

848 East 2nd Avenue Durango, Colorado 81301 T 970.385.1096 / F 303.433.1432

July 14, 2017

Mr. Randolph Bayliss Hydrologist, Districts III and IV New Mexico Oil Conservation Division 1220 South Street Francis Drive Santa Fe, New Mexico 87505

RE: Proposed Groundwater Delineation and Product Recovery Work Plan Pritchard #2A Environmental Order #3RP-399-0 Williams Four Corners LLC San Juan County, New Mexico

Dear Mr. Bayliss:

LT Environmental, Inc. (LTE), on behalf of Williams Four Corners LLC (Williams), proposes the following work plan in response to the requirements of your letter dated May 26, 2017, following review of the 2016 Annual Groundwater Monitoring Report for the Pritchard #2/Environmental Order #3RP-399-0. This work plan is intended to address impacted groundwater at the Pritchard #2 natural gas well (Site) located in Unit J, Section 6, Township 30 North, Range 8 West, at the confluence of an unnamed tributary to La Manga Canyon, which drains into Pump Canyon in San Juan County, New Mexico.

BACKGROUND

Groundwater at the Site is impacted by petroleum hydrocarbons due to releases involving two former pits: a former dehydrator pit and a former abandoned pit, which are considered a single source due to their proximity to each other. Approximately 800 cubic yards of impacted soil were excavated in 1997. One monitoring well (MW-2) was installed in the source area that contained concentrations of benzene, toluene, ethylbenzene, and total xylenes (BTEX) exceeding New Mexico Water Quality Control Commission (NMWQCC) standards. Additional wells were installed between 2000 and 2002 (MW-1 through MW-6) and the wells have been monitored for water quality and groundwater flow behavior since installation. Historical monitoring records are available in annual reports previously submitted to the New Mexico Oil Conservation Division (NMOCD).

Currently, the source well, MW-2, contains insufficient water to collect a representative water quality sample. Downgradient monitoring wells MW-4 and MW-6 contain light non-aqueous phase liquid (LNAPL) with 1.35 feet measured in MW-6 on March 28, 2017 and 0.13 feet on September 8, 2016 in MW-4. MW-4 did not contain LNAPL in March of 2017. Monitoring wells MW-1, MW-3, and MW-5 contain BTEX concentrations exceeding NMWQCC standards.

Monitoring well MW-1 is an upgradient well and likely sourced separately. Monitoring well MW-3 is cross-gradient of the original source. The groundwater plume(s) are currently undefined.

PROPOSED DELINEATION AND MONITORING WELL REPLACEMENT

LTE proposes to install new monitoring wells downgradient (south) of MW-5 and MW-6 and replace monitoring well MW-2 (Figure 1). The existing dry well MW-2 will be plugged and abandoned in accordance with New Mexico Office of the State Engineers (NMOSE) requirements to prevent movement of water within the boreholes and prevent the annular space surrounding the monitoring well casings from becoming a conduit to the groundwater supply.

Each new monitoring well be installed by Cascade Drilling (Cascade) using sonic drilling techniques. Continuous soil samples will be logged by an LTE geologist and described using the Unified Soil Classification System (USCS) to delineate hydrocarbon impacts. The intervals from immediately beneath the ground surface and then every five feet thereafter will be screened for volatile aromatic hydrocarbons as well as any soil that is stained or has a hydrocarbon odor using a photo-ionization detector (PID). If PID concentrations exceed 1,000 parts per million (ppm) in any of the soil samples, the sample will be submitted to a certified laboratory for analysis of BTEX by United States Environmental Protection Agency (EPA) Method 8021 and total petroleum hydrocarbons (TPH) – gasoline range organics (GRO), diesel range organics (DRO), and motor oil range organics (MRO) by EPA Method 8015. Additional soil borings will be advanced radially in approximately 50-foot steps from any soil boring demonstrating significant evidence of hydrocarbon impacts.

The monitoring wells will be installed to depth of approximately 80 feet below ground surface (bgs). Monitoring wells will be constructed of schedule 40, 2-inch diameter polyvinyl chloride (PVC) and include 15 feet of 0.01-inch machine slotted flush-threaded PVC well screen. LTE will set at least 10 feet of screen beneath the water table and approximately 5 feet above to allow for seasonal fluctuations and a proper seal during well construction. A clean 10-20 grade silica sand gravel pack will be placed from the bottom of the boring to one foot above the top of the screen. At least two feet of 3/8-inch natural bentonite chips will be set above the gravel pack to set a seal and the well will be grouted to the ground surface. A concrete surface completion with a steel well protector and locking cap will be installed around the PVC stick-up.

At least 24 hours after installation, the new monitoring wells will be developed utilizing an electrical submersible pump. LTE personnel will remove a minimum of 10 saturated well casing volumes of water while monitoring the pH, electrical conductivity, and temperature until these parameters stabilize and turbidity is reduced to the greatest extent possible.

LTE will complete all work in accordance with industry-accepted practices. LTE will survey the new groundwater monitoring wells after construction with a Trimble® GeoExplorer® 3000 series Global Positioning System (GPS) to determine the latitude and longitude. Top-of-casing elevations will be surveyed to an accuracy of no less than plus or minus (±) 0.01 feet so that groundwater flow direction and gradient can be determined. Field activities will be documented in a bound field book and soil descriptions will be documented on a boring log. Observations to be noted on the

boring log will include, but not be limited to, lithology, moisture content, staining, soil boring depth, latitude, longitude, project number, and comments. Monitoring well construction details will be documented on a well completion log. All down-hole drilling equipment will be thoroughly decontaminated prior to each use. If impacted soil is identified within a borehole, impacted cuttings will be drummed and transported to the Envirotech, Inc. Landfarm in Hilltop, New Mexico.

PROPOSED LNAPL RECOVERY

A mechanical LNAPL pumping system will be utilized to increase LNAPL recovery rates. The Geotech Solar Sipper uses a downwell pump to recover hydrocarbons through a floating oleophilic/hydrophobic intake filter. Once the pump canister is filled via the vacuum cycle, the pump reverses, pressurizes the system and pumps the recovered fluid to the surface and into a 55-gallon steel drum housed in secondary containment. The system can operate up to 180 feet below ground surface (bgs) and recovery rates are adjustable based on field observations. The system can be configured to operate two wells simultaneously. System startup and monthly operation and maintenance (O&M) events will track fluid recovery volumes and optimize fluid recovery rates. The system is capable of recovering up to 0.2 gallons of LNAPL per minute. System recovery rates will be based on field observations.

The LNAPL pumping system will be installed in MW-6 and MW-4. Additionally, if the presence of LNAPL is observed in either of the new downgradient monitoring wells, the LNAPL pumping system will be rotated to those wells. The LNAPL pumping system will be shared with another location and will be rotated quarterly between the other location and this Site. System effectiveness will be gauged based on LNAPL recovery rates and observed LNAPL thicknesses following static quarters.

MONITORING AND REPORTING

At least two weeks after completion of monitoring well installation and development, groundwater sampling will be conducted. All new and existing monitoring wells will be sampled except for any monitoring wells containing LNAPL.

LTE will measure depth to groundwater and total depth of the monitoring wells with a Keck® oil/water interface probe prior to sampling. The submersible pump will be decontaminated prior to use and tubing will be decontaminated or new. As water is removed from the monitoring wells, pH, electric conductivity, and temperature will be monitored utilizing an in-line flow cell. Biological process parameters will also be .monitored, including dissolved oxygen, oxidation-reduction potential, and ferrous iron

Once monitoring wells are properly purged, groundwater samples for laboratory analysis will be collected by filling pre-cleaned vials with zero headspace to prevent degradation of the sample and plastic bottles with appropriate preservatives. All groundwater samples will be labeled with the date and time of collection, well designation, project name, collector's name, and parameters to be analyzed. The samples will be immediately chilled by placing them in a cooler with ice. The cooler will be delivered to a certified laboratory following proper chain-of-custody procedures for

analysis of BTEX according to United States Environmental Protection Agency Method 8021 and attenuation parameters including nitrate, sulfate, alkalinity, and dissolved manganese.

All activities and results will be included in the annual report required for 2017. The report will include a description of well installation methods and all sampling and analysis results. Product recovery activities will be described, and include tracking of volumes recovered. Additional recommendations will be made based on results of sampling and recovery activities.

LTE appreciates the opportunity to provide this proposed work plan to the NMOCD. If you have any questions or comments regarding this plan, do not hesitate to contact me at (970) 385-1096 or via email at bherb@ltenv.com or Aaron Galer at Williams at (801) 584-6746 or Aaron.Galer@Williams.com.

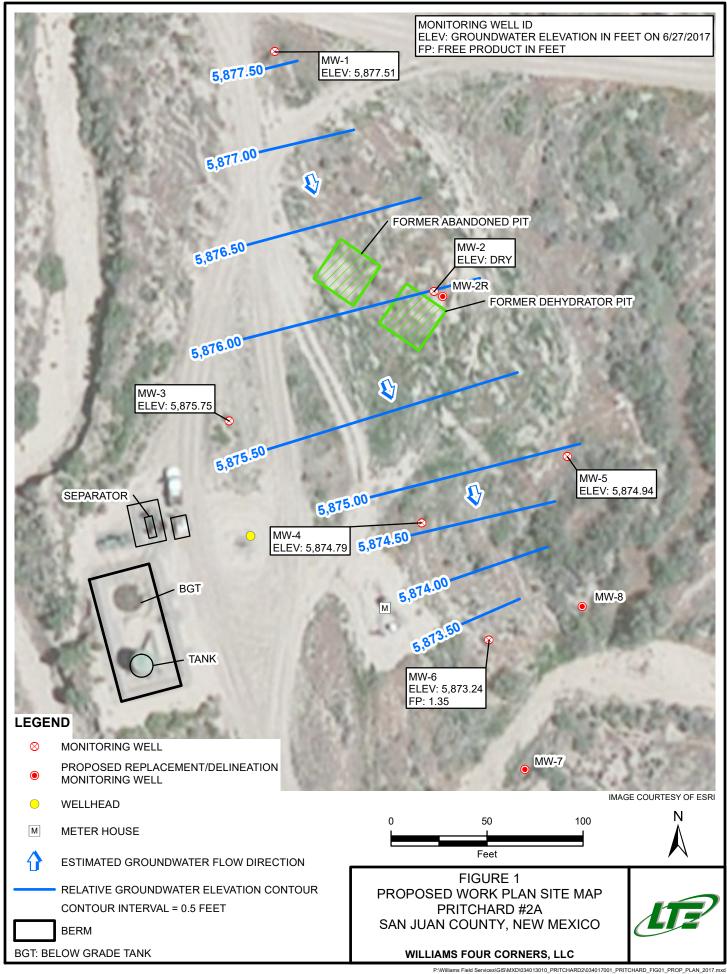
Sincerely,

LT ENVIRONMENTAL, INC.

Brooke Herb Project Geologist

Srooke Herb

Ashley L. Ager, M.S., P.G. Senior Geologist


ashley L. ager

Attachments:

Figure 1 – Proposed Work Plan Site Map

FIGURE

