AP___111____

SWMU No.10 Sludge Pits (4 of 4)

December 2016

Appendix E
Quality Assurance/Quality Control Review

DATA VALIDATION INTRODUCTION

This summary presents data verification results for soil and groundwater samples collected from soil boring and monitoring wells installed at SWMU10 at the Gallup Refinery. The data review was performed in accordance with Provision IV.J.3.b (Review of Field and Laboratory QA/QC Data) of the RCRA Permit issued by NMED in October 2013, USEPA Functional Guidelines for Organic and Inorganic Data Review, and quality assurance and control parameters set by the project laboratory Hall Environmental Analysis Laboratory, Inc.

A total of 73 soil samples and 11 groundwater samples (excluding QA samples) were collected from April 28, 2015 through September 21, 2016 in accordance with the SWMU 10 Investigation Work Plan (Western Refining Southwest, Inc., 2014). Soil and groundwater samples were submitted to Hall Environmental Analysis Laboratory for the following parameters in accordance with the approved Work Plan:

- volatile organic compounds (VOCs) by USEPA Method 8260B;
- semi-volatile organic compounds (SVOCs) by USEPA Method 8270;
- Gasoline, diesel, and motor oil range organics by SW-846 Method 8015B;
- Total recoverable and dissolved metals (Antimony, arsenic, barium, beryllium, cadmium, chromium, cobalt, lead, nickel, selenium, silver, vanadium, and zinc) by SW846 Method 6010/6020;
- Chromium VI by SW-846 method 3060A;
- Tetraethyl lead by SW-846 method 3546;
- Cyanide by SW-846 method 9012; and
- Mercury by EPA Method 7470.

The groundwater samples were analyzed for water quality parameters including, sulfate, chloride, and fluoride.

Additionally, 29 quality assurance samples consisting of trip blanks, field blanks, equipment rinsate blanks, and field duplicates were collected and analyzed as part of the investigation activities. Table A-1 presents a summary of the field sample identifications, laboratory sample identifications, and sample collection dates.

QUALITY CONTROL PARAMETERS REVIEWED

Sample results were subject to a Level II data review that includes an evaluation of the following quality control (QC) parameters:

- Chain-of-Custody;
- Sample Preservation and Temperature Upon Laboratory Receipt
- Holding Times;
- Blank Contamination (method blanks, trip blanks, field blanks, and equipment rinsate blanks);
- Surrogate Recovery (for organic parameters);
- Laboratory Control Sample (LCS) Recovery and Relative Percent Difference (RPD);
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) Recovery and RPD;
- Duplicates (field duplicate, laboratory duplicate); and
- Other Applicable QC Parameters.

The data qualifiers used to qualify the analytical results associated with QC parameters outside of the established data quality objectives are defined below:

- J+ The analyte was positively identified; however, the result should be considered an estimated value with a potential high bias.
- J- The analyte was positively identified; however, the result should be considered an estimated value with a potential low bias.
- UJ The reporting limit for a constituent that was not detected is considered an estimated value.
- R Quality control indicates that the data is not usable.

Results qualified as "J+", "J-", or "UJ" are of acceptable data quality and may be used quantitatively to fulfill the objectives of the analytical program, per EPA guidelines.

Results for the performance monitoring events that required qualification based on the data verification are summarized in Table A-2.

CHAIN-OF-CUSTODY

The chain-of-custody documentation associated with project samples was found to be complete. Chain-of-custodies included sample identifications, date and time of collection, requested parameters, and relinquished/received signatures.

SAMPLE PRESERVATION AND TEMPERATURE UPON LABORATORY RECEIPT

Samples collected were received preserved and intact by Hall Environmental Laboratories, Inc. Samples were received by the laboratory at a temperature of 6.0 degrees Celsius or lower. Data qualification on lower temperature samples was not required. The hexavalent chromium field sample SWMU 10-12-GW was received at a pH of 7.5 rather than the range of 8 to 10 units. The field sample was not qualified. The sample bottle for the total metals analyses for sample SWMU 10-20-GW was apparently received with a pH outside the desired range, thus the lab added one milliliter of HNO3 and held the sample for 24 hours prior to analysis to ensure no metals had precipitated in the sample. The associated sample results are not qualified.

HOLDING TIMES

All samples were extracted and analyzed within method-specified holding time limits with the exception of the following:

Lab Report 1505618 - Sample SWMU 10 EB06 was extracted 2 days after the 7 day holding time. This affected only the Method 8270C semi volatile analyses and only one sample.
 Since results may be biased low, the sample non-detect results were qualified "UJ".

See Table A-2 for qualified data.

BLANK CONTAMINATION

Method Blank

Method blanks were analyzed at the appropriate frequency. Target compounds were not detected in the method blanks, with the exception of the following:

• 1,2,4-Trimethylbenzene, acetone, 2-butanone (MEK), chloromethane, and 1,1-dichloroethane were detected in the blank for batch 19008. Acetone, 2-butanone, chloromethane, and 1,1-dichloroethane were not detected in the associated samples and qualification was not required. 1,2,4-Trimethylbenzene was detected at concentrations

- greater than 5x blank in associated samples; and qualification of the field samples was not necessary.
- Zinc was detected in the method blank for batch 19025. Zinc was detected at similar concentrations in associated sample SWMU 10-3-GW; and the field sample was qualified with a" J+".
- Toluene and 2-butanone were detected in the blank for batch 19032. Toluene was detected in 2 associated samples and 2-butanone was detected in 10 associated samples at similar concentrations; and the field samples were qualified with a" J+".
- Lead, iron and zinc were detected in the method blank for batch for 19080. Lead, iron and zinc were detected in associated samples at concentrations greater than 5x the concentrations in the blank; and qualification of field samples was not necessary;
- Lead and iron were detected in the method blank for batch 19081. Lead and iron were
 detected in associated samples. The concentration for lead in one sample SWMU 10-8 (1820') was less than 5x the concentration in the blank and this sample was qualified "J+". The
 results for remaining associated samples were greater than 5x the blank and qualification
 was not necessary.
- Cadmium and iron were detected in the method blank for batch 19082. Cadmium was not
 detected in associated samples. Iron was detected in associated samples but the
 concentrations were greater than 5x the blank and qualification of field samples was not
 necessary.
- 2-Butanone and toluene were detected in the method blank for batch 19107. 2-Butanone was detected in six associated samples at similar concentrations; and the field samples were qualified "J+". Toluene was detected in associated samples at concentrations greater than 5x the blank and qualification of the field samples was not necessary.
- 2-Butanone was detected in the blank for batch 19243. 2-Butanone was detected in three associated samples SWMU 10-16 (2-4'), SWMU 10-16 (4.5-5') and SWMU 10-16 (8-9") at similar concentrations; and the field samples were qualified "J+".
- Iron and silver were detected in the method blank for batch 19259. Silver was not detected in associated samples. Iron was detected in associated samples but the concentrations were greater than 5x the blank; and field samples were not qualified.
- Iron was detected in the blank for batch 19279. Iron was detected in associated samples but the concentrations were greater than 5x the blank and field samples were not qualified.
- Iron was detected in the blank for batch 19280. Iron was detected in associated samples but the concentrations were greater than 5x the blank and field samples were not qualified.

- Iron was detected in the blank for batch 19333. Iron was detected in associated samples but the concentrations were greater than 5x the blank and field samples were not qualified.
- Mercury was detected in the blank for batch 19401. Mercury was also detected in the equipment blank EB06 and in an associated sample SWMU 10-11-GW at similar concentrations. The field samples were qualified "J+".
- Beryllium was detected in the method blank for batch R26030. Beryllium was detected in three associated samples SWMU 10-1-GW, SWMU 10-3-GW and SWMU 10-5-GW at similar concentrations. The field samples were qualified "J+".
- 2-Butanone, chloroethane, and chloromethane were detected in the method blank for batch R26144.
 2-Butanone, chloroethane, and chloromethane were not detected in associated samples and qualification of field samples is not necessary.
- 1,2,4- Trimethylbenzene, 2-butanone, and toluene were detected in the method blank for batch R25982. 1,2,4- Trimethylbenzene was detected in associated samples SWMU 10-1 (2-4') and SWMU 10-8 (4-6') at a similar concentration and the field samples were flagged "J+". 2-Butanone was not detected and toluene was detected in associated samples but concentrations were 5x the blank; and qualification of field samples is not necessary.
- 1,2,4-Trimethylbenzene, 1,2-dichloroethane, bromomethane, and chloroethane were
 detected in the blank for batch R26221. 1,2,4-Trimethylbenzene was detected in associated
 samples but concentrations were 5x the blank; and bromomethane, chloroethane, and 1,2Dichloroethane were not detected in associated samples. Qualification of field samples was
 not necessary.
- Silver was detected in the method blank for analytical batch R25881. Silver was not detected in the associated sample and qualification was not required.
- Bromomethane and 1,2,4-trimethylbenzene were detected in the method blank for batch R26209; Bromomethane was detected in associated samples SWMU 10-11 (8-10"), SWMU 10-13 (6-8') and SWMU 10-14 (6-8') at similar concentrations; and field samples were flagged "J+". 1,2,4-Trimethylbenzene was detected in associated samples but concentrations were 5x the blank; and qualification of field samples was not necessary.
- Barium was detected in the blank for batch R26242. Barium was detected in associated samples but concentrations were 5x the blank; and qualification of field samples is not necessary.
- Silver was detected in the blank for batch R26291. Silver was not detected in associated samples; and qualification of field samples was not necessary.

- 1,2,4-Trimethylbenzene, 1,2-dichlorethane, and vinyl chloride were detected in the blank for batch R26332. 1,2,4-Trimethylbenzene was detected in associated samples SWMU 10-12-GW, SWMU 10-14-GW, SWMU 10-16-GW and two Trip Blanks at similar concentrations; and field samples were flagged "J+". 1,2-Dichlorethane and vinyl chloride were detected in associated sample SWMU 10-16-GW at similar concentrations and field samples were flagged "J+".
- Bis(2-ethylhexyl)phthalate, di-n-butyl phthalate, and 4,6-dinitro-2-methylphenol were detected in the method blank for batch 25469 but many sample results were non-detect and are not qualified. Samples SWMU 10-18 (2-2.5' and 8-10') had detections of di-n-butyl phthalate at concentrations close to that detected in the method blank and are both flagged as "J+". Samples SWMU 10-21 (2-2.5', 12-14', and 20-22') and SWMU 10-22 (2-2.5' and 8-9') were flagged as J+ for bis(2-ethylhexyl)phthalate. Samples SWMU 10-21 (12-14') and SWMU 10-22 (2-2.5' and 8-9') were flagged as J+ for di-n-butyl phthalate.
- Mercury was detected in the method blank for sample batch 25448 and associated samples SWMU 10-18 (2-2.5', 8-10', and 18-20'), SWMU 10-19 (2-2.5', 12-14' and 18-20'), and SWMU 10-20 (2-2.5', 8-10', 10-12', 16-18', and 20-22') are all qualified as J+.
- Manganese was detected in the method blank for sample batch 25447 and associated samples SWMU 10-18 (2-2.5', 8-10', and 18-20') are all qualified as J+.
- 1-Methlynaphthalene and methylene chloride were both detected in the method blank for batch D34413. Associated samples SWMU 10-19 (12-14' and 18-20') and SWMU 10-20 (8-10', 10-12', and 16-18') all flagged as J+ for 1-methlynaphthalene, while only samples SWMU 10-19 (12-14') and SWMU 10-20 (8-10' and 10-12') are flagged as J+ for methylene chloride.
- Cyanide, mercury and methylene chloride were detected in the method blanks for batches WG876094, 25512, and A34513, respectively and the associated results in sample SWMU 10-20-GW are flagged as J+.
- Toluene and bromomethane were detected in the method blank for batch S37464 and associated sample SWMU 10-24 (6-8') is flagged as J+.
- 1,2,4-Trimethylbenzene was detected in the method blank for batch S37484 and sample SWMU 10-25 (2-2.5') is flagged as J+.
- 1-Methlynaphthalene was detected in method blank for batch S37484 and samples SWMU 10-23 (15-16'), SWMU 10-24 (15-16'), and SWMU 10-25 (2-2.5') were flagged as J+.
- Bis(2-ethylhexyl)phthalate and di-n-butyl phthalate were both detected in the method blank for batch W37464 and associated samples SWMU 10-23 (2-2.5' and 15-16'), SWMU 10-24

(2-2.5', 8-10', and 15-16'), and SWMU 10-25 (2-2.5', 10-12', and 16.8-18') are flagged as J+.

- Manganese and zinc were detected in the method blank for batch 27709 and associated samples SWMU 10-23 (2-2.5' and 15-16'), SWMU 10-24 (2-2.5', 6-8', 8-10', and 15-16'), and SWMU 10-25 (2-2.5', 10-12', and 16.8-18') are flagged as J+.
- Manganese was detected in the method blank for batch 27858 and associated samples
 SWMU 10-25-GW is flagged as J+. In addition, bis(2-ethylhexyl)phthalate was detected in the batch (27668) that is associated with SWMU 10-25-GW and the result is flagged as J+.

See Table A-2 for qualified data.

Trip Blank

Trip blanks were analyzed at the appropriate frequency as specified in the Permit. Target compounds were not detected in the trip blanks with the following exceptions:

Lab Report 1505698

• The VOCs ethylbenzene (0.11-J ug/L), naphthalene (0.31-J ug/L), 1-methylnaphthalene (0.71-J ug/L), 2-methylnaphthalene (1.1-J ug/L), 1,2,4-trimethylbenzene (0.29-J ug/L), and xylenes (0.041-J ug/L) were detected in TRIP Blank Sample No. 1501698-002a. The analytes were detected in the groundwater sample 1505698-001a associated with this trip blank at concentrations more than 5x the concentration detected in the blank. Sample results were not qualified; and

Lab Report 1505700

• The VOCs toluene (0.14-J ug/L) and 1,2,4-trimethylbenzene (0.18-J ug/L) were detected in TRIP Blank Sample No. 1505700-002a. Toluene was not detected and 1,2,4-trimethybenzene was detected in the groundwater sample 1505700-001a (SWMU 10-12-GW) associated with this trip blank. The detected concentration of 1,2,4-trimethylbenzene (0.66 ug/L) was less than 5 times the concentration in the trip blank and may be biased high. The 1,2,4-trimethylbenzene result for the field sample was flagged "J+".

See Table A-2 for qualified data.

Field Blanks/Equipment Rinsate Blank

Field and equipment rinsate blanks were collected as specified in the SWMU10 Investigation Work Plan and the Permit.

Common Laboratory Contaminants

Per USEPA guidelines, common laboratory contaminants for VOC analysis are acetone, 2-butanone (MEK), cyclohexane, chloromethane, and methylene chloride. Common laboratory contaminants for SVOC analysis include phthalates. Data qualification was not required for MEK in sample batches 19032, 19107, and 19243 where the laboratory contaminant was detected in the blank. Data qualification was required for other samples with methylene chloride and phthalates since there were detection in blanks and field analytical results were detected at concentrations less than 10 times the blank concentration in field samples. See Table A-2 for qualified data.

Methanol Blanks

Methanol Blanks provided by the laboratory were analyzed for VOCs. There were no analytes detected in the methanol blanks above the respective laboratory reporting limits.

SURROGATERECOVERY

Surrogate recoveries for the organic and inorganic analyses were performed at the required frequency and were within laboratory acceptance limits, with the following exceptions:

Lab Report 1504C86

 Surrogate recovery for nitrobenzene-d6 was high and above the acceptance limit for field sample SWMU 10 EB01. The surrogate recovery for five of the six surrogates included in Method 8270C were within limits. Since only one surrogate was outside limits, the associated field sample results for semi-volatile organic compounds were not qualified.

Lab Report 1505002

 Surrogate recovery for nitrobenzene-d6 was high and above the acceptance limit for field sample SWMU 10 EB02. The surrogate recovery for five of the six surrogates included in Method 8270C were within limits. Since only one surrogate was outside limits, the associated field sample results for semi-volatile organic compounds were not qualified.

- Surrogate recovery for di-n-octyl phthalate (DNOP) was below the acceptance limit for field samples SWMU 10-5 (0-2') and SWMU 10-5 (4-6'). Low surrogate recovery was related to required sample dilution for analytical analysis by Method 8015 diesel range organics (DRO) or matrix effects; therefore data qualification was not required.
- Surrogate recoveries for Method 8270C were below the lower acceptance limits for field sample SWMU 10-5 (0-2'). Low surrogate recovery was related to required sample dilution for analytical analysis by Method 8270C or matrix effects; therefore data qualification was not required.

Lab Report 1505004

- Surrogate recovery for DNOP was below the lower acceptance limit for field sample SWMU 10-4 (2-4'). Low surrogate was related to required sample dilution for analytical analysis by Method 8015 DRO or matrix effects; therefore data qualification was not required.
- Surrogate recoveries for Method 8270C were below the lower acceptance limits for field sample SWMU 10 DUP01. Low surrogate recovery was related to required sample dilution for analytical analysis by Method 8270C or matrix effects; therefore data qualification was not required.

Lab Report 1505005

 Surrogate recovery for bromofluorobenzene (BFB) was high and above the upper acceptance limit for field sample SWMU 10-3-GW. The associated field sample results for Method 8015 gasoline range organics (GRO) are qualified J+ due to a potential high bias.

Lab Report 1505057

- Surrogate recovery for DNOP was below the lower acceptance limit for field sample SWMU 10-8 (2-4'). Low surrogate recovery was related to required sample dilution for analytical analysis by Method 8015 DRO or matrix effects; therefore data qualification was not required.
- Surrogate recoveries for Method 8270C were below the lower acceptance limits for field samples SWMU 10-9 (4-6') and SWMU 10-8 (2-4'). Low surrogate recovery was related to required sample dilution for analytical analysis by Method 8270C or matrix effects; therefore data qualification was not required.

- Surrogate recovery for DNOP was below the lower acceptance limit for field sample SWMU 10-10 (4-6'). Low surrogate recovery was related to required sample dilution for analytical analysis by Method 8015 DRO or matrix effects; therefore data qualification was not required.
- Surrogate recoveries for Method 8270C were below the lower acceptance limits for field sample SWMU 10-10 (4-6'). Low surrogate recovery was related to required sample dilution for analytical analysis by Method 8270C or matrix effects; therefore data qualification was not required.

Lab Report 1505218

- Surrogate recovery for BFB was high and above the upper acceptance limit for field sample SWMU 10-5-GW. The associated field sample results for Method 8015 GRO are qualified J+ due to a potential high bias. Non-detect results are not qualified.
- Surrogate recoveries for 2-fluorophenol and 2,4,6-tribromophenol were below the acceptance limit for field sample SWMU 10-5-GW. The surrogate recovery for three of the six surrogates included in Method 8270C were within limits. Since only two of six surrogates were outside limits, the associated field sample results for semi-volatile organic compounds were not qualified.

Lab Report 1505570

- Surrogate recovery for DNOP was below the lower acceptance limit for field samples SWMU 10-14 (6-8') and SWMU 10-11 (4-6'). Low surrogate recovery was related to required sample dilution for analytical analysis by Method 8015 DRO or matrix interference; therefore data qualification was not qualified.
- Surrogate recovery for DNOP was high and above the upper acceptance limit for field sample SWMU 10-11 (8-10'). The associated field sample results for Method 8015 GRO are qualified J+ due to a potential high bias. Non-detect results are not qualified.
- Surrogate recoveries for Method 8270C were below the lower acceptance limits for field samples SWMU 10-9 (4-6') and SWMU 10-8 (2-4'). Low surrogate recovery was related to required sample dilution for analytical analysis by Method 8270C or matrix effects; therefore data qualification was not required.

- Surrogate recovery for DNOP was below the lower acceptance limit for field samples SWMU 10-13 (6-8'), SWMU 10-17 (6-8'), and SWMU 10 DUPO4. Low surrogate recovery was due to required sample dilution for analytical analysis by Method 8015 DRO or matrix effects; therefore data qualification was not qualified.
- Surrogate recoveries for Method 8270C were below the lower acceptance limits for field samples SWMU 10-17 (6-8') and SWMU DUPO4. Low surrogate recovery was related to required sample dilution for analytical analysis by Method 8270C or matrix effects; therefore data qualification was not required.

Lab Report 1505709

- Surrogate recovery for nitrobenzene d-5 was high and above the upper acceptance limit for field sample SWMU 10 DUP01GW. The surrogate recovery for five of the six surrogates included in Method 8270C were within limits. Since only one of six surrogates was outside limits, the associated field sample results for semi-volatile organic compounds were not qualified.
- Surrogate recovery for dibromofluorobenzene was high and above the acceptance limit for field sample SWMU10 DUP01GW. The surrogate recovery for four of the five surrogates included in Method 8260 were within limits. Since only one of five surrogates was outside limits, the associated field sample results for volatile organic compounds were not qualified.

See Table A-2 for qualified data.

LCS RECOVERY AND RELATIVE PERCENT DIFFERENCE

Laboratory control samples (LCSO/LCS duplicates were performed at the required frequency and were evaluated based on the following criteria:

- If the analyte recovery was above acceptance limits for the LCS or LCS duplicate, but the analyte was not detected in the associated batch, then data qualification was not required.
- If the analyte recovery was above acceptance limits for the LCS or LCS duplicate and the analyte was detected in the associated batch, then the analyte results were qualified "J+" to account for a potential high bias.

• If the analyte recovery was below acceptance limits for LCS or LCS duplicate then the analyte results in the associated analytical batch were qualified ("UJ" for non-detects and "J-" for detected results) to account for a potential low bias.

LCS/LCSD percent recoveries and relative percent differences (RPDs) were within acceptance limits and no qualification was required.

MS/MSD RECOVERY AND RELATIVE PERCENT DIFFERENCE

Matrix Spike/Matrix Spike Duplicate (MS/MSD) samples were performed at the required frequency and were evaluated by the following criteria:

- If the MS or MSD recovery for an analyte was above acceptance limits but the analyte was not detected in the associated analytical batch, then data qualification was not required.
- If the MS or MSD recovery for an analyte was above acceptance limits and the analyte was detected in the associated analytical batch, then analyte results were qualified "J+" to account for a potential high bias.
- Low MS/MSD recoveries for organic or inorganic parameters result in sample qualification of the associated analytical batch with a "J-".
- Results were not qualified based on non-project specific MS/MSD (i.e., batch QC) recoveries.

MS/MSD percent recoveries and RPDs were within acceptance limits except for the following:

Lab Report 1505003

 The MS/MSD recoveries for benzene and toluene for Method 8260B Batch 19032 were below the lower acceptance limits for field sample SWMU 10-5 (22-24). Low recovery was related to dilution or matrix interference. Since results may be biased low, detected results in the batch are qualified "J-"and non-detect results are qualified "UJ".

Lab Report 1505057

• The MS recovery of 127% and the MSD recovery of 172% for mercury was above the acceptance limit of 125% for Method 7471 batch 19445 and field sample SWMU 10-9 (2-4'). Since results may be biased high, the detected results are qualified "J+".

- The MS/MSD recovery of 166% for BFB is above the upper limit of 120% for Method 8015 GRO batch R26016 in field sample SWMU 10-5-GW. The associated field sample results for Method 8015 GRO are qualified J+ due to a potential high bias. Non-detect samples were not qualified.
- The MS/MSD recoveries were low and the relative percent difference (RPD) were outside the acceptance limits for several chemicals and surrogates for Method 8270C batch 19150 performed for field sample SWMU 10-5-GW. Low recovery was related to dilution or matrix interference. Since results may be biased low, the associated semi-volatile results were qualified "J-"if detected or "UJ" if non-detect.

Lab Report 1505570

- The MS/MSD recoveries for all compounds and surrogates for Method 8270C batch 19270 were within limits for field sample SWMU 10-14 (4-6'). The RPD of 30.4 for N-nitroso-n-propyl amine was above the limit of 27.5. Since the RPDs for other compounds were within limits, and the N-nitroso-n-propyl amine RPD was only slightly out of specifications, the field data were not qualified.
- The MS recovery of 33.2% and the MSD recovery of 33.3% for antimony was below the lower limit of 75% for Method 6010 batch 19259 and field sample SWMU 10-14 (6-8'). Low recovery was related to dilution or matrix interference. The associated field sample results for antimony are qualified "UJ" due to a potential low bias.
- The MS recovery for lead was within limits and MSD recovery of 74.4 for lead was below the acceptance limit of 75% for Method 6010 batch 19259 and field sample SWMU 10-14 (6-8'). Since MSD recovery was only slightly low, the associated field sample results were not qualified.

Lab Report 1505698

• MS recoveries for benzene (16.4%), toluene (13.4%), chlorobenzene (11.7%), 1,1-dichloroethylene (6.58%), and trichloroethylene (9.98%) were below the lower acceptance limit of 30% for Method 8260 batch R26322 and field sample SWMU 10-11-GW. The RPDs for these compounds were outside acceptance limits. Low recovery was related to dilution or matrix interference. The field sample results for volatile organics are qualified "J-"and non-detect results are qualified "UJ" due to a potential low bias.

• The MS and MSD recoveries for N-Nitrosodi-n-propylamine, 42.7% and 40.7, respectively, were below the lower limit of 43.5%. Antimony, cobalt, lead, manganese, nickel, and selenium had low MS recoveries of 29.8%, 69.2%, 67%, 74.6%, 72.6%, and 68.2%, respectively, vs the lower limit of 75%. Antimony, arsenic, beryllium, cadmium, cobalt, lead, manganese, nickel, and selenium had low MSD recoveries of 27.2%, 71.4%, 73.6%, 74.6%, 66.6%, 63.9%, 74.4%, 71.7%, and 66.2%, respectively, vs the lower limit of 75%. Low recovery was related to dilution or matrix interference. The field sample results with low recovery are qualified "J-"and non-detect results are qualified "UJ" due to a potential low bias. Barium had both MS and MSD recoveries (133.9% and 133.9%) above the upper limit of 125% and the results are flagged as J+.

Lab Report 160875

• Antimony, cobalt, lead, manganese, nickel, and selenium had low MS recoveries of 29.8%, 69.2%, 67%, 74.6%, 72.6%, and 68.2%, respectively, vs the lower limit of 75%. Antimony, arsenic, beryllium, cadmium, cobalt, lead, manganese, nickel, and selenium had low MSD recoveries of 27.2%, 71.4%, 73.6%, 74.6%, 66.6%, 63.9%, 74.4%, 71.7%, and 66.2%, respectively, vs the lower limit of 75%. Low recovery was related to dilution or matrix interference. The field sample results with low recovery are qualified "J-"and non-detect results are qualified "UJ" due to a potential low bias. Barium had both MS and MSD recoveries (133.9% and 133.9%) above the upper limit of 125% and the results are flagged as J+.

Lab Report 1605943

• Cyanide had a low MS recovery of 70% vs. the lower limit of 80%. Cobalt, nickel, selenium, and zinc had low MSD recoveries of 72.4%, 71.1%, 69.3%, and 70.7% vs. the lower limit of 75%. Antimony and lead had low recoveries for the MS (31.9% and 74.7%, respectively, vs. 75%) and MSD (16.9% and 71.1%, respectively, vs. 75%). The field sample results with low recovery are qualified "J-"and non-detect results are qualified "UJ" due to a potential low bias.

• Cyanide had a low MSD recovery of 89% vs. the lower limit of 90%. The field sample result with low recovery is qualified "J-"due to a potential low bias.

Lab Report 1609B57

• Antimony, arsenic, lead, manganese, nickel, selenium, and zinc had low MS recoveries of 48.0%, 70.9%, 72.9%, -407%, 73%, 60.5, and 74.9%, respectively, vs. a lower limit of 75%. Antimony, manganese, and selenium had low MSD recoveries of 48.1%, -195%, and 59.2%, respectively, vs. a lower limit of 75%. The field sample results with low recovery are qualified "J-"and non-detect results are qualified "UJ" due to a potential low bias. Barium had a MSD recovery of 295%, above the upper limit of 125% and the results are flagged as J+.

Lab Report 1609C66

 4-Nitrophenol had a low MSD recovery of 9.01% vs the lower limit of 15% and a RPD of 58.3% vs. a limit of 41.5%. The field sample result was non-detect and the result is qualified "UJ" due to a potential low bias.

See Table A-2 for qualified data.

DUPLICATES

Field Duplicates

Field duplicates were collected at a rate as stated in the approved SWMU10 Investigation Work Plan. The RPDs between the field duplicate and its associated sample were calculated and are presented in Table A-3. The field duplicates were evaluated by the following criteria:

- If an analyte was detected at a concentration greater than five times the method reporting limit, the RPD should be less than 35 percent for soil and 25 percent for ground water samples.
- If an analyte was detected at a concentration that is less than five times the method reporting limit, then the difference between the sample and the field duplicate should not exceed the method reporting limit.
- Duplicate RPDs are calculated by dividing the difference of the concentrations by the average of the concentrations.

Field duplicate RPDs were within acceptance limits except for the following soil sample:

- GRO and DRO for field sample SWMU 10-9 (4-6);
- 1,2,4-Trimethylbenzene, 1,3,5-trimethylbenzene, 1-methylnaphthalene, 2-methylnaphthalene, hexachlorobutadiene, n-butylbenzene, n-propylbenzene, secbutylbenzene, and xylene(s) for field sample SWMU10-9 (4-6');
- 1-methylnaphthalene and 2-methylnaphthalene for field sample SWMU10-25 (2-2.5'); and
- Iron and zinc in field sample SWMU 10-15-GW.

See Table 3A for a field duplicate summary.

COMPLETENESS SUMMARY

The following equation was used to calculate the technical completeness:

% Technical Completeness =
$$\left(\frac{\text{Number of usable results}}{\text{Number of reported results}}\right) \times 100$$

The technical completeness attained for SWMU10 RCRA Investigation activities was 100 percent. The completeness results are provided in Table A-4. The analytical results for the required analytes per the approved SWMU10 Work Plan were considered usable for the intended purposes and the project DQOs have been met.

Table A-1 Sample Identification SWMU10 Investigation Report

Sample ID	Lab ID	Date Collected	Sample Type
SWMU 10 EB01	1504c86-001a	4/28/2015	EB
SWMU 10-1 (2-4')	1504c87-001a	4/28/2015	N
SWMU 10-1 (4-6')	1504c87-002a	4/28/2015	N
SWMU 10-1 (18-20')	1504c87-003a	4/28/2015	N
SWMU 10-3 (2-4')	1504c87-004a	4/28/2015	N
SWMU 10-3 (6-8')	1504c87-005a	4/28/2015	N
SWMU 10-3 (18-20')	1504c87-006a	4/28/2015	N
SWMU 10-1-GW	1505001-001a	4/28/2015	GW
Trip Blank	1505001-002a	NA	TB
SWMU 10 EB02	1505002-001a	4/29/2015	EB
SWMU 10-5 (0-2')	1505003-001a	4/29/2015	N
SWMU 10-5 (2-4')	1505003-002a	4/29/2015	N
SWMU 10-5 (4-6')	1505003-003a	4/29/2015	N
SWMU 10-5 (14-16')	1505003-004a	4/29/2015	N
SWMU 10-5 (22-24')	1505003-005A	4/29/2015	N
SWMU 10-4 (0-2')	1505003 003A	4/29/2015	N
SWMU 10-4 (2-4')	1505004-001A	4/29/2015	N
SWMU 10-4 (6-8')	1505004-002a	4/29/2015	N
SWMU 10-4 (18-20')	1505004-003A	4/29/2015	N
SWMU 10 DUP01	1505004-004A	4/29/2015	FD
SWMU 10-3-GW	1505004-003A	4/29/2015	GW
	1505005-001a	4/29/2015 NA	TB
Trip Blank			EB
SWMU 10 EB04	1505047-001a	5/1/2015	
SWMU 10 EB03	1505048-001a	4/30/2015	EB
SWMU 10-9 (2-4')	1505057-001A	4/30/2015	N
SWMU 10-9 (4-6')	1505057-002a	4/30/2015	N
SWMU 10-9 (18-20')	1505057-003A	4/30/2015	N
SWMU 10-9DUP02	1505057-004a	4/30/2015	FD
SWMU 10-8 (2-4')	1505057-005a	4/30/2015	N
SWMU 10-8 (4-6')	1505057-006a	4/30/2015	N
SWMU 10-8 (18-20')	1505057-007A	4/30/2015	N
SWMU 10-10 (2-4')	1505058-001A	4/30/2015	N
SWMU 10-10 (4-6')	1505058-002a	4/30/2015	N
SWMU 10-10 (18-20')	1505058-003A	4/30/2015	N
SWMU 10-7 (2-4')	1505059-001A	5/1/2015	N
SWMU 10-7 (4-6')	1505059-002A	5/1/2015	N
SWMU 10-7 (18-20')	1505059-003A	5/1/2015	N
SWMU 10-5-GW	1505218-001a	5/4/2015	GW
TRIP BLANK	1505218-002a	NA	TB
SWMU 10 EB05	1505222-001a	5/4/2015	EB
TRIP BLANK	1505222-002a	NA	TB
SWMU 10-6 (2-4')	1505223-001A	5/4/2015	N
SWMU 10-6 (10-12')	1505223-002A	5/4/2015	N
SWMU 10-2 (0-2')	1505223-003A	5/4/2015	N
SWMU 10-2 (2-4')	1505223-004A	5/4/2015	N
SWMU 10 DUP03	1505223-005A	5/4/2015	FD
MEOH BLANK	1505223-006	5/4/2015	FB
SWMU 10-14 (6-8')	1505570-001a	5/12/2015	N
SWMU 10-14 (21-23')	1505570-002a	5/12/2015	N
SWMU 10-11 (4-6')	1505570-003a	5/12/2015	N
SWMU 10-11 (8-10')	1505570-004a	5/12/2015	N
SWMU 10-11 (18-20')	1505570-005A	5/12/2015	N
SWMU 10-12 (6-8')	1505617-001a	5/12/2015	N

Table A-1 Sample Identification SWMU10 Investigation Report

Sample ID	Lab ID	Date Collected	Sample Type
SWMU 10-12 (20-22')	1505617-002a	5/12/2015	N
SWMU 10-13 (2-4')	1505617-003a	5/13/2015	N
SWMU 10-13 (6-8')	1505617-004a	5/13/2015	N
SWMU 10-13 (18-20')	1505617-005a	5/13/2015	N
SWMU 10-15 (2-4')	1505617-006a	5/13/2015	N
SWMU 10-15 (4-6')	1505617-007a	5/13/2015	N
SWMU 10-15 (18-20')	1505617-007a	5/13/2015	N
SWMU 10-17 (6-8')	1505617-009a	5/13/2015	N
SWMU 10 DUP04	1505617-010a	5/13/2015	FD
MEOH BLANK	1505617-0101	5/13/2015	FB
SWMU 10 EB06	1505618-001a	5/12/2015	EB
SWMU 10-11-GW	1505698-001a	5/14/2015	GW
Trip Blank	1505698-001a	NA	TB
SWMU 10-12-GW	1505700-001a	5/14/2015	GW
Trip Blank	1505700-001a	NA	TB
SWMU 10-14-GW	1505700-002a		GW
		5/14/2015	TB
Trip Blank	1505701-002a	NA 5 (4.2 (204.5	
SWMU 10-16 (2-4')	1505705-001a	5/13/2015	N
SWMU 10-16 (4-5.5')	1505705-002a	5/13/2015	N
SWMU 10-16 (8-9')	1505705-003a	5/13/2015	N
SWMU 10-15-GW	1505708-001a	5/14/2015	GW
TRIP BLANK	1505708-002a	NA NA	TB
SWMU 10 DUP01GW	1505709-001a	5/14/2015	FD
TRIP BLANK	1505709-002a	NA	TB
SWMU 10-16-GW	1505710-001a	5/14/2015	GW
SWMU 10-18 (2-2.5')	1605874-001	5/16/2016	N
SWMU 10-18 (8-10')	1605874-002	5/16/2016	N
SWMU 10-18 (18-20')	1605874-003	5/16/2016	N
SWMU 10-19 (2-2.5')	1605875-005	5/17/2016	N
SWMU 10-19 (12-14')	1605875-006	5/17/2016	N
SWMU 10-19 (18-20')	1605875-007	5/17/2016	N
SWMU 10-20 (2-2.5')	1605875-008	5/17/2016	N
SWMU 10-20 (8-10')	1605875-001	5/17/2016	N
SWMU 10-20 (10-12')	1605875-002	5/17/2016	N
SWMU 10-20 (16-18')	1605875-003	5/17/2016	N
SWMU 10-20 (20-22')	1605875-004	5/17/2016	N
SWMU 10-21 (2-2.5')	1605943-001	5/18/2016	N
SWMU 10-21 (12-14')	1605943-002	5/18/2016	N
SWMU 10-21 (20-22')	1605943-003	5/18/2016	N
SWMU 10-22 (2-2.5')	1605943-004	5/18/2016	N
SWMU 10-22 (8-9')	1605943-005	5/18/2016	N
DUP01	1605943-006	5/18/2016	FD
MeOH BLANK	1605943-007	NA	MB
SWMU 10-23 (2-2.5')	1609B57-001	9/19/2016	N
SWMU 10-23 (15-16')	1609B57-002	9/19/2016	N
SWMU 10-24 (2-2.5')	1609B57-003	9/19/2016	N
SWMU 10-24 (6-8')	1609B57-004	9/19/2016	N
SWMU 10-24 (8-10')	1609B57-005	9/19/2016	N
SWMU 10-24 (15-16')	1609B57-006	9/19/2016	N
SWMU 10-25 (2-2.5')	1609B57-007	9/19/2016	N
SWMU 10-25 (10-12')	1609B57-008	9/19/2016	N
SWMU 10-25 (16.5-18')	1609B57-009	9/19/2016	N
		-, -0, -010	

Table A-1 Sample Identification SWMU10 Investigation Report

Western Refining Southwest, Inc. - Gallup Refinery

Sample ID	Lab ID	Date Collected	Sample Type
MeOH BLANK	1609B57-011	NA	MB
EB091916	1609B57-012	9/19/2016	EB
SWMU 10-20-GW	1605998-001	5/20/2016	GW
Trip Blank	1605998-002	NA	TB
SWMU 10-21-GW	1605998-003	5/20/2016	GW
SWMU 10-25-GW	1609C66-001	9/21/2016	GW
Trip Blank	1609C66-002	NA	TB

Notes:

N = Normal field sampleTB = Trip BlankFD = Field duplicateEB = Equipment BlankFB = Field BlankGW = GroundwaterNA = Not ApplicableMB = Methanol Blank

SWMU10 Investigation Report

Sample ID	Date Collected	Analyte	Result	Units	Matrix	Qualifier	Comments
SWMU 10 DUP01	4/29/2015	1,3,5-Trimethylbenzene	0.000422	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10 DUP01	4/29/2015	Methylene chloride	0.00051	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10 DUP01	4/29/2015	sec-Butylbenzene	0.000534	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10 DUP01	4/29/2015	Ethylbenzene	0.000638	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10 DUP01	4/29/2015	2-Hexanone	0.000653	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10 DUP01	4/29/2015	1,2,4-Trimethylbenzene	0.000972	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10 DUP01	4/29/2015	Benzene	0.00104	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10 DUP01	4/29/2015	Xylenes, Total	0.00171	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10 DUP01	4/29/2015	Toluene	0.00232	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10 DUP01	4/29/2015	Acetone	0.0166	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10 DUP01	4/29/2015	Barium	380	mg/kg	Soil	J-	Qualified low bias due to surrogate recovery
							Qualified high bias since detected in method blank & field concentration <5x blank concentration/Qualified
SWMU 10 DUP01	4/29/2015	2-Butanone	0.00253		Soil	J+/ J-	low bias due to Method SW8260B MS/MSD recovery for batch
SWMU 10 DUP01	4/29/2015	1,1,1,2-Tetrachloroethane		mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10 DUP01	4/29/2015	1,1,1-Trichloroethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10 DUP01	4/29/2015	1,1,2,2-Tetrachloroethane		mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10 DUP01	4/29/2015	1,1,2-Trichloroethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10 DUP01	4/29/2015	1,1-Dichloroethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10 DUP01	4/29/2015	1,1-Dichloroethene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10 DUP01	4/29/2015	1,1-Dichloropropene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10 DUP01	4/29/2015	1,2,3-Trichlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10 DUP01	4/29/2015	1,2,3-Trichloropropane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10 DUP01	4/29/2015	1,2,4-Trichlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10 DUP01	4/29/2015	1,2-Dibromo-3-chloropropane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10 DUP01	4/29/2015	1,2-Dibromoethane (EDB)	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10 DUP01	4/29/2015	1,2-Dichlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10 DUP01	4/29/2015	1,2-Dichloroethane (EDC)	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10 DUP01	4/29/2015	1,2-Dichloropropane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10 DUP01	4/29/2015	1,3-Dichlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10 DUP01	4/29/2015	1,3-Dichloropropane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10 DUP01	4/29/2015	1,4-Dichlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10 DUP01	4/29/2015	1-Methylnaphthalene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10 DUP01	4/29/2015	2,2-Dichloropropane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10 DUP01	4/29/2015	2-Chlorotoluene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10 DUP01	4/29/2015	2-Methylnaphthalene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10 DUP01	4/29/2015	4-Chlorotoluene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10 DUP01	4/29/2015	4-Isopropyltoluene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10 DUP01	4/29/2015	4-Methyl-2-pentanone	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10 DUP01	4/29/2015	Bromobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10 DUP01	4/29/2015	Bromodichloromethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10 DUP01	4/29/2015	Bromoform	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch

SWMU10 Investigation Report

Sample ID	Date Collected	Analyte	Result	Units	Matrix	Qualifier	Comments
SWMU 10 DUP01	4/29/2015	Bromomethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10 DUP01	4/29/2015	Carbon disulfide	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10 DUP01	4/29/2015	Carbon tetrachloride	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10 DUP01	4/29/2015	Chlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10 DUP01	4/29/2015	Chloroethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10 DUP01	4/29/2015	Chloroform	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10 DUP01	4/29/2015	Chloromethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10 DUP01	4/29/2015	cis-1,2-DCE	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10 DUP01	4/29/2015	cis-1,3-Dichloropropene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10 DUP01	4/29/2015	Dibromochloromethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10 DUP01	4/29/2015	Dibromomethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10 DUP01	4/29/2015	Dichlorodifluoromethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10 DUP01	4/29/2015	Hexachlorobutadiene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10 DUP01	4/29/2015	Isopropylbenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10 DUP01	4/29/2015	Methyl tert-butyl ether (MTBE)	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10 DUP01	4/29/2015	Naphthalene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10 DUP01	4/29/2015	n-Butylbenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10 DUP01	4/29/2015	n-Propylbenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10 DUP01	4/29/2015	Styrene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10 DUP01	4/29/2015	tert-Butylbenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10 DUP01	4/29/2015	Tetrachloroethene (PCE)	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10 DUP01	4/29/2015	trans-1,2-DCE	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10 DUP01	4/29/2015	trans-1,3-Dichloropropene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10 DUP01	4/29/2015	Trichloroethene (TCE)	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10 DUP01	4/29/2015	Trichlorofluoromethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10 DUP01	4/29/2015	Vinyl chloride	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10 DUP01GW	5/14/2015	Benzene	0.4	ug/l	Water	J-	Qualified low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10 DUP01GW	5/14/2015	2-Butanone	2.9	ug/l	Water	J-	Qualified low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10 DUP01GW	5/14/2015	Acetone	16	ug/l	Water	J-	Qualified low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10 DUP01GW	5/14/2015	Methyl tert-butyl ether (MTBE)	150	ug/l	Water	J-	Qualified low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10 DUP01GW	5/14/2015	1,1,1,2-Tetrachloroethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10 DUP01GW	5/14/2015	1,1,1-Trichloroethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10 DUP01GW	5/14/2015	1,1,2,2-Tetrachloroethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10 DUP01GW	5/14/2015	1,1,2-Trichloroethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10 DUP01GW	5/14/2015	1,1-Dichloroethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10 DUP01GW	5/14/2015	1,1-Dichloroethene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10 DUP01GW	5/14/2015	1,1-Dichloropropene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10 DUP01GW	5/14/2015	1,2,3-Trichlorobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10 DUP01GW	5/14/2015	1,2,3-Trichloropropane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10 DUP01GW	5/14/2015	1,2,4-Trichlorobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10 DUP01GW	5/14/2015	1,2,4-Trimethylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch

SWMU10 Investigation Report

Sample ID	Date Collected	Analyte	Result	Units	Matrix	Qualifier	Comments
SWMU 10 DUP01GW	5/14/2015	1,2-Dibromo-3-chloropropane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10 DUP01GW	5/14/2015	1,2-Dibromoethane (EDB)	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10 DUP01GW	5/14/2015	1,2-Dichlorobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10 DUP01GW	5/14/2015	1,2-Dichloroethane (EDC)	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10 DUP01GW	5/14/2015	1,2-Dichloropropane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10 DUP01GW	5/14/2015	1,3,5-Trimethylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10 DUP01GW	5/14/2015	1,3-Dichlorobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10 DUP01GW	5/14/2015	1,3-Dichloropropane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10 DUP01GW	5/14/2015	1,4-Dichlorobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10 DUP01GW	5/14/2015	1-Methylnaphthalene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10 DUP01GW	5/14/2015	2,2-Dichloropropane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10 DUP01GW	5/14/2015	2-Chlorotoluene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10 DUP01GW	5/14/2015	2-Hexanone	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10 DUP01GW	5/14/2015	2-Methylnaphthalene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10 DUP01GW	5/14/2015	4-Chlorotoluene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10 DUP01GW	5/14/2015	4-Isopropyltoluene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10 DUP01GW	5/14/2015	4-Methyl-2-pentanone	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10 DUP01GW	5/14/2015	Bromobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10 DUP01GW	5/14/2015	Bromodichloromethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10 DUP01GW	5/14/2015	Bromoform	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10 DUP01GW	5/14/2015	Bromomethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10 DUP01GW	5/14/2015	Carbon disulfide	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10 DUP01GW	5/14/2015	Carbon Tetrachloride	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10 DUP01GW	5/14/2015	Chlorobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10 DUP01GW	5/14/2015	Chloroethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10 DUP01GW	5/14/2015	Chloroform	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10 DUP01GW	5/14/2015	Chloromethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10 DUP01GW	5/14/2015	cis-1,2-DCE	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10 DUP01GW	5/14/2015	cis-1,3-Dichloropropene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10 DUP01GW	5/14/2015	Dibromochloromethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10 DUP01GW	5/14/2015	Dibromomethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10 DUP01GW	5/14/2015	Dichlorodifluoromethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10 DUP01GW	5/14/2015	Ethylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10 DUP01GW	5/14/2015	Hexachlorobutadiene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10 DUP01GW	5/14/2015	Isopropylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10 DUP01GW	5/14/2015	Methylene Chloride	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10 DUP01GW	5/14/2015	Naphthalene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10 DUP01GW	5/14/2015	n-Butylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10 DUP01GW	5/14/2015	n-Propylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10 DUP01GW	5/14/2015	sec-Butylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10 DUP01GW	5/14/2015	Styrene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch

SWMU10 Investigation Report

Sample ID	Date Collected	Analyte	Result	Units	Matrix	Qualifier	Comments
SWMU 10 DUP01GW	5/14/2015	tert-Butylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10 DUP01GW	5/14/2015	Tetrachloroethene (PCE)	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10 DUP01GW	5/14/2015	Toluene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10 DUP01GW	5/14/2015	trans-1,2-DCE	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10 DUP01GW	5/14/2015	trans-1,3-Dichloropropene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10 DUP01GW	5/14/2015	Trichloroethene (TCE)	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10 DUP01GW	5/14/2015	Trichlorofluoromethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10 DUP01GW	5/14/2015	Vinyl chloride	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10 DUP01GW	5/14/2015	Xylenes, Total	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10 DUP04	5/13/2015	Fluorene	3.2	mg/kg	Soil	J-	Qualified low bias due to surrogate recovery
SWMU 10 DUP04	5/13/2015	Phenanthrene	6	mg/kg	Soil	J-	Qualified low bias due to surrogate recovery
SWMU 10 DUP04	5/13/2015	Naphthalene	8.8	mg/kg	Soil	J-	Qualified low bias due to surrogate recovery
SWMU 10 DUP04	5/13/2015	2,4-Dimethylphenol	18	mg/kg	Soil	J-	Qualified low bias due to surrogate recovery
SWMU 10 DUP04	5/13/2015	Phenol	26	mg/kg	Soil	J-	Qualified low bias due to surrogate recovery
SWMU 10 DUP04	5/13/2015	1-Methylnaphthalene	28	mg/kg	Soil	J-	Qualified low bias due to surrogate recovery
SWMU 10 DUP04	5/13/2015	2-Methylphenol	29	mg/kg	Soil	J-	Qualified low bias due to surrogate recovery
SWMU 10 DUP04	5/13/2015	2-Methylnaphthalene	45	mg/kg	Soil	J-	Qualified low bias due to surrogate recovery
SWMU 10 DUP04	5/13/2015	3+4-Methylphenol	60	mg/kg	Soil	J-	Qualified low bias due to surrogate recovery
SWMU 10 EB05	5/4/2015	1,2,4-Trichlorobenzene	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10 EB05	5/4/2015	1,2-Dichlorobenzene	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10 EB05	5/4/2015	1,3-Dichlorobenzene	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10 EB05	5/4/2015	1,4-Dichlorobenzene	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10 EB05	5/4/2015	1-Methylnaphthalene	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10 EB05	5/4/2015	2,4,5-Trichlorophenol	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10 EB05	5/4/2015	2,4,6-Trichlorophenol	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10 EB05	5/4/2015	2,4-Dichlorophenol	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10 EB05	5/4/2015	2,4-Dimethylphenol	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10 EB05	5/4/2015	2,4-Dinitrophenol	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10 EB05	5/4/2015	2,6-Dinitrotoluene	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10 EB05	5/4/2015	2-Chloronaphthalene	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10 EB05	5/4/2015	2-Chlorophenol	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10 EB05	5/4/2015	2-Methylnaphthalene	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10 EB05	5/4/2015	2-Methylphenol	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10 EB05	5/4/2015	2-Nitroaniline	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10 EB05	5/4/2015	2-Nitrophenol	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10 EB05	5/4/2015	3,3´-Dichlorobenzidine	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10 EB05	5/4/2015	3+4-Methylphenol	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10 EB05	5/4/2015	3-Nitroaniline	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10 EB05	5/4/2015	4,6-Dinitro-2-methylphenol	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10 EB05	5/4/2015	4-Bromophenyl phenyl ether	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10 EB05	5/4/2015	4-Chloro-3-methylphenol	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch

SWMU10 Investigation Report

Sample ID	Date Collected	Analyte	Result	Units	Matrix	Qualifier	Comments
SWMU 10 EB05	5/4/2015	4-Chloroaniline	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10 EB05	5/4/2015	4-Chlorophenyl phenyl ether	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10 EB05	5/4/2015	4-Nitroaniline	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10 EB05	5/4/2015	4-Nitrophenol	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10 EB05	5/4/2015	Acenaphthene	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10 EB05	5/4/2015	Acenaphthylene	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10 EB05	5/4/2015	Aniline	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10 EB05	5/4/2015	Anthracene	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10 EB05	5/4/2015	Azobenzene	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10 EB05	5/4/2015	Benz(a)anthracene	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10 EB05	5/4/2015	Benzo(a)pyrene	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10 EB05	5/4/2015	Benzo(b)fluoranthene	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10 EB05	5/4/2015	Benzo(g,h,i)perylene	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10 EB05	5/4/2015	Benzo(k)fluoranthene	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10 EB05	5/4/2015	Benzoic acid	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10 EB05	5/4/2015	Benzyl alcohol	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10 EB05	5/4/2015	Bis(2-chloroethoxy)methane	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10 EB05	5/4/2015	Bis(2-chloroethyl)ether	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10 EB05	5/4/2015	Bis(2-chloroisopropyl)ether	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10 EB05	5/4/2015	Bis(2-ethylhexyl)phthalate	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10 EB05	5/4/2015	Butyl benzyl phthalate	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10 EB05	5/4/2015	Carbazole	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10 EB05	5/4/2015	Chrysene	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10 EB05	5/4/2015	Dibenz(a,h)anthracene	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10 EB05	5/4/2015	Dibenzofuran	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10 EB05	5/4/2015	Diethyl phthalate	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10 EB05	5/4/2015	Dimethyl phthalate	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10 EB05	5/4/2015	Di-n-butyl phthalate	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10 EB05	5/4/2015	Di-n-octyl phthalate	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10 EB05	5/4/2015	Fluoranthene	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10 EB05	5/4/2015	Fluorene	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10 EB05	5/4/2015	Hexachlorobenzene	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10 EB05	5/4/2015	Hexachlorobutadiene	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10 EB05	5/4/2015	Hexachlorocyclopentadiene	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10 EB05	5/4/2015	Hexachloroethane	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10 EB05	5/4/2015	Indeno(1,2,3-cd)pyrene	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10 EB05	5/4/2015	Isophorone	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10 EB05	5/4/2015	Naphthalene	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10 EB05	5/4/2015	Nitrobenzene	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10 EB05	5/4/2015	N-Nitrosodi-n-propylamine	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10 EB05	5/4/2015	N-Nitrosodiphenylamine	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch

SWMU10 Investigation Report

Sample ID	Date Collected	Analyte	Result	Units	Matrix	Qualifier	Comments
SWMU 10 EB05	5/4/2015	Phenanthrene	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10 EB05	5/4/2015	Phenol	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10 EB05	5/4/2015	Pyrene	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10 EB05	5/4/2015	Pyridine	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10 EB05	5/4/2015	2,4-Dinitrotoluene	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10 EB05	5/4/2015	N-Nitrosodimethylamine	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10 EB05	5/4/2015	Pentachlorophenol	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10 EB06	5/12/2015	Mercury	0.00015	mg/l	Water	J+	Qualified high bias since detected in method blank & field concentration is ≤ 5x blank concentration
SWMU 10 EB06	5/12/2015	1,2,4-Trichlorobenzene	ND	ug/l	Water	UJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10 EB06	5/12/2015	1,2-Dichlorobenzene	ND	ug/l	Water	UJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10 EB06	5/12/2015	1,3-Dichlorobenzene	ND	ug/l	Water	UJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10 EB06	5/12/2015	1,4-Dichlorobenzene	ND	ug/l	Water	UJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10 EB06	5/12/2015	1-Methylnaphthalene	ND	ug/l	Water	UJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10 EB06	5/12/2015	2,4,5-Trichlorophenol	ND	ug/l	Water	UJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10 EB06	5/12/2015	2,4,6-Trichlorophenol	ND	ug/l	Water	UJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10 EB06	5/12/2015	2,4-Dichlorophenol	ND	ug/l	Water	UJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10 EB06	5/12/2015	2,4-Dimethylphenol	ND	ug/l	Water	UJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10 EB06	5/12/2015	2,4-Dinitrophenol	ND	ug/l	Water	UJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10 EB06	5/12/2015	2,4-Dinitrotoluene	ND	ug/l	Water	UJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10 EB06	5/12/2015	2,6-Dinitrotoluene	ND	ug/l	Water	UJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10 EB06	5/12/2015	2-Chloronaphthalene	ND	ug/l	Water	UJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10 EB06	5/12/2015	2-Chlorophenol	ND	ug/l	Water	UJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10 EB06	5/12/2015	2-Methylnaphthalene	ND	ug/l	Water	UJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10 EB06	5/12/2015	2-Methylphenol	ND	ug/l	Water	UJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10 EB06	5/12/2015	2-Nitroaniline	ND	ug/l	Water	UJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10 EB06	5/12/2015	2-Nitrophenol	ND	ug/l	Water	UJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10 EB06	5/12/2015	3,3´-Dichlorobenzidine	ND	ug/l	Water	UJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10 EB06	5/12/2015	3+4-Methylphenol	ND	ug/l	Water	UJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10 EB06	5/12/2015	3-Nitroaniline	ND	ug/l	Water	UJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10 EB06	5/12/2015	4,6-Dinitro-2-methylphenol	ND	ug/l	Water	UJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10 EB06	5/12/2015	4-Bromophenyl phenyl ether	ND	ug/l	Water	UJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10 EB06	5/12/2015	4-Chloro-3-methylphenol	ND	ug/l	Water	UJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10 EB06	5/12/2015	4-Chloroaniline	ND	ug/l	Water	UJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10 EB06	5/12/2015	4-Chlorophenyl phenyl ether	ND	ug/l	Water	UJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10 EB06	5/12/2015	4-Nitroaniline	ND	ug/l	Water	UJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10 EB06	5/12/2015	4-Nitrophenol	ND	ug/l	Water	UJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10 EB06	5/12/2015	Acenaphthene	ND	ug/l	Water	UJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10 EB06	5/12/2015	Acenaphthylene	ND	ug/l	Water	UJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10 EB06	5/12/2015	Aniline	ND	ug/l	Water	UJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10 EB06	5/12/2015	Anthracene	ND	ug/l	Water	UJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10 EB06	5/12/2015	Azobenzene	ND	ug/l	Water	UJ	Qualified low bias since extracted 2 days after the 7 day holding time

SWMU10 Investigation Report

Sample ID	Date Collected	Analyte	Result	Units	Matrix	Qualifier	Comments
SWMU 10 EB06	5/12/2015	Benz(a)anthracene	ND	ug/l	Water	UJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10 EB06	5/12/2015	Benzo(a)pyrene	ND	ug/l	Water	UJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10 EB06	5/12/2015	Benzo(b)fluoranthene	ND	ug/l	Water	UJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10 EB06	5/12/2015	Benzo(g,h,i)perylene	ND	ug/l	Water	UJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10 EB06	5/12/2015	Benzo(k)fluoranthene	ND	ug/l	Water	UJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10 EB06	5/12/2015	Benzoic acid	ND	ug/l	Water	UJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10 EB06	5/12/2015	Benzyl alcohol	ND	ug/l	Water	UJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10 EB06	5/12/2015	Bis(2-chloroethoxy)methane	ND	ug/l	Water	UJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10 EB06	5/12/2015	Bis(2-chloroethyl)ether	ND	ug/l	Water	UJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10 EB06	5/12/2015	Bis(2-chloroisopropyl)ether	ND	ug/l	Water	UJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10 EB06	5/12/2015	Bis(2-ethylhexyl)phthalate	ND	ug/l	Water	UJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10 EB06	5/12/2015	Butyl benzyl phthalate	ND	ug/l	Water	UJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10 EB06	5/12/2015	Carbazole	ND	ug/l	Water	UJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10 EB06	5/12/2015	Chrysene	ND	ug/l	Water	UJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10 EB06	5/12/2015	Dibenz(a,h)anthracene	ND	ug/l	Water	UJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10 EB06	5/12/2015	Dibenzofuran	ND	ug/l	Water	UJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10 EB06	5/12/2015	Diethyl phthalate	ND	ug/l	Water	UJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10 EB06	5/12/2015	Dimethyl phthalate	ND	ug/l	Water	UJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10 EB06	5/12/2015	Di-n-butyl phthalate	ND	ug/l	Water	UJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10 EB06	5/12/2015	Di-n-octyl phthalate	ND	ug/l	Water	UJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10 EB06	5/12/2015	Fluoranthene	ND	ug/l	Water	UJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10 EB06	5/12/2015	Fluorene	ND	ug/l	Water	UJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10 EB06	5/12/2015	Hexachlorobenzene	ND	ug/l	Water	UJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10 EB06	5/12/2015	Hexachlorobutadiene	ND	ug/l	Water	UJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10 EB06	5/12/2015	Hexachlorocyclopentadiene	ND	ug/l	Water	UJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10 EB06	5/12/2015	Hexachloroethane	ND	ug/l	Water	UJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10 EB06	5/12/2015	Indeno(1,2,3-cd)pyrene	ND	ug/l	Water	UJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10 EB06	5/12/2015	Isophorone	ND	ug/l	Water	UJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10 EB06	5/12/2015	Naphthalene	ND	ug/l	Water	UJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10 EB06	5/12/2015	Nitrobenzene	ND	ug/l	Water	UJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10 EB06	5/12/2015	N-Nitrosodimethylamine	ND	ug/l	Water	UJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10 EB06	5/12/2015	N-Nitrosodi-n-propylamine	ND	ug/l	Water	UJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10 EB06	5/12/2015	N-Nitrosodiphenylamine	ND	ug/l	Water	UJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10 EB06	5/12/2015	Pentachlorophenol	ND	ug/l	Water	UJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10 EB06	5/12/2015	Phenanthrene	ND	ug/l	Water	UJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10 EB06	5/12/2015	Phenol	ND	ug/l	Water	UJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10 EB06	5/12/2015	Pyrene	ND	ug/l	Water	UJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10 EB06	5/12/2015	Pyridine	ND	ug/l	Water	UJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10-1 (18-20')	4/28/2015	Methylene chloride	0.000566	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (18-20')	4/28/2015	sec-Butylbenzene	0.000715	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (18-20')	4/28/2015	1,3,5-Trimethylbenzene	0.000993	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch

SWMU10 Investigation Report

Sample ID	Date Collected	Analyte	Result	Units	Matrix	Qualifier	Comments
SWMU 10-1 (18-20')	4/28/2015	1,2,4-Trimethylbenzene	0.00162	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (18-20')	4/28/2015	Ethylbenzene	0.00192	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (18-20')	4/28/2015	Acetone	0.00324	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (18-20')	4/28/2015	Xylenes, Total	0.00647	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (18-20')	4/28/2015	Toluene	0.00836	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (18-20')	4/28/2015	Benzene	0.0146	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
							Qualified high bias since detected in method blank & field concentration <5x blank concentration/Qualified
SWMU 10-1 (18-20')	4/28/2015	2-Butanone	0.00156	mg/kg	Soil	J+/ J-	low bias due to Method SW8260B MS/MSD recovery for batch
SWMU 10-1 (18-20')	4/28/2015	1,1,1,2-Tetrachloroethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (18-20')	4/28/2015	1,1,1-Trichloroethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (18-20')	4/28/2015	1,1,2,2-Tetrachloroethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (18-20')	4/28/2015	1,1,2-Trichloroethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (18-20')	4/28/2015	1,1-Dichloroethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (18-20')	4/28/2015	1,1-Dichloroethene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (18-20')	4/28/2015	1,1-Dichloropropene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (18-20')	4/28/2015	1,2,3-Trichlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (18-20')	4/28/2015	1,2,3-Trichloropropane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (18-20')	4/28/2015	1,2,4-Trichlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (18-20')	4/28/2015	1,2-Dibromo-3-chloropropane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (18-20')	4/28/2015	1,2-Dibromoethane (EDB)	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (18-20')	4/28/2015	1,2-Dichlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (18-20')	4/28/2015	1,2-Dichloroethane (EDC)	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (18-20')	4/28/2015	1,2-Dichloropropane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (18-20')	4/28/2015	1,3-Dichlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (18-20')	4/28/2015	1,3-Dichloropropane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (18-20')	4/28/2015	1,4-Dichlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (18-20')	4/28/2015	1-Methylnaphthalene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (18-20')	4/28/2015	2,2-Dichloropropane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (18-20')	4/28/2015	2-Chlorotoluene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (18-20')	4/28/2015	2-Hexanone	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (18-20')	4/28/2015	2-Methylnaphthalene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (18-20')	4/28/2015	4-Chlorotoluene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (18-20')	4/28/2015	4-Isopropyltoluene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (18-20')	4/28/2015	4-Methyl-2-pentanone	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (18-20')	4/28/2015	Bromobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (18-20')	4/28/2015	Bromodichloromethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (18-20')	4/28/2015	Bromoform	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (18-20')	4/28/2015	Bromomethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (18-20')	4/28/2015	Carbon disulfide	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (18-20')	4/28/2015	Carbon tetrachloride	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (18-20')	4/28/2015	Chlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch

SWMU10 Investigation Report

Sample ID	Date Collected	Analyte	Result	Units	Matrix	Qualifier	Comments
SWMU 10-1 (18-20')	4/28/2015	Chloroethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (18-20')	4/28/2015	Chloroform	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (18-20')	4/28/2015	Chloromethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (18-20')	4/28/2015	cis-1,2-DCE	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (18-20')	4/28/2015	cis-1,3-Dichloropropene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (18-20')	4/28/2015	Dibromochloromethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (18-20')	4/28/2015	Dibromomethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (18-20')	4/28/2015	Dichlorodifluoromethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (18-20')	4/28/2015	Hexachlorobutadiene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (18-20')	4/28/2015	Isopropylbenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (18-20')	4/28/2015	Methyl tert-butyl ether (MTBE)	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (18-20')	4/28/2015	Naphthalene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (18-20')	4/28/2015	n-Butylbenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (18-20')	4/28/2015	n-Propylbenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (18-20')	4/28/2015	Styrene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (18-20')	4/28/2015	tert-Butylbenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (18-20')	4/28/2015	Tetrachloroethene (PCE)	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (18-20')	4/28/2015	trans-1,2-DCE	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (18-20')	4/28/2015	trans-1,3-Dichloropropene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (18-20')	4/28/2015	Trichloroethene (TCE)	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (18-20')	4/28/2015	Trichlorofluoromethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (18-20')	4/28/2015	Vinyl chloride	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (18-20')	4/28/2015	1,3,5-Trimethylbenzene	0.000993	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (2-4')	4/28/2015	1,2,4-Trimethylbenzene	0.0061	mg/kg	Soil	J+	Qualified high bias since detected in method blank & field concentration is $\leq 5x$ blank concentration
SWMU 10-1 (4-6')	4/28/2015	1,3,5-Trimethylbenzene	0.000318	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (4-6')	4/28/2015	sec-Butylbenzene	0.000593	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (4-6')	4/28/2015	1,2,4-Trimethylbenzene	0.000619	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (4-6')	4/28/2015	Methylene chloride	0.000619	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (4-6')	4/28/2015	Naphthalene	0.000877	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (4-6')	4/28/2015	Benzene	0.00211	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (4-6')	4/28/2015	Toluene	0.00253	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (4-6')	4/28/2015	Methyl tert-butyl ether (MTBE)	0.00669	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (4-6')	4/28/2015	Acetone	0.00926	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (4-6')	4/28/2015	Ethylbenzene	0.0318	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (4-6')	4/28/2015	Xylenes, Total	0.197	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
							Qualified high bias since detected in method blank & field concentration <5x blank concentration/Qualified
SWMU 10-1 (4-6')	4/28/2015	2-Butanone	0.00257		Soil		low bias due to Method SW8260B MS/MSD recovery for batch
SWMU 10-1 (4-6')	4/28/2015	1,1,1,2-Tetrachloroethane	ND		Soil		Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (4-6')	4/28/2015	1,1,1-Trichloroethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (4-6')	4/28/2015	1,1,2,2-Tetrachloroethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (4-6')	4/28/2015	1,1,2-Trichloroethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch

SWMU10 Investigation Report

Sample ID	Date Collected	Analyte	Result	Units	Matrix	Qualifier	Comments
SWMU 10-1 (4-6')	4/28/2015	1,1-Dichloroethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (4-6')	4/28/2015	1,1-Dichloroethene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (4-6')	4/28/2015	1,1-Dichloropropene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (4-6')	4/28/2015	1,2,3-Trichlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (4-6')	4/28/2015	1,2,3-Trichloropropane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (4-6')	4/28/2015	1,2,4-Trichlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (4-6')	4/28/2015	1,2-Dibromo-3-chloropropane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (4-6')	4/28/2015	1,2-Dibromoethane (EDB)	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (4-6')	4/28/2015	1,2-Dichlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (4-6')	4/28/2015	1,2-Dichloroethane (EDC)	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (4-6')	4/28/2015	1,2-Dichloropropane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (4-6')	4/28/2015	1,3-Dichlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (4-6')	4/28/2015	1,3-Dichloropropane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (4-6')	4/28/2015	1,4-Dichlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (4-6')	4/28/2015	1-Methylnaphthalene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (4-6')	4/28/2015	2,2-Dichloropropane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (4-6')	4/28/2015	2-Chlorotoluene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (4-6')	4/28/2015	2-Hexanone	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (4-6')	4/28/2015	2-Methylnaphthalene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (4-6')	4/28/2015	4-Chlorotoluene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (4-6')	4/28/2015	4-Isopropyltoluene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (4-6')	4/28/2015	4-Methyl-2-pentanone	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (4-6')	4/28/2015	Bromobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (4-6')	4/28/2015	Bromodichloromethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (4-6')	4/28/2015	Bromoform	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (4-6')	4/28/2015	Bromomethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (4-6')	4/28/2015	Carbon disulfide	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (4-6')	4/28/2015	Carbon tetrachloride	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (4-6')	4/28/2015	Chlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (4-6')	4/28/2015	Chloroethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (4-6')	4/28/2015	Chloroform	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (4-6')	4/28/2015	Chloromethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (4-6')	4/28/2015	cis-1,2-DCE	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (4-6')	4/28/2015	cis-1,3-Dichloropropene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (4-6')	4/28/2015	Dibromochloromethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (4-6')	4/28/2015	Dibromomethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (4-6')	4/28/2015	Dichlorodifluoromethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (4-6')	4/28/2015	Hexachlorobutadiene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (4-6')	4/28/2015	Isopropylbenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (4-6')	4/28/2015	n-Butylbenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (4-6')	4/28/2015	n-Propylbenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch

SWMU10 Investigation Report

Sample ID	Date Collected	Analyte	Result	Units	Matrix	Qualifier	Comments
SWMU 10-1 (4-6')	4/28/2015	Styrene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (4-6')	4/28/2015	tert-Butylbenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (4-6')	4/28/2015	Tetrachloroethene (PCE)	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (4-6')	4/28/2015	trans-1,2-DCE	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (4-6')	4/28/2015	trans-1,3-Dichloropropene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (4-6')	4/28/2015	Trichloroethene (TCE)	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (4-6')	4/28/2015	Trichlorofluoromethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (4-6')	4/28/2015	Vinyl chloride	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (18-20')	4/30/2015	n-Propylbenzene	0.000372	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (18-20')	4/30/2015	sec-Butylbenzene	0.000688	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (18-20')	4/30/2015	Naphthalene	0.000725	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (18-20')	4/30/2015	1,3,5-Trimethylbenzene	0.00151	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (18-20')	4/30/2015	1,2,4-Trimethylbenzene	0.00238	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (18-20')	4/30/2015	Ethylbenzene	0.00241	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (18-20')	4/30/2015	Acetone	0.00422	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (18-20')	4/30/2015	Toluene	0.0104	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (18-20')	4/30/2015	Benzene	0.018	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
							Qualified high bias since detected in method blank & field concentration <5x blank concentration/Qualified
SWMU 10-10 (18-20')	4/30/2015	2-Butanone	0.00159		Soil		low bias due to Method SW8260B MS/MSD recovery for batch
SWMU 10-10 (18-20')	4/30/2015	1,1,1,2-Tetrachloroethane	ND		Soil		Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (18-20')	4/30/2015	1,1,1-Trichloroethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (18-20')	4/30/2015	1,1,2,2-Tetrachloroethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (18-20')	4/30/2015	1,1,2-Trichloroethane	ND		Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (18-20')	4/30/2015	1,1-Dichloroethane	ND		Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (18-20')	4/30/2015	1,1-Dichloroethene	ND		Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (18-20')	4/30/2015	1,1-Dichloropropene	ND	mg/kg	Soil		Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (18-20')	4/30/2015	1,2,3-Trichlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (18-20')	4/30/2015	1,2,3-Trichloropropane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (18-20')	4/30/2015	1,2,4-Trichlorobenzene	ND		Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (18-20')	4/30/2015	1,2-Dibromo-3-chloropropane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (18-20')	4/30/2015	1,2-Dibromoethane (EDB)	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (18-20')	4/30/2015	1,2-Dichlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (18-20')	4/30/2015	1,2-Dichloroethane (EDC)	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (18-20')	4/30/2015	1,2-Dichloropropane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (18-20')	4/30/2015	1,3-Dichlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (18-20')	4/30/2015	1,3-Dichloropropane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (18-20')	4/30/2015	1,4-Dichlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (18-20')	4/30/2015	1-Methylnaphthalene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (18-20')	4/30/2015	2,2-Dichloropropane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (18-20')	4/30/2015	2-Chlorotoluene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (18-20')	4/30/2015	2-Hexanone	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch

SWMU10 Investigation Report

Sample ID	Date Collected	Analyte	Result	Units	Matrix	Qualifier	Comments
SWMU 10-10 (18-20')	4/30/2015	2-Methylnaphthalene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (18-20')	4/30/2015	4-Chlorotoluene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (18-20')	4/30/2015	4-Isopropyltoluene	ND		Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (18-20')	4/30/2015	4-Methyl-2-pentanone	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (18-20')	4/30/2015	Bromobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (18-20')	4/30/2015	Bromodichloromethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (18-20')	4/30/2015	Bromoform	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (18-20')	4/30/2015	Bromomethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (18-20')	4/30/2015	Carbon disulfide	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (18-20')	4/30/2015	Carbon tetrachloride	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (18-20')	4/30/2015	Chlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (18-20')	4/30/2015	Chloroethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (18-20')	4/30/2015	Chloroform	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (18-20')	4/30/2015	Chloromethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (18-20')	4/30/2015	cis-1,2-DCE	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (18-20')	4/30/2015	cis-1,3-Dichloropropene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (18-20')	4/30/2015	Dibromochloromethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (18-20')	4/30/2015	Dibromomethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (18-20')	4/30/2015	Dichlorodifluoromethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (18-20')	4/30/2015	Hexachlorobutadiene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (18-20')	4/30/2015	Isopropylbenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (18-20')	4/30/2015	Methyl tert-butyl ether (MTBE)	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (18-20')	4/30/2015	Methylene chloride	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (18-20')	4/30/2015	n-Butylbenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (18-20')	4/30/2015	Styrene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (18-20')	4/30/2015	tert-Butylbenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (18-20')	4/30/2015	Tetrachloroethene (PCE)	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (18-20')	4/30/2015	trans-1,2-DCE	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (18-20')	4/30/2015	trans-1,3-Dichloropropene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (18-20')	4/30/2015	Trichloroethene (TCE)	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (18-20')	4/30/2015	Trichlorofluoromethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (18-20')	4/30/2015	Vinyl chloride	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (2-4')	4/30/2015	2-Hexanone	0.000582	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (2-4')	4/30/2015	Acetone	0.00792	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
							Qualified high bias since detected in method blank & field concentration <5x blank concentration/Qualified
SWMU 10-10 (2-4')	4/30/2015	Toluene	0.000255	mg/kg	Soil	J+/ J-	low bias due to Method SW8260B MS/MSD recovery for batch
0)4/14/14/04/04/04/0	4 /20 /004 5	O Putanana	0.00404		0 - 11	1.71	Qualified high bias since detected in method blank & field concentration <5x blank concentration/Qualified
SWMU 10-10 (2-4')	4/30/2015	2-Butanone	0.00161		Soil	J+/ J-	low bias due to Method SW8260B MS/MSD recovery for batch
SWMU 10-10 (2-4')	4/30/2015	Methylene chloride	0.00051		Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (2-4')	4/30/2015	1,1,1,2-Tetrachloroethane	ND	0	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (2-4')	4/30/2015	1,1,1-Trichloroethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch

SWMU10 Investigation Report

Sample ID	Date Collected	Analyte	Result	Units	Matrix	Qualifier	Comments
SWMU 10-10 (2-4')	4/30/2015	1,1,2,2-Tetrachloroethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (2-4')	4/30/2015	1,1,2-Trichloroethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (2-4')	4/30/2015	1,1-Dichloroethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (2-4')	4/30/2015	1,1-Dichloroethene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (2-4')	4/30/2015	1,1-Dichloropropene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (2-4')	4/30/2015	1,2,3-Trichlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (2-4')	4/30/2015	1,2,3-Trichloropropane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (2-4')	4/30/2015	1,2,4-Trichlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (2-4')	4/30/2015	1,2,4-Trimethylbenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (2-4')	4/30/2015	1,2-Dibromo-3-chloropropane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (2-4')	4/30/2015	1,2-Dibromoethane (EDB)	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (2-4')	4/30/2015	1,2-Dichlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (2-4')	4/30/2015	1,2-Dichloroethane (EDC)	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (2-4')	4/30/2015	1,2-Dichloropropane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (2-4')	4/30/2015	1,3,5-Trimethylbenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (2-4')	4/30/2015	1,3-Dichlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (2-4')	4/30/2015	1,3-Dichloropropane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (2-4')	4/30/2015	1,4-Dichlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (2-4')	4/30/2015	1-Methylnaphthalene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (2-4')	4/30/2015	2,2-Dichloropropane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (2-4')	4/30/2015	2-Chlorotoluene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (2-4')	4/30/2015	2-Methylnaphthalene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (2-4')	4/30/2015	4-Chlorotoluene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (2-4')	4/30/2015	4-Isopropyltoluene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (2-4')	4/30/2015	4-Methyl-2-pentanone	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (2-4')	4/30/2015	Benzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (2-4')	4/30/2015	Bromobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (2-4')	4/30/2015	Bromodichloromethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (2-4')	4/30/2015	Bromoform	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (2-4')	4/30/2015	Bromomethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (2-4')	4/30/2015	Carbon disulfide	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (2-4')	4/30/2015	Carbon tetrachloride	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (2-4')	4/30/2015	Chlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (2-4')	4/30/2015	Chloroethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (2-4')	4/30/2015	Chloroform	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (2-4')	4/30/2015	Chloromethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (2-4')	4/30/2015	cis-1,2-DCE	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (2-4')	4/30/2015	cis-1,3-Dichloropropene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (2-4')	4/30/2015	Dibromochloromethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (2-4')	4/30/2015	Dibromomethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (2-4')	4/30/2015	Dichlorodifluoromethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch

SWMU10 Investigation Report

Sample ID	Date Collected	Analyte	Result	Units	Matrix	Qualifier	Comments
SWMU 10-10 (2-4')	4/30/2015	Ethylbenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (2-4')	4/30/2015	Hexachlorobutadiene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (2-4')	4/30/2015	Isopropylbenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (2-4')	4/30/2015	Methyl tert-butyl ether (MTBE)	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (2-4')	4/30/2015	Naphthalene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (2-4')	4/30/2015	n-Butylbenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (2-4')	4/30/2015	n-Propylbenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (2-4')	4/30/2015	sec-Butylbenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (2-4')	4/30/2015	Styrene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (2-4')	4/30/2015	tert-Butylbenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (2-4')	4/30/2015	Tetrachloroethene (PCE)	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (2-4')	4/30/2015	trans-1,2-DCE	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (2-4')	4/30/2015	trans-1,3-Dichloropropene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (2-4')	4/30/2015	Trichloroethene (TCE)	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (2-4')	4/30/2015	Trichlorofluoromethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (2-4')	4/30/2015	Vinyl chloride	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (2-4')	4/30/2015	Xylenes, Total	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (4-6')	4/30/2015	Fluorene	2.2	mg/kg	Soil	J-	Qualified low bias due to surrogate recovery
SWMU 10-10 (4-6')	4/30/2015	Phenanthrene	4.1	mg/kg	Soil	J-	Qualified low bias due to surrogate recovery
SWMU 10-10 (4-6')	4/30/2015	Naphthalene	5.9	mg/kg	Soil	J-	Qualified low bias due to surrogate recovery
SWMU 10-10 (4-6')	4/30/2015	1-Methylnaphthalene	17	mg/kg	Soil	J-	Qualified low bias due to surrogate recovery
SWMU 10-10 (4-6')	4/30/2015	2-Methylnaphthalene	25	mg/kg	Soil	J-	Qualified low bias due to surrogate recovery
SWMU 10-11 (4-6')	5/12/2015	Mercury	0.05	mg/kg	Soil	J+	Qualified high bias due to Method MS/MSD recovery
SWMU 10-11 (8-10')	5/12/2015	Bromomethane	0.026	mg/kg	Soil	J+	Qualified high bias since detected in method blank & field concentration is \leq 5x blank concentration
SWMU 10-11 (8-10')	5/12/2015	Mercury	0.014	mg/kg	Soil	J+	Qualified high bias due to Method MS/MSD recovery
SWMU 10-11-GW	5/14/2015	1,1-Dichloroethane	0.93	ug/l	Water	J-	Qualified low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-11-GW	5/14/2015	sec-Butylbenzene	2.2	ug/l	Water	J-	Qualified low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-11-GW	5/14/2015	Benzene	2.5	ug/l	Water	J-	Qualified low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-11-GW	5/14/2015	4-Isopropyltoluene	2.7	ug/l	Water	J-	Qualified low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-11-GW	5/14/2015	n-Butylbenzene	3.4	ug/l	Water	J-	Qualified low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-11-GW	5/14/2015	Toluene	6	ug/l	Water	J-	Qualified low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-11-GW	5/14/2015	Isopropylbenzene	8.5	ug/l	Water	J-	Qualified low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-11-GW	5/14/2015	Acetone	8.8	ug/l	Water	J-	Qualified low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-11-GW	5/14/2015	n-Propylbenzene	11	ug/l	Water	J-	Qualified low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-11-GW	5/14/2015	1,3,5-Trimethylbenzene	22	ug/l	Water	J-	Qualified low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-11-GW	5/14/2015	Ethylbenzene	40	ug/l	Water	J-	Qualified low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-11-GW	5/14/2015	Naphthalene	45	ug/l	Water	J-	Qualified low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-11-GW	5/14/2015	1,2,4-Trimethylbenzene	64	ug/l	Water	J-	Qualified low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-11-GW	5/14/2015	1-Methylnaphthalene	70	ug/l	Water	J-	Qualified low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-11-GW	5/14/2015	2-Methylnaphthalene	98	ug/l	Water	J-	Qualified low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-11-GW	5/14/2015	Xylenes, Total	230	ug/l	Water	J-	Qualified low bias due to Method SW8270C MS recovery and RPD for batch

SWMU10 Investigation Report

Sample ID	Date Collected	Analyte	Result	Units	Matrix	Qualifier	Comments
SWMU 10-11-GW	5/14/2015	Mercury	0.00075	mg/l	Water	J+	Qualified high bias since detected in method blank & field concentration is ≤ 5x blank concentration
SWMU 10-11-GW	5/14/2015	Methyl tert-butyl ether (MTBE)	14	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-11-GW	5/14/2015	1,1,1,2-Tetrachloroethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-11-GW	5/14/2015	1,1,1-Trichloroethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-11-GW	5/14/2015	1,1,2,2-Tetrachloroethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-11-GW	5/14/2015	1,1,2-Trichloroethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-11-GW	5/14/2015	1,1-Dichloroethene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-11-GW	5/14/2015	1,1-Dichloropropene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-11-GW	5/14/2015	1,2,3-Trichlorobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-11-GW	5/14/2015	1,2,3-Trichloropropane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-11-GW	5/14/2015	1,2,4-Trichlorobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-11-GW	5/14/2015	1,2-Dibromo-3-chloropropane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-11-GW	5/14/2015	1,2-Dibromoethane (EDB)	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-11-GW	5/14/2015	1,2-Dichlorobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-11-GW	5/14/2015	1,2-Dichloroethane (EDC)	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-11-GW	5/14/2015	1,2-Dichloropropane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-11-GW	5/14/2015	1,3-Dichlorobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-11-GW	5/14/2015	1,3-Dichloropropane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-11-GW	5/14/2015	1,4-Dichlorobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-11-GW	5/14/2015	2,2-Dichloropropane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-11-GW	5/14/2015	2-Butanone	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-11-GW	5/14/2015	2-Chlorotoluene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-11-GW	5/14/2015	2-Hexanone	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-11-GW	5/14/2015	4-Chlorotoluene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-11-GW	5/14/2015	4-Methyl-2-pentanone	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-11-GW	5/14/2015	Bromobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-11-GW	5/14/2015	Bromodichloromethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-11-GW	5/14/2015	Bromoform	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-11-GW	5/14/2015	Bromomethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-11-GW	5/14/2015	Carbon disulfide	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-11-GW	5/14/2015	Carbon Tetrachloride	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-11-GW	5/14/2015	Chlorobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-11-GW	5/14/2015	Chloroethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-11-GW	5/14/2015	Chloroform	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-11-GW	5/14/2015	Chloromethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-11-GW	5/14/2015	cis-1,2-DCE	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-11-GW	5/14/2015	cis-1,3-Dichloropropene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-11-GW	5/14/2015	Dibromochloromethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-11-GW	5/14/2015	Dibromomethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-11-GW	5/14/2015	Dichlorodifluoromethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-11-GW	5/14/2015	Hexachlorobutadiene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch

SWMU10 Investigation Report

Sample ID	Date Collected	Analyte	Result	Units	Matrix	Qualifier	Comments
SWMU 10-11-GW	5/14/2015	Methylene Chloride	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-11-GW	5/14/2015	Styrene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-11-GW	5/14/2015	tert-Butylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-11-GW	5/14/2015	Tetrachloroethene (PCE)	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-11-GW	5/14/2015	trans-1,2-DCE	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-11-GW	5/14/2015	trans-1,3-Dichloropropene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-11-GW	5/14/2015	Trichloroethene (TCE)	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-11-GW	5/14/2015	Trichlorofluoromethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-11-GW	5/14/2015	Vinyl chloride	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-12-GW	5/14/2015	Benzene	0.47	ug/l	Water	J-	Qualified low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-12-GW	5/14/2015	Naphthalene	0.52	ug/l	Water	J-	Qualified low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-12-GW	5/14/2015	2-Methylnaphthalene	1.5	ug/l	Water	J-	Qualified low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-12-GW	5/14/2015	Acetone	3.4	ug/l	Water	J-	Qualified low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-12-GW	5/14/2015	Methyl tert-butyl ether (MTBE)	13	ug/l	Water	J-	Qualified low bias due to Method SW8270C MS recovery and RPD for batch
							Qualified high bias since detected in method blank & trip blank and field concentration <5x blank
SWMU 10-12-GW	5/14/2015	1,2,4-Trimethylbenzene	0.66	U	Water	J+/J+/J-	concentration/Qualified low bias due to Method SW8270C MSD recovery and RPD for batch
SWMU 10-12-GW	5/14/2015	1,1,1,2-Tetrachloroethane	ND		Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-12-GW	5/14/2015	1,1,1-Trichloroethane	ND		Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-12-GW	5/14/2015	1,1,2,2-Tetrachloroethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-12-GW	5/14/2015	1,1,2-Trichloroethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-12-GW	5/14/2015	1,1-Dichloroethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-12-GW	5/14/2015	1,1-Dichloroethene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-12-GW	5/14/2015	1,1-Dichloropropene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-12-GW	5/14/2015	1,2,3-Trichlorobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-12-GW	5/14/2015	1,2,3-Trichloropropane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-12-GW	5/14/2015	1,2,4-Trichlorobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-12-GW	5/14/2015	1,2-Dibromo-3-chloropropane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-12-GW	5/14/2015	1,2-Dibromoethane (EDB)	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-12-GW	5/14/2015	1,2-Dichlorobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-12-GW	5/14/2015	1,2-Dichloroethane (EDC)	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-12-GW	5/14/2015	1,2-Dichloropropane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-12-GW	5/14/2015	1,3,5-Trimethylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-12-GW	5/14/2015	1,3-Dichlorobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-12-GW	5/14/2015	1,3-Dichloropropane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-12-GW	5/14/2015	1,4-Dichlorobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-12-GW	5/14/2015	1-Methylnaphthalene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-12-GW	5/14/2015	2,2-Dichloropropane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-12-GW	5/14/2015	2-Butanone	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-12-GW	5/14/2015	2-Chlorotoluene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-12-GW	5/14/2015	2-Hexanone	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-12-GW	5/14/2015	4-Chlorotoluene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch

SWMU10 Investigation Report

Sample ID	Date Collected	Analyte	Result	Units	Matrix	Qualifier	Comments
SWMU 10-12-GW	5/14/2015	4-Isopropyltoluene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-12-GW	5/14/2015	4-Methyl-2-pentanone	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-12-GW	5/14/2015	Bromobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-12-GW	5/14/2015	Bromodichloromethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-12-GW	5/14/2015	Bromoform	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-12-GW	5/14/2015	Bromomethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-12-GW	5/14/2015	Carbon disulfide	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-12-GW	5/14/2015	Carbon Tetrachloride	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-12-GW	5/14/2015	Chlorobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-12-GW	5/14/2015	Chloroethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-12-GW	5/14/2015	Chloroform	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-12-GW	5/14/2015	Chloromethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-12-GW	5/14/2015	cis-1,2-DCE	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-12-GW	5/14/2015	cis-1,3-Dichloropropene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-12-GW	5/14/2015	Dibromochloromethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-12-GW	5/14/2015	Dibromomethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-12-GW	5/14/2015	Dichlorodifluoromethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-12-GW	5/14/2015	Ethylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-12-GW	5/14/2015	Hexachlorobutadiene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-12-GW	5/14/2015	Isopropylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-12-GW	5/14/2015	Methylene Chloride	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-12-GW	5/14/2015	n-Butylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-12-GW	5/14/2015	n-Propylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-12-GW	5/14/2015	sec-Butylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-12-GW	5/14/2015	Styrene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-12-GW	5/14/2015	tert-Butylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-12-GW	5/14/2015	Tetrachloroethene (PCE)	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-12-GW	5/14/2015	Toluene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-12-GW	5/14/2015	trans-1,2-DCE	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-12-GW	5/14/2015	trans-1,3-Dichloropropene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-12-GW	5/14/2015	Trichloroethene (TCE)	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-12-GW	5/14/2015	Trichlorofluoromethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-12-GW	5/14/2015	Vinyl chloride	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-12-GW	5/14/2015	Xylenes, Total	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-13 (6-8')	5/13/2015	Bromomethane	0.023	mg/kg	Soil	J+	Qualified high bias since detected in method blank & field concentration is ≤ 5x blank concentration
SWMU 10-14 (21-23')	5/12/2015	Mercury	0.0032	mg/kg	Soil	J+	Qualified high bias due to Method MS/MSD recovery
SWMU 10-14 (6-8')	5/12/2015	Bromomethane	0.023	mg/kg	Soil	J+	Qualified high bias since detected in method blank & field concentration is ≤ 5x blank concentration
SWMU 10-14 (6-8')	5/12/2015	Mercury	0.0046	mg/kg	Soil	J+	Qualified high bias due to Method MS/MSD recovery
SWMU 10-14 (6-8')	5/12/2015	Antimony	ND	mg/kg	Soil	UJ	Qualfied low since Method 6010 MS/SMSD recovery low
SWMU 10-14-GW	5/14/2015	Toluene	0.3	ug/l	Water	J-	Qualified low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-14-GW	5/14/2015	Benzene	0.47	ug/l	Water	J-	Qualified low bias due to Method SW8270C MS recovery and RPD for batch

SWMU10 Investigation Report

Sample ID	Date Collected	Analyte	Result	Units	Matrix	Qualifier	Comments
SWMU 10-14-GW	5/14/2015	Acetone	2.7	ug/l	Water	J-	Qualified low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-14-GW	5/14/2015	Methyl tert-butyl ether (MTBE)	16	ug/l	Water	J-	Qualified low bias due to Method SW8270C MS recovery and RPD for batch
							Qualified high bias since detected in method blank & field concentration <5x blank concentration/Qualified
SWMU 10-14-GW	5/14/2015	1,2,4-Trimethylbenzene	0.44	ug/l	Water	J+/J-	low bias due to Method SW8270C MSD recovery and RPD for batch
SWMU 10-14-GW	5/14/2015	1,1,1,2-Tetrachloroethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-14-GW	5/14/2015	1,1,1-Trichloroethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-14-GW	5/14/2015	1,1,2,2-Tetrachloroethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-14-GW	5/14/2015	1,1,2-Trichloroethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-14-GW	5/14/2015	1,1-Dichloroethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-14-GW	5/14/2015	1,1-Dichloroethene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-14-GW	5/14/2015	1,1-Dichloropropene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-14-GW	5/14/2015	1,2,3-Trichlorobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-14-GW	5/14/2015	1,2,3-Trichloropropane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-14-GW	5/14/2015	1,2,4-Trichlorobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-14-GW	5/14/2015	1,2-Dibromo-3-chloropropane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-14-GW	5/14/2015	1,2-Dibromoethane (EDB)	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-14-GW	5/14/2015	1,2-Dichlorobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-14-GW	5/14/2015	1,2-Dichloroethane (EDC)	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-14-GW	5/14/2015	1,2-Dichloropropane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-14-GW	5/14/2015	1,3,5-Trimethylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-14-GW	5/14/2015	1,3-Dichlorobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-14-GW	5/14/2015	1,3-Dichloropropane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-14-GW	5/14/2015	1,4-Dichlorobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-14-GW	5/14/2015	1-Methylnaphthalene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-14-GW	5/14/2015	2,2-Dichloropropane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-14-GW	5/14/2015	2-Butanone	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-14-GW	5/14/2015	2-Chlorotoluene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-14-GW	5/14/2015	2-Hexanone	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-14-GW	5/14/2015	2-Methylnaphthalene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-14-GW	5/14/2015	4-Chlorotoluene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-14-GW	5/14/2015	4-Isopropyltoluene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-14-GW	5/14/2015	4-Methyl-2-pentanone	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-14-GW	5/14/2015	Bromobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-14-GW	5/14/2015	Bromodichloromethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-14-GW	5/14/2015	Bromoform	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-14-GW	5/14/2015	Bromomethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-14-GW	5/14/2015	Carbon disulfide	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-14-GW	5/14/2015	Carbon Tetrachloride	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-14-GW	5/14/2015	Chlorobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-14-GW	5/14/2015	Chloroethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-14-GW	5/14/2015	Chloroform	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch

SWMU10 Investigation Report

Sample ID	Date Collected	Analyte	Result	Units	Matrix	Qualifier	Comments
SWMU 10-14-GW	5/14/2015	Chloromethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-14-GW	5/14/2015	cis-1,2-DCE	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-14-GW	5/14/2015	cis-1,3-Dichloropropene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-14-GW	5/14/2015	Dibromochloromethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-14-GW	5/14/2015	Dibromomethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-14-GW	5/14/2015	Dichlorodifluoromethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-14-GW	5/14/2015	Ethylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-14-GW	5/14/2015	Hexachlorobutadiene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-14-GW	5/14/2015	Isopropylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-14-GW	5/14/2015	Methylene Chloride	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-14-GW	5/14/2015	Naphthalene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-14-GW	5/14/2015	n-Butylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-14-GW	5/14/2015	n-Propylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-14-GW	5/14/2015	sec-Butylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-14-GW	5/14/2015	Styrene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-14-GW	5/14/2015	tert-Butylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-14-GW	5/14/2015	Tetrachloroethene (PCE)	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-14-GW	5/14/2015	trans-1,2-DCE	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-14-GW	5/14/2015	trans-1,3-Dichloropropene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-14-GW	5/14/2015	Trichloroethene (TCE)	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-14-GW	5/14/2015	Trichlorofluoromethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-14-GW	5/14/2015	Vinyl chloride	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-14-GW	5/14/2015	Xylenes, Total	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-15-GW	5/14/2015	Benzene	0.51	ug/l	Water	J-	Qualified low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-15-GW	5/14/2015	2-Butanone	2.9	ug/l	Water	J-	Qualified low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-15-GW	5/14/2015	Acetone	9.7	ug/l	Water	J-	Qualified low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-15-GW	5/14/2015	Methyl tert-butyl ether (MTBE)	150	ug/l	Water	J-	Qualified low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-15-GW	5/14/2015	1,1,1,2-Tetrachloroethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-15-GW	5/14/2015	1,1,1-Trichloroethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-15-GW	5/14/2015	1,1,2,2-Tetrachloroethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-15-GW	5/14/2015	1,1,2-Trichloroethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-15-GW	5/14/2015	1,1-Dichloroethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-15-GW	5/14/2015	1,1-Dichloroethene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-15-GW	5/14/2015	1,1-Dichloropropene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-15-GW	5/14/2015	1,2,3-Trichlorobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-15-GW	5/14/2015	1,2,3-Trichloropropane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-15-GW	5/14/2015	1,2,4-Trichlorobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-15-GW	5/14/2015	1,2,4-Trimethylbenzene	ND		Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-15-GW	5/14/2015	1,2-Dibromo-3-chloropropane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-15-GW	5/14/2015	1,2-Dibromoethane (EDB)	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-15-GW	5/14/2015	1,2-Dichlorobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch

SWMU10 Investigation Report

Sample ID	Date Collected	Analyte	Result	Units	Matrix	Qualifier	Comments
SWMU 10-15-GW	5/14/2015	1,2-Dichloroethane (EDC)	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-15-GW	5/14/2015	1,2-Dichloropropane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-15-GW	5/14/2015	1,3,5-Trimethylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-15-GW	5/14/2015	1,3-Dichlorobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-15-GW	5/14/2015	1,3-Dichloropropane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-15-GW	5/14/2015	1,4-Dichlorobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-15-GW	5/14/2015	1-Methylnaphthalene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-15-GW	5/14/2015	2,2-Dichloropropane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-15-GW	5/14/2015	2-Chlorotoluene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-15-GW	5/14/2015	2-Hexanone	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-15-GW	5/14/2015	2-Methylnaphthalene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-15-GW	5/14/2015	4-Chlorotoluene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-15-GW	5/14/2015	4-Isopropyltoluene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-15-GW	5/14/2015	4-Methyl-2-pentanone	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-15-GW	5/14/2015	Bromobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-15-GW	5/14/2015	Bromodichloromethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-15-GW	5/14/2015	Bromoform	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-15-GW	5/14/2015	Bromomethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-15-GW	5/14/2015	Carbon disulfide	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-15-GW	5/14/2015	Carbon Tetrachloride	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-15-GW	5/14/2015	Chlorobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-15-GW	5/14/2015	Chloroethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-15-GW	5/14/2015	Chloroform	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-15-GW	5/14/2015	Chloromethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-15-GW	5/14/2015	cis-1,2-DCE	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-15-GW	5/14/2015	cis-1,3-Dichloropropene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-15-GW	5/14/2015	Dibromochloromethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-15-GW	5/14/2015	Dibromomethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-15-GW	5/14/2015	Dichlorodifluoromethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-15-GW	5/14/2015	Ethylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-15-GW	5/14/2015	Hexachlorobutadiene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-15-GW	5/14/2015	Isopropylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-15-GW	5/14/2015	Methylene Chloride	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-15-GW	5/14/2015	Naphthalene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-15-GW	5/14/2015	n-Butylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-15-GW	5/14/2015	n-Propylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-15-GW	5/14/2015	sec-Butylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-15-GW	5/14/2015	Styrene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-15-GW	5/14/2015	tert-Butylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-15-GW	5/14/2015	Tetrachloroethene (PCE)	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-15-GW	5/14/2015	Toluene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch

SWMU10 Investigation Report

Sample ID	Date Collected	Analyte	Result	Units	Matrix	Qualifier	Comments
SWMU 10-15-GW	5/14/2015	trans-1,2-DCE	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-15-GW	5/14/2015	trans-1,3-Dichloropropene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-15-GW	5/14/2015	Trichloroethene (TCE)	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-15-GW	5/14/2015	Trichlorofluoromethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-15-GW	5/14/2015	Vinyl chloride	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-15-GW	5/14/2015	Xylenes, Total	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-16 (2-4')	5/13/2015	2-Butanone	0.00304	mg/kg	Soil	J+	Qualified high bias since detected in method blank & field concentration is ≤ 5x blank concentration
SWMU 10-16 (4-5.5')	5/13/2015	2-Butanone	0.00146	mg/kg	Soil	J+	Qualified high bias since detected in method blank & field concentration is ≤ 5x blank concentration
SWMU 10-16 (8-9')	5/13/2015	2-Butanone	0.00173	mg/kg	Soil	J+	Qualified high bias since detected in method blank & field concentration is ≤ 5x blank concentration
SWMU 10-16-GW	5/14/2015	Benzene	0.24	ug/l	Water	J-	Qualified low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-16-GW	5/14/2015	Xylenes, Total	0.35	ug/l	Water	J-	Qualified low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-16-GW	5/14/2015	cis-1,2-DCE	0.39	ug/l	Water	J-	Qualified low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-16-GW	5/14/2015	1,1-Dichloroethene	0.73	ug/l	Water	J-	Qualified low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-16-GW	5/14/2015	Trichloroethene (TCE)	0.77	ug/l	Water	J-	Qualified low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-16-GW	5/14/2015	Acetone	1.6	ug/l	Water	J-	Qualified low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-16-GW	5/14/2015	1,1-Dichloroethane	3.1	ug/l	Water	J-	Qualified low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-16-GW	5/14/2015	Methyl tert-butyl ether (MTBE)	19	ug/l	Water	J-	Qualified low bias due to Method SW8270C MS recovery and RPD for batch
							Qualified high bias since detected in method blank & field concentration <5x blank concentration/Qualified
SWMU 10-16-GW	5/14/2015	1,2,4-Trimethylbenzene	0.18	ug/l	Water	J+/J-	low bias due to Method SW8270C MSD recovery and RPD for batch
01/1/1/1/10 10 01//	5/44/0045	1.0.5:11	0.47			1. (1	Qualified high bias since detected in method blank & field concentration <5x blank concentration/Qualified
SWMU 10-16-GW	5/14/2015	1,2-Dichloroethane (EDC)	0.47	ug/l	Water	J+/J-	low bias due to Method SW8270C MSD recovery and RPD for batch
SWMU 10-16-GW	5/14/2015	Vinyl chloride	0.47	ug/l	Water	J+/J-	Qualified high bias since detected in method blank & field concentration <5x blank concentration/Qualified low bias due to Method SW8270C MSD recovery and RPD for batch
SWMU 10-16-GW	5/14/2015	1,1,1,2-Tetrachloroethane	ND	ug/I	Water	UJ	Oualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-16-GW	5/14/2015	1.1.1-Trichloroethane	ND	ug/I	Water	UJ	Oualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-16-GW	5/14/2015	1,1,2,2-Tetrachloroethane	ND	ug/l	Water	UJ	Oualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-16-GW	5/14/2015	1,1,2-Trichloroethane	ND	ug/l	Water	UJ	Oualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-16-GW	5/14/2015	1,1-Dichloropropene	ND	ug/l	Water	UJ	Oualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-16-GW	5/14/2015	1,2,3-Trichlorobenzene	ND	ug/l	Water	UJ	Oualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-16-GW	5/14/2015	1,2,3-Trichloropropane	ND	ug/l	Water	UJ	Oualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-16-GW	5/14/2015	1.2.4-Trichlorobenzene	ND	ug/l	Water	UJ	Oualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-16-GW	5/14/2015	1,2-Dibromo-3-chloropropane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-16-GW	5/14/2015	1,2-Dibromoethane (EDB)	ND	ug/l	Water	UJ	Oualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-16-GW	5/14/2015	1.2-Dichlorobenzene	ND	ug/l	Water	UJ	Oualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-16-GW	5/14/2015	1,2-Dichloropropane	ND	ug/l	Water	UJ	Oualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-16-GW	5/14/2015	1,3,5-Trimethylbenzene	ND	ug/I	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-16-GW	5/14/2015	1.3-Dichlorobenzene	ND	ug/I	Water	UJ	Oualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-16-GW	5/14/2015	1,3-Dichloropropane	ND	ug/I	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-16-GW	5/14/2015	1,4-Dichlorobenzene	ND	ug/I	Water	UJ	Oualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-16-GW	5/14/2015	1-Methylnaphthalene	ND	ug/I ug/I	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-16-GW	5/14/2015	2,2-Dichloropropane	ND ND	ug/I ug/I	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
OAAINIO TO-TO-GAA	J/ 1+/ 2013	z,z Dichioropropatie	עאו	ug/ I	water	0.0	Qualified for blad due to infection 3402/100 into fectorally alle fire for batch

SWMU10 Investigation Report

Sample ID	Date Collected	Analyte	Result	Units	Matrix	Qualifier	Comments
SWMU 10-16-GW	5/14/2015	2-Butanone	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-16-GW	5/14/2015	2-Chlorotoluene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-16-GW	5/14/2015	2-Hexanone	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-16-GW	5/14/2015	2-Methylnaphthalene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-16-GW	5/14/2015	4-Chlorotoluene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-16-GW	5/14/2015	4-Isopropyltoluene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-16-GW	5/14/2015	4-Methyl-2-pentanone	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-16-GW	5/14/2015	Bromobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-16-GW	5/14/2015	Bromodichloromethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-16-GW	5/14/2015	Bromoform	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-16-GW	5/14/2015	Bromomethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-16-GW	5/14/2015	Carbon disulfide	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-16-GW	5/14/2015	Carbon Tetrachloride	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-16-GW	5/14/2015	Chlorobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-16-GW	5/14/2015	Chloroethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-16-GW	5/14/2015	Chloroform	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-16-GW	5/14/2015	Chloromethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-16-GW	5/14/2015	cis-1,3-Dichloropropene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-16-GW	5/14/2015	Dibromochloromethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-16-GW	5/14/2015	Dibromomethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-16-GW	5/14/2015	Dichlorodifluoromethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-16-GW	5/14/2015	Ethylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-16-GW	5/14/2015	Hexachlorobutadiene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-16-GW	5/14/2015	Isopropylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-16-GW	5/14/2015	Methylene Chloride	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-16-GW	5/14/2015	Naphthalene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-16-GW	5/14/2015	n-Butylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-16-GW	5/14/2015	n-Propylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-16-GW	5/14/2015	sec-Butylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-16-GW	5/14/2015	Styrene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-16-GW	5/14/2015	tert-Butylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-16-GW	5/14/2015	Tetrachloroethene (PCE)	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-16-GW	5/14/2015	Toluene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-16-GW	5/14/2015	trans-1,2-DCE	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-16-GW	5/14/2015	trans-1,3-Dichloropropene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-16-GW	5/14/2015	Trichlorofluoromethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-17 (6-8')	5/13/2015	Fluorene	7.1	mg/kg	Soil	J-	Qualified low bias due to surrogate recovery
SWMU 10-17 (6-8')	5/13/2015	Phenanthrene	15	mg/kg	Soil	J-	Qualified low bias due to surrogate recovery
SWMU 10-17 (6-8')	5/13/2015	Naphthalene	24	mg/kg	Soil	J-	Qualified low bias due to surrogate recovery
SWMU 10-17 (6-8')	5/13/2015	Phenol	52	mg/kg	Soil	J-	Qualified low bias due to surrogate recovery
SWMU 10-17 (6-8')	5/13/2015	2-Methylphenol	56	mg/kg	Soil	J-	Qualified low bias due to surrogate recovery

SWMU10 Investigation Report

Sample ID	Date Collected	Analyte	Result	Units	Matrix	Qualifier	Comments
SWMU 10-17 (6-8')	5/13/2015	1-Methylnaphthalene	76	mg/kg	Soil	J-	Qualified low bias due to surrogate recovery
SWMU 10-17 (6-8')	5/13/2015	3+4-Methylphenol	100	mg/kg	Soil	J-	Qualified low bias due to surrogate recovery
SWMU 10-17 (6-8')	5/13/2015	2-Methylnaphthalene	130	mg/kg	Soil	J-	Qualified low bias due to surrogate recovery
SWMU 10-1-GW	4/29/2015	Beryllium	0.00052	mg/l	Water	J+	Qualified high bias since detected in method blank & field concentration is ≤ 5x blank concentration
SWMU 10-2 (0-2')	5/4/2015	2-Butanone	0.0038	mg/kg	Unknown	J+	Qualified high bias since detected in method blank & field concentration is ≤ 5x blank concentration
SWMU 10-2 (2-4')	5/4/2015	2-Butanone	0.00283	mg/kg	Unknown	J+	Qualified high bias since detected in method blank & field concentration is \leq 5x blank concentration
SWMU 10-3 (18-20')	4/28/2015	2-Hexanone	0.000748	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (18-20')	4/28/2015	Methylene chloride	0.00077	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (18-20')	4/28/2015	sec-Butylbenzene	0.000781	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (18-20')	4/28/2015	1,3,5-Trimethylbenzene	0.00123	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (18-20')	4/28/2015	Acetone	0.00158	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (18-20')	4/28/2015	1,2,4-Trimethylbenzene	0.00184	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (18-20')	4/28/2015	Ethylbenzene	0.00231	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (18-20')	4/28/2015	Xylenes, Total	0.00707	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (18-20')	4/28/2015	Toluene	0.01	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (18-20')	4/28/2015	Benzene	0.0141	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
							Qualified high bias since detected in method blank & field concentration <5x blank concentration/Qualified
SWMU 10-3 (18-20')	4/28/2015	2-Butanone	0.00151		Soil		low bias due to Method SW8260B MS/MSD recovery for batch
SWMU 10-3 (18-20')	4/28/2015	1,1,1,2-Tetrachloroethane	ND			UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (18-20')	4/28/2015	1,1,1-Trichloroethane	ND		Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (18-20')	4/28/2015	1,1,2,2-Tetrachloroethane	ND		Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (18-20')	4/28/2015	1,1,2-Trichloroethane	ND	0 0	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (18-20')	4/28/2015	1,1-Dichloroethane	ND		Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (18-20')	4/28/2015	1,1-Dichloroethene	ND		Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (18-20')	4/28/2015	1,1-Dichloropropene	ND		Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (18-20')	4/28/2015	1,2,3-Trichlorobenzene	ND		Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (18-20')	4/28/2015	1,2,3-Trichloropropane	ND	0 0	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (18-20')	4/28/2015	1,2,4-Trichlorobenzene	ND	0 0	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (18-20')	4/28/2015	1,2-Dibromo-3-chloropropane	ND		Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (18-20')	4/28/2015	1,2-Dibromoethane (EDB)	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (18-20')	4/28/2015	1,2-Dichlorobenzene	ND		Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (18-20')	4/28/2015	1,2-Dichloroethane (EDC)	ND		Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (18-20')	4/28/2015	1,2-Dichloropropane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (18-20')	4/28/2015	1,3-Dichlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (18-20')	4/28/2015	1,3-Dichloropropane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (18-20')	4/28/2015	1,4-Dichlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (18-20')	4/28/2015	1-Methylnaphthalene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (18-20')	4/28/2015	2,2-Dichloropropane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (18-20')	4/28/2015	2-Chlorotoluene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (18-20')	4/28/2015	2-Methylnaphthalene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (18-20')	4/28/2015	4-Chlorotoluene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch

SWMU10 Investigation Report

Sample ID	Date Collected	Analyte	Result	Units	Matrix	Qualifier	Comments
SWMU 10-3 (18-20')	4/28/2015	4-Isopropyltoluene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (18-20')	4/28/2015	4-Methyl-2-pentanone	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (18-20')	4/28/2015	Bromobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (18-20')	4/28/2015	Bromodichloromethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (18-20')	4/28/2015	Bromoform	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (18-20')	4/28/2015	Bromomethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (18-20')	4/28/2015	Carbon disulfide	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (18-20')	4/28/2015	Carbon tetrachloride	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (18-20')	4/28/2015	Chlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (18-20')	4/28/2015	Chloroethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (18-20')	4/28/2015	Chloroform	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (18-20')	4/28/2015	Chloromethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (18-20')	4/28/2015	cis-1,2-DCE	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (18-20')	4/28/2015	cis-1,3-Dichloropropene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (18-20')	4/28/2015	Dibromochloromethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (18-20')	4/28/2015	Dibromomethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (18-20')	4/28/2015	Dichlorodifluoromethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (18-20')	4/28/2015	Hexachlorobutadiene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (18-20')	4/28/2015	Isopropylbenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (18-20')	4/28/2015	Methyl tert-butyl ether (MTBE)	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (18-20')	4/28/2015	Naphthalene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (18-20')	4/28/2015	n-Butylbenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (18-20')	4/28/2015	n-Propylbenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (18-20')	4/28/2015	Styrene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (18-20')	4/28/2015	tert-Butylbenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (18-20')	4/28/2015	Tetrachloroethene (PCE)	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (18-20')	4/28/2015	trans-1,2-DCE	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (18-20')	4/28/2015	trans-1,3-Dichloropropene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (18-20')	4/28/2015	Trichloroethene (TCE)	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (18-20')	4/28/2015	Trichlorofluoromethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (18-20')	4/28/2015	Vinyl chloride	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (2-4')	4/28/2015	Ethylbenzene	0.000313	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (2-4')	4/28/2015	Methylene chloride	0.000387	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (2-4')	4/28/2015	2-Hexanone	0.000656	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (2-4')	4/28/2015	Benzene	0.000872	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (2-4')	4/28/2015	Xylenes, Total	0.00108	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (2-4')	4/28/2015	Toluene	0.00116	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (2-4')	4/28/2015	Acetone	0.0201	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
							Qualified high bias since detected in method blank & field concentration <5x blank concentration/Qualified
SWMU 10-3 (2-4')	4/28/2015	2-Butanone	0.00273		Soil	J+/ J-	low bias due to Method SW8260B MS/MSD recovery for batch
SWMU 10-3 (2-4')	4/28/2015	1,1,1,2-Tetrachloroethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch

SWMU10 Investigation Report

Sample ID	Date Collected	Analyte	Result	Units	Matrix	Qualifier	Comments
SWMU 10-3 (2-4')	4/28/2015	1,1,1-Trichloroethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (2-4')	4/28/2015	1,1,2,2-Tetrachloroethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (2-4')	4/28/2015	1,1,2-Trichloroethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (2-4')	4/28/2015	1,1-Dichloroethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (2-4')	4/28/2015	1,1-Dichloroethene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (2-4')	4/28/2015	1,1-Dichloropropene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (2-4')	4/28/2015	1,2,3-Trichlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (2-4')	4/28/2015	1,2,3-Trichloropropane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (2-4')	4/28/2015	1,2,4-Trichlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (2-4')	4/28/2015	1,2,4-Trimethylbenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (2-4')	4/28/2015	1,2-Dibromo-3-chloropropane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (2-4')	4/28/2015	1,2-Dibromoethane (EDB)	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (2-4')	4/28/2015	1,2-Dichlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (2-4')	4/28/2015	1,2-Dichloroethane (EDC)	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (2-4')	4/28/2015	1,2-Dichloropropane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (2-4')	4/28/2015	1,3,5-Trimethylbenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (2-4')	4/28/2015	1,3-Dichlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (2-4')	4/28/2015	1,3-Dichloropropane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (2-4')	4/28/2015	1,4-Dichlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (2-4')	4/28/2015	1-Methylnaphthalene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (2-4')	4/28/2015	2,2-Dichloropropane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (2-4')	4/28/2015	2-Chlorotoluene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (2-4')	4/28/2015	2-Methylnaphthalene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (2-4')	4/28/2015	4-Chlorotoluene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (2-4')	4/28/2015	4-Isopropyltoluene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (2-4')	4/28/2015	4-Methyl-2-pentanone	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (2-4')	4/28/2015	Bromobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (2-4')	4/28/2015	Bromodichloromethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (2-4')	4/28/2015	Bromoform	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (2-4')	4/28/2015	Bromomethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (2-4')	4/28/2015	Carbon disulfide	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (2-4')	4/28/2015	Carbon tetrachloride	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (2-4')	4/28/2015	Chlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (2-4')	4/28/2015	Chloroethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (2-4')	4/28/2015	Chloroform	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (2-4')	4/28/2015	Chloromethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (2-4')	4/28/2015	cis-1,2-DCE	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (2-4')	4/28/2015	cis-1,3-Dichloropropene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (2-4')	4/28/2015	Dibromochloromethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (2-4')	4/28/2015	Dibromomethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (2-4')	4/28/2015	Dichlorodifluoromethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch

SWMU10 Investigation Report

Sample ID	Date Collected	Analyte	Result	Units	Matrix	Qualifier	Comments
SWMU 10-3 (2-4')	4/28/2015	Hexachlorobutadiene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (2-4')	4/28/2015	Isopropylbenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (2-4')	4/28/2015	Methyl tert-butyl ether (MTBE)	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (2-4')	4/28/2015	Naphthalene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (2-4')	4/28/2015	n-Butylbenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (2-4')	4/28/2015	n-Propylbenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (2-4')	4/28/2015	sec-Butylbenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (2-4')	4/28/2015	Styrene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (2-4')	4/28/2015	tert-Butylbenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (2-4')	4/28/2015	Tetrachloroethene (PCE)	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (2-4')	4/28/2015	trans-1,2-DCE	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (2-4')	4/28/2015	trans-1,3-Dichloropropene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (2-4')	4/28/2015	Trichloroethene (TCE)	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (2-4')	4/28/2015	Trichlorofluoromethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (2-4')	4/28/2015	Vinyl chloride	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (6-8')	4/28/2015	1,3,5-Trimethylbenzene	0.000351	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (6-8')	4/28/2015	Methylene chloride	0.000547	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (6-8')	4/28/2015	sec-Butylbenzene	0.000555	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (6-8')	4/28/2015	1,2,4-Trimethylbenzene	0.000564	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (6-8')	4/28/2015	2-Hexanone	0.000588	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (6-8')	4/28/2015	Ethylbenzene	0.0008	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (6-8')	4/28/2015	Xylenes, Total	0.00181	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (6-8')	4/28/2015	Toluene	0.00301	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (6-8')	4/28/2015	Benzene	0.00319	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (6-8')	4/28/2015	Acetone	0.00534	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
							Qualified high bias since detected in method blank & field concentration <5x blank concentration/Qualified
SWMU 10-3 (6-8')	4/28/2015	2-Butanone	0.00136		Soil		low bias due to Method SW8260B MS/MSD recovery for batch
SWMU 10-3 (6-8')	4/28/2015	1,1,1,2-Tetrachloroethane	ND		Soil		Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (6-8')	4/28/2015	1,1,1-Trichloroethane	ND	0 0	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (6-8')	4/28/2015	1,1,2,2-Tetrachloroethane	ND	0 0	Soil		Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (6-8')	4/28/2015	1,1,2-Trichloroethane	ND		Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (6-8')	4/28/2015	1,1-Dichloroethane	ND		Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (6-8')	4/28/2015	1,1-Dichloroethene	ND		Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (6-8')	4/28/2015	1,1-Dichloropropene	ND	0 0	Soil		Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (6-8')	4/28/2015	1,2,3-Trichlorobenzene	ND		Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (6-8')	4/28/2015	1,2,3-Trichloropropane	ND		Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (6-8')	4/28/2015	1,2,4-Trichlorobenzene	ND		Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (6-8')	4/28/2015	1,2-Dibromo-3-chloropropane	ND		Soil		Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (6-8')	4/28/2015	1,2-Dibromoethane (EDB)	ND	0 0	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (6-8')	4/28/2015	1,2-Dichlorobenzene	ND		Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (6-8')	4/28/2015	1,2-Dichloroethane (EDC)	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch

SWMU10 Investigation Report

Sample ID	Date Collected	Analyte	Result	Units	Matrix	Qualifier	Comments
SWMU 10-3 (6-8')	4/28/2015	1,2-Dichloropropane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (6-8')	4/28/2015	1,3-Dichlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (6-8')	4/28/2015	1,3-Dichloropropane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (6-8')	4/28/2015	1,4-Dichlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (6-8')	4/28/2015	1-Methylnaphthalene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (6-8')	4/28/2015	2,2-Dichloropropane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (6-8')	4/28/2015	2-Chlorotoluene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (6-8')	4/28/2015	2-Methylnaphthalene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (6-8')	4/28/2015	4-Chlorotoluene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (6-8')	4/28/2015	4-Isopropyltoluene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (6-8')	4/28/2015	4-Methyl-2-pentanone	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (6-8')	4/28/2015	Bromobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (6-8')	4/28/2015	Bromodichloromethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (6-8')	4/28/2015	Bromoform	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (6-8')	4/28/2015	Bromomethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (6-8')	4/28/2015	Carbon disulfide	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (6-8')	4/28/2015	Carbon tetrachloride	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (6-8')	4/28/2015	Chlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (6-8')	4/28/2015	Chloroethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (6-8')	4/28/2015	Chloroform	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (6-8')	4/28/2015	Chloromethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (6-8')	4/28/2015	cis-1,2-DCE	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (6-8')	4/28/2015	cis-1,3-Dichloropropene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (6-8')	4/28/2015	Dibromochloromethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (6-8')	4/28/2015	Dibromomethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (6-8')	4/28/2015	Dichlorodifluoromethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (6-8')	4/28/2015	Hexachlorobutadiene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (6-8')	4/28/2015	Isopropylbenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (6-8')	4/28/2015	Methyl tert-butyl ether (MTBE)	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (6-8')	4/28/2015	Naphthalene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (6-8')	4/28/2015	n-Butylbenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (6-8')	4/28/2015	n-Propylbenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (6-8')	4/28/2015	Styrene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (6-8')	4/28/2015	tert-Butylbenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (6-8')	4/28/2015	Tetrachloroethene (PCE)	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (6-8')	4/28/2015	trans-1,2-DCE	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (6-8')	4/28/2015	trans-1,3-Dichloropropene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (6-8')	4/28/2015	Trichloroethene (TCE)	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (6-8')	4/28/2015	Trichlorofluoromethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (6-8')	4/28/2015	Vinyl chloride	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3-GW	4/29/2015	Gasoline Range Organics (GRO)	0.033	mg/l	Water	J+	Qualified high bias due to surrogate recovery

SWMU10 Investigation Report

Sample ID	Date Collected	Analyte	Result	Units	Matrix	Qualifier	Comments
SWMU 10-3-GW	4/29/2015	Beryllium	0.0004	mg/l	Water	J+	Qualified high bias since detected in method blank & field concentration is ≤ 5x blank concentration
SWMU 10-3-GW	4/29/2015	Zinc	0.023	mg/l	Water	J+	Qualified high bias since detected in method blank & field concentration is ≤ 5x blank concentration
SWMU 10-4 (0-2')	4/29/2015	1,3,5-Trimethylbenzene	0.000347	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (0-2')	4/29/2015	Methylene chloride	0.000606	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (0-2')	4/29/2015	sec-Butylbenzene	0.000645	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (0-2')	4/29/2015	Ethylbenzene	0.000703	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (0-2')	4/29/2015	1,2,4-Trimethylbenzene	0.00077	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (0-2')	4/29/2015	2-Hexanone	0.000886	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (0-2')	4/29/2015	Benzene	0.00118	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (0-2')	4/29/2015	Xylenes, Total	0.00182	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (0-2')	4/29/2015	Toluene	0.00263	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (0-2')	4/29/2015	Acetone	0.0237	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
							Qualified high bias since detected in method blank & field concentration <5x blank concentration/Qualified
SWMU 10-4 (0-2')	4/29/2015	2-Butanone	0.00407	mg/kg	Soil	J+/ J-	low bias due to Method SW8260B MS/MSD recovery for batch
SWMU 10-4 (0-2')	4/29/2015	1,1,1,2-Tetrachloroethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (0-2')	4/29/2015	1,1,1-Trichloroethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (0-2')	4/29/2015	1,1,2,2-Tetrachloroethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (0-2')	4/29/2015	1,1,2-Trichloroethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (0-2')	4/29/2015	1,1-Dichloroethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (0-2')	4/29/2015	1,1-Dichloroethene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (0-2')	4/29/2015	1,1-Dichloropropene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (0-2')	4/29/2015	1,2,3-Trichlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (0-2')	4/29/2015	1,2,3-Trichloropropane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (0-2')	4/29/2015	1,2,4-Trichlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (0-2')	4/29/2015	1,2-Dibromo-3-chloropropane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (0-2')	4/29/2015	1,2-Dibromoethane (EDB)	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (0-2')	4/29/2015	1,2-Dichlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (0-2')	4/29/2015	1,2-Dichloroethane (EDC)	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (0-2')	4/29/2015	1,2-Dichloropropane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (0-2')	4/29/2015	1,3-Dichlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (0-2')	4/29/2015	1,3-Dichloropropane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (0-2')	4/29/2015	1,4-Dichlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (0-2')	4/29/2015	1-Methylnaphthalene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (0-2')	4/29/2015	2,2-Dichloropropane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (0-2')	4/29/2015	2-Chlorotoluene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (0-2')	4/29/2015	2-Methylnaphthalene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (0-2')	4/29/2015	4-Chlorotoluene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (0-2')	4/29/2015	4-Isopropyltoluene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (0-2')	4/29/2015	4-Methyl-2-pentanone	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (0-2')	4/29/2015	Bromobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (0-2')	4/29/2015	Bromodichloromethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch

SWMU10 Investigation Report

Sample ID	Date Collected	Analyte	Result	Units	Matrix	Qualifier	Comments
SWMU 10-4 (0-2')	4/29/2015	Bromoform	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (0-2')	4/29/2015	Bromomethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (0-2')	4/29/2015	Carbon disulfide	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (0-2')	4/29/2015	Carbon tetrachloride	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (0-2')	4/29/2015	Chlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (0-2')	4/29/2015	Chloroethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (0-2')	4/29/2015	Chloroform	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (0-2')	4/29/2015	Chloromethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (0-2')	4/29/2015	cis-1,2-DCE	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (0-2')	4/29/2015	cis-1,3-Dichloropropene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (0-2')	4/29/2015	Dibromochloromethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (0-2')	4/29/2015	Dibromomethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (0-2')	4/29/2015	Dichlorodifluoromethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (0-2')	4/29/2015	Hexachlorobutadiene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (0-2')	4/29/2015	Isopropylbenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (0-2')	4/29/2015	Methyl tert-butyl ether (MTBE)	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (0-2')	4/29/2015	Naphthalene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (0-2')	4/29/2015	n-Butylbenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (0-2')	4/29/2015	n-Propylbenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (0-2')	4/29/2015	Styrene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (0-2')	4/29/2015	tert-Butylbenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (0-2')	4/29/2015	Tetrachloroethene (PCE)	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (0-2')	4/29/2015	trans-1,2-DCE	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (0-2')	4/29/2015	trans-1,3-Dichloropropene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (0-2')	4/29/2015	Trichloroethene (TCE)	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (0-2')	4/29/2015	Trichlorofluoromethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (0-2')	4/29/2015	Vinyl chloride	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (18-20')	4/29/2015	Isopropylbenzene	0.000482	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (18-20')	4/29/2015	n-Propylbenzene	0.00051	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (18-20')	4/29/2015	Methylene chloride	0.000612	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (18-20')	4/29/2015	sec-Butylbenzene	0.000714	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (18-20')	4/29/2015	Naphthalene	0.000742	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (18-20')	4/29/2015	Acetone	0.0018	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (18-20')	4/29/2015	1,3,5-Trimethylbenzene	0.00184	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (18-20')	4/29/2015	1,2,4-Trimethylbenzene	0.00277	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (18-20')	4/29/2015	Ethylbenzene	0.00291	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (18-20')	4/29/2015	Xylenes, Total	0.00975	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (18-20')	4/29/2015	Toluene	0.0127	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (18-20')	4/29/2015	Benzene	0.0204	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (18-20')	4/29/2015	1,1,1,2-Tetrachloroethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (18-20')	4/29/2015	1,1,1-Trichloroethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch

SWMU10 Investigation Report

Sample ID	Date Collected	Analyte	Result	Units	Matrix	Qualifier	Comments
SWMU 10-4 (18-20')	4/29/2015	1,1,2,2-Tetrachloroethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (18-20')	4/29/2015	1,1,2-Trichloroethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (18-20')	4/29/2015	1,1-Dichloroethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (18-20')	4/29/2015	1,1-Dichloroethene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (18-20')	4/29/2015	1,1-Dichloropropene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (18-20')	4/29/2015	1,2,3-Trichlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (18-20')	4/29/2015	1,2,3-Trichloropropane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (18-20')	4/29/2015	1,2,4-Trichlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (18-20')	4/29/2015	1,2-Dibromo-3-chloropropane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (18-20')	4/29/2015	1,2-Dibromoethane (EDB)	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (18-20')	4/29/2015	1,2-Dichlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (18-20')	4/29/2015	1,2-Dichloroethane (EDC)	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (18-20')	4/29/2015	1,2-Dichloropropane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (18-20')	4/29/2015	1,3-Dichlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (18-20')	4/29/2015	1,3-Dichloropropane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (18-20')	4/29/2015	1,4-Dichlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (18-20')	4/29/2015	1-Methylnaphthalene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (18-20')	4/29/2015	2,2-Dichloropropane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (18-20')	4/29/2015	2-Butanone	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (18-20')	4/29/2015	2-Chlorotoluene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (18-20')	4/29/2015	2-Hexanone	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (18-20')	4/29/2015	2-Methylnaphthalene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (18-20')	4/29/2015	4-Chlorotoluene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (18-20')	4/29/2015	4-Isopropyltoluene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (18-20')	4/29/2015	4-Methyl-2-pentanone	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (18-20')	4/29/2015	Bromobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (18-20')	4/29/2015	Bromodichloromethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (18-20')	4/29/2015	Bromoform	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (18-20')	4/29/2015	Bromomethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (18-20')	4/29/2015	Carbon disulfide	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (18-20')	4/29/2015	Carbon tetrachloride	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (18-20')	4/29/2015	Chlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (18-20')	4/29/2015	Chloroethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (18-20')	4/29/2015	Chloroform	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (18-20')	4/29/2015	Chloromethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (18-20')	4/29/2015	cis-1,2-DCE	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (18-20')	4/29/2015	cis-1,3-Dichloropropene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (18-20')	4/29/2015	Dibromochloromethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (18-20')	4/29/2015	Dibromomethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (18-20')	4/29/2015	Dichlorodifluoromethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (18-20')	4/29/2015	Hexachlorobutadiene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch

SWMU10 Investigation Report

Sample ID	Date Collected	Analyte	Result	Units	Matrix	Qualifier	Comments
SWMU 10-4 (18-20')	4/29/2015	Methyl tert-butyl ether (MTBE)	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (18-20')	4/29/2015	n-Butylbenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (18-20')	4/29/2015	Styrene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (18-20')	4/29/2015	tert-Butylbenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (18-20')	4/29/2015	Tetrachloroethene (PCE)	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (18-20')	4/29/2015	trans-1,2-DCE	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (18-20')	4/29/2015	trans-1,3-Dichloropropene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (18-20')	4/29/2015	Trichloroethene (TCE)	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (18-20')	4/29/2015	Trichlorofluoromethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (18-20')	4/29/2015	Vinyl chloride	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (6-8')	4/29/2015	2-Butanone	0.00153	mg/kg	Soil	J+	Qualified high bias since detected in method blank & field concentration is \leq 5x blank concentration
SWMU 10-5 (22-24')	4/29/2015	n-Propylbenzene	0.000469	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-5 (22-24')	4/29/2015	Methylene chloride	0.000565	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-5 (22-24')	4/29/2015	sec-Butylbenzene	0.000766	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-5 (22-24')	4/29/2015	Naphthalene	0.000785	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-5 (22-24')	4/29/2015	1-Methylnaphthalene	0.000843	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-5 (22-24')	4/29/2015	2-Methylnaphthalene	0.000852	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-5 (22-24')	4/29/2015	1,3,5-Trimethylbenzene	0.00179	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-5 (22-24')	4/29/2015	Acetone	0.00186	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-5 (22-24')	4/29/2015	Ethylbenzene	0.00258	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-5 (22-24')	4/29/2015	1,2,4-Trimethylbenzene	0.00263	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-5 (22-24')	4/29/2015	Xylenes, Total	0.00849	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-5 (22-24')	4/29/2015	Toluene	0.0112	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-5 (22-24')	4/29/2015	Benzene	0.0179	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-5 (22-24')	4/29/2015	1,1,1,2-Tetrachloroethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-5 (22-24')	4/29/2015	1,1,1-Trichloroethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-5 (22-24')	4/29/2015	1,1,2,2-Tetrachloroethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-5 (22-24')	4/29/2015	1,1,2-Trichloroethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-5 (22-24')	4/29/2015	1,1-Dichloroethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-5 (22-24')	4/29/2015	1,1-Dichloroethene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-5 (22-24')	4/29/2015	1,1-Dichloropropene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-5 (22-24')	4/29/2015	1,2,3-Trichlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-5 (22-24')	4/29/2015	1,2,3-Trichloropropane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-5 (22-24')	4/29/2015	1,2,4-Trichlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-5 (22-24')	4/29/2015	1,2-Dibromo-3-chloropropane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-5 (22-24')	4/29/2015	1,2-Dibromoethane (EDB)	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-5 (22-24')	4/29/2015	1,2-Dichlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-5 (22-24')	4/29/2015	1,2-Dichloroethane (EDC)	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-5 (22-24')	4/29/2015	1,2-Dichloropropane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-5 (22-24')	4/29/2015	1,3-Dichlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-5 (22-24')	4/29/2015	1,3-Dichloropropane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch

SWMU10 Investigation Report

Sample ID	Date Collected	Analyte	Result	Units	Matrix	Qualifier	Comments
SWMU 10-5 (22-24')	4/29/2015	1,4-Dichlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-5 (22-24')	4/29/2015	2,2-Dichloropropane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-5 (22-24')	4/29/2015	2-Chlorotoluene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-5 (22-24')	4/29/2015	2-Hexanone	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-5 (22-24')	4/29/2015	4-Chlorotoluene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-5 (22-24')	4/29/2015	4-Isopropyltoluene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-5 (22-24')	4/29/2015	4-Methyl-2-pentanone	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-5 (22-24')	4/29/2015	Bromobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-5 (22-24')	4/29/2015	Bromodichloromethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-5 (22-24')	4/29/2015	Bromoform	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-5 (22-24')	4/29/2015	Bromomethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-5 (22-24')	4/29/2015	Carbon disulfide	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-5 (22-24')	4/29/2015	Carbon tetrachloride	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-5 (22-24')	4/29/2015	Chlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-5 (22-24')	4/29/2015	Chloroethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-5 (22-24')	4/29/2015	Chloroform	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-5 (22-24')	4/29/2015	Chloromethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-5 (22-24')	4/29/2015	cis-1,2-DCE	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-5 (22-24')	4/29/2015	cis-1,3-Dichloropropene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-5 (22-24')	4/29/2015	Dibromochloromethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-5 (22-24')	4/29/2015	Dibromomethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-5 (22-24')	4/29/2015	Dichlorodifluoromethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-5 (22-24')	4/29/2015	Hexachlorobutadiene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-5 (22-24')	4/29/2015	Isopropylbenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-5 (22-24')	4/29/2015	Methyl tert-butyl ether (MTBE)	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-5 (22-24')	4/29/2015	n-Butylbenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-5 (22-24')	4/29/2015	Styrene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-5 (22-24')	4/29/2015	tert-Butylbenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-5 (22-24')	4/29/2015	Tetrachloroethene (PCE)	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-5 (22-24')	4/29/2015	trans-1,2-DCE	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-5 (22-24')	4/29/2015	trans-1,3-Dichloropropene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-5 (22-24')	4/29/2015	Trichloroethene (TCE)	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-5 (22-24')	4/29/2015	Trichlorofluoromethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-5 (22-24')	4/29/2015	Vinyl chloride	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-5 (22-24')	4/29/2015	2-Butanone	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-5-GW	5/4/2015	Gasoline Range Organics (GRO)	0.21	mg/l	Water	J+/J+	Qualified high bias due to surrogate recovery and Method GRO MS/MSD
SWMU 10-5-GW	5/4/2015	Beryllium	0.00042	mg/l	Water	J+	Qualified high bias since detected in method blank & field concentration is ≤ 5x blank concentration
SWMU 10-5-GW	5/4/2015	Bis(2-chloroethyl)ether	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10-5-GW	5/4/2015	N-Nitrosodimethylamine	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10-5-GW	5/4/2015	Pentachlorophenol	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10-5-GW	5/4/2015	1,2,4-Trichlorobenzene	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch

SWMU10 Investigation Report

Sample ID	Date Collected	Analyte	Result	Units	Matrix	Qualifier	Comments
SWMU 10-5-GW	5/4/2015	1,2-Dichlorobenzene	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10-5-GW	5/4/2015	1,3-Dichlorobenzene	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10-5-GW	5/4/2015	1,4-Dichlorobenzene	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10-5-GW	5/4/2015	1-Methylnaphthalene	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10-5-GW	5/4/2015	2,4,5-Trichlorophenol	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10-5-GW	5/4/2015	2,4,6-Trichlorophenol	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10-5-GW	5/4/2015	2,4-Dichlorophenol	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10-5-GW	5/4/2015	2,4-Dimethylphenol	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10-5-GW	5/4/2015	2,4-Dinitrophenol	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10-5-GW	5/4/2015	2,6-Dinitrotoluene	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10-5-GW	5/4/2015	2-Chloronaphthalene	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10-5-GW	5/4/2015	2-Chlorophenol	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10-5-GW	5/4/2015	2-Methylnaphthalene	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10-5-GW	5/4/2015	2-Methylphenol	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10-5-GW	5/4/2015	2-Nitroaniline	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10-5-GW	5/4/2015	2-Nitrophenol	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10-5-GW	5/4/2015	3,3´-Dichlorobenzidine	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10-5-GW	5/4/2015	3+4-Methylphenol	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10-5-GW	5/4/2015	3-Nitroaniline	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10-5-GW	5/4/2015	4,6-Dinitro-2-methylphenol	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10-5-GW	5/4/2015	4-Bromophenyl phenyl ether	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10-5-GW	5/4/2015	4-Chloro-3-methylphenol	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10-5-GW	5/4/2015	4-Chloroaniline	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10-5-GW	5/4/2015	4-Chlorophenyl phenyl ether	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10-5-GW	5/4/2015	4-Nitroaniline	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10-5-GW	5/4/2015	4-Nitrophenol	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10-5-GW	5/4/2015	Acenaphthene	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10-5-GW	5/4/2015	Acenaphthylene	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10-5-GW	5/4/2015	Aniline	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10-5-GW	5/4/2015	Anthracene	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10-5-GW	5/4/2015	Azobenzene	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10-5-GW	5/4/2015	Benz(a)anthracene	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10-5-GW	5/4/2015	Benzo(a)pyrene	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10-5-GW	5/4/2015	Benzo(b)fluoranthene	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10-5-GW	5/4/2015	Benzo(g,h,i)perylene	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10-5-GW	5/4/2015	Benzo(k)fluoranthene	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10-5-GW	5/4/2015	Benzoic acid	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10-5-GW	5/4/2015	Benzyl alcohol	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10-5-GW	5/4/2015	Bis(2-chloroethoxy)methane	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10-5-GW	5/4/2015	Bis(2-chloroisopropyl)ether	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10-5-GW	5/4/2015	Bis(2-ethylhexyl)phthalate	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch

SWMU10 Investigation Report

Sample ID	Date Collected	Analyte	Result	Units	Matrix	Qualifier	Comments
SWMU 10-5-GW	5/4/2015	Butyl benzyl phthalate	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10-5-GW	5/4/2015	Carbazole	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10-5-GW	5/4/2015	Chrysene	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10-5-GW	5/4/2015	Dibenz(a,h)anthracene	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10-5-GW	5/4/2015	Dibenzofuran	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10-5-GW	5/4/2015	Diethyl phthalate	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10-5-GW	5/4/2015	Dimethyl phthalate	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10-5-GW	5/4/2015	Di-n-butyl phthalate	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10-5-GW	5/4/2015	Di-n-octyl phthalate	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10-5-GW	5/4/2015	Fluoranthene	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10-5-GW	5/4/2015	Fluorene	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10-5-GW	5/4/2015	Hexachlorobenzene	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10-5-GW	5/4/2015	Hexachlorobutadiene	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10-5-GW	5/4/2015	Hexachlorocyclopentadiene	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10-5-GW	5/4/2015	Hexachloroethane	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10-5-GW	5/4/2015	Indeno(1,2,3-cd)pyrene	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10-5-GW	5/4/2015	Isophorone	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10-5-GW	5/4/2015	Naphthalene	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10-5-GW	5/4/2015	Nitrobenzene	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10-5-GW	5/4/2015	N-Nitrosodi-n-propylamine	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10-5-GW	5/4/2015	N-Nitrosodiphenylamine	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10-5-GW	5/4/2015	Phenanthrene	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10-5-GW	5/4/2015	Phenol	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10-5-GW	5/4/2015	Pyrene	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10-5-GW	5/4/2015	Pyridine	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10-5-GW	5/4/2015	2,4-Dinitrotoluene	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10-6 (2-4')	5/4/2015	2-Butanone	0.00176	mg/kg	Unknown	J+	Qualified high bias since detected in method blank & field concentration is ≤ 5x blank concentration
SWMU 10-7 (2-4')	5/1/2015	2-Butanone	0.00273	mg/kg	Soil	J+	Qualified high bias since detected in method blank & field concentration is ≤ 5x blank concentration
SWMU 10-7 (4-6')	5/1/2015	2-Butanone	0.00175	mg/kg	Soil	J+	Qualified high bias since detected in method blank & field concentration is \leq 5x blank concentration
SWMU 10-8 (18-20')	4/30/2015	n-Propylbenzene	0.000428	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-8 (18-20')	4/30/2015	Isopropylbenzene	0.000447	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-8 (18-20')	4/30/2015	sec-Butylbenzene	0.000714	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-8 (18-20')	4/30/2015	Naphthalene	0.000809	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-8 (18-20')	4/30/2015	1,3,5-Trimethylbenzene	0.00159	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-8 (18-20')	4/30/2015	1,2,4-Trimethylbenzene	0.00236	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-8 (18-20')	4/30/2015	Ethylbenzene	0.00285	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-8 (18-20')	4/30/2015	Acetone	0.00466	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-8 (18-20')	4/30/2015	Xylenes, Total	0.00872	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-8 (18-20')	4/30/2015	Toluene	0.0122	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-8 (18-20')	4/30/2015	Benzene	0.0178	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-8 (18-20')	4/30/2015	Lead	0.27	mg/kg	Soil	J+	Qualified high bias since detected in method blank & field concentration is ≤ 5x blank concentration

SWMU10 Investigation Report

Sample ID	Date Collected	Analyte	Result	Units	Matrix	Qualifier	Comments
SWMU 10-8 (18-20')	4/30/2015	1,1,1,2-Tetrachloroethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-8 (18-20')	4/30/2015	1,1,1-Trichloroethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-8 (18-20')	4/30/2015	1,1,2,2-Tetrachloroethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-8 (18-20')	4/30/2015	1,1,2-Trichloroethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-8 (18-20')	4/30/2015	1,1-Dichloroethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-8 (18-20')	4/30/2015	1,1-Dichloroethene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-8 (18-20')	4/30/2015	1,1-Dichloropropene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-8 (18-20')	4/30/2015	1,2,3-Trichlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-8 (18-20')	4/30/2015	1,2,3-Trichloropropane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-8 (18-20')	4/30/2015	1,2,4-Trichlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-8 (18-20')	4/30/2015	1,2-Dibromo-3-chloropropane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-8 (18-20')	4/30/2015	1,2-Dibromoethane (EDB)	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-8 (18-20')	4/30/2015	1,2-Dichlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-8 (18-20')	4/30/2015	1,2-Dichloroethane (EDC)	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-8 (18-20')	4/30/2015	1,2-Dichloropropane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-8 (18-20')	4/30/2015	1,3-Dichlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-8 (18-20')	4/30/2015	1,3-Dichloropropane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-8 (18-20')	4/30/2015	1,4-Dichlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-8 (18-20')	4/30/2015	1-Methylnaphthalene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-8 (18-20')	4/30/2015	2,2-Dichloropropane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-8 (18-20')	4/30/2015	2-Butanone	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-8 (18-20')	4/30/2015	2-Chlorotoluene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-8 (18-20')	4/30/2015	2-Hexanone	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-8 (18-20')	4/30/2015	2-Methylnaphthalene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-8 (18-20')	4/30/2015	4-Chlorotoluene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-8 (18-20')	4/30/2015	4-Isopropyltoluene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-8 (18-20')	4/30/2015	4-Methyl-2-pentanone	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-8 (18-20')	4/30/2015	Bromobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-8 (18-20')	4/30/2015	Bromodichloromethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-8 (18-20')	4/30/2015	Bromoform	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-8 (18-20')	4/30/2015	Bromomethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-8 (18-20')	4/30/2015	Carbon disulfide	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-8 (18-20')	4/30/2015	Carbon tetrachloride	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-8 (18-20')	4/30/2015	Chlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-8 (18-20')	4/30/2015	Chloroethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-8 (18-20')	4/30/2015	Chloroform	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-8 (18-20')	4/30/2015	Chloromethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-8 (18-20')	4/30/2015	cis-1,2-DCE	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-8 (18-20')	4/30/2015	cis-1,3-Dichloropropene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-8 (18-20')	4/30/2015	Dibromochloromethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-8 (18-20')	4/30/2015	Dibromomethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch

SWMU10 Investigation Report

Sample ID	Date Collected	Analyte	Result	Units	Matrix	Qualifier	Comments
SWMU 10-8 (18-20')	4/30/2015	Dichlorodifluoromethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-8 (18-20')	4/30/2015	Hexachlorobutadiene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-8 (18-20')	4/30/2015	Methyl tert-butyl ether (MTBE)	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-8 (18-20')	4/30/2015	Methylene chloride	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-8 (18-20')	4/30/2015	n-Butylbenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-8 (18-20')	4/30/2015	Styrene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-8 (18-20')	4/30/2015	tert-Butylbenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-8 (18-20')	4/30/2015	Tetrachloroethene (PCE)	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-8 (18-20')	4/30/2015	trans-1,2-DCE	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-8 (18-20')	4/30/2015	trans-1,3-Dichloropropene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-8 (18-20')	4/30/2015	Trichloroethene (TCE)	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-8 (18-20')	4/30/2015	Trichlorofluoromethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-8 (18-20')	4/30/2015	Vinyl chloride	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-8 (2-4')	4/30/2015	Fluorene	8.1	mg/kg	Soil	J-	Qualified low bias due to surrogate recovery
SWMU 10-8 (2-4')	4/30/2015	Naphthalene	18	mg/kg	Soil	J-	Qualified low bias due to surrogate recovery
SWMU 10-8 (2-4')	4/30/2015	1-Methylnaphthalene	68	mg/kg	Soil	J-	Qualified low bias due to surrogate recovery
SWMU 10-8 (2-4')	4/30/2015	2-Methylnaphthalene	89	mg/kg	Soil	J-	Qualified low bias due to surrogate recovery
SWMU 10-8 (4-6')	4/30/2015	1,2,4-Trimethylbenzene	0.021	mg/kg	Soil	J+	Qualified high bias since detected in method blank & field concentration is $\leq 5x$ blank concentration
SWMU 10-9 (18-20')	4/30/2015	sec-Butylbenzene	0.000849	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (18-20')	4/30/2015	Naphthalene	0.000873	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (18-20')	4/30/2015	1,3,5-Trimethylbenzene	0.00151	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (18-20')	4/30/2015	1,2,4-Trimethylbenzene	0.00229	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (18-20')	4/30/2015	Ethylbenzene	0.00242	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (18-20')	4/30/2015	Acetone	0.00359	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (18-20')	4/30/2015	Xylenes, Total	0.00807	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (18-20')	4/30/2015	Toluene	0.0115	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (18-20')	4/30/2015	Benzene	0.0159	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (18-20')	4/30/2015	1,1,1,2-Tetrachloroethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (18-20')	4/30/2015	1,1,1-Trichloroethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (18-20')	4/30/2015	1,1,2,2-Tetrachloroethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (18-20')	4/30/2015	1,1,2-Trichloroethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (18-20')	4/30/2015	1,1-Dichloroethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (18-20')	4/30/2015	1,1-Dichloroethene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (18-20')	4/30/2015	1,1-Dichloropropene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (18-20')	4/30/2015	1,2,3-Trichlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (18-20')	4/30/2015	1,2,3-Trichloropropane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (18-20')	4/30/2015	1,2,4-Trichlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (18-20')	4/30/2015	1,2-Dibromo-3-chloropropane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (18-20')	4/30/2015	1,2-Dibromoethane (EDB)	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (18-20')	4/30/2015	1,2-Dichlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (18-20')	4/30/2015	1,2-Dichloroethane (EDC)	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch

SWMU10 Investigation Report

Sample ID	Date Collected	Analyte	Result	Units	Matrix	Qualifier	Comments
SWMU 10-9 (18-20')	4/30/2015	1,2-Dichloropropane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (18-20')	4/30/2015	1,3-Dichlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (18-20')	4/30/2015	1,3-Dichloropropane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (18-20')	4/30/2015	1,4-Dichlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (18-20')	4/30/2015	1-Methylnaphthalene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (18-20')	4/30/2015	2,2-Dichloropropane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (18-20')	4/30/2015	2-Butanone	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (18-20')	4/30/2015	2-Chlorotoluene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (18-20')	4/30/2015	2-Hexanone	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (18-20')	4/30/2015	2-Methylnaphthalene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (18-20')	4/30/2015	4-Chlorotoluene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (18-20')	4/30/2015	4-Isopropyltoluene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (18-20')	4/30/2015	4-Methyl-2-pentanone	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (18-20')	4/30/2015	Bromobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (18-20')	4/30/2015	Bromodichloromethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (18-20')	4/30/2015	Bromoform	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (18-20')	4/30/2015	Bromomethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (18-20')	4/30/2015	Carbon disulfide	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (18-20')	4/30/2015	Carbon tetrachloride	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (18-20')	4/30/2015	Chlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (18-20')	4/30/2015	Chloroethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (18-20')	4/30/2015	Chloroform	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (18-20')	4/30/2015	Chloromethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (18-20')	4/30/2015	cis-1,2-DCE	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (18-20')	4/30/2015	cis-1,3-Dichloropropene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (18-20')	4/30/2015	Dibromochloromethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (18-20')	4/30/2015	Dibromomethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (18-20')	4/30/2015	Dichlorodifluoromethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (18-20')	4/30/2015	Hexachlorobutadiene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (18-20')	4/30/2015	Isopropylbenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (18-20')	4/30/2015	Methyl tert-butyl ether (MTBE)	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (18-20')	4/30/2015	Methylene chloride	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (18-20')	4/30/2015	n-Butylbenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (18-20')	4/30/2015	n-Propylbenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (18-20')	4/30/2015	Styrene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (18-20')	4/30/2015	tert-Butylbenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (18-20')	4/30/2015	Tetrachloroethene (PCE)	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (18-20')	4/30/2015	trans-1,2-DCE	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (18-20')	4/30/2015	trans-1,3-Dichloropropene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (18-20')	4/30/2015	Trichloroethene (TCE)	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (18-20')	4/30/2015	Trichlorofluoromethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch

SWMU10 Investigation Report

Sample ID	Date Collected	Analyte	Result	Units	Matrix	Qualifier	Comments
SWMU 10-9 (18-20')	4/30/2015	Vinyl chloride	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (2-4')	4/30/2015	Methylene chloride	0.000438	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (2-4')	4/30/2015	Benzene	0.000788	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (2-4')	4/30/2015	Acetone	0.0184	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (2-4')	4/30/2015	Bis(2-ethylhexyl)phthalate	1.5	mg/kg	Soil	J-	Qualified low bias due to surrogate recovery
SWMU 10-9 (2-4')	4/30/2015	Mercury	0.07	mg/kg	Soil	J+	Qualified high bias due to Method MS/MSD recovery
							Qualified high bias since detected in method blank & field concentration <5x blank concentration/Qualified
SWMU 10-9 (2-4')	4/30/2015	Toluene	0.000797	mg/kg	Soil	J+/ J-	low bias due to Method SW8260B MS/MSD recovery for batch
SWMU 10-9 (2-4')	4/30/2015	2-Butanone	0.00234	ma/ka	Soil	J+/ J-	Qualified high bias since detected in method blank & field concentration <5x blank concentration/Qualified low bias due to Method SW8260B MS/MSD recovery for batch
SWMU 10-9 (2-4')	4/30/2015	1,1,1,2-Tetrachloroethane		mg/kg	Soil	UJ UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (2-4)	4/30/2015	1,1,1-Trichloroethane			Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (2-4)		1,1,2,2-Tetrachloroethane		mg/kg	Soil	UJ	
` ′	4/30/2015	. , ,	ND ND		Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (2-4')	4/30/2015	1,1,2-Trichloroethane					Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (2-4')	4/30/2015	1,1-Dichloroethane		mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (2-4')	4/30/2015	1,1-Dichloroethene		mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (2-4')	4/30/2015	1,1-Dichloropropene	ND	0 0	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (2-4')	4/30/2015	1,2,3-Trichlorobenzene	ND		Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (2-4')	4/30/2015	1,2,3-Trichloropropane		mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (2-4')	4/30/2015	1,2,4-Trichlorobenzene		mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (2-4')	4/30/2015	1,2,4-Trimethylbenzene		mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (2-4')	4/30/2015	1,2-Dibromo-3-chloropropane	ND		Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (2-4')	4/30/2015	1,2-Dibromoethane (EDB)		mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (2-4')	4/30/2015	1,2-Dichlorobenzene		mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (2-4')	4/30/2015	1,2-Dichloroethane (EDC)		mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (2-4')	4/30/2015	1,2-Dichloropropane	ND		Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (2-4')	4/30/2015	1,3,5-Trimethylbenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (2-4')	4/30/2015	1,3-Dichlorobenzene		mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (2-4')	4/30/2015	1,3-Dichloropropane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (2-4')	4/30/2015	1,4-Dichlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (2-4')	4/30/2015	1-Methylnaphthalene	ND		Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (2-4')	4/30/2015	2,2-Dichloropropane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (2-4')	4/30/2015	2-Chlorotoluene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (2-4')	4/30/2015	2-Hexanone	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (2-4')	4/30/2015	2-Methylnaphthalene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (2-4')	4/30/2015	4-Chlorotoluene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (2-4')	4/30/2015	4-Isopropyltoluene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (2-4')	4/30/2015	4-Methyl-2-pentanone	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (2-4')	4/30/2015	Bromobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (2-4')	4/30/2015	Bromodichloromethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (2-4')	4/30/2015	Bromoform	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch

SWMU10 Investigation Report

Sample ID	Date Collected	Analyte	Result	Units	Matrix	Qualifier	Comments
SWMU 10-9 (2-4')	4/30/2015	Bromomethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (2-4')	4/30/2015	Carbon disulfide	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (2-4')	4/30/2015	Carbon tetrachloride	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (2-4')	4/30/2015	Chlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (2-4')	4/30/2015	Chloroethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (2-4')	4/30/2015	Chloroform	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (2-4')	4/30/2015	Chloromethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (2-4')	4/30/2015	cis-1,2-DCE	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (2-4')	4/30/2015	cis-1,3-Dichloropropene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (2-4')	4/30/2015	Dibromochloromethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (2-4')	4/30/2015	Dibromomethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (2-4')	4/30/2015	Dichlorodifluoromethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (2-4')	4/30/2015	Ethylbenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (2-4')	4/30/2015	Hexachlorobutadiene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (2-4')	4/30/2015	Isopropylbenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (2-4')	4/30/2015	Methyl tert-butyl ether (MTBE)	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (2-4')	4/30/2015	Naphthalene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (2-4')	4/30/2015	n-Butylbenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (2-4')	4/30/2015	n-Propylbenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (2-4')	4/30/2015	sec-Butylbenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (2-4')	4/30/2015	Styrene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (2-4')	4/30/2015	tert-Butylbenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (2-4')	4/30/2015	Tetrachloroethene (PCE)	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (2-4')	4/30/2015	trans-1,2-DCE	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (2-4')	4/30/2015	trans-1,3-Dichloropropene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (2-4')	4/30/2015	Trichloroethene (TCE)	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (2-4')	4/30/2015	Trichlorofluoromethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (2-4')	4/30/2015	Vinyl chloride	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (2-4')	4/30/2015	Xylenes, Total	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (4-6')	4/30/2015	2-Methylnaphthalene	1	mg/kg	Soil	J-	Qualified low bias due to surrogate recovery
SWMU 10-9 (4-6')	4/30/2015	1-Methylnaphthalene	1.1	mg/kg	Soil	J-	Qualified low bias due to surrogate recovery
Trip Blank	5/14/2015	Ethylbenzene	0.11	ug/l	Water	J-	Qualified low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Naphthalene	0.31	ug/l	Water	J-	Qualified low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Xylenes, Total	0.41	ug/l	Water	J-	Qualified low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	1-Methylnaphthalene	0.71	ug/l	Water	J-	Qualified low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	2-Methylnaphthalene	1.1	ug/l	Water	J-	Qualified low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Toluene	0.14	ug/l	Water	J-	Qualified low bias due to Method SW8270C MS recovery and RPD for batch
							Qualified high bias since detected in method blank & field concentration <5x blank concentration/Qualified
Trip Blank	5/14/2015	1,2,4-Trimethylbenzene	0.29	ug/l	Water	J+/J-	low bias due to Method SW8270C MSD recovery and RPD for batch
Trin Blank	5/14/2015	1,2,4-Trimethylbenzene	0.18	וומ/ו	Water	I±/I.	Qualified high bias since detected in method blank & field concentration <5x blank concentration/Qualified
Trip Blank	5/14/2015	1,2,4-mmethylbenzene	0.18	ug/l	water	J+/J-	low bias due to Method SW8270C MSD recovery and RPD for batch

SWMU10 Investigation Report

Sample ID	Date Collected	Analyte	Result	Units	Matrix	Qualifier	Comments
Trip Blank	5/14/2015	1,1,1,2-Tetrachloroethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	1,1,1-Trichloroethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	1,1,2,2-Tetrachloroethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	1,1,2-Trichloroethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	1,1-Dichloroethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	1,1-Dichloroethene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	1,1-Dichloropropene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	1,2,3-Trichlorobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	1,2,3-Trichloropropane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	1,2,4-Trichlorobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	1,2-Dibromo-3-chloropropane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	1,2-Dibromoethane (EDB)	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	1,2-Dichlorobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	1,2-Dichloroethane (EDC)	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	1,2-Dichloropropane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	1,3,5-Trimethylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	1,3-Dichlorobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	1,3-Dichloropropane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	1,4-Dichlorobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	2,2-Dichloropropane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	2-Butanone	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	2-Chlorotoluene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	2-Hexanone	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	4-Chlorotoluene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	4-Isopropyltoluene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	4-Methyl-2-pentanone	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Acetone	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Benzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Bromobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Bromodichloromethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Bromoform	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Bromomethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Carbon disulfide	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Carbon Tetrachloride	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Chlorobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Chloroethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Chloroform	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Chloromethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	cis-1,2-DCE	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	cis-1,3-Dichloropropene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Dibromochloromethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch

SWMU10 Investigation Report

Sample ID	Date Collected	Analyte	Result	Units	Matrix	Qualifier	Comments
Trip Blank	5/14/2015	Dibromomethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Dichlorodifluoromethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Hexachlorobutadiene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Isopropylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Methyl tert-butyl ether (MTBE)	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Methylene Chloride	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	n-Butylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	n-Propylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	sec-Butylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Styrene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	tert-Butylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Tetrachloroethene (PCE)	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Toluene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	trans-1,2-DCE	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	trans-1,3-Dichloropropene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Trichloroethene (TCE)	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Trichlorofluoromethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Vinyl chloride	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	1,1,1,2-Tetrachloroethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	1,1,1-Trichloroethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	1,1,2,2-Tetrachloroethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	1,1,2-Trichloroethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	1,1-Dichloroethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	1,1-Dichloroethene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	1,1-Dichloropropene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	1,2,3-Trichlorobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	1,2,3-Trichloropropane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	1,2,4-Trichlorobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	1,2-Dibromo-3-chloropropane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	1,2-Dibromoethane (EDB)	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	1,2-Dichlorobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	1,2-Dichloroethane (EDC)	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	1,2-Dichloropropane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	1,3,5-Trimethylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	1,3-Dichlorobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	1,3-Dichloropropane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	1,4-Dichlorobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	1-Methylnaphthalene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	2,2-Dichloropropane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	2-Butanone	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	2-Chlorotoluene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch

SWMU10 Investigation Report

Sample ID	Date Collected	Analyte	Result	Units	Matrix	Qualifier	Comments
Trip Blank	5/14/2015	2-Hexanone	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	2-Methylnaphthalene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	4-Chlorotoluene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	4-Isopropyltoluene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	4-Methyl-2-pentanone	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Acetone	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Benzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Bromobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Bromodichloromethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Bromoform	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Bromomethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Carbon disulfide	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Carbon Tetrachloride	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Chlorobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Chloroethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Chloroform	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Chloromethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	cis-1,2-DCE	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	cis-1,3-Dichloropropene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Dibromochloromethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Dibromomethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Dichlorodifluoromethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Ethylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Hexachlorobutadiene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Isopropylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Methyl tert-butyl ether (MTBE)	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Methylene Chloride	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Naphthalene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	n-Butylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	n-Propylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	sec-Butylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Styrene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	tert-Butylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Tetrachloroethene (PCE)	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	trans-1,2-DCE	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	trans-1,3-Dichloropropene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Trichloroethene (TCE)	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Trichlorofluoromethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Vinyl chloride	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Xylenes, Total	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	1,1,1,2-Tetrachloroethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch

SWMU10 Investigation Report

Sample ID	Date Collected	Analyte	Result	Units	Matrix	Qualifier	Comments
Trip Blank	5/14/2015	1,1,1-Trichloroethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	1,1,2,2-Tetrachloroethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	1,1,2-Trichloroethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	1,1-Dichloroethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	1,1-Dichloroethene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	1,1-Dichloropropene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	1,2,3-Trichlorobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	1,2,3-Trichloropropane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	1,2,4-Trichlorobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	1,2,4-Trimethylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	1,2-Dibromo-3-chloropropane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	1,2-Dibromoethane (EDB)	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	1,2-Dichlorobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	1,2-Dichloroethane (EDC)	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	1,2-Dichloropropane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	1,3,5-Trimethylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	1,3-Dichlorobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	1,3-Dichloropropane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	1,4-Dichlorobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	1-Methylnaphthalene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	2,2-Dichloropropane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	2-Butanone	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	2-Chlorotoluene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	2-Hexanone	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	2-Methylnaphthalene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	4-Chlorotoluene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	4-Isopropyltoluene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	4-Methyl-2-pentanone	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Acetone	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Benzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Bromobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Bromodichloromethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Bromoform	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Bromomethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Carbon disulfide	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Carbon Tetrachloride	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Chlorobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Chloroethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Chloroform	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Chloromethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	cis-1,2-DCE	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch

SWMU10 Investigation Report

Sample ID	Date Collected	Analyte	Result	Units	Matrix	Qualifier	Comments
Trip Blank	5/14/2015	cis-1,3-Dichloropropene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Dibromochloromethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Dibromomethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Dichlorodifluoromethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Ethylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Hexachlorobutadiene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Isopropylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Methyl tert-butyl ether (MTBE)	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Methylene Chloride	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Naphthalene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	n-Butylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	n-Propylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	sec-Butylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Styrene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	tert-Butylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Tetrachloroethene (PCE)	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Toluene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	trans-1,2-DCE	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	trans-1,3-Dichloropropene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Trichloroethene (TCE)	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Trichlorofluoromethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Vinyl chloride	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Xylenes, Total	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	1,1,1,2-Tetrachloroethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	1,1,1-Trichloroethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	1,1,2,2-Tetrachloroethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	1,1,2-Trichloroethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	1,1-Dichloroethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	1,1-Dichloroethene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	1,1-Dichloropropene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	1,2,3-Trichlorobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	1,2,3-Trichloropropane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	1,2,4-Trichlorobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	1,2,4-Trimethylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	1,2-Dibromo-3-chloropropane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	1,2-Dibromoethane (EDB)	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	1,2-Dichlorobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	1,2-Dichloroethane (EDC)	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	1,2-Dichloropropane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	1,3,5-Trimethylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	1,3-Dichlorobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch

SWMU10 Investigation Report

Sample ID	Date Collected	Analyte	Result	Units	Matrix	Qualifier	Comments
TRIP BLANK	5/14/2015	1,3-Dichloropropane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	1,4-Dichlorobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	1-Methylnaphthalene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	2,2-Dichloropropane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	2-Butanone	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	2-Chlorotoluene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	2-Hexanone	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	2-Methylnaphthalene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	4-Chlorotoluene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	4-Isopropyltoluene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	4-Methyl-2-pentanone	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	Acetone	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	Benzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	Bromobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	Bromodichloromethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	Bromoform	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	Bromomethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	Carbon disulfide	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	Carbon Tetrachloride	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	Chlorobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	Chloroethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	Chloroform	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	Chloromethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	cis-1,2-DCE	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	cis-1,3-Dichloropropene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	Dibromochloromethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	Dibromomethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	Dichlorodifluoromethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	Ethylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	Hexachlorobutadiene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	Isopropylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	Methyl tert-butyl ether (MTBE)	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	Methylene Chloride	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	Naphthalene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	n-Butylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	n-Propylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	sec-Butylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	Styrene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	tert-Butylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	Tetrachloroethene (PCE)	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	Toluene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch

SWMU10 Investigation Report

Sample ID	Date Collected	Analyte	Result	Units	Matrix	Qualifier	Comments
TRIP BLANK	5/14/2015	trans-1,2-DCE	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	trans-1,3-Dichloropropene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	Trichloroethene (TCE)	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	Trichlorofluoromethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	Vinyl chloride	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	Xylenes, Total	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	1,1,1,2-Tetrachloroethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	1,1,1-Trichloroethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	1,1,2,2-Tetrachloroethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	1,1,2-Trichloroethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	1,1-Dichloroethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	1,1-Dichloroethene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	1,1-Dichloropropene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	1,2,3-Trichlorobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	1,2,3-Trichloropropane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	1,2,4-Trichlorobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	1,2,4-Trimethylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	1,2-Dibromo-3-chloropropane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	1,2-Dibromoethane (EDB)	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	1,2-Dichlorobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	1,2-Dichloroethane (EDC)	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	1,2-Dichloropropane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	1,3,5-Trimethylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	1,3-Dichlorobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	1,3-Dichloropropane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	1,4-Dichlorobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	1-Methylnaphthalene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	2,2-Dichloropropane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	2-Butanone	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	2-Chlorotoluene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	2-Hexanone	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	2-Methylnaphthalene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	4-Chlorotoluene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	4-Isopropyltoluene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	4-Methyl-2-pentanone	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	Acetone	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	Benzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	Bromobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	Bromodichloromethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	Bromoform	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	Bromomethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch

SWMU10 Investigation Report

Sample ID	Date Collected	Analyte	Result	Units	Matrix	Qualifier	Comments
TRIP BLANK	5/14/2015	Carbon disulfide	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	Carbon Tetrachloride	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	Chlorobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	Chloroethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	Chloroform	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	Chloromethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	cis-1,2-DCE	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	cis-1,3-Dichloropropene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	Dibromochloromethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	Dibromomethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	Dichlorodifluoromethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	Ethylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	Hexachlorobutadiene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	Isopropylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	Methyl tert-butyl ether (MTBE)	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	Methylene Chloride	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	Naphthalene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	n-Butylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	n-Propylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	sec-Butylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	Styrene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	tert-Butylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	Tetrachloroethene (PCE)	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	Toluene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	trans-1,2-DCE	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	trans-1,3-Dichloropropene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	Trichloroethene (TCE)	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	Trichlorofluoromethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	Vinyl chloride	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	Xylenes, Total	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-18 (2-2.5')	5/6/2016	Di-n-butyl phthalate	0.14	mg/kg	soil	J+	qualified as high due to presence in field sample at conc. <5 times conc. in method blank
SWMU 10-18 (8-10')	5/6/2016	Di-n-butyl phthalate	0.089	mg/kg	soil	J+	qualifed as non-detect due to presence in field sample below concentration in method blank
SWMU 10-18 (2-2.5')	5/6/2016	mercury	0.0044	mg/kg	soil	J+	qualified high due to presence in method blank, blank concentration <5 times field concentration
SWMU 10-18 (8-10')	5/6/2016	mercury	0.0052	mg/kg	soil	J+	qualified high due to presence in method blank, blank concentration <5 times field concentration
SWMU 10-18 (18-20')	5/6/2016	mercury	0.0011	mg/kg	soil	J+	qualified as non-detect due to presence in field sample at conc. <5 times conc. in method blank
SWMU 10-18 (2-2.5')	5/6/2016	manganese	200	mg/kg	soil	J+	qualified high due to presence in method blank, blank concentration <5 times field concentration
SWMU 10-18 (8-10')	5/6/2016	manganese	700	mg/kg	soil	J+	qualified high due to presence in method blank, blank concentration <5 times field concentration
SWMU 10-18 (18-20')	5/6/2016	manganese	690	mg/kg	soil	J+	qualified high due to presence in method blank, blank concentration <5 times field concentration
SWMU 10-18 (2-2.5')	5/6/2016	chromium VI	<0.64	mg/kg	soil	UJ	Qualfied low bias due to MS/MSD recovery for batch
SWMU 10-18 (8-10')	5/6/2016	chromium VI	<0.64	mg/kg	soil	UJ	Qualfied low bias due to MS/MSD recovery for batch
SWMU 10-18 (18-20')	5/6/2016	chromium VI	<0.64	mg/kg	soil	UJ	Qualfied low bias due to MS/MSD recovery for batch

SWMU10 Investigation Report

Sample ID	Date Collected	Analyte	Result	Units	Matrix	Qualifier	Comments
SWMU 10-18 (2-2.5')	5/6/2016	N-Nitrosodi-n-propylamine	< 0.1165	mg/kg	soil	UJ	Qualfied low bias due to MS/MSD recovery for batch
SWMU 10-18 (8-10')	5/6/2016	N-Nitrosodi-n-propylamine	< 0.1126	mg/kg	soil	UJ	Qualfied low bias due to MS/MSD recovery for batch
SWMU 10-18 (18-20')	5/6/2016	N-Nitrosodi-n-propylamine	< 0.1105	mg/kg	soil	UJ	Qualfied low bias due to MS/MSD recovery for batch
SWMU 10-18 (2-2.5')	5/6/2016	Antimony	2.7	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-18 (2-2.5')	5/6/2016	Arsenic	1.8	mg/kg	soil	J-	Qualified low bias due to Method MSD recovery
SWMU 10-18 (2-2.5')	5/6/2016	Barium	130	mg/kg	soil	J+	Qualified high bias due to Method MS/MSD recovery
SWMU 10-18 (2-2.5')	5/6/2016	Beryllium	1.1	mg/kg	soil	J-	Qualified low bias due to Method MSD recovery
SWMU 10-18 (2-2.5')	5/6/2016	Cadmium	< 0.0757	mg/kg	soil	UJ	Qualfied low bias due to MS/MSD recovery for batch
SWMU 10-18 (2-2.5')	5/6/2016	cobalt	4.7	mg/kg	soil	J-	Qualified low bias due to Method MS recovery
SWMU 10-18 (2-2.5')	5/6/2016	Lead	5.2	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-18 (2-2.5')	5/6/2016	manganese	200	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-18 (2-2.5')	5/6/2016	Nickel	8.7	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-18 (2-2.5')	5/6/2016	Selenium	< 1.3042	mg/kg	soil	UJ	Qualfied low bias due to MS/MSD recovery for batch
SWMU 10-18 (8-10')	5/6/2016	Antimony	< 2.8	mg/kg	soil	UJ	Qualfied low bias due to MS/MSD recovery for batch
SWMU 10-18 (8-10')	5/6/2016	Arsenic	2.2	mg/kg	soil	J-	Qualified low bias due to Method MSD recovery
SWMU 10-18 (8-10')	5/6/2016	Barium	170	mg/kg	soil	J+	Qualified high bias due to Method MS/MSD recovery
SWMU 10-18 (8-10')	5/6/2016	Beryllium	1.1	mg/kg	soil	J-	Qualified low bias due to Method MSD recovery
SWMU 10-18 (8-10')	5/6/2016	Cadmium	< 0.15	mg/kg	soil	UJ	Qualfied low bias due to MS/MSD recovery for batch
SWMU 10-18 (8-10')	5/6/2016	cobalt	6.4	mg/kg	soil	J-	Qualified low bias due to Method MS recovery
SWMU 10-18 (8-10')	5/6/2016	Lead	4.9	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-18 (8-10')	5/6/2016	manganese	700	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-18 (8-10')	5/6/2016	Nickel	12	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-18 (8-10')	5/6/2016	Selenium	< 2.6	mg/kg	soil	UJ	Qualfied low bias due to MS/MSD recovery for batch
SWMU 10-18 (18-20')	5/6/2016	Antimony	2.9	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-18 (18-20')	5/6/2016	Arsenic	2	mg/kg	soil	J-	Qualified low bias due to Method MSD recovery
SWMU 10-18 (18-20')	5/6/2016	Barium	1000	mg/kg	soil	J+	Qualified high bias due to Method MS/MSD recovery
SWMU 10-18 (18-20')	5/6/2016	Beryllium	0.86	mg/kg	soil	J-	Qualified low bias due to Method MSD recovery
SWMU 10-18 (18-20')	5/6/2016	Cadmium	< 0.074	mg/kg	soil	UJ	Qualfied low bias due to MS/MSD recovery for batch
SWMU 10-18 (18-20')	5/6/2016	cobalt	8.3	mg/kg	soil	J-	Qualified low bias due to Method MS recovery
SWMU 10-18 (18-20')	5/6/2016	Lead	2.6	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-18 (18-20')	5/6/2016	manganese	690	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-18 (18-20')	5/6/2016	Nickel	15	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-18 (18-20')	5/6/2016	Selenium	< 1.3	mg/kg	soil	UJ	Qualfied low bias due to MS/MSD recovery for batch
SWMU 10-19 (12-14')	5/17/2016	1-Methylnaphthalene	7.2	mg/kg	soil	J+	qualified high due to presence in method blank, blank concentration <5 times field concentration
SWMU 10-19 (18-20')	5/17/2016	1-Methylnaphthalene	0.0014	mg/kg	soil	J+	qualified high due to presence in method blank, blank concentration <5 times field concentration
SWMU 10-20 (8-10')	5/17/2016	1-Methylnaphthalene	41	mg/kg	soil	J+	qualified high due to presence in method blank, blank concentration <5 times field concentration
SWMU 10-20 (10-12')	5/17/2016	1-Methylnaphthalene	25	mg/kg	soil	J+	qualified high due to presence in method blank, blank concentration <5 times field concentration
SWMU 10-20 (16-18')	5/17/2016	1-Methylnaphthalene	8.4	mg/kg	soil	J+	qualified high due to presence in method blank, blank concentration <5 times field concentration
SWMU 10-19 (12-14')	5/17/2016	Methylene chloride	0.05	mg/kg	soil	J+	qualified as high due to presence in field sample at conc. <5 times conc. in method blank
SWMU 10-20 (8-10')	5/17/2016	Methylene chloride	0.51	mg/kg	soil	J+	qualified as high due to presence in field sample at conc. <5 times conc. in method blank
SWMU 10-20 (10-12')	5/17/2016	Methylene chloride	0.5	mg/kg	soil	J+	qualified as high due to presence in field sample at conc. <5 times conc. in method blank

SWMU10 Investigation Report

Sample ID	Date Collected	Analyte	Result	Units	Matrix	Qualifier	Comments
SWMU 10-19 (2-2.5')	5/17/2016	mercury	0.002	mg/kg	soil	J+	qualified as high due to presence in field sample at conc. <5 times conc. in method blank
SWMU 10-19 (12-14')	5/17/2016	mercury	0.0019	mg/kg	soil	J+	qualified as high due to presence in field sample at conc. <5 times conc. in method blank
SWMU 10-19 (18-20')	5/17/2016	mercury	0.00081	mg/kg	soil	J+	qualified as high due to presence in field sample at conc. <5 times conc. in method blank
SWMU 10-20 (2-2.5')	5/17/2016	mercury	2	mg/kg	soil	J+	qualified high due to presence in method blank, blank concentration <5 times field concentration
SWMU 10-20 (8-10')	5/17/2016	mercury	0.23	mg/kg	soil	J+	qualified high due to presence in method blank, blank concentration <5 times field concentration
SWMU 10-20 (10-12')	5/17/2016	mercury	0.0041	mg/kg	soil	J+	qualified as high due to presence in field sample at conc. <5 times conc. in method blank
SWMU 10-20 (16-18')	5/17/2016	mercury	0.37	mg/kg	soil	J+	qualified high due to presence in method blank, blank concentration <5 times field concentration
SWMU 10-20 (20-22')	5/17/2016	mercury	0.0012	mg/kg	soil	J+	qualified as high due to presence in field sample at conc. <5 times conc. in method blank
SWMU 10-19 (2-2.5')	5/17/2016	Antimony	4	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-19 (2-2.5')	5/17/2016	Arsenic	1.9	mg/kg	soil	J-	Qualified low bias due to Method MSD recovery
SWMU 10-19 (2-2.5')	5/17/2016	Barium	160	mg/kg	soil	J+	Qualified high bias due to Method MS/MSD recovery
SWMU 10-19 (2-2.5')	5/17/2016	Beryllium	1.2	mg/kg	soil	J-	Qualified low bias due to Method MSD recovery
SWMU 10-19 (2-2.5')	5/17/2016	Cadmium	< 0.0759	mg/kg	soil	UJ	Qualfied low bias due to MS/MSD recovery for batch
SWMU 10-19 (2-2.5')	5/17/2016	cobalt	5.2	mg/kg	soil	J-	Qualified low bias due to Method MS recovery
SWMU 10-19 (2-2.5')	5/17/2016	Lead	5.1	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-19 (2-2.5')	5/17/2016	manganese	280	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-19 (2-2.5')	5/17/2016	Nickel	9.8	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-19 (2-2.5')	5/17/2016	Selenium	< 1.3064	mg/kg	soil	UJ	Qualfied low bias due to MS/MSD recovery for batch
SWMU 10-19 (12-14')	5/17/2016	Antimony	< 6.8559	mg/kg	soil	UJ	Qualified low bias due to Method MS/MSD recovery
SWMU 10-19 (12-14')	5/17/2016	Arsenic	< 4.2233	mg/kg	soil	UJ	Qualified low bias due to Method MSD recovery
SWMU 10-19 (12-14')	5/17/2016	Barium	830	mg/kg	soil	J+	Qualified high bias due to Method MS/MSD recovery
SWMU 10-19 (12-14')	5/17/2016	Beryllium	1.1	mg/kg	soil	J-	Qualified low bias due to Method MSD recovery
SWMU 10-19 (12-14')	5/17/2016	Cadmium	< 0.3668	mg/kg	soil	UJ	Qualfied low bias due to MS/MSD recovery for batch
SWMU 10-19 (12-14')	5/17/2016	cobalt	6.5	mg/kg	soil	J-	Qualified low bias due to Method MS recovery
SWMU 10-19 (12-14')	5/17/2016	Lead	5.7	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-19 (12-14')	5/17/2016	manganese	1200	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-19 (12-14')	5/17/2016	Nickel	15	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-19 (12-14')	5/17/2016	Selenium	< 6.3156	mg/kg	soil	UJ	Qualfied low bias due to MS/MSD recovery for batch
SWMU 10-19 (18-20')	5/17/2016	Antimony	3.2	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-19 (18-20')	5/17/2016	Arsenic	3	mg/kg	soil	J-	Qualified low bias due to Method MSD recovery
SWMU 10-19 (18-20')	5/17/2016	Barium	480	mg/kg	soil	J+	Qualified high bias due to Method MS/MSD recovery
SWMU 10-19 (18-20')	5/17/2016	Beryllium	1	mg/kg	soil	J-	Qualified low bias due to Method MSD recovery
SWMU 10-19 (18-20')	5/17/2016	Cadmium	< 0.071	mg/kg	soil	UJ	Qualfied low bias due to MS/MSD recovery for batch
SWMU 10-19 (18-20')	5/17/2016	cobalt	7.9	mg/kg	soil	J-	Qualified low bias due to Method MS recovery
SWMU 10-19 (18-20')	5/17/2016	Lead	3.5	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-19 (18-20')	5/17/2016	manganese	410	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-19 (18-20')	5/17/2016	Nickel	15	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-19 (18-20')	5/17/2016	Selenium	< 1.219	mg/kg	soil	UJ	Qualfied low bias due to MS/MSD recovery for batch
SWMU 10-20 (2-2.5')	5/17/2016	Antimony	2.7	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-20 (2-2.5')	5/17/2016	Arsenic	5.4	mg/kg	soil	J-	Qualified low bias due to Method MSD recovery
SWMU 10-20 (2-2.5')	5/17/2016	Barium	490	mg/kg	soil	J+	Qualified high bias due to Method MS/MSD recovery

SWMU10 Investigation Report

Sample ID	Date Collected	Analyte	Result	Units	Matrix	Qualifier	Comments
SWMU 10-20 (2-2.5')	5/17/2016	Beryllium	0.77	mg/kg	soil	J-	Qualified low bias due to Method MSD recovery
SWMU 10-20 (2-2.5')	5/17/2016	Cadmium	< 0.076	mg/kg	soil	UJ	Qualfied low bias due to MS/MSD recovery for batch
SWMU 10-20 (2-2.5')	5/17/2016	cobalt	4.9	mg/kg	soil	J-	Qualified low bias due to Method MS recovery
SWMU 10-20 (2-2.5')	5/17/2016	Lead	21	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-20 (2-2.5')	5/17/2016	manganese	520	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-20 (2-2.5')	5/17/2016	Nickel	12	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-20 (2-2.5')	5/17/2016	Selenium	< 1.3049	mg/kg	soil	UJ	Qualfied low bias due to MS/MSD recovery for batch
SWMU 10-20 (8-10')	5/17/2016	Antimony	2.8	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-20 (8-10')	5/17/2016	Arsenic	3.9	mg/kg	soil	J-	Qualified low bias due to Method MSD recovery
SWMU 10-20 (8-10')	5/17/2016	Barium	410	mg/kg	soil	J+	Qualified high bias due to Method MS/MSD recovery
SWMU 10-20 (8-10')	5/17/2016	Beryllium	1.2	mg/kg	soil	J-	Qualified low bias due to Method MSD recovery
SWMU 10-20 (8-10')	5/17/2016	Cadmium	< 0.079	mg/kg	soil	UJ	Qualfied low bias due to MS/MSD recovery for batch
SWMU 10-20 (8-10')	5/17/2016	cobalt	5.6	mg/kg	soil	J-	Qualified low bias due to Method MS recovery
SWMU 10-20 (8-10')	5/17/2016	Lead	2.8	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-20 (8-10')	5/17/2016	manganese	370	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-20 (8-10')	5/17/2016	Nickel	11	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-20 (8-10')	5/17/2016	Selenium	< 1.3674	mg/kg	soil	UJ	Qualfied low bias due to MS/MSD recovery for batch
SWMU 10-20 (10-12')	5/17/2016	Antimony	3.7	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-20 (10-12')	5/17/2016	Arsenic	1.9	mg/kg	soil	J-	Qualified low bias due to Method MSD recovery
SWMU 10-20 (10-12')	5/17/2016	Barium	250	mg/kg	soil	J+	Qualified high bias due to Method MS/MSD recovery
SWMU 10-20 (10-12')	5/17/2016	Beryllium	1.1	mg/kg	soil	J-	Qualified low bias due to Method MSD recovery
SWMU 10-20 (10-12')	5/17/2016	Cadmium	< 0.081	mg/kg	soil	UJ	Qualfied low bias due to MS/MSD recovery for batch
SWMU 10-20 (10-12')	5/17/2016	cobalt	5.6	mg/kg	soil	J-	Qualified low bias due to Method MS recovery
SWMU 10-20 (10-12')	5/17/2016	Lead	6	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-20 (10-12')	5/17/2016	manganese	190	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-20 (10-12')	5/17/2016	Nickel	10	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-20 (10-12')	5/17/2016	Selenium	< 1.3864	mg/kg	soil	UJ	Qualfied low bias due to MS/MSD recovery for batch
SWMU 10-20 (16-18')	5/17/2016	Antimony	2.5	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-20 (16-18')	5/17/2016	Arsenic	2.2	mg/kg	soil	J-	Qualified low bias due to Method MSD recovery
SWMU 10-20 (16-18')	5/17/2016	Barium	210	mg/kg	soil	J+	Qualified high bias due to Method MS/MSD recovery
SWMU 10-20 (16-18')	5/17/2016	Beryllium	0.87	mg/kg	soil	J-	Qualified low bias due to Method MSD recovery
SWMU 10-20 (16-18')	5/17/2016	Cadmium	< 0.075	mg/kg	soil	UJ	Qualfied low bias due to MS/MSD recovery for batch
SWMU 10-20 (16-18')	5/17/2016	cobalt	5.5	mg/kg	soil	J-	Qualified low bias due to Method MS recovery
SWMU 10-20 (16-18')	5/17/2016	Lead	5.3	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-20 (16-18')	5/17/2016	manganese	750	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-20 (16-18')	5/17/2016	Nickel	10	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-20 (16-18')	5/17/2016	Selenium	< 1.2956	mg/kg	soil	UJ	Qualfied low bias due to MS/MSD recovery for batch
SWMU 10-20 (20-22')	5/17/2016	Antimony	3.3	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-20 (20-22')	5/17/2016	Arsenic	2.7	mg/kg	soil	J-	Qualified low bias due to Method MSD recovery
SWMU 10-20 (20-22')	5/17/2016	Barium	750	mg/kg	soil	J+	Qualified high bias due to Method MS/MSD recovery
SWMU 10-20 (20-22')	5/17/2016	Beryllium	0.88	mg/kg	soil	J-	Qualified low bias due to Method MSD recovery

SWMU10 Investigation Report

Sample ID	Date Collected	Analyte	Result	Units	Matrix	Qualifier	Comments
SWMU 10-20 (20-22')	5/17/2016	Cadmium	< 0.072	mg/kg	soil	UJ	Qualfied low bias due to MS/MSD recovery for batch
SWMU 10-20 (20-22')	5/17/2016	cobalt	8.5	mg/kg	soil	J-	Qualified low bias due to Method MS recovery
SWMU 10-20 (20-22')	5/17/2016	Lead	3.5	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-20 (20-22')	5/17/2016	manganese	1100	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-20 (20-22')	5/17/2016	Nickel	14	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-20 (20-22')	5/17/2016	Selenium	< 1.2368	mg/kg	soil	UJ	Qualfied low bias due to MS/MSD recovery for batch
SWMU 10-21 (20-22')	5/17/2016	cyanide	0.044	mg/kg	soil	J-	Qualified low bias due to Method MS recovery
SWMU 10-22 (2-2.5')	5/17/2016	cyanide	0.04	mg/kg	soil	J-	Qualified low bias due to Method MS recovery
SWMU 10-22 (8-9')	5/17/2016	cyanide	< 0.039	mg/kg	soil	UJ	Qualfied low bias due to MS recovery for batch
SWMU 10-21 (2-2.5')	5/17/2016	Bis(2-ethylhexyl)phthalate	0.17	mg/kg	soil	J+	qualified as high due to presence in field sample at conc. <5 times conc. in method blank
SWMU 10-21 (12-14')	5/17/2016	Bis(2-ethylhexyl)phthalate	0.14	mg/kg	soil	J+	qualified as high due to presence in field sample at conc. <5 times conc. in method blank
SWMU 10-21 (20-22')	5/17/2016	Bis(2-ethylhexyl)phthalate	0.12	mg/kg	soil	J+	qualified as high due to presence in field sample at conc. <5 times conc. in method blank
SWMU 10-22 (2-2.5')	5/17/2016	Bis(2-ethylhexyl)phthalate	0.19	mg/kg	soil	J+	qualified as high due to presence in field sample at conc. <5 times conc. in method blank
SWMU 10-22 (8-9')	5/17/2016	Bis(2-ethylhexyl)phthalate	0.17	mg/kg	soil	J+	qualified as high due to presence in field sample at conc. <5 times conc. in method blank
SWMU 10-21 (12-14')	5/17/2016	Di-n-butyl phthalate	0.11	mg/kg	soil	J+	qualified as high due to presence in field sample at conc. <5 times conc. in method blank
SWMU 10-22 (2-2.5')	5/17/2016	Di-n-butyl phthalate	0.12	mg/kg	soil	J+	qualified as high due to presence in field sample at conc. <5 times conc. in method blank
SWMU 10-22 (8-9')	5/17/2016	Di-n-butyl phthalate	0.11	mg/kg	soil	J+	qualified as high due to presence in field sample at conc. <5 times conc. in method blank
SWMU 10-21 (2-2.5')	5/17/2016	Antimony	< 1.3	mg/kg	soil	UJ	Qualified low bias due to Method MS/MSD recovery
SWMU 10-21 (2-2.5')	5/17/2016	cobalt	3.7	mg/kg	soil	J-	Qualified low bias due to Method MSD recovery
SWMU 10-21 (2-2.5')	5/17/2016	Lead	2.1	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-21 (2-2.5')	5/17/2016	Nickel	6	mg/kg	soil	J-	Qualified low bias due to Method MSD recovery
SWMU 10-21 (2-2.5')	5/17/2016	Selenium	< 1.2	mg/kg	soil	UJ	Qualified low bias due to Method MSD recovery
SWMU 10-21 (2-2.5')	5/17/2016	zinc	16	mg/kg	soil	J-	Qualified low bias due to Method MSD recovery
SWMU 10-21 (12-14')	5/17/2016	Antimony	< 7.3205	mg/kg	soil	UJ	Qualified low bias due to Method MS/MSD recovery
SWMU 10-21 (12-14')	5/17/2016	cobalt	5.6	mg/kg	soil	J-	Qualified low bias due to Method MSD recovery
SWMU 10-21 (12-14')	5/17/2016	Lead	5.1	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-21 (12-14')	5/17/2016	Nickel	11	mg/kg	soil	J-	Qualified low bias due to Method MSD recovery
SWMU 10-21 (12-14')	5/17/2016	Selenium	< 1.3487	mg/kg	soil	UJ	Qualified low bias due to Method MSD recovery
SWMU 10-21 (12-14')	5/17/2016	zinc	20	mg/kg	soil	J-	Qualified low bias due to Method MSD recovery
SWMU 10-20-GW	5/20/2016	cyanide	1.05	mg/I	Water	J+	qualified high due to presence in method blank, blank concentration <5 times field concentration
SWMU 10-20-GW	5/20/2016	mercury	0.00016	mg/l	Water	J+	qualified as high due to presence in field sample at conc. <5 times conc. in method blank
SWMU 10-20-GW	5/20/2016	methlyene chloride	3.4	ug/l	Water	J+	qualified high due to presence in method blank, blank concentration <5 times field concentration
SWMU 10-20-GW	5/20/2016	cyanide	1.05	mg/l	Water	J-	Qualified low bias due to Method MSD recovery
SWMU 10-23 (2-2.5')	9/19/2016	Antimony	< 2.2222	mg/kg	soil	UJ	Qualfied low bias due to MS/MSD recovery for batch
SWMU 10-23 (2-2.5')	9/19/2016	Arsenic	< 1.9626	mg/kg	soil	UJ	Qualfied low bias due to MS recovery for batch
SWMU 10-23 (2-2.5')	9/19/2016	Barium	220	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-23 (2-2.5')	9/19/2016	Lead	2.6	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-23 (2-2.5')	9/19/2016	Nickel	12	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-23 (2-2.5')	9/19/2016	Selenium	< 4.0179	mg/kg	soil	UJ	Qualfied low bias due to MS/MSD recovery for batch
SWMU 10-23 (2-2.5')	9/19/2016	zinc	21	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-23 (15-16')	9/19/2016	Antimony	< 1.1461	mg/kg	soil	UJ	Qualfied low bias due to MS/MSD recovery for batch

Table A-2 Qualified Data

SWMU10 Investigation Report

Sample ID	Date Collected	Analyte	Result	Units	Matrix	Qualifier	Comments
SWMU 10-23 (15-16')	9/19/2016	Arsenic	1	mg/kg	soil	J-	Qualfied low bias due to MS recovery for batch
SWMU 10-23 (15-16')	9/19/2016	Barium	730	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-23 (15-16')	9/19/2016	Lead	0.95	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-23 (15-16')	9/19/2016	Nickel	13	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-23 (15-16')	9/19/2016	Selenium	< 2.0723	mg/kg	soil	UJ	Qualfied low bias due to MS/MSD recovery for batch
SWMU 10-23 (15-16')	9/19/2016	zinc	25	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-24 (2-2.5')	9/19/2016	Antimony	1.1	mg/kg	soil	J-	Qualfied low bias due to MS/MSD recovery for batch
SWMU 10-24 (2-2.5')	9/19/2016	Arsenic	< 0.9076	mg/kg	soil	UJ	Qualfied low bias due to MS recovery for batch
SWMU 10-24 (2-2.5')	9/19/2016	Barium	190	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-24 (2-2.5')	9/19/2016	Lead	2.3	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-24 (2-2.5')	9/19/2016	Nickel	5.7	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-24 (2-2.5')	9/19/2016	Selenium	< 1.858	mg/kg	soil	UJ	Qualfied low bias due to MS/MSD recovery for batch
SWMU 10-24 (2-2.5')	9/19/2016	zinc	11	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-24 (6-8')	9/19/2016	Antimony	< 1.2345	mg/kg	soil	UJ	Qualfied low bias due to MS/MSD recovery for batch
SWMU 10-24 (6-8')	9/19/2016	Arsenic	< 1.0903	mg/kg	soil	UJ	Qualfied low bias due to MS recovery for batch
SWMU 10-24 (6-8')	9/19/2016	Barium	120	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-24 (6-8')	9/19/2016	Lead	3.9	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-24 (6-8')	9/19/2016	Nickel	9.9	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-24 (6-8')	9/19/2016	Selenium	< 2.2321	mg/kg	soil	UJ	Qualfied low bias due to MS/MSD recovery for batch
SWMU 10-24 (6-8')	9/19/2016	zinc	18	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-24 (8-10')	9/19/2016	Antimony	< 2.4091	mg/kg	soil	UJ	Qualfied low bias due to MS/MSD recovery for batch
SWMU 10-24 (8-10')	9/19/2016	Arsenic	< 2.1276	mg/kg	soil	UJ	Qualfied low bias due to MS recovery for batch
SWMU 10-24 (8-10')	9/19/2016	Barium	130	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-24 (8-10')	9/19/2016	Lead	1.5	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-24 (8-10')	9/19/2016	Nickel	12	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-24 (8-10')	9/19/2016	Selenium	< 4.3557	mg/kg	soil	UJ	Qualfied low bias due to MS/MSD recovery for batch
SWMU 10-24 (8-10')	9/19/2016	zinc	22	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-24 (15-16')	9/19/2016	Antimony	2.1	mg/kg	soil	J-	Qualfied low bias due to MS/MSD recovery for batch
SWMU 10-24 (15-16')	9/19/2016	Arsenic	< 1.0181	mg/kg	soil	UJ	Qualfied low bias due to MS recovery for batch
SWMU 10-24 (15-16')	9/19/2016	Barium	510	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-24 (15-16')	9/19/2016	Lead	1.1	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-24 (15-16')	9/19/2016	Nickel	16	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-24 (15-16')	9/19/2016	Selenium	< 2.0843	mg/kg	soil	UJ	Qualfied low bias due to MS/MSD recovery for batch
SWMU 10-24 (15-16')	9/19/2016	zinc	26	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-25 (2-2.5')	9/19/2016	Antimony	< 1.1611	mg/kg	soil	UJ	Qualfied low bias due to MS/MSD recovery for batch
SWMU 10-25 (2-2.5')	9/19/2016	Arsenic	< 1.0254	mg/kg	soil	UJ	Qualfied low bias due to MS recovery for batch
SWMU 10-25 (2-2.5')	9/19/2016	Barium	96	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-25 (2-2.5')	9/19/2016	Lead	2.1	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-25 (2-2.5')	9/19/2016	Nickel	5.7	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-25 (2-2.5')	9/19/2016	Selenium	< 2.0993	mg/kg	soil	UJ	Qualfied low bias due to MS/MSD recovery for batch
SWMU 10-25 (2-2.5')	9/19/2016	zinc	11	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery

Table A-2 Qualified Data

SWMU10 Investigation Report

Sample ID	Date Collected	Analyte	Result	Units	Matrix	Qualifier	Comments
SWMU 10-25 (10-12')	9/19/2016	Antimony	< 2.4915	mg/kg	soil	UJ	Qualfied low bias due to MS/MSD recovery for batch
SWMU 10-25 (10-12')	9/19/2016	Arsenic	< 2.2003	mg/kg	soil	UJ	Qualfied low bias due to MS recovery for batch
SWMU 10-25 (10-12')	9/19/2016	Barium	190	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-25 (10-12')	9/19/2016	Lead	2.9	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-25 (10-12')	9/19/2016	Nickel	14	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-25 (10-12')	9/19/2016	Selenium	< 4.5047	mg/kg	soil	UJ	Qualfied low bias due to MS/MSD recovery for batch
SWMU 10-25 (10-12')	9/19/2016	zinc	26	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-25 (16.5-18')	9/19/2016	Antimony	1.6	mg/kg	soil	UJ	Qualfied low bias due to MS/MSD recovery for batch
SWMU 10-25 (16.5-18')	9/19/2016	Arsenic	< 1.0232	mg/kg	soil	UJ	Qualfied low bias due to MS recovery for batch
SWMU 10-25 (16.5-18')	9/19/2016	Barium	460	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-25 (16.5-18')	9/19/2016	Lead	< 0.2001	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-25 (16.5-18')	9/19/2016	Nickel	15	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-25 (16.5-18')	9/19/2016	Selenium	< 2.0948	mg/kg	soil	UJ	Qualfied low bias due to MS/MSD recovery for batch
SWMU 10-25 (16.5-18')	9/19/2016	zinc	27	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-24 (6-8')	9/19/2016	Toluene	0.25	mg/kg	soil	J+	qualified high due to presence in method blank, blank concentration <5 times field concentration
SWMU 10-24 (6-8')	9/19/2016	Bromomethane	0.32	mg/kg	soil	J+	qualified high due to presence in method blank, blank concentration <5 times field concentration
SWMU 10-25 (2-2.5')	9/19/2016	1,2,4-Trimethylbenzene	5.8	mg/kg	soil	J+	qualified high due to presence in method blank, blank concentration <5 times field concentration
SWMU 10-23 (15-16')	9/19/2016	1-Methylnaphthalene	0.0004	mg/kg	soil	J+	qualified as high due to presence in field sample at conc. <5 times conc. in method blank
SWMU 10-24 (15-16')	9/19/2016	1-Methylnaphthalene	0.0008	mg/kg	soil	J+	qualified as high due to presence in field sample at conc. <5 times conc. in method blank
SWMU 10-25 (2-2.5')	9/19/2016	1-Methylnaphthalene	13	mg/kg	soil	J+	qualified high due to presence in method blank, blank concentration <5 times field concentration
SWMU 10-23 (2-2.5')	9/19/2016	Bis(2-ethylhexyl)phthalate	0.15	mg/kg	soil	J+	qualified as high due to presence in field sample at conc. <5 times conc. in method blank
SWMU 10-23 (2-2.5')	9/19/2016	Di-n-butyl phthalate	0.22	mg/kg	soil	J+	qualified as high due to presence in field sample at conc. <5 times conc. in method blank
SWMU 10-23 (15-16')	9/19/2016	Bis(2-ethylhexyl)phthalate	0.17	mg/kg	soil	J+	qualified as high due to presence in field sample at conc. <5 times conc. in method blank
SWMU 10-23 (15-16')	9/19/2016	Di-n-butyl phthalate	0.25	mg/kg	soil	J+	qualified as high due to presence in field sample at conc. <5 times conc. in method blank
SWMU 10-24 (2-2.5')	9/19/2016	Bis(2-ethylhexyl)phthalate	0.16	mg/kg	soil	J+	qualified as high due to presence in field sample at conc. <5 times conc. in method blank
SWMU 10-24 (2-2.5')	9/19/2016	Di-n-butyl phthalate	0.22	mg/kg	soil	J+	qualified as high due to presence in field sample at conc. <5 times conc. in method blank
SWMU 10-24 (8-10')	9/19/2016	Bis(2-ethylhexyl)phthalate	0.23	mg/kg	soil	J+	qualified as high due to presence in field sample at conc. <5 times conc. in method blank
SWMU 10-24 (8-10')	9/19/2016	Di-n-butyl phthalate	0.28	mg/kg	soil	J+	qualified as high due to presence in field sample at conc. <5 times conc. in method blank
SWMU 10-24 (15-16')	9/19/2016	Bis(2-ethylhexyl)phthalate	0.16	0 0	soil	J+	qualified as high due to presence in field sample at conc. <5 times conc. in method blank
SWMU 10-24 (15-16')	9/19/2016	Di-n-butyl phthalate	0.15	mg/kg	soil	J+	qualified as high due to presence in field sample at conc. <5 times conc. in method blank
SWMU 10-25 (2-2.5')	9/19/2016	Bis(2-ethylhexyl)phthalate	0.22	mg/kg	soil	J+	qualified as high due to presence in field sample at conc. <5 times conc. in method blank
SWMU 10-25 (2-2.5')	9/19/2016	Di-n-butyl phthalate	0.35	mg/kg	soil	J+	qualified as high due to presence in field sample at conc. <5 times conc. in method blank
SWMU 10-25 (10-12')	9/19/2016	Bis(2-ethylhexyl)phthalate	0.16	mg/kg	soil	J+	qualified as high due to presence in field sample at conc. <5 times conc. in method blank
SWMU 10-25 (10-12')	9/19/2016	Di-n-butyl phthalate	0.22	mg/kg	soil	J+	qualified as high due to presence in field sample at conc. <5 times conc. in method blank
SWMU 10-25 (16.5-18')	9/19/2016	Bis(2-ethylhexyl)phthalate	0.17	mg/kg	soil	J+	qualified as high due to presence in field sample at conc. <5 times conc. in method blank
SWMU 10-25 (16.5-18')	9/19/2016	Di-n-butyl phthalate	0.35	mg/kg	soil	J+	qualified as high due to presence in field sample at conc. <5 times conc. in method blank
SWMU 10-23 (2-2.5')	9/19/2016	manganese	450	mg/kg	soil	J+	qualified high due to presence in method blank, blank concentration <5 times field concentration
SWMU 10-23 (2-2.5')	9/19/2016	zinc	21	mg/kg	soil	J+	qualified high due to presence in method blank, blank concentration <5 times field concentration
SWMU 10-23 (15-16')	9/19/2016	manganese	850	mg/kg	soil	J+	qualified high due to presence in method blank, blank concentration <5 times field concentration
SWMU 10-23 (15-16')	9/19/2016	zinc	25	mg/kg	soil	J+	qualified high due to presence in method blank, blank concentration <5 times field concentration
SWMU 10-24 (2-2.5')	9/19/2016	manganese	370	mg/kg	soil	J+	qualified high due to presence in method blank, blank concentration <5 times field concentration

Table A-2 Qualified Data

SWMU10 Investigation Report

Western Refining Southwest, Inc. - Gallup Refinery

Sample ID	Date Collected	Analyte	Result	Units	Matrix	Qualifier	Comments
SWMU 10-24 (2-2.5')	9/19/2016	zinc	11	mg/kg	soil	J+	qualified high due to presence in method blank, blank concentration <5 times field concentration
SWMU 10-24 (6-8')	9/19/2016	manganese	200	mg/kg	soil	J+	qualified high due to presence in method blank, blank concentration <5 times field concentration
SWMU 10-24 (6-8')	9/19/2016	zinc	18	mg/kg	soil	J+	qualified high due to presence in method blank, blank concentration <5 times field concentration
SWMU 10-24 (8-10')	9/19/2016	manganese	290	mg/kg	soil	J+	qualified high due to presence in method blank, blank concentration <5 times field concentration
SWMU 10-24 (8-10')	9/19/2016	zinc	22	mg/kg	soil	J+	qualified high due to presence in method blank, blank concentration <5 times field concentration
SWMU 10-24 (15-16')	9/19/2016	manganese	1400	mg/kg	soil	J+	qualified high due to presence in method blank, blank concentration <5 times field concentration
SWMU 10-24 (15-16')	9/19/2016	zinc	26	mg/kg	soil	J+	qualified high due to presence in method blank, blank concentration <5 times field concentration
SWMU 10-25 (2-2.5')	9/19/2016	manganese	500	mg/kg	soil	J+	qualified high due to presence in method blank, blank concentration <5 times field concentration
SWMU 10-25 (2-2.5')	9/19/2016	zinc	11	mg/kg	soil	J+	qualified high due to presence in method blank, blank concentration <5 times field concentration
SWMU 10-25 (10-12')	9/19/2016	manganese	300	mg/kg	soil	J+	qualified high due to presence in method blank, blank concentration <5 times field concentration
SWMU 10-25 (10-12')	9/19/2016	zinc	26	mg/kg	soil	J+	qualified high due to presence in method blank, blank concentration <5 times field concentration
SWMU 10-25 (16.5-18')	9/19/2016	manganese	1100	mg/kg	soil	J+	qualified high due to presence in method blank, blank concentration <5 times field concentration
SWMU 10-25 (16.5-18')	9/19/2016	zinc	27	mg/kg	soil	J+	qualified high due to presence in method blank, blank concentration <5 times field concentration
SWMU 10-25-GW	9/21/2016	manganese (total)	2.1	mg/l	Water	J+	qualified high due to presence in method blank, blank concentration <5 times field concentration
SWMU 10-25-GW	9/21/2016	Bis(2-ethylhexyl)phthalate	2.8	ug/l	Water	J+	qualified high due to presence in method blank, blank concentration <5 times field concentration
SWMU 10-25-GW	9/21/2016	4-Nitrophenol	< 2.553	ug/l	Water	UJ	Qualfied low bias due to MS/MSD recovery for batch

Notes:

UJ = Estimated reporting concentration

J- = Low bias

J+ = High bias

Field Duplicate Summary

SWMU 10 Investigation Report

		SWMU 10-14 (0-2')	SWMU 10 DUP01	RPD
	Parameter	Sample Result	Duplicate Result	(%)
PH (mg/kg-dry):	Gasoline Range Organics (GRO)	0.849320979 U	0.858017826 U	NC
	Diesel Range Organics (DRO)	160	150	1.6
	Motor Oil Range Organics (MRO)	330	310	1.6
OCs (ug/kg-dry)	1,3,5-Trimethylbenzene	0.000347 J	0.000422 J	4.9
oos (ug/kg-ury)	Methylene chloride	0.000606 J	0.00051 J	4.3
	sec-Butylbenzene	0.000645 J	0.000534 J	4.7
	Ethylbenzene	0.000703 J	0.000638 J	2.4
	1,2,4-Trimethylbenzene	0.00077 J	0.000972 J	5.8
	2-Hexanone	0.000886 J	0.000653 J	7.6
	Benzene	0.00118 J	0.00104 J	3.2
	Xylenes, Total	0.00182 J	0.00171	1.6
	Toluene	0.00263	0.00232	3.1
	Acetone	0.0237	0.0166	8.8
	2-Butanone	0.00407 J	0.00253 J	11.7
	1,1,1,2-Tetrachloroethane	0.00031 U	0.00026 U	NC
	1,1,1-Trichloroethane	0.00027 U	0.00023 U	NC
	1,1,2,2-Tetrachloroethane	0.00042 U	0.00035 U	NC
	1,1,2-Trichloroethane	0.00193 U	0.00159 U	NC
	1,1-Dichloroethane	0.00045 U	0.00037 U	NC
	1,1-Dichloroethene	0.00032 U	0.00027 U	NC
	1,1-Dichloropropene	0.00035 U	0.00029 U	NC
	1,2,3-Trichlorobenzene	0.00070 U	0.00058 U	NC
	1,2,3-Trichloropropane	0.00068 U	0.00056 U	NC
	1,2,4-Trichlorobenzene	0.00072 U	0.00060 U	NC
	1,2-Dibromo-3-chloropropane	0.00057 U	0.00047 U	NC
	1,2-Dibromoethane (EDB)	0.00023 U	0.00019 U	NC
	1,2-Dichlorobenzene	0.00043 U	0.00035 U	NC
	1,2-Dichloroethane (EDC)	0.00052 U	0.00043 U	NC
	1,2-Dichloropropane	0.00041 U	0.00034 U	NC
	1,3-Dichlorobenzene	0.00033 U	0.00027 U	NC
	1,3-Dichloropropane	0.00030 U	0.00025 U	NC
	1,4-Dichlorobenzene	0.00030 U	0.00025 U	NC
	1-Methylnaphthalene	0.00076 U	0.00063 U	NC
	2,2-Dichloropropane	0.00033 U	0.00028 U	NC
	2-Chlorotoluene	0.00038 U	0.00031 U	NC
	2-Methylnaphthalene	0.00075 U	0.00062 U	NC
	4-Chlorotoluene	0.00037 U	0.00031 U	NC
	4-Isopropyltoluene	0.00075 U	0.00062 U	NC
	4-Methyl-2-pentanone	0.00081 U	0.00067 U	NC
	Bromobenzene	0.00054 U	0.00044 U	NC
	Bromodichloromethane	0.00026 U	0.00022 U	NC
	Bromoform	0.00050 U	0.00041 U	NC
	Bromomethane	0.00114 U	0.00094 U	NC
	Carbon disulfide	0.00087 U	0.00072 U	NC
	Carbon tetrachloride	0.00035 U	0.00029 U	NC
	Chlorobenzene	0.00020 U	0.00016 U	NC
	Chloroethane	0.00193 U	0.00159 U	NC
	Chloroform	0.00040 U	0.00033 U	NC
	Chloromethane	0.00023 U	0.00019 U	NC
	cis-1,2-DCE	0.00023 U	0.00042 U	NC
	cis-1,3-Dichloropropene	0.00193 U	0.00159 U	NC
	Dibromochloromethane	0.00022 U	0.00133 U	NC
	Dibromomethane	0.00022 U	0.00090 U	NC
	Dichlorodifluoromethane	0.00109 U	0.00090 U	NC
	Hexachlorobutadiene	0.00079 U	0.0003 U	NC

Field Duplicate Summary

SWMU 10 Investigation Report

		SWMU 10-14 (0-2')	SWMU 10 DUP01	RPD
	Parameter	Sample Result	Duplicate Result	(%)
	Isopropylbenzene	0.00045 U	0.00037 U	NC
	Methyl tert-butyl ether (MTBE)	0.00081 U	0.00067 U	NC
	Naphthalene	0.00063 U	0.00052 U	NC
	n-Butylbenzene	0.00079 U	0.00065 U	NC
	n-Propylbenzene	0.00036 U	0.00030 U	NC
	Styrene	0.00032 U	0.00026 U	NC
	tert-Butylbenzene	0.00030 U	0.00024 U	NC
	Tetrachloroethene (PCE)	0.00038 U	0.00032 U	NC
	trans-1,2-DCE	0.00031 U	0.00026 U	NC
	trans-1,3-Dichloropropene	0.00025 U	0.00021 U	NC
	Trichloroethene (TCE)	0.00038 U	0.00032 U	NC
	Trichlorofluoromethane	0.00039 U	0.00032 U	NC
	Vinyl chloride	0.00022 U	0.00018 U	NC
SVOCs (mg/kg-dry):	1,2,4-Trichlorobenzene	0.11459 U	2.81548 U	NC
	1,2-Dichlorobenzene	0.10707 U	2.63077 U	NC
	1,3-Dichlorobenzene	0.09942 U	2.44287 U	NC
	1,4-Dichlorobenzene	0.11708 U	2.87684 U	NC
	1-Methylnaphthalene	0.10376 U	2.54942 U	NC
	2,4,5-Trichlorophenol	0.13045 U	3.20523 U	NC
	2,4,6-Trichlorophenol	0.12941 U	3.17980 U	NC
	2,4-Dichlorophenol	0.11194 U	2.75040 U	NC
	2,4-Dimethylphenol	0.08799 U	2.16194 U	NC
	2,4-Dinitrophenol	0.04651 U	1.14282 U	NC
	2,4-Dinitrotoluene	0.10014 U	2.46060 U	NC
	2,6-Dinitrotoluene	0.12442 U	3.05723 U	NC
	2-Chloronaphthalene	0.11993 U	2.94674 U	NC
	2-Chlorophenol	0.10446 U	2.56672 U	NC
	2-Methylnaphthalene	0.10244 U	2.51697 U	NC
	2-Methylphenol	0.10244 U	2.75733 U	NC
	2-Nitroaniline	0.11222 U	3.12964 U	NC
	2-Nitrophenol	0.12737 U	2.47207 U	NC
	3,3´-Dichlorobenzidine	0.10061 U	2.11789 U	NC
				NC
	3+4-Methylphenol 3-Nitroaniline	0.11601 U 0.10785 U	2.85059 U 2.64997 U	NC
	4,6-Dinitro-2-methylphenol	0.06086 U	1.49551 U	NC
	4-Bromophenyl phenyl ether	0.11876 U	2.91810 U	NC
	4-Chloro-3-methylphenol	0.11145 U	2.73851 U	NC
	4-Chloroaniline	0.10352 U	2.54359 U	NC
	4-Chlorophenyl phenyl ether	0.16668 U	4.09557 U	NC
	4-Nitroaniline	0.10054 U	2.47040 U	NC
	4-Nitrophenol	0.09644 U	2.36972 U	NC
	Acenaphthene	0.13640 U	3.35154 U	NC
	Acenaphthylene	0.11339 U	2.78620 U	NC
	Aniline	0.09743 U	2.39403 U	NC
	Anthracene	0.09508 U	2.33627 U	NC
	Azobenzene	0.12548 U	3.08325 U	NC
	Benz(a)anthracene	0.08798 U	2.16169 U	NC
	Benzo(a)pyrene	0.12562 U	3.08667 U	NC
	Benzo(b)fluoranthene	0.10629 U	2.61175 U	NC
	Benzo(g,h,i)perylene	0.12738 U	3.12986 U	NC
	Benzo(k)fluoranthene	0.12650 U	3.10822 U	NC
	Benzoic acid	0.06378 U	1.56717 U	NC
	Benzyl alcohol	0.09943 U	2.44304 U	NC
	Bis(2-chloroethoxy)methane	0.10684 U	2.62506 U	NC
	Bis(2-chloroethyl)ether	0.11060 U	2.71765 U	NC

Table A-3 Field Duplicate Summary

SWMU 10 Investigation Report

Western Refining Southwest, Inc. - Gallup Refinery

		SWMU 10-14 (0-2')	SWMU 10 DUP01	RPD
	Parameter	Sample Result	Duplicate Result	(%)
	Bis(2-chloroisopropyl)ether	0.08552 U	2.10120 U	NC
	Bis(2-ethylhexyl)phthalate	0.12576 U	3.09000 U	NC
	Butyl benzyl phthalate	0.13665 U	3.35771 U	NC
	Carbazole	0.10425 U	2.56160 U	NC
	Chrysene	0.11240 U	2.76177 U	NC
	Dibenz(a,h)anthracene	0.12127 U	2.97976 U	NC
	Dibenzofuran	0.11971 U	2.94148 U	NC
	Diethyl phthalate	0.12704 U	3.12139 U	NC
	Dimethyl phthalate	0.10302 U	2.53119 U	NC
	Di-n-butyl phthalate	0.12659 U	3.11051 U	NC
	Di-n-octyl phthalate	0.12461 U	3.06182 U	NC
	Fluoranthene	0.13583 U	3.33755 U	NC
	Fluorene	0.15239 U	3.74428 U	NC
	Hexachlorobenzene	0.10565 U	2.59588 U	NC
	Hexachlorobutadiene	0.11074 U	2.72107 U	NC
	Hexachlorocyclopentadiene	0.07764 U	1.90769 U	NC
	Hexachloroethane	0.09964 U	2.44821 U	NC
	Indeno(1,2,3-cd)pyrene	0.12721 U	3.12562 U	NC
	Isophorone	0.11934 U	2.93240 U	NC
	Naphthalene	0.10651 U	2.61700 U	NC
	Nitrobenzene	0.11525 U	2.83176 U	NC
	N-Nitrosodi-n-propylamine	0.11603 U	2.85088 U	NC
	N-Nitrosodiphenylamine	0.10022 U	2.46238 U	NC
	Pentachlorophenol	0.06989 U	1.71719 U	NC
	Phenanthrene	0.11710 U	2.87735 U	NC
	Phenol	0.10032 U	2.46489 U	NC
	Pyrene	0.14447 U	3.54968 U	NC
	Pyridine	0.09406 U	2.31115 U	NC
Metals (mg/kg-dry):	Antimony	1.51 U	1.45 U	NC
	Arsenic	1.4 J	2.7 J	15.9
	Barium	460	3.09000 U 3.35771 U 2.56160 U 2.76177 U 2.97976 U 2.94148 U 3.12139 U 2.53119 U 3.11051 U 3.06182 U 3.33755 U 3.74428 U 2.59588 U 2.72107 U 1.90769 U 2.44821 U 3.12562 U 2.93240 U 2.61700 U 2.83176 U 2.85088 U 2.746238 U 1.71719 U 2.87735 U 2.46489 U 3.54968 U 2.31115 U 1.45 U	4.8
	Beryllium	0.71	0.59	4.6
	Cadmium	0.03 U	0.03 U	NC
	Chromium	14	16	3.3
	Cobalt	3.8	3.4	2.8
	Cyanide	0.28 U	0.28 U	NC
	Hexavalent Chromium	2.26 U	2.26 U	NC
	Iron	10000	9100	2.4
	Lead	3.8	3.6	1.4
	Manganese	440	490	2.7
	Mercury	0.034 J		0.7
	Nickel	6.5	5.6	3.7
	Selenium	1.76 U	1.69 U	NC
	Silver	0.03 U	0.03 U	NC
	Vanadium	17	21	5.3
	Zinc	29	24	4.7

Notes:

RPD = Relative percent difference; [(difference)/(average)]* 100 NC = Not calculated; RPD values were not calculated for non-detects ug/kg-dry = micrograms per kilogram dry mg/kg-dry = milligrams per kilogram

		SWMU 10-9 (4-6')	SWMU 10-9 DUP02	RPD
	Parameter	Sample Result	Duplicate Result	(%)
PH (mg/kg-dry):	Gasoline Range Organics (GRO)	12 J	69	35.2
	Diesel Range Organics (DRO)	300	530	13.9
	Motor Oil Range Organics (MRO)	120	170	8.6
OCs (ug/kg-dry)	1,1,1,2-Tetrachloroethane	0.01186 U	0.02684 U	NC
0 00 (ug/g u.)/	1,1,1-Trichloroethane	0.02196 U	0.04971 U	NC
	1,1,2,2-Tetrachloroethane	0.01752 U	0.03967 U	NC
	1,1,2-Trichloroethane	0.01738 U	0.03933 U	NC
	1,1-Dichloroethane	0.05784 U	0.13093 U	NC
	1,1-Dichloroethene	0.00995 U	0.02253 U	NC
	1,1-Dichloropropene	0.02153 U	0.04874 U	NC
	1,2,3-Trichlorobenzene	0.03086 U	0.06986 U	NC
	1,2,3-Trichloropropane	0.02426 U	0.05491 U	NC
	1,2,4-Trichlorobenzene	0.02668 U	0.06040 U	NC
	1,2,4-Trimethylbenzene	0.42	2.8	37.0
	1,2-Dibromo-3-chloropropane	0.02484 U	0.05622 U	NC
	1,2-Dibromoethane (EDB)	0.01152 U	0.02607 U	NC
	1,2-Dichlorobenzene	0.00872 U	0.01974 U	NC
	1,2-Dichloroethane (EDC)	0.05784 U	0.13093 U	NC
	1,2-Dichloropropane	0.00808 U	0.01830 U	NC
	1,3,5-Trimethylbenzene	0.12 J	0.82	37.2
	1,3-Dichlorobenzene	0.01703 U	0.03854 U	NC
	1,3-Dichloropropane	0.01991 U	0.04508 U	NC
	1,4-Dichlorobenzene	0.01801 U	0.04077 U	NC
	1-Methylnaphthalene	1.1	9.3	39.4
	2,2-Dichloropropane	0.02105 U	0.04765 U	NC
	2-Butanone	0.09296 U	0.21044 U	NC
	2-Chlorotoluene	0.01634 U	0.03699 U	NC
	2-Hexanone	0.03556 U	0.08050 U	NC
	2-Methylnaphthalene	1.5	13	39.
	4-Chlorotoluene	0.01093 U	0.02475 U	NC
	4-Isopropyltoluene	0.01028 U	0.21 J	NC
	4-Methyl-2-pentanone	0.02509 U	0.05679 U	NC
	Acetone	0.10782 U	0.24407 U	NC
	Benzene	0.02144 U	0.04854 U	NC
	Bromobenzene	0.01073 U	0.02430 U	NC
	Bromodichloromethane	0.01183 U	0.02677 U	NC
	Bromoform	0.01162 U	0.02632 U	NC
	Bromomethane	0.02791 U	0.06318 U	NC
	Carbon disulfide	0.10405 U	0.23554 U	NC
	Carbon tetrachloride	0.01408 U	0.03188 U	NC
	Chlorobenzene	0.01113 U	0.02519 U	NC
	Chloroethane	0.11192 U	0.25337 U	NC
	Chloroform	0.01507 U	0.03412 U	NC
	Chloromethane	0.01674 U	0.03789 U	NC
	cis-1,2-DCE	0.01829 U	0.04141 U	NC
	cis-1,3-Dichloropropene	0.01003 U	0.02271 U	NC
	Dibromochloromethane	0.01084 U	0.02454 U	NC
	Dibromomethane	0.01522 U	0.03446 U	NC
	Dichlorodifluoromethane	0.03637 U	0.08232 U	NC
	Ethylbenzene	0.04 J	0.34	39.5
	Hexachlorobutadiene	0.02008 U	0.04545 U	NC
	Isopropylbenzene	0.016 J	0.16 J	40.9
	Methyl tert-butyl ether (MTBE)	0.02045 U	0.04629 U	NC
	Methylene chloride	0.05784 U	0.13093 U	NC
	Naphthalene	0.32	2.5	38.7
	n-Butylbenzene	0.065 J	0.4 J	36.0

		SWMU 10-9 (4-6')	SWMU 10-9 DUP02	RPD
	Parameter	Sample Result	Duplicate Result	(%)
	n-Propylbenzene	0.052 J	0.34	36.7
	sec-Butylbenzene	0.021 J	0.17 J	39.0
	Styrene	0.02654 U	0.06008 U	NC
	tert-Butylbenzene	0.01656 U	0.03749 U	NC
	Tetrachloroethene (PCE)	0.01253 U	0.02836 U	NC
	Toluene	0.01721 U	0.03895 U	NC
	trans-1,2-DCE	0.00940 U	0.02127 U	NC
	trans-1,3-Dichloropropene	0.02603 U	0.05893 U	NC
	Trichloroethene (TCE)	0.01408 U	0.03188 U	NC
	Trichlorofluoromethane	0.04364 U	0.09880 U	NC
	Vinyl chloride	0.05784 U	0.13093 U	NC
	Xylenes, Total	0.26 J	1.9	38.0
SVOCs (mg/kg-dry):	1,2,4-Trichlorobenzene	1.01696 U	0.12038 U	NC
	1,2-Dichlorobenzene	0.95024 U	0.11248 U	NC
	1,3-Dichlorobenzene	0.88237 U	0.10445 U	NC
	1,4-Dichlorobenzene	1.03912 U	0.12300 U	NC
	1-Methylnaphthalene	1.1 J	0.7	11.1
	2,4,5-Trichlorophenol	1.15774 U	0.13704 U	NC
	2,4,6-Trichlorophenol	1.14855 U	0.13595 U	NC
	2,4-Dichlorophenol	0.99345 U	0.11760 U	NC
	2,4-Dimethylphenol	0.78090 U	0.09244 U	NC
	2,4-Dinitrophenol	0.41279 U	0.04886 U	NC
	2,4-Dinitrotoluene	0.88877 U	0.10520 U	NC
	2,6-Dinitrotoluene	1.10428 U	0.13071 U	NC
	2-Chloronaphthalene	1.06437 U	0.12599 U	NC
	2-Chlorophenol	0.92710 U	0.10974 U	NC
	2-Methylnaphthalene	1 J	0.89	2.9
	2-Methylphenol	0.99595 U	0.11789 U	NC
	2-Nitroaniline	1.13043 U	0.13381 U	NC
	2-Nitrophenol	0.89292 U	0.10569 U	NC
	3,3´-Dichlorobenzidine	0.76499 U	0.09055 U	NC
	3+4-Methylphenol	1.02964 U	0.12188 U	NC
	3-Nitroaniline	0.95717 U	0.11330 U	NC
	4,6-Dinitro-2-methylphenol	0.54018 U	0.06394 U	NC
	4-Bromophenyl phenyl ether	1.05402 U	0.12477 U	NC
	4-Chloro-3-methylphenol	0.98915 U	0.11709 U	NC
	4-Chloroaniline	0.91875 U	0.10875 U	NC
	4-Chlorophenyl phenyl ether	1.47933 U	0.17511 U	NC
	4-Nitroaniline	0.89231 U	0.10562 U	NC
	4-Nitrophenol	0.85595 U	0.10132 U	NC
	Acenaphthene	1.21058 U	0.14330 U	NC
	Acenaphthylene	1.00638 U	0.11913 U	NC
	Aniline	0.86473 U	0.10236 U	NC
	Anthracene	0.84386 U	0.09989 U	NC
	Azobenzene	1.11368 U	0.13183 U	NC
	Benz(a)anthracene	0.78081 U	0.09242 U	NC
	Benzo(a)pyrene	1.11491 U	0.13197 U	NC
	Benzo(b)fluoranthene	0.94337 U	0.11167 U	NC
	Benzo(g,h,i)perylene	1.13051 U	0.13382 U	NC
	Benzo(k)fluoranthene	1.12270 U	0.13289 U	NC
	Benzoic acid	0.56607 U	0.06701 U	NC
	Benzyl alcohol	0.88243 U	0.10445 U	NC
	Bis(2-chloroethoxy)methane	0.94818 U	0.11224 U	NC
	Bis(2-chloroethyl)ether	0.98162 U	0.11619 U	NC
	Bis(2-chloroisopropyl)ether	0.75896 U	0.08984 U	NC
	Bis(2-ethylhexyl)phthalate	1.11611 U	0.13212 U	NC

Western Refining Southwest, Inc. - Gallup Refinery

		SWMU 10-9 (4-6')	SWMU 10-9 DUP02	RPD
	Parameter	Sample Result	Duplicate Result	(%)
	Butyl benzyl phthalate	1.21281 U	0.14356 U	NC
	Carbazole	0.92525 U	0.10952 U	NC
	Chrysene	0.99756 U	0.11808 U	NC
	Dibenz(a,h)anthracene	1.07629 U	0.12740 U	NC
	Dibenzofuran	1.06247 U	0.12577 U	NC
	Diethyl phthalate	1.12745 U	0.13346 U	NC
	Dimethyl phthalate	0.91427 U	0.10822 U	NC
	Di-n-butyl phthalate	1.12352 U	0.13299 U	NC
	Di-n-octyl phthalate	1.10594 U	0.13091 U	NC
	Fluoranthene	1.20553 U	0.14270 U	NC
	Fluorene	1.35244 U	0.16009 U	NC
	Hexachlorobenzene	0.93764 U	0.11099 U	NC
	Hexachlorobutadiene	0.98286 U	0.11634 U	NC
	Hexachlorocyclopentadiene	0.68906 U	0.08156 U	NC
	Hexachloroethane	0.88430 U	0.10467 U	NC
	Indeno(1,2,3-cd)pyrene	1.12898 U	0.13364 U	NC
	Isophorone	1.05919 U	0.12538 U	NC
	Naphthalene	0.94527 U	0.33	NC
	Nitrobenzene	1.02284 U	0.12107 U	NC
	N-Nitrosodi-n-propylamine	1.02975 U	0.12189 U	NC
	N-Nitrosodiphenylamine	0.88942 U	0.10528 U	NC
	Pentachlorophenol	0.62025 U	0.07342 U	NC
	Phenanthrene	1.03930 U	0.12302 U	NC
	Phenol	0.89032 U	0.10539 U	NC
	Pyrene	1.28215 U	0.15177 U	NC
	Pyridine	0.83479 U	0.09881 U	NC
Metals (mg/kg-dry):	Antimony	1.56 U	0.33 0.12107 U 0.12189 U 0.10528 U 0.07342 U 0.12302 U 0.10539 U 0.15177 U 0.09881 U 1.54 U 1.3 J 190 0.9	NC
	Arsenic	1.1 J	1.3 J	4.2
	Barium	250		6.8
	Beryllium	0.94		1.1
	Cadmium	0.033002519 U		NC
	Chromium	14	8.5	12.2
	Cobalt	5.3	4.1	6.4
	Cyanide	0.300287306 U	0.30 U	NC
	Hexavalent Chromium	2.40229845 U	2.37 U	NC
	Iron	16000	13000	5.2
	Lead	3.2	3.3	0.8
	Manganese	290	170	13.0
	Mercury	0.0086 J	0.0043 J	16.7
	Nickel	10	7.4	7.5
	Selenium	1.820599379 U	1.80 U	NC
	Silver	0.035376801 U	0.03 U	NC
	Vanadium	19	19	0.0
	Zinc Notes:	32	49	10.5

Notes:

RPD = Relative percent difference; [(difference)/(average)]* 100

NC = Not calculated; RPD values were not calculated for non-detects

ug/kg-dry = micrograms per kilogram dry

mg/kg-dry = milligrams per kilogram

bold value = Field Duplicate RPD Outlier

Field Duplicate Summary

SWMU 10 Investigation Report

		SWMU 10-6 (10-12')	SWMU 10 DUP03	RPD
	Parameter	Sample Result	Field Duplicate	(%)
PH (mg/kg-dry):	Gasoline Range Organics (GRO)	1.22 U	1.16 U	NC
	Diesel Range Organics (DRO)	5.32 U	5.44 U	NC
	Motor Oil Range Organics (MRO)	48.08 U	49.16 U	NC
OCs (ug/kg-dry)	1,1,1,2-Tetrachloroethane	0.000407 U	0.000378 U	NC
	1,1,1-Trichloroethane	0.000356 U	0.000331 U	NC
	1,1,2,2-Tetrachloroethane	0.000550 U	0.000511 U	NC
	1,1,2-Trichloroethane	0.002501 U	0.002325 U	NC
	1,1-Dichloroethane	0.000584 U	0.000543 U	NC
	1,1-Dichloroethene	0.000417 U	0.000388 U	NC
	1,1-Dichloropropene	0.000458 U	0.000426 U	NC
	1,2,3-Trichlorobenzene	0.000915 U	0.000851 U	NC
	1,2,3-Trichloropropane	0.000878 U	0.000816 U	NC
	1,2,4-Trichlorobenzene	0.000937 U	0.000871 U	NC
	1,2,4-Trimethylbenzene	0.00363	0.00292	5.4
	1,2-Dibromo-3-chloropropane	0.000735 U	0.000683 U	NC
	1,2-Dibromoethane (EDB)	0.000299 U	0.000278 U	NC
	1,2-Dichlorobenzene	0.000555 U	0.000516 U	NC
	1,2-Dichloroethane (EDC)	0.000670 U	0.000623 U	NC
	1,2-Dichloropropane	0.000534 U	0.000497 U	NC
	1,3,5-Trimethylbenzene	0.0022 J	0.00172 J	6.1
	1,3-Dichlorobenzene	0.000424 U	0.000394 U	NC
	1,3-Dichloropropane	0.000390 U	0.000362 U	NC
	1,4-Dichlorobenzene	0.000393 U	0.000365 U	NC
	1-Methylnaphthalene	0.000982 U	0.000913 U	NC
	2,2-Dichloropropane	0.000434 U	0.000404 U	NC
	2-Butanone	0.000801 U	0.000745 U	NC
	2-Chlorotoluene	0.000488 U	0.000454 U	NC
	2-Hexanone	0.000520 U	0.000484 U	NC
	2-Methylnaphthalene	0.000977 U	0.000909 U	NC
	4-Chlorotoluene	0.000482 U	0.000448 U	NC
	4-Isopropyltoluene	0.000971 U	0.000902 U	NC
	4-Methyl-2-pentanone	0.001056 U	0.000982 U	NC
	Acetone	0.00589 J	0.00256 J	19.7
	Benzene	0.0226	0.0206	2.3
	Bromobenzene	0.000696 U	0.000647 U	NC
	Bromodichloromethane	0.000338 U	0.000314 U	NC
	Bromoform	0.000648 U	0.000603 U	NC
	Bromomethane	0.001479 U	0.001375 U	NC
	Carbon disulfide	0.001473 U	0.001070 U	NC
	Carbon tetrachloride	0.000453 U	0.001002 U	NC
	Chlorobenzene	0.000455 U	0.000421 U	NC
	Chloroethane	0.002501 U	0.000230 U	NC
	Chloroform	0.000515 U	0.002323 U	NC
	Chloromethane	0.000313 U	0.000473 U	NC
	cis-1,2-DCE	0.000255 U	0.000214 U	NC
	cis-1,3-Dichloropropene	0.002501 U	0.00033 U	NC
	Dibromochloromethane	0.002361 U	0.002323 U	NC
	Dibromomethane	0.000281 U	0.001320 U	NC
	Dichlorodifluoromethane	0.001413 U	0.000949 U	NC
	Ethylbenzene	0.001021 0	0.00328	1.6
	Hexachlorobutadiene	0.000505 U	0.00328 0.000469 U	NC
	Isopropylbenzene	0.000580 U	0.000489 U	NC
	Methyl tert-butyl ether (MTBE)	0.000380 U	0.000539 U	NC
			0.000975 U 0.000721 J	NC
	Methylene chloride	0.000618 U 0.00103 J	0.000721 J 0.000837 J	5.2

Field Duplicate Summary

SWMU 10 Investigation Report

		SWMU 10-6 (10-12')	SWMU 10 DUP03	RPD
	Parameter	Sample Result	Field Duplicate	(%)
	n-Butylbenzene	0.001027 U	0.000955 U	NC
	n-Propylbenzene	0.000638 J	0.000477 J	7.2
	sec-Butylbenzene	0.000925 J	0.000849 J	2.1
	Styrene	0.000414 U	0.000385 U	NC
	tert-Butylbenzene	0.000383 U	0.000356 U	NC
	Tetrachloroethene (PCE)	0.000496 U	0.000461 U	NC
	Toluene	0.0146	0.0139	1.2
	trans-1,2-DCE	0.000404 U	0.000376 U	NC
	trans-1,3-Dichloropropene	0.000327 U	0.000304 U	NC
	Trichloroethene (TCE)	0.000497 U	0.000462 U	NC
	Trichlorofluoromethane	0.000505 U	0.000470 U	NC
	Vinyl chloride	0.000286 U	0.000266 U	NC
	Xylenes, Total	0.0116	0.00984	4.1
SVOCs (mg/kg-dry):	1,2,4-Trichlorobenzene	0.120870 U	0.112566 U	NC
, 4 5 37	1,2-Dichlorobenzene	0.112940 U	0.105182 U	NC
	1,3-Dichlorobenzene	0.104874 U	0.097669 U	NC
	1,4-Dichlorobenzene	0.123504 U	0.115020 U	NC
	1-Methylnaphthalene	0.109448 U	0.101929 U	NC
	2,4,5-Trichlorophenol	0.137603 U	0.128149 U	NC
	2,4,6-Trichlorophenol	0.136511 U	0.127132 U	NC
	2,4-Dichlorophenol	0.118076 U	0.109965 U	NC
	2,4-Dimethylphenol	0.092814 U	0.086437 U	NC
	2,4-Dinitrophenol	0.049062 U	0.045692 U	NC
	2,4-Dinitrotoluene	0.105635 U	0.098378 U	NC
	2,6-Dinitrotoluene	0.131249 U	0.122232 U	NC
	2-Chloronaphthalene	0.126505 U	0.117815 U	NC
	2-Chlorophenol	0.110191 U	0.102621 U	NC
	2-Methylnaphthalene	0.108055 U	0.100632 U	NC
	2-Methylphenol	0.118374 U	0.110242 U	NC
	2-Nitroaniline	0.134357 U	0.125127 U	NC
	2-Nitrophenol	0.106127 U	0.098836 U	NC
	3,3´-Dichlorobenzidine	0.090922 U	0.084676 U	NC
	3+4-Methylphenol	0.122378 U	0.113970 U	NC
	3-Nitroaniline	0.113765 U	0.105949 U	NC
	4,6-Dinitro-2-methylphenol	0.064203 U	0.059792 U	NC
	4-Bromophenyl phenyl ether	0.125276 U	0.116669 U	NC
	4-Chloro-3-methylphenol	0.117566 U	0.109489 U	NC
	4-Chloroaniline	0.109198 U	0.101696 U	NC
	4-Chlorophenyl phenyl ether	0.175825 U	0.163746 U	NC
	4-Nitroaniline	0.106056 U	0.098770 U	NC
	4-Nitrophenol	0.101733 U	0.094744 U	NC
	Acenaphthene	0.143884 U	0.133999 U	NC
	Acenaphthylene	0.119613 U	0.111396 U	NC
	Aniline	0.102777 U	0.095717 U	NC
	Anthracene	0.100297 U	0.093407 U	NC
	Azobenzene	0.132366 U	0.123272 U	NC
	Benz(a)anthracene	0.092803 U	0.086427 U	NC
	Benzo(a)pyrene	0.132513 U	0.123409 U	NC
	Benzo(b)fluoranthene	0.112124 U	0.104421 U	NC
	Benzo(g,h,i)perylene	0.134367 U	0.125136 U	NC
	Benzo(k)fluoranthene	0.133438 U	0.124271 U	NC
	Benzoic acid	0.067280 U	0.062658 U	NC
	Benzyl alcohol	0.104881 U	0.097676 U	NC
	Bis(2-chloroethoxy)methane	0.112695 U	0.104953 U	NC
	Bis(2-chloroethyl)ether	0.112693 U	0.104955 U	NC
	อเอ(2-งเมงเงธแหม่)ธนายเ	0.110070 0	0.108033 0	INC

Field Duplicate Summary

SWMU 10 Investigation Report

Western Refining Southwest, Inc. - Gallup Refinery

	SWMU 10-6 (10-12')	SWMU 10 DUP03	RPD
Parameter	Sample Result	Field Duplicate	(%)
Bis(2-chloroisopropyl)ether	0.090206 U	0.084009 U	NC
Bis(2-ethylhexyl)phthalate	0.132656 U	0.123542 U	NC
Butyl benzyl phthalate	0.144149 U	0.134246 U	NC
Carbazole	0.109971 U		NC
Chrysene	0.118564 U		NC
			NC
Dibenzofuran			NC
Diethyl phthalate			NC
			NC
			NC
, .			NC
			NC
			NC
Hexachlorobenzene			NC
			NC
7. 7			NC
·			NC
			NC
· ·			NC
			0.0
•			1.2
			5.0
			1.3
			NC
			1.9
			3.3
		· · · · · · · · · · · · · · · · · · ·	NC
			NC
			0.0
		1.4	3.3
			1.0
			NC
			5.2
			NC
			NC
			4.8
Zinc	23	21	2.3
	Bis(2-chloroisopropyl)ether Bis(2-ethylhexyl)phthalate Butyl benzyl phthalate Carbazole Chrysene Dibenz(a,h)anthracene Dibenzofuran Diethyl phthalate Dimethyl phthalate Din-butyl phthalate Din-octyl phthalate Fluoranthene Fluorene Hexachlorobenzene Hexachlorobutadiene Hexachlorocyclopentadiene Hexachloroethane Indeno(1,2,3-cd)pyrene Isophorone Naphthalene Nitrobenzene N-Nitrosodi-n-propylamine N-Nitrosodiphenylamine Pentachlorophenol Phenanthrene Phenol Pyrene Pyridine Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Cyanide Hexavalent Chromium Iron Lead Manganese Mercury Nickel Selenium Silver Vanadium	Parameter Sample Result Bis(2-chloroisopropyl)ether 0.090206 U Bis(2-ethylhexyl)phthalate 0.132656 U Butyl benzyl phthalate 0.144149 U Carbazole 0.109971 U Chrysene 0.118564 U Dibenz(a,h)anthracene 0.127923 U Dibenzofuran 0.126280 U Dientyl phthalate 0.134003 U Dimethyl phthalate 0.134003 U Di-n-butyl phthalate 0.134003 U Di-n-butyl phthalate 0.133536 U Di-n-octyl phthalate 0.131446 U Fluorene 0.160744 U Hexachlorobutadiene 0.114323 U Hexachlorobutadiene 0.116817 U Hexachlorocyclopentadiene 0.081898 U Hexachlorocyclopentadiene 0.081898 U Hexachlorochtane 0.105103 U Indeno(1,2,3-cd)pyrene 0.134185 U Isophorone 0.125890 U Naphthalene 0.112350 U Nitrobenzene 0.121569 U N-Nitrosodiphenylamine 0.105712 U Pentachlorophenol 0.07372	Bis(2-chloroisopropylether 0.090206 U

Notes:

RPD = Relative percent difference; [(difference)/(average)]* 100

NC = Not calculated; RPD values were not calculated for non-detects

ug/kg-dry = micrograms per kilogram dry

mg/kg-dry = milligrams per kilogram

bold value = Field Duplicate RPD Outlier

Field Duplicate Summary

SWMU 10 Investigation Report

		SWMU 10-17 (6-8')	SWMU 10 DUP04	RPD
	Parameter	Sample Result	Field Duplicate	(%)
TPH (mg/kg-dry):	Gasoline Range Organics (GRO)	1300	1100	
(4 5 3)	Diesel Range Organics (DRO)	7800	3000	
	Motor Oil Range Organics (MRO)	ND U		_
VOCs (ug/kg-dry)	1,1,1,2-Tetrachloroethane			u NC
(- G - G - 7)	1,1,1-Trichloroethane			u NC
	1,1,2,2-Tetrachloroethane			u NC
	1.1.2-Trichloroethane			u NC
	1.1-Dichloroethane			u NC
	1,1-Dichloroethene			u NC
	1,1-Dichloropropene			u NC
	1,2,3-Trichlorobenzene			u NC
	1,2,3-Trichloropropane			u NC
	1,2,4-Trichlorobenzene			u NC
	1,2,4-Trimethylbenzene	27	17	-
	1,2-Dibromo-3-chloropropane			u NC
	1,2-Dibromoethane (EDB)			u NC
	1,2-Distribution (LDB)			u NC
	1,2-Dichloroethane (EDC)			u NC
	1,2-Dichloropropane			u NC
	1,3,5-Trimethylbenzene	10		v 11.7
	1,3-Dichlorobenzene			u NC
	1,3-Dichloropropane			u NC
	1,4-Dichlorobenzene			u NC
		48	+	
	1-Methylnaphthalene 2,2-Dichloropropane			
	2-Butanone			
	2-Chlorotoluene			_
	2-Hexanone			
		87	60	
	2-Methylnaphthalene			
	4-Chlorotoluene			u NC
	4-Isopropyltoluene	1.6		v 9.3 u NC
	4-Methyl-2-pentanone			
	Acetone			u NC
	Benzene	1.9	1.2	_
	Bromobenzene		+	u NC
	Bromodichloromethane		J < 0.0525 J < 0.0516	u NC u NC
	Bromoform			_
	Bromomethane			u NC
	Carbon disulfide			u NC
	Carbon tetrachloride			u NC
	Chlorobenzene			u NC
	Chloroform			u NC
	Chloroform			u NC
	Chloromethane			u NC
	cis-1,2-DCE			u NC
	cis-1,3-Dichloropropene			u NC
	Dibromochloromethane			u NC
	Dibromomethane			u NC
	Dichlorodifluoromethane			u NC
	Ethylbenzene	11	8.3	
	Hexachlorobutadiene			u NC
	Isopropylbenzene	3.1	2.3	
	Methyl tert-butyl ether (MTBE)			u NC
	Methylene chloride	NDI	J < 0.2568	u NC

Field Duplicate Summary

SWMU 10 Investigation Report

		SWMU 10-17 (6-8')	SWMU 10 DUP04	RPD
	Parameter	Sample Result	Field Duplicate	(%)
	Naphthalene	20	13 v	10.6
	n-Butylbenzene	2.8	1.9 J	9.6
	n-Propylbenzene	5.2	3.3 v	11.2
	sec-Butylbenzene	1.8	1 v	14.3
	Styrene		< 0.1178 u	NC
	tert-Butylbenzene	ND U	< 0.0735 u	NC
	Tetrachloroethene (PCE)	ND U	< 0.0556 u	NC
	Toluene	34	23 v	9.6
	trans-1,2-DCE	ND U	< 0.0417 u	NC
	trans-1,3-Dichloropropene	ND U	< 0.1156 u	NC
	Trichloroethene (TCE)	ND U	< 0.0625 u	NC
	Trichlorofluoromethane	ND U	< 0.1938 u	NC
	Vinyl chloride	ND U	< 0.2568 u	NC
	Xylenes, Total	86	65 v	7.0
SVOCs (mg/kg-dry):	1,2,4-Trichlorobenzene	ND U	< 1.163 u	NC
	1,2-Dichlorobenzene	ND U	< 1.0867 u	NC
	1,3-Dichlorobenzene	ND U	< 1.0091 u	NC
	1,4-Dichlorobenzene		< 1.1883 u	NC
	1-Methylnaphthalene	76	28 v	23.1
	2,4,5-Trichlorophenol		< 1.324 u	NC
	2,4,6-Trichlorophenol		< 1.3135 u	NC
	2,4-Dichlorophenol		< 1.1361 u	NC
	2,4-Dimethylphenol	36	18 v	16.7
	2,4-Dinitrophenol		< 0.4721 u	NC
	2,4-Dinitrotoluene		< 1.0164 u	NC
	2,6-Dinitrotoluene		< 1.2629 u	NC
	2-Chloronaphthalene		< 1.2172 u	NC
	2-Chlorophenol		< 1.0602 u	NC
	2-Methylnaphthalene	130	45 v	24.3
	2-Methylphenol	56	29 v	15.9
	2-Nitroaniline		< 1.2928 u	NC
	2-Nitrophenol		< 1.0211 u	NC
	3,3´-Dichlorobenzidine		< 0.8748 u	NC
	3+4-Methylphenol	100	60 v	12.5
	3-Nitroaniline		< 1.0946 u	NC
	4,6-Dinitro-2-methylphenol		< 0.6178 u	NC
	4-Bromophenyl phenyl ether		< 1.2054 u	NC
	4-Chloro-3-methylphenol		< 1.1312 u	NC
	4-Chloroaniline		< 1.0507 u	NC
				NC
	4-Chlorophenyl phenyl ether 4-Nitroaniline			
				NC
	4-Nitrophenol		< 0.9789 u	NC
	Acenaphthene		< 1.3844 u	NC
	Acenaphthylene		< 1.1509 u	NC
	Aniline		< 0.9889 u	NC
	Anthracene		< 0.965 u	NC
	Azobenzene		< 1.2736 u	NC
	Benz(a)anthracene		< 0.8929 u	NC
	Benzo(a)pyrene		< 1.275 u	NC
	Benzo(b)fluoranthene		< 1.0788 u	NC
	Benzo(g,h,i)perylene		< 1.2929 u	NC
	Benzo(k)fluoranthene		< 1.2839 u	NC
	Benzoic acid		< 0.6474 u	NC
	Benzyl alcohol	ND U	< 1.0092 u	NC

Field Duplicate Summary

SWMU 10 Investigation Report

Western Refining Southwest, Inc. - Gallup Refinery

		SWMU 10-17 (6-8')		SWMU 10	DUP04		RPD
	Parameter	Sample Result		Field Dup	licate		(%)
	Bis(2-chloroethoxy)methane			< 1.0843	u	П	NC
	Bis(2-chloroethyl)ether	ND	U	< 1.1226	u	ı	NC
	Bis(2-chloroisopropyl)ether	ND	U	< 0.8679	u	ı	NC
	Bis(2-ethylhexyl)phthalate	ND	U	< 1.2764	u	ı	NC
	Butyl benzyl phthalate	ND	U	< 1.387	u	ī	NC
	Carbazole	ND	U	< 1.0581	u		NC
	Chrysene	ND	U	< 1.1408	u	ī	NC
	Dibenz(a,h)anthracene	ND	U	< 1.2309	u	ī	NC
	Dibenzofuran	ND	U	< 1.215	u	ī	NC
	Diethyl phthalate	ND	U	< 1.2894	u		NC
	Dimethyl phthalate	ND	U	< 1.0456	u	ī	NC
	Di-n-butyl phthalate	ND	U	< 1.2849	u		NC
	Di-n-octyl phthalate	ND	U	< 1.2648	u	ī	NC
	Fluoranthene	ND	U	< 1.3787	u		NC
	Fluorene	7.1			3.2 v	1	18.9
	Hexachlorobenzene	ND	U	< 1.0723	u	Ť	NC
	Hexachlorobutadiene	ND	U	< 1.124	u	ī	NC
	Hexachlorocyclopentadiene	ND	U	< 0.788	u	Ť	NC
	Hexachloroethane	ND	U	< 1.0113	u	Ť	NC
	Indeno(1,2,3-cd)pyrene			< 1.2911	u	Ť	NC
	Naphthalene	24			8.8 v	Ť	23.2
	Nitrobenzene	ND	U	< 1.1697	u	Ť	NC
	N-Nitrosodi-n-propylamine			< 1.1776	u	+	NC
	N-Nitrosodiphenylamine			< 1.0171	u	+	NC
	Pentachlorophenol			< 0.7093	u	t	NC
	Phenanthrene	15			6 v		21.4
	Phenol	52			26 v		16.7
	Pyrene		U	< 1.4663	u	+	NC
	Pyridine			< 0.9547	u	+	NC
Metals (mg/kg-dry):	Antimony		U		1.5264 u	_	NC
	Arsenic	1.5	_		1.1 J	-	7.7
	Barium	200			160 v	_	5.6
	Beryllium	1			1.1 v	+	2.4
	Cadmium	ND	IJ	<	0.0322 u	_	NC
	Chromium	11	Ť		11 v	-	0.0
	Cobalt	5.3		<	2.2887 u		NC
	Cyanide	ND	IJ		5.4 v		NC
	Hexavalent Chromium	ND	_	<	0.2861 u		NC
	Iron	16000	Ť		16000 v	_	0.0
	Lead	4.4			5.3 v	_	4.6
	Manganese	210			200 v		1.2
	Mercury	ND ND	П	<	0.0032 u		NC
	Nickel	9.6	Ĕ	 	9.5 v	_	0.3
	Selenium	ND	11	-	1.7774 u		NC
	Silver	ND ND			0.0345 u		NC
	Vanadium	19	٥	 	19 v	_	0.0
	Zinc	19			19 V	_	0.0
	Notes:	1 1/			Τ1 V	1_	0.0

Notes:

RPD = Relative percent difference; [(difference)/(average)]* 100

NC = Not calculated; RPD values were not calculated for non-detects

ug/kg-dry = micrograms per kilogram dry

mg/kg-dry = milligrams per kilogram

bold value = Field Duplicate RPD Outlier

		SWMU 10-22 (2-	2.5')	DUP01		
		1605943-00	4	1605943-00	6	RPD
	Parameter	Sample Resu	lt	Field Duplica	te	%
	Gasoline Range Organics (GRO)	0.6	J	< 0.858	u	NC
TPH (mg/kg-dry)	Diesel Range Organics (DRO)	< 4.5	u	150	V	NC
	Motor Oil Range Organics (MRO)	< 62	u	310	V	NC
/OCs (mg/kg-dry)	1,1,1,2-Tetrachloroethane	< 0.0017	u	< 0.0003	u	NC
(3 5)/	1,1,1-Trichloroethane	< 0.0017	u	< 0.0002	u	NC
	1,1,2,2-Tetrachloroethane	< 0.0017	u	< 0.0004	u	NC
	1,1,2-Trichloroethane	< 0.0017	u	< 0.0016	u	NC
	1,1-Dichloroethane	< 0.0017	u	< 0.0004	u	NC
	1,1-Dichloroethene	< 0.0003	u	< 0.0003	u	NC
	1,1-Dichloropropene	< 0.0017	u	< 0.0003	u	NC
	1,2,3-Trichlorobenzene	< 0.0004	u	< 0.0006	u	NC
	1,2,3-Trichloropropane	< 0.0017	u	< 0.0006	u	NC
	1,2,4-Trichlorobenzene	< 0.0005	u	< 0.00059	u	NC
	1,2,4-Trimethylbenzene	0.0003	J	0.000972	J	26.4
	1,2-Dibromo-3-chloropropane	< 0.0002	u	< 0.0005	u	NC
	1,2-Dibromoethane (EDB)	< 0.0017	u	< 0.0002	u	NC
	1,2-Dichlorobenzene	< 0.0002	u	< 0.00035	u	NC
	1,2-Dichloroethane (EDC)	< 0.0017	u	< 0.0004	u	NC
	1,2-Dichloropropane	< 0.0017	u	< 0.0003	u	NC
	1,3,5-Trimethylbenzene	< 0.0003	u	0.000422	J	NC
	1,3-Dichlorobenzene	< 0.0003	u	< 0.00027	u	NC
	1,3-Dichloropropane	< 0.0017	u	< 0.0002	u	NC
	1,4-Dichlorobenzene	< 0.0003	u	< 0.00025	u	NC
	1-Methylnaphthalene	< 0.0002	u	< 0.00062	u	NC
	2,2-Dichloropropane	< 0.0002	u	< 0.0003	u	NC
	2-Butanone	< 0.0006	u	0.00253	j	NC
	2-Chlorotoluene	< 0.0003	u	< 0.0003	u	NC
	2-Hexanone	< 0.0004	u	0.000653	J	NC
	2-Methylnaphthalene	< 0.0004	u	< 0.00062	u	NC
	4-Chlorotoluene	< 0.0003	u	< 0.0003	u	NC
	4-Isopropyltoluene	< 0.0003	u	< 0.0006	u	NC
	4-Methyl-2-pentanone	< 0.0033	u	< 0.0007	u	NC
	Acetone	0.0117	V	0.0166	V	8.7
	Benzene	< 0.0017	u	0.00104	J	NC
	Bromobenzene	< 0.0002	u	< 0.0004	u	NC
	Bromodichloromethane	< 0.0017	u	< 0.0002	u	NC
	Bromoform	< 0.0017	u	< 0.0004	u	NC
	Bromomethane	< 0.0003	u	< 0.0009	u	NC
	Carbon disulfide	< 0.0006	u	< 0.0007	u	NC
	Carbon tetrachloride	< 0.0017	u	< 0.0003	u	NC
	Chlorobenzene	< 0.0002	u	< 0.0002	u	NC
	Chloroethane	< 0.0003	u	< 0.0016	u	NC
	Chloroform	< 0.0017	u	< 0.0003	u	NC
	Chloromethane	< 0.0004	u	< 0.0002	u	NC
	cis-1,2-DCE	< 0.0017	u	< 0.0004	u	NC
	cis-1,3-Dichloropropene	< 0.0017	u	< 0.0016	u	NC
	Dibromochloromethane	< 0.0017	u	< 0.0002	u	NC
	Dibromomethane	< 0.0017	u	< 0.0009	u	NC
	Dichlorodifluoromethane	< 0.0017	u	< 0.0007	u	NC
	Ethylbenzene	< 0.001	u	0.000638	J	NC

Table A-3 Field Duplicate Summary SWMU 10 Investigation Report Western Refining Southwest, Inc. - Gallup Refinery

		SWMU 10-22 (2-2	2.5')	DUP01		
		1605943-004	1	1605943-00	6	RPD
	Parameter	Sample Resul		Field Duplica		%
	Hexachlorobutadiene	< 0.0004	u	< 0.00032	u	NC
	Isopropylbenzene	< 0.0002	u	< 0.0004	u	NC
	Methyl tert-butyl ether (MTBE)	< 0.0003	u	< 0.0007	u	NC
	Methylene chloride	< 0.0017	u	0.00051	J	NC
	Naphthalene	< 0.0017	u	< 0.00052	u	NC
	n-Butylbenzene	< 0.0004	u	< 0.0007	u	NC
	n-Propylbenzene	< 0.0003	u	< 0.0003	u	NC
	sec-Butylbenzene	< 0.0003	u	0.000534	J	NC
	Styrene	< 0.0002	u	< 0.0003	u	NC
	tert-Butylbenzene	< 0.0002	u	< 0.0002	u	NC
	Tetrachloroethene (PCE)	< 0.0002	u	< 0.0003	u	NC
	Toluene	0.0012	J	0.00232	V	15.9
	trans-1,2-DCE	< 0.0012	++	< 0.00232		NC
	trans-1,3-Dichloropropene	< 0.0002	u	< 0.0003	u	NC NC
			u		u	
	Trichloroethene (TCE)	< 0.0017	u	< 0.0003	u	NC
	Trichlorofluoromethane	< 0.0002	u	< 0.0003	u	NC
	Vinyl chloride	< 0.0004	u	< 0.0002	u	NC
01/00= (== = /l== = l==)	Xylenes, Total	< 0.0007	u	0.00171	V	NC
SVOCs (mg/kg-dry)	1,2,4-Trichlorobenzene	< 0.13	u	< 2.8155	u	NC
	1,2-Dichlorobenzene	< 0.094	u	< 2.6308	u	NC
	1,3-Dichlorobenzene	< 0.095	u	< 2.4429	u	NC
	1,4-Dichlorobenzene	< 0.1	u	< 2.8768	u	NC
	1-Methylnaphthalene	< 0.12	u	< 2.5494	u	NC
	2,4,5-Trichlorophenol	< 0.12	u	< 3.2052	u	NC
	2,4,6-Trichlorophenol	< 0.1	u	< 3.1798	u	NC
	2,4-Dichlorophenol	< 0.11	u	< 2.7504	u	NC
	2,4-Dimethylphenol	< 0.13	u	< 2.1619	u	NC
	2,4-Dinitrophenol	< 0.081	u	< 1.1428	u	NC
	2,4-Dinitrotoluene	< 0.11	u	< 2.4606	u	NC
	2,6-Dinitrotoluene	< 0.13	u	< 3.0572	u	NC
	2-Chloronaphthalene	< 0.097	u	< 2.9467	u	NC
	2-Chlorophenol	< 0.097	u	< 2.5667	u	NC
	2-Methylnaphthalene	< 0.15	u	< 2.517	u	NC
	'2-Methylphenol (cresol,o-)	< 0.1	u	< 2.7573	u	NC
	2-Nitroaniline	< 0.13	u	< 3.1296	u	NC
	2-Nitrophenol	< 0.12	u	< 2.4721	u	NC
	3,3´-Dichlorobenzidine	< 0.09	u	< 2.1179	u	NC
	3+4-Methylphenol	< 0.089	u	< 2.8506	u	NC
	3-Nitroaniline	< 0.11	u	< 2.65	u	NC
	4,6-Dinitro-2-methylphenol	< 0.074	u	< 1.4955	u	NC
	4-Bromophenyl phenyl ether	< 0.12	u	< 2.9181	u	NC
	4-Chloro-3-methylphenol	< 0.15	u	< 2.7385	u	NC
	4-Chloroaniline	< 0.13	u	< 2.5436	u	NC
	4-Chlorophenyl phenyl ether 4-Nitroaniline	< 0.14	u	< 4.0956	u	NC
		< 0.086	u	< 2.4704	u	NC
	4-Nitrophenol	< 0.093	u	< 2.3697	u	NC
	Acenaphthene	< 0.11	u	< 3.3515	u	NC
	Acenaphthylene	< 0.1	u	< 2.7862	u	NC
	Aniline	< 0.12	u	< 2.394	u	NC
	Anthracene	< 0.081	u	< 2.3363	u	NC NC

		SWMU 10-22 (2-2	2.5')	DUP01		
		1605943-004	ļ.	1605943-00	6	RPD
	Parameter	Sample Result	t	Field Duplica	te	%
	Azobenzene	< 0.15	u	< 3.0833	u	NC
	Benz(a)anthracene	< 0.11	u	< 2.1617	u	NC
	Benzo(a)pyrene	< 0.093	u	< 3.0867	u	NC
	Benzo(b)fluoranthene	< 0.11	u	< 2.6117	u	NC
	Benzo(g,h,i)perylene	< 0.11	u	< 3.1299	u	NC
	Benzo(k)fluoranthene	< 0.11	u	< 3.1082	u	NC
	Benzoic acid	< 0.1	u	< 1.5672	u	NC
	Benzyl alcohol	< 0.096	u	< 2.443	u	NC
	Bis(2-chloroethoxy)methane	< 0.13	u	< 2.6251	u	NC
	Bis(2-chloroethyl)ether	< 0.09	u	< 2.7176	u	NC
	Bis(2-chloroisopropyl)ether	< 0.11	u	< 2.1012	u	NC
	Bis(2-ethylhexyl)phthalate	0.19	J	< 3.09	u	NC
	Butyl benzyl phthalate	< 0.11	u	< 3.3577	u	NC
	Carbazole	< 0.083	u	< 2.5616	u	NC
	Chrysene	< 0.1	u	< 2.7618	u	NC
	Dibenz(a,h)anthracene	< 0.099	u	< 2.9798	u	NC
	Dibenzofuran	< 0.12	u	< 2.9415	u	NC
	Diethyl phthalate	< 0.12	u	< 3.1214	u	NC
	Dimethyl phthalate	< 0.12	u	< 2.5312	u	NC
	Di-n-butyl phthalate	0.12	J	< 3.1105	u	NC
	Di-n-octyl phthalate	< 0.1	u	< 3.0618	u	NC
	Fluoranthene	< 0.071	u	< 3.3375	u	NC
	Fluorene	< 0.11	u	< 3.7443	u	NC
	Hexachlorobenzene	< 0.097	u	< 2.5959	u	NC
	Hexachlorobutadiene	< 0.14	u	< 2.7211	u	NC
	Hexachlorocyclopentadiene	< 0.14	u	< 1.9077	u	NC
	Hexachloroethane	< 0.11	u	< 2.4482	u	NC
	Indeno(1,2,3-cd)pyrene	< 0.096	u	< 3.1256	u	NC
	Naphthalene	< 0.12	u	< 2.617	u	NC
	Nitrobenzene	< 0.13	u	< 2.8318	u	NC
	N-Nitrosodi-n-propylamine	< 0.12	u	< 2.8509	u	NC
	N-Nitrosodiphenylamine	< 0.12	u	< 2.4624	u	NC
	Pentachlorophenol	< 0.079	u	< 1.7172	u	NC
	Phenanthrene	< 0.083	u	< 2.8773	+ +	NC
	Phenol	< 0.083	u	< 2.4649	u	NC
	Pyrene	< 0.092	u	< 3.5497	u	NC
	Pyridine	< 0.093	u	< 2.3111	u	NC
etals (mg/kg-dry)	Antimony	< 7.3	u	< 1.4517	u	NC
etais (ilig/ kg-uly)	Arsenic	2.4	J	2.7	J	2.9
	Barium	290	V	380	V	6.7
	Beryllium	0.89	V	0.59	V	10.1
	Cadmium	< 0.0782	u	< 0.0306	u	NC
	Chromium	12	V	16	V	7.1
	Hexavalent Chromium	< 0.64	+	3.4	V	NC
		4.9	v	< 0.2828	u	NC
	Cyanida	0.04	V J	< 2.2626		NC
	Cyanide				u	
	Iron	14000	V	9100	V	10.6
	Lead	4.3	V	3.6	V	4.4
	Manganese Mercury	570 0.044	V	490 0.035	V	3.8 5.7

Table A-3 Field Duplicate Summary SWMU 10 Investigation Report Western Refining Southwest, Inc. - Gallup Refinery

	SWMU 10-22 (2-2	2.5')	DUP01		
	1605943-004		1605943-00	6	RPD
Parameter	Sample Result		Field Duplicat	:e	%
Nickel	8.6	٧	5.6	٧	10.6
Selenium	< 1.346	u	< 1.6905	u	NC
Silver	< 0.0391	u	< 0.0328	u	NC
Vanadium	18	٧	21	٧	3.8
Zinc	20	٧	24	٧	4.5

Notes:

RPD = Relative percent difference; [(difference)/(average)]* 100

NC = Not calculated; RPD values were not calculated for non-detects

ug/kg-dry = micrograms per kilogram dry

mg/kg-dry = milligrams per kilogram

bold value = Field Duplicate RPD Outlier

		SWMU 10-25 (2-2	2.5')	SWMU 10 DU	P01	
		1609B57-007	,	1609B57-0	10	RPD
	Parameter	Sample Result	:	Field Duplica	ite	%
	Gasoline Range Organics (GRO)	730	٧	510	Z	8.9
TPH (mg/kg-dry)	Diesel Range Organics (DRO)	790	V	3400	V	31.1
	Motor Oil Range Organics (MRO)	100	V	< 560	u	NC
OCs (mg/kg-dry)	1,1,1,2-Tetrachloroethane	< 0.2042	u	< 0.18	u	NC
	1,1,1-Trichloroethane	< 0.1302	u	< 0.11	u	NC
	1,1,2,2-Tetrachloroethane	< 0.3458	u	< 0.3	u	NC
	1,1,2-Trichloroethane	< 0.2515	u	< 0.22	u	NC
	1,1-Dichloroethane	< 0.1153	u	< 0.1	u	NC
	1,1-Dichloroethene	< 0.6989	u	< 0.61	u	NC
	1,1-Dichloropropene	< 0.1693	u	< 0.15	u	NC
	1,2,3-Trichlorobenzene	< 0.3193	u	< 0.28	u	NC
	1,2,3-Trichloropropane	< 0.3691	u	< 0.32	u	NC
	1,2,4-Trichlorobenzene	< 0.2282	u	< 0.2	u	NC
	1,2,4-Trimethylbenzene	5.8	٧	5.8	Z	0.0
	1,2-Dibromo-3-chloropropane	< 0.6536	u	< 0.57	u	NC
	1,2-Dibromoethane (EDB)	< 0.1518	u	< 0.13	u	NC
	1,2-Dichlorobenzene	< 0.1862	u	< 0.16	u	NC
	1,2-Dichloroethane (EDC)	< 0.5564	u	< 0.48	u	NC
	1,2-Dichloropropane	< 0.179	u	< 0.16	u	NC
	1,3,5-Trimethylbenzene	2.6	٧	2.5	Z	1.0
	1,3-Dichlorobenzene	< 0.175	u	< 0.15	u	NC
	1,3-Dichloropropane	< 0.2421	u	< 0.21	u	NC
	1,4-Dichlorobenzene	< 0.2644	u	< 0.23	u	NC
	1-Methylnaphthalene	13	V	13	Z	0.0
	2,2-Dichloropropane	< 0.1222	u	< 0.11	u	NC
	2-Butanone	< 1.2194	u	< 1.1	u	NC
	2-Chlorotoluene	< 0.1574	u	< 0.14	u	NC
	2-Hexanone	< 1.1611	u	< 1	u	NC
	2-Methylnaphthalene	16	v	18	Z	2.9
	4-Chlorotoluene	< 0.1887	u	< 0.16	u	NC
	4-Isopropyltoluene	0.61	J	0.59	J	0.8
	4-Methyl-2-pentanone	< 0.6219	u	< 0.54	u	NC
	Acetone	< 2.7608	u	< 2.4	u	NC
	Benzene	< 0.8538	u	< 0.74	u	NC
	Bromobenzene	< 0.172	u	< 0.15	u	NC
	Bromodichloromethane	< 0.1243	u	< 0.11	u	NC
	Bromoform	< 0.2599	u	< 0.23	u	NC
	Bromomethane	< 0.7861	u	0.69	J	NC
	Carbon disulfide	< 0.7045	u	< 0.61	u	NC
	Carbon tetrachloride	< 0.1401	u	< 0.12	u	NC
	Chlorobenzene	< 0.1737	u	< 0.15	u	NC
	Chloroethane	< 0.4259	u	< 0.37	u	NC
	Chloroform	< 0.161	u	< 0.14	u	NC
	Chloromethane	< 0.1899	u	< 0.17	u	NC
	cis-1,2-DCE	< 0.1241	u	< 0.11	u	NC
	cis-1,3-Dichloropropene	< 0.1967	u	< 0.17	u	NC

		SWMU 10-25 (2-2	2.5')	SWMU 10 DU	201	
		1609B57-007	,	1609B57-01	.0	RPD
	Parameter	Sample Result	t	Field Duplica	te	%
	Dibromochloromethane	< 0.1928	u	< 0.17	u	NC
	Dibromomethane	< 0.1848	u	< 0.16	u	NC
	Dichlorodifluoromethane	< 0.6602	u	< 0.57	u	NC
	Ethylbenzene	1	J	0.99	J	0.3
	Hexachlorobutadiene	< 0.2609	u	< 0.23	u	NC
	Isopropylbenzene	0.54	J	0.5	J	1.9
	Methyl tert-butyl ether (MTBE)	< 0.6706	u	< 0.58	u	NC
	Methylene chloride	< 0.6153	u	< 0.54	u	NC
	Naphthalene	3.8	J	4.1	Z	1.9
	n-Butylbenzene	0.95	J	0.87	J	2.2
	n-Propylbenzene	0.93	J	0.98	J	1.3
	sec-Butylbenzene	0.74	J	0.67	J	2.5
	Styrene	< 0.1905	u	< 0.17	u	NC
	tert-Butylbenzene	< 0.1769	u	< 0.15	u	NC
	Tetrachloroethene (PCE)	< 0.177	u	< 0.15	u	NC
	Toluene	0.29	J	0.2	J	9.2
	trans-1,2-DCE	< 0.5973	u	< 0.52	u	NC
	trans-1,3-Dichloropropene	< 0.3123	u	< 0.27	u	NC
	Trichloroethene (TCE)	< 0.2288	u	< 0.2	u	NC
	Trichlorofluoromethane	< 0.1596	u	< 0.14	u	NC
	Vinyl chloride	< 0.1745	u	< 0.15	u	NC
	Xylenes, Total	10	V	9.9	Z	0.3
SVOCs (mg/kg-dry)	1,2,4-Trichlorobenzene	< 0.1232	u	< 1.1742	u	NC
	1,2-Dichlorobenzene	< 0.0872	u	< 0.8314	u	NC
	1,3-Dichlorobenzene	< 0.088	u	< 0.839	u	NC
	1,4-Dichlorobenzene	< 0.0963	u	< 0.9177	u	NC
	1-Methylnaphthalene	0.82	V	14	Z	44.5
	2,4,5-Trichlorophenol	< 0.114	u	< 1.0863	u	NC
	2,4,6-Trichlorophenol	< 0.0945	u	< 0.9006	u	NC
	2,4-Dichlorophenol	< 0.1063	u	< 1.0126	u	NC
	2,4-Dimethylphenol	0.17	J	< 1.1788	u	NC
	2,4-Dinitrophenol	< 0.0755	u	< 0.72	u	NC
	2,4-Dinitrotoluene	< 0.1017	u	< 0.9694	u	NC
	2,6-Dinitrotoluene	< 0.1205	u	< 1.1486	u	NC
	2-Chloronaphthalene	< 0.0897	u	< 0.8546	u	NC
	2-Chlorophenol	< 0.0898	u	< 0.8557	u	NC
	2-Methylnaphthalene	1.4	v	24	Z	44.5
	'2-Methylphenol (cresol,o-)	0.53	v	< 0.9073	u	NC
	2-Nitroaniline	< 0.1228	u	< 1.1699	u	NC
	2-Nitrophenol	< 0.113	u	< 1.0769	u	NC
	3,3´-Dichlorobenzidine	< 0.0839	u	< 0.7992	u	NC
	3+4-Methylphenol	< 0.0825	u	< 0.7858	u	NC
	3-Nitroaniline	< 0.1004	u	< 0.9569	u	NC
	4,6-Dinitro-2-methylphenol	< 0.0689	u	< 0.6564	u	NC
	4-Bromophenyl phenyl ether	< 0.1089	u	< 1.0377	u	NC
	4-Chloro-3-methylphenol	< 0.1359	u	< 1.2951	u	NC

Table A-3 Field Duplicate Summary SWMU 10 Investigation Report Western Refining Southwest, Inc. - Gallup Refinery

		SWMU 10-25 (2-2	.5')	SWMU 10 DUI	SWMU 10 DUP01		
		1609B57-007		1609B57-01	LO	RPD	
	Parameter	Sample Result		Field Duplica	te	%	
	4-Chloroaniline	< 0.1238	u	< 1.1801	u	NC	
	4-Chlorophenyl phenyl ether	< 0.1301	u	< 1.2402	u	NC	
	4-Nitroaniline	< 0.0803	u	< 0.7654	u	NC	
	4-Nitrophenol	< 0.0868	u	< 0.8269	u	NC	
	Acenaphthene	< 0.0977	u	< 0.9308	u	NC	
	Acenaphthylene	< 0.0927	u	< 0.8833	u	NC	
	Aniline	< 0.1076	u	< 1.0256	u	NC	
	Anthracene	< 0.0756	u	< 0.7205	u	NC	
	Azobenzene	< 0.1388	u	< 1.3227	u	NC	
	Benz(a)anthracene	< 0.0981	u	< 0.9344	u	NC	
	Benzo(a)pyrene	< 0.0862	u	< 0.8219	u	NC	
	Benzo(b)fluoranthene	< 0.1029	u	< 0.9803	u	NC	
	Benzo(g,h,i)perylene	< 0.1004	u	< 0.9571	u	NC	
	Benzo(k)fluoranthene	< 0.1003	u	< 0.9562	u	NC	
	Benzoic acid	0.21	J	2.7	j	42.8	
	Benzyl alcohol	< 0.0892	u	< 0.8497	u	NC	
	Bis(2-chloroethoxy)methane	< 0.1236	u	< 1.1778	u	NC	
	Bis(2-chloroethyl)ether	< 0.0837	u	< 0.7976	u	NC	
	Bis(2-chloroisopropyl)ether	< 0.1017	u	< 0.9692	u	NC	
	Bis(2-ethylhexyl)phthalate	0.22	J	< 0.8844	u	NC	
	Butyl benzyl phthalate	< 0.1008	u	< 0.961	u	NC	
	Carbazole	< 0.0769	u	< 0.733	u	NC	
	Chrysene	< 0.097	u	< 0.9243	u	NC	
	Dibenz(a,h)anthracene	< 0.0921	u	< 0.8777	u	NC	
	Dibenzofuran	< 0.1146	u	< 1.0917	u	NC	
	Diethyl phthalate	0.28	V	< 1.1007	u	NC	
	Dimethyl phthalate	< 0.1114	u	< 1.0618	u	NC	
	Di-n-butyl phthalate	0.35	J	< 0.8117	u	NC	
	Di-n-octyl phthalate	< 0.0972	u	< 0.9259	u	NC	
	Fluoranthene	< 0.0656	u	< 0.6252	u	NC	
	Fluorene	0.19	J	2.8	Z	43.6	
	Hexachlorobenzene	< 0.0898	u	< 0.8559	u	NC	
	Hexachlorobutadiene	< 0.1284	u	< 1.2232	u	NC	
	Hexachlorocyclopentadiene	< 0.1302	u	< 1.241	u	NC	
	Hexachloroethane	< 0.0979	u	< 0.9325	u	NC	
	Indeno(1,2,3-cd)pyrene	< 0.0889	u	< 0.8476	u	NC	
	Naphthalene	0.28	V	< 1.2	u	NC	
	Nitrobenzene	< 0.1175	u	4.7	Z	NC	
	N-Nitrosodi-n-propylamine	< 0.1095	u	< 1.1201	u	NC	
	N-Nitrosodiphenylamine	< 0.1112	u	< 1.0432	u	NC	
	Pentachlorophenol	< 0.0732	u	< 1.06	u	NC	
	Phenanthrene	0.39	V	< 0.6976	u	NC	
	Phenol	< 0.0858	u	5.1	Z	NC	
	Pyrene	< 0.0861	u	< 0.8175	u	NC	
	Pyridine	< 0.0903	u	< 0.8203	u	NC	
etals (mg/kg-dry)	Antimony	< 1.1611	u	< 0.8604	u	NC	

Table A-3 Field Duplicate Summary SWMU 10 Investigation Report Western Refining Southwest, Inc. - Gallup Refinery

	SWMU 10-25 (2-2.	5')	SWMU 10 DUP	01	
	1609B57-007		1609B57-010)	RPD
Parameter	Sample Result		Field Duplicat	е	%
Arsenic	< 1.0254	u	< 0.9931	u	NC
Barium	96	٧	130	٧	7.5
Beryllium	0.58	٧	0.69	٧	4.3
Cadmium	< 0.0732	u	< 0.0709	u	NC
Chromium	7.2	٧	7.7	V	1.7
Hexavalent Chromium	<0.1	u	6.1	V	NC
Cobalt	0.12	J	0.063	J	15.6
Cyanide	0.3	J	0.43	J	8.9
Iron	12000	٧	13000	٧	2.0
Lead	2.1	٧	3.4	٧	11.8
Manganese	500	٧	970	٧	16.0
Mercury	0.0031	J	0.0053	J	13.1
Nickel	5.7	٧	6.7	٧	4.0
Selenium	< 2.0993	u	< 2.0332	u	NC
Silver	< 0.0722	u	< 0.07	u	NC
Vanadium	15	٧	17	V	3.1
Zinc	11	٧	16	V	9.3

Notes:

RPD = Relative percent difference; [(difference)/(average)]* 100

NC = Not calculated; RPD values were not calculated for non-detects

ug/kg-dry = micrograms per kilogram dry

mg/kg-dry = milligrams per kilogram

bold value = Field Duplicate RPD Outlier

		SWMU 10-15-GW	SWMU 10 DUP01GW	RP
	Parameter	Sample Result	Field Duplicate	(%)
PH (mg/l):	Gasoline Range Organics (GRO)	0.78	0.73	1.7
	Diesel Range Organics (DRO)	1	1.1	2.4
	Motor Oil Range Organics (MRO)	5 U	5 U	NC
OCs (ug/l)	1,1,1,2-Tetrachloroethane	0.22094 U	0.11047 U	NC
	1,1,1-Trichloroethane	0.15544 U	0.07772 U	NC
	1,1,2,2-Tetrachloroethane	0.35915 U	0.17957 U	NC
	1,1,2-Trichloroethane	0.15763 U	0.07881 U	NC
	1,1-Dichloroethane	0.8 U	0.4 U	NC
	1,1-Dichloroethene	0.19865 U	0.09932 U	NC
	1,1-Dichloropropene	0.23043 U	0.11521 U	NC
	1,2,3-Trichlorobenzene	0.53278 U	0.26639 U	NC
	1,2,3-Trichloropropane	0.31673 U	0.15836 U	NC
	1,2,4-Trichlorobenzene	0.56547 U	0.28273 U	NC
	1,2,4-Trimethylbenzene	0.31893 U	0.15946 U	NC
	1,2-Dibromo-3-chloropropane	0.27209 U	0.13604 U	NC
	1,2-Dibromoethane (EDB)	0.26750 U	0.13375 U	NC
	1,2-Dichlorobenzene	0.23661 U	0.11831 U	NC
	1,2-Dichloroethane (EDC)	0.35297 U	0.17648 U	NC
	1,2-Dichloropropane	0.30239 U	0.15119 U	NO
	1,3,5-Trimethylbenzene	0.24576 U	0.12288 U	NC
	1,3-Dichlorobenzene	0.18698 U	0.09349 U	NO
	1,3-Dichloropropane	0.34440 U	0.17220 U	NO
	1,4-Dichlorobenzene	0.33168 U	0.16584 U	NO
	1-Methylnaphthalene	1.07678 U	0.53839 U	NO
	2,2-Dichloropropane	0.30330 U	0.15165 U	NO
	Benzene	0.50550 U	0.13103 U	6.0
	2-Butanone	2.9 J	2.9 J	0.0
	2-Chlorotoluene	0.15813 U	0.07906 U	NO.
	2-Hexanone	0.13813 U	0.47661 U	NO
	2-Methylnaphthalene	1.18893 U	0.59446 U	NO
		0.29868 U	0.14934 U	N
	4-Chlorotoluene			
	4-Isopropyltoluene	0.37722 U	0.18861 U	N(
	4-Methyl-2-pentanone	0.51323 U	0.25661 U	N(
	Acetone	9.7 J	16	12
	Bromobenzene	0.21555 U	0.10777 U	NO
	Bromodichloromethane	0.17935 U	0.08968 U	NO
	Bromoform	0.32470 U	0.16235 U	N
	Bromomethane	2.32245 U	1.16123 U	N
	Carbon disulfide	1.34646 U	0.67323 U	N
	Carbon Tetrachloride	0.15607 U	0.07803 U	N
	Chlorobenzene	0.18680 U	0.09340 U	N
	Chloroethane	0.20937 U	0.10468 U	N
	Chloroform	0.42972 U	0.21486 U	N
	Chloromethane	0.34737 U	0.17368 U	N
	cis-1,2-DCE	0.16120 U	0.08060 U	N
	cis-1,3-Dichloropropene	0.26617 U	0.13308 U	N
	Dibromochloromethane	0.19361 U	0.09681 U	N
	Dibromomethane	0.46872 U	0.23436 U	NO
	Dichlorodifluoromethane	1.38481 U	0.69241 U	N
	Ethylbenzene	0.20214 U	0.10107 U	NO
	Hexachlorobutadiene	0.50280 U	0.25140 U	NO
	Isopropylbenzene	0.30395 U	0.15197 U	NO
	Methyl tert-butyl ether (MTBE)	150	150	0.0
	Methylene Chloride	0.72072 U	0.36036 U	NO
	Naphthalene	0.43587 U	0.21793 U	NO
	n-Butylbenzene	0.49093 U	0.24546 U	NO
	n-Propylbenzene	0.32634 U	0.16317 U	NO
	sec-Butylbenzene	0.45720 U	0.22860 U	NO
	Styrene	0.21131 U	0.10566 U	NO
	tert-Butylbenzene	0.21131 U	0.12947 U	NO
	tore butymorizone	0.32095 U	0.16047 U	NC

		SWMU 10-15-GW	SWMU 10 DUP01GW	RPD
	Parameter	Sample Result	Field Duplicate	(%)
	Toluene	0.21693 U	0.10847 U	NC
	trans-1,2-DCE	0.18810 U	0.09405 U	NC
	trans-1,3-Dichloropropene	0.22617 U	0.11309 U	NC
	Trichloroethene (TCE)	0.32669 U	0.16334 U	NC
	Trichlorofluoromethane	0.25403 U	0.12701 U	NC
	Vinyl chloride	0.25082 U	0.12541 U	NC
	Xylenes, Total	0.56497 U	0.28248 U	NC
OCs (mg/kg-dry):	1,2,4-Trichlorobenzene	1.99336 U	1.99336 U	NC
5 00 (g,g u.),.	1,2-Dichlorobenzene	1.89877 U	1.89877 U	NC
	1,3-Dichlorobenzene	1.69038 U	1.69038 U	NC
	1.4-Dichlorobenzene	1.23419 U	1.23419 U	NC
	1-Methylnaphthalene	1.80147 U	1.80147 U	NC
	2,4,5-Trichlorophenol	1.61671 U	1.61671 U	NC
	2,4,6-Trichlorophenol	1.25834 U	1.25834 U	NC
	2,4-Dichlorophenol	1.39496 U	1.39496 U	NC
	2,4-Dimethylphenol	1.85381 U	1.85381 U	NC
	2,4-Dinitrophenol	1.06974 U	1.06974 U	NC
	2,4-Dinitrotoluene	1.43393 U	1.43393 U	NC
	2,6-Dinitrotoluene	1.49035 U	1.49035 U	NC
	2-Chloronaphthalene	1.71573 U	1.71573 U	NC
	2-Chlorophenol	1.20402 U	1.20402 U	NC
	2-Methylnaphthalene	2.24599 U	2.24599 U	NC
	2-Methylphenol	1.24572 U	1.24572 U	NC
	2-Nitroaniline	1.79467 U	1.79467 U	NC
	2-Nitrophenol	1.23136 U	1.23136 U	NC
	3.3´-Dichlorobenzidine	2.60844 U	2.60844 U	NC
	3+4-Methylphenol	1.47532 U	1.47532 U	NC
	3-Nitroaniline	1.47977 U	1.47977 U	NC
	4,6-Dinitro-2-methylphenol	1.36786 U	1.36786 U	NC
	4-Bromophenyl phenyl ether	1.40872 U	1.40872 U	NC
	4-Chloro-3-methylphenol	1.35070 U	1.35070 U	NC
	4-Chloroaniline	1.87394 U	1.87394 U	NC
	4-Chlorophenyl phenyl ether	2.01318 U	2.01318 U	NC
	4-Nitroaniline	1.24171 U	1.24171 U	NC
	4-Nitrophenol	1.40498 U	1.40498 U	NC
	Acenaphthene	1.88470 U	1.88470 U	NC
	Acenaphthylene	1.86589 U	1.86589 U	NC
	Aniline	1.54599 U	1.54599 U	NC
	Anthracene	1.60486 U	1.60486 U	NC
	Azobenzene	2.00531 U	2.00531 U	NC
	Benz(a)anthracene	2.50627 U	2.50627 U	NC
	Benzo(a)pyrene	2.72398 U	2.72398 U	NC
	Benzo(b)fluoranthene	2.40284 U	2.40284 U	NC
	Benzo(g,h,i)perylene	3.12517 U	3.12517 U	NC
	Benzo(k)fluoranthene	2.51488 U	2.51488 U	NC
	Benzoic acid	1.02557 U	1.02557 U	NC
	Benzyl alcohol	1.17187 U	1.02557 U	NC
	Bis(2-chloroethoxy)methane	1.17187 U	1.80486 U	NC
	, , , , , , , , , , , , , , , , , , , ,			
	Bis(2-chloroethyl)ether	1.77363 U	1.77363 U	NC
	Bis(2-chloroisopropyl)ether	2.05946 U	2.05946 U	NC
	Bis(2-ethylhexyl)phthalate	3.32558 U	3.32558 U	NC
	Butyl benzyl phthalate	2.37012 U	2.37012 U	NC
	Carbazole	1.49023 U	1.49023 U	NC
	Chrysene	2.15442 U	2.15442 U	NC
	Dibenz(a,h)anthracene	3.26832 U	3.26832 U	NC
	Dibenzofuran	1.90194 U	1.90194 U	NC
	Diethyl phthalate	1.67338 U	1.67338 U	NC
	Dimethyl phthalate	1.99487 U	1.99487 U	NC
	Di-n-butyl phthalate	2.10312 U	2.10312 U	NC
	Di-n-octyl phthalate	1.93926 U	1.93926 U	NC

Western Refining Southwest, Inc. - Gallup Refinery

		SWMU 10-15-GW	SWMU 10 DUP01GW	RPD
	Parameter	Sample Result	Field Duplicate	(%)
	Fluorene	1.67191 U	1.67191 U	NC
	Hexachlorobenzene	2.02231 U	2.02231 U	NC
	Hexachlorobutadiene	1.94908 U	1.94908 U	NC
	Hexachlorocyclopentadiene	1.47091 U	1.47091 U	NC
	Hexachloroethane	1.61223 U	1.61223 U	NC
	Indeno(1,2,3-cd)pyrene	2.45952 U	2.45952 U	NC
	Isophorone	1.95246 U	1.95246 U	NC
	Naphthalene	1.83350 U	1.83350 U	NC
	Nitrobenzene	1.49388 U	1.49388 U	NC
	N-Nitrosodimethylamine	1.41684 U	1.41684 U	NC
	N-Nitrosodi-n-propylamine	2.03650 U	2.03650 U	NC
	N-Nitrosodiphenylamine	2.46700 U	2.46700 U	NC
	Pentachlorophenol	1.13741 U	1.13741 U	NC
	Phenanthrene	1.99666 U	1.99666 U	NC
	Phenol	1.08528 U	1.08528 U	NC
	Pyrene	2.31812 U	2.31812 U	NC
	Pyridine	1.67388 U	1.67388 U	NC
Water Quality (mg/l)	Chloride	2300	2400	1.1
Mator Quality (mg/l)	Fluoride	0.55	0.55	0.0
	Sulfate	440	470	1.6
Dissolved Metals (mg/l):	Antimony (d)	0.001429741 U	0.001 U	NC
Dissolved Wetais (mg/1).	Arsenic (d)	0.001429741 0 0.011 J	0.001 J	0.0
	Barium (d)	0.22	0.22	0.0
	Beryllium (d)	0.000312692 U	0.00033 J	NC
	Cadmium (d)	0.000312092 U	0.00033 J	NC
	Chromium (d)	0.000960229 0	0.001 0	0.0
	Cobalt (d)	0.0094	0.0094	0.0
		0.023	2.2	28.3
	Iron (d) Lead (d)	0.0026 J	0.0039 J	10.0
		2.4		1.0
	Manganese (d)		2.5	
	Nickel (d)	0.65	0.66	0.4
	Selenium (d)	0.02	0.023	3.5
	Silver (d)	0.00121688 U	0.001 U	NC 7.4
	Vanadium (d)	0.0057 J	0.0076 J	7.1
-	Zinc	0.15	0.036	30.6
Total Metals (mg/l):	Antimony	0.00215761 U	0.002 U	NC
	Arsenic	0.012	0.012	0.0
	Barium	0.37	0.31	4.4
	Beryllium	0.0015 J	0.0014 J	1.7
	Cadmium	0.000966229 U	0.001 U	NC
	Chromium	0.0062	0.0059 J	1.2
	Chromium, Hexavalent	0.0005 U	0.00061	NC
	Cobalt	0.025	0.025	0.0
	Cyanide	0.055	0.051	1.9
	Iron	9.4	7.4	6.0
	Lead	0.014	0.012	3.8
	Manganese	2.9	3	0.8
	Mercury	0.0000589 U	0.0000589 U	NC
	Nickel	0.64	0.65	0.4
	Selenium	0.019	0.022	3.7
	Silver	0.002112456 U	0.002 U	NC
	Vanadium	0.019 J	0.017 J	2.8

Notes:

RPD = Relative percent difference; [(difference)/(average)]* 100

NC = Not calculated; RPD values were not calculated for non-detects

ug/I = micrograms per liter

mg/I = milligrams per liter

bold value = Field Duplicate RPD Outlier

Completeness Summary SWMU 10 Investigation Report

Western Refining Southwest, Inc. - Gallup Refinery

	Parameter	Total Number of Results	Number of Usable Results	Percent Technical Compliance
TPH:	Diesel Range Organics (DRO)	100	100	100
	Motor Oil Range Organics (MRO)	100	100	100
	Gasoline Range Organics (GRO)	100	100	100
VOCs:	All VOC Analytes	111	111	100
SVOCs:	All SVOC Analytes	100	100	100
Metals (total):	Antimony	98	98	100
	Arsenic	98	98	100
	Barium	98	98	100
	Beryllium	98	98	100
	Cadmium	98	98	100
	Chromium	98	98	100
	Cobalt	98	98	100
	Cyanide	98	98	100
	Hexavalent Chromium	98	98	100
	Iron	98	98	100
	Lead	98	98	100
	Manganese	98	98	100
	Mercury	98	98	100
	Nickel	98	98	100
	Selenium	98	98	100
	Silver	98	98	100
	Vanadium	98	98	100
	Zinc	98	98	100
Metals (mg/l dissolved):	Antimony	10	10	100
	Arsenic	10	10	100
	Barium	10	10	100
	Beryllium	10	10	100
	Cadmium	10	10	100
	Chromium	10	10	100
	Cobalt	10	10	100
	Iron	10	10	100
	Lead	10	10	100
	Manganese	10	10	100
	Nickel	10	10	100
	Selenium	10	10	100
	Silver	10	10	100
	Vanadium	10	10	100
	Zinc	10	10	100
Water Quality (mg/l)	Chloride	10	10	100
	Fluoride	10	10	100
	Sulfate	10	10	100

Notes:

Number of samples used in completeness calculations includes soil samples, groundwater samples, soil and groundwater field duplicates, equipment rinsate, and field blanks.

Percent Technial Compliance = (Number of usable results / Number of reported results) * 100

Appendix F Historical Analyses

Ciniza Refinery Metals Results for Wastewater samples Taken During July and August,1980.

Metal	New Well Raw Water 7/23/80 0830 hrs.	Pond 3 Inlet /Softener Waste 8/11/80 1000 hrs.	Cooling Water Tower Blowdown 7/23/80 0830 hrs.	API Separator Overflow 7/17/80 1330 hrs.	API Sepatrator Overflow 7/19/80 1300 hrs.	API Separator Overflow 7/23/80 0830 hrs.
Arsenic	0.003	0.031	0.013	ć	•	
Barium	0.014	0.068		**************************************	0.005	0.015
Cadmium	<0.001	100.0>	770.0	0.22	0.094	0.105
Chromium		•	100.03	<0.001	<0.001	<0.001
	T00.0	0.026	13,	0.91	0.64	1 2
י געסה	<0.001	<0.001	0.001	<0.001	. 00.0>	1 (
Selenium	<0.001	0.097	0.025	7.00		100.05
Silver	<0.001	0.002	0.010		8Tn•n	0.024
				900.5	0.012	0.005

Ç 5

Controls for Environmental Pollution, Inc. P.O. BOX 5351 • Santa Fe, New Mexico 87502

REPORT OF ANALYSIS

Seperator Sludge

IYPE OF ANALYSIS Arsenic Silver

Chromium Cadmium

Barium

He xavalent Chromium, Chromium

Oil and Grease Mercury

Lead Lead

Selenium

Total Organic Carbon

LAB # 84-03-404 OUT OF STATE 800/545.2180 IN STATE 505/982.9841

mq/liter <0.001 0.036 <0.01 <0.02 . 4

(ug/gram) (ug/gram) <0.0004
26,000</pre> <0.03 <0.001 10

<0.01 340 9.30

(ug/gram) (units)

>400,000

Appendix G Site-Specific Dilution/Attenuation Factor Calculations

Calculation of Site-Specific Dilution/Attenuation Factor (DAF)

The DAF value was calculated using equation 33 from NMED's *Risk Assessment Guidance for Site Investigations and Remediation (July, 2015).*

$$DAF = 1 + \left(\frac{K*i*D}{I*L}\right)$$
 $DAF = 1 + \left(\frac{38.96*0.027*10.58}{0.000242*100}\right) = 295$

Where:

$$D = (0.0112 * L^{2})^{0.5} + D_{a} \left(1 - \exp \left[\frac{-L * I}{K * i * D_{a}} \right] \right)$$

$$D = (0.0112*100^{2})^{0.5} + 12.5 \left(1 - \exp\left[\frac{-100*0.000242}{38.96*0.027*12.5}\right]\right) = 10.58 \text{ m}$$

K = Aquifer hydraulic conductivity (m/yr)

i = Hydraulic gradient (m/m)

D = Mixing zone depth (m)

I = Infiltration rate (m/yr)

L= Source length parallel to ground water flow (m)

D_a= Aguifer thickness (m)

Derivation of site-specific values:

K = 38.96 m/yr as determined from a slug test at well MW-1(completed in Sonsela Sandstone aquifer) and originally presented in Appendix C of the Discharge Plan Application for Giant Refining Company, Ciniza Refinery, dated November 21, 1985.

i = 0.013 m/m as measured during Fall 2015 ground water sampling event (potentiometric surface map of Sonsela aquifer attached)

D = 10.58 m [lower of aquifer thickness (12.5 m measured at nearest well that penetrates Sonsela aquifer – OW-12) or calculated mixing zone depth (10.58m)]

I = 0.000182 m/yr derivation using EPA's HELP model as described below

 $L=100\ m-conservative$ source area length measured across Aeration Basin and surrounding soils with potential impact

D_a= 12.5 m - saturated thickness measured at nearest well that penetrates Sonsela aquifer – OW-12 during August 2015 ground water sampling event

Calculation of Infiltration Rate

Pursuant to EPA's Soil Screening Guidance: User's Guide (Second Edition, July 1996), infiltration rates can be calculated either of two ways: (1) assume that infiltration rate is

equivalent to recharge, or (2) use the EPA HELP model to estimate infiltration. Because the Gallup site is located in an area with low annual rainfall rates and high potential evapotranspiration rates, method 1 is not representative of site conditions. That is to say that it is unreasonable to assume that infiltration is equal to recharge.

EPA's HELP model was used to calculate the site-specific infiltration rate. Site-specific meteorological data was obtained from the Western Regional Climate Center and New Mexico State University, which operates a nearby weather station (Thoreau 5 ENE) as part of the NWS Cooperator Climate Stations. The weather station is located east northeast of Thoreau, New Mexico on HWY 371 and is approximately 16 miles south southeast of the Gallup Refinery.

Data obtained from the Thoreau 5 ENE station includes mean monthly temperature and average monthly precipitation. The average wind speed (11.3 km/hr) was obtained from the Western Regional Climate Center, as measured at the Gallup, NM airport. Daily solar radiation and quarterly relative humidity values were based on measurements from Albuquerque, NM. This data was obtained from the National Oceanic and Atmospheric Administration (NOAA) and is included in the HELP model's Weather Generator module. A review of the monthly average weather conditions (temperature and precipitation) at Gallup and Albuquerque as shown in the table below indicates very similar conditions such that use of quarterly relative humidity and solar radiation from Albuquerque should be sufficient to estimate conditions at the Western Refining Gallup Refinery. The quarterly relative humidity values used are 48%, 30%, 45%, and 50% for the first, second, third, and fourth quarters, respectively.

The HELP model soil profile was constructed with two layers. The Sonsela Aquifer is considered to be the uppermost aquifer in the area (reference the May 2000 RCRA Post-Closure Care Part B Permit Application). The upper layer (Layer 1.1) represents the unconsolidated deposits that overlie the Chinle Group (Petrified Forest Formation) bedrock. Based on the soil borings logs prepared from the recent investigation of SWMU 10, the predominant lithology in this upper layer is silty clay and clay, with lesser amounts of sandy clay. There are relatively thin (several feet thick) discontinuous layers of clayey sand and sand. The soil type chosen in the model was loam with an average thickness of 3 meters. Loam would normally be expected contain a higher percentage of silt and sand than observed in the most of the soil borings and is considered to be a conservative estimate of actual field conditions.

The land surface was assumed to have a poor stand of grass, which is more conservative than the other possible option of bare soil. The slope of the land surface was calculated to be 4.0 % based on surveyed elevations across the extent of SWMU 10. Based on the selected soil type (loam) the model default value for porosity is 0.463, field capacity is 0.232, wilting point is 0.116, and saturated hydraulic conductivity is 3.7E-4 cm/sec. These model default vales are taken from the US Department of Agriculture. Soil permeability tests conducted on soil samples collected beneath the nearby Land Treatment Unit indicated a permeability of 1.9E-5 cm/sec, thus the model default hydraulic conductivity of 3.7E-4 cm/sec is a conservative estimate (see attached page 2 of Appendix C from RCRA Post-Closure Care Permit Application).

The second layer (Layer 1.2) in the model represents the upper portion of the Chinle Group (i.e., Petrified Forest Formation), which overlies the Sonsela Aquifer. This upper portion of the Chinle Group consists of mudstone/claystone. The default soil type from

the HELP model chosen to represent the upper Chinle Group was moderately compacted clay. The model default value for porosity is 0.456, field capacity is 0.419, and wilting point is 0.332. The default porosity value of 0.456 is not believed to be representative of the claystone bedrock, thus a literature search was conducted to find more appropriate values. An average porosity of 0.165 was identified for the Jurassic Morrison Formation (claystone) at Long Park, Colorado (USDI, 1963). A site-specific hydraulic conductivity was used to be more representative of actual site conditions that the program default value. Yield tests, including slug tests and pumping tests have been performed at the refinery to estimate the hydraulic conductivity of the upper portion of the Chinle Group (see attached documentation). A slug test performed on July 3, 1984 in well OW-4 indicated a hydraulic conductivity of 4.0E-7 cm/sec. A pump test was performed in well OW-24 on February 20, 1985 and it yielded a hydraulic conductivity of 2.5E-7 cm/sec. The higher of these two conductivity values (4.0E-7 cm/sec) was utilized as a site-specific hydraulic conductivity for the lower layer (i.e., Chinle Group mudstone/sandstone). The thickness of this layer was estimated at 24.4 meters from boing log for OW-12.

Using the model's synthetic weather generator and the aforementioned inputs, the model was run for a 40 year period to simulate potential infiltration (percolation or leakage through Layer 1.2). The model output is enclosed, showing the annual values. Over the modeled 40 year period, the average annual infiltration was 0.000182 meters/year. This average annual infiltration was used in the aforementioned calculation of the site-specific DAF value.

References

USDI, 1963, Porosity and Bulk Density of Sedimentary Rocks, United States Department of the Interior, Geological Survey Bulletin 1144-E, p.55.

Project : SWMU 10

Location Specific Infiltration Rates

Model: HELPAn US EPA model for predicting landfill hydrologic processes and testing of effectiveness of landfill designs

Author: Your title Scott Crouch

Client : Title Ed Riege

Location : Albuquerque

11/11/2016

1. Profile. EPA profile1

Model Settings [HELP] Case Settings

Parameter	Value	Units
Runoff Method	Model calculated	(-)
Initial Moisture Settings	Model calculated	(-)

[HELP] Surface Water Settings

Parameter	Value	Units
Runoff Area	100	(%%)
Vegetation Class	Poor stand of grass	(-)

Profile Structure

Layer	Top (m)	Bottom (m)	Thickness (m)
Alluvium	0,0000	-3.0000	3.0000
Chinle Bedrock	-2.9995	-27,4000	24.4005

1.1. Layer. Alluvium

Top Slope Length: 100.0000 Bottom Slope Length: 0.0000 Top Slope: 4.0000 Bottom Slope: 0.0000

[HELP] Vertical Perc. Layer Parameters

Parameter	Value	Units
total porosity	0.463	(vol/vol)
field capacity	0.232	(vol/vol)
wilting point	0.116	(vol/vol)
sat.hydr.conductivity	3.7E-4	(cm/sec)
subsurface inflow	0	(mm/year)

1.2. Layer. Chinle Bedrock

Top Slope Length: 0.0000 Bottom Slope Length: 0.0000

Top Slope: 0.0000 Bottom Slope: 0.0000

[HELP] Barrier Soil Liner Parameters

Parameter	Value	Units
total porosity	0.165	(vol/vol)
field capacity	0.419	(vol/vol)
wilting point	0.332	(vol/vol)
sat.hydr.conductivity	4.0E-7	(cm/sec)
subsurface inflow	0	(mm/year)

Annual Totals rate (m)

Precipitation (m)	Runoff (m)	Evapotranspiration	Change in water
Precipitation (m)	Kunon (III)	Evapotranspiration	Change in water

	:		(m)	storage (m)
Year-1 (m)	1.9660E-01	0.0000E+00	1.9677E-01	-1.7350E-04
Year-2 (m)	3.0180E-01	9.1537E-04	3.0657E-01	-5.7573E-03
Year-3 (m)	2.3510E-01	0.0000E+00	2.4060E-01	-5.7839E-03
Year-4 (m)	2.3000E-01	2.5366E-03	2.3451E-01	-7.1001E-03
Year-5 (m)	2.5270E-01	0.0000E+00	2.4301E-01	9.6812E-03
Year-6 (m)	1.5870E-01	5.4743E-06	1.4507E-01	1.3598E-02
Year-7 (m)	1.8420E-01	0.0000E+00	1.8756E-01	-3.4412E-03
Year-8 (m)	2.5770E-01	1.2916E-05	2.4903E-01	8.6291E-03
Year-9 (m)	1.9170E-01	6.6953E-04	2.1089E-01	-1.9862E-02
Year-10 (m)	2.2820E-01	1.2865E-03	2.1390E-01	1.2470E-02
Year-11 (m)	2.3680E-01	1.5046E-03	2.5558E-01	-2.5677E-02
Year-12 (m)	2.5940E-01	4.5220E-06	2.4044E-01	1.8948E-02
Year-13 (m)	1.8440E-01	1.1864E-05	1.9941E-01	-1.5097E-02
Year-14 (m)	1.5860E-01	0.0000E+00	1.5141E-01	7.1785E-03
Year-15 (m)	2.4990E-01	0.0000E+00	2.5856E-01	-8.6762E-03
Year-16 (m)	1.6700E-01	0.0000E+00	1.5472E-01	1.2275E-02
Year-17 (m)	1.3040E-01	0.0000E+00	1.1903E-01	1.1365E-02
Year-18 (m)	1.5020E-01	0.0000E+00	1.6500E-01	-1.4840E-02
Year-19 (m)	2.0530E-01	0.0000E+00	1.9808E-01	7.1662E-03
Year-20 (m)	1.8180E-01	2.6583E-04	1.8840E-01	-6.8733E-03
Year-21 (m)	2.3550E-01	6.9849E-06	2.2949E-01	5.9732E-03
Year-22 (m)	1.3750E-01	0.0000E+00	1.4770E-01	-1.0197E-02
Year-23 (m)	2.3340E-01	3.9462E-03	2.2872E-01	7.1646E-04
Year-24 (m)	2.2170E-01	0.0000E+00	2.2689E-01	-5.1976E-03
Year-25 (m)	1.4510E-01	5.4743E-06	1.3219E-01	1.2899E-02
Year-26 (m)	2.0130E-01	1.1479E-03	1.8065E-01	1.9493E-02
Year-27 (m)	2.3200E-01	0.0000E+00	2.2765E-01	4.3452E-03
Year-28 (m)	1.9260E-01	0.0000E+00	2.1651E-01	-2.3992E-02
Year-29 (m)	2.3390E-01	1.2639E-06	2.3704E-01	-3.1509E-03
Year-30 (m)	1.8890E-01	0.0000E+00	1.9277E-01	-3.8754E-03
Year-31 (m)	2.4520E-01	1.2662E-04	2.3575E-01	9.3052E-03
Year-32 (m)	2.2790E-01	0.0000E+00	2.2550E-01	2.3827E-03
Year-33 (m)	3.1730E-01	5.2643E-03	3.1169E-01	2.3910E-04
Year-34 (m)	2.1170E-01	0.0000E+00	2.0234E-01	9.3490E-03
Year-35 (m)	2.7430E-01	9.5079E-04	2.7840E-01	-5.0673E-03
Year-36 (m)	1.5090E-01	0.0000E+00	1.3599E-01	1.4901E-02
Year-37 (m)	2.1680E-01	1.5524E-04	2.5088E-01	-3.4290E-02
Year-38 (m)	1.7490E-01	0.0000E+00	1.6844E-01	6.4508E-03
Year-39 (m)	2.1190E-01	1.0321E-03	1.8405E-01	2.6758E-02
Year-40 (m)	1.7540E-01	0.0000E+00	1.9942E-01	-2.4131E-02
Total (m)	8.3887E+00	1.9850E-02	8.3706E+00	-9.0586E-03

(continued)

	Water budget balance (m)	Percolation or leakance through Layer 2 (m)	Average head on top of Layer 2 (m)
/ear-1 (m)	-2.9526E-09	5.2603E-06	1.5356E-08
/ear-2 (m)	-4.5326E-09	6.6981E-05	1.0819E-07
/ear-3 (m)	-3.5308E-09	2.8523E-04	4.2733E-07
/ear-4 (m)	-3.4543E-09	5.7620E-05	1.4046E-07
/ear-5 (m)	-3.7952E-09	7.9856E-06	2.3292E-08
/ear-6 (m)	-2.3834E-09	2.3447E-05	2.0752E-08
/ear-7 (m)	-2.7664E-09	8.1705E-05	9.5470E-08
/ear-8 (m)	-3.8703E-09	3.1331E-05	9.1296E-08
/ear-9 (m)	-2.8790E-09	5.0396E-06	1.4646E-08
/ear-10 (m)	-3.4272E-09	5.4365E-04	7.2411E-07
/ear-11 (m)	-3.5564E-09	5.3959E-03	8.2432E-06
/ear-12 (m)	-3.8958E-09	1.1126E-05	2.9653E-08
/ear-13 (m)	-2.7694E-09	7.7901E-05	1.6158E-07
/ear-14 (m)	-2.3819E-09	1.0173E-05	1.4647E-08
/ear-15 (m)	-3.7531E-09	1.8462E-05	5.4615E-08
/ear-16 (m)	-2.5081E-09	6.0052E-06	1.7436E-08
/ear-17 (m)	-1.9584E-09	1.9551E-06	5.6773E-09
/ear-18 (m)	-2.2558E-09	4.1669E-05	9.2553E-08
/ear-19 (m)	-3.0833E-09	5.3926E-05	3.3493E-08
/ear-20 (m)	-2.7304E-09	8.4890E-06	2.4744E-08
/ear-21 (m)	-3.5369E-09	2.8949E-05	6.4945E-08
/ear-22 (m)	-2.0650E-09	2.4329E-06	7.0344E-09

Year-23 (m)	-3.5053E-09	1.8935E-05	5.4598E-08
Year-24 (m)	-3.3296E-09	6.2363E-06	1.8079E-08
Year-25 (m)	-2.1792E-09	1.6165E-06	4.8035E-09
Year-26 (m)	-3.0232E-09	5.5487E-06	1.6342E-08
Year-27 (m)	-3.4843E-09	4.4125E-06	1.3844E-08
Year-28 (m)	-2.8926E-09	8.3842E-05	1.3650E-07
Year-29 (m)	-3.5128E-09	1.1656E-05	3.0979E-08
Year-30 (m)	-2.8370E-09	7.6141E-06	2.2408E-08
Year-31 (m)	-3.6825E-09	1.7414E-05	3.8111E-08
Year-32 (m)	-3.4227E-09	1.5151E-05	4.4395E-08
Year-33 (m)	-4.7654E-09	1.0183E-04	1.6100E-07
Year-34 (m)	-3.1794E-09	6.1061E-06	1.8312E-08
Year-35 (m)	-4.1196E-09	1.5303E-05	4.4619E-08
Year-36 (m)	-2.2663E-09	4.3212E-06	8.5338E-09
Year-37 (m)	-3.2560E-09	5.0865E-05	1.0231E-07
Year-38 (m)	-2.6267E-09	1.0114E-05	2.9412E-08
Year-39 (m)	-3.1824E-09	5.6373E-05	9.4730E-08
Year-40 (m)	-2.6342E-09	1.0777E-04	2.2750E-07
Total (m)	-1.2599E-07	7.2903E-03	7.2903E-06

7,2903 F-03 Modess = 1.82 E-05 Meters/ 40 yrs

ALBUQUERQUE WSFO AIRPOR, NEW MEXICO (290234)

Period of Record Monthly Climate Summary

Period of Record: 1/1/1914 to 12/31/2005

	Jan	Feb	Ma		Apr	May	Jun	Jul	Aug	• 1	Sep (Oct	Nov	Dec	Annual	
Average Max. Temperature (F)	4	47.2 5.	53.2	9.09	70.0	79.4			1.7	6.88	82.4		56.9			
Average Min. Temperature (F)	2	23.4 2′	7.8	33.0	40.8	50.1			4.6	67.9	56.0	44.0	31.4			
Average Total Precipitation (in.)		0.37 0.	40	0.52	0.54	0.63			38	1.46	96.0		0.46			
Average Total SnowFall (in.)		2.3	1.8	1.6	9.0	0.0	0.0		0.0 0.0	0.0	0.0		1.0	2.2	9.6	
Average Snow Depth (in.)		0	0	0	0	0			0	0	0	0	0			
Darcent of nossible observations for neriod of	for ne	riod of re	cord													

Max. Temp.: 91.2% Min. Temp.: 91.2% Precipitation: 96.6% Snowfall: 80.1% Snow Depth: 80.1%

Check Station Metadata or Metadata graphics for more detail about data completeness.

THOREAU 5 ENE, NEW MEXICO (298830)

Period of Record Monthly Climate Summary

Period of Record: 1/1/1930 to 11/30/1992

	, <u>c</u>	Под	Σ.	ar.	Anr	Mav	Jun	Jul	Aug		Sep	Oct	Nov	Dec	Annual	
	Jan	<u> </u>	•	1						c		0 99	53 /	66 53 1 449 6	64 5	
Assessed May Temperature (F)		43.2	47.9	54.5	63.8	72.6		83.1 8	85.5	6.78	0.0/	000	L	}	<u>;</u>	
Average ivian. Icuriporaturo (x)		1		,	(•				0 63		272	5 90	19.8	35.9	_
Arranges Min Temperature (F)		18.6	21.9	26.5	32.3	40.				00.00		1:10		2)	
Avelage Ivilli, reinperara (*)	•	2				,				7,00		000	0.50	990	10 71	
A Total Draginitation (in)		0.64	0.61	0.68	0.45	0.58				7.10		0.00	0.0	0.0	7	
Average 10tal r recipitation (m.		-	•							(1	2	0	77 7	_
1 T. T. T. T. C.		۲ ۵	26	د کر	Ξ	7.0				0.0		1. 1.	7.7	7.0	1,1,	
Average 10tal Showr an (III.)			?)						<			_	•		_
Average Snow Depth (in.)		1	0	0	0	_				>			٥	•		
	ţ		7													

Percent of possible observations for period of record.

Max. Temp.: 46.1% Min. Temp.: 46.1% Precipitation: 68.4% Snowfall: 61.8% Snow Depth: 61.8%

Check Station Metadata or Metadata graphics for more detail about data completeness.

Western Regional Climate Center, <u>wrcc@dri.edu</u>

THOREAU 5 ENE, NEW MEXICO

Station Metadata

From NCDC Station Historical Listing for NWS Cooperative Network
ObsTyp: t-Temperature-1, p-Daily precip-2, w-(blank), s-(blank), e-Evap-5
h-Hourly precip - 6 0.01" Universal, or - 7 0.10" Fisher-Porter
U - Observed, but beginning date is uncertain

Count	Number	Station Name	Lat	Long	Elev	Start	ObsTyp	e End
	(Coop)	(From NCDC listing)	ddmm	dddmm	ftx10	yy mm	t p ws e	h yy mm
	The second second second second second		bushed wheels resided failed.	AND A STATE OF THE PARTY OF THE PARTY.	====		=====	======
1050	298830-4	THOREAU 6 ENE	3526	10808	0713	53 09	UU	63 01
1051	298830-4	THOREAU 6 ENE	3526	10809	0711	63 01	UU	88 04
1052	298830-4	THOREAU 5 ENE	3526	10809	0710	88 04	1 2	7 99 99

Statistics by element

(From WRCC data archives) Last Compiled on Apr.23, 2009.

Dates are format of YYYYMMDD. Numbers are total Number of observations

STATION	START	END	PRECP	SNWFL	SNWDP	TMAX	TMIN	TOBS	EVAP	WNDM
298830	19300101	19921130	15723	14204	14192	10584	10584	10580	0	0
STATION -	NCDC CO	OP Station n	umber							
START - Fi	rst Date in r	ecord								
END - Last	Date in rec	ord (when la	ast compi	led)						
PRECP - P	recipitation									
SNWFL - S	nowfall									
SNWDP - S	Snow depth									
TMAX - Da	aily Max. Te	emperature								
TMIN - Dai	ily Min. Ten	nperature								
TOBS - Ten	nperature at	Observation	n time							
EVAP - Eva	aporation									
WNDMV -	Wind Move	ement								

Statistics by observation

(From WRCC data archives) Last Compiled on Apr.23, 2009.

Dates are format of YYYYMMDD. Numbers represent one day and one day is considered present if

Average Wind Speeds - MPH

Average wind speeds are based on the hourly data from 1996-2006 from automated stations at reporting airports (ASOS) unless otherwise noted.

For more information click here on Western States, Alaska or Hawaii and Pacific Islands

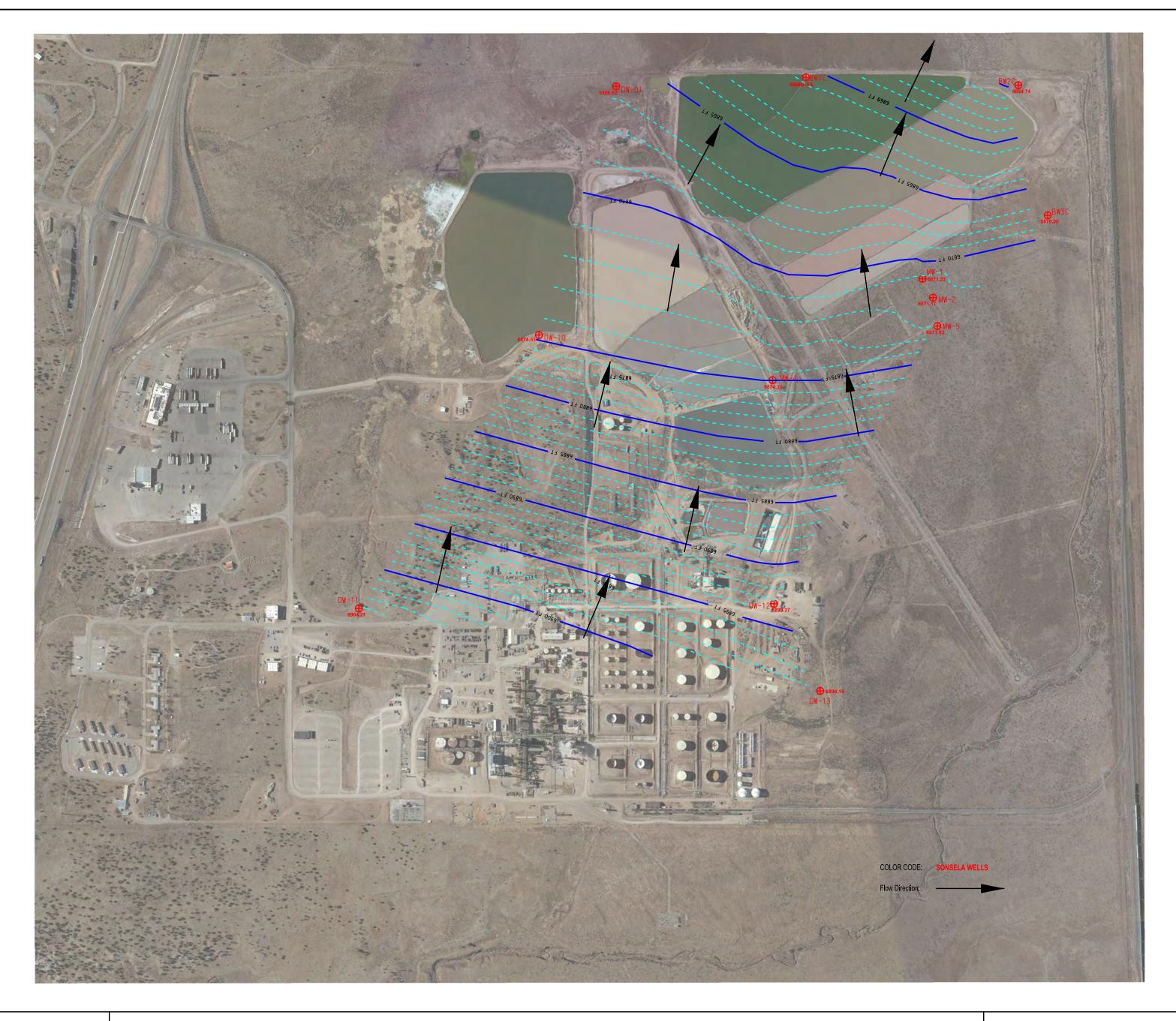
Arizona California Colorado Hawaii Idaho Montana Nevada New Mexico Oregon Utah Washington Wyoming

MONTANA

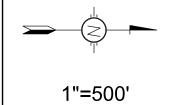
AVERAGE WIND SPEED - MPH

STATION	ID Years	j Ja:	ı Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		Ann
BAKER AIRPORT ASOS	KBHK 1998-200	6 10.	10.5	12.2	12.5	12.7	11.7	10.7	10.8	10.0	10.3	10.5	10.7	-	11.1
BILLINGS-LOGAN AP ASOS	KBIL 1996-200	6 12.	3 12.2	11.0	10.5	10.4	10.0	9.3	9.2	9.6	10.3	12.0	13.0	1	10.9
BOZEMAN AIRPORT ASOS	KBZN 1996-200	6 4.	5.3	6.4	7.2	7.0	6.3	6.3	6.4	6.1	5.7	4.9	4.8	İ	5.9
BUTTE AIRPORT ASOS	KBTM 1996-200	6 4.	7 5.0	6.8	7.3	7.7	7.3	6.9	6.6	6.2	6.2	5.2	4.9	1	6.2
CUT BANK AIRPORT ASOS	KCTB 1996-200	6 14.	5 12.8	13.3	12.8	13.4	12.3	11.2	10.2	11.4	13.0	13.6	14.6		12.8
DILLON AIRPORT ASOS	KDLN 1997-200	6 10.	2 9.7	10.3	10.0	9.6	8.4	8.0	8.0	8.7	9.0	9.3	9.2		9.2
GLASGOW AIRPORT ASOS	KGGW 1996-200	6 9.	3 9.3	11.7	12.4	12.6	11.4	10.7	11.0	10.5	10.3	9.3	9.4	- 1	10.6
GLENDIVE AIRPORT AWOS	KGDV 1996~200	6 9.	5 9.7	10.5	11.3	11.6	10.4	9.4	9.6	9.6	10.1	9.7	10.2	I	10.1
GREAT FALLS AP ASOS	KGTF 1996-200	6 13.	3 12.3	11.8	11.2	11.3	10.2	9.6	9.2	10.4	11.9	13.2	13.8	1	11.5
GREAT FALLS-MALSTROM AF	KGFA 1996-200	6 12.	9.9	11.9	10.7	10.3	9.7	9.1	8.8	9.9	10.4	13.2	13.2	- 1	10.9
HAVRE AIRPORT ASOS	KHVR 1996-200	61 9.	9.6	10.7	11.0	11.6	10.6	9.8	9.5	9.8	9.8	10.6	11.0		10.3
HELENA AIRPORT ASOS	KHLN 1996-200	6 5.	6.3	7.8	8.3	8.4	8.2	7.4	6.6	6.7	6.6	5.8	6.0	- [7.0
JORDAN AIRPORT ASOS	KJDN 1996-200	6 7.	3 7.9	9.3	10.0	10.5	9.7	8.4	8.4	8.2	8.2	7.9	8.1	1	8.6
KALISPELL AIRPORT ASOS	KGPI 1996-200	6 4.	1 3.8	6.0	6.7	6.6	5.7	5.2	5.0	4.6	4.2	4.0	3.2	1	4.9
LEWISTOWN AIRPORT ASOS	KLWT 1996-200	6 10.	5 9.5	10.2	9.8	9.9	9.0	7.9	8.0	8.5	9.2	10.2	10.7	- 1	9.5
LIVINGSTON AIRPORT ASOS	KLVM 1996-200	6 19.	3 17.4	16.2	14.0	13.1	11.9	11.0	11.2	12.7	14.6	18.4	20.4	- 1	15.2
MILES CITY AP ASOS	KMLS 1996-200	6 8.	3 9.4	10.6	11.2	11.3	10.5	9.9	9.7	9.7	9.7	9.3	9.3		9.9
MISSOULA AIRPORT ASOS	KMSO 1996-200	6 3.	2 3.7	5.4	6.1	6.0	6.1	5.7	5.2	4.3	3.9	3.5	3.7	- 1	4.7
SIDNEY AIRPORT AWOS	KSDY 1996-200	6 8.	9.0	9.5	10.2	10.4	9.0	7.7	7.9	8.2	8.8	8.7	9.4	1	9.0
WOLF POINT AIRPORT ASOS	KOLF 1998-200	6 7.	1 7.6	9.4	10.3	10.4	8.9	8.2	8.3	7.6	7.7	7.3	7.6	1	8.3

NEW	MEXICO


AVERAGE WIND SPEED - MPH

7.0 miles/hr x .62 miles = 11.3 Kpr


STATION ID Years Jan Feb Mar A	Apr May Jun Jul Aug Sep Oct Nov Dec Ann
12-12-13-13-13-13-13-13-13-13-13-13-13-13-13-	7.9 7.1 6.9 6.1 5.3 5.2 5.2 5.0 5.0 6.0
ALAMOGORDO-HOLLOMAN AFB KHMN 1996-2006 8.5 9.7 10.6 11	1.8 10.8 10.6 9.8 9.1 8.8 8.5 8.1 8.3 9.6
1220 gours government (g)	1.1 10.0 10.0 8.7 8.3 8.0 7.9 7.2 6.9 8.5
12202021,202 2222 (1222)	0.6 9.5 8.6 7.0 6.2 7.0 6.5 6.5 6.1 7.7
ARTESIA AIRPORT ASOS KATS 1997-2006 7.8 9.1 10.1 10	
CARLSBAD AIRPORT ASOS KCNM 1996-2006 9.2 9.8 10.9 11	
	4.6 13.4 13.0 11.7 10.8 11.8 12.1 12.1 12.0 12.4
· · · · · · · · · · · · · · · · · · ·	5.9 14.6 13.5 10.6 10.1 11.8 13.3 15.0 16.0 14.1
	3.8 12.4 11.9 9.7 8.9 9.7 10.9 11.6 12.2 11.6
	3.8 12.2 12.5 10.7 10.0 10.2 11.3 11.7 12.4 12.0
DEMING AIRPORT ASOS KDMN 1996-2006 8.7 9.7 10.9 12	·
FARMINGTON AIRPORT ASOS KFMN 1996-2006 7.3 8.3 9.0 9	
GALLUP AIRPORT ASOS KGUP 1996-2006 5.7 6.9 7.8 10	
01411110 11211111 112 112 112 112 112 112 1	0.9 10.0 9.8 8.1 7.2 7.9 8.4 8.0 7.6 8.7
110000 112112 0112 111100	3.4 12.5 12.3 11.0 10.0 10.2 10.6 10.7 11.1 11.4
The offoods waterough which there is a second of the secon	0.1 8.7 8.2 6.8 6.0 6.2 6.1 6.4 6.0 7.3
LAS VEGAS AIRPORT ASOS [KLVS 1996-2006 10.9 12.2 12.5 14	4.3 12.4 11.8 10.0 9.2 10.9 10.8 11.0 10.9 11.4
LOS ALAMOS AP AWOS KLAM 2005-2006 3.9 5.7 7.5 8	,
RATON AIRPORT ASOS KRTN 1998-2006 8.9 9.4 10.4 12	2.2 10.8 10.2 8.4 8.1 8.6 9.0 8.6 8.5 9.4
RATON AIRPORT ASOS KRTN 1998-2006 8.9 9.4 10.4 12 ROSWELL AIRPORT ASOS KROW 1996-2006 7.4 8.9 9.9 13	2.2 10.8 10.2 8.4 8.1 8.6 9.0 8.6 8.5 9.4 1.1 10.3 10.2 8.8 7.9 8.3 8.0 7.5 7.3 8.8
RATON AIRPORT ASOS KRTN 1998-2006 8.9 9.4 10.4 12 ROSWELL AIRPORT ASOS KROW 1996-2006 7.4 8.9 9.9 13 RUIDOSO AIRPORT AWOS KSRR 1996-2006 8.8 9.6 10.0 13	2.2 10.8 10.2 8.4 8.1 8.6 9.0 8.6 8.5 9.4 1.1 10.3 10.2 8.8 7.9 8.3 8.0 7.5 7.3 8.8 1.6 10.0 8.4 5.9 5.3 6.4 7.4 7.9 8.7 8.3
RATON AIRPORT ASOS KRTN 1998-2006 8.9 9.4 10.4 12 ROSWELL AIRPORT ASOS KROW 1996-2006 7.4 8.9 9.9 13 RUIDOSO AIRPORT AWOS KSRR 1996-2006 8.8 9.6 10.0 13 SANTA FE AIRPORT ASOS KSAF 1996-2006 8.9 9.5 9.9 13	2.2 10.8 10.2 8.4 8.1 8.6 9.0 8.6 8.5 9.4 1.1 10.3 10.2 8.8 7.9 8.3 8.0 7.5 7.3 8.8 1.6 10.0 8.4 5.9 5.3 6.4 7.4 7.9 8.7 8.3 1.2 10.6 10.5 9.2 8.8 8.8 9.1 8.7 8.5 9.5
RATON AIRPORT ASOS KRTN 1998-2006 8.9 9.4 10.4 12 ROSWELL AIRPORT ASOS KROW 1996-2006 7.4 8.9 9.9 13 RUIDOSO AIRPORT AWOS KSRR 1996-2006 8.8 9.6 10.0 13 SANTA FE AIRPORT ASOS KSAF 1996-2006 8.9 9.5 9.9 13 SILVER CITY AP AWOS KSVC 1999-2006 8.1 8.7 9.9 10	2.2 10.8 10.2 8.4 8.1 8.6 9.0 8.6 8.5 9.4 1.1 10.3 10.2 8.8 7.9 8.3 8.0 7.5 7.3 8.8 1.6 10.0 8.4 5.9 5.3 6.4 7.4 7.9 8.7 8.3 1.2 10.6 10.5 9.2 8.8 8.8 9.1 8.7 8.5 9.5 0.8 10.2 9.9 8.5 7.2 6.9 7.6 7.9 7.7 8.5
RATON AIRPORT ASOS KRTN 1998-2006 8.9 9.4 10.4 12 ROSWELL AIRPORT ASOS KROW 1996-2006 7.4 8.9 9.9 13 RUIDOSO AIRPORT AWOS KSRR 1996-2006 8.8 9.6 10.0 13 SANTA FE AIRPORT ASOS KSAF 1996-2006 8.9 9.5 9.9 13 SILVER CITY AP AWOS KSXF 1999-2006 8.1 8.7 9.9 10 TAOS AIRPORT AWOS KSKX 1996-2006 5.8 6.5 7.7	2.2 10.8 10.2 8.4 8.1 8.6 9.0 8.6 8.5 9.4 1.1 10.3 10.2 8.8 7.9 8.3 8.0 7.5 7.3 8.8 1.6 10.0 8.4 5.9 5.3 6.4 7.4 7.9 8.7 8.3 1.2 10.6 10.5 9.2 8.8 8.8 9.1 8.7 8.5 1 9.5 0.8 10.2 9.9 8.5 7.2 6.9 7.6 7.9 7.7 1 8.5 9.1 8.6 8.5 7.1 6.6 6.7 6.6 6.0 5.7 1 7.0
RATON AIRPORT ASOS KRTN 1998-2006 8.9 9.4 10.4 12 ROSWELL AIRPORT ASOS KROW 1996-2006 7.4 8.9 9.9 13 RUIDOSO AIRPORT AWOS KSRR 1996-2006 8.8 9.6 10.0 13 SANTA FE AIRPORT ASOS KSAF 1996-2006 8.9 9.5 9.9 13 SILVER CITY AP AWOS KSXF 1999-2006 8.1 8.7 9.9 10 TAOS AIRPORT AWOS KSKX 1996-2006 5.8 6.5 7.7	2.2 10.8 10.2 8.4 8.1 8.6 9.0 8.6 8.5 9.4 1.1 10.3 10.2 8.8 7.9 8.3 8.0 7.5 7.3 8.8 1.6 10.0 8.4 5.9 5.3 6.4 7.4 7.9 8.7 8.3 1.2 10.6 10.5 9.2 8.8 8.8 9.1 8.7 8.5 9.5 0.8 10.2 9.9 8.5 7.2 6.9 7.6 7.9 7.7 1 8.5 9.1 8.6 8.5 7.1 6.6 6.7 6.6 6.0 5.7 7.0 1.1 10.4 9.8 8.1 7.4 7.7 8.0 7.7 7.3 8.6

SONSELA POTENTIOMETRIC SURFACE MAP WESTERN REFINING COMPANY GALLUP REFINERY

Fall 2015

Project #: 06251104

Figure 9 Sonsela Water Elevation Map 2015 WESTERN REFINING - GALLUP REFINERY

Western Refining - Gallup Refinery 92 Giant Crossing Road Gallup, New Mexico 87301

Date: August 5, 2016 - Revision 1

APPENDIX C – DISCHARGE PLAN APPLICATION GIANT REFINING COMPANY CINIZA REFINERY

November 21, 1985

APPENDIX C
AQUIFER-TEST DATA AND ANALYSES

TEST PUMPING OF CHINLE SHALE

METHODOLOGY AND DESCRIPTION OF THE TEST

The test consisted of a 5 hour pumping period and a 2 hour recovery period. An air-driven piston pump capable of sustaining pumping rates as low as 10 gallons/hour (0.167 gpm) was used for the test. Water level measurments were taken with an electronic sounder. The well (OW-24) is located approximately 250 feet northwest of the land treatment facility and is completed within the Chinle shale. The lithologic and completion log of the well is attached (Figure F-2).

Pumping began at 1515 hours on February 20, 1985 at a rate of 10 gallons/hour. The produced water was very turbid. Clogging of the pump and pump lines necessitated continuous monitoring and adjustment of the discharge.

After 4 hours of pumping at 10 gallons/hour, the drawdown of the well appeared to stabilize at about 7 feet. The discharge rate was increased to 20 gallons/hour in order to more effectively stress the aquitard. After one hour of additional pumping a total drawdown of 12 feet was observed. However, this higher pumping rate increased the turbidity of the discharge and caused instability of the pumping rate. The lack of control of the discharge rate and the potential of diamage to the pump forced the termination of the test after a total of 5 hours of pumping.

Water level recovery was observed for 100 minutes. At this time the water level had recovered to within 90% of the pre-pumping level.

TABLE F-1
Pump Test Data, OW-24

PUMP TEST ANALYSIS

Field measurements are summarized in Table F-1. Due to the short pumping time and potential well-bore and gravel-pack effects, the final analysis was based on methods developed by Shafer, for low-conductivity materials.

Partial penetration effects were neglected in the analysis because the low pumping rates and the expected anisotropy of the aquitard would prevent significant vertical flow to the well bore. The low pumping rate was also designed to completely drain the gravel pack in the well to insure accurate recovery data.

A copy of Shafer's methodology is attached, and the data for his analysis is given in Table F-2. Figure F-1 is a plot of the recovery data, according to Shafer's methods. This Figure includes calculation of T and K for the Chinle shales.

\$ 18 gal DATA SHEET FOR RECORDING PURP TEST DATA

County: McKinley (c: Observation well no. Location Cillize Refinery 2/2/85 Prograd well no. OW-24

ř.			Averse	0		\$1 en	r =	ft.	,2 =		
	Date	Hour	(min)	(min)	1/0	Depth to water	s (unad- justed)	Adjust- ment	(#d- justed)	St Dh	Persarks.
	2-20	1515	-			31-11.5	0	Feet		10 h	The second of th
	متستة	1516	i			-	11.5	1.04			EC.1 HOSE FILE
		1517	Z			33-1	-	1.13			setting pump 1
		1518	3				16.5				
		1519	4				- 20.75				
		1520	5	10.	Ţ.	33-11/2	24.0	7.0'			
		1521	6			34-2	26.5	2.22			
		1538	7			39-20	17.0	7.25			
1 min		1523	8			34-3	27,5	2-27			a viview is the
1, 3,44		1524	9			37-4	23.5	2.37		0	
-		1525	10			34-5	29.5	2.46		-	
		15 27	13			34-04	30.75	2.56			
		1509	14			34-9	33.5	2.79			- 1
		1531	16				34.5"				
2 min		1533	18			35,24	39.75	3-23			
		1535				35-4%	41.0	3.42			
		15 40	25				47.0				
		1545				36-3	51.5	4.28			- 7
		15.50					51.0				
		15.55					56.5			103ch	Value PHAP
5 min	7	1600					62.75			1	
		1605					81.0				valve
		1610	55		1	NA	70.75			_	,
~		1615	60		-	7-104	70.75 87.75	5.90			Purped 10 gal
10		1625	70			8-1/2	85.89	6.08			4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

DATA SHEET FOR RECORDING PURP TEST DATA

	County	:					_	Obscess	tion sell	HO	100-24
	Locatio	on: LC	siga !	وأناب			-	Pungaed	ell no	MW	-24_
				v - 0 <u>८</u>	12	4	, <u> </u>	(t.	ر2 <u> </u>	-	
		Γ	1	1	1-4-	Depth	3 //	Wijust.		364	
	Date	l!our	(min)	(min)	1/1	to	(unad-	ment As	(ad- justed)		Demarks
	2-70						justjel) 78 88.0]		10	
	T	1645				38-7-	79.5	6.79		1	Lift own to 50'
		16,55	†			1 1		i			clear flung, ready
		1705				3 <i>H-11</i> 2	84.0	5.75 7.00			prestine
2 hours		1715				39-24		7.27			Pamped 20 gal
			1.35			38-11		6.97			
15 mm		1745	1 -			31-2/2		2. ح. ح			
		1800	165			51-03		7.08			
34		1815	1 1			39-2		7.21			Pumped 30 gal
		1830	193			39-5		7.46			
		1845				39.5		7.46			
		1900	225			37-2		7.21			
44		1915	240			38-11/3		7.00			Pumped 40 50
		1930	a55B			39-0		7.04		10	V
		1932	257			39-4	·	7.38	K	20	PUMP SLIPPLD APPRIX
		1934	259"			37-10		7.87		1	1 FUCT - KEPLACED TO
مشيو		1936	26/31			103/2	,	8.23			APPROX SAME LEVEL
<i>d</i> .		1938	263"			10.3/a		8.33			PUMPIAL FATE FELL-OFF
_	١,	940	A6 (0)			la-la		8-17			SLIGHTLY
		1945	27030		4	0-9		3.79			
	1/	1950	275			1-95		7.83			
. ستمهر بر	/	1955	280			2-0	/	0.04			
, , , , , , , , , , , , , , , , , , ,	4	1000	285 T			1-8		9.72			
		2005	en 2°		- 1	12.8/		7.75			——————————————————————————————————————
-	é	2010	3006		1	13-4	/	1.27			Silf in Hough
	*	2015	3005		4	13-2/2	, ,	1. 25		•	Ady pump value
5. 4 /		030	317	-	4.	3-10%	(z. 11	.9Z			Silf in Planys Ady pump value

RECOVERY DATA

Page 1 of 1

DATA SHEET FOR RECORDING PUMP TEST DATA

Observation sell no.

	Location:	min K	ومندك		-	Pungard	well no. A	Kis.	· ス니	
		Averaçe (SI-H	r =	ft.			,	
₹.	Date Hou	r (min)	ι' (min) ι/ι'	Depth to water	s (unad- justed)	Adjust- ment As	s' (#d- justed)	Q (5;4:)	Becarks	
-	1/23 20:	12	0	43-10/	144.11	12.0	0	209	ch	
	20 3	y	2	42-7-		10.63	1.37	V		
	20.3	'l l	4	41-83/		9.69	2.31			
Zmin	203	2	6	40 001	4	8.86	3.14			
	204	o .	8	40-2		8.21	3.79			
-	204/	3 /	10	39-6	4	7.56	4.44		whose more from a communication such	
	204	7 /	5	36-03		6.11	5.81			·
	205	م ع	10	37-1/c		5.17	6.33			
	205	, ,	5	36:4-		4.38	7.62			
	2102		30	35-8/2		3.75	8.25		•	
	210	7 -	3.5	35-21	<i></i>	3.27	8.73			
	2112		40	34-97	<i>i</i>	2.86	9.14			···
,5 min	2/17	/	15	34.5	,	2.52	9.48			
	212 8	4. 5	0	37-34		2.27	9.73			
	2/27	کے ا	55	84-05		2.07	9.93			
	2133	4 6	0	33-104		1.92	10.00			
<i>^</i> 2 ·	2142	. 7	0	3-75		1.66	10.34			
Duis	2152	- Ε	30	33-534		1.51	10.49		·	
	2203	7		33-4/2		1.42	10.58			
	2212	/	00	33-34		1.32	10.68			
	2223	11	0							
	2032	4 /	२०						 	
15	2347		হ							
	130 2	1.5	50							
-	12317	1 1/	65			1		1		

TABLE F-2
DATA FOR SHAFER'S METHOD

					•
Time Since Pumping Started (min)	Drawdown (feet) (s)	Feet of Casing Filled (ft)	Time To Fill (min)	Q (gpm)	S/Q (ft/gpm)
317	12.0	0	0		
319	10.63	1.37	2	.45	23.8
321	9.69	.94	2	.31	31.6
323	8.86	.83	2	.27	32.7
325	8.21	.65	2	.21	38.7
327	7.56	.65	2	.21	35.6
332	6.11	1.45	5	.19	32.3
337	5.17	. 94	5	.13	42.1
342	4.38	.79	5	.10	42.5
347	3.75	.63	5	.08	45.6
352	3.27	.48	5	.06	52.2
357	2.86	_41	5	.05	53.4
362	2, 52	.34	5	.04	56.8
367	2,27	.25	5	.03	69.5
372	2.07	_20	5	.026	79.3
377	1.92	.15	5	.019	98.0
387	1.66	.26	10	.017	97.8
·397	1.51	.15	10	.009	154
407	1.42	.15	10	.009	145
417	1.32	.10	10	.006	202

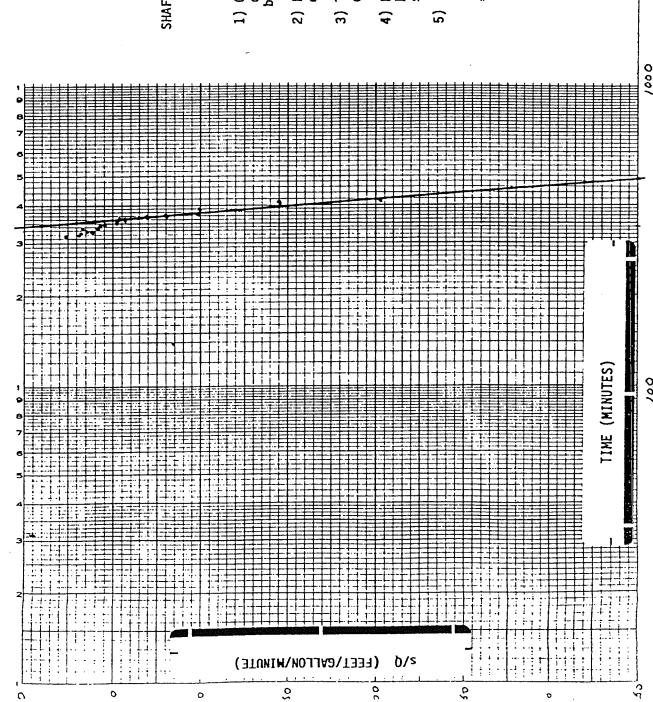


FIGURE F-1 SHAFER PLOT OF DATA FROM OW-24

Calculation of T & K

- Over the total vertical scale of 350 feet/GPM, time varies by 0.1567 log cycles
- 2) For 1 full log cycle, s/Q equals 350/.1567 = 2233
- 3) T = 264/(s/Q) = 264/2233 or T = 0.110 gallons/day/foot
- 4) For a 20 foot screened intervalK = T/b = 0.0055 gallons/day/square foot.
 - 5) .0055 g/d/ft x 1.55 x 10⁻⁶ (ft/sec)/(g/d/ft)

 $= 8.3 \times 10^{-9}$ ft/sec

80. ./G OW-24 LABORATORY TEST DATA PENETRATION RATE ATTERSERS LIMITS SURFACE ELEVATION: 6676 FEET STRENCTH TEST DATA ZAMBOTZ TESTS REPORTED TO THE PROPERTY OF THE PROPERTY ROIMAL DR CORFINING PRESSURE (PSF) DAT DERSITT BEFTH IN TELL LIGUID LIMIT [X]
PLASTICITT | PROCE [X] 1176 OF DESCRIPTION 2.4 . TRIASSIC PERIOD CHINEE FORMATION
REDDISH BROWN, YERY FINE SANDY CLAY, SOFT, MICHLY
WEATHERED 2.0 10 2.0 1.6 28 2.0 1.8 2.3 18 SHALE 30 FEET: SHALE, REDOTSH BROWN, SAKOY, SOFT, FRESH 2.3 <u>3.3</u> 49 3.3 4.0 3.7 <u>∓.</u>0 58 3.0 2.3 .. BORING COMPLETED AT 65.0 FEET ON 1/2/81.
4-INCH MYC PIEZONETER INSTALLED WITH PERFORATIONS FROM 41.0 TO 61.0 FEET.
GRAVEL PLACED FROM 28.0 TO 61.0 FEET AND BORING SEALED WITH BENTONITE AND CEMENT TO SURFACE, CROUND NATER LEYEL MEASURED AT 32.5 FEET BELON GROUND ON 1/5/81. 78 GROUND ON 1/5/81. 11 38 100 118 FIGURE 'F-2 LOG OF WELL ON-24 126 130 140 158

LOG OF BORINGS

-Portfolio #12: Pumping Test Analyses & Devices for Groundwater Monitoring

Pumping Test Analyses for Low Yield Formations

by David C. Shafer

ccasionally it is necessary to determine aquifer characteristics of very low yielding formations-those with transmissivities less than 500 gallons per day per foot. Though interest in these aquifers is certainly not because of their productive capability, it may be desirable to determine groundwater flow characteristics even in these low yield formations in order to determine such things as regional groundwater flow patterns, effect of dewatering or migration of pollution plumes near point sources of contamination.

Different Approach

Conventional pumping test analysis using the standard time drawdown graph often does not work effectively in low T (transmissivity) formations for two reasons. First, the pumped well's low specific capacity (gallons per minute per foot of drawdown) may cause the pump to break suction during the test and it may be impractical to throttle back the pumping rate sufficiently to prevent this. Second, even if a constant pumping rate can be maintained without breaking suction, most of the data obtained. will probably reflect casing storage effects rather than true aquifer parameters (see "Casing Storage Can Affect Pumping Test Data,"

William F. Achuff Director

Jan-Feb. 1978, Johnson Drillers Journal). Thus a different approach is required.

The best method for analyzing these formations is to pump a substantial portion of the casing empty, then shut the pump off and measure water levels as they recover. In ordinary pumping tests these measurements correspond to the non-pumping portion of the test. However, in the low T formations this "recovery period" is actually the "pumping period!"

After pump shut-off, the casing slowly begins filling with water. This water comes from the aquifer and actually represents the water pumped during this so called "pumping period." The pumping rate is determined by measuring the volume of

Pumping rate = 10 gpm
Pumping period = 15 minutes
Drawdown at pump shut off = 90 ft
Casing — 6" I.D.
Drop pipe — 11/4" I.D.

Time in minutes since pumping started (t)	Drawdown in feet (s)	Number of feet of casing filled	Time in minutes required to fill	Volume filled divided by time required in gallons per minute (Q)	s/Q in feet per gallon per minute
15	90				•
(pump shut off)					
17	85.66	4.34	2	3.04	28.2
20	79.7	5.96	3	2.78	28.6
30	64.2	15.5	10	2.17	29.5
40	51.9	12.3	10	1.72	30.2
60	35.6	13.3	20	1.14	31,1
80	24.6	11.0	20	.77	31.8
		. та	able 1		

casing filled in a given length of time.

During the test, careful measurements are made of time since pumpling began (t) along with drawdown (s) at each of these times. Then a calculation is made to determine Q for each time t and finally the ratio s/Q is computed for each measured drawdown value. The ratio is simply the reciprocal of the specific capacity.

A graph is then constructed showing t versus the ratio s/Q plotted as usual on semi-logarithmic graph paper with t on the log scale. A straight line of best fit is drawn through the data points and T is calculated as follows:

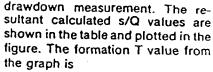
$$T = \frac{264}{\triangle(s/Q)}$$

where △(s/Q) is the change in s/Q

over one log cycle of graph paper.

This graph has the unique advantage that it will accurately reflect aquifer transmissivity independent of casing storage effects. In addition it will be sensitive to nearby recharge and/or negative boundaries and will reveal these conditions like any ordinary time drawdown graph.

To see how this technique works it is best to work an example. Table 1 shows data obtained from a 6-inch well pumped at 10 gpm for 15 minutes. Drawdown after 15 minutes of pumping measured 90 feet.


The next data point was recorded two minutes following pump shutoff or 17 minutes since pumping started. At this time the pumping water level was 85.66 feet, indicating that 4.34 feet of casing had filled during the two minute interval.

The annulus between the 6-inch casing and 1¼" drop pipe holds 1.4 gallons per foot so that the volume of casing filled is 1.4 times 4.34, or 6.08 gallons in two minutes. Thus,

finally,

which is plotted at a time of 17 minutes on the graph shown here.

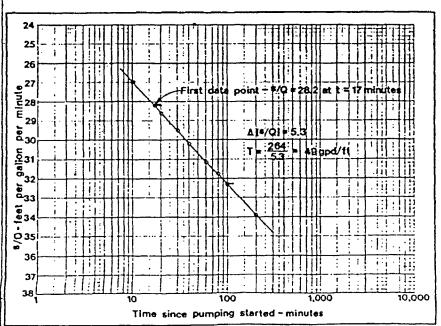
This analysis is repeated for each

$$T = \frac{264}{\Delta(s/Q)}$$

= 264/5.3

= 49 gpd/r

Conventional Analysis

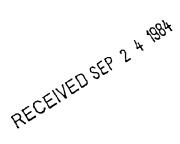

Examination rotation of the Hydraulic characteristics of this well indt included Merel cohows what it a cohwentional time drawdown graph had oeen sused weasing actorage effects would travelasted for approximately twelveshours. This means that data recorded in the first twelve hours of pumping would have been useless and longer pumping than this would have been required to obtain any usable data at all. However, data collected after twelve hours of pumping probably would be more influenced by boundary conditions than by aquifer transmissivity. Thus: min-practice of weether with the weether t been impossibilitio idetermine the T value susings conventional fanalysis techniques and essentities in oth of the test. The value of the method described above becomes very clear, it may be the only way to determine T values in certain low yielding aquifers.

In order to maximize the accuracy of this method, it is best to unload (empty) the casing as rapidly as possible. Thus it is actually better to use a high capacity pump than a low capacity pump in analyzing extremely low-yielding wells!

Another good idea is to unload the casing with compressed air since this can typically be done in one minute or less.

Recorded Data Must Be Accurate

An additional important consideration is that all data recorded for this type of analysis must be absolutely accurate. Small errors in the recorded values of time and/or drawdown can result in large errors in the calculated values of s/Q. For best results, drawdown should be recorded to the nearest hundredth of a toot and timed to the nearest second or two.



In low transmissivity situations, readings are taken after pump shut-off. In this method, s/Q is the reciprocal of the specific capacity and t is time, measured after shut-off as water begins to enter the casing.

JOHN W. SHOMAKER consulting geologist 3236 candelaria, n.e. albuquerque, new mexico 87107

(505) 884-2897

September 20, 1984

Carl D. Shook, Plant Manager Giant Refining Company, Ciniza Refinery Route 3, Box 7 Gallup, New Mexico 87301

Re: results of permeability tests, July 2 and 3, 1984

Dear Carl:

Copies of the field notes, calculations, and data plots for the two permeability tests are attached. The tests are summarized as follows:

Well OW-4 The well is completed principally in the clay and shale sequence which overlies the uppermost aquifer; a small thickness of sandstone which may be part of the uppermost aquifer was also penetrated. Total depth when drilled was 102.0 ft. Perforations are from 62.0 ft to 102 ft. The well is located near the center of the land-treatment area. A slug test was performed on July 3, 1984, following the method described by S. W. Lohman (1972, Ground-Water Hydraulics, U. S. Geol. Survey Prof. Paper 708, p. 27-29), which indicates the permeability of the section open to the well to be about 4 X 10 cm/sec.

Well MW-l This well is one of the monitoring wells on the boundary of the land-treatment area, and is completed in the uppermost aquifer. It was drilled to 120 ft, and is screened in the interval 87 to 120 ft; the casing is sealed above 89 ft so as to isolate the uppermost aquifer. The slug test performed on July 3, 1984 indicated a permeability of about 1.2 X 10^{-4} cm/sec.

Information as to the construction of the wells is taken from Dames and Moore (March, 1981; Ground water and soils investigation, Ciniza Refinery near Gallup, New Mexico, and November, 1981, Ground-water monitoring plan, Ciniza Refinery near Gallup, New Mexico).

Please let me know if there are questions.

Sincerely,

John W. Shomaker Consulting Geologist

. /man Androva Dalta W Engineering .../one

casing size: nominal 41/2" TO 4.0 csg. matl. PVC water levels measured from top 11/200 PVC casing, 5 side which is 1.7 ± above ground level.

$$00, fi \left(\frac{0.27}{0.30} \times \frac{1}{2}\right)^{2} \times \pi \times length, fi \qquad 0.10 = 0.006 \text{ fi}^{3}$$

$$0.243 \qquad 0.27 \qquad 0.26 \qquad 0.015$$

$$0.243 \qquad 0.243 \qquad 0.243$$

$$0.27 \qquad 0.246 \qquad 0.015$$

$$0.18 \qquad 0.01 \qquad 0.007$$

$$0.18 \qquad 0.01 \qquad 0.007$$

Jum 0.489 = V, ft 3 = 3.66 gol.

 r_{c} = internal radius of casing above perfs. 0.165 ft r_{s} : radius of screen or open hole: ______ ft

initial water level $\underline{Z6.15}$ ft below mp, time $\underline{O7.51}$ H_{o} = $\frac{V}{\pi n^{2}}$ = $\frac{0.489}{\pi (0.165)^{2}}$ = $\frac{5.72}{5.72}$ ft

t, soc. water H H/Ho clock time slug released top slog: 23.2' MP 08:20:54 31 5 0.944 21:25 ! 5.40 20.75 22:28 94 20.76 5.39 0,942 27:14 140 20.80 5.35 0.935 5.34 33:51 0.934 177 2081 24:42 228 0.930 20.83 5,32 25:42 288 20.87 5.28 0,923 27:06 20.90 5.25 372 0.918 28:14 440 20.92 5.23 0,914 29:43 529 20.95 5.20 0.909 30:55 601 20.97 5.18 0.906 32:46 712 21.00 5.15 0.900 35:16 5.11 21.04 0.893 862 38:38 1064 21.10 5.05 0.883 4.96 43:20 21.19 0.867 1356 raised slug 0,4ft. . 21.21 46:52 1558 4.94 0.864 49:26 21.25 4.90. 0.857 1712

21.30

4.85

0.848

52:54

1920

to=08:20:54 H H/Ho remarks l, 50c. kvel -08:54:13-21.34 4.80 0.839 2096 21.35 08:56:50 4.76 09:00:16 2362 21.39 0.832 0:00= 21.45 4.70 :05:00 0,822 2646 09:55 2941 21.50 4.65 0.8.13 17:46 3412 4.55 21.60 0.795 4.44 m-scope trouble 28:25 4051 21.71 0.776 21.89 · 4.26 0.745 46:00 5106 22.05 4,10 10:02:23 0,717 6089 14:00 6786 4.00 0.699 22.15 0.682 stopped test; 10: 24:20 7412 22.25 3.90 Jlug almost uncovered d = 10-1 curve, Tt/2=1 at t= 50,000 sec. late dota matches: 5.4x 10-7 fx T= 1.0 2 = (1.0)(0.165)2 50,000 fi /day = 0.35 gpd/ff K, 0.05 ft /day h 40 ft screen 0.00 1 ft/day x 30.5 cm/ft x 1 = 60 x 140 sc/day 4 x10-7 cm/sec 10-1 = 0.03 : water-table storage 0.080 644 "hole !

09876 48.E-1 OBP PER 0700/ Ð, 5 THE THE SEARCH CARER OF CONTRIBIONS PER INCH 9 8 7 HR. RABILAIB RIBYBBEN I 5 001 2

dole: 7-2-84

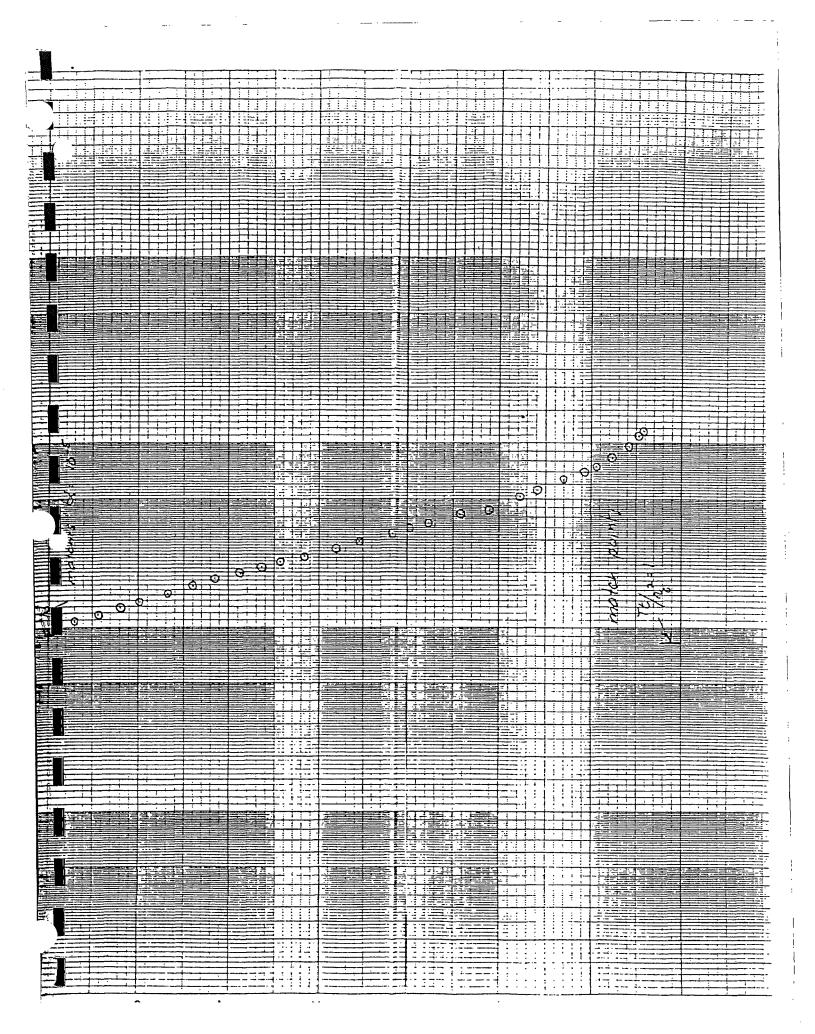
casing size: nominal 5/2" 00, ID 5.1" csg. matt. PVC water levels measured from top PVC casing, sw side which is 137 ft above ground level, (concrete slab) 2.05 volume of slug:

cap
$$OD_{3}f_{1}\left(\frac{0.37}{0.39}x_{2}^{1}\right)^{2}x$$
 $T_{1}x_{2}$ length, $f_{1}x_{3}$ $\frac{0.10}{0.05} = \frac{0.011}{0.006}f_{1}x_{3}$ $\frac{0.05}{0.006}$ $\frac{0.006}{0.03}$ $\frac{0.39}{0.04}$ $\frac{0.03}{0.09}$ $\frac{0.04}{0.09}$ $\frac{0.03}{0.09}$ $\frac{0.09}{0.09}$ $\frac{0.09}{0.09}$

Jum 0.474 = V, ft = 3.55 gal

re = internal radius of cosing above perfs. 0.711 ft

rs: radius of screen or open hole: _____ fi


initial water level 5.72 A below MP, time 13:32

$$H_0 = \frac{V}{\pi \chi^2} = \frac{0.474}{\pi (0.211)^2} = \frac{3.389}{\pi (0.211)^2}$$

	હ	·	<i>'</i>			
	clock time	t, 500.	water	<u>H</u>	H/Ha	remarks
	13:48:00	0				slug released
	13:48:20	20	2.30 ft	? 3.42	1.009	22
	49:00	60	2.36	3.36	0.991	
	49:26	86	2.42	3.30	0.974	
	49:52	112	2.44	3.28	0.968	
•	50:32	152	2.50	3.22	0.950	
	51:05	185	2.56	3.16	0.932	
	51:42	222	2.60	3.12	0.921	
	52:19	259	2.65	3.07	0.906	
	52:55	295	2.70	3.02	0.891	
	53:33	333	2.74	2.98	0,879	
_	54:26	. 386	2,80	2.92	0.862	
_	55;30	450	2.86	2.86	0.844	
	57:05	545	2.97	2.75	0.811	
	59:12	672	3.10	2.62	0,773	
_	14:01:05	785	3.20	2.52	0.744	
_	02:28	868	3,28	2,44	0.720	
_	<u> </u>	952	3.3%	2.36	0.696	
_						
				l	1	

clack time	<u>t,50c.</u>	level	<u>. н</u>	H/H0	remarks
14:05:38	1058	3.45	1 227	0 (3=	
		3.54	2.27	0.670	
07:22	1162	3.62	1	0.643	
09:16	12710		2.10	0.620	
11:01	1381	3.69		0.599	
13:17	1517	3.79	1.93	0.569	
15:59	1679	3,89	1.83	0.540	
18:14	1814	3.97	1.75	0.516	
20:40	1960	4,07	1.65	0.487	
23:15	2115	4.15	1.57	0.463	
25:44	2264	4.22	1,50	0.443	
28:45	2445	4.31	1.41	0.416	
33:09	2709	4.43	1.29	0.381	
36:51	2931	4.52	1.20	0,354	
41:56	3236	4.64	1.08	0.319	
Ш0:19	3499	4.71	1,01	0.298	
50:03	3723	4.78	0.94	0.277	
57:39	4179	4.90	0.82.	0.242	
15:05:36	4356	5.01	0.71	0.210	
14.12	5172	5.12	0.60	0.177	
21:12	5592	5.18	0.54	0.159	-
33:01	6301	5,28	0.44	0.130	
44:35	6995	5.20	0,36	0.10%	
<u> </u>	7543	5.40	0.32	0.094	
16:08:22	8422	5.46	0.70	0.077	
26:59	9539	<u>5.52</u>	0,20	0.059	
47:10	10,750.	5.5%	0.16	0.047	
17:00:20	11,540	5.58	0.14	0.041	•
· · · · · · · · · · · · · · · · · · ·				<u> </u>	
late dota ma	itches:	7 = 10-5 CI	rre, 72	/22=1 at	t=830 sec.
	T- 1.0 12	= (1.0)(0.21)	2 <21	× 10-5 12-1	-0.1
	7-7-0	830	= 3.30	10 TF /	sec ·
	<u> </u>	920	- 1/19	(2) / - / - / - / - / - / - / - / -	35 apd/f
			= 4.65	It JOAY -	0 2 2 pd / 17
			V. 410	3 676	= 0.35 ft/day
			h 133	3 fillday A screened	- 0.53 /T/day
			/4, 5	IT SCIECTE	
		0 35 01	30 (0.0/14	-/2×/0
		THA	7 X 32.3	60x	=1.2×10 cm
					7004
,				-	
. •	ı	- (İ	!	I

5 9 8 7 1-2-6-1 DIETZGEN CORPORATION 70007 £,5æ. 3 NO. 340-LSIO DIETZGEN GRAPH PAPER SEMI-LOGARITHMIC S GYCLES X IO DIVISIONS PER INCH 000/8 6 a I 8 , 6 r:::

APPENDIX C RCRA POST-CLOSURE CARE PERMIT APPLICATION LAND TREATMENT UNIT GIANT REFINING COMPANY CINIZA REFINERY

May 2000

RCRA Part A and Part B

Post-Closure Deimit Application

Land Treatment Unit

May 2000

APPENDIX C

Land Treatment Unit Historical Information and Data

LAND TREATMENT UNIT HISTORICAL INFORMATION AND DATA

1.0 LAND TREATMENT HISTORY

Historical LTU information and data extracted from existing permit applications, operating permits, operating records, and other source documents are provided as Appendix C. The inclusion of this appendix does not imply that historical information and data have been verified.

In August 1980, Ciniza Refinery (Ciniza) notified the U.S. Environmental Protection Agency (EPA) that it was a generator and operator of a hazardous waste management facility. In November 1980, Ciniza submitted a Part A permit application as an "existing facility" (defined at 40 Code of Federal Regulations §260.10). This granted Ciniza interim status for their Land Treatment Unit (LTU) operations. In response to notice from the Regional Administrator, Ciniza submitted a Part B permit application in December 1983. Based on changing guidance, Ciniza submitted a land treatment demonstration plan (LTD) and an application for a two-phase LTD permit in April 1985. On February 9, 1987, Ciniza was issued a Short-term LTD Permit (NMD000333211-1) to conduct a hazardous waste land LTD. The LTD was conducted to identify the land treatment capabilities for refinery waste generated by Ciniza. The LTD defined waste management parameters (e.g., rate-limiting constituent, application-limiting constituent, capacity-limiting constituent, and unit life of the LTU). This was accomplished by identifying the Principal Hazardous Constituents (PHCs) present in refinery waste streams and measuring their degradation, transformation, and immobilization in the treatment zone of the LTU. From the results of the LTD and a modified Part B permit application, Ciniza was issued a Hazardous Waste Facility Permit (NMD 000333211-2) on November 4, 1988. Ciniza has not applied hazardous wastes to the LTU since November 8, 1990.

1.1 Land Treatment Program [20 NMAC 4.1, Subpart IX, §270.20(b)]

Ciniza's Hazardous Waste Facility Permit established operational requirements for the LTU. These requirements inchinclude procedural and engineering controls necessary to ensure that hazardous constituents are fully treated within the LTU without uncontrolled release to the environment.

The LTU consists of a treatment zone of soil extending 5 ft deep from the original soil surface. This depth is shallow enough to ensure that the treatment zone is more than 3 ft above the seasonal high water table. The zone of incorporation (ZOI) within the treatment zone is the volume of soil to which the waste was directly applied.

The ZOI for the Ciniza LTU is the top 12 in. of the treatment zone. The LTU was designed and constructed to prevent both washout of any hazardous waste and to prevent inundation of and discharge from the permitted unit through the use of a continuous dike which surrounds the LTU at an elevation of 3 ft above the natural grade.

The ZOI was tilled during permitted operations to encourage aerobic microbial activity and improve chemical reaction rates. During active treatment soil nutrients were applied, as necessary, to optimize carbon:nitrogen: phosphorous (C:N:P) ratios. Applications of Ciniza wastes to the LTU were limited to ensure that treatment processes were not overwhelmed or poisoned. Performance indicators (e.g., soil moisture, pH, total organic carbon) were monitored in the ZOI to ensure that treatment was proceeding.

1.2 Treatment Zone Description [20 NMAC 4.1, Subpart IX, §270.20(b)(2) and §270.20(b)(5)]

The LTU consists of three 480-by-240-ft sections, each of which contain 2.6 acres (1.0 hectares) of available treatment surface. Each section is delineated by a continuous dike to prevent site runon and runoff. The treatment zone extends 5-ft deep from the top of the soil within the diked section. The top 12 in. of the treatment zone is the ZOI. The ZOI is tilled when active to encourage aerobic degradation of organics and to maintain moisture content of the soil. This leaves 4 ft of the treatment zone undisturbed.

The soil within the treatment zone is silty clay containing closely-spaced root systems in the uppermost 3 to 4 ft. Field infiltration rates (the rate at which water penetrates into the soil surface) averages 1.0 x 10⁻³ cm/sec or 3.6 cm/hr. Soil permeability as determined by laboratory measurements averages 1.9 x 10⁻⁵ cm/sec or 6.8 x 10⁻² cm/hr for three locations at the 6- to 12-in. depth. Field infiltration rate allows prediction of runoff and erosion; permeability (hydraulic conductivity) allows estimation of vertical water movement rates in the soil. The treatment zone soils have a saturated hydraulic conductivity rating of "moderately low" by the U.S. Department of Agriculture Class (Giant Refining Company Part B Permit Application 1984). The low permeability of the treatment zone soil assists in retarding the vertical movement of hazardous constituents through the treatment zone.

The silty clay soil has a high cation exchange capacity (CEC). The CEC is the total amount of exchangeable cations that the soil has to exchange with cations in the soil solution. The exchangeable cations in the LTU are the heavy metals present in the Ciniza wastes. The high CEC results in high sorption of heavy metals in the LTU soils, assuming other factors (such as soil pH) are favorable.

2

RECENT SOIL PERMEABILITY TESTS FIREWATER POND CONSTRUCTION PROJECT

Precision Engineering, Inc. P.O. Box 422 Las Cruces, NM 88004

505-523-7674

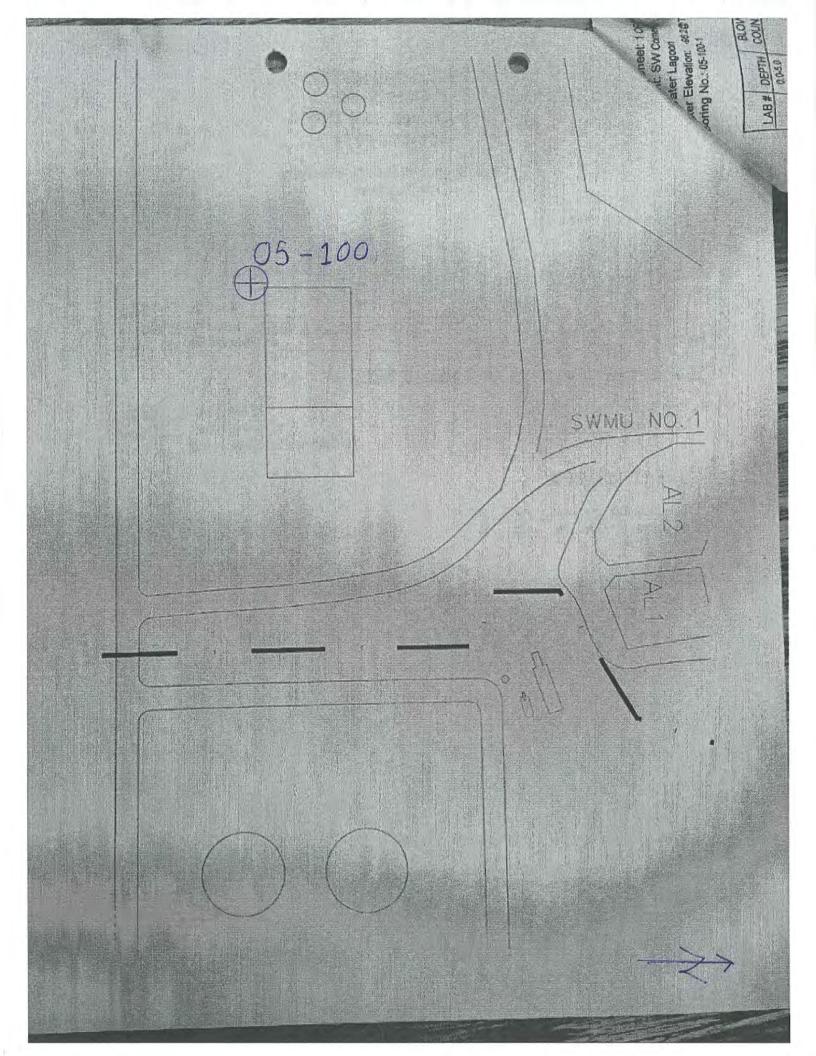
People of Fire Wales

Rigid Wall Hydraulic Conductivity Falling Head

													ť							
															¢					
													7							
															n					

Project: Ciniza Fire Water Lagoon File No.: 05-100
Soil Type: Silty Clay Date: October 13, 2005 Lab No.: 47872
Sampled From: Boring 05-100-1(2,51-3.01) Performed By: GG

TEST SPECIMEN CONDITIONS AT REGINING OF TEST:


PROCTOR INFORMATION:

Maximum Dry Density: n/a pcf
Optimum Moisture Content: n/a %

Coefficient of Penneability, km; 1.1 X 101 cm/sec. ava.

Remarks: Avg of three: 1.1x10", 1.1x10", 1.1x10"

C heilProjects12005105100cinizafirewth[Permeability.xls]Report Reviewed By: Reviewed By: Section of the

Corner of Proposed Julevation: -98 263 TD,-27(0) hr

P.O. Box 422 Las Cruces, NM 88004 605-523-7674

File #: 05-100 Site: Glant-Ciniza

Elevation: EXISTING Date: 9/24/2005

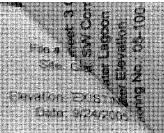
Log of Test Borings

LAB# DEPTH 0.0-5.0	BLOW COUNT PLOT SCALE	MATERIAL CHARACTERISTICS [MOISTURE CONDITION COLOR ETC.] %M LL PI CLASS Clay, Very Sirly, Sandy, Very Fine, Dark Red. Wet, Fam.
47872	2.5	[2.5-3.0 hydraulic conductivity sample]
5.0-10.0	<u>5.0</u> 7.6	Same As Above, Wel. Soft
10.0-15.0	10.0	Same As Abovo
15.0-16.0	15.0	Same As Above Satts, Very Fine, Very Clayey, Very Silty,
17.5-21.5		Weak Water Bearing, Moderately Dense, Dark Red/Brown Clay, Derk Red, Wet, Soft
SIZE & TYPE OF	20.0 BORING: 4 1/4* ID HOLLOV	V STEMMED AUGER LOGGED BY: WHK

C Will Projects 2005/05/100 ciril zaffrewith Boring 1 xits Sheet 1

Sheet: 2 CF 5
Bore Point: SW Corner of Proposed
Fire Water Lagoon
Water Elevation:
Boring No.: 05-100-1

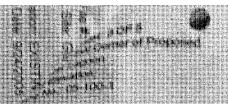
Precision Engineering, Inc P.O. Box 422 Las Cruces, NM 88004 505-623-7674


Elevation: Existing Solar 974777

Log of Test Bodings

LAB# DEPTH GOUNT 21.5.22.1 22.1.23.5 23.3-28.1	MATERIAL CHARA PLOT SCALE (MOISTURE, CONDITIO Clay, Sandy, Dark Brown, V Clay, Hard, Red-Brown (Bri Wet-Moist Pertrifled Forest Mudstone/Claystone, Wes Grey/Green Reduction Spot Brown, Fissile to Crumbly, D Mudstone, As Above, Few I Damp/Dry	N COLOR ETC.) %M LL PI CLASS Vet, Stiff ghier than Above). Formation thered, Some s, Generally Red/
30.0-35.0	20.0 Same As Above dry	
35,0-40,0	39.0 Same As Above dry	
40.0-45.0 41.5 SIZE & TYPE OF BORING	40.0 Same As Above, Brighter Rocky Sitistone/mudstone, dry, very red brown 4 1/4" IC HOLLOW STEMMED AUGER	

Sheet: 2 OF 5
Bore Point: SW Comer of Preposed
Fire Water Lagoon
Water Elevation:
Soring No.: 05-100-1


Precision Engineering, Inc.
P.O. Box 422
Las Cruces, NM 88004
505-522-7674

Log of Test Borings

30.0-35.0 Same As Above dry 35.0-40.0 Same As Above dry 40.0-45.0 Same As Above Brighter Red @ 44.5-45.0	LAB# DEPTH 21.5-22.1 22.1-23.5 23.5-25.1 25.0-30.0	BLOW COUNT PLOT SCAL	Clay, Sandy, Dark Brown, Wet, Stiff Clay, Hard, Red/Brown (Brighter than Abo Wet/Moist Pertrifled Forest Formation Mudstone/Claystone, Weathered, Some Grey/Green Reduction Spots, Generally R.	(C.) 70M C.	PI CLASS
dry:	30.0-35.0		Same As Above dry		
dry 41.5 sitistone/mudstone, dry, very dense, bright	40.0-45.0		Same As Above, Brighter Red @ 44.5-45 dry	σ,	

C/bilhProjects/2005/05/100cinizatirewt/(Boring 1 xts)Sheet1A

Precision Englowering, in P.O. Box 422
Las Gruces, NM 88004
506-523-7674

File #: 05-100 Stel: Glamt-Ciniza

Ekwation: EXISTING Date: 9/24/2005

- M. H. That High aga:

/ alsa	olenia.	BLOW COUNT	PLOT S	CALE	MATERIAL CHARACTERISTICS (MOISTURE CONDITION COLORETC)	%м Ц. Р	I CLASS.
	45.0-50.0			45.0	Mudelone/Silbstone, Bright Red/Brown, Ory Very Dense		
	50,0-55-0			bo.o	Şame As Above		
	55.0-60.0			3530	Same As Above		
	60.0-65.0			iio)ú	Sanna As Above		
SIZE C:\binV*	& TYPE OF		LIM ID HI ewityBanna	DIELEWA 1 1 xiel	STEMMED AUGER	LOGGED	6¥: WHK

Shet 4 OF 5

Bore Point: SW Comer of Proposed

Pire Water Lapoon Water Elevation Boring No.: 05-100-1 Precision Engineering Interpretation P.O. Box 422
Las Cruces, NM 88004
505-523-7674

Leg al Test Borings

				and the second of the second o
			STICS I I I	
parties and the BLOW		MATERIAL CHARACTERS		en Cara
	regrissali			
TARE DEPTH COUNT				
		green Aar Alberte		
e cari				
		andstone, Pine, Red Brown, His		
12074		antatur (j. 1711).		
		andstore: Fine. Rey:Green Ceticade Pedartica S		
	1	bundant Ory		
		andstone/Silestone interbeds.		
67.4-79.0		Andstone, Dark Red/Brown, Hard		
	1.			
	1			
	750			
			711.2.2.2.2.2.	
78.0-79.1		Mudetone, Fissile, Dry. Red/Bro		
1		Grey/Green Reduction Spots		
		Sandstone Fine, Red/Brown, Fi	sse, Pard	
19.1-97.7		Feldsputile, Bedded 6" to 1.0", V	ijusta klenjar	
		Upper Sontella Manter		
	450			
	2036a10.			
			عنالتنفذ يتبادان أكانتنا والاستنادات	
CIZE A TYPE OF FOR NO		VISTEMMED AUGER	LOGISL	1197 - 1466
SIZE & 1YPE OF BORING				
	أستري المسيس سان سيالا الأنبية المساوية			

Precisien Engineerin: File # 05-100 , <u>1 1 j. j. j. j. j. j.</u> P.O. Box 422 Sile: Giard Cinica Las Cruces, NM 82004 595-523-7674 Eevallen: EX ST NS Date: 9/24/2005 Log of Test Borings BLOW MATERIAL CHARACTERISTICS COUNT PLOT | SCALE! WM LL PI CLASS (MOISTURE, CONDITION, COLOR, ETC.) Uppet Sonsela Member Continued (dry) 90.0 96.0 Mudstone, Hard, Dry, Green/Grey-White 57.7.952 Sandstone, Fine to Medium, Quartz Grains, 98 2-101 C Water Bearing, Hard, (Sonsela Member, Petrified Forest Formation, Chinle Group) 1000 1016 Borng continuopusly sampled using 5' splitbareled intrusion sampler. Buring closed using 10' of 3/8" TR-30 Pet Plug capped with 50' of 8% bentonite cement slorry 105.0 and backfilled to the ground surface with cultures. SIZE & TYPE OF BORING. 4 1/4" ID HOLLOW STEMMED AUGER Locced by: Whk C:\billProjects\2005\05100cmzafirewtr\[Roring 1 xls\]Sheet1D