
	11/05/03	<1.0	240	343	3.08	4.16	117	36.6	11.4	7.67	304	1,186		<1.00
Dup	11/05/03	<1.0	238	355	3.04	4.19	117	34.7	10.8	7.63	298	1,170		<1.00
	02/04/04	<1.0	262	320	3.1	4.25	112	30.7	9.87	7.95	298	1,138		<1.00
	05/06/04	<1.00	260	339	2.9	4	112	35.2	10.3	6.81	282	1,172		<1.00
	08/03/04	<0.1	248	328			126	22.8	12.1	7.55	436	734		<0.10
	02/11/05	<1.00	238	332	3.76	4.65	123	31.5	9.99	7.75	296	1,128		<1.00
	08/05/05	<1.00	240	430	3.1	4.36	144	58.2	19.2	8.43	325	1,180		<1.00
Dup 2	08/05/05	<1.00	236	387	3.14	4.3	144	38.7	12.5	6.51	315	1,100		<1.00
	02/22/06	<10.0	290	240	2.6	3.3	120	30.6	9.98	4.89	227	1,120		<10.0
	08/24/06	<10.0	260	230	3.1	2.97	110	23.3	7.82	2.96	245	952		<10.0
	02/28/07	<10	270	240	3.3	3.6	100	21.3	6.57	<5	230	885		<10
	08/23/07	<10	261	250	2.70	3.20	110	18.8	8	<5	247	2,320		261
	2/20/08	<5	251	269	2.4	3.18	122	37.6	12.4	5.41	261	930		<5
	8/13/08	<5	274	251	2.41	3.21	121	25.0	7.6	4.9	273	887		<5
	02/19/09	<5	250	240	2.90	3.30	100	26.0	8.3	5.1	260	880		<5
	7/29/09	<5	260	260	2.90	3.90	110	40.0	13.0	5.8	250	950		<5
	2/24/10	<5	263	282	2.54	4.08	106	34.3	9.1	3.6	310	1,000		<5
	7/28/10	<5	259	279	2.61	3.39	113	28.5	9.0	3.6	265	950		<5
	02/16/11	<2.0	212	286	2.55	4.07	123	32.8	9.39	3.64	246	910		<2.0
	8/18/11	<5.0	248	268	2.76	4.16	121	27.5	8.56	2.31	234	1,060		<5.0
Dup 1	8/18/11	<5.0	262	265	2.58	4.27	105	29.4	8.22	3.32	255	1,010		<5.0
	2/22/12	<5.00	262	287	2.80	4.50	107	32.8	9.87	3.45	266	952		<5.00
	08/28/12	<10.0	275	287	2.90	2.88	123	27.2	8.41	3.20	252	962		<10.0
	02/21/13	<6.00	257	258	2.30	4.76	134	29.3	9.11	3.79	284	904		<6.00
	08/14/13	<6.00	244	285	2.74	4.92	143	32.4	9.27	3.92	283	962		<6.00
	04/03/14	<10.0	307	303	3.08	5.48	149	30.7	8.89	3.80	305	1,020		<10.0
	10/09/14	<4.00	257	252	1.74	4.90 J	146	28.1	8.31	3.75	286	955		<4.00

Well	Sample	Carbonate	Bicarbonate	Chloride	Fluoride	Nitrate - N	Sulfate	Calcium	Magnesium	Potassium	Sodium	TDS	Hardness	Hydroxide
Number	Date	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
	NMWQCC Sta	ndard (mg/L)		250	1.6	10	600					1,000		
MW-8	02/07/01	20	240	900	3.2	6.6	160	79.4	24.5	12.7	604	2,100		
	05/02/02	<1.0	236	818	2.65	6.68	168	94.5	29.2	13	527			<1.00
	10/14/02	<0.1	250	842			194	52.4	20.4	10.8	597	1,920		<0.10
	12/27/02	<0.1	233	833			173	59.8	20	8.64	627	2,000		<0.10
	02/18/03	<0.1	213	833			185	53	17.6	7.13	489	1,930		<0.10
	06/02/03	<1.0	244	777	3.29	6.82	173	60	18.9	9.47	650	1,968		<1.00
	08/25/03	<1.0	244	738	2.85	6.42	159	59.4	17.3	11.4	534	1,996		<1.00
	11/07/03	<1.0	248	722	3.27	6.65	171	58.1	17.9	12.2	525	1,972		<1.00
	02/04/04	<1.0	254	764	3.77	7.85	161	55.2	18.2	13.2	522	2,038		<1.00
	05/06/04	8	262	774	3.36	7.43	164	56.2	16.9	10.7	501	1,968		<1.00
	08/04/04	<0.1	246	771			222	28.6	21.5	11	707	1,530		<0.10
	02/11/05	<1.00	238	818	4.28	8.46	167	58.3	19	13.2	543	2,080		<1.00
	08/05/05	<1.00	236	888	3.29	7.66	184	71.5	23.3	11.7	574	2,230		<1.00
	02/22/06	<10.0	230	810	2.4	7.9	170	55.1	18	8.05	390	1,740		<10.0
	08/24/06	<10.0	280	710	3.2	5.51	170	51.2	16.5	6	470	926		<10.0
	02/28/07	<10	260	740	3.3	7.3	170	68.3	20.7	8.59	381	1,780		<10
	08/22/07	<10	259	700	3.00	7.40	170	49.1	18.5	5.35	449	1,980		259
	2/20/08	<5	240	711	3.66	7.15	188	82.2	26.4	9.48	461	1,780		<5
	8/12/08	<1.53	357	668	2.99	6.74	171	64.1	19.7	8.5	541	1,750		<1.53
	02/19/09	<5	230	700	3.60	6.40	170	64.0	21.0	8.8	500	1,700		<5
	7/29/09	<5	290	740	3.50	6.80	170	60.0	19.0	9.5	490	1,800		<5
	2/24/10	<5	255	754	3.16	6.58	160	56.4	16.1	5.1	510	1,760		<5
	7/28/10	<5	263	711	3.43	5.67	164	54.2	17.0	4.8	533	1,720		<5
	02/16/11	<2.0	218	749	3.11	6.73	182	53.9	15.8	4.91	466	1,760		<2.0
	8/18/11	<5.0	257	676	3.21	7.56	148	47.2	15.0	3.68	440	1,770		<5.0
	2/22/12	<5.00	264	751	3.27	6.46	167	62.4	19.5	5.24	512	1,720		<5.00
	02/20/13	<6.00	271	643	3.17	7.01	203	46.6	15.0	4.66	443	1,590		<6.00
	08/14/13	<6.00	262	665	3.48	7.52	216	54.7	16.7	5.27	492	1,530		<6.00
	04/03/14	<10.0	336	674	4.01	8.17	206	54.4	16.3	5.20	450	1,560		<10.0
	10/10/14	<4.00	284	527	2.29	7.65	194	51.2	15.9	5.42	454	1,550		<4.00

Well	Sample	Carbonate	Bicarbonate	Chloride	Fluoride	Nitrate - N	Sulfate	Calcium	Magnesium	Potassium	Sodium	TDS	Hardness	Hydroxide
Number	Date	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
	NMWQCC Sta	ındard (mg/L)		250	1.6	10	600					1,000		
MW-9	08/28/12	<10.0	268	684	3.49	5.06	176	83.1	25.4	5.70	483	1,670		<10.0
	05/01/02	<1.0	142	439	1.88	3.26	106	98.8	35.8	9.93	188			<1.00
	10/14/02	<0.1	137	443			119	88.4	33.1	10.4	216	1,240		<0.10
	12/27/02	<0.1	124	434			120	93.8	33.8	6.22	192	1,080		<0.10
	02/18/03	<0.1	105	461			126	99.3	34.1	5.62	200	1,190		<0.10
	05/30/03	<1.0	122	514	1.82	3.01	102	113	37.9	7.98	240	1,324		<1.00
	08/25/03	<1.0	114	562	1.58	2.98	95.2	120	39.2	9.45	219	1,428		<1.00
	11/07/03	<1.0	132	468	1.68	2.86	96.2	119	39	9.18	200	1,250		<1.00
	02/05/04	<1.0	124	610	2.32	4.18	97.7	125	41.1	10.3	221	1,345		<1.00
Dup	02/05/04	<1.0	120	581	1.23	2.19	53.6	132	43.9	10.1	203	1,325		<1.00
	05/05/04	<1.00	122	616	1.39	2.68	91	142	50	9.65	212	1,428		<1.00
Dup	05/05/04	<1.00	124	599	1.43	2.72	92.2	144	46.7	9.82	223	1,476		<1.00
	08/03/04	<0.1	110	691			115	184	62.9	10.5	279	1,530		<0.10
	02/11/05	<1.00	98	1,960	3.63	5.36	103	495	164	21.5	388	3,920		<1.00
	08/04/05	<1.00	218	10,000	1.54	5.15	224	2,280	686	42.8	1,390	27,000		<1.00
	02/23/06	<10.0	110	13,000	<2.5	19	430	2,050	438	47.8	1,450	24,300		<10.0
	08/25/06	<10.0	260	10,000	<2.5	3.75	360	1,330	360	38.3	1,920	24,100		<10.0
	02/28/07	<10	140	8,700	<0.5	4.6	430	1,180	276	46.9	1,510	17,700		<10
	08/23/07	<10	157	6,900	<0.1	3.70	400	934	283	<50	2,290	17,100		157
	2/20/08	<5	229	6,270	<0.3	<0.2	447	867	293	27.7	2,190	12,500		<5
	8/12/08	<1.53	257	4,910	1.19	3.74	443	720	236	36.2	1760	11,400		<1.53
	02/19/09	<5	310	4,300	0.75	3.00	490	600	190	25.0	1900	9,700		<5
	7/29/09	<5	250	3,300	0.91	3.40	500	420	150	32.0	1400	7,800		<5
	2/24/10	<5	304	2,070	1.00	3.56	452	249	65.5	9.2	1220	4,370		<5
	7/28/10	<5	312	1,260	1.41	2.38	413	136	46.7	7.7	848	3,100		<5
	02/16/11	<2.0	311	911	1.55	3.03	562	92.5	29.9	6.80	600	1,830		<2.0
	8/18/11	<5.0	285	689	2.06	2.95	294	62.7	21.1	3.92	484	1,940		<5.0
	2/22/12	<5.00	269	693	2.39	3.19	236	51.4	17.9	5.23	508	1,720		<5.00
	08/28/12	<10.0	366	607	2.67	1.72	206	62.3	15.9	4.50	433	1,680		<10.0
	02/21/13	<6.00	250	561	2.35	2.94	192	39.5	13.3	4.26	423	1,460		<6.00
	08/14/13	<6.00	224	603	2.91	2.68	173	40.2	12.9	4.32	459	1,410		<6.00
	04/03/14	<10.0	265	628	1.97	2.25	157	37.6	11.9	4.47	429	1,560		<10.0
	10/09/14	<4.0	211	552	1.92	2.67 J	159	35.5	10.7	4.91	460	2,020		<4.00

Well	Sample	Carbonate	Bicarbonate	Chloride	Fluoride	Nitrate - N	Sulfate	Calcium	Magnesium	Potassium	Sodium	TDS	Hardness	Hydroxide
Number	Date	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
	NMWQCC Sta	ndard (mg/L)		250	1.6	10	600					1,000		
MW-10	10/14/02	<0.1	204	71			145	42.3	22.8	7.77	87.3	593		<0.10
	12/27/02	<0.1	196	70			149	68.4	23.1	7.69	92.8	529		<0.10
	02/18/03	<0.1	184	65			159	67.1	22.8	3.04	90.7	552		<0.10
	06/02/03	<1.0	198	55.7	1.6	4.31	134	75.7	22.4	4.95	80.4	624		<1.00
	08/26/03	<1.0	188	56.1	1.58	4.1	125	70.6	23.4	6.29	72.3	688		<1.00
	11/07/03	<1.0	200	70.9	1.69	4.19	131	70.2	23.5	5.8	69.3	638		<1.00
	02/05/04	<1.0	196	101	1.68	4.22	121	75.8	25.7	6.29	73.8	674		<1.00
	05/07/04	<1.00	174	186	1.4	3.8	111	92.9	30.1	6.34	78.3	736		<1.00
	08/03/04	<0.1	144	328			118	106	49.5	7.7	106	796		<0.10
	02/11/05	<1.0	112	1,110	3.44	5.86	93.1	357	115	14	157	2,295		<1.00
	08/04/05	<1.00	112	1,500	1.32	4.02	94.5	419	139	11.5	186	3,420		<1.00
	02/22/06	<10.0	89	2,000	<0.50	6.5	98	520	158	13.8	180	6,180		<10.0
	08/25/06	<10.0	110	2,200	<2.5	3.24	97	660	201	13.7	253	7,520		<10.0
	02/28/07	<10	360	2,200	0.8	4.2	100	601	168	16.9	224	6,140		<10
	08/22/07	<10	74.9	2,200	0.50	6.00	110	585	189	<50	270	7,270		74.9
	2/20/08	<5	253	1,930	0.75	3.3	109	551	186	17.8	280	4,620		<5
	8/12/08	<1.53	800	1,700	1.75	3.16	108	430	154	15.4	271	4,540		<1.53
	02/20/09	<5	370	1,600	0.76	2.70	130	410	150	15.0	300	4,300		<5
	7/29/09	<5	250	2,000	0.67	3.10	140	470	170	19.0	300	5,800		<5
	2/24/10	<5	126	2,840	0.46	3.26	126	670	228	12.7	399	5,720		<6
	7/28/10	<5	89.1	2,260	0.82	2.48	85.5	842	292	12.1	501	6,840		<6
	02/16/11	<2.0	112	3,880	0.471	3.66	1,670	884	307	17.0	586	7,790		<2.0
	8/18/11	<5.0	110	3,990	0.626	4.30	172	1,000	298	15.9	671	8,290		<5.0
	2/22/12	<5.00	122	4,590	0.703	4.89	185	1,050	330	19.0	857	14,000		<5.00
	08/29/12	<5.00	127	4,110	0.566	4.00	176	1,010	322	19.3	897	12,400		<5.00
	02/21/13	<6.00	123	3,940	0.480	4.61	204	909	274	17.2	860	7,100		<6.00
	08/14/13	<6.00	133	4,260	0.607	4.05	226	806	271	18.3	991	9,470		<6.00
	04/03/14	<10.0	175	3,320	0.806	4.42	270	774	237	18.9	930	9,500		<10.0
	10/09/14	<4.00	154	2,730	0.185	3.96 J	292	618	200	18.0	963	7,930		<4.00

Well	Sample	Carbonate	Bicarbonate	Chloride	Fluoride	Nitrate - N	Sulfate	Calcium	Magnesium	Potassium	Sodium	TDS	Hardness	Hydroxide		
Number	Date	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)		
	NMWQCC Sta	ndard (mg/L)		250	1.6	10	600					1,000				
MW-11	04/30/02							DRY								
	10/11/02							DRY								
	12/26/02							DRY								
	02/17/03							DRY								
	05/29/03							DRY								
	08/22/03							DRY								
	11/05/03							DRY								
	02/03/04							DRY								
	05/05/04	DRY														
	08/02/04															
	11/23/04															
	02/09/05															
	08/04/05															
	02/22/06			NS - Insufficent Water Column												
	02/28/07						NS - Insuf	ficent Water (t Water Column							
	08/22/07															
	02/20/08							ficent Water C								
	08/12/08		1			1	NS - Insuf	ficent Water (Column	ı	1		•	1		
	02/19/09	<5	370.0	1,700	0.80	3.00	100.0	430.0	150.0	17.0	380.0	4,500		5		
	07/29/09	<5	490.0	1,800	0.72	3.80	120.0	420.0	140.0	19.0	340.0	5,000		<5		
	02/16/11	<2.0	115	1,720	0.607	3.40	760	365	116	9.65	336	3,420		<2.0		
	08/18/11		1	ı		1	NS - Insuf	ficent Water C	Column	ı	1		•	1		
	02/22/12	<5.00	131	2,240	0.654	3.64	145	588	176	12.2	456	6,470		<5.00		
	08/28/12	<5.00	146	2,450	0.668	2.14	128	563	169	12.6	460	7,980		<5.00		
	02/20/13	<6.00	128	2,540	0.518	3.20	137	711	208	13.2	502	5,420		<6.00		
	08/14/13	<6.00	117	3,070	0.589	3.22	140	779	260	15.1	579	6,620		<6.00		
	04/03/14	<10.0	151	2,940	0.788	3.74	161	820	252	16.2	576	9,080		<10.0		
	10/10/14						NS - Insuf	ficent Water (Column							

Well	Sample	Carbonate	Bicarbonate	Chloride	Fluoride	Nitrate - N	Sulfate	Calcium	Magnesium	Potassium	Sodium	TDS	Hardness	Hydroxide
Number	Date	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
	NMWQCC Sta	ndard (mg/L)		250	1.6	10	600					1,000		
MW-12	05/02/02	<1.0	88	1,120	1.37	4.09	45.3	431	153	17.7	123			<1.00
	10/11/02	<0.1	93	1,370			47.5	438	161	15.4	127	2,860		<0.10
	12/27/02	<0.1	78	1,520			49.3	507	181	14.1	151	3,460		<0.10
	02/17/03	<0.1	68	1,530			52.4	461	170	13.3	136	3,980		<0.10
	06/02/03	<1.0	72	1,380	<2.00	5.06	45.8	491	157	15.3	151	3,250		<1.00
	08/26/03	<1.0	66	1,550	<2.00	4.94	45.9	525	178	14.8	156	3,855		<1.00
	11/06/03	<1.0	80	1,610	2.25	4.81	50.3	568	189	20.1	159	3,860		<1.00
	02/05/04	<1.0	74	1,680	2.19	5.13	46	525	181	21.6	160	2,910		<1.00
	05/07/04	<1.0	70	1,620	<3.00	5.13	53.6	541	178	18.5	152	3,085		<1.0
	08/03/04	<0.1	66	1,680			55.2	680	252	31.1	211	4,300		<0.10
	02/11/05	<1.00	82	1,770	2.04	6.08	47.7	503	176	17.8	138	3,080		<1.00
	08/05/05	<1.00	72	1,800	1.66	4.69	48.6	547	194	15.2	149	4,180		<1.00
	02/22/06	<10.0	73	1,700	0.7	6.7	48	415	135	14.9	129	4,890		<10.0
	08/24/06	<10.0	87	1,700	0.93	3.06	48	463	157	12.2	140	6,190		<10.0
	02/28/07	<10	95	1,900	1.3	6.9	65	521	154	16.1	155	5,840		<10
	08/22/07	<10	108	1,800	0.70	6.00	52.0	476	151	11.9	143	6,470		108
	2/20/08	<5	83.8	2,020	0.93	3.99	70.8	589	211	18.1	179	4,580		<5
	8/12/08	<1.53	77	2,140	1.68	3.84	86.1	647	221	17.9	212	5,160		<1.53
	02/19/09	<5	120	2,600	0.97	3.20	120	810	280	23.0	340	5,400		<5
	7/29/09	<5	94.0	2,700	1.20	3.80	120	700	270	28.0	330	7,000		<5
	2/24/10	<5	89.1	2,120	0.61	3.74	69.4	626	218	12.9	214	4,290		<5
	7/28/10	<5	83.0	1,560	1.47	2.84	164	681	240	14.2	279	5,680		<5
	02/16/11	<2.0	84.6	2,430	0.747	3.91	73.6	528	184	11.1	190	4,390		<2.0
	8/18/11	<5.0	85.5	2,110	0.908	4.08	62.7	560	183	10.5	169	5,000		<5.0
	2/22/12	<5.00	91.2	2,270	0.990	4.36	67.3	650	217	13.4	209	4,110		<5.00
	08/28/12	<10.0	98.0	2,040	0.840	2.52	57.6	589	190	12.2	173	5,690		<10.0
	02/20/13	<6.00	88.2	2060	0.774	3.81	59.0	658	204	12.9	186	3,790		<6.00
	08/14/13	<6.00	86.9	1,930	0.792	3.82	65.3	596	203	13.3	180	4,550		<6.00
	04/03/14	<10.0	110.0	2,130	1.18	4.21	59.6	650	194	13.0	177	1300*		<10.0
	10/10/14	<4.00	83.6	1,890	0.269	3.92	55.2	595	208	13.5	180	6,290		<4.00

Well	Sample	Carbonate	Bicarbonate	Chloride	Fluoride	Nitrate - N	Sulfate	Calcium	Magnesium	Potassium	Sodium	TDS	Hardness	Hydroxide
Number	Date	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
	NMWQCC Sta	ndard (mg/L)		250	1.6	10	600					1,000		
MW-13	05/02/02	<1.0	122	277	2.31	4.38	131	125	44.3	10.2	65.6			<1.00
	10/11/02	<0.1	115	337			124	135	46.5	9.47	88.6	1,210		<0.10
	12/27/02	<0.1	104	408			132	160	55.2	9.71	84.5	1,260		<0.10
	02/17/03	<0.1	80	443			144	152	54.9	8.88	108	1,370		<0.10
	06/02/03	<1.0	102	421	2.27	4.43	122	153	56	11	90.9	1,260		<1.00
	08/26/03	<1.0	92	500	2.1	4.23	115	179	66	12	95.6	1,360		<1.00
	11/06/03	<1.0	98	492	2.25	4.42	125	193	68.6	14.3	91.5	1,434		<1.00
	02/05/04	<1.0	96	543	2.3	4.56	120	179	65.6	15.4	98.3	1,220		<1.00
	05/07/04	<1.00	98	496	2.04	4.14	116	184	62.2	12.8	89.3	1,278		<1.00
	08/03/04	<0.1	95	532			116	225	77.3	15	111	1,410		<0.10
	02/11/05	<1.00	100	491	2.19	5.36	117	171	61.7	13.3	92.3	1,260		<1.00
	08/05/05	<1.00	96	759	2.29	5.11	125	217	70.8	12.7	103	1,550		<1.00
	02/22/06	<10.0	89	590	1.7	4.8	120	177	61.2	11.5	91.8	2,090		<10.0
	08/24/06	<10.0	150	760	<2.5	3.58	120	228	78.7	10.9	107	2,590		<10.0
	02/28/07	<10	90	880	2	5.2	140	262	84.8	14.6	113	3,060		<10
	08/22/07	<10	129	980	1.60	4.0	130	279	94.7	11.6	122	3,480		129
	2/20/08	<5	209	1,260	1.57	4.02	153	362	145	20.1	172	3,070		<5
	8/13/08	<5	141	1,410	2.33	1.53	154	389	155	20.1	176	4,940		<5
	02/19/09	5	130	1,800	1.50	3.10	180	580	200	24.0	240	4,700		5
	7/29/09	<5	120	1,800	1.40	4.10	400	540	220	27.0	210	5,900		<5
	2/24/10	<5	91.1	1,570	1.05	3.53	150	452	139	13.0	160	3,400		<5
	7/28/10	<5	89.1	4,340	1.08	3.01	921	468	136	12.1	156	4,420		<5
	02/16/11	<2.0	82.7	1,630	1.36	3.88	1,680	392	150	14.0	170	4,440		<2.0
	8/18/11	<5.0	87.7	1,640	1.57	4.04	166	404	138	11.8	156	4,100		<5.0
	2/22/12	<5.00	88.9	1,580	1.46	4.21	120	478	154	14.1	174	3,930		<5.00
	08/28/12	<10.0	119	1,570	1.49	2.50	155	455	154	14.4	179	4,130		<10.0
	02/20/13	>6.00	113	1,400	1.26	3.78	150	428	139	13.4	165	3,300		<6.00
	08/18/13	<6.00	103	1,420	1.43	3.75	156	386	150	14.9	176	3,930		<6.00
	04/03/14	<10.0	130	1,160	1.92	3.98	156	370	125	13.1	154	4,360		<10.0
	10/10/14	<4.00	101	1,020	0.829	3.78	148	326	117	12.6	143	3,500		<4.00

Well	Sample	Carbonate	Bicarbonate	Chloride	Fluoride	Nitrate - N	Sulfate	Calcium	Magnesium	Potassium	Sodium	TDS	Hardness	Hydroxide
Number	Date	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
	NMWQCC Sta	ndard (mg/L)		250	1.6	10	600					1,000		
MW-14	11/05/03	<1.0	100	3,500	<4.00	6.58	525	951	324	45.3	732	7,315		<1.00
	02/04/04	<1.0	74	3,910	<3.00	6.01	559	966	320	46.1	840	7,720		<1.0
	05/06/04	<1.00	86	3,970	<4.00	5.54	594	997	350	42.5	836	9,560		<1.00
	08/04/04	<0.1	78	4,430			895	1,350	455	60.3	1,220	11,500		<0.10
	02/11/05	<1.00	80	6,120	3.5	5.99	752	1,180	370	56.8	1,250	8,860		<1.00
	08/05/05	<1.00	86	6,480	1.84	5.04	882	1,230	400	46.3	1,440	9,570		<1.00
	02/22/06	<10.0	81	5,300	<0.50	11	700	914	253	34.1	885	12,100		<10.0
Dup	02/22/06	<10.0	82	5,000	<0.50	<40	690	916	253	34	884	11,600		<10.0
	08/24/06	<10.0	85	5,600	<5	3.74	690	942	266	27.8	1,370	11,300		<10.0
	02/28/07	<10	95	5,200	<0.5	4.3	620	758	193	36.9	1,060	12,400		<10
	08/22/07	<10	92.2	4,700	0.30	3.90	610	823	249	<50	1,420	11,700		92.2
	2/20/08	<5	108	4,910	3.14	3.7	674	847	272	25.7	1,510	10,300		<5
	8/12/08	<1.53	101	4,400	1.32	3.50	668	781	237	38.2	1650	10,300		<1.53
	02/19/09	<5	100	4,200	1.20	2.50	760	780	230	38.0	1600	9,000		<5
Dup	2/19/09	<5	100	4,200	1.20	2.40	760	700	220	24.0	1700	8,800		<5
	7/29/09	<5	110	4,100	1.40	2.90	830	690	200	39.0	1500	11,000		<5
	2/24/10	<5	107	4,280	1.04	3.36	844	752	218	18.9	1480	9,530		<5
	7/28/10	<5	107	4,290	1.18	2.17	83.8	844	256	15.1	1660	9,500		<5
	02/16/11	<2.0	85.4	5,070	0.706	0.424	1,470	902	294	21.4	1,650	11,200		<2.0
	8/18/11	13.1	109	7,490	0.274	3.65	1,010	1,410	318	20.3	2,280	12,800		<5.0
	2/22/12	<5.00	108	7,610	0.464	4.17	597	1,480	423	26.2	2,540	18,000		<5.00
	08/28/12	<10.0	113	7,730	0.698	2.48	816	1,390	389	23.0	2,330	22,100		<10.0
	02/20/13	<6.00	103	8,420	0.738	3.76	819	1,470	368	28.0	2,370	14,300		<6.00
	08/14/13	<6.00	102	8,030	1.08	4.53	708	1,470	423	28.4	2,890	15,900		<6.00
DUP-3	08/14/13	<6.00	102	8,090	0.970	3.99	736	1,520	431	29.5	2,950	16,600		<6.00
	04/03/14	<10.0	133	8,710	1.250	4.52	721	1,470	393	27.0	3,030	8460*		<10.0
DUP-1	04/03/14	<10.0	133	9,430	0.732	3.63	668	1,520	394	28.7	2,940	19,900		<10.0
	10/10/14	<4.00	103	7,610	1.770	4.28	<1.00	1,270	384	33.5	2,640	19,000		<4.00

Well	Sample	Carbonate	Bicarbonate	Chloride	Fluoride	Nitrate - N	Sulfate	Calcium	Magnesium	Potassium	Sodium	TDS	Hardness	Hydroxide
Number	Date	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
	NMWQCC Sta	ındard (mg/L)		250	1.6	10	600					1,000		
MW-15	11/05/03							DRY						-
	02/03/04							DRY						
	05/05/04							DRY						
	08/02/04							DRY						
	11/23/04							DRY						
	02/09/05							DRY						
	08/04/05						NS - Insuf	ficent Water C	Column					
	02/22/06					_	NS - Insuf	ficent Water C	Column					
	02/28/07	<10	170	90	2.2	2.2	71	57.3	19.8	6.03	52.9	575		<10
	08/22/07	<10	146	150	1.80	2.10	65.0	66.4	24.1	5.98	60.2	652		146
	2/20/08	<5	117	487	1.68	2.19	61.1	161	62.2	10.5	88.1	1,500		<5
	8/12/08	<1.53	101.0	792	1.81	2.38	68.3	238.0	92.0	13.3	120.0	2,370		<1.53
	02/19/09	<5	100.0	840	1.30	2.20	74.0	290.0	110.0	14.0	110.0	2,000		<5
	7/29/09	<5	83.0	1,000	1.30	2.70	85.0	270.0	110.0	15.0	130.0	3,300		<5
	2/25/10	<5	99.2	1,120	0.97	2.84	74.0	301.0	116.0	12.5	135.0	2,450		<5
	7/28/10	<5	91.1	801	1.16	2.02	152.0	337.0	110.0	11.1	128.0	3,350		<5
	02/16/11	<2.0	96.4	1,230	1.05	2.73	84.1	293	110	11.4	124	2,810		<2.0
	8/18/11	<5.0	97.0	1,110	1.20	2.84	83.4	293	103	9.52	115	3,720		<5.0
	2/22/12	<5.00	98.4	1,200	1.21	2.93	85.8	325	106	10.9	124	3,390		<5.00
	08/24/12	<10.0	108	1,430	1.13	2.43	84.4	357	133	13.4	147	3,640		<10.0
Dup	08/24/12	<5.00	107	1,420	1.11	2.42	84.6	361	131	13.2	148	4,160		<5.00
	02/20/13	<6.00	101	1,170	1.04	2.65	86.3	330	117	12.1	135	2,790		<6.00
	08/15/13	<6.00	96.9	1,010	1.19	2.92	92.7	237	121	12.7	143	3,180		<6.00
	04/03/14	<10.0	128.0	1,790	1.43	2.76	84.6	289	104	11.0	127	3,620		<10.0
DUP-2	04/03/14	<10.0	127.0	1,030	0.932	2.01	79.4	293	99.8	11.8	123	3,560		<10.0
	10/10/14	<4.00	98.5	896	0.607	2.58	80.6	293	108	11.9	129	1,830		<4.00

Well	Sample	Carbonate	Bicarbonate	Chloride	Fluoride	Nitrate - N	Sulfate	Calcium	Magnesium	Potassium	Sodium	TDS	Hardness	Hydroxide
Number	Date	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
	NMWQCC Sta	ndard (mg/L)		250	1.6	10	600					1,000		
MW-16	11/06/03	<1.0	188	863	1.79	5.65	150	183	55.6	14.2	372	2,100		<1.00
	02/04/04	<1.0	174	937	2.19	6.59	123	235	76.8	15.2	299	2,200		<1.00
	05/07/04	<1.00	172	953	<2.00	5.91	123	240	73.8	12.7	313	2,280		<1.00
	08/03/04	<0.1	158	1,010			159	250	87.5	13.5	382	2,560		<0.10
	02/11/05	<1.00	180	944	2.4	7.24	151	198	62.4	10.9	344	2,260		<1.00
	08/05/05	<1.00	230	568	1.99	5.14	146	134	46.9	8.7	249	1,420		<1.00
	02/22/06	<10.0	180	590	1.3	5.2	110	120	39.1	7.17	207	1,770		<10.0
	08/24/06	<10.0	490	500	<2.5	3.17	89	123	40.6	4.93	207	1,460		<10.0
	02/28/07	<10	220	410	1.6	4.6	110	71.8	22.2	6.46	228	1,200		<10
	08/22/07	<10	296	360	1.40	3.60	87	83	29.9	<5	215	1,280		296
	2/20/08	<5	190	338	1.31	2.91	88.3	141	47.9	6.53	154	990		<5
	8/12/08	<1.53	220	536	1.36	3.34	86.2	112	37.4	6.8	221	1,660		<1.53
	02/19/09	<5	190	710	1.30	4.10	110	130	42.0	8.7	340	1,900		<5
	7/29/09	<5	170	810	1.30	4.90	140	140	46.0	9.9	330	2,200		<5
	2/24/10	<5	194	866	1.05	4.75	132	173	46.9	5.7	318	1,980		<5
	7/28/10	<5	197	369	2.38	4.43	159	157	50.5	6.6	404	2,050		<5
	02/16/11	<2.0	197	862	1.18	5.13	260	138	39.8	5.67	347	1,990		<2.0
	8/18/11	<5.0	211	775	1.18	5.80	137	128	39.5	4.47	331	2,360		<5.0
	2/22/12	<5.00	211	874	1.34	6.12	139	158	45.0	5.64	396	2,090		<5.00
	08/28/12	<10.0	294	879	1.21	3.14	127	237	70.4	7.14	254	2,850		<10.0
	02/20/13	<6.00	238	816	1.15	5.42	159	207	67.8	6.99	304	1,900		<6.00
	08/14/13	<6.00	224	907	1.28	5.78	162	228	90.5	8.13	236	2,100		<6.00
	04/03/14	<10.0	266	755	1.51	6.09	162	181	52.1	6.72	321	2,180		<10.0
	10/10/14	<4.00	217	834	0.439	4.52	130	242	79.4	7.99	269	1,550		<4.00

Well	Sample	Carbonate	Bicarbonate	Chloride	Fluoride	Nitrate - N	Sulfate	Calcium	Magnesium	Potassium	Sodium	TDS	Hardness	Hydroxide
Number	Date	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
	NMWQCC Sta	ndard (mg/L)		250	1.6	10	600					1,000		
MW-17	11/05/03	<1.0	154	587	2.06	3.85	104	177	58.2	12.5	184	1,556		<1.00
	02/04/04	<1.0	158	650	2.01	3.93	93.1	158	52.5	12.2	205	1,416		<1.00
Dup	02/04/04	<1.0	172	557	2.08	4.03	95.7	162	52.6	12.1	204	1,496		<1.00
	05/06/04	<1.00	162	604	1.77	3.57	91.2	182	57.7	10.9	176	1,416		<1.00
	08/04/04	<0.1	141	638			132	207	81	12.7	221	1,660		<0.10
	02/11/05	<1.00	174	572	2.94	4.61	101	134	45.9	11	229	1,470		<1.00
	08/05/05	<1.00	172	626	2.16	4.37	106	169	53.5	9.5	220	1,750		<1.00
	02/22/06	<10.0	150	580	1.5	4	97	123	40.1	8.04	187	1,810		<10.0
	08/24/06	<10.0	200	560	<2.5	3.06	100	140	46.1	5.94	178	1,700		<10.0
Dup	08/24/06	<10.0	320	530	<2.5	2.94	100	135	46.5	5.76	175	1,700		<10.0
	02/28/07	<10	180	530	2.2	4.1	130	94.9	30.3	7.06	213	1,240		<10
	08/22/07	<10	177	550	1.80	4.30	130	113	41.4	5.97	200	1,310		177
	2/20/08	<5	147	622	2.1	3.45	130	169	59.9	8.35	155	1,550		<5
	8/12/08	<1.53	173	519	1.86	3.37	125	124	43.0	7.9	222	1,660		<1.53
	02/19/09	<5	180	460	2.40	3.60	170	70.0	21.0	7.5	320	1,300		<5
	7/29/09	<5	190	440	2.40	4.00	180	76.0	24.0	7.4	270	1,300		<5
	2/24/10	<5	182	512	1.85	3.60	148	90.6	30.9	5.4	265	1,380		<5
	7/28/10	<5	217	4,840	0.80	3.09	513	87.7	28.8	4.9	245	1,390		<5
	02/16/11	<2.0	177	401	2.14	3.64	253	54.6	15.2	4.20	248	1,060		<2.0
Dup 2	02/16/11	<2.0	206	368	2.27	<0.030	259	53.0	16.4	4.18	238	1,060		<2.0
	8/18/11	<5.0	196	421	1.87	3.45	111	110	35.9	4.11	173	1,220		<5.0
	2/22/12	<5.00	207	441	2.08	3.33	109	98.8	29.7	4.90	220	1,140		<5.00
	08/28/12	<10.0	164	570	1.59	1.99	103	182	58.4	6.76	132	2,070		<10.0
	02/20/13	<6.00	192	511	1.75	3.33	130	153	50.4	6.09	160	1,280		<6.00
	08/14/13	<6.00	163	637	1.71	3.37	126	181	67.0	7.28	142	1,790		<6.00
	04/03/14	<10.0	253	434	2.54	4.07	133	112	36.8	5.78	197	7,360		<10.0
	10/10/14	<4.00	211	316	1.41	3.98	107	83.3	27.3	5.49	240	1,790		<4.00
Dup-3	10/10/14	<4.00	226	313	1.56	4.04	131	62	20.1	5.28	265	1,140		<4.00

Well	Sample	Carbonate	Bicarbonate	Chloride	Fluoride	Nitrate - N	Sulfate	Calcium	Magnesium	Potassium	Sodium	TDS	Hardness	Hydroxide
Number	Date	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
	NMWQCC Sta	ındard (mg/L)		250	1.6	10	600					1,000		
MW-18	11/23/04							DRY						-
	02/09/05							DRY						
	08/04/05							DRY						
	02/22/06							DRY						
	02/28/07							DRY						
	02/20/08							DRY						
	08/12/08							DRY						
	02/19/09							DRY						
	7/29/09							DRY						
	02/16/11							DRY						
	8/18/11							DRY						
	2/22/12							DRY						
	08/28/12							DRY						
	02/20/13							DRY						
	08/14/13		ı					DRY	1	1	T			
MW-19	11/23/04	<1.00	86	7,000	<10.0	17.3	582	2,020	678	52.4	1,590	12,900		<1.00
	02/11/05	<1.00	92	5,200	1.3	5.12	502	1,340	522	61.3	974	22,000		<1.00
	08/05/05	<1.00	82	4,850	1.76	4.7	450	1,200	422	50.6	793	9,750		<1.00
Dup 3	08/05/05	<1.00	80	5,170	1.87	4.83	462	1,270	463	51	814	15,800		<1.00
	02/22/06	<10.0	75	3,900	<0.50	8.9	400	870	271	32.6	464	8,830		<10.0
	08/24/06	<10.0	250	3,900	<5	3.01	390	902	293	28.8	582	10,900	-	<10.0
	02/28/07	<10	92	5,500	<0.5	4.4	600	901	247	37	658	12,700		<10
	08/22/07	<10	82.6	4,500	0.30	3.10	440.0	1,040	367	<50	686	11,600		82.6
	2/20/08	<5	80.1	4,800	1.72	3.62	476	1,130	437	31.2	684	10,300		<5
	8/12/08	<1.53	79.8	4,240	2.94	3.27	429	1,080	399	26.7	739.0	9,600		<1.53
	02/19/09	<5	89.0	5,300	0.90	3.20	540	1,200	450	37.0	1200	10,000		<5
	7/29/09	<5	94.0	5,300	1.10	4.00	580	1,200	400	37.0	1100	13,000		<5
	2/24/10	<5	91.1	4,720	0.44	3.73	457	1,110	427	28.2	809	9,080		<5
	7/28/10	<5	104	4,760	1.08	3.30	130	1,160	407	27.2	1110	10,400		<5
	02/16/11	<2.0	81.4	4,180	0.624	2.01	3,010	1,130	370	27.3	972	9,980		<2.0
	8/18/11	<5.0	97.6	4,550	0.752	3.95	383	1,020	345	24.0	676	11,100		<5.0
	2/22/12	<5.00	101	542	0.913	4.38	30.3	1,300	425	29.2	1,040	14,800		<5.00
	08/28/12	<10.0	107	4,240	0.788	2.64	416	1,020	348	24.8	682	13,300		<10.0
	02/20/13	<6.00	94.0	4,310	0.695	3.76	424	1,130	344	27.1	673	7,740		<6.00
	08/14/13	<6.00	94.5	3,780	0.896	3.84	382	1,050	376	28.1	710	8,740		<6.0
	04/03/14	<10.0	122.0	3,740	1.07	4.22	439	1,050	362	26.3	680	13,100		<10.0
	10/10/14	<4.00	95.6	3,440	0.132	3.86	416	965	369	29.2	663	7,560		<4.00

Well	Sample	Carbonate	Bicarbonate	Chloride	Fluoride	Nitrate - N	Sulfate	Calcium	Magnesium	Potassium	Sodium	TDS	Hardness	Hydroxide
Number	Date	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
	-	indard (mg/L)	, , ,	250	1.6	10	600					1,000		
MW-20	11/23/04	<1.00	82	606	2.49	2.9	79.7	176	62.6	13.6	104	985		<1.00
	02/11/05	<1.00	88	745	1.86	4.34	73.8	227	77.5	15	117	1,480		<1.00
	08/05/05	<1.00	80	1,170	1.76	4.55	84.5	326	116	14.7	162	2,640		<1.00
	02/22/06	<10.0	110	1,100	0.98	5.5	83	295	103	13.5	145	3,000		<10.0
	08/24/06	<10.0	1,100	1,100	<2.5	3.39	84	288	101	11.2	160	3,590	-	<10.0
	02/28/07	<10	110	1,300	1.4	5.1	95	332	107	14.6	165	4,500		<10
	08/22/07	<10	419	1,400	0.80	5.70	100.0	346	119	11.9	203	4,100		419
	2/20/08	<5	117	1,540	1.1	3.83	108	393	158	18.7	247	3,550		<5
	8/12/08	<1.53	135.0	1,570	2.02	3.73	113.0	392.0	154.0	18.5	249.0	4,290		<1.53
	02/19/09	<5	130.0	1,600	1.00	3.70	130.0	440.0	150.0	20.0	290.0	3,900		<5
	7/29/09	<5	120.0	1,700	1.10	4.10	150.0	400.0	150.0	21.0	280.0	4,600		<5
	2/25/10	<5	107.0	1,500	0.80	4.03	98.8	402.0	146.0	13.9	229.0	3,460		<5
	7/28/10	<5	102.0	245	2.00	3.43	143.0	451.0	156.0	13.6	289.0	4,740		<5
	02/16/11	<2.0	98.4	1,810	0.972	3.89	1,070	442	134	13.3	274	4,240		<2.0
	8/18/11	<5.0	106	1,610	1.16	3.99	135	393	128	11.1	253	4,550		<5.0
	2/22/12	<5.00	107	1,750	1.10	4.30	122	434	126	12.5	303	4,790		<5.00
	08/24/12	<5.00	123	1,830	1.03	3.46	134	440	152	14.2	295	4,510		<5.00
	02/20/13	<6.00	106	1,670	0.99	3.78	138	445	143	13.5	275	3,680		<6.00
	08/14/13	<6.00	104	1,470	1.02	4.17	121	435	152	15.1	275	4,310		<6.00
	04/03/14	<10.0	134	1,500	1.22	4.16	134	407	137	13.0	243	5,140		<10.00
	10/10/14	<4.00	107	1,320	0.496	3.82	121	387	139	137.0	233	4,180		<4.00
MW-21	11/28/07	1.14	415	482			128	173	64.4	18.3	115	1,440		1.14
	2/20/08	<5	115	606	1.9	5.15	159	205	71.3	14.4	110	1,740		<5
	8/12/08	<1.53	126	544	2.00	4.68	147	193	64.7	12.5	116	2,060		<1.53
	02/19/09	<5	190	400	2.10	4.30	140	150	46.0	11.0	120	1,200		<5
	7/29/09	<5	210	330	2.20	4.40	150	120	38.0	10.0	96	1,200		<5
	2/24/10	<5	184	280	1.79	4.04	143	123	37.8	7.9	100	1,030		<5
	7/28/10	<5	168	2,970	0.61	3.41	150	109	34.3	7.8	95.8	1,010		<5
	02/16/11	<2.0	149	240	1.87	4.56	250	106	33.4	8.13	90.0	888		<2.0
	8/18/11	<5.0	176	213	2.15	4.93	141	89.5	27.5	5.90	79.1	876		<5.0
	2/22/12	<5.00	192	208	2.16	5.50	118	89.2	24.8	6.82	74.3	894		<5.00
	08/24/12	<5.00	196	241	1.95	4.10	137	99.9	35.0	9.71	80.5	750		<5.00
	02/21/13	<6.00	181	182	1.98	4.77	121	91	29	8.1	84	700		<6.00
	08/14/13	<6.00	175	180	2.48	5.90	123	100	30.3	8.42	103	798		<6.00
	04/03/14	<10.0	222	236	2.72	5.98	230	117	37.4	8.98	108	1,010		<10.0
	10/10/14	<4.00	185	186	1.50	5.16	393	155	48.7	9.68	119	1,080		<4.00

Well	Sample	Carbonate	Bicarbonate	Chloride	Fluoride	Nitrate - N	Sulfate	Calcium	Magnesium	Potassium	Sodium	TDS	Hardness	Hydroxide
Number	Date	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
	NMWQCC Sta		. 5-	250	1.6	10	600					1,000		
MW-22	11/28/07	1.14	2950	1,020			169	286	96.7	12.1	229	2,330		1.14
	2/20/08	<5	374	1,060	0.93	2.7	171	291	102	11.1	244	2,560		<5
	8/12/08	<1.53	143	1,370	1.70	2.73	167	359	129	12.9	272	3,670		<1.53
	02/20/09	<5	270	2,000	0.74	2.40	180	570	190	17.0	380	5,300		<5
	7/29/09	<5	310	3,000	0.85	2.60	200	730	260	25.0	570	6,700		<5
	2/25/10	<5	142	3,630	0.27	2.92	166	802	251	15.4	590	7,060		<5
	7/28/10	<5	136	3,640	0.64	2.17	204	982	309	15.9	865	8,760		<5
	02/16/11	<2.0	138	3,650	0.568	1.90	1,530	834	252	14.9	830	7,490		<2.0
	8/18/11	<5.0	142	4,020	0.594	2.94	206	745	232	13.7	974	8,900		<5.0
	2/22/12	<5.00	152	3,980	0.730	2.93	236	732	233	15.8	1,060	11,100		<5.00
	08/29/12	<10.0	171	3,210	0.791	1.79	258	603	195	15.0	1,080	9,460		<10.0
	02/20/13	<6.00	174	2,700	0.628	3.02	298	512	153	13.0	922	5,360		<6.00
	08/14/13	<6.00	183	2,660	0.839	2.55	294	437	129	12.7	996	5,450		<6.00
	04/03/14	<10.0	238	2,420	0.758	2.40	320	316	96.4	10.6	841	4,660		<10.0
	10/09/14	<4.0	183	2,030	0.395	2.72 J	257	349	108	12.7	907	5,150		<4.0
MW-23	2/22/12		1		ı	NS - Soap Conta	minant in the	e well from dril	ling completion a	ctivities.	1		-	1
	08/24/12	<5.00	152	592	1.19	<2.00	91.2	155	55.0	8.44	114	1,460		<5.00
	02/20/13	<6.00	121	490	1.10	0.518	96.5	146	52.8	8.12	107	1,330		<6.00
	08/14/13	<6.00	117	458	1.29	0.686	93	156	52.8	8.82	111	1,510		<6.00
	04/03/14	<10.0	146	489	1.51	0.669	96.4	138	48.6	7.85	103	1,500		<10.0
	10/10/14	<4.00	127	391	0.716	0.717	85.7	140	51.9	8.61	107	1,010		<4.00
MW-24	2/22/12	<5.00	101	2,910	1.71	3.11	309	806	254	24.4	263	9,240		<5.00
	08/24/12	<5.00	118	3,140	1.05	3.18	309	866	263	25.1	291	9,160		<5.00
	02/20/13	<6.00	97.4	2,500	0.985	3.41	277	826	233	22.7	263	4,780		<6.00
DUP-1	02/20/13	<6.00	97.7	2,500	0.983	3.42	281	806	224	22.9	253	4,940		<6.00
	08/14/13	<6.00	94	2,250	1.21	3.66	268	790	234	24.8	261	5,540		<6.00
	04/03/14	<10.0	125	1,930	1.34	3.71	286	3410	1020	108	1150	7,300		<10.0
	10/10/14	<4.00	96.9	1,870	0.386	3.41	268	647	208	22.9	230	5,850		<4.00
MW-25	05/24/12	<5.00	158	4,390	0.121	3.56	307	890	272	19.2	1,150	10,200		<5.00
Dup 1	05/24/12	<5.00	165	4,460	0.142	3.46	316	880	270	19.1	1,170	11,000		<5.00
	08/28/12	<10.0	294	4,350	0.618	2.32	290	877	255	18.4	1,150	11,400		<10.0
	02/20/13	<6.00	160	4,490	0.461	3.66	282	864	258	18.5	1,210	8,160		<6.00
	08/14/13	<6.00	138	4,870	0.552	3.60	255	929	289	20.2	1,370	10,100		<6.00
DUP-2	08/14/13	<6.00	150	5,160	0.651	3.87	268	900	287	20.2	1,340	11,400		<6.00
	04/03/14	<10.0	192	4,580	0.772	4.47	299	962	258	19.3	1,330	12,200		<10.0
	10/10/14	<4.00	152	4,280	<0.100	4.10	299	870	270	22.5	1,250	11,400		<4.00

Well	Sample	Carbonate	Bicarbonate	Chloride	Fluoride	Nitrate - N	Sulfate	Calcium	Magnesium	Potassium	Sodium	TDS	Hardness	Hydroxide
Number	Date	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
	NMWQCC Star	ndard (mg/L)		250	1.6	10	600					1,000		
MW-26	05/24/12	<5.00	200	2,320	0.858	2.45	236	241	75.3	11.4	1,000	5,020		<5.00
	08/29/12	<5.00	205	2,200	0.929	1.57	225	267	72.9	11.3	1,140	4,940		<5.00
	02/21/13	<6.00	213	1,950	0.689	2.65	240	210	58.7	9.82	944	3,640		<6.00
	08/14/13	<6.00	215	1,930	0.935	2.46	244	174	59.9	10.6	913	3,700		<6.00
	04/03/14	<10.0	270	1,380	1.02	2.31	273	173	51.0	8.78	838	3,300		<10.0
	10/09/14	<4.0	223	1,390	0.557	2.71 J	272	158	45.3	9.50	794	3,920		<4.0
MW-27	05/24/12	<5.00	138	1,270	0.838	1.02	640	405	124	22.5	330	3,660		<5.00
	08/29/12							DRY						
	02/21/13							DRY DRY						
	08/14/13 04/03/14							DRY						
	10/09/14							DRY						
West	08/22/97			250										
	02/17/98	<2.0	370	237			134					975	96	
	02/07/01	<1.0	236	340	2	4.5	120	39.7	12.5	33.2	264	1,000		
	05/03/02	<1.0	214	329	1.39	4.36	116	41.9	11.9	40.9	234			<1.00
	10/14/02	<0.1	210	337			127	39.3	9.37	35.6	290	986		<0.10
	12/27/02	<0.1	198	337			134	43.1	12.5	33.2	263	997		<0.10
	02/18/03	<0.1	190	354			141	33.6	9.78	23.9	152	1,010		<0.10
	05/30/03	<1.0	202	353	1.54	4.16	116	48.4	13.3	35.1	283	1,050		<1.00
	08/25/03	<1.0	194	351	1.5	4.08	112	49.4	13.2	38.4	265	1,066		<1.00
	11/07/03	<1.0	204	327	1.65	3.98	115	51.3	13.8	38.8	235	1,100		<1.00
	02/05/04	<1.0	196	345	1.66	4.09	112	51.6	14.6	41.4	235	1,074		<1.00
	05/06/04	<1.00	200	339	1.44	3.83	115	53.6	14	37.3	241	1,040		<1.00
	08/03/04	<0.1	186	337			147	41.7	20.1	49.1	297	717		<0.10
	02/11/05	<1.00	186	417	2.44	4.47	117	75.9	21.4	43.9	241	1,128		<1.00
	08/04/05 02/23/06	<1.00 <10.0	150 150	526 800	1.54 0.76	4.16 4	129 110	87 149	23.6 44.3	42.2 47.1	280 257	1,104 2,390		<1.00 <10.0
	02/23/06	<10.0	150	1,500	<2.5	2.78	97	315	87.6	67.7	400	4,840		<10.0
	02/28/07	<10.0	120	2,500	0.86	6.6	120	515	130	98.7	410	7,600		<10.0
	08/21/07	<10	99.8	3,700	0.20	4.31	180	844	251	72.7	665	12,700		99.8
	2/20/08	<5	119	2,780	0.54	3.43	202	662	189	81.8	564	5,850		<5
	8/13/08	<5	175	1,940	1.57	3.89	227	387	119	61.8	588	5,570		<5
	02/19/09	<5	180	1,700	0.67	2.80	230	330	100	51.0	550	4,300		<5
	7/29/09	<5	190	1,200	0.81	3.40	240	230	74.0	37.0	400	3,200		<5
	7/28/10	<5	238	541	0.99	2.69	224	128	36.6	26.0	345	1,760		<5
	02/16/11	<2.0	193	417	1.10	3.56	329	91.0	24.8	20.0	263	1,300		<2.0
	8/18/11	<5.0	247	322	1.36	3.66	205	68.5	18.1	15.1	232	1,220		<5.0
	2/22/12	<5.00	246	312	1.34	3.28	183	68.0	18.5	15.4	221	1,080		<5.00
	08/29/12	<5.00	241	249	1.78	2.46	169	64.1	18.6	16.2	225	988		<5.00
	02/21/13	<6.00	243	226	1.34	3.78	175	56.7	16.7	14.6	212	872		<6.00
	08/14/13	<6.00	227	262	1.75	3.68	190	59.0	16.4	15.3	218	892		<6.00
	04/03/14	<10.0	281	235	1.41	3.07	159	48.9	15.3	14.2	201	680		<10.0
	10/09/14	<4.00	232	200	0.907	0.398	158	55.2	15.4	13.9	201	861		<4.00

Well	Sample	Carbonate	Bicarbonate	Chloride	Fluoride	Nitrate - N	Sulfate	Calcium	Magnesium	Potassium	Sodium	TDS	Hardness	Hydroxide
Number	Date	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
	NMWQCC Sta	andard (mg/L)		250	1.6	10	600					1,000		
Southwest	08/22/97			3,300										
	02/17/98	<2.0	420	2,170			255					4,719	712	
	02/07/01	<1.0	326	1,900	2.2	5	350	197	59.1		1,078	4,100		
	05/03/02	<1.0	272	1,490	1.38	4.51	301	200	65	46.4	744			<1.00
	10/14/02	<0.1	330	1,330			360	110	32.5	61.5	929	3,020		<0.10
	12/27/02	<0.1	308	1,280			319	107	31.9	66.8	980	3,040		<0.10
	02/18/03	<0.1	289	1,290			300	104	31.3	63	918	2,910		<0.10
Dup	02/18/03	<0.1	298	1,310			299	108	32.2	58.3	812	3,040		<0.10
	06/02/03	<1.0	304	1,420	2.34	5.83	282	161	45.7	49.1	935	4,070		<1.00
Dup	06/02/03	<1.0	290	1,370	2.12	5.65	287	169	54.5	45	899	3,420		<1.00
	08/25/03	<1.0	310	1,190	2.25	6.1	272	117	33.6	49.7	774	3,205		<1.00
Dup	08/25/03	<1.0	200	1,260	<2.00	5.61	75.5	159	41.8	79	591	3,270		<1.00
	11/07/03	<1.0	300	1,240	2.29	5.77	255	129	35.4	48.5	727	3,275		<1.00
	02/05/04	<1.0	300	1,240	2.37	6.17	238	109	33.1	52.2	716	2,860		<1.00
	05/06/04	<1.00	294	1,310	<3.00	6.38	231	158	30.8	53.2	780	3,180		<1.00
	08/03/04	<0.1	276	1,400			264	75.1	45.2	82.4	1,660	2,550		<0.10
	02/11/05	<1.00	260	2,920	1.33	9.61	230	323	94.5	84.4	1,240	5,575		<1.00
	08/04/05	<1.00	226	5,290	1.55	11.7	325	691	201	101	1,980	12,000		<1.00
	02/23/06	<10.0	300	3,000		11	450	373	108	77.1	896	6,300		<10.0
	08/25/06	<10.0	300	3,100	<5.0	5.99	600	415	117	74.9	1,240	7,600		<10.0
	02/28/07	<10	310	4,500	0.51	8.8	670	511	130	93.7	994	9,120		<10
	08/21/07	<10	265	5,500	0.10	11.7	860	879	242	82.6	2,040	14,900		265
	2/20/08	<5	278	5,940	0.63	9.3	896	1,010	281	120	2,300	13,100		<5
	8/13/08	<5	268	5,670	4.18	8.14	775	934	237	112	2110	13,700		<5
	02/19/09	<5	280	5,200	0.78	5.40	870	920	240	120	2300	13,000		<5
	7/29/09	<5	260	5,300	0.96	6.10	810	790	240	110	2200	12,000		<5
	7/28/10	<5	254	3,890	0.96	5.17	565	758	190	67.6	1770	8,850		<5
Dup 1	7/28/10	<5	274	4,050	0.89	3.98	591	667	184	67.9	1730	7,250		<5
	02/16/11	<2.0	228	3,360	0.881	0.812	2,450	538	156	63.3	1,470	8,320		<2.0
	8/18/11	<5.0	319	3,370	1.04	5.10	643	401	98.9	48.6	1,310	5,170		<5.0
	2/22/12	<5.00	324	2,800	1.19	5.63	502	365	99.8	48.6	1,280	6,860		<5.00
	08/29/12	<5.00	323	2,670	1.14	2.96	524	304	90.8	44.3	1,270	5,940		<5.00
	02/21/13	<6.00	359	1,750	1.08	4.43	498	323	86.7	36.3	1,120	4,020		<6.00
	08/13/13	<6.00	342	1,710	1.44	4.09	525	295	86.2	35.7	1,110	3,200		<6.00
	04/03/14	<10.0	417	1,430	1.28	3.40	405	139	39.8	32.4	845	2,760		<10.0
	10/09/14	<4.00	346	1,190	0.817	3.79 J	363	145	40.2	33.3	818	5,210		<4.00

Well	Sample	Carbonate	Bicarbonate	Chloride	Fluoride	Nitrate - N	Sulfate	Calcium	Magnesium	Potassium	Sodium	TDS	Hardness	Hydroxide
Number	Date	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
	NMWQCC Sta		(3, 7	250	1.6	10	600					1,000		
RW-1	10/20/00	<1.0	330	1,500	1.7	5.2	330	107	29.6	50	843	3,200		
	10/14/02	<0.1	327	1,150			340	60.3	25.5	64.3	820	2,720		<0.10
	12/27/02	<0.1	294	1,300			330	123	40.3	56.8	933	3,190		<0.10
	02/18/03	<0.1	300	1,150			316	79.7	25.7	53	721	2,690		<0.10
	06/02/03	<1.0	276	1,500	2.05	5.34	275	194	67.21	40.8	923	4,070		<1.00
	08/25/03	<1.0	298	1,190	2.01	6.15	278	117	32.7	46.1	705	2,940		<1.00
	11/07/03	<1.0	298	1,300	2.13	5.56	266	166	48.1	51.7	106	3,240		<1.00
	02/05/04	<1.0	292	1,270	2.22	5.92	246	148	44.7	53.8	704	2,780		<1.00
	05/06/04	<1.00	310	1,100	<3.00	6.62	235	104	28.3	53.8	635	2,840		<1.00
Dup	05/06/04	<1.00	288	1,040	<3.00	6.64	243	90	24.1	44.5	642	2,705		<1.00
	08/04/04	<0.1	284	1,120			290	44.8	33	86.9	785	2,250		<0.10
Dup	08/04/04	<0.1	288	1,130			274	45	31.6	84	961	2,550		<0.10
	02/11/05	<1.00	262	1,730	3.59	8.93	217	172	51.5	84	910	3,995		<1.00
Dup	02/11/05	<1.00	268	1,690	2	8.59	224	159	46.4	81	813	3,170		<1.00
	08/04/05	<1.00	252	2,470	1.26	5.8	188	262	76.1	87.5	1,090	5,120		<1.00
	02/23/06	<10.0	290	2,400	<2.5	8.9	350	234	67.6	70.4	762	4,680		<10.0
	08/25/06	<10	290	2,300	<5	4.41	440	281	77.3	68.5	1,040	5,610	-	<10.0
Dup	08/25/06	<10.0	300	2,300	<5	4.6	450	272	77.3	67.1	1,030	5,570	-	<10.0
	02/28/07	<10	300	3,100	<0.5	3.5	590	353	97.7	82.2	848	7,400		<10
Dup	02/28/07	<10	290	3,200	<0.5	3.5	600	416	115	83.4	878	7,280		<10
	08/21/07	<10	265	4,100	0.30	3.54	620.0	656	193	72.6	1,640	11,300		265
Dup	08/21/07	<10	263	4,100	0.10	3.38	600.0	655	192	72.5	1,630	11,400		263
	2/20/08	<5	473	5,130	0.56	6.8	677	892	255	126	1,810	11,000		<5
Dup	2/20/08	<5	231	5,120	0.55	6.78	674	888	252	126	1,800	10,800		<5
	8/12/08	<1.53	255	4,650	1.06	6.43	628	816	232	107	1770	11,000		<1.53
Dup	8/12/08	<1.53	229	4,600	1.05	6.37	612	778	222	105	1740	10,900		<1.53
	02/20/09	<5	260	4,600	0.69	1.40	690	680	200	84.0	1700	11,000		<5
Dup	02/20/09	<5	240	4,400	0.65	4.20	630	660	190	83.0	1600	11,000		<5
	7/29/09	<5	240	4,300	0.73	3.30	620	650	220	94.0	1700	10,000		<5
Dup	7/29/09	<5	240	4,200	0.72	3.70	600	640	220	95.0	1700	9,900		<5
	2/25/10	<5	263	4,890	0.34	4.28	650	680	180	75.6	1650	8,870		<5
	7/28/10	<5	254	2,920	0.77	4.98	455	442	132	59.5	1310	7,200		<5
	2/22/12	<5.00	314	2,030	1.03	6.05	449	256	69.0	43.8	1,020	4,860		<5.00
Dup 1	02/22/12	<5.00	317	2,080	0.956	5.39	400	239	69.2	43.7	943	4,300		<5.00
	08/29/12		1		1	1	l	NS	1	l	1			1
	02/21/13	<6.00	339	1,340	0.942	5.18	411	172	48.2	36.8	876	3,120		<6.00
DUP-2	02/21/13	<6.00	341	1,340	0.925	5.15	432	172	46.9	34.8	827	3,110		<6.00
	08/14/13	<6.00	298	1,170	1.22	4.52	389	127	34.6	30.8	724	2,400		<6.00
DUP-1	08/14/13	<6.00	311	1,230	1.36	4.79	416	126	35.5	31.1	704	2,480		<6.00
DUP-3	04/03/14	<10.0	382	1,120	1.25	4.12	345	111	30.5	28.4	667	2,300		<10.0
	04/03/14	<10.0	427	1,280	1.23	0.582	375	114	30.1	29.9	652	1,840		<10.0
	10/09/14	<4.00	318	867	0.836	4.32 J	293	101	28.1	29.9	645	2,190		<4.00
Dup-1	10/09/14	<4.00	317	847	0.733	4.30 J	295	101	27.8	29.6	640	2,290		<4.00

CUMULATIVE SUMMARY OF GROUNDWATER ANALYTICAL RESULTS CHEVRON ENVIRONMENTAL MANAGEMENT COMPANY G.L. ERWIN "A & B" FEDERAL NCT-2 TANK BATTERY SW/4, SE/4, SECTION 35, TOWNSHIP 24 SOUTH, RANGE 37 EAST LEA COUNTY, NEW MEXICO

Well	Sample	Carbonate	Bicarbonate	Chloride	Fluoride	Nitrate - N	Sulfate	Calcium	Magnesium	Potassium	Sodium	TDS	Hardness	Hydroxide
Number	Date	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
	NMWQCC Sta	ndard (mg/L)		250	1.6	10	600					1,000		
WW-1	05/01/02	<1.0	172	97.2	1.64	4.05	137	51.4	23.4	8.23	84.9			<1.00
	10/10/02	<0.1	168	106			124	52.7	22.2	9.99	106	605		<0.10
	12/27/02	<0.1	157	111			134	55	22.5	5.3	96	572		<0.10
	02/18/03	<0.1	152	115			137	53.8	22.1	6.38	93.5	601		<0.10
	06/02/03	<1.0	154	127	1.69	3.77	119	59.5	24.1	7.14	118	621		<1.00
	08/25/03	<1.0	148	136	1.7	3.72	111	63	24	8.43	104	652		<1.00
	11/07/03	<1.0	156	149	1.8	3.62	111	62.3	24.4	8.3	95.5	669		<1.00
	02/04/04	<1.0	156	185	1.81	3.79	102	68.2	25.5	8.7	92.4	709		<1.00
	05/05/04	<1.00	148	204	1.54	3.48	99.7	71.9	26.5	8.25	120	695		<1.00
	08/04/04	<0.1	132	222			114	92.3	37.9	9.89	139	471		<0.10
	08/04/05							NS						
	02/23/06							NS						
	03/01/07	<10	130	360	1.50	3.20	77.0	101	30.7	5.9	103	1,060		<10
	08/21/07							NS						
	2/21/08	<5	106	461	1.22	2.9	84.4	112	41.4	6.82	118	1,310		<5
	8/12/08							NS						
	02/20/09	<5	150	320	1.30	2.80	100	97.0	33.0	6.4	110	1,100		<5
	7/29/09				1		i	NS				i		
	2/24/10	<5	128	246	1.23	2.89	115	80.10	27.20	4.93	107	804		<5
	7/28/10				1		•	NS				1		
	2/16/11	<2.0	127	232	1.21	2.80	232	83.3	26.8	5.40	101	822		<2.0
	8/18/11				1		•	NS				1	1	
	2/22/12	<5.00	163	229	1.40	2.92	103	81.0	27.0	5.51	102	834		<5.00
	8/29/12	<5.00	166	213	1.42	1.63	119	87.6	28.3	5.34	118	756		<5.00
	2/20/13	<6.00	165	218	1.16	2.55	134	83.0	28.6	5.58	108	724		<6.00
	8/14/13	<6.00	157	231	1.28	2.60	146	92.3	31.8	6.22	119	840		<6.00
	4/3/14	<10.0	207	228	1.43	2.69	145	92.7	31.0	6.16	116	792		<10.0
	10/9/14	<4.00	165	205	0.731	2.46 J	145	90.2	31.8	6.01	115	916		<4.00

Notes

- 1. mg/L: Milligrams per liter
- 2. <: Concentration below test method detectin limit
- 3. --: No data available
- 4. NS: Not Sampled
- 5. RW: Recovery well
- 6. WW: Water well
- 7. Highlight: Result exceeds NMWQCC standard
- 8. **Bold** indicates laboratory detection
- 9. B: This Qualifier indicates that the analyte is an estimated value between the RL and the MDL

- 10. All analyses prior to 10/14/02 conducted by TraceAnalysis, Inc., Lubbock, TX
- 11. Analyses from 10/14/02 conducted by Environmental Lab of Texas, Odessa, TX
- 12. Analyses from 5/30/03 through 08/2005 conducted by Trace Analysis Inc., Lubbock, TX
- 13. Analyses from 02/2006 through 08/2007, conducted by Pace Analytical, St. Rose, LA and Greenbay, WI Laboratories
- 14. Analyses from 02/2008 through 08/2009, conducted by Test America, Houston, TX
- 15. Analyses from 02/2010 and following, conducted by ALS Environmental, Houston, TX
- 16. * Reported TDS concentrations include a low bias. Not used in trend comparison.

Appendix E

Certified Laboratory Reports

13091 Pond Springs Road, Suite A100 Austin, TX 78729

Telephone: (512) 506-8803 Fax: (512) 506-8823

www.CRAworld.com

MEMORANDUM

To: Nancy Forster Ref. No.: 039124

FROM: Chris G. Knight/cs/3 DATE: May 8, 2014

RE: Analytical Results and Reduced Validation

Semiannual Groundwater Sampling Event

Chevron Environmental Management Company (CEMC) - G.L. Erwin Tank Battery

Lea County, New Mexico

April 2014

1.0 Introduction

The following document details a reduced validation of analytical results for groundwater samples collected at the CEMC – G.L. Erwin Tank Battery site during April 2014. Samples were submitted to ALC Environmental, located in Houston, Texas. A sample collection and analysis summary is presented in Table 1. The validated analytical results are summarized in Table 2. A summary of the analytical methodology is presented in Table 3.

Standard Conestoga--Rovers & Associates (CRA) report deliverables were submitted by the laboratory. The final results and supporting quality assurance/quality control (QA/QC) data were assessed. Evaluation of the data was based on information obtained from the chain of custody forms, finished report forms, method blank data, duplicate data, recovery data from surrogate spikes, laboratory control samples (LCS), matrix spikes (MS), and field QC samples.

The QA/QC criteria by which these data have been assessed are outlined in the analytical methods referenced in Table 3 and applicable guidance from the document entitled:

 "USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review", USEPA 540/R-94-013, February 1994

Item i) will subsequently be referred to as the "Guidelines" in this Memorandum.

CRA MEMORANDUM

2.0 Sample Holding Time and Preservation

The sample holding time criteria for the analyses are summarized in Table 3. Sample chain of custody documents and analytical reports were used to determine sample holding times. All samples were analyzed within the required holding times.

All samples were properly preserved, delivered on ice, and stored by the laboratory at the required temperature (0-6°C).

3.0 Laboratory Method Blank Analyses

Method blanks are prepared from a purified matrix and analyzed with investigative samples to determine the existence and magnitude of sample contamination introduced during the analytical procedures.

For this study, laboratory method blanks were analyzed at a minimum frequency of 1 per 20 investigative samples and/or 1 per analytical batch.

All method blank results were non-detect, indicating that laboratory contamination was not a factor for this investigation.

4.0 Laboratory Control Sample Analyses

LCS and/or laboratory control sample duplicates (LCSD) are prepared and analyzed as samples to assess the analytical efficiencies of the methods employed, independent of sample matrix effects. The relative percent difference (RPD) of the LCS/LCSD recoveries is used to evaluate analytical precision.

For this study, LCS/LCSD were analyzed at a minimum frequency of 1 per 20 investigative samples and/or 1 per analytical batch.

The LCS/LCSD contained all analytes of interest. LCS recoveries were assessed per the "Guidelines". All LCS recoveries and RPDs were within the control limits, demonstrating acceptable analytical accuracy and precision.

5.0 Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analyses

To evaluate the effects of sample matrices on the extraction or digestion process, measurement procedures, and accuracy of a particular analysis, samples are spiked with a known concentration of the analyte of concern and analyzed as MS/MSD samples. The RPD between the MS and MSD is used to assess analytical precision. If the original sample concentration is significantly greater than the spike concentration, the recovery is not assessed.

CRA MEMORANDUM

MS/MSD analyses were performed as specified in Table 1. For some of the analyses, the laboratory performed additional MS/MSD on non-site samples. The analysis of non-site spike samples cannot be used to assess accuracy and precision for the site samples.

The MS/MSD samples were spiked with the analytes of interest, and the results were evaluated using the "Guidelines". All percent recoveries and RPD values were within the control limits, demonstrating acceptable analytical accuracy and precision with the following exceptions:

i. Several dissolved metals MS/MSD were reported with high recoveries due to matrix interference. No further action was required.

6.0 Field QA/QC Samples

The field QA/QC consisted of three field duplicate sample sets.

Field Duplicate Sample Analysis

To assess the analytical and sampling protocol precision, three field duplicate samples were collected and submitted "blind" to the laboratory, as specified in Table 1. The RPDs associated with these duplicate samples must be less than 50 percent for water samples. If the reported concentration in either the investigative sample or its duplicate is less than five times the practical quantitation limit (PQL), the evaluation criterion is one time the PQL value for water samples.

All field duplicate results were within acceptable agreement, demonstrating acceptable sampling and analytical precision.

7.0 Conclusion

Based on the assessment detailed in the foregoing, the data summarized in Table 2 are acceptable without qualification.

TABLE 1

SAMPLE COLLECTION AND ANALYSIS SUMMARY SEMIANNUAL GROUNDWATER SAMPLING EVENT CHEVRON ENVIRONMENTAL MANAGEMENT COMPANY (CEMC) - G.L. ERWIN LEA COUNTY, NEW MEXICO APRIL 2014

						And	alysis	/Par	amet	ers		
Sample Identification	Location	Matrix	Collection Date (mm/dd/yyyy)	Collection Time (hr:min)	Alkalinity	Dissolved Metals	Chloride	Fluoride	Nitrate (as N)	Sulfate	ZDZ	Comments
WW-1-040314	WW-1	water	04/03/2014	09:30	Χ	Χ	Χ	Χ	Χ	Χ	Χ	
MW-10-040314	MW-10	water	04/03/2014	09:45	Χ	Χ	Χ	Χ	Χ	Χ	Χ	
MW-11-040314	MW-11	water	04/03/2014	10:00	Χ	Χ	Χ	Χ	Χ	Χ	Χ	
MW-25-040314	MW-25	water	04/03/2014	10:15	Χ	Χ	Χ	Χ	Χ	Χ	Χ	
MW-8-040314	MW-8	water	04/03/2014	10:30	Χ	Χ	Χ	Χ	Χ	Χ	Χ	
MW-16-040314	MW-16	water	04/03/2014	10:45	Χ	Χ	Χ	Χ	Χ	Χ	Χ	
MW-17-040314	MW-17	water	04/03/2014	11:00	Χ	Χ	Χ	Χ	Χ	Χ	Χ	
MW-14-040314	MW-14	water	04/03/2014	11:15	Χ	Χ	Χ	Χ	Χ	Χ	Χ	
DUP-1-040314	MW-14	water	04/03/2014	11:15	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Field duplicate of MW-14
MW-12-040314	MW-12	water	04/03/2014	11:30	Χ	Χ	Χ	Χ	Χ	Χ	Χ	
MW-15-040314	MW-15	water	04/03/2014	11:45	Χ	Χ	Χ	Χ	Χ	Χ	Χ	
DUP-2-040314	MW-15	water	04/03/2014	11:45	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Field duplicate of MW-15
MW-20-040314	MW-20	water	04/03/2014	12:00	Χ	Χ	Χ	Χ	Χ	Χ	Χ	
MW-23-040314	MW-23	water	04/03/2014	12:15	Χ	Χ	Χ	Χ	Χ	Χ	Χ	

TABLE 1

SAMPLE COLLECTION AND ANALYSIS SUMMARY SEMIANNUAL GROUNDWATER SAMPLING EVENT CHEVRON ENVIRONMENTAL MANAGEMENT COMPANY (CEMC) - G.L. ERWIN LEA COUNTY, NEW MEXICO APRIL 2014

					Analysis/Parameters				ame			
Sample Identification	Location	Matrix	Collection Date (mm/dd/yyyy)	Collection Time (hr:min)	Alkalinity	Dissolved Metals	Chloride	Fluoride	Nitrate (as N)	Sulfate	гог	Comments
MW-24-040314	MW-24	water	04/03/2014	12:30	Х	Х	Х	Х	Х	Х	Χ	MS/MSD-P
MW-21-040314	MW-21	water	04/03/2014	12:45	Χ	Χ	Χ	Χ	Χ	Χ	Χ	
MW-19-040314	MW-19	water	04/03/2014	13:00	Χ	Χ	Χ	Χ	Χ	Χ	Χ	
MW-13-040314	MW-13	water	04/03/2014	13:15	Χ	Χ	Χ	Χ	Χ	Χ	Χ	
MW-7-040314	MW-7	water	04/03/2014	13:30	Χ	Χ	Χ	Χ	Χ	Χ	Χ	
MW-6-040314	MW-6	water	04/03/2014	13:45	Χ	Χ	Χ	Χ	Χ	Χ	Χ	
MW-3-040314	MW-3	water	04/03/2014	14:00	Χ	Χ	Χ	Χ	Χ	Χ	Χ	MS/MSD-P
MW-5-040314	MW-5	water	04/03/2014	14:15	Χ	Χ	Χ	Χ	Χ	Χ	Χ	MS/MSD-P
RW-1-040314	RW-1	water	04/03/2014	14:30	Χ	Χ	Χ	Χ	Χ	Χ	Χ	
DUP-3-040314	RW-1	water	04/03/2014	14:30	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Field duplicate of RW-1
W-MW-040314	West MW	water	04/03/2014	14:45	Χ	Χ	Χ	Χ	Χ	Χ	Χ	
SW-MW-040314	Southwest	water	04/03/2014	15:00	Χ	Χ	Χ	Χ	Χ	Χ	Χ	
MW-4-040314	MW-4	water	04/03/2014	15:15	Χ	Χ	Χ	Χ	Χ	Χ	Χ	
MW-2-040314	MW-2	water	04/03/2014	15:30	Χ	Χ	Χ	Χ	Χ	Χ	Χ	
MW-1-040314	MW-1	water	04/03/2014	15:45	Χ	Χ	Χ	Χ	Χ	Χ	Χ	
MW-9-040314	MW-9	water	04/03/2014	16:00	Χ	Χ	Χ	Χ	Χ	Χ	Χ	
MW-22-040314	MW-22	water	04/03/2014	16:15	Χ	Χ	Χ	Χ	Χ	Χ	Χ	
MW-26-040314	MW-26	water	04/03/2014	16:30	Χ	Χ	Χ	Χ	Χ	Χ	Χ	

Notes:

N - Nitrogen

TDS - Total Dissolved Solids

MS/MSD-P - Matrix Spike/ Matrix Spike Duplicate (partial parameters)

TABLE 2 Page 1 of 4

ANALYTICAL RESULTS SUMMARY SEMIANNUAL GROUNDWATER SAMPLING EVENT CHEVRON ENVIRONMENTAL MANAGEMENT COMPANY (CEMC) - G.L. ERWIN LEA COUNTY, NEW MEXICO APRIL 2014

Sample Locatio Sample Identificatio Sample Dat Sample Typ	n: te:	MW-1 MW-1-040314 4/3/2014	MW-2 MW-2-040314 4/3/2014	MW-3 MW-3-040314 4/3/2014	MW-4 MW-4-040314 4/3/2014	MW-5 MW-5-040314 4/3/2014	MW-6 MW-6-040314 4/3/2014	MW-7 MW-7-040314 4/3/2014	MW-8 MW-8-040314 4/3/2014	MW-9 MW-9-040314 4/3/2014
Metals	Omes									
Calcium (dissolved)	mg/L	139	57.2	44.6	185	172	41.1	30.7	54.4	37.6
Magnesium (dissolved)	mg/L	48.2	18.6	12.7	52.0	56.6	12.2	8.89	16.3	11.9
Potassium (dissolved)	mg/L	6.33	5.42	15.3	23.3	11.7	9.04	3.80	5.20	4.47
Sodium (dissolved)	mg/L	103	297	665	1140	296	517	305	450	429
General Chemistry										
Alkalinity, bicarbonate	mg/L	182	277	356	380	263	329	307	336	265
Alkalinity, carbonate	mg/L	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0
Alkalinity, hydroxide	mg/L	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0
Alkalinity, total (as CaCO3)	mg/L	182	277	356	380	263	329	307	336	265
Chloride	mg/L	498	548	839	2010	627	607	303	674	628
Fluoride	mg/L	1.30	1.18	1.52	< 0.500	1.33	2.34	3.08	4.01	1.97
Nitrate (as N)	mg/L	1.73	4.77	9.26	3.83	5.91	9.32	5.48	8.17	2.25
Sulfate	mg/L	66.5	148	346	353	165	265	149	206	157
Total dissolved solids (TDS)	mg/L	1160	132	2280	3360	1460	1880	1020	1560	1560

Notes:

N - Nitrogen

TABLE 2 Page 2 of 4

ANALYTICAL RESULTS SUMMARY SEMIANNUAL GROUNDWATER SAMPLING EVENT CHEVRON ENVIRONMENTAL MANAGEMENT COMPANY (CEMC) - G.L. ERWIN LEA COUNTY, NEW MEXICO APRIL 2014

Sample Location: Sample Identification: Sample Date: Sample Type:	Units	MW-10 MW-10-040314 4/3/2014	MW-11 MW-11-040314 4/3/2014	MW-12 MW-12-040314 4/3/2014	MW-13 MW-13-040314 4/3/2014	MW-14 MW-14-040314 4/3/2014	MW-14 DUP-1-040314 4/3/2014 Duplicate	MW-15 MW-15-040314 4/3/2014	MW-15 DUP-2-040314 4/3/2014 Duplicate
Metals	Omes								
Calcium (dissolved)	mg/L	774	820	650	370	1470	1520	289	293
Magnesium (dissolved)	mg/L	237	252	194	125	393	394	104	99.8
Potassium (dissolved)	mg/L	18.9	16.2	13.0	13.1	27.0	28.7	11.0	11.8
Sodium (dissolved)	mg/L	930	576	177	154	3030	2940	127	123
General Chemistry									
Alkalinity, bicarbonate	mg/L	175	151	110	130	133	133	128	127
Alkalinity, carbonate	mg/L	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0
Alkalinity, hydroxide	mg/L	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0
Alkalinity, total (as CaCO3)	mg/L	175	151	110	130	133	133	128	127
Chloride	mg/L	3320	2940	2130	1160	8710	9430	1790	1030
Fluoride	mg/L	0.806	0.788	1.18	1.92	1.25	0.732	1.43	0.932
Nitrate (as N)	mg/L	4.42	3.74	4.21	3.98	4.52	3.63	2.76	2.01
Sulfate	mg/L	270	161	59.6	156	721	668	84.6	79.4
Total dissolved solids (TDS)	mg/L	9500	9080	1300	4360	8460	19900	3620	3560

Notes:

N - Nitrogen

TABLE 2 Page 3 of 4

ANALYTICAL RESULTS SUMMARY SEMIANNUAL GROUNDWATER SAMPLING EVENT CHEVRON ENVIRONMENTAL MANAGEMENT COMPANY (CEMC) - G.L. ERWIN LEA COUNTY, NEW MEXICO APRIL 2014

Sample Location Sample Identification Sample Date Sample Type	: : :	MW-16 MW-16-040314 4/3/2014	MW-17 MW-17-040314 4/3/2014	MW-19 MW-19-040314 4/3/2014	MW-20 MW-20-040314 4/3/2014	MW-21 MW-21-040314 4/3/2014	MW-22 MW-22-040314 4/3/2014	MW-23 MW-23-040314 4/3/2014	MW-24 MW-24-040314 4/3/2014
Metals	Units								
Calcium (dissolved)	mg/L	181	112	1050	407	117	316	138	3410
Magnesium (dissolved)	mg/L	52.1	36.8	362	137	37.4	96.4	48.6	1020
Potassium (dissolved)	mg/L	6.72	5.78	26.3	13.0	8.98	10.6	7.85	108
Sodium (dissolved)	mg/L	321	197	680	243	108	841	103	1150
General Chemistry									
Alkalinity, bicarbonate	mg/L	266	253	122	134	222	238	146	125
Alkalinity, carbonate	mg/L	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0
Alkalinity, hydroxide	mg/L	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0
Alkalinity, total (as CaCO3)	mg/L	266	253	122	134	222	238	146	125
Chloride	mg/L	755	434	3740	1500	236	2420	489	1930
Fluoride	mg/L	1.51	2.54	1.07	1.22	2.72	0.758	1.51	1.34
Nitrate (as N)	mg/L	6.09	4.07	4.22	4.16	5.98	2.40	0.669	3.71
Sulfate	mg/L	162	133	439	134	230	320	96.4	286
Total dissolved solids (TDS)	mg/L	2180	7360	13100	5140	1010	4660	1500	7300

Notes:

N - Nitrogen

TABLE 2 Page 4 of 4

ANALYTICAL RESULTS SUMMARY SEMIANNUAL GROUNDWATER SAMPLING EVENT CHEVRON ENVIRONMENTAL MANAGEMENT COMPANY (CEMC) - G.L. ERWIN LEA COUNTY, NEW MEXICO APRIL 2014

Sample Iden San	Location: tification: nple Date: nple Type: Units	MW-25 MW-25-040314 4/3/2014	MW-26 MW-26-040314 4/3/2014	RW-1 DUP-3-040314 4/3/2014	RW-1 RW-1-040314 4/3/2014 Duplicate	Southwest SW-MW-040314 4/3/2014	West MW W-MW-040314 4/3/2014	WW-1 WW-1-040314 4/3/2014
Metals	o.m.s							
Calcium (dissolved) Magnesium (dissolved)	mg/L	962	173	114	111	139	48.9	92.7
	mg/L	258	51.0	30.1	30.5	39.8	15.3	31.0
Potassium (dissolved) Sodium (dissolved)	mg/L	19.3	8.78	29.9	28.4	32.4	14.2	6.16
	mg/L	1330	838	652	667	845	201	116
General Chemistry	1116/2	1330	030	032	007	043	201	110
Alkalinity, bicarbonate	mg/L	192	270	427	382	417	281	207
Alkalinity, carbonate	mg/L	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0
Alkalinity, hydroxide	mg/L	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0
Alkalinity, total (as CaCO3)	mg/L	192	270	427	382	417	281	207
Chloride	mg/L	4580	1380	1280	1120	1430	235	228
Fluoride	mg/L	0.772	1.02	1.23	1.25	1.28	1.41	1.43
Nitrate (as N)	mg/L	4.47	2.31	0.582	4.12	3.40	3.07	2.69
Sulfate Total dissolved solids (TDS)	mg/L	299	273	375	345	405	159	145
	mg/L	12200	3300	1840	2300	2760	680	792

Notes:

N - Nitrogen

TABLE 3

ANALYTICAL METHODS AND HOLDING TIME CRITERIA SEMIANNUAL GROUNDWATER SAMPLING EVENT CHEVRON ENVIRONMENTAL MANAGEMENT COMPANY (CEMC) - G.L. ERWIN LEA COUNTY, NEW MEXICO APRIL 2014

Parameter	Method	Matrix	<u>Holding Time</u> Collection to Analysis (Days)
Alkalinity	SM 2320B	Water	14
Dissolved Metals	SW-846 6020	Water	180
Chloride	EPA 300	Water	28
Flouride	EPA 300	Water	28
Nitrate (as N)	EPA 300	Water	2
Sulfate	EPA 300	Water	28
TDS	SM 2540C	Water	7

Notes:

SM -"Standard Methods for the Examination of Water and Wastewater", 18th Edition, 1992, with subsequent revisions

SW-846 -"Test Methods for Evaluating Solid Waste, Physical/Chemical Methods", SW-846, Third Edition, 1986, with subsequent revisions

EPA -"Methods for Chemical Analysis of Water and Wastes", USEPA-600/4-79-020, March 1983, with subsequent revisions

N -Nitrogen

TDS -Total Dissolved Solids

April 30, 2014

Nancy Forster Conestoga Rovers & Associates 13091 Pond Springs Road, Suite A100 Austin, Texas 78729 10450 Stancliff Rd. Suite 210 Houston, TX 77099 T: +1 281 530 5656 F: +1 281 530 5887 www.alsglobal.com

Work Order: **HS14040178**

Laboratory Results for: 039124 G.L. Erwin

Dear Nancy,

ALS Environmental received 32 sample(s) on Apr 04, 2014 for the analysis presented in the following report.

The analytical data provided relates directly to the samples received by ALS Environmental and for only the analyses requested. Results are expressed as "as received" unless otherwise noted.

QC sample results for this data met EPA or laboratory specifications except as noted in the Case Narrative or as noted with qualifiers in the QC batch information. Should this laboratory report need to be reproduced, it should be reproduced in full unless written approval has been obtained by ALS Environmental. Samples will be disposed in 30 days unless storage arrangements are made.

If you have any questions regarding this report, please feel free to call me.

Sincerely,

Generated By: Dane.Wacasey

Dane J. Wacasey

Client: Conestoga Rovers & Associates

Project: 039124 G.L. Erwin

SAMPLE SUMMARY

Work Order:	HS14040178				
Lab Samp ID	Client Sample ID	Matrix TagNo	Collection Date	Date Received	Hold
HS14040178-01	WW-1-040314	Groundwater	03-Apr-2014 09:30	04-Apr-2014 10:35	
HS14040178-02	MW-10-040314	Groundwater	03-Apr-2014 09:45	04-Apr-2014 10:35	
HS14040178-03	MW-11-040314	Groundwater	03-Apr-2014 10:00	04-Apr-2014 10:35	
HS14040178-04	MW-25-040314	Groundwater	03-Apr-2014 10:15	04-Apr-2014 10:35	
HS14040178-05	MW-8-040314	Groundwater	03-Apr-2014 10:30	04-Apr-2014 10:35	
HS14040178-06	MW-16-040314	Groundwater	03-Apr-2014 10:45	04-Apr-2014 10:35	
HS14040178-07	MW-17-040314	Groundwater	03-Apr-2014 11:00	04-Apr-2014 10:35	
HS14040178-08	MW-14-040314	Groundwater	03-Apr-2014 11:15	04-Apr-2014 10:35	
HS14040178-09	MW-12-040314	Groundwater	03-Apr-2014 11:30	04-Apr-2014 10:35	
HS14040178-10	MW-15-040314	Groundwater	03-Apr-2014 11:45	04-Apr-2014 10:35	
HS14040178-11	MW-20-040314	Groundwater	03-Apr-2014 12:00	04-Apr-2014 10:35	
HS14040178-12	MW-23-040314	Groundwater	03-Apr-2014 12:15	04-Apr-2014 10:35	
HS14040178-13	MW-24-040314	Groundwater	03-Apr-2014 12:30	04-Apr-2014 10:35	
HS14040178-14	MW-21-040314	Groundwater	03-Apr-2014 12:45	04-Apr-2014 10:35	
HS14040178-15	MW-19-040314	Groundwater	03-Apr-2014 13:00	04-Apr-2014 10:35	
HS14040178-16	MW-13-040314	Groundwater	03-Apr-2014 13:15	04-Apr-2014 10:35	
HS14040178-17	MW-7-040314	Groundwater	03-Apr-2014 13:30	04-Apr-2014 10:35	
HS14040178-18	MW-6-040314	Groundwater	03-Apr-2014 13:45	04-Apr-2014 10:35	
HS14040178-19	MW-3-040314	Groundwater	03-Apr-2014 14:00	04-Apr-2014 10:35	
HS14040178-20	MW-5-040314	Groundwater	03-Apr-2014 14:15	04-Apr-2014 10:35	
HS14040178-21	MW-2-040314	Groundwater	03-Apr-2014 15:30	04-Apr-2014 10:35	
HS14040178-22	MW-1-040314	Groundwater	03-Apr-2014 15:45	04-Apr-2014 10:35	
HS14040178-23	MW-9-040314	Groundwater	03-Apr-2014 16:00	04-Apr-2014 10:35	
HS14040178-24	W-MW-040314	Groundwater	03-Apr-2014 14:45	04-Apr-2014 10:35	
HS14040178-25	SW-MW-040314	Groundwater	03-Apr-2014 15:00	04-Apr-2014 10:35	
HS14040178-26	MW-4-040314	Groundwater	03-Apr-2014 15:15	04-Apr-2014 10:35	
HS14040178-27	MW-22-040314	Groundwater	03-Apr-2014 16:15	04-Apr-2014 10:35	

Client: Project: Work Order:	Conestoga Rovers & Associates 039124 G.L. Erwin HS14040178				SAMPLE SUMI	MARY
Lab Samp ID	Client Sample ID	Matrix	TagNo	Collection Date	Date Received	Hold
HS14040178-28	MW-26-040314	Groundwater		03-Apr-2014 16:30	04-Apr-2014 10:35	
HS14040178-29	RW-1-040314	Water		03-Apr-2014 14:30	04-Apr-2014 10:35	
HS14040178-30	DUP-1-040314	Groundwater		03-Apr-2014 00:00	04-Apr-2014 10:35	
HS14040178-31	DUP-2-040314	Groundwater		03-Apr-2014 00:00	04-Apr-2014 10:35	
HS14040178-32	DUP-3-040314	Groundwater		03-Apr-2014 00:00	04-Apr-2014 10:35	

Client: Conestoga Rovers & Associates

CASE NARRATIVE

30-Apr-14

Date:

Project: 039124 G.L. Erwin

Work Order: HS14040178

Batch 80720, Dissolved Metals by SW6020, Sample HS14040176-01: MS/MSD was performed on an unrelated sample.

Batch 80772, Dissolved Metals by SW6020, Sample MW-24-040314: MS/MSD failed recovery criteria for select analytes due to matrix effect.

Batch 80720, Dissolved Metals by SW6020, Sample HS14040179-01: MS/MSD was performed on an unrelated sample.

Batch R231649, Total Dissolved Solids by SM2540C, Sample HS14040122-01: DUP was performed on an unrelated sample.

Batch R231805, Anions by E300, Sample HS14040181-03: MS/MSD was performed on an unrelated sample.

Batch R232100, Anions by E300, Sample HS14040181-03: MS/MSD was performed on an unrelated sample.

Client:

Conestoga Rovers & Associates

ANALYTICAL REPORT

30-Apr-14

Date:

 Project:
 039124 G.L. Erwin

 Sample ID:
 WW-1-040314

 Collection Date:
 03-Apr-2014 09:30

WorkOrder:HS14040178 Lab ID:14040178-01

Matrix:Groundwater

ANALYSES	RESULT	QUAL	REPORT LIMIT	UNITS	DILUTION FACTOR	DATE ANALYZED
ALKALINITY-SM2320B		Method:SM2320B				Analyst: PPM
Alkalinity, Bicarbonate (As CaCO3)	207		10.0	mg/L	1	07-Apr-2014 13:01
Alkalinity, Carbonate (As CaCO3)	ND		10.0	mg/L	1	07-Apr-2014 13:01
Alkalinity, Hydroxide (As CaCO3)	ND		10.0	mg/L	1	07-Apr-2014 13:01
Alkalinity, Total (As CaCO3)	207		10.0	mg/L	1	07-Apr-2014 13:01

Client: Conestoga Rovers & Associates

ANALYTICAL REPORT

30-Apr-14

Date:

 Project:
 039124 G.L. Erwin

 Sample ID:
 WW-1-040314

 Collection Date:
 03-Apr-2014 09:30

WorkOrder:HS14040178 Lab ID:HS14040178-01 Matrix:Groundwater

ANALYSES	RESULT	QUAL	REPORT LIMIT	UNITS	DILUTION FACTOR	DATE ANALYZED
DISSOLVED METALS		Method:SW6020		Prep:SW	3010A / 15-Apr-2	014 Analyst: ALR
Calcium	92.7		0.500	mg/L	1	16-Apr-2014 07:56
Magnesium	31.0		0.200	mg/L	1	16-Apr-2014 07:56
Potassium	6.16		0.200	mg/L	1	16-Apr-2014 07:56
Sodium	116		0.200	mg/L	1	16-Apr-2014 07:56
TOTAL DISSOLVED SOLIDS		Method:M2540C				Analyst: KAH
Total Dissolved Solids (Residue, Filterable)	792		10.0	mg/L	1	09-Apr-2014 09:55
ANIONS - EPA 300.0 (1993)		Method:E300				Analyst: JKP
Chloride	228		2.50	mg/L	5	04-Apr-2014 20:01
Fluoride	1.43		0.500	mg/L	5	04-Apr-2014 20:01
Nitrogen, Nitrate (As N)	2.69		0.500	mg/L	5	04-Apr-2014 20:01
Sulfate	145		2.50	mg/L	5	04-Apr-2014 20:01

Client: Conestoga Rovers & Associates

ANALYTICAL REPORT

30-Apr-14

Date:

 Project:
 039124 G.L. Erwin

 Sample ID:
 MW-10-040314

 Collection Date:
 03-Apr-2014 09:45

WorkOrder:HS14040178 Lab ID:14040178-02

Matrix:Groundwater

ANALYSES	RESULT	QUAL	REPORT LIMIT	UNITS	DILUTION FACTOR	DATE ANALYZED
ALKALINITY-SM2320B		Method:SM2320B				Analyst: PPM
Alkalinity, Bicarbonate (As CaCO3)	175		10.0	mg/L	1	07-Apr-2014 13:12
Alkalinity, Carbonate (As CaCO3)	ND		10.0	mg/L	1	07-Apr-2014 13:12
Alkalinity, Hydroxide (As CaCO3)	ND		10.0	mg/L	1	07-Apr-2014 13:12
Alkalinity, Total (As CaCO3)	175		10.0	mg/L	1	07-Apr-2014 13:12

Project:

Date:

ANALYTICAL REPORT

30-Apr-14

Client: Conestoga Rovers & Associates

039124 G.L. Erwin

WorkOrder:HS14040178 Lab ID:HS14040178-02

Matrix:Groundwater

Sample ID: MW-10-040314 Collection Date: 03-Apr-2014 09:45

ANALYSES	RESULT	QUAL	REPORT LIMIT	UNITS	DILUTION FACTOR	DATE ANALYZED
DISSOLVED METALS		Method:SW6020		Prep:SW	/3010A / 15-Apr-2	014 Analyst: ALR
Calcium	774		25.0	mg/L	50	16-Apr-2014 21:42
Magnesium	237		10.0	mg/L	50	16-Apr-2014 21:42
Potassium	18.9		0.200	mg/L	1	16-Apr-2014 08:01
Sodium	930		10.0	mg/L	50	16-Apr-2014 21:42
TOTAL DISSOLVED SOLIDS		Method:M2540C				Analyst: KAH
Total Dissolved Solids (Residue, Filterable)	9,500		10.0	mg/L	1	09-Apr-2014 09:55
ANIONS - EPA 300.0 (1993)		Method:E300				Analyst: JKP
Chloride	3,320		25.0	mg/L	50	17-Apr-2014 23:22
Fluoride	0.806		0.500	mg/L	5	04-Apr-2014 20:26
Nitrogen, Nitrate (As N)	4.42		0.500	mg/L	5	04-Apr-2014 20:26
Sulfate	270		2.50	mg/L	5	04-Apr-2014 20:26

Client: Conestoga Rovers & Associates

ANALYTICAL REPORT

30-Apr-14

Date:

 Project:
 039124 G.L. Erwin

 Sample ID:
 MW-11-040314

 Collection Date:
 03-Apr-2014 10:00

WorkOrder:HS14040178 Lab ID:14040178-03

Matrix:Groundwater

ANALYSES	RESULT	QUAL	REPORT LIMIT	UNITS	DILUTION FACTOR	DATE ANALYZED
ALKALINITY-SM2320B		Method:SM2320B				Analyst: PPM
Alkalinity, Bicarbonate (As CaCO3)	151		10.0	mg/L	1	07-Apr-2014 13:27
Alkalinity, Carbonate (As CaCO3)	ND		10.0	mg/L	1	07-Apr-2014 13:27
Alkalinity, Hydroxide (As CaCO3)	ND		10.0	mg/L	1	07-Apr-2014 13:27
Alkalinity, Total (As CaCO3)	151		10.0	mg/L	1	07-Apr-2014 13:27

Client: Conestoga Rovers & Associates

ANALYTICAL REPORT

30-Apr-14

Date:

 Project:
 039124 G.L. Erwin

 Sample ID:
 MW-11-040314

 Collection Date:
 03-Apr-2014 10:00

WorkOrder:HS14040178 Lab ID:HS14040178-03 Matrix:Groundwater

ANALYSES	RESULT	QUAL	REPORT LIMIT	UNITS	DILUTION FACTOR	DATE ANALYZED
DISSOLVED METALS		Method:SW6020		Prep:SW	/3010A / 15-Apr-2	014 Analyst: ALR
Calcium	820		25.0	mg/L	50	16-Apr-2014 21:47
Magnesium	252		10.0	mg/L	50	16-Apr-2014 21:47
Potassium	16.2		0.200	mg/L	1	16-Apr-2014 08:06
Sodium	576		10.0	mg/L	50	16-Apr-2014 21:47
TOTAL DISSOLVED SOLIDS		Method:M2540C				Analyst: KAH
Total Dissolved Solids (Residue, Filterable)	9,080		10.0	mg/L	1	09-Apr-2014 09:55
ANIONS - EPA 300.0 (1993)		Method:E300				Analyst: JKP
Chloride	2,940		25.0	mg/L	50	17-Apr-2014 23:46
Fluoride	0.788		0.500	mg/L	5	04-Apr-2014 20:52
Nitrogen, Nitrate (As N)	3.74		0.500	mg/L	5	04-Apr-2014 20:52
Sulfate	161		2.50	mg/L	5	04-Apr-2014 20:52

Client: Conestoga Rovers & Associates

ANALYTICAL REPORT

30-Apr-14

Date:

 Project:
 039124 G.L. Erwin

 Sample ID:
 MW-25-040314

 Collection Date:
 03-Apr-2014 10:15

WorkOrder:HS14040178 Lab ID:14040178-04

Matrix:Groundwater

ANALYSES	RESULT	QUAL	REPORT LIMIT	UNITS	DILUTION FACTOR	DATE ANALYZED
ALKALINITY-SM2320B		Method:SM2320B				Analyst: PPM
Alkalinity, Bicarbonate (As CaCO3)	192		10.0	mg/L	1	07-Apr-2014 13:32
Alkalinity, Carbonate (As CaCO3)	ND		10.0	mg/L	1	07-Apr-2014 13:32
Alkalinity, Hydroxide (As CaCO3)	ND		10.0	mg/L	1	07-Apr-2014 13:32
Alkalinity, Total (As CaCO3)	192		10.0	mg/L	1	07-Apr-2014 13:32

Project:

Sample ID:

Collection Date:

Date:

ANALYTICAL REPORT

30-Apr-14

Client: Conestoga Rovers & Associates

039124 G.L. Erwin

MW-25-040314 03-Apr-2014 10:15 WorkOrder:HS14040178 Lab ID:HS14040178-04

Matrix:Groundwater

ANALYSES	RESULT	QUAL	REPORT LIMIT	UNITS	DILUTION FACTOR	DATE ANALYZED
DISSOLVED METALS		Method:SW6020		Prep:SW	/3010A / 15-Apr-2	014 Analyst: ALR
Calcium	962		25.0	mg/L	50	17-Apr-2014 14:30
Magnesium	258		1.00	mg/L	5	16-Apr-2014 21:07
Potassium	19.3		1.00	mg/L	5	16-Apr-2014 21:07
Sodium	1,330		10.0	mg/L	50	17-Apr-2014 14:30
TOTAL DISSOLVED SOLIDS		Method:M2540C				Analyst: KAH
Total Dissolved Solids (Residue, Filterable)	12,200		10.0	mg/L	1	09-Apr-2014 09:55
ANIONS - EPA 300.0 (1993)		Method:E300				Analyst: JKP
Chloride	4,580		50.0	mg/L	100	18-Apr-2014 00:10
Fluoride	0.772		0.500	mg/L	5	04-Apr-2014 21:18
Nitrogen, Nitrate (As N)	4.47		0.500	mg/L	5	04-Apr-2014 21:18
Sulfate	299		2.50	mg/L	5	04-Apr-2014 21:18

Client: Conestoga Rovers & Associates

ANALYTICAL REPORT

30-Apr-14

Date:

 Project:
 039124 G.L. Erwin
 WorkOrder:HS14040178

 Sample ID:
 MW-8-040314
 Lab ID:14040178-05

 Collection Date:
 03-Apr-2014 10:30
 Matrix:Groundwater

ANALYSES	RESULT	QUAL	REPORT LIMIT	UNITS	DILUTION FACTOR	DATE ANALYZED
ALKALINITY-SM2320B		Method:SM2320B				Analyst: PPM
Alkalinity, Bicarbonate (As CaCO3)	336		10.0	mg/L	1	07-Apr-2014 13:38
Alkalinity, Carbonate (As CaCO3)	ND		10.0	mg/L	1	07-Apr-2014 13:38
Alkalinity, Hydroxide (As CaCO3)	ND		10.0	mg/L	1	07-Apr-2014 13:38
Alkalinity, Total (As CaCO3)	336		10.0	mg/L	1	07-Apr-2014 13:38

Date:

ANALYTICAL REPORT

30-Apr-14

Client: Conestoga Rovers & Associates

039124 G.L. Erwin

WorkOrder:HS14040178 Lab ID:HS14040178-05 Matrix:Groundwater

 Project:
 039124 G.L. Erwin

 Sample ID:
 MW-8-040314

 Collection Date:
 03-Apr-2014 10:30

ANALYSES	RESULT	QUAL	REPORT LIMIT	UNITS	DILUTION FACTOR	DATE ANALYZED
DISSOLVED METALS		Method:SW6020		Prep:SW	/3010A / 15-Apr-2	014 Analyst: ALR
Calcium	54.4		2.50	mg/L	5	16-Apr-2014 21:12
Magnesium	16.3		1.00	mg/L	5	16-Apr-2014 21:12
Potassium	5.20		1.00	mg/L	5	16-Apr-2014 21:12
Sodium	450		1.00	mg/L	5	16-Apr-2014 21:12
TOTAL DISSOLVED SOLIDS		Method:M2540C				Analyst: KAH
Total Dissolved Solids (Residue, Filterable)	1,560		10.0	mg/L	1	09-Apr-2014 09:55
ANIONS - EPA 300.0 (1993)		Method:E300				Analyst: JKP
Chloride	674		5.00	mg/L	10	18-Apr-2014 00:34
Fluoride	4.01		0.500	mg/L	5	04-Apr-2014 21:44
Nitrogen, Nitrate (As N)	8.17		0.500	mg/L	5	04-Apr-2014 21:44
Sulfate	206		2.50	mg/L	5	04-Apr-2014 21:44

Client: Conestoga Rovers & Associates

ANALYTICAL REPORT

30-Apr-14

Date:

 Project:
 039124 G.L. Erwin

 Sample ID:
 MW-16-040314

 Collection Date:
 03-Apr-2014 10:45

WorkOrder:HS14040178 Lab ID:14040178-06

Matrix:Groundwater

ANALYSES	RESULT	QUAL	REPORT LIMIT	UNITS	DILUTION FACTOR	DATE ANALYZED
ALKALINITY-SM2320B		Method:SM2320B				Analyst: PPM
Alkalinity, Bicarbonate (As CaCO3)	266		10.0	mg/L	1	07-Apr-2014 13:44
Alkalinity, Carbonate (As CaCO3)	ND		10.0	mg/L	1	07-Apr-2014 13:44
Alkalinity, Hydroxide (As CaCO3)	ND		10.0	mg/L	1	07-Apr-2014 13:44
Alkalinity, Total (As CaCO3)	266		10.0	mg/L	1	07-Apr-2014 13:44

Client: Conestoga Rovers & Associates

ANALYTICAL REPORT

30-Apr-14

Date:

 Project:
 039124 G.L. Erwin

 Sample ID:
 MW-16-040314

 Collection Date:
 03-Apr-2014 10:45

WorkOrder:HS14040178 Lab ID:HS14040178-06 Matrix:Groundwater

ANALYSES	RESULT	QUAL	REPORT LIMIT	UNITS	DILUTION FACTOR	DATE ANALYZED
DISSOLVED METALS		Method:SW6020		Prep:SW	/3010A / 15-Apr-2	014 Analyst: ALR
Calcium	181		2.50	mg/L	5	16-Apr-2014 21:17
Magnesium	52.1		1.00	mg/L	5	16-Apr-2014 21:17
Potassium	6.72		1.00	mg/L	5	16-Apr-2014 21:17
Sodium	321		1.00	mg/L	5	16-Apr-2014 21:17
TOTAL DISSOLVED SOLIDS		Method:M2540C				Analyst: KAH
Total Dissolved Solids (Residue, Filterable)	2,180		10.0	mg/L	1	10-Apr-2014 09:55
ANIONS - EPA 300.0 (1993)		Method:E300				Analyst: JKP
Chloride	755		5.00	mg/L	10	18-Apr-2014 00:58
Fluoride	1.51		0.500	mg/L	5	04-Apr-2014 22:10
Nitrogen, Nitrate (As N)	6.09		0.500	mg/L	5	04-Apr-2014 22:10
Sulfate	162		2.50	mg/L	5	04-Apr-2014 22:10

Client: Conestoga Rovers & Associates

ANALYTICAL REPORT

30-Apr-14

Date:

 Project:
 039124 G.L. Erwin

 Sample ID:
 MW-17-040314

 Collection Date:
 03-Apr-2014 11:00

WorkOrder:HS14040178 Lab ID:14040178-07

Matrix:Groundwater

ANALYSES	RESULT	QUAL	REPORT LIMIT	UNITS	DILUTION FACTOR	DATE ANALYZED
ALKALINITY-SM2320B		Method:SM2320B				Analyst: PPM
Alkalinity, Bicarbonate (As CaCO3)	253		10.0	mg/L	1	07-Apr-2014 13:50
Alkalinity, Carbonate (As CaCO3)	ND		10.0	mg/L	1	07-Apr-2014 13:50
Alkalinity, Hydroxide (As CaCO3)	ND		10.0	mg/L	1	07-Apr-2014 13:50
Alkalinity, Total (As CaCO3)	253		10.0	mg/L	1	07-Apr-2014 13:50

Client: Conestoga Rovers & Associates

ANALYTICAL REPORT

30-Apr-14

Date:

 Project:
 039124 G.L. Erwin

 Sample ID:
 MW-17-040314

 Collection Date:
 03-Apr-2014 11:00

WorkOrder:HS14040178 Lab ID:HS14040178-07 Matrix:Groundwater

ANALYSES	RESULT	QUAL	REPORT LIMIT	UNITS	DILUTION FACTOR	DATE ANALYZED
DISSOLVED METALS		Method:SW6020		Prep:SW	/3010A / 15-Apr-2	014 Analyst: ALR
Calcium	112		2.50	mg/L	5	16-Apr-2014 21:22
Magnesium	36.8		1.00	mg/L	5	16-Apr-2014 21:22
Potassium	5.78		1.00	mg/L	5	16-Apr-2014 21:22
Sodium	197		1.00	mg/L	5	16-Apr-2014 21:22
TOTAL DISSOLVED SOLIDS		Method:M2540C				Analyst: KAH
Total Dissolved Solids (Residue, Filterable)	7,360		10.0	mg/L	1	10-Apr-2014 09:55
ANIONS - EPA 300.0 (1993)		Method:E300				Analyst: JKP
Chloride	434		2.50	mg/L	5	04-Apr-2014 22:36
Fluoride	2.54		0.500	mg/L	5	04-Apr-2014 22:36
Nitrogen, Nitrate (As N)	4.07		0.500	mg/L	5	04-Apr-2014 22:36
Sulfate	133		2.50	mg/L	5	04-Apr-2014 22:36

Client: Conestoga Rovers & Associates

ANALYTICAL REPORT

30-Apr-14

Date:

 Project:
 039124 G.L. Erwin

 Sample ID:
 MW-14-040314

 Collection Date:
 03-Apr-2014 11:15

WorkOrder:HS14040178 Lab ID:14040178-08

Matrix:Groundwater

ANALYSES	RESULT Q	RUAL	REPORT LIMIT	UNITS	DILUTION FACTOR	DATE ANALYZED
ALKALINITY-SM2320B	М	lethod:SM2320B				Analyst: PPM
Alkalinity, Bicarbonate (As CaCO3)	133		10.0	mg/L	1	07-Apr-2014 13:56
Alkalinity, Carbonate (As CaCO3)	ND		10.0	mg/L	1	07-Apr-2014 13:56
Alkalinity, Hydroxide (As CaCO3)	ND		10.0	mg/L	1	07-Apr-2014 13:56
Alkalinity, Total (As CaCO3)	133		10.0	mg/L	1	07-Apr-2014 13:56

Client: Conestoga Rovers & Associates

ANALYTICAL REPORT

30-Apr-14

Date:

 Project:
 039124 G.L. Erwin

 Sample ID:
 MW-14-040314

 Collection Date:
 03-Apr-2014 11:15

WorkOrder:HS14040178 Lab ID:HS14040178-08 Matrix:Groundwater

ANALYSES	RESULT	QUAL	REPORT LIMIT	UNITS	DILUTION FACTOR	DATE ANALYZED
DISSOLVED METALS		Method:SW6020		Prep:SW	/3010A / 15-Apr-2	014 Analyst: ALR
Calcium	1,470		25.0	mg/L	50	17-Apr-2014 14:35
Magnesium	393		1.00	mg/L	5	16-Apr-2014 21:27
Potassium	27.0		1.00	mg/L	5	16-Apr-2014 21:27
Sodium	3,030		10.0	mg/L	50	17-Apr-2014 14:35
TOTAL DISSOLVED SOLIDS		Method:M2540C				Analyst: KAH
Total Dissolved Solids (Residue, Filterable)	8,460		10.0	mg/L	1	10-Apr-2014 09:55
ANIONS - EPA 300.0 (1993)		Method:E300				Analyst: JKP
Chloride	8,710		50.0	mg/L	100	18-Apr-2014 01:22
Fluoride	1.25		0.500	mg/L	5	04-Apr-2014 23:01
Nitrogen, Nitrate (As N)	4.52		0.500	mg/L	5	04-Apr-2014 23:01
Sulfate	721		50.0	mg/L	100	18-Apr-2014 01:22

Client: Conestoga Rovers & Associates

ANALYTICAL REPORT

30-Apr-14

Date:

 Project:
 039124 G.L. Erwin

 Sample ID:
 MW-12-040314

 Collection Date:
 03-Apr-2014 11:30

WorkOrder:HS14040178 Lab ID:14040178-09

Matrix:Groundwater

ANALYSES	RESULT	QUAL	REPORT LIMIT	UNITS	DILUTION FACTOR	DATE ANALYZED
ALKALINITY-SM2320B		Method:SM2320B				Analyst: PPM
Alkalinity, Bicarbonate (As CaCO3)	110		10.0	mg/L	1	07-Apr-2014 14:01
Alkalinity, Carbonate (As CaCO3)	ND		10.0	mg/L	1	07-Apr-2014 14:01
Alkalinity, Hydroxide (As CaCO3)	ND		10.0	mg/L	1	07-Apr-2014 14:01
Alkalinity, Total (As CaCO3)	110		10.0	mg/L	1	07-Apr-2014 14:01

Project:

Sample ID:

Collection Date:

Client: Conestoga Rovers & Associates

ANALYTICAL REPORT

30-Apr-14

Date:

 039124 G.L. Erwin
 WorkOrder:HS14040178

 MW-12-040314
 Lab ID:HS14040178-09

 03-Apr-2014 11:30
 Matrix:Groundwater

ANALYSES	RESULT	QUAL	REPORT LIMIT	UNITS	DILUTION FACTOR	DATE ANALYZED
DISSOLVED METALS		Method:SW6020		Prep:SW	/3010A / 15-Apr-2	014 Analyst: ALR
Calcium	650		2.50	mg/L	5	16-Apr-2014 21:32
Magnesium	194		1.00	mg/L	5	16-Apr-2014 21:32
Potassium	13.0		1.00	mg/L	5	16-Apr-2014 21:32
Sodium	177		1.00	mg/L	5	16-Apr-2014 21:32
TOTAL DISSOLVED SOLIDS		Method:M2540C				Analyst: KAH
Total Dissolved Solids (Residue, Filterable)	1,300		10.0	mg/L	1	10-Apr-2014 09:55
ANIONS - EPA 300.0 (1993)		Method:E300				Analyst: JKP
Chloride	2,130		25.0	mg/L	50	18-Apr-2014 02:35
Fluoride	1.18		0.500	mg/L	5	05-Apr-2014 00:19
Nitrogen, Nitrate (As N)	4.21		0.500	mg/L	5	05-Apr-2014 00:19
Sulfate	59.6		2.50	mg/L	5	05-Apr-2014 00:19

Client:

Conestoga Rovers & Associates

ANALYTICAL REPORT

30-Apr-14

Date:

 Project:
 039124 G.L. Erwin

 Sample ID:
 MW-15-040314

 Collection Date:
 03-Apr-2014 11:45

WorkOrder:HS14040178 Lab ID:14040178-10

Matrix:Groundwater

ANALYSES	RESULT	QUAL	REPORT LIMIT	UNITS	DILUTION FACTOR	DATE ANALYZED
ALKALINITY-SM2320B		Method:SM2320B				Analyst: PPM
Alkalinity, Bicarbonate (As CaCO3)	128		10.0	mg/L	1	07-Apr-2014 14:07
Alkalinity, Carbonate (As CaCO3)	ND		10.0	mg/L	1	07-Apr-2014 14:07
Alkalinity, Hydroxide (As CaCO3)	ND		10.0	mg/L	1	07-Apr-2014 14:07
Alkalinity, Total (As CaCO3)	128		10.0	mg/L	1	07-Apr-2014 14:07

ANALYTICAL REPORT

Client: Conestoga Rovers & Associates

WorkOrder:HS14040178 Lab ID:HS14040178-10

 Project:
 039124 G.L. Erwin

 Sample ID:
 MW-15-040314

 Collection Date:
 03-Apr-2014 11:45

Matrix:Groundwater

ANALYSES	RESULT	QUAL	REPORT LIMIT	UNITS	DILUTION FACTOR	DATE ANALYZED
DISSOLVED METALS		Method:SW6020		Prep:SW	/3010A / 16-Apr-2	014 Analyst: SK
Calcium	289		2.50	mg/L	5	17-Apr-2014 14:00
Magnesium	104		1.00	mg/L	5	17-Apr-2014 14:00
Potassium	11.0		1.00	mg/L	5	17-Apr-2014 14:00
Sodium	127		1.00	mg/L	5	17-Apr-2014 14:00
TOTAL DISSOLVED SOLIDS		Method:M2540C				Analyst: KA
Total Dissolved Solids (Residue, Filterable)	3,620		10.0	mg/L	1	10-Apr-2014 09:55
ANIONS - EPA 300.0 (1993)		Method:E300				Analyst: JK
Chloride	1,790		25.0	mg/L	50	18-Apr-2014 02:59
Fluoride	1.43		0.500	mg/L	5	05-Apr-2014 00:45
Nitrogen, Nitrate (As N)	2.76		0.500	mg/L	5	05-Apr-2014 00:45
Sulfate	84.6		2.50	mg/L	5	05-Apr-2014 00:45

Client: Conestoga Rovers & Associates

ANALYTICAL REPORT

30-Apr-14

Date:

 Project:
 039124 G.L. Erwin

 Sample ID:
 MW-20-040314

 Collection Date:
 03-Apr-2014 12:00

WorkOrder:HS14040178 Lab ID:14040178-11

Matrix:Groundwater

ANALYSES	RESULT	QUAL	REPORT LIMIT	UNITS	DILUTION FACTOR	DATE ANALYZED
ALKALINITY-SM2320B		Method:SM2320B				Analyst: PPM
Alkalinity, Bicarbonate (As CaCO3)	134		10.0	mg/L	1	07-Apr-2014 14:22
Alkalinity, Carbonate (As CaCO3)	ND		10.0	mg/L	1	07-Apr-2014 14:22
Alkalinity, Hydroxide (As CaCO3)	ND		10.0	mg/L	1	07-Apr-2014 14:22
Alkalinity, Total (As CaCO3)	134		10.0	mg/L	1	07-Apr-2014 14:22

ANALYTICAL REPORT

Client: Conestoga Rovers & Associates

> WorkOrder:HS14040178 Lab ID:HS14040178-11 Matrix:Groundwater

Date:

30-Apr-14

Project: 039124 G.L. Erwin Sample ID: MW-20-040314 Collection Date: 03-Apr-2014 12:00

ANALYSES	RESULT QUAL	REPORT LIMIT	UNITS	DILUTION FACTOR	DATE ANALYZED
DISSOLVED METALS	Method:SW6020		Prep:S\	V3010A / 16-Apr-	2014 Analyst: SKS
Calcium	407	2.50	mg/L	5	17-Apr-2014 14:03
Magnesium	137	1.00	mg/L	5	17-Apr-2014 14:03
Potassium	13.0	1.00	mg/L	5	17-Apr-2014 14:03
Sodium	243	1.00	mg/L	5	17-Apr-2014 14:03

Calcium	407	2.50	mg/L	5	17-Apr-2014 14:03
Magnesium	137	1.00	mg/L	5	17-Apr-2014 14:03
Potassium	13.0	1.00	mg/L	5	17-Apr-2014 14:03
Sodium	243	1.00	mg/L	5	17-Apr-2014 14:03
TOTAL DISSOLVED SOLIDS	Method:M2540C				Analyst: KAH
Total Dissolved Solids (Residue, Filterable)	5,140	10.0	mg/L	1	10-Apr-2014 09:55
ANIONS - EPA 300.0 (1993)	Method:E300				Analyst: JKP
Chloride	1,500	25.0	mg/L	50	18-Apr-2014 03:23
Fluoride	1.22	0.500	mg/L	5	05-Apr-2014 01:10
Nitrogen, Nitrate (As N)	4.16	0.500	mg/L	5	05-Apr-2014 01:10
Sulfate	134	2.50	mg/L	5	05-Apr-2014 01:10

Client: Conestoga Rovers & Associates

ANALYTICAL REPORT

30-Apr-14

Date:

 Project:
 039124 G.L. Erwin

 Sample ID:
 MW-23-040314

 Collection Date:
 03-Apr-2014 12:15

WorkOrder:HS14040178 Lab ID:14040178-12

Matrix:Groundwater

ANALYSES	RESULT	QUAL	REPORT LIMIT	UNITS	DILUTION FACTOR	DATE ANALYZED
ALKALINITY-SM2320B		Method:SM2320B				Analyst: PPM
Alkalinity, Bicarbonate (As CaCO3)	146		10.0	mg/L	1	07-Apr-2014 14:28
Alkalinity, Carbonate (As CaCO3)	ND		10.0	mg/L	1	07-Apr-2014 14:28
Alkalinity, Hydroxide (As CaCO3)	ND		10.0	mg/L	1	07-Apr-2014 14:28
Alkalinity, Total (As CaCO3)	146		10.0	mg/L	1	07-Apr-2014 14:28

Client: Conestoga Rovers & Associates

ANALYTICAL REPORT

30-Apr-14

Date:

 Project:
 039124 G.L. Erwin

 Sample ID:
 MW-23-040314

 Collection Date:
 03-Apr-2014 12:15

WorkOrder:HS14040178 Lab ID:HS14040178-12 Matrix:Groundwater

ANALYSES	RESULT	QUAL	REPORT LIMIT	UNITS	DILUTION FACTOR	DATE ANALYZED
DISSOLVED METALS		Method:SW6020		Prep:SW	/3010A / 16-Apr-2	014 Analyst: SKS
Calcium	138		2.50	mg/L	5	17-Apr-2014 14:05
Magnesium	48.6		1.00	mg/L	5	17-Apr-2014 14:05
Potassium	7.85		1.00	mg/L	5	17-Apr-2014 14:05
Sodium	103		1.00	mg/L	5	17-Apr-2014 14:05
TOTAL DISSOLVED SOLIDS		Method:M2540C				Analyst: KAF
Total Dissolved Solids (Residue, Filterable)	1,500		10.0	mg/L	1	10-Apr-2014 09:55
ANIONS - EPA 300.0 (1993)		Method:E300				Analyst: JKF
Chloride	489		2.50	mg/L	5	05-Apr-2014 01:36
Fluoride	1.51		0.500	mg/L	5	05-Apr-2014 01:36
Nitrogen, Nitrate (As N)	0.669		0.500	mg/L	5	05-Apr-2014 01:36
Sulfate	96.4		2.50	mg/L	5	05-Apr-2014 01:36

Client: Conestoga Rovers & Associates

ANALYTICAL REPORT

30-Apr-14

Date:

 Project:
 039124 G.L. Erwin

 Sample ID:
 MW-24-040314

 Collection Date:
 03-Apr-2014 12:30

Lab ID:14040178-13 Matrix:Groundwater

WorkOrder:HS14040178

ANALYSES	RESULT	QUAL	REPORT LIMIT	UNITS	DILUTION FACTOR	DATE ANALYZED
ALKALINITY-SM2320B		Method:SM2320B				Analyst: PPM
Alkalinity, Bicarbonate (As CaCO3)	125		10.0	mg/L	1	07-Apr-2014 14:34
Alkalinity, Carbonate (As CaCO3)	ND		10.0	mg/L	1	07-Apr-2014 14:34
Alkalinity, Hydroxide (As CaCO3)	ND		10.0	mg/L	1	07-Apr-2014 14:34
Alkalinity, Total (As CaCO3)	125		10.0	mg/L	1	07-Apr-2014 14:34

Client: Conestoga Rovers & Associates

ANALYTICAL REPORT

30-Apr-14

Date:

 Project:
 039124 G.L. Erwin

 Sample ID:
 MW-24-040314

 Collection Date:
 03-Apr-2014 12:30

WorkOrder:HS14040178 Lab ID:HS14040178-13 Matrix:Groundwater

ANALYSES	RESULT	QUAL	REPORT LIMIT	UNITS	DILUTION FACTOR	DATE ANALYZED
DISSOLVED METALS		Method:SW6020		Prep:SW	/3010A / 16-Apr-2	014 Analyst: SKS
Calcium	3,410		125	mg/L	250	18-Apr-2014 13:12
Magnesium	1,020		50.0	mg/L	250	18-Apr-2014 13:12
Potassium	108		1.00	mg/L	5	17-Apr-2014 14:07
Sodium	1,150		50.0	mg/L	250	18-Apr-2014 13:12
TOTAL DISSOLVED SOLIDS		Method:M2540C				Analyst: KAH
Total Dissolved Solids (Residue, Filterable)	7,300		10.0	mg/L	1	10-Apr-2014 09:55
ANIONS - EPA 300.0 (1993)		Method:E300				Analyst: JKP
Chloride	1,930		25.0	mg/L	50	18-Apr-2014 03:47
Fluoride	1.34		0.500	mg/L	5	05-Apr-2014 02:02
Nitrogen, Nitrate (As N)	3.71		0.500	mg/L	5	05-Apr-2014 02:02
Sulfate	286		2.50	mg/L	5	05-Apr-2014 02:02

Client:

Conestoga Rovers & Associates

ANALYTICAL REPORT

30-Apr-14

Date:

 Project:
 039124 G.L. Erwin

 Sample ID:
 MW-21-040314

 Collection Date:
 03-Apr-2014 12:45

WorkOrder:HS14040178 Lab ID:14040178-14

Matrix:Groundwater

ANALYSES	RESULT	QUAL	REPORT LIMIT	UNITS	DILUTION FACTOR	DATE ANALYZED
ALKALINITY-SM2320B		Method:SM2320B				Analyst: PPM
Alkalinity, Bicarbonate (As CaCO3)	222		10.0	mg/L	1	07-Apr-2014 14:39
Alkalinity, Carbonate (As CaCO3)	ND		10.0	mg/L	1	07-Apr-2014 14:39
Alkalinity, Hydroxide (As CaCO3)	ND		10.0	mg/L	1	07-Apr-2014 14:39
Alkalinity, Total (As CaCO3)	222		10.0	mg/L	1	07-Apr-2014 14:39

Client: Conestoga Rovers & Associates

ANALYTICAL REPORT

30-Apr-14

Date:

 Project:
 039124 G.L. Erwin

 Sample ID:
 MW-21-040314

 Collection Date:
 03-Apr-2014 12:45

WorkOrder:HS14040178 Lab ID:HS14040178-14 Matrix:Groundwater

ANALYSES	RESULT	QUAL	REPORT LIMIT	UNITS	DILUTION FACTOR	DATE ANALYZED
DISSOLVED METALS		Method:SW6020		Prep:SW	/3010A / 16-Apr-2	014 Analyst: SKS
Calcium	117		2.50	mg/L	5	17-Apr-2014 14:29
Magnesium	37.4		1.00	mg/L	5	17-Apr-2014 14:29
Potassium	8.98		1.00	mg/L	5	17-Apr-2014 14:29
Sodium	108		1.00	mg/L	5	17-Apr-2014 14:29
TOTAL DISSOLVED SOLIDS		Method:M2540C				Analyst: KAH
Total Dissolved Solids (Residue, Filterable)	1,010		10.0	mg/L	1	10-Apr-2014 09:55
ANIONS - EPA 300.0 (1993)		Method:E300				Analyst: JKP
Chloride	236		2.50	mg/L	5	05-Apr-2014 02:28
Fluoride	2.72		0.500	mg/L	5	05-Apr-2014 02:28
Nitrogen, Nitrate (As N)	5.98		0.500	mg/L	5	05-Apr-2014 02:28
Sulfate	230		2.50	mg/L	5	05-Apr-2014 02:28

Alkalinity, Total (As CaCO3)

Client: Conestoga Rovers & Associates

122

ANALYTICAL REPORT

07-Apr-2014 14:45

30-Apr-14

Date:

 Project:
 039124 G.L. Erwin

 Sample ID:
 MW-19-040314

 Collection Date:
 03-Apr-2014 13:00

WorkOrder:HS14040178 Lab ID:14040178-15

Matrix:Groundwater

ANALYSES	RESULT	QUAL	REPORT LIMIT	UNITS	DILUTION FACTOR	DATE ANALYZED
ALKALINITY-SM2320B		Method:SM2320B				Analyst: PPM
Alkalinity, Bicarbonate (As CaCO3)	122		10.0	mg/L	1	07-Apr-2014 14:45
Alkalinity, Carbonate (As CaCO3)	ND		10.0	mg/L	1	07-Apr-2014 14:45
Alkalinity, Hydroxide (As CaCO3)	ND		10.0	mg/L	1	07-Apr-2014 14:45

10.0

mg/L

Date:

30-Apr-14

Client: Conestoga Rovers & Associates

 Project:
 039124 G.L. Erwin

 Sample ID:
 MW-19-040314

 Collection Date:
 03-Apr-2014 13:00

ANALYTICAL REPORT

WorkOrder:HS14040178 Lab ID:HS14040178-15 Matrix:Groundwater

ANALYSES	RESULT	QUAL	REPORT LIMIT	UNITS	DILUTION FACTOR	DATE ANALYZED
DISSOLVED METALS		Method:SW6020		Prep:SW	/3010A / 16-Apr-2	2014 Analyst: SKS
Calcium	1,050		25.0	mg/L	50	18-Apr-2014 13:27
Magnesium	362		1.00	mg/L	5	17-Apr-2014 14:31
Potassium	26.3		1.00	mg/L	5	17-Apr-2014 14:31
Sodium	680		1.00	mg/L	5	17-Apr-2014 14:31
TOTAL DISSOLVED SOLIDS		Method:M2540C				Analyst: KAH
Total Dissolved Solids (Residue, Filterable)	13,100		10.0	mg/L	1	10-Apr-2014 09:55
ANIONS - EPA 300.0 (1993)		Method:E300				Analyst: JKP
Chloride	3,740		25.0	mg/L	50	18-Apr-2014 04:11
Fluoride	1.07		0.500	mg/L	5	05-Apr-2014 02:54
Nitrogen, Nitrate (As N)	4.22		0.500	mg/L	5	05-Apr-2014 02:54
Sulfate	439		2.50	mg/L	5	05-Apr-2014 02:54

Client: Conestoga Rovers & Associates

ANALYTICAL REPORT

30-Apr-14

Date:

 Project:
 039124 G.L. Erwin
 WorkOrder:HS14040178

 Sample ID:
 MW-13-040314
 Lab ID:14040178-16

 Collection Date:
 03-Apr-2014 13:15
 Matrix:Groundwater

ANALYSES	RESULT	QUAL	REPORT LIMIT	UNITS	DILUTION FACTOR	DATE ANALYZED
ALKALINITY-SM2320B		Method:SM2320B				Analyst: PPM
Alkalinity, Bicarbonate (As CaCO3)	130		10.0	mg/L	1	07-Apr-2014 14:51
Alkalinity, Carbonate (As CaCO3)	ND		10.0	mg/L	1	07-Apr-2014 14:51
Alkalinity, Hydroxide (As CaCO3)	ND		10.0	mg/L	1	07-Apr-2014 14:51
Alkalinity, Total (As CaCO3)	130		10.0	mg/L	1	07-Apr-2014 14:51

Client: Conestoga Rovers & Associates

ANALYTICAL REPORT

30-Apr-14

Date:

 Project:
 039124 G.L. Erwin

 Sample ID:
 MW-13-040314

 Collection Date:
 03-Apr-2014 13:15

WorkOrder:HS14040178 Lab ID:HS14040178-16 Matrix:Groundwater

ANALYSES	RESULT	QUAL	REPORT LIMIT	UNITS	DILUTION FACTOR	DATE ANALYZED
DISSOLVED METALS		Method:SW6020		Prep:SW	/3010A / 16-Apr-2	014 Analyst: SKS
Calcium	370		2.50	mg/L	5	17-Apr-2014 14:34
Magnesium	125		1.00	mg/L	5	17-Apr-2014 14:34
Potassium	13.1		1.00	mg/L	5	17-Apr-2014 14:34
Sodium	154		1.00	mg/L	5	17-Apr-2014 14:34
TOTAL DISSOLVED SOLIDS		Method:M2540C				Analyst: KAH
Total Dissolved Solids (Residue, Filterable)	4,360		10.0	mg/L	1	10-Apr-2014 09:55
ANIONS - EPA 300.0 (1993)		Method:E300				Analyst: JKP
Chloride	1,160		25.0	mg/L	50	18-Apr-2014 04:36
Fluoride	1.92		0.500	mg/L	5	05-Apr-2014 03:20
Nitrogen, Nitrate (As N)	3.98		0.500	mg/L	5	05-Apr-2014 03:20
Sulfate	156		2.50	mg/L	5	05-Apr-2014 03:20

Client: Conestoga Rovers & Associates

ANALYTICAL REPORT

30-Apr-14

Date:

 Project:
 039124 G.L. Erwin

 Sample ID:
 MW-7-040314

 Collection Date:
 03-Apr-2014 13:30

WorkOrder:HS14040178 Lab ID:14040178-17 Matrix:Groundwater

ANALYSES	RESULT	QUAL	REPORT LIMIT	UNITS	DILUTION FACTOR	DATE ANALYZED
ALKALINITY-SM2320B		Method:SM2320B				Analyst: PPM
Alkalinity, Bicarbonate (As CaCO3)	307		10.0	mg/L	1	07-Apr-2014 14:56
Alkalinity, Carbonate (As CaCO3)	ND		10.0	mg/L	1	07-Apr-2014 14:56
Alkalinity, Hydroxide (As CaCO3)	ND		10.0	mg/L	1	07-Apr-2014 14:56
Alkalinity, Total (As CaCO3)	307		10.0	mg/L	1	07-Apr-2014 14:56

Client: Conestoga Rovers & Associates

ANALYTICAL REPORT

30-Apr-14

Date:

 Project:
 039124 G.L. Erwin
 WorkOrder:HS14040178

 Sample ID:
 MW-7-040314
 Lab ID:HS14040178-17

 Collection Date:
 03-Apr-2014 13:30
 Matrix:Groundwater

ANALYSES	RESULT	QUAL	REPORT LIMIT	UNITS	DILUTION FACTOR	DATE ANALYZED
DISSOLVED METALS		Method:SW6020		Prep:SW	/3010A / 16-Apr-2	014 Analyst: SKS
Calcium	30.7		2.50	mg/L	5	17-Apr-2014 14:37
Magnesium	8.89		1.00	mg/L	5	17-Apr-2014 14:37
Potassium	3.80		1.00	mg/L	5	17-Apr-2014 14:37
Sodium	305		1.00	mg/L	5	17-Apr-2014 14:37
TOTAL DISSOLVED SOLIDS		Method:M2540C				Analyst: KAH
Total Dissolved Solids (Residue, Filterable)	1,020		10.0	mg/L	1	10-Apr-2014 09:55
ANIONS - EPA 300.0 (1993)		Method:E300				Analyst: JKP
Chloride	303		2.50	mg/L	5	05-Apr-2014 03:45
Fluoride	3.08		0.500	mg/L	5	05-Apr-2014 03:45
Nitrogen, Nitrate (As N)	5.48		0.500	mg/L	5	05-Apr-2014 03:45
Sulfate	149		2.50	mg/L	5	05-Apr-2014 03:45

Client:

Conestoga Rovers & Associates

ANALYTICAL REPORT

30-Apr-14

Date:

 Project:
 039124 G.L. Erwin

 Sample ID:
 MW-6-040314

 Collection Date:
 03-Apr-2014 13:45

WorkOrder:HS14040178 Lab ID:14040178-18

Matrix:Groundwater

ANALYSES	RESULT	QUAL	REPORT LIMIT	UNITS	DILUTION FACTOR	DATE ANALYZED
ALKALINITY-SM2320B		Method:SM2320B				Analyst: PPM
Alkalinity, Bicarbonate (As CaCO3)	329		10.0	mg/L	1	07-Apr-2014 15:11
Alkalinity, Carbonate (As CaCO3)	ND		10.0	mg/L	1	07-Apr-2014 15:11
Alkalinity, Hydroxide (As CaCO3)	ND		10.0	mg/L	1	07-Apr-2014 15:11
Alkalinity, Total (As CaCO3)	329		10.0	mg/L	1	07-Apr-2014 15:11

Client: Conestoga Rovers & Associates

ANALYTICAL REPORT

30-Apr-14

Date:

 Project:
 039124 G.L. Erwin

 Sample ID:
 MW-6-040314

 Collection Date:
 03-Apr-2014 13:45

WorkOrder:HS14040178 Lab ID:HS14040178-18 Matrix:Groundwater

ANALYSES	RESULT	QUAL	REPORT LIMIT	UNITS	DILUTION FACTOR	DATE ANALYZED
DISSOLVED METALS		Method:SW6020		Prep:SW	/3010A / 16-Apr-2	014 Analyst: SKS
Calcium	41.1		2.50	mg/L	5	17-Apr-2014 14:39
Magnesium	12.2		1.00	mg/L	5	17-Apr-2014 14:39
Potassium	9.04		1.00	mg/L	5	17-Apr-2014 14:39
Sodium	517		1.00	mg/L	5	17-Apr-2014 14:39
TOTAL DISSOLVED SOLIDS		Method:M2540C				Analyst: KAH
Total Dissolved Solids (Residue, Filterable)	1,880		10.0	mg/L	1	10-Apr-2014 09:55
ANIONS - EPA 300.0 (1993)		Method:E300				Analyst: JKP
Chloride	607		5.00	mg/L	10	18-Apr-2014 05:00
Fluoride	2.35		0.500	mg/L	5	05-Apr-2014 04:11
Nitrogen, Nitrate (As N)	9.32		0.500	mg/L	5	05-Apr-2014 04:11
Sulfate	265		2.50	mg/L	5	05-Apr-2014 04:11

Client:

Conestoga Rovers & Associates

ANALYTICAL REPORT

30-Apr-14

Date:

 Project:
 039124 G.L. Erwin

 Sample ID:
 MW-3-040314

 Collection Date:
 03-Apr-2014 14:00

WorkOrder:HS14040178 Lab ID:14040178-19 Matrix:Groundwater

ANALYSES	RESULT	QUAL	REPORT LIMIT	UNITS	DILUTION FACTOR	DATE ANALYZED
ALKALINITY-SM2320B		Method:SM2320B				Analyst: PPM
Alkalinity, Bicarbonate (As CaCO3)	356		10.0	mg/L	1	07-Apr-2014 15:17
Alkalinity, Carbonate (As CaCO3)	ND		10.0	mg/L	1	07-Apr-2014 15:17
Alkalinity, Hydroxide (As CaCO3)	ND		10.0	mg/L	1	07-Apr-2014 15:17
Alkalinity, Total (As CaCO3)	356		10.0	mg/L	1	07-Apr-2014 15:17

Project:

ANALYTICAL REPORT

Client: Conestoga Rovers & Associates

039124 G.L. Erwin

WorkOrder:HS14040178 Lab ID:HS14040178-19

Matrix:Groundwater

 Sample ID:
 MW-3-040314

 Collection Date:
 03-Apr-2014 14:00

ANALYSES	RESULT	QUAL	REPORT LIMIT	UNITS	DILUTION FACTOR	DATE ANALYZED
DISSOLVED METALS		Method:SW6020		Prep:SW	/3010A / 16-Apr-2	014 Analyst: SKS
Calcium	44.6		2.50	mg/L	5	17-Apr-2014 14:42
Magnesium	12.7		1.00	mg/L	5	17-Apr-2014 14:42
Potassium	15.3		1.00	mg/L	5	17-Apr-2014 14:42
Sodium	665		1.00	mg/L	5	17-Apr-2014 14:42
TOTAL DISSOLVED SOLIDS		Method:M2540C				Analyst: KAH
Total Dissolved Solids (Residue, Filterable)	2,280		10.0	mg/L	1	10-Apr-2014 09:55
ANIONS - EPA 300.0 (1993)		Method:E300				Analyst: JKP
Chloride	839		5.00	mg/L	10	18-Apr-2014 05:24
Fluoride	1.52		0.500	mg/L	5	05-Apr-2014 05:29
Nitrogen, Nitrate (As N)	9.26		0.500	mg/L	5	05-Apr-2014 05:29
Sulfate	346		2.50	mg/L	5	05-Apr-2014 05:29

Client: Conestoga Rovers & Associates

ANALYTICAL REPORT

30-Apr-14

Date:

 Project:
 039124 G.L. Erwin

 Sample ID:
 MW-5-040314

 Collection Date:
 03-Apr-2014 14:15

WorkOrder:HS14040178 Lab ID:14040178-20

Matrix:Groundwater

ANALYSES	RESULT	QUAL	REPORT LIMIT	UNITS	DILUTION FACTOR	DATE ANALYZED
ALKALINITY-SM2320B		Method:SM2320B				Analyst: PPM
Alkalinity, Bicarbonate (As CaCO3)	263		10.0	mg/L	1	07-Apr-2014 15:23
Alkalinity, Carbonate (As CaCO3)	ND		10.0	mg/L	1	07-Apr-2014 15:23
Alkalinity, Hydroxide (As CaCO3)	ND		10.0	mg/L	1	07-Apr-2014 15:23
Alkalinity, Total (As CaCO3)	263		10.0	mg/L	1	07-Apr-2014 15:23

Project:

Date:

ANALYTICAL REPORT

30-Apr-14

Client: Conestoga Rovers & Associates

039124 G.L. Erwin

WorkOrder:HS14040178 Lab ID:HS14040178-20

Matrix:Groundwater

Sample ID: MW-5-040314 Collection Date: 03-Apr-2014 14:15

ANALYSES	RESULT	QUAL	REPORT LIMIT	UNITS	DILUTION FACTOR	DATE ANALYZED
DISSOLVED METALS		Method:SW6020		Prep:SW	/3010A / 16-Apr-2	014 Analyst: SKS
Calcium	172		2.50	mg/L	5	17-Apr-2014 14:49
Magnesium	56.6		1.00	mg/L	5	17-Apr-2014 14:49
Potassium	11.7		1.00	mg/L	5	17-Apr-2014 14:49
Sodium	296		1.00	mg/L	5	17-Apr-2014 14:49
TOTAL DISSOLVED SOLIDS		Method:M2540C				Analyst: KAH
Total Dissolved Solids (Residue, Filterable)	1,460		10.0	mg/L	1	10-Apr-2014 13:45
ANIONS - EPA 300.0 (1993)		Method:E300				Analyst: JKP
Chloride	627		5.00	mg/L	10	18-Apr-2014 07:24
Fluoride	1.33		0.500	mg/L	5	05-Apr-2014 05:54
Nitrogen, Nitrate (As N)	5.91		0.500	mg/L	5	05-Apr-2014 05:54
Sulfate	165		2.50	mg/L	5	05-Apr-2014 05:54

Client: Conestoga Rovers & Associates

ANALYTICAL REPORT

30-Apr-14

Date:

 Project:
 039124 G.L. Erwin

 Sample ID:
 MW-2-040314

 Collection Date:
 03-Apr-2014 15:30

WorkOrder:HS14040178 Lab ID:14040178-21

Matrix:Groundwater

ANALYSES	RESULT	QUAL	REPORT LIMIT	UNITS	DILUTION FACTOR	DATE ANALYZED
ALKALINITY-SM2320B		Method:SM2320B				Analyst: PPM
Alkalinity, Bicarbonate (As CaCO3)	277		10.0	mg/L	1	07-Apr-2014 17:24
Alkalinity, Carbonate (As CaCO3)	ND		10.0	mg/L	1	07-Apr-2014 17:24
Alkalinity, Hydroxide (As CaCO3)	ND		10.0	mg/L	1	07-Apr-2014 17:24
Alkalinity, Total (As CaCO3)	277		10.0	mg/L	1	07-Apr-2014 17:24

Client: Conestoga Rovers & Associates

ANALYTICAL REPORT

30-Apr-14

Date:

 Project:
 039124 G.L. Erwin

 Sample ID:
 MW-2-040314

 Collection Date:
 03-Apr-2014 15:30

WorkOrder:HS14040178 Lab ID:HS14040178-21 Matrix:Groundwater

ANALYSES	RESULT	QUAL	REPORT LIMIT	UNITS	DILUTION FACTOR	DATE ANALYZED
DISSOLVED METALS		Method:SW6020		Prep:SW	/3010A / 16-Apr-2	014 Analyst: SKS
Calcium	57.2		2.50	mg/L	5	17-Apr-2014 14:51
Magnesium	18.6		1.00	mg/L	5	17-Apr-2014 14:51
Potassium	5.42		1.00	mg/L	5	17-Apr-2014 14:51
Sodium	297		1.00	mg/L	5	17-Apr-2014 14:51
TOTAL DISSOLVED SOLIDS		Method:M2540C				Analyst: KAH
Total Dissolved Solids (Residue, Filterable)	132		10.0	mg/L	1	10-Apr-2014 13:45
ANIONS - EPA 300.0 (1993)		Method:E300				Analyst: JKP
Chloride	548		5.00	mg/L	10	18-Apr-2014 07:49
Fluoride	1.18		0.500	mg/L	5	04-Apr-2014 20:08
Nitrogen, Nitrate (As N)	4.77		0.500	mg/L	5	04-Apr-2014 20:08
Sulfate	148		2.50	mg/L	5	04-Apr-2014 20:08

Client: Conestoga Rovers & Associates

ANALYTICAL REPORT

30-Apr-14

Date:

 Project:
 039124 G.L. Erwin

 Sample ID:
 MW-1-040314

 Collection Date:
 03-Apr-2014 15:45

WorkOrder:HS14040178 Lab ID:14040178-22

Matrix:Groundwater

ANALYSES	RESULT	QUAL	REPORT LIMIT	UNITS	DILUTION FACTOR	DATE ANALYZED
ALKALINITY-SM2320B		Method:SM2320B				Analyst: PPM
Alkalinity, Bicarbonate (As CaCO3)	182		10.0	mg/L	1	07-Apr-2014 17:35
Alkalinity, Carbonate (As CaCO3)	ND		10.0	mg/L	1	07-Apr-2014 17:35
Alkalinity, Hydroxide (As CaCO3)	ND		10.0	mg/L	1	07-Apr-2014 17:35
Alkalinity, Total (As CaCO3)	182		10.0	mg/L	1	07-Apr-2014 17:35

Client: Conestoga Rovers & Associates

ANALYTICAL REPORT

30-Apr-14

Date:

 Project:
 039124 G.L. Erwin

 Sample ID:
 MW-1-040314

 Collection Date:
 03-Apr-2014 15:45

WorkOrder:HS14040178 Lab ID:HS14040178-22 Matrix:Groundwater

ANALYSES	RESULT	QUAL	REPORT LIMIT	UNITS	DILUTION FACTOR	DATE ANALYZED
DISSOLVED METALS		Method:SW6020		Prep:SW	/3010A / 16-Apr-2	014 Analyst: SKS
Calcium	139		2.50	mg/L	5	17-Apr-2014 14:54
Magnesium	48.2		1.00	mg/L	5	17-Apr-2014 14:54
Potassium	6.33		1.00	mg/L	5	17-Apr-2014 14:54
Sodium	103		1.00	mg/L	5	17-Apr-2014 14:54
TOTAL DISSOLVED SOLIDS		Method:M2540C				Analyst: KAH
Total Dissolved Solids (Residue, Filterable)	1,160		10.0	mg/L	1	10-Apr-2014 13:45
ANIONS - EPA 300.0 (1993)		Method:E300				Analyst: JKP
Chloride	498		2.50	mg/L	5	04-Apr-2014 20:22
Fluoride	1.30		0.500	mg/L	5	04-Apr-2014 20:22
Nitrogen, Nitrate (As N)	1.73		0.500	mg/L	5	04-Apr-2014 20:22
Sulfate	66.5		2.50	mg/L	5	04-Apr-2014 20:22

Client: Conestoga Rovers & Associates

ANALYTICAL REPORT

30-Apr-14

Date:

 Project:
 039124 G.L. Erwin

 Sample ID:
 MW-9-040314

 Collection Date:
 03-Apr-2014 16:00

WorkOrder:HS14040178 Lab ID:14040178-23

Matrix:Groundwater

ANALYSES	RESULT	QUAL	REPORT LIMIT	UNITS	DILUTION FACTOR	DATE ANALYZED
ALKALINITY-SM2320B		Method:SM2320B				Analyst: PPM
Alkalinity, Bicarbonate (As CaCO3)	265		10.0	mg/L	1	07-Apr-2014 17:50
Alkalinity, Carbonate (As CaCO3)	ND		10.0	mg/L	1	07-Apr-2014 17:50
Alkalinity, Hydroxide (As CaCO3)	ND		10.0	mg/L	1	07-Apr-2014 17:50
Alkalinity, Total (As CaCO3)	265		10.0	mg/L	1	07-Apr-2014 17:50

Client: Conestoga Rovers & Associates

ANALYTICAL REPORT

30-Apr-14

Date:

 Project:
 039124 G.L. Erwin

 Sample ID:
 MW-9-040314

 Collection Date:
 03-Apr-2014 16:00

WorkOrder:HS14040178 Lab ID:HS14040178-23 Matrix:Groundwater

ANALYSES	RESULT	QUAL	REPORT LIMIT	UNITS	DILUTION FACTOR	DATE ANALYZED
DISSOLVED METALS		Method:SW6020		Prep:SW	/3010A / 16-Apr-2	014 Analyst: SKS
Calcium	37.6		2.50	mg/L	5	17-Apr-2014 14:56
Magnesium	11.9		1.00	mg/L	5	17-Apr-2014 14:56
Potassium	4.47		1.00	mg/L	5	17-Apr-2014 14:56
Sodium	429		1.00	mg/L	5	17-Apr-2014 14:56
TOTAL DISSOLVED SOLIDS		Method:M2540C				Analyst: KAH
Total Dissolved Solids (Residue, Filterable)	1,560		10.0	mg/L	1	10-Apr-2014 13:45
ANIONS - EPA 300.0 (1993)		Method:E300				Analyst: JKP
Chloride	628		5.00	mg/L	10	18-Apr-2014 08:13
Fluoride	1.97		0.500	mg/L	5	04-Apr-2014 20:37
Nitrogen, Nitrate (As N)	2.25		0.500	mg/L	5	04-Apr-2014 20:37
Sulfate	157		2.50	mg/L	5	04-Apr-2014 20:37

Client: Conestoga Rovers & Associates

ANALYTICAL REPORT
WorkOrder: HS14040178

Date:

30-Apr-14

Project: 039124 G.L. Erwin
Sample ID: W-MW-040314
Collection Date: 03-Apr-2014 14:45

Lab ID:14040178-24 Matrix:Groundwater

ANALYSES	RESULT	QUAL	REPORT LIMIT	UNITS	DILUTION FACTOR	DATE ANALYZED
ALKALINITY-SM2320B		Method:SM2320B				Analyst: PPM
Alkalinity, Bicarbonate (As CaCO3)	281		10.0	mg/L	1	07-Apr-2014 17:56
Alkalinity, Carbonate (As CaCO3)	ND		10.0	mg/L	1	07-Apr-2014 17:56
Alkalinity, Hydroxide (As CaCO3)	ND		10.0	mg/L	1	07-Apr-2014 17:56
Alkalinity, Total (As CaCO3)	281		10.0	mg/L	1	07-Apr-2014 17:56

Project:

Sample ID:

Collection Date:

Date:

30-Apr-14

Client: Conestoga Rovers & Associates

039124 G.L. Erwin W-MW-040314 03-Apr-2014 14:45 **ANALYTICAL REPORT**

WorkOrder:HS14040178 Lab ID:HS14040178-24 Matrix:Groundwater

ANALYSES	RESULT	QUAL	REPORT LIMIT	UNITS	DILUTION FACTOR	DATE ANALYZED
DISSOLVED METALS		Method:SW6020		Prep:SW	/3010A / 16-Apr-2	014 Analyst: SKS
Calcium	48.9		2.50	mg/L	5	17-Apr-2014 14:59
Magnesium	15.3		1.00	mg/L	5	17-Apr-2014 14:59
Potassium	14.2		1.00	mg/L	5	17-Apr-2014 14:59
Sodium	201		1.00	mg/L	5	17-Apr-2014 14:59
TOTAL DISSOLVED SOLIDS		Method:M2540C				Analyst: KAH
Total Dissolved Solids (Residue, Filterable)	680		10.0	mg/L	1	10-Apr-2014 13:45
ANIONS - EPA 300.0 (1993)		Method:E300				Analyst: JKF
Chloride	235		2.50	mg/L	5	04-Apr-2014 20:51
Fluoride	1.41		0.500	mg/L	5	04-Apr-2014 20:51
Nitrogen, Nitrate (As N)	3.07		0.500	mg/L	5	04-Apr-2014 20:51
Sulfate	159		2.50	mg/L	5	04-Apr-2014 20:51

Client: Conestoga Rovers & Associates

ANALYTICAL REPORT

30-Apr-14

Date:

 Project:
 039124 G.L. Erwin

 Sample ID:
 SW-MW-040314

 Collection Date:
 03-Apr-2014 15:00

WorkOrder:HS14040178 Lab ID:14040178-25

Matrix:Groundwater

ANALYSES	RESULT	QUAL	REPORT LIMIT	UNITS	DILUTION FACTOR	DATE ANALYZED
ALKALINITY-SM2320B		Method:SM2320B				Analyst: PPM
Alkalinity, Bicarbonate (As CaCO3)	417		10.0	mg/L	1	07-Apr-2014 18:01
Alkalinity, Carbonate (As CaCO3)	ND		10.0	mg/L	1	07-Apr-2014 18:01
Alkalinity, Hydroxide (As CaCO3)	ND		10.0	mg/L	1	07-Apr-2014 18:01
Alkalinity, Total (As CaCO3)	417		10.0	mg/L	1	07-Apr-2014 18:01

Project:

Sample ID:

Collection Date:

Date:

ANALYTICAL REPORT

30-Apr-14

Client: Conestoga Rovers & Associates

039124 G.L. Erwin SW-MW-040314

03-Apr-2014 15:00

WorkOrder:HS14040178 Lab ID:HS14040178-25

Matrix:Groundwater

ANALYSES	RESULT	QUAL	REPORT LIMIT	UNITS	DILUTION FACTOR	DATE ANALYZED
DISSOLVED METALS		Method:SW6020		Prep:SW	/3010A / 16-Apr-2	014 Analyst: SKS
Calcium	139		2.50	mg/L	5	17-Apr-2014 15:01
Magnesium	39.8		1.00	mg/L	5	17-Apr-2014 15:01
Potassium	32.4		1.00	mg/L	5	17-Apr-2014 15:01
Sodium	845		1.00	mg/L	5	17-Apr-2014 15:01
TOTAL DISSOLVED SOLIDS		Method:M2540C				Analyst: KAF
Total Dissolved Solids (Residue, Filterable)	2,760		10.0	mg/L	1	10-Apr-2014 13:45
ANIONS - EPA 300.0 (1993)		Method:E300				Analyst: JKF
Chloride	1,430		25.0	mg/L	50	18-Apr-2014 08:37
Fluoride	1.27		0.500	mg/L	5	04-Apr-2014 21:06
Nitrogen, Nitrate (As N)	3.40		0.500	mg/L	5	04-Apr-2014 21:06
Sulfate	405		2.50	mg/L	5	04-Apr-2014 21:06

Client: Conestoga Rovers & Associates

ANALYTICAL REPORT

30-Apr-14

Date:

 Project:
 039124 G.L. Erwin
 WorkOrder:HS14040178

 Sample ID:
 MW-4-040314
 Lab ID:14040178-26

 Collection Date:
 03-Apr-2014 15:15
 Matrix:Groundwater

ANALYSES	RESULT QUAL	REPORT LIMIT	UNITS	DILUTION FACTOR	DATE ANALYZED
ALKALINITY-SM2320B	Method	:SM2320B			Analyst: PPM
Alkalinity, Bicarbonate (As CaCO3)	380	10.0	mg/L	1	07-Apr-2014 18:07
Alkalinity, Carbonate (As CaCO3)	ND	10.0	mg/L	1	07-Apr-2014 18:07
Alkalinity, Hydroxide (As CaCO3)	ND	10.0	mg/L	1	07-Apr-2014 18:07
Alkalinity, Total (As CaCO3)	380	10.0	mg/L	1	07-Apr-2014 18:07

Client: Conestoga Rovers & Associates

ANALYTICAL REPORT

30-Apr-14

Date:

 Project:
 039124 G.L. Erwin

 Sample ID:
 MW-4-040314

 Collection Date:
 03-Apr-2014 15:15

WorkOrder:HS14040178 Lab ID:HS14040178-26 Matrix:Groundwater

ANALYSES	RESULT	QUAL	REPORT LIMIT	UNITS	DILUTION FACTOR	DATE ANALYZED
DISSOLVED METALS		Method:SW6020		Prep:SW	/3010A / 16-Apr-2	014 Analyst: SKS
Calcium	185		2.50	mg/L	5	17-Apr-2014 15:04
Magnesium	52.0		1.00	mg/L	5	17-Apr-2014 15:04
Potassium	23.3		1.00	mg/L	5	17-Apr-2014 15:04
Sodium	1,140		10.0	mg/L	50	18-Apr-2014 13:30
TOTAL DISSOLVED SOLIDS		Method:M2540C				Analyst: KAH
Total Dissolved Solids (Residue, Filterable)	3,360		10.0	mg/L	1	10-Apr-2014 13:45
ANIONS - EPA 300.0 (1993)		Method:E300				Analyst: JKP
Chloride	2,010		25.0	mg/L	50	17-Apr-2014 21:29
Fluoride	ND		0.500	mg/L	5	04-Apr-2014 21:20
Nitrogen, Nitrate (As N)	3.83		0.500	mg/L	5	04-Apr-2014 21:20
Sulfate	353		2.50	mg/L	5	04-Apr-2014 21:20

Project:

Client: Conestoga Rovers & Associates

039124 G.L. Erwin

Sample ID: MW-22-040314 Collection Date: 03-Apr-2014 16:15 **ANALYTICAL REPORT**

30-Apr-14

Date:

WorkOrder:HS14040178 Lab ID:14040178-27 Matrix:Groundwater

ANALYSES	RESULT	QUAL	REPORT LIMIT	UNITS	DILUTION FACTOR	DATE ANALYZED
ALKALINITY-SM2320B		Method:SM2320B				Analyst: PPM
Alkalinity, Bicarbonate (As CaCO3)	238		10.0	mg/L	1	07-Apr-2014 18:13
Alkalinity, Carbonate (As CaCO3)	ND		10.0	mg/L	1	07-Apr-2014 18:13
Alkalinity, Hydroxide (As CaCO3)	ND		10.0	mg/L	1	07-Apr-2014 18:13
Alkalinity, Total (As CaCO3)	238		10.0	mg/L	1	07-Apr-2014 18:13

Project:

Date:

ANALYTICAL REPORT

30-Apr-14

Client: Conestoga Rovers & Associates

039124 G.L. Erwin

WorkOrder:HS14040178 Lab ID:HS14040178-27 Matrix:Groundwater

Sample ID: MW-22-040314 Collection Date: 03-Apr-2014 16:15

ANALYSES	RESULT	QUAL	REPORT LIMIT	UNITS	DILUTION FACTOR	DATE ANALYZED
DISSOLVED METALS		Method:SW6020		Prep:SW	/3010A / 16-Apr-2	014 Analyst: SKS
Calcium	316		2.50	mg/L	5	17-Apr-2014 15:06
Magnesium	96.4		1.00	mg/L	5	17-Apr-2014 15:06
Potassium	10.6		1.00	mg/L	5	17-Apr-2014 15:06
Sodium	841		1.00	mg/L	5	17-Apr-2014 15:06
TOTAL DISSOLVED SOLIDS		Method:M2540C				Analyst: KAH
Total Dissolved Solids (Residue, Filterable)	4,660		10.0	mg/L	1	10-Apr-2014 13:45
ANIONS - EPA 300.0 (1993)		Method:E300				Analyst: JKP
Chloride	2,420		25.0	mg/L	50	17-Apr-2014 21:44
Fluoride	0.758		0.500	mg/L	5	04-Apr-2014 21:35
Nitrogen, Nitrate (As N)	2.40		0.500	mg/L	5	04-Apr-2014 21:35
Sulfate	320		2.50	mg/L	5	04-Apr-2014 21:35

Client: Conestoga Rovers & Associates

ANALYTICAL REPORT

30-Apr-14

Date:

 Project:
 039124 G.L. Erwin

 Sample ID:
 MW-26-040314

 Collection Date:
 03-Apr-2014 16:30

WorkOrder:HS14040178 Lab ID:14040178-28

Matrix:Groundwater

ANALYSES	RESULT	QUAL	REPORT LIMIT	UNITS	DILUTION FACTOR	DATE ANALYZED
ALKALINITY-SM2320B		Method:SM2320B				Analyst: PPM
Alkalinity, Bicarbonate (As CaCO3)	270		10.0	mg/L	1	07-Apr-2014 18:19
Alkalinity, Carbonate (As CaCO3)	ND		10.0	mg/L	1	07-Apr-2014 18:19
Alkalinity, Hydroxide (As CaCO3)	ND		10.0	mg/L	1	07-Apr-2014 18:19
Alkalinity, Total (As CaCO3)	270		10.0	mg/L	1	07-Apr-2014 18:19

Client: Conestoga Rovers & Associates

ANALYTICAL REPORT

30-Apr-14

Date:

 Project:
 039124 G.L. Erwin

 Sample ID:
 MW-26-040314

 Collection Date:
 03-Apr-2014 16:30

WorkOrder:HS14040178 Lab ID:HS14040178-28 Matrix:Groundwater

ANALYSES	RESULT	QUAL	REPORT LIMIT	UNITS	DILUTION FACTOR	DATE ANALYZED
DISSOLVED METALS		Method:SW6020		Prep:SW	/3010A / 16-Apr-2	014 Analyst: SKS
Calcium	173		2.50	mg/L	5	17-Apr-2014 15:09
Magnesium	51.0		1.00	mg/L	5	17-Apr-2014 15:09
Potassium	8.78		1.00	mg/L	5	17-Apr-2014 15:09
Sodium	838		1.00	mg/L	5	17-Apr-2014 15:09
TOTAL DISSOLVED SOLIDS		Method:M2540C				Analyst: KAH
Total Dissolved Solids (Residue, Filterable)	3,300		10.0	mg/L	1	10-Apr-2014 13:45
ANIONS - EPA 300.0 (1993)		Method:E300				Analyst: JKP
Chloride	1,380		25.0	mg/L	50	17-Apr-2014 21:58
Fluoride	1.02		0.500	mg/L	5	04-Apr-2014 21:49
Nitrogen, Nitrate (As N)	2.31		0.500	mg/L	5	04-Apr-2014 21:49
Sulfate	273		2.50	mg/L	5	04-Apr-2014 21:49

Client:

Project:

Sample ID:

Conestoga Rovers & Associates

039124 G.L. Erwin RW-1-040314

Collection Date: 03-Apr-2014 14:30

ANALYTICAL REPORT

30-Apr-14

Date:

WorkOrder:HS14040178 Lab ID:14040178-29

Matrix:Water

ANALYSES	RESULT	QUAL	REPORT LIMIT	UNITS	DILUTION FACTOR	DATE ANALYZED
ALKALINITY-SM2320B		Method:SM2320B				Analyst: PPM
Alkalinity, Bicarbonate (As CaCO3)	382		10.0	mg/L	1	07-Apr-2014 18:25
Alkalinity, Carbonate (As CaCO3)	ND		10.0	mg/L	1	07-Apr-2014 18:25
Alkalinity, Hydroxide (As CaCO3)	ND		10.0	mg/L	1	07-Apr-2014 18:25
Alkalinity, Total (As CaCO3)	382		10.0	mg/L	1	07-Apr-2014 18:25

Project:

Sample ID:

Date: 30-Apr-14

Client: Conestoga Rovers & Associates

ANALYTICAL REPORT 039124 G.L. Erwin WorkOrder:HS14040178 RW-1-040314 Lab ID:HS14040178-29

Collection Date: 03-Apr-2014 14:30 Matrix:Water

ANALYSES	RESULT	QUAL	REPORT LIMIT	UNITS	DILUTION FACTOR	DATE ANALYZED
DISSOLVED METALS		Method:SW6020		Prep:SW	/3010A / 16-Apr-2	014 Analyst: SKS
Calcium	111		2.50	mg/L	5	17-Apr-2014 15:11
Magnesium	30.5		1.00	mg/L	5	17-Apr-2014 15:11
Potassium	28.4		1.00	mg/L	5	17-Apr-2014 15:11
Sodium	667		1.00	mg/L	5	17-Apr-2014 15:11
TOTAL DISSOLVED SOLIDS		Method:M2540C				Analyst: KAH
Total Dissolved Solids (Residue, Filterable)	2,300		10.0	mg/L	1	10-Apr-2014 13:45
ANIONS - EPA 300.0 (1993)		Method:E300				Analyst: JKP
Chloride	1,120		25.0	mg/L	50	17-Apr-2014 22:13
Fluoride	1.25		0.500	mg/L	5	04-Apr-2014 22:33
Nitrogen, Nitrate (As N)	4.12		0.500	mg/L	5	04-Apr-2014 22:33
Sulfate	345		2.50	mg/L	5	04-Apr-2014 22:33

Client: Conestoga Rovers & Associates

ANALYTICAL REPORT

30-Apr-14

Date:

 Project:
 039124 G.L. Erwin

 Sample ID:
 DUP-1-040314

 Collection Date:
 03-Apr-2014 00:00

WorkOrder:HS14040178 Lab ID:14040178-30

Matrix:Groundwater

ANALYSES	RESULT	QUAL	REPORT LIMIT	UNITS	DILUTION FACTOR	DATE ANALYZED
ALKALINITY-SM2320B		Method:SM2320B				Analyst: PPM
Alkalinity, Bicarbonate (As CaCO3)	133		10.0	mg/L	1	07-Apr-2014 18:31
Alkalinity, Carbonate (As CaCO3)	ND		10.0	mg/L	1	07-Apr-2014 18:31
Alkalinity, Hydroxide (As CaCO3)	ND		10.0	mg/L	1	07-Apr-2014 18:31
Alkalinity, Total (As CaCO3)	133		10.0	mg/L	1	07-Apr-2014 18:31

Client: Conestoga Rovers & Associates

ANALYTICAL REPORT

30-Apr-14

Date:

 Project:
 039124 G.L. Erwin

 Sample ID:
 DUP-1-040314

 Collection Date:
 03-Apr-2014 00:00

WorkOrder:HS14040178 Lab ID:HS14040178-30 Matrix:Groundwater

ANALYSES	RESULT	QUAL	REPORT LIMIT	UNITS	DILUTION FACTOR	DATE ANALYZED
DISSOLVED METALS		Method:SW6020		Prep:SW	/3010A / 16-Apr-2	014 Analyst: ALR
Calcium	1,520		25.0	mg/L	50	17-Apr-2014 15:33
Magnesium	394		1.00	mg/L	5	16-Apr-2014 22:51
Potassium	28.7		1.00	mg/L	5	16-Apr-2014 22:51
Sodium	2,940		10.0	mg/L	50	17-Apr-2014 15:33
TOTAL DISSOLVED SOLIDS		Method:M2540C				Analyst: KAH
Total Dissolved Solids (Residue, Filterable)	19,900		10.0	mg/L	1	09-Apr-2014 09:55
ANIONS - EPA 300.0 (1993)		Method:E300				Analyst: JKP
Chloride	9,430		50.0	mg/L	100	17-Apr-2014 22:28
Fluoride	0.732		0.500	mg/L	5	04-Apr-2014 22:48
Nitrogen, Nitrate (As N)	3.63		0.500	mg/L	5	04-Apr-2014 22:48
Sulfate	668		50.0	mg/L	100	17-Apr-2014 22:28

Client: Conestoga Rovers & Associates

ANALYTICAL REPORT

30-Apr-14

Date:

 Project:
 039124 G.L. Erwin

 Sample ID:
 DUP-2-040314

 Collection Date:
 03-Apr-2014 00:00

WorkOrder:HS14040178 Lab ID:14040178-31

Matrix:Groundwater

ANALYSES	RESULT	QUAL	REPORT LIMIT	UNITS	DILUTION FACTOR	DATE ANALYZED
ALKALINITY-SM2320B		Method:SM2320B				Analyst: PPM
Alkalinity, Bicarbonate (As CaCO3)	127		10.0	mg/L	1	07-Apr-2014 18:45
Alkalinity, Carbonate (As CaCO3)	ND		10.0	mg/L	1	07-Apr-2014 18:45
Alkalinity, Hydroxide (As CaCO3)	ND		10.0	mg/L	1	07-Apr-2014 18:45
Alkalinity, Total (As CaCO3)	127		10.0	mg/L	1	07-Apr-2014 18:45

Client: Conestoga Rovers & Associates

ANALYTICAL REPORT

30-Apr-14

Date:

 Project:
 039124 G.L. Erwin

 Sample ID:
 DUP-2-040314

 Collection Date:
 03-Apr-2014 00:00

WorkOrder:HS14040178 Lab ID:HS14040178-31 Matrix:Groundwater

ANALYSES	RESULT	QUAL	REPORT LIMIT	UNITS	DILUTION FACTOR	DATE ANALYZED
DISSOLVED METALS		Method:SW6020		Prep:SW	/3010A / 16-Apr-2	014 Analyst: ALR
Calcium	293		2.50	mg/L	5	16-Apr-2014 22:56
Magnesium	99.8		1.00	mg/L	5	16-Apr-2014 22:56
Potassium	11.8		1.00	mg/L	5	16-Apr-2014 22:56
Sodium	123		1.00	mg/L	5	16-Apr-2014 22:56
TOTAL DISSOLVED SOLIDS		Method:M2540C				Analyst: KAH
Total Dissolved Solids (Residue, Filterable)	3,560		10.0	mg/L	1	09-Apr-2014 09:55
ANIONS - EPA 300.0 (1993)		Method:E300				Analyst: JKP
Chloride	1,030		25.0	mg/L	50	17-Apr-2014 23:11
Fluoride	0.932		0.500	mg/L	5	04-Apr-2014 23:02
Nitrogen, Nitrate (As N)	2.01		0.500	mg/L	5	04-Apr-2014 23:02
Sulfate	79.4		2.50	mg/L	5	04-Apr-2014 23:02

Client: Conestoga Rovers & Associates

ANALYTICAL REPORT

30-Apr-14

Date:

 Project:
 039124 G.L. Erwin

 Sample ID:
 DUP-3-040314

 Collection Date:
 03-Apr-2014 00:00

WorkOrder:HS14040178 Lab ID:14040178-32 Matrix:Groundwater

ANALYSES	RESULT	QUAL	REPORT LIMIT	UNITS	DILUTION FACTOR	DATE ANALYZED
ALKALINITY-SM2320B		Method:SM2320B				Analyst: PPM
Alkalinity, Bicarbonate (As CaCO3)	427		10.0	mg/L	1	07-Apr-2014 18:51
Alkalinity, Carbonate (As CaCO3)	ND		10.0	mg/L	1	07-Apr-2014 18:51
Alkalinity, Hydroxide (As CaCO3)	ND		10.0	mg/L	1	07-Apr-2014 18:51
Alkalinity, Total (As CaCO3)	427		10.0	mg/L	1	07-Apr-2014 18:51

Client: Conestoga Rovers & Associates

ANALYTICAL REPORT

30-Apr-14

Date:

 Project:
 039124 G.L. Erwin

 Sample ID:
 DUP-3-040314

 Collection Date:
 03-Apr-2014 00:00

WorkOrder:HS14040178 Lab ID:HS14040178-32 Matrix:Groundwater

ANALYSES	RESULT	QUAL	REPORT LIMIT	UNITS	DILUTION FACTOR	DATE ANALYZED
DISSOLVED METALS		Method:SW6020		Prep:SW	/3010A / 16-Apr-2	014 Analyst: ALR
Calcium	114		2.50	mg/L	5	16-Apr-2014 23:01
Magnesium	30.1		1.00	mg/L	5	16-Apr-2014 23:01
Potassium	29.9		1.00	mg/L	5	16-Apr-2014 23:01
Sodium	652		1.00	mg/L	5	16-Apr-2014 23:01
TOTAL DISSOLVED SOLIDS		Method:M2540C				Analyst: KAH
Total Dissolved Solids (Residue, Filterable)	1,840		10.0	mg/L	1	09-Apr-2014 09:55
ANIONS - EPA 300.0 (1993)		Method:E300				Analyst: JKP
Chloride	1,280		25.0	mg/L	50	17-Apr-2014 23:26
Fluoride	1.23		0.500	mg/L	5	04-Apr-2014 23:17
Nitrogen, Nitrate (As N)	0.582		0.500	mg/L	5	04-Apr-2014 23:17
Sulfate	375		2.50	mg/L	5	04-Apr-2014 23:17

Project: 039124 G.L. Erwin DATES REPORT

Sample ID	Client Samp ID	Collection Date	TCLP Date Prep Date	Analysis Date	DF
Batch ID 80720	Test Nam	ne: DISSOLVED METALS	Matrix: (Groundwater	
HS14040178-01A	WW-1-040314	03 Apr 2014 09:30	15 Apr 2014 09:00	16 Apr 2014 07:56	1
HS14040178-02A	MW-10-040314	03 Apr 2014 09:45	15 Apr 2014 09:00	16 Apr 2014 21:42	50
HS14040178-02A	MW-10-040314	03 Apr 2014 09:45	15 Apr 2014 09:00	16 Apr 2014 08:01	1
HS14040178-03A	MW-11-040314	03 Apr 2014 10:00	15 Apr 2014 09:00	16 Apr 2014 21:47	50
HS14040178-03A	MW-11-040314	03 Apr 2014 10:00	15 Apr 2014 09:00	16 Apr 2014 08:06	1
HS14040178-04A	MW-25-040314	03 Apr 2014 10:15	15 Apr 2014 09:00	17 Apr 2014 14:30	50
HS14040178-04A	MW-25-040314	03 Apr 2014 10:15	15 Apr 2014 09:00	16 Apr 2014 21:07	5
HS14040178-05A	MW-8-040314	03 Apr 2014 10:30	15 Apr 2014 09:00	16 Apr 2014 21:12	5
HS14040178-06A	MW-16-040314	03 Apr 2014 10:45	15 Apr 2014 09:00	16 Apr 2014 21:17	5
HS14040178-07A	MW-17-040314	03 Apr 2014 11:00	15 Apr 2014 09:00	16 Apr 2014 21:22	5
HS14040178-08A	MW-14-040314	03 Apr 2014 11:15	15 Apr 2014 09:00	17 Apr 2014 14:35	50
HS14040178-08A	MW-14-040314	03 Apr 2014 11:15	15 Apr 2014 09:00	16 Apr 2014 21:27	5
HS14040178-09A	MW-12-040314	03 Apr 2014 11:30	15 Apr 2014 09:00	16 Apr 2014 21:32	5
Batch ID 80772	Test Nam	ne: DISSOLVED METALS	Matrix: \	Vater	
HS14040178-29A	RW-1-040314	03 Apr 2014 14:30	16 Apr 2014 08:00	17 Apr 2014 15:11	5
Batch ID 80772	Test Nam	ne: DISSOLVED METALS	Matrix: (Groundwater	
HS14040178-10A	MW-15-040314	03 Apr 2014 11:45	16 Apr 2014 08:00	17 Apr 2014 14:00	5
IS14040178-11A	MW-20-040314	03 Apr 2014 12:00	16 Apr 2014 08:00	17 Apr 2014 14:03	5
IS14040178-12A	MW-23-040314	03 Apr 2014 12:15	16 Apr 2014 08:00	17 Apr 2014 14:05	5
HS14040178-13A	MW-24-040314	03 Apr 2014 12:30	16 Apr 2014 08:00	18 Apr 2014 13:12	250
IS14040178-13A	MW-24-040314	03 Apr 2014 12:30	16 Apr 2014 08:00	17 Apr 2014 14:07	5
HS14040178-14A	MW-21-040314	03 Apr 2014 12:45	16 Apr 2014 08:00	17 Apr 2014 14:29	5
IS14040178-15A	MW-19-040314	03 Apr 2014 13:00	16 Apr 2014 08:00	18 Apr 2014 13:27	50
HS14040178-15A	MW-19-040314	03 Apr 2014 13:00	16 Apr 2014 08:00	17 Apr 2014 14:31	5
IS14040178-16A	MW-13-040314	03 Apr 2014 13:15	16 Apr 2014 08:00	17 Apr 2014 14:34	5
HS14040178-17A	MW-7-040314	03 Apr 2014 13:30	16 Apr 2014 08:00	17 Apr 2014 14:37	5
IS14040178-18A	MW-6-040314	03 Apr 2014 13:45	16 Apr 2014 08:00	17 Apr 2014 14:39	5
IS14040178-19A	MW-3-040314	03 Apr 2014 14:00	16 Apr 2014 08:00	17 Apr 2014 14:42	5
IS14040178-20A	MW-5-040314	03 Apr 2014 14:15	16 Apr 2014 08:00	17 Apr 2014 14:49	5
IS14040178-21A	MW-2-040314	03 Apr 2014 15:30	16 Apr 2014 08:00	17 Apr 2014 14:51	5
IS14040178-22A	MW-1-040314	03 Apr 2014 15:45	16 Apr 2014 08:00	17 Apr 2014 14:54	5
IS14040178-23A	MW-9-040314	03 Apr 2014 16:00	16 Apr 2014 08:00	17 Apr 2014 14:56	5
IS14040178-24A	W-MW-040314	03 Apr 2014 14:45	16 Apr 2014 08:00	17 Apr 2014 14:59	5
IS14040178-25A	SW-MW-040314	03 Apr 2014 15:00	16 Apr 2014 08:00	17 Apr 2014 15:01	5
HS14040178-26A	MW-4-040314	03 Apr 2014 15:15	16 Apr 2014 08:00	18 Apr 2014 13:30	50
HS14040178-26A	MW-4-040314	03 Apr 2014 15:15	16 Apr 2014 08:00	17 Apr 2014 15:04	5
HS14040178-27A	MW-22-040314	03 Apr 2014 16:15	16 Apr 2014 08:00	17 Apr 2014 15:06	5
		-	•	•	

Project: 039124 G.L. Erwin DATES REPORT

Sample ID	Client Samp ID	Collection Date	TCLP Date	Prep Date	Analysis Date	DF
Batch ID 8078	0 Test Nam	e: DISSOLVED METALS		Matrix: (Groundwater	
HS14040178-30 <i>F</i>	DUP-1-040314	03 Apr 2014 00:00		16 Apr 2014 09:00	17 Apr 2014 15:33	50
HS14040178-30 <i>F</i>	DUP-1-040314	03 Apr 2014 00:00		16 Apr 2014 09:00	16 Apr 2014 22:51	5
HS14040178-31	DUP-2-040314	03 Apr 2014 00:00		16 Apr 2014 09:00	16 Apr 2014 22:56	5
HS14040178-32	A DUP-3-040314	03 Apr 2014 00:00		16 Apr 2014 09:00	16 Apr 2014 23:01	5
atch ID R231	334 Test Nam	e: ALKALINITY-SM2320B		Matrix: (Groundwater	
S14040178-01E	3 WW-1-040314	03 Apr 2014 09:30			07 Apr 2014 13:01	1
IS14040178-02E	3 MW-10-040314	03 Apr 2014 09:45			07 Apr 2014 13:12	1
IS14040178-03E	3 MW-11-040314	03 Apr 2014 10:00			07 Apr 2014 13:27	1
S14040178-04E	3 MW-25-040314	03 Apr 2014 10:15			07 Apr 2014 13:32	1
S14040178-05E	3 MW-8-040314	03 Apr 2014 10:30			07 Apr 2014 13:38	1
S14040178-06E	3 MW-16-040314	03 Apr 2014 10:45			07 Apr 2014 13:44	1
S14040178-07E	3 MW-17-040314	03 Apr 2014 11:00			07 Apr 2014 13:50	1
S14040178-08E	3 MW-14-040314	03 Apr 2014 11:15			07 Apr 2014 13:56	1
S14040178-09E	3 MW-12-040314	03 Apr 2014 11:30			07 Apr 2014 14:01	1
S14040178-10E	3 MW-15-040314	03 Apr 2014 11:45			07 Apr 2014 14:07	1
S14040178-11E	3 MW-20-040314	03 Apr 2014 12:00			07 Apr 2014 14:22	1
S14040178-12E	3 MW-23-040314	03 Apr 2014 12:15			07 Apr 2014 14:28	1
S14040178-13E	3 MW-24-040314	03 Apr 2014 12:30			07 Apr 2014 14:34	1
S14040178-14E	3 MW-21-040314	03 Apr 2014 12:45			07 Apr 2014 14:39	1
S14040178-15E	3 MW-19-040314	03 Apr 2014 13:00			07 Apr 2014 14:45	1
S14040178-16E	3 MW-13-040314	03 Apr 2014 13:15			07 Apr 2014 14:51	1
S14040178-17E	3 MW-7-040314	03 Apr 2014 13:30			07 Apr 2014 14:56	1
S14040178-18E	3 MW-6-040314	03 Apr 2014 13:45			07 Apr 2014 15:11	1
S14040178-19E	3 MW-3-040314	03 Apr 2014 14:00			07 Apr 2014 15:17	1
S14040178-20E	3 MW-5-040314	03 Apr 2014 14:15			07 Apr 2014 15:23	1
atch ID R231	387 Test Nam	e: ALKALINITY-SM2320B		Matrix: V	Vater	
IS14040178-29E	3 RW-1-040314	03 Apr 2014 14:30			07 Apr 2014 18:25	1

Client: Conestoga Rovers & Associates

Project: 039124 G.L. Erwin DATES REPORT

Sample ID	Client Samp ID	Collection Date	TCLP Date	Prep Date	Analysis Date	DF
Batch ID R2313	87 Test Name :	ALKALINITY-SM2320B		Matri	x: Groundwater	
HS14040178-21B	MW-2-040314	03 Apr 2014 15:30			07 Apr 2014 17:24	1
HS14040178-22B	MW-1-040314	03 Apr 2014 15:45			07 Apr 2014 17:35	1
HS14040178-23B	MW-9-040314	03 Apr 2014 16:00			07 Apr 2014 17:50	1
HS14040178-24B	W-MW-040314	03 Apr 2014 14:45			07 Apr 2014 17:56	1
HS14040178-25B	SW-MW-040314	03 Apr 2014 15:00			07 Apr 2014 18:01	1
HS14040178-26B	MW-4-040314	03 Apr 2014 15:15			07 Apr 2014 18:07	1
HS14040178-27B	MW-22-040314	03 Apr 2014 16:15			07 Apr 2014 18:13	1
HS14040178-28B	MW-26-040314	03 Apr 2014 16:30			07 Apr 2014 18:19	1
HS14040178-30B	DUP-1-040314	03 Apr 2014 00:00			07 Apr 2014 18:31	1
HS14040178-31B	DUP-2-040314	03 Apr 2014 00:00			07 Apr 2014 18:45	1
HS14040178-32B	DUP-3-040314	03 Apr 2014 00:00			07 Apr 2014 18:51	1
Batch ID R23164	49 Test Name :	TOTAL DISSOLVED SO	LIDS	Matri	x: Groundwater	
HS14040178-01B	WW-1-040314	03 Apr 2014 09:30			09 Apr 2014 09:55	1
HS14040178-02B	MW-10-040314	03 Apr 2014 09:45			09 Apr 2014 09:55	1
HS14040178-03B	MW-11-040314	03 Apr 2014 10:00			09 Apr 2014 09:55	1
HS14040178-04B	MW-25-040314	03 Apr 2014 10:15			09 Apr 2014 09:55	1
HS14040178-05B	MW-8-040314	03 Apr 2014 10:30			09 Apr 2014 09:55	1
HS14040178-30B	DUP-1-040314	03 Apr 2014 00:00			09 Apr 2014 09:55	1
HS14040178-31B	DUP-2-040314	03 Apr 2014 00:00			09 Apr 2014 09:55	1
HS14040178-32B	DUP-3-040314	03 Apr 2014 00:00			09 Apr 2014 09:55	1
Batch ID R2317	08 Test Name :	TOTAL DISSOLVED SO	LIDS	Matri	x: Groundwater	
HS14040178-06B	MW-16-040314	03 Apr 2014 10:45			10 Apr 2014 09:55	1
HS14040178-07B	MW-17-040314	03 Apr 2014 11:00			10 Apr 2014 09:55	1
HS14040178-08B	MW-14-040314	03 Apr 2014 11:15			10 Apr 2014 09:55	1
HS14040178-09B	MW-12-040314	03 Apr 2014 11:30			10 Apr 2014 09:55	1
HS14040178-10B	MW-15-040314	03 Apr 2014 11:45			10 Apr 2014 09:55	1
HS14040178-11B	MW-20-040314	03 Apr 2014 12:00			10 Apr 2014 09:55	1
HS14040178-12B	MW-23-040314	03 Apr 2014 12:15			10 Apr 2014 09:55	1
HS14040178-13B	MW-24-040314	03 Apr 2014 12:30			10 Apr 2014 09:55	1
HS14040178-14B	MW-21-040314	03 Apr 2014 12:45			10 Apr 2014 09:55	1
HS14040178-15B	MW-19-040314	03 Apr 2014 13:00			10 Apr 2014 09:55	1
HS14040178-16B	MW-13-040314	03 Apr 2014 13:15			10 Apr 2014 09:55	1
HS14040178-17B	MW-7-040314	03 Apr 2014 13:30			10 Apr 2014 09:55	1
HS14040178-18B	MW-6-040314	03 Apr 2014 13:45			10 Apr 2014 09:55	1
HS14040178-19B		03 Apr 2014 14:00			10 Apr 2014 09:55	1
Batch ID R23172	27 Test Name :	TOTAL DISSOLVED SO	LIDS	Matri	x: Water	

Client: Conestoga Rovers & Associates

Project: 039124 G.L. Erwin DATES REPORT

WorkOrder: HS14040178

HS14040178-32B DUP-3-040314

WorkOrder:	HS14040178					
Sample ID	Client Samp ID	Collection Date	TCLP Date	Prep Date	Analysis Date	DF
Batch ID R2317	Test Name :	TOTAL DISSOLVED SC	LIDS	Matri	ix: Groundwater	
HS14040178-20B	MW-5-040314	03 Apr 2014 14:15			10 Apr 2014 13:45	1
HS14040178-21B	MW-2-040314	03 Apr 2014 15:30			10 Apr 2014 13:45	1
HS14040178-22B	MW-1-040314	03 Apr 2014 15:45			10 Apr 2014 13:45	1
IS14040178-23B	MW-9-040314	03 Apr 2014 16:00			10 Apr 2014 13:45	1
IS14040178-24B	W-MW-040314	03 Apr 2014 14:45			10 Apr 2014 13:45	1
IS14040178-25B	SW-MW-040314	03 Apr 2014 15:00			10 Apr 2014 13:45	1
IS14040178-26B	MW-4-040314	03 Apr 2014 15:15			10 Apr 2014 13:45	1
IS14040178-27B	MW-22-040314	03 Apr 2014 16:15			10 Apr 2014 13:45	1
IS14040178-28B	MW-26-040314	03 Apr 2014 16:30			10 Apr 2014 13:45	1
atch ID R2318	05 Test Name :	ANIONS - EPA 300.0 (1	993)	Matri	ix: Water	
S14040178-29B	RW-1-040314	03 Apr 2014 14:30			04 Apr 2014 22:33	5
atch ID R2318	05 Test Name :	ANIONS - EPA 300.0 (1	993)	Matri	ix: Groundwater	
S14040178-21B	MW-2-040314	03 Apr 2014 15:30			04 Apr 2014 20:08	5
S14040178-22B	MW-1-040314	03 Apr 2014 15:45			04 Apr 2014 20:22	5
IS14040178-23B	MW-9-040314	03 Apr 2014 16:00			04 Apr 2014 20:37	5
S14040178-24B	W-MW-040314	03 Apr 2014 14:45			04 Apr 2014 20:51	5
IS14040178-25B	SW-MW-040314	03 Apr 2014 15:00			04 Apr 2014 21:06	5
S14040178-26B	MW-4-040314	03 Apr 2014 15:15			04 Apr 2014 21:20	5
S14040178-27B	MW-22-040314	03 Apr 2014 16:15			04 Apr 2014 21:35	5
S14040178-28B	MW-26-040314	03 Apr 2014 16:30			04 Apr 2014 21:49	5
IS14040178-30B	DUP-1-040314	03 Apr 2014 00:00			04 Apr 2014 22:48	5
S14040178-31B	DUP-2-040314	03 Apr 2014 00:00			04 Apr 2014 23:02	5

04 Apr 2014 23:17

5

03 Apr 2014 00:00

Project: 039124 G.L. Erwin DATES REPORT

Sample ID	Client Samp ID	Collection Date	TCLP Date	Prep Date	Analysis Date	DF
Batch ID R2319	Test Name : AN	NIONS - EPA 300.0 (19	993)	Matrix	: Groundwater	
HS14040178-01B	WW-1-040314	03 Apr 2014 09:30			04 Apr 2014 20:01	5
HS14040178-02B	MW-10-040314	03 Apr 2014 09:45			04 Apr 2014 20:26	5
HS14040178-03B	MW-11-040314	03 Apr 2014 10:00			04 Apr 2014 20:52	5
HS14040178-04B	MW-25-040314	03 Apr 2014 10:15			04 Apr 2014 21:18	5
HS14040178-05B	MW-8-040314	03 Apr 2014 10:30			04 Apr 2014 21:44	5
HS14040178-06B	MW-16-040314	03 Apr 2014 10:45			04 Apr 2014 22:10	5
HS14040178-07B	MW-17-040314	03 Apr 2014 11:00			04 Apr 2014 22:36	5
HS14040178-08B	MW-14-040314	03 Apr 2014 11:15			04 Apr 2014 23:01	5
HS14040178-09B	MW-12-040314	03 Apr 2014 11:30			05 Apr 2014 00:19	5
HS14040178-10B	MW-15-040314	03 Apr 2014 11:45			05 Apr 2014 00:45	5
HS14040178-11B	MW-20-040314	03 Apr 2014 12:00			05 Apr 2014 01:10	5
HS14040178-12B	MW-23-040314	03 Apr 2014 12:15			05 Apr 2014 01:36	5
HS14040178-13B	MW-24-040314	03 Apr 2014 12:30			05 Apr 2014 02:02	5
HS14040178-14B	MW-21-040314	03 Apr 2014 12:45			05 Apr 2014 02:28	5
HS14040178-15B	MW-19-040314	03 Apr 2014 13:00			05 Apr 2014 02:54	5
HS14040178-16B	MW-13-040314	03 Apr 2014 13:15			05 Apr 2014 03:20	5
HS14040178-17B	MW-7-040314	03 Apr 2014 13:30			05 Apr 2014 03:45	5
HS14040178-18B	MW-6-040314	03 Apr 2014 13:45			05 Apr 2014 04:11	5
HS14040178-19B	MW-3-040314	03 Apr 2014 14:00			05 Apr 2014 05:29	5
HS14040178-20B	MW-5-040314	03 Apr 2014 14:15			05 Apr 2014 05:54	5
Batch ID R2321	00 Test Name : AN	NIONS - EPA 300.0 (19	993)	Matrix	: Water	
HS14040178-29B	RW-1-040314	03 Apr 2014 14:30			17 Apr 2014 22:13	50
Batch ID R2321	00 Test Name : AN	NIONS - EPA 300.0 (19	993)	Matrix	: Groundwater	
HS14040178-26B	MW-4-040314	03 Apr 2014 15:15			17 Apr 2014 21:29	50
HS14040178-27B	MW-22-040314	03 Apr 2014 16:15			17 Apr 2014 21:44	50
HS14040178-28B	MW-26-040314	03 Apr 2014 16:30			17 Apr 2014 21:58	50
HS14040178-30B	DUP-1-040314	03 Apr 2014 00:00			17 Apr 2014 22:28	100
HS14040178-31B	DUP-2-040314	03 Apr 2014 00:00			17 Apr 2014 23:11	50
HS14040178-32B	DUP-3-040314	03 Apr 2014 00:00			17 Apr 2014 23:26	50

Project: 039124 G.L. Erwin DATES REPORT

Sample ID	Client Samp ID	Collection Date	TCLP Date	Prep Date	Analysis Date	DF
Batch ID R2321	13 Test Nam	e: ANIONS - EPA 300.0 (19	993)	Matri	x: Groundwater	
HS14040178-02B	MW-10-040314	03 Apr 2014 09:45			17 Apr 2014 23:22	50
HS14040178-03B	MW-11-040314	03 Apr 2014 10:00			17 Apr 2014 23:46	50
HS14040178-04B	MW-25-040314	03 Apr 2014 10:15			18 Apr 2014 00:10	100
HS14040178-05B	MW-8-040314	03 Apr 2014 10:30			18 Apr 2014 00:34	10
HS14040178-06B	MW-16-040314	03 Apr 2014 10:45			18 Apr 2014 00:58	10
HS14040178-08B	MW-14-040314	03 Apr 2014 11:15			18 Apr 2014 01:22	100
HS14040178-09B	MW-12-040314	03 Apr 2014 11:30			18 Apr 2014 02:35	50
HS14040178-10B	MW-15-040314	03 Apr 2014 11:45			18 Apr 2014 02:59	50
HS14040178-11B	MW-20-040314	03 Apr 2014 12:00			18 Apr 2014 03:23	50
HS14040178-13B	MW-24-040314	03 Apr 2014 12:30			18 Apr 2014 03:47	50
HS14040178-15B	MW-19-040314	03 Apr 2014 13:00			18 Apr 2014 04:11	50
HS14040178-16B	MW-13-040314	03 Apr 2014 13:15			18 Apr 2014 04:36	50
HS14040178-18B	MW-6-040314	03 Apr 2014 13:45			18 Apr 2014 05:00	10
HS14040178-19B	MW-3-040314	03 Apr 2014 14:00			18 Apr 2014 05:24	10
HS14040178-20B	MW-5-040314	03 Apr 2014 14:15			18 Apr 2014 07:24	10
HS14040178-21B	MW-2-040314	03 Apr 2014 15:30			18 Apr 2014 07:49	10
HS14040178-23B	MW-9-040314	03 Apr 2014 16:00			18 Apr 2014 08:13	10
HS14040178-25B	SW-MW-040314	03 Apr 2014 15:00			18 Apr 2014 08:37	50

WorkOrder: HS14040178
Project: 039124 G.L. Erwin

QC BATCH REPORT

Batch ID: 8072	20		Instrun	nent:	ICP7500		Method	d: SW602	0		
MBLK	Sample ID:	MBLKW4-041514	4		Units:	mg/L	Anal	ysis Date:	16-Apr-2014	06:01	
Client ID:		F	Run ID:	ICP7500	_231893	SeqNo	o: 2794938	PrepDate:	15-Apr-2014	. D	F: 1
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC		RPD Ref Value	%RPD	RPD Limit	Qual
Calcium		ND	0.500								
Magnesium		ND	0.200								
Potassium		ND	0.200								
Sodium		ND	0.200								

LCS	Sample ID:	MLCSW4-041514	4		Units: I	ng/L	Ana	llysis Date:	16-Apr-20	14 06:06	
Client ID:		1	Run ID:	ICP7500_	_231893	SeqNo:	2794939	PrepDate:	15-Apr-20	14 DF:	1
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Calcium		5.23	0.500	5	0	105	80 - 120				
Magnesium		5.123	0.200	5	0	102	80 - 120				
Potassium		5.076	0.200	5	0	102	80 - 120				
Sodium		5.081	0.200	5	0	102	80 - 120				

MS	Sample ID:	HS14040176-010	SMS		Units: r	ng/L	Ana	lysis Date:	16-Apr-20	14 06:26	
Client ID:		F	Run ID:	ICP7500_	231893	SeqNo:	2794943	PrepDate	15-Apr-20	14 DF	:1
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Calcium		101.2	0.500	5	92.9	166	75 - 125				SO
Magnesium		45.54	0.200	5	41.69	77.0	75 - 125				0
Potassium		13.25	0.200	5	8.192	101	75 - 125				
Sodium		137.9	0.200	5	134.2	74.0	75 - 125				SO

MSD	Sample ID:	HS14040176-010	SMSD		Units: r	ng/L	Ana	lysis Date:	16-Apr-20	14 06:31	
Client ID:		1	Run ID:	ICP7500_	231893	SeqNo:	2794945	PrepDate:	15-Apr-20	14 DF	:1
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Calcium		102	0.500	5	92.9	182	75 - 125	101.2	0.787	25	so
Magnesium		46.65	0.200	5	41.69	99.2	75 - 125	45.54	2.41	25	0
Potassium		13.57	0.200	5	8.192	108	75 - 125	13.25	2.39	25	
Sodium		140.2	0.200	5	134.2	120	75 - 125	137.9	1.65	25	0

Client: Conestoga Rovers & Associates

WorkOrder: HS14040178
Project: 039124 G.L. Erwin

QC BATCH REPORT

		Instrun	nent:	ICP7500		Metho	d: SW602	0		
Sample ID:	HS14040176-01	GDUP		Units:	mg/L	Ana	lysis Date:	16-Apr-2014	06:16	
		Run ID:	ICP7500	_231893	SeqNo: 2	2794941	PrepDate:	15-Apr-2014	DF:	1
	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
	93.01	0.500					92.9	0.118	25	
	41.59	0.200					41.69	0.24	25	
	8.175	0.200					8.192	0.208	25	
	134.7	0.200					134.2	0.372	25	
	Sample ID:	93.01 41.59 8.175	Result PQL 93.01 0.500 41.59 0.200 8.175 0.200	Run ID: ICP7500 Result PQL SPK Val 93.01 0.500 41.59 0.200 8.175 0.200	Run ID: ICP7500_231893 SPK Ref Result PQL SPK Val Value 93.01 0.500 41.59 0.200 8.175 0.200	Run ID: ICP7500_231893 SeqNo: 3 SPK Ref Result PQL SPK Val Value %REC 93.01 0.500 41.59 0.200 8.175 0.200	Result PQL SPK Val SPK Ref Value REC Limit 93.01 0.500 41.59 0.200 8.175 0.200	Run ID: ICP7500_231893 SeqNo: 2794941 PrepDate:	Run ID: ICP7500_231893 SeqNo: 2794941 PrepDate: 15-Apr-2014 SPK Ref Result PQL SPK Val Value %REC Limit Value %RPD 93.01 0.500 92.9 0.118 41.59 0.200 41.69 0.24 8.175 0.200 8.192 0.208	Run ID: ICP7500_231893 SeqNo: 2794941 PrepDate: 15-Apr-2014 DF: Result PQL SPK Val Value %REC Control Limit RPD Ref Value %RPD RPD Limit 93.01 0.500 92.9 0.118 25 41.59 0.200 41.69 0.24 25 8.175 0.200 8.192 0.208 25

PDS	Sample ID:	HS14040176-010	GBS		Units: ı	mg/L	Ana	llysis Date:	16-Apr-20	14 06:36	
Client ID:			Run ID:	ICP7500_	_231893	SeqNo:	2794946	PrepDate:		DF	1
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Calcium		101.7	0.500	10	92.9	88.0	75 - 125				0
Magnesium		49.75	0.200	10	41.69	80.6	75 - 125				0
Potassium		17.44	0.200	10	8.192	92.5	75 - 125				
Sodium		140.3	0.200	10	134.2	61.0	75 - 125				SO

SD	Sample ID:	HS14040176-01G	DIL SX		Units: r	ng/L	Ana	llysis Date:	16-Apr-20	14 06:21	
Client ID:		F	Run ID:	ICP7500_	231893	SeqNo: 2	2794942	PrepDate:		DF	: 5
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Calcium		89.25	2.50		0	0		92.9	3.93	10	
Magnesium		40.84	1.00		0	0		41.69	2.04	10	
Potassium		8.195	1.00		0	0		8.192	0.0366	10	
Sodium		130.6	1.00		0	0		134.2	2.72	10	

The following samples were analyzed in this batch:	HS14040178-01A	HS14040178-02A	HS14040178-03A	HS14040178-04A
	HS14040178-05A	HS14040178-06A	HS14040178-07A	HS14040178-08A
	HS14040178-09A			

WorkOrder: HS14040178
Project: 039124 G.L. Erwin

QC BATCH REPORT

Batch ID: 8077	72		Instrun	nent: I	CPMS05		Metho	d: SW602	0		
MBLK	Sample ID:	MBLKW2-04161	4		Units:	mg/L	Ana	lysis Date:	17-Apr-2014	13:55	
Client ID:			Run ID:	ICPMS05	_232095	SeqNo:	2797517	PrepDate:	16-Apr-2014	, D	F: 1
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Calcium		ND	0.500								
Magnesium		ND	0.200								
Potassium		ND	0.200								
Sodium		ND	0.200								

LCS	Sample ID:	MLCSW2-041614	4		Units: I	ng/L	Ana	lysis Date:	17-Apr-20	14 13:58	
Client ID:		I	Run ID:	ICPMS05	_232095	SeqNo:	2797518	PrepDate:	16-Apr-20	14 DF:	:1
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Calcium		5.129	0.500	5	0	103	80 - 120				
Magnesium		5.078	0.200	5	0	102	80 - 120				
Potassium		5.004	0.200	5	0	100	80 - 120				
Sodium		5.065	0.200	5	0	101	80 - 120				

MS	Sample ID:	HS14040178-13A	AMS		Units: r	mg/L	Ana	lysis Date:	17-Apr-201	4 14:18	
Client ID: MV	V-24-040314	1	Run ID:	ICPMS05	_232095	SeqNo:	2797526	PrepDate:	16-Apr-201	4 DF:	5
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Calcium		3389	2.50	5	3351	746	75 - 125				SEO
Magnesium		1079	1.00	5	1035	876	75 - 125				SEO
Potassium		135.4	1.00	5	107.7	553	75 - 125				SO
Sodium		1204	1.00	5	1166	749	75 - 125				SEO

MSD	Sample ID:	HS14040178-13	AMSD		Units: ı	mg/L	Ana	lysis Date:	17-Apr-20	14 14:21	
Client ID: N	/IW-24-040314		Run ID:	ICPMS05	_232095	SeqNo:	2797527	PrepDate:	16-Apr-20	14 DF	: 5
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Calcium		3409	2.50	5	3351	1150	75 - 125	3389	0.595	25	SEO
Magnesium		1049	1.00	5	1035	287	75 - 125	1079	2.77	25	SEO
Potassium		135.1	1.00	5	107.7	547	75 - 125	135.4	0.22	25	so
Sodium		1177	1.00	5	1166	223	75 - 125	1204	2.21	25	SEO

Client: Conestoga Rovers & Associates

WorkOrder: HS14040178
Project: 039124 G.L. Erwin

QC BATCH REPORT

Batch ID:	80772		Instrun	nent: I	CPMS05		Metho	d: SW602	0		
DUP	Sample ID:	HS14040178-13	ADUP		Units:	mg/L	Ana	lysis Date:	18-Apr-201	4 13:15	1
Client ID:	MW-24-040314		Run ID:	ICPMS05	_232133	SeqNo:	2798786	PrepDate:	16-Apr-201	4 D	F: 250
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Calcium		3454	125					3407	1.36	25	
Magnesium	1	998.9	50.0					1019	1.97	25	
Sodium		1123	50.0					1151	2.52	25	

DUP	Sample ID:	HS14040178-13AD	OUP	Units:	mg/L	Ana	lysis Date:	17-Apr-20	14 14:10	
Client ID:	MW-24-040314	Ru	un ID: ICPMS05	_232095	SeqNo:	2797523	PrepDate:	16-Apr-20	14 D	F: 5
Analyte		Result	PQL SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Potassium		107.6	1.00	_			107.7	0.115	25	

PDS	Sample ID:	HS14040178-13	ABS		Units: ı	mg/L	Ana	lysis Date:	18-Apr-20	14 13:17	
Client ID:	MW-24-040314		Run ID:	ICPMS05	_232133	SeqNo:	2798787	PrepDate:		DF	250
Analyte		Result	PQL	. SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Calcium		5975	125	2500	3407	103	75 - 125				
Magnesium	n	3522	50.0	2500	1019	100	75 - 125				
Sodium		3692	50.0	2500	1151	102	75 - 125				

PDS	Sample ID:	HS14040178-13	ABS		Units: ı	mg/L	Ana	lysis Date:	17-Apr-20	014 14:24	
Client ID:	MW-24-040314	1	Run ID:	ICPMS05	_232095	SeqNo:	2797528	PrepDate:		DF	: 5
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Potassium		156	1.00	10	107.7	482	75 - 125				SO

Date: 30-Apr-14

Client: Conestoga Rovers & Associates

WorkOrder: HS14040178
Project: 039124 G.L. Erwin

QC BATCH REPORT

Batch ID:	80772		Instrun	nent:	ICPMS05		Metho	d: SW602	0		
SD	Sample ID:	HS14040178-13	A DIL SX		Units:	mg/L	Ana	llysis Date:	18-Apr-2	014 13:25	
Client ID:			Run ID:	ICPMS0	5_232133	SeqNo:	2798790	PrepDate:		DF	1250
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Calcium		3530	625		0	0		3407	3.59	10	
Magnesium		1011	250		0	0		1019	0.764	10	
Sodium		1108	250		0	0		1151	3.79	10	
SD Client ID:	Sample ID:	HS14040178-13			Units: 5 232095	•	Ana 2797529	llysis Date:	17-Apr-2		: 25
Analyte		Result		SPK Val	SPK Ref Value		Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Potassium		114	5.00		0	0		107.7	5.85	10	

WorkOrder: HS14040178
Project: 039124 G.L. Erwin

QC BATCH REPORT

Batch ID: 807	80		Instrur	ment:	ICP7500		Metho	d: SW602	0		
MBLK	Sample ID:	MBLKW3-04161	4		Units:	mg/L	Ana	lysis Date:	17-Apr-2014	14:50	
Client ID:			Run ID:	ICP7500	_232094	SeqNo	: 2797481	PrepDate:	16-Apr-2014	. D	F: 1
Analyte		Result	PQL	. SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Calcium		ND	0.500	ı							
Magnesium		ND	0.200	1							
Potassium		ND	0.200	ı							
Sodium		ND	0.200								

LCS	Sample ID:	MLCSW3-041614	4		Units: r	mg/L	Ana	lysis Date:	17-Apr-201	4 14:55	
Client ID:		1	Run ID:	ICP7500_	232094	SeqNo:	2797482	PrepDate:	16-Apr-201	4 DF:	1
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Calcium		5.284	0.500	5	0	106	80 - 120				
Magnesium		4.964	0.200	5	0	99.3	80 - 120				
Potassium		5.217	0.200	5	0	104	80 - 120				

MS	Sample ID:	HS14040179-01	GMS		Units: r	ng/L	Ana	lysis Date:	16-Apr-2014	22:26	
Client ID:			Run ID:	ICP7500_	231990	SeqNo:	2796396	PrepDate:	16-Apr-2014	DF:	I
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Calcium		428.1	0.500	5	402.7	508	75 - 125				SEO
Magnesium		229.4	0.200	5	218.1	226	75 - 125				SEO
Potassium		17.88	0.200	5	12.03	117	75 - 125				
Sodium		230.9	0.200	5	217.9	260	75 - 125				SEO

MSD	Sample ID:	HS14040179-010	SMSD		Units: r	mg/L	Ana	llysis Date:	16-Apr-20	14 22:31	
Client ID:		1	Run ID:	ICP7500_	231990	SeqNo:	2796397	PrepDate:	16-Apr-20	14 DF	:1
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Calcium		419.3	0.500	5	402.7	332	75 - 125	428.1	2.08	25	SEO
Magnesium		229.8	0.200	5	218.1	234	75 - 125	229.4	0.174	25	SEO
Potassium		18.09	0.200	5	12.03	121	75 - 125	17.88	1.17	25	
Sodium		226.4	0.200	5	217.9	170	75 - 125	230.9	1.97	25	SEO

Client: Conestoga Rovers & Associates

WorkOrder: HS14040178
Project: 039124 G.L. Erwin

QC BATCH REPORT

Batch ID: 807	80		Instrument: ICP7500			Method: SW6020					
DUP	Sample ID:	HS14040179-01	GDUP		Units:	mg/L	Ana	lysis Date:	17-Apr-20	14 15:07	
Client ID:			Run ID:	ICP7500	_232094	SeqNo	2797484	PrepDate:	16-Apr-20	14 DF	- ∶10
Analyte		Result	PQL	. SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Calcium		375.1	5.00)				375.1	0	25	
Magnesium		215.6	2.00)				215.6	0	25	
Sodium		210.4	2.00)				210.4	0	25	
DUP	Sample ID:	HS14040179-01	GDUP		Units:	mg/L	Ana	lysis Date:	16-Apr-20	14 22:16	
Client ID:			Run ID:	ICP7500	_231990	SeqNo	2796394	PrepDate:	16-Apr-20	14 DF	₹: 1
Analyte		Result	PQL	. SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Potassium		12.42	0.200)				12.03	3.19	25	
		1104 40 404 70 04	one.		l Inite:	mg/L	Δηα	lveis Data:	17-Apr-20	1/ 15:18	
PDS	Sample ID:	HS14040179-01	GBS		Offics.	mg/L	7110	iyoio Date.	17-Api-20	14 13.10	

PDS	Sample ID:	HS14040179-01	GBS		Units: r	ng/L	Ana	lysis Date:	17-Apr-20	14 15:18	
Client ID:			Run ID:	ICP7500_	_232094	SeqNo:	2797486	PrepDate:		DF	10
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Calcium		473.9	5.00	100	375.1	98.8	75 - 125				
Magnesium		309.5	2.00	100	215.6	93.9	75 - 125				
Sodium		308.9	2.00	100	210.4	98.5	75 - 125				

PDS	Sample ID:	HS14040179-010	GBS		Units: ı	mg/L	Ana	lysis Date:	16-Apr-20	14 22:36	
Client ID:			Run ID:	ICP7500_	231990	SeqNo:	2796398	PrepDate:		DF:	1
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Potassium		21.63	0.200	10	12.03	96.0	75 - 125				

Client: Conestoga Rovers & Associates

WorkOrder: HS14040178
Project: 039124 G.L. Erwin

QC BATCH REPORT

Batch ID: 8078	30		Instrument:	ICP7500		Metho	d: SW602	0		
SD	Sample ID:	HS14040179-010	DIL SX	Units:	mg/L	Ana	lysis Date:	17-Apr-20)14 15:13	
Client ID:		I	Run ID: ICP75	00_232094	SeqNo:	2797485	PrepDate:		DF	: 50
Analyte		Result	PQL SPK V	SPK Ref al Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Calcium		382.8	25.0	0	0		375.1	2.07	10	
Magnesium		218.9	10.0	0	0		215.6	1.53	10	
Sodium		217.5	10.0	0	0		210.4	3.37	10	

SD	Sample ID:	HS14040179-01G	DIL SX		Units: r	ng/L	Ana	lysis Date:	16-Apr-20	14 22:21	
Client ID:		R	Run ID:	ICP7500_	231990	SeqNo:	2796395	PrepDate:		DF	∶5
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Potassium		11.61	1.00		0	0		12.03	3.49	10	

The following samples were anayzed in this batch: HS14040178-30A HS14040178-31A HS14040178-32A

WorkOrder: HS14040178
Project: 039124 G.L. Erwin

QC BATCH REPORT

Batch ID:	R231334		Instrur	ment:	ManTech01		Metho	d: SM232	0B		
MBLK	Sample ID:	WBLKW1-14040	7		Units:	mg/L	Ana	lysis Date:	07-Apr-20	014 12:46	
Client ID:		ı	Run ID:	ManTec	h01_231334	SeqNo	: 2778720	PrepDate:		DF	:1
Analyte		Result	PQL	. SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Alkalinity, E	Bicarbonate (As CaCO3) ND	10.0)							
Alkalinity, 0	Carbonate (As CaCO3)	ND	10.0)							
Alkalinity, H	Hydroxide (As CaCO3)	ND	10.0)							
Alkalinity,	Total (As CaCO3)	ND	10.0)							

LCS	Sample ID:	LCS-ALK-14040	7		Units: I	mg/L	Ana	lysis Date:	07-Apr-2	014 12:51	
Client ID:			Run ID:	ManTech	01_231334	SeqNo:	2778721	PrepDate:		DF	1
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Alkalinity, Total (As	CaCO3)	1069	10.0	1000	0	107	80 - 120				

DUP Sample ID: I	HS14040178-01	BDUP		Units:	mg/L	Ana	lysis Date:	07-Apr-20	14 13:06	
Client ID: WW-1-040314		Run ID:	ManTech	01_231334	SeqNo:	2778725	PrepDate:		DF	: 1
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Alkalinity, Bicarbonate (As CaCO3)	201.4	10.0					206.8	2.65		
Alkalinity, Carbonate (As CaCO3)	ND	10.0					0	0		
Alkalinity, Hydroxide (As CaCO3)	ND	10.0					0	0		
Alkalinity, Total (As CaCO3)	201.4	10.0					206.8	2.65	20	

The following samples were anayzed in this batch: HS14040178-01B	HS14040178-02B	HS14040178-03B	HS14040178-04B	
HS14040178-05B	HS14040178-06B	HS14040178-07B	HS14040178-08B	
HS14040178-09B	HS14040178-10B	HS14040178-11B	HS14040178-12B	
HS14040178-13B	HS14040178-14B	HS14040178-15B	HS14040178-16B	
HS14040178-17B	HS14040178-18B	HS14040178-19B	HS14040178-20B	

Client: Conestoga Rovers & Associates

WorkOrder: HS14040178
Project: 039124 G.L. Erwin

QC BATCH REPORT

Batch ID: R231387			Instrur	ment:	ManTech01		Metho	d: SM232	0B		
MBLK Sa	ample ID:	WBLKW1-140407	7		Units:	mg/L	Ana	lysis Date:	07-Apr-20	014 17:08	
Client ID:		F	Run ID:	ManTed	:h01_231387	SeqNo	: 2780159	PrepDate:		DF	:1
Analyte		Result	PQL	. SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Alkalinity, Bicarbonate	(As CaCO	3) ND	10.0	ı							
Alkalinity, Carbonate (As CaCO3)	ND	10.0								
Alkalinity, Hydroxide (A	As CaCO3)	ND	10.0	1							
Alkalinity, Total (As Ca	aCO3)	ND	10.0	l							

LCS	Sample ID:	LCS-ALK-14040	7		Units: I	mg/L	Ana	lysis Date:	07-Apr-2	014 17:14	
Client ID:			Run ID:	ManTech	01_231387	SeqNo:	2780160	PrepDate:		DF	:1
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Alkalinity, Total (As	CaCO3)	1074	10.0	1000	0	107	80 - 120				

DUP Sample ID: I	HS14040178-21	BDUP		Units:	mg/L	Ana	lysis Date:	07-Apr-20	14 17:29	
Client ID: MW-2-040314		Run ID:	ManTech	01_231387	SeqNo:	2780164	PrepDate:		DF	: 1
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Alkalinity, Bicarbonate (As CaCO3)	269.6	10.0					277.5	2.88		
Alkalinity, Carbonate (As CaCO3)	ND	10.0					0	0		
Alkalinity, Hydroxide (As CaCO3)	ND	10.0					0	0		
Alkalinity, Total (As CaCO3)	269.6	10.0					277.5	2.88	20	

The following samples were anayzed in this batch:	HS14040178-21B	HS14040178-22B	HS14040178-23B	HS14040178-24B	
	HS14040178-25B	HS14040178-26B	HS14040178-27B	HS14040178-28B	
	HS14040178-29B	HS14040178-30B	HS14040178-31B	HS14040178-32B	

Client: Conestoga Rovers & Associates

WorkOrder: HS14040178
Project: 039124 G.L. Erwin

QC BATCH REPORT

Batch ID: R23	1649		Instrur	nent: E	Balance1	Method: M2540C							
MBLK	Sample ID:	WBLK-040914			Units:	mg/L	Ana	lysis Date:	09-Apr-20	14 09:55			
Client ID:			Run ID:	Balance1	_231649	SeqNo:	2786499	PrepDate:		DF	:1		
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual		
Total Dissolved S Filterable)	Solids (Residue,	ND	10.0										
LCS	Sample ID:	WLCS-040914			Units:	mg/L	Ana	lysis Date:	09-Apr-20	14 09:55			
Client ID:			Run ID:	Balance1	_231649	SeqNo:	2786500	PrepDate:		DF	:1		
					CDI/ Dat		Cantual	DDD D-4		DDD			

J OHOLIC ID:	•	· · · · · ·	-u.u	_20.0.0	004.10.	00000	. Top Bato.		٥.	• •
Analyte	Result	PQL S	PK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Total Dissolved Solids (Residue, Filterable)	970	10.0	1000	0	97.0	85 - 115				

DUP	Sample ID:	HS14040178-05	BDUP		Units: I	mg/L	Ana	lysis Date:	09-Apr-20	14 09:55	
Client ID: MN	W-8-040314		Run ID:	Balance1	_231649	SeqNo:	2786488	PrepDate:		DF	:1
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Total Dissolved Filterable)	d Solids (Residue,	1460	10.0					1560	6.62	10	

DUP Sample ID:	Sample ID: HS14040122-35EDUP			Units: mg/L An			lysis Date:	09-Apr-2014 09:55			
Client ID:	Run ID: Balance1			_231649 SeqNo: 2		2786480	PrepDate:		DF: 1		
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual	
Total Dissolved Solids (Residue, Filterable)	5120	10.0	-				5740	11.4	10	R	

	701 10 10 10 0 D	TTG1 10 10 150 00D	77G4 40 404 F0 00D	TTG1 10 10 150 0 15
The following samples were analyzed in this batch:	AS1404017/8-01B	HS14040178-02B	HS14040178-03B	HS14040178-04B
į.	HS14040178-05B	HS14040178-30B	HS14040178-31B	HS14040178-32B

Client: Conestoga Rovers & Associates

WorkOrder: HS14040178
Project: 039124 G.L. Erwin

QC BATCH REPORT

2180

HS14040178-08B

HS14040178-12B

HS14040178-16B

2.79

10

HS14040178-09B

HS14040178-13B

HS14040178-17B

Batch ID:	R231708		Instrun	nent: E	Balance1		Metho	d: M2540	C		
MBLK	Sample ID:	WBLK-041014			Units:	mg/L	Ana	llysis Date:	10-Apr-20	014 09:55	
Client ID:			Run ID:	Balance1	_231708	SeqNo:	2788263	PrepDate:		DF	:1
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Total Dissol Filterable)	lved Solids (Residue,	ND	10.0								
LCS	Sample ID:	WLCS-041014			Units:	mg/L	Ana	ılysis Date:	10-Apr-20	014 09:55	
Client ID:			Run ID:	Balance1	_231708	SeqNo:	2788264	PrepDate:		DF	:1
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Total Dissol Filterable)	lved Solids (Residue,	1012	10.0	1000	0	101	85 - 115				
DUP	Sample ID:	HS14040311-19	DUP		Units:	mg/L	Ana	llysis Date:	10-Apr-20	014 09:55	
Client ID:			Run ID:	Balance1	_231708	SeqNo:	2788261	PrepDate:		DF	:1
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Total Dissol Filterable)	lved Solids (Residue,	5060	10.0					5160	1.96	10	
DUP	Sample ID:	HS14040178-06	B DUP		Units:	mg/L	Ana	ılysis Date:	10-Apr-20	014 09:55	
Client ID:	MW-16-040314		Run ID:	Balance1	_231708	SeqNo:	2788242	PrepDate:		DF	:1
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual

Note: See Qualifiers Page for a list of qualifiers and their explanation.

The following samples were anayzed in this batch: HS14040178-06B

2120

10.0

HS14040178-10B

HS14040178-14B

HS14040178-18B

Total Dissolved Solids (Residue,

Filterable)

HS14040178-07B

HS14040178-11B

HS14040178-15B

HS14040178-19B

Client: Conestoga Rovers & Associates

WorkOrder: HS14040178
Project: 039124 G.L. Erwin

QC BATCH REPORT

Batch ID: R231727		Instrun	nent: E	Balance1	Method: M2540C					
MBLK Sample ID:	WBLK-040814			Units: ı	mg/L	Ana	lysis Date:	10-Apr-20	14 13:45	
Client ID:		Run ID:	Balance1	_231727	SeqNo:	2788628	PrepDate:		DF	:1
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Total Dissolved Solids (Residue,	ND	10.0								
Filterable)										
	WLCS-040814			Units: ı	mg/L	Ana	lysis Date:	10-Apr-20	14 13:45	
Filterable)		Run ID:	Balance1		•	Ana 2788629	lysis Date: PrepDate:	•	014 13:45 DF	: 1
LCS Sample ID:		Run ID:			•			•		: 1 Qual

DUP	Sample ID:	HS14040376-01	DUP		Units: r	ng/L	Ana	lysis Date:	10-Apr-20	14 13:45	
Client ID:			Run ID:	Balance1	_231727	SeqNo:	2788627	PrepDate:		DF	:1
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Total Dissolved Sol Filterable)	ids (Residue,	2040	10.0					2020	0.985	10	

DUP	Sample ID:	HS14040178-20	B DUP		Units: r	ng/L	Ana	llysis Date:	10-Apr-20	14 13:45	
Client ID: MN	W-5-040314		Run ID:	Balance1	_231727	SeqNo:	2788607	PrepDate:		DF	:1
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Total Dissolved Filterable)	d Solids (Residue,	1480	10.0					1460	1.36	10	

The following samples were anayzed in this batch:	HS14040178-20B	HS14040178-21B	HS14040178-22B	HS14040178-23B
	HS14040178-24B	HS14040178-25B	HS14040178-26B	HS14040178-27B
	HS14040178-28B	HS14040178-29B		

Client: Conestoga Rovers & Associates

WorkOrder: HS14040178
Project: 039124 G.L. Erwin

QC BATCH REPORT

Batch ID:	R231805		Instrur	ment:	ICS2100		Metho	d: E300			
MBLK	Sample ID:	WBLKW2			Units:	mg/L	Ana	llysis Date:	04-Apr-20	14 19:38	
Client ID:			Run ID:	ICS2100	_231805	SeqNo	: 2790567	PrepDate:		DF	:1
Analyte		Result	PQL	. SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Chloride		ND	0.500	1							
Fluoride		ND	0.100)							
Nitrogen, Nit	trate (As N)	ND	0.100)							
Sulfate		ND	0.500)							

LCS	Sample ID:	WLCSW2			Units:	mg/L	Ana	llysis Date:	04-Apr-20	14 19:53	
Client ID:			Run ID:	ICS2100	_231805	SeqNo:	2790568	PrepDate:		DF	: 1
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Chloride		20.25	0.500	20	0	101	90 - 110				
Fluoride		3.619	0.100	4	0	90.5	90 - 110				
Nitrogen, Nitrate (As	s N)	3.984	0.100	4	0	99.6	90 - 110				
Sulfate		19.76	0.500	20	0	98.8	90 - 110				

MS	Sample ID:	HS14040181-03	OMS		Units: r	ng/L	Ana	lysis Date:	05-Apr-20	14 00:15	
Client ID:			Run ID:	ICS2100_	231805	SeqNo:	2790586	PrepDate:		DF	:1
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Chloride		197	0.500	10	193.1	38.7	80 - 120				SEO
Fluoride		2.102	0.100	2	0.534	78.4	80 - 120				S
Nitrogen, Nitrate (A	As N)	4.075	0.100	2	1.887	109	80 - 120				
Sulfate		1814	0.500	10	1871	-574	80 - 120				SEO

MSD	Sample ID:	HS14040181-03	DMSD		Units: r	ng/L	Ana	lysis Date:	05-Apr-20	14 00:29	
Client ID:			Run ID:	ICS2100_	231805	SeqNo:	2790587	PrepDate:		DF	: 1
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Chloride		195.1	0.500	10	193.1	19.3	80 - 120	197	0.989	20	SEO
Fluoride		2.116	0.100	2	0.534	79.1	80 - 120	2.102	0.664	20	S
Nitrogen, Nitrate (As	N)	3.971	0.100	2	1.887	104	80 - 120	4.075	2.59	20	
Sulfate		1795	0.500	10	1871	-765	80 - 120	1814	1.05	20	SEO

Client: Conestoga Rovers & Associates

WorkOrder: HS14040178
Project: 039124 G.L. Erwin

QC BATCH REPORT

Batch ID: R231805	Instrument:	ICS2100	Method: E300	
The following samples were anayzed in this batch:	HS14040178-21B	HS14040178-22B	HS14040178-23B	HS14040178-24B
	HS14040178-25B	HS14040178-26B	HS14040178-27B	HS14040178-28B
	HS14040178-29B	HS14040178-30B	HS14040178-31B	HS14040178-32B

Client: Conestoga Rovers & Associates

WorkOrder: HS14040178
Project: 039124 G.L. Erwin

QC BATCH REPORT

Batch ID: R	231927		Instrur	ment:	ICS3000		Metho	d: E300			
MBLK	Sample ID:	WBLKW2			Units:	mg/L	Ana	llysis Date:	04-Apr-20	014 19:09	
Client ID:			Run ID:	ICS3000	_231927	SeqNo	2795537	PrepDate:		DF	:1
Analyte		Result	PQL	. SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Chloride		ND	0.500	ı							
Fluoride		ND	0.100								
Nitrogen, Nitra	ate (As N)	ND	0.100								
Sulfate		ND	0.500								

LCS	Sample ID:	WLCSW2			Units: ı	mg/L	Ana	lysis Date:	04-Apr-20	14 19:35	
Client ID:			Run ID:	ICS3000	_231927	SeqNo:	2795538	PrepDate:		DF	: 1
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Chloride		19.69	0.500	20	0	98.4	90 - 110				
Fluoride		4.2	0.100	4	0	105	90 - 110				
Nitrogen, Nitrate (As	s N)	4.131	0.100	4	0	103	90 - 110				
Sulfate		19.54	0.500	20	0	97.7	90 - 110				

MS	Sample ID:	HS14040178-20E	BMS		Units: r	ng/L	Ana	lysis Date:	05-Apr-20	14 06:20	
Client ID: N	/IW-5-040314		Run ID:	ICS3000_	231927	SeqNo:	2795563	PrepDate:		DF	: 5
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Chloride		701.8	2.50	50	658.8	86.0	80 - 120				EO
Fluoride		12.98	0.500	10	1.33	117	80 - 120				
Nitrogen, Nitr	rate (As N)	16.85	0.500	10	5.911	109	80 - 120				
Sulfate		213.6	2.50	50	165.1	97.0	80 - 120				

MSD	Sample ID:	HS14040178-20I	BMSD		Units: I	mg/L	Ana	lysis Date:	05-Apr-20	14 06:46	
Client ID:	MW-5-040314		Run ID:	ICS3000_	_231927	SeqNo:	2795564	PrepDate:		DF	: 5
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Chloride		699.5	2.50	50	658.8	81.3	80 - 120	701.8	0.329	20	EO
Fluoride		12.9	0.500	10	1.33	116	80 - 120	12.98	0.634	20	
Nitrogen, N	Nitrate (As N)	16.8	0.500	10	5.911	109	80 - 120	16.85	0.321	20	
Sulfate		213.4	2.50	50	165.1	96.5	80 - 120	213.6	0.128	20	

Client: Conestoga Rovers & Associates

WorkOrder: HS14040178
Project: 039124 G.L. Erwin

QC BATCH REPORT

Batch ID: R231927	Instrument:	ICS3000	Method: E300	
The following samples were analyzed in this batch:		HS14040178-02B	HS14040178-03B	HS14040178-04B
Į-	IS14040178-05B	HS14040178-06B	HS14040178-07B	HS14040178-08B
ĮI-	IS14040178-09B	HS14040178-10B	HS14040178-11B	HS14040178-12B
ĮI-	HS14040178-13B	HS14040178-14B	HS14040178-15B	HS14040178-16B
<u>I</u>	HS14040178-17B	HS14040178-18B	HS14040178-19B	HS14040178-20B

Client: Conestoga Rovers & Associates

WorkOrder: HS14040178
Project: 039124 G.L. Erwin

QC BATCH REPORT

Batch ID:	R232100		Instrument:	ICS2100		Metho	d: E300			
MBLK	Sample ID:	WBLKW2		Units:	mg/L	Ana	llysis Date:	17-Apr-20)14 20:17	
Client ID:			Run ID: ICS210	00_232100	SeqNo:	2797797	PrepDate:		DF	:1
Analyte		Result	PQL SPK Va	SPK Ref al Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Chloride		ND	0.500							
Sulfate		ND	0.500							

LCS	Sample ID:	WLCSW2			Units: r	ng/L	Ana	llysis Date:	17-Apr-20	14 20:31	
Client ID:			Run ID:	ICS2100_	_232100	SeqNo:	2797798	PrepDate:		DF	:1
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Chloride		21.8	0.500	20	0	109	90 - 110				
Sulfate		21.49	0.500	20	0	107	90 - 110				

мѕ	Sample ID:	HS14040444-03	MS		Units: r	ng/L	Ana	lysis Date:	18-Apr-20	14 10:21	
Client ID:			Run ID:	ICS2100_	_232100	SeqNo:	2799268	PrepDate:		DF	: 100
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Chloride		11770	50.0	1000	10470	130	80 - 120				SEO
Sulfate		6366	50.0	1000	5360	101	80 - 120				0

MSD	Sample ID:	HS14040444-03	MSD		Units:	mg/L	Ana	lysis Date:	18-Apr-20	14 10:35	
Client ID:			Run ID:	ICS2100	_232100	SeqNo:	2799269	PrepDate:		DF	- : 100
Analyte		Result	PQL	. SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Chloride		11980	50.0	1000	10470	151	80 - 120	11770	1.76	20	SEO
Sulfate		6487	50.0	1000	5360	113	80 - 120	6366	1.89	20	0

Client: Conestoga Rovers & Associates

WorkOrder: HS14040178
Project: 039124 G.L. Erwin

QC BATCH REPORT

Batch ID:	R232113		Instrumer	nt: IC	S3000		Metho	d: E300			
MBLK	Sample ID:	WBLKW1			Units: r	mg/L	Ana	lysis Date:	17-Apr-20)14 21:45	
Client ID:			Run ID: IC	S3000_2	32113	SeqNo:	2798240	PrepDate:		DF	:1
Analyte		Result	PQL SF	PK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Chloride		ND	0.500								
Sulfate		ND	0.500								

LCS	Sample ID:	WLCSW1			Units: r	ng/L	Ana	llysis Date:	17-Apr-20	14 22:09	
Client ID:			Run ID:	ICS3000_	_232113	SeqNo:	2798241	PrepDate:		DF	:1
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Chloride		20.33	0.500	20	0	102	90 - 110				
Sulfate		20.15	0.500	20	0	101	90 - 110				

MS	Sample ID:	HS14040178-19	змѕ		Units: I	ng/L	Ana	lysis Date:	18-Apr-20	014 05:48	
Client ID:	MW-3-040314		Run ID:	ICS3000_	_232113	SeqNo:	2798260	PrepDate:		DF	: 10
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Chloride		930	5.00	100	838.6	91.4	80 - 120				0
Sulfate		440.2	5.00	100	334.1	106	80 - 120				

MSD	Sample ID:	HS14040178-19	BMSD		Units: r	ng/L	Ana	lysis Date:	18-Apr-20	014 06:12	
Client ID:	MW-3-040314		Run ID:	ICS3000	_232113	SeqNo:	2798261	PrepDate:		DF	: 10
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Chloride		929.4	5.00	100	838.6	90.8	80 - 120	930	0.0638	20	0
Sulfate		443	5.00	100	334.1	109	80 - 120	440.2	0.638	20	

The following samples were anayzed in this batch: HS14040178-02B	HS14040178-03B	HS14040178-04B	HS14040178-05B	
HS14040178-06B	HS14040178-08B	HS14040178-09B	HS14040178-10B	
HS14040178-11B	HS14040178-13B	HS14040178-15B	HS14040178-16B	
HS14040178-18B	HS14040178-19B	HS14040178-20B	HS14040178-21B	
HS14040178-23B	HS14040178-25B			

ALS Group USA, Corp

Conestoga Rovers & Associates Client:

QUALIFIERS, 039124 G.L. Erwin

Project: **ACRONYMS, UNITS**

30-Apr-14

Date:

WorkOrder: HS14040178

Qualifier	Description
*	Value exceeds Regulatory Limit
а	Not accredited
В	Analyte detected in the associated Method Blank above the Reporting Limit
E	Value above quantitation range
Н	Analyzed outside of Holding Time
J	Analyte detected below quantitation limit
M	Manually integrated, see raw data for justification
n	Not offered for accreditation
ND	Not Detected at the Reporting Limit
0	Sample amount is > 4 times amount spiked
Р	Dual Column results percent difference > 40%
R	RPD above laboratory control limit
S	Spike Recovery outside laboratory control limits
U	Analyzed but not detected above the MDL

Acronym	Description

DCS	Detectability Check Study
-----	---------------------------

DUP Method Duplicate

LCS Laboratory Control Sample

LCSD Laboratory Control Sample Duplicate

MBLK Method Blank

MDL Method Detection Limit MQL Method Quantitation Limit

MS Matrix Spike

MSD Matrix Spike Duplicate PDS Post Digestion Spike **PQL** Practical Quantitaion Limit

SD Serial Dilution

Unit Reported Description

Date

mg/L Milligrams per Liter

CERTIFICATIONS, ACCREDITATIONS & LICENSES

Agency	Number	Expire Date
Arkansas	AR - 2014	27-Mar-2015
California	06248CA 2013-2014	31-Jul-2014
Dept of Defense	L2231 Rev 3-20-2014	22-Dec-2015
Illinois	003180	09-May-2014
Kansas	E-10352 8/15/2013-2014	31-Jul-2014
Louisiana	03087 2013/2014	30-Jun-2014
North Carolina	624 - 2014	31-Dec-2014
Oklahoma	2013-024	31-Aug-2014
Texas	TX104704231-14-13	30-Apr-2015

ALS Group USA, Corp

Date: 30-Apr-14

Sample Receipt Checklist

Client Name: CRA - A	AUSTIN		Date/	04-Apr-2014 10:35	
Work Order: HS1404	40178		Recei	ved by:	DRC
Checklist completed by:	Paresh M. Giga eSignature	4-Apr-2014 Date	Reviewed by:	Dane J. Wac	rasey Date
Matrices: <u>Gr</u>	roundwater/Water		Carrier name:	<u>FedEX</u>	
Custody seals intact on Chain of custody preser Chain of custody signed Chain of custody agrees Samples in proper conta Sample containers intact Sufficient sample volum All samples received wi	shipping container/cooler? sample bottles? nt? d when relinquished and receis with sample labels? ainer/bottle? ct? he for indicated test?	ved?	Yes V Yes V Yes V Yes V Yes V Yes V Yes V Yes V Yes V Yes V Yes V Yes V	No	Not Present Not Present Not Present Not Present
Temperature(s)/Thermo	ometer(s):		2.5c/2.5c,2.3c/2.3	c,2.0c/2.0c C/U	IR1
Cooler(s)/Kit(s):			4415,2612,5183		-
Date/Time sample(s) se Water - VOA vials have Water - pH acceptable of pH adjusted? pH adjusted by:	zero headspace?		Yes V Yes V Yes	No No No No No No No No No No No No No N	o VOA vials submitted N/A N/A
Login Notes:					
Client Contacted:		Date Contacted:		Person Conta	acted:
Contacted By:		Regarding:			
Comments:					
Corrective Action:					

Everett, WA +1 425 356 2600 Fort Collins, CO +1 970 490 1511

+1 616 399 6070

Holland, MI

Chain of Custody Form

Page __/

COC ID:

14040178

CRA - AUSTIN: Conestoga Rovers & Associates

Project: 039124 G L. Frwin

Enviro	nmental		S. S.		,	LS Project	t Manager:							ı				
	Customer Information			Projec	t Informa	tion				<u>.</u>								
Purchase Order		Project I	Name	0391	124 G.L. Er	win		Α	Dis	solved	Metal	s (6020)	- LAB I	Filter (C	a,Mg,K,	Na)		
Work Order		Project Nu	mber	0391	124			В	Anie	ons (30	00) - **	*NO3**,	CI, F, S	04	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, man		
Company Name	Conestoga Rovers & Associates	Bill To Com	npany	Cone	estoga Rov	ers & Associa	ates	С	Alka	alinity (2320)	- T,CO3	,HCO3,	, OH		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
Send Report To	Chris Knight	Invoice	e Attn	Chris	s Knight			D	TD:	\$ (254)	9)							
Address	13091 Pond Springs Road, Suite A100	Add	dress	1309	31 Pond Sp	rings Road, S	Suite A10	E										THE WAY
City/State/Zip	Austin, Texas 78729	City/Stat	e/Zip	Aust	in, Texas	8729		G	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,								,	Water Company of Manager Company of the Company of
Phone	(512) 506-8803	Р	hone	(512) 506-8803			Н	·					***************************************				
Fax			Fax				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ī		,·····		·*************************************					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
e-Mail Address	cknight@craworld.com	e-Mail Add	dress	cknig	gint@crawo	rld.com		J										
No.	Sample Description	Date	Tir	ne	Matrix	Pres.	# Bottles	Α	В	С	D	E	F	G	Н	1	J	Hold
1 WW-1-	0 403/4	4-3-14	931	>	water	ice	2	X	人	X	X							: (
	0-040314	\	94	5	1	1	ì	1										
	-0403/4		/00	0		17	1 1		11	\prod								
4 Mu-25	5-040314		101	5					11				 					
	-04034		103	>			17											
6 mw 16.			104							\prod								
7 かいーノフ			110	>			17			\top			1					
8 mw-14-0	The second secon		///	5														
9 600-12	,		1)?	حلا حلا				11,		Π,			1					
10 mw -15-	0403/4	J	114	5	1		U	Ψ	V	V	V	/						
Sampler(s) Please P	rint & Sign Hin Nixon 1941		ent Metho	od	Re	quired Turnar			Box) K Davs		ther WK D	ays [24 Hoi		esults D	lue Dat	e:	
Relinquished by:	Date: 1	rime: 815	Receive	١	n			Notes			r Hold	Time-SI	IIP sam	ie day s	ampled	** ; 10	day TA	T
Relinguished by:	व्यवीय ।	(03S	Receive	bylLat	baratora):	a managaman 1900 Sementana yang 1916 Sebelah		Co	oler ID	Cod	oler Ter	пр. ОС	Packag	e: (Chec	k One Bo	ox Belov	v)	
Logged by (Laboratory Preservative Key:	; Date 1	Time:	O. 6-1	a by (Lat	7-Oth	er 8-4°C	9-5035						Lev	vel II Std (vel III Std vel IV SW ver (EDD	QC/Raw /846/CLP	/ Data	TRI	RP CheckList RP Level IV

Note: 1. Any changes must be made in writing once samples and COC Form have been submitted to ALS Environmental.

2. Unless otherwise agreed in a formal contract, services provided by ALS Environmental are expressly limited to the terms and conditions stated on the reverse.

3. The Chain of Custody is a legal document. All information must be completed accurately.

Copyright 2011 by ALS Environmental.

Other / EDD

Everett, WA Holland, MI +1 425 356 2600 +1 616 399 6070

Fort Collins, CO

+1 970 490 1511

Chain of Custody Form

Page <u>구</u> of <u>片</u>

COC ID:

Houston, TX

+1 281 530 5656

Middletown, PA

+1 717 944 5541

Spring City, PA +1 610 948 4903

South Charleston, WV +1 304 356 3168

Salt Lake City, UT +1 801 266 7700

York, PA +1 717 505 5280

Enviror	nmental			Al	LS Project	<u>コンエC</u> Manager											
Cı	ustomer Information		Proje	ct Informat	ion				Pa	rame	ter/Me						
Purchase Order		Project Nam	ne 039	0124 G.L. Erv	vin		Α	Dis	solved	Metals	(6020)	- LAB I	Filter (C	a,Mg,I	(,Na)		
Work Order		Project Numb	er 039	124			В	Ani	ons (30	00) - **	NO3**,	CI, F, S	604				
Company Name	Conestoga Rovers & Associates	Bill To Compar	іу Со	nestoga Rove	rs & Associa	ites	С	Alk	alinity (2320) -	- T,CO3	,нсоз	, OH				
Send Report To	Chris Knight	Invoice At	tn Chi	is Knight			D	TD	S (254(0)							
Address	13091 Pond Springs Road, Suite A100	Addres	13091 Pond Springs Road, Suite A10 E F														
City/State/Zip	Austin, Texas 78729	City/State/Zi	P Aus	itin, Texas 78	G												
Phone	(512) 506-8803	Phon	e (51	2) 506-8803	Н				,				·				
Fax	The second secon	Fa	x				ī										
e-Mail Address	cknight@craworld.com	e-Mail Addres	s ckn	ight@craworl	d.com		J			•						,	
No.	Sample Description	Date	Time	Matrix	Pres.	# Bottles	Α	В	C	D	E	F	G	Н	1	J	Hold
1 MW-20	0-040314	4/3/14	1200	GRUING	None	12	X	X	X	X							
2 MW- 2.	3-040314	1	1215			1		1	1					:	į.		
3 Mw-2"	4-040314		1230											:			
	-040314		1245														
The state of the s	1-040314		1300														Mary and the contract of the contract and a second
	7-0403143KM	70		~			-		-			1					NET SENSE TO THE SERVICE PROPERTY AND SENSE
7 Aw-14	-040314 5KM	50,00	(L	+				1		-	-						
8 MW-12	5-040314		1315									 					
9 MW-7	1-040314		1330											<u> </u>			NAME AND ADDRESS OF THE PARTY O
10 MW - 6	- 040314	1	1345	V	$ \sqrt{} $	1	V	1	V	1							ageographic for the first the first terms of the fi
Sampler(s) Please Pri	Stame	Shipment t	- Ex	Requ	uired Turnard					other WK Da	175	24 Ho		esults	Due Da	te:	
Stuart Measer Relinquished by: Relinquished by: Relinquished by:	Date:, 4/3/14 Ti	me: ISING Re	ceived by:		1		Notes: **48Hr Hold Time-SHIP same day sampled**; 10 day TAT					dT .					
Relinquished by:	29 jul 1 T	(1)35 Re	echived by	aboratory:			Cooler ID Cooler Temp. QC Package: (Check One Box Below)				**************************************						
Logged by (Laboratory):	Date: T,		scked by the	ر ،	0.400	O EAST			2 10 20 20 20 20 20 20 20 20 20 20 20 20 20			Lev	el IV SW	QC/Ra /846/CL	w Data P	TR	RP CheckLis RP Level IV
Preservative Key:	1-HCI 2-HNO ₃ 3-H ₂ SO ₄ 4-NaO	H 5-Na ₂ S ₂ O ₃	6-NaHSC) ₄ 7-Othei	8-4°C	9-5035	L						er/EDD)	ORNANIA CONTRA	OOMSTADELINE HELEY	

Note: 1. Any changes must be made in writing once samples and COC Form have been submitted to ALS Environmental.

Unless otherwise agreed in a formal contract, services provided by ALS Environmental are expressly limited to the terms and conditions stated on the reverse.
 The Chain of Custody is a legal document. All information must be completed accurately.

Copyright 2011 by ALS Environmental.

Everett, WA

Holland, MI +1 425 356 2600 +1 616 399 6070

Fort Collins, CO

+1 970 490 1511

Chain of Custody Form

Page 3

COC ID:

Spring City, PA Houston, TX +1 281 530 5656 +1 610 948 4903

Salt Lake City, UT

South Charleston, WV +1 304 356 3168

Middletown, PA +1 717 944 5541 +1 801 266 7700

York, PA +1 717 505 5280

Copyright 2011 by ALS Environmental.

Enviro	nmental	ALS Project Manager: ALS Work Order #: \(\(\mu_0 \mu_0\)								/S\1	3 ·					
C	Customer Information		Proje	ect Informa	ition	io periode de la conse			Par		Method					
Purchase Order		Project Nam	e 03:	9124 G.L. Er	win		A	Diss	olved M	etals (60	20) - LAB	Filter (C	a,Mg,K,	Na)		
Work Order	900 100 100 100 100 100 100 100 100 100	Project Numbe	r 03	9124			В	Аліс	ns (300)) - **NO3	**, Cl, F,	SO4				
Company Name	Conestoga Rovers & Associates	Bill To Compan	y Co	nestoga Rov	ers & Associa	ites	c	Alka	linity (23	320) - T,0	O3,HCO	3, OH				AND AND AND AND AND AND AND AND AND AND
Send Report To	Chris Knight	Invoice Att	n Ch	ris Knight			D	TDS	(2540)	The second secon						
Address	13091 Pond Springs Road, Suite A100	Addres		091 Pond Sp	rings Road, S	Suite A10	E									
City/State/Zip	Austin, Texas 78729	City/State/Zip) Au	stin, Texas 7	G	TOTOLOGICA								CONTRACTION BOLDS AND AND AND AND AND AND AND AND AND AND		
Phone	(512) 506-8803	Phone	(51	2) 506-8803	н		***************************************									
Fax		Fax			i i	V										
e-Mail Address	cknight@eraworld.com	e-Mail Addres:	s ckr	night@crawo	rid.com		Ú			***************************************						
No.	Sample Description	Date	Time	Matrix	Pres.	# Bottles	Α	В	C	D	E F	G	Н	I	J	Hold
1 MW-3	, -040314	4-3-14	1400	water	1ce	2	上	X	X	\times			***************************************			
	- 04034		1415			1			1				naa amaran			
3 mw-2.	- 0403/4		530)							W. W. W. W. W. W. W. W. W. W. W. W. W. W		ļ	
4 mw-1	- 0403/4		545													
5 mw-9.	- 0403/4		1600					-							The state of the s	
6 w- mh	,- 040314		1445		70000	A A SA CA		- Annual III					14000			AND ALL THE PROPERTY OF THE PARTY OF THE PAR
7 Sw-mu	J- 040314	THE FT THE RESIDENCE OF THE STREET, THE STREET, THE STREET, THE STREET, THE STREET, THE STREET, THE STREET, THE	1500										and the same of th			THE MANAGEMENT AND AND AND AND ADDRESS OF THE ADDRE
8 mw-4-	- 040314 - 040314		515										· .			***************************************
9 mw-22	- 040314		1615				1),									
10 mw-26	0403/4	1	530	1	V		1	V		V						,
Sampler(s) Please Pr בי האלט (Nixon / Short	Shipment M Fed	<mark>የ</mark> ኢ	Red	quired Turnar	ound Time:			∏ Olin ∏ 2 Vi	er IK Days	☐ 24 H		esults C	ue Date	3:	
Relinquished by:	-tim Date: 4-3-14	1831	ceived by:		1		Notes:		**48Hr	łold Tima	-SHIP sa	me day s	ampled	** ; 10 c	lay TAT	
Relinquished by	Pa# 4/1/1 T	imer 35 Re	ceived by (L)	Aboratory)	1		Cod	ler ID	Coole	r Temp.	QC Packa					manamumanaman manamumanaman manamanaman manamanaman manamana
Logged by (Laboratory):		ime: Ch	ecked by (L	aboratory);							Le	vel II Std (vel III Std vel IV SW	QC/Raw	Data	TRRF	CheckList Level IV
Preservative Key:	1-HCI 2-HNO ₃ 3-H ₂ SO ₄ 4-NaC	H 5-Na₂S₂O₃	6-NaHS	O₄ 7-Oth	er 8-4°C	9-5035						her / EDD				

Note: 1. Any changes must be made in writing once samples and COC Form have been submitted to ALS Environmental,

2. Unless otherwise agreed in a formal contract, services provided by ALS Environmental are expressly limited to the terms and conditions stated on the reverse.

3. The Chain of Custody is a legal document. All information must be completed accurately.

Page 99 of 101

Everett, WA +1 425 356 2600 Fort Collins, CO +1 970 490 1511 Holland, Mi

+1 616 399 6070

Chain of Custody Form

Page ___

93186 COC ID:

Houston, TX +1 281 530 5656 Spring City, PA +1 610 948 4903

South Charleston, WV +1 304 356 3168

Middletown, PA Salt Lake City, UT York, PA +1 717 505 5280 +1 717 944 5541 +1 801 266 7700

Environmental ALS Project Manager: ALS Work Order #: しょっこういる・ **Customer Information Project Information** Parameter/Method Request for Analysis Purchase Order **Project Name** 039124 G.L. Erwin Dissolved Metals (6020) - LAB Filter (Ca,Mg,K,Na) Work Order **Project Number** 039124 В Anions (300) - **NO3**, CI, F, SO4 Company Name C **Bill To Company** Conestoga Rovers & Associates Conestoga Rovers & Associates Alkalinity (2320) - T,CO3,HCO3, OH Send Report To Invoice Attn D Chris Knight Chris Knight TDS (2540) E 13091 Pond Springs Road, Suite A100 13091 Pond Springs Road, Suite A10 Address Address G City/State/Zip City/State/Zip Austin, Texas 78729 Austin, Texas 78729 Phone (512) 506-8803 Phone (512) 506-8803 Fax Fax e-Mail Address e-Mail Address cknight@craworld.com cknight@craworld.com No. Sample Description Date Matrix Pres. # Bottles Α B C D E G Н Hold Ground Э X. None × DUP-2- 040314 X X X 5 6 7 8 9 10 Required Turnaround Time: (Check Box) Sampler(s) Please Print & Sign Results Due Date: Shipment Method Other 2 WK Days 24 Hour ₩ Std 10 WK Davs 5 WK Davs Received by: Notes: **48Hr Hold Time-SHIP same day sampled** ; 10 day TAT Cooler ID Cooler Temp. QC Package: (Check One Box Below) Level II Std QC TRRP CheckList Logged by (Laboratory): Level III Std QC/Raw Data TRRP Level IV Level IV SW846/CLP

4-NaOH Note: I. Any changes must be made in writing once samples and COC Form have been submitted to ALS Environmental.

2. Unless otherwise agreed in a formal contract, services provided by ALS Environmental are expressly limited to the terms and conditions stated on the reverse.

6-NaHSO

5-Na₂S₂O₂

3. The Chain of Custody is a legal document. All information must be completed accurately.

3-H₂SO₄

2-HNO

Preservative Key: 1-HCI

Copyright 2011 by ALS Environmental.

Other / EDD

7-Other

8-4°C

9-5035

Page 101 of 101

6320 Rothway, Suite 100 Houston, TX 77040

Telephone: 713-734-3090 Fax: 713-734-3391

www.CRAworld.com

MEMORANDUM

To: Ricardo Banda, Nancy Forster Ref. No.: 039124

FROM: Claudia Ramos/eew/4-NF DATE: December 29, 2014

RE: Analytical Results and Reduced Validation

Semiannual Groundwater Sampling Event

Chevron Environmental Management Company (CEMC) - G.L. Erwin Tank Battery

Lea County, New Mexico

October 2014

1.0 Introduction

The following document details a reduced validation of analytical results for groundwater samples collected at the CEMC – G.L. Erwin Tank Battery site during October 2014. Samples were submitted to Xenco Laboratories, located in Odessa, Texas. A sample collection and analysis summary is presented in Table 1. The validated analytical results are summarized in Table 2. A summary of the analytical methodology is presented in Table 3.

Standard Conestoga-Rovers & Associates (CRA) report deliverables were submitted by the laboratory. The final results and supporting quality assurance/quality control (QA/QC) data were assessed. Evaluation of the data was based on information obtained from the chain of custody forms, finished report forms, method blank data, laboratory control samples (LCS), matrix spikes (MS), and field QC samples.

The QA/QC criteria by which these data have been assessed are outlined in the analytical methods referenced in Table 3 and applicable guidance from the document entitled:

 i) "USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review", USEPA 540/R-94-013, February 1994

Item i) will subsequently be referred to as the "Guidelines" in this Memorandum.

2.0 Sample Holding Time and Preservation

The sample holding time criteria for the analyses are summarized in Table 3. Sample chain of custody documents and analytical reports were used to determine sample holding times. All samples were analyzed within the required holding times.

CRA MEMORANDUM

All samples were properly preserved, delivered on ice, and stored by the laboratory at the required temperature (0-6°C).

3.0 Laboratory Method Blank Analyses

Method blanks are prepared from a purified matrix and analyzed with investigative samples to determine the existence and magnitude of sample contamination introduced during the analytical procedures.

For this study, laboratory method blanks were analyzed at a minimum frequency of 1 per 20 investigative samples and/or 1 per analytical batch.

Most method blank results were non-detect, indicating that laboratory contamination was not a factor for this investigation. Low level concentrations of total dissolved solids (TDS) were detected in the method blanks reflecting potential laboratory contamination. All associated sample results were significantly higher than the method blank concentrations and were reported without qualification.

4.0 Laboratory Control Sample Analyses

LCS and/or laboratory control sample duplicates (LCSD) are prepared and analyzed as samples to assess the analytical efficiencies of the methods employed, independent of sample matrix effects. The relative percent difference (RPD) of the LCS/LCSD recoveries is used to evaluate analytical precision.

For this study, LCS/LCSD were analyzed at a minimum frequency of 1 per 20 investigative samples and/or 1 per analytical batch.

The LCS/LCSD contained all analytes of interest. LCS recoveries were assessed per the "Guidelines". All LCS recoveries and RPDs were within the control limits, demonstrating acceptable analytical accuracy and precision.

5.0 Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analyses

To evaluate the effects of sample matrices on the extraction or digestion process, measurement procedures, and accuracy of a particular analysis, samples are spiked with a known concentration of the analyte of concern and analyzed as MS/MSD samples. The RPD between the MS and MSD is used to assess analytical precision. If the original sample concentration is significantly greater than the spike concentration, the recovery is not assessed.

MS/MSD analyses were performed as specified in Table 1. For some of the analyses, the laboratory performed additional MS/MSD on non-site samples. The analysis of non-site spike samples cannot be used to assess accuracy and precision for the site samples.

CRA MEMORANDUM

The MS/MSD samples were spiked with the analytes of interest, and the results were evaluated using the "Guidelines". All percent recoveries and RPD values were within the control limits, demonstrating acceptable analytical accuracy and precision with the following exceptions (see Table 4):

i. Low percent recovery values were reported for nitrate (as N). Associated sample results were qualified as estimated.

6.0 Field QA/QC Samples

The field QA/QC consisted of three field duplicate sample sets.

Field Duplicate Sample Analysis

To assess the analytical and sampling protocol precision, three field duplicate samples were collected and submitted "blind" to the laboratory, as specified in Table 1. The RPDs associated with these duplicate samples must be less than 50 percent for water samples. If the reported concentration in either the investigative sample or its duplicate is less than five times the practical quantitation limit (PQL), the evaluation criterion is one time the PQL value for water samples.

Most field duplicate results showed adequate reproducibility; indicating satisfactory sampling and laboratory precision with the following exceptions (see Table 5):

i. Metals and chloride analyses did show some variability in sample MW-1-100914 and its field duplicate. The original and duplicate sample results were qualified as estimated.

7.0 Conclusion

Based on the assessment detailed in the foregoing, the data summarized in Table 2 are acceptable with the specific qualifications noted herein.

TABLE 1

SAMPLE COLLECTION AND ANALYSIS SUMMARY SEMIANNUAL GROUNDWATER SAMPLING EVENT CHEVRON ENVIRONMENTAL MANAGEMENT COMPANY (CEMC) - G.L. ERWIN LEA COUNTY, NEW MEXICO OCTOBER 2014

					Analysis/Parameters						<u>s</u>	
Sample Identification	Location	Matrix	Collection Date (mm/dd/yyyy)	Collection Time (hr:min)	Alkalinity	Dissolved Metals	Chloride	Fluoride	Nitrate (as N)	Sulfate	ZDZ	Comments
MW-1-100914	MW-1	water	10/09/2014	14:10	Χ	Х	Х	Х	Х	Χ	Χ	
DUP-2-100914	MW-1	water	10/09/2014	-	Χ	Х	Χ	Χ	Х	Χ	Х	Field duplicate of MW-1
MW-2-100914	MW-2	water	10/09/2014	14:20	Χ	Х	Χ	Χ	Х	Χ	Х	•
MW-3-100914	MW-3	water	10/09/2014	13:50	Χ	Х	Χ	Χ	Х	Χ	Х	
MW-4-100914	MW-4	water	10/09/2014	13:00	Χ	Χ	Χ	Χ	Χ	Χ	Χ	
MW-5-100914	MW-5	water	10/09/2014	14:40	Χ	Χ	Χ	Χ	Χ	Χ	Χ	
MW-6-100914	MW-6	water	10/09/2014	13:40	Χ	Χ	Χ	Χ	Χ	Χ	Х	
MW-7-100914	MW-7	water	10/09/2014	14:30	Χ	Χ	Χ	Χ	Χ	Χ	Х	
MW-8-101014	MW-8	water	10/10/2014	12:50	Χ	Χ	Χ	Χ	Χ	Χ	Х	
MW-9-100914	MW-9	water	10/09/2014	12:40	Χ	Χ	Χ	Χ	Χ	Χ	Χ	
MW-10-100914	MW-10	water	10/09/2014	13:30	Χ	Χ	Χ	Χ	Χ	Χ	Χ	
MW-12-101014	MW-12	water	10/10/2014	13:20	Χ	Χ	Χ	Χ	Χ	Χ	Χ	
MW-13-101014	MW-13	water	10/10/2014	14:40	Χ	Χ	Χ	Χ	Χ	Χ	Χ	
MW-14-101014	MW-14	water	10/10/2014	14:30	Χ	Χ	Χ	Χ	Χ	Χ	Χ	
MW-15-101014	MW-15	water	10/10/2014	13:30	Χ	Χ	Χ	Χ	Χ	Χ	Χ	
MW-16-101014	MW-16	water	10/10/2014	13:10	Χ	Χ	Χ	Χ	Χ	Χ	Χ	
MW-17-101014	MW-17	water	10/10/2014	13:00	Χ	Χ	Χ	Χ	Χ	Χ	Χ	
Dup-3-101014	MW-17	water	10/10/2014	-	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Field duplicate of MW-17
MW-19-101014	MW-19	water	10/10/2014	14:20	Χ	Χ	Χ	Χ	Χ	Χ	Χ	
MW-20-101014	MW-20	water	10/10/2014	13:40	Χ	Χ	Χ	Χ	Χ	Χ	Χ	
MW-21-101014	MW-21	water	10/10/2014	14:10	Χ	Χ	Χ	Χ	Χ	Χ	Χ	
MW-22-100914	MW-22	water	10/09/2014	12:30	Χ	Χ	Χ	Χ	Χ	Χ	Χ	
MW-23-101014	MW-23	water	10/10/2014	13:50	Χ	Χ	Χ	Χ	Χ	Χ	Χ	
MW-24-101014	MW-24	water	10/10/2014	14:00	Χ	Χ	Χ	Χ	Χ	Χ	Χ	
MW-25-101014	MW-25	water	10/10/2014	12:30	Χ	Χ	Χ	Χ	Χ	Χ	Χ	
MW-26-100914	MW-26	water	10/09/2014	12:15	Χ	Χ	Χ	Χ	Χ	Χ	Х	
RW-1-100914	RW-1	water	10/09/2014	13:15	Χ	Χ	Χ	Χ	Χ	Χ	Χ	
Dup-1-100914	RW-1	water	10/09/2014	-	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Field duplicate of RW-1
MW-SW-100914	Southwest	water	10/09/2014	13:10	Χ	Х	Χ	Χ	Х	Χ	Χ	
MW-W-100914	West MW	water	10/09/2014	12:50	Χ	Х	Χ	Χ	Χ	Χ	Χ	
WW-1 100914	WW-1	water	10/09/2014	0:00	Χ	Х	Х	Χ	Χ	Χ	Х	

Notes:

N - Nitrogen

TDS - Total Dissolved Solids

TABLE 2

Sample Location: Sample Identification: Sample Date: Sample Type:		MW-1 MW-1-100914 10/9/2014	MW-1 DUP-2-100914 10/9/2014 Duplicate	MW-2 MW-2-100914 10/9/2014	MW-3 MW-3-100914 10/9/2014	MW-4 MW-4-100914 10/9/2014	MW-5 MW-5-100914 10/9/2014	MW-6 MW-6-100914 10/9/2014	MW-7 MW-7-100914 10/9/2014	MW-8 MW-8-101014 10/10/2014
Parameter	Units									
Metals										
Calcium (dissolved)	mg/L	85.7 J	148 J	31.5	106	420	263	42.1	28.1	51.2
Magnesium (dissolved)	mg/L	29.2 J	50.1 J	8.90	32.8	130	84.8	12.8	8.31	15.9
Potassium (dissolved)	mg/L	5.18	6.73	5.75	16.0	26.7	11.1	10.0	3.75	5.42
Sodium (dissolved)	mg/L	105	107	274	671	1020	344	532	286	454
General Chemistry										
Alkalinity, bicarbonate	mg/L	168	146	260	291	259	185	286	257	284
Alkalinity, carbonate	mg/L	<4.00	<4.00	<4.00	<4.00	<4.00	<4.00	<4.00	<4.00	<4.00
Alkalinity, hydroxide	mg/L	<4.00	<4.00	<4.00	<4.00	<4.00	<4.00	<4.00	<4.00	<4.00
Chloride	mg/L	213 J	427 J	220	961	2330	957	560	252	527
Fluoride	mg/L	1.10	0.922	0.810	0.752	0.292	0.572	1.21	1.74	2.29
Nitrate (as N)	mg/L	2.89 J	2.23 J	5.96 J	7.36 J	3.71 J	3.99 J	8.11 J	4.90 J	7.65
Sulfate	mg/L	80.3	73.4	173	300	312	124	265	146	194
Total dissolved solids (TDS)	mg/L	554	559	939	3400	5870	3750	1730	955	1550

TABLE 2

Sample Location: Sample Identification: Sample Date: Sample Type:		MW-9 MW-9-100914 10/9/2014	MW-10 MW-10-100914 10/9/2014	MW-12 MW-12-101014 10/10/2014	MW-13 MW-13-101014 10/10/2014	MW-14 MW-14-101014 10/10/2014	MW-15 MW-15-101014 10/10/2014	MW-16 MW-16-101014 10/10/2014	MW-17 MW-17-101014 10/10/2014
Parameter	Units								
Metals									
Calcium (dissolved)	mg/L	35.5	618	595	326	1270	293	242	83.3
Magnesium (dissolved)	mg/L	10.7	200	208	117	384	108	79.4	27.3
Potassium (dissolved)	mg/L	4.91	18.0	13.5	12.6	33.5	11.9	7.99	5.49
Sodium (dissolved)	mg/L	460	963	180	143	2640	129	269	240
General Chemistry									
Alkalinity, bicarbonate	mg/L	211	154	83.6	101	103	98.5	217	211
Alkalinity, carbonate	mg/L	<4.00	<4.00	<4.00	<4.00	<4.00	<4.00	<4.00	<4.00
Alkalinity, hydroxide	mg/L	<4.00	<4.00	<4.00	<4.00	<4.00	<4.00	<4.00	<4.00
Chloride	mg/L	552	2730	1890	1020	7610	896	834	316
Fluoride	mg/L	1.92	0.185	0.269	0.829	1.77	0.607	0.439	1.41
Nitrate (as N)	mg/L	2.67 J	3.96 J	3.92	3.78	4.28	2.58	4.52	3.98
Sulfate	mg/L	159	292	55.2	148	<1.00	80.6	130	107
Total dissolved solids (TDS)	mg/L	2020	7930	6290	3500	19000	1830	1550	1790

TABLE 2

Sample Location: Sample Identification: Sample Date: Sample Type:	: :	MW-17 Dup-3-101014 10/10/2014 Duplicate	MW-19 MW-19-101014 10/10/2014	MW-20 MW-20-101014 10/10/2014	MW-21 MW-21-101014 10/10/2014	MW-22 MW-22-100914 10/9/2014	MW-23 MW-23-101014 10/10/2014	MW-24 MW-24-101014 10/10/2014
Parameter	Units							
Metals								
Calcium (dissolved)	mg/L	62.0	965	387	155	349	140	647
Magnesium (dissolved)	mg/L	20.1	369	139	48.7	108	51.9	208
Potassium (dissolved)	mg/L	5.28	29.2	13.7	9.68	12.7	8.61	22.9
Sodium (dissolved)	mg/L	265	663	233	119	907	107	230
General Chemistry								
Alkalinity, bicarbonate	mg/L	226	95.6	107	185	183	127	96.9
Alkalinity, carbonate	mg/L	<4.00	<4.00	<4.00	<4.00	<4.00	<4.00	<4.00
Alkalinity, hydroxide	mg/L	<4.00	<4.00	<4.00	<4.00	<4.00	<4.00	<4.00
Chloride	mg/L	313	3440	1320	186	2030	391	1870
Fluoride	mg/L	1.56	0.132	0.496	1.50	0.395	0.716	0.386
Nitrate (as N)	mg/L	4.04	3.86	3.82	5.16	2.72 J	0.717	3.41
Sulfate	mg/L	131	416	121	393	257	85.7	268
Total dissolved solids (TDS)	mg/L	1140	7560	4180	1080	5150	1010	5850

TABLE 2

Sample Location: Sample Identification: Sample Date: Sample Type:		MW-25 MW-25-101014 10/10/2014	MW-26 MW-26-100914 10/9/2014	RW-1 RW-1-100914 10/9/2014	RW-1 Dup-1-100914 10/9/2014 Duplicate	Southwest MW-SW-100914 10/9/2014	West MW MW-W-100914 10/9/2014	WW-1 WW-1 100914 10/9/2014
Parameter	Units							
Metals								
Calcium (dissolved)	mg/L	870	158	101	101	145	55.2	90.2
Magnesium (dissolved)	mg/L	270	45.3	28.1	27.8	40.2	15.4	31.8
Potassium (dissolved)	mg/L	22.5	9.50	29.9	29.6	33.3	13.9	6.01
Sodium (dissolved)	mg/L	1250	794	645	640	818	201	115
General Chemistry								
Alkalinity, bicarbonate	mg/L	152	223	318	317	346	232	165
Alkalinity, carbonate	mg/L	<4.00	<4.00	<4.00	<4.00	<4.00	<4.00	<4.00
Alkalinity, hydroxide	mg/L	<4.00	<4.00	<4.00	<4.00	<4.00	<4.00	<4.00
Chloride	mg/L	4280	1390	867	847	1190	200	205
Fluoride	mg/L	< 0.100	0.557	0.836	0.733	0.817	0.907	0.731
Nitrate (as N)	mg/L	4.10	2.71 J	4.32 J	4.30 J	3.79 J	0.398 J	2.46 J
Sulfate	mg/L	299	272	293	295	363	158	145
Total dissolved solids (TDS)	mg/L	11400	3920	2190	2290	5210	861	916

Notes:

J - Estimated concentration

TABLE 3

ANALYTICAL METHODS AND HOLDING TIME CRITERIA SEMIANNUAL GROUNDWATER SAMPLING EVENT CHEVRON ENVIRONMENTAL MANAGEMENT COMPANY (CEMC) - G.L. ERWIN LEA COUNTY, NEW MEXICO OCTOBER 2014

Parameter	Method	Matrix	<u>Holding Time</u> Collection to Analysis (Days)
Alkalinity	SM 2320B	Water	14
Dissolved Metals	SW-846 6020	Water	180
Chloride	EPA 300	Water	28
Flouride	EPA 300	Water	28
Nitrate (as N)	EPA 300	Water	2
Sulfate	EPA 300	Water	28
TDS	SM 2540C	Water	7

Notes:

SM -"Standard Methods for the Examination of Water and Wastewater", 18th Edition, 1992, with subsequent revisions

SW-846 - "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods", SW-846, Third Edition, 1986, with subsequent revisions

EPA -"Methods for Chemical Analysis of Water and Wastes", USEPA-600/4-79-020, March 1983, with subsequent revisions

N -Nitrogen

TDS -Total Dissolved Solids

TABLE 4

QUALIFIED SAMPLE RESULTS DUE TO OUTLYING MS/MSD RESULTS SEMIANNUAL GROUNDWATER SAMPLING EVENT CHEVRON ENVIRONMENTAL MANAGEMENT COMPANY (CEMC) - G.L. ERWIN LEA COUNTY, NEW MEXICO OCTOBER 2014

			MS	MSD		Control L	imits	Qualified	
Parameter	Sample ID	Analyte	% Recovery	% Recovery	RPD (percent)	% Recovery	RPD	Result	Units
Wet Chemistry	MW-W-100914	Nitrate (as N)	67	68	1	80-120	20	0.398 J	mg/L
	MW-10-100914							3.96 J	mg/L
	MW-1-100914							2.89 J	mg/L
	MW-22-100914							2.72 J	mg/L
	MW-26-100914							2.71 J	mg/L
	MW-3-100914							7.36 J	mg/L
	MW-4-100914							3.71 J	mg/L
	MW-5-100914							3.99 J	mg/L
	MW-6-100914							8.11 J	mg/L
	MW-9-100914							2.67 J	mg/L
	MW-SW-100914							3.79 J	mg/L
	Dup-1-100914							4.30 J	mg/L
	RW-1-100914							4.32 J	mg/L
	MW-2-100914	Nitrate (as N)	44	43	1	80-120	20	5.96 J	mg/L
	MW-7-100914							4.90 J	mg/L
	WW-1 100914							2.46 J	mg/L
	DUP-2-100914							2.23 J	mg/L

Notes:

MS - Matrix Spike

MSD - Matrix Spike Duplicate RPD - Relative Percent Difference

N - Nitrogen

J - Estimated concentration

TABLE 5

QUALIFIED SAMPLE DATA DUE TO VARIABILITY IN FIELD DUPLICATE RESULTS SEMIANNUAL GROUNDWATER SAMPLING EVENT CHEVRON ENVIRONMENTAL MANAGEMENT COMPANY (CEMC) - G.L. ERWIN LEA COUNTY, NEW MEXICO OCTOBER 2014

Parameter	Analyte	RPD	Sample ID	Qualified Result	Field Duplicate Sample ID	Qualified Result	Units
Metals	Calcium	52.7	MW-1-100914	85.7 J	DUP-2-100914	148 J	mg/kg
	Magnesium	51.1		29.2 J		50.1 J	mg/kg
General Chemistry	Chloride	66.9	MW-1-100914	213 J	DUP-2-100914	427 J	mg/kg

Notes:

RPD - Relative Percent Difference
J - Estimated concentration

Analytical Report 494933

for Conestoga Rovers & Associates

Project Manager: Nancy Forster
G.L Erwin
039124
15-OCT-14

Collected By: Client

12600 West I-20 East Odessa, Texas 79765

Xenco-Houston (EPA Lab code: TX00122): Texas (T104704215-14-16-TX), Arizona (AZ0765), Florida (E871002), Louisiana (03054) New Jersey (TX007), North Carolina(681), Oklahoma (9218), Pennsylvania (68-03610)

Xenco-Atlanta (EPA Lab Code: GA00046): Florida (E87429), North Carolina (483), South Carolina (98015), Kentucky (85), DoD (L10-135) Texas (T104704477), Louisiana (04176), USDA (P330-07-00105)

Xenco-Lakeland: Florida (E84098)

Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400-TX)

Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295-TX)

Xenco Phoenix (EPA Lab Code: AZ00901): Arizona (AZ0757)

Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757)

Xenco Tucson (EPA Lab code: AZ000989): Arizona (AZ0758)

15-OCT-14

Project Manager: Nancy Forster Conestoga Rovers & Associates 2135 S Loop 250 W Midland, TX 79703

Reference: XENCO Report No(s): 494933

G.L Erwin

Project Address: NM

Nancy Forster:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 494933. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 494933 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully, Morah

Kelsey Brooks

Project Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Odessa - San Antonio - Tampa - Lakeland - Atlanta - Phoenix - Oklahoma - Latin America

Sample Cross Reference 494933

Conestoga Rovers & Associates, Midland, TX

G.L Erwin

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
Dup-1-100914	W	10-09-14 00:00		494933-001
MW-26-100914	W	10-09-14 12:15		494933-002
MW-22-100914	W	10-09-14 12:30		494933-003
MW-9-100914	W	10-09-14 12:40		494933-004
MW-W-100914	W	10-09-14 12:50		494933-005
MW-SW-100914	W	10-09-14 13:10		494933-006
MW-4-100914	W	10-09-14 13:00		494933-007
RW-1-100914	W	10-09-14 13:15		494933-008
MW-10-100914	W	10-09-14 13:30		494933-009
MW-5-100914	W	10-09-14 14:40		494933-010
MW-6-100914	W	10-09-14 13:40		494933-011
MW-3-100914	W	10-09-14 13:50		494933-012
MW-1-100914	W	10-09-14 14:10		494933-013
MW-2-100914	W	10-09-14 14:20		494933-014
MW-7-100914	W	10-09-14 14:30		494933-015
DUP-2-100914	W	10-09-14 00:00		494933-016
WW-1 100914	W	10-09-14 00:00		494933-017

CASE NARRATIVE

Client Name: Conestoga Rovers & Associates

Project Name: G.L Erwin

 Project ID:
 039124
 Report Date:
 15-OCT-14

 Work Order Number(s):
 494933
 Date Received:
 10/09/2014

Sample receipt non conformances and comments:

Sample receipt non conformances and comments per sample:

None

Analytical non conformances and comments:

Batch: LBA-952674 Inorganic Anions by EPA 300/300.1

Nitrate as N recovered below QC limits in the Matrix Spike and Matrix Spike Duplicate. Samples affected

are: 494933-001, -002, -007, -011, -005, -012, -004, -009, -010, -013, -003, -006, -008. The Laboratory Control Sample for Nitrate as N is within laboratory Control Limits

Batch: LBA-952686 Inorganic Anions by EPA 300/300.1

Nitrate as N recovered below QC limits in the Matrix Spike and Matrix Spike Duplicate. Samples affected

are: 494933-016, -014, -015, -017.

The Laboratory Control Sample for Nitrate as N is within laboratory Control Limits

Project Location: NM

Certificate of Analysis Summary 494933

Conestoga Rovers & Associates, Midland, TX

Project Name: G.L Erwin

Project Id: 039124 **Contact:** Nancy Forster

Date Received in Lab: Thu Oct-09-14 04:45 pm

Report Date: 15-OCT-14

Project Manager: Kelsey Brooks

								1 Toject Mai	lager.	Neisey Drook	,		
	Lab Id:	494933-0	001	494933-0	002	494933-0	003	494933-0	004	494933-0	005	494933-0	006
Anadusia Danuartad	Field Id:	Dup-1-100	914	MW-26-10	0914	MW-22-10	0914	MW-9-100	914	MW-W-10	0914	MW-SW-10	00914
Analysis Requested	Depth:												
	Matrix:	WATE	R	WATE	R	WATE	R	WATE	₹	WATE	R	WATE	R
	Sampled:	Oct-09-14 (00:00	Oct-09-14	12:15	Oct-09-14	12:30	Oct-09-14	2:40	Oct-09-14	12:50	Oct-09-14	13:10
Alkalinity by SM2320B	Extracted:												
SUB: E871002	Analyzed:	Oct-13-14	17:49	Oct-13-14	17:49	Oct-13-14	17:49	Oct-13-14	7:49	Oct-13-14	17:49	Oct-13-14	17:49
	Units/RL:	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL
Alkalinity, Bicarbonate (as CaCO3)		317	4.00	223	4.00	183	4.00	211	4.00	232	4.00	346	4.00
Alkalinity, Carbonate (as CaCO3)		ND	4.00	ND	4.00	ND	4.00	ND	4.00	ND	4.00	ND	4.00
Alkalinity, hydroxide (as CaCO3)		ND	4.00	ND	4.00	ND	4.00	ND	4.00	ND	4.00	ND	4.00
Dissolved Metals per ICP by SW846	Extracted:	Oct-13-14	09:30	Oct-13-14 (09:30	Oct-13-14 (09:30	Oct-13-14 (9:30	Oct-13-14 (9:30	Oct-13-14	09:30
6010B	Analyzed:	Oct-13-14	20:19	Oct-13-14 2	20:26	Oct-13-14 2	20:32	Oct-13-14 2	20:39	Oct-13-14 2	20:45	Oct-13-14	20:52
SUB: E871002	Units/RL:	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL
Calcium		101	0.200	158	0.200	349	0.200	35.5	0.200	55.2	0.200	145	0.200
Magnesium		27.8	0.200	45.3	0.200	108	0.200	10.7	0.200	15.4	0.200	40.2	0.200
Potassium		29.6	0.500	9.50	0.500	12.7	0.500	4.91	0.500	13.9	0.500	33.3	0.500
Sodium		640	0.500	794	0.500	907 E	0.500	460	0.500	201	0.500	818	0.500
Inorganic Anions by EPA 300/300.1	Extracted:	Oct-10-14	10:20	Oct-10-14	10:20	Oct-10-14	10:20	Oct-10-14	0:20	Oct-10-14	10:20	Oct-10-14	10:20
SUB: E871002	Analyzed:	Oct-10-14	12:22	Oct-10-14	13:05	Oct-10-14	14:03	Oct-10-14	4:18	Oct-10-14	17:25	Oct-10-14	15:01
	Units/RL:	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL
Chloride		847 D	100	1390 D	100	2030 D	200	552	100	200	10.0	1190	100
Fluoride		0.733	0.100	0.557	0.100	0.395	0.100	1.92	0.100	0.907	0.100	0.817	0.100
Nitrate as N		4.30	0.0230	2.71	0.0230	2.72	0.0230	2.67	0.0230	0.398	0.0230	3.79	0.0230
Sulfate		295	20.0	272	20.0	257	20.0	159 D	10.0	158 E	1.00	363 D	50.0
TDS by SM2540C	Extracted:												
	Analyzed:	Oct-13-14	15:30	Oct-13-14	15:30	Oct-13-14	15:30	Oct-13-14	5:30	Oct-13-14	15:30	Oct-13-14	15:30
	Units/RL:	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL
Total dissolved solids		2290	5.00	3920	5.00	5150	5.00	2020	5.00	861	5.00	5210	5.00

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Kelsey Brooks Project Manager

Project Location: NM

Certificate of Analysis Summary 494933

Conestoga Rovers & Associates, Midland, TX

Project Name: G.L Erwin

Project Id: 039124

Contact: Nancy Forster

Date Received in Lab: Thu Oct-09-14 04:45 pm

Report Date: 15-OCT-14

Project Manager: Kelsey Brooks

								I I Oject Mai	nager.	Neisey Drook	,		
	Lab Id:	494933-0	007	494933-0	800	494933-0	009	494933-0	010	494933-0)11	494933-0)12
Analusia Danuaria i	Field Id:	MW-4-100	0914	RW-1-100	914	MW-10-10	0914	MW-5-100	914	MW-6-100	914	MW-3-100	0914
Analysis Requested	Depth:												
	Matrix:	WATE	R	WATE	R	WATE	R	WATEI	R	WATE	R	WATE	R
	Sampled:	Oct-09-14	13:00	Oct-09-14	13:15	Oct-09-14	13:30	Oct-09-14 1	14:40	Oct-09-14	13:40	Oct-09-14	13:50
Alkalinity by SM2320B	Extracted:												
SUB: E871002	Analyzed:	Oct-13-14	17:49	Oct-13-14	17:49	Oct-13-14	17:49	Oct-13-14 1	17:49	Oct-13-14	17:49	Oct-13-14	17:49
	Units/RL:	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL
Alkalinity, Bicarbonate (as CaCO3)		259	4.00	318	4.00	154	4.00	185	4.00	286	4.00	291	4.00
Alkalinity, Carbonate (as CaCO3)		ND	4.00	ND	4.00	ND	4.00	ND	4.00	ND	4.00	ND	4.00
Alkalinity, hydroxide (as CaCO3)		ND	4.00	ND	4.00	ND	4.00	ND	4.00	ND	4.00	ND	4.00
Dissolved Metals per ICP by SW846	Extracted:	Oct-13-14 (09:30	Oct-13-14 (9:30	Oct-13-14 (09:30	Oct-13-14 (9:30	Oct-13-14 (9:30	Oct-13-14	09:30
6010B	Analyzed:	Oct-13-14	20:59	Oct-13-14 2	21:05	Oct-13-14 2	21:31	Oct-13-14 2	21:38	Oct-13-14 2	21:44	Oct-13-14	21:51
SUB: E871002	Units/RL:	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL
Calcium		420	0.200	101	0.200	618	0.200	263	0.200	42.1	0.200	106	0.200
Magnesium		130	0.200	28.1	0.200	200	0.200	84.8	0.200	12.8	0.200	32.8	0.200
Potassium		26.7	0.500	29.9	0.500	18.0	0.500	11.1	0.500	10.0	0.500	16.0	0.500
Sodium		1020 E	0.500	645	0.500	963 E	0.500	344	0.500	532	0.500	671	0.500
Inorganic Anions by EPA 300/300.1	Extracted:	Oct-10-14	10:20	Oct-10-14	10:20	Oct-10-14	10:20	Oct-10-14 1	10:20	Oct-10-14	10:20	Oct-10-14	10:20
SUB: E871002	Analyzed:	Oct-10-14	15:15	Oct-10-14	15:59	Oct-10-14	16:13	Oct-10-14 1	16:28	Oct-10-14	16:42	Oct-10-14	16:56
	Units/RL:	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL
Chloride		2330	400	867 D	50.0	2730	400	957	400	560 D	50.0	961 D	50.0
Fluoride		0.292	0.100	0.836	0.100	0.185	0.100	0.572	0.100	1.21	0.100	0.752	0.100
Nitrate as N		3.71	0.0230	4.32	0.0230	3.96	0.0230	3.99	0.0230	8.11	0.0230	7.36	0.0230
Sulfate		312 D	20.0	293 D	50.0	292 D	20.0	124 D	20.0	265 D	50.0	300 D	50.0
TDS by SM2540C	Extracted:												
	Analyzed:	Oct-13-14	15:30	Oct-13-14	15:30	Oct-13-14	15:30	Oct-13-14 1	15:30	Oct-13-14	15:30	Oct-13-14	15:30
	Units/RL:	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL
Total dissolved solids		5870	5.00	2190	5.00	7930	5.00	3750	5.00	1730	5.00	3400	5.00

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Kelsey Brooks Project Manager

Project Location: NM

Certificate of Analysis Summary 494933

Conestoga Rovers & Associates, Midland, TX

Project Name: G.L Erwin

Project Id: 039124 **Contact:** Nancy Forster

Date Received in Lab: Thu Oct-09-14 04:45 pm

Report Date: 15-OCT-14

Project Manager: Kelsey Brooks

								I Toject Mai	nager.	Keisey brooks	,	
	Lab Id:	494933-0)13	494933-0)14	494933-0)15	494933-0	16	494933-0	17	
Amalusia Damuastad	Field Id:	MW-1-100)914	MW-2-100)914	MW-7-100)914	DUP-2-100	0914	WW-1 100	914	
Analysis Requested	Depth:											
	Matrix:	WATE	R	WATE	R	WATE	R	WATEI	R	WATEI	٦	
	Sampled:	Oct-09-14	14:10	Oct-09-14	14:20	Oct-09-14	14:30	Oct-09-14 (00:00	Oct-09-14 (00:00	
Alkalinity by SM2320B	Extracted:											
SUB: E871002	Analyzed:	Oct-13-14	17:49	Oct-13-14	17:49	Oct-13-14	17:49	Oct-13-14 1	17:49	Oct-13-14 1	7:49	
	Units/RL:	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	
Alkalinity, Bicarbonate (as CaCO3)		168	4.00	260	4.00	257	4.00	146	4.00	165	4.00	
Alkalinity, Carbonate (as CaCO3)		ND	4.00	ND	4.00	ND	4.00	ND	4.00	ND	4.00	
Alkalinity, hydroxide (as CaCO3)		ND	4.00	ND	4.00	ND	4.00	ND	4.00	ND	4.00	
Dissolved Metals per ICP by SW846	Extracted:	Oct-13-14 (09:30	Oct-13-14 (09:30	Oct-13-14 (09:30	Oct-13-14 (9:30	Oct-13-14 (9:30	
6010B	Analyzed:	Oct-13-14	21:57	Oct-13-14 2	22:04	Oct-13-14 2	22:10	Oct-13-14 2	22:17	Oct-13-14 2	22:23	
SUB: E871002	Units/RL:	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	
Calcium		85.7	0.200	31.5	0.200	28.1	0.200	148	0.200	90.2	0.200	
Magnesium		29.2	0.200	8.90	0.200	8.31	0.200	50.1	0.200	31.8	0.200	
Potassium		5.18	0.500	5.75	0.500	3.75	0.500	6.73	0.500	6.01	0.500	
Sodium		105	0.500	274	0.500	286	0.500	107	0.500	115	0.500	
Inorganic Anions by EPA 300/300.1	Extracted:	Oct-10-14	10:20	Oct-10-14	10:20	Oct-10-14	10:20	Oct-10-14 1	10:20	Oct-10-14 1	0:20	
SUB: E871002	Analyzed:	Oct-10-14	17:11	Oct-10-14 2	21:59	Oct-10-14	19:21	Oct-10-14 1	19:35	Oct-10-14 1	9:49	
	Units/RL:	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	
Chloride		213 D	20.0	220	20.0	252 D	20.0	427	50.0	205 D	20.0	
Fluoride		1.10	0.100	0.810	0.100	1.74	0.100	0.922	0.100	0.731	0.100	
Nitrate as N		2.89	0.0230	5.96	0.0230	4.90	0.0230	2.23	0.0230	2.46	0.0230	
Sulfate		80.3 D	20.0	173	20.0	146 D	20.0	73.4 D	5.00	145 D	20.0	
TDS by SM2540C	Extracted:											
	Analyzed:	Oct-13-14	15:30	Oct-13-14	15:30	Oct-13-14	15:30	Oct-14-14 1	17:00	Oct-14-14 1	7:00	
	Units/RL:	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	
Total dissolved solids		554	5.00	939	5.00	955	5.00	559	5.00	916	5.00	

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Kelsey Brooks Project Manager

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- **K** Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- ** Surrogate recovered outside laboratory control limit.
- BRL Below Reporting Limit.
- **RL** Reporting Limit

MDL Method Detection Limit SDL Sample Detection Limit LOD Limit of Detection

PQL Practical Quantitation Limit MQL Method Quantitation Limit LOQ Limit of Quantitation

DL Method Detection Limit

NC Non-Calculable

- + NELAC certification not offered for this compound.
- * (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Atlanta - Midland/Odessa - Tampa/Lakeland - Phoenix - Latin America

	Phone	Fax
4143 Greenbriar Dr, Stafford, TX 77477	(281) 240-4200	(281) 240-4280
9701 Harry Hines Blvd , Dallas, TX 75220	(214) 902 0300	(214) 351-9139
5332 Blackberry Drive, San Antonio TX 78238	(210) 509-3334	(210) 509-3335
2505 North Falkenburg Rd, Tampa, FL 33619	(813) 620-2000	(813) 620-2033
12600 West I-20 East, Odessa, TX 79765	(432) 563-1800	(432) 563-1713
6017 Financial Drive, Norcross, GA 30071	(770) 449-8800	(770) 449-5477
3725 E. Atlanta Ave, Phoenix, AZ 85040	(602) 437-0330	

Blank Spike Recovery

Project Name: G.L Erwin

Work Order #: 494933 Project ID: 039124

 Lab Batch #:
 952674
 Sample: 662768-1-BKS
 Matrix: Water

 Date Analyzed:
 10/10/2014
 Date Prepared: 10/10/2014
 Analyst: DEP

Reporting Units: mg/L Batch #: 1 BLANK /BLANK SPIKE RECOVERY STUDY

Inorganic Anions by EPA 300/300.1 Analytes	Blank Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Control Limits %R	Flags
Chloride	<1.00	10.0	9.59	96	80-120	
Fluoride	< 0.100	10.0	9.90	99	80-120	
Nitrate as N	< 0.0230	10.0	9.74	97	90-110	
Sulfate	<1.00	10.0	9.92	99	80-120	

 Lab Batch #:
 952686
 Sample: 662770-1-BKS
 Matrix: Water

 Date Analyzed:
 10/10/2014
 Date Prepared: 10/10/2014
 Analyst: DEP

Reporting Units: mg/L Batch #: 1 BLANK /BLANK SPIKE RECOVERY STUDY

Inorganic Anions by EPA 300/300.1 Analytes	Blank Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Control Limits %R	Flags
Chloride	<1.00	10.0	9.82	98	80-120	
Fluoride	< 0.100	10.0	10.1	101	80-120	
Nitrate as N	< 0.0230	10.0	9.97	100	90-110	
Sulfate	<1.00	10.0	10.1	101	80-120	

 Lab Batch #:
 952994
 Sample:
 952994-1-BKS
 Matrix:
 Water

 Date Analyzed:
 10/13/2014
 Date Prepared:
 10/13/2014
 Analyst:
 MHS

Reporting Units: mg/L Batch #: 1 BLANK /BLANK SPIKE RECOVERY STUDY

TDS by SM2540C Analytes	Blank Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Control Limits %R	Flags
Analytes			[©]	[10]		
Total dissolved solids	16.0	1000	1070	107	80-120	

 Lab Batch #:
 952997
 Sample:
 952997-1-BKS
 Matrix:
 Water

 Date Analyzed:
 10/14/2014
 Date Prepared:
 10/14/2014
 Analyst:
 JUM

Reporting Units: mg/L	Batch #: 1	BLANK /B	LANK SPII	KE REC	OVERY S	TUDY
TDS by SM2540C	Blank Result [A]	Spike Added [B]	Blank Spike Result	Blank Spike %R	Control Limits %R	Flags
Analytes	[]	[-]	[C]	[D]	, , ,	
Total dissolved solids	14.5	1000	1010	101	80-120	

Blank Spike Recovery [D] = 100*[C]/[B] All results are based on MDL and validated for QC purposes. BRL - Below Reporting Limit

Final 1.000

BS / BSD Recoveries

Project Name: G.L Erwin

Work Order #: 494933 **Project ID:** 039124

 Analyst:
 DAB
 Date Prepared: 10/13/2014
 Date Analyzed: 10/13/2014

Lab Batch ID: 952857Sample: 662822-1-BKSBatch #: 1Matrix: Water

Units: mg/L BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY

Dissolved Metals per ICP by SW846 6010B Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Calcium	< 0.200	25.0	26.1	104	25.0	24.8	99	5	80-120	20	
Magnesium	< 0.200	25.0	26.2	105	25.0	25.0	100	5	80-120	20	
Potassium	<0.500	10.0	9.87	99	10.0	9.31	93	6	80-120	20	
Sodium	<0.500	25.0	25.7	103	25.0	24.4	98	5	80-120	20	

Relative Percent Difference RPD = 200*|(C-F)/(C+F)|Blank Spike Recovery [D] = 100*(C)/[B]Blank Spike Duplicate Recovery [G] = 100*(F)/[E]All results are based on MDL and Validated for QC Purposes

Form 3 - MS / MSD Recoveries

Project Name: G.L Erwin

Work Order #: 494933 Project ID: 039124

Lab Batch ID: 952857 **QC- Sample ID:** 494747-021 S **Batch #:** 1 **Matrix:** Water

Date Analyzed: 10/13/2014 **Date Prepared:** 10/13/2014 **Analyst:** DAB

Reporting Units: mg/L MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY

Dissolved Metals per ICP by SW846 6010B Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Calcium	93.1	25.0	123	120	25.0	120	108	2	75-125	20	
Magnesium	29.3	25.0	55.9	106	25.0	55.0	103	2	75-125	20	
Potassium	5.06	10.0	15.4	103	10.0	15.1	100	2	75-125	20	
Sodium	65.0	25.0	93.6	114	25.0	91.2	105	3	75-125	20	

Lab Batch ID: 952674 **QC- Sample ID:** 494933-005 S **Batch #:** 1 **Matrix:** Water

Date Analyzed: 10/10/2014 **Date Prepared:** 10/10/2014 **Analyst:** DEP

Reporting Units: mg/L MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY

Inorganic Anions by EPA 300/300.1 Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Chloride	189	100	286	97	100	287	98	0	80-120	20	
Fluoride	<1.00	100	100	100	100	102	102	2	80-120	20	
Nitrate as N	3.31	10.0	10.0	67	10.0	10.1	68	1	80-120	20	X
Sulfate	158	100	252	94	100	253	95	0	80-120	20	

Form 3 - MS / MSD Recoveries

Project Name: G.L Erwin

Work Order #: 494933 Project ID: 039124

Lab Batch ID: 952674 **QC- Sample ID:** 494959-005 S **Batch #:** 1 **Matrix:** Water

Date Analyzed: 10/10/2014 Date Prepared: 10/10/2014 Analyst: DEP

Reporting Units: mg/L MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY

Inorganic Anions by EPA 300/300.1 Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Chloride	12.7	100	109	96	100	108	95	1	80-120	20	
Fluoride	<1.00	100	97.6	98	100	98.7	99	1	80-120	20	
Nitrate as N	4.14	10.0	10.2	61	10.0	10.1	60	1	80-120	20	X
Sulfate	140	100	235	95	100	234	94	0	80-120	20	

Lab Batch ID: 952686 **QC- Sample ID:** 494933-014 S **Batch #:** 1 **Matrix:** Water

Date Analyzed: 10/10/2014 Date Prepared: 10/10/2014 Analyst: DEP

Reporting Units: mg/L MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY

Inorganic Anions by EPA 300/300.1 Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Chloride	218	200	423	103	200	421	102	0	80-120	20	
Fluoride	<2.00	200	205	103	200	206	103	0	80-120	20	
Nitrate as N	5.96	10.0	10.4	44	10.0	10.3	43	1	80-120	20	X
Sulfate	178	200	379	101	200	378	100	0	80-120	20	

Sample Duplicate Recovery

Project Name: G.L Erwin

Work Order #: 494933

Lab Batch #: 952837 **Project ID:** 039124

 Date Analyzed:
 10/13/2014 17:49
 Date Prepared:
 10/13/2014
 Analyst: DHE

 QC- Sample ID:
 494933-010 D
 Batch #:
 2
 Matrix: Water

Reporting Units: mg/L	SAMPLE /	SAMPLE	DUPLIC	ATE REC	OVERY
Alkalinity by SM2320B Analyte	Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag
Alkalinity, Bicarbonate (as CaCO3)	185	182	2	20	
Alkalinity, Carbonate (as CaCO3)	<4.00	<4.00	0	20	U
Alkalinity, hydroxide (as CaCO3)	<4.00	<4.00	0	25	U

Lab Batch #: 952994

 Date Analyzed:
 10/13/2014 15:30
 Date Prepared:
 10/13/2014
 Analyst: MHS

 QC- Sample ID:
 494933-001 D
 Batch #:
 1
 Matrix: Water

Reporting Units: mg/L SAMPLE / SAMPLE DUPLICATE RECOVERY Sample Control TDS by SM2540C Parent Sample **RPD Duplicate** Limits Result Flag Result %RPD [A] [B] Analyte

2290

2220

10

Lab Batch #: 952994

Total dissolved solids

 Date Analyzed:
 10/13/2014 15:30
 Date Prepared:
 10/13/2014
 Analyst: MHS

 QC- Sample ID:
 494933-011 D
 Batch #:
 1
 Matrix:
 Water

Reporting Units: mg/L SAMPLE DUPLICATE RECOVERY

TDS by SM2540C Analyte	Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag
Total dissolved solids	1730	1610	7	10	

Lab Batch #: 952997

 Date Analyzed:
 10/14/2014 17:00
 Date Prepared:
 10/14/2014
 Analyst: JUM

 QC- Sample ID:
 494933-016 D
 Batch #:
 1
 Matrix:
 Water

Reporting Units: mg/L SAMPLE / SAMPLE DUPLICATE RECOVERY TDS by SM2540C Parent Sample Sample Control Duplicate RPD Limits Result Flag [A] Result %RPD [B] Analyte Total dissolved solids 559 541 10

Spike Relative Difference RPD 200 * | (B-A)/(B+A) | All Results are based on MDL and validated for QC purposes. BRL - Below Reporting Limit

Sample Duplicate Recovery

Project Name: G.L Erwin

Work Order #: 494933

Lab Batch #: 952997 **Project ID:** 039124

 Date Analyzed:
 10/14/2014 17:00
 Date Prepared:
 10/14/2014
 Analyst:
 JUM

 QC- Sample ID:
 495007-009 D
 Batch #:
 1
 Matrix:
 Water

Reporting Units: mg/L	SAMPLE	SAMPLE	DUPLIC	ATE REC	OVERY
TDS by SM2540C Analyte	Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag
Total dissolved solids	1010	1130	11	10	F

Environmental Analysis Request/Chain of Custody

四一年2

Type IV (CLP SOW) MA MCP	Type III (Reduced non-CLP) TX TRRP-13	Type I (Validation/non-CLP) Type VI (Raw Data Only)	8 Data Package Options (circle if required)	E-mail address:	Date results are needed:	(Rush TAT is subject to Lancaster Laboratories approval and surcharge.)	7) Turnaround Time (TAT) Requested (please circle) Standard Rush	mw-5-100914	mw-1-1009/4	Pw-1- 100914	hilboal - mmy	MM-3M=100/14	Mu-W-roogh	mw-d-rocaly	m-22-100414	mu-26-100919	Dup-1-100914 /0-	D	Sample Identification	New Mexico	Name of state where samples were collected:	Ush, Nikan	Sampler: Quote #		1150 Biririmi	1	ERA Midlad	Client: Acct. #:	Client Information	Lancaster Laboratories
CTRCP		Data Only)				charge.)	ircle)	OFF	1330	1318	1300	1310	1250	1240	1230	1215	hrb	Date Time	Collected				#:	.7	4.	D #:		#		
Site		Relinquished by		Relinquished by	Relinquished by	Relinquished by	Relinquished by	<						4		-	×	Gı	ab	osit	ω e									Instructio
Site-Specific QC (MS/MSD/Dup)? Yes No (If ves. indicate QC sample and submit triplicate sample volume.)	EDD Required? If yes, format:	ру		ьу	бу	бу	No.	(×	So	oil _			ble ES	Sec] (Gro	t und			4) Matrix	Instructions on reverse side correspond with circled numbers
(MS/MSD/								(, u	-	ther:	- f of	Co	onta	ine	ers						prrespond with c
Dup)?	Yes No	Dale		Date	Date	Date	lo/g	4								_,	×	(6	15,6,			nd o),		130	1/23 P	Mos			6	sircled numbers
Yes No				Time	Time	lime	F	t									X		Diss 105	me	to	15(0	ay M	John	.)6	DZO		Pre	Anal	,,
٥	R				-		24:																					Preservation Codes	Analysis Red	
Temperat	Relinquished by Commercial Carrier: UPS FedEx Other _	Nacaivad by	De inches	Received by	Received by	Received by	R Poeive D	1 1 1 1																				Codes	Requested	
Temperature upon receipt	Commercial C						S.	-									27		al Carlotte				9	y z	-	-	SCR#:	FSC:	For L	
sipt C	Carrier: Other	200	Date	Date	Date	Date	John Date	(alstil force						rks	S=H ₂ SO ₄		ervati	#:		ab Use Onl	#36
ိုင်			Time	Time	Time	ā	1/4 1645																	0=Other	I-IIIUSUIIdie	on Codes			For Lab Use Only 4 15	- + 3C1C13

The white copy should accompany samples to Eurofins Lancaster Laboratories. The yellow copy should be retained by the client. Eurofins Lancaster Laboratories, Inc. • 2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300

(If yes, indicate QC sample and submit triplicate sample volume.)

Issued by Dept. 40 Management 7044.02

Page 15 of 19

Final 1.000

CHAIN OF CUSTODY

Project Contact: 11 Company Name / Branch:
CRA MIDLAND
Company Address: Samplers's Name: No. 10 8 Same Day TAT Relinquished by: Service Center - San Antonio, Texas (210-509-3334) Dallas, Texas (214-902-0300) Stafford, Texas (281-240-4200) TAT Starts Day received by Lab, if received by 3:00 pm 2135 S Loop 250 W Micharlas T Client / Reporting Information 3 Day EMERGENCY 2 Day EMERGENCY Next Day EMERGENCY mw-3-100914 MW-6-100914 H16201-1-MW MW-2-100914 MP-2-100914 MW-7-160914 Turnaround Time (Business days) Field ID / Point of Collection VANCY FORSTER USTIN NIXON 7 Day TAT Contract TAT Date Time: Date Time: Invoice To: 10/9 PO Number: Project Name/Number: 1645 13:50 13:40 1420 14/0 Received By: 1430 G. L. FRWIN 13091 From Springs Rd Ste. A100 Project Information Level III Std QC+ Forms TRRP Checklist Level 3 (CLP Forms) Level II Std QC CR.000 Data Deliverable Information # of bottles CHANGE POSSESSION, INCLUDING COURIER DELIVERY

Relinquished By:

Da NaOH/Zn HNO3 Custody Seal # Relinquished By: UST / RG -411 TRRP Level IV 12804 Level IV (Full Data Pkg /raw data) NaHSO4 Norcross, Georgia (770-449-8800) Odessa, Texas (432-563-1800) Preserved where applicable 4 10/9/14 Merals (CA, Mg, K, Na) 2540C 4 FED-EX / UPS: Tracking # Notes: Xenco Job # Received By: Received By: Lakeland, Florida (863-646-8526) Tampa, Florida (813-620-2000) AB 1040 Filtered S = Soil/Sed/Solid
GW = Ground Water
DW = Drinking Water
P = Product
SW = Surface water
SL = Sludge
WW = Waste Water
W = Wipe
O = Oil Therma: Gorr. Factor WW= Waste Water Matrix Codes

viotice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to XENCO Laboratories and its affiliates, subcontractors and assigns XENCO's standard terms and conditions of service

Environmental Analysis Request/Chain of Custody

一年2

- Contraction

Temperature upon receipt C °C	Temperature	No	Yes)/Dup)?	/IS/MSD	Site-Specific QC (MS/MSD/Dup	Site-Spe		CP	CT RCP	MA MCP		Type IV (CLP SOW)	Tyl
JExOther	UPSFedEx					If yes, format:	If yes,			-	-> -	JII-CLF)	Type III (Reduced Holl-CLF)	Ly
ommercial Carrier:	Relinguished by Commercial Carrier:		No	Yes	ired?	EDD Required?				5		2		-1
Date	Received by	Time	Date				ned by	Relinquished by		Type VI (Raw Data Only)	Type VI (F	n-CLP)	Type I (Validation/non-CLP)	Туј
											if required)	tions (circle	Data Package Options (circle if required)	® Da
Date Time	Received by	Time	Date				ned by	Relinquished by					ddress:	E-mail address:
Date	Received by	Time	Date				ned by	Relinquished by				2	Date results are needed:	Date res
Date	Received by	IIIIe	Date				led by	Kelinquished by		d surcharge.)	tories approval an	ıncaster Laborat	(Rush TAT is subject to Lancaster Laboratories approval and surcharge.)	, (Ru
6/14	Received	16:45	10/9/M	walter	And the second of the second o		and the second	Relinquished by		please circle) Rush	(IAI) Requested (please circle) Rush	(IAI) Red	Standard	
1	4///	<	6	4	6	E		5	O-F	+			10001H	13
									1330				10-1009/4	ME
									218				1- 100914	3
									1300				hlbodl - h	mm.
									1310				-Sm - locala	38
					-				1250				m-poody	-MM
								1	1240				HIDOUR- b	p-wrg
									1230				22-100914	50,
		_				_		_	1215				26-100914	mw-26
Lobfiltore)		X	X	X	SU.	X		X		10-9-14			1-1009H	000
			CI		_	w	So	-	Time	Date			1	
		105	Diss	ib, 6,	ther: otal #	ater	ompo	rab	cted	Collected	_	entification	Sample Identification	(N)
			ulfa med		of (Po NP						0	IRW Mex!	
			k,N had		-			3)				e collected:	6	Name of st
Nemarks		100	trates (Ca		ntai		S			2000			osta Vikas) Campoo.
1 မှ			m		ner		edi			#			167 Faster	Campler.
			300 (m)		'e		ime			P.O. #:			80.0	Project Manager
Preservation Codes H=HCl T=Thiosulfate			6020	5M 2320B		ound	nt _			PWSID #:	rw17	·L·Eru)39124 G	Project Name/#:
SCR#:			177									hidrad	Nest.	
FSC:	Preservation Codes	Preservat				1				Acct. #:		,		Client:
For Lab Use Only 4783	Requested	Analysis I	,	5	4	Matrix	4			1	Client Information	Client		(2)
			mbers.	h circled nu	espond wit	everse side corr	ructions on r	Inst			ries	Laboratories	Explication	
このにはなりていてい				#	Sample	Group # Sample #	#	Group		Acct. #		Lancaster	CIIIIO	
AMILIAN AND AND AND AND AND AND AND AND AND A			only	ries use	Laborato	s Lancaster	r Eurofin	FC			2555	Oドウ×	Purofine	D

The white copy should accompany samples to Eurofins Lancaster Laboratories. The yellow copy should be retained by the client. Eurofins Lancaster Laboratories, Inc. • 2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300

(If yes, indicate QC sample and submit triplicate sample volume.)

Type IV (CLP SOW)

Issued by Dept. 40 Management 7044.02

Temperature upon receipt

CHAIN OF CUSTODY

Odessa, Texas (432-563-1800)

Lakeland, Florida (863-646-8526)

Stafford, Texas (281-240-4200)

Relinquished by: 5 Notice: Signature of this document and relinquishment of samples constitutes a valid p	3	The second second	Relinquished Sample:	TAT Starts Day received by Lab, if received by 3:00 pm	3 Day EMERGENCY	2 Day EMERGENCY Contract TAT	Next Day EMERGENCY 7 Day TAT	Same Day TAT 5 Day TAT	Turnaround Time (Business days)	ω ω	8	116001-1-BM	6 DIP-2-100914	5 MW-7-160914	4 MW-2-100914	3 MW-1-1009/4	2 mw-3-100914	1 MW-6-100914	No. Field ID / Point of Collection Sal		JUSTIN VIXON	Sampler's Name. NANCY FORSTER	Project Contact: 11	Ph	2135 S Loop 250 V	Company Address:	Company Name / Branch:	Client / Reporting Information		Service Center - San Antonio, Texas (210-509-3334)	200 process and a second process and the seco
Relinquished by: Custody Seal # Preserved where applicable Cooler Temp. Therme Toyr. Factor	Heinquished By:	1645 June 1849	ACH TIME SAMPLES CHANGE POSS		TRRP Checklist	Level 3 (CLP Forms) UST / RG -411	Level III Std QC+ Forms TRRP Level IV	Level II Std QC Level IV (Full Data Pkg /raw data)	Data Deliverable Information			F 13:45 C	<	1430	1420	4(0	13:50	10/9 13:40 Green 2	Depth Date Time Matrix bottles HCI NaOH/Zn Acetate HNO3 H2SO4 NaHSO4 MEOH	Collection Number of preserved bottles		PO Number:	BOO! From Springs Rd. Ste. A100	Invoice To: CRA/Chais G. Knight	X Jal, KM	No property Co	Project Name/Number:	Project Information		www.xenco.com	
Preserved where applicable On Ice	Date Time: Received By:	OF WILL Servived By:		FED-EX / UPS: Tracking #				kg /raw data)	Notes:				* * * *					XXXX	CARB CL, I Diss	F, M	501 501 6TA	Arrived Street	Hyc Ca, M		ent k,	NA	30	Alk. 326 00 002	- 1	veuco Anore # Xeuco Job #	
Cooler Temp. Thermac Torr. Factor previously negicitated under a fully executed client contract.													•					AB Filteren	Field Comments		WW= Waste Water	W = Wipe	SL = Sludge WW= Waste Water	SW = Surface water	DW = Drinking Water P = Product	S = Soll/Sed/Solid GW =Ground Water	A= Air	***************************************	Matrix Codes	424266	

XENCO Laboratories Prelogin/Nonconformance Report- Sample Log-In

Client: Conestoga Rovers & Associates

Date/ Time Received: 10/09/2014 04:45:00 PM

Acceptable Temperature Range: 0 - 6 degC Air and Metal samples Acceptable Range: Ambient

Work Order #: 494933

Temperature Measuring device used:

	Sample Receipt Checklist	Comments
#1 *Temperature of cooler(s)?		0
#2 *Shipping container in good condition	?	Yes
#3 *Samples received on ice?		Yes
#4 *Custody Seals intact on shipping cor	ntainer/ cooler?	No
#5 Custody Seals intact on sample bottle	es?	No
#6 *Custody Seals Signed and dated?		No
#7 *Chain of Custody present?		Yes
#8 Sample instructions complete on Cha	in of Custody?	Yes
#9 Any missing/extra samples?		No
#10 Chain of Custody signed when relind	quished/ received?	Yes
#11 Chain of Custody agrees with sampl	e label(s)?	Yes
#12 Container label(s) legible and intact?	?	Yes
#13 Sample matrix/ properties agree with	n Chain of Custody?	Yes
#14 Samples in proper container/ bottle?	•	Yes
#15 Samples properly preserved?		Yes
#16 Sample container(s) intact?		Yes
#17 Sufficient sample amount for indicate	ed test(s)?	Yes
#18 All samples received within hold time	e?	Yes
#19 Subcontract of sample(s)?		No
#20 VOC samples have zero headspace	(less than 1/4 inch bubble)?	N/A
#21 <2 for all samples preserved with HN	NO3,HCL, H2SO4?	N/A
#22 >10 for all samples preserved with N	laAsO2+NaOH, ZnAc+NaOH?	N/A
* Must be completed for after-hours de Analyst:	livery of samples prior to placing in PH Device/Lot#:	the refrigerator
Checklist completed by: Checklist reviewed by:	Musy Moah Kelsey Brooks	Date: 10/09/2014
Checklist reviewed by:	Kelsey Brooks	Date: 10/10/2014

Analytical Report 495007

for Conestoga Rovers & Associates

Project Manager: Nancy Forster
G.L Erwin
039124
17-OCT-14

Collected By: Client

12600 West I-20 East Odessa, Texas 79765

Xenco-Houston (EPA Lab code: TX00122): Texas (T104704215-14-18), Arizona (AZ0765), Florida (E871002), Louisiana (03054) New Jersey (TX007), North Carolina(681), Oklahoma (9218), Pennsylvania (68-03610)

Xenco-Atlanta (EPA Lab Code: GA00046): Florida (E87429), North Carolina (483), South Carolina (98015), Kentucky (85), DoD (L10-135) Texas (T104704477), Louisiana (04176), USDA (P330-07-00105)

Xenco-Lakeland: Florida (E84098)

Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400-TX)

Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295-TX)

Xenco Phoenix (EPA Lab Code: AZ00901): Arizona (AZ0757)

Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757)

Xenco Tucson (EPA Lab code: AZ000989): Arizona (AZ0758)

17-OCT-14

Project Manager: Nancy Forster Conestoga Rovers & Associates 2135 S Loop 250 W Midland, TX 79703

Reference: XENCO Report No(s): 495007

G.L Erwin

Project Address: NM

Nancy Forster:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 495007. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 495007 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully, Hoah

Kelsey Brooks

Project Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

A Small Business and Minoraly Status Company that delivers SERVICE and GOALITT

Houston - Dallas - Odessa - San Antonio - Tampa - Lakeland - Atlanta - Phoenix - Oklahoma - Latin America

Sample Cross Reference 495007

Conestoga Rovers & Associates, Midland, TX

G.L Erwin

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
Dup-3-101014	W	10-10-14 00:00		495007-001
MW-25-101014	W	10-10-14 12:30		495007-002
MW-8-101014	W	10-10-14 12:50		495007-003
MW-17-101014	W	10-10-14 13:00		495007-004
MW-16-101014	W	10-10-14 13:10		495007-005
MW-12-101014	W	10-10-14 13:20		495007-006
MW-15-101014	W	10-10-14 13:30		495007-007
MW-20-101014	W	10-10-14 13:40		495007-008
MW-23-101014	W	10-10-14 13:50		495007-009
MW-24-101014	W	10-10-14 14:00		495007-010
MW-21-101014	W	10-10-14 14:10		495007-011
MW-19-101014	W	10-10-14 14:20		495007-012
MW-14-101014	W	10-10-14 14:30		495007-013
MW-13-101014	W	10-10-14 14:40		495007-014

CASE NARRATIVE

Client Name: Conestoga Rovers & Associates

Project Name: G.L Erwin

 Project ID:
 039124
 Report Date:
 17-OCT-14

 Work Order Number(s):
 495007
 Date Received:
 10/10/2014

i	Sample receipt non conformances and comments:
_	Sample receipt non conformances and comments per sample:
	None

Project Location: NM

Certificate of Analysis Summary 495007

Conestoga Rovers & Associates, Midland, TX

Project Name: G.L Erwin

Project Id: 039124 **Contact:** Nancy Forster

Date Received in Lab: Fri Oct-10-14 04:30 pm

Report Date: 17-OCT-14

Project Manager: Kelsey Brooks

								I Toject Mai	nager.	Kelsey Brooks			
	Lab Id:	495007-0	001	495007-0	002	495007-0	003	495007-0	004	495007-0	05	495007-0	006
A sa mlancia. D a maranta d	Field Id:	Dup-3-101	014	MW-25-10	1014	MW-8-101014		MW-17-101014		MW-16-101014		MW-12-10	1014
Analysis Requested	Depth:												
	Matrix:	WATE	R	WATE	WATER		WATER		₹	WATER		WATER	
	Sampled:	Oct-10-14 (et-10-14 00:00 O		12:30	Oct-10-14	12:50	Oct-10-14	3:00	Oct-10-14 1	3:10	Oct-10-14	13:20
Alkalinity by SM2320B	Extracted:												
SUB: E871002	Analyzed:	Oct-15-14	15:03	Oct-15-14	15:03	Oct-15-14	15:03	Oct-15-14	5:03	Oct-15-14 1	5:03	Oct-15-14	15:03
	Units/RL:	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL
Alkalinity, Bicarbonate (as CaCO3)		226	4.00	152	4.00	284	4.00	211	4.00	217	4.00	83.6	4.00
Alkalinity, Carbonate (as CaCO3)		ND	4.00	ND	4.00	ND	4.00	ND	4.00	ND	4.00	ND	4.00
Alkalinity, hydroxide (as CaCO3)		ND	4.00	ND	4.00	ND	4.00	ND	4.00	ND	4.00	ND	4.00
Dissolved Metals per ICP by SW846	Extracted:	Oct-16-14 11:00		Oct-16-14 11:00		Oct-16-14	11:00	Oct-16-14 11:00		Oct-16-14 11:00		Oct-16-14 11:00	
6010B Analyzed		Oct-16-14 19:01		Oct-16-14	Oct-16-14 19:46		19:52	9:52 Oct-16-14 19:		Oct-16-14 20:05		Oct-16-14 20:12	
SUB: E871002	Units/RL:	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL
Calcium		62.0	0.200	870	0.200	51.2	0.200	83.3	0.200	242	0.200	595	0.200
Magnesium		20.1	0.200	270	0.200	15.9	0.200	27.3	0.200	79.4	0.200	208	0.200
Potassium		5.28	0.500	22.5	0.500	5.42	0.500	5.49	0.500	7.99	0.500	13.5	0.500
Sodium		265	0.500	1250	0.500	454	0.500	240	0.500	269	0.500	180	0.500
Inorganic Anions by EPA 300/300.1	Extracted:	Oct-11-14	12:14	Oct-11-14	12:14	Oct-11-14	12:14	Oct-11-14	2:14	Oct-11-14 1	2:14	Oct-11-14	12:14
SUB: E871002	Analyzed:	Oct-11-14	12:38	Oct-11-14	12:53	Oct-11-14	13:07	Oct-11-14	13:22	Oct-11-14 1	3:36	Oct-11-14	14:48
	Units/RL:	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL
Chloride		313 D	20.0	4280	500	527 D	50.0	316 D	50.0	834	50.0	1890	100
Fluoride		1.56	0.100	ND	0.100	2.29	0.100	1.41	0.100	0.439	0.100	0.269	0.100
Nitrate as N		4.04	0.0230	4.10	0.0230	7.65	0.0230	3.98	0.0230	4.52	0.0230	3.92	0.0230
Sulfate		131 D	20.0	299 D	50.0	194 D	50.0	107 D	50.0	130 D	10.0	55.2 D	20.0
TDS by SM2540C	Extracted:												
	Analyzed:	Oct-14-14	17:00	Oct-14-14	17:00	Oct-14-14	17:00	Oct-14-14	7:00	Oct-14-14 1	7:00	Oct-14-14	17:00
	Units/RL:	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL
Total dissolved solids		1140	5.00	11400	5.00	1550	5.00	1790	5.00	1550	5.00	6290	5.00

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Kelsey Brooks Project Manager

Certificate of Analysis Summary 495007

Conestoga Rovers & Associates, Midland, TX

Project Name: G.L Erwin

Project Id: 039124 **Contact:** Nancy Forster

Project Location: NM

Date Received in Lab: Fri Oct-10-14 04:30 pm

Report Date: 17-OCT-14

Project Manager: Kelsey Brooks

								1 Toject Mai	nager.	Keisey Drook			
	Lab Id:	495007-0	007	495007-0	800	495007-0	009	495007-0	10	495007-0)11	495007-0)12
Analusis Basusstad	Field Id:	MW-15-10	1014	MW-20-10	1014	MW-23-10	1014	MW-24-10	1014	MW-21-101014		MW-19-10	1014
Analysis Requested	Depth:												
	Matrix:	WATE	R	WATE	R	WATE	R	WATE	R	WATE	R	WATE	R
	Sampled:	Oct-10-14	Oct-10-14 13:30		13:40	Oct-10-14	13:50	Oct-10-14	14:00	Oct-10-14	14:10	Oct-10-14	14:20
Alkalinity by SM2320B	Extracted:												
SUB: E871002	Analyzed:	Oct-15-14	15:03	Oct-15-14	15:03	Oct-15-14	15:03	Oct-15-14 16:46		Oct-15-14	16:46	Oct-15-14 16:46	
	Units/RL:	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL
Alkalinity, Bicarbonate (as CaCO3)		98.5	4.00	107	4.00	127	4.00	96.9	4.00	185	4.00	95.6	4.00
Alkalinity, Carbonate (as CaCO3)		ND	4.00	ND	4.00	ND	4.00	ND	4.00	ND	4.00	ND	4.00
Alkalinity, hydroxide (as CaCO3)		ND	4.00	ND	4.00	ND	4.00	ND	4.00	ND	4.00	ND	4.00
Dissolved Metals per ICP by SW846	Extracted:	Oct-16-14	Oct-16-14 11:00		Oct-16-14 11:00		11:00	Oct-16-14 11:00		Oct-16-14 11:00		Oct-16-14 11:00	
6010B	Analyzed:	Oct-16-14	20:18	Oct-16-14 20:25		Oct-16-14	20:31	Oct-16-14 2	20:38	Oct-16-14 2	21:03	Oct-16-14 21:10	
SUB: E871002	Units/RL:	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL
Calcium		293	0.200	387	0.200	140	0.200	647	0.200	155	0.200	965	0.200
Magnesium		108	0.200	139	0.200	51.9	0.200	208	0.200	48.7	0.200	369	0.200
Potassium		11.9	0.500	13.7	0.500	8.61	0.500	22.9	0.500	9.68	0.500	29.2	0.500
Sodium		129	0.500	233	0.500	107	0.500	230	0.500	119	0.500	663	0.500
Inorganic Anions by EPA 300/300.1	Extracted:	Oct-11-14	12:14	Oct-11-14	12:14	Oct-11-14	12:14	Oct-11-14	12:14	Oct-11-14	12:14	Oct-11-14	12:14
SUB: E871002	Analyzed:	Oct-11-14	15:03	Oct-11-14	15:17	Oct-11-14	15:31	Oct-11-14 15:46		Oct-11-14	16:00	Oct-11-14	17:41
	Units/RL:	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL
Chloride		896	100	1320	100	391 D	20.0	1870	100	186 D	20.0	3440	500
Fluoride		0.607	0.100	0.496	0.100	0.716	0.100	0.386	0.100	1.50	0.100	0.132	0.100
Nitrate as N		2.58	0.0230	3.82	0.0230	0.717	0.0230	3.41	0.0230	5.16	0.0230	3.86	0.0230
Sulfate		80.6 D	20.0	121 D	20.0	85.7 D	20.0	268 D	20.0	393 D	20.0	416 D	100
TDS by SM2540C	Extracted:												
	Analyzed:	Oct-14-14	17:00	Oct-14-14	17:00	Oct-14-14	17:00	Oct-14-14	17:00	Oct-14-14	17:00	Oct-14-14	17:00
	Units/RL:	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL
Total dissolved solids		1830	5.00	4180	5.00	1010	5.00	5850	5.00	1080	5.00	7560	5.00

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Kelsey Brooks Project Manager

Project Location: NM

Certificate of Analysis Summary 495007

Conestoga Rovers & Associates, Midland, TX

Project Name: G.L Erwin

Project Id: 039124

Contact: Nancy Forster

Date Received in Lab: Fri Oct-10-14 04:30 pm

Report Date: 17-OCT-14

Project Manager: Kelsey Brooks

						Project Manager:	Reisey Diooks	
	Lab Id:	495007-0)13	495007-0	14			
Analysis Dagwastad	Field Id:	MW-14-10	1014	MW-13-10	1014			
Analysis Requested	Depth:							
	Matrix:	WATE	R	WATE	R			
	Sampled:	Oct-10-14	14:30	Oct-10-14 1	4:40			
Alkalinity by SM2320B	Extracted:							
SUB: E871002	Analyzed:	Oct-15-14	16:46	Oct-15-14 1	6:46			
	Units/RL:	mg/L	RL	mg/L	RL			
Alkalinity, Bicarbonate (as CaCO3)	Onus/KL:	103	4.00	101	4.00			
Alkalinity, Carbonate (as CaCO3)		ND	4.00	ND	4.00			
Alkalinity, hydroxide (as CaCO3)		ND	4.00	ND	4.00			
Dissolved Metals per ICP by SW846	Extracted:	Oct-16-14		Oct-16-14 1				
6010B	Analyzed:	Oct-16-14		Oct-16-14 2				
SUB: E871002								
Calcium	Units/RL:	mg/L 1270	RL 0.200	mg/L 326	RL 0.200			
Magnesium		384	0.200	117	0.200			
Potassium		33.5	0.500	12.6	0.500			
Sodium		2640	0.500	143	0.500			
Inorganic Anions by EPA 300/300.1	Extracted:	Oct-11-14		Oct-11-14 1				
SUB: E871002	Analyzed:	Oct-11-14		Oct-11-14 1				
	Units/RL:		RL		RL			
Chloride	Onus/KL:	mg/L 7610	500	mg/L 1020	100			
Fluoride		1.77	0.100	0.829	0.100			
Nitrate as N		4.28	0.0230	3.78	0.0230			
Sulfate		ND	1.00	148 D	20.0			
TDS by SM2540C	Extracted:							
ľ	Analyzed:	Oct-14-14	17:00	Oct-14-14 1	7:00			
	Units/RL:	mg/L	RL	mg/L	RL			
Total dissolved solids	Jims/RES.	19000	5.00	3500	5.00			
						l .	I	l .

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Kelsey Brooks Project Manager

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- **K** Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- ** Surrogate recovered outside laboratory control limit.
- **BRL** Below Reporting Limit.
- **RL** Reporting Limit

MDL Method Detection Limit SDL Sample Detection Limit LOD Limit of Detection

PQL Practical Quantitation Limit MQL Method Quantitation Limit LOQ Limit of Quantitation

DL Method Detection Limit

NC Non-Calculable

- + NELAC certification not offered for this compound.
- * (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Atlanta - Midland/Odessa - Tampa/Lakeland - Phoenix - Latin America

	Phone	Fax
4143 Greenbriar Dr, Stafford, TX 77477	(281) 240-4200	(281) 240-4280
9701 Harry Hines Blvd , Dallas, TX 75220	(214) 902 0300	(214) 351-9139
5332 Blackberry Drive, San Antonio TX 78238	(210) 509-3334	(210) 509-3335
2505 North Falkenburg Rd, Tampa, FL 33619	(813) 620-2000	(813) 620-2033
12600 West I-20 East, Odessa, TX 79765	(432) 563-1800	(432) 563-1713
6017 Financial Drive, Norcross, GA 30071	(770) 449-8800	(770) 449-5477
3725 E. Atlanta Ave, Phoenix, AZ 85040	(602) 437-0330	

Blank Spike Recovery

Project Name: G.L Erwin

Work Order #: 495007 **Project ID:** 039124

 Lab Batch #:
 952776
 Sample: 662827-1-BKS
 Matrix: Water

 Date Analyzed:
 10/11/2014
 Date Prepared: 10/11/2014
 Analyst: DEP

Reporting Units: mg/L Batch #: 1 BLANK /BLANK SPIKE RECOVERY STUDY

Inorganic Anions by EPA 300/300.1 Analytes	Blank Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Control Limits %R	Flags
Chloride	<1.00	10.0	9.92	99	80-120	
Fluoride	< 0.100	10.0	10.2	102	80-120	
Nitrate as N	< 0.0230	10.0	10.0	100	90-110	
Sulfate	<1.00	10.0	10.2	102	80-120	

 Lab Batch #:
 952997
 Sample:
 952997-1-BKS
 Matrix:
 Water

 Date Analyzed:
 10/14/2014
 Date Prepared:
 10/14/2014
 Analyst:
 JUM

Reporting Units: mg/L Batch #: 1 BLANK /BLANK SPIKE RECOVERY STUDY

TDS by SM2540C Analytes	Blank Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Control Limits %R	Flags
Tildly tes			[0]	[2]		
Total dissolved solids	14.5	1000	1010	101	80-120	

BS / BSD Recoveries

Project Name: G.L Erwin

Work Order #: 495007 **Project ID:** 039124

 Analyst:
 DAB
 Date Prepared: 10/16/2014
 Date Analyzed: 10/16/2014

Lab Batch ID: 953185 Sample: 663018-1-BKS Batch #: 1 Matrix: Water

Units: mg/L BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY

Dissolved Metals per ICP by SW846 6010B Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Calcium	< 0.200	25.0	25.9	104	25.0	26.0	104	0	80-120	20	
Magnesium	< 0.200	25.0	26.6	106	25.0	26.5	106	0	80-120	20	
Potassium	<0.500	10.0	10.2	102	10.0	10.2	102	0	80-120	20	
Sodium	<0.500	25.0	26.0	104	25.0	25.7	103	1	80-120	20	

Relative Percent Difference RPD = 200*|(C-F)/(C+F)|Blank Spike Recovery [D] = 100*(C)/[B]Blank Spike Duplicate Recovery [G] = 100*(F)/[E]All results are based on MDL and Validated for QC Purposes

Form 3 - MS / MSD Recoveries

Project Name: G.L Erwin

Work Order #: 495007 Project ID: 039124

Lab Batch ID: 953185 **QC- Sample ID:** 495007-001 S **Batch #:** 1 **Matrix:** Water

Reporting Units: mg/L MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY

Dissolved Metals per ICP by SW846 6010B Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Calcium	62.0	25.0	86.6	98	25.0	86.7	99	0	75-125	20	
Magnesium	20.1	25.0	45.8	103	25.0	45.8	103	0	75-125	20	
Potassium	5.28	10.0	15.7	104	10.0	15.8	105	1	75-125	20	
Sodium	265	25.0	286	84	25.0	285	80	0	75-125	20	

Lab Batch ID: 952776 **QC- Sample ID:** 494952-001 S **Batch #:** 1 **Matrix:** Water

Date Analyzed: 10/11/2014 Date Prepared: 10/11/2014 Analyst: DEP

Reporting Units: mg/L MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY

Inorganic Anions by EPA 300/300.1 Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Chloride	191	200	385	97	200	386	98	0	80-120	20	
Fluoride	<2.00	200	201	101	200	203	102	1	80-120	20	
Nitrate as N	0.160	10.0	9.89	97	10.0	9.91	98	0	80-120	20	
Sulfate	<20.0	200	200	100	200	202	101	1	80-120	20	

Form 3 - MS / MSD Recoveries

Project Name: G.L Erwin

Work Order #: 495007 **Project ID:** 039124

Lab Batch ID: 952776 QC- Sample ID: 494992-001 S Batch #: 1 Matrix: Ground Water

Date Analyzed: 10/11/2014 Date Prepared: 10/11/2014 Analyst: DEP

Reporting Units: mg/L MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY

Inorganic Anions by EPA 300/300.1 Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Chloride	<1.00	10.0	10.7	107	10.0	10.7	107	0	80-120	20	
Fluoride	0.244	10.0	10.9	107	10.0	11.1	109	2	80-120	20	
Nitrate as N	0.248	10.0	10.1	99	10.0	10.1	99	0	80-120	20	
Sulfate	8.38	10.0	18.7	103	10.0	18.6	102	1	80-120	20	

Sample Duplicate Recovery

Project Name: G.L Erwin

Work Order #: 495007

Project ID: 039124 Lab Batch #: 953029

Analyst: DHE **Date Prepared:** 10/15/2014 **Date Analyzed:** 10/15/2014 15:03 **QC- Sample ID:** 494959-007 D Batch #: Matrix: Water

Reporting Units: mg/L	SAMPLE /	SAMPLE / SAMPLE DUPLICATE RECOVERY									
Alkalinity by SM2320B	Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag						
Analyte		t-1									
Alkalinity, Bicarbonate (as CaCO3)	177	178	1	20							
Alkalinity, Carbonate (as CaCO3)	<4.00	<4.00	0	20	U						
Alkalinity, hydroxide (as CaCO3)	<4.00	<4.00	0	25	U						

Lab Batch #: 953031

Date Analyzed: 10/15/2014 16:46 **Date Prepared:** 10/15/2014 Analyst: DHE Batch #: Matrix: Water **QC- Sample ID:** 494905-001 D

Reporting Units: mg/L SAMPLE / SAMPLE DUPLICATE RECOVERY

Alkalinity by SM2320B Analyte	Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag
Alkalinity, Bicarbonate (as CaCO3)	<4.00	<4.00	0	20	U
Alkalinity, Carbonate (as CaCO3)	<4.00	<4.00	0	20	U
Alkalinity, hydroxide (as CaCO3)	<4.00	<4.00	0	25	U

Lab Batch #: 952997

Date Prepared: 10/14/2014 Analyst: JUM **Date Analyzed:** 10/14/2014 17:00 Batch #: Matrix: Water **QC- Sample ID:** 494933-016 D

SAMPLE / SAMPLE DUPLICATE RECOVERY Reporting Units: mg/L

TDS by SM2540C	Parent Sample Result [A]	Sample Duplicate Result	RPD	Control Limits %RPD	Flag
Analyte		[B]			
Total dissolved solids	559	541	3	10	

Lab Batch #: 952997

Date Prepared: 10/14/2014 Analyst: JUM **Date Analyzed:** 10/14/2014 17:00 Batch #: Matrix: Water **QC- Sample ID:** 495007-009 D

SAMPLE / SAMPLE DUPLICATE RECOVERY Reporting Units: mg/L Control TDS by SM2540C Sample Parent Sample RPD **Duplicate** Result Limits Flag Result %RPD [A] [B] Analyte Total dissolved solids 1010 1130

Spike Relative Difference RPD 200 * | (B-A)/(B+A) | All Results are based on MDL and validated for QC purposes. BRL - Below Reporting Limit

Page 13 of 16

Final 1.001

CHAIN OF CUSTODY

Odessa, Texas (432-563-1800)

Lakeland, Florida (863-646-8526)

Stafford, Texas (281-240-4200)

Service Center - San Antonio, Texas (210-509-3334) Dallas, Texas (214-902-0300)

Committee Comm	Cooler Temp. Thermo Corr. Factor	erved where applicable On Ice	5 Date Time: Received By: Custody Seal # Pres	Date Time:
Project Name/Number: Project Number: P		Date Time:		3 Relinquished by:
Project Name/Aumber: Project Name/Aumber:		e Time: 0-10-14	Received By:	Molio I ine:
Project Information Projec			EACHLIMESAMP	ay received by Lab, if r
TAT Level Sed Co. Forms Level Victor Internation Level Victor Internation Intern			TRRP Checklist	3 Day EMERGENCY
TAT Table Level II Std Oct Forms Total (1813) Tampa, Florida (813) Tampa, Florida (8				
Project Information Projec				ICY
Project Name/Number: Project Name/Number:				
Project Name/Number: Project Name/Number:	•		Data Deliverable Information	rumanouna mine (business days)
Project Name/Number: Project Name/Number:		\	1400 T A	10 MW-LY - 100 H
Project Name Number: Project Name Number: Project Location: Project			1350	0 - 17-
Project Location: Project Locat			1240	01-07
Project NameAumber: Project NameAumber: Project Location: Project L			1350	- 15 - 1
Project Name/Number: Project Name/Number:			1320	6 MW - 12 - 101014
Project Name/Number: Project Location. Project Lo			1310	1-16-
Project Name/Number: Project Name/Number:			1300	17-17-
Project Name Number: Project Name Number:			1250	9
Project Name/Number: Project Information Project	LAB Filler		1230	2 MW-25-101014
Project Name/Number: Project Information Project	Field Comments	-	1 0	3-101014
Project Information Project Information Project Information Project Information Project Information Project Information Project Information Froject Information Project Information Project Information Froject Information Project I		NONE	Time Matrix bottless HCI NaOH/Zn Acetate HNO3 H2SO4 NaOH	_
Project Name/Number: Project Location: Project Location:	WW= Waste W	Bico		No. Field ID / Point of Collection
Project Name/Number: Project Location: Project Location: Project Location: Lea County Minutes M	0=0	701-15 H		JUSTIA NIJEGH
Project Name/Number: Project Location: Project Lo	W = Wipe	is, l	19729 X 18729	Samplers's Name: NANCU POSTER
Project Information Project Information Project Location: Project L	SL = Sludge	lyd	road Spenys Rd.	Project Contact:
Project Name/Number: Project Location: Project Location: Project Location: Project Location: Few Project Location Few Project L	SW = Surface	0xi, 1	CRA/ Chais G.	mixon@ Cranico
San Antonio, Texas (210-509-3334) WWW.Xenco.com Vanco.com Vanco Job # Vanco Job	GW =Ground \ DW = Drinking	ister My	7	Email: Phone No. 79703
San Antonio, Texas (210-509-3334) www.xenco.com www.xenco.com www.xenco.com www.xenco.com www.xenco.com www.xenco.com www.xenco.com www.xenco.com Analytical Information Project Name/Number:	S = Soil/Sed/S	Soft Sim		company Address:
tonio, Texas (210-509-3334) WWW.xenco.com Venco Quote # Xenco Job # 1/2 5 Tampa, Florida (813-62 Analytical Information	A= Air	A112 2.32 300 124	7	MidLAND
www.xenco.com	Matrix Code	n2	Project Information	Client / Reporting Information
Venno finda #	tosch	Second 7	wwww.Aerico.com	
	ampa, Florida (813-620-2000)	Oss, Georgia (770-449-8800)	יייטער אויייער אייטער	Service Center - San Antonio, Texas (210-509-3334)

CHAIN OF CUSTODY

Odessa, Texas (432-563-1800)
Norcross, Georgia (770-449-8800)

Lakeland, Florida (863-646-8526)

Setting the Standard since 1990 Stafford, Texas (281-240-4200)

Dallas, Texas (214-902-0300)

+	\		ler from client company to XENCO I aboratories and it	onetitutae a valid nurshaea or	e: Signature of this document and relinquishment of samples co
Cooler Temp. Thermo. Corr. Factor	Preserved where applicable On Ice	Custody Seal #	Received By:	Date Time:	Helinquished by:
		Relinquished By:	3		
	Date Time: Received By:	Relinquished By:	RE	Pote Time:	Mille
	FED-EX / UPS: Tracking #	ES CHANGE POSSESSION, INCLUDING COURIER DELIVERY	TIME SAMPL	SAMPLE CUSTODY MUST BE DOCUMENTED BELOW EACH	Relinguished by Sampler
				ed hv 3:00 nm	TAT Starts Day received by Lab. if received by 3:00 nm
			TRRP Checklist		3 Day EMERGENCY
		UST / RG -411	Level 3 (CLP Forms)	Contract TAT	2 Day EMERGENCY Contr
		TRRP Level IV	Level III Std QC+ Forms	TAT	Next Day EMERGENCY 7 Day TAT
		Level IV (Full Data Pkg /raw data)	Level II Std QC	5 Day TAT	Same Day TAT 5 Da
	Notes:	nation	Data Deliverable Information		rurnaround rime (Business days)
					Turnary Time (Business Jan.)
					0
					σ
					7
					O.
4	4				5
	¥-		1 + 044		4 MW-13-101014
			1430		3 MM-14-101014
LAB TI HERED			1420		5 mW-19-101014
7) [eld C	XXX		10/10 1410 G. 7	-	1 10101-12-Mill
	Ci, F Dix TD	HNO3 H2SO4 NaOH NaHSO4 MEOH NONE	Date Time Matrix bottles HCI NaOH/Zn Acetate	Sample Depth	
ww= waste water	5, D 5, N 5	Number of preserved bottles	Collection	C	No. Field ID / Point of Collection
C	2				Justin Mixon
W = Wipe	Bi Cat Ala 54	124	PO Number:	P	=
SV = Sunace water SL = Sludge	Hyd i, (S RA SHE ALDO	Tona Spein		Project Contact: A
P = Product	Kli CA,		F. ()	one No:	Email: Pho
GW =Ground Water DW = Drinking Water	tan M	- LAN	LEA County	Macay, TX 7703	35 S Loop 250 W
A= Air S = Soil/Sed/Solid	2 Total Sim	in 039124	Project Location:	- Fl	Company Address:
Matrix Codes	131	- Al k	Project Information		Client / Reporting Information Company Name / Branch:
47500	-	Xer	www.xenco.com)-3334)	Service Center - San Antonio, Texas (210-509-3334)
Tampa, Florida (813-620-2000)	Norcross, Georgia (770-449-8800)	INC			Carries Pantar Can Antonia Tarra 1949 E00

XENCO Laboratories Prelogin/Nonconformance Report- Sample Log-In

Client: Conestoga Rovers & Associates

Date/ Time Received: 10/10/2014 04:30:45 PM

Acceptable Temperature Range: 0 - 6 degC Air and Metal samples Acceptable Range: Ambient

Work Order #: 495007

Temperature Measuring device used:

	Sample Receipt Checklist	Comments		
#1 *Temperature of cooler(s)?		0		
#2 *Shipping container in good condition	?	Yes		
#3 *Samples received on ice?		Yes		
#4 *Custody Seals intact on shipping cor	ntainer/ cooler?	No		
#5 Custody Seals intact on sample bottle	es?	No		
#6 *Custody Seals Signed and dated?		No		
#7 *Chain of Custody present?		Yes		
#8 Sample instructions complete on Cha	in of Custody?	Yes		
#9 Any missing/extra samples?		No		
#10 Chain of Custody signed when relind	quished/ received?	Yes		
#11 Chain of Custody agrees with sampl	le label(s)?	Yes		
#12 Container label(s) legible and intact?	?	Yes		
#13 Sample matrix/ properties agree with	n Chain of Custody?	Yes		
#14 Samples in proper container/ bottle?		Yes		
#15 Samples properly preserved?		Yes		
#16 Sample container(s) intact?		Yes		
#17 Sufficient sample amount for indicate	ed test(s)?	Yes		
#18 All samples received within hold time	e?	Yes		
#19 Subcontract of sample(s)?		No		
#20 VOC samples have zero headspace	(less than 1/4 inch bubble)?	No		
#21 <2 for all samples preserved with HN	NO3,HCL, H2SO4?	No		
#22 >10 for all samples preserved with N	laAsO2+NaOH, ZnAc+NaOH?	No		
* Must be completed for after-hours delivery of samples prior to placing in the refrigerator Analyst: PH Device/Lot#:				
Checklist completed by: Checklist reviewed by:	Kelsey Brooks Kelsey Brooks Kelsey Brooks	Date: 10/10/2014 Date: 10/10/2014		