J. Brady Crouch

ConocoPhillips Company **Risk Management & Remediation** Program Manager

600 N. Dairy Ashford EC3-06-W056 Houston, TX 77079 Phone: 832-486-3016

Mr. Randolph Bayliss, P. E. District III & IV Hydrologist New Mexico Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

March 21, 2017

Re: NMOCD Case No. 3R-431, 2016 Annual Groundwater Monitoring and Remediation Report

Dear Mr. Bayliss:

Enclosed is the 2016 Annual Groundwater Monitoring and Remediation Report for the Howell K No. 1 site. This report, prepared by GHD Services, Inc., contains the results of groundwater monitoring and remediation activities in 2016.

Please let me know if you have any questions.

Sincerely,

Tough B. Caouch

J. Brady Crouch

Enc

2016 Annual Groundwater Monitoring and Remediation Report

ConocoPhillips Howell K No. 1 San Juan County, New Mexico API# 30-045-09313 NMOCD # 3R-431

ConocoPhillips Company

GHD | 6121 Indian School Rd NE Suite 200 Albuquerque NM 87110 USA 074928| Report No 8 | March 21, 2017

Table of Contents

1.	Intro	Introduction									
	1.1	Background	1								
2.	Meta	Ils Treatment	2								
	2.1	Second pH Adjustment Event Summary	2								
3.	Grou	Indwater Monitoring Summary, Methodology, and Analytical Results	2								
	3.1	Groundwater Monitoring Summary	2								
	3.2	Groundwater Monitoring Methodology	2								
	3.3	Groundwater Monitoring Analytical Results	3								
4.	Cond	clusions and Recommendations	4								

Figure Index

Figure 1	Site Vicinity Map
Figure 2	Site Plan
Figure 3	Geological Cross Section
Figure 4	March 2016 Groundwater Potentiometric Surface Map
Figure 5	July 2016 Groundwater Potentiometric Surface Map
Figure 6	September 2016 Groundwater Potentiometric Surface Map
Figure 7	2016 Groundwater Concentration Map

Table Index

- Table 1 Site History Timeline
- Table 2
 Monitoring Well Specifications and Groundwater Elevations
- Table 3 Field Parameters Summary
- Table 4 Groundwater Analytical Results Summary

Appendix Index

Appendix A Groundwater Laboratory Analytical Reports

1. Introduction

This report details the results of quarterly groundwater monitoring activities and remediation conducted by GHD Services, Inc. (GHD) during 2016 at the ConocoPhillips Company (ConocoPhillips) Howell K No. 1 site (hereafter referred to as the "Site"). The Site is located on Bureau of Land Management (BLM) land, approximately ½ mile southeast of Navajo Lake State Park and 10 miles east of Aztec in Unit Letter K, Section 21, Township 30N, Range 8W of San Juan County, New Mexico. Geographical coordinates for the Site are 36° 47' 40.34" North, 107° 41' 4.70" West. The Site consists of a natural gas well and associated equipment. The location and general features of the Site are presented on Figures 1 and 2, respectively.

1.1 Background

The environmental investigation at the Site began in August 2005 with the excavation of approximately 4,000 cubic yards of hydrocarbon impacted soil from an area southwest of the Howell K No. 1 wellhead. The impacted soil was discovered during below grade tank removal activities. The final dimensions of the excavation were 70 feet by 50 feet by 36 feet deep. Groundwater was encountered at a depth of approximately 34 feet below ground surface (bgs). Once this extent had been reached, the excavation activities were stopped due to the inability of the equipment to operate safely at this depth; however, the vertical limits of the hydrocarbon impact had not been delineated. The excavation was backfilled with clean soil. In March 2006, one groundwater monitoring well, MW 1, was installed by Envirotech in the area of the backfilled excavation.

A transition in Site consulting responsibilities resulted in a gap in continuous groundwater monitoring in 2006. Tetra Tech sampled groundwater monitoring well MW 1 from November 2007 until August of 2008, when three additional monitoring wells MW 2, MW 3 and MW 4 were installed at the Site by WDC Exploration and Wells of Peralta, New Mexico under Tetra Tech observation. Groundwater monitoring well MW 2 was installed up gradient of MW 1 and monitoring wells MW 3 and MW 4 were installed in the down gradient direction. The additional wells were installed in response to a request by the New Mexico Oil Conservation Division (NMOCD) for Site characterization and additional laboratory analyses.

A generalized geologic cross section was compiled using subsurface data collected from each boring location during installation of monitoring wells MW 2, MW 3, and MW 4. Monitoring wells MW 2 and MW 4 are represented on the cross section which is presented as Figure 3.

October 2008 marked the first quarterly groundwater monitoring event to include all four monitoring wells. BTEX analysis was discontinued following the December 2010 sampling event which represented eight consecutive quarters of BTEX constituents below laboratory detection limits in samples from all Site monitoring wells. Analyses for dissolved iron, dissolved manganese, sulfate, and fluoride were continued quarterly through October 2011. Analyses for sulfate and fluoride were discontinued after the September 2014 sampling event.

On June 15, 2011, Site consulting responsibilities were transferred from Tetra Tech to GHD of Albuquerque, New Mexico.

Apparent settling of the backfill soils in the vicinity of monitoring well MW 1 resulted in damage to the casing, ultimately rendering it unusable. The well was plugged and abandoned and a replacement well, MW 1R, was installed during August of 2013 under GHD management.

Treatment of dissolved phase iron and manganese was begun in November 2014 with the introduction of dilute sodium hydroxide solution into site wells to affect a pH adjustment of groundwater. A second injection event was conducted in May 2015 and a third in October 2016 (see Section 2).

A more detailed summary of the Howell K No. 1 site history is presented in Table 1.

2. Metals Treatment

2.1 Third pH Adjustment Event Summary

Dissolved manganese in monitoring wells MW -R, MW-3, and MW4, and dissolved iron in MW-1R, were reduced significantly as a result of the first pH adjustment event, conducted November 2014. However, as concentrations began to rebound, albeit to just above New Mexico Water Quality Control Commission (NMWQCC) standards, it was determined that a second injection event was warranted. GHD concluded in their treatability study for the Site that the full effect of pH adjustment would likely require multiple injection events. A second pH adjustment event was indeed performed on May 11 and 12, 2015 and a third on October 21 and 24, 2016. The third pH adjustment event consisted of mixing thirty gallons of sodium hydroxide with 4,000 gallons of water and introducing by batches into MW-1R, MW-4 and into MW-3.

3. Groundwater Monitoring Summary, Methodology, and Analytical Results

3.1 Groundwater Monitoring Summary

Quarterly groundwater monitoring events were conducted in 2016 on March 31, July 14, September 7, and November 30, 2016. Data from all of these events are included in the Appendix tables.

3.2 Groundwater Monitoring Methodology

Groundwater levels were measured using an oil/water interface probe prior to sampling. These data are presented in Table 2. Groundwater flow direction continues to be generally to the west. Groundwater potentiometric surface maps for the March, July, and September 2016 monitoring events are presented as Figures 4, 5, and 6, respectively. A potentiometric surface map was not prepared for the November event due to erroneous groundwater elevations, likely as a result of the third injection event performed in October. Groundwater elevations had apparently not yet returned to static conditions, based on historical groundwater flow data.

Prior to sample collection, monitoring wells MW-1R, MW-2, MW-3, and MW-4 were purged of at least three casing volumes of water. A 1.5 inch, polyethylene, dedicated bailer was used to purge and to collect the groundwater samples. Field parameters including pH, conductivity, dissolved oxygen, temperature, and oxidation/reduction potential were measured periodically during purging and recorded. Field parameters are summarized on Table 3. The purge water generated during the event was disposed of in the on Site produced water tank. The groundwater samples were placed in laboratory prepared bottles, packed on ice, and shipped under chain of custody documentation to Pace Analytical Services, Inc. of Lenexa, Kansas. All groundwater samples collected in 2016 were analyzed for dissolved iron, dissolved manganese by EPA Method 6010 and sulfate by EPA Method 300.0.

3.3 Groundwater Monitoring Analytical Results

The NMWQCC regulates that groundwater quality in New Mexico under Title 20, Chapter 6, Part 2, Section 3103 of the New Mexico Administrative Code (20.6.2.3103 NMAC). Groundwater quality standards have been set for the protection of human health, domestic water supply, and irrigation use. Groundwater concentrations above NMWQCC standards during the 2016 sampling events are discussed below:

March 2016

- Dissolved manganese The NMWQCC groundwater quality standard for dissolved manganese is 0.2 mg/L. The groundwater samples collected from MW-1R and MW-4 contained dissolved manganese at concentrations of 0.538 and 4.23 milligrams per liter (mg/L), respectively.
- Sulfate The NMWQCC groundwater quality standard for sulfate is 600 mg/L. The groundwater samples collected from MW-1R, MW-2, MW-3, and MW-4 contained sulfate concentrations of 1,600, 1,580, 1,850, and 3,150 ug/L, respectively.

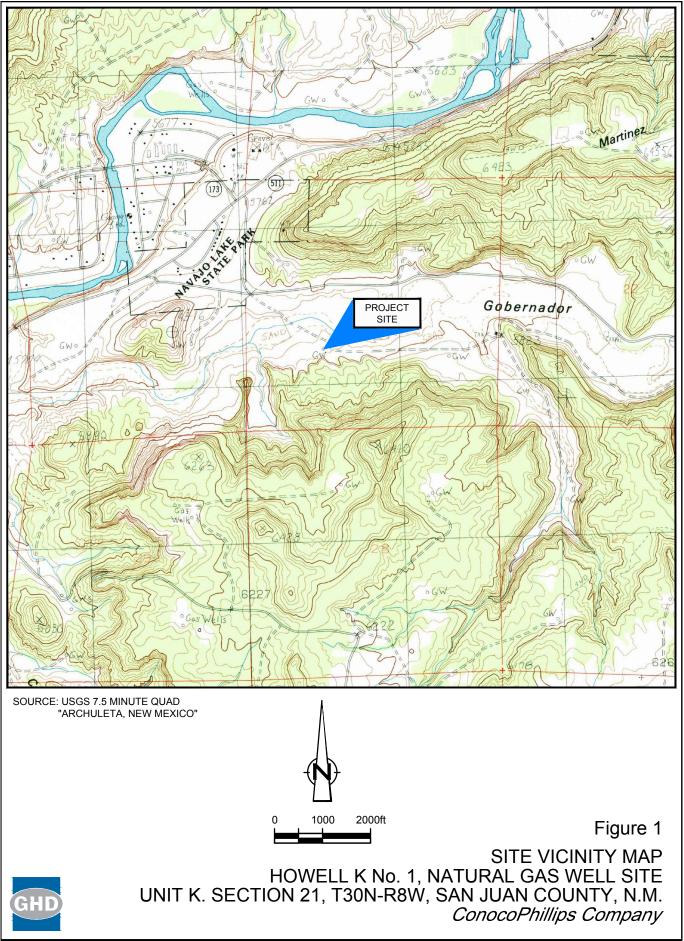
July 2016

- Dissolved manganese The groundwater samples collected from MW 1R and MW 4 contained dissolved manganese at concentrations of 0.81 and 5.8 mg/L, respectively.
- Sulfate The groundwater samples collected from MW-1R, MW-2, MW-3, and MW-4 contained sulfate concentrations of 1,730, 1,880, 1,600, and 2,930 ug/L, respectively.
- Dissolved manganese The groundwater samples collected from MW-1R and MW-4 contained dissolved manganese at concentrations of 1.1 mg/L and 7.3 mg/L, respectively.
- Sulfate The groundwater samples collected from MW-1R, MW-2, MW-3, and MW-4 contained sulfate concentrations of 1,920, 1,710, 1,960, and 3,130 ug/L, respectively.

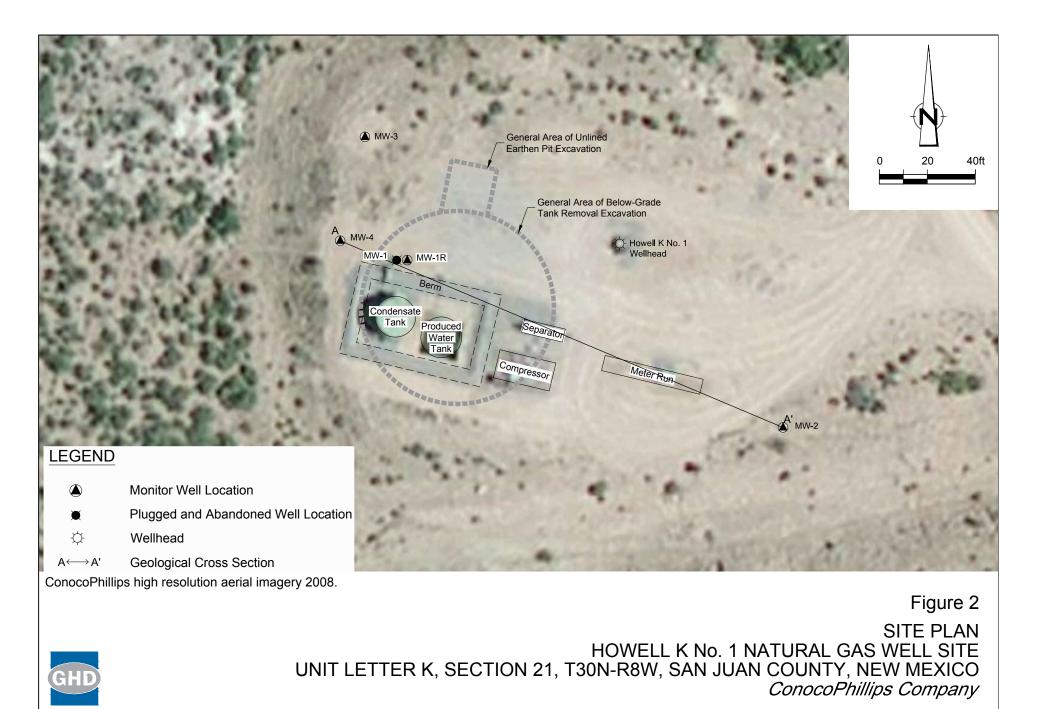
November 2016

• The only well sampled in November 2016, MW-2, did not contain manganese above the laboratory detection limit and contained a sulfate concentration of 1,670 mg/L.

Table 4 summarizes the analytical results from groundwater sampling completed during 2016. The corresponding laboratory analytical reports, including quality control summaries, are presented in Appendix A.

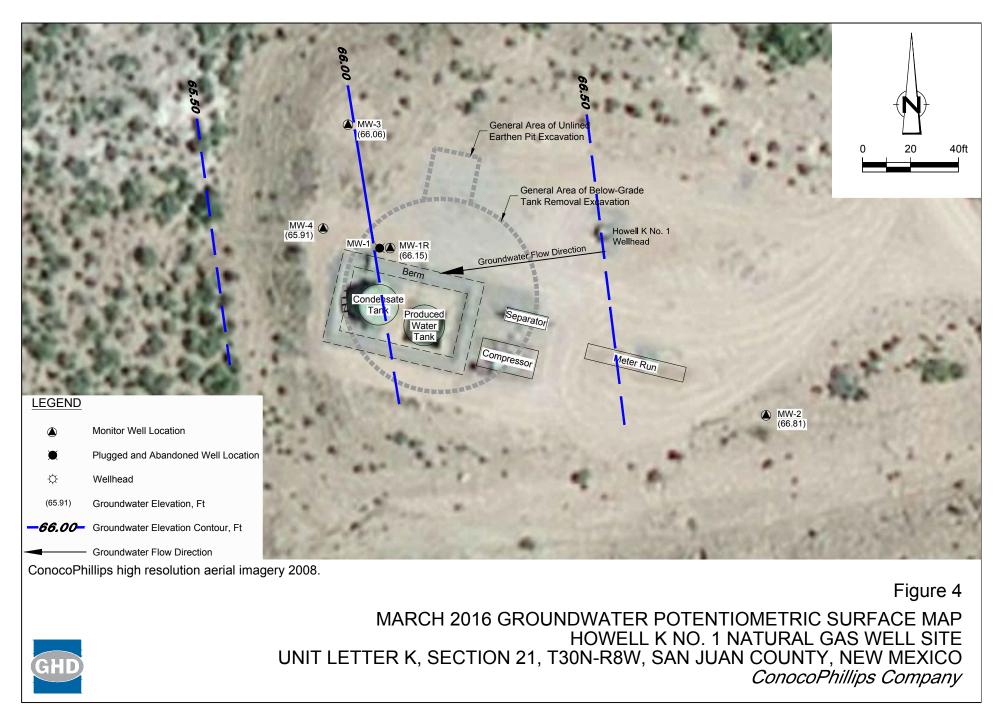

4. **Conclusions and Recommendations**

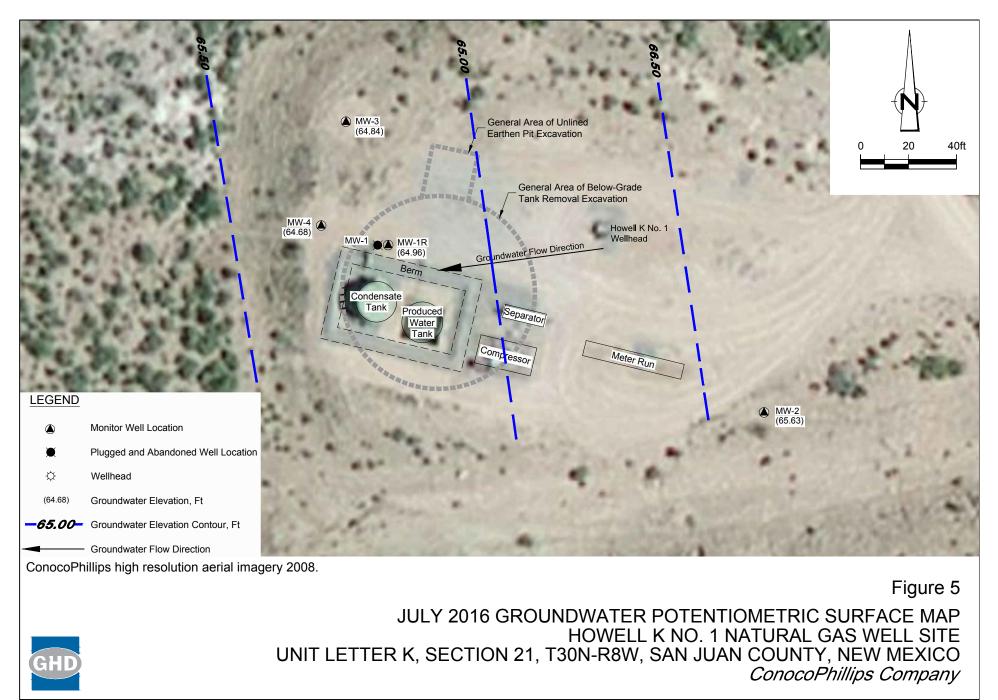
Substantial decline of dissolved iron and dissolved manganese concentrations was observed immediately following the second pH adjustment event in May 2015. However, concentrations of dissolved manganese have shown the potential for significant rebound, especially in MW-4. Sulfate concentrations in groundwater have shown to be as high in up-gradient MW-2 as in all other Site wells, indicating that this constituent is at background concentration and not as a result from the historical release.

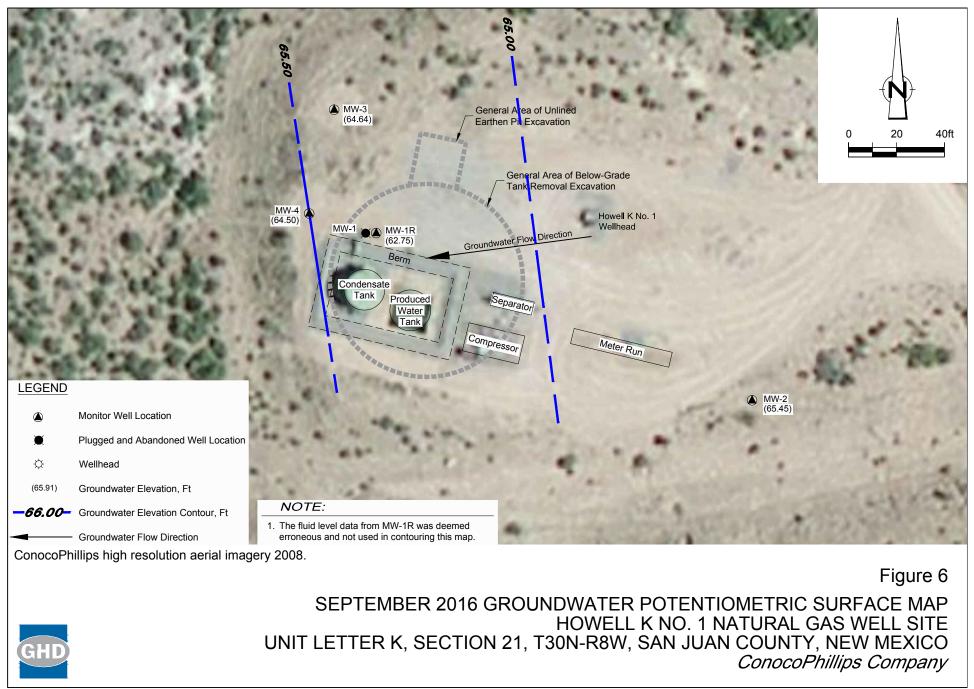

Additional pH adjustment injections are recommended to treat the remaining dissolved iron and manganese concentrations observed in Site groundwater. The continuation of quarterly groundwater monitoring is also recommended.

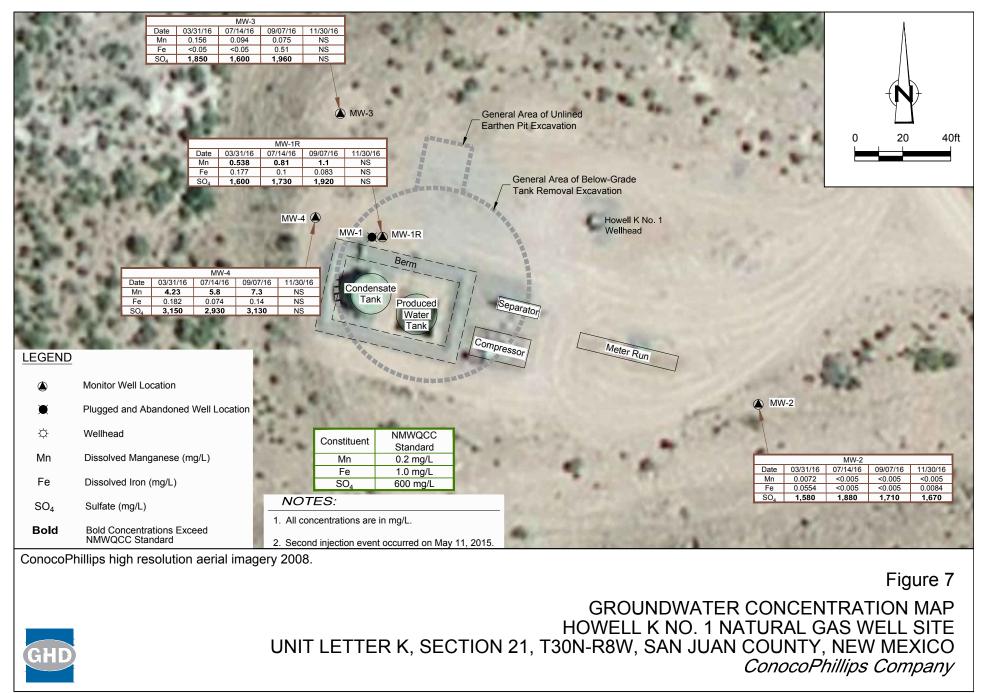
Figures


GHD | 2016 Annual Groundwater Monitoring Report | 074928 (8)


074928-95(008)GN-DL004_TOPO JUN 22, 2016


074928-95(008)GN-DL001_SD_TOREVILLE JUN 22, 2016


074928-95(008)GN-DL002_XSEC JUN 22, 2016


074928-95(008)GN-DL003_GW FEB 28, 2017

074928-95(008)GN-DL003_GW FEB 28, 2017

074928-95(008)GN-DL003_GW FEB 28, 2017

074928-95(008)GN-DL003_GW MAR 1, 2017

GHD | 2016 Annual Groundwater Monitoring Report | 074928 (8)

Page 1 of 2

Table 1

Site History Timeline ConocoPhillips Company San Juan County, New Mexico Howell K No. 1

Date/Time Period	Event/Action	Description/Comments
July 26, through August 18, 2005	Initial Site assessment	Environmental investigation began with the excavation of approximately 4000 cubic yards of impacted soil from an area southwest of the Howell K No.1 well head. Impacted soils were discovered during the removal activities of a below grade tank. Dimensions of the excavation were approximately 70 feet long by 50 feet wide by 36 feet deep. Groundwater was encountered at approximately 34 feet and soils were still impacted at 36 feet deep, the point at which excavation machinery was stopped at the practical limit for safe operation. The total vertical extent of hydrocarbon impacts were not completely delineated. Soil was treated with approximately 600 gallons of potassium permanganate solution. The excavation area was backfilled with clean soil.
March 10, 2006	Groundwater monitor well installation	One ground water monitor well, MW-1, was installed in the area of the backfilled excavation by Envirotech.
March 31, 2006	Site transfer	ConocoPhillips Company completed acquisition of Burlington Resources.
March and June 2007	Groundwater monitoring not performed	After the acquisition of Burlington Resources by ConocoPhillips, consulting responsibilities were transferred from Lode Star LLC of Farmington New Mexico to Tetra Tech of Albuquerque.
November 9, 2007 through March 19, 2008	Groundwater monitoring	Tetra Tech began sampling the Howell K No. 1 site quarterly in November 2007. Groundwater was sampled from MW-1 and was analyzed for BTEX constituents. No constituents were detected at levels that exceeded the NMWQCC standards.
April 1, 2008	Additional monitoring requested by OCD	Oil Conservation Division of NM Energy, Minerals, and Resources Dept. indicates additional investigation and sampling is necessary for closure consideration during a meeting with Glenn Von Gonten.
July 23, 2008	Groundwater monitoring postponed	Groundwater monitoring of MW-1 was postponed after it was found that there was an obstruction caused by settling and shifting of the MW-1 casing. It was determined that the obstruction could be avoided by using a smaller bailer to collect samples. Sampling was postponed and was set to follow upcoming monitor well installation so that proper sampling materials could be used.
August 13 and 14, 2008	installation and	Three additional groundwater monitor wells (MW-2, MW-3 and MW-4) were installed by WDC and overseen by Tetra Tech. MW-2 was installed upgradient of MW-1. Both MW-3 and MW-4 were installed downgradient of MW-1. All wells were developed by purging approximately 80 gallons of water using a surge block and a purge pump. A sample was collected from MW-1 on August 14th. A 1/2-inch disposable bailer was used to avoid an obstruction in MW-1. The sample was analyzed for BTEX constituents. All constituents were below NMWQCC standards.
October 24, 2008	Groundwater monitoring	Third quarter 2008 groundwater monitoring was completed and was the first quarter of sampling to include all four monitor wells on site. A baseline analytical suite was completed including major ions, total metals, semi-volatile organic compounds (SVOCs), volatile organic compounds (VOCs) including BTEX, diesel range organics, and gasoline range organics. All BTEX constituents were below NMWQCC standards. All four wells were above the standard for sulfate.
January 30, 2009	4th quarter 2008 groundwater monitoring	Tetra Tech conducted fourth quarter 2008 groundwater monitoring at the site for BTEX constituents in all four monitor wells. All wells were below NMWQCC standards for BTEX.
September 25,2009	2009 annual groundwater	Tetra Tech conducted 2009 annual groundwater monitoring of MW-2, MW-3 and MW- 4 for BTEX, dissoved iron, dissolved manganese, sulfate, and fluoride. All three wells were below NMWQCC standards for BTEX. All three wells were above standard for sulfate. Dissolved manganese was above standard in MW-3 and MW-4 and flouride was above standard in MW-4. Dissolved metals analyses conducted for the first time since standards are based on dissolved metals testing. OCD concurred, allowing total metals testing to be discontinued.
October 18, 2009	Groundwater monitoring	Tetra Tech conducted 2009 annual groundwater monitoring of MW-1 for BTEX, dissoved iron, dissolved manganese, sulfate, and fluoride. MW-1 was below NMWQCC standards for BTEX. Sulfate, dissolved manganese and dissolved iron were above standards in MW-1.
December 15, 2010	Groundwater monitoring	Tetra Tech conducted quarterly groundwater monitoring at the site for BTEX, dissolved iron, dissolved manganese, sulfate and flouride. All four monitor wells were below NMWQCC standards for BTEX. All four monitor wells were above the standard for sulfate. MW-1, MW-3 and MW-4 were above standard for dissolved manganese and MW-1 and MW-3 were also above the standard for dissolved iron.
March 30, 2010	Groundwater monitoring	Tetra Tech conducted quarterly groundwater monitoring at the site for BTEX, dissolved iron, dissolved manganese, and sulfate. All four monitor wells were below NMWQCC standards for BTEX. All four monitor wells were above the standard for sulfate. MW-1, MW-3 and MW-4 were also above the standard for dissolved manganese.

Site History Timeline ConocoPhillips Company San Juan County, New Mexico Howell K No. 1

Date/Time Period	Event/Action	Description/Comments
June 8, 2010	Groundwater monitoring	Tetra Tech conducted quarterly groundwater monitoring at the site for BTEX, dissolved iron, dissolved manganese, and sulfate. All four monitor wells were below NMWQCC standards for BTEX. All four monitor wells were above the standard for sulfate. MW-1, MW-3 and MW-4 were above the standard for dissolved manganese. MW-1 was also above the standard for dissolved iron.
September 23,2010	Groundwater monitoring	Tetra Tech conducted quarterly groundwater monitoring at the site for BTEX, dissolved iron, dissolved manganese, fluoride and sulfate. All four monitor wells were below NMWQCC standards for BTEX. All four monitor wells were above the standard for sulfate. MW-1, MW-3 and MW-4 were above the standard for dissolved manganese . MW-1 was also above standard for dissolved iron.
December 15,2010	Groundwater monitoring	Tetra Tech conducted quarterly groundwater monitoring at the site for BTEX, dissolved iron, dissolved manganese, fluoride and sulfate. MW-3 was observed to be dry during this monitoring event, which was likely due to an interface probe malfunction. MW-1, MW-2 and MW-4 were sampled. All three sampled monitor wells are below NMWQCC standards for BTEX. MW-1 and MW-4 were above the the standards for sulfate, dissolved manganese, and dissolved iron. Monitor well MW-4 was also found to be above the the standard for fluoride.
March 15, 2011	Groundwater monitoring	First quarter of groundwater monitoring with BTEX analysis discontinued due to eight consecutive quarters of data below the standards being reached; MW-1, MW-2, MW- 3, and MW-4 were sampled and analyzed for dissolved iron, dissolved manganese, fluoride and sulfate.
June 15, 2011	Transfer of site consulting responsibilities	On June 15, 2011, site consulting responsibilities were transferred from Tetra Tech of Albuquerque, NM to Conestoga-Rovers & Associates (CRA) of Albuquerque, NM.
June 23, 2011	Groundwater monitoring	MW-1, MW-2, MW-3, and MW-4 were sampled and analyzed for dissolved iron, dissolved manganese, fluoride and sulfate.
October 11 and 12, 2011	Groundwater monitoring	MW-1, MW-2, MW-3, and MW-4 were sampled and analyzed for dissolved iron, dissolved manganese, fluoride and sulfate.
October 3, 2012	Groundwater monitoring	MW-1, MW-2, MW-3, and MW-4 were sampled and analyzed for dissolved iron, dissolved manganese, fluoride and sulfate.
July 19,2013	Plugging & Abandoning and Well Installation	National EWP, with CRA oversight, plugged and abandoned MW-1 and drilled and installed MW-1R.
September 17, 2013	Groundwater monitoring	MW-1R, MW-2, MW-3, and MW-4 were sampled and analyzed for dissolved iron, dissolved manganese, fluoride and sulfate.
October 1, 2013	Groundwater monitoring	MW-1R sampled and analyzed for metals treatability study.
September 23, 2014	Groundwater monitoring	MW-1R, MW-2, MW-3, and MW-4 were sampled and analyzed for dissolved iron, dissolved manganese, dissolved sodium, fluoride and sulfate.
November 13-14, 2014	pH adjustment	A dilute sodium hydroxide solution was injected into MW-1R, MW-3, and MW-4.
December 17, 2014	•	A post-injection round of groundwater sampling was conducted. MW-1R, MW-3, and MW-4 were sampled and analyzed for iron, dissolved iron, manganese, dissolved manganese, and dissolved sodium.
February 11, 2015	Groundwater monitoring	A post-injection round of groundwater sampling was conducted. MW-1R, MW-3, and MW-4 were sampled and analyzed for iron, dissolved iron, manganese, dissolved manganese, and dissolved sodium.
March 18, 2015	Groundwater monitoring	MW-1R, MW-2, MW-3, and MW-4 were sampled and analyzed for dissolved iron and manganese, total iron and manganese, and dissolved sodium.
May 11, 2015	pH adjustment	A second pH adjustment injection event was conducted @ MW-1R, MW-3, and MW-4.
June 17, 2015	Groundwater monitoring	MW-1R, MW-2, MW-3, and MW-4 were sampled and analyzed for dissolved iron and manganese, total iron and manganese, and dissolved sodium.
September 22, 2015	Groundwater monitoring	MW-1R, MW-2, MW-3, and MW-4 were sampled and analyzed for dissolved iron and manganese, total iron and manganese, and dissolved sodium.
December 2, 2015	Groundwater monitoring	MW-1R, MW-2, MW-3, and MW-4 were sampled and analyzed for dissolved iron and manganese, total iron and manganese, and dissolved sodium.
March 31, 2016	Groundwater monitoring	MW-1R, MW-2, MW-3, and MW-4 were sampled and analyzed for sulfate, dissolved iron and manganese, total iron and manganese, and dissolved sodium.
July 14, 2016	Groundwater monitoring	MW-1R, MW-2, MW-3, and MW-4 were sampled and analyzed for sulfate, dissolved iron, manganese, and sodium.
September 6 - 7, 2016	Groundwater monitoring	MW-1R, MW-2, MW-3, and MW-4 were sampled and analyzed for sulfate, dissolved iron and manganese, total iron and manganese, and dissolved sodium.
October 21 & 24, 2016	pH adjustment	A third pH adjustment injection event was conducted @ MW-1R, MW-3, and MW-4.
November 30, 2016	Groundwater monitoring	MW-2 was sampled and analyzed for sulfate, dissolved iron, and dissolved manganese.

undwater Elevations

Monitoring Well Specifications And Groundwater Elevations ConocoPhillips Company Howell K No. 1 San Juan County, New Mexico

Well ID	Total Depth (ft bgs)	Elevation* (ft) (TOC)	Screen Interval (ft below TOC)	Date Measured	Depth to Groundwater (ft below TOC)	Relative Water Level
				3/22/2006	28.54	69.30
				6/21/2006	29.15	68.69
				10/19/2006	27.83	70.01
				12/12/2006	28.22	69.62
				3/1/2007	NM	NM
				6/1/2007	NM	NM
				11/9/2007	29.03	68.81
				1/15/2008	28.34	69.50
				3/19/2008	NM	NM
				7/23/2008	28.46	69.38
				10/24/2008	29.91	67.93
MW-1	37.47	97.84	21 - 36	1/30/2009	28.37	69.47
10100-1	57.47	57.04	21-50	9/25/2009	29.95	67.89
				10/18/2009	29.97	67.87
				12/15/2009	29.51	(1)
				3/30/2010	28.18	(1)
				6/8/2010	28.38	(1)
				9/23/2010	29.51	(1)
				12/15/2010	28.82	(1)
				3/15/2011	28.51	(1)
				6/24/2011	28.92	(1)
				10/11/2011	30.43	(1)
				10/3/2012	31.39	(1)
				7/19/2013	Well Plugg	ged and Abandoned
				9/17/2013	30.83	65.86
				9/23/2014	31.37	65.32
				12/17/2014	30.61	66.08
				2/11/2015	30.33	66.36
				3/18/2015	30.15	66.54
	42.00	06.60	22 42	6/17/2015	30.26	66.43
MW-1R	43.89	96.69	22 - 42	9/22/2015	31.44	65.25
				12/2/2015	31.14	65.55
				3/31/2016	30.54	66.15
				7/14/2016	31.73	64.96
				9/6/2016	33.94	62.75
				11/30/2016	31.74	64.95

Page 1 of 3

Monitoring Well Specifications And Groundwater Elevations ConocoPhillips Company Howell K No. 1 San Juan County, New Mexico

Well ID	Total Depth (ft bgs)	Elevation* (ft) (TOC)	Screen Interval (ft below TOC)	Date Measured	Depth to Groundwater (ft below TOC)	Relative Water Level
				10/24/2008	25.74	69.54
				1/30/2009	24.74	70.54
				9/25/2009	26.48	68.80
				12/15/2009	25.97	69.31
				3/30/2010	24.67	70.61
				6/8/2010	24.84	70.44
				9/23/2010	26.38	68.90
				12/15/2010	25.68	69.60
				3/15/2011	25.05	70.23
				6/24/2011	26.70	68.58
				10/11/2011	27.10	68.18
MW-2	39.81	95.28	21 - 36	10/3/2012	27.99	67.29
	- 0.0 1	50.20	21 00	9/17/2013	28.53	66.75
				9/23/2014	29.10	66.18
				12/17/2014	28.52	66.76
				2/11/2015	28.18	67.10
				3/18/2015	27.97	67.31
				6/17/2015	28.16	67.12
				9/22/2015	29.37	65.91
				12/2/2015	29.07	66.21
				3/31/2016	28.47	66.81
				7/14/2016	29.65	65.63
				9/6/2016	29.83	65.45
				11/30/2016	29.85	65.43
				10/24/2008	26.95	68.49
				1/30/2009	25.92	69.52
				9/25/2009	27.57	67.87
				12/15/2009	27.05	68.39
				3/30/2010	25.79	69.65
				6/8/2010	26.02	69.42
				9/23/2010	27.35	68.09
				12/15/2010	DRY	
				3/15/2011	26.19	69.25
				6/24/2011	26.70	68.74
				10/11/2011	28.15	67.29
MW-3	37.47	95.44	19 - 34	10/3/2012	29.02	66.42
	01.11	00.11	10 01	9/17/2013	29.58	65.86
				9/23/2014	30.12	65.32
				12/17/2014	29.47	65.97
				2/11/2015	29.16	66.28
				3/18/2015	28.95	66.49
				6/17/2015	29.17	66.27
				9/22/2015	30.34	65.10
				12/2/2015	29.97	65.47
				3/31/2016	29.38	66.06
				7/14/2016	30.60	64.84
				9/6/2016	30.80	64.64
				11/30/2016	29.62	65.82

Monitoring Well Specifications And Groundwater Elevations ConocoPhillips Company Howell K No. 1 San Juan County, New Mexico

Well ID	Total Depth (ft bgs)	Elevation* (ft) (TOC)	Screen Interval (ft below TOC)	Date Measured	Depth to Groundwater (ft below TOC)	Relative Water Level
				10/24/2008	NM	NM
				1/30/2009	26.00	69.36
				9/25/2009	27.64	67.72
				12/15/2009	27.14	68.22
				3/30/2010	25.87	69.49
				6/8/2010	26.09	69.27
				9/23/2010	27.31	68.05
				12/15/2010	26.75	68.61
		95.36		3/15/2011	26.26	69.10
			17 - 32	6/24/2011	26.76	68.60
				10/11/2011	28.20	67.16
MW-4	34.66			10/3/2012	29.06	66.30
10100-4	54.00			9/17/2013	29.62	65.74
				9/23/2014	31.20	64.16
				12/17/2014	29.50	65.86
				2/11/2015	29.22	66.14
				3/18/2015	29.01	66.35
				6/17/2015	29.22	66.14
				9/22/2015	30.38	64.98
				12/2/2015	30.05	65.31
				3/31/2016	29.45	65.91
				7/14/2016	30.68	64.68
			F	9/6/2017	30.86	64.50
				11/30/2017	29.68	65.68

Notes:

*Casing elevations are based on an arbitrary 100 ft relative surface elevation set at the gas well head

ft = Feet

bgs = below ground surface

TOC = Top of casing

NM = Not measured

(1) Groundwater elevations can not be calculated accurately due to continual shifting of the PVC casing in previously excavated area of MW-1. Well eventualy plugged, abandoned and replaced by MW-1R.

Field Parameters Summary ConocoPhillips Company Howell K No. 1 San Juan County, New Mexico

		Temperature			Conductivity	DO		Volume					
Well ID	Sample Date	(°C)	pН	TDS (g/L)	(µS/cm)	(mg/L)	ORP (mV)	(gallons)					
	2/11/2015	15.54	7.01	5.661	8709	2.33	-53.0	2.25					
	3/18/2015	15.75	7.93	2.100	3270		-26.0	6.50					
	6/17/2015		No pa	rameters co	llected due to lov	v well volun	ne.						
MW-1R	9/22/2015	No parameters collected due to low well volume.											
	12/2/2015	14.81	8.01	2.176	3348	2.40	-122.4	6.00					
	3/31/2016	17.69	7.44	2.000	3160	6.58	-20.0	6.25					
	7/14/2016	14.74	7.02	2.061	3171	9.02	38.2	6.00					
	9/6/2016	14.54	7.06	2.001	3077	1.43	-21.2	4.60					
	3/18/2015	14.80	7.32	1.900	3030		77.0	5.75					
	6/17/2015	14.30	6.36	1.720	2645	3.24	28.4	5.75					
	9/22/2015	14.12	8.90	1.910	2936	3.72	29.2	4.75					
MW-2	12/2/2015	13.84	7.52	2.046	3147	2.59	-66.1	5.00					
10100-2	3/31/2016	15.71	7.14	1.800	2810	6.15	104.0	5.25					
	9/6/2016	13.59	6.87	1.885	2852	3.86	43.5	4.50					
	7/14/2016	14.12	7.11	1.939	2981	3.60	51.3	5.00					
	11/30/2016	14.03	7.38		2920	2.43	77.5	4.50					
	2/11/2015	14.94	5.61	5.885	9055	2.70	-55.4	3.50					
	3/18/2015	15.20	7.66	2.200	3410		0.0	3.75					
	6/17/2015	15.08	11.62	2.870	4410	3.16	-138.1	3.50					
MW-3	9/22/2015	14.76	10.90	2.490	3841	5.10	-32.1	2.75					
10100-3	12/2/2015	14.26	9.57	2.453	3774	4.40	-73.9	3.00					
	3/31/2016	17.01	7.71	2.100	3290	6.42	-10.0	3.50					
	7/14/2016	14.80	7.33	2.149	3307	3.00	64.3	3.25					
	9/6/2016	14.42	7.86	2.048	3150	3.48	-8.8	2.75					
	2/11/2015	15.22	11.47	11.470	17644	2.08	-94.2	2.50					
	3/18/2015	15.25	9.52	3.800	603		-73.0	2.67					
	6/17/2015	15.19	11.24	3.360	5169	1.77	-112.1	2.75					
MW-4	9/22/2015	14.68	7.75	3.570	5485	2.77	56.9	2.00					
10100-4	12/2/2015	14.76	7.98	3.914	6022	2.40	-113.6	2.25					
	3/31/2016	16.48	7.52	3.800	5970	7.64	-26.0	2.50					
	7/14/2016	14.62	6.83	3.418	5259	5.97	37.9	2.25					
	9/6/2016	14.28	6.74	3.285	5053	2.12	-20.6	2.00					

Notes: TDS = total dissolved solids DO = dissolved oxygen ORP = oxidation-reduction potential

Groundwater Laboratory Analytical Results Summary ConocoPhillips Company Howell K No. 1 San Juan County, New Mexico

Well ID	Sample ID	Date	Benzene (mq/L)	Toluene (mg/L)	Ethylbenzene (mg/L)	Xylenes (total) (mg/L)	Fluoride (mg/L)	Sulfate (mg/L)	Iron (dissolved) (mg/L)	Manganese (dissolved) (mg/L)	lron (total) (mg/L)	Manganese (total) (mg/L)	Dissolved Sodium (mg/L)
-	NMWQCC Groundwater Quality Stand	lards	0.01	0.75	0.75	0.62	1.6	600	1	0.2	NE	NE	NE
	MW-1	3/22/2006	ND	ND	0.001	0.002							
	MW-1	6/21/2006	0.0014	0.0014	ND	0.0106							
	MW-1	10/19/2006	ND	ND	ND	0.0011							
	MW-1	12/12/2006	ND	0.0005	0.0004	0.0021							
	MW-1	11/9/2007	< 0.0005	< 0.0007	< 0.0008	< 0.0009							
	MW-1	1/15/2008	< 0.0005	< 0.0007	< 0.0008	< 0.0008							
	MW-1	3/19/2008	< 0.0005	< 0.0005	< 0.0005	< 0.0005							
	MW-1	8/14/2008	< 0.0005	< 0.0005	< 0.0005	< 0.0005							
	MW-1	10/24/2008	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 2.0	2390					
	MW-1	1/30/2009	< 0.0005	< 0.0005	< 0.0005	< 0.0005							
MW-1	MW-1	10/18/2009	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.88	3840	2.24	17.4			
	MW-1	12/15/2009	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 50	3290	1.7	16.5			
	MW-1	3/30/2010	< 0.0005	< 0.0005	< 0.0005	< 0.0005		2950	0.87	14.9			
	MW-1	6/8/2010	< 0.0005	< 0.0005	< 0.0005	< 0.0005		2570	11.2	14.7			
	MW-1	9/23/2010	< 0.001	< 0.001	< 0.001	< 0.001	< 0.5	2740	4.43	13.4			
	MW-1	12/15/2010	< 0.001	< 0.001	< 0.001	< 0.001	< 0.5	2230	9.72	11.1			
	MW-1	3/15/2011					0.654	2360	20	11.4			
	GW-74928-062311-PG-04	6/23/2011					< 0.50	2970	< 0.1	10.7			
	GW-074928-101211-CM-006	10/12/2011					0.28	2940	< 0.05	9.6			
	GW-074928-100312-CM-MW-1	10/3/2012					0.56	3280	16.7	6.1			
	GW-074928-091713-CM-MW-1R	9/17/2013					1.1	5100	2.8	3.8			
	GW-074928-092314-CB-MW-1R	9/23/2014					0.89	1860	0.18	2.2			259
		11/13/2014					рH	I ADJUST	MENT EVENT				
	GW-074928-121414-CM-MW-1R	12/17/2014							< 0.05	< 0.005	53.2	1.8	702
	GW-074928-021115-CK-MW-1R	2/11/2015							< 0.05	0.028	28.5	1.1	426
	GW-074928-031815-CM-MW-1R	3/18/2015							0.052	0.19	6.56	0.378	349
		5/11/2015					2nd	pH ADJUS	STMENT EVEN	Т			
MW-1R	GW-074928-061715-CB-MW-1R	6/17/2015							0.081	< 0.005	2.3	0.062	595
	GW-074928-061715-CB-DUP	6/17/2015							0.066	< 0.005			603
	GW-075928-092215-CB-MW-1R	9/22/2015							1.8	0.36	13.2	0.652	531
	GW-075928-12215-CB-MW-1R	12/2/2015							0.91	0.28	30.1	1.38	414
	GW-074928-033116-CM-MW-1R	3/31/2016						1600	0.177	0.538	15.5	1.02	285
	GW-074928-071416-JK-MW-1R	7/14/2016						1730	0.1	0.81			232
	GW-074928-090716-SP-MW-1R	9/07/2016						1920	0.083	1.1	4.44	1.25	225
		10/21/2016					3rd j	oH ADJUS	TMENT EVEN	Т			

Groundwater Laboratory Analytical Results Summary ConocoPhillips Company Howell K No. 1 San Juan County, New Mexico

						Xylenes			Iron	Manganese			Dissolved
Well ID	Sample ID	Date	Benzene	Toluene	Ethylbenzene	(total)	Fluoride	Sulfate	(dissolved)	(dissolved)	Iron (total)	Manganese	Sodium
	1044.0	10/01/0000	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(total) (mg/L)	(mg/L)
	MW-2	10/24/2008	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 2	1480					
	MW-2	1/30/2009	< 0.0005	< 0.0005	< 0.0005	< 0.0005							
	MW-2	9/25/2009	< 0.0005	< 0.0005	< 0.0005	< 0.0005	1.09	1700	< 0.02	< 0.005			
	MW-2 MW-2	12/15/2009	< 0.0005	< 0.0005 < 0.0005	< 0.0005 < 0.0005	< 0.0005 < 0.0005	< 100	1570	< 0.02	< 0.005			
	MW-2 MW-2	3/30/2010 6/8/2010	< 0.0005	< 0.0005	< 0.0005	< 0.0005		1410 1460	< 0.02 0.0544	0.14 0.0093			
	MW-2 MW-2												
	MW-2	9/23/2010 12/15/2010	< 0.001	< 0.001 < 0.001	< 0.001	< 0.001 < 0.001	< 0.5 1.01	1760	< 0.02	< 0.005 < 0.005			
	MW-2	3/15/2010	< 0.001	< 0.001	< 0.001	< 0.001	1.01	1890	< 0.02	0.0096			
	GW-74928-062311-PG-01	6/23/2011					1.21	1680	< 0.02	< 0.015			
							0.93	1990	0.873				
	GW-074928-101211-CM-007	10/12/2011						1680		0.0297			
	GW-074928-100312-CM-MW-2	10/3/2012					1.1	1850	< 0.05	0.0055			
MW-2	GW-074928-091713-CM-MW-2	9/17/2013					1.1	2420	< 0.05	< 0.005			
IVIVV-Z	GW-074928-092314-CB-MW-2	9/23/2014					0.95	1610	< 0.05 MENT EVENT	< 0.005			156
		11/13/2014		r		1	рг			0.000		0.540	450
	GW-074928-031815-CM-MW-2	3/18/2015							0.05	0.028	25	0.518	153
		5/11/2015		1	r				STMENT EVEN		40.7	0.00	400
	GW-074928-061715-CB-MW-2	6/17/2015							< 0.05	0.01	49.7	0.96	163
	GW-074928-092215-CB-MW-2	9/22/2015							0.054	0.013	96.3	2.11	156
	GW-074928-092215-CB-DUP	9/22/2015							< 0.05	0.0078			164
	GW-074928-12215-CB-MW-2	12/2/2015							< 0.05	< 0.005	136	2.74	162
	GW-074928-033116-CM-MW-2	3/31/2016						1580	0.0554	0.0072	20.3	0.568	155
	GW-074928-071416-JK-MW-2	7/14/2016						1880	< 0.05	< 0.005			145
	GW-074928-090716-SP-MW-2	9/07/2016						1710	< 0.05	< 0.005	152	3.56	158
	GW-074928-090716-SP-DUP	9/07/2016						1680	< 0.05	< 0.005	< 0.050*	0.005	159
		10/21/2016		r		1	1		TMENT EVEN		r	1	
	GW-074928-113016-JK-MW-2	11/30/2016						1670	< 0.05	0.0084			
	MW-3	10/24/2008	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 2	1480					
	MW-3	1/30/2009	< 0.0005	< 0.0005	< 0.0005	< 0.0005							
	MW-3	9/25/2009	< 0.0005	< 0.0005 < 0.0005	< 0.0005	< 0.0005	1	1840	< 0.02	0.38			
	MW-3	12/15/2009	< 0.0005		< 0.0005	< 0.0005	< 50	2500	1.35	0.32			
	MW-3	3/30/2010	< 0.0005	< 0.0005	< 0.0005	< 0.0005		1890	< 0.02	0.43			
	MW-3	6/8/2010	< 0.0005	< 0.0005 < 0.001	< 0.0005 < 0.001	< 0.0005 < 0.001		1630	0.0573	0.383			
	MW-3	9/23/2010					0.751	1960	< 0.02	0.35			
	MW-3	3/15/2011					1.11	1890	< 0.02	0.572			
	GW-74928-062311-PG-02	6/23/2011					1.2	2190	< 0.1	0.846			
	GW-074928-101211-CM-008	10/12/2011					0.81	1980	< 0.05	0.254			
	GW-074928-100312-CM-MW-3	10/3/2012					0.95	2080	< 0.05	0.25			
	GW-074928-091713-CM-MW-3	9/17/2013					0.91	2740	< 0.05	0.32			
MW-3	GW-074928-092313-CB-MW-3	9/23/2014					0.75	1840	< 0.05 MENT EVENT	0.036			260
		11/13/2014			1			1		10.005	70.0	4.0	400
	GW-074928-121714-CM-MW-3	12/17/2014 2/11/2015							< 0.05 < 0.05	< 0.005	73.0 133	4.3 7.07	496 274
	GW-074928-021115-CK-MW-3 GW-074928-031815-CM-MW3	3/18/2015							< 0.05	0.12 0.21	48	2.75	274
	GW-074926-031815-CW-WW3									-	40	2.75	203
		5/11/2015		r		1		· · · · · · · · · · · · · · · · · · ·	STMENT EVEN		47.0	4.0	040
	GW-074928-061715-CB-MW-3	6/17/2015							0.2	0.0092	47.6 15.4	1.6 1.23	812 493
	GW-074928-092215-CB-MW-3	9/22/2015							< 0.05	< 0.005	-	-	
	GW-074928-12215-CB-MW-3	12/2/2015							0.34	0.024	30.3	1.47	427
	GW-074928-12215-CB-DUP	12/2/2015							0.18	0.027	9.9	0.894	393
	GW-074928-033116-CM-MW-3	3/31/2016						1850	< 0.05	0.156	19.3	2.69	317
	GW-074928-071416-JK-MW-3	7/14/2016						1600	< 0.05	0.094			291
	GW-074928-090716-SP-MW-3	9/07/2016						1960	0.51	0.075	45.5	2.94	304
		10/21/2016	1				3rd	ph adjus	STMENT EVEN	1			

Groundwater Laboratory Analytical Results Summary ConocoPhillips Company Howell K No. 1 San Juan County, New Mexico

						Xylenes			Iron	Manganese			Dissolved
Well ID	Sample ID	Date	Benzene	Toluene	Ethylbenzene	(total)	Fluoride	Sulfate	(dissolved)	(dissolved)	Iron (total)	Manganese	Sodium
	•		(mg/L)	(mg/L)	(mg/L)	(mg/Ĺ)	(mg/L)	(mg/L)	`(mg/L) ´	(mg/L)	(mg/L)	(total) (mg/L)	(mg/L)
	MW-4	10/24/2008	< 0.0005	< 0.0005	< 0.0005	< 0.0005	2.43	3400					
	MW-4	1/30/2009	< 0.0005	< 0.0005	< 0.0005	< 0.0005				-			
	MW-4	9/25/2009	< 0.001	< 0.001	< 0.001	< 0.001	2.47	3860	< 0.02	7.8			
	MW-4	12/15/2009	< 0.001	< 0.001	< 0.001	< 0.001	< 50	4540	0.03	7.4			
	MW-4	3/30/2010	< 0.001	< 0.001	< 0.001	< 0.001	-	3970	< 0.02	7.83			
	MW-4	6/8/2010	< 0.001	< 0.001	< 0.001	< 0.001		3490	0.0607	7.97			
	MW-4	9/23/2010	< 0.001	< 0.001	< 0.001	< 0.001	1.81	3750	< 0.02	9.73			
	MW-4	12/15/2010	0.0011	< 0.001	< 0.001	< 0.001	2.47	4310	0.223	8.64			
	MW-4	3/15/2011					2.76	3990	0.522	11			
	GW-74928-062311-PG-03	6/23/2011					2.4	4400	0.492	11.1			
	GW-074928-101211-CM-005	10/12/2011					1.9	4120	2.75	15.6			
	GW-074928-100312-CM-MW-4	10/3/2012					2.1	4280	2	18			
	GW-074928-100312-CM-DUP	10/3/2012					-		2.2	18.4			
	GW-074928-091713-CM-MW-4	9/17/2013					2.2	4040	1.1	15.6			
	GW-074928-091713-CM-DUP	9/17/2013					-		1.2	16.7			
MW-4	GW-074928-092314-CB-MW-4	9/23/2014					1.8	3080	0.58	16.2			709
		11/13/2014	pH ADJUSTMENT EVENT										
	GW-074928-121714-CM-MW-4	12/17/2014					-		0.073	< 0.005	7.1	0.28	1150
	GW-074928-121714-CM-DUP	12/17/2014					-		< 0.05	< 0.005			1180
	GW-074928-021115-CK-MW-4	2/11/2015					-		< 0.05	< 0.005	1.54	0.739	1140
	GW-074928-031815-CMMW4	3/18/2015					-		< 0.05	0.011	7.3	0.326	960
		5/11/2015					2nd	pH ADJUS	STMENT EVEN	IT			
	GW-074928-061715-CB-MW-4	6/17/2015	-						< 0.05	< 0.005	75.0	2.2	948
	GW-074928-092215-CB-MW-4	9/22/2015		-					< 0.05	0.63	85.1	3.31	650
	GW-074928-12215-CB-MW-4	12/2/2015		-					< 0.05	1.5	48.7	4.45	647
	GW-074928-033116-CM-MW-4	3/31/2016	-				-	3150	0.182	4.23	17.1	5.88	690
	GW-074928-033116-CM-DUP	3/31/2016	-				-		0.158	4.14			688
	GW-074928-071416-JK-MW-4	7/14/2016	-				-	2930	0.074	5.8			516
	GW-074928-090716-SP-MW-4	9/07/2016	-				-	3130	0.14	7.3	18.6	7.78	554
		10/21/2016					3rd j	pH ADJUS	TMENT EVEN	Т			

Notes:

MW = monitoring well NMWQCC = New Mexico Water Quality Control Commission

Constituents in **BOLD** are in excess of NMWQCC groundwater quality standards mg/L = milligrams per liter (parts per million) < 1.0 = below laboratory detection limit of 1.0 mg/L

-- = not analyzed

ND = not detected

NE = Not Established

* =

Appendix A Groundwater Laboratory Analytical Reports

Pace Analytical Services, Inc. 9608 Loiret Blvd. Lenexa, KS 66219 (913)599-5665

April 11, 2016

Jeffrey Walker GHD Services, Inc 6121 Indian School Rd NE Ste 200 Albuquerque, NM 87110

RE: Project: 074928 COP Howell K No. 1 Pace Project No.: 60216115

Dear Jeffrey Walker:

Enclosed are the analytical results for sample(s) received by the laboratory on April 01, 2016. The results relate only to the samples included in this report. Results reported herein conform to the most current TNI standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Alice Flanagan

Alice Flanagan alice.flanagan@pacelabs.com Project Manager

Enclosures

cc: Angela Bown, GHD Services, Inc, Cassie Brown, GHD Services, Inc, Cale Kanack, GHD

CERTIFICATIONS

Project: 074928 COP Howell K No. 1

Pace Project No.: 60216115

Kansas Certification IDs

9608 Loiret Boulevard, Lenexa, KS 66219 WY STR Certification #: 2456.01 Arkansas Certification #: 15-016-0 Illinois Certification #: 003097 Iowa Certification #: 118 Kansas/NELAP Certification #: E-10116 Louisiana Certification #: 03055 Nevada Certification #: KS000212008A Oklahoma Certification #: 9205/9935 Texas Certification #: T104704407 Utah Certification #: KS00021 Kansas Field Laboratory Accreditation: # E-92587

SAMPLE SUMMARY

Project: 074928 COP Howell K No. 1

Pace Project No.: 60216115

Lab ID	Sample ID	Matrix	Date Collected	Date Received
60216115001	GW-074928-033116-CM-MW-1	Water	03/31/16 11:35	04/01/16 08:50
60216115002	GW-074928-033116-CM-MW-2	Water	03/31/16 11:00	04/01/16 08:50
60216115003	GW-074928-033116-CM-MW-3	Water	03/31/16 11:45	04/01/16 08:50
60216115004	GW-074928-033116-CM-MW-4	Water	03/31/16 11:25	04/01/16 08:50
60216115005	GW-074928-033116-CM-DUP	Water	03/31/16 00:00	04/01/16 08:50

SAMPLE ANALYTE COUNT

 Project:
 074928 COP Howell K No. 1

 Pace Project No.:
 60216115

Lab ID	Sample ID	Method	Analysts	Analytes Reported
60216115001	GW-074928-033116-CM-MW-1	EPA 6010	SMW	2
		EPA 6010	SMW	3
		EPA 300.0	OL	1
60216115002	GW-074928-033116-CM-MW-2	EPA 6010	SMW	2
		EPA 6010	SMW	3
		EPA 300.0	OL	1
60216115003	GW-074928-033116-CM-MW-3	EPA 6010	SMW	2
		EPA 6010	SMW	3
		EPA 300.0	OL	1
60216115004	GW-074928-033116-CM-MW-4	EPA 6010	SMW	2
		EPA 6010	SMW	3
		EPA 300.0	OL	1
60216115005	GW-074928-033116-CM-DUP	EPA 6010	SMW	3

PROJECT NARRATIVE

Project: 074928 COP Howell K No. 1

Pace Project No.: 60216115

 Method:
 EPA 6010

 Description:
 6010 MET ICP

 Client:
 GHD Services_COP NM

 Date:
 April 11, 2016

General Information:

4 samples were analyzed for EPA 6010. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3010 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

PROJECT NARRATIVE

Project: 074928 COP Howell K No. 1

Pace Project No.: 60216115

 Method:
 EPA 6010

 Description:
 6010 MET ICP, Dissolved

 Client:
 GHD Services_COP NM

 Date:
 April 11, 2016

General Information:

5 samples were analyzed for EPA 6010. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3010 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

PROJECT NARRATIVE

Project: 074928 COP Howell K No. 1

Pace Project No.: 60216115

 Method:
 EPA 300.0

 Description:
 300.0 IC Anions 28 Days

 Client:
 GHD Services_COP NM

 Date:
 April 11, 2016

General Information:

4 samples were analyzed for EPA 300.0. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

ANALYTICAL RESULTS

Project: 074928 COP Howell K No. 1

Pace Project No.: 60216115

Sample: GW-074928-033116-CM- MW-1	Lab ID: 6021	6115001	Collected: 03/31/1	6 11:3	5 Received: 04	/01/16 08:50 N	fatrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Meth	od: EPA 60	10 Preparation Meth	nod: EF	PA 3010			
Iron	15500	ug/L	50.0	1	04/04/16 15:45	04/07/16 10:07	7439-89-6	
Manganese	1020	ug/L	5.0	1	04/04/16 15:45	04/07/16 10:07	7439-96-5	
6010 MET ICP, Dissolved	Analytical Meth	od: EPA 60	10 Preparation Meth	nod: EF	PA 3010			
Iron, Dissolved	177	ug/L	50.0	1	04/04/16 15:45	04/07/16 14:52	7439-89-6	
Manganese, Dissolved	538	ug/L	5.0	1	04/04/16 15:45	04/07/16 11:55	7439-96-5	
Sodium, Dissolved	285000	ug/L	500	1	04/04/16 15:45	04/07/16 14:52	7440-23-5	
300.0 IC Anions 28 Days	Analytical Meth	od: EPA 30	0.0					
Sulfate	1600	mg/L	200	200		04/09/16 18:43	14808-79-8	

ANALYTICAL RESULTS

Project: 074928 COP Howell K No. 1

Pace Project No.: 60216115

Sample: GW-074928-033116-CM- MW-2	Lab ID: 6021	6115002	Collected: 03/31/1	6 11:00	0 Received: 04	/01/16 08:50 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Meth	od: EPA 601	10 Preparation Meth	nod: EF	PA 3010			
Iron	20300	ug/L	50.0	1	04/04/16 15:45	04/07/16 10:22	7439-89-6	
Manganese	568	ug/L	5.0	1	04/04/16 15:45	04/07/16 10:22	7439-96-5	
6010 MET ICP, Dissolved	Analytical Meth	od: EPA 601	10 Preparation Meth	nod: EF	PA 3010			
Iron, Dissolved	55.4	ug/L	50.0	1	04/04/16 15:45	04/07/16 14:56	7439-89-6	
Manganese, Dissolved	7.2	ug/L	5.0	1	04/04/16 15:45	04/07/16 11:59	7439-96-5	
Sodium, Dissolved	155000	ug/L	500	1	04/04/16 15:45	04/07/16 14:56	7440-23-5	
300.0 IC Anions 28 Days	Analytical Meth	od: EPA 300	0.0					
Sulfate	1580	mg/L	200	200		04/09/16 18:57	14808-79-8	

ANALYTICAL RESULTS

Project: 074928 COP Howell K No. 1

Pace Project No.: 60216115

Sample: GW-074928-033116-CM- MW-3	Lab ID: 6021	6115003	Collected: 03/31/1	6 11:45	5 Received: 04	/01/16 08:50 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Meth	od: EPA 60	10 Preparation Meth	nod: EP	PA 3010			
Iron	19300	ug/L	50.0	1	04/04/16 15:45	04/07/16 10:26	7439-89-6	
Manganese	2690	ug/L	5.0	1	04/04/16 15:45	04/07/16 10:26	7439-96-5	
6010 MET ICP, Dissolved	Analytical Meth	od: EPA 60	10 Preparation Meth	nod: EP	PA 3010			
Iron, Dissolved	ND	ug/L	50.0	1	04/04/16 15:45	04/07/16 15:00	7439-89-6	
Manganese, Dissolved	156	ug/L	5.0	1	04/04/16 15:45	04/07/16 12:03	7439-96-5	
Sodium, Dissolved	317000	ug/L	500	1	04/04/16 15:45	04/07/16 15:00	7440-23-5	
300.0 IC Anions 28 Days	Analytical Meth	od: EPA 30	0.0					
Sulfate	1850	mg/L	200	200		04/09/16 19:11	14808-79-8	

Project: 074928 COP Howell K No. 1

Pace Project No.: 60216115

Sample: GW-074928-033116-CM- MW-4	Lab ID: 6021	6115004	Collected: 03/31/1	6 11:25	5 Received: 04	/01/16 08:50 N	latrix: Water		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual	
6010 MET ICP	Analytical Method: EPA 6010 Preparation Method: EPA 3010								
Iron	17100	ug/L	50.0	1	04/04/16 15:45	04/07/16 10:30	7439-89-6		
Manganese	5880	ug/L	5.0	1	04/04/16 15:45	04/07/16 10:30	7439-96-5		
6010 MET ICP, Dissolved	Analytical Methe	od: EPA 601	0 Preparation Meth	nod: EP	PA 3010				
Iron, Dissolved	182	ug/L	50.0	1	04/04/16 15:45	04/07/16 15:04	7439-89-6		
Manganese, Dissolved	4230	ug/L	5.0	1	04/04/16 15:45	04/07/16 12:14	7439-96-5		
Sodium, Dissolved	690000	ug/L	2500	5	04/04/16 15:45	04/07/16 15:08	7440-23-5		
300.0 IC Anions 28 Days	Analytical Meth	od: EPA 300).0						
Sulfate	3150	mg/L	500	500		04/09/16 19:25	14808-79-8		

Project: 074928 COP Howell K No. 1

Pace Project No.: 60216115

Sample: GW-074928-033116-CM- DUP	Lab ID: 602	6115005	Collected: 03/31/1	6 00:00	Received: 04	/01/16 08:50 N	Aatrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP, Dissolved	Analytical Meth	od: EPA 60	10 Preparation Meth	nod: EP/	A 3010			
Iron, Dissolved	158	ug/L	50.0	1	04/04/16 15:45	04/07/16 15:12	7439-89-6	
Manganese, Dissolved	4140	ug/L	5.0	1	04/04/16 15:45	04/07/16 12:18	7439-96-5	
Sodium, Dissolved	688000	ug/L	2500	5	04/04/16 15:45	04/07/16 15:58	7440-23-5	

Project:	074928 COP Howel	I K No. 1										
Pace Project No.:	60216115											
QC Batch:	MPRP/35426		Analysis Method:			PA 6010						
QC Batch Method:	EPA 3010		Analysi	s Descripti	on: 6	010 MET						
Associated Lab San	mples: 6021611500	01, 60216115002,	602161150	03, 602161	115004							
METHOD BLANK: 1735612 Matrix: Water												
Associated Lab San	mples: 6021611500	01, 60216115002,	602161150	03, 60216 ⁻	115004							
			Blank	Re	porting							
Paran	neter	Units	Result		Limit	Analyz	ed	Qualifiers				
Iron		ug/L		ND	50.0	04/07/16	10:00					
Manganese		ug/L		ND	5.0	04/07/16	10:00					
LABORATORY COM	NTROL SAMPLE: 1	1735613										
Paran	neter	Units	Spike Conc	LCS Result	t	LCS % Rec	% Rec Limits		alifiers			
Paran	neter	Units	Conc.	Resul		% Rec	Limits	Q.	ualifiers			
Paran Iron Manganese	neter	Units ug/L ug/L	•	Resul	t 0100 978		Limits 80-		ualifiers			
Iron Manganese	neter	ug/L ug/L	Conc. 10000 1000	Result 1	0100	% Rec 101	Limits 80-	-120 Qu	ualifiers			
Iron Manganese		ug/L ug/L ICATE: 17356	Conc. 10000 1000	Result 1 MSD	0100 978 1735615	% Rec 101 98	Limits 80- 80-	Qu 120 120			Мах	
Iron Manganese	ATRIX SPIKE DUPL	ug/L ug/L ICATE: 17356 60216115001	Conc. 10000 1000	Result 1	0100 978	% Rec 101	Limits 80-	-120 Qu	valifiers % Rec Limits	RPD	Max RPD	Qual
Iron Manganese MATRIX SPIKE & M	ATRIX SPIKE DUPL	ug/L ug/L ICATE: 17356 60216115001	Conc. 10000 1000 14 MS Spike	Result 1 MSD Spike	0100 978 1735615 MS	% Rec 101 98 MSD Result	Limits 80- 80- 80-	Qu -120 -120 -120	% Rec	RPD 1		Qual

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 074928 COP Howell K No. 1

Pace Project No.: 60216115

QC Batch:	MPRP/35427
QC Batch Method:	EPA 3010

Analysis Method:

Analysis Description: 6010 MET Dissolved

EPA 6010

Associated Lab Samples: 60216115001, 60216115002, 60216115003, 60216115004, 60216115005

METHOD BLANK: 17356	16 Matrix: Water
Associated Lab Samples:	60216115001, 60216115002, 60216115003, 60216115004, 60216115005

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Iron, Dissolved	ug/L	ND	50.0	04/07/16 14:38	
Manganese, Dissolved	ug/L	ND	5.0	04/07/16 11:29	
Sodium, Dissolved	ug/L	ND	500	04/07/16 14:38	
LABORATORY CONTROL SAMPLE:	1735617				

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Falaillelei	Units			% Rec		Quaimers
Iron, Dissolved	ug/L	10000	10300	103	80-120	
Manganese, Dissolved	ug/L	1000	992	99	80-120	
Sodium, Dissolved	ug/L	10000	10100	101	80-120	

MATRIX SPIKE & MATRIX SP	18		1735619									
			MS	MSD								
	6	0216170001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Iron, Dissolved	ug/L	3030	10000	10000	13200	13300	101	103	75-125	1	20	
Manganese, Dissolved	ug/L	0.21 mg/L	1000	1000	1190	1200	98	99	75-125	1	20	
Sodium, Dissolved	ug/L	64000	10000	10000	73200	73500	92	94	75-125	0	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Pace Project No.:	074928 602161	COP Howell K N 15	lo. 1										
QC Batch:	WETA	/38915		Analys	sis Method	: E	PA 300.0						
QC Batch Method:	EPA 3	800.0		Analysis Description:			300.0 IC Anions						
Associated Lab San	nples:	60216115001, 6	0216115002,	60216115	003, 60216	6115004							
METHOD BLANK:	173892	9			Matrix: Wa	ter							
Associated Lab San	nples:	60216115001, 6	0216115002,	60216115 Blan		6115004 eporting							
Paran	neter		Units	Resu		Limit	Analyz	ed	Qualifiers				
Sulfate			mg/L		ND	1.0	04/09/16	09:15		_			
LABORATORY CON	NTROL S	SAMPLE: 1738	930										
Paran	neter		Units	Spike Conc.	LCS Resu		LCS % Rec	% Rec Limits		alifiers			
Sulfate			mg/L	Ę	5	4.9	97	90)-110		-		
MATRIX SPIKE & M	IATRIX S		E: 17389	31		1738932							
				MS	MSD								
Paramete	er	60 Units	216140002 Result	Spike Conc.	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Sulfate		mg/L	36.6	25	25	61.5	61.4	99	99	80-120	0	15	
MATRIX SPIKE SAM	MPLE:	1738	933										
-				602161		Spike	MS		IS	% Rec			
Paran	neter		Units	Res		Conc.	Result	%	Rec	Limits		Qualif	iers
Sulfate			mg/L		358	250	6	05	99	80-1	120		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

QUALIFIERS

Project: 074928 COP Howell K No. 1

Pace Project No.: 60216115

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project:	074928 COP Howell K No. 1
Pace Project No.:	60216115

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
60216115001	GW-074928-033116-CM-MW-1	EPA 3010	MPRP/35426	EPA 6010	ICP/25920
60216115002	GW-074928-033116-CM-MW-2	EPA 3010	MPRP/35426	EPA 6010	ICP/25920
60216115003	GW-074928-033116-CM-MW-3	EPA 3010	MPRP/35426	EPA 6010	ICP/25920
60216115004	GW-074928-033116-CM-MW-4	EPA 3010	MPRP/35426	EPA 6010	ICP/25920
60216115001	GW-074928-033116-CM-MW-1	EPA 3010	MPRP/35427	EPA 6010	ICP/25919
60216115002	GW-074928-033116-CM-MW-2	EPA 3010	MPRP/35427	EPA 6010	ICP/25919
60216115003	GW-074928-033116-CM-MW-3	EPA 3010	MPRP/35427	EPA 6010	ICP/25919
60216115004	GW-074928-033116-CM-MW-4	EPA 3010	MPRP/35427	EPA 6010	ICP/25919
60216115005	GW-074928-033116-CM-DUP	EPA 3010	MPRP/35427	EPA 6010	ICP/25919
60216115001	GW-074928-033116-CM-MW-1	EPA 300.0	WETA/38915		
60216115002	GW-074928-033116-CM-MW-2	EPA 300.0	WETA/38915		
60216115003	GW-074928-033116-CM-MW-3	EPA 300.0	WETA/38915		
60216115004	GW-074928-033116-CM-MW-4	EPA 300.0	WETA/38915		

Sample Condition Upon Receipt ESI Tech Spec Client

WO#:60216115

Client Name: $GHD - GP$	Optional
	Pace Other Client Proj Due Date:
Tracking #: 6508 8/65 7055 Pace Shipping Label	
Custody Seal on Cooler/Box Present: Yes 🖉 No 🗆 Seals intact:	
Packing Material: Bubble Wrap Bubble Bags D	🗹 None 🗆 Other 🗆
Thermometer Used: <u>T-239</u> / <u>(CF +1.0</u> <u>T-239</u> / <u>(T-262</u>) Type of Ice: Wet) E	Blue None Samples received on ice, cooling process has begun.
Cooler Temperature:	Date and initials of person examining
Temperature should be above freezing to 6°C	contents: 55 9/1//6
Chain of Custody present:	1.
Chain of Custody filled out: Pres No N/A	2.
Chain of Custody relinquished:	3.
Sampler name & signature on COC:	4.
Samples arrived within holding time:	5.
Short Hold Time analyses (<72hr):	6.
Rush Turn Around Time requested:	7.
Sufficient volume:	8.
Correct containers used:	
Pace containers used:	9.
Containers intact:	10.
Unpreserved 5035A soils frozen w/in 48hrs?	11.
Filtered volume received for dissolved tests?	12.
Sample labels match COC:	
Includes date/time/ID/analyses Matrix:	13.
All containers needing preservation have been checked.	
All containers needing preservation are found to be in compliance \swarrow_{Yes} \Box_{No} $\Box_{N/A}$ with EPA recommendation.	14.
Exceptions: VOA, Coliform, O&G, WI-DRO (water)	Initial when Lot # of added completed preservative
Trip Blank present:	
Pace Trip Blank lot # (if purchased):	15
Headspace in VOA vials (>6mm):	
· · · · · · · · · · · · · · · · · · ·	16.
Project sampled in USDA Regulated Area:	17. List State:
Additional labels attached to 5035A vials in the field?	
Client Notification/ Resolution: Copy COC to Client? Y	N Field Data Required? Y / N
Person Contacted: Date/Time:	Temp Log: Record start and finish times when unpacking cooler, if >20 min, recheck sample temps.
	Start: Start:
	End: End:
Project Manager Review:	Date: Temp: Temp:

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Pace Analytical

Control Marcine Control Marce Contr	Required Client Information:	ž		IIIA OICE IIII OI III MIIOIII							_
Constraint Constraint <thconstraint< th=""> Constraint Constra</thconstraint<>	L	Report To: Christine Mathews		Attention:							
Contraction Description Description <thdescription< th=""> <thdescription< th=""></thdescription<></thdescription<>			1	Company Name:		10	1	3	23		
Полнатизациональной развидатории Полнатизацион (Предостивной предостивной предости предости предостивной предостивной предостивной предостивной пр	srque, NM 87110		4	Addr≋ss:			4	œ	Regulatory Agency	ancy	
Properties Properis Properis Properies </td <td>ws@ghd.com 672</td> <td></td> <td>Howell K No 1</td> <td>Pace Quote: Pace Project Manat</td> <td></td> <td>ipacelabs, com,</td> <td></td> <td>A COLORADO</td> <td>State / Location</td> <td>Б</td> <td></td>	ws@ghd.com 672		Howell K No 1	Pace Quote: Pace Project Manat		ipacelabs, com,		A COLORADO	State / Location	Б	
Reserved (Marking) Reserved (Marking) Preserved (Marking)	ed Due Date:			Pace Profile #:	91. •				WN		
SAMPLE IS можи м		(fiel o		_		-	Inalysis Filtered		No off		
U074926-033116-CM-mW/L MIG B.3116 B.3116 MIC B.3116 <		응 것 것 중 중 은 꼭 의 중 중 은 없 전 적 의 중 중 은 쓰 의 이 수 있는 것 AMPLE TYPE (G=GRAB C=C		OF CONTAINERS	Jiher Veihanol	Sulfate by 300.0 Metals-diss Na,Fe,Mn			Residual Chlorine (Y/V)	SILONZ	
UL-OTHORE-OSJILE-UM- MU-2 BIG 33114 hoc 312 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	-074928-03316-0M-		3.316	312		-	B	N			8
U-OTHORE OBSILL-CM- MW-3 WG B3116 /145 31 2 1 2 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1	-MO-911250-826420-	2 101	100	ار نیچہ		XXX					200
iii. Gruptae 033 ille Cm - Mi 24 WIG 3; ille 125 3 1 2 1 XXX 1 XXX 1 1 1 1 1 1 1 1 1 1 1 1	-WU-9116EQ-825HLO-	81		312		XXX				00	200
W-OURDS 0351 (6-Cm - DWP MCG) 311 (6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- MD-911660-826420-1	-		-		XXX			\uparrow	0	4
ADDITIONAL COMBERTS ADDITIONAL COMPACT ADDITIONAL COM	03316-1	DUP WIG	3.31.16			X		→ -		200	5
ADITIONAL COMMENTS ADITIONAL COMMENTS ADITIO										ł	
ADDITIONAL COMMENTS ADDITIONAL COMMENTS ADDITI											
ADDITIONAL CONNENTS ADDITIONAL CONNENTS ADDITI	, 2										
ADDITIONAL CONNENTS ADDITIONAL CONNENTS ADDITI											
ADTIONAL COMENTS RELAVOUSHED BY AFFLATION DATE THE ACCEPTED BY AFFLATION DATE THE ACCEPTED BY AFFLATION DATE ON CINTURE THE ACCEPTED BY AFFLATION DATE THE	6.										
N CINTELLO FROM CHULLOCULATURO FRID 3:11/6 1545 Ba, Bugul Jaw 3/16 ach sumple and an province withing sameter NAME and signature	ADDITIONAL COMMENTS	RELINQUISHED BY //		150	ACCEPTED BY /	AFFILIATION	DATE	TIME	LITER	SAMPLE CONDITIONS	150
officered is the total sampler name	Container 1	C MULLIDECUTER	VER OFUS DA	9	hen buget	the of	10	CBJD >	5.6 4	~ ~	
SAMPLER NAME	or area is the the) (•					-7			
	the version of anno	Garri	SAMPLER NAME AND SIGN		A ST AND	States	R. 25a	ALC: NEW	u		
PRINT Name of SAMPLER: A COPPULS SIGNATURE OF SAMPLER SIGNATURE	ae 19 o		PRINT Name of SAMPI SIGNATURE of SAMPL	ER:	attend	MATE Signed:	100		Seceived o	samples X/N) cooler caled X/N)	(N/V)

Pace Analytical Services, Inc. 9608 Loiret Blvd. Lenexa, KS 66219 (913)599-5665

July 28, 2016

Christine Mathews GHD Services, Inc. 6212 Indian School Rd. NE St2 Albuquerque, NM 87110

RE: Project: 074928 COP HOWELL K NO. 1 Pace Project No.: 60223652

Dear Christine Mathews:

Enclosed are the analytical results for sample(s) received by the laboratory on July 15, 2016. The results relate only to the samples included in this report. Results reported herein conform to the most current TNI standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Alice Spiller

Alice Spiller alice.spiller@pacelabs.com Project Manager

Enclosures

cc: Angela Bown, GHD Services, Inc, Jeffrey Walker, GHD Services, Inc

CERTIFICATIONS

Project: 074928 COP HOWELL K NO. 1

Pace Project No.: 60223652

Kansas Certification IDs

9608 Loiret Boulevard, Lenexa, KS 66219 WY STR Certification #: 2456.01 Arkansas Certification #: 15-016-0 Illinois Certification #: 003097 Iowa Certification #: 118 Kansas/NELAP Certification #: E-10116 Louisiana Certification #: 03055 Nevada Certification #: KS000212008A Oklahoma Certification #: 9205/9935 Texas Certification #: T104704407 Utah Certification #: KS00021 Kansas Field Laboratory Accreditation: # E-92587

SAMPLE SUMMARY

Project: 074928 COP HOWELL K NO. 1

Pace Project No.: 6022

o.:	60223652	
J	00220002	

Lab ID	Sample ID	Matrix	Date Collected	Date Received
60223652001	GW-074928-071416-JK-MW1	Water	07/14/16 08:45	07/15/16 08:40
60223652002	GW-074928-071416-JK-MW2	Water	07/14/16 09:30	07/15/16 08:40
60223652003	GW-074928-071416-JK-MW3	Water	07/14/16 10:15	07/15/16 08:40
60223652004	GW-074928-071416-JK-MW4	Water	07/14/16 11:00	07/15/16 08:40
60223652005	GW-074928-071416-JK-DUP	Water	07/14/16 00:00	07/15/16 08:40

SAMPLE ANALYTE COUNT

 Project:
 074928 COP HOWELL K NO. 1

 Pace Project No.:
 60223652

Lab ID	Sample ID	Method	Analysts	Analytes Reported
60223652001	 GW-074928-071416-JK-MW1	EPA 6010	SMW	3
		EPA 300.0	OL	1
60223652002	GW-074928-071416-JK-MW2	EPA 6010	SMW	3
		EPA 300.0	OL	1
60223652003	GW-074928-071416-JK-MW3	EPA 6010	SMW	3
		EPA 300.0	OL	1
60223652004	GW-074928-071416-JK-MW4	EPA 6010	SMW	3
		EPA 300.0	OL	1
60223652005	GW-074928-071416-JK-DUP	EPA 6010	SMW	3

Project: 074928 COP HOWELL K NO. 1

Pace Project No.: 60223652

 Method:
 EPA 6010

 Description:
 6010 MET ICP, Dissolved

 Client:
 GHD Services_COP NM

 Date:
 July 28, 2016

General Information:

5 samples were analyzed for EPA 6010. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3010 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 439321

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 60223694001

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 1796758)
- Sodium, Dissolved
- MSD (Lab ID: 1796759)
 - Sodium, Dissolved

Additional Comments:

Project: 074928 COP HOWELL K NO. 1

Pace Project No.: 60223652

 Method:
 EPA 300.0

 Description:
 300.0 IC Anions 28 Days

 Client:
 GHD Services_COP NM

 Date:
 July 28, 2016

General Information:

4 samples were analyzed for EPA 300.0. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

Project: 074928 COP HOWELL K NO. 1

Pace Project No.: 60223652

Sample: GW-074928-071416-JK- MW1	Lab ID: 602	23652001	Collected: 07/14/1	6 08:45	5 Received: 07	/15/16 08:40 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP, Dissolved	Analytical Meth	nod: EPA 60	10 Preparation Met	nod: EP	A 3010			
Iron, Dissolved	0.10	mg/L	0.050	1	07/20/16 11:15	07/21/16 10:29	7439-89-6	
Manganese, Dissolved	0.81	mg/L	0.0050	1	07/20/16 11:15	07/21/16 10:29	7439-96-5	
Sodium, Dissolved	232	mg/L	0.50	1	07/20/16 11:15	07/21/16 10:29	7440-23-5	
300.0 IC Anions 28 Days	Analytical Meth	nod: EPA 30	0.0					
Sulfate	1730	mg/L	200	200		07/28/16 10:52	14808-79-8	

Project: 074928 COP HOWELL K NO. 1

Pace Project No.: 60223652

Sample: GW-074928-071416-JK- MW2	Lab ID: 602	23652002	Collected: 07/14/1	16 09:30) Received: 07	7/15/16 08:40	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP, Dissolved	Analytical Mether	nod: EPA 60	10 Preparation Met	hod: EP	A 3010			
Iron, Dissolved	ND	mg/L	0.050	1	07/20/16 11:15	07/21/16 10:31	7439-89-6	
Manganese, Dissolved	ND	mg/L	0.0050	1	07/20/16 11:15	07/21/16 10:31	7439-96-5	
Sodium, Dissolved	145	mg/L	0.50	1	07/20/16 11:15	07/21/16 10:31	7440-23-5	
300.0 IC Anions 28 Days	Analytical Meth	nod: EPA 30	0.0					
Sulfate	1880	mg/L	200	200		07/28/16 11:07	14808-79-8	

Project: 074928 COP HOWELL K NO. 1

Pace Project No.: 60223652

Sample: GW-074928-071416-JK- MW3	Lab ID: 602	23652003	Collected: 07/14/1	6 10:15	5 Received: 07	7/15/16 08:40 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP, Dissolved	Analytical Meth	nod: EPA 601	0 Preparation Met	nod: EP	A 3010			
Iron, Dissolved	ND	mg/L	0.050	1	07/20/16 11:15	07/21/16 10:34	7439-89-6	
Manganese, Dissolved	0.094	mg/L	0.0050	1	07/20/16 11:15	07/21/16 10:34	7439-96-5	
Sodium, Dissolved	291	mg/L	0.50	1	07/20/16 11:15	07/21/16 10:34	7440-23-5	
300.0 IC Anions 28 Days	Analytical Meth	nod: EPA 300	0.0					
Sulfate	1600	mg/L	200	200		07/28/16 11:21	14808-79-8	

Project: 074928 COP HOWELL K NO. 1

Pace Project No.: 60223652

Sample: GW-074928-071416-JK- MW4	Lab ID: 602	23652004	Collected: 07/14/1	16 11:00) Received: 07	7/15/16 08:40 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP, Dissolved	Analytical Mether	nod: EPA 601	0 Preparation Met	hod: EP	A 3010			
Iron, Dissolved	0.074	mg/L	0.050	1	07/20/16 11:15	07/21/16 10:36	7439-89-6	
Manganese, Dissolved	5.8	mg/L	0.0050	1	07/20/16 11:15	07/21/16 10:36	7439-96-5	
Sodium, Dissolved	516	mg/L	2.5	5	07/20/16 11:15	07/21/16 10:17	7440-23-5	
300.0 IC Anions 28 Days	Analytical Meth	nod: EPA 300	0.0					
Sulfate	2930	mg/L	500	500		07/28/16 11:36	14808-79-8	

Project: 074928 COP HOWELL K NO. 1

Pace Project No.: 60223652

Sample: GW-074928-071416-JK- DUP	Lab ID: 602	23652005	Collected: 07/14/1	6 00:00	Received: 07	7/15/16 08:40 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP, Dissolved	Analytical Mether	nod: EPA 60	10 Preparation Meth	nod: EPA	3010			
Iron, Dissolved	0.093	mg/L	0.050	1	07/20/16 11:15	07/21/16 10:39	7439-89-6	
Manganese, Dissolved	0.79	mg/L	0.0050	1	07/20/16 11:15	07/21/16 10:39	7439-96-5	
Sodium, Dissolved	223	mg/L	0.50	1	07/20/16 11:15	07/21/16 10:39	7440-23-5	

Project: 074928 COP HOWELL K NO. 1

439321

EPA 3010

Pace Project No.: 60223652

Associated Lab Samples:

QC Batch:

QC Batch Method:

Analysis Description:

60223652001, 60223652002, 60223652003, 60223652004, 60223652005

EPA 6010

6010 MET Dissolved

METHOD BLANK: 1796756 Matrix: Water Associated Lab Samples: 60223652001, 60223652002, 60223652003, 60223652004, 60223652005

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Iron, Dissolved	mg/L	ND	0.050	07/21/16 09:59	
Manganese, Dissolved	mg/L	ND	0.0050	07/21/16 09:59	
Sodium, Dissolved	mg/L	ND	0.50	07/21/16 09:59	

LABORATORY CONTROL SAMPLE: 1796757

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Iron, Dissolved	mg/L	10	9.7	97	80-120	
Manganese, Dissolved	mg/L	1	0.97	97	80-120	
Sodium, Dissolved	mg/L	10	9.7	97	80-120	

MATRIX SPIKE & MATRIX S	PIKE DUPLIC	ATE: 17967	58		1796759							
Parameter	6 Units	0223694001 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec				Quai
Iron, Dissolved	mg/L	ND	10	10	10.1	9.8	101	98	75-125	3	20	
Manganese, Dissolved	mg/L	8.4 ug/L	1	1	1.0	0.94	101	93	75-125	8	20	
Sodium, Dissolved	mg/L	359000 ug/L	10	10	388	375	294	162	75-125	3	20	M1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

- J	928 COP HOWE 23652	LL K NO. 1										
QC Batch: 44	0313		Analys	sis Method:	E	EPA 300.0						
QC Batch Method: EF	PA 300.0		Analys	sis Descript	ion: 3	300.0 IC Anio	ns					
Associated Lab Samples	: 6022365200	1, 60223652002	, 60223652	2003, 60223	3652004							
METHOD BLANK: 180	1388		Ν	Matrix: Wat	ter							
Associated Lab Samples	: 6022365200	1, 60223652002	, 60223652	2003, 60223	3652004							
			Blank	k R	eporting							
Parameter		Units	Resu	lt	Limit	Analyz	ed	Qualifiers				
Sulfate		mg/L		ND	1.0	07/28/16	08:57					
LABORATORY CONTRO	DL SAMPLE: 1	801389										
			Spike	LCS	;	LCS	% Red	C				
Parameter		Units	Conc.	Resu	lt	% Rec	Limits	s Q	ualifiers			
Sulfate		mg/L	5	5	5.4	108	90)-110				
MATRIX SPIKE & MATR		CATE: 18013	90		1801391							
			MS	MSD								
		60223997002	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Sulfate	mg/L	50.3	25	25	74.0	72.9	95	91	80-120	2	15	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: 074928 COP HOWELL K NO. 1

Pace Project No.: 60223652

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: 074928 COP HOWELL K NO. 1

Pace Project No.: 60223652

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
60223652001	GW-074928-071416-JK-MW1	EPA 3010	439321	EPA 6010	439349
60223652002	GW-074928-071416-JK-MW2	EPA 3010	439321	EPA 6010	439349
60223652003	GW-074928-071416-JK-MW3	EPA 3010	439321	EPA 6010	439349
60223652004	GW-074928-071416-JK-MW4	EPA 3010	439321	EPA 6010	439349
60223652005	GW-074928-071416-JK-DUP	EPA 3010	439321	EPA 6010	439349
60223652001	GW-074928-071416-JK-MW1	EPA 300.0	440313		
60223652002	GW-074928-071416-JK-MW2	EPA 300.0	440313		
60223652003	GW-074928-071416-JK-MW3	EPA 300.0	440313		
60223652004	GW-074928-071416-JK-MW4	EPA 300.0	440313		

Sample Condition Upon Receipt ESI Tech Spec Client

WO#:60223652

	<u>_</u>						-				AF	T	
Client Name;	GHD COP									Opti	onal		
Courier: FedEx 🕅		Clay 🗆	PEX 🗆	EC		Pace 🗆	Othe	er 🗆 🖸	lient 🗆	Proj	Due Date:		
Tracking #: 6703	1644 5842	P	ace Sh	ipping	Label L	Jsed? Y	′es □	No 🗆		Proj	Name:		
Custody Seal on Coole	r/Box Present:	Yes 🕅 No 🕻	⊐ Se	eals in	tact: Y	es 🖄	No 🗆						
Packing Material:	Bubble Wrap	Bubble Bag	js □		Foam (None 2	K (Other 🗆				
Thermometer Used:	(I-239) CF 0.0 I-239 T-262		pe of lo	e: V	/		S:	amples re	eceived o	n ice, c	ooling proces	ss has beg	gun.
Cooler Temperature:	_12			-	(circle	eone)			and initi ents:	ials of p	oerson exam	nining	
Temperature should be abo	ve freezing to 6°C		1.	4		-		Cont	unto. (05	7K		
Chain of Custody preser	nt:		Yes	No	□n/A	1.							
Chain of Custody filled o	ut:		Yes	No	□n/A	2.		No	Unp	es.	polume	for	Dup
Chain of Custody relinqu	iished:		Yes	□No	□n/A	3.	to	An	300. a	2 +			
Sampler name & signatu	ire on COC:		K IYes	□No	⊡n/A	4.							
Samples arrived within h	olding time:		Yes	□No	□n/A	5.				5			
Short Hold Time analys	ses (<72hr):		□Yes	K No	□N/A	6.							
Rush Turn Around Tim	e requested:		□Yes	X No	□n/A	7.							
Sufficient volume:			Yes	□No	□n/A	8.							
Correct containers used:			Me Yes	□No	□n/A								
Pace containers used:			M Yes	□No	□n/a	9.							
Containers intact:			Yes	ΩNo	□n/a	10.							
Unpreserved 5035A soil	s frozen w/in 48hrs?		□Yes	□No	I∰N/A	11.							
Filtered volume received	for dissolved tests?		□Yes	□No	Ø€]N/A	12.							
Sample labels match CC	DC:		K Yes	□No	□n/A								
Includes date/time/ID/ar	nalyses	Matrix:	WT			13.							
All containers needing pres	ervation have been che	cked.	M Yes	□No	□n/A								
All containers needing pres	ervation are found to be	e in compliance	🗱 Yes	□No	□n/a	14							
with EPA recommendation. Exceptions: VOA, Coliform	ORG WILDBO (water	`	_	180 No.		14. Initial whe				t # of ac			
Trip Blank present:	, Oad, WI-DRO (water)	□Yes	No	4	completer	d		pre	eservati	ve		_
1	ourobased):		LIYes	∐No	M/A	15							
Pace Trip Blank lot # (if Headspace in VOA vials					M/A	15.	-						
			Lifes		ų din/A								
					Arts	16.							
Project sampled in USD.	A Regulated Area:				I€IN/A	17. List S	State:						
Additional labels attache			Yes	_	KON/A	18.			10				
Client Notification/ Res	solution	Сору СО	C to Clie	ent?	Y / N	l	Field Da	ata Requi	-	Y /	N cord start an	d finiah tir	
Person Contacted: Comments/ Resolution:		Da	te/Time	e: 						npackin	ig cooler, if >		
									Start:	115	Star	t:	
									End:	120	End		
Project Manager Review	AAF					Date: 0	7/15/1	6	Temp:		Tem		
										F-K	S-C-004-Rev	7.4, 30Jun	ne 2015

CHAIN-OF-CUSTODY / Analytical Request Document	The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed
CHAIN-OF-CUSTODY /	The Chain-of-Custody is a LEGAL DC

Pace Analytical

accurately.

in the second	Å,	ion:		Invoi	Invoice Information:	2				Г	ď.	Page:	-	5	*
	Report To: Christine Mathews	hews		Attention:	tion:					T					
Address: 6212 Indian School Rd NE St2	Copy To:			Com	Company Name:					_	and a constant				
Albuquerque, NM 87110				Address:	ess:						144 T 4 1 1	Regula	regulatory Agenc	k	
Email: christine mathews@ghd.com	# #			Pace	Pace Quote:										
Phone: 505-884-0672 Fax:	Project Name: 074928	074928 COP Howell K No 1		Pace	Pace Project Manager:		gan@pa	alice flanagan@pacelabs.com		_		State	State / Location		
Requested Due Date:	Project #:			Pace	Pace Profile #:					-		\mathbf{F}	WW		
5				F			-	Req	Requested Analysis Filtered (Y/N)	sis Filtered ()	(N)	Т			
		COLLECTED	0	N	Pres	Preservatives	N/X				1944) 313				317
SAMPLE ID	ig Water Water ct blid	START	END				tsəT :			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ne stell Stick s	(N\Y) ənin	n series Series		
One Character per box. (A.Z. 0.9.1, -) Sample (ds must be unique	MATRIX CODE SAMPLE TYPE	DATE TIME DA	DATE TIME	AMPLE TEMP # OF CONTAINE	Unpreserved	Methanol Na2S2O3 NaOH HCI	Ofher Other	Sulfate by 300 M ssib-slateM		22 Jr. 83		oldO leubiseA	leo -	60 223652	2
UN . 074928-071414- TX-Mai	1 into	845		2	1 1	76 - 10 - 11 - 1		XX	- nsul	Kot &	301 E 20		á	las	_
Can. 074928-071416-5K-MW	Per C	7.14 920	10	2	1 1			rr			-		h i	20	
wm-JZ-91410 826400 mg	3 46	7.7 105		2	1			11					ir d	603	
-9/1/10- SUPPLO-MAS	JK-Muy WE	UCOEL HILL		2	1 1	T 01.77		×					1	had	-
-914160-826464.MK	T12. DUD Wria	7.4	194	-	-			XX	-	->				Sa	
		SIL	101				-	9.13 9.13 9.13				1	hi		
0						時間に	10						in		
	े जि जि जि	100											in.		
5	t jest, gros	1 10	ere Ere	e hu log g	110							-			
10		1444 (1495			102							T	2001 2001		5
11		1.19	ding 												
12		1,411		r Kar				1.1		-		-			
ADDITIONAL COMMENTS	RELINGUISHE	RELINQUISHED BY I AFFILATION	DATE		TIME	ACCEPTED BY / AFFLIATION	BYIA	FLIATION	and the second s	DATE	TIME		SAMPLE	SAMPLE CONDITIONS	5
	Ser UN	16100	MC .	11	108	21	1	la		415	0840	17			\geq
	1		-	>	14	1			-						4
	6 9 L 4	106		-		0	100	the Mag	111						
Pa		SAMPLER N	SAMPLER NAME AND SIGNATURE	ATURE	101-000	and the state					14.000		uc		-
ge 17		PRINT N	INT Name of SAMPLER:	ER:	Joghua,	Kuzanak	X			1.		NP in C	beviec (V	oler led stody	səldu. (N
of 1		SIGNAT	SIGNATURE of SAMPLER:	ER:	111			DATE	DATE Signed: 7. 14-15	4-15	-1	IEL	PSG ICe IVI	su Sea So O	e)ul IES I/Y)

17

September 26, 2016

Christine Mathews GHD Services, Inc. 6212 Indian School Rd. NE St2 Albuquerque, NM 87110

RE: Project: 074928 COP HOWELL K NO 1 Pace Project No.: 60227294

Dear Christine Mathews:

Enclosed are the analytical results for sample(s) received by the laboratory on September 09, 2016. The results relate only to the samples included in this report. Results reported herein conform to the most current TNI standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Alice Spiller

Alice Spiller alice.spiller@pacelabs.com Project Manager

Enclosures

cc: Angela Bown, GHD Services, Inc, Jeffrey Walker, GHD Services, Inc

CERTIFICATIONS

Project: 074928 COP HOWELL K NO 1

Pace Project No.: 60227294

Kansas Certification IDs

9608 Loiret Boulevard, Lenexa, KS 66219 WY STR Certification #: 2456.01 Arkansas Certification #: 15-016-0 Illinois Certification #: 003097 Iowa Certification #: 118 Kansas/NELAP Certification #: E-10116 Louisiana Certification #: 03055 Nevada Certification #: KS000212008A Oklahoma Certification #: 9205/9935 Texas Certification #: T104704407 Utah Certification #: KS00021 Kansas Field Laboratory Accreditation: # E-92587

SAMPLE SUMMARY

Project: 074928 COP HOWELL K NO 1

Pace Project No.: 6022

.:	60227294
••	00221201

Lab ID	Sample ID	Matrix	Date Collected	Date Received
60227294001	GW-074928-090716-SP-MW-1R	Water	09/07/16 19:35	09/09/16 08:50
60227294002	GW-074928-090716-SP-MW-2	Water	09/07/16 19:20	09/09/16 08:50
60227294003	GW-074928-090716-SP-MW-3	Water	09/07/16 19:50	09/09/16 08:50
60227294004	GW-074928-090716-SP-MW-4	Water	09/07/16 19:43	09/09/16 08:50
60227294005	GW-074928-090716-SP-DUP	Water	09/07/16 00:00	09/09/16 08:50

SAMPLE ANALYTE COUNT

Project: 074928 COP HOWELL K NO 1

Pace Project No.: 60227294

Lab ID	Sample ID	Method	Analysts	Analytes Reported
60227294001	 GW-074928-090716-SP-MW-1R	EPA 6010	TDS	2
		EPA 6010	TDS	3
		EPA 300.0	OL	1
60227294002	GW-074928-090716-SP-MW-2	EPA 6010	TDS	2
		EPA 6010	TDS	3
		EPA 300.0	OL	1
60227294003	GW-074928-090716-SP-MW-3	EPA 6010	TDS	2
		EPA 6010	TDS	3
		EPA 300.0	OL	1
60227294004	GW-074928-090716-SP-MW-4	EPA 6010	TDS	2
		EPA 6010	TDS	3
		EPA 300.0	OL	1
60227294005	GW-074928-090716-SP-DUP	EPA 6010	TDS	2
		EPA 6010	TDS	3
		EPA 300.0	OL	1

Project: 074928 COP HOWELL K NO 1

Pace Project No.: 60227294

Method:EPA 6010Description:6010 MET ICPClient:GHD Services_COP NMDate:September 26, 2016

General Information:

5 samples were analyzed for EPA 6010. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3010 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 446114

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 60227294002

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 1824045)
 - Iron
 - Manganese
- MSD (Lab ID: 1824046)
 - Iron
 - Manganese

Additional Comments:

Analyte Comments:

QC Batch: 446114

- 1e: PDS recovery 89% for Mn
 - GW-074928-090716-SP-MW-2 (Lab ID: 60227294002)
 - Manganese
 - MS (Lab ID: 1824045)
 - Manganese

Project: 074928 COP HOWELL K NO 1

Pace Project No.: 60227294

 Method:
 EPA 6010

 Description:
 6010 MET ICP

 Client:
 GHD Services_COP NM

 Date:
 September 26, 2016

Analyte Comments:

QC Batch: 446114

1e: PDS recovery 89% for Mn

• MSD (Lab ID: 1824046)

Manganese

Project: 074928 COP HOWELL K NO 1

Pace Project No.: 60227294

Method:EPA 6010Description:6010 MET ICP, DissolvedClient:GHD Services_COP NMDate:September 26, 2016

General Information:

5 samples were analyzed for EPA 6010. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3010 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

Project: 074928 COP HOWELL K NO 1

Pace Project No.: 60227294

Method:EPA 300.0Description:300.0 IC Anions 28 DaysClient:GHD Services_COP NMDate:September 26, 2016

General Information:

5 samples were analyzed for EPA 300.0. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

Project: 074928 COP HOWELL K NO 1

Pace Project No.: 60227294

Sample: GW-074928-090716-SP- MW-1R	Lab ID: 6022	27294001	Collected: 09/07/1	6 19:3	5 Received: 09	0/09/16 08:50 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Meth	od: EPA 60	10 Preparation Meth	nod: EF	PA 3010			
Iron	4440	ug/L	50.0	1	09/12/16 12:15	09/13/16 15:16	7439-89-6	
Manganese	1250	ug/L	5.0	1	09/12/16 12:15	09/13/16 15:16	7439-96-5	
6010 MET ICP, Dissolved	Analytical Meth	od: EPA 60	10 Preparation Meth	nod: EF	PA 3010			
Iron, Dissolved	0.083	mg/L	0.050	1	09/12/16 12:15	09/13/16 12:53	7439-89-6	
Manganese, Dissolved	1.1	mg/L	0.0050	1	09/12/16 12:15	09/13/16 12:53	7439-96-5	
Sodium, Dissolved	225	mg/L	0.50	1	09/12/16 12:15	09/13/16 12:53	7440-23-5	
300.0 IC Anions 28 Days	Analytical Meth	od: EPA 30	0.0					
Sulfate	1920	mg/L	200	200		09/24/16 14:54	14808-79-8	

Project: 074928 COP HOWELL K NO 1

Pace Project No.: 60227294

Sample: GW-074928-090716-SP- MW-2	Lab ID: 6022	27294002	Collected: 09/07/1	6 19:20	0 Received: 09	/09/16 08:50 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Meth	od: EPA 60	10 Preparation Met	nod: EF	PA 3010			
Iron	152000	ug/L	50.0	1	09/12/16 12:15	09/13/16 15:19	7439-89-6	M1
Manganese	3560	ug/L	5.0	1	09/12/16 12:15	09/13/16 15:19	7439-96-5	1e,M1
6010 MET ICP, Dissolved	Analytical Meth	od: EPA 60	10 Preparation Met	nod: EF	PA 3010			
Iron, Dissolved	ND	mg/L	0.050	1	09/12/16 12:15	09/13/16 12:55	7439-89-6	
Manganese, Dissolved	ND	mg/L	0.0050	1	09/12/16 12:15	09/13/16 12:55	7439-96-5	
Sodium, Dissolved	158	mg/L	0.50	1	09/12/16 12:15	09/13/16 12:55	7440-23-5	
300.0 IC Anions 28 Days	Analytical Meth	od: EPA 30	0.0					
Sulfate	1710	mg/L	200	200		09/24/16 15:08	14808-79-8	

Project: 074928 COP HOWELL K NO 1

Pace Project No.: 60227294

Sample: GW-074928-090716-SP- MW-3	Lab ID: 6022	27294003	Collected: 09/07/1	16 19:50	0 Received: 09	/09/16 08:50 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Meth	od: EPA 60	010 Preparation Met	hod: EF	PA 3010			
Iron	45500	ug/L	50.0	1	09/12/16 12:15	09/13/16 15:28	7439-89-6	
Manganese	2940	ug/L	5.0	1	09/12/16 12:15	09/13/16 15:28	7439-96-5	
6010 MET ICP, Dissolved	Analytical Meth	od: EPA 60	010 Preparation Met	hod: EF	PA 3010			
Iron, Dissolved	0.51	mg/L	0.050	1	09/12/16 12:15	09/13/16 12:58	7439-89-6	
Manganese, Dissolved	0.075	mg/L	0.0050	1	09/12/16 12:15	09/13/16 12:58	7439-96-5	
Sodium, Dissolved	304	mg/L	0.50	1	09/12/16 12:15	09/13/16 12:58	7440-23-5	
300.0 IC Anions 28 Days	Analytical Meth	od: EPA 30	0.0					
Sulfate	1960	mg/L	200	200		09/24/16 15:22	14808-79-8	

Project: 074928 COP HOWELL K NO 1

Pace Project No.: 60227294

Sample: GW-074928-090716-SP- MW-4	Lab ID: 602	27294004	Collected: 09/07/1	6 19:43	3 Received: 09	/09/16 08:50 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Meth	nod: EPA 60	010 Preparation Met	nod: EP	PA 3010			
Iron	18600	ug/L	50.0	1	09/12/16 12:15	09/13/16 15:35	7439-89-6	
Manganese	7780	ug/L	5.0	1	09/12/16 12:15	09/13/16 15:35	7439-96-5	
6010 MET ICP, Dissolved	Analytical Meth	nod: EPA 60	010 Preparation Met	nod: EP	PA 3010			
Iron, Dissolved	0.14	mg/L	0.050	1	09/12/16 12:15	09/13/16 13:00	7439-89-6	
Manganese, Dissolved	7.3	mg/L	0.0050	1	09/12/16 12:15	09/13/16 13:00	7439-96-5	
Sodium, Dissolved	554	mg/L	1.0	2	09/12/16 12:15	09/13/16 13:10	7440-23-5	
300.0 IC Anions 28 Days	Analytical Meth	nod: EPA 30	0.0					
Sulfate	3130	mg/L	500	500		09/24/16 15:36	14808-79-8	

Project: 074928 COP HOWELL K NO 1

Pace Project No.: 60227294

Sample: GW-074928-090716-SP- DUP	Lab ID: 6022	27294005	Collected: 09/07/1	6 00:00	0 Received: 09	/09/16 08:50 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Meth	od: EPA 60	10 Preparation Meth	nod: EP	PA 3010			
Iron	ND	ug/L	50.0	1	09/12/16 12:15	09/13/16 15:37	7439-89-6	
Manganese	5.0	ug/L	5.0	1	09/12/16 12:15	09/13/16 15:37	7439-96-5	
6010 MET ICP, Dissolved	Analytical Meth	od: EPA 60	10 Preparation Meth	nod: EP	PA 3010			
Iron, Dissolved	ND	mg/L	0.050	1	09/12/16 12:15	09/13/16 13:08	7439-89-6	
Manganese, Dissolved	ND	mg/L	0.0050	1	09/12/16 12:15	09/13/16 13:08	7439-96-5	
Sodium, Dissolved	159	mg/L	0.50	1	09/12/16 12:15	09/13/16 13:08	7440-23-5	
300.0 IC Anions 28 Days	Analytical Meth	od: EPA 30	0.0					
Sulfate	1680	mg/L	200	200		09/24/16 15:50	14808-79-8	

Project:	074928 COP HOW	VELL K NO 1										
Pace Project No .:	60227294											
QC Batch:	446114		Analys	is Method:	E	PA 6010						
QC Batch Method:	EPA 3010		Analys	is Descript	tion: 6	010 MET						
Associated Lab San	nples: 60227294	001, 60227294002	2, 60227294	003, 6022	7294004, 6	022729400	5					
METHOD BLANK:	1824043		Ν	latrix: Wa	ter							
Associated Lab San	nples: 60227294	001, 60227294002	2, 60227294	003, 6022	7294004, 6	6022729400	5					
			Blank	R	eporting							
Paran	neter	Units	Result	t	Limit	Analyz	ed	Qualifiers				
Iron		ug/L		ND	50.0	09/13/16	15:12					
Manganese		ug/L		ND	5.0	09/13/16	15:12					
	NTROL SAMPLE:	1824044										
			Spike	LCS	5	LCS	% Red	c				
Paran	neter	Units	Conc.	Resu	ılt	% Rec	Limits	, Q	ualifiers			
Iron		ug/L	10000		10200	102	80)-120		-		
Manganese		ug/L	1000		947	95	80)-120				
MATRIX SPIKE & M	IATRIX SPIKE DUF	PLICATE: 18240	45		1824046							
			MS	MSD								
		60227294002	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Paramete	r Uni	its Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Iron	ug,	/L 152000	10000	10000	152000	157000	5	55	75-125	3	20	M1
Manganese	ug	/L 3560	1000	1000	4140	4230	58	67	75-125	2	20	1e,M1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Analysis Method:

Project: 074928 COP HOWELL K NO 1

Pace Project No.: 60227294

QC Batch:

446110 QC Batch Method: EPA 3010

Analysis Description: 6010 MET Dissolved

EPA 6010

Associated Lab Samples: 60227294001, 60227294002, 60227294003, 60227294004, 60227294005

METHOD BLANK: 1824025 Matrix: Water Associated Lab Samples: 60227294001, 60227294002, 60227294003, 60227294004, 60227294005

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Iron, Dissolved	mg/L	ND	0.050	09/13/16 12:12	
Manganese, Dissolved	mg/L	ND	0.0050	09/13/16 12:12	
Sodium, Dissolved	mg/L	ND	0.50	09/13/16 12:12	

LABORATORY CONTROL SAMPLE: 1824026

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Iron, Dissolved	mg/L	10	10.1	101	80-120	
Manganese, Dissolved	mg/L	1	0.96	96	80-120	
Sodium, Dissolved	mg/L	10	9.6	96	80-120	

MATRIX SPIKE & MATRIX S	PIKE DUPLIC	ATE: 18240	27		1824028							
Parameter	e Units	60227292002 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Iron, Dissolved	mg/L	 709 ug/L	10	10	10.9	10.9	102	102	75-125	0	20	
Manganese, Dissolved	mg/L	1670 ug/L	1	1	2.6	2.6	93	96	75-125	1	20	
Sodium, Dissolved	mg/L	95400 ug/L	10	10	105	105	97	93	75-125	0	20	

MATRIX SPIKE & MATRIX S	PIKE DUPLIC	ATE: 18240	29		1824030							
	6	60227293005	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Iron, Dissolved	mg/L	4600 ug/L	10	10	14.6	14.7	100	101	75-125	1	20	
Manganese, Dissolved	mg/L	2070 ug/L	1	1	3.0	3.0	94	95	75-125	0	20	
Sodium, Dissolved	mg/L	25400 ug/L	10	10	35.8	35.9	103	105	75-125	1	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Project: Pace Project No.:	074928 602272	COP HOWELL 94	K NO 1										
QC Batch:	44784	1		Analy	sis Method	: Е	PA 300.0						
QC Batch Method:	EPA 3	00.0		Analy	sis Descrip	tion: 3	00.0 IC Anio	ns					
Associated Lab San	nples:	60227294001,	60227294002	, 60227294	4003, 6022	7294004, 6	0227294005	5					
METHOD BLANK:	183228	0			Matrix: Wa	ter							
Associated Lab San	nples:	60227294001,	60227294002	, 60227294	4003, 6022	7294004, 6	0227294005	5					
_				Blan		eporting							
Paran	neter		Units	Resu	llt	Limit	Analyz	ed	Qualifiers				
Sulfate			mg/L		ND	1.0	09/24/16	12:18					
LABORATORY COM	NTROLS	SAMPLE: 1832	2281										
Paran	neter		Units	Spike Conc.	LCS Resu		LCS % Rec	% Rec Limits		alifiers			
Sulfate			mg/L	Ę	5	4.8	96	90	-110				
MATRIX SPIKE & M		PIKE DUPLICA	TE: 183228	32		1832283							
				MS	MSD								
Paramete	er	60 Units)227293002 Result	Spike Conc.	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Sulfate		mg/L	131	50	50	179	179	97	96	80-120	0	15	
MATRIX SPIKE SAI	MPLE:	1832	2284										
5			11-26-	602272		Spike	MS	M	-	% Rec		0	
Paran	neter		Units	Res		Conc.	Result	%F		Limits		Qualif	iers
Sulfate			mg/L		104	50	1	55	103	80-1	20		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

QUALIFIERS

Project: 074928 COP HOWELL K NO 1

Pace Project No.: 60227294

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

1e PDS recovery 89% for Mn

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: 074928 COP HOWELL K NO 1

Pace Project No.: 60227294

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
60227294001	GW-074928-090716-SP-MW-1R	EPA 3010	446114	EPA 6010	446264
60227294002	GW-074928-090716-SP-MW-2	EPA 3010	446114	EPA 6010	446264
60227294003	GW-074928-090716-SP-MW-3	EPA 3010	446114	EPA 6010	446264
60227294004	GW-074928-090716-SP-MW-4	EPA 3010	446114	EPA 6010	446264
60227294005	GW-074928-090716-SP-DUP	EPA 3010	446114	EPA 6010	446264
60227294001	GW-074928-090716-SP-MW-1R	EPA 3010	446110	EPA 6010	446261
60227294002	GW-074928-090716-SP-MW-2	EPA 3010	446110	EPA 6010	446261
60227294003	GW-074928-090716-SP-MW-3	EPA 3010	446110	EPA 6010	446261
60227294004	GW-074928-090716-SP-MW-4	EPA 3010	446110	EPA 6010	446261
60227294005	GW-074928-090716-SP-DUP	EPA 3010	446110	EPA 6010	446261
60227294001	GW-074928-090716-SP-MW-1R	EPA 300.0	447841		
60227294002	GW-074928-090716-SP-MW-2	EPA 300.0	447841		
60227294003	GW-074928-090716-SP-MW-3	EPA 300.0	447841		
60227294004	GW-074928-090716-SP-MW-4	EPA 300.0	447841		
60227294005	GW-074928-090716-SP-DUP	EPA 300.0	447841		

Sample Condition Upon Receipt ESI Tech Spec Client

WO#:60227294

				AFS	
Client Name: GHD:GP-NM				•	
Courier: FedEx 🖄 UPS 🗆 VIA 🗆 Clay 🗆 PB		Pace 🗆	Xroads [🗆 Client 🗆	Other 🗆
Tracking #: 2044 6652 7946 Pace	Shipping Label L	Jsed? Yes	No 🗆		
Custody Seal on Cooler/Box Present: Yes A No	Seals intact: Ye	_			
Packing Material: Bubble Wrap-P Bubble Bags			1 0	Other 🗆	
CEEDS CE 01	e of Ice: We B				
	<u> </u>				initials of person
Cooler Temperature (°C): As-read <u>1.6</u> Corr. Facto Temperature should be above freezing to 6°C	r <u>CF +1.1 CF -0.1</u> Cor	rected <u>2. +</u>	_	examinir	ng contents: The by
Chain of Custody present:	Yes No D	J/A			
Chain of Custody relinquished:		N/A			
Samples arrived within holding time:		J/A			
Short Hold Time analyses (<72hr):		J/A			
Rush Turn Around Time requested:		1/A			
Sufficient volume:		N/A			
Correct containers used:		N/A			
Pace containers used:		A/A			
Containers intact:		1/A			
Unpreserved 5035A / TX1005/1006 soils frozen in 48hrs?		W/A			
Filtered volume received for dissolved tests?		J/A			
Sample labels match COC: Date / time / ID / analyses	YZYes 🗆 No 🗆 I	J/A			
Samples contain multiple phases? Matrix: weter	Yes No 🗖	J/A			
Containers requiring pH preservation in compliance?		V/A			
(HNO ₃ , H ₂ SO ₄ , HCl<2; NaOH>9 Sulfide, NaOH>10 Cyanide)	'				
(Exceptions: VOA, Micro, O&G, KS TPH, OK-DRO) Cyanide water sample checks: N/A					
Lead acetate strip turns dark? (Record only)	□Yes □No				
Potassium iodide test strip turns blue/purple? (Preserve)	□Yes □No				
Trip Blank present:	🗆 Yes 🗆 No 🕅	N/A			
Headspace in VOA vials (>6mm):	□Yes □No 🖵	N/A			
Samples from USDA Regulated Area: State:		N/A			
Additional labels attached to 5035A / TX1005 vials in the field?		N/A			
Client Notification/ Resolution: Copy COC to C			ta Require	ed? Y /	Ν
Person Contacted: Date/Til	me:				ecord start and finish times
Comments/ Resolution:				sample temps	ng cooler, if >20 min, recheck
				Start: 100/	Start:
				End: /01	e End:
Project Manager Review: alice		Date: _09/09/16		Temp:	Temp:

.

Pace Analytical

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Hage: 1 Of 1	20 - 2 - 2	Regulatory Agency	State / ocation	WN			(N/Y) aniona (Y/V)	x (18524)1.6824) 1.885		ζ <i>σ</i>)	λα	1 102					-				L L L L A A		
Γ					Requested Analysis Filtered (Y/N)												-		-	-	d1/1110 830	1.2	
			monatabe nom		Requested An	N/A	test asyaba test 11fate by 300 0 55 Na,Fe,Min-ribid filtered Min Fe, Min 50 Min Fe as a filtered Min Fe as a filte						E							AFFILIATION	flar		1
on:			ader alice enillar/manalahe num	14		Preservatives	CI SSS203 SSS203 CH CI CI CI	W N												ACCEPTED BY / AFFILIATION	Miller Man		
Invoice Information: Attention:	Company Name:	Address:	Pace Quote: Pace Project Manager	Pace Profile #:	1-1		NPLE TEMP AT COLLECTIC DF CONTAINERS TPRESERVED 2504 403	/H In の# (へ) /S	3	2	3	3							-	DATE TIME	1701 91		
	OWD		No.1			COLLECTED	Q 	TIME DATE TIME	025/	1950	943		14		19	51		(45 mg			684		
Required Project Information: Report To: Christine Mathews	Jeff Walker, Angela Bown		Order #: 34005856			(GMP)	MPLE TYPE (G=GRAB C=	BATE 16 974	-		N'N V'N	V V V								BELINQUISHED BY I AFFILIATION	Hurrey		
Report To:	Copy To:		Purchase Order #: Droigert Name	Project #:		MATRIX CODE	Nater	SP-MM-1R	52-142-22	190716-5P-MU-3	SP-MW-4	P-DWP		4.11 3-11		10.7	n ii nii				K		
nt Information: GHD Services_COP NM	6212 Indian School Rd NE St2		ews@ghd.com				SAMPLE ID One Character per box. (A-Z, 0-9 /, -) Sample Ids must be unique	128-091165t	-074978-590716-5P-MU)-	4928-090716-0	5MM-JS-912630-825120-119	CAN-079928-09076-5P-0WP	1G	6	b		jie I	1		ADDITIONAL COMMENTS		•	
Required Client Information: Company: GHD Services	Address: 6212 Ind	Albuquerque, NM 87110	mail: christine.mathews@ghd.com	Requested Due Date:			Sample - Oo	1 Gh/- D/	I'C	(ME	100	5 (GW-079	9	7	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	6	10	11	12 .			2 15	P

100

Pace Analytical Services, LLC 9608 Loiret Blvd. Lenexa, KS 66219 (913)599-5665

December 19, 2016

Jeffrey Walker GHD Services, Inc 6121 Indian School Rd NE Ste 200 Albuquerque, NM 87110

RE: Project: 074928 HOWELL K Pace Project No.: 60233547

Dear Jeffrey Walker:

Enclosed are the analytical results for sample(s) received by the laboratory on December 03, 2016. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Alice Spiller

Alice Spiller alice.spiller@pacelabs.com Project Manager

Enclosures

cc: Angela Bown, GHD Services, Inc,

CERTIFICATIONS

Project: 074928 HOWELL K

Pace Project No.: 60233547

Kansas Certification IDs

9608 Loiret Boulevard, Lenexa, KS 66219 WY STR Certification #: 2456.01 Arkansas Certification #: 15-016-0 Illinois Certification #: 003097 Iowa Certification #: 118 Kansas/NELAP Certification #: E-10116 Louisiana Certification #: 03055 Nevada Certification #: KS000212008A Oklahoma Certification #: 9205/9935 Texas Certification #: T104704407 Utah Certification #: KS00021 Kansas Field Laboratory Accreditation: # E-92587 Missouri Certification: 10070

SAMPLE SUMMARY

Project: 074928 HOWELL K

Pace Project No.: 60233547

Lab ID	Sample ID	Matrix	Date Collected	Date Received
60233547001	GW-074928-11-30-16-JK-MW-2	Water	11/30/16 13:35	12/03/16 08:20
60233547002	TRIP BLANK	Water	11/30/16 13:35	12/03/16 08:20

SAMPLE ANALYTE COUNT

 Project:
 074928 HOWELL K

 Pace Project No.:
 60233547

Lab ID	Sample ID	Method	Analysts	Analytes Reported
60233547001	GW-074928-11-30-16-JK-MW-2	EPA 6010	TDS	2
		EPA 300.0	OL	1

PROJECT NARRATIVE

Project: 074928 HOWELL K

Pace Project No.: 60233547

Method: EPA 6010

Description:6010 MET ICP, Dissolved (LF)Client:GHD Services_COP NMDate:December 19, 2016

General Information:

1 sample was analyzed for EPA 6010. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3010 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

PROJECT NARRATIVE

Project: 074928 HOWELL K

Pace Project No.: 60233547

Method:EPA 300.0Description:300.0 IC Anions 28 DaysClient:GHD Services_COP NMDate:December 19, 2016

General Information:

1 sample was analyzed for EPA 300.0. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

Project: 074928 HOWELL K

Pace Project No.: 60233547

Sample: GW-074928-11-30-16-JK- MW-2	Lab ID: 6023	33547001	Collected: 11/30/1	6 13:35	Received: 12	2/03/16 08:20	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP, Dissolved (LF)	Analytical Meth	od: EPA 601	0 Preparation Met	hod: EP	A 3010			
Iron, Dissolved	ND	ug/L	50.0	1	12/05/16 15:30	12/09/16 11:33	7439-89-6	
Manganese, Dissolved	8.4	ug/L	5.0	1	12/05/16 15:30	12/09/16 11:33	7439-96-5	
300.0 IC Anions 28 Days	Analytical Meth	od: EPA 300	0.0					
Sulfate	1670	mg/L	100	100		12/17/16 21:59	14808-79-8	

	74928 HOWELL 0233547	к										
	457686		Analysi	s Method:	F	PA 6010						
	EPA 3010			s Descripti		010 MET Dis	solved					
Associated Lab Sampl		001	, and you	o Booonpa	011. 00							
METHOD BLANK: 1	873723		N	latrix: Wate	ər							
Associated Lab Samp	les: 60233547	001										
			Blank	Re	porting							
Paramet	ter	Units	Result		Limit	Analyz	ed	Qualifiers				
Iron, Dissolved		ug/L		ND	50.0	12/09/16	10:55		_			
Manganese, Dissolved	ł	ug/L		ND	5.0	12/09/16	10:55					
LABORATORY CONT	ROL SAMPLE:	1873724										
LABORATORY CONT	ROL SAMPLE:	1873724	Spike	LCS		LCS	% Rec					
LABORATORY CONT Paramet		1873724 Units	Spike Conc.	LCS Resul	t	LCS % Rec	% Rec Limits		ualifiers			
			•	Result	t		Limits		ualifiers	-		
Parame	ter	Units	Conc.	Resul		% Rec	Limits 80	Q	ualifiers			
Paramet Iron, Dissolved Manganese, Dissolved	ter	Units ug/L ug/L	Conc. 10000 1000	Result	0300 1000	% Rec 103	Limits 80	-120 Qu	ualifiers			
Paramet	ter	Units ug/L ug/L	Conc. 10000 1000	Result	0300	% Rec 103	Limits 80	-120 Qu	ualifiers			
Paramet Iron, Dissolved Manganese, Dissolved	ter	Units ug/L ug/L	Conc. 10000 1000	Result	0300 1000	% Rec 103	Limits 80	-120 Qu	valifiers % Rec		Мах	
Paramet Iron, Dissolved Manganese, Dissolved	ter	Units ug/L ug/L LICATE: 187372 60233432002	25 MS	Result 1 MSD	0300 1000 1873726	% Rec 103 100	Limits 80 80	-120 -120		RPD		Qual
Paramet Iron, Dissolved Manganese, Dissolved MATRIX SPIKE & MAT	ter d TRIX SPIKE DUP	Units ug/L ug/L LICATE: 187372 60233432002 ts Result	25 Spike	Result 1 MSD Spike	0300 1000 1873726 MS	% Rec 103 100 MSD	Limits 80 80 MS	-120 -120 -120 MSD	% Rec	RPD 6	RPD	Qual

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	074928 HOW	ELL K											
Pace Project No.:	60233547												
QC Batch:	459253			Analys	sis Method	: E	PA 300.0						
QC Batch Method:	EPA 300.0			Analys	sis Descrip	tion: 3	800.0 IC Anio	ns					
Associated Lab San	nples: 60233	3547001											
METHOD BLANK:	1880249			ſ	Matrix: Wa	ater							
Associated Lab San	nples: 60233	3547001											
Paran	neter		Units	Blanl Resu		Reporting Limit	Analyz	ed	Qualifiers				
Sulfate			mg/L		ND	1.0	0 12/17/16	09:19		_			
LABORATORY COM	NTROL SAMPL	.E: 1880	0250										
Paran	neter		Units	Spike Conc.	LCS Resi		LCS % Rec	% Rec Limits		ualifiers			
Sulfate			mg/L	5	5	4.9	98	90)-110				
MATRIX SPIKE & M	IATRIX SPIKE	DUPLICA	TE: 18802	51		1880252							
				MS	MSD					_			
Paramete	r	60 Units	0233382001 Result	Spike Conc.	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Sulfate		mg/L	14.0	5	5	19.7	19.4	115	107	80-120	2	15	
MATRIX SPIKE SAM	MPLE:	1880)253										
-				602333		Spike	MS		IS	% Rec		o	
Paran	neter		Units	Res		Conc.	Result		Rec	Limits		Qualif	iers
Sulfate			mg/L		11.9	5	17	.2	106	80-1	120		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: 074928 HOWELL K

Pace Project No.: 60233547

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

 Project:
 074928 HOWELL K

 Pace Project No.:
 60233547

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
60233547001	GW-074928-11-30-16-JK-MW-2	EPA 3010	457686	EPA 6010	457730
60233547001	GW-074928-11-30-16-JK-MW-2	EPA 300.0	459253		

Sample Condition Upon Receipt

WO#:60233547

Client Name:	
	X 🗆 ECI 🗆 Pace 🗀 Xroads 🗆 Client 🗆 Other 🗆
Tracking #: 7848 4444 42.92 Pace	Shipping Label Used? Yes 🗆 No 🗆
Custody Seal on Cooler/Box Present: Yes 🖄 No 🗆	Seals intact: Yes 🖄 No 🗆
Packing Material: Bubble Wrap GF +0.7 CF -0.5 Bubble Bags	Foam 🗆 None 🖄 Other 🗅
Thermometer Used: (T-266 / T-239 Type of lo	Date and initials of person
Cooler Temperature (°C): As-read <u>4,4</u> Corr. Factor	CF +0.7 CF -0.5 Corrected 5.0 Examining contents: 30 (2/3
Temperature should be above freezing to 6°C	
Chain of Custody present:	
Chain of Custody relinquished:	₩2Yes □No □N/A
Samples arrived within holding time:	⊠Yes □No □N/A
Short Hold Time analyses (<72hr):	□Yes IIINo □N/A
Rush Turn Around Time requested:	□Yes ØNo □N/A
Sufficient volume:	ØYes □No □N/A
Correct containers used:	
Pace containers used:	M2Yes □No □N/A
Containers intact:	IÉYes □No □N/A
Unpreserved 5035A / TX1005/1006 soils frozen in 48hrs?	□Yes □No IØN/A
Filtered volume received for dissolved tests?	□Yes □No KIN/A
Sample labels match COC: Date / time / ID / analyses	
Samples contain multiple phases? Matrix: 🗸	□Yes 1\$2No □N/A
Containers requiring pH preservation in compliance?	□Yes □No 1ØN/A
(HNO ₃ , H ₂ SO ₄ , HCl<2; NaOH>9 Sulfide, NaOH>10 Cyanide)	
(Exceptions: VOA, Micro, O&G, KS TPH, OK-DRO)	
Lead acetate strip turns dark? (Record only)	□Yes □No
Potassium iodide test strip turns blue/purple? (Preserve)	
Trip Blank present:	DEYes DNo - RIN/A
Headspace in VOA vials (>6mm):	
Samples from USDA Regulated Area: State:	
Additional labels attached to 5035A / TX1005 vials in the field?	
Client Notification/ Resolution: Copy COC to C	Client? Y / N
Person Contacted: Date/Tir	ne:
Comments/ Resolution:	

Project Manager Review:

Date: 45/14

		(C)	ee.						
Sampler(s): Jw		of COC)	Maria				equest	Total # of Containers:	1
SAMPLE IDENTIFICATION		Matrix Cod see back o Grab (G) of	Filtered (Facted				otal Conta	COMMENTS/	DNS:
PRESERVATION - (SEE BACK OF COC FOR ABBREVIATIONS)	BACK OF COC F	OR ABBREVIATIO	1				-		
1 600-0 74928 - 12-30-16-5R-11-2	-2 11-50-16	1335 66 6	5 X X		RP3 N	8)d	Place Pilter-	13
					d(6)	C, no. (6)			202
ω									
4									
ν U									
7					1				
00									
ω									
10							-		
11									
12		×					-		
TAT Required in business days (use separate COCs for different TATs): 1 Day 2 Days 3 Days 1 Week 2 Week Other:	2 Week Other:	"ATs):	Notes/ Specia	Notes/ Special Requirements:					
RELINQUISHED BY	COMPANY	DATE	TIME		RECEIVED BY		COMPANY	DATE	TIME
Cherles Neligh	640	1.2-02-16	1500	1. NG) Ba			12/3	0280
				1,					
2.00				2.					

9 V.

81 m.

245