
AP - 111

SWMU-9 DRAIN DITCH & INACTIVE LAND FARM

2019

August 30, 2019

Mr. John E. Kieling, Chief New Mexico Environmental Department 2905 Rodeo Park Drive East, Bldg. 1 Santa Fe, NM 87SOS-6303

RE: Response to Disapproval Investigation Work Plan SWMU No. 9 – Drainage Ditch and Inactive Land Farm Marathon Petroleum Company LP, Gallup Refinery (dba Western Refining Southwest, Inc.) EPA ID# NMD000333211 HWB-WRG-18-016

Dear Mr. Kieling:

Marathon Petroleum Company LP (dba Western Refining Southwest, Inc.) Gallup Refinery is submitting the enclosed responses to your comments dated April 5, 2019 on the referenced Investigation Work Plan. The Investigation Work Plan has been revised per your comments and is enclosed for your review. If there are any questions, please call Brian Moore at 505-726-9745.

Certification

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision according to a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Sincerely, Marathon Petroleum Company LP, Gallup Refinery

RobertsHal

Robert S. Hanks Refinery General Manager

Enclosure

cc K. Van Horn NMED C. Chavez NMOCD B. Moore Marathon Gallup Refinery

92 Giant Crossing Road Jamestown, NM 87347

RESPONSE TO COMMENTS

April 5, 2019 Disapproval - Investigation Work Plan SWMU No. 9 – Drainage Ditch and Inactive Landfarm (December 2018)

NMED Comment 1:

In Section 2, *Background*, page 2-2, the Permittee states, "[o]nly chromium was detected at a concentration above the residential soil screening level. This occurred in one soil sample collected at boring RFI 0907 in the surface interval collected from 0 - 0.5 feet with a concentration of 102 mg/kg vs. the screening level of 96.6 mg/kg." Discuss historic use of chromium at the site in the revised Work Plan.

MPC Response 1:

The discussion in Section 2 (page 2-2) is revised to include information on the known historical use of chromium at the site.

NMED Comment 2:

In Section 2, *Background*, page 2-3, the Permittee states, "[i]n the 2001 No Further Action Request, the drainage ditch was described as being on the west side of the Inactive Landfarm; however, further review of the survey plat and other early RFI documents and field reconnaissance confirms the drainage ditch is actually on the east side of the Inactive Landfarm and is a much smaller feature. The ditch is two to three feet wide and up to two feet deep, running north to south along the east side of the Inactive Landfarm (Figures 2 and 5)." According to Figure 5, *Proposed Sample Locations*, the ditch is depicted along the east side of the Inactive Landfarm; however, the figure titled as *Inactive Land Treatment and Associated Drainage Ditch*, included in Appendix B, *Historical Documentation*, indicates that the ditch is located along the west side of the Inactive Landfarm. Clarify if the north arrow on the figure included in Appendix B is correct and whether previous samples were collected along the correct ditch. In addition, the topographic survey map included in Appendix B shows that the surface elevation is higher at the south side of the Inactive Landfarm; however, the statement describes the ditch runs north to south. Resolve the discrepancy in the revised Work Plan and provide clarification in a response letter.

MPC Response 2:

We believe that the north arrow on the figure included in Appendix B is not correct. The ditch shown on this figure is a linear feature and the only matching physical feature observed in this area of the site is the ditch shown on the survey plat to the east of the surveyed location of SWMU 9. A review of historical aerial photos (now also included in Appendix B) indicates disturbance of the land surface in the same location indicated on the survey plat, while there is no such indication of disturbance of the land surface of the land surface along the east side of the much larger drainage ditch located further west. Additional discussion has been added to Section 2 (pages 2-2 and 2-3).

NMED Comment 3:

In Section 2, *Background*, page 2-4, the Permittee states, "[t]he eastern most soil borings/temporary wells (NDD-4, NDD-5 and NDD-6) are shown on Figure 2. The analytical results for soil samples collected at NDD-4, NDD-5 and NDD-6 are summarized in Table 2 and the groundwater analyses from samples collected at NDD-4, NDD-6, OW-14, OW-54, OW-55, and OW-56 are provided in Tables 3-1 and 3-2. Both the soil and groundwater analyses from these locations along the Drainage Ditch show increasing concentrations of constituents to the west, away from the up-gradient direction of surface water flow along the Drainage Ditch and

the location of the Inactive Landfarm." The statement is not clear regarding the reference to the "Drainage Ditch". The ditch next to the Inactive Landfarm does not extend west; however, the North Drainage Ditch does. According to Table 2, NDD-4, NDD-5, and NDD-6 Soil Analytical Results Summary, the organic constituents concentrations in the soil samples collected from borings NDD-5 and NDD-6, located at the west side of the North Drainage Ditch are generally higher compared to those from boring NDD-4, located at the east side of the North Drainage Ditch, closer to the Inactive Landfarm. However, the discussion does not appear to be relevant to the Drainage Ditch (the ditch next to the Inactive Landfarm) and the Inactive Landfarm. Similarly, according to Table 3-1, 2016 Groundwater Analytical Results Summary, the benzene concentrations in the groundwater samples collected from wells OW-14 and OW-55, located on the south and north sides of the Inactive Landfarm, are recorded as 8,100 ug/L and 18,000 ug/L (average of two values), respectively. The benzene concentrations increase to the north along the Drainage Ditch, rather than to the west. However, the benzene concentrations in the groundwater samples collected from wells NDD-4, NDD-6 and OW-56, located west of the Inactive Landfarm along the North Drainage Ditch, downgradient of the Inactive Landfarm, are recorded as< 0.195 ug/L, 5,300 ug/L and 1.5 ug/L (average of two values), respectively. The benzene concentrations do increase to the west of the North Drainage Ditch; however, the discussion does not appear to be relevant to the Drainage Ditch and the Inactive Landfarm. Clarify the statement regarding the reference to the Drainage Ditch and revise the Work Plan, as needed.

MPC Response 3:

The subject discussion was initially prepared based on incorrect understanding that the SWMU No. 9 drainage ditch was located further west and was the large drainage feature that transmits surface water flows directly to the North Drainage Ditch (the area near borings locations NDD-4, NDD-5, and NDD-6). Had this been the case, then certainly information on impacts to surface soils along the down-gradient ditch would be relevant to an investigation of the larger drainage feature located west of SWMU No. 9. As discussed above, the drainage ditch that is part of SWMU No. 9 is further to the east, but still surface water flow along the small drainage ditch on the east side of the SWMU No. 9 Inactive Landfarm Area could possibly flow overland to the northwest and reach the much larger North Drainage Ditch. This seems unlikely based on the lack of a defined channel beyond the north end of the SWMU No. 9 Inactive Landfarm Area; however, for this reason, the information on soils along the North Drainage Ditch was retained in the Work Plan. Similarly, the groundwater investigation in the area of NDD-4, NDD-6 and OW-56 is well removed from the location of SWMU No. 9, but as groundwater is already documented to be impacted near SWMU No. 9 in wells OW-14 and OW-55, we believe the additional down-gradient information may be informative when investigating groundwater impacts near SWMU No. 9. The discussion in Section 2 (page 2-4) has been revised in an attempt to better distinguish between the various "drainage ditches" in the area north of the Tank Farm.

NMED Comment 4:

In Section 3.1, *Surface Conditions*, page 3-1, the Permittee states, "[a] topographic map of the area near SWMU 9 is included as Figure 3." Well OW-14 is the only well identified in Figure 3, *Topographic Map.* Since other wells (e.g., RW-5, OW-55) are also present in the area covered by Figure 3, these wells must also be included on the figure; otherwise, remove well OW-14 from the revised figure. In addition, Figure 3 does not provide detailed elevation data in the vicinity of SWMU 9. Provide another topographic map with larger image of SWMU 9, similar to that included in Appendix B. Provide the revised figures in the revised Work Plan.

MPC Response 4:

Additional wells have been added to Figure 3 and a second topographic map has been added as Figure 3A.

NMED Comment 5:

In Section 3.1, *Surface Conditions*, page 3-1, the Permittee states, "[t]he area of the site near SWMU 11 is at an approximate elevation of 6,896 feet above mean sea level (msl)." SWMU 11 is not pertinent to the discussion in the Work Plan. Revise the statement to include information pertaining to SWMU 9.

MPC Response 5:

The referenced text on page 3-1 is revised to refer to SWMU 9 at a corrected elevation of 6,826 feet msl.

NMED Comment 6:

In Section 4.1, Investigation, page 4-1, the Permittee states, "[a]ll soil borings will be drilled to a minimum depth of 6 feet, five feet below the reported depth of tilling. If there is field evidence of impacts at depths greater than 6 feet, then soil borings will be drilled deeper to achieve full vertical delineation." Provide a more specific explanation for what field evidence will prompt advancement of deeper borings in the revised Work Plan (e.g., criteria for the PID readings). Similarly, the Permittee states, "[i]f there are indications of lateral migration of constituents, then additional borings will be completed within approximately 30 feet of the original boring location." Provide a more specific explanation for what indications of lateral migration of constituents will prompt advancement of additional borings in the revised Work Plan (e.g., laboratory analytical and/or field screening results). Additionally, the location of additional borings 30 feet from the original boring location will not likely delineate the contamination associated with the ditch and the Inactive Landfarm since the distribution of the contaminated soils may be limited to the areas where refinery waste was previously placed. Propose to advance additional borings ten feet from the original boring location in the revised Work Plan. Furthermore, clarify whether additional borings will be advanced in all directions (e.g., north, south, east and west) from the original boring location; otherwise, include a provision for the Permittee to consult the NMED to determine the location of additional borings when the advancement of additional borings is warranted.

MPC Response 6:

The text in Section 4.1 (page 4-1) has been revised to include more specific examples of field evidence that could prompt advancement of deeper soil borings. The provision to include additional borings for lateral delineation has been revised to simply consult NMED to determine the location of any additional borings.

NMED Comment 7:

In Section 4.1.1, *Soil Sample Field Screening and Logging*, page 4-2, the Permittee states, "[d]iscrete soil samples will be retained for laboratory analysis from within the following intervals: [f]rom the upper 0.5-foot interval of the ground surface ... " The proposed sampling method may not capture potential contamination from the upper one-foot interval. The constituents in the soils from the upper 0.5-foot interval may not be representative of the site conditions. Propose to collect soil samples from depths of 0.5 to 1.5 foot to capture the upper one-foot interval of potential contamination in the revised Work Plan.

MPC Response 7:

The subject sample collection depth has been changed to 0.5 to 1.5 foot on page 4-2.

NMED Comment 8:

In Section 4.1.1, *Soil Sample Field Screening and Logging*, page 4-2, the Permittee states, "[d]iscrete soil samples will be retained for laboratory analysis from within the following intervals: [f]rom the upper 0.5 foot interval of native soils (i.e., below any fill material)." Explain whether a part of SWMU 9 was previously excavated and backfilled with fill material and how the fill material and native soils are distinguished in the revised Work Plan. The Permittee also states that additional intervals will be sampled as determined based on field screening results. Provide a more specific explanation for what field screening results will prompt collection of samples from additional intervals in the revised Work Plan (e.g., criteria for the PID readings).

MPC Response 8:

In reviewing the historical records, we have not identified documentation of excavation and backfilling of soils at SWMU 9; however, this is a landfarm where wastes were placed and then the land surface was tilled. The subject reference to "fill material" on page 4-2 has been revised to also include tilled soils. Also, additional information on how it may be possible to distinguish between "fill material and native soils" has been added on page 4-3. The discussion in Section 4.1.1 already provides a detailed explanation of the field screening process as shown below and that has been previously approved by NMED in many previous Investigation Work Plans. We propose to continue using the same procedures as previously approved.

Field screening results will be recorded on the exploratory boring logs. Field screening results will be used to aid in selection of soil samples for laboratory analysis. The primary screening methods include: (1) visual examination, (2) olfactory examination, and (3) headspace vapor screening for volatile organic compounds. Additional screening for site- or release-specific characteristics such as pH or for specific compounds using field test kits may be conducted where appropriate.

Visual screening includes examination of soil samples for evidence of staining caused by petroleumrelated compounds or other substances that may cause staining of natural soils such as elemental sulfur or cyanide compounds. Headspace vapor screening targets volatile organic compounds and involves placing a soil sample in a plastic sample bag or a foil sealed container allowing space for ambient air. The container will be sealed and then shaken gently to expose the soil to the air trapped in the container. The sealed container will be allowed to rest for a minimum of 5 minutes while vapors equilibrate. Vapors present within the sample bag's headspace will then be measured by inserting the probe of the instrument in a small opening in the bag or through the foil. The maximum value and the ambient air temperature will be recorded on the field boring or test pit log for each sample. The monitoring instruments will be calibrated each day to the manufacturer's standard for instrument operation. A PID equipped with a 10.6 or higher electron volt (eV) lamp or a combustible gas indicator will be used for VOC field screening. Field screening results may be site- and boring-specific and the results may vary with instrument type, the media screened, weather conditions, moisture content, soil type, and type of contaminant, therefore, all conditions capable of influencing the results of field screening will be recorded on the field logs.

The physical characteristics of the samples (such as mineralogy, ASTM soil classification, moisture content, texture, color, presence of stains or odors, and/or field screening results), depth where each sample was obtained, method of sample collection, and other observations will be recorded in the field log by a qualified geologist or engineer. Detailed logs of each boring will be completed in the field by a qualified engineer or geologist. Additional information, such as the presence of water-bearing zones and any unusual or noticeable conditions encountered during drilling, will be recorded on the logs.

NMED Comment 9:

In Section 4.1.2, *Drilling Activities*, page 4-3, the Permittee states, "[a]fter groundwater samples are collected from the temporary well completion, the well screen will be pulled and all borings will be grouted to the ground surface." If separate-phase hydrocarbon (SPH) is present in any temporary wells after purging, the wells must be converted to permanent groundwater monitoring or recovery wells or the Permittee must contact NMED to discuss the circumstances. While most likely not related to the SWMU, the opportunity to delineate SPH plumes during an investigation may save time in the future.

MPC Response 9:

The discussion in Section 4.1.2 (page 4-3) is revised to note that NMED will be contacted to discuss the completion procedures for any temporary wells that have SPH present after the wells are purged.

NMED Comment 10:

In Section 4.1.7, *Chemical Analyses*, page 4-7, the Permittee states, "[g]roundwater and soil samples will also be analyzed for the following Skinner List metals and iron and manganese using the indicated analytical methods shown." Elevated total chromium concentrations were previously detected at the site (see Comment 1). Hexavalent chromium may potentially be present at the site. Include hexavalent and total chromium analyses for soil and groundwater samples collected at the site. Add the analysis to the revised Work Plan.

MPC Response 10:

Hexavalent chromium has been added to the soil and groundwater chemical analyses presented in Section 4.1.7 (page 4-7). In addition, turbidity has been added to the groundwater field measurement parameters (page 4-8).

Investigation Work Plan SWMU No. 9 – Drainage Ditch and Inactive Landfarm

Gallup Refinery Gallup, New Mexico

EPA ID# NMD000333211

DECEMBER 2018

(Revised August 2019)

Thous

Scott Crouch Senior Geologist

8501 North Mopac Expy 512.693.4190 (P)

 Suite 300
 Austin, TX 78759

 512.279.3118 (F)
 www.disorboconsult.com

Table of Contents

List of Acronyms		i
Executive Summary		E1
Section 1 Introduction	٦	1-1
Section 2 Background	1	2-1
Section 3 Site Conditi	ons	3-1
3.1 Surface Con	ditions	3-1
3.2 Subsurface	Conditions	3-1
Section 4 Scope of Se	ervices	4-1
4.1 Investigation	٦	4-1
4.1.1	Soil Sample Field Screening and Logging	4-1
4.1.2	Drilling Activities	4-3
4.1.3	Groundwater Sample Collection	4-4
4.1.4	Sample Handling	4-4
4.1.5	Collection and Management of Investigation Derived Waste	4-6
4.1.6	Documentation of Field Activities	4-6
4.1.7	Chemical Analyses	4-7
4.1.8	Data Quality Objectives	4-8
Section 5 References		5-1

_

List of Tables

Table 1	SWMU 9 Historical Soil Analytical Results Summary Detected Constituents
Table 2	NDD-4, NDD-5 & NDD-6 Soil Analytical Results Summary
Table 3-1	2016 Groundwater Analytical Results Summary
Table 3-2	Recent Groundwater Analyses

List of Figures

Figure 1	Site Location Map

- Figure 2 Site Map
- Figure 3 Topographic Map
- Figure 3A Topographic Map

Table of Contents (Continued)

Figure 4 Potentiometric Surface Alluvium/Chinle GP Interface

Figure 5 Sample Location Map

Appendices

Appendix A Photographs

Appendix B Historical Documentation

Appendix C Correspondence

Appendix D Investigation Derived Waste Management Plan

List of Acronyms

area of concern (AOC) below ground surface (bgs) benzene, toluene, ethylbenzene, and xylene (BTEX) Code of Federal Regulations (CFR) Contract Laboratory Program (CLP) data quality objective (DQO) diesel range organics (DRO) dilution attenuation factor (DAF) Environmental Protection Agency (EPA) investigation derived waste (IDW) Maximum Contaminant Level (MCL) mean sea level (msl) monitoring well (MW) motor oil range organics (MRO) methyl tert butyl ether (MTBE) New Mexico Administrative Code (NMAC) New Mexico Environment Department (NMED) New Mexico Oil Conservation Division (NMOCD) photoionization detector (PID) polynuclear aromatic hydrocarbon (PAH) polyvinyl chloride (PVC) quality assurance/quality control (QA/QC) Resource Conservation and Recovery Act (RCRA) RCRA facility investigation (RFI) separate-phase hydrocarbon (SPH) semi-volatile organic compound (SVOC) soil screening level (SSL) Solid Waste Management Unit (SWMU) total petroleum hydrocarbon (TPH) volatile organic compound (VOC)

Executive Summary

The Gallup Refinery, which is located 17 miles east of Gallup, New Mexico, has been in operation since the 1950s. Past inspections by State [New Mexico Environment Department (NMED)] and federal environmental inspectors have identified locations where releases to the environment may have occurred. These locations are generally referred to as Solid Waste Management Units (SWMUs). Pursuant to the terms and conditions of the facility Resource Conservation and Recovery Act (RCRA) Post-Closure Care Permit and 20.4.1.500 New Mexico Administrative Code, this Investigation Work Plan has been prepared for the SWMU No. 9 – Drainage Ditch and Inactive Landfarm. Attachment G of the facility's Post-Closure Care Permit provides a list of designated SWMUs and Areas of Concern (AOCs).

An initial investigation of the SWMU was conducted in 1990 with seven soil borings completed with four soil samples collected from each boring at depths of 0 - 0.5', 3 - 3.5', 5 - 5.5' and 7 - 7.5'. The samples were analyzed for Skinner List volatile organic compounds (VOCs) and semi-volatile organic compounds (SVOCs) and metals. One VOC and two SVOCs were detected all at concentrations below current residential soil screening levels (NMED, 2017). One metal (chromium) was detected at a concentration above the residential soil screening level, but below the lowest non-residential soil screening level.

The purpose of this investigation is to determine using recently collected samples if constituents remain in the area of the Inactive Landfarm or the adjacent Drainage Ditch at concentrations above the applicable screening levels. This will be accomplished through the collection of soil and possibly groundwater samples. The samples will be analyzed for VOCs, SVOCs, Skinner List Metals, hexavalent chromium, and Gasoline, Diesel, and Motor Oil Range Organics.

Section 1 Introduction

The Gallup Refinery is located approximately 17 miles east of Gallup, New Mexico along the north side of Interstate Highway I-40 in McKinley County. The physical address is I-40, Exit #39 Jamestown, New Mexico 87347. The Gallup Refinery is located on 810 acres. Figure 1 presents the refinery location and the regional vicinity.

The Gallup Refinery generally processes crude oil from the Four Corners area transported to the facility by pipeline or tanker truck. Various process units are operated at the facility, including crude distillation, reforming, fluidized catalytic cracking, alkylation, sulfur recovery, merox treater, and hydrotreating. Current and past operations have produced gasoline, diesel fuels, jet fuels, kerosene, propane, butane, and residual fuel.

On October 31, 2013, the NMED issued a RCRA Post-Closure Care Permit ("Permit") to Western, which was subsequently modified in September 2017. The Permit authorizes post-closure care at a hazardous waste land treatment unit and also includes corrective action provisions. Section IV.H.5.a.i requires the Permittee to prepare and submit RCRA Facility Investigation Work Plans to the NMED in accordance with the schedule set forth in Permit Attachment E. The investigation work plan for SWMU No. 9 (Drainage Ditch and Inactive Landfarm) was due December 31, 2018.

The location of SWMU No. 9 is shown on Figure 2. Photographs of the SWMU and the surrounding area are included in Appendix A. The purpose of the site investigation is to determine and evaluate the presence, nature, and extent of releases of contaminants in accordance with 20.4.1.500 New Mexico Administrative Code (NMAC) incorporating 40 Code of Federal Regulations (CFR) Section 264.101.

Section 2 Background

This section presents background information for SWMU No. 9, including a review of historical waste management activities to identity the following:

- Type and characteristics of waste and contaminants handled in the subject areas;
- Known and possible sources of contamination;
- History of operations; and
- Prior investigations.

SWMU No. 9 is located north of the main Tank Farm and consists of a small drainage ditch, which collects stormwater in the immediate area of the Inactive Landfarm. In the *Inventory of Solid Waste Management Units* prepared in June 1985, the Inactive Landfarm, is referred to as Land Treatment Area #1. It was described as being closed prior to November 19, 1980 and received no wastes after 1975 (Geoscience Consultants, Ltd, 1985). Although not clearly documented, it is believed to have been used as early as 1958. It was reported to have received typical refinery waste (e.g., API separator sludge, tank bottoms, waste oil, etc.). The dimensions are described as 300 feet by 80 feet and was located north of the process area (Figure 2). The adjacent drainage ditch is first described in the 1987 RCRA Facility Assessment (RFA) Report (Black and Veatch, 1987). A survey plat of the Inactive Landfill showing the adjacent drainage ditch is included in Appendix B. It is noted that the source and contents were unknown at the time, but a hydrocarbon sheen and a yellow suspension were visible during the visual site inspection.

In 1990, the "Inactive Land treatment Area and Associated Drainage Ditch" were identified as a SWMU targeted for investigation in the *SWMU Site-Specific Facility Investigation Workplan* (Applied Earth Sciences, Inc., 1990). Seven soil borings (three within the ditch and four within the landfarm area) to a depth of 7.5' with samples collected at 0 - 0.5', 3 - 3.5', 5 - 5.5' and 7 - 7.5' were proposed in the Investigation Workplan. The proposed analyses included background metals and Methods 8240 and 8270 priority pollutants.

During the Phase I RCRA Facility Investigation (RFI) conducted in 1990, seven soil borings (RFI 0901 through RFI 0907) were completed with four soil samples collected from each boring as proposed in the Investigation Workplan. The samples were analyzed for Skinner List VOCs and SVOCs and

metals. Constituents that had detected results summarized in Table 1. A copy of the original data summary table from the 1990 RFI Report is included in Appendix B. Only chromium was detected at a concentration above the residential soil screening level. This occurred in one soil sample collected at boring RFI 0907 in the surface interval collected from 0 – 0.5 feet with a concentration of 102 mg/kg vs. the screening level of 96.6 mg/kg. It was a common practice in the past to use chromium VI as a corrosion inhibitor in cooling tower operations and chromate is reported to have been used at the cooling towers (EPA, 1987a). A site map showing the location of the seven soil borings and copies of the boring logs are included in Appendix B. It is noted that the site map includes a north arrow that is believed to be reversed on the figure. The survey plat in Appendix B provides the correct orientation.

Practical Environmental Services, Inc. (PES) was hired in 1998 by Giant Industries to perform a visual inspection, data evaluation, and status assessment of SMWU 9 – Land Treatment Area and SWMU 14 - Associated Drainage Ditch. The area now identified as only SWMU No. 9, was originally identified as two separate SWMUs (i.e., No. 9 and No. 14). Their finding are summarized below:

- The inactive land treatment area and drainage ditch were both described as inactive and vacant;
- The area was naturally revegetating with no stressed vegetation observed;
- Soil beneath the unit were described at bentonitic clays and silts with a very low hydraulic conductivity;
- Previous soil sampling had identified trace organic constituents below corrective action levels and the site had been recommended for No Further Action; and
- The SWMUs had been investigated in accordance with current regulations and the data indicated that no significant environmental impact or migration had occurred.

In August 2001, Giant Industries prepared a *No Further Action Report* to summarize previous activities at SWMU No. 9. Based on the earlier sampling conducted in the Phase I RFI and more recent evaluation by PES, Giant proposed no further action for SWMU No. 9. NMED responded to Giant's request for no further action via letter dated November 2, 2001 and a response letter prepared by PES was submitted October 2, 2002. Items specific to SWMU No. 9 are discussed below.

- NMED requested copies of survey plats submitted to EPA prior to 1997
 - \circ $\,$ It was noted by PES that the requested survey plats were on-file in the NMED library.

- NMED requested a site plan to show boring locations from the original Phase I RFI.
 - The requested site plan was provided and was noted as also being current on-file in the NMED library.
- NMED requested copies of the boring logs, sampling dates, and laboratory analyses for the original Phase I RFI.
 - The requested information was provided and was noted as also being currently onfile in the NMED library.

After submission of the requested information to NMED on October 2, 2002, the next correspondence on SMWU No. 9 that is found in the available records is a letter from Western Refining Southwest, Inc. (dated June 24, 2013) requesting that NMED proceed with review of information previously submitted in the 2001 Petition for No Further Action and the Supplementary Information submitted on October 2, 2002. NMED replied to the request on November 18, 2014 stating they would proceed with the requested review and on April 13, 2015 a request for additional information was issued. Comments 16 through 19 were specific to SWMU 9. Western provided a response on June 15, 2015. Copies of NMED's letter and Western's response, including relevant enclosures are included in Appendix C.

The responses provided additional information on the size of the drainage ditch with a width approximately 12 to 22 feet and depth of 2 to 3 feet) and purpose (transmit stormwater from locations outside the containment areas on the northeast end of the main tank farm to the north and northwest). It was noted that three of the seven soil borings (RFI0901, RFI 0902, and RFI 0903) were located within the drainage ditch. The waste materials were placed on the land surface and tilling extended to a depth of 12 inches. The width of the drainage ditch provided in the June 15, 2015 response was based on new measurements made along a larger drainage that is west of the lnactive Landfarm. In the 2001 No Further Action Request, the drainage ditch was described as being on the west side of the lnactive Landfarm; however, further review of the survey plat and other early RFI documents and field reconnaissance confirms the drainage ditch is actually on the east side of the lnactive Landfarm and is a much smaller feature. In addition, the aerial photos from 1977 included in Appendix B show disturbance of the land surface along the east side of the much larger drainage ditch to the west. The ditch is two to three feet wide and up to two feet deep, running south to north along the east side of the lnactive Landfarm (Figures 2 and 5).

As described above, the Inactive Landfarm Area measured approximately 300 feet north to south. The SWMU No. 9 Drainage Ditch, which runs along the east side of the Inactive Landfarm Area, becomes less well defined to the north, but potentially surface water could reach the much larger drainage ditch to the west that crosses beneath a dirt road and then bifurcates with the predominant flow direction to the northwest, then westerly. A portion of the drainage ditch to the west was recently investigated under a separate Investigation Work Plan and a report documenting the findings, Investigation Report North Drainage Ditch and OW-29 and OW-30 Areas, was submitted in August 2018 (DiSorbo, 2018). The conclusions of that report suggest the soil and groundwater contamination observed along that western section of the North Drainage Ditch were the result of lateral transport of contaminated groundwater and not transport of contaminated surface water along the drainage ditch from potential up-gradient sources. The eastern most soil borings/temporary wells (NDD-4, NDD-5 and NDD-6) are shown on Figure 2. The analytical results for soil samples collected at NDD-4, NDD-5 and NDD-6 are summarized in Table 2 and the groundwater analyses from samples collected at NDD-4, NDD-6, OW-14, OW-54, OW-55, and OW-56 are provided in Tables 3-1 and 3-2. Both the soil and groundwater analyses from these locations along the North Drainage Ditch show increasing concentrations of constituents to the west, where shallow contaminated groundwater discharges to the land surface.

Section 3 Site Conditions

3.1 Surface Conditions

A topographic map of the area surrounding SWMU 9 is included as Figure 3 and a second topographic map focused on SWMU 9 is included as Figure 3A. Site topographic features include high ground in the southeast gradually decreasing to a lowland fluvial plain to the northwest. Elevations on the refinery property range from 7,040 feet to 6,860 feet. The area of the site near SWMU 9 is at an approximate elevation of 6,826 feet above mean sea level (msl).

The soils in the vicinity of SWMU 9 include two soil types. Surface soils where the drainage ditch and most of the area of where the inactive landfill is located are primarily Simitarq-Celavar sandy loams. To east are the bordering Aquima-Hawaikuh silt loams. The Simitarq-Celavar soils are well drained with a conservative permeability of 0.20 inches/hour and minimal salinity. Simitarq soils have nearly neutral pH values ranging from 7.2 to 7.4 standard units. The Aquima-Hawaikuh soils are well drained with a conservative permeability of 0.20 inches/hour and are considered nonsaline (approx. 2 mmhos/cm). Both soil types geomorphic position is described as stream terraces on valley floors and alluvial fans on valley sides with parent materials of siltstone, sandstone, and shale.

Regional surface water features include the refinery evaporation ponds and a number of small ponds (one cattle water pond and two small unnamed spring fed ponds). The site is located in the Puerco River Valley, north of the Zuni Uplift with overland flows directed northward to the tributaries of the Puerco River. The Puerco River continues to the west to the confluence with the Little Colorado River. The South Fork of the Puerco River is intermittent and retains flow only during and immediately following precipitation events.

3.2 Subsurface Conditions

The shallow subsurface soils consist of fluvial and alluvial deposits comprised of clay and silt with minor inter-bedded sand layers. Very low permeability bedrock (e.g., claystones and siltstones) underlie the surface soils and effectively form an aquitard. The Chinle Group, which is Upper Triassic, crops out over a large area on the southern margin of the San Juan Basin. The uppermost recognized local formation is the Petrified Forest Formation and the Sonsela Sandstone Bed is the uppermost recognized regional aquifer. Aquifer test of the Sonsela Bed northeast of Prewitt

indicated a transmissivity of greater than 100 ft²/day (Stone and others, 1983). The Sonsela Sandstone's highest point occurs southeast of the site and slopes downward to the northwest as it passes under the refinery. The Sonsela Sandstone forms a water-bearing reservoir with artesian conditions throughout the central and western portions of the refinery property.

The diverse properties and complex, irregular stratigraphy of the surface soils across the site cause a wide range of hydraulic conductivity ranging from less than 10⁻² cm/sec for gravel like sands immediately overlying the Petrified Forest Formation to 10⁻⁸ cm/sec in the clay soils located near the surface (Western, 2009). Generally, shallow groundwater at the refinery follows the upper contact of the Petrified Forest Formation with prevailing flow from the southeast to the northwest, although localized areas may have varying flow directions (Figure 4).

Section 4 Scope of Services

The site investigation of soils will be conducted to define the nature and extent of impacts to the environment and facilitate remedy selection, as necessary. A groundwater investigation is not proposed as the area already has monitoring wells in the immediate area (e.g., OW-14 and OW-55) documenting groundwater impacts in the area from up-gradient sources. If groundwater is encountered during drilling of the soil borings, then a temporary well will be installed and groundwater samples will be collected. The investigation will commence upon approval of this investigation work plan by NMED.

4.1 Investigation

An investigation of soils throughout the area of the Inactive Land Farm and along the drainage ditch will be conducted to characterize current concentrations of constituents associated with historical refinery operations and define the extent of any such impacts. Five soil borings will be located in the area of the Inactive Land Farm and four along the Drainage Ditch. The soil borings will be located along the center line of the drainage ditch.

All soil borings will be drilled to a minimum depth of 6 feet, five feet below the reported depth of tilling. If there is field evidence of impacts at depths greater than 6 feet, then soil borings will be drilled deeper to achieve full vertical delineation. Examples of field evidence that could result in deeper borings include elevated readings of organic vapors in soil with a photoionization detector (PID), staining of soils suggesting potential contamination (e.g., petroleum hydrocarbons, sulfur or cyanide), or unnatural odors (e.g., petroleum or chemical odors). If saturation is encountered, then the boring will be extended to five feet below the depth of saturation. The proposed locations for soil borings are shown on Figure 5. As necessary, additional investigation of soils will be conducted to define the lateral extent of any identified releases after conferring with NMED as to placement of any additional soil borings.

4.1.1 Soil Sample Field Screening and Logging

All soil borings will be drilled to a minimum depth of 6 feet and continuously logged and samples field screened. Samples obtained from the soil borings will be screened in the field on 2.0 foot intervals for evidence of contaminants. Field screening results will be recorded on the exploratory

boring logs. Field screening results will be used to aid in selection of soil samples for laboratory analysis. The primary screening methods include: (1) visual examination, (2) olfactory examination, and (3) headspace vapor screening for volatile organic compounds. Additional screening for site- or release-specific characteristics such as pH or for specific compounds using field test kits may be conducted where appropriate.

Visual screening includes examination of soil samples for evidence of staining caused by petroleumrelated compounds or other substances that may cause staining of natural soils such as elemental sulfur or cyanide compounds. Headspace vapor screening targets volatile organic compounds and involves placing a soil sample in a plastic sample bag or a foil sealed container allowing space for ambient air. The container will be sealed and then shaken gently to expose the soil to the air trapped in the container. The sealed container will be allowed to rest for a minimum of 5 minutes while vapors equilibrate. Vapors present within the sample bag's headspace will then be measured by inserting the probe of the instrument in a small opening in the bag or through the foil. The maximum value and the ambient air temperature will be recorded on the field boring or test pit log for each sample.

The monitoring instruments will be calibrated each day to the manufacturer's standard for instrument operation. A PID equipped with a 10.6 or higher electron volt (eV) lamp or a combustible gas indicator will be used for VOC field screening. Field screening results may be site- and boring-specific and the results may vary with instrument type, the media screened, weather conditions, moisture content, soil type, and type of contaminant, therefore, all conditions capable of influencing the results of field screening will be recorded on the field logs.

Discrete soil samples will be retained for laboratory analysis from within the following intervals:

- From the upper 0.5 to 1.5 foot interval of the ground surface;
- From the 1.5 to 2.0 foot interval;
- From the upper 0.5 foot interval of native soils (e.g., below any fill material or tilled soils);
- From the interval in each soil boring with the greatest apparent degree of contamination in the vadose zone, based on field observations and field screening;
- From the bottom of each borehole;
- From the 0.5 foot interval at the top of saturation, if encountered; and
- Any additional intervals as determined based on field screening results.

The physical characteristics of the samples (such as mineralogy, ASTM soil classification, moisture content, texture, color, presence of stains or odors, and/or field screening results), depth where each sample was obtained, method of sample collection, and other observations will be recorded in the field log by a qualified geologist or engineer. Detailed logs of each boring will be completed in the field by a qualified engineer or geologist. Additional information, such as the presence of water-bearing zones and any unusual or noticeable conditions encountered during drilling, will be recorded on the logs. The distinction between native soils and "non-native soils" may be based on a variety of factors, including but not limited to the degree of soil compaction, lithology, moisture content, and soil color.

Quality Assurance/Quality Control (QA/QC) samples will be collected to monitor the validity of the soil sample collection procedures as follows:

- Field duplicates will be collected at a rate of 10 percent; and
- Equipment blanks will be collected from all sampling apparatus at a frequency of one per day.

4.1.2 Drilling Activities

Soil borings will be drilled using hollow-stem augers. The drilling equipment will be properly decontaminated before drilling each boring. The NMED will be notified as early as practicable if conditions arise or are encountered that do not allow the advancement of borings to the specified depths or at planned sampling locations. Appropriate actions (e.g., installation of protective surface casing or relocation of borings to a less threatening location) will be taken to minimize any negative impacts from investigative borings. Slotted (0.01 inch) rigid polyvinyl chloride (PVC) well screen will be placed at the bottom of soil borings completed as a temporary well completion, if any, and will extend for 10 to 15 feet bgs to ensure that the well is screened across the water table, where water table conditions exist, and to the extent possible the entire saturated zone is open to the well. A 10/20 sand filter pack will be installed to two feet over the top of the well screen. The temporary well completion will be left open for a minimum of seven days to allow for the possible entry of phase-separated hydrocarbons into the well, if present. After groundwater samples are collected from the temporary well completion, the well screen will be pulled and all borings will be grouted to the ground surface unless separate-phase hydrocarbon (SPH) is detected in the temporary wells. NMED will be contacted to discuss the possible completion of any such borings as permanent wells to monitor SPH.

4.1.3 Groundwater Sample Collection

Groundwater samples will be collected from any temporary well completions. Groundwater samples will be collected within 24 hours of the completion of well purging using disposal bailers. Alternatively, well sampling may also be conducted in accordance with the NMED's Position Paper *Use of Low-Flow and other Non-Traditional Sampling Techniques for RCRA Compliant Groundwater Monitoring* (October 30, 2001, as updated). Sample collection methods will be documented in the field monitoring reports. The samples will be transferred to the appropriate, clean, laboratory-prepared containers provided by the analytical laboratory. Sample handling and chain-of-custody procedures will be in accordance with the procedures presented below in Section 4.1.4.

Groundwater samples intended for metals analysis will be submitted to the laboratory as both total and dissolved metals samples. QA/QC samples will be collected to monitor the validity of the groundwater sample collection procedures as follows:

- Field duplicate water samples will be obtained at a frequency of ten percent, with a minimum, of one duplicate sample per sampling event;
- Equipment rinsate blanks will be obtained for chemical analysis at the rate of ten percent or a minimum of one rinsate blank per sampling day. Equipment rinsate blanks will be collected at a rate of one per sampling day if disposable sampling equipment is used. Rinsate samples will be generated by rinsing deionized water through unused or decontaminated sampling equipment. The rinsate sample will be placed in the appropriate sample container and submitted with the groundwater samples to the analytical laboratory for the appropriate analyses; and
- Trip blanks will accompany laboratory sample bottles and shipping and storage containers intended for VOC analyses. Trip blanks will consist of a sample of analyte-free deionized water prepared by the laboratory and placed in an appropriate sample container. The trip blank will be prepared by the analytical laboratory prior to the sampling event and will be kept with the shipping containers and placed with other water samples obtained from the site each day. Trip blanks will be analyzed at a frequency of one for each shipping container of groundwater samples to be analyzed for VOCs.

4.1.4 Sample Handling

At a minimum, the following procedures will be used at all times when collecting samples during investigation, corrective action, and monitoring activities:

- 1. Neoprene, nitrile, or other protective gloves will be worn when collecting samples. New disposable gloves will be used to collect each sample;
- 2. All samples collected of each medium for chemical analysis will be transferred into clean sample containers supplied by the project analytical laboratory with the exception of soil, rock, and sediment samples obtained in Encore® samplers. Sample container volumes and preservation methods will be in accordance with the most recent standard EPA and industry accepted practices for use by accredited analytical laboratories. Sufficient sample volume will be obtained for the laboratory to complete the method-specific QC analyses on a laboratory-batch basis; and
- 3. Sample labels and documentation will be completed for each sample following procedures discussed below. Immediately after the samples are collected, they will be stored in a cooler with ice or other appropriate storage method until they are delivered to the analytical laboratory. Standard chain-of-custody procedures, as described below, will be followed for all samples collected. All samples will be submitted to the laboratory soon enough to allow the laboratory to conduct the analyses within the method holding times.

Chain-of-custody and shipment procedures will include the following:

- 1. Chain-of-custody forms will be completed at the end of each sampling day, prior to the transfer of samples off site.
- Individual sample containers will be packed to prevent breakage and transported in a sealed cooler with ice or other suitable coolant or other EPA or industry-wide accepted method. The drainage hole at the bottom of the cooler will be sealed and secured in case of sample container leakage. Temperature blanks will be included with each shipping container.
- 3. Each cooler or other container will be delivered directly to the analytical laboratory.
- 4. Glass bottles will be separated in the shipping container by cushioning material to prevent breakage.
- 5. Plastic containers will be protected from possible puncture during shipping using cushioning material.
- 6. The chain-of-custody form and sample request form will be shipped inside the sealed storage container to be delivered to the laboratory.

- 7. Chain-of-custody seals will be used to seal the sample-shipping container in conformance with EPA protocol.
- 8. Signed and dated chain-of-custody seals will be applied to each cooler prior to transport of samples from the site.
- 9. Upon receipt of the samples at the laboratory, the custody seals will be broken, the chain-of-custody form will be signed as received by the laboratory, and the conditions of the samples will be recorded on the form. The original chain-of-custody form will remain with the laboratory and copies will be returned to the relinquishing party.
- 10. Copies of all chain-of-custody forms generated as part of sampling activities will be maintained on-site.

4.1.5 Collection and Management of Investigation Derived Waste

Drill cuttings, excess sample material and decontamination fluids, and all other investigation derived waste (IDW) associated with soil borings will be contained and characterized using methods based on the boring location, boring depth, drilling method, and type of contaminants suspected or encountered. All purged groundwater and decontamination water will be characterized prior to disposal unless it is disposed in the refinery wastewater treatment system upstream of the API Separator. An IDW management plan is included as Appendix D.

Field equipment requiring calibration will be calibrated to known standards, in accordance with the manufacturers' recommended schedules and procedures. At a minimum, calibration checks will be conducted daily, or at other intervals approved by the Department, and the instruments will be recalibrated, if necessary. Calibration measurements will be recorded in the daily field logs. If field equipment becomes inoperable, its use will be discontinued until the necessary repairs are made. In the interim, a properly calibrated replacement instrument will be used.

4.1.6 Documentation of Field Activities

Daily field activities, including observations and field procedures, will be recorded in a field log book. Copies of the completed forms will be maintained in a bound and sequentially numbered field file for reference during field activities. Indelible ink will be used to record all field activities. Photographic documentation of field activities will be performed, as appropriate. The daily record of field activities will include the following:

1. Site or unit designation;

- 2. Date;
- 3. Time of arrival and departure;
- 4. Field investigation team members including subcontractors and visitors;
- 5. Weather conditions;
- 6. Daily activities and times conducted;
- 7. Observations;
- 8. Record of samples collected with sample designations and locations specified;
- 9. Photographic log, as appropriate;
- 10. Field monitoring data, including health and safety monitoring;
- 11. Equipment used and calibration records, if appropriate;
- 12. List of additional data sheets and maps completed;
- 13. An inventory of the waste generated and the method of storage or disposal; and
- 14. Signature of personnel completing the field record.

4.1.7 Chemical Analyses

All samples collected for laboratory analysis will be submitted to an accredited laboratory. The laboratory will use the most recent standard EPA and industry-accepted analytical methods for target analytes as the testing methods for each medium sampled. Chemical analyses will be performed in accordance with the most recent EPA standard analytical methodologies and extraction methods.

Groundwater and soil samples will be analyzed by the following methods:

- SW-846 Method 8260 for volatile organic compounds;
- SW-846 Method 8270 for semi-volatile organic compounds; and
- SW-846 Method 8015B gasoline range (C5-C10), diesel range (>C10-C28), and motor oil range (>C28-C36) organics.

Groundwater and soil samples will also be analyzed for the following Skinner List metals and iron and manganese using the indicated analytical methods shown. The groundwater samples collected for metals analysis will be analyzed for total and dissolved concentrations. Groundwater samples will also be analyzed for chloride, fluoride, and sulfate.

Analyte	Analytical Method
Antimony	SW-846 method 6010/6020
Arsenic	SW-846 method 6010/6020
Barium	SW-846 method 6010/6020
Beryllium	SW-846 method 6010/6020
Cadmium	SW-846 method 6010/6020
Chromium	SW-846 method 6010/6020
Chromium VI	SW-846 method 3060A
Cobalt	SW-846 method 6010/6020
Cyanide	SW-846 method 335.4/335.2 mod
Lead	SW-846 method 6010/6020
Mercury	SW-846 method 7470/7471
Nickel	SW-846 method 6010/6020
Selenium	SW-846 method 6010/6020
Silver	SW-846 method 6010/6020
Vanadium	SW-846 method 6010/6020
Zinc	SW-846 method 6010/6020
Iron	SW-846 method 6010/6020
Manganese	SW-846 method 6010/6020

Inorganic Analytical Methods

Groundwater field measurements will be obtained for pH, specific conductance, dissolved oxygen concentrations, oxidation-reduction potential, turbidity, and temperature. If separate-phase hydrocarbon (SPH) is present in any of the temporary well completions, then a sample of the SPH will be collected instead of a groundwater sample and the SPH sample will be submitted to an off-site laboratory for hydrocarbon fingerprinting analysis.

4.1.8 Data Quality Objectives

The Data Quality Objectives (DQOs) were developed to ensure that newly collected data are of sufficient quality and quantity to address the project goals, including Quality Assurance/Quality Control (QA/QC) issues (EPA, 2006). The project goals are established to determine and evaluate the presence, nature, and extent of releases of contaminants at specified SWMUs. The type of data required to meet the project goals includes chemical analyses of soil and groundwater to determine if there has been a release of contaminants.

The quantity of data is location specific and is based on the historical operations at individual locations. Method detection limits should be 20% or less of the applicable background levels, cleanup standards and screening levels.

Additional DQOs include precision, accuracy, representativeness, completeness, and comparability. Precision is a measurement of the reproducibility of measurements under a given set of circumstances and is commonly stated in terms of standard deviation or coefficient of variation (EPA, 1987b). Precision is also specific to sampling activities and analytical performance. Sampling precision will be evaluated through the analyses of duplicate field samples and laboratory replicates will be utilized to assess laboratory precision.

Accuracy is a measurement in the bias of a measurement system and may include many sources of potential error, including the sampling process, field contamination, preservation, handling, sample matrix, sample preparation, and analysis techniques (EPA, 1987b). An evaluation of the accuracy will be performed by reviewing the results of field/trip blanks, matrix spikes, and laboratory QC samples.

Representativeness is an expression of the degree to which the data accurately and precisely represent the true environmental conditions. Sample locations and the number of samples have been selected to ensure the data is representative of actual environmental conditions. Based on SWMU specific conditions, this may include either biased (i.e., judgmental) locations/depths or unbiased (systematic grid samples) locations. In addition, sample collection techniques (e.g., field monitoring and decontamination of sampling equipment) will be utilized to help ensure representative results.

Completeness is defined as the percentage of measurements taken that are actually valid measurements, considering field QA and laboratory QC problems. EPA Contract Laboratory Program (CLP) data has been found to be 80-85% complete on a nationwide basis and this has been extrapolated to indicate that Level III, IV, and V analytical techniques will generate data that are approximately 80% complete (EPA, 1987b). As an overall project goal, the completeness goal is 85%; however, some samples may be critical based on location or field screening results and thus a sample-by-sample evaluation will be performed to determine if the completeness goals have been obtained.

Comparability is a qualitative parameter, which expresses the confidence with which one data set can be compared to another. Industry standard sample collection techniques and routine EPA analytical methods will be utilized to help ensure data are comparable to historical and future data. Analytical results will be reported in appropriate units for comparison to historical data and cleanup levels.

Section 5 References

Applied Earth Sciences, Inc., 1990, SWMU Site-Specific Facility Investigation Workplan.

Black and Veatch, 1987, RCRA Facility Assessment Report Giant Ciniza Refinery Gallup New Mexico.

DiSorbo, 2018, Investigation Report North Drainage Ditch and OW-29 and OW-30 Areas, Western Refining Gallup Refinery, p. 53.

EPA, 1987a, RCRA Facility Assessment Report Giant Ciniza Refinery, Gallup New Mexico, p.76.

EPA, 1987b, Data Quality Objectives for Remedial Response Activities; United States Environmental Protection Agency, Office of Emergency and Remedial Response and Office of Waste Programs Enforcement, OSWER Directive 9355.0-7B, p. 85.

EPA, 2006, Guidance on Systematic Planning Using the Data Quality Objectives Process, United States Environmental Protection Agency, Office of Environmental Information; EPA/240/B-06/001, p. 111.

Geoscience Consultants, Ltd, 1985, Inventory of Solid Waste Management Units, June 14, 1985, p. 22.

Giant Refining Company, 1994, Report on the Additional RFI Sampling.

Giant Refining Company, 1997, Comprehensive Facility Investigation Work Plan (Stage 1 Abatement Plan), June 30, 1997, p. 7.

Giant Refining Company, 2001, No Further Action Report.

NMED, 2017, Risk Assessment Guidance for Site Investigation and Remediation, New Mexico Environment Department.

Stone, W.J., Lyford, F.P., Frenzel, P.F., Mizel, N.H., and Padgett, E.T., 1983, Hydrogeology and Water Resources of San Juan Basin, New Mexico; Hydrogeologic Report 6, New Mexico Bureau of Mines and Mineral Resources, p. 70. Western, 2009, Facility-wide Groundwater Monitoring Plan: Gallup Refinery, p. 97.

Tables

- Table 1SWMU 9 Historical Soil Analytical Results Summary
Detected Constituents
- Table 2NDD-4, NDD-5 & NDD-6 Soil Analytical ResultsSummary
- Table 3-1
 2016 Groundwater Analytical Results Summary
- Table 3-2
 Recent Groundwater Analyses

Table 1	SWMU 9 Historical Soil Analytical Results Summary Detected Constituents	Marathon Petroleum Company - Gallup Refinery
---------	---	--

exico
ž
p, New
Gallup,
G

	Residential Soil Screening Level	Source	Non- Residential Soil Screening Level	Source		RFI 0901V0.0	RFI 0901V3.0	RFI 0901V5.0	RFI 0901V7.0 (RFI 0902V0.0 (RFI 0902V3.0	RFI 0902V5.0	RFI 0902V7.0	RFI 0903V0.0	RFI 0903V3.0	RFI 0903V5.0	RFI 0903V7.0	RFI 0904V0.0	RFI 0904V3.0	RFI 0904V5.0
		Ţ		n v	sample Date	7/2/1990	7/2/1990	7/2/1990	7/2/1990	7/2/1990	7/2/1990	7/2/1990	7/2/1990	7/2/1990	7/2/1990	7/2/1990	7/2/1990	7/2/1990	7/2/1990	7/2/1990
Metals (mg/kg)				╞																
Arsenic	4.25E+00	(1)	2.15E+01	(4)		0.86	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.58	2.1 ND		ND
Barium	1.56E+04	(1)	4.35E+03	(2)		316	330	332	309	302	318	237	262	214	307	334	224	406	275	309
Beryllium	1.56E+02	(1)	1.48E+02	(2)		0.95	0.88	1.1	1.2	1.3	1.2	1.2	0.59	0.73	1	1.2	1.1	0.91	1.3	1.1
Chromium	9.66E+01	(1)	1.34E+02	(2)		13.9	4.8	5.1	5.4	11.8	6.3	7.2	2.3	4.9	6.1	7.6	7.6	42.3	6.7	5.2
Cobalt	2.30E+01	(2)	3.50E+02	(9)		3.2	2.8	3.8	4	5.8	3.7	4.4	2	1.6	2.1	3.4	3.2	4.4	4.1	3.4
Copper	3.13E+03	(1)	1.42E+04	(2)		7.4	3.6	5.3	5.7	8.1	5.6	5.7	ND	4.5	4.8	8.6	5.8	13.9	6.5	5.2
Lead	4.00E+02	(1)	8.00E+02	(4)		13.4	11.4	9.8	13.2	16.1	13.9	13.4	11.9	9	8	9.9	7.3	29.7	13.8	12.4
Nickel	1.56E+03	(1)	6.19E+03	(2)		6.3	5.2	5.7	6.7	11.4	6.8	8.2	ND	5.1	6.7	9.1	8.2	10	7.4	5.1
Vanadium	3.94E+02	(1)	6.14E+02	(2)		12.9	12.9	14.1	14.7	20.1	16	15.9	9.5	10.1	13.1	16.1	14.9	16.4	16.4	12.8
Zinc	2.35E+04	(1)	1.06E+05	(2)		19.7	6.9	9.3	9.2	18.4	12	12.3	5.7	8.7	9.6	13.4	13.3	69.6	11.1	9.1
Volatiles (mg/kg)																				
Ethanol	2.50E+03	(2)	3.30E+04	(9)		ND	16	ND	24	ND	23	ND	20	22						
Semi-volatiles (mg/kg)																				
Chrysene	1.53E+02	(1)	3.23E+03	(4)		<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Pyrene	1.74E+04	(1)	7.53E+04	(5)		<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
ND - non-detect																				
No corocaine leviel er cach diach rocult evicilable																				

(7) EPA Industrial - Screening Levels June 2017) multiplied by 10 pursuant to Section IV.D.2 of the Oct. 31, 2013 RCRA Post-Clousre Permit because the constituent is listed as carcinogenic vellow highlight represents value above Residential Screening Level

- No screening level or analytical result available

NMED - Risk Assessment Guidance for Site Investigations and Remediation (March 2017)

EPA - Regional Screening Levels (June 2017)

(1) NMED Residential Screening Level

(2) EPA Residential Screening Level

(3) EPA Residential - Screening Levels (June 2017) multiplied by 10 pursuant to Section IV.D.2 of the Oct. 31, 2013 RCRA Post-Closure Permit because the constituent is listed as carcinogenic
(4) NMED Industrial Occupational Screening Level
(5) NMED Construction Worker Screening Level
(6) EPA Industrial - Screening Levels (June 2017)

Table 1 SWMU 9 Historical Soil Analytical Results Summary Detected Constituents Marathon Petroleum Company - Gallup Refinery

Aexico
New N
Gallup,

	Residential Soil Screening Level	Source	Non- Residential Soil Screening Level	Source	RFI 0904V7.0	RFI 0905V0.0	RFI 0905V3.0	RFI 0905V5.0	RFI 0905V7.0	RFI 0906V0.0	RFI 0906V3.0	RFI 0906V5.0	RFI 0906V7.0	RFI 0907V0.0	RFI 0907V3.0	RFI 0907V5.0	RFI 0907V7.0
					7/2/1990	7/2/1990	7/2/1990	7/2/1990	7/2/1990	7/2/1990	7/2/1990	7/2/1990	7/2/1990	7/2/1990	7/2/1990	7/2/1990	7/2/1990
Metals (mg/kg)																	
Arsenic	4.25E+00	(1)	2.15E+01	(4)	DN	ND	UD UN	UD UN	ND	1.7	1.2 ND	ND	0.53	1.4	0.66	0.61	0.58
Barium	1.56E+04	(1)	4.35E+03	(2)	239	285	418	333	313	289	243	241	319	447	234	208	240
Beryllium	1.56E+02	(1)	1.48E+02	(2)	1.4	1.2	0.77	0.94	1.3	0.79	1.1	0.97	0.97	0.59	0.97	0.66	1
Chromium	9.66E+01	(1)	1.34E+02	(2)	8.1	8.1	32.2	6.1	8.5	7.8	6.3	5.1	4.1	102	8.6	16.2	7.6
Cobalt	2.30E+01	(2)	3.50E+02	(9)	4.8	4.6	5	3.5	4.5	2.3	2.6	1.9	1.7	1.2	2.9	1.5	2.5
Copper	3.13E+03	(1)	1.42E+04	(2)	7.2	5.5	11.9	3.5	6.4	14.3	5.1	4.5	4.9	10.5	5.5	4.1	5.1
Lead	4.00E+02	(1)	8.00E+02	(4)	16.4	14.9	31	13.7	12.8	28.1	9.2	7.5	8.1	14	9.1	7.2	7.5
Nickel	1.56E+03	(1)	6.19E+03	(2)	7.8	9.1	8.7	5.5	9.2	11.4	7	5.3	5	9	7.7	4.7	6.8
Vanadium	3.94E+02	(1)	6.14E+02	(2)	18.1	17.9	16.9	15.5	18.5	14.5	14.5	12.6	13	14.6	13.1	10.3	12.7
Zinc	2.35E+04	(1)	1.06E+05	(2)	14	12.1	55.6	8.4	13.3	22.8	10.6	8.4	7.8	157	14.3	23.8	13.4
Volatiles (mg/kg)																	
Ethanol	2.50E+03	(2)	3.30E+04	(9)	12	ND											
Semi-volatiles (mg/kg)																	
Chrysene	1.53E+02	(1)	3.23E+03	(4)	<5	<5	<5	<5	<5	26	<5	<5	<5	<5	<5	<5	<5
Pyrene	1.74E+04	(1)	7.53E+04	(2)	<5.0	<5.0	<5.0	<5.0	<5.0	20	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
ND - non-detect	-																

(7) EPA Industrial - Screening Levels June 2017) multiplied by 10 pursuant to Section IV.D.2 of the Oct. 31, 2013 RCRA Post-Clousre Permit because the constituent is listed as carcinogenic vellow highlight represents value above Residential Screening Level

- No screening level or analytical result available

NMED - Risk Assessment Guidance for Site Investigations and Remediation (March 2017)

EPA - Regional Screening Levels (June 2017)

(1) NMED Residential Screening Level

(2) EPA Residential Screening Level

(3) EPA Residential - Screening Levels (June 2017) multiplied by 10 pursuant to Section IV.D.2 of the Oct. 31, 2013 RCRA Post-Closure Permit because the constituent is listed as carcinogenic
(4) NMED Industrial Occupational Screening Level
(5) NMED Construction Worker Screening Level
(6) EPA Industrial - Screening Levels (June 2017)

Table 2	NDD-4, NDD-5 and NDD-6 Soil Analytical Results Summary	Marathon Petroleum Company - Gallup Refinery	Gallup. New Mexico
---------	--	--	--------------------

										Gallup,	Gallup, New Mexico	-				-	
	Residential Soil Screening Level	Source	Non- Residential Soil Screening Level	Source	(.5.0-0) 4 (0-0.5)		NDD-4 (J.S-2')	(8-70,) NDD-4	NDD-4 (78-50,)	(.S.O-0) Z-DDN	(J.S-2.) 2-0N	('5.0-0) ð-dan		NDD-6 (1.5-2')	NDD-6 (4-6')		NDD-6 (10-12')
					1605B47-002		1605B47-003	1605B47-004	1605B47-005	1605999-021	1605999-022	22 1605B47-006	_	1605B47-007	1605B47-008	_	1605B47-009
					5/23/2016		5/23/2016	5/23/2016	5/23/2016	5/19/2016	5/19/2016	5/23/2016		5/23/2016	5/23/2016		5/23/2016
Metals (mg/kg)		(1)		151			_	1016	1770 C ,	╈				-	1000 0 1	_	
	3.13E+01	(1)	1.42E+02 2.50E-04	(c)	0760.7 >		0/	ß	< 2.0417 م	21 21 21 21	0.C	, 5.4			, 2.9204	_	δ
Barium	1.56E+04	(1)	3.39E+01 4.39E+03	(5)		~ ^	1.8 J	1./ J	1	21 V 440 V		v 3.8 v 450	> >	480 v	2 460	د 22 ل	4.3 V 2200 V
Beryllium	1.56E+02	(1)	1.48E+02	(2)					1.2						0.89		
Cadmium	7.05E+01	(1)	7.21E+01	(2)	72		v 690.0 >	.074	76	57	V	v	_	32	< 0.078		< 0.075 u
Chromium	9.66E+01	(1)	1.34E+02	(2)				6.		-					8.6		
Cobalt	2.34E+01	(1)	3.67E+01	(2)	5.5	N	5.2 v	3.6 v	6.6 v	9.2 v	5.3	v 6.6	^	5.8 v	4.7	>	4 v
Cyanide	1.11E+01	(1)	1.20E+01	(5)		J < 0	< 0.151 u	< 0.139 u	·	0.12 J		J < 0.15	> n	< 0.151 u	< 0.142	0 > n	0.145 u
lron	5.48E+04	(1)	2.48E+05	(2)	0		0	0	20000 v	0	1	2		0	15000		00
Lead	4.00E+02	(2)	8.00E+02	(9)				1	4.8	1					5.2		
Manganese	1.05E+04	(1)	4.64E+02	(2)		< 4	450 v	400 v			_	v 660		410 v	490	v 16	1600 v
Mercury	2.36E+01	(1)	2.05E+01	(2)	5		5	41	5		0	0		1	0.0053	_	4
NICKEI Selenium	1.56E+U3	(1)	1.53E+02 1.75E+02	(c)	1/ /12/		9.1 V	۰ ۱۰ م	13 V	130 V	2b ~ 1 220E	. Ib		11 V	× 1.2		V 0.8
Silver	3.91E+02	(1)	1 77E+03	(2)			4	n C.1.2	~	n 412C1 >	/ V	C:T > 11	, v 	N 0.041 II	650.0 >		n C.1.2
Vanadium	3.94E+02	(1)	6.14E+02	(2)	+			-	15		_	_			20	_	-
Zinc	2.35E+04	(1)	1.06E+05	(2)					26				>		15		
Volatiles (mg/kg)																	
1,1,1,2-Tetrachloroethane	2.78E+01	(1)	1.36E+02	(4)	<0.002	u <0.(<0.0021 u	<0.0019 u	<0.0017 u	< 0.0054 u	< 0.0049	u <0.0022	> n	< 0.071 u	< 0.061	u < 0.	< 0.0041 u
1,1,1-Trichloroethane	1.43E+04	(1)	1.35E+04	(2)	<0.002	u <0.0	<0.0021 u	<0.0019 u	<0.0017 u	< 0.0034 u		u <0.0022	v n	< 0.045 u	< 0.039	u < 0.	< 0.0026 u
1,1,2,2-Tetrachloroethane	7.93E+00	(1)	3.91E+01	(4)	-	u <0.(<0.0021 u	<0.0019 u	<0.0017 u	< 0.0091 u		u <0.0022	> n	< 0.12 u	< 0.1	u <0.	v 6900.0 >
1,1,2-Trichloroethane	2.59E+00	(1)	2.28E+00	(2)				-	<0.0017			_			< 0.075		
1,1-Dichloroethane	7.79E+01	(1)	3.80E+02	(4)	_			0019	<0.0017	_			n		< 0.035	-	
1,1-Dichloroethene	4.36E+02	(1)	4.20E+02	(2)	~					_	•	_	D		< 0.21	_	_
1,1-Dichloropropene		-		- '8/	<0.002 0	_	<0.0021 u	<pre> < 0.0019 u </pre>	u /IO0.0>	0.0044	< 0.004	u <0.0022	- :	-	10.00 >	-	< 0.0034 U
1.0.3-Trichlorobelizerie	5 10F-02	(1)	3.30E+02	(0)		n -	n cooo.o>	n c000.02	<0.0004 u	0.0004 u0.0004 u	_		- -	n 11.0 ×	0 C U U V	n =	V.0004 u
1.2.4-Trichlorobenzene	3.10L-02 8.22E+01	(1)	7.84E+01	(5)		_		+		_	_	_	_		< 0.068	_	
1,2,4-Trimethylbenzene	3.00E+02	(2)	1.80E+03	(9)				0003			_	-			16	_	
1,2-Dibromo-3-chloropropane	8.51E-02	(1)	1.17E+00	(4)	<0.0002	u <0.(<0.0002 u		<0.0002 u	< 0.0171 u	< 0.0156	u <0.0002	> n	< 0.23 u	< 0.2	u < 0	< 0.013 u
1,2-Dibromoethane (EDB)	6.68E-01	(1)	3.28E+00	(4)		u <0.(<0.0021 u	<0.0019 u		< 0.004 u		u <0.0022	n	< 0.052 u	< 0.045	u < 0	< 0.003 u
1,2-Dichlorobenzene	2.14E+03	(1)	2.47E+03	(2)									J	_	< 0.056		~
1,2-Dichloroetnane (EUC)	8.25E+00 1 76E±01	(1)	4.03E+01	(4)	 20.00 20.00 	n <0.	u 1200.0>	n 6100.0>	n /TUUU>	<pre></pre>	< 0.0132	u <0.0022	- -	n 61.0 >	< 0.054		n 110.0 >
1,3,5-Trimethylbenzene	2.70E+02	(2)	1.50E+03	(9)	-	_		0003	<0.0003	0.0041	_	_	³ ⊃	-	12		-
1,3-Dichlorobenzene					<0.0004				<0.0003	_			n	< 0.06 u	< 0.052	u < 0.	< 0.0035 u
1,3-Dichloropropane	1.60E+03	(2)	2.30E+04	(9)				0019				_	п		< 0.073		
1,4-Dichlorobenzene	1.29E+03	(1)	6.73E+03	(4)		_				_	v	u <0.0004	n	91	< 0.079		< 0.0053 u
1-Methylnaphthalene	1.72E+02	(1)	8.13E+02	(2)		_		0002		_	_	_	Þ	-	11		-
2,2-Dichloropropane		- (1)	- 101 0	- (5)	- 20.0003	n -	- croor	2000			6700.0 >	u <0.0003	- -	 < 0.042 u < 0.042 u 	< 0.03/	_	+
2 Chlorotolice	3./JE+04	(1)	9.12E+04	(2)	_	_	-	-				_		_	7000		- 0.0027 u
2-Hexanone	2.00E+02	(2)	1.30E+03	(2)	_	u <0.0	<0.0005 u	n 2000.0>	<pre>coooccols a cooccols a coocc</pre>	< 0.0304 u	_	u <0.0005 u <0.0005		<pre>v + co.v </pre>	< 0.35	_	<pre>vu</pre>
2-Methylnaphthalene	2.32E+02	(1)	1.00E+03	(2)		_		0005	<0.0005 u	< 0.012 u	_		n		7.3		0.16 J
4-Chlorotoluene	1.60E+03	(2)	2.30E+04	(9)				0003		-	~	u <0.0004	л	< 0.065 u	< 0.057		< 0.0038 u
4-lsopropyltoluene			•			u <0.0	<0.0004 u	<0.0004 u	<pre>< 0.0003 u</pre>	< 0.005 u		u <0.0004	n	0.58 J	0.82	v 0.(0.026 J
4-Methyl-2-pentanone	5.81E+03	(1)	2.02E+04	(5)	-			_	<0.0035 u	_		-			< 0.19		
Acetone	6.63E+04 4 77F : 04	(1)	2.41E+05	(c)	0.0446	_	·· · · · · · · · · · · · · · · · · · ·	U.UU68 J	U.UU13 J	< 0.0/23 u	< 0.065/	u 0.0/23		u cc.u >	< U.83	n :	u ccu.u >
Bromohenzene	2 00E±02	(2)	0.03E+UI	(4)			n 1200.02	n 6100.02	(TOU/U)>		_	u <0.0022	- -	σ	C20.0 >	_	
	Z.30L- 04	1-1	1.001	121	-			7000	2000.02	_	-	_	D	-	100.0	-	_

Table 2 NDD-4, NDD-5 and NDD-6 Soil Analytical Results Summary Marathon Petroleum Company - Gallup Refinery Galluo. New Mexico

Residential Soreening Level Source Level Source
2 1605B17 000 16051
л
(1) 1.75E+03
(1) 1.77E+01 (5) <0.0004 u <0.0004
(1) 1.61E+03 (5) <0.0007 u <0.0008
(1) 5.21E+01 (4) <0.002 u
(1) 4.08E+02 (5) <0.0002 u <0.0002
(1) 1.65E+04 (5) <0.0004 u
5.85E+00 (1) 2.84E+01 (4) <0.002 u <0.0021 4.08E+04 (1) 4.06E+02 (4) <0.000E <0.000E
(1) 7.08F+02 (5) <0.002 d
(1) 1.29E+02 (5) <0.002 u
(1) 6.69E+01 (4) <0.002 u
(1) 5.34E+01 (5) <0.002 u
1.80E+02 (1) 1.59E+02 (5) <0.0012 u <0.0012
3.65E+02 (4) <0.0003
6.16E+01 (1) 5.17E+01 (4) <0.0005 u <0.0005
2.71E+03 (5) <0.0003 u
9.68E+02 (1) 4.78E+03 (4) <0.0003 u <0.0003
1.20E+03 (5) <0.002 u
1.16E+03 (1) 5.02E+03 (5) <0.002 u <0.0021
5.80E+04 (6)
2.40E+04 (6)
(2) 1.20E+05 (6) <0.0004 u
(1) 1.01E+04 (5) <0.0003 u
(2) 1.20E+05 (6) <0.0003 u
(1) 1.19E+02 (5) <0.0003 u
(1) 1.40E+04 (5) <0.0002 u
2.93E+02 (1) 3.03E+02 (5) <0.0002 U <0.0002 3.04E+04 (1) 4.30E+03 (5) <0.0003 (1) <0.0003
(1) 6.84F+00 (5) <0.0002 d (1) 6.84F+00 (5) <0.0002 d
(1) 1.12E+03 (5) <0.0003 u
(1) 2.83E+01 (4) <0.0005 u
(1) 7.91E+02 (5) <0.0008 u
(1) 7.84E+01 (5) < 0.12 u
n
(1) 6.73E+03 (4) < 0.095 u
(1) 8.13E+02 (7) < 0.11 u
(1) 2.69E+04 (5) < 0.11 u
< 0.093 u <
1.85E+02 (1) 8.07E+02 (5) < 0.1 u < 0.1
5.38E+03 (5) < 0.12 u
(1) 5.38E+02 (5) < 0.074 u
(1) 8.23E+01 (4) <0.1 II
(I) 1./2E+01 (4) < 0.12 U
(1) 2.83E+04 (5) < 0.088 u
(1) 1.77E+03 (5) < 0.089 u
(1) 1.00E+03 (5) < 0.13 u
(2) 4.10E+04 (6) < 0.094 u
6.30E+02 (2) 8.00E+03 (6) < 0.12 u < 0.12

Table 2	NDD-4, NDD-5 and NDD-6 Soil Analytical Results Summary	Marathon Petroleum Company - Gallup Refinery	Gallup. New Mexico
---------	--	--	--------------------

							-		Gallup, N	Gallup, New Mexico				
	Residential Soil Screening Level	Source	Non- Residential Soil Screening Level	Source	(0-0'2') NDD-∀	NDD-4 (J.S-2,)	NDD-4 (8-70,)	NDD-4 (78-50,)	NDD-2 (0-0'2')	NDD-2 (J'2-5')	NDD-6 (0-0.5')	(J.S-S'T) 9-DD	NDD-6 (4-6')	ADD-6 (70-75,)
					1605R47-002	1605R47-003	3 1605R47-004	1605R47-005	1605999-021	1605999-000	1605R47-006	1605R47-007	1605847-008	1605R47-009
					5/23/2016	5/23/2016	_	5/23/2016	5/19/2016	5/19/2016	5/23/2016	5/23/2016	5/23/2016	5/23/2016
2-Nitrophenol					< 0.11 u	< 0.11	· ·	< 0.12 u	< 0.1173 u	< 12.2892 u	< 0.14 u	< 0.13 u	< 5.9549 u	< 0.12 u
3,3 '-Dichlorobenzidine	1.18E+01	(1)	5.70E+01	(4)	< 0.083 u	< 0.081	u < 0.086 u	u 60.0>	< 0.0871 u	< 9.1206 u	< 0.1 u	< 0.094 u		< 0.086 u
3+4-Methylphenol	•						< 0.085	u 680.0 >	< 0.0856 u	<pre>< 8.9678 u</pre>		< 0.092 u		< 0.084 u
3-Nitroaniline	ı		,		< 0.099 u		u <0.1 u	< 0.11 u	< 0.1042 u	< 10.9196 u	< 0.12 u	< 0.11 u	< 5.2913 u	< 0.1 u
4,6-Dinitro-2-methylphenol	4.93E+00	(1)	2.15E+01	(5)			< 0.071							+
4-Bromophenyl phenyl ether							< 0.11	-		_	-	-		
4-Chloro-3-methylphenol		•		· į			< 0.14							
4-Chloroaniline	2.70E+01	(3)	1.10E+02	(2)	<0.12 u	< 0.12	< 0.13	< 0.13 u	< 0.1286 u	< 13.4667 u	< 0.15 u	< 0.14 u	< 6.5255 u	<0.13 u
4-oritoroprietry prietry euter 4-Nitroaniline	2.70E+02	(3)	- 1.10E+03	(2)	n 620.0 >	-	u ct.u> u u <0.082 u	u 41.0 × 0.086 u	u 10010 × 0.0834 u	 4.1324 u 8.7341 u 	n 960.0 >	n 60.0 >	< 0.03/0< 4.2323	u ct.u < u ct.0 <
4-Nitrophenol						<u> </u>	< 0.089	-			-			
Acenaphthene	3.48E+03	(1)	1.51E+04	(2)			< 0.1	< 0.11 u	< 0.1014 u	< 10.6215 u	< 0.12 u	< 0.11 u		< 0.1 u
Acenaphthylene	,				< 0.091 u	6	u < 0.095 u	< 0.1 u	< 0.0962 u	< 10.0802 u	< 0.11 u	< 0.1 u	< 4.8845 u	v < 0.095 u
Aniline	9.50E+02	(3)	4.00E+03	(2)	< 0.11 u	_		< 0.12 u	< 0.1117 u	< 11.7039 u	< 0.13 u	< 0.12 u	< 5.6713 u	< 0.11 u
Anthracene	1.74E+04	(1)	7.53E+04	(2)			< 0.078					_		
Azobenzene	5.60E+01	(3)	2.60E+02	(1)			< 0.14		0.1441	_			~ ·	
Benz(a)anthracene	1.53E+00	(1)	3.23E+01	(4)			< 0.1		_	_				
Benzo(a)pyrene	1.12E+00	(1)	2.36E+01	(4)	0	_	< 0.089	~	_	_		-	4.5449 5.4200	~
Benzo(a h i)nen/lene	1.53E+00	(1) -	3.23E+01	- (4)		< 0.07 20.07	u < 0.11 u	n 11.0 >	< 0.1068 u	u 1/81.11 >	< 0.12< 0.12< 0.13< 1.13< 1.13<l< td=""><td>- 11.0 ×</td><td>u 62.4209 u</td><td>-011 U</td></l<>	- 11.0 ×	u 62.4209 u	-011 U
Benzo(k)flioranthene	1 53E+01	(1)	3 23F+02	(4)		_	- 0 1 - 0 1	-	_	_	-			
Benzoic acid	2.50E+05	(2)	3.30E+06	(9)			< 0.097		0.098	_			4.9765	2
Benzyl alcohol	6.30E+03	(2)	8.20E+04	(9)			< 0.092	6	10	~				< 0.091 u
Bis(2-chloroethoxy)methane	1.90E+02	(2)	2.50E+03	(9)	< 0.12 u		u < 0.13 u	< 0.13 u	< 0.1283 u	< 13.4409 u	< 0.15 u	< 0.14 u	< 6.513 u	< 0.13 u
Bis(2-chloroethyl)ether	3.10E+00	(1)	1.93E+00	(5)	< 0.083 u	< 0.081	u < 0.086 u	v 60.09	< 0.0869 u	< 9.1014 u	< 0.1 u	< 0.093 u	< 4.4103 u	< 0.086 u
Bis(2-chloroisopropyl)ether	9.93E+01	(1)	5.19E+02	(4)	< 0.1 u	8	u <0.1 u	< 0.11 u	< 0.1056 u	< 11.0599 u	< 0.12 u	< 0.11 u	< 5.3592 u	< 0.1 u
Bis(2-ethylhexyl)phthalate	3.80E+02	(1)	1.83E+03	(4)		-	0.15							-
Butyl benzyl phthalate	2.90E+03	(3)	1.20E+04	(2)			< 0.1		0.1047	. .			5.3138	
Carbazole Chrysene	- 1 53F+02	(1)	3 23F+03	- (4)	n 0/0.0 >	< 0.0/4	u <0.079 u	0.00501111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111<td>v 0.00799 u </td><td>< 0.304/ U < 10 5476 II</td><td> < 0.092 < 0.12 < 0.12 < 0.13 < 0.13 < 0.14 < 0.15 < 0.15</td><td>< 0.10 u < 0.11 u </td><td><pre> < 4.0032 u </pre> <pre> < 4.0032 u </pre> <pre> < 5 111 u </pre></td><td>n 6/0.0 ></td>	v 0.00799 u 	< 0.304/ U < 10 5476 II	 < 0.092 < 0.12 < 0.12 < 0.13 < 0.13 < 0.14 < 0.15 < 0.15	< 0.10 u < 0.11 u 	<pre> < 4.0032 u </pre> <pre> < 4.0032 u </pre> <pre> < 5 111 u </pre>	n 6/0.0 >
Dibenz(a.h)anthracene	1.53E-01	(1)	3.23E+00	(4)			< 0.095	6		_			+	-
Dibenzofuran						< 0.11	< 0.12		0.1189	_			6.0369	
Diethyl phthalate	4.93E+04	(1)	2.15E+05	(5)	< 0.11 u			< 0.12 u	< 0.1199 u	< 12.561 u	< 0.14 u	< 0.13 u	< 6.0866 u	< 0.12 u
Dimethyl phthalate	6.16E+04	(1)	2.69E+05	(5)			< 0.11		0.1157	•			5.8714	
Di-n-octvl pritrialate Di-n-octvl phthalate	0.10E+U3		2.09E+U4	(n) -	 < 0.064 < 0.096 	< 0.094	u <0.00/ u u <0.1 u	u 260.0 ×	 < 0.0004 u < 0.1009 u 	< 10.5663 U	n 1.0 × 0.12 u <	u ceo.u > u 11.0 >	< 4.4004< 5.1201	n /00.0 >
Fluoranthene	2.32E+03	(1)	1.00E+04	(5)			< 0.067	1		_	•	~		< 0.067 u
Fluorene	2.32E+03	(1)	1.00E+04	(5)	< 0.1 u		< 0.11	< 0.11 u	< 0.1082 u	< 11.3378 u	< 0.13 u		5.4939	< 0.11 u
Hexachlorobenzene	3.33E+00	(1)	1.60E+01	(4)	-		< 0.092						~	
Hexachlorobutadiene	6.16E+01	(L)	5.17E+01	(4) (5)	+		< 0.13	_	0.1333	13.9588	-	0.14		+
Hexaciliorocyclopericaulerie Hexachloroethane	2.20E+UU 4 31E+01	() ()	0.0/ E+U2 1 88F+02	(2)	n <u>51.0</u> 2	CT.U >	n ct.u v u	< 0.14< 0.11< 0.11< 1.1< 1.1	n 2010 2	u 6101.41 > <	n 01.0 >	n <u>ct.0</u> × 0.11	 < 0.0024 < 1565 	n ct.0.>
Indeno(1,2,3-cd)pyrene	1.53E+00	(1)	3.23E+01	(4)			< 0.091	10	_	_		-		1
Naphthalene	1.16E+03	(1)	5.02E+03	(5)			< 0.11		0.1135	~			5.7621	
Nitrobenzene	5.99E+01	(1)	2.91E+02	(4)	< 0.12 u	< 0.11	u < 0.12 u	< 0.13 u	< 0.122 u	< 12.7825 u	< 0.14 u	< 0.13 u	< 6.194 u	< 0.12 u
N-Nitrosodi-n-propylamine	7.80E-01	(3)	3.30E+00	(2)	< 0.11 u			< 0.12 u	< 0.1136 u	< 11.9042 u	< 0.13 u	< 0.12 u	< 5.7684 u	< 0.11 u
N-Nitrosodiphenylamine	1.09E+03	(1)	5.24E+03	(4)			< 0.11	_			_			_
Pentachlorophenol	9.85E+00	(1)	4.45E+01	(5)	<0.072 u	< 0.071	< 0.075	0.079	< 0.076 u< 0.076 u	 < 7.9609 u < 7.9609 u 	 < 0.088 u < 0.000 < 0.000 	< 0.082 u	< 3.8576 u	< 0.075< 0.070
Phenol	1.74E+03	(1)	7 74F+04	(2)	< 0.070< 0.085	< 0.083	n 6/0.0 / 1	n 000.0 >	n 0.000.0 >	N 04140 N	u ccu.u <	v 0.00 v 0.066 II	<pre>< 4.5207 11</pre>	n 6/0.0 >
Pyrene	1 74F+03	(1)	7.53E+03	(5)	+	< 0.083	< 0.088			_				
								-	-	_		-	-	-

		60(6	n	٧	٧	n
	NDD-6 (10-12')	1605B47-009	5/23/2016	< 0.092	39	18	< 55
		08	9	n	٨	٨	n
	NDD-6 († -6')	1605B47-008	5/23/2016	< 4.7578	660	5000	< 620
		07	9	n	٨	٨	n
	NDD-6 (7:5-2')	1605B47-007	5/23/2016	< 0.1	280	16000	< 6000
		90	9	n	n	٨	n
	NDD-6 (0-0.5')	1605B47-006	5/23/2016	< 0.11	< 0.9	27	< 68
		22	9	n	٧	٧	^
Gallup. New Mexico	NDD-5 (1.5-2')	1605999-022	5/19/2016	< 9.8188	110	27000	19000
p. N(21	9	n	ſ	٨	v
Gallu	(10-0) S-DD-D	0-66	/201	37			0
		1605999-021	5/19/2016	< 0.0937	3.3	330	360
		-		n < 0.05	 u 3.3	n 330	u 36
	NDD-4 (78-50,)	1605B47-005 16059	5/23/2016 5/19/				
	NDD-4 (78-50,)	1605B47-005	5/23/2016	n	 n	n	n
	NDD-4 (38-20')	-		< 0.097 u	< 0.76 u	< 4.3 u	< 60 u
		1605B47-004 1605B47-005	5/23/2016 5/23/2016	93 u < 0.097 u	u < 0.76 u	9 u <4.3 u	u <60 u
		1605B47-003 1605B47-004 1605B47-005	2016 5/23/2016	<pre>< 0.093 u < 0.097 u</pre>	< 0.91 u < 0.76 u	< 3.9 u < 4.3 u	<55 u <60 u
	(101-8) 4-00)	1605B47-004 1605B47-005	5/23/2016 5/23/2016	u < 0.093 u < 0.097 u	u < 0.91 u < 0.76 u	u <3.9 u <4.3 u	u <55 u <60 u

Table 2 NDD-4, NDD-5 and NDD-6 Soil Analytical Results Summary Marathon Petroleum Company - Gallup Refinery Gallun, New Mexico

	Residential Soil Screening Level	Source	Non- Residential Soil Screening Level	Source	
					Ч
Pyridine	7.80E+01	(2)	1.20E+03	(9)	
Total Petroleum Hydrocarbons (mg/kg)	(/kg)				
Gasoline Range Organics (GRO)	1.00E+03	(8)	3.80E+03	(8)	
Diesel Range Organics (DRO)	1.00E+03	(8)	3.80E+03	(8)	
Motor Oil Range Organics (MRO)	1.00E+03	(8)	3.80E+03	(8)	
- No screening level or analytical result available	tical result av	ailable			
NMED - Kisk Assessment Guidance for Site Investigations and Remediation (March 2017)		restigations	and Kemedi	alion	
EPA - Regional Screening Levels (June 2017)	(June 2017)				
(1) NMED Residential Screening Level	-evel				
(2) EPA Residential Screening Level	vel				
(3) EPA Residential - Screening Levels multiplied by 10 pursuant to Section IV.D.2 of the Oct. 31, 2013 RCRA Post-Closure Permit because the constituent	-evels multipli Post-Closure	ied by 10 pu	rsuant to Seo ause the con	ction stituent	
is listed as carcinogenic					
(4) NMED Industrial Occupational Screening Level	Screening Le	svel			
(5) NMED Construction Worker Screening Level	creening Leve	الله الله			
(6) EPA Industrial - Screening Levels	/els		Ċ		

(7) EPA Industrial - Screening Levels multiplied by 10 pursuant to Section IV.D.2 of the Oct. 31, 2013 RCRA Post-Clousre Permit because the constituent is listed as carcinogenic

(8) NMED Table 6-2 TPH Soil Screening Levels "uknown oil" - see report Section 5 for use of screening levels

Bold represents value above non-residential screening Level vellow highlight represents value above residential Screening Level

Bold with yellow highlight value exceeds residential screening level and non-residential screen level

v = reportable detection above the Practical quantitation limit (PQL)
 u - result is not detected at method detection limit (MDL)

is result to not detected at method detection mine (where)
j - estimated result at concentration above MDL but less than PQL

Table 3-1 2016 Groundwater Analytical Results Summary Marathon Petroleum Company - Gallup Refinery

6	
Mexico	
Gallup, New Mexico	^
	۸

				ľ	· · · · · · · · · · · · · · · · · · ·	ŀ		ľ						[
	Screening Levels	Source	NDD-4-GM		NDD-6-GW		41-WO		GG-WO		ଟଟ-MO	96-WO	0M-56	
Lab ID			1605C89-004		1605C89-001		1609076-001		1606136-005	_	1609A26-001	1606136-001	1609A26-003	03
Sample Date			5/26/2016	9	5/26/2016	<u>o</u>	8/31/2016	16	6/1/2016		9/16/2016	6/1/2016	9/16/2016	ю
Metals (ug/l) TOTAL														
Antimony	6.00E+00	(2)	< 0.472	n	< 0.472	n			< 2.362	n		•	•	
Arsenic	1.00E+01	(2)	20	Ζ	8.7	>	7.6	~	10 2	Z	7.8 v		4.6	-
Barium	2.00E+03	(2)	5300	Ζ	5400	Z	2100	Z	3200 2	Z	1200 v	,	370	>
Beryllium	4.00E+00	(2)	19	Ζ	1.1	-			8	Z	I			
Cadmium	5.00E+00	(2)	< 0.746	n	< 0.746	n	< 1.484	n		n	< 1.484 u		< 1.484	n
Chromium	5.00E+01	(3)	60	>	6.5	>	< 2.656	n	31 \	>	> 6		< 2.656	n
Cobalt	6.00E+00	(1)	98	٨	15	٨			46 \	^		-	-	
Iron	1.38E+04	(4)	45000	Ζ	6300	Z	4900	Ζ	39000	Z	13000 Z	-	330	Ζ
Lead	1.50E+01	(2)	160	Ζ	8.4	^	0.14	ſ	83 2	Z	24 Z	-	1	>
Manganese	2.02E+03	(4)	15000	Ζ	3200	Z	2200	Ζ	6300	Z	5200 Z	-	420	Ζ
Mercury	2.00E+00	(3)	0.24	٨	0.061	ſ			< 0.053 L	n	0.11 J	-	0.1	-
Nickel	3.72E+02	(4)	300	Ζ	65	^			460 2	Z	•		I	
Selenium	5.00E+01	(3)	21	٦	14	٦	14	٧	6	V	3.8 J	I	4.6	٦
Silver	5.00E+01	(3)	< 2.751	n	< 2.751	n	< 1.548	n	< 2.751 L	n	< 1.548 u	-	< 1.548	n
Vanadium	6.31E+01	(4)	77	٦	18	ſ			61 \	>			-	
Zinc	1.00E+04	(3)	210	>	24	^	15	^	100	V	66 v	I	12	>
General Chemistry (ug/l) T0TAL														
Chloride	2.50E+05	(3)	950000	^	560000	^			550000	٧		•	I	
Fluoride	1.60E+03	(3)	550	>	1500	>	ı			ſ		ı	I	
Sulfate	6.00E+05	(3)	110000	>	1100	>	I		16000	>	I	ı	I	
Cyanide	2.00E+02	(3)	17.6	>	15.6	^	1			V		1	I	
Metals (ug/I) DISSOLVED														
Antimony (D)	6.00E+00	(2)	< 0.472	n	0.77	ſ	ı		< 0.472	n	1	I	I	
Arsenic (D)	1.00E+01	(2)	6.4	٦	8.3	^	8.6	^		^	7.4 v	1	4.9	٦
Barium (D)	1.00E+03	(3)	83	>	5600	Ζ	2200	Ζ		>	600 v	I	360	>
Beryllium (D)	4.00E+00	(2)	< 0.313	n	0.44	ſ	ı			ſ		I	I	
Cadmium (D)	5.00E+00	(2)	< 0.746	n	< 0.746	n	< 0.746	n		n	< 0.746 u	I	< 0.746	n
Chromium (D)	5.00E+01	(3)	< 1.754	n	< 1.754	n	< 1.754	n	54	n	< 1.754 u	I	< 1.754	n
Cobalt (D)	5.00E+01	(3)	8.7	>	13	^			34 1	V		•	I	
Cyanide (D)	2.00E+02	(3)					ı			>		•	I	
Iron (D)	1.00E+03	(3)	44	>	260	>	4900	Ζ	3700 Z	Z	3800 Z	•	78	>
Lead (D)	1.50E+01	(2)	0.4	<u> </u>	<0.00013	>	< 0.168	n		>			0.46	-
Manganese (D)	2.00E+02	(3)	18	>	3000	Z	2200	Ζ	4800 2	Z	4100 Z		390	Ζ

Table 3-1 2016 Groundwater Analytical Results Summary Marathon Petroleum Company - Gallup Refinery

ועפווופע	
autori reuoleurii company - ganup kenner	Mexico
	Vew
reuroieuri	Gallup. N
auriori	

					Gallup, New Mexico	w M	exico									
	Screening Levels	Source	NDD-4-GM		NDD-6-GW		₽1-WO		OM-55		OM-55		0M-56		95-WO	
Lab ID			1605C89-004	04	1605C89-001	_	1609076-001		1606136-005		1609A26-001	-	1606136-001	1	1609A26-003	03
Sample Date			5/26/2016	<u>9</u>	5/26/2016		8/31/2016	ശ	6/1/2016		9/16/2016	6	6/1/2016		9/16/2016	ဖ
Nickel (D)	3.72E+02	(4)	190	Ζ	60 \	>	•		430	Ζ	•		•		•	
Selenium (D)	5.00E+01	(2)	16	٨		V	12		9.1	^	8.2	٨			4.6	٦
Silver (D)	5.00E+01	(3)	< 2.751	n	< 2.751 L	v n	2.751	n	< 2.751	n	< 2.751	n			< 2.751	n
Vanadium (D)	6.31E+01	(4)	4.1	-	4.2	_	ı		7.2	ſ			ı		ı	
Zinc (D)	1.00E+04	(3)	< 2.783	n	С 6.9	۱	28	v	19	^	3.5	ſ	ı		11	>
Volatiles (ug/l)																
1,1,1,2-Tetrachloroethane	5.74E+00	(4)	< 0.223	n	< 11.146 u	v n		n	< 2.229	n	< 1.115	n	< 0.111	n	< 0.557	n
1,1,1.Trichloroethane	6.00E+01	(3)	< 0.183	n		v n		n	< 1.83	n	< 0.915	n	< 0.091	n	< 0.457	n
1,1,2,2-Tetrachloroethane	1.00E+01	(3)	< 0.256	n		v n	< 0.641	n	< 2.565	n	< 1.282	n	< 0.128	n	< 0.641	n
1,1,2-Trichloroethane	5.00E+00	(2)	< 0.255	n	< 12.731 L	n <	< 0.637	n	< 2.546	n	< 1.273	n	< 0.127	n	< 0.637	n
1,1-Dichloroethane	2.50E+01	(3)	< 0.216	n		n		n	161	n	< 1.081	n	0.76	٦	< 0.54	n
1,1-Dichloroethene	5.00E+00	(3)	< 0.214	n		∘ n	< 0.536	n	< 2.144	n	< 1.072	n	< 0.107	n	< 0.536	n
1,1-Dichloropropene	I		< 0.266	n		∘ n	< 0.666	n	< 2.662	n	< 1.331	n	< 0.133	n	< 0.666	n
1,2,3-Trichlorobenzene	7.00E+00	(1)	< 0.226	n	ю	v n	< 0.564	n	< 2.257	n	< 1.129	n	< 0.113	n	< 0.564	n
1,2,3-Trichloropropane	1.00E-02	(4)	< 0.404	n		n	< 1.01	n	< 4.04	n	< 2.02	n	< 0.202	n	< 1.01	n
1,2,4-Trichlorobenzene (V)	7.00E+01	(2)	< 0.266	n	77	v n	< 0.664	n	< 2.655	n	< 1.328	n	< 0.133	n	< 0.664	D
1,2,4-Trimethylbenzene	5.60E+01	(1)	< 0.22	n		>	7.1	>	1800	>	880	>	0.49		1.1	
1,2-Dibromo-3-chloropropane	2.00E-01	(2)	< 0.469	n		n <		n	< 4.687	n	< 2.343	n	< 0.234	n	< 1.172	n
1,2-Dibromoethane (EDB)	5.00E-02	(2)	< 0.224	n	< 11.177 u	v n	0.559	n	< 2.235	n	< 1.118	n	< 0.112	n	< 0.559	n
1,2-Dichlorobenzene (V)	6.00E+02	(2)	< 0.8	n	< 40 L	n	< 2	n	< 8	n	< 4	n	< 0.4	n	< 2	n
1,2-Dichloroethane (EDC)	5.00E+00	(2)	< 0.23	n		v n		n	< 2.3	n	5.6	_	15	>	16	Ζ
1,2-Dichloropropane	5.00E+00	(2)	< 0.22	n	83	v n	ດ	n	< 2.197	n	< 1.098	n	< 0.11	n	< 0.549	n
1,3,5-Trimethylbenzene	6.00E+01	(1)	< 0.231	n		>		_	700	>	280	>	0.46	-	< 0.577	n
1,3-Dichlorobenzene (V)			< 0.286	n		v n		n	< 2.864	n	< 1.432	n	< 0.143	n	< 0.716	n
1,3-Dichloropropane	3.70E+02	(1)	< 0.311	n		v n		n	< 3.114	n	< 1.557	n	< 0.156	n	< 0.779	n
1,4-Dichlorobenzene (V)	7.50E+01	(2)	< 0.285	n	96	v n	13	n	< 2.853	n	< 1.427	n	< 0.143	n	< 0.713	п
1-Methylnaphthalene (V)	1.10E+01	(2)	0.55		130		34	>	78	٦	30	–	0.52		< 1.022	n
2,2-Dichloropropane	I		< 0.333	n		n <	< 0.833	n	< 3.333	n	< 1.666	n	< 0.167	n	< 0.833	n
2-Butanone	5.56E+03	(4)	< 1.474	n	< 73.699 L	v n	3.685	n	< 14.74	n	< 7.37	n	< 0.737	n	< 3.685	n
2-Chlorotoluene	2.40E+02	(1)	< 0.8	n	< 40 L	n	< 2	n	< 8	n	< 4	n	< 0.4	n	< 2	n
2-Hexanone	I		< 1.68	n	< 83.987 L	n <	< 4.199	n	< 16.797	n	< 8.399	n	< 0.84	n	< 4.199	n
2-Methylnaphthalene (V)	3.60E+01	(1)	0.71	-		Ý L		n	120	>	45	>	0.61	-	< 0.791	n
4-Chlorotoluene	2.50E+02	(1)	< 0.256	n	12.814	v n	0.641	n	< 2.563	n		n	< 0.128	n	< 0.641	n
4-lsopropyltoluene	I		< 0.281	n	< 14.061 u	v n	< 0.703	n	11	-	5.9	-	0.37	-	< 0.703	n

Table 3-1 2016 Groundwater Analytical Results Summary Marathon Petroleum Company - Gallup Refinery Gallup, New Mexico

				-	1	r	1	-			-	-	1	1	-	r	1	1	-								-	1	-	-		-	-	-		
	03	9.	n	n		n	n	n	n	n	n	n	n	n	n	n	n	n	n	n	n	n	٦	Ζ	n	n	n	n	n	n	n	n		n	n	n
99-WO	1609A26-003	9/16/2016	< 2.138	< 24.544	2.5	< 0.489	< 0.699	< 0.511	< 3.899	< 2.987	< 0.541	< 0.572	< 0.955	< 0.444	< 1.064	< 0.621	< 0.533	< 0.434	< 0.596	< 1.787	< 0.561	< 0.993	1.1	150	< 0.937	< 0.463	< 0.802	< 0.661	< 0.615	< 0.55	< 0.575	< 0.76	0.92	< 2	< 0.516	< 0.875
	01	6	n	٦	-	n	-	Ъ	n	n	n	n	n	-	n	n	л	-	n	n	n	n	ſ	٧	n	n	n	л	n	n	n	n	٦	n	n	n
99-WO	1606136-001	6/1/2016	< 0.428	9.2	0.5	< 0.098	0.47	< 0.102	< 0.78	< 0.597	< 0.108	< 0.114	< 0.191	0.56	< 0.213	< 0.124	< 0.107	0.31	< 0.119	< 0.357	< 0.112	< 0.199	0.27	200	< 0.187	< 0.093	< 0.16	< 0.132	< 0.123	< 0.11	< 0.115	< 0.152	0.44	< 0.4	< 0.103	< 0.175
	01	9	n	n	>	n	n	n	n	n	n	n	n	n	n	n	n	n	n	n	>	n	>	^	n	٨		>	٦	٦	n	n	^	n	n	n
gg-WO	1609A26-001	9/16/2016	< 4.276	< 49.087	12000	< 0.977	< 1.398	< 1.021	< 7.799	< 5.975	< 1.082	< 1.145	< 1.91	< 0.888	< 2.128	< 1.242	< 1.065	< 0.867	< 1.191	< 3.573	950	< 1.986	35	1200	< 1.874	120	17	120	9.3	4.1	< 1.15	< 1.52	4600	< 4	< 1.033	< 1.751
	05	6	n	n	>	n	n	n	n	n	n	n	n	n	n	n	n	n	n	n	>	n	>	>	n	>	>	>	-	n	n	n	>	n	n	n
gg-WO	1606136-005	6/1/2016	< 8.553	< 98.175	24000	< 1.954	< 2.796	< 2.043	< 15.598	< 11.95	< 2.164	< 2.289	< 3.82	< 1.775	< 4.256	< 2.483	< 2.131	< 1.735	< 2.383	< 7.146	2800	< 3.972	68	2000	< 3.748	370	75	340	18	< 2.2	< 2.3	< 3.04	34000	80 V	< 2.065	< 3.502
	01	L6	n	n	>	л	л	л	n	n	n	n	л	л	n	л	л	п	n	n	>	n	٨	٨	n	٨	-	>	-	n	n	n	-	n	n	n
74-WO	1609076-001	8/31/2016	< 2.138	< 24.544	8100	< 0.489	< 0.699	< 0.511	< 3.899	< 2.987	< 0.541	< 0.572	< 0.955	< 0.444	< 1.064	< 0.621	< 0.533	< 0.434	< 0.596	< 1.787	250	< 0.993	8.5	580	< 0.937	18	1.3	11	2.2	< 0.55	< 0.575	< 0.76	2.9	< 2	< 0.516	< 0.875
	01	9	n	n	>	n	n	n	n	n	n	n	n	n	n	n	n	n	n	n	>	n	J	٨	n	٨	-	>	n	n	n	n	>	n	n	n
NDD-6-GW	1605C89-001	5/26/2016	< 42.764	< 490.874	5300	< 9.771	< 13.978	< 10.213	< 77.989	< 59.749	< 10.82	< 11.445	< 19.102	< 8.877	< 21.281	< 12.416	< 10.653	< 8.673	< 11.914	< 35.732	370	< 19.86	64	160	< 18.742	280	36	120	< 12.301	< 11	< 11.501	< 15.202	130	< 40	< 10.327	< 17.509
	04	-6	n	-	n	n	n	n	n	n	n	n	n	n	n	n	n	n	n	n	n	n	n	٧	n	ſ	n	n	n	n	n	n	n	n	n	n
NDD-4-GM	1605C89-004	5/26/2016	< 0.855	13	< 0.191	< 0.195	< 0.28	< 0.204	< 1.56	< 1.195	< 0.216	< 0.229	< 0.382	< 0.178	< 0.426	< 0.248	< 0.213	< 0.173	< 0.238	< 0.715	< 0.224	< 0.397	< 0.209	71	< 0.375	0.22	< 0.321	< 0.264	< 0.246	< 0.22	< 0.23	< 0.304	< 0.236	< 0.8	< 0.207	< 0.35
Source				(4)	(2)	(1)	(4)	(2)	(4)	(4)	(2)	(2)	(4)	(3)	(4)	(2)	(4)	(4)	(1)	(4)	(2)	(4)	(4)	(4)	(2)	(4)				(2)		(2)	(3)	(2)	(4)	(2)
Screening Levels			1	1.41E+04	5.00E+00	6.20E+01	1.34E+00	3.30E+01	7.54E+00	8.10E+02	5.00E+00	1.00E+02	2.09E+04	1.00E+02	2.03E+01	7.00E+01	4.71E+00	1.68E+00	8.30E+00	1.97E+02	7.00E+02	1.39E+00	4.47E+02	1.43E+02	5.00E+00	1.65E+00				1.00E+02	-	5.00E+00	7.50E+02	1.00E+02	4.71E+00	5.00E+00
							e										е	e		ne		(V)		(MTBE)								E)			ene	

	ab ID	Sample Date	-Methyl-2-pentanone	Acetone	Benzene	omobenzene	Bromodichloromethane	Bromoform	omomethane	Carbon disulfide	rbon Tetrachloride	lorobenzene	loroethane	Chloroform	loromethane	cis-1,2-DCE	-1,3-Dichloropropene	Dibromochloromethane	Dibromomethane	Dichlorodifluoromethane	iylbenzene	Hexachlorobutadiene (V)	lsopropylbenzene	Methyl tert-butyl ether (N	Methylene Chloride	Naphthalene (V)	n-Butylbenzene	ropyibenzene	c-Butylbenzene	Styrene tout But dhear room		trachloroethene (PCE)	trans-1,2-DCE	Trichloroethene (TCE)	~
	Lab	Sam	4-Me	Acetc	Benz	Brom	Brom	Brom	Brom	Carbo	Carbo	Chlor	Chlor	Chlor	Chlor	cis-1,	cis-1,	Dibro	Dibro	Dichl	Ethyl	Неха	lsopr	Meth	Meth	Naph	n-Bul		sec-E	Suyre	- Iert-	Toluc	trans	Trich	

Table 3-1 2016 Groundwater Analytical Results Summary Marathon Petroleum Company - Gallup Refinery

aiiup r	
ם - לווום	Mexico
	New N
Lenoienii coilibaily - dallup reliliei	Gallup, New Mexico
יוו רכט	Ū
וומחוטוו	

	Screening Levels	Source	NDD-4-GM		ND-9-GM	41-WO	98-WO	98-WO	9G-W0	9G-W0
Lab ID			1605C89-004	-	1605C89-001	1609076-001	1606136-005	1609A26-001	1 1606136-001	1609A26-003
Sample Date			5/26/2016		5/26/2016	8/31/2016	6/1/2016	9/16/2016	6/1/2016	9/16/2016
Trichlorofluoromethane	1.14E+03	(4)	< 0.409	v n	: 20.437 u	< 1.022 u	< 4.087 u	< 2.044 u	V	< 1.022 u
Vinyl chloride	1.00E+00	(3)	< 0.391	v n	: 19.538 u	u 770.0 >	< 3.908 u	< 1.954 u	V	u 770.0 >
Xylenes, Total	6.20E+02	(3)	< 0.734	n	2100 v	8	16000 v	4500 v	/ 1.4 J	< 1.835 u
Semivolatiles (ug/l)										
1,2,4-Trichlorobenzene	7.00E+01	(2)	< 2.62	n	< 2.62 u	-	< 2.62 u	-	< 2.62 u	-
1,2-Dichlorobenzene	6.00E+02	(2)	< 2.285	> n	< 2.285 u	-	< 2.285 u	-	< 2.285 u	-
1, 3-Dichlorobenzene	-		< 2.257	> n	< 2.257 u	-	< 2.257 u	-	< 2.257 u	-
1,4-Dichlorobenzene	7.50E+01	(2)	< 2.388	> n	< 2.388 u	1	< 2.388 u	ı	< 2.388 u	
1-Methylnaphthalene	1.10E+01	(2)		n	110 v	•	41 v		< 2.918 u	-
2,4,5-Trichlorophenol	1.17E+03	(4)		n	< 2.18 u	ı	< 2.18 u	I	< 2.18 u	
2,4,6-Trichlorophenol	1.19E+01	(4)	< 2.446	> n	< 2.446 u	-	< 2.446 u		< 2.446 u	-
2,4-Dichlorophenol	4.53E+01	(4)		n	< 2.33 u	•	< 2.33 u		< 2.33 u	-
2,4-Dimethylphenol	3.54E+02	(4)		n	< 3.01 u	•	6.6 Ј		< 3.01 u	
2,4-Dinitrophenol	3.87E+01	(4)		v n	< 2.753 u		< 2.753 u	ı	< 2.753 u	
2,4-Dinitrotoluene	2.37E+00	(4)	< 3.129	v n	< 3.129 u	•	< 3.129 u		< 3.129 u	-
2,6-Dinitrotoluene	4.85E-01	(4)	< 2.734	v n	< 2.734 u		< 2.734 u		< 2.734 u	
2-Chloronaphthalene	7.33E+02	(4)		v n	< 2.251 u		< 2.251 u	•	< 2.251 u	
2-Chlorophenol	9.10E+01	(4)		v n	< 2.184 u		< 2.184 u		< 2.184 u	-
2-Methylnaphthalene	3.60E+01	(1)	< 2.89	n	130 v	1	v 69	I	< 2.89 u	
2-Methylphenol	9.30E+02	(1)		v n	< 2.539 u	1	19 v	ı	< 2.539 u	
2-Nitroaniline	1.90E+02	(1)		n s	< 2.758 u	1	< 2.758 u	I	< 2.758 u	
2-Nitrophenol				n <	< 2.378 u	1	< 2.378 u	I	< 2.378 u	
3,3 '-Dichlorobenzidine	1.25E+00	(4)	< 2.396	v n	< 2.396 u	•	< 2.396 u	•	< 2.396 u	
3+4-Methylphenol	1.40E+03	(1)		n	2.4 J		28 v	•	< 2.298 u	
3-Nitroaniline				v n	< 2.948 u		< 2.948 u		< 2.948 u	
4,6-Dinitro-2-methylphenol	1.52E+00	(4)		v n	< 1.797 u	•	< 1.797 u		< 1.797 u	
4-Bromophenyl phenyl ether			_	× n	< 2.637 u		< 2.637 u		< 2.637 u	
4-Chloro-3-methylphenol				× n	< 2.559 u		< 2.559 u		< 2.559 u	
4-Chloroaniline	3.70E+00	(2)		v n	< 2.712 u	1	< 2.712 u	•	< 2.712 u	
4-Chlorophenyl phenyl ether			_	× n	< 2.556 u		< 2.556 u		< 2.556 u	
4-Nitroaniline	3.80E+01	(2)	< 2.559	v n	< 2.559 u	•	< 2.559 u		< 2.559 u	
4-Nitrophenol				v n	< 2.553 u	ı	< 2.553 u	'	< 2.553 u	
Acenaphthene	5.35E+02	(4)	_	v n	< 2.553 u	•	< 2.553 u	,	< 2.553 u	
Acenaphthylene			< 2.357	v n	< 2.357 u	1	< 2.357 u		< 2.357 u	-

Table 3-1 2016 Groundwater Analytical Results Summary Marathon Petroleum Company - Gallup Refinery Gallup, New Mexico

	1										_		_	_	_				_	_	_	_					_	_		_	_					
96-WO	1609A26-003	9/16/2016																																		
	1609,	9/16	•	-	-	-	-	'	-	-	-	1	1	-	'	'	•	I	ı	'	'	'	I	-	I	1	•	'	I	1	1	I	1	•	1	•
	01	P	n	n	n	n	n	n	n	n	n	n	n	n	n		n		n	n	n	n	n	n		n	n	n	n	n	n	n	n	n	n	n
99-WO	1606136-001	6/1/2016	< 2.441	< 2.486	< 2.668	< 2.639	< 2.718	< 2.88	< 2.643	< 2.998	< 2.606	< 3.012	< 2.814	< 2.674	< 1.909	4.1	< 2.478	2.8	< 2.779	< 2.661	< 2.493	< 2.715	< 2.429	< 2.444	4.9	< 2.607	< 2.724	< 2.633	< 2.184	< 2.284	< 2.368	< 2.964	< 2.615	< 2.598	< 2.753	< 2.158
	001	16																																		
OM-55	1609A26-001	9/16/2016	-	-	-	-	-		-	-			•	-	•		-	ı	•	•	-	•	I	•	I	•	•	•	•	•	•	•			ı	
	05	9	n	n	n	n	n	n	n	n	n	n	n	n	n	٧	n	٦	n	n	n	n	n	n	٦	n	n	n	n	n	n	n	n	٧	n	n
GB-WO	1606136-005	6/1/2016	< 2.441	< 2.486	< 2.668	< 2.639	< 2.718	< 2.88	< 2.643	< 2.998	< 2.606	< 3.012	< 2.814	< 2.674	< 1.909	10	< 2.478	2.4	< 2.779	< 2.661	< 2.493	< 2.715	< 2.429	< 2.444	4.9	< 2.607	< 2.724	< 2.633	< 2.184	< 2.284	< 2.368	< 2.964	< 2.615	220	< 2.753	< 2.158
	01	L6																																		
₽1-WO	1609076-001	8/31/2016	-	-	-	-	-	-	-	-	•		•	-	•	•	•	'	•	•	-	•	ı		•	•	•	•	•	•	•	•	•	•	•	
	001	16	n	n	n	n	n	n	n	n	n	n	n	n	n		n		n	n	n	n	n	n		n	n	n	n	n	n	n	n	>	n	D
NDD-6-GW	1605C89-001	5/26/2016	< 2.441	< 2.486	< 2.668	< 2.639	< 2.718	< 2.88	< 2.643	< 2.998	< 2.606	< 3.012	< 2.814	< 2.674	< 1.909	3.4	< 2.478	3.4	< 2.779	< 2.661	< 2.493	< 2.715	< 2.429	< 2.444	5	< 2.607	< 2.724	< 2.633	< 2.184	< 2.284	< 2.368	< 2.964	< 2.615	200	< 2.753	< 2.158
	04	9	n	n	n	n	n	n	n	n	n	n	n	n	n	n	n	n	n	n	n	n	n	n	٦	n	n	n	n	n	n	n	n	n	n	n
NDD-4-GM	1605C89-004	5/26/2016	< 2.441	< 2.486	< 2.668	< 2.639	< 2.718	< 2.88	< 2.643	< 2.998	< 2.606	< 3.012	< 2.814	< 2.674	< 1.909	< 2.616	< 2.478	< 2.287	< 2.779	< 2.661	< 2.493	< 2.715	< 2.429	< 2.444	5	< 2.607	< 2.724	< 2.633	< 2.184	< 2.284	< 2.368	< 2.964	< 2.615	< 2.598	< 2.753	< 2.158
Source			(2)	(4)	(2)	(4)	(2)	(4)		(4)	(1)	(1)	(1)	(4)	(4)	(2)	(2)		(4)	(4)		(4)		(4)		(4)	(4)	(2)	(4)	(2)	(4)	(4)	(4)	(4)	(4)	(4)
Screening Levels			1.30E+02	1.72E+03	1.20E+00	1.20E-01	2.00E-01	3.43E-01	-	3.43E+00	7.50E+04	2.00E+03	5.90E+01	1.40E-01	9.81E+00	6.00E+00	1.60E+02		3.43E+01	3.43E-02	-	1.48E+04	•	8.85E+02		8.02E+02	2.88E+02	1.00E+00	1.39E+00	5.00E+01	3.28E+00	3.43E-01	7.81E+02	1.65E+00	1.40E+00	1.70E-03
													thane		ether	late														diene		в				le

5 of 6

() 40 () 40	cau IU Samnla Data	Aniline	Anthracene	Azobenzene	Benz(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	3enzo(g,h,i)perylene	Benzo(k)fluoranthene	Benzoic acid	senzyl alcohol	3is(2-chloroethoxy)meth	Bis(2-chloroethyl)ether	Bis(2-chloroisopropyl)eth	Bis(2-ethylhexyl)phthala	3utyl benzyl phthalate	Carbazole	Chrysene	Jibenz(a,h)anthracene	Dibenzofuran	Diethyl phthalate	Dimethyl phthalate	Di-n-butyl phthalate	Di-n-octyl phthalate	Fluoranthene	Fluorene	lexachlorobenzene	Hexachlorobutadiene	Hexachlorocyclopentadi	Hexachloroethane	ndeno(1,2,3-cd)pyrene	lsophorone	Naphthalene	Nitrobenzene	V-Nitrosodimethylamine	
-	V L	⊽ ₹	Ā	Ă	В	В	В	В	В	В	В	В	В	В	В	В	Ö	S		Δ			Δ		Ē	Е	н	Т	н	Т		ls	Z	Z	Z	

2016 Groundwater Analytical Results Summary Table 3-1

Marathon Petroleum Company - Gallup Refinery Gallup, New Mexico

96-W0	1609A26-003	9/16/2016									2	ر 7	:
		9/16	- 1	-	- 1	- 1	- 1	- 1	- r		/ 1.2	/ 0.77	ר ר ע
96-WO	1606136-001	6/1/2016	< 2.389 u	< 2.32 u	< 2.587 u	< 2.342 u	< 1.985 u	< 3.094 u	< 2.161 u		0 .49 v	1.4 V	רא אר בי
GB-WO	1609A26-001	9/16/2016	-		-	-	-	-	-		76 v	5.3 V	۲ ۲
ଟଟ-WO	1606136-005	6/1/2016	< 2.389 u	< 2.32 u	< 2.587 u	< 2.342 u	27 v	< 3.094 u	< 2.161 u		210 v	7.2 v	רא ב ר
₽T-WO	1609076-001	8/31/2016	-	•	-	-	-	-	-		31 v	4.1 v	ר ד ר
NDD-6-GW	1605C89-001	5/26/2016	< 2.389 u	< 2.32 u	< 2.587 u	< 2.342 u	11 v	< 3.094 u	< 2.161 u		27 v	4. 3 v	ר ה אר
NDD-4-GM	1605C89-004	5/26/2016	< 2.389 u	< 2.32 u	< 2.587 u	< 2.342 u	< 1.985 u	< 3.094 u	< 2.161 u		0.11 v	v 69.0 >	י ד ר
Source			(2)	(4)	(4)	(2)	(4)	(4)	(1)		(9)	(9)	(9)
Screening Levels			1.10E-01	4.90E-03	1.70E+02	1.00E+00	5.76E+03	1.17E+02	2.00E+01		3.98E-02	3.98E-02	3 0RE-02
	Cli de La companya de	Sample Date	N-Nitrosodi-n-propylamine	N-Nitrosodiphenylamine	Phenanthrene	Pentachlorophenol	Phenol	Pyrene	Pyridine	1PH (mg/l)	Gasoline Range Organics (GRO)	Diesel Range Organics (DRO)	Motor Oil Range Organics (MRO)

450 - bolded value exceeds screening level z - concentration exceeds MCL

(5) EPA Screening Level - Tap Water x 10 for carcinogenic compounds(6) NMED groundwater screening level for unknown oil v = reportable detection above the Practical quantitation limit (PQL) j - estimated result at concentration above MDL but less than PQL u - result is not detected at method detection limit (MDL) (1) EPA - Regional Screening Levels (June 2017) - Tap Water No screening level or analytical result available (2) EPA - Regional Screening Levels (June 2017) - MCL

(3) NMED WQCC standards - Title 20 Chapter 6, Part 2, - 20.6.2.3101 Standards for Ground Water of 10,000 mg/l TDS Concentration or less

(4) NMED Tap Water Screening Level - Risk Assessment Guidance for Site Investigations and Remediation (March 2017)

Table 3-2 Recent Groundwater Analyses

					PARAMETERS		
			Benzene	Toluene	Ethyl Benzene	Total Xylenes	MTBE
	STANDARDS		(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
Ň	WQCC 20NMAC 6.2.3103		0.01	0.75	0.75	0.62	NE
	40 CFR 141.62 MCL		0.005	1.0	0.7	10	NE
NMED	NMED TAP WATER (MARCH 2017)	017)	0.00455	1.09	0.0149	0.193	0.143
EPA RS	EPA RSL for Tap Water (MAY 2018)	:018)	0.00046	1.1	0.0015	0.19	0.014
Well ID	DATE SAMPLED	МЕТНОD					
OW-14	12/11/17	8260B	13	0.013	0.64	0.052	0.63
	09/06/17	8260B	12	0.0091	0.54	0.033	0.66
	05/30/17	8260B	13	0.004	0.47	0.02	0.7
	02/27/17	8260B	12	0.0062	0.39	<0.075	0.81
OW-54	12/06/17	8260B	0.055	0.0003	0.016	<0.0075	1.9
	09/11/17	8260B	0.14	0.0031	0.037	<0.0075	1.9
	06/21/17	8260B	0.17	0.0047	0.046	0.0038	2.3
	03/29/17	8260B	0.15	0.0047	0.042	0.0039	2.2
OW-55	12/06/17	8260B	7.1	0.36	0.56	0.29	1.7
	09/11/17	8260B	12	0.9	0.69	0.66	2
	06/21/17	8260B	13	0.9	0.72	0.76	2.4
	03/29/17	8260B	14	1.1	0.74	1.1	2
OW-56	12/06/17	8260B	0.0021	<0.001	<0.001	<0.0015	0.11
	09/11/17	8260B	0.0011	<0.001	<0.001	<0.0015	0.11
	06/21/17	8260B	0.00038	<0.001	<0.001	<0.0015	0.14
	03/29/17	8260B	0.00024	<0.001	<0.001	<0.0015	0.12

DEFINITIONS

NE = Not established

NA = Not analyzed

Bold and highlighted values represent values above the applicable standards

STANDARDS

WQCC 20 NMAC 6.2.3103 - Standards for Ground Water of 10,000 mg/l TDS Concentration or Less.

Table 3-2 Recent Groundwater Analyses

					PAKAIVIEI EKS		
			Benzene	Toluene	Ethyl Benzene	Total Xylenes	MTBE
	STANDARDS		(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
Ŵ	WQCC 20NMAC 6.2.3103		0.01	0.75	0.75	0.62	NE
	40 CFR 141.62 MCL		0.005	1.0	0.7	10	NE
NMED	NMED TAP WATER (MARCH 2017)	017)	0.00455	1.09	0.0149	0.193	0.143
EPA RS	EPA RSL for Tap Water (MAY 2018)	018)	0.00046	1.1	0.0015	0.19	0.014
Well ID	DATE SAMPLED	METHOD					

a) Human Health Standards; b) Other Standards for Domestic Water

40 CFR 141.62 Detection Limits for Inorganic Contaminants

EPA Regional Screening Level (RSL) Summary Table NMED Risk Assessment Guidance for Investigations and Remediations Table A-1

	Analyses
Table 3-2	t Groundwater
	Recent

L

						PARAMETERS	S		
			DRO	GRO	MRO	Fluoride	Chloride	Sulfate	Nitrate +
	STANDARDS		(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	Nitrite as N (mg/L)
	WQCC 20NMAC 6.2.3103	.3103	NE	NE	NE	1.6	250	600	NE
	40 CFR 141.62 MCL	CL	NE	NE	NE	4.0	NE	NE	10
Z	NMED TAP WATER (MARCH 2017)	RCH 2017)	NE	NE	NE	1.18	NE	NE	NE
EP	EPA RSL for Tap Water (MAY 2018)	MAY 2018)	NE	NE	NE	0.8	NE	NE	NE
	NMED SSG (MARCH 2017)	2017)	0.0452	0.055	0.0902	NE	NE	NE	NE
Well ID	DATE SAMPLED	METHOD							
OW-14	12/11/17	8015D	4.3	31	<5.0				
	09/06/17	8015D	4.5	33	<5.0				
	05/30/17	8015D	4.6	35	<5.0				
	02/27/17	8015D	4.3	33	<5.0				
OW-54	12/06/17	8015D/300.0	2.4	2.6	\$5	0.3	270	34	0.17
	09/11/17	8015D/300.0	1.7	3.1	Ŝ	0.25	290	31	<1
	06/21/17	8015D/300.0	1.9	2.9	\$	0.38	300	40	<1
	03/29/17	8015D/300.0	1.7	2.6	<5	0.12	330	42	<1
OW-55	12/06/17	8015D/300.0	3.1	26	5	0.54	380	1.3	<1
	09/11/17	8015D/300.0	5.1	46	5	<0.5	350	1.5	<1
	06/21/17	8015D/300.0	6.3	42	\$	<0.5	380	1.7	<1
	03/29/17	8015D/300.0	5.4	39	<5	<0.1	410	1.2	0.73
OW-56	12/06/17	8015D/300.0	0.83	1	5	0.27	590	18	0.22
	09/11/17	8015D/300.0	0.51	0.36	5	<0.5	580	20	<1
	06/21/17	8015D/300.0	0.84	0.15	5	<0.5	650	23	0.13
	03/29/17	8015D/300.0	0.52	0.15	<5	0.1	630	24	<1

DEFINITIONS

NE = Not established

NA = Not analyzed Bold and highlighted values represent values above the applicable standards

Table 3-2 Recent Groundwater Analyses

						PARAMETERS	S		
			DRO	GRO	MRO	Fluoride	Chloride	Sulfate	Nitrate +
	STANDARDS		(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	NITTITE AS N (mg/L)
	WQCC 20NMAC 6.2.3103	.3103	NE	NE	NE	1.6	250	600	NE
	40 CFR 141.62 MCI	cı	NE	NE	NE	4.0	NE	NE	10
N	NMED TAP WATER (MARCH 2017	RCH 2017)	NE	NE	ЗN	1.18	NE	NE	NE
EP	EPA RSL for Tap Water (MAY 2018	MAY 2018)	NE	NE	NE	8.0	NE	NE	NE
	NMED SSG (MARCH 2017)	2017)	0.0452	0.055	0.0902	NE	NE	NE	NE
Well ID	DATE SAMPLED	METHOD							

STANDARDS

WQCC 20 NMAC 6.2.3103 - Standards for Ground Water of 10,000 mg/l TDS Concentration or Less.

a) Human Health Standards; b) Other Standards for Domestic Water

40 CFR 141.62 Detection Limits for Inorganic Contaminants

EPA Regional Screening Level (RSL) Summary Table

NMED Risk Assessment Guidance for Investigations and Remediations Table A-1

NMED Soil Screening Guidance Volume 1, Table 6-4 (groundwater), (March 2017)

Table 3-2 Recent Groundwater Analyses

BariumCadmiumChomiumCopperIronLead(mg/L)(mg/L)(mg/L)(mg/L)(mg/L)(mg/L) mg/L mg/L mg/L mg/L mg/L mg/L 1 0.01 0.05 1.3 1.3 ng/L 0.05 2 0.0052 0.1 1.3 NE 0.015 2 0.00624 0.0057 0.7898 13.8 NE 2 0.0092 NE 0.08 1.4 0.015 2 0.0022 $c0.006$ $c0.006$ 4.9 0.0011 2.3 $c0.002$ $c0.006$ $c0.006$ 4.9 0.0011 2.4 $c0.002$ $c0.006$ $c0.006$ 0.0012 0.0022 2.3 $c0.002$ $c0.006$ $c0.006$ $c0.002$ 0.0022 1.1 $c0.002$ $c0.002$ $c0.006$ $c0.006$ $c0.002$ 1.1 $c0.002$ $c0.006$ $c0.006$ $c0.002$ $c0.002$	Barium (mg/L) Cadmium (mg/L) 1 0.001 2 0.005 3.28 0.00624 0.38 0.0092 2.3 0.0022 2.3 <0.002 2.3 <0.002 2.3 <0.002 2.3 <0.002 2.3 <0.002 2.3 <0.002 2.3 <0.002 2.3 <0.002 2.3 <0.002 2.3 <0.002 2.3 <0.002 2.3 <0.002 2.3 <0.002 2.3 <0.002 2.3 <0.002		Iron (mg/L) 1 1 13.8 13.8 13.8 1.4 5.1 5.1	Lead (mg/L) 0.05 0.015 NE 0.015 0.00014 0.00014	Manganese (mg/L) 0.2 NE 2.02 0.43	Selenium (mg/L)	Silver (mg/L)	Mercury (mg/L)	Uranium	Zinc (mg/L)
STANDARDS (mg/L) (mg	(mg/l) (mg/l) (mg/l) 1 0.01 1 2 0.005 1 3.28 0.00624 1 0.38 0.0092 1 2.3 <0.002 1 2.3 <0.002 1 2.3 <0.002 1 2.3 <0.002 1 2.3 <0.002 1 2.3 <0.002 1 2.3 <0.002 1 2.3 <0.002 1 1.2 <0.002 1		(mg/L) 1 NE 13.8 13.8 14 4.9 5.1 5.1	(mg/L) 0.05 0.015 NE 0.015 0.00014 0.00014	(mg/L) 0.2 NE 2.02 0.43	(mg/L)	(mg/L)	(mg/L)		(mg/L)
WQCC 20NMAC 6.2.3103 0.1 1 0.01 0.05 1.3 1 1 40 CFR 141.62 MCL0.01 2 0.005 0.1 1.3 NE A0 CFR 141.62 MCL0.001 0.01 2 0.0057 0.7898 13.8 MED TAP WATER (MARCH 2017) 0.00055 3.28 0.00624 0.0057 0.7898 13.8 PA RSL for Tap Water (MAY 2018) 0.00052 0.38 0.00052 0.38 0.0057 0.7898 13.8 PA RSL for Tap Water (MAY 2018) 0.00052 0.38 0.00052 0.38 0.0057 0.7898 13.8 PA RSL for Tap Water (MAY 2018) 0.00052 0.38 0.00052 0.38 0.0052 0.7892 13.8 14 PA TSL for Tap Water (MAY 2018) 0.0057 2.33 0.00022 0.0056 4.9 4.9 PA TSL for Tap Water (MAY 2018) 0.0057 2.33 0.00022 0.0066 4.9 4.9 PA TSL for Tap Water (MAY 2008) 0.0057 2.33 0.0002 0.0006 4.9 4.9 PA TSL for Tap Water (MAY 2007) $200.7/200.8$ 0.0002 2.33 0.0002 0.0006 4.9 4.9 PA TSL for Tap Water (MAY 2007) $200.7/200.8$ 0.0002 2.33 0.0002 0.0014 0.002 4.9 4.9 PA TSL for Tap Water (MAY 200.7/200.8 0.0003 1.2 0.0022 0.002 0.0014 0.63 9.5 PA TSL for Tap Water V and Tap Water V and Tap Water V and Tap W	1 0.01 2 0.005 3.28 0.00624 3.28 0.0092 0.38 0.0092 2.3 <0.002 2.3 <0.002 2.3 <0.002 2.3 <0.002 2.3 <0.002 2.3 <0.002 2.3 <0.002 2.3 <0.002 2.3 <0.002 1.2 <0.002		1 NE 13.8 14 14 5.1 7.1	0.05 0.015 0.0015 0.00011 0.00014	0.2 NE 2.02 0.43				(mg/L)	
40 CFR 141.62 MCL0.0120.0050.11.3NEMED TAP WATER (MARCH 2017) 0.00855 3.28 0.00624 0.0057 0.7898 13.8 PA RS1 for Tap Water (MAY 2018) 0.00052 3.28 0.00624 0.0057 0.7898 13.8 PA RS1 for Tap Water (MAY 2018) 0.00052 0.38 0.0092 0.8 14 14 Datt SAMPLEDMETHOD 0.00052 0.38 0.0092 0.0066 4.9 4 Datt SAMPLEDMETHOD 0.0077 2.33 0.0002 60.006 4.9 4 $09/06/17$ $200.7/200.8$ 0.0097 2.33 60.002 60.006 4.9 4 $03/30/17$ $200.7/200.8$ 0.0097 2.33 60.002 60.006 4.9 4 $00/11/17$ $200.7/200.8$ 0.0097 2.32 60.002 60.006 4.9 4 $00/11/17$ $200.7/200.8$ 0.0093 0.22 60.002 60.006 60.006 4.9 6 $00/11/17$ $200.7/200.8$ 0.0083 0.62 60.002 0.014 0.63 9.5 $00/11/17$ $200.7/200.8$ 0.0083 0.62 60.002 0.012 0.014 0.63 $00/21/17$ $200.7/200.8$ 0.0083 0.62 60.002 0.012 0.014 0.63 $00/21/17$ $200.7/200.8$ 0.0083 0.62 60.002 0.012 0.014 0.63 $00/21/17$ $200.7/200.8$ 0.0083	2 0.005 3.28 0.00624 0.38 0.0092 0.33 0.0092 2.3 <0.002 2.3 <0.002 2.3 <0.002 2.3 <0.002 2.3 <0.002 2.3 <0.002 2.3 <0.002 2.3 <0.002 1.12 <0.002		NE 13.8 13.8 14 4.9 5.1 7.0	0.0015 0.0015 0.00011 0.00014	NE 2.02 0.43	د 0.0	0.05	0.002	0.03	10
IMED TAP WATER (MARCH 2017) 0.000855 3.28 0.00624 0.0057 0.7898 13.8 PA RSL for Tap Water (MAY 2018) 0.000052 0.38 0.0092 NE 0.8 14 PA RSL for Tap Water (MAY 2018) 0.00052 0.38 0.0092 NE 0.8 14 DATE SAMPLED METHOD 0.00057 2.3 0.0005 60.006 4.9 4.9 09/06/17 200.7/200.8 0.00057 2.3 <0.002 <0.006 4.9 4.9 6.0006 4.9 6.0006 4.9 6.0006 4.9 6.0006 4.9 6.0006 4.9 6.0006 4.9 6.0006 4.9 6.0006 4.9 6.0006 4.9 6.0006 4.9 6.0006 4.9 6.0006 4.9 6.0006 4.9 6.0006 4.9 6.0006 4.9 6.0006 4.9 6.0006 4.9 6.0006 6.0006 6.0006 6.0006 6.0006 6.0006 6.0006 6.0006 6.0006 6.0006	3.28 0.00624 0.38 0.0092 2.3 <0.002 2.3 <0.002 2.3 <0.002 2.3 <0.002 2.3 <0.002 2.3 <0.002 2.3 <0.002 1.2 <0.002 1.2 <0.002		13.8 14 4.9 5.1 4.6	NE 0.015 <0.0005 0.00011 0.00014	2.02 0.43	0.05	NE	0.002	0.03	NE
A RSL for Tap Water (MAY 2018) 0.000052 0.38 0.0092 NE 0.8 14 DATE SAMPLED METHOD METHOD 0.00057 2.33 <0.002	0.38 0.0092 2.3 <0.002 2.3 <0.002 2.3 <0.002 2.3 <0.002 1.2 <0.002 0.17 <0.002		14 4.9 5.1 4.6	0.015 <0.0005 0.00011 0.00014	0.43	0.0987	0.0812	0.000626	0.0592	5.96
DATE SAMPLED METHOD $12/11/17$ $200.7/200.8$ 0.0057 2.3 < 0.006 < 0.006 < 4.9 $09/06/17$ $200.7/200.8$ 0.0097 2.3 < 0.006 < 0.006 < 4.9 $05/30/17$ $200.7/200.8$ 0.0097 2.3 < 0.006 < 0.006 < 4.9 $05/30/17$ $200.7/200.8$ 0.0097 2.3 < 0.006 < 0.006 < 4.6 < 4.6 $02/27/17$ $200.7/200.8$ 0.0096 2.3 < 0.002 < 0.006 < 4.9 < 6.006 $02/21/17$ $200.7/200.8$ 0.0096 2.3 < 0.002 < 0.006 < 4.9 < 6.006 $09/11/17$ $200.7/200.8$ 0.0083 0.62 < 0.002 < 0.006 < 4.9 < 6.0006 < 0.063 < 9.5 $09/11/17$ $200.7/200.8$ 0.0083 0.62 < 0.002 < 0.006 < 0.063 9.5 $03/29/17$ $200.7/200.8$ 0.0092 1.7 < 0.00	2.3 <0.002 2.3 <0.002 2.2 <0.002 2.3 <0.002 2.3 <0.002 0.17 <0.002 1.2 <0.002		4.9 5.1 4.6	<0.0005 0.00011 0.00014		0.1	0.094	0.00063	0.004	9
12/11/17 $200.7/200.8$ 0.0057 2.3 < 0.006 < 0.006 < 0.006 < 0.006 < 0.006 < 0.006 < 0.002 < 0.006 < 0.002 < 0.006 < 0.002 < 0.006 < 0.0022 5.1 < 0.002 < 0.006 < 0.0022 < 5.1 < 0.0022 < 5.1 < 0.0022 < 0.006 < 0.0022 < 0.006 < 4.6 < 4.6 < 4.6 < 4.6 < 4.6 < 4.6 < 4.6 < 4.6 < 4.6 < 4.6 < 4.6 < 4.6 < 4.6 < 4.6 < 4.6 < 4.6 < 4.6 < 4.6 < 4.6 < 4.6 < 4.6 < 4.6 < 4.6 < 4.6 < 4.6 < 4.6 < 4.6 < 4.6 < 4.6 < 4.6 < 4.6 < 4.6 < 4.6 < 4.6 < 4.6 < 4.6 < 4.6 < 4.6 < 4.6 < 4.6 < 4.6 < 4.6 < 4.6 < 4.6 < 4.6 < 4.6 < 4.6 < 4.6 < 4.6 < 4.6 < 4.6	2.3 <0.002 2.3 <0.002 2.2 <0.002 2.3 <0.002 0.17 <0.002 1.2 <0.002		4.9 5.1 4.6	<0.0005 0.00011 0.00014						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2.3 <0.002 2.2 <0.002 2.3 <0.002 0.17 <0.002 1.2 <0.002		5.1 4.6	0.00011 0.00014	2.2	<0.01	<0.005	0.00011	0.0031	<0.01
05/30/17 200.7/200.8 0.0074 2.2 <0.006 <0.006 4.6 (02/27/17 200.7/200.8 0.0096 2.3 <0.002 <0.006 <0.06 4.9 (12/06/17 200.7/200.8 0.0096 2.3 <0.002 <0.014 0.63 (0 09/11/17 200.7/200.8 0.0083 0.17 <0.002 0.014 0.63 9.5 06/21/17 200.7/200.8 0.0083 0.62 <0.002 0.012 0.047 19 03/29/17 200.7/200.8 0.0092 1.7 <0.002 0.012 0.12 21 12/06/17 200.7/200.8 0.0053 0.51 <0.002 0.021 0.12 21 03/29/17 200.7/200.8 0.0053 0.51 <0.002 0.021 0.12 21 00/11/17 200.7/200.8 0.0053 0.51 <0.006 <0.006 4.1 4.1 4.1	2.2 <0.002 2.3 <0.002 0.17 <0.002 1.2 <0.002		4.6	0.00014	2.2	0.013	<0.005	<0.0002	0.0043	<0.01
02/27/17 200.7/200.8 0.0096 2.3 <0.002	2.3 <0.002 0.17 <0.002 1.2 <0.002				2.1	0.0061	<0.005	<0.0002	NA	<0.01
12/06/17 200.7/200.8 <0.01	0.17 <0.002 1.2 <0.002		4.7	0.00017	2.2	0.01	<0.005	<0.0002	NA	<0.01
09/11/17 200.7/200.8 0.008 1.2 <0.002	1.2 <0.002		0.63	0.0092	1.4	<0.01	<0.005	0.000072	0.057	<0.01
06/21/17 200.7/200.8 0.0083 0.62 <0.002			19	0.033	2.1	0.013	<0.005	0.000037	0.06	0.04
03/29/17 200.7/200.8 0.0092 1.7 <0.002	0.62 <0.002		9.5	0.025	1.7	0.014	<0.005	<0.0002	0.063	0.019
12/06/17 200.7/200.8 0.0053 0.51 <0.002 <0.006 <0.006 4.1 <0.001/11/17 200.0 0.0002 1.1 20002 1.1 2000	1.7 <0.002		21	0.043	2.4	0.014	<0.005	0.00011	0.06	0.039
	0.51 <0.002		4.1	<0.0025	3.9	<0.005	0.0017	<0.0002	0.0043	<0.01
	0.0082 1.1 <0.002 0	0.019 0.017	23	0.024	4.8	0.007	<0.005	<0.0002	0.0061	0.042
06/21/17 200.7/200.8 0.0071 0.69 <0.002 <0.006 14 0.014	0.69 <0.002		14	0.014	4.3	0.0041	<0.005	<0.0002	0.0063	0.023
03/29/17 200.7/200.8 0.0079 0.81 <0.002 0.012 0.01 15 0.018	0.81 <0.002		15	0.018	4.6	0.0075	<0.005	0.000037	0.0056	0.026
0W-56 12/06/17 200.7/200.8 0.0049 0.41 <0.002 <0.006 0.0094 1.1 0.0012	0.41 <0.002		1.1	0.0012	0.1	<0.010	0.0014	0.00004	0.021	0.0062
09/11/17 200.7/200.8 0.0074 0.62 <0.002 0.0096 0.011 7.4 0.0055	0.62 <0.002		7.4	0.0055	0.35	0.01	<0.005	<0.0002	0.024	0.026
06/21/17 200.7/200.8 0.0073 0.39 <0.002 0.0072 0.016 5.2 0.005	0.39 <0.002		5.2	0.005	0.31	0.011	<0.005	<0.0002	0.023	0.019
03/29/17 200.7/200.8 0.0035 0.46 <0.002 0.01 6.4 0.00041	0.46 <0.007		6.4	0.00041	0.33	<0.020	<0.005	0.000041	0.022	0.025

Bold and highlighted values represent values above the applicable standards

WQCC 20 NMAC 6.2.3103 - Standards for Ground Water of 10,000 mg/l TDS Concentration or Less. a) Human Health Standards; b) Other Standards for Domestic Water EPA Regional Screening Level (RSL) Summary Table NMED Risk Assessment Guidance for Investigations and Remediations Table A-1 40 CFR 141.62 Detection Limits for Inorganic Contaminants

1) Additon of WQCC Metals per NMED's Comment 12 from "Approval with Modifications Annual Ground Water Monitoring Report, Rev 1, dated 12/12/12", to monitor upgradient wells.

DEFINITIONS

NE = Not established NA = Not analyzed

STANDARDS

NOTES

		Ľ							הכווי כוכמו	Necent Groundwarer Analyses	ß			
							DISSOLV	/ED ANAL	DISSOLVED ANALYSES PARAMETERS	METERS				
			Arsenic	Barium	Cadmium	Chromium	Copper	lron	Lead	Manganese	Selenium	Silver	Uranium	Zinc
	STANDARDS		(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
	WQCC 20NMAC 6.2.3103	.3103	0.1	1	0.01	0.05	1	1	0.05	0.2	0.05	0.05	0.03	10
	40 CFR 141.62 MCI	ICL	0.01	2	0.005	0.1	1.3	NE	0.015	NE	0.05	NE	0.03	NE
WN	NMED TAP WATER (MARCH 2017)	RCH 2017)	0.000855	3.28	0.00624	0.0057	0.7898	13.8	ЯN	2.02	0.0987	0.0812	0.0592	5.96
EPA	EPA RSL for Tap Water (MAY 2018)	MAY 2018)	0.000052	0.38	0.0092	NE	0.8	14	0.015	0.43	0.1	0.094	0.004	9
Well ID	DATE SAMPLED	METHOD												
OW-14	12/11/17	200.7/200.8	0.0083	2.1	<0.002	<0.006	<0.006	4.4	<0.0005	2.1	0.011	<0.005	0.0033	0.0085
	09/06/17	200.7/200.8	0.009	2.2	<0.002	<0.006	<0.006	4.6	<0.0005	2.1	0.013	<0.005	0.0042	0.029
	05/30/17	200.7/200.8	0.0076	2.2	<0.002	<0.006	<0.006	4.5	<0.0005	2.1	0.0069	<0.005	NA	0.026
	02/27/17	200.7/200.8	0.0083	2.3	<0.002	<0.006	<0.006	5.1	<0.0005	2.2	0.013	<0.005	NA	0.015
OW-54	12/06/17	200.7/200.8	0.0057	0.15	<0.002	<0.006	0.0077	0.31	0.0083	1.4	<0.05	<0.005	0.061	0.011
	09/11/17	200.7/200.8	0.0074	0.2	<0.002	<0.006	<0.006	0.75	0.0068	1.5	0.015	<0.005	0.055	0.025
	06/21/17	200.7/200.8	0.0078	0.14	<0.002	<0.006	0.0055	0.63	0.0049	1.2	0.014	<0.005	0.055	0.0062
	03/29/17	200.7/200.8	0.0041	0.22	<0.002	<0.006	0.012	0.72	0.0081	1.5	<0.02	<0.005	0.059	0.016
OW-55	12/06/17	200.7/200.8	0.0051	0.48	<0.002	<0.006	<0.006	3.7	<0.0005	3.9	0.0047	0.0019	0.0041	0.013
	09/11/17	200.7/200.8	0.0075	0.67	<0.002	<0.006	<0.006	5.3	0.0014	3.9	0.0086	<0.005	0.0042	0.022
	06/21/17	200.7/200.8	0.006	0.56	<0.002	<0.006	<0.006	4.2	0.00029	3.7	0.0056	<0.005	0.004	0.0082
	03/29/17	200.7/200.8	0.0058	0.63	<0.002	<0.006	<0.006	S	0.00091	4.2	0.0047	<0.005	0.0047	0.0083
OW-56	12/06/17	200.7/200.8	0.0046	0.34	<0.002	<0.006	0.009	<0.02	0.00038	0.048	0.012	<0.005	0.021	0.012
	09/11/17	200.7/200.8	0.0066	0.36	<0.002	0.0017	0.0057	0.048	0.00023	0.09	0.013	<0.005	0.018	0.04
	06/21/17	200.7/200.8	0.0054	0.26	<0.002	0.0014	0.011	0.026	<0.0005	0.073	0.014	<0.005	0.021	0.063
	03/29/17	200.7/200.8	0.0035	0.3	<0.002	<0.006	0.0066	0.085	0.00041	0.1	<0.02	<0.005	0.022	0.039

Bold and highlighted values represent values above the applicable standards

WQCC 20 NMAC 6.2.3103 - Standards for Ground Water of 10,000 mg/l TDS Concentration or Less. a) Human Health Standards; b) Other Standards for Domestic Water 40 CFR 141.62 Detection Limits for Inorganic Contaminants

1) Additon of WQCC Metals per NMED's Comment 12 from "Approval with Modifications Annual Ground Water Monitoring Report, Rev 1, dated 12/12/12", to monitor upgradient wells.

DEFINITIONS

NE = Not established

NA = Not analyzed

STANDARDS

NMED Risk Assessment Guidance for Investigations and Remediations Table A-1 EPA Regional Screening Level (RSL) Summary Table

NOTES

						Recer	Recent Groundwater Analyses	Analyses								
									PARAMETERS	ERS						
			1,2,4-	1,3,5-	1,2-Dichloro	1,2-Dibro		1-Methvl		Chloro	1 1-Dichloro	Isonronvl	Methylene	n-Rutvl	n-Pronvl	Sec-hutvl
			Trimethyl	Trimethyl	ethane	methane	Naphthalene	nanhthalene	Acetone		ethane	henzene	Chloride	henzene	henzene	benzene
	STANDARDS	RDS	benzene (mg/L)	benzene (mg/L)	(EDC) (mg/L)	(EDB) ¹ (mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
	WQCC 20NMAC 6.2.3103	C 6.2.3103	NE	NE	0.01	0.0001	NE	NE	NE	NE	0.025	NE	0.1	NE	NE	NE
	40 CFR 141.62 MCL	52 MCL	NE	NE	0.005	0.00005	NE	NE	NE	NE	NE	NE	0.005	NE	NE	NE
	NMED TAP WATER (MARCH 2017	(MARCH 2017)	NE	NE	0.00171	0.0000746	0.00165	0.0114	14.1	20.9	0.0275	0.447	0.106	NE	NE	NE
	EPA RSL for Tap Water (MAY 2018)	ter (MAY 2018)	0.056	0.06	0.00017	0.0000075	0.00017	0.0011	14	21	0.0028	0.45	0.011	1	0.66	2
Well ID	DATE SAMPLED	METHOD														
OW-14	12/11/17	8260B/8011(504.1EDB)	0.013	0.0021	<0.01	<0.01	0.037	0.033	<0.1	<0.03	<0.01	0.016	<0.03	0.003	0.028	0.0032
	09/06/17	8260B	0.012	0.0016	<0.005	<0.005	0.038	0.038	0.013	<0.015	<0.005	0.014	<0.015	0.0021	0.025	0.0027
	05/30/17	8260B	0.011	<0.05	<0.05	<0.05	0.028	0.037	<0.5	<0.15	<0.05	0.014	0.0073	<0.15	0.021	<0.05
	02/27/17	8260B	0.0074	<0.05	<0.05	<0.05	0.024	0.035	<0.5	<0.15	<0.05	0.0083	<0.15	<0.15	0.014	<0.05
OW-54	12/06/17	8260B	0.0094	0.00052	<0.005	<0.005	<0.01	<0.02	<0.05	<0.015	<0.005	0.00041	<0.015	<0.015	0.0014	<0.005
	09/11/17	8260B	0.018	0.0011	<0.005	<0.005	<0.01	<0.02	<0.05	<0.015	<0.005	0.00082	<0.015	<0.015	0.004	0.00068
	06/21/17	8260B	0.021	0.0022	<0.001	<0.001	0.0017	0.00098	0.018	<0.003	<0.001	0.0014	<0.003	0.00054	0.005	0.00094
	03/29/17	8260B	0.02	0.0021	0.00064	<0.001	0.0015	0.00063	<0.01	<0.003	<0.001	0.0013	<0.003	0.00049	0.0053	0.0011
OW-55	12/06/17	8260B	0.13	0.027	<0.1	<0.1	<0.2	<0.4	4	<0.3	<0.1	0.018	<0.3	<0.3	0.041	<0.1
	09/11/17	8260B	0.23	0.05	<0.1	<0.1	0.042	<0.4	4	<0.3	<0.1	0.016	<0.3	<0.3	0.058	<0.1
	06/21/17	8260B	0.33	0.093	<0.05	<0.05	0.052	0.029	<0.5	<0.15	<0.05	0.024	<0.15	0.013	0.07	0.0061
	03/29/17	8260B	0.39	0.1	<0.05	<0.05	0.07	0.027	<0.5	<0.15	<0.05	0.02	<0.15	<0.15	0.083	0.017
OW-56	12/06/17	8260B	<0.001	<0.001	0.019	<0.001	<0.002	<0.004	0.0059	<0.003	0.00067	0.0016	<0.003	<0.003	<0.001	0.00027
	09/11/17	8260B	<0.001	<0.001	0.0089	<0.001	<0.002	<0.004	0.0076	<0.003	0.00057	0.00091	<0.003	0.00015	<0.001	0.00014
	06/21/17	8260B	0.00012	<0.001	0.0039	<0.001	<0.002	<0.004	0.016	<0.003	<0.001	0.00028	<0.003	<0.003	<0.001	<0.001
	03/29/17	8260B	<0.001	<0.001	0.0047	<0.001	<0.002	<0.004	<0.01	<0.003	0.00064	0.00052	<0.003	<0.003	<0.001	0.00034

Table 3-2

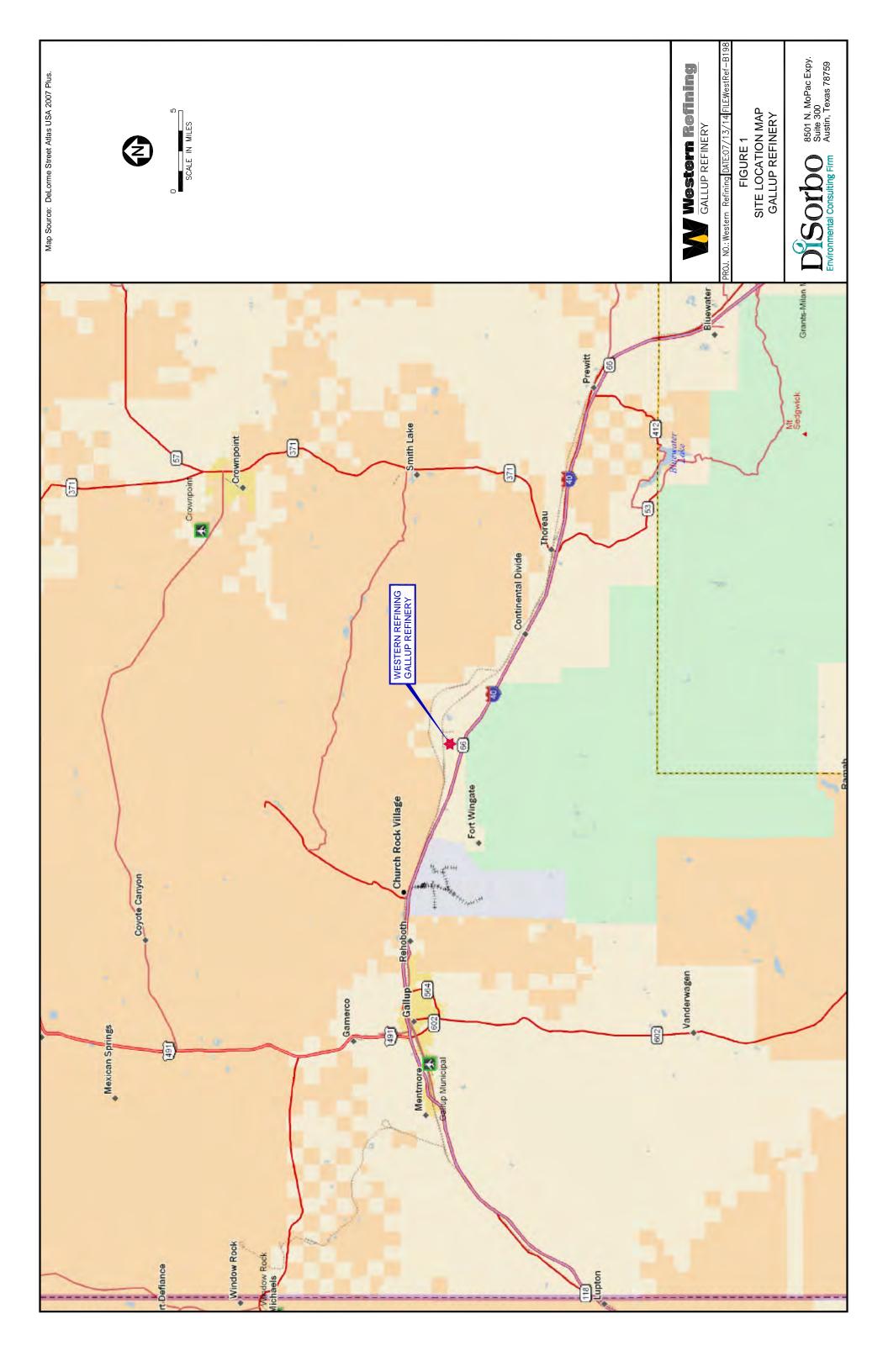
.

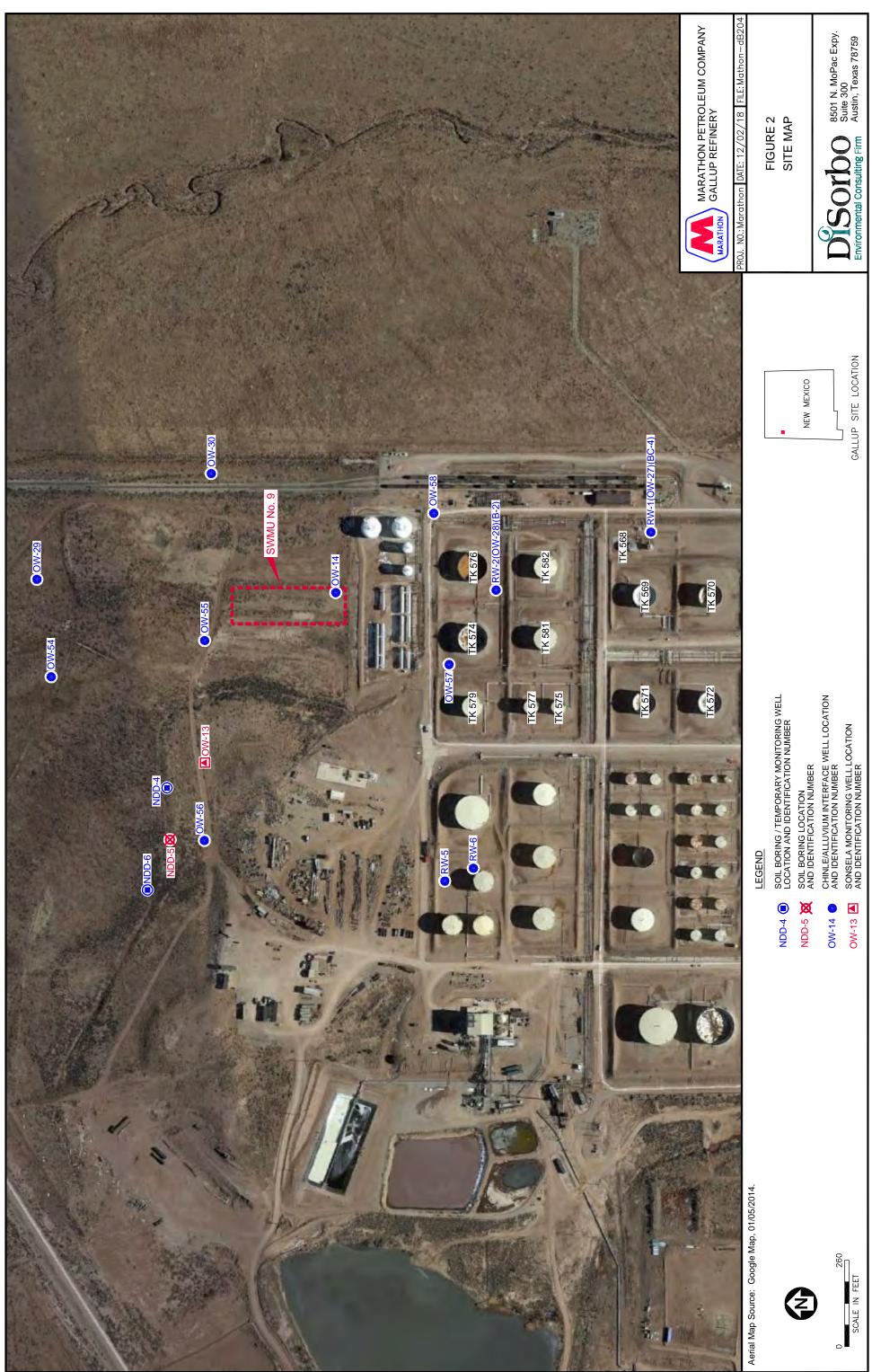
NOTES

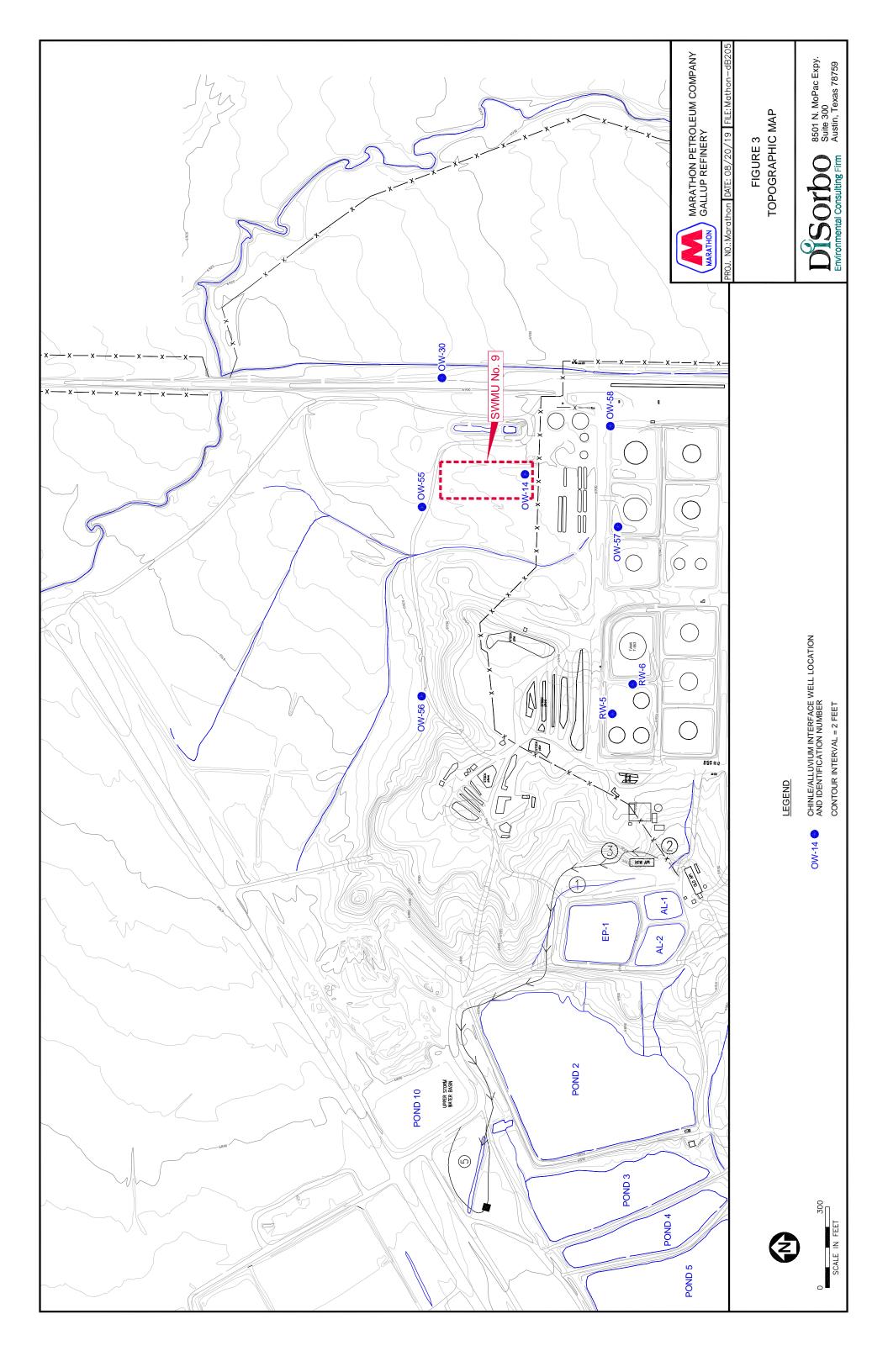
WQCC 20 NMAC 6.2.3103 - Standards for Ground Water of 10,000 mg/l TDS Concentration or Less. a) Human Health Standards; b) Other Standards for Domestic Water
40 CFR 141.62 Detection Limits for Inorganic Contaminants
EPA Regional Screening Level (RSL) Summary Table
NMED Risk Assessment Guidance for Investigations and Remediations Table A-1

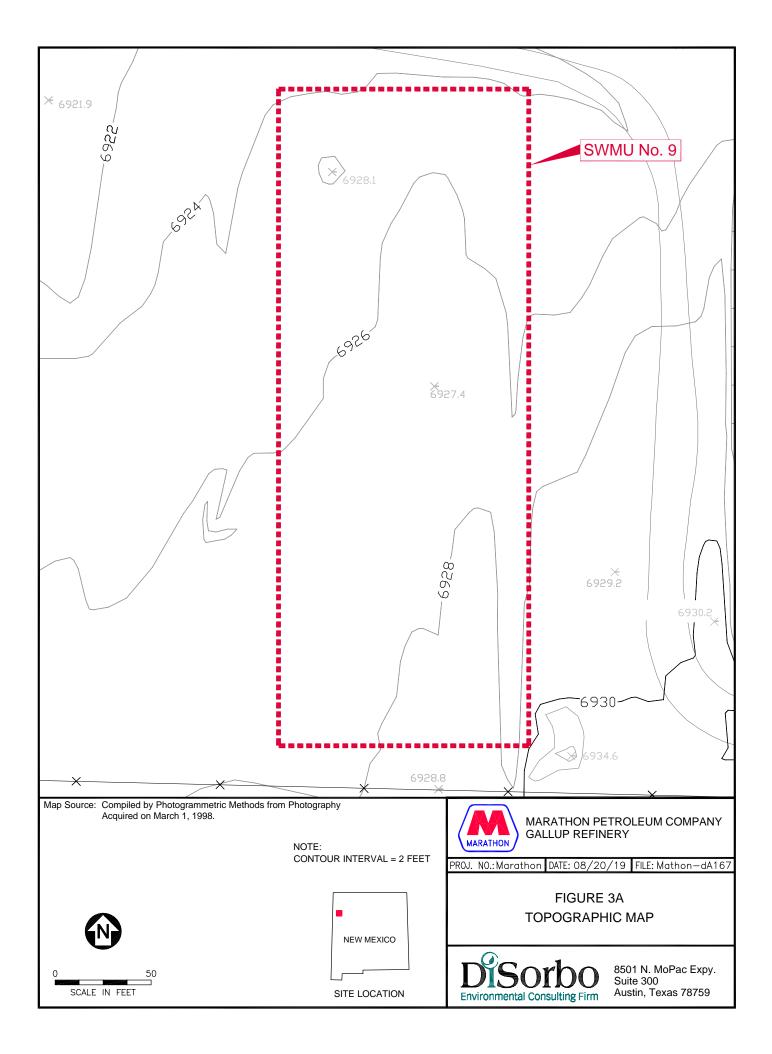
1) New requirement per directive from NMED "Approval with Modifications", dated May 18, 2016.

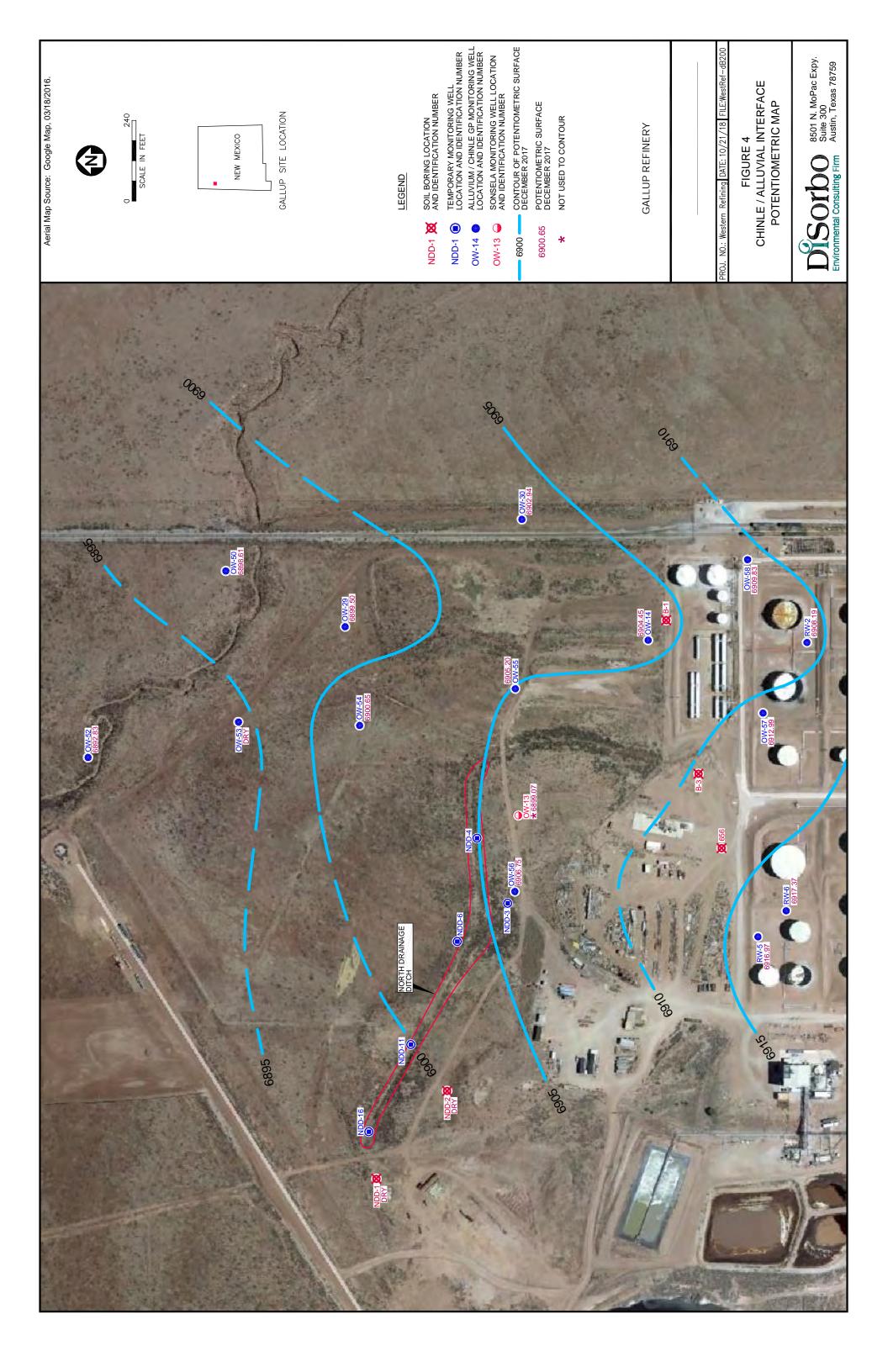
DEFINITIONS

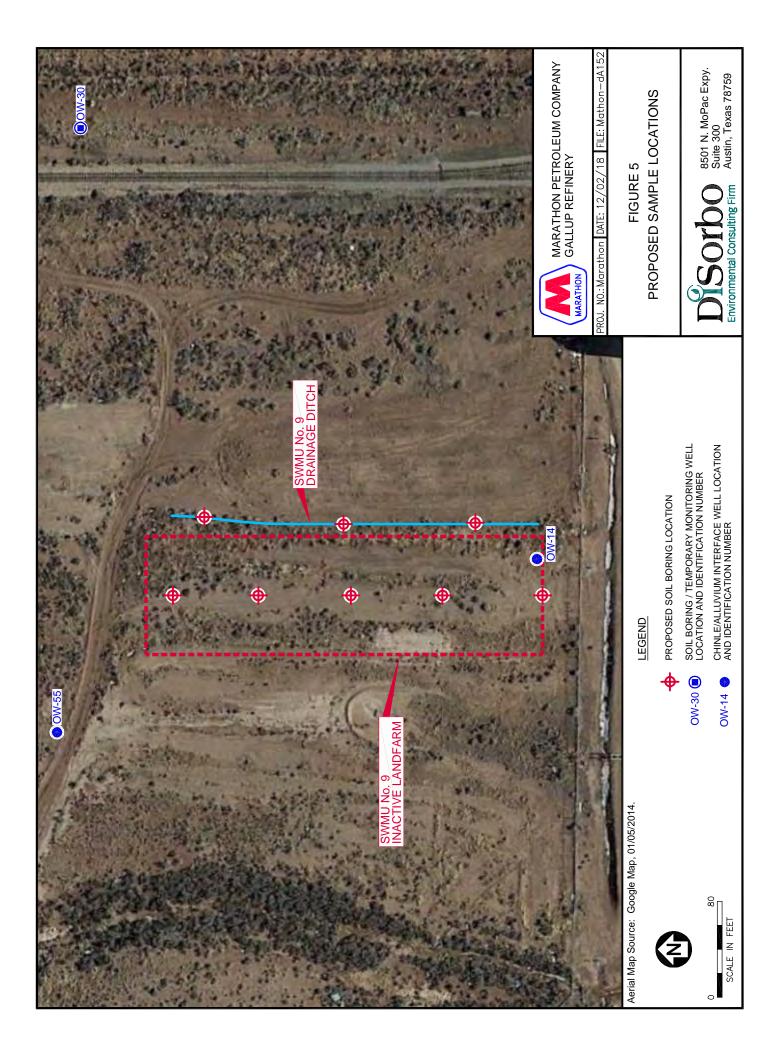

NE = Not established NA = Not analyzed

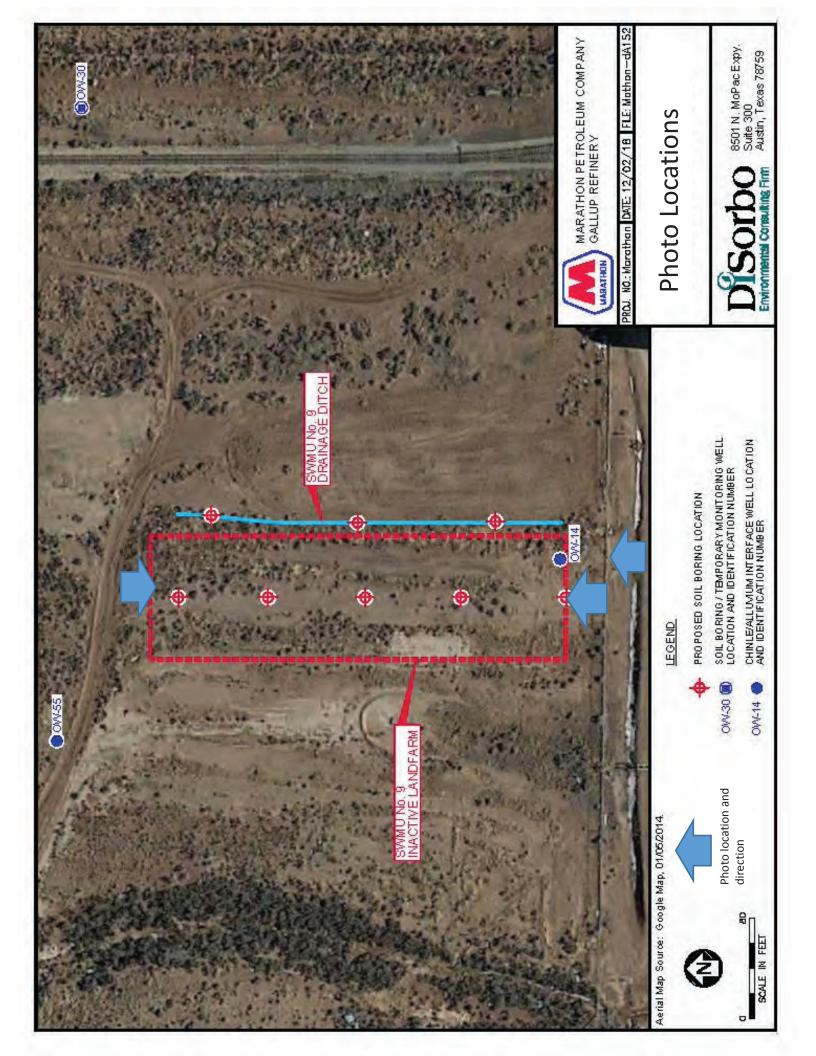

Bold and highlighted values represent values above the applicable standards


STANDARDS


Figures


- Figure 1 Site Location Map
- Figure 2 Site Map
- Figure 3 Topographic Map
- Figure 3A Topographic Map
- Figure 4 Potentiometric Surface Alluvium/Chinle GP Interface
- Figure 5 Sample Location Map



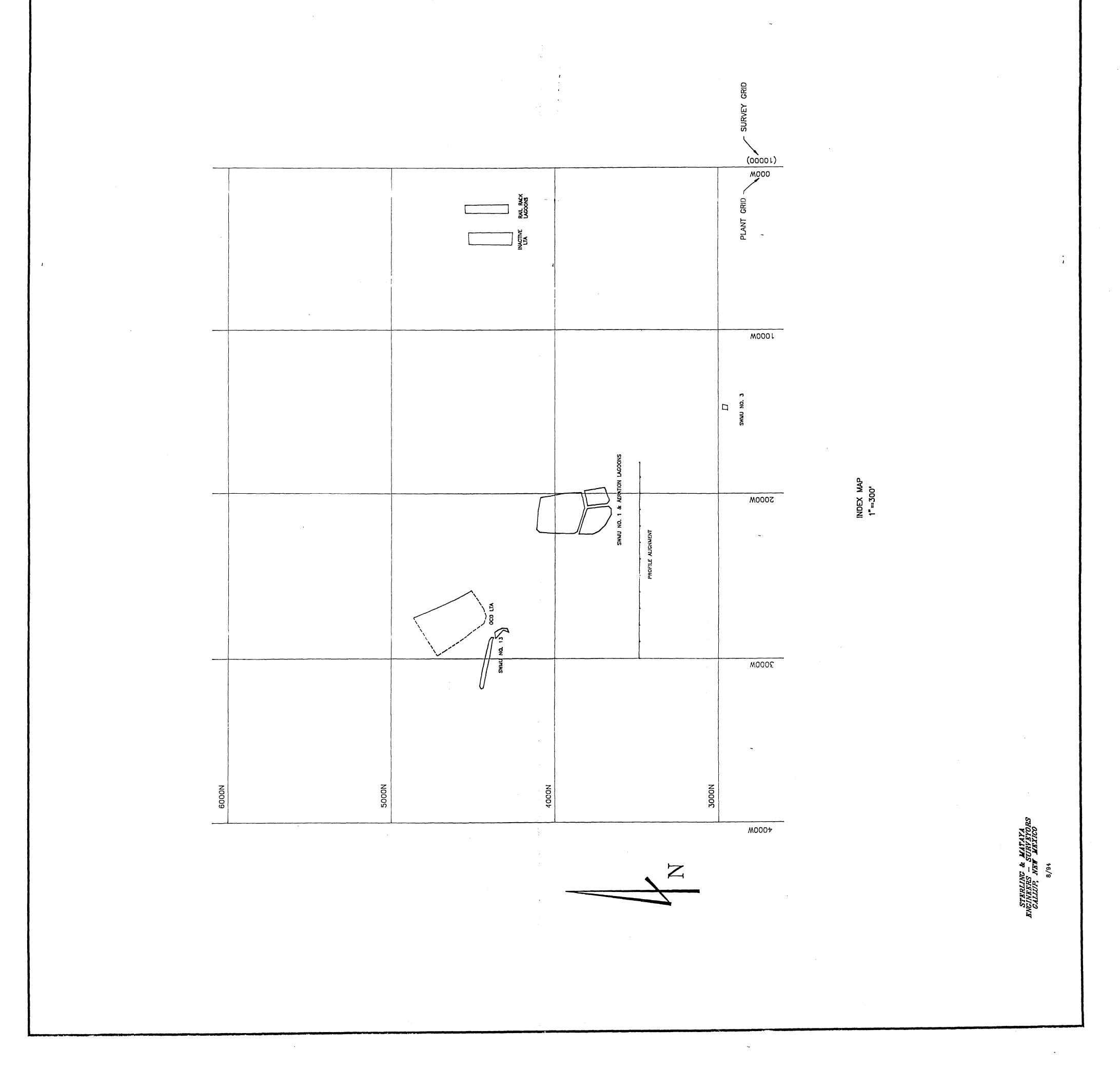


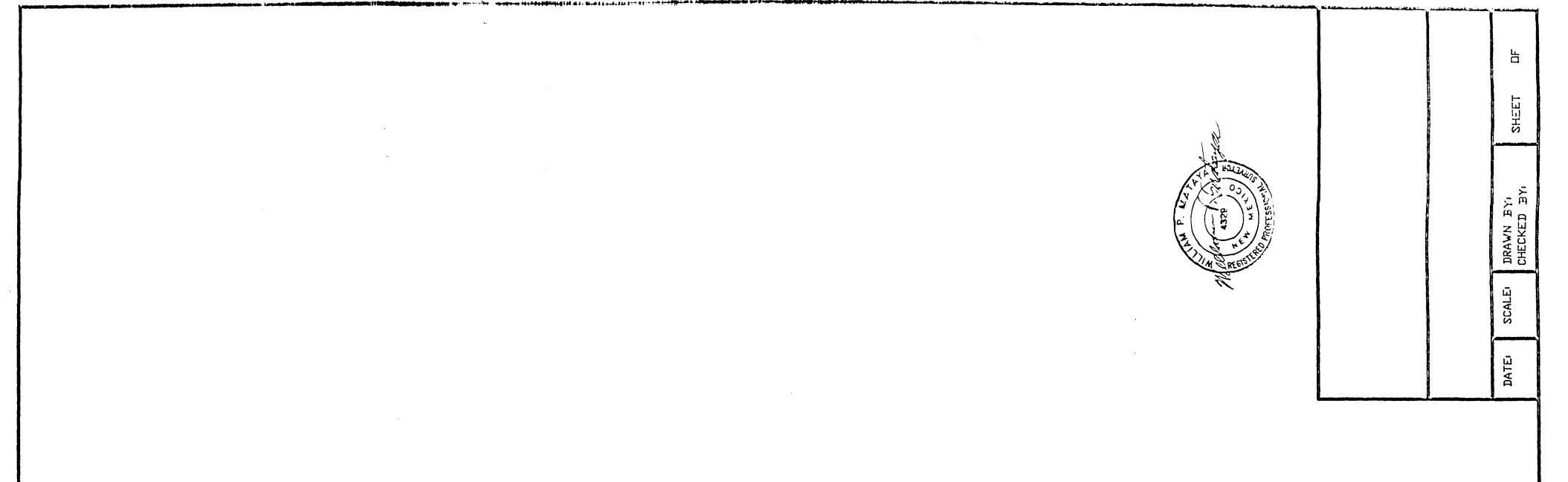
Appendix A Photographs

Looking north across SWMU No. 9 from southeast corner of SWMU, near OW-14. Drainage ditch to right (east) of the Inactive Landfarm Area.

Looking north from south end across Inactive Landfarm portion of SWMU No. 9.

Looking south across SWMU No. 9 from north end of SWMU No. 9.

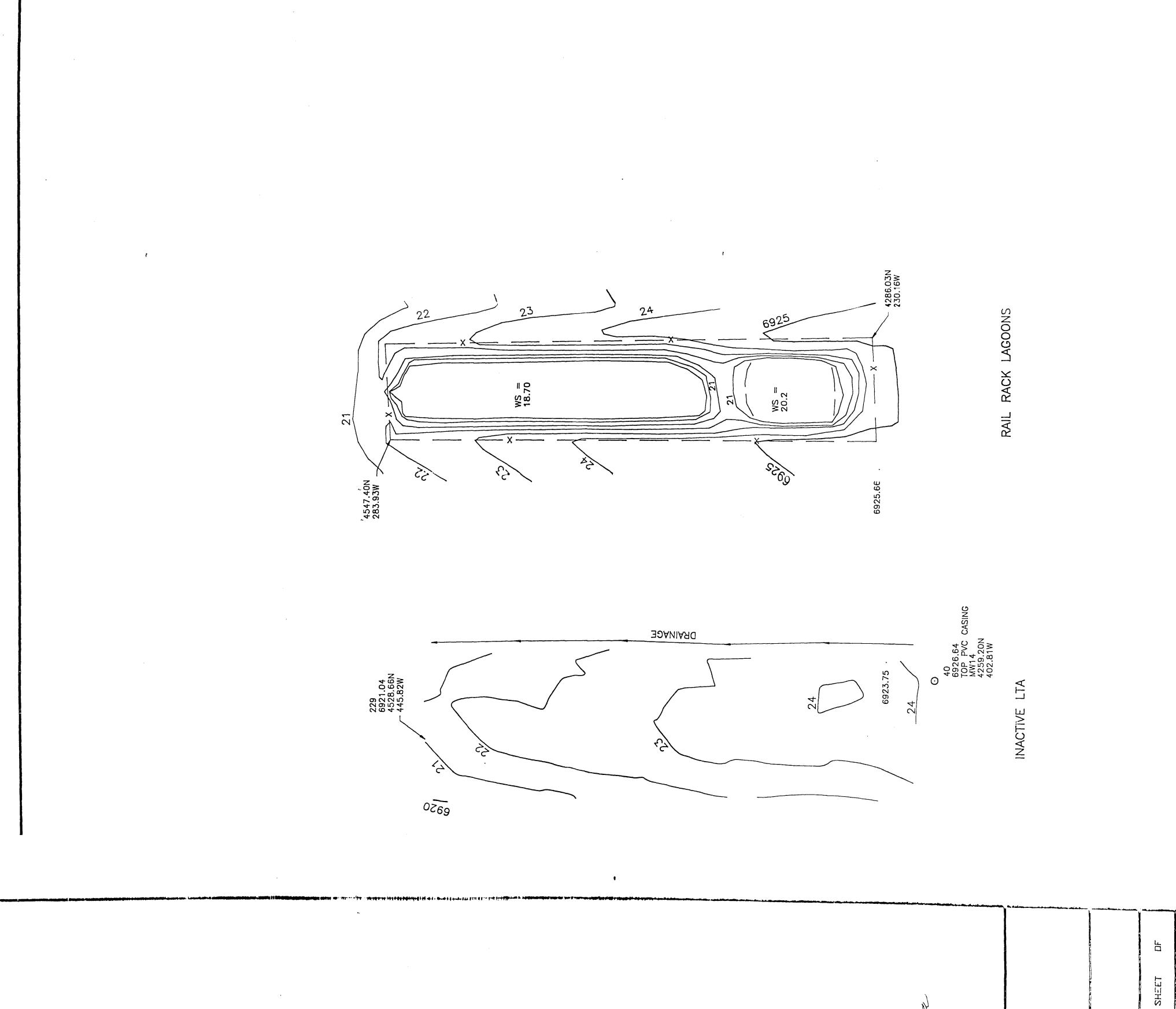

Appendix B Historical Documentation The second secon


SHEE

DRAWN BYI CHECKED BYI

SCALEI

DATE



.

.

· ~

REESTREST

DRAWN BY: CHECKED BY:

SCALE

DATEI

RFI09 - Inactive Land Treatment Area and Drainage Ditch

Parameter Units Result 1.101	Sample roint number Derth of samrle		01 70.0	01 V3.0	01 V5.0	01 V7.0	02 V0.0	02 V3.0	02 V5.0	02 V7.0
Chloronathanc ug/ks ND	Parameter	Units	Result	Recult	Result	Result	Result	Result	Result	Result
Bronsmethane UJ/kg ND	Method 8240									
Vinvl chloride us/ks ND	Chloromethanc	us/ks	ND							
Chloroothane u9/ks ND	Bromomethane	us/ks	ND	ND	ND	ND	ND	ND	DA	ND
Methylene chloride ug/kg ND ND </td <td>Vinyl chloride</td> <td>us/ka</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td>	Vinyl chloride	us/ka	ND							
1.1-Dichloreethane ug/kg ND	Chloroothane	us/ks	ND							
1.1-Dichloroethane us/ks ND ND <t< td=""><td>Methylene chloride</td><td>ua/ka</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>NÐ</td></t<>	Methylene chloride	ua/ka	ND	NÐ						
1.2-Dichloroethene (cis/trans) us/ks ND N	1,1-Dichloroethenc	us/ks	ND	ND	ND	MD	ND	ND	ND	ND
Chloroform us/ks ND	1,1-Dichloroethane	us/ks	NÐ	ND	DM	ND	ND	ND	ND	ND
1.2-Dichlorocthane ug/kg ND ND <t< td=""><td>1,2-Dichloroethene (cis/trans)</td><td>us/ks</td><td>ND</td><td>ND</td><td>ND</td><td>DM</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td></t<>	1,2-Dichloroethene (cis/trans)	us/ks	ND	ND	ND	DM	ND	ND	ND	ND
1.1.1-Trichloroethane ug/ks ND N	Chloroform	us/ka	ND							
Carbon tetrachloride ug/kg ND	1,2-Dichloroethane	us/ko	ND							
Bromodichloromethane up/ks ND	1,1,1-Trichlorocthane	u9/kc	ND							
1.2-Dichloropropane up/ks ND <	Carbon tetrachloride	us/ko	ND							
trans-1.3-Dichloropropene us/ks ND <	Bromodichloromethane	uo/ka	ND							
Trichlorocthene U2/kg ND	1,2-Dichloropropane	uo/ke	NÐ	ND	ND	DK	ND	ND	ND	ND
Dibromochloromethane U9/kg ND	trans-1.3-Dichloropropene	ua/ka	ND	ND	ND	ND	NB	ND	ND	ND
1.1.2-Trichlorozthene U3/k3 ND N	Trichloroethene	uo/ke	ND							
Benzene ug/kg ND	Dibromochloromethane	u9/ko	ND	ND	ND	ND	ND	ND	MD	Œł
cis-1,3-Dichlororrorene ug/kg ND ND <th< td=""><td>1,1,2-Trichloroethene</td><td>us/ko</td><td>ND</td><td>ND</td><td>ND</td><td>· ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td></th<>	1,1,2-Trichloroethene	us/ko	ND	ND	ND	· ND	ND	ND	ND	ND
2-Chloroethyl vinyl ether us/ks ND <	Benzene	us/ks	ND	HD -	ND	ND	ND	ND	ND	D.M
Broadform us/ks ND	cis-1,3-Dichlororrorene	ua/ka	ND							
1,1,2,2-Tetrachlorocthane, uz/ks ND	2-Chloroethy) vinyl ether	u9/k9	ND							
Tetrachloroethene ug/kg ND ND <td>Broaoform</td> <td>us/ks</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td>	Broaoform	us/ks	ND							
Toluene us/ks ND	1,1,2,2-Tetrachloroethane,	uc/ka	ND							
Chlorobenzene U9/k3 ND	Tetrachloroethene	us/ke	ND	ND ·						
Ethylbenzeneug/kgNDNDNDNDNDNDNDNDAcetoneug/kgNDNDNDNDNDNDNDNDNDAcroleinug/kgNDNDNDNDNDNDNDNDNDAcrylonitrileug/kgNDNDNDNDNDNDNDNDCarbon disulfideug/kgNDNDNDNDNDNDNDDibromomethaneug/kgNDNDNDNDNDNDNDtrans-1.4-Dichloro-2-buteneug/kgNDNDNDNDNDNDbichlorodifluoromethaneug/kgNDNDNDNDNDNDtrans-1.2-Dichloroetheneug/kgNDNDNDNDNDNDtrans-1.2-Dichloroetheneug/kgNDNDNDNDNDNDIdomethaneug/kgNDNDNDNDNDNDNDZ-Butanone (MEK)ug/kgNDNDNDNDNDNDNDStyreneug/kgNDNDNDNDNDNDNDND12.3-Trichloropropaneug/kgNDNDNDNDNDNDNDVinyl acetateug/kgNDNDNDNDNDNDNDVinyl acetateug/kgNDNDNDNDNDNDNDVinyl	Toluene	ua/ka	ND							
Acctone ug/kg ND		u9/ka	ND							
Acroleinus/ksNDNDNDNDNDNDNDAcrylonitrileus/ksNDNDNDNDNDNDNDNDCarbon disulfideus/ksNDNDNDNDNDNDNDNDDibromomethaneus/ksNDNDNDNDNDNDNDNDtrans-1,4-Dichloro-2-buteneus/ksNDNDNDNDNDNDNDDichlorodifluoromethaneus/ksNDNDNDNDNDNDNDtrans-1,2-Dichloroethaneus/ksNDNDNDNDNDNDNDtrans-1,2-Dichloroethaneus/ksNDNDNDNDNDNDNDtrans-1,2-Dichloroethaneus/ksNDNDNDNDNDNDNDtrans-1,2-Dichloroethaneus/ksNDNDNDNDNDNDNDtrans-1,2-Dichloroethaneus/ksNDNDNDNDNDNDNDtrans-1,2-Dichloroethaneus/ksNDNDNDNDNDNDNDtrans-1,2-Dichloroethaneus/ksNDNDNDNDNDNDtrans-1,2-Dichloroethaneus/ksNDNDNDNDNDNDtrans-1,2-Dichloroethaneus/ksNDNDNDNDNDNDtrans-1,2-Dichloroethaneus/ksNDNDND <t< td=""><td>Ethylbenzene</td><td>u9/k9</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td></t<>	Ethylbenzene	u9/k9	ND							
Acrylonitrileug/kgNDNDNDNDNDNDNDNDCarbon disulfideug/kgNDNDNDNDNDNDNDNDNDDibromomethaneug/kgNDNDNDNDNDNDNDNDNDtrans-1.4-Dichloro-2-buteneug/kgNDNDNDNDNDNDNDNDDichlorodifluoromethaneug/kgNDNDNDNDNDNDNDNDDichlorodifluoromethaneug/kgNDNDNDNDNDNDNDNDtrans-1.2-Dichloroetheneug/kgNDNDNDNDNDNDNDNDtrans-1.2-Dichloroetheneug/kgNDNDNDNDNDNDNDNDtodomethaneug/kgNDNDNDNDNDNDNDNDIodomethaneug/kgNDNDNDNDNDNDND2-Butanone (MEK)ug/kgNDNDNDNDNDNDND4-Micthyl-2-rentanone (MIBK)ug/kgNDNDNDNDNDNDND5tyreneug/kgNDNDNDNDNDNDNDNDND1.2.3-Trichloropropaneug/kgNDNDNDNDNDNDNDNDVinyl acetateug/kgNDNDNDNDND	Acetone	ua/ka	ND							
Carbon disulfideU9/k9NDNDNDNDNDNDNDNDNDDibromomethaneU9/k9NDNDNDNDNDNDNDNDNDNDtrans-1,4-Dichloro-2-buteneU9/k9NDNDNDNDNDNDNDNDNDDichlorodifluoromethaneU9/k9NDNDNDNDNDNDNDNDNDtrans-1,2-DichloroetheneU9/k9NDNDNDNDNDNDNDNDEthanolU2/k9ND16000ND24000NDNDNDNDIodomethaneU9/k9NDNDNDNDNDNDND2-Butanone (MEK)U9/k9NDNDNDNDNDNDND4-Micthyl-2-rentanone (MIBK)U9/k9NDNDNDNDNDNDNDStyreneU3/k9NDNDNDNDNDNDNDNDND1,2,3-TrichloropropaneU9/k9NDNDNDNDNDNDNDNDNDVinyl acetateU9/k9NDNDNDNDNDNDNDNDNDNDEthyl methacrylateU9/k9NDNDNDNDNDNDNDNDNDNDVinyl acetateU9/k9NDNDNDNDNDNDNDNDNDNDND </td <td></td> <td>v9/ks</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td>		v9/ks	ND							
Dibromomethaneus/ksNDNDNDNDNDNDNDNDNDtrans-1,4-Dichloro-2-buteneus/ksNDNDNDNDNDNDNDNDNDDichlorodifluoromethaneus/ksNDNDNDNDNDNDNDNDNDtrans-1,2-Dichloroetheneus/ksNDNDNDNDNDNDNDNDEthanolus/ksND16000ND24000ND23000NDNDIodomethaneus/ksNDNDNDNDNDNDND2-Butanone (MEK)us/ksNDNDNDNDNDNDND4-Michyl-2-rentanone (MIBK)us/ksNDNDNDNDNDNDNDStyreneus/ksNDNDNDNDNDNDNDND1,2,3-Trichloropropaneus/ksNDNDNDNDNDNDNDNDVinyl acetateus/ksNDNDNDNDNDNDNDNDNDEthyl methacrylateus/ksNDNDNDNDNDNDNDNDNDNDXylenes (total)us/ksNDNDNDNDNDNDNDNDNDND	Acrylonitrile	us/ks	ND	ND	ND	ND	NÐ	ND	NÐ	ND
trans-1,4-Dichloro-2-buteneus/ksNDNDNDNDNDNDNDNDDichlorodifluoromethaneus/ksNDNDNDNDNDNDNDNDtrans-1,2-Dichloroetheneus/ksNDNDNDNDNDNDNDNDEthanolus/ksND16000NDNDNDNDNDNDIodomethaneus/ksNDNDNDNDNDNDND2-Butanone (MEK)us/ksNDNDNDNDNDNDND4-Methyl-2-rentanone (MIBK)us/ksNDNDNDNDNDNDNDStyreneus/ksNDNDNDNDNDNDNDND1,2,3-Trichloropropaneus/ksNDNDNDNDNDNDNDNDVinyl acetateus/ksNDNDNDNDNDNDNDNDNDXylenes (total)us/ksNDNDNDNDNDNDNDNDND	Carbon disulfide	u9/k9	ND							
Dichlorodifluoromethaneug/kgNDNDNDNDNDNDNDNDtrans-1.2-Dichloroetheneug/kgNDNDNDNDNDNDNDNDEthanolug/kgNDNDNDNDNDNDNDNDIodomethaneug/kgNDNDNDNDNDNDND2-Butanone (MEK)ug/kgNDNDNDNDNDNDND4-Methyl-2-rentanone (MIBK)ug/kgNDNDNDNDNDNDNDStyreneug/kgNDNDNDNDNDNDNDNDTrichlorofluoromethaneug/kgNDNDNDNDNDNDND1.2,3-Trichloropropaneug/kgNDNDNDNDNDNDNDVinyl acetateug/kgNDNDNDNDNDNDNDXylenes (total)ug/kgNDNDNDNDNDNDND		us/ka	ND							
trans-1,2-Dichloroethene UD/kp ND		us/ks	ND	ND	ND.	ND	ND	ND	ND	ND
Ethanolup/kpND16000ND24000ND23000NDNDIodomethaneup/kpNDNDNDNDNDNDNDND2-Butanone (MEK)up/kpNDNDNDNDNDNDNDND4-Mcthyl-2-pentanone (MIBK)up/kpNDNDNDNDNDNDND5tyreneup/kpNDNDNDNDNDNDNDTrichlorofluoromethaneup/kpNDNDNDNDNDND1,2,3-Trichloropropaneup/kpNDNDNDNDNDNDVinyl acetateup/kpNDNDNDNDNDNDNDEthyl methacrylateup/kpNDNDNDNDNDNDNDXylenes (total)up/kpNDNDNDNDNDNDNDND	Dichlorodifluoromethane	us/ks	ND							
Iodomethaneus/ksNDNDNDNDNDNDNDND2-Butanone (MEK)us/ksNDNDNDNDNDNDNDNDND4-Micthyl-2-pentanone (MIBK)us/ksNDNDNDNDNDNDNDNDNDStyreneus/ksNDNDNDNDNDNDNDNDNDTrichlorofluoromethaneus/ksNDNDNDNDNDNDND1,2,3-Trichloropropaneus/ksNDNDNDNDNDNDNDVinyl acetateus/ksNDNDNDNDNDNDNDNDEthyl methacrylateus/ksNDNDNDNDNDNDNDNDXylenes (total)us/ksNDNDNDNDNDNDNDNDND	trans-1,2-Dichloroethene	uo/ko	ND							
2-Butanone (MEK)us/ksNDNDNDNDNDNDNDND4-Micthyl-2-rentanone (MIBK)us/ksNDNDNDNDNDNDNDNDNDStyreneus/ksNDNDNDNDNDNDNDNDNDNDTrichlorofluoromethaneus/ksNDNDNDNDNDNDNDND1,2,3-Trichloropropaneus/ksNDNDNDNDNDNDNDVinyl acetateus/ksNDNDNDNDNDNDNDEthyl methacrylateus/ksNDNDNDNDNDNDNDXylenes (total)us/ksNDNDNDNDNDNDNDND	Ethanol	ปว∕kว	ND	16000	ND	24000	ND	23000	ND	ND
4-Mcthyl-2-pentanone (MIBK)us/ksNDNDNDNDNDNDNDNDNDStyreneu3/ksNDNDNDNDNDNDNDNDNDNDTrichlorofluoromethaneus/ksNDNDNDNDNDNDNDNDND1,2,3-Trichloropropaneus/ksNDNDNDNDNDNDNDNDVinyl acetateus/ksNDNDNDNDNDNDNDNDEthyl methacrylateus/ksNDNDNDNDNDNDNDNDXylenes (total)us/ksNDNDNDNDNDNDNDND	Iodomethane	u9/k9	ND							
Styreneu3/k9ND <t< td=""><td></td><td>u9/k9</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td></t<>		u9/k9	ND							
Trichlorofluoromethaneus/ksNDNDNDNDNDNDNDND1,2,3-Trichloropropaneus/ksNDNDNDNDNDNDNDNDVinyl acetateus/ksNDNDNDNDNDNDNDNDEthyl methacrylateus/ksNDNDNDNDNDNDNDXylenes (total)us/ksNDNDNDNDNDND			ND					ND		ND
1.2.3-Trichloropropaneus/ksND <td></td> <td></td> <td>ND</td> <td></td> <td></td> <td>ND</td> <td></td> <td>ND</td> <td>ND</td> <td>DM</td>			ND			ND		ND	ND	DM
Vinylacetate us/ks ND ND ND ND ND ND ND ND ND ND Ethylmethacrylate us/ks ND ND ND ND ND ND ND ND ND Xylenes (total) us/ks ND ND ND ND ND ND ND ND ND										
Vinylacetate us/ks ND ND ND ND ND ND ND ND ND Ethylmethacrylate us/ks ND ND ND ND ND ND ND ND ND ND Xylenes (total) us/ks ND ND ND ND ND ND ND ND ND					• •					
Xylenes (total) us/ks ND ND ND ND ND ND ND ND					NÐ	ND				
2-Hexanone us/ks ND ND ND ND ND ND ND ND ND										
	2 -H exanone	ua/ka	ND	ND	ND	ND	ND	MD	ND	ND

RFI09 -	Inactive Land	Treatment	Area and	Brainase Ditch	

Sample point number Depth of sample		01 V0.0	01 V3.0	01 V5.0	. 01 ∛7₊0	02 V0.0	02 V3.0	02 V5.0	02 V7.0	
Parameter	Units	Result	Result	Result	Result	Result	Result	Result	Result	
Method 8270										
Acenarthene	us/ks	ND	ND	ND	ND	ND	ND	ND	ND	
Acenarhthylene	uo/ka	ND	ND	ND	ND	ND	ND	MD	ND	
Acetophenone	us/ks	ND	ND	ND	ND	ND	ND	ND	ND	
1-Aminobiphenr1	us/ks	ND	ND	ND	ND	ND	ND	ND	ND	
Aniline	us/ks	ND	ND	ND	ND	ND	ND	ND	ND	
Anthracene	ug/kg	ND	ND	DM	ND	ND	ND	ND	ND	
Benzo(a)anthracene	uc/ka	ND	ND	ND	ND	ND	ND	ND	ND	
Benzo(b)fluoranthene	u9/k9	MD	ND	ND	ND	ND	ND	ND	ND	
Benzo(k)fluoranthene	uc/ka	ND	ND	ND	ND	ND	NÐ	ND	ND	
Benzo(5,h,i)pervlene	u3/k9	. ND	ND	ND	ND	ND	ND	ND	ND	
Benzo(a)pyrenc Benzyl alcohol	uc/ka	ND	ND	ND	ND	ND ND	ND	ND	ND	
	u9/k9	ND	ND	DND ND	ND	ND	ND	ND	ND	
bis(2-Chloroethoxy)-methane	us/ks	ND	ND	ND	ND	ND	ND	ND	ND	
bis(2-Chlorocthyl) ether bis(2-Chloroisopropyl)-ether	us/ko us/ks	nd ND	ND ND	nd ND	ND	nd ND	nd ND	ND	ND	
bis(2-Ethylhexyl) phthalate					ND	ND ND		ND	ND	
<pre>9-Bromorhenyl rhenyl ether</pre>	us/ks us/ks	nd Nd	nd ND	nd Nd	nd Nd	nu MD	nd Nd	ND ND	nd Nd	
Butyl benzyl phthalate	09/k9 02/k9	ND	ND	ND	ND ND	ND	ND ND	ND	ND	
4-Chloroaniline	ug/kg	ND	ND	ND	ND	ND	riu ND	ND	ND	
1-Chloro-3-methylphenol	ug/ka	ND	ND	ND	ND	ND	ND	ил DM	ND	
2-Chloromaphthalene	ug/kg	ND	ND	ND	ND	ND	ND	ND	ND	
2-Chlorophenol	uo/ko	ND	ND	ND	ND	ND	ND	ND	ND	
1-Chlorophenyl phenyl ether	ug/kg	ND	ND	ND	ND	ND	ND	ND	ND	
o-Cresol	us/ks	סא	ND	ND	ND	ND	ND	ND	ND	
a & r-Cresol(s)	u9/k9	ND	ND	ND	ND	ND	ND	ND	ND	
Chrysene	us/ks	ND	ND	ND	ND	ND	ND	ND	ND	
Dibenz(a,h)anthracene	u9/k9	ND	ND	ND	ND	ND	ND	ND	ND	
Di-n-butyl shthalate	ug/kg	ND	ND	ÍND	ND	ND	ND	ND	ND	
1,2-Dichlorobenzene	us/ks	ND	ND	ND	ND	ND	ND	ND	ND	
1,3-Dichlorobenzene	us/ks	ND	ND	ND	ND	ND	ND	ND	ND	
1,4-Dichlorobenzene	us/ks	ND	ND	ND	ND	ND	ND	ND	ND	
3,3-Dichlorobenzene	uo/ke	ND	ND	ND	ND	ND	ND	ND	ND	
2,4-Dichlorophenol	u9/k9	ND	ND	ND	ND	ND	ND	ND	ND	
2.6-Dichlorophenol	ao/ka	ND	ND	ND	ND	ND	ND	ND	ND	
Diethyl phthalate	u9/k9	ND	ND	ND	ND	ND	ND	ND	ND	
p-Dimethylaminoazobenzene	us/ks	ND	ND	ND	ND	ND	ND	ND	ND	
7,12-Dimethylbenz(a)-	ua/kc	NÐ	ND	ND	ND	ND	ND	ND	ND	
anthracene	ua/ko	ND	ND	ND	ND	ND	ND	ND	ND	
a,a-Dimethylphenethyl-amine	u3/ka	ND	ND	ND	ND	ND	ND	ND	ND	
2,1-Dimethylphenol	us/ks	ND	ND	ND	ND	ND	ND	ND	ND	
Dimethyl phthalate	ua/ka	ND	ND	ND	ND	ND	ND	ND	ND	
1,3-Dinitrobenzene	us/ks	ND	ND	ND	ND	ND	ND	ND	ND	
4,6-Dinitro-o-cresol	ua/ka	ND	ND	ND	NÐ	ND	ND	ND	ND	
2,4-Dinitrophenol	us/ks	ND	NÐ	ND	ND	D	ND	ND	ND	
2,4-Dinitrotoluene	us/ka	ND.	· ND	ND	ND	ND	NÐ	ND ·	ND	
2.6-Dinitrotoluene	us/ks	ND	ND	ND	ND	ND ND	ND	ND	ND	
Di-n-octyl phthalate Birhenylamine	ug/kg	nd Nd	ND ND	ND ND	ND	nd Nd	ND ND	MD ND	ND	
DIVICULIZATIO	us/ks	rω	NU	ND	ND	ΠU	ND	ND	ND	

Sample point number learth of sample		01 V0.0	01 V3.0	01 V5.0	01 V7.0	02 V0.0	02 V3.0	02 √5.0	02 V7.0
Parameter	Units	Result							
Method 8270 (con't)									
Ethyl methanesulfonate	uo/ka	ND							
Fluoranthene	us/ks	ND	MD	ND	ND	NÐ	ND	ND	ND
Fluorene	u9/k9	ND							
Hexachlorobenzene	us/ks	ND	ND	ND	ND	MÐ	ND	ND	ND
Hexachlorobutadiene	us/ka	ND							
Hexachlorocyclopentadiene	uo/ke	ND							
Hexachloroethane	u9/ks	ND							
Indeno(1,2,3-cd)pyrone	us/ka	ND							
Isorhorone	u9/k9	ND							
3-Methylcholanthrene	us/ks	נא	ND						
Methyl methanesulfonate	us/ko	NÐ	ND						
2-Methylnaphthalene	us/ks	ND	Ъ						
Naphthalene	uo/ko	ND							
1-Maphthylamine	ua\Xa	ND							
2-Naphthylamine	us/ko	ND							
2-Nitroaniline	us/ka	ND							
3-Nitroanilinc	u9/k9	ND							
5-Nitroaniline	us/ks	ND							
Nitrobenzene	us/ks	ND							
2-Nitrophenol	uo/ka	ND	tD:	ND	ND	ND	ND	ND	ND
1-Nitrophenol	ua/ka	ND							
N-Nitroso-di-n-butylamine	us/ks	ND							
N-Nitrosodimethylamine	us/ks	ND	ND	ND	NÐ	ND	ND	КD	ND
N-N itrosodiphenylamine	uo/ka	ND	HD						
N-Nitroso-di-n-propylamine	us/ko	ND							
N-Nitrosopiperidine	ua/ka	ND	ВN	ND .	ND	ND	ND	ND	ND
Pentachlorobenzene	u9/ks	ND							
Pentachloronitrobenzene	us/ks	ND	ND	HD	MD	ND	ND	ЖD	ND
Pentachlorophenol	us/ks	ND	ND	ND	NÐ	ND	ND	ND	ND
Phenacetin	u9/ks	ND	ND	HD	ND	Шĸ	ND	ND	ND
Phonanthrene	us/ks	ND	ND	ND	NÐ	ND	ND	ND	ND
Phenol	us/ks	ND							
2-Picoline	us/ks	ND	NÐ						
Pronamide	us/ka	ND							

us/ks

ug/kg

u9/k9

uo/ke

us/kg

uo/ka

us/ks

ua/ka

ua/ka

us/ks

Pyrene

Benzidine

Benzoic acid

1,2,4,5-Tetrachloro-benzene

2,3,4,6-Tetrachlororhenol

1.2.4-Trichlorobenzene

2,4,5-Trichlorophenol

2,4,6-Trichlorophenol

1-Chloronaphthalene

1,2-Diphenylhydrazinc

ND

ND

ND

ND

ND

MD

ND

ND

ND

ND

ND

ND

ND

ND

HD

ND

NÐ

ND

ND

ND

ND

ND

ND

ND

MD

ND

ND

ND

ND

ND

ND

ND

ND

ND

MD

ND

ND

ND

ND

ND

MD

ND

MD

ND

NÐ

ND

ND

ND

RFI09 - Inactive Land Treatment Area and Drainase Ditch

Canala a tra		RF109 -	Inactiv	c Land T	rcatmen	t Area an	d Drain	age Ditc	h -
Sample roint number Derth of sample		01 V0.0	01 V3.0	01 V5.0	01 V7.0	02 70.0	02 V3.0	02 75.0	02
Parameter Total Metals	Units	Result	Result	Result	Result	Result			V7.0 Result
Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Coprer Lead Mercury Nickel Potassium Selenium Vanadium Zinc	mc/ks mo/ks mo/ka mo/ka mo/ka mo/ka mo/ka mo/ks mo/ks mo/ks mo/ks mo/ks	ND 0.36 316 0.95 ND 13.9 3.2 7.3 13.4 ND 6.3 1219 ND 12.9 19.7	ND ND 320 0.88 ND 4.9 2.9 3.5 11.4 ND 5.2 712 ND 12.9 6.9	ND ND 322 1.1 ND 5.4 5.3 9.8 5.7 1400 ND 14.1 9.3	ND 309 1.2 ND 5.4 5.7 13.2 ND 6.7 953 ND 14.7 9.2	ND ND 302 1.3 ND 11.8 5.8 9.1 16.1 ND 11.4 2110 ND 20.1 12.4	ND ND 318 1.2 ND 4.3 3.7 5.6 13.9 ND 6.8 1220 ND 15.0 12.0	ND ND 237 1.2 ND 7.2 4.4 5.7 13.4 ND 8.2 1540 ND 15.9 12.3	ND ND 262 0.59 ND 2.3 2.0 ND 11.9 ND ND ND 9.5 5.7

RFI09 - Inactive Land Treatment Area and Drainase Ditch

Samrle roint number		03	03	03	03	04	04	04	04	
Denth of sample		V0.9	V3. 0	V5.9	V7.0	V0.0	V3.0	V5.0	V7.0	
Parameter	Units	Result	Result	Result	Result	Result	Result	Result	Result	
Method 8240										
Chloromethane	us/ks	ND	ND	ND	ND	ND	ND	ND	ND	
Bromomethane	us/ks	ND	ND	ND	ND	D	ND	ND	ND	
Vinyl chloride	na\ka	ND	ND	ND	ND	ND	ND	ND	ND	
Chloroethane	ua/ka	NÐ	ND	ND	ND	ND	ND	ND	ND	
Methylene chloride	ua/ka	ND	DA	ND	ND	ND	ND	ND	ND	
1,1-Dichloroethene	us/ks	ND	ND	ND	ND	ND	ND	ND	ND	
1.1-Dichloroethane	u9/k9	ND	ND	MD	ND	ND	ND	ND	ND	
1.2-Dichloroethene (cis/trans)		ND	ND	ND	ND	ND	ND	ND	ND	
Chloroform	u9/k9	ND	ND	ND	ND	ND	ND	ND	ND	
1,2-Bichloroethane	us/ka	ND	ND	ND	ND	ND	ND	ND	ND	
1,1,1-Trichloroethane	u9/k9	ND	ND	ND	ND	ND	ND	ND	ND	
Carbon tetrachloride	U3/K9	ND	ND	ND	ND	DM.	ND	ND	ND	
Bromodichloromethane	ua/ks	ND	HD	ND	ND	ND	ND	ND	ND	
1.2-Dichlororrorane	uo/ko	ND	ND	ND	ND	ND	D	ND	ND	
trans-1,3-Dichlororropene	u9/ko	ND	ND	ND	ND	ND	NÐ	ND	ND	
Trichloroethene	uo/ka	ND	ND	ND	ND	ND	ND	ND	ND	
Dibromochloromethane	ug/kg	ND	ND	ND	ND	ND	ND	ND	ND	
1,1,2-Trichloroethene	uo/ko	ND	ND	ND	ND	ND	ND	ND	ND	
Benzene	us/ks	ND	ND	NU	ND	ND	ND	ND	ND	
cis-1,3-Dichloropropene	u3/k3	ND	ND	ND	ND	ND	ND	ND	ND	
2-Chloroethyl vinyl ether	ua/ka	ND	ND	ND	ND .	ND	ND	ND	ND	
Bromoform	us/ko	ND	ND	ND	ND	ND	ND	ND	ND	
1,1,2,2-Tetrachloroethane	u9/kg	ND	ND	ND	ND	ND	ND	ND	ND	
Tetrachloroethene	u9/kg	ND	ND	ND	ND	ND ND	ND	ND	ND	
Toluene	us/ks	ND	ND	ND	ND	ND	ND	ND	ND	
Chlorobenzene	us/ks	ND	ND	ND	ND	ND	ND	ND	ND	
Ethylbenzene	u9/k9	ND	ND	ND	ND	ND	ND	ND	ND	
Acetone	u9/k9	ND	ND	ND	ND	ND	ND	ND	ND	
Acrolein	<u>19/kg</u>	ND	ND	ND	ND	ND	ND	ND	ND	
Acrylonitrile	us/ks	ND	ND ND	ND *m	ND	ND	ND	ND	ND	
Carbon disulfide	us/ks	ND	ND	ND ND	ND	ND	ND	ND	ND	
Dibromomethane	us/ks	ND ND	ND ND	ND	ND	ND	ND	ND	ND	
trans-1,4-Bichloro-2-butene	us/ks	ND	ND	ND	ND	ND	ND	肥	ND	
Dichlorodifluoromethane	vs/ko	ND	ND	ND	ND	ND	ND	ND	ND	
trans-1,2-Dichloroethene	us/ko	ND	ND	ND	ND	ND	ND	ND	ND	
Ethanol Indepethance	us/ks	ND	ND	ND	ND ND	ND	20000	22000	12000	
Iodomethane	us/ka	ND	ND	ND	ND	ND	ND	ND	ND	
2-Butanone (MEK) A-Mothyl-2-postspano (MIDK)	89/23	ND	ND ND	ND ND	ND ND	ND ND	ND	ND		
4-Methyl-2-pentanone (MIBK)	us/ks	ND ND	ND	ND	ND	ND	ND	ND	ND	
Styrene Taiablaac()uuraathaac	us/ks	ND	ND	ND	ND ND	ND	ND	ND	ND	
Trichlorofluoromethane	u9/k9	ND ND	ND	ND	ND	ND ND	ND	ND ND	ND	
1,2,3-Trichloropropane Vinyl acetate	us/ks us/ks	ND	nd ND	nd Nd	nd ND	ND ND	nd Nd	nd Nd	nd ND	
Ethyl methacrylate	us/kg us/kg	ND	ND	ND		עות DND				
Xylenes (total)	us/kg us/kg	ND	ND	ND ND	nd Nd	ND	ND ND	ND ND	nd ND	
2-Hexanone	us/ks	ND	ND	ND	ND	ND	שא ND	nd MD	ND	
LINCAUTUR	427 K3	un	ND	μU	nu	nu	עא	nD	61U	

RF109 - Inactive Land Treatment Area and Drainase Ditch

Sample point number Depth of sample		03 V0.0	03 V3.0	03 V5.0	03 V7.0	04 V0.0	04 V3.0	04 V5.0	01 V7.0
Parameter	Units	Result							
Method 8270									
Acenapthene	us/ks	ND							
Acenaphthylene	us/ks	ND							
Acetophenone	us/ko	MD	ND	ND	ND	NÐ	ND	ND	ND
4-Aminobirhenyl	us/ks	ND	NÐ						
Aniline	ug/kg	ND							
Anthracene	u3/k3	ND							
Benzo(a)anthracene	u9/ks	ND	ND	ND	ND	ND	ND	HD	ND
Benzo(b)fluoranthene	us/ks	ND							
Benzo(k)fluoranthene	u9/k9	ND	ND	ND	ND	ND	ND	NÐ	ND
Benzo(s,h,i)pervlene	u9/k9	ND							
Benzo(a)ryrene	uo/ko	ND							
Benzyl alcohol	us/ks	ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND
bis(2-Chloroethoxy)-mcthanc bis(2-Chloroethyl) ether	ua/ka ua/ka	ND ND	nd ND	nd Nd	ND	nd Nd	nd Nd	ND ND	ND
bis(2-Chloroisopropyl)~ether	ua/ka	ND	שה ND	ND	nd Nd	ND	ND	ND	ND
bis(2-Ethylhexyl) shthalate	us/ks	ND	ND	ND	NÐ	ND	ND	ND ND	ND ND
4-Bromophenyl rhenyl cther	ug/kg	ND							
Butyl bonzyl phthalate	us/ks	ND							
4-Chloroaniline	u9/k9	ND							
4-Chloro-3-methylphenol	u9/k9	ND	ND	ND	ND	ND	ND	MD	ND
2-Chloromaphthalenc	u9/ks	ND							
2-Chlorophenol	u2/k9	ND							
A-Chlorophenyl rhenyl ether	us/k9	ND							
o-Cresol	us/ko	ND							
m & p-Cresol(s)	us/ks	ND	ND	ND	ND	ND	ND	NÐ	ND
Chrysenc	us/ks	ND	ND	ND	MD	ND	ND	DM	ND
Dibenz(a,h)anthraccne	u9/k9	ND							
Di-n-butyl phthalate	us/ks	ND	ND	ND	ND	ND	MD	ND	ND
1.2-Dichlorobenzene	us/ks	ND	ND	ND	ND	NU	ND	ND	ND
1,3-Dichlorobenzene	uo/ko	ND							
1,4~Dichlorobenzene	u9/k9	НD	ND	ND	ND	ND	ND	NÐ	ND
3,3-Dichlorobenzene	us/ks	ND	ND	ND	ND	NÐ	ND	ND	ND
2,4-Dichlororhenol	us/ks	ND							
2.6-Dichlorophenol	uo/ka	ND	ND	ND	MD	ND	ND	ND	ND
Dicthyl phthalate	us/ks	ND							
r-Dimethylaminoazobenzene	us/ko	ND							
7,12-Dimethylbenz(a)-	ug/kg	ND							
anthracene	us/ks	ND	MD	ND	ND	ND	ND	ND	ND
a.a-Dimethylrhenethyl-amine	us/ks	ND	ND	ND	ND	ND	NÐ	ND	ND
2,4-Dimethylphenol	uo/ko	ND	ND ND	ND	ND	ND ND	ND	MD	ND
Dimethyl rhthalate 1,3-Dinitrobenzene	us/ks us/ks	nd Nd	nd Nd	nd Nd	ND	nd Nd	nd Nd	ND	NB
4,6-Dinitro-o-cresol	u3/k9 u3/k9	ND	ND	ND	nd Nd	nd Da	nd ND	ND ND	nd Nd
2,4-Dinitrophenol	us/ks	ND							
2,4-Dinitrotoluene	us/ks	ND							
2,6-Dinitrotolucne	u3/k3	ND	ND	ND	ND	ND	ND DM	ND	ND
Bi-n-octyl rhthalate	u9/k9	ND	ND	ND	NB	ND	ND	ND	ND
Dirhenvlamine	u3/k3	ND							
	/ .								

RFI09 - Inactive Land Treatment Area and Drainase Ditch

Sample point number Depth of sample		03 V0.0	03 V3.0	03 V5.0	03 V7.0	04 70.0	04 V3.0	04 V5.0	04 V7.0
Parameter	Units	Result							
Method 9270 (con't)									
Ethyl methanesulfonate	uo/ka	ND							
Fluoranthene	us/ks	ND							
Fluorene	u9/k9	ND	ND	NÐ	ND	ND	ND	ND	ND
Hexachlorobenzene	us/ks	ND	ND	MD	ND	ND	ND	ND	ND
Hexachlorobutadiene	u9/k9	ND	ND	ND	NÐ	ND	ND	ND	ND
Hexachlorocyclopentadiene	us/ks	ND							
Hexachloroethane	ug/kg	ND							
Indeno(1,2,3-cd)pyrene	u9/k9	MD	ND						
Isophorone	ug/kg	ND	ND	ND	NÐ	NÐ	ND	ND	ND
3-Methylcholanthrene	us/ko	ND	ND	ND	NÐ	ND	ND	ND	ND
Methyl methanesulfonate	u9/k9	ND	ND	ND	ND	NÐ	ND	ND	ND
2-Methylnaphthalene	us/ks	ND	ND	ND	ND	NÐ	ND	ND	ND
Narhthalene	u9/k9	ND							
1-Naphthylamine	us/ks	ND							
2-Naphthylamine	us/ks	ND							
2-Nitroaniline	ua/ka	ND							
3-Nitroaniline	us/ks	ND							
4-Nitroaniline	us/ks	ND							
Nitrobenzene	ua/ka	ND							
2-Nitrophenol	ug/kg	ND	ND	ND	ND	NÐ	ND	ND	ND
4-Nitrophenol	u9/k9	ND							
N-Nitroso-di-n-butylamine	u9/k9	ND	DM	ND	ND	ND	ND	ND	ND
N-Nitrosodimethylamine	us/kc	ND	ND	ND	ND	NÐ	ND	_	ND
N-Nitrosodiphenylamine	us/ks	ND	ND	NÐ	ND	ND	ND	ND	ND
N-Nitroso-di-n-propylamine	us/ks	ND	NÐ	ND	ND	ND	ND	ND	ND
N-Nitrosopiperidine	ug/kg	ND	ND	ND	MD	ND	ND	ND	ND
Pentachlorobenzene	us/ks	ND							
Pentachloronitrobenzene	us/ks	ND							
Pentachlorophenol	us/ks	ND							
Phenacetin	us/ks	NÐ	ND						
Phenanthrene	vc/kg	ND							
Phenol	uo/ka	ND							
2-Picoline	us/ks	ND							
Pronamide	uo/ka	ND	ND	ND	ND	NÐ	ND	ND	ND
Pyrene	u9/k9	ND							
1,2,4,5-Tetrachloro-benzene	us/ks	ND							
2,3,4,6-Tetrachlorophenol	us/ko	ND							
1, 2, 4-Trichlorobenzene	u9/k3	ND							
2,4,5-Trichlorophenol	us/ka	NĐ	ND	ND	ND	NÐ	ND	ND	ND
2,4,6-Trichlorophenol	us/ks	ND							
Benzidine	us/ks	ND							
Benzoic acid	עס/ks	ND							
1-Chloronaphthalene	u9/k3	ND							
1,2-Dirhenylhydrazine	us/ks	ND	MD						
			1 144			114		1.447	

	RFI09 -	Inactiva	Land Tr	catment (hrea and	Draina	se Ditch	T
Samrle reint number Depth of sample	03 V0.0	03 V3.0	03 75.0	03 V7.0	04 V0.0	04 V3.0	04 95.0	04 V7.0
Parameter Unit	s Result	Result	Result	Result	Result	Result	Result	Result
Total Metals								
Antimony ms/!	is ND	ND	ΗD	ND	ND	ND	ND	ND
Arsenic ms/S	s ND	ND	ND	9.58	2.1	ND	ND	ND
Barium m9/W	9 214	307	334	224	406	275	309	239
Beryllium mg/H	o 0.73	3 1.0	1.2	1.1	0.91	1.3	1.1	1.4
Cadmium ms/l	ia ND	ND	НD	ND	ND	ND	NÐ	ND
Chromium mg/H	9 4.9	5.1	7.5	7.6	42.3	6.7	5.2	8.1
Cobalt ms/V	s 1.6	2.1	3.4	3.2	4.4	4.1	3.4	4.8
Correr ms/l	o 1.5	4.8	8.5	5.8	13.9	5.5	5.2	7.2
Load n9/1	9.6.0	8.0	9.9	7.3	29.7	13.9	12.4	16.4
Mercury ma/l	ia ND	ND	MD	ND	ND	ND	ND	ND
Nickel m9/1	s 5.i	6.7	9.1	8.2	10.0	7.4	5.1	7.9
Potassium ms/l	is 991	955	1300	1860	1259	1139	9 93	1560
Sclenium ms/l	in ND	ND	ND	ND	ND	ND	DИ	ND
Vanadium mg/3	10.1	13.1	15.1	14.9	15.4	16.4	12.8	18.1
Zinc m9/)	s 8.7	9.6	13.4	13.3	69.6	11.1	9.1	14.0

8.25

RFI09 - Inactive Land Treatment Area and Drainase Ditch

Sample point number Bepth of sample		05 V0.0	05 V3.0	05 75.0	05 D5.0	05 V7.0
Parameter	Units	Result	Result	Result	Result	Result
Method 9210						
Chloromethane	u3/k9	ND	NÐ	ND	ND	ND
Bromomethane	u3/kg	ND	ND	ND	ND	ND
Vinyl chloride	u9/k9	ND	ND	ND	DИ	ND
Chloroethane	uo/ko	ND	ND	ND	ND	ЖD
Methylenc chloride	u9/k9	ND	ND	ND	ND	ND
1,1-Dichloroethene	ug/ka	NÐ	ND	NÐ	MD	MD
1,1-Dichloroethane	u9/k9	ND	ND	ND	ND	ND
1.2-Dichloroethene (cis/trans) up/ks	NÐ	ND	ND	ND	MD
Chloroform	us/ks	ND	ND	ND	ND	NC
1,2-Bichloroethane	us/ks	ND	ND	ND	ND	MD
1,1,1-Trichlorocthane	u9/k9	ND	ND	ND	ND	ND
Carbon tetrachloride	u9/ko	ND	ND	ND	MD	ND
Bromodichloromethane	u9/k9	ND	ND	ND	ND	ND
1,2-Dichloropropane	uo/ka	םא	ND	ND	ND	HD:
trans-1,3-Dichloroprorene	us/ks	ND	ND	ND	ND	ND
Trichloroethene	us/ks	ND	NÐ	ND	ND	ND
Dibromochloromethane	us/ks	NÐ	ND	ND	NÐ	ND
1,1,2-Trichloroethene	us/ks	ND	ND	ND	ND	ND
Kenzene	uo/ka	ND	ND	ND	ND	НD
cis-1,3-Dichloropropene	us/ko	ND	ND	ND	ND	ND
2-Chloroethyl vinyl ether	u9/k9	ND	ND	ND	ND	ND
Bromoform	טס/גפ	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	us/ka	ND	ND	NÐ	ND	ND
Tetrachloroethene	us/ka	MD	ND	ND	ND	ND
Toluene	us/ks	NE	ND	ND	ND	ND
Chlorobenzene	uo/ka	ND	ND	ND	ND	ND
Ethylbenzenc	u9/k9	ND	ND	ND	ND	ND
Acetone	uo/ks	ND	ND	ND	ND	ND
Acrolein	us/ks	ND	ND	ND	ND	ND
Acrylonitrile	us/ks	ND	ND	ND	ND	ND
Carbon disulfide	ua/ka	ND	ND	ND	ND	ND
Dibromomethane	ua/ka	ND	ND	ND	ND	ND
trans-1,4-Bichloro-2-butene	us/ks	ND	ND	ND	ND	ND
Dichlorodifluoromethane	u3/ks	ND	ND	ND	ND	ND
trans-1,2-Dichloroethene	u9/k9	ND	ND	ND	ND	ND
Ethanol	u9/ko	ND	ND	ND	ND	ND
Iodomethane	u9/k9	ND	ND	ND	ND	ND
2-Butanone (MEK)	us/ko	ND	ND	ND	ND	NC
4-Methyl-2-pentanone (MIBK)	us/ks	ND	ND	ND	ND	ND
Styrene	us/ks	ND	ND	ND	ND	ND
Trichlorofluoromethane	us/ks	ND	ND	ND	ND	ND
1,2,3-Trichloropropane	u o /ks	ND	ND	ND	ND	ND
Vinyl acetate	u9/ks	ND	ND	ND	ND	ND
Ethyl methacrylate	uo/ka	ND	ND	ND	ND	ND
Xylencs (total)	us/ks	ND	ND	ND	ND	ND
2-Hexanonc	uo/ka	ND	ND	ND	ND	ND

·

RF109 - Inactive Land Treatment Area and Drainage Ditch

Sample point number Derth of samrle		05 V0.0	05 V3.0	05 V5.0	05 05.0	05 V7.0
Parameter	Units	Result	Result	Result	Result	Result
Method 8270						
Acenarthene	u9/k9	ND	ND	ND	ND	ND
Acenaphthylene	us/ks	ND	ND	ND	ND	ND
Acetophenone	ua/ka	ND	ND	ND	ND	ND
4-Aminobiphenyl	uo/ko	ND	ND	ND	ND	ND
Aniline	u9/k9	ND	ND	ND	ND	ND
Anthracene	us/ka	ND	ND	ND	ND	ND
Benzo(a)anthracene	u9/k9	ND	ND	ND	ND	ND
Benzo(b)fluoranthene	u9/k9	ND ND	ND	ND	ND	ND
Benzo(k)fluoranthene	ug/ks	ND	ND	ND ND	ND	ND
Benzo(9,h,i)perylene	us/ks	ND	ND	ND ND	ND	ND ND
Benzo(a)ryrenc	us/ks	ND	ND	ND ND	ND	ND
Benzyl alcohol	us/ko us/ko	ND ND	ND ND	nd Nd	ND ND	ND ND
bis(2-Chloroethoxy)-methane bis(2-Chloroethyl) ether	u9/k9 u9/k5	שה DM	ND ND	ND	nd Nd	ND
bis(2-Chloroisopropyl)-ether	u9/k9	ND	ND	ND	ND	ND
bis(2-Ethylhexyl) phthalate	u9/k9 u9/k9	ND	ND	ND	ND	ND
4-Bromophenyl phenyl ether	us/ks	ND	ND	ND	ND	ND
Butyl benzyl phthalate	us/ks us/ks	ND	ND	ND	ND	ND
4-Chloroaniline	u9/k3	ND	ND	ND	ND	ND
4-Chloro-3-methylphenol	u9/k9	ND	ND	ND	ND	ND
2-Chloromaphthalene	u9/ks	ND	ND	ND	ND	ND
2-Chlorophenol	u3/k9	ND	ND	ND	ND	ND
1-Chlorophenyl phenyl ether	ug/kg	ND	ND	ND	ND	ND
o-Cresol	119/Ka	ND	ND	ND	ND	ND
m & F-Cresol(s)	us/ks	ND	ND	ND	ND	ND
Chrysene	us/ks	ND	ND	ND	ND	ND
Dibenz(a,h)anthracene	us/ks	ND	ND	ND	ND	ND
Bi-n-butyl phthalate	us/ks	ND	ND	ND	ND	ND
1,2-Bichlorobenzene	us/ka	ND	ND	ND	ND	ND
1.3-Dichlorobenzene	us/ko	ND	ND	ND	ND	ND
1,4-Dichlorobenzenc	us/ks	ND	ND	ND	ND	ND
3.3-Dichlorobenzene	us/ko	ND	ND	ND	ND	ND
2,4-Dichlorophenol	us/ks	ND	ND	ND	ND	ND
2,6-Dichlorophenol	ua/ka	ND	MD	ND	NÐ	ND
Dicthyl phthalate	u9/k9	ND	ND	ND	ND	ND
p-Dimethylaminoazobenzene	us/ks	ND	ND	DM	ND	ND
7,12-Dimethylbenz(a)-	u9/k9	ND	ND	ND	ND	ND
anthracene	us/ks	ND	ND	ND	ND	ND
a,a-Dimethylphenethyl-amine	u9/k9	NÐ	ND	ND	ND	NÐ
2,4-Dimethylphenol	u9/k9	ND	ND	ND	ND	ND
Dimethyl phthalate	u9/k9	ND	ND	ND	ND	ND
1,3-Dinitrobenzene	us/ko	ND	ND	ND	ND	ND
4,6-Dinitro-o-cresol	us/ks	ND	ND	ND	DA .	ND
2,4-Dinitrophenol	uo/ks	ND	ND	ND	ND	ND
2,4-Dinitrotoluene	us/ks	ND	ND	ND	ND ND	ND
2,6-Dinitrotoluene	u9/k3	ND	ND ND	ND ND	ND	ND
Di-n-octyl phthalate Dishooulasioo	us/ks	ND	ND	ND	ND	ND
Dirhenvlamine	u9/k9	ND	ND	ND	ND	MD

RFI09 - Inactive Land Treatment Area and Drainase Ditch

Sample roint number Derth of sample		05 V0.0	05 V3.0	05 V5.0	05 D5.0	05 V7.0
Parameter	Units	Result	Result	Result	Result	Result
Method 8270 (con't)						
Ethyl methancsulfonate	u9/k9	ND	ND	ND	ND	ND
Fluoranthene	us/ks	ND	ND	ND	ND	ND
Fluorene	ua/ka	ND	ND	ND	ND	ND
Hexachlorobenzene	us/ks	ND	ND	ND	ND	ND
Hexachlorobutadiene	ua/ka	ND	ND	ND	ND	ND
Hexachlorocyclopentadiene	ua/ka	ND	ND.	ND	ND	ND
Hexachloroethane	uo/ka	ND	ND	ND	ND	ND
Indeno(1,2,3-cd)pyrene	us/ks	ND	ND	ND	ND	MD
Isorhorone	us/ka	ND	ND	ND	ND	ND
3-Methylcholanthrene	uo/ke	ND	ND	ND	ND	ND
Methyl methanesulfonate	uc/ka	ND	ND	ND	ND	ND
2-Methylnaphthalene	us/ks	ND	ND	ND	ND	ND
Narhthalene	uc/ka	ND	NÐ	ND	ND	ND
1-Marhthrlamine	uo/ka	ND	ND	ND	ND	ND
2-Naphthylamine	us/ka	ND	ND	ND	ND	NÐ
2-Nitroaniline	uo/ke	ND	ND	ЪD	ND	ND
3-Nitroaniline	ug/kg	ND	ND	ND	ND	ND
4-Nitroaniline	us/ka	ND	ND	ND	ND	ND
Nitrobenzene	us/ks	ND	ND	ND	NÐ	ND
2-Nitrorhenol	us/ks	ND	ND	ND	ND	ND
4-Nitrorhenol	us/ks	ND	ND	ND	ND	ND
N-Nitroso-di-n-butylamine	ug/kg	ND	ND	ND	ND	ND
N-Nitrosodimethylaminc	us/ka	ND	ND	ND	ND	ND
N-Nitrosodiphenylamine	ua/ka	ND	ND	ND	ND	ND
N-Nitroso-di-n-propylamine	us/ka	NÐ	ND	ND	ND	ND
N-Nitrosoriperidine	us/ka	ND	ND	ND	ND	ND
Pentachlorobenzene	us/k9	ND	ND	ND	ND	ND
Pentachloronitrobenzene	us/ko	ND	ND	ND	ND	ND
Pentachlorophenol	ug/kg	DИ	ND	ND	ND	ND
Phenacetin	us/ks	ND	NÐ	MD	ND	ND
Phenanthrene	ua/ka	ND	ND	ND	ND	ND
Phenol	ua/ka	ND	ND	ЯD	ND	ND
2-Picoline	u9/k9	NÐ	ND	ND	ND	ND
Pronamide	us/ks	ND	ND	ND	ND	ND
Pyrene	u9/k9	ND	ND	ND	ND	ND
1,2,1,5-Tetrachloro-benzene	us/ks	ND	DM	ND	ND	ND
2,3,4,6-Tetrachlororhenol	us/ks	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene	us/ks	ND	ND	ND	ND	ND
2,4,5-Trichlorophenol	us/kc	ND	ND	ND	ND	ND
2,4,6-Trichlorophenol	us/ks	ND	ND	ND	ND	ND
Benzidine	us/kc	ND	ND	ND	ND	ND
Benzoic acid	us/ks	ND	ND	ND	ND	ND
1-Chloronaphthalene	us/ks	ND	NÐ	ND	ND	ND
1,2-Diphenvlhydrazine	us/ks	ND	ND	ND	ND	ND

RF109 - Inactive Land Treatment Area and Drainase Ditch

Samrle point number Bepth of sample		05 90.0	05 73.0	05 V5.0	05 05.0	05 V7.0
Parameter Total Metals	Units	Result	Result	Result	Result	Result
Antimony Ansonic Barium Beryllium Cadmium Chromium Cobalt Coprer Lead Mercury Nickel Potassium Selenium Vanadium 2inc	ma/ka ma/ka ma/ka ma/ka ma/ka ma/ka ma/ka ma/ka ma/ka ma/ka ma/ka	ND ND 285 1.2 ND 8.1 4.5 5.5 14.9 ND 9.1 1160 ND 17.9 12.1	ND ND 418 0.77 ND 32.2 5.0 11.9 31.0 MD 9.7 1100 MD 15.9 55.6	ND ND 333 0.94 ND 5.1 3.5 13.7 ND 5.5 825 ND 15.5 8.4	ND ND 375 0.91 ND 5.8 3.9 4.2 14.4 ND 5.9 935 16.4 10.1	ND ND 313 1.3 ND 8.5 4.5 6.4 12.9 ND 12.9 ND 19.5 13.3

RFI09 - Inactive Land Treatment Area and Drainage Ditch

Sample point number		06	06	06	05	60
Derth of sample		V0.0	V3.9	D3. 0	V5.0	¥7.0
Parameter	Units	Result	Result	Result	Result	Result
Method 8240						
Chloromethanc	us/ka	ND	ND	ND	MD	ND
Bromomethane	us/ks	ND	ND	ND	ND	ND
Vinyl chloride	us/ks	ND	ND	ND	ND	ND
Chloroethane	us/ka	ND	ND	ND	ND.	ND
Methylene chloride	ua/ka	ND	ND	ND	ND	ND
1,1-Dichlorsethene	uo/ka	ND	ND	ND	ND	MD
1,1-Dichloroethane	ua/ka	NÐ	NÐ	NÐ	HD	NÐ
1.2-Dichloroethene (cis/trans)	ua/ka	ND	ND	ND	ND	HD.
Chloroform	us/ka	ND	ND	NÐ	ND	ND
1,2-Dichloroethane	us/ks	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	ug/ks	ND	ND	ND	ND	ND
Carbon tetrachloride	us/ko	ND	ND	ND	ND	ND
Promodichloromethane	us/ks	ND	ND	ND	ND	ND
1.2-Dichloropromane	ua\ka	ND	ND	ND	ND	MD
trans-1,3-Dichloropropene	us/kg	ND	ND	ND	ND	ND
Trichloroethene	us/ks	ND	ND	ND	ND	ND
Dibromochloromethane	us/ko	ND	ND	ND	ND:	ND
1,1,2-Trichloroethene	us/ks	ND	ND	ND	ND	ND
Henzene	ua/ka	ND	ND	ND	ND	ND
cis-1,3-Dichlororropene	uo/ka	ND	ND	ND	ND	ND
2-Chloroethyl vinyl ether	ua/ka	NÐ	ND	NÐ	ND	ND
Bremoform	us/ko	ND	ND	NÐ	ND	ND
1,1,2,2-Tetrachloroethane	us/ko	ND	ND	ND	ND	ND
Tetrachlorcethene	uo/ka	ND	ND	ND	ND	ND
Toluene	us/ks	ND	ND	ND	NÐ	ND
Chlorobenzene	ua/ka	ND	ND	ND	ND	NÐ
Ethylbenzenc	uo/ko	ND	ND	ND	NÐ	ND
Acetone	uo/ka	ND	ND	ND	ND	DN D
Acrolein	us/ks	ND	ND	ND	ND	ND
Acrylonitrile	us/ka	ND	ND	NÐ	нD	ND
Carbon disulfide	ua/ks	ND	ND	ND	ND	ND
Dibromomethane	uo/ks	MD	ND	ND	NÐ	NEI
trans-1,4-Dichloro-2-butene	ua/ko	ND	ND	ND	ND	ND
Dichlorodifluoromethane	uo/ka	ND	ND	ND	MD	ND
trans-1,2-Dichloroethene	us/ks	ND	ND	NÐ	ND	ND
Ethanol	u3/k9	ND	ND	ND	ND	ND
Iodomethane	us/ks	ND	ND	ND	ND	ND
2-Butanone (MEK)	uo/ka	MD	ND	ND	ND	ND
4-Methyl-2-rentanone (MIBK)	ug/kg	ND	DM	ND	ND	ND
Styrene	us/ks	ND	ND	ND	ND	ND
Trichlorofluoromethane	us/ks	ND	ND	ND	NÐ	ND
1.2.3-Trichloropropane	ua/ka	ND	MD	ND	ND	ND
Vinyl acetate	u9/k9	ND	ND	ND	NÐ	ND
Ethyl methacrylate	us/kg	ND	ND	ND	ND	ND
Xylenes (total)	ua/ka	ND	ND	ND	ND	ND
2-Hexanone	u9/k9	ND	ND	ND	ND	ND

•

RFI09 - Inactive Land Treatment Area and Brainase Ditch

Sample roint number Depth of sample		06 70.0	06 V3.0	05 D3.0	06 V5.0	06 97.0
Parameter	Units	Result	Result	Result	Result	Result
Method 8270						
Acenapthene	ug/kg	MB)	ND	ND	ND	ND
Acchaphthylene	uo/ka	ND	ND	ND	ND	ND
Acetophenone	u9/k9	NÐ	ND	ND	NÐ	ND
4-Aminobiehenvl	us/ka	ND	ND	ND	ND	ND
Aniline	ug/kg	ND	ND	ND	ND	NÐ
Anthracene	ua/ka	ND	ND	ND	ND	ND
Benzo(a)anthracene	ua/ka	ND	ND	ND	ND	ND
Benzo(b)fluoranthene	ua/ka	ND	ND	ND	ND	ND
Benzo(k)fluoranthene	us/ks	ND	ND	ND	ND	ND
Benzo(s,h,i)pervlene	us/ks	ND	ND	ND	ND	DM
Henzo(a)pyrenc	ua/ka	ND	ND	ND	ND	ND
Benzyl alcohol	ug/kg	ND	ND	ND	ND	ND
bis(2-Chloroethoxy)-methane	ug/kg ug/kg	ND	ND	ND	ND	ND
bis(2-Chloroethyl) ether bis(2-Chloroisopropyl)-ether	uo/ko	ND ND	ND MD	ND	ND	ND ND
bis(2-Ethylhexyl) rhthalate	uo/ko uo/ko	ND	nd Nd	ND ND	nd Nd	ND ND
4-Bromorhenyl phenyl ether	us/ka	ND	ND	ND	ND	ND
Butyl benzyl phthalate	us/ks	ND	ND	ND	ND	ND
4-Chloroaniline	us/ks	ND	ND CM	ND	ND	ND
4-Chloro-3-methylphenol	us/ks	ND	ND	ND	MD	ND
2-Chloromaphthalene	us/ks	ND	ND	ND	ND	ND
2-Chlorophenol	up/kg	ND	ND	ND	ND	ND
1-Chlorophenyl phenyl ether	us/ko	ND	ND	ND	HD	ND
o-Cresol	ug/kg	ND	ND	ND	ND	ND
m & p-Cresol(s)	ug/kg	ND	ND	ND	ND	NÐ
Chrysene	uo/ka	26000	ND	סא	ND	ND
Dibenz(a,h)anthracene	v9/k9	ND	ND	ND	ND	ND -
Di-n-butyl phthalate	ug/kg	ND	ND	ND	ND	ND
1.2-Dichlorobenzene	us/ks	ND	ND	ND	ND	ND
1.3-Dichlorobenzene	us/ks	ND	ND	ND	ND	ND
1.4-Dichlorobenzene	ua/ko	ND	ND	ND	ND	ND
3.3-Dichlorobenzene	us/ka	ND	NÐ	ND	ND	ND
2,4-Dichlorophenol	us/ka	ND	ND	ND	ND	ND
2,6-Dichlorophenol	uo/ka	ND	ND	ND	ND	ND
Dicthyl phthalate	ua/ka	ND	ND	ND	ND	ND
p-Bimethylaminoazobenzene	us/ka	ND	ND	ND	ND	ND
7,12-Dimethylbenz(a)-	ug/kg	ND	ND	ND	ND	ND
anthracene	us/ks	ND	ND	ND	ND	ND
a,a-Dimethylphenethyl-amine	us/ka	ND	ND	ND	ND	ND
2,4-Dimethylphenol Dimethyl phthalatc	us/ks us/ks	nd Nd	ND ND	nd Nd	nd Nd	ND ND
1,3-Dinitrobenzene	us/ko	ND	nd Nd	ND	ND	nd Nd
4.6-Dinitro-o-cresol	us/ks	ND	ND	ND	ND	ND
2,4-Dinitrophenol	us/ks	ND	MD	ND	ND	ND
2,4-Dinitrotoluene	ug/kg	ND	NU	ND	ND	ND
2,5-Dinitrotoluene	us/ks	ND	ND	ND	ND	ND
Di-n-octyl phthalate	u9/k9	ND	NÐ	ND	ND	ND
Biphenylamine	us/ks	ND	ND	ND	ND	ND

RF109 - Inactive Land Treatment Area and Drainase Ditch

Sample point number Depth of sample		06 V0.0	06 V3.0	06 D3.0	06 V5.0	06 V7.0	
, Parameter	Units	Result	Result	Result	Result	Result	
Method 8270 (con't)							
Ethyl methanesulfonate	ua/ka	ND	ND	ND	ND	ND	
Fluoranthene	us/ka	ND	ND	ND	ND	MD	
Fluorene	us/ks	ND	ND	ND	ND	ND	
Hexachlorobenzene	us/ke	ND	ND	ND	ND	ND	
Hexachlorobutadiene	us/ka	ND	NÐ	ND	ND	ND	
Hexachlorocyclopentadiene	us/ks	MD	ND	ND	ND	ND	
Hexachlorocthane	us/ks	ND	ND	ND	ND	ND	
Indeno(1,2,3-cd)pyrene	us/ks	ND	ND	ND	ND	ND	
Isophorone	us/ks	ND	ND	ND	ND	NÐ	
3-Methylcholanthrene	uo/ka	ND	NÐ	ND	ND	ND	
Mothyl methanesulfonate	us/ks	ND	ND	ND	ND	ND	
2-Methylnaphthalene	u9/k9	ND	ND	NÐ	ND	ND	
Naphthalene	us/ks	ND	ND	ND	ND	ND	
1-Naphthylamine	ua/ka	ND	MD	ND	ND	ND	
2-Narhthylamine	us/ks	ND	ND	NÐ	ND	ND	
2 -N itroaniline	us/ka	ND	ND	NÐ	NÐ	ND	
3-Nitroaniline	ug/kg	NE	ND	ND	ND	ND	
9-Nitroaniline	us/ko	ND	ND	ND	ND	ND	
Nitrobenzene	ua/ka	ND	ND	ND	ND	ND	
2-Nitrophenol	us/ks	ND	MD	ND	ND	ND	
4-Nítrorhenol	ug/kg	ND	ND	ND	ND	ND	
N-Nitroso-di-n-butylamine	ua/ka	ND	ND	ND	ND	ND	
N-Nitrosodimethylamine	ua/ka	ND	ND	ND	ND	ND	
N-Nitrosodiphenylamine	ug/kg	ND	` ND	ND	ND	ND	
N-Nitroso-di-n-propylamine	u9/k9	ND	ND	ND	ND	ND	
N-Nitrosopiperidine	uo/ka	NÐ	ND	ND	ND	ND	
Pentachlorobenzene	uc/ke	ND	NÐ	ND	ND	ND	
Pentachloronitrobenzene	us/ko	ND	ND	ND	ND	ND	
Pentachlororhenol	us/ka	ND	ND	ND	ND	ND	
Phenacetin	u9/k9	ND	ND	ND	ND	ND	
Phenanthrene	u9/k9	ND	ND	ND	ND	ND	
Phenol	uo/ka	ND	ND	ND	ND	ND	
2-Picoline	uc/ks	ND	ND	NÐ	ND	ND	
Pronamide	us/ks	ND	ND	ND	ND	ND	
Pyrene	us/ks	20000	ND	ND	ND	ND	
1,2,4,5-Tetrachloro-benzene	uo/ke	DM	ND	ND	ND	ND	
2, 3, 4, 6-Tetrachlorophenol	ua/ka	ND	ND	ND	ND	ND	
1,2,4-Trichlorobenzene	us/ks	ND	ND	ND	ND	ND	
2,4,5-Trichlorophenol	us/ks	ND	NÐ	ND	ND	ND	
2, 1, 5-Trichlorophenol	ua/ka	ND	ND	ND	ND	ND	
Benzidino	us/ks	ND	ND	ND	ND	ND	
Benzoic acid	us/ka	ND	ND	ND	ND	ND	
1-Chloronarhthalene	u9/k9	ND	NĐ	ND	ND	ND	
1,2-Diphenylhydrazine	us/ks	ND	ND	ND	ND ND	ND	
•					•••		

RFI09 - Inactive Land Treatment Area and Drainage Ditch

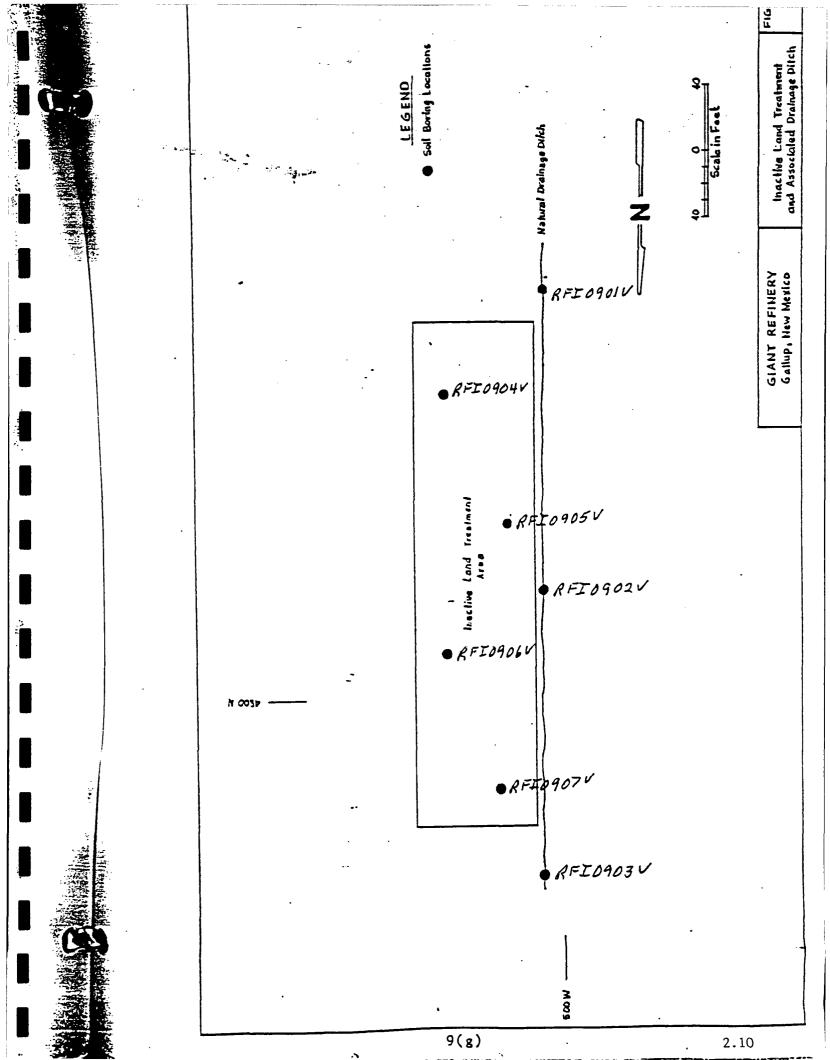
.

Sample point number Derth of sample		05 70.0	05 V3.0	06 D3.0	05 V5.0	05 V7.0
Parameter	Units	Result	Result	Result	Result	Result
Total Metals						
Antimony	ma/ka	ND	ND	ND	ND	ND
Arsenic	as/ks	1.7	1.2	NÐ	ND	0.53
Barium	as/ka	200	243	225	241	319
Beryllium	ms/ks	0.79	1.1	1.1	0.27	0.97
Cadmium	ms/kg	ND	ND	ND	ND	NÐ
Chromium	mo∕ka	7.8	٤.3	5.3	5.1	4.1
Cobalt	as/ks	2.3	2.5	2.5	1.9	1.7
Conner	ma/ka	14.3	5.4	5.4	4.5	4.9
Lead	ng/kg	28.1	9.2	8.1	7.5	8.1
Mercury	ms/ks	ND	ND	ND	ND	NÐ
Nickel	ms/ks	11.4	7.0	7.2	5.3	5.0
Potassium	ms/ka	939	1110	1120	397	828
Selcnium	so/ka	ND	ND	ND	ND	ND
Vanadium	ms/ks	14.5	14.5	14.2	12.5	13.0
linc	ma/ka	22.8	10.5	10.4	8.4	7.8

RFI09 - Inactive Land Treatment Area and Drainage Ditch

Samrle point number Dorth of sample		07 V0.0	07 V3.0	07 V5.0	07 V7.0		01 E5.0
Parameter	Units	Result	Result	Result	Result	Units	Result
Method 8240							
Chloromethane	ua/ks	ND	ND	ND	ND	u9/L	ND
Bromomethane	us/ke	ND	ND	ND	ND	us/L	ND
Vinyl chloride	us/ks	ND	ND	ND	ND	ua/L	MD
Chloroethane	uo/ka	ND	ND	ND	ND	u3/L	ND
Mothylene chloride	uc/ka	ND	ND	NÐ	ND	us/L	ND
1,1-Dichloroothene	ug/kg	ND	NÐ	ND	ND	us/L	ND
1,1-Dichloroethanc	u9/k3	ND	ND	ND	ND	ug/L	ND
1,2-Dichloroethene (cis/trans)	uo/ka	ND	ND	ND	ND	us/L	ND
Chloroform	ua/ka	ND	ND	ND	ND	u9/L	КD
1,2-Dichloroethane	uo/ka	ND	ND	ND	ND	us/L	ND
1,1,1-Trichloroethane	uo/ka	ND	ND	ND	ND	u9/L	ND
Carbon tetrachloride	uo/ka	ND	ND	ND	ND	us/L	ND
Bromodichloromethane	ug/kg	ND	ND	ND	ND	up/L	ND
1,2-Dichlororrogane	us/ks	NÐ	ND	ND	ND	115/L	ND
trans-1,3-Bichloroprorene	up/ka	ND	ND	ND	ND	us/L	ND
Trichloroethene	ug/kg	ND	ND	ND	ND	ug/L	ND
Dibromochloromethane	us/ks	ND	ND	ND	ND	ug/L	ND
1,1,2-Trichloroethene	us/ks	ND	ND	ND	ND	09/L	ND
Benzenc	ug/kg	ND	ND	ND	ND	ug/L	ND
cis-1,3-Dichlororropene	us/ko	ND	ND	ND	ND	us/L	ND
2-Chloroethyl vinyl ether	ug/kg	ND	ND	ND	ND	037L 03/L	ND
Bromoform	ug/kg	ND	ND	ND	ND	u9/L	ND ND
1,1,2,2-Tetrachlorcethane	ug/kg	ND	ND	ND	ND	us/L	ND
Tetrachloroethene	u9/k9	ND	ND	ND	ND	us/L	
Tolucne	ug/kg	ND	ND	ND	ND		ND ND
Chlorobenzene						U9/L	ND
••	us/ka	ND	ND	ND	ND	us/L	ND
Ethylbonzene	u9/kg	ND	ND	ND	ND	u9/L	ND
Acctone	us/kg	ND	ND	ND	ND	us/L	12
Acrolein	ua/ko	ND	ND	ND	ND	us/L	ND
Acrylonitrile	ua/ka	ND	ND	ND	ND	us/L	ND
Carbon disulfide	us/ka	ND	ND	ND	ND	19/L	ND
Dibromomethane	uo/ka	ND	ND	ND	ND	39/L	ND
trans-1,4-Dichloro-2-butene	u9/k9	ND	ND	ND	ND	u9/L	ND
Dichlorodifluoromethane	ua\ka	ND	ND	ND	ND	us/L	ND
trans-1,2-Dichloroethene	us/ks	ND	ND	ND	ND	U9/L	ND
Ethanol	uo/ka	ND	ND	ND	ND	u9/L	ND
Iodomethane	ua/ka	ND	ND	ND	ND	u9/L	ND
2-Butanone (MEK)	us/ko	ND	ND	ND	ND	u9/L	ND
4-Methy1-2-rentanone (MIBK)	u9/k9	ND	ND	ND	ND	us/L	ND
Styrens	u9/k9	ND	ND	ND	ND	us/L	ND
Trichlorofluoromethane	u9/k9	ND	ND	ND	ND	us/L	ND
1,2,3-Trichloropropane	ug/kg	ND	ND	ND	nd.	us/L	ND
Yinyl acetate	ua/ka	ND	NU	ND	NÐ	u9/L	ND
Ethyl methacrylate	ua/ka	ND	ND	ND	ND	us/L	MD
Xylenes (total)	u9/k3	ND	ND	ND	ND		
2-Hexanone	us/ko	ND	ND	ND	ND	us/L	ND

RFI09 - Inactive Land Treatment Area and Drainase Ditch


Sample point number Depth of sample		07 V0.0	07 V3.0	07 V5.0	07 V7.0		01 E5.0
Parameter	Units	Result	Result	Result	Result	Units	Result
Method 8270							
Acenarthene	us/kg	ND	ND	ND	ND	us/L	NÐ
Acenaphthylene	us/ks	ND	ND	ND	ND	up/L	ND
Acetorhenone	ua/ka	ND	ND	ND	ND	us/L	NÐ
1-Aminobiphenyl	us/ka	ND	ND	ND	ND	us/L	ND
Aniline	us/ka	ND	ND	ND	ND	us/L	ND
Anthracene	ua/ka	ND	ND	ND	ND	u9/L	ND
Benzo(a)anthracene	ua/ko	ND	ND	ND	ND	us/L	ND
Benzo(b)fluoranthene	ua/ka	ND	ND	ND	ND	us/L	ND
Benzo(k)fluoranthene	us/ka	ND	ND	ND	ND	us/L	ND
Benzo(s,h,i)pervlene	us/ks	ND	ND	ND	ND	us/L	ND
Benzo(a)pyrene	u9/k9	ND	ND	ND	ND	ນ໑/L	ND
Benzyl alcohol	u9/k9	ND	ND	ND	ND	us/L	ND
bis(2-Chloroethoxy)-methane	us/ks	ND	ND	ND	ND	u9/L	ND
bis(2-Chloroethyl) ether	us/ks	ND	ND	ND	ND	us/L	ND
bis(2-Chlcroisopropyl)-ether	us/ks	ND	ND	NÐ	ND	u9/L	ND
bis(2-Ethylhexyl) phthalate	us/ks	ND	ND	ND	ND	us/L	ND
4-Bromophenyl phenyl ether	us/ka	ND	ND	ND	ND	us/L	ND
Butyl benzyl phthalate	u9/k9	ND	NÐ	ND	ND	uo/L	ND
4-Chloroaniline	u9/k9	ND	ND	- ND	ND	us/L	ND
A-Chloro-3-methylphenol	us/ks	ND	ND	ND	ND ND	us/L	ND
2-Chloromarhthalene	us/ka	ND ND	ND ND	ND	ND	us/L	ND
2-Chlorophenol 4-Chlorophenyl phonyl other	us/ks us/ks	ND ND	nd Nd	nd Nd	ND ND	u9/L u9/L	ND ND
o-Cresol	us/ka	ND	ND CIM	ND	ND	U9/L	ND
m & r-Cresol(s)	ug/kg	ND	ND	ND	ND	us/L	ND
Chrysene	us/ks	ND	ND	ND	ND	us/L	ND
Dibenz(a,h)anthracene	us/ks	ND	ND	ND	ND	us/L	ND
Di-n-butyl phthalate	us/ks	ND	ND	ND	ND	u3/L	ND
1,2-Dichlorobenzene	us/ka	ND	ND	ND	ND	us/L	ND
1.3-Dichlorobenzene	us/ks	ND	ND	ND	ND	ug/L	ND
1,4-Dichlorobenzene	ug/kg	ND	ND	ND	ND	us/L	ND
3,3-Dichlorobenzene	us/ks	ND	ND	ND	ND	us/L	ND
2.4-Dichlorophenol	u9/k9	ND	ND	ND	ND	u9/L	ND
2.5-Bichlorophenol	us/ks	ND	ND	ND	ND	us/L	ND
Diethyl phthalate	u9/k9	ND	ND	NÐ	ND	us/L	ND
p-Dimethylaminoazobenzene	u9/k9	ND	ND	ND	ND	u3/L	ND
7,12-Dimethylbenz(a)-	us/ks	ND	ND	ND	ND	u9/L	ND
anthracene	us/ks	ND	ND	ND	ND	us/L	ND
a,a-Dimethylrhenethyl-amine	uo/ka	ND	NÐ	ND	ND	us/L	ND
2,4-Dimethylphenol	uo/ks	ND	ND	ND	ND	us/L	ND
Dimethyl phthalate	us/ko	ND	ND	ND	ND	us/L	ND
1,3-Dinitrobenzene	uo/ka	ND	ND	ND	ND	us/L	ND
4,6-Dinitro-o-cresol	us/ks	ND	ND	ND	ND	us/L	ND
2,4-Dinitrophenol	us/ks	ND	ND	ND	MD	us/L	ND
2,4-Dinitrotoluene	u9/k9	ND	ND	ND	ND	u9/L	ND
2,6-Dinitrotoluene	u9/k9	ND	ND	ND	ND	us/L	ND
Di-n-octyl shthalate Dishenylamine	us/ks	ND ND	nd Nd	NU	ND ND	us/L	ND ND
DIFNCHTHEEHE	u3/ks	NU	ND	ND	ND	us/L	ND

RFI09 - Inactive Land Treatment Area and Drainase Ditch

Sample roint number Depth of sample		07 90.0	07 V3.0	07 V5.0	07 V7.0		01 E5.0
Parameter	Units	Result	Result	Result	Result	Units	Result
Method 8270 (con't)							
Ethyl methanesulfonate	us/ks	ND	ND	ND	ND	u9/L	ND
Fluoranthene	ua\ka	ND	MD	ND	ND	us/L	ND
Fluorenc	u9/k9	ND	ND	ND	ND	09/L	ND
Hexachlorobenzene	ua/ka	ND	ND	ND	ND	us/L	DM
Hexachlorobutadiene	u9/k9	ND	ND	ND	ND	us/L	NÐ
Hexachlorocyclopentadiene	ua/ka	ND	ND	ND	ND	u9/L	ND
Hexachloroethane	u9/k9	ND	ND	NÐ	ND	us/L	ND
Indeno(1,2,3-cd)pyrene	uo/ka	ND	ND	ND	ND	us/L	ND
Isophorone	u9/k9	ND	ND	ND	ND	us/L	ND
3-Methylcholanthrene	us/ks	ND	ND	ND	ND	us/L	ND
Methyl methanesulfonate	us/ks	ND	ND	ND	ND	u9/L	ND
2-Methylnaphthalene	ug/kg	ND	ND	ND	ND	09/L	ND
Nachthalenc	us/ks	ND	ND	ND	ND	us/L	ND
1-Naphthylamine	u9/k9	ND	ND.	ND	ND	us/L	ND
2-Naphthylamine	u9/k9	ND	ND	ND	ND	v9/L	ND
2-Nitroaniline	us/ks	ND	ND	ND	ND	u9/L	ND
3-Nitroaniline	us/ka	ND	ND	ND	ND	09/L	ND
1-Nitroaniline	us/ks	ND ND	ND	ND	ND	us/L	ND
Nitrobenzene 2-Nitrophenol	uc/ks us/ks	ND ND	ND	ND	nd Nd	us/L	ND
2-Nitrophenol	us/ks	ND	ND	ND ND		us/L	ND
N-Nitroso-di-n-butylamine	us/ks	ND	nd Nd	ND	nd Nd	us/L us/L	nd Nd
H-Nitrosodimethylamine	u9/k9	ND	ND	ND	ND	us/L	ND
N-Nitrosodiphenylamine	us/ks	ND	ND ND	ND	ND	u9/L	ND
N-Nitroso-di-n-rropylamine	us/ks	ND	ND	ND	ND	us/L	ND
N-Nitrosopiperidine	us/ks us/ks	ND	ND	ND	ND	u9/L u9/L	ND
Pentachlorobenzene	us/ks	ND	ND	ND	ND	us/L	ND
Pentachloronitrobenzene	us/ks	ND	ND	ND	ND .	us/L us/L	NED
Pentachlorophenol	us/ks	ND	ND	ND	ND	u97L	ND
Phenacetin	u9/k9	ND	ND D	ND	ND	497L	ND
Phenanthrene	us/ks	ND	ND	ND	ND	us/L	ND
Phenol	us/ks	ND	טא	ND	ND	us/L	ND
2-Picoline	us/ks.	ND	ND CM	ND	ND	u9/L	ND
Pronamide	us/ks	ND	ND	ND	ND	us/L	ND
Pyrenc	us/ks	ND	ND	ND	ND	u9/L	ND
1,2,4,5-Tetrachloro-benzene	us/ks	ND	ND	ND	ND	us/L	ND
2,3,4,6-Tetrachlorophenol	us/ks	ND	ND	ND	ND	us/L	ND
1,2,4-Trichlorobenzene	us/ks	ND	ND	ND	ND	us/L	ND
2,4,5-Trichlorophenol	us/ka	ND	ND	ND	ND	us/L	ND
2,4,5-Trichlorophenol	us/ks	ND	ND	ND	NĐ	89/L	ND
Benzidine	us/ks	ND	ND	ND	NÐ	us/L	ND
Benzoic acid	uo/ka	ND	ND	ND	ND	us/L	ND
1-Chloronaphthalene	us/ko	ND	ND	ND	ND	u9/L	ND
1,2-Diphenvlhydrazine	us/ks	ND	ND	ND	ND	03/L	ND

		RF109 - 1	Inactive	Land Tr	eatment (Area and	Drainag
Sample point number Derth of sample		07 V0.0	07 73.0	07 V5.0	07 V7.0		01 E5.0
Parameter	Units	Result	Result	Result	Result	Units	Result
Total Metals							
Antimony	ac/ka	ND	ND	ND	ND	as/L	ND
Arsenic	as/ko	1.4	0.65	0.61	0.58	ac/L	ND
Barium	as/ks	447	234	208	240	ms/L	HD
Beryllium	no/ka	0.59	0.97	0.65	1.0	ns/L	ND
Cadmium	#9/KS	NÐ	ND	ND	ND	n9/L	ND
Chromium	ac/ks	102	8.5	16.2	7.5	as/L	ND
Cobalt	æs/ks	1.2	2.9	1.5	2.5	as/L	ND
Copper	ac/ko	10.5	5.5	4.1	5.1	ac/L	MD.
!.ead	as/ko	14.0	9.1	7.2	7.5	æ9/L	ND
Mercury	as/ks	ND	ND	ND	ND	ao/L	ND
Nickel	ans/ko	5.0	7.7	4.7	5.8	m9/L	ND
Potassium	as/ko	853	1030	775	1390	∎s/L	НD
Selenium	ms/ko	ND	. ND	ND	ND	m9/L	HD
Vanadium	ma∕ko	14.5	13.1	10.3	12.7	₩3/L	ND
Zinc	ng/ko	157	11.3	23.8	13.4	ma/L	ND

<u>RFI 0901</u>

Personnel: Chris, Philbert, Mark, Corrie, Danny, Claud, Mike*

Weather: High thin clouds Wind O-5 mph Temperature 75

Terrain: A few small bushes and weeds

Sampling: 07-02-90 Background PID 0.75

7:53 took sample at $0-\frac{1}{2}$ ', soil was very sandy and dry PID 0.75

7:54 took sample at $3-3\frac{1}{2}$ ', soil was still sandy and brown PID 0.75

7:56 sample of the rinse water was taken

8:03 took sample at $5-5\frac{1}{2}$ ', soil was like clay PID 0.75

8:10 sample of the rinse water was taken

8:17 took sample at $7-7\frac{1}{2}$ ', soil was a moist clay PID 0.75

Sampling Method:

The first sample was taken with an open end auger. The backhoe dug down to 3' where we took the next sample with the closed end auger. Then the backhoe dug to 5' where we sampled with an open end auger. Again the backhoe dug down to 7' where we took a sample with open end auger.

RFI 0902

Personnel: Danny, Chris, Mark, Corrie, Philbert, Mike*

Weather: High thin clouds Wind 0-5 mph Temperature 82

Terrain: A few small weeds

Sampling:

- ing: 07-02-90 Background PID 0.75 9:10 took sample $0-\frac{1}{2}$ ', the soil was like clean sand PID 0.75
- 9:20 took sample at $3-3\frac{1}{2}$ ', the soil was brown and moist PID 0.75
- 9:28 took sample at $5-5\frac{1}{2}$ ', the soil was clay PID 0.75 9:43 took sample at $7-7\frac{1}{2}$ ', the soil was a hard clay

PID 0.75

Sampling Method:

The first sample was taken with an open end auger. Then the backhoe dug down to 3' where the 2nd sample was taken with a closed end auger. The 3rd sample was dug down to 5' with the backhoe and sampled with an open end auger. The 4th sample point was dug down to 7' with the backhoe and extracted with the closed end auger.

<u>RFI 0903</u>

Personnel: Mark, Danny, Corrie, Chris, Mike*, Philbert

Weather: High thin clouds Wind 0-5 mph Temperature 85

Terrain: A few small weeds and bushes

Sampling: 07-02-90 Background PID 0.5

- 10:29 took sample at $0-\frac{1}{2}$ ', the sample was dry and sandy PID 0.5
 - 10:38 took sample at $3-3\frac{1}{2}$ ', the sample was clay like and dry PID 0.5
 - 10:50 took sample at $5-5\frac{1}{2}$ ', the soil was dry clay PID 0.5
 - 11:00 took sample at $7-7\frac{1}{2}$ ', the soil was dry clay PID 0.5

Sampling Method:

The first sample was taken with the open end auger. The backhoe dug down to 3' where the closed end auger was used to sample. Then the backhoe dug down to 5' and the sample was collected with the open end auger. The last sample was dug down to 7' with the backhoe then sampled with the closed end auger.

RFI 0904

Personnel: Danny, Chris, Mark, Corrie, Philbert, Mike*

Weather: High thin clouds Wind O-5 mph Temperature 78

Terrain: A few small weeds

Sampling:

ling: 07-02-90 Background PID 0.75 8:25 took sample at $0-\frac{1}{2}$ ', the soil was dark brown sand with black asphalt chunks PID 0.75

8:40 took sample at $3-3\frac{1}{2}$ ', the soil was moist and like soft clay PID 0.75

- 8:52 took sample at $5-5\frac{1}{2}$ ', the soil was like clean hard clay PID 1.5
- 9:03 took sample at $7-7\frac{1}{2}$ ', the soil was like hard clay PID 0.75

Sampling Method:

The first sample was taken with an open end auger. Then the backhoe dug down to 3' where the 2nd sample was taken with a closed end auger. The 3rd sample was dug down to 5' with the backhoe and sampled with an open end auger. The 4th sample point was dug down to 7' with the backhoe and extracted with the closed end auger.

6.56

<u>RFI 0905</u>

Personnel:	Mark, Danny, Corrie, Chris, Mike*, Philbert
Weather:	High thin clouds Wind O-5 mph Temperature 83
Terrain:	07-02-90 Background PID 0.75
	took sample at $0-\frac{1}{2}$ ', the soil was dark brown with a touch of black PID 0.75
9:58	took sample at $3-3\frac{1}{2}$ ', the soil was clean and dry PID 0.75
10:05	took sample at $5-5\frac{1}{2}$ ', the soil was clean dry clay PID 0.75
10:05	took duplicate of sample at $5-5\frac{1}{2}$ '
10:13	took sample at $7-7\frac{1}{2}$ ', the soil was like clay PID 0.75
0 1. M	

Sampling Method:

The first sample was taken with the open end auger. Then the backhoe dug down to 3' where the 2nd sample was taken with the closed end auger. The 3rd sample was dug down to 5' with the backhoe then sampled with closed end auger. Then the backhoe dug down to 7' where we sampled with the closed end auger.

<u>RFI 0906</u>

Personnel: Mark, Danny, Corrie, Philbert, Chris, Mike*

Weather: Very few high clouds Wind O-5 mph Temperature 90

Terrain: A few small scattered weeds and bushes

Sampling: 07-02-90 Background PID 0.5

- 12:03 took sample at $0-\frac{1}{2}$ ', the soil was dark brown and black looking sand
 - 12:06 took sample at $3-3\frac{1}{2}$ ' and split it into two samples one as a duplicate. Soil was brown and sandy PID 0.5
 - 12:13 took sample at $5-5\frac{1}{2}$ ', the soil was dark brown and sandy PID 0.5

Sampling Method:

The first sample was taken with an open end auger. The backhoe then dug down 3' for the next sample with the closed end auger. The 3rd sample was dug down to 5' with the backhoe then sampled with the open end auger. The last sample was dug down to 7' with the backhoe then sampled with the closed end auger.

^{12:18} took sample at $7-7\frac{1}{2}$ ', the soil was a dry clay PID 0.5

RFI 0907

Personnel: Philbert, Danny, Chris, Mike*, Mark, Corrie

Weather: Clear Wind O-5 mph Temperature 92

Terrain: A few scattered weeds and bushes

Sampling: 07-02-90 Background PID 1.0

12:22 took sample at $0-\frac{1}{2}$ ', the soil looked brown and dry PID 3.5

12:42 took sample at $3-3\frac{1}{2}$ ', the soil was sandy and dry PID 1.0

12:46 took sample at $5-5\frac{1}{2}$ ', the soil was sandy and dry PID 1.0

12:58 took sample at $7-7\frac{1}{2}$ ', the soil was a dry clay PID 1.0

Sampling Method:

The first sample was taken with an open end auger. The backhoe then dug down to the 3' level for the next sample with the closed end auger. After the backhoe dug down again to 5' the sample was taken with an open end auger. The last sample was dug down to 7' with the backhoe then sampled with the closed end auger.

Appendix C Correspondence

Appendix D

Investigation Derived Waste Management Plan

Investigation Derived Waste (IDW) Management Plan

All IDW will be properly characterized and disposed of in accordance with all federal, State, and local rules and regulations for storage, labeling, handling, transport, and disposal of waste. The IDW may be characterized for disposal based on the known or suspected contaminants potentially present in the waste.

A dedicated decontamination area will be setup prior to any sample collection activities. The decontamination pad will be constructed so as to capture and contain all decontamination fluids (e.g., wash water and rinse water) and foreign materials washed off the sampling equipment. The fluids will be pumped directly into suitable storage containers (e.g., labeled 55-gallon drums), which will be located at satellite accumulation areas until the fluids are disposed in the refinery wastewater treatment system upstream of the API separator. The solids captured in the decontamination pad will be shoveled into 55-gallon drums and stored at the designated satellite accumulation area pending proper waste characterization for off-site disposal.

Drill cuttings generated during installation of soil borings will be placed directly into 55-gallon drums and staged in the satellite accumulation area pending results of the waste characterization sampling. The portion of soil cores, which are not retained for analytical testing, will be placed into the same 55-gallon drums used to store the associated drill cuttings.

The solids (e.g., drill cuttings and used soil cores) will be characterized by testing to determine if there are any hazardous characteristics in accordance with 40 Code of Federal Regulations (CFR) Part 261. This includes tests for ignitability, corrosivity, reactivity, and toxicity. If the materials are not characteristically hazardous, then further testing will be performed pursuant to the requirements of the facility to which the materials will be transported. Depending upon the results of analyses for individual investigation soil samples, additional analyses may include VOCs, TPH and polynuclear aromatic hydrocarbons (PAHs).

Appendix C Correspondence

SUSANA MARTINEZ Governor JOHN A. SANCHEZ Lieutenant Governor

NEW MEXICO ENVIRONMENT DEPARTMENT

2905 Rodeo Park Drive East, Building 1 Santa Fe, New Mexico 87505-6303 Phone (505) 476-6000 Fax (505) 476-6030 www.nmenv.state.nm.us

RYAN FLYNN Cabinet Secretary BUTCH TONGATE Deputy Secretary

CERTIFIED MAIL - RETURN RECEIPT REQUESTED

April 13, 2015

Ms. Leslie Ann Allen Senior Vice President Environment and Regulatory Affairs Western Refining, Southwest Inc., Gallup Refinery 123 W. Mills Avenue, Suite 200 El Paso, TX 79901

RE: DISAPPROVAL NO FURTHER ACTION REPORT AND SUPPLEMENTAL INFORMATION WESTERN REFINING SOUTHWEST INC., GALLUP REFINERY EPA ID # NMD000333211 HWB-WRG-15-MISC

Dear Ms. Allen:

The New Mexico Environment Department (NMED) is in receipt of Western Refining Southwest Inc., Gallup Refinery's (Permittee) letter titled *Request to Proceed with Review of the "Petition for No Further Action" dated August 10, 2001 and "Supplementary Information" submitted on October 2, 2002 (Letter)*, dated June 24, 2013. In the June 24, 2013 correspondence, the Permittee requested review of seven (7) solid waste management units (SWMU): SWMU 3, SWMU 4, SWMU 5, SWMU 7, SWMU 9, SWMU 10, and SWMU 13 in order to remove these SWMUs from the Permit. Western's request could result in a change in status of these units from Corrective Action Required to Corrective Action Complete rather than a removal from the Permit. Two of the above-referenced SWMUs are currently in use. SWMU 3 (Empty Storage Container Unit) is now the Heat Exchanger Bundle Cleaning Pad and SWMU 7 (Fire Training Area) continues to be used as a fire training area. These two SWMUs will not be reviewed at this time.

NMED has reviewed the information provided in the August 10, 2001 SWMU Assessment Report /No Further Action Report (NFA Report) and the Supplemental Information provided in the October 2, 2002 letter and attachments regarding five SWMUs (SWMU 4 (Old Burn Pit), SWMU 5 (Landfill Areas), SWMU 9 (Drainage Ditch and Inactive Landfarm), SWMU 10 (Sludge Pits), and SWMU 13 (Drainage Ditch between API Evaporation Pond and Neutralization Tank Evaporation Ponds)). Based upon its review, NMED requires additional information regarding SWMUs 4, 5, 9, 10 and 13 and therefore provides the following comments.

General Comments

Comment 1

A "Generic Sampling Plan" is referenced in both documents; NMED does not have a copy of the "Generic Sampling Plan" or any correspondence indicating approval of such plan in its administrative record. Please provide a copy of the "Generic Sampling Plan" for NMED review. If an associated approval letter exists, provide the approval letter.

Comment 2

NMED's administrative record does not contain an approval letter for the additional sampling conducted in 1994. The Environmental Protection Agency (EPA) issued a Notice of Deficiency on December 19, 1994, requiring additional information and the Permittee responded on January 6, 1995. Please provide the EPA's response to the Permittee's January 1995 response to comments.

Comment 3

The arsenic levels reported for some of the SWMUs in the analytical reports in the Phase I and Phase III Investigation Reports (specifically, samples from SWMU 10, SWMU 5 with results ranging from 4.3 mg/kg to 27.9 mg/kg) for the soil investigations are higher than the current residential soil screening level (4.25 mg/kg). According to the USGS, McKinley County arsenic levels generally range from 5.6 to 11 ppm. Because the concentrations of arsenic are significantly higher than the maximum concentration of the background range (11 ppm), the Permittee must conduct a soil background study to account for the higher levels of arsenic in order to reach corrective action complete status.

Comment 4

Provide data tables which list the SWMUs, the constituents of concern, the analytical results (and the chemical analytical methods and detection limits utilized by the laboratory), and the soil screening levels for the historic site investigations. Also, please provide the references to the documents where the data were obtained. NMED may use information from the data tables as part of the statement of basis and public notice for sites that meet corrective action complete criteria. If further investigation is required, and the arsenic levels are below applicable soil

screening levels, then the Permittee may use the new data in addition to the existing data to achieve corrective action complete status rather than solely rely on the historic data.

Comment 5

The Permittee must discuss the levels of chromium found at several of the SWMUs (RFI10V6.0 398 mg/kg, RFI1005V6.0 4020 mg/kg, RFI0503V0.0 110 mg/kg, RFI0504V3.0 270 mg/kg). Discuss whether or not chromium VI was used at the refinery at any point, and whether or not speciation for chromium was ever performed in order to determine whether the chromium levels should be compared to chromium III or VI.

Comment 6

In 1997 or 1998, both the Old Burn Pit (SWMU 4) and the Landfill Areas (SWMU 5) were covered by a soil cap and required periodic inspections. Provide documentation demonstrating that inspections of the caps were conducted, as required, as well as documentation of the inspections to confirm that maintenance activities and repair of the caps and drainage systems (when necessary) were implemented.

Comment 7

The description of sample collection provided in the Additional RFI Sampling (dated October 1994) indicates that the method used to collect volatile organic compounds (VOC) samples likely caused a loss of volatiles. The methods used to collect soil samples were described as, "[t]he soil samples were collected in a clean steel pan and were then placed into laboratory supplied containers..." Based on this description, the samples collected and analyzed during the 1994 investigation cannot be used to characterize VOCs at the SWMUs, because the analytical results do not accurately represent site conditions. Additional sampling is required to fully characterize the SWMUs (see individual SWMU comments for NMED's sampling requirements). The Permittee must ensure that proper sampling methods are employed.

Comment 8

According to the EPA's letter Approval with Modifications RFI Phase I Supplementary Report, RFI Phase II Report and the Voluntary Corrective Actions Plans, dated January 1994 and another EPA letter titled RCRA Facility Investigation (RFI) Phase III Report and Voluntary Corrective Action Plan, also dated January 1994 voluntary corrective action (VCA) plans were submitted to the EPA regarding the landfills and the sludge pits in December 1992 and March 1993. The documents are not in NMED's administrative record. Please provide copies of the VCA plans.

Old Burn Pit (SWMU 4)

Comment 9

Provide any and all existing information regarding the disposition of acid soluble oil from the alkylation unit after use of the burn pit was terminated.

Comment 10

In the NFA Report, a section titled "Unit Area Characteristics" under the heading "Operating Practices (Past and Present)" states, "[a]n old metal box uphill from the pit was used in the past to feet [sic] oil through a metal pipe in the burn pit. The area was then covered with soil." Discuss whether or not the metal box and pipe were removed from the site and whether or not soil samples were collected to determine if there were spills or leaks from the box or pipe. If the metal box and pipe were not removed or soil samples have not been collected for appropriate chemical analyses, the Permittee must submit a work plan to propose to collect soil samples from the location of the metal box and along the pipeline to the burn pit.

Comment 11

The NFA Report and Supplemental Information do not provide information on the presence (e.g., depth to groundwater) of groundwater beneath SWMU 4. Provide information regarding groundwater at SWMU 4.

Comment 12

During investigations in 1992 and 1994 a "black layer" or "asphalt burn residue" layer was encountered, but never sampled. The soil boring logs for the 1992 investigation include descriptions of a "black layer" encountered in soil boring RFI0402 at 20 inches below ground surface (bgs) and at RFI0403 from 2.5-3.5 feet bgs. The black layer was described as a "black layer w/some tar like material" and "the black layer required steaming, solvent, steaming, and then regular washing to get augers and equipment clean." It does not appear that samples were collected directly from the black layer - samples were collected from RFI0402 at the ground surface and from depths of, 3, and 4.5 feet bgs, respectively, and from the same intervals in soil boring RFI0403. The black layer was not encountered in soil boring RFI0401. The soil sample collected from RFI0403 that was within the black layer contained high levels of lead, ethyl benzene, total xylenes, and dimethyl phthalate compared to the other soil boring samples. The black layer was encountered again during the 1994 investigation and described as "asphalt burn residue" at 3.8 feet bgs (RFI0405) and 5 feet bgs (RFI0406); no samples were collected for laboratory analysis from that layer. The Permittee must propose to install a soil boring within the Burn Pit in accordance with RCRA Permit Section IV.J.2.d (Drilling and Soil, Rock, and Sediment Sampling). Ensure that if the "black layer" or "asphalt burn residue" are encountered that samples of the black material are collected and analyzed. The "black layer" / "asphalt burn residue" presents a potential risk to construction workers and if the cap was not properly maintained over the years, a potential leaching concern. Soil sample analysis must include RCRA 8 (total) metals, total petroleum hydrocarbons (as gasoline, diesel and oil range organics), methyl tertiary-butyl ether (MTBE), VOCs, semi-volatile organic compounds (SVOCs), and dioxins and furans. Additionally, the soil boring must be advanced to a depth of two feet into the native soil. Soil samples must be collected from the waste/native soil interface and from the bottom of the boring. In order to protect the integrity of the soil cap, the Permittee must propose

to properly abandon the borehole and include a description of proposed abandonment procedures in the Work Plan.

Comment 13

The soil boring logs from the 1994 investigation for SWMU 4 state that "spent FCC catalyst had blown into the low-lying area and was scraped back to reveal original surface for sampling." Discuss whether or not the spent FCC catalyst may have adversely affected the underlying soils.

Landfill Areas (SWMU 5)

Comment 14

Discuss groundwater elevations at SWMU 5. The EPA's Approval with Modifications required that the Permittee install deeper borings at the landfill area to: "1) verify that saturated zones found in 3 of the 12 deepest soil boring intervals are isolated and are not connected to the groundwater; 2) ensure that the vertical delineation of waste emplacement has been identified. (soil boring logs indicate waste at the 8-9' zone, the deepest samples were at 9.5'); and, 3) ensure that the vertical extent of metal contamination has been identified (some of the 9.5' samples had elevated metals." In the Additional Sampling Report (1994), the boring logs do not indicate whether or not the soils encountered were moist and contain only very general descriptions of the lithology encountered; therefore, it is difficult to determine whether or not the saturated intervals encountered in the Phase III investigation were present and the EPA's inquiry cannot be addressed.

Comment 15

The Permittee must propose to advance one soil boring through the center of each landfill cell (for a total of four soil borings). The borings must be advanced to a minimum of two feet into native soil. Samples must be collected based on field observations of the waste and soils, from the native soil directly below the waste, and from the bottom of the boring. To address the data gap discussed in Comment 14, the Permittee must propose (in the Work Plan) to install additional soil borings at SWMU 5 and properly log the soil borings to identify soil types and saturated intervals. If saturated intervals are encountered, the Permittee must propose to collect groundwater samples for chemical analysis, if sufficient water is present. The soil samples must be analyzed for RCRA 8 (total) metals, total petroleum hydrocarbons (as gasoline-, diesel- and oil-range organics), MTBE, VOCs, and SVOCs. The boreholes must be properly logged in accordance with Permit Section IV.J.2.d.v and describe any waste encountered. The boreholes must also be properly abandoned.

Drainage Ditch and Inactive Landfarm (SWMU 9)

Comment 16

Please provide a detailed description of the drainage ditch. The Permittee must describe the dimensions of the ditch, the direction of flow, the origin and termination of the flow, the type of

material the ditch conveyed, and whether or not soil or sludge samples were collected from within the ditch.

Comment 17

Provide a more detailed description of activities conducted at the landfarm. Specifically, discuss whether or not the soil was tilled, the depth of tilling, and the frequency of tilling.

Comment 18

The description of soil sample collection during the Phase I investigation does not include a description of the field methods used to collect soil samples. The sampling methods are described in the Phase I Report as follows: "[t]he first sample was taken with an open end auger. The backhoe dug down 3' where we took the next sample with the closed end auger. Then the backhoe dug to 5' where we sampled with an open end auger. Again the backhoe dug down to 7' where we took a sample with open end auger." SWMU 9 was not investigated further after the Phase I investigation. The Permittee must provide a description demonstrating that the samples were collected appropriately in accordance with RCRA Permit Section IV.J.2.d.ii (Soil and Rock Sampling); otherwise, additional sampling may be required.

Comment 19

Discuss whether or not the landfarm area is demarcated (i.e., with signs or fencing) and whether or not the area was or is currently used for any other activities since its closure.

Sludge Pits (SWMU 10)

Comment 20

The Permittee does not present any information regarding the presence of groundwater beneath the SWMU. The Permittee must discuss the groundwater table depth and groundwater conditions at SWMU 10.

Comment 21

It appears that when the sludge pits were excavated, only a portion of the sludge was removed from the pit. The Permittee must provide the depths of the pits. The pits contained listed hazardous waste: API Separator Sludge (K051) and Slop Oil Emulsified Solids (K049). Additionally, a SVOC, Di-n-butyl phthalate, was detected at concentrations of 11 ug/kg at a depth 20-25' below ground surface (bgs) during the additional investigation; however, no VOCs were detected. In an Approval with Modifications letter dated January 1994, the EPA expressed concern regarding the presence of the SVOC at depth. In addition to the presence of a SVOC at depth, it appears that VOC sampling was conducted improperly during the Additional Investigation (1994) (see Comment 7). VOCs are a component of K051 and K049 wastes, which were disposed of in the pits. Submit a Work Plan proposing to conduct additional soil sampling to complete characterization (specifically, VOC and SVOC contamination) of the SWMU and to determine whether there is potential for contaminant migration.

Comment 22

Discuss the amount of sludge removed from the pit and where the sludge was disposed, if known. Discuss whether or not the overflow pipe from the pit was removed and identify the pipe location and outfall.

Drainage Ditch Between API Evaporation Ponds and Neutralization Tank Evaporation Ponds (SWMU 13)

Comment 23

Discuss whether or not the drainage ditch is still in use. If it is not in use, please provide the dates of operation. If it is still in use, describe the influent source. Provide a figure depicting the location of the ditch with the API Evaporation Ponds and Neutralization Tank Evaporation Ponds labeled and any other identifying features marked (e.g., roads, above ground and below ground pipelines, buildings, tanks).

Comment 24

Discuss whether or not the five-year sampling required by the EPA (Approval with Modifications dated January 7, 1994) was conducted. If so, reference the documents where the results were reported. If the sampling was discontinued, provide documentation demonstrating that termination of the sampling was approved by either EPA or NMED. Also, please provide additional information as to whether or not samples of the sludge or sediments that accumulated in the ditch were ever collected for laboratory analysis to allow the NMED to evaluate the adequacy of the previous analytical suites.

Comment 25

The Supplemental Information that is the subject of this Disapproval was supposed to contain an Appendix L, addressing SWMU 13. The submittal did not include the Appendix L. Please provide the information that was supposed to be Appendix L.

The work proposed in the Work Plans approved by NMED will provide much of the information required in this Disapproval. Following the schedule in the RCRA Post-Closure Permit, the Permittee has submitted an *Investigation Work Plan SWMU No. 10 Sludge Pits*, dated September 2014. NMED reviewed this document and the Permittee is in receipt of an Approval with Modifications dated March 2, 2015. The Permittee also submitted an *Investigation Work Plan SWMU No. 4 Old Burn Pit and SWMU No.5 Landfill Areas*, dated June 2014. NMED is reviewing the document and will respond to that Work Plan in separate correspondence.

The Permittee must provide responses to the above comments and submit additional information to NMED on or before **June 16, 2015**.

If you have questions regarding this letter, please contact Kristen Van Horn of my staff at 505-476-6046.

4

Sincerely, John E. Kieling Chief

Hazardous Waste Bureau

- cc: D. Cobrain NMED HWB N. Dhawan, NMED HWB K. Van Horn NMED HWB A. Haines WRG E. Riege, WRG
- File: Reading File and WRG 2015 File WRG-15-MISC

Certified Mail # 7014 1820 0001 7489 1485

June 15, 2015

Mr. John E. Kieling, Chief Hazardous Waste Bureau New Mexico Environment Department 2905 Rodeo Park Drive East, Bldg 1 Santa Fe, New Mexico 87505-6303

RE: RESPONSE TO DISAPPROVAL NO FURTHER ACTION REPORT AND SUPPLEMENTAL INFORMATION WESTERN REFINING SOUTHWEST, INC., GALLUP REFINERY EPA ID # NMD000333211

Dear Mr. Kieling:

Western Refining Southwest, Inc. ("Western") has prepared the following response to the New Mexico Environment Department's ("NMED") comments dated April 13, 2015. Western and NMED will schedule a meeting to discuss a path forward.

General Comments

NMED Comment 1

A "Generic Sampling Plan" is referenced in both documents; NMED does not have a copy of the "Generic Sampling Plan" or any correspondence indicating approval of such plan in its administrative record. Please provide a copy of the "Generic Sampling Plan" for NMED review. If an associated approval letter exists, provide the approval letter.

Western Response

Please find a copy of the "Generic Sampling Plan" (dated May 17, 1990) and EPA's approval letter (dated May 30, 1990) enclosed.

NMED Comment 2

NMED's administrative record does not contain an approval letter for the additional sampling conducted in 1994. The Environmental Protection Agency (EPA) issued a Notice of Deficiency on December 19, 1994, requiring additional information and the Permittee responded on January 6, 1995. Please provide the EPA's response to the Permittee's January 1995 response to comments.

Western Response

Western has not yet been able to locate the requested records. We have submitted an open records request to EPA, but have not yet received a response as to whether the records are available. We also continue to search our records for the requested documents.

NMED Comment 3

The arsenic levels reported for some of the SWMUs in the analytical reports in the Phase I and Phase III Investigation Reports (specifically, samples from SWMU 10, SWMU 5 with results ranging from 4.3 mg/kg to 27.9 mg/kg) for the soil investigations are higher than the current residential soil screening level (4.25 mg/kg). According to the USGS, McKinley County arsenic

levels generally range from 5.6 to 11 ppm. Because the concentrations of arsenic are significantly higher than the maximum concentration of the background range (11 ppm), the Permittee must conduct a soil background study to account for the higher levels of arsenic in order to reach corrective action complete status.

Western Response

A background study was previously conducted during the RFI and the results are included in the 1991 Phase II RFI Report. The upper tolerance limit (UTL) for the 0 – 5 foot interval was 11.73 mg/kg and a UTL of 12.23 mg/kg was calculated for soils deeper than 5 feet. Based on previous sampling, there may be locations with concentrations of arsenic above background concentrations. The important question is whether there are arsenic concentrations in soils that exceed health-based screening/remediation levels.

NMED Comment 4

Provide data tables which list the SWMUs, the constituents of concern, the analytical results (and the chemical analytical methods and detection limits utilized by the laboratory), and the soil screening levels for the historic site investigations. Also, please provide the references to the documents where the data were obtained. NMED may use information from the data tables as part of the statement of basis and public notice for sites that meet corrective action complete criteria. If further investigation is required, and the arsenic levels are below applicable soil screening levels, then the Permittee may use the new data in addition to the existing data to achieve corrective action complete status rather than solely rely on the historic data.

Western Response

The requested information is contained in reports prepared for the original Resource Conservation and Recovery Act (RCRA) Facility Investigations (RFIs), which were previously submitted to the Environmental Protection Agency (EPA) and the NMED. The reports are listed in the "Western Index" that NMED provided to Montgomery and Andrews (Western's legal counsel) in response to their request of November 4, 2011 for a copy of the "work file" that NMED had previously referenced when justifying inclusion of new AOCs. In addition, the historical analytical results for SMWUs 4, 5 and 10 were recently summarized again in table form and provided to NMED in the respective SWMU Investigation Work Plans. It was Western's understanding that NMED already had all of this information in the previously submitted documents and Western believed NMED was reviewing this information to support preparation of NMED's April 13, 2015 letter.

NMED Comment 5

The Permittee must discuss the levels of chromium found at several of the SWMUs (RFI10V6.0 398 mg/kg, RFI1005V6.0 4020 mg/kg, RFI0503V0.0 110 mg/kg, RFI0504V3.0 270 mg/kg). Discuss whether or not chromium VI was used at the refinery at any point, and whether or not speciation for chromium was ever performed in order to determine whether the chromium levels should be compared to chromium III or VI.

Western Response

SWMU 10 is currently being investigated and the soil samples will be analyzed for both chromium III and VI to determine which is present. Regarding the detections of chromium at SWMU 5, the valence state is not relevant at this time, as this area has already been capped based on the possibility that any constituents (e.g., chromium III or VI) were present at concentrations above remediation standards.

Based on information contained in the RCRA Facility Assessment conducted in 1987 chromate was used in the cooling water. Western is not knowledgeable of all historic sampling that has been conducted at the site; however, Western has not identified historical analytical data that indicate chromium was speciated to determine if chromium VI was present.

NMED Comment 6

In 1997 or 1998, both the Old Burn Pit (SWMU 4) and the Landfill Areas (SWMU 5) were covered by a soil cap and required periodic inspections. Provide documentation demonstrating that inspections of the caps were conducted, as required, as well as documentation of the inspections to confirm that maintenance activities and repair of the caps and drainage systems (when necessary) were implemented.

Western Response

Western has not yet been able to locate the requested records. We have submitted an open records request to EPA, but have not yet received a response as to whether the records are available. We also continue to search our records for the requested documents.

NMED Comment 7

The description of sample collection provided in the Additional RFI Sampling (dated October 1994) indicates that the method used to collect volatile organic compounds (VOC) samples likely caused a loss of volatiles. The methods used to collect soil samples were described as, " [t]he soil samples were collected in a clean steel pan and were then placed into laboratory supplied containers ... " Based on this description, the samples collected and analyzed during the 1994 investigation cannot be used to characterize VOCs at the SWMUs, because the analytical results do not accurately represent site conditions. Additional sampling is required to fully characterize the SWMUs (see individual SWMU comments for NMED's sampling requirements). The Permittee must ensure that proper sampling methods are employed.

Western Response

See the response to Comments 12, 15, 18 and 21.

NMED Comment 8

According to the EPA's letter Approval with Modifications RFI Phase I Supplementary Report, RFI Phase II Report and the Voluntary Corrective Actions Plans, dated January 1994 and another EPA letter titled RCRA Facility Investigation (RFI) Phase III Report and Voluntary Corrective Action Plan, also dated January 1994 voluntary corrective action (VCA) plans were submitted to the EPA regarding the landfills and the sludge pits in December 1992 and March 1993. The documents are not in NMED's administrative record. Please provide copies of the VCA plans.

Western Response

The VCA Plans for SWMUs No. 5 and No. 7 are enclosed. The VCA Plan for SWMU No. 4 could not be located and it is possible, based on the discussion in the SWMU No. 4 Summary Report prepared by Practical Environmental Services, Inc. on April 23, 1998, that SWMU No. 4 was closed following the technical specifications in the SWMU No. 5 VCA Plan.

Western has submitted an open records request to EPA, but have not yet received a response as to whether the records are available. We also continue to search our records for the requested documents.

Old Burn Pit (SWMU 4) NMED Comment 9

Provide any and all existing information regarding the disposition of acid soluble oil from the alkylation unit after use of the burn pit was terminated.

Western Response

After termination of use of the former burn pit, the ASO was placed into the wastewater system at the API. This caused problems with globular mass issues and this was discontinued. Subsequently, the ASO was disposed off-site through Clean Harbors and it continues to be disposed off-site.

NMED Comment 10

In the NFA Report, a section titled "Unit Area Characteristics" under the heading "Operating Practices (Past and Present)" states, "[a]n old metal box uphill from the pit was used in the past to feet [sic] oil through a metal pipe in the burn pit. The area was then covered with soil." Discuss whether or not the metal box and pipe were removed from the site and whether or not soil samples were collected to determine if there were spills or leaks from the box or pipe. If the metal box and pipe were not removed or soil samples have not been collected for appropriate chemical analyses, the Permittee must submit a work plan to propose to collect soil samples from the location of the metal box and along the pipeline to the burn pit.

Western Response

According to interviews with refinery staff, the ASO was transported to the area using a mobile tank. An aboveground pipe was used to feed ASO into the burn pit. The pipe was removed after the burn pit was no longer used and apparently before the cap was constructed over the area. Western has not been able to locate any maps or figures showing the former location of the metal pipe, thus it is uncertain if or where soil samples were collected. Because the former location is unknown, Western cannot propose to collect soil samples from these unknown locations.

NMED Comment 11

The NFA Report and Supplemental Information do not provide information on the presence (e.g., depth to groundwater) of groundwater beneath SWMU 4. Provide information regarding groundwater at SWMU 4.

Western Response

OW-13 is one of the closest existing monitoring wells. It is approximately 200 feet east of the former burn pit. OW-13 is screened across the Sonsela sandstone at a depth of 78.2 to 98.2 feet below ground surface. On November 11, 2011 the depth to groundwater was measured at 22.38 feet below the top of casing for an actual elevation of 6896.57 ft above mean sea level. The boring log for OW-13 is enclosed and it shows the Petrified Forest Member (logged as shale) at a depth of 6 feet below the land surface and does not record the presence of saturation at this shallow depth.

As part of an unrelated assessment, a soil boring (NDD-3) was recently completed a short distance to the north of SWMU No. 4. In this boring, claystone was encountered at 12 feet below the land surface. Saturated clayey, gravelly, sand was observed overlying (10'-12') the claystone and a temporary well completion was installed to facilitate collection of a groundwater sample. The analysis of the water sample indicates the presence of low concentrations of gasoline and diesel range organics, benzene, 1,2-dichloroethane, methyl tert butyl ether, isopropylbenzene, and sec-butylbenzene. Methyl tert butyl ether and 1.2-dicloroethane were

detected at concentrations above screening levels. The laboratory analysis is enclosed along with a map and a copy of the field boring log.

NMED Comment 12

During investigations in 1992 and 1994 a "black layer" or "asphalt burn residue" layer was encountered, but never sampled. The soil boring logs for the 1992 investigation include descriptions of a "black layer" encountered in soil boring RFI0402 at 20 inches below ground surface (bgs) and at RFI0403 from 2.5-3.5 feet bgs. The black layer was described as a "black layer w/some tar like material" and "the black layer required steaming, solvent, steaming, and then regular washing to get augers and equipment clean." It does not appear that samples were collected directly from the black layer - samples were collected from RFI0402 at the ground surface and from depths of, 3, and 4.5 feet bgs, respectively, and from the same intervals in soil boring RFI0403. The black layer was not encountered in soil boring RFI0401. The soil sample collected from RFI0403 that was within the black layer contained high levels of lead, ethyl benzene, total xylenes, and dimethyl phthalate compared to the other soil boring samples. The black layer was encountered again during the 1994 investigation and described as "asphalt burn residue" at 3.8 feet bgs (RFI0405) and 5 feet bgs (RFI0406); no samples were collected for laboratory analysis from that layer. The Permittee must propose to install a soil boring within the Bum Pit in accordance with RCRA Permit Section IV.J.2.d (Drilling and Soil, Rock, and Sediment Sampling). Ensure that if the "black layer" or "asphalt burn residue" are encountered that samples of the black material are collected and analyzed. The "black layer" I "asphalt burn residue" presents a potential risk to construction workers and if the cap was not properly maintained over the years, a potential leaching concern. Soil sample analysis must include RCRA 8 (total) metals, total petroleum hydrocarbons (as gasoline, diesel and oil range organics), methyl tertiary-butyl ether (MTBE), VOCs, semi-volatile organic compounds (SVOCs), and dioxins and furans. Additionally, the soil boring must be advanced to a depth of two feet into the native soil. Soil samples must be collected from the waste/native soil interface and from the bottom of the boring. In order to protect the integrity of the soil cap, the Permittee must propose to properly abandon the borehole and include a description of proposed abandonment procedures in the Work Plan.

Western Response

Based on NMED's comment above and the soil descriptions provided in the Phase III RFI Report, a sample (RFI0403V3.0) of the burn residue was collected and analyzed at boring RFI0403, "The soil sample collected from RFI0403 that was within the black layer contained high levels of lead, ethyl benzene, total xylenes, and dimethyl phthalate compared to the other soil boring samples." In addition to sample RFI0403V3.0, sample RFI0402V3.0 was also collected from the burn residue layer. Sample RFI0402V3.0 was collected at a depth of 3.0 feet and the sample description for this interval was as follows, "2.5' – 3.25' black layer w/some tar like material."

A cap was previously constructed over this area to address any and all constituents that may have been present in the pit due to the historic practice of burning ASO. Western does not understand what value or added protection to human health or the environment there is from collecting a sample of the material that is already contained beneath the cap. Similarly, there is no value of collecting samples of clean soil at deeper intervals beneath the cap. The risk of spreading contamination by drilling through the contaminated interval to deeper clean intervals certainly does not seem to be warranted considering the value of data: further characterization of soils that are already beneath a cap.

NMED Comment 13

The soil boring logs from the 1994 investigation for SWMU 4 state that "spent FCC catalyst had blown into the low-lying area and was scraped back to reveal original surface for sampling." Discuss whether or not the spent FCC catalyst may have adversely affected the underlying soils.

Western Response

As shown on the boring logs, apparent catalysts were mixed in the soils at some of the sampling locations. If the catalyst had affected the underlying soils, then this would be indicated in the sample results.

Landfill Areas (SWMU 5) NMED Comment 14

Discuss groundwater elevations at SWMU 5. The EPA's Approval with Modifications required that the Permittee install deeper borings at the landfill area to: "1) verify that saturated zones found in 3 of the 12 deepest soil boring intervals are isolated and are not connected to the groundwater; 2) ensure that the vertical delineation of waste emplacement has been identified (soil boring logs indicate waste at the 8-9' zone, the deepest samples were at 9.5'); and, 3) ensure that the vertical extent of metal contamination has been identified (some of the 9.5' samples had elevated metals." In the Additional Sampling Report (1994), the boring logs do not indicate whether or not the soils encountered were moist and contain only very general descriptions of the lithology encountered; therefore, it is difficult to determine whether or not the saturated intervals encountered in the Phase III investigation were present and the EPA's inquiry cannot be addressed.

Western Response

Detailed soil boring logs were included in the Phase III RFI and they did clearly indicate the degree of saturation within the various lithologic intervals. Copies of these logs for RFI 0513, RFI 0514, RFI 0515, RFI 0516, RFI 0517, RFI 0518, and RFI 0519 are enclosed. In addition, Western recently completed a soil boring (NDD-2), which was located immediately north of SWMU No 5, for an unrelated assessment and groundwater was not found to be present in the sediments overlying the claystone/mudstone of the Petrified Forest Member of the Chinle Group. A copy of the boring log and a reference map is enclosed.

NMED Comment 15

The Permittee must propose to advance one soil boring through the center of each landfill cell (for a total of four soil borings). The borings must be advanced to a minimum of two feet into native soil. Samples must be collected based on field observations of the waste and soils, from the native soil directly below the waste, and from the bottom of the boring. To address the data gap discussed in Comment 14, the Permittee must propose (in the Work Plan) to install **additional soil borings at** SWMU 5 and properly log the soil borings to identify soil types and saturated intervals. If saturated intervals are encountered, the Permittee must propose to collect groundwater samples for chemical analysis, if sufficient water is present. The soil samples must be analyzed for RCRA 8 (total) metals, total petroleum hydrocarbons (as gasoline-, diesel- and oil-range organics), MTBE, VOCs, and SVOCs. The boreholes must be properly logged in accordance with Permit Section IV.J.2.d.v and describe any waste encountered. The boreholes must also be properly abandoned.

Western Response

Western does not understand what value or added protection to human health or the environment there is from collecting a sample of the material that is already contained beneath the cap. Similarly, there is no value of collecting samples of clean soil at deeper intervals beneath the cap. The risk of spreading contamination by drilling through the contaminated interval to deeper clean intervals certainly does not seem to be warranted considering the value of data; further characterization of soils that are already beneath a cap.

Drainage Ditch and Inactive Landfarm (SWMU 9)

Comment 16

Please provide a detailed description of the drainage ditch. The Permittee must describe the dimensions of the ditch, the direction of flow, the origin and termination of the flow, the type of material the ditch conveyed, and whether or not soil or sludge samples were collected from within the ditch.

Western Response

Please see the enclosed aerial map that shows the location of the subject drainage ditch. The ditch picks up stormwater on the northeast side of the refinery from locations outside containment (e.g., the bullet tanks that store gases under standard temperature and pressure). It extends in a northerly direction for approximately 600 feet before it crosses a dirt road that runs on refinery property to the north of the tank farm and then the ditch bifurcates with some flow continuing to the northeast and the rest in a westerly direction. The drainage ditch is not part of the actual area used for landfarming operations but is just west of the western boundary of the landfarm. The width of the ditch varies from approximately 12' to 22' and the depth varies from 2' to 3'.

Soil samples were collected along the ditch at locations RFI0901, RFI0902, and RFI0903. Soil samples were collected from depths of 0-0.5', 3'-3.5', 5'-5.5', and 7'-7.5' at all three of the borings located within the drainage ditch. The collection and analysis of soil samples at SWMU No. 9 is discussed in the Phase I RFI Report dated April 8, 1991.

Comment 17

Provide a more detailed description of activities conducted at the landfarm. Specifically, discuss whether or not the soil was tilled, the depth of tilling, and the frequency of tilling.

Western Response

The inactive landfarm was operated from 1958 through 1975. Based on information provided in the 1987 RFA, the materials (e.g., API Separator sludge, tanks bottoms, waste oils, and slop oil) placed in the inactive landfarm were incorporated into the upper 12 inches. The frequency of tilling is unknown.

Comment 18

The description of soil sample collection during the Phase I investigation does not include a description of the field methods used to collect soil samples. The sampling methods are described in the Phase I Report as follows: "[t]he first sample was taken with an open end auger. The backhoe dug down 3' where we took the next sample with the closed end auger. Then the backhoe dug to 5' where we sampled with an open end auger. Again the backhoe dug down to 7' where we took a sample with open end auger." SWMU 9 was not investigated further after the Phase I investigation. The Permittee must provide a description demonstrating that the samples were collected appropriately in accordance with RCRA Permit Section IV.J.2.d.ii (Soil and Rock Sampling); otherwise, additional sampling may be required.

Western Response

The soil samples were collected in accordance with the investigation work plan that was approved for the Phase I investigation (see Section 3.4.2.2 below from the Generic Sampling Plan dated May 17, 1990). The requirements of RCRA Permit referenced by NMED were not in effect at the time of the data collection for the earlier RFI.

3.4.2.2 Hand Augers

Manual soil probes, referred to as hand augers, may be used to collect samples up to several feet in depth, depending upon soil conditions. The soil sampler tube will be of stainless steel construction. The tube has a T-shaped handle which is used to push or auger the tube into the ground. When the tube has been filled with soil to the desired depth of sampling, it is removed and the soil sample extruded from the tube. The sample is placed in the appropriate sample bottles for delivery to the laboratory. Samples may be collected by using the combination of a backhoe and hand auger. This will be accomplished by using the backhoe to excavate the area where samples will be collected. A hand auger will then be used to bore horizontal soil cores at the desired sample depths. Vertical samples may also be collected from the bottom of the excavated area.

The Phase I investigation report does include a description of the sample collection activities, as quoted above. A backhoe was used to remove overburden material to facilitate collection of a discrete soil sample at the target depth using a hand auger. This is a common method of soil sample collection, which allows for collection of discrete soil samples without the extreme labor required to auger to deeper intervals and this method also eliminates the difficultly of collecting samples at depth that may otherwise contain "fluff" material that falls to the bottom of the borehole when using hand augers.

Comment 19

Discuss whether or not the landfarm area is demarcated (i.e., with signs or fencing) and whether or not the area was or is currently used for any other activities since its closure.

Western Response

The landfarm is not demarcated with signs or fencing. The area is not currently in use and has not been used since its closure with exception of the liquefied petroleum gas (LPG) tank for blow-down. A steel box structure and connected steel blow-down tank were recently removed from service and excavated on September 15, 2014. The steel box measured approximately 4 feet on all three sides. The steel tank is cylindrical in shape with a diameter of approximately 9 feet and length of 15 feet. Information regarding the removal activities will be provided to NMED under separate cover.

Sludge Pits (SWMU 10)

Comment 20

The Permittee does not present any information regarding the presence of groundwater beneath the SWMU. The Permittee must discuss the groundwater table depth and groundwater conditions at SWMU 10.

Western Response

The groundwater conditions at SWMU 10 are currently being investigated and the information will be included in the Site Investigation Report, which is due by March 8, 2016.

Comment 21

It appears that when the sludge pits were excavated, only a portion of the sludge was removed from the pit. The Permittee must provide the depths of the pits. The pits contained listed hazardous waste: API Separator Sludge (K051) and Slop Oil Emulsified Solids (K049). Additionally, a SVOC, Di-n-butyl phthalate, was detected at concentrations of 11 ug/kg at a depth 20-25' below ground surface (bgs) during the additional investigation; however, no VOCs were detected. In an Approval with Modifications letter dated January 1994, the EPA expressed concern regarding the presence of the SVOC at depth. In addition to the presence of a SVOC at depth. it appears that VOC sampling was conducted improperly during the Additional Investigation (1994) (see Comment 7). VOCs are a component of K051 and K049 wastes, which were disposed of in the pits. Submit a Work Plan proposing to conduct additional soil sampling to complete characterization (specifically, VOC and SVOC contamination) of the SWMU and to determine whether there is potential for contaminant migration.

Western Response

An Investigation Work Plan for SWMU 10 was previously submitted to NMED and approved with modifications on March 2, 2015. This work plan is currently being implemented and the resulting information will be submitted to NMED as noted above in response to comment no. 20.

Comment 22

Discuss the amount of sludge removed from the pit and where the sludge was disposed, if known. Discuss whether or not the overflow pipe from the pit was removed and identify the pipe location and outfall.

Western Response

Western could not find documentation on the amount of sludge removed from the pits. Based on a review of historical records, including the 1985 Discharge Plan Application and the 1987 RFA Report, it appears most likely that the sludge removed from the pits in 1980 was moved to the now closed Land Treatment Unit.

Drainage Ditch Between API Evaporation Ponds and Neutralization Tank Evaporation Ponds (SWMU 13)

Comment 23

Discuss whether or not the drainage ditch is still in use. If it is not in use, please provide the dates of operation. If it is still in use, describe the influent source. Provide a figure depicting the location of the ditch with the API Evaporation Ponds and Neutralization Tank Evaporation Ponds labeled and any other identifying features marked (e.g., roads, above ground and below ground pipelines, buildings, tanks).

Western Response

The drainage ditch is currently only used to convey non-contact storm water and does not receive flows from the evaporation ponds. In response to NMED's request for historical information, Western was able to find a figure and description from the 1985 Discharge Plan Application. Figure 6-1 depicts the location of SWMU 13 relative to the evaporation ponds at that time. This figure and description are enclosed.

Comment 24

Discuss whether or not the five-year sampling required by the EPA (Approval with Modifications dated January 7, 1994) was conducted. If so, reference the documents where the results were reported. If the sampling was discontinued, provide documentation demonstrating that termination of the sampling was approved by either EPA or NMED. Also, please provide additional information as to whether or not samples of the sludge or sediments that accumulated in the ditch were ever collected for laboratory analysis to allow the NMED to evaluate the adequacy of the previous analytical suites.

Western Response

The first five-year sampling was conducted on October 23 and 24, 1996 and this information was provided in a RFI Quarterly Progress Report that covered the 4Qtr of 1996 and 1st Qtr of 1997. This RFI Quarterly Progress report was submitted to EPA and NMED on March 20, 1997. No volatile or semi-volatile constituents were detected in the soil samples and metals were found at only low concentrations similar to or lower than those found during the original RFI.

Based on the findings of both the original RFI and five-year sampling showing no releases, Giant submitted a technical request for a NFA determination in 2001. Thus no further five-year sampling was conducted pending receipt of NMED's response to the 2001 submittal.

Comment 25

The Supplemental Information that is the subject of this Disapproval was supposed to contain an Appendix L, addressing SWMU 13. The submittal did not include the Appendix L. Please provide the information that was supposed to be Appendix L.

Western Response

Western has not yet been able to locate Appendix L of the Supplemental Information dated October 2, 2002. The following information was referenced to have been included in Appendix L and should be satisfactory.

Enclosed is an updated site plan and borings logs from sampling conducted in 1991. An updated site plan showing the location of SWMU 13 is enclosed along with site maps showing the boring locations from sampling completed in 1991 and 1996. The soil descriptions for the 1991 sampling are also enclosed. The borings conducted in 1996 were completed in similar locations to those completed in 1991 and new soil descriptions do not appear to have been provided in the RCRA Quarterly Progress Report for the 4th Qtr 2006/1st Qtr 2007 in which the chemical analyses were presented.

If there are any questions regarding the investigation work plan, please contact Ed Riege at (505) 722-0217.

Certification

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision according to a system designed to assure that qualified personnel property gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Sincerely,

William Core melland.

Mr. William Carl McClain Refinery Manager Western Refining Southwest, Inc. – Gallup Refinery

- cc D. Cobrain NMED HWB without enclosure
 - K. Van Horn, NMED HWB without enclosure
 - C. Chavez, OCD
 - A. Allen, Western Refining El Paso

COMMENT 1 ENCLOSURES

GENERIC SAMPLING PLAN RCRA FACILITIES INVESTIGATIVE PROJECT GIANT REFINERY GALLUF, NEW MEXICO

- #it

A REPORT PREPARED FOR GIANT INDUSTRIES, INC. ROUTE 3, BOX 7 GALLUP, NEW MEXICO

AES PROJECT

DECEMBER 15, 1989 BY APPLIED EARTH SCIENCES, INC. 8323 SOUTHWEST FREEWAY, SUITE 710 HOUSTON, TEXAS 77074 (713) 981-7140

> REVISED MAY 17, 1990 BY GIANT INDUSTRIES, INC.

TABLE OF CONTENTS

																				PAGE
List	of Fi	gures.	••	• •	•	•	•	•	•	•	• •	•	•	•	•	•	•	•	•	iii
List	of Ta	bles .	••	• •	•	•	•	•	•	•	• •	•	•	•	•	•	•	•	•	iii
List	of Ap	pendice	s.		•	٠	•	•	•	•	• •		•	•	•	•	•	•	•	iv
1.0	Intr	oductio	n.	• •	•	٠	•	•	•	•	• •		•	•	•	•	•	•	•	1
2.0	Resp	onsibil	itie	s.	•	•	•	•	•	•	• •	•	•	•	•	•	•	•	•	3
	2.1 2.2 2.3	QA/QC	Mana	geı	. .	•	•	•	•	•	• •	•	•	•	•	•	٠	•	•	3 4 4
	2.3	RFI Sa 2.3.1	Gene	ra]		•	•	•	•	•	• •		•			•				4 4
		2.3.2	Grou	nd	Wat	er	Sa	amj	pl.	in	g.	•	•	•	•	•	٠	•	•	4
		2.3.3	Soil	Sa	imp]	lin	g	•	•	•	• •	•	•	•	•	•	. •	•	•	5
		2.3.4 2.3.5																		5 6
		2.3.6																		6
	2.4	Contra																		6
3.0	Samp	ling Pr	oced	ure	es.	•	•	•	•	•	• •	•	•	•	•	•	•	•	•	8
	3.2	Prepar Pre-Sa 3.2.1 3.2.2 3.2.3 Fluid 3.3.1	mpli Cal Ice Sam Samp	ng ibi ple le	Ope cat: e Re Co: Obs	era ion ecc lle ser	ti ord ct	on f io tio	s Fi n on:	el s	d I	In:	st Me	ru as	ime	ent	ts		• • • •	8 13 13 13 13 14 14 15
			3.3																	15
			3.3 3.3 3.3	.1.	. 4	Pu We 3.	rg	e` E [:] 1.:	Vo va 5.	lu cu 1	me ati Ha	Ca io ano	al n d	cu • Ba	ila il	it:	ior ng	ns •	•	18 19 21 22 23
		3.3.2	Mon 3.3			ng Co	We	11 ec [.]	s: ti	amj on	pl: to	in f	g Li	gh	•					24
			3.3	.2	. 2		'lo										•	٠	•	24
						In	mi	sc	ib	le	s ((S)	in	ke	$\mathbf{r})$	•				25
			3.3				tt													25
			3.3																	27
			3.3																	27
			3.3	.2.	6	Di	spo	os	it:	io	n c	of	F	lu	id	ls			•	28

i

TABLE OF CONTENTS (Continued)

	3.4	Soil Samplin					•	• •		29
		3.4.1 Soil	Sampling I	locations	s and					
		Techr	iques		• •	• •	•			29
		3.4.2 Surfi	iques cial Sampl	ing	• •	• •	•			29
		3.4.2	.1 Shovel	s, Spatu	las d	and				
										29
		3.4.2	Scoops .2 Hand A	ugers .			•			30
		3.4.3 Boreh	oles/Core	Samples						30
			.1 Shelby							31
		3 / 3	.2 Split-	Spoon Sa		re re	•	• •		31
		2 4 2	.3 "Five	Toot CME			•	• •		32
										32
		3.4.4 Soil	Sampling S	creening	j rec.	mitç	lue	5.		
		3.4.5 Lithe	LOGIC LOGG		••	• •	•	• •		33
		3.4.6 Dispo	sition or	Soils .	• •	• •	•	• •		33
	3.5	Surface Wate	r Sampling	[••••	• •	•••	٠	• •		34
		3.5.1 Sampl								34
		3.5.2 Runni	ng Water.		• •	•••	•	• •		36
	3.6	Air Monitori	.ng		• •	• •	•			36
4.0	Sampl	e Labeling.					•			38
	-	-								
5.0	Decor	tamination F	rocedures		• •		•			40
	5.1	Drilling Equ	lipment and	l Vehicle	es.					40
	5.2	Sampling Equ								41
				••••	•••	•••	-	•••		
6.0	Samp]	e Custody .								43
	T	· · ···· · ···· · ··· · · · · · · · ·					•			
	6.1	Chain of Cus	stody Recor	•d			_			43
	6.2	Transfer of	Custody		•••	•••	•	•••		44
	0.2	6.2.1 Onsit	Custody :	• • • •	• •	• •	•	•••		44
		6.2.2 Contr	e custouy		•••	• •	•	• •		44
		6.2.2 CONCI	act Labora	acory cus	scouy	• •	•	• •		40
7 0	3 1 -									
7.0		tical Proced								47
	/.1	Methods	• • • • •	• • • •	•••	•••	•	• •		47
		Detection Li								52
	7.3	Sample Conta								
		Holding Time								52
	7.4	Sample Prepa	ration		• •				•	53
	7.5	Laboratory Q								54
			,,,							
8.0	Calit	ration Proce	dures and	Frequenc	cv .					55
	8.1	Field Instru	ments							55
	~ • -	8.1.1 pH Me								55
		8.1.2 Condu								55
		8.1.3 PID M								56
	0 0								•	
	8.2	Laboratory 1			• •	• •	۰	o 0	٠	56
		8.2.1 ICP.	• • • • •	9 0 0 S	e o	• •	a	• •	•	57

TABLE OF CONTENTS (Continued)

PAGE

		8.2.2 Atomic Absorption Spectrophotometer 58
		8.2.3 TOC Analyzer
		8.2.5 Gas Chromatography/Mass Spectrometry . 60
		8.2.6 UV-Vis Spectrophotometer 60
		8.2.7 TOX Analyzer
		•
9.0		istical Methodology 62
	9.1	Statistical Comparison of Background
		Metals Data
	9.2	One-Way Parametric Analysis of Variance 63
		9.2.1 Purpose 64
		9.2.2 Procedure 64
		9.2.3 Interpretation
		9.2.4 Cautionary Note
10.0	Data	Reduction, Validation and Reporting 72
	10 1	
	10.1	QA/QC Manager
	10.2	RFI Project Manager
11.0	Inte	rnal Quality Control Checks
	11.1	Equipment Blanks
	11.2	Trip Blanks 75
	11.3	Field Duplicates
12.0	Syst	em Audits
13.0	Corr	ective Action
14.0	QA/Q	C Reports To Management 80
		LIST OF FIGURES
Figur	e 1	Ground Water Monitoring Sample Record 16
Figur	e 2	Chain of Custody Form 45
		LIST OF TABLES
Table	1	Field Equipment Checklist - Surface Water
10010	-	and Ground Water Sampling

TABLE OF CONTENTS (Continued)

LIST OF TABLES (Continued)

PAGE

Table 2	Field Equipment Checklist - Soil and Sludge Sampling	11
Table 3	Field Equipment Checklist - Air Monitoring.	12
Table 4	Ground Water - Analytical Procedures	48
Table 5	Soil Sampling - Analytical Procedures	51

LIST OF APPENDICES

- Appendix A Helpful Information
- Appendix B Meterological Conditions
- Appendix C Appendix IX Analyses and Methodology
- Appendix D Laboratory QA/QC Program

1.0 INTRODUCTION

is essential to assure that data generated during тt the Giant Refinery RCRA Facilities Investigation (RFI) are valid. For data to be valid, it must be supported by documented procedures so that it can be used with the appropriate level of confidence support decisions to regarding the need for, and design of, subsequent monitoring and remediation activities.

Through the development and implementation of а comprehensive sample collection plan, all parties involved can consistently strive to achieve data of known and acceptable quality. In order to achieve the data quality objective, the generic sampling plan includes specific Quality Assurance (QA) and Quality Control (QC) procedures to:

- Define responsibilities
- Define sampling and analytical techniques
- ° Confirm and document correct sample identity
- * Establish precision and accuracy of reported data

 Establish detection limits for constituents of concern

- Establish any bias arising from sampling or analytical activities
- Documentation of all analytical steps in determining constituent concentrations

The QA/QC program outlined in this manual must be adhered to during all data collection activities. Before initiating any sample collection activities which are not specifically mentioned in this document, it is imperative to verify that the level of data quality sought (especially in regard to sampling and analytical techniques) is sufficient for its intended use.

It is important to remember that QA/QC is a dynamic process, therefore this plan is subject to periodic updates. One must also remember that data quality needs may vary, depending upon the intended use. This document outlines QA/QC procedures designed to meet or exceed US EPA and Now Mexico Environmental Improvements Division guidelines for monitoring at RCRA facilities.

In addition, an important use of this document is in the area of training new personnel in order to maintain a constant high level of data quality. Appendix A contains useful information.

2.0 **RESPONSIBILITIES**

The importance of defining responsibilities for the implementation of the procedures cannot be stressed enough. Each individual involved with the RFI program must clearly understand her/his responsibilities so the procedures detailed in this document will be conducted successfully and efficiently.

2.1 RFI Project Manager

- Maintain information for the data collection
 program
- Set up sampling program that complies with regulatory requirements
- Schedule all sampling events
- Review analytical results and submit to proper agencies
- Interact with contractors involved in RFI
- ° QA/QC report to management
- [°] Determine need to re-sample

Original Date 05/31/89 Revision Date 12/15/89

2.2 QA/QC Manager

- Notify contract lab of sampling schedule
- Review all data for validity
- [°] Determine analytical methods
- 2.3 RFI Sampling Personnel

2.3.1 General

- Follow all procedures in this manual to prevent contamination of samples or sampling locations
- Collect samples as prescribed in the site specific sampling plan
- Inventory sample bottles and preservatives
- ° Affix labels to sample bottles
- Notify QA/QC manager if there are any problems with bottle order
- * Maintain all sampling equipment
- ° Calibrate field instruments

2.3.2 Ground Water Sampling

 Inspect all wells for integrity and notify project manager of any problems.

Ą

- Perform field measurements, pH, conductivity, temperature
- [°] Determine water level elevations
- ° Check wells for immiscible layers
- * Evacuate wells and collect samples
- Field filter samples as required
- ° Check that samples are properly labeled
- * Follow prescribed decontamination procedures
- Prepare equipment and field blanks

2.3.3 Soil Sampling

- ° Collect site specific soil samples
- [°] Check that samples are properly labeled
- * Follow prescribed decontamination procedures

2.3.4 Surface Water

- ° Collect site specific surface water samples
- ° Check that samples are properly labeled
- * Follow prescribed decontamination procedures

2.3.5 Air Sampling

- Collect site specific air samples
- Check that samples are properly labeled
- * Follow prescribed decontamination procedures

2.3.6 Sample Transfer

- Complete chain of custody form
- Make sure samples are packed securely and are maintained at 4°C prior to sample pick-up by laboratory
- Relinquish samples to the contract laboratory
- Input sample results into RFI data base

2.4 Contract Laboratory

- Provide high quality analytical services in conjunction with the RFI sampling program
- Assure that all data generated is supported by adequate documentation and QA/QC procedures that meet EID and EPA requirements for RCRA analyses
- Provide sample containers and coolers upon request
- Maintain Standard Operating Procedures (S.O.P.'s)
 for all analytical methods performed

- [°] Utilize only EPA approved methods for all analyses
- Assure that technical personnel performing analyses are qualified and adequately trained
- Provide feedback to Giant regarding analytical method limitations and quality control data pertinent to the program

3.0 SAMPLING PROCEDURES

Sampling can be divided into four distinct stages: Preparation, Pre-Sampling Operations, Sampling, and Post-Sampling Operations.

3.1 Preparation

Preparation for a sample collection event should be initiated two weeks prior to the anticipated sample collection date whenever possible. This will assure that the sample collection can proceed in an organized and efficient manner. Preparation is one of the most important steps since it defines the scope of the sampling event.

The contract laboratory will be notified of the proposed sampling schedule at the beginning of each RFI investigation. The purpose of sharing the sampling schedule with the contract laboratory is to allow the laboratory to adjust its personnel needs to meet the demands of the sampling requirements. Sampling frequencies for specific sites will be contained in the site specific RFI work plans.

Two weeks prior to sampling, the sample collector will arrange for delivery of sample bottles from the contract

laboratory.

The laboratory will sort the bottles into sets prior to placing them into the coolers. The bottles will be delivered to Giant and stored in a secure area prior to the sampling event.

The sampling personnel will inventory the bottles to verify receipt of all bottles. Sampling personnel will notify the laboratory of any discrepancies between the requested bottles and the contents received. Labels will be affixed to each bottle. It is imperative that the preservative listed on the label match the preservative label placed on the sample bottle by the contract lab.

The day before sampling, the sampling personnel should review the pertinent field checklist (Table 1 for surface and ground water, Table 2 for soil and sludge, and Table 3 for air) to assure all equipment is available, operational, and calibrated if necessary. All rechargeable batteries are to be fully charged. Any other battery operated equipment should be checked for adequate power level and the batteries replaced if necessary. Decontamination supplies (gloves, distilled water, etc.) should be inventoried.

TABLE 1

Field Equipment Checklist

Surface and Ground Water Sampling

ITEM

REMARKS

 pH Meter	 Calibrated
 pH Buffers Conductivity Meter Conductivity Standard	 Calibrated
 Thermometer Water Level Indicator PID Meter	 Battery Checked Calibrated
Bailers	Description

2" Well	Decontaminated
 4" Well	Decontaminated

 Hand Calculator
 Site Map With Well Locations
Well Keys
 Sample Bottles and Additional Preservatives
 Ice Chests
 Trip Blanks
 Methanol
 Deionized Water
 Squeeze Bottles
 Personal Protective Equipment
 Chain of Custody and Sample Record Forms
 Tape Measure (0.01 feet increments)
 Plastic Bags (to provide clean surfaces) (1 per well)
 Watch With Second Hand
 (2) 5 Gallon Buckets
 Disposable Gloves
Paper Towels
Tape (for labels and dispenser)
 Sharpie, Pens, Pencils
 Blue Ice or Ice
Zip-Lock Bags, 1 Gallon

TABLE 2

Field Equipment Checklist Soil and Sludge Sampling

ITEM

REMARKS

PID Meter Calibrated Site Specific SWMU Work Plan Generic Sampling Plan Site Map With Sample Locations _____ _____ Sample Bottles Ice Chests Trip Blanks Methanol Deionized Water ____ Squeeze Bottles ____ Personal Protective Equipment _____ Chain of Custody and Sample Record Forms Plastic Bags (to provide clean surfaces) Disposable Gloves Paper Towels _____ Tape (for labels and dispenser) Sharpie, Pens, Pencils Blue Ice or Ice Zip-Lock Bags, 1 gallon

TABLE 3

Field Equipment Checklist Air Monitoring

ITEM

REMARKS

Tenax

- Tubing

- Pumps (+ spare) Sampler mounting Batteries Timer (with alarm) Record Log Book Labels Chain-of-custody certificates Wind monitoring system Wind system mounting bracket Wind recording system Connector cables Tripod mount for wind system -Compass Level Tripod mount for wind system - with anchor stakes
- Level
- Sling psychrometer
- Ice Bath

3.2 Pre-Sampling Operations

This section describes the activities which occur prior to the actual collection of the sample.

3.2.1 Calibration of Field Instruments

Before the start of water sampling, calibrate pH and conductivity meters according to procedures described in Section 8. Take pH and conductivity standards along for calibration verification and field re-calibration as required. Obtain a copy of the monitoring well sample record and chain of custody record from the files.

3.2.2 Ice

If Blue Ice is unavailable, ice should be obtained and placed in 1-gallon Zip-Lock bags, and placed in the cooler(s) before departing the lab. If Blue Ice is used, remove it from the freezer and place in the ice chest(s).

3.2.3 Sample Record

A sample record is needed for each sampling event. The following information should be recorded in the field

notes:

- * Location of sampling
- Sample identification
- Date and time of sampling
- [°] Sample collection method
- ° Field measurements
- ° Other comments and observations

It is important that during each sampling event that specific observations regarding site conditions be recorded. These observations include:

- Weather conditions and wind direction
- Physical surroundings (high weeds, standing water, nearby activities)
- * Evidence of external contamination
- ° Odors or color abnormalities

3.3 Fluid Sample Collection

3.3.1 Field Observations and Measurements

All ground water sampling information is to be

recorded on the monitoring well sampling form (Figure 1).

3.3.1.1 Well Condition

Observations regarding the well condition include:

- Condition of well identification markings
- ° Condition of lock
- ° Condition of well cap
- ° Condition of concrete pad
- ° Sediment in the well
- ° Obstructions

The ground water sampling personnel should notify the deficiencies RFI manager of any noted in the well integrity. If the well is damaged, it will be repaired. Τf the damage is so extensive that the well integrity cannot be be plugged and a new well restored, the well will If the well screen is found to be blocked installed. or partially blocked with sediment, the well will be redeveloped prior to any sampling activities.

3.3.1.2 Fluid Level Measurements

Upon arrival at the unit to be sampled, obtain static

2-in Sch 40=0.163 gal/ft or 0.2
4-in Sch 40=0.653 gal/ft or 0.7
5-in Sch 40=1.020 gal/ft or 1.0 2-in Sch 40=0.163 gal/ft or Collection Sample Method : Cond Tenp NOTE: Ы ٠, Sample Time Purged Dry Y W Dry Y N Dry Y W Dry Y N Dry Y W Total (Jeg) Ground Water Monitoring Gallup, New Mexico **Giant Refinery** Sample Record Purge Iime Begin Purge ____ Begin Purge Begin Purge Begin Purge End Purge End Purge End Purge End Purge Begin Purge End Purge 1 Casing Vol (gal) 1 Casing Vol (gal) i Casing Vol (gal) 1 Casing Vol (gal) 1 Casing Vol (gal) Casing Storage Casing Diam Purpose Casing Diam Cosing Diem Casing Diam Casing Diam Depth to Vater, TOC, ft _ Length of Water Column ____ Length of Water Column ____ Length of Vater Column Depth to Water, TOC, ft Depth to Water, TOC, ft Depth to Water, IOC, ft Depth to Water, TOC, ft Length of Water Column Length of Water Column Total Depth, TOC, ft Water Level Job Number Number Well Location **Weather** Date

FIGURE I

fluid level measurement for each well to be sampled prior to any evacuation. Remove each well cap and perform the following steps:

- 1) Air in the well head will be sampled for organic vapors. The well cap will be partially removed and a PID reading will be taken of the air escaping the well head.
- 2) Between each well, decontaminate the probe of the water level indicator following the procedures listed in Section 5.0.
- 3) Slowly lower the probe into the well until the light comes on.
- 4) By moving the probe up and down (light on, light off), it is possible to accurately locate the airfluid interface.
- The water level will be indicated by a constant light.
- 6) With a finger, mark this position on the cable, using the surveyed elevation mark at the top of the casing (T.O.C.) as the measurement point .

Record the measurement on the ground water
 monitoring sample record to the nearest 0.01 foot.

3.3.1.3 Depth of Well Measurements

Measure the total depth of the well by dropping the weighted probe to the bottom of the well.

- After the static water level measurement is obtained, lower the probe until it reaches the bottom of the well.
- Slowly pull up the probe until the slack is gone and a slight tension is felt.
- Raise the probe up and down slowly until a "feel"
 for the bottom of the well is established.
- Measure the depth of the well from the cable at the same elevation point as the water level measurement.
- All measurements should be to the nearest 0.01 foot.
- Record measurement on the ground water monitoring sample record.
- After each well reading is completed, thoroughly decontaminate the probe following the procedures listed in Section 5.0.

3.3.1.4 Purge Volume Calculations

In order to assure that the sample collected is indeed representative of actual aquifer conditions, it is necessary to purge the well of stagnant water in the casing. This is accomplished by bailing or evacuating three casing volumes of water from the well or until it is bailed dry, whichever comes first. If a well can be bailed dry, it requires sufficient time to elapse for an adequate volume of water to accumulate for the sampling event. The casing volume is calculated according to the following formula:

```
One Casing Volume = L x F where
```

- L = Length of water column = Total Depth Depth to Water
- F = Gallons/Foot based upon well casing diameter

For 2" wells, F = 0.2 gallons/foot
For 4" wells, F = 0.7 gallons/foot
For 5" wells, F = 1.0 gallons/foot

The volume to be purged from each well is calculated as follows:

Purge Volume = Casing Volume x 3

Example:

Total Depth, T.O.C. = 25.01 ft Depth to Water, T.O.C. = 15.01 ft Length of Water Column = 25.01-15.01 = 10.00 ft Casing Diameter = 4" = 0.7 gallons/foot Casing Volume = 0.7 gal./ft x 10 ft = 7 gal. Purge Volume = 7 x 3 = 21 gallons

3.3.1.5 Well Evacuation

Before sample collection can begin, the water collected from the monitoring well must be fresh aquifer water. Well evacuation replaces stagnant well water with representative aquifer water. An interface probe will be used to measure the water level in the well, the total depth of the well, and measure the thickness of floating product, if present. A bailer may be used to check for the visual presence and measure the thickness of floating product. If product is present, a ground water sample is typically not obtained.

Wells are evacuated by handbailing or by pumping. The actual method of evacuation is based upon site conditions. Each of the methods are discussed below.

In low yielding wells, the standing water will be removed until the well is essentially dry. The water level in the well will be allowed to recover until a sufficient volume is present to obtain a sample.

The first sample should be tested for pH, temperature, and specific conductance. Samples should then be collected and containerized in the order of the parameter's

volatilization sensitivity (See Section 3.3.2.4). The well should be retested for pH, temperature and specific conductance after sampling as a measure of purging efficiencey and as a check on the stability of the water samples over time. All well evacuation information should be recorded on the Ground Water Monitoring Sample Record (Figure 1).

3.3.1.5.1

Hand bailing is conducted by lowering a Teflon(TM) or stainless steel bailer slowly into the well, allowing water to enter the bailer, and lifting the collected water out of the well. The bailer is positioned just below the top of the standing water in the well, so that the bailed water is removed from the top of the water column. A minimum of three standing well volumes are removed.

When using a bailer to evacuate a well, place a new trash can liner in a 5-gallon bucket so that as the bailer is lowered and raised, the rope stays in the bucket and does not contact the ground.

- New rope should be used at each well when using non-dedicated bailers.
- 2) New disposable gloves should be worn at each well.
- 3) The bailer should be emptied into a 5-gallon bucket each time it is raised so that the volume of water evacuated can be measured.
- 4) Lower the bailer slowly into the well until it contacts the water.
- 5) Allow the bailer to fill and raise it.
- 6) Empty the bailer into the 5-gallon bucket.

3.3.1.5.2 Pumping

A Well Wizard is a pneumatic pump used to remove water from the well. During sample collection a maximum flow rate of 100 milliliters/minute (0.03 gal/min) should be used. The actual flow rate should be measured using a graduated container and timed using a watch with a second hand. This rate can change as the water level in the well drops.

The flow rate can be calculated by:

Flow Rate, gpm = Volume Collected (gallons) x 60 sec # seconds to fill container

- If a gasoline generated engine is used, place the engine at least 10 feet downwind from the well to eliminate sample contamination from the exhaust.
- Wells MW-1, 2, 4, 5 and OW-11 will be evacuated using a well wizard pump.

3.3.2 Monitor Well Sampling

3.3.2.1 Collection of Light Immiscible Layers (Floaters)

The floater must be collected prior to any purging activities. If the thickness of the floater is two feet or greater, a bottom value bailer will be used.

When the thickness of the floating layer is less than two feet, then the bailer will be modified to allow filling only from the top. The bottom check valve will be disassembled and modified to allow filling only from the top. A TeflonTM sheet is placed between the ball and ball seat to seal off the bottom value. The ball from the top check valve is removed to allow the samples to enter from

the top. To overcome buoancy a stainless steel pipe is placed on the retrieval line above the bailer. The bailer should be lowered to one-half thickness of the floating layer and the sample collected.

3.3.2.2 Collection of Heavy Immiscibles (Sinker)

The bailer will be lowered to the bottom of the well and remain there for a few minutes before removing the bailer out of the well.

3.3.2.3 Bottle Filling Procedure

If the well was not bailed dry and the water level is recovering to provide sufficient water to fill all of the sample bottles, then samples should be collected immediately. If the well was completely evacuated and /or recovery is slow, wait for a sufficient volume of water to recover in the well to fill all of the sample bottles before beginning to collect samples.

Do not over flow the bottles when filling them as this will dilute the preservative.

When filling VOA and TOX containers, slowly fill the container until the meniscus is just above the lip of the container. Place the cap (Teflon (TM) side towards sample) on the container and tighten. Check for air bubbles by inverting the container and tapping gently. There should be no headspace (air) in the container. If headspace is present the sample should be discarded and the container refilled. (Note: If the sample is discarded, additional preservative will need to be added to the container.)

Do not touch the inside of the bottle cap. Caps should never be placed on the ground. If a cap is accidentally dropped, it should be rinsed with deionized water followed by a rinse with the sample prior to being placed on the bottle. Note in the field notes if this occurs.

Replace the well cap and lock the well.

3.3.2.4 Order of Collection

Sample bottles should be filled in the order listed below:

Parameter	<u> Bottle Type & Preservatives</u>
Volatile Organics	VOA vials/ Septa cap of Teflon (TM) material
тох	Pint amber glass/Septa cap, H2SO4
TOC, Phenols, Nitrate,	
Ammonia	Quart glass H2SO4
Extractable Organics	Quart glass/TFE
Chloride and Sulfate	Quart plastic, none
Cynade	Quart glass, NaOH
Radionuclides	Quart plastic, HNO3
Metal <i>s</i>	fint plastic

3.3.2.5 Filtration

Ground water samples may require filtering prior to metals analysis. The filtering of samples is performed with 0.45 micron filter paper when analyzing for dissolved metals. The sample is not filtered if analyzing for total metals. The liquid is preserved with nitric acid when analyzing for metals.

3.3.2.6 Disposition of Fluids

Excess sample water (with the bailed water) will be retained in drums on the site until the analytical results determine if the water is contaminated. If the analytical results indicate that the waters need no special handling, the water will be discharged into the wastewater treatment system onsite. When the purged water is deemed a hazardous material, it will be drummed and disposed properly. The amount of water from the decontamination effort is expected to be relatively small. This water will be disposed of in the Giant Refinery wastewater treatment plant system.

3.4 Soil Sampling

3.4.1 Soil Sampling Locations and Techniques

The purpose of the soil sampling plan is to initially determine if a release has occurred at a particular Solid Waste Management Unit (SWMU). If the soil sample results indicate a significant release, then additional soil sampling locations and/or the installation of wells adjacent to the particular SWMU will be required.

Soil sampling locations will be selected in order to adequately determine if a release has occurred. The number and depth of each soil sampling location will be specified in each SWMU Site-Specific Facility Investigation Work Plan.

The choice of which sampling technique to be used will be determined on the basis of a number of factors; such as depth of the sample to be collected and the composition of the material to be sampled.

3.4.2 Surficial Sampling

3.4.2.1 Shovels, Spatulas and Scoops

Surface grab samples may be obtained with shovels, spatulas, or scoops. These implements will be of stainless

steele construction if available. Grab samples are an efficient collection technique and the samples may be indicative of the range of contamination at the site.

3.4.2.2 Hand Augers

Manual soil probes, referred to as hand augers, may be used to collect samples up to several feet in depth, depending upon soil conditions. The soil sampler tube will be of stainless steel construction. The tube has a T-shaped handle which is used to push or auger the tube into the ground. When the tube has been filled with soil to the desired depth of sampling, it is removed and the soil sample extruded from the tube. The sample is placed in the appropriate sample bottles for delivery to the laboratory.

Samples may be collected by using the combination of a backhoe and hand auger. This will be accomplished by using the backhoe to excavate the area where samples will be collected. A hand auger will then be used to bore horizontal soil cores at the desired sample depths. Verticle samples may also be collected from the bottom of the excavated area.

3.4.3 Boreholes/Core Samples

Boreholes for samples will be advanced by a drilling rig employing hollow stem augers. There will be no compositing of soil sampling.

Core samplers are used in conjunction with hollow-stem augers to collect soil samples from depths which cannot be reached by a soil probe. Samples are collected by removing the stem of the auger and inserting a core sampler. three types of core samples which may be used in the RFI are described below.

3.4.3.1 Shelby Tube

A Shelby tube is a metal cylinder with sharpened ends for cutting into the soil. The tube is pushed into the soil by applying downward pressure from a drilling rig or other apparatus. Shelby tubes will be of stainless steel construction. Shelby tubes will not be used in loose soils because the soil will fall out of the tube during removal of the tube. The soil will be extruded from the tube and a sample collected at the desired point of the core. The sample will be placed into a wide-mouth jar for chemical analysis. Alternatively, the ends of the tube may be capped and the entire core transported intact, depending upon the nature of the analyses to be performed.

3.4.3.2 Split-Spoon Samplers

A split spoon consists of a hollow steel cylinder split in half and screwed into an outer tube and tip. The splitspoon is typically "hammered" into the soil. After the tube is pulled from the soil, the soil cylinder is removed from the drill rod and opened to remove the soil core. Splitspoons will be used for obtaining samples of unconsolidated soil and may also be used to penetrate some types of rock.

3.4.3.3 "Five Foot CME Tubes"

A five foot CME tube is a 3-1/2 inch diameter split core barrel which is placed into the lead auger. The tube is pushed into the soil at the same drilling rate as the augers. After the tube is pulled from the soil, it is detached from the drill rod and opened to remove the soil core. CME tubes will be used for obtaining samples of consolidated soil and used to penetrate some types of rock.

3.4.4 Soil Sampling Screening Techniques

Field instruments are useful to provide a limited degree of onsite characterization of soil contamination. A photo-ionization detection meter (PID) will be used to screen for volatiles. The PID meter will be calibrated to

benzene. Other methods for soil screening will include visual signs of contamination and/ or noticeable odors.

3.4.5 Lithologic Logging

Detailed logs will be maintained for each boring. Listed below is a general description of soils to be used to describe their physical characteristics:

1) Lithology

- 2) Color (adjectives -light, dark, mottled, mixed)
- 3) Size (fine, medium, coarse)
- 4) Moisture (dry, moist, wet)
- 5) Odor (or no odor)
- 6) Other descriptive terms:
 - a. Lens < 1 inch
 - b. Layer > 1 inch
 - c. Interbedded
 - d. Slickensided-soils having inclined planes of weakness, glossy in appearance

3.4.6 Disposition of Soils

All drill cuttings generated by borehole advancement for soil samples will be placed back in the hole or collected and containerized at each SWMU. Following receipt of the analytical results from each SWMU the containerized soils will be transported to the land treatment area at

Giant Refinery. Soils placed back in the bore holes or excavated area must be compacted with a probe or the backhoe unit used for excavation. If the drill cuttings must be taken to another regulated facility, appropriate laboratory samples of cuttings from borings will be collected.

3.5 Surface Water Sampling

3.5.1 Sampling Criteria and Methods

Samples will be collected from locations which will adequately define if a release has occurred from a particular SWMU. The locations for each sampling event will be specified in each SWMU Site Specific Facility Investigation Work Flan.

Beakers, jars or dippers may be used to obtain a surface water sample. They can be attached to a rod or pole to extend the reach of the samples away from the bank (this type of sampling device is commonly called a pond sample). The sample collection container should be constructed of glass, linear polyethylene (LPE), Teflon (TM), or stainless steel.

Weighted bottles may be used to collect a water sample at depth. These devices are basically a jar with a cork or

plug ;in the mouth that can be opened after the bottle is lowered on a rope or chain to a desired depth; once the sample fills the jar, the apparatus is raised to the surface.

If a multiple phase contaminant (for exapmle, immiscible organic liquids) or stratified water layers are suspected, a sampler such as the Colivasa Sampler may be used to obtain composite water samples in the vertical This sampler is a tube with a stopper at the profile. bottom connected through the tube to a locking handle at the The stopper is locked into its open position before top. the sampler is lowered through the water. As the sampler is slowly lowered into the water the layers of contaminants or other fluids encountered will enter the tube. After the sampler reaches bottom (or the desired depth), the stopper is pulled upward and locked into a seal with the bottom of the tube. The sampler is removed from the water and its contents transferred to a sample bottle or multiple bottles if samples of the stratified layers are desired.

Descriptions of the design, construaction and use of the weighted bottle and Coliwasa samplers are contained in EPA publication 600/2-80-018, "Samplers and Sampling Frocedures for Hazardous Waste Streams," by E. R. deVera, et al, January 1980; this document is presented as an Appendix to "Test Methods for Evaluating Solid Waste," EPA publication SW-846, 1980.

3.5.2 Running Water

The Giant Refinery facility is located in an arid desert environment, with no perennial streams. Intermittent surface water flow occurs during and immediately after infrequent rainfall events and snow melts. Because of the infrequent surface water flows, no discussions are included on sampling techniques of running waters.

If a low flow rate or shallow channel prohibit direct use of a dipper, a stainless steel shovel can be used to dig a small hole into which water can collect. Sufficient time should be allowed for distrubed sediments to settle before the sample is obtained.

3.6 Air Monitoring

Air monitoring may be required in later sampling events. If this is necessary, monitoring for the hydrocarbons will be done using Tenax tubes. This approach allows for sensitive detection levels and compound analyses. Samples can be obtained from the tubes for detailed gas chromatograph analysis of specific compounds. A diaphragm type pump will be used to draw the air through the tube with a flow meter to check the flow rates. The sampling height will be approximately 1.5 meters. With the availability of personnel onsite, the sampling will be done with manual starts and stops.

A meteorological system, consisting of wind direction, wind speed, and temperature will be installed for the sample period on a tripod approximately three meters above ground surface. The refinery already collects precipitation and these data will be available for the study. Stability will be calculated by the data collection system and recorded. If a strip chart data collection system is used, the stability will be calculated from the fluctuations of wind direction combined with the wind speed and time of day following established EPA procedures. Appendix B contains data on wind direction and speed, temperature, precipitation, and stability for Gallup, New Mexico.

4.0 SAMPLE LABELING

As soon as all sample containers have been properly filled with sample, the bottle labels should be completed with the following information:

Sample identification or well number

- ° Location
- [°] Date/Time of collection
- Collector's initials
- Sample preservation techniques
- * Analytical parameters
- ° Comments

The label will be filled with out waterproof, indelible ink. All information except sample ID or well number and date/time of collection shall be completed prior to going into the field. The sample ID and date/time of collection will be handwritten on the label by the sample

collector. After filling out the labels, they should be sealed with a piece of two inch wide clear tape. Make sure that the tape is long enough to go completely around the container so that it sticks to itself.

5.0 DECONTAMINATION PROCEDURES

The following procedures are applicable to decontamination of:

- ° Drilling equipment and vehicles
- Sampling equipment

5.1 Drilling Equipment and Vehicles

Decontamination of large drilling equipment and vehicles is required to prevent cross contamination of boreholes from which soil samples will be retrieved for chemical analysis. This procedure also provides for the protection of personnel subsequent to demobilization from restricted areas.

> Steam or water rinse with potable water if needed to remove mud or dirt.

Rinse with clean, potable water.

During decontamination of drilling equipment and accessories, it is especially critical to clean the inside

of hollow-stem augers flights, drill rods and drill bits (particularly roller bits), as well as all couplings and threads. As a general rule, decontamination can be limited to the back portion of the drill rig and those parts which come in direct contact with samples or casing, or drilling equipment that is placed into the borehole.

5.2 Sampling Equipment

Sampling equipment includes all sampling devices and containers which are used to collect or contain a sample prior to final sample analysis. Before its initial use, all sampling equipment which may contribute to the contamination of a sample must be thoroughly decontaminated. Unless specific documentation exists that sample equipment has been decontaminated, decontamination should be conducted before use.

Sampling equipment can generally be cleaned by hand. The following procedure is given as a sequence which should be modified to be consistent with onsite conditions.

° Scrub with potable water to remove mud and residue.

- Scrub with a non-phosphate detergent if necessary to remove mud and residue.
- Rinse with clean potable water.
- Rinse with an approved organic solvent (i.e.
 isoproyl or methanol alcohols).
- Allow the equipment to air dry as long as practical.
- Wrap in plastic bags or other appropriate containers if necessary to prevent recontamination.

6.0 SAMPLE CUSTODY

Assuring the integrity of a sample from the time of collection to data reporting is essential. Chain of custody procedures are intended to document sample possession from the time of collection of final disposition.

A sample is considered to be under a person's custody if it is in a person's physical possession, in view of the person after taking possession, secured by that person so that no one may tamper with it, or secured by that person in an area that is restricted to authorized personnel.

6.1 Chain of Custody Record

The chain of custody record shall include the following information:

- 1) Facility name
- 2) Type and number of samples
- 3) Sample location and ID
- 4) Collection date(s) and time(s)
- 5) Analyses required

- 6) Number of containers for each sample
- 7) Additional remarks or comments as needed
- 8) Sample team leaders signature
- 9) Signatures of all individuals involved in the chain of possessio
- 10) Inclusive dates and time of possession

A sample form is shown in Figure 2. The original chain of custody form must accompany the samples. One copy of the chain of custody form should be kept in the project files.

6.2 Transfer of Custody

This section describes the disposition of the samples after collection.

6.2.1 Onsite Custody

The sample collectors will prepare the requested performance check samples and place the samples in a cooler. The information regarding date and time of

Novada, Scalin (2) Sealed by:	Enseco - Rocky M 4955 Yarrow Street	Enseco - Rocky Mountain Analytical 4955 Yarrow Street	CHAIN O	CHAIN OF CUSTODY	SAMPLE SAFE" CONDITIONS	No.)
4. Solid off of Shipping by:	ido 80002 Facsimile: 30.	33/431-7171		1. Packed by: 2. Seal Intact Up	on Receipt by Sampling Co.:	Seal # Yes	°z
6. Sampling Status: Done Continuing Until 7. Seaf intact Upon Receipt by Laboratory: Yes No 8. Condition 8. Oralitation 8. Conditions Permetative Sample ID/Description Sample Type No. Containers Analysis Parameters Remarks Sample ID/Description Sample Type No. Containers Analysis Parameters Remarks ODY TRANSFERS FRIOR Sample Type No. Containers Analysis Parameters Remarks				4. Sealed for Shi 5. Initial Content			
9. Containers 9. Containers Analysis Parameters Sample ID/Description Sample Type No. Containers Analysis Parameters Image: Sample ID/Description Sample Type No. Containers Analysis Parameters Image: Sample ID/Description Sample Type No. Containers Analysis Parameters Image: Sample ID/Description Sample Type No. Containers Analysis Parameters Image: Sample ID/Description Sample Type Image: Sample Type Image: Sample Type Image: Sample ID/Description Image: Sample Type Image: Sample Type Image: Sample Type Image: Sample Type Image: Sample Type Image: Sample Type Image: Sample Type Image: Sample Type Image: Sample Type Image: Sample Type Image: Sample Type Image: Sample Type Image: Sample Type Image: Sample Type Image: Sample Type Image: Shipper by: Sample Type Image: Sample Type Image: Sample Type Image: Sample Type Image: Imag				6. Sampling Stat 7. Seal Intact Up 8. Contents Tem	Done Receipt by La ature Upon R	Yes	
ODV TRANSFERS PRIOR TO SHIPPING Method of Shipper by: SHIPPING DETAILS Method of Shipper by: Method of Shipper by: Method of Shipper by: Method of Shipper by: Method of Shipper by: Method of Shipper by:		Sample ID/Description	Sample Type	N0. 0	Contents:		Remarks
ODY TRANSFERS PRIOR TO SHIPPING Method of Shipper by: ODY TRANSFERS PRIOR TO SHIPPING Method of Shipper by: ODY TRANSFERS PRIOR TO SHIPPING Method of Shipper by: ODY TRANSFERS PRIOR TO SHIPPING Method of Shipper by: ODY TRANSFERS PRIOR TO SHIPPING Method of Shipper by:							
ODV TRANSFERS PRIOR TO SHIPPING Method of Shipmen by: Received by: ShipPING DETAILS Method of Shipmen by: Method of Shipmen by: Method of Shipmen by: Method of Shipmen by:							
ODY TRANSFERS PRIOR TO SHIPPING Perceived to Shipment: Image: Signed Perceived for Lab:							
ODY TRANSFERS PRIOR TO SHIPPING Method of Shipper by: Method of Shipper by: Method of Shipper by: ODY TRANSFERS PRIOR TO SHIPPING Method of Shipper by: Method of Shipper by: Method of Shipper by: ODY TRANSFERS PRIOR TO SHIPPING Method of Shipper by: Method of Shipper by: Method of Shipper by:							
Image: Second Stripted Str							
ODY TRANSFERS PRIOR TO SHIPPING							
ODY TRANSFERS PRIOR TO SHIPPING							
ODY TRANSFERS PRIOR TO SHIPPING							
ODY TRANSFERS PRIOR TO SHIPPING SHIPPING DETAILS ODY TRANSFERS PRIOR TO SHIPPING SHIPPING DETAILS Received by: (signed) Date Time Image:							
ODY TRANSFERS PRIOR TO SHIPPING SHIPPING DETAILS ODY TRANSFERS PRIOR TO SHIPPING SHIPPING DETAILS Received by: (signed) Date Time Image: State of the							
t:Airbill #	CUSTODY T (signed)	1		Delivered to Shipper by:	SHIPPING DETAILS		
Signed:				Method of Shipment:	Airbill #	#	
Enseco Project No.			, ,	Received for Lab:	Signed:	Dat	e/Time
				Enseco Project No.			

control sample preparation will be recorded on the chain of custody form at this time.

6.2.2 Contract Laboratory Custody

The delivery person will relinquish the samples to the contract laboratory. The contract lab will notify Giant of samples receipt and condition.

The contract lab will be responsible for documenting custody within their laboratory and documenting custody of samples transferred to their subcontractors for analysis. This documentation is to be made available to Giant upon request.

7.0 ANALYTICAL PROCEDURES

7.1 Methods

to adequately evaluate analytical data, In order consistency of methodologies is crucial. **EPA-approved** methodologies, such as those identified in the third edition of Test Methods for Evaluating Solid Wastes or equivalent, should be utilized when available. Any and all method modifications of the analytical procedures should be clearly defined and justifiable based upon the nature of the samples being submitted. The following factors are to be considered when selecting methodologies:

- Scope and application of procedure
- Sample matrix
- Potential interferences
- Precision and accuracy
- ° Method detection limits

A list of methods currently utilized by Giant in the RFI program is listed in Table 4 for ground water sampling, and Table 5 for soil sampling. Appendix C lists analytes and methodologies for Appendix IX. Appendix VIII is a list of approximately 375 constituents, some of which cannot be

TABLE 4

GROUND WATER SAMPLING AND ANALYSIS PLAN ANALYTICAL PROCEDURES

Parameter	EPA 1 <u>SW-84</u> 6	lethod 6 600	Description	Container	Preservative	Holding Time, Days	Detection Limit*
рН	9040	150.1	Electrode	Ρ	None	On-Site Analysis	NA
Specific Conductivity	9050	120.1	Wheatstone Bridge	Ρ	None	On-Site Analysis	NA
TOC		415.1	Combustion or Oxidation	G/T	H2S04	28	1.0
тох	9020		Microcoulometric	G/A/T S epta Seal	H ₂ SO ₄	7	0.010
Chloride	9252	325.3	Titration	Ρ	None	28	1-5
Iron	6010	200.7	ICP	Ρ	HNO3	180	0.02
Manganese	6010	200.7	ICP	Ρ	hno ₃	180	0.01
Sodium	6010	200.7	ICP	Ρ	HNO3	180	0.02
Phenols	9065	420.1	Colorimetric, 4-AAP Distillation, Solvent Extraction	G	H ₂ SO ₄	28	0.005
Sulfate		375.4	Turbidimetric	Ρ	None	28	1.0
Arsenic	7061	206.3 206.2	AA/Hydride GFAA	Ρ	HNO3	180	0.005 0.005
Barium	6010	200.7	ICP	Ρ	HNO3	180	0.05
Cadmium	6010	200.7	ICP	Р	hno ₃	180	0.01
Chromium	6010	200.7	ICP	Р	HNO3	180	0.02

*All units in mg/L unless otherwise noted.

P - Plastic, G - Glass, A - Amber, T - Teflon

TABLE 4 (Continued)

GROUND WATER SAMPLING AND ANALYSIS PLAN ANALYTICAL PROCEDURES

Parameter	EPA N <u>SW-846</u>	1ethod 6 600	Description	Container	Preservative	Holding Time, Days	Detection <u>Limit</u> *
Lead	7421	239.2	GFAA	Ρ	HNO3	180	0.005
Mercury	7470	245.1	Cold Vapor	P	HNO3	180	0.0005
Selenium	7741	270.3 270.2	AA/Hydride GFAA	Ρ	hno3	180	0.002 0.005
Silver	6010	200.7	ICP	Р	HNO3	180	0.01
Fluoride		340.2 340.1	Electrode SPADNS (Distillation Required)	P P	None None	28 28	0.10 0.10
Nitrate		352.1	Colorimetric	Ρ	H ₂ so ₄	14	0.10
Endrin	8080	608	GC/EC	G/T	None	7	0.0002
Lindane	8080	608	GC/EC	G/T	None	7	0.004
Methoxychlor	8080	608	GC/EC	G/T	None	7	0.10
Toxaphene	8080	608	GC/EC	G/T	None	7	0.005
2,4-D	8150		GC/EC	G/T	None	7	0.10
2,4,5-TP Silvex	8150	••••	GC/EC	G/T	None	7	0.01
Radium	SM 705	5	Precipitation	Ρ	HNO3	180	1pCi/L
Gross Alpha	SM 703	3		Ρ	None	180	2pCi/L
Gross Beta	SM 703	3		Ρ	None	180	3pCi/L
Total Coliform	9132		Membrane Filtration	Sterilized	Na2S203	0.25-1	1/100ml
Vanadium	6010	00.7	ICP	Ρ	HNO3	180	0.02

*All units in mg/L unless otherwise noted.

P · Plastic, G · Glass, T · Teflon

TABLE 4 (Continued)

GROUND WATER SAMPLING AND ANALYSIS PLAN ANALYTICAL PROCEDURES

	EPA I	Method				Holding	Detection
Parameter	<u>SW-84</u>	6 600	Description	Container	Preservative	<u>Time, Days</u>	<u>Limit</u> *
Molybdenum	6010	200.7	ICP	Ρ	HNO3	180	0.05
Calcium	6010	200.7	ICP	Ρ	нюз	180	0.05
Potassium	6010	200.7	ICP	Ρ	HNO3	180	Variable
Magnesium	6010	200.7	ICP	Ρ	HNO3	180	0.030
Nickel	6010	200.7	ICP	Ρ	HNO3	180	0.05
Copper	6010	200.7	ICP	Ρ	HNO3	180	0.01
Bicarbonate			Titration	Ρ	None	1/14	1
Carbonate			Titration	Ρ	None	1/14	1
Cyanide	9010	335.2	Colorimetric	G	NaOH	14	0.02
Ammonia		350.2	Nesslerization Distillation	Ρ	H2 ^{SO4}	28	0.05
VOA's	8240	624	GC/MS	VOA	HCL	14	0.005
Semi-VOA's	8250 or 82	625 70	GC/MS	VOA	HCL	14	0.010

*All units in mg/L unless otherwise noted.

P - Plastic, G - Glass, VOA - 40 ml of glass container with Septa seal

TABLE 5

Soil Sampling and Analysis Plan Analytical Procedures

Parameter	EPA Method SW-846	Description	Container	Preservative	Holding Time, Days	Detection ⁽¹⁾
TPH	Modified 8015	GC-FID	G	4°C	28	25
Oil &						
Grease	9071	Gravimetric	G	4°C	28	100
Background						
Metals:						
Antmony	6010	ICP	P,G	4°C	180	0.05
Arsenic	7061	GFAA	P,G	4°C	180	0.005
Barium	6010	ICP	P,G	4°C	180	0.01
Beryllium	6010	I CP	P,G	4°C	180	0,001
Cadmium	6010	ICP	P,G	4°C	180	0.005
Chromium	6010	I CP	P,G	4°C	180	0.01
Copper	6010	ICP	P,G	4°C	180	0.01
Lead	6010	I CP	P,G	4°C	180	0.05
Mercury	7470	Cold Vapor	P,G	4°C	28	0.0002
Nickel	6010	ICP	P,G	4°C	180	0.001
Potassium	6010	I CP	P,G	4°C	180	5.00
Selenium	7710	GFAA	P,G	4°C	180	0.005
Vanadium	6010	ICP	P,G	4°C	180	0.002
Zinc	6010	ICP	P,G	4°C	180	0.01
рН	9045	Electrode	P,G	4°C	14	NA
TOC	9060	Combustion/ Oxidation	G	4°C	28	0.02 percent
Benzene	8020	GC/PID	G	4°C	14	0.005
Toluene Ethyl•	8020	GC/PID	G	4°C	14	0.005
Benzene	8020	GC/PID	G	4°C	14	0.005
Xylenes	8020	GC/PID	G	4°C	14	0.005
Phenol ics	9065	Colorimetric	G	4°C	14	1.0
Cyanide	9010	Colorimetric	P,G	4°C	28	0.5
Asbestos	600 - Interim	Phase Contrast Microscopy	P,G	None	180	Particles/ Volume

*All units in mg/kg unless otherwise noted. (1) Detection limits in soil may vary depending upon the matrix of the individual samples.

P - Plastic

G - Glass

measured. The Appendix IX list contains those analytes in Appendix VIII which can be quantified.

7.2 Detection Limits

It is imperative that the analytical procedures chosen have method detection limits appropriate for the intended use of the data. Ideally, procedures should be selected which have a Method Detection Limit (MDL) that is five times lower than the regulatory threshold limit. The detection limits for ground water samples for the procedures are listed in Table 4. Table 5 lists detection limits for soil samples. Appendix C lists detection limits for soil samples for Appendix IX constituents.

7.3 Sample Container, Preservation and Holding Times

container selection, preservation techniques Sample and holding times (length of time between sample collection and analyses) must be addressed for every sampling activity. This is necessary to assure that the sample does not deteriorate contaminated. or become Sample deterioration can occur through processes such as biological degradation or chemical precipitation. Sample contamination or alteration can occur due to adsorption, absorption, or

leaching effects due to the interaction of the sample and the container material. Appropriate sample containers, preservation, and holding times are listed in Table 4 for ground water samples and Table 5 for soil samples. Appendix C lists sample containers, preservation, and holding times for Appendix IX analytes. Additionally, all samples except trace metals preserved with nitric acid should be maintained at 4°C from the time of collection until analyses.

Note: Nitric acid for trace metal preservation <u>must</u> be of ultra-trace grade quality. Samples preserved with acids should be at pH <2. Samples preserved with sodium hydroxide should be at pH >12.

7.4 Sample Preparation

Proper sample preparation is an integral part of any analytical program. Sample preparation techniques include filtration, digestion, and distillation. These steps may not be omitted from the various methodologies unless approval is obtained from the Giant RFI Project Manager. Any additional preparation above and beyond normal standard operating procedures should be documented and confirmed by the QA/QC manager.

Original Date 05/31/89 Revision Date 12/15/89

.

7.5 Laboratory QA/QC

The laboratory's QA/QC program is included as Appendix D of the Generic Sampling Plan.

8.0 CALIBRATION PROCEDURES AND FREQUENCY

8.1 Field Instruments

8.1.1 pH Meter

The pH meter should be calibrated before leaving the lab using a two point calibration method. Normally, the meter will be calibrated with pH 7 and pH 10 buffers. At each well, pH calibration should be verified using the pH 7 buffer solution. If the result of this calibration does not agree within \pm 0.05 units, the meter should be recalibrated as above. Results of all calibration verification and recalibration must be recorded in the field notes for a given sampling event.

8.1.2 Conductivity Meter

The conductivity meter calibration should be checked according to manufacturer's specifications. The conductivity reading should be within 5% of the expected value of the standard. Calibration should be checked at the lab before going into the field and every four hours thereafter. Results of the calibration verifications made in the lab and in the field must be recorded in the field

notes for a particular sampling event.

8.1.3 PID Meter

The PID meter should be calibrated each day it is used in the field. Three steps need to be taken in order to calibrate the PID meter:

- ° Check the battery
- ° Set the zero point
- Use calibration gas according to manufacture's instructions.

Results of all calibration verification must be recorded in the field notes during a particular sampling event.

8.2 Laboratory Instrumentation

It is recognized that instrument calibration instrument procedures vary from to instrument. Manufacturers' guidelines should be followed. The frequency of calibration for a number of instruments is addressed This information is obtained from SW-846, below. third edition, Test Methods for Evaluating Solid Waste. This section is not intended to be comprehensive in nature. The

contract laboratory is responsible for detailing its own QA/QC protocol in addition to the items listed here.

8.2.1 ICP

- Calibrate the instrument according to manufacturer's recommended procedures.
- Two types of blanks are required: calibration
 blank and reagent blank.
- ° Check calibration using a blank and two standards.
- Verify calibration every 10 samples and at the end of each run by analyzing blank and check standard. Standard should be within 10% of expected value; if not, terminate analysis, correct problem, and recalibrate. The calibration blank should agree within three standard deviations of the mean blank. If not, terminate analysis, correct problem, recalibrate, and reanalyze the previous 10 samples.
- Analyze interference check sample at the beginning and end of an analytical run or twice during every 8-hour work shift.
- Replicate samples and spiked samples should be run at a frequency of 10%.

- ^o Duplicate spiked samples must be run at a frequency of 20%. The Relative Percent Difference (RPD) shall be \pm 20% for sample values greater than 10 times the detection limit. Spike recovery is to be \pm 20% of the actual value.
- Serial dilution checks where applicable.
- Detection limit verification on a quarterly basis.

8.2.2 Atomic Absorption Spectrophotometer

- Calibrate each run using a blank and three standards.
- Verify calibration by running blank, and mid-point standard every 10 samples and at the end of each run. Results must be <u>+</u> 10% of true result or terminate analysis, correct problem, recalibrate, and reanalyze samples.
- Replicate and spikes must be run every 10 samples or with each matrix type, whichever is more frequent.
- Method of standard additions should be employed as required.

8.2.3 TOC Analyzer

- Calibrate according to instrument manufacturer's recommendations each run.
- Verify calibration by analyzing blank and check standard every 10 samples. If results are not <u>+</u>
 10% of expected value, terminate analysis, correct problem, recalibrate, and reanalyze previous 10 samples.
- Quadruplicate analyses are required for most ground water samples.
- Replicates and spikes must be analyzed at a frequency of 10%, or at least one in each analytical batch.

8.2.4 Gas Chromatographs

- [°] Initial demonstration of capability.
- ° QA/QC as per individual methods in SW-846, 3rd edition.
- * Five point calibration curve for each compound.
- Blank and calibration verification every 8 hours.
- Internal standard added to all blanks, standards, and samples.

8.2.5 Gas Chromatography/Mass Spectrometry

- [°] Initial demonstration of capability.
- * Meet tuning criteria as per SW-846, 3rd edition
- Internal and surrogate standards added to blanks, standards, samples.
- Blank and standard calibration verification each run.

8.2.6 UV-Vis Spectrophotometer

- Multi-point calibration as specified in individual methods in SW-846, 3rd edition.
- Calibration verification as per individual methods in SW-846.
- Replicates and spikes will be analyzed at a frequency of 10% or at least one in every analytical batch.

8.2.7 TOX Analyzer

All samples will be analyzed in replicate at a minimum. Most ground water samples are to be analyzed in quadruplicate.

- Check absorption efficiency of each newly prepared batch of carbon.
- Run at least two nitrate wash blanks at the beginning of the day and one nitrate wash blank after every eight pyrolysis determinations.
- Run duplicate instrument calibration standards at the beginning of each day and after every eight pyrolysis determinations.
- Verify calibration with an independently prepared check standard every fifteen samples.
- Analyze duplicate spiked samples every ten samples.

9.0 STATISTICAL METHODOLOGY

In order to determine if a release of metallic constituents has occurred from a unit, a One-Way Parametric Analysis of Variance will be calculated at specific SWMU's. These data will be compared with the background metals data obtained during the Land Treatment Demonstration. One sampling interval with four independent samples per boring and at least three borings will fulfill the minimum sample requirements.

9.1 Statistical Comparison of Background Metals Data

Based on the Demonstration Permit (NMDO00333211-1) and the Permit Application Report (June 1986, Appendix A), a Land Treatment Demonstration was conducted to show treatment capabilities for refinery waste generated by Giant Refinery Company. The demonstration period lasted from April 1987 through March 1988. The following table lists the background metallic data, which was collected from a plot of land adjacent to the land treatment demonstration.

Background Metals, Statistical Information

Background

Metal	Mean	Variance	<u>N</u>
Sb	0	0	18
As	3.0	9.0	18
Ba	258	2147	18
Be	1.06	0.1	18
Cd	0.04	0.02	18
Cr	4.41	1.74	18
Cu	4.82	0.68	18
Pb	5.25	28.4	18
Hq	0	0	18
Ni	7.75	2.2	18
K	1325	78540	18
Se	0	0	18
v	12.6	3.26	18
Zn	11.2	4.14	18

The statistical methodology as outlined in the "Statistical Analysis of Ground Water Monitoring Data at RCRA (Resource Conservation and Recovery Act) Facilities, Interim Final Guidance, February 1989 follows:

9.2 One-Way Parametric Analysis of Variance

In order to apply a parametric one-way analysis of variance, a minimum number observations is needed to give meaningful results. At least $p \ge 2$ groups are to be compared (i.e., two or more borings). It is recommended that each group (here, borings) have at least three observations and that the total sample size, N, be large enough so that N-p > 5. A variety of combinations of groups

and number of observations in groups will fulfill this minimum. One sampling interval with four independent samples per boring and at least three borings would fulfill the minimum sample size requirements. The borings should be spaced so as to maximize the probability of intercepting a plume of contamination.

9.2.1 Purpose

One-way analysis of variance is statistical а determine whether differences in procedure to mean concentrations among borings, or groups of borings, are statistically significant. For example, is there significant contamination of metals at a SWMU compared to background conditions.

9.2.2 Procedure

Suppose the regulated unit has p borings and that ni data points (concentrations of a constituent) are available for the ith boring. These data can be from either a single sampling period or from more than one. In the latter case, the user could check for seasonality before proceeding by plotting the data over time. Usually the computation will be done on a computer using a commerically available

program. However, the procedure is presented so that computations can be done using a desk calculator, if necessary.

Step 1. Arrange the $N = f_{n_i}$ data points in a data i=1 as follows:

(N is the total sample size at this specific regulated unit):

		Observations	Boring Total (from Step 1)	Boring Mean (from Step 2)
Boring No.	1	$x_{11} \dots x_{1n}$	x ₁ .	$\overline{\mathbf{x}}_{1}$.
	2	•		
	3	•		
	•	•		
	u	Xul	X _u .	$\overline{\mathbf{x}}_{\mathbf{u}}$.
	•	•		
	•	•		
	p	Xpl · · · · · Xpn p	x _p .	x̄ρ.
			x	<u>x</u>

- Step 2. Compute boring totals and boring means as follows:
- $X_{i.} = n_{i}$ f X_{ij} , total of all n_{i} observations at boring i j=1
- \overline{X}_{i} . = $\frac{1}{n_{i}} X_{i}$, average of all n_{i} observations at boring i $X_{\cdot \cdot}$ = p_{f} n_{i} $f_{i=1}$ $f_{j=1}$ X_{ij} , grand total of all n_{i} observations
- $\overline{X}_{..} = \frac{1}{N} X_{..}$, grand mean of all observations.

These totals and means are shown in the last two columns of the table above.

Step 3. Compute the sum of squares of differences between boring means and the grand mean:

$$SS_{Wells} = p \qquad p \qquad fn_i \quad (\overline{X}_i. - \overline{X}_{..})^2 = f \qquad \frac{1}{i=1} \quad \frac{1}{n_i} \quad X^2_i - \frac{1}{N} \quad X^2_i$$

(The formula on the far right is usually most convenient for calculation.) This sum of squares has (p-1) degrees of freedom associated with it and is a measure of the variability between borings.

Step 4. Compute the corrected total sum of squares

(The formula on the far right is usually most convenient for calculation.) This sum of squares has (N-1) degrees of freedom associated with it and is a measure of the variability in the whole data set.

Step 5. Compute the sum of squares of differences of observations <u>within</u> borings from the borings means. This is the sum of squares due to error and is obtained by subtraction:

SS_{Error} = SS_{Total} - SS_{Borings}

It has associated with it (N-p) degrees of freedom and is a measure of the variability within borings.

Step 6. Set up the ANOVA tables as shown below. The sums of squares and their degree of freedom were obtained from Steps 3 through 5. The mean square quantities are simply obtained by dividing each sum of squares by its corresponding degrees of freedom.

ONE-WAY PARAMETRIC ANOVA TABLE

Source of Variation	Sums of Squares	Degrees Freedom	of Mean Squares	F
Between borings	SS _{Borings}	p-1	MS _B orings F = SS _B orings/(p-1)	= ^{MS} Borings MS _{Error}
Error (within borings)	SSError	N-р	MS _{Error} = SS _{Error} /(N-p)	
Total	SS _{Total}	N-1		

Step 7. To test the hypothesis of equal means for all p borings, compute F = MS_{Borings}/MS_{Error} (last column in above table). Compare this statistic to the tabulated F statistic with (p-1) and (N-p) degrees of freedom at the 5% significance level. If the calulated F value exceeds the tabulated value, reject the hypothesis of equal boring means. Otherwise, conclude that there is no significant difference between the concentrations at the p borings and thus no evidence of boring contamination.

In the case a significant F (calculated F greater than of tabulated F in Step 7), the user will conduct the next few steps to determine which compliance boring(s) is (are) contaminated. This will be done by comparing each compliance boring with the background boring(s). Concentration differences between a pair of background

borings and compliance borings or between a compliance boring and a set of background borings are called <u>contrasts</u> in the ANOVA and multiple comparisons framework.

Step 8. Determine if the significant F is due to differences between background and compliance borings (computation of Bonferroni t-statistics)

Assume that of the p borings, u are background borings and m are compliance borings (thus u + m =The m differences--m compliance borings p). each compared with the average of the background borings--need to be computed and tested for statistical significance. If there are more than five downgradient borings, the individual comparisons are at the comparisonwise significance level of one done percent, which may make the experiment-wise significance level greater than five percent.

° Obtain the total sample size of all u background borings.

$$n_{up} = u$$

 $f_{i=1}$

° Compute the average concentration from the u background borings.

$$\overline{X}_{up} = \underbrace{1}_{n_{up}} \underbrace{f}_{i=1} \overline{X}_{i}.$$

[°] Compute the m differences between the average concentrations from each compliance boring and the average background borings.

$$\overline{X}_{i}$$
. - \overline{X}_{up} , $i = 1, \ldots, m$

° Compute the standard error of each difference as

 $SE_i = [MS_{Error} (1/n_{up} + 1/n_i)/1/n_i)]^{1/2}$

where MS_{Error} is determined from the ANOVA table and n_i is the number of observations at boring i.

- Obtain the t-statistic t = t(N-p), (1- c/m) from Bonferroni's t-table with c = 0.05 and (N-p) degrees of freedom).
- [°] Compute the m quantities $D_i = SE_i \times t$ for each compliance boring i. If m > 5 use the entry for t(N-p), (1-0.01). That is, use the entry at m = 5.

9.2.3 Interpretation

If the difference \overline{X}_{i} . - \overline{X}_{up} exceeds the value D_i ,

conclude that the ith compliance boring has significantly higher concentrations than the average background borings. Otherwise conclude that the boring is not contaminated. This exercise needs to be performed for each of the m compliance borings individually. The test is designed so that the overall experminent-wise error is five percent if there are no more than five compliance borings.

9.2.4 Cautionary Note

Should the regulated unit consist of more than five compliance borings, then the Bonferroni t-test should be

modified by doing the individual comparisons at the one percent level so that the Part 264 Subpart F regulatory requirement pursuant to §264.97(i)(2) will be met. Alternately, a difference analysis of contrasts, such as Scheffe's, may be used.

10.0 DATA REDUCTION, VALIDATION AND REPORTING

The contract lab will send the analytical results to the project manager who will process the report for purchasing. The project manager will review the report for completeness, making sure sample analyses reported correspond exactly with analyses requested on the chain of custody form. If the report is incomplete, the laboratory will be notified immediately of any discrepancies. After the report has been reviewed for completeness, the report will be submitted to the QA/QC manager for technical review. This should be done the day the report is received.

10.1 QA/QC Manager

The QA/QC manager will review the report and assess validity based on:

- ° Methodology
- ° Detection limits
- Results of internal quality control checks
- * Holding times
- Comparison with historical data base
- Review of precision and accuracy data reported by lab

The QA/QC manager should notify the outside lab of any suspected quality problems within one week of data receipt. The contract laboratory should implement corrective action regarding data quality within one week of notification by the QA/QC manager that a problem exists. After the data has been reviewed and validated by the QA/QC manager, a cover sheet containing the following information will be placed in the project file.

- Summary of internal quality control check samples
- ^e List of invalid data points based upon review of methodology, detection limits, holding time, precision and accuracy review
- List of outliers as compared to historical data base

10.2 RFI Project Manager

The RFI Project Manager will review the report received from the QA/QC manager and will make the decision to resample if necessary due to invalid data or outliers associated with the sampling event.

After data from a particular sampling event is approved, the data will be input into the project data

base. The project manager will incorporate the results into a report or submit the results to the appropriate regulatory agencies.

11.0 INTERNAL QUALITY CONTROL CHECKS

11.1 Equipment Blanks

Equipment blanks will be analyzed to check for contamination due to improper/insufficient decontamination procedures. These blanks will be taken only when nondedicated equipment is used.

To assure that the bailer has been sufficiently decontaminated (in the laboratory or in the field), fill the bailer with deionized water and pour this water into a set of sample bottles and submit to the laboratory for analysis. Sufficient equipment blanks will be collected to assure proper equipment decontamination.

11.2 Trip Blanks

Trip blanks will be analyzed to check for container contamination. Trip blanks will be prepared and labeled by the contract laboratory. One bottle of each type will be filled with Type II reagent grade water, transported to the site with the empty sample bottles, carried with the sample bottles during all sampling activities, and returned to the contract laboratory for analysis. Trip blanks should not be

opened at any time prior to analysis. They should be kept with the sample bottles with which they are associated at all times. One trip blank will be used per sampling event. Analyze only if the field blank contained detectable concentrations of a constituent which would indicate cross contamination.

11.3 Field Duplicates

To measure the precision of the sampling activities, duplicate samples will be collected and analyzed. Duplicates will be collected at a frequency of 5% or one with each sample set, whichever is more. For example, if two samples are taken, then one duplicate is needed. If 10 samples are collected, then one duplicate is needed.

The duplicates will be assigned a fictitious identification number and submitted to the laboratory as a blind duplicate. Record the ID number of the real well name and fictitious number on the ground water well information form.

In order to evaluate the precision of the analysis, it is necessary to calculate the relative percent deviation (RPD) between the two results of the duplicate analysis.

Calculate Relative Percent Deviation, RPD =

 $RPD = \frac{(S1-S2)}{(S1+S2)/2 \times 100\%}$ where S1 = Sample Result 1S2 = Sample Result 2

Example: The sulfate result reported for MW-999 is 1000 mg/l. The result for the duplicate sample of MW-999 is 1050 mg/l.

The RPD =
$$\frac{(1050 - 1000)}{(1050 + 1000/2)}$$
 x 100
= $\frac{50}{1025}$ x 100%
= 4.9%

RPD should be less than or equal to 10% for values five times greater than the MDL and plus or minus the detection limit for values less than five times the MDL.

12.0 SYSTEM AUDITS

A system audit is a qualitative evaluation in order to determine whether the guidelines set forth in this manual are being followed. A system audit will be conducted on a annual basis by the QA/QC manager.

The completed audit results will be given to the project manager so that it may be used as a guide for additional training and continual improvement objectives. It is important that all parties involved recognize that this system audit is <u>NOT</u> to be utilized in a punitive or negative manner, but that it be viewed as a tool to be used to achieve the data quality objectives.

APPENDIX A

Helpful Information

Source: Test Methods for Evaluating Solid Waste - Physical/Chemical Methods, SW-846 (3rd edition, 1986). *

TABLE 11-1

Parameter	Recommended Container ^b	Preservative	Maximum Holding Time	Minimum Volume Required for Analysis
GROUP I:	Indicators of	Ground Water Contamination	^c (Quadruplicat	ce Analyses)
рн	T, P, G	Field determined	None	25 mL
Specific conductance	T, P, G	Field determined	None	100 mL
TOC	G, Teflon-lined cap	C∞1 4°C, H2SO4 to pH <2	28 days	100 mL
TOX	G, amber, Teflon- lined Septa Cap	C∞1 4°C, H2SO4 to pH<2	28 days	250 mL
GROUP II:	Ground Water	Quality Characteristics		
Chloride	T, P, G	4°C	28 days	50 mL
Iron Manganese Sodium	T, P	Field acidified to pH <2 with HNO.	6 months	200 mL
Phenols	G	4°C/H2SO4 to pH <2	28 days	500 mL
Sulfate	T, P, G	Cool, 4°C	28 days	50 mL
GROUP III:	EPA Interim Dri	nking Water characteristic	<u>s</u>	
Arsenic Barium Cadmium	Τ, Ρ	Total Metals Field acidified to pH <2 with HNO ₄	6 months	500 mL
Chromium Lead Mercury Selenium Silver		Dissolved Metals 1. Field filtration (0.45 micron) 2. Acidify to pH <2 with HNO 3	6 months	500 mL
fluoride	Τ, Ρ	Cool, 4 ^o C	28 days	300 mL
Vitrate	T, P, G	4°C/H,504 to pH <2	14 days	100 mL

SAMPLING AND PRESERVATION PROCEDURES FOR DETECTION MONITORING^a

TABLE 11-1 (Continued)

Parameter	Recommended Container	Preservative	Maximum Holding Time	Minimum Volume Required for Analysis
Endrín Líndane Methoxychlor Toxaphene 2,4 D 2,4,5 TP Silvex	T, G	∞1,4°C	7 days	2,000 mL
Radium Gross Alpha Gross Beta	P, G	Field acidified to pH <2 with HNO3	6 months	l Quart
Coliform bacteria	PP, G (sterilized)	Cool, 4°C	6 hours	100 mL
	Other Ground Wat	er Characteristics of Int	erest	
Cyanide	P, G	Cool, 4°C, NaOH to pH >12	14 days	500 mL
011 and Grease	G only	Cool, 4°C H ₂ SO ₄ to pH <2	28 days	1000 mL
Semivolatile, volatile organics	T, G	C∞1,4°C	7 days	2000 mL + 2 VOA via:

SAMPLING AND PRESERVATION PROCEDURES FOR DETECTION MONITORING

^aReferences: <u>Test Methods for Evaluating Solid Waste - Physical/Chemical Methods</u>, SW-846 (3rd edition, 1986).

Methods for Chemical Analysis of Water and Wastes, EPA-600/4-79-020. Standard Methods for the Examination of Water and Wastewater, 16th edition (1985).

^bContainer Types:

P = Plastic (polyethylene)

- G = Glass
- T = Teflon
- PP = Polypropylene

^CBased on the requirements for detection monitoring (265.93), the owner/operator must collect a sufficient volume of ground water to allow for the analysis of four separate replicates.

APPENDIX B

Meterological Conditions

DERIVED FROM THE 1951-80 MONTHLY NORMALS

GAMMA DISTRIBUTION .00 .02 .10 .10 .19 .19 .15 .15 .15 .00 .00 .17 .32 .32 .67 .67 .90 .90 .1.56 .21.585 .2.85 INCOMPLE TF .00 .13 .38 .62 .62 .62 .15 .87 .15 .87 .23 .44 .27 UES WERE DETERMINED FROM THE .00 .00 .00 .00 .07 .17 .26 .38 .52 .52 .72 .72 .72 .00 .02 .10 .19 .29 .29 .29 .77 .77 .1.05 .1.53 .202 .202 .00 .08 .16 .16 .36 .49 .67 .67 .1.31 .00 .03 .11 .20 .20 .30 .42 .58 .58 .77 .77 .1.04 .1.51 VALI З'n ΗH ANN 1566 1282 903 416 119

PROBABILITY LEVELS

DAYS

DEGREE

COOL ING

, 0 0 0 0 0 0 2

0CT 25 12 0 0

SEP 215 162 96 26 0

AUG 425 363 270 125 31

JUL 493 431 338 188 72

JUN 303 248 767 70

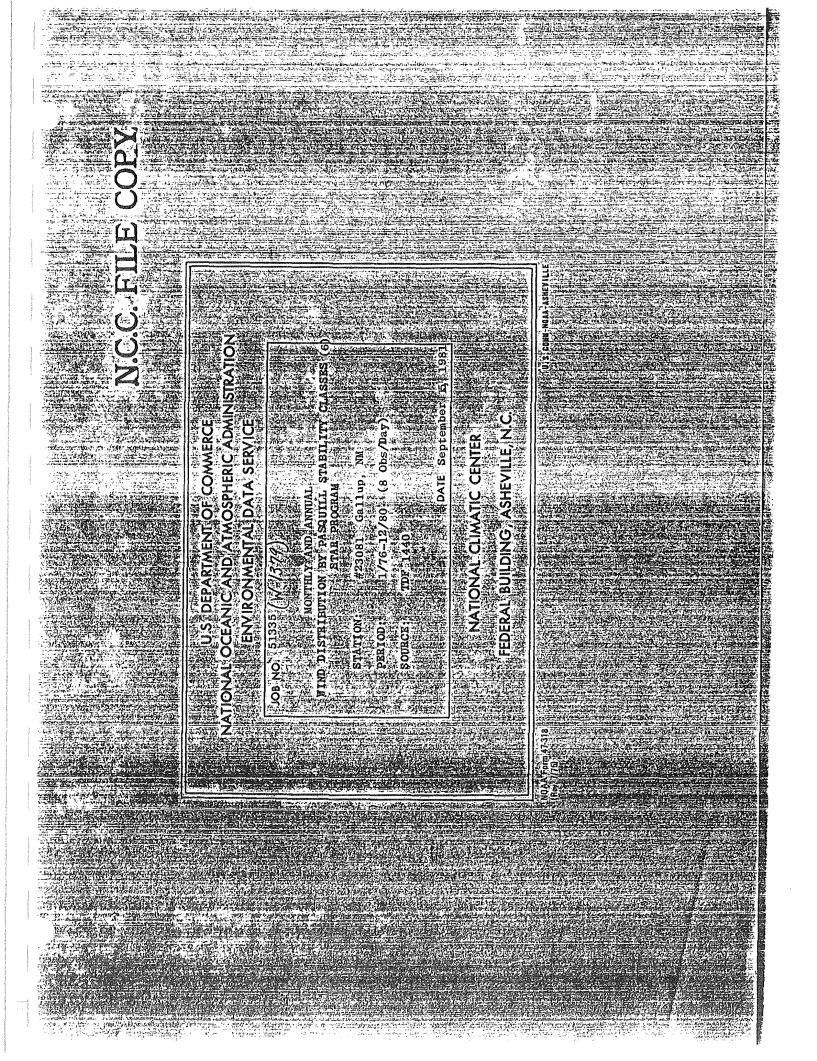
MAY 96 66 32 32

APA 00000

MAR 00000

BASE BASE 55 57 60 65 70

0 0 0 0 0


JAN

	IBE R		OB MORE	0	0	0	0	0	0	0	0	0	0	0	0		0			ILL BE	IN AMOUNT		NDV DEC	00. 00. 0	.02 .03	12 .12	
	HE AN NUMB OF DAYS		0M 90 01. 0M 90 02. 00.1	1	1	0	-	1	1	4	1	3	- -	0	0		25 4	IER DATES		ATION W	PRECIPITATION	IES)	SEP OCT	00.00.	00 . 00 .	.17 .18	•
LINCHEST	SNOM 1		NUMIXAM YJHTNOM ЯАЗҮ	17.0 74	11.5 62	24.0 69	4.5 64	1.2 51	0.	0.	0.	0.	14.0 61	16.5 52	20.5 67	MAR	24.0 69	ALSO ON EARLIER		PRECIPITATION WILL	_	LION LINCHES	AUGS	. 34	64,	3 . 73	ċ
TOTALS			rad Majm	11 5.2	08 3.1	23 3.4	20	0. 90	02 50	24 .0	0. 60	30.0	19 .5	24 2.6	10 5.6		24 20.9	+ AL		THAT THE MONTHLY	THE INDICATED	PRECIPITATION	III. NII	00, 00.	.00.13	.01 .38	
PRECIPIIATION			TSƏTAƏRƏ YJIAQ RAƏY	.64 63	.68 62	1.09 54	.83 52	.83 73	. 94 52	1.90 54	1.34 74	1.28 71	1.34 72	.95 78	1.30 65	- IUL	1.90 54		-	THAT THE	THAN	MONTHLY PF	MAY	00.0	00.00	50. 02	((
PREC	¥		dreatest Yjhtnom Aaay	2.64 80	2.70 80	2.39 54	2.36 52	1.46 54	1.54 67	4.41 55	4.36 64	3.35 71	5.75 72	3.12 78	2.67 65	OCT	5.75 72			PROBABI∟ITY	TO OR LESS	Σ	MAR APR	00.00.	.02 .00	.10 .00	0,
	*		NA 3M	0 .63	0 .54	0 .63	. 41	7 .38	70 .40	8 1.52	5 1.61	26 . 95	0 1.30	0 .67	0 .62		6 9.66	NO C	STATIONS	PRI	EQUAL		N FEB	.00	00 [.] EI	.11 .08	
	DEGREE DAYS	*	HEATING BASE 65 COOLING COOLING 845E 65	1122	879	608	543	302	67 7	5 188	10 125	116 2	428	801	1079		6161 416	ESTIMATED VALUE BASED ON	SURROUNDING ST				NAL	. 05	. 10		
		* NIM	0 AND BELOW	4	-	0			0	0	0	0	0		м		8	TIMATED	FROM SURR				ANN	6161 4027	4875 2,07 2		1995
	AD DUMBER OF DAKS		8EF0M 8EF0M 95 VID 95 VID	3 30	1 27	0 28	0 21	0	0	0	0	0	0 16	0 27	30		7 189	# ES	DATA F	_			DEC	1079	60- 474 603	100	107
	40 90 90	ЧЪ	7.40 0MA 0.0 37084	С 0	0	4	08 0	7 0	o T	07 15	28	28	24 0	28	10		8 29			URES (F			OCT N	428			
ENPERATURE (F	EMES		RECORD LONEST YEAR	-33+ 71	-23 51	i	7 75	15+ 75	26+ 51	30 78	35+ 78	23+ 73	12+ 75	-31+ 76	-21+ 78	NAL	-33 71			BASE TEMPERATURE	DAYS	-	07	10 116 0 26		у и - с	0 0
TEMPE	E X 1 REME		HIGHEST	5+ 54 29	9+ 57 14	1+ 78 27	5+ 77 26	51 26	9+ 74 24	+ 79 21	76 7	5+ 74 11	0+ 78 1	+ 71 11	8+ 76 14	- JUL	79 21				DFGRFF D		JUL	67 11 0			
		•	MONTHLY	28.8 65	33.6 69+	38.9 77+	46.9 85+	55.5 92	65.1 99+	70.9 101+	68.7 97+	62.0 95+	51.2 90+	38.3 76+	30.2 68-		49.2 101	1AL S		D SELECTED	HEATING		NAY JI	302	- / -		ā
	ME ANS	*	YJIAQ MUMINIM	.8 13.7	.8 18.2	.5 23.3	.7 29.2	.0 36.9	.1 45.0	.5 53.3	.0 52.3	.6 44.4	.1 33.2	.7 21.9	.8 14.4		.1 32.2	1951-80 NORMALS		DAYS TO		-	c,	809 543 rev 202			
		*	 ↓IAQ ₩UMIXAM 	Jâli 43	FEE 48.	MAR 54	4PR 64	MAY 74	UUN 85.1	- 10F 88.	AUG 85.0	SEP 79.6	0.01 69.1	NOV 54.	DEC 45.		YEAR 66.1	*FROM 195		DEGREE			ΕB	1122 879 ec.7 726	20/ /07 87/ FEE		
																					BASE		 	65 5 5		 0 U	 2

THE UNITED STATES NO. CL IMATOGRAPHY OF GALLUP, NM

20

PERIOD: 1951-80

	Page 1 of 3	distribution of wind on Pasquill's class	Definition	Extremely Unstable Unstable Slightly Unstable Neutral/Day Neutral/Night Slightly Stable Stable	Extremely Stable STAR is normally Sum of Wind Speed Number of Occurrences	in knots.)		l in the O-3 speed category based speed category of the percentage		
	(WA)	Period of Record: 1/70-12/50 (2 000/) t, as a bivariate frequency distribution of win Stability classes are based on Pasquill's class	Identified in lower left corner in this tabulation as:		The Day/Night STAR can be prepared for 6 classes (F, G, H combined), 7 classes (G, H combined), or 8 classes. The Day/Night used in the climatological display model (CDM) used in the climatological display model (CDM)	(winds are tabulated to 16 points; speeds are in knots.) 2			NUCLO III CACA ULIETLIUL CA	
 Another production of the second secon	WIND DIRECTION BY PASQUILL STABILITY CLASSES (STAR PROGRAM)	01	Stability Class (Day/Night STAR		The Day/Night STAR can be prepa classes (F, G, H combined), 7 (G, H combined), or 8 classes. used in the climatological dis ed class. Overall average wind speed	calms (winds are tabulated <u>class</u> is	keason, annual or period. L <mark>s</mark> = 1.00000	ccept that calm values have been distribute hown below. their occurrences are distributed into 0-3	1 40 01 1 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4	
	DIRECTION BY PASQUILL STA	<pre>is a complete the period indicated; fir disc combined for the period indicated; fir malized values (i.e., relative frequency). y, February 1964), as follows:</pre>	Definition	Extremely Unstable Unstable Slightly Unstable Neutral Slightly Stable Stable Extremely Stable	sular STAR The cla (G, each direction and each speed class.	Number of DIR/SPD observations, plus number of calms CURRENCES: <u>Number of occurrences/stability class</u> Total number of observations	Number of observations in each month, season, annual or period. :RVATIONS: <u>Total number of observations</u> = 1.00000 Total number of observations	This normalized (relative frequency) table is self explanatory, except that calm va on the number of observations in speed categories 1-3 and 4-6 as shown below. Because of the importance of calm winds in air pollution studies, their occurrences frommed frommed to the second		cies): 3680 "C" 21 142 MAM) 8
	DNIM	classes and cond, as nor d Meteorolog	Identified in lower left corner in this tabulation as:		for the Reg 6 classes :enths, for	S: Number of DIR/SPD observa of OCCURRENCES: Number of Total	BSE	frequency) table ons in speed cate of calm winds in		Total Obs for Season (all Stabilities): Stability Class: Total Obs. Class "C" - Speeds 1-3 Total Obs. Class "C" - Speeds 4-6 Total Calms - Class "C" (Season: MAM)
	JOB NO.	Station: Station:	Stability Class (Regular STAR)		Tabulations can also be prepared in 5 classes (E, F, G combined), (F, G combined),or 7 classes Average wind speed in knots, to t	NUMBER OF OCCURRENCES: Number of RELATIVE FREQUENCY OF OCCURRENCES:	TOTAL NUMBER OF OBSERVATIONS: TOTAL RELATIVE FREQUENCY OF O	This normalized (relative fre on the number of observation Because of the importance of frequency (normalized) rebloc		R Total Obs S Stability T Total Obs U Total Obs. V Total Calu
	in the second seco		k		· · · · · ·					

Page 2 of 3

To find the distribution of calms into a direction category we must also know the number of observations in that direction that had speeds of 1-3 and 4-6 knots. In our example let us assume we want to find how the calms were distributed into the south direction.

ო Total Obs. S Direction (Season: MAM) "C" Stability Speeds 1-3

з

Ś Total Obs. S Direction (Season: MAM) "C" Stability Speeds 4-6 ×

Symbolically the Distribution Factor =

$$\begin{pmatrix} \frac{V}{R} \end{pmatrix} \qquad \begin{pmatrix} \frac{W}{R} + \frac{X}{U} \end{pmatrix} + \begin{pmatrix} \frac{W}{R} \end{pmatrix}$$

% Frequency South Spd 0-3 "C" = $\left(\frac{B}{3680}\right) \left(\frac{3+b}{21+142}\right)^{4} \left(\frac{3^{3}}{3680}\right) = (.002174) (.55215) + (.000815) = .000935$ In our example then:

Percentages for Monthly or Annual tables may be determined in a like manner by substituting the proper values.

SPEED	-
QNIM	
AND	
RADIATION	
NET	
FUNCTION OF	
S A	
CLASS A	
FABLE A-1. STABILITY CLASS AS A FUNCTION OF NET RADIATION AND WIND SPEED	
TABLE A-1.	

TABLE A-2. INSOLATION AS A FUNCTION OF SOLAR ALTITUDE

INSOLATION CLASS NUMBER

INSOLATION

SOLAR ALTITUDE

(a)

e 3 ٦

Moderate Slight

35° <a< 60° 15° <a< 35° Weak

a<u><</u> 15°

Strong

60° <a

	e e	ST RJ			NET RADIATION INDEX 3 2 1 0 -1	-7
	г	7	ε	4	9	7
	5	7	۳	4	Q	7
	7	e	4	4	Ś	9
~ 1	7	e	4	4	Ś	9
\sim	7	£	4	4	4	Ś
~	e	e	4	4	4	Ś
m	e	4	4	4	4	Ś
m	e	4	4	4	4	4
e	4	4	4	4	4	4

Original Date 05/31/89 Revision Date 12/15/89

13.0 CORRECTIVE ACTION

Corrective action may be indicated based upon the results of the system audit, performance audit, or normal QC procedures. Corrective action consists of the following steps:

- Identify and define problem
- * Assign responsibility to investigate problem
- Investigate and identify cause of problem
- Determine responsibility for implementing corrective action
- Implement and assess effectiveness of corrective action
- ° Confirm that the problem has been eliminated

Corrective action may be initiated at all levels of responsibility and at all stages of the ground water sampling program. The QA/QC manager is responsible for assuring that the above steps are taken and that the problem initiating corrective action is solved.

14.0 QA/QC REPORTS TO MANAGEMENT

The QA/QC manager and project manager will provide reports to management on a quarterly basis which include:

- Results of System Audit
- Review of problems encountered and solutions
 obtained
- Review of any unresolved problems
- Recommendations to achieve continual improvements in the sampling program

	0							-	•						A A COMPANY - A COMPANY - COMPANY - COMPANY				Value and the Value va				a mana a	 a management of the state of th		
	045 1976-80		TOTAL	74	57	75	106	54	17	20	22	80	120	244	329	216	106	46	31				man a sa a anna anna an a sa anna a			
- construction of the second s	в МИ В		AVG SP T	7.2	6.9	6.8	7.1 1	7.3	7.2	6 • 3	7.2	8 • 8	9.8 1	11.0 2	10.4 3	8 • 9 2	8 • 3	6•L	7.0	7.9						
	STATION =23081 GALLUP	nord and a second s	GREATER THAN 21	D	0	0	0	0	0	0	D	0	+	11	6	1	D	0	0	24.0	22					
. vultimenterore			17-21	o	D	-	1	0	0	1	0	Ŧ	5	27	36	80	M	-	-	19.1	88					
	DISIRIBUTION	D(KTS)	11-16	3	M	Ŧ	E	3	1	2	7	11	25	60	66	4.6	16	7	1	13.4	252					
	. F REQUENC X	SPEE	7 - 10	36	22	24	55	3.0	Ø	11	13	0 7	56	96	142	88	48	19	14	8.7	702	1817				
			4 - 6	35		46	4.7	21	8	6	0	25	30	4.9	61	72	39	19	15	5.1	530	STABILITY = 1	STABILITY = 220	* F.	· · · · · · · · · · · · · · · · · · ·	
	АМИЧАН		1 - 3	٩	I	0	0	0	O	0	o	a	o	1	0	1	0	0	0	2.7	m	NCES OF C	WITH C STAB			
			DIRECTION	7	NNE	NE	ENE	Ē	ÊSE	SE	SSE	S	SSW	SW	WSW	F	ANA	NE	MNN	AVG	TOTAL	NUMBER OF OCCURRENCES	NUMBER OF CALMS W			

SPEED(KTS) DTRECTION 0 - 3 4 - 6 7 - 10 11 - 16 17 - 21 GREATER THAN 21 70 N -000999 -002397 -002466 -000000 -000000 -000000 NN -000999 -002123 -01507 -000205 -000000 -000000 NN -000913 -002319 -001507 -000205 -000000 -000000 NN -001300 -003151 -001507 -000205 -000000 -000000 NN -001300 -003151 -0012055 -000205 -000000 -000000 EVE -001329 -0013151 -0012055 -000205 -000000 -000000 EVE -001329 -001255 -000205 -000000 -000000 -000000 EVE -000256 -000206 -000000 -000000 -000000 -000000 EVE -000255 -000206 -000000 -000000 -000000 -000000 EVE -000254 -000264 -000000 -000000 -000000 -000000 SE	
SPEED(KTS) D - 3 4 - 6 7 - 10 11 - 16 17 - 21 GREATER THAN 21 -000973 -002466 -000205 -000000 -000000 -000973 -002151 -001507 -000205 -000000 -000000 -001329 -002151 -001644 -000205 -000000 -000000 -001329 -001448 -002205 -000000 -000000 -000000 -001329 -001438 -002055 -000205 -000000 -000000 -001329 -001438 -002055 -000205 -000000 -000000 -001320 -001438 -000205 -000000 -000000 -000000 -000170 -001411 -000268 -000000 -000000 -000000 -000170 -001411 -000268 -000000 -000000 -000000 -000276 -000268 -000000 -000000 -000000 -000000 -000170 -001712 -002740 -000000 -000000 -0	
0 - 3 4 - 6 7 - 10 11 - 16 17 - 21 GREATER THAN 21 .000973 .002123 .002105 .000000 .000000 .000000 .001300 .002123 .001507 .000205 .000000 .000000 .001320 .003151 .001644 .000205 .000000 .000000 .001329 .003151 .001644 .000205 .000000 .000000 .001329 .003151 .001644 .000205 .000000 .000000 .001329 .003157 .000205 .000000 .000000 .000000 .000226 .000548 .000268 .000000 .000000 .000000 .000170 .000411 .000753 .000000 .000000 .000000 .000707 .00172 .00274 .000000 .000000 .000000 .000707 .00172 .00274 .000000 .000000 .000000 .000707 .00172 .00172 .002410 .000000 .000000 <t< th=""><th></th></t<>	
.000989 .002397 .002466 .000205 .000000 .000973 .002123 .001507 .000205 .000000 .001300 .003151 .001543 .001205 .0000068 .001300 .003119 .001549 .000205 .000068 .001300 .003119 .001767 .000205 .000068 .001301 .003113 .001549 .000205 .000068 .000226 .000548 .000205 .000000 .000000 .000170 .000171 .000753 .000000 .000000 .000707 .001712 .000753 .000000 .0000764 .000707 .001712 .002740 .000053 .000000 .000707 .001726 .003753 .000734 .000274 .001107 .001107 .003753 .000172 .000342 .001107 .002740 .004110 .002466 .000548	TOTAL
.000973 .002123 .001507 .000205 .000006 .001329 .003219 .001444 .000205 .000068 .001329 .003219 .003767 .000205 .000068 .001329 .003219 .003767 .000205 .000068 .001329 .001438 .002055 .000068 .000000 .000226 .000548 .000068 .000000 .000170 .000411 .000753 .0000068 .000000 .000170 .0001712 .000137 .0000068 .000000 .000170 .0001712 .000137 .0000068 .000000 .000170 .000137 .000137 .0000068 .000000 .000170 .000137 .000137 .000000 .000000 .000170 .001374 .0000753 .000000 .000342 .0001482 .003356 .003353 .001172 .000342 .001482 .003356 .004110 .001849 .000342 .00233 .002431 .003426 .003546 .000548 .001103 <t< td=""><td>•006058</td></t<>	•006058
.001300 .003151 .001644 .000205 .000068 .001329 .003767 .000205 .000068 .000068 .000594 .001438 .002055 .000068 .000000 .000226 .000548 .000068 .000000 .000000 .000170 .000411 .000753 .000068 .000008 .000170 .000548 .000753 .000008 .000008 .000170 .0007112 .000753 .000058 .000008 .000707 .001712 .002740 .000753 .000074 .0007848 .002356 .003836 .001712 .000749 .001482 .003356 .005575 .004110 .00342 .001482 .005411 .00756 .001849 .002548 .002132 .004932 .005726 .004110 .002648	.004809
.001329 .003219 .003767 .000205 .000068 .000594 .001438 .002055 .000000 .000000 .000226 .000548 .0000548 .0000068 .000000 .000170 .000411 .000548 .0000068 .000000 .000170 .000411 .000753 .000006 .000707 .001712 .002740 .000753 .000074 .000788 .002740 .000753 .000274 .000848 .002356 .003836 .001712 .000342 .001482 .003356 .005675 .004110 .001849 .001482 .003356 .006675 .004110 .001849 .002233 .005411 .00753 .002466 .002466 .002132 .004932 .006627 .0064521 .002466 .001103 .007532 .006627 .00548 .000548	.006437
.000594 .001438 .002055 .000205 .000000 .000226 .000548 .000548 .000000 .000000 .000170 .000548 .000053 .000000 .000226 .000548 .000068 .000000 .000226 .000548 .000068 .000000 .000707 .001712 .000753 .000000 .000788 .002355 .0023836 .001712 .000342 .001482 .003356 .005575 .001712 .000342 .001482 .003356 .005575 .004110 .001849 .001482 .003356 .00575 .004110 .001849 .002133 .005411 .00575 .001104 .00548 .001103 .00541 .00546 .00565 .00565	.008589
.000226 .000548 .000548 .000068 .0000068 .000170 .000411 .000753 .000068 .000068 .000226 .000548 .000173 .000006 .000000 .000707 .001712 .002740 .000753 .000274 .000707 .001712 .002740 .000753 .000274 .000788 .001712 .000753 .000274 .000274 .0007818 .002355 .0023356 .002740 .000753 .000342 .001482 .003356 .005575 .007712 .001849 .001103 .002466 .001103 .002432 .006471 .007265 .005675 .0056675 .0056675	.004292
.000170 .000411 .000753 .000157 .000068 .000226 .000548 .000890 .000068 .000000 .000707 .001712 .002740 .0000753 .0000742 .0007848 .001712 .000753 .0000274 .000848 .002356 .003836 .001712 .000342 .001482 .003356 .005575 .004110 .001849 .001482 .005411 .009726 .004110 .001849 .002333 .005411 .009726 .004521 .002466 .002132 .004932 .006027 .003151 .00548	.001391
.000226 .000548 .000890 .000068 .000000 .000707 .001712 .000753 .000274 .000707 .001712 .000753 .000274 .000848 .002055 .003836 .000712 .000342 .001482 .003356 .003836 .004110 .000342 .001103 .00541 .00776 .001064 .000548	.001539
.000707 .001712 .002740 .000753 .000274 .000848 .002055 .003836 .001712 .000342 .001482 .003356 .005575 .004110 .001849 .001103 .00541 .005726 .004511 .002466 .001103 .00571 .005726 .00565 .00565	.001733
.000848 .002055 .003836 .001712 .000342 .001482 .003356 .006575 .004110 .001849 .002233 .005411 .009726 .004521 .002466 .002132 .004932 .006027 .003151 .000548	•006186
.001482 .003356 .006575 .004110 .001849 .002233 .005411 .009726 .004521 .002466 .002132 .004932 .006027 .003151 .000548	.009067
.002233 .005411 .009726 .004521 .002466 .002132 .004932 .006027 .003151 .000548 .001103 .002671 .007288 .001006 .000205	.018126
.002132 .004932 .006027 .003151 .000548 .001103 .002671 .007288 .001006 .000205	.024768
. 001101 . 00208 . 00100 . 00205	•016858
	•008363
NW .000537 .001301 .001301 .000479 .000068 .000000	• 00 3688
NNW .000424 .001027 .000959 .000068 .000068 .000000	• 002547
T0TAL .015274 .036301 .048082 .017260 .006027 .001507	
RELATIVE FREQUENCY OF OCCURRENCE OF C STABILITY = .124452	
RELATIVE FREQUENCY OF CALMS DISTRIBUTED ABOVE WITH C STABILITY = .DI5D68	

UP. NM _ 8 085 1976-80		AVG SP TOTAL	10.0 146	10.1 113	9.1 115	9.8 174	10.2 146	9.4 49	10.7 57	11.0 129	10.3 316	11.3 440	12.9 954	13.7 1053	12.7 486		12.0 109	10.4 56	11.4				
STATTON =23081 GALLUP		GREATER THAN 21	2	1	C	1	1	1	1	3	5	10	48	65	17	£	2	0	24.2	160			
v		17-21	£	3	1	7	10	1	t	11	15	t 1	126	189	65	24	60	S	18.9	513			
DISTRIBUTION	ED(KTS)	11-16	50	38	35	49	ų 3	12	20	45	103	160	429	t7t	226	91	53	18	13.5	1846			
FREQUENCY	SPEEI	7 - 10	61	51	49	86	68	21	22	48	148	188	294	265	141	50	36	22	8•9	1550	4788		
		4 - 6	30	19	30	31	24	14	10	22	4.5	0 +	56	60	37	20	10	11	5 • 2	459	STABILITY =	ITY = 257	
 АМИЦАТ		1 - 3	0	1	0	D	C	D	0	C	0	1	1	0	0	0	0	D	3.0	£	OF D	WITH D STABILITY	
		DIRECTION	z	NNE	NE	ENE	Ŀ	ESE	SE	SSE	S	SSW	S E	M S W	з	MNW	MN	ΝNΨ	AVG	TOTAL	NUMBER OF OCCURRENCES	NUMBER OF CALMS	

....

H 8 0BS 1976-80			•011143	.008502	.009020	•013099	•010914	.003890	.004285	•009674	•023358	• 031699	.067514	•074409	• 034697	•013639	.007847	•004255		and for a grant water and a set of the set of		
GALLUP, NM		TOTAL	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•				
STATION = 23081 6		GREATER THAN 21	.000137	.000068	• 000000	.000068	• 000068	.000068	.000068	•000205	.000342	.000685	.003288	.004452	.001164	.000205	.000137	• 00000	.010959			
ION		17 - 21	•000205	•000202	•000068	• 0 004 7 9	•000685	• 0 000 6 8	•000274	.000753	•001027	.002808	•008630	.012945	.004452	.001644	• 0 00548	• 0 00 34 2	•035137		• 017603	
FREQUENCY DISTRIBUTION	ED(KTS)	11 - 16	.003425	.002603	.002397	.003356	.002945	.000822	.001370	.003082	.007055	.010959	.029384	.032466	.015479	.006233	.003630	.001233	.126438	= .327945	STABILITY = .0	
RELATIVE FR	SPEED	7 - 10	.004178	.003493	.003356	•005890	.004658	.001438	• C 0 1 5 0 7	.003288	•010137	.012877	•020137	.018151	.009658	.003425	.002466	.001507	.106164	STABILITY	ABOVE WITH D	
		4 - 6	.002055	.001301	•002055	.002123	.001644	.000959	.000685	.001507	.003082	.002740	.003836	.004110	• 002534	.001370	.000685	.000753	.031438	OCCURRENCE OF D	DISTRIBUTED AB	
ANNUAL		0 - 3	.001143	•000831	.001143	.001181	•1000-	.000533	•000381	.000838	.001715	.001631	.002240	.002286	.001410	.000762	.000381	°000419	.017808	FREQUENCY OF OCCL	OF CALMS	
		DIRECTION	Z	NNE	NE	ENE	L.	ESE	SE	SSE	S	SSW	S E	MSW	X	MNM	M N	NNM	TOTAL	RELATIVE FRE	RELATIVE FREQUENCY	

					· · · · · · · · · · · ·						-		a.	man - area -			: ;	n			· · · · · · · · · · · · · · · · · · ·	نت ا			
	<u> </u>			na anna ann an Aonaichte	an a s'a anna anna "		ning - 1 - version (energy - 1 - vers			NAME & RANGE & ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF						NAME OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION O			a and available a second						-
	8 0 ^A S	TOTAL		63	57	53	57	36	45	53	176	157	195	171	8	42	26	16							
	 UP, NM	AVG SP		6.9	6.7	7.1	6.3	6.1	5.6	6.6	7.1	7.5	7.8	7.5	7.5	7.2	7.0	8.1	7.2						
	STATION =23081 GALLUP.	GREATER THAN 21		0	D	D	0	0	0	0	D	0	0	0	0	0	0	0	0.	0					
A STY TOP STORE WAY OF T	V	17-21		o	0	0	0	D	0	0	o	a	0	0		0	0			D					
	DISTRIBUTION	91-11		0	D	D	0	0	D	D	D	0	0	O	0		0	O	0.	0					
and the second	EREQUENCY	3rccu 7 - 10	+ 2 +	35	30	30	26	13	11	25	114	113	145	112	52	30	16	14	8•5	811					-
		4 - Y	15	28	27	23	31	23	34	28	62	+ +	50	59	28	12	10	2	5.1	476	1 1	LITY =	· · · · · · · · · · · · · · · · · · ·	* fa.	
	АМИА	7 - 1		D	6	o	0	0	0	0	0	D	0	0	0	0	0	O	0•	0	OF E	WITH E STABI	en a de la commencia de commence de co		
		OTRECTION		NNE	NE	ENE	Ŀ	ESE	SE	SSE	S	SSW	St	WSW	Æ	323	SE	MNN	AVG	TOTAL	NUMBER OF OCCURRENCES	NUMBER OF CALMS			

.

)	1976-8n										4 propriate the state of the propriate state of the st	and a state of the second s		· · · · · · · · · · · · · · · · · · ·							a management of the second sec				
	GALLUP, NM & OPS		TOTAL	.004110	.004315	•003904	•003630	•00300	.002466	•003082	•003630	•012055	.010753	.013356	.011712	.005479	.002877	.001781	.001096						
	STATION = 23081 6.		GREATER THAN 21	• 00000	• 000000	• 00000	• 000000	• 00000	• 00000	• 00000	• 00000	• 000000	• 00000	• 000000	• 00000	• 000000	.00000	. 00000	• 000000	• 00000					
	NOITL		17 - 21	• 0 00000	. 00000	• 0 0 0 0 0	• 0 0 0 0 0	• 0 0 0 0 0	• 0 000 0	• 0 0000	• 0 000 0	• 0 0 0 0 0	• 0 0 0 0 0	• 0 0 0 0 0	. 0 000 0	• 0 0 0 0 0	• 0 0 0 0 0	00000.	• 0 00 0 0	• 0 000 0		• 000000			
	EQUENCY DISTRIBUTION	ED(KTS)	11 - 16	• 00000	• 200000	• 00000	• • • • • •	. 00000	• 000000	• 00000	• 000000	• 00000	• 00000	•00000	• 00000	000000.	000000.	. 000000	000000.	000000	= .088151	STABILITY =			
	RELATIVE FR	SPEI.	7 = 10	.003082	.002397	.002055	.002055	•001781	• 000890	• 000753	.001712	.007808	.007740	• 009932	.007671	.003562	.002055	.001096	.000959	• 055548	STABILITY	WITH E			
			t - 6	.001027	.001918	.001849	.001575	.002123	.001575	.002329	.001918	.004247	.003014	.003425	.004041	.001918	.000822	.000685	.000137	.032603	OCCURRENCE OF E	DISTRIBUTED ABOVE			
	A NUAL		0 - 3	• 000000	.00000	• 000000	.00000	.000000	•000000	.000000	.000000	.00000	• 000000	•00000	• 0000 00	• 00000	• 00000	• 000000	•00000	• 00000	FREQUENCY OF OCC	CALMS		98.0 (To for an internet of the second s	
			DIRECTION	Z	NNE	NE	ENE		ESE	SE	SSE	S	SSW	SW	MSM	33	MNM	MN	MNN	TOTAL	RELATIVE FREG	RELATIVE FREQUENCY OF			

1976-80																					na an ann ann ann ann ann an ann ann an		a na mana a na mana ma na ma na ma na mana a mana na manana na ma	
8 ORS		TOTAL	52	53	105	80	112	66	54	68	121	65	85	109	60	18	13	15						
P. NH		AVG SP	5.1	5.1	5.0	5.0	4.7	4 • 7	5.0	5.1	5.0	5.1	5.0	5.1	5.0	5•2	5 • 3	4°9	1.0					
STATION =23081 GALLUP.		GREATER THAN 21	0	0	0	0	Ō	O	0	O	O	Ο	O	o	0	0	Ō	o	•	O				
		17-21	0	0	0	0	0	0	0	0	D	0	0	0	0	0	0	D		0				
DISTRIBUTION	D(KTS)	11-16	0	0	0	0	0	0	0	0	O	0	0	O	0	D	0	O	0.	o				
FREQUENCY	SPEED	7 - 10	0	ο	D	0	0	C	0		0		0	0	0	0	0	0	0.	0	5167			
			52	52	104	52	106	63	51	67	112	63	83	109	57	18	13	15	5 • 0	1044		STABILITY = 4091	 	
ANKILAL		1 - 3	0	1	1	1	6	3	3	1	6	2	2	0	3	0		D	2.9	32	ENCES OF F	WITH F STAB		
		DIRECTION	Z	NNE	NE	ENE	ш	ESE	SE	SSE	S	SSW	SH	H S H	3	MNM	MN	NNN	AVG	TOTAL	NUMBER OF OCCURRENCES	NUMBER OF CALMS		

0AS 1976-80						and a second				rene and a sub-rener of and a stranger provide the sub-				and the second			· · · · · · · · · · · · · · · · · · ·						· ·	- - - - -
GALLUP, NM & C		TOTAL	.017103	.017432	.034535	.026313	•036838	.021708	•017761	• 022366	•039798	•021379	.027957	•035851	.019734	•005920	•004276	• 004 934						
STATION = 23081 G		GREATER THAN 21	• 000000	• 00000	• 00000	. 00000	• 00000	• 00000	• 000000	• 000000	• 00000	• 00000	• 00000	• 00000	• 00000	. 000000	• • • • • • •	• 000000	• 000000					Arrange and the second
BUTION		17 - 21 61	. 00000	• 0 0000	• 0 0000	. 00000	. 0 000 0	• 0 0 0 0 0	• 0 000 0 •	• 0 0 0 0 0	• 0 0 0 0 0	0 0 0 0 0 •	• 0 0 0 0 0	• 0 0000	• 0 000 0	• 0 0000	• 0 000 0	• 0 0 0 0 0	.00000		• 280205			
FREQUENCY DISTRIBUTI	ED (KTS)	11 - 16	• 00000	.00000	.00000	.00000	.00000	• 00000	• • • • • • •	• 00000	• 00000	000000.	.00000	• 00000	• 00000	. 00000	• 00000	• 00000	• 00000	= •353904	STABILITY =			
RELATIVE FR	SPEED	7 - 10	.00000	• 00000	• 00000	• 00000	• 00000	• 00000	• 00000	. 00000	• 00000	• 00000	• 00000	• 00000	• 000000	. 00000	.00000	• 000000	• 00000	STABILITY	ABOVE WITH F	and the second		· · · · · · · · · · · · · · · · · · ·
		4 - 6	.003562	.003562	.007123	.005411	.007260	.004315	.003493	.004589	.007671	• 004 315	.005685	.007466	• 003904	.001233	.000890	.001027	.071507	143	DISTRIBUTED			
		0 - 3	.013542	.013870	.027412	.020902	.029577	.017393	.014268	.01777	.032127	•017064	.022272	• 028385	.015830	.004687	.003385	•003906	.282397	NCY OF	JENCY OF CALMS			
		DIRECTION	Z	NNE	NE	ENE	L	ESE	SE	SSE	S	SSW	SW	H S K	-3	MNR	BZ	MNN	TOTAL	IVE	RELATIVE FREQUENCY			

'n Page 3 of

A STABILITY CLASSIFICATION BASED ON HOURLY AIRPORT OBSERVATIONS

The following explanation of the Pasquill Stability classification has been extracted from an article by D. Bruce Turner in the February 1964 Journal of Applied Meteorology.

by solar altitude and modified for existing conditions of total cloud cover and cloud ceiling height. At night estimates of outgoing radiation Instability occurs with high positive net radiation and low wind speed, stability with high negative This system of classifying stability on an hourly basis for research in air pollution is based upon work accomplished by Dr. F. Pasquill of the British Meteorological Office (1961). Stability near the ground is dependent primarily upon net radiation and wind speed. Without the influence of clouds, insolation (incoming radiation) during the day is dependent upon solar altitude, which is a function of time of day and When clouds exist their cover and thickness decrease incoming and outgoing radiation. In this system insolation is estimated are made by considering cloud cover. This stability classification system has been made completely objective so that an electronic computer can be used to compute stability classes. The stability classes are as follows: 1) Extremely unstable, 2) Unstable, 3) Slightly unstable, radiation. The net radiation index ranges from 4, highest positive net radiation (directed toward the ground), to -2, highest negative net radiation (directed away from the earth). Instability occurs with high positive net radiation and low wind speed, stability with high negat 4) Neutral, 5) Slightly stable, 6) Stable, 7) Extremely stable. Table A-l gives the stability class as a function of wind speed and net net radiation and light winds, and neutral conditions with cloudy skies or high wind speeds. time of year.

The net radiation index used with wind speed to obtain stability class is determined by the following procedure:

- 1) If the total cloud cover is 10/10 and the ceiling is less than 7000 feet, use net radiation index equal to 0 (whether day or night).
- For night-time (night is defined as the period from one hour before sunset to one hour after sunrise): to -2. 5
 - a) If total cloud cover≤4/10, use met radiation index equal
- If total cloud cover > 4/10, use net radiation index equal to -1. (q

For daytime: 3)

- If total cloud cover \$5/10, use the met radiation index in Table A-1 corresponding to the insolation class number.
- If cloud cover > 5/10, modify the insolation class number by following these six steps: a) Determine the insolation class number as a function of solar altitude from Table A-2. b) If total cloud cover $\leq 5/10$, use the net radiation index in Table A-1 corresponding to c) If cloud cover > 5/10, modify the insolation class number by following these six steps
 - Ceiling < 7000 ft, subtract 2. ្ឋ
- Ceiling≥7000 ft but <16,000 ft, subtract 1.
- Total cloud cover equal 10/10, subtract 1. (This will only apply to ceilings Z7000 ft since cases with 10/10 coverage below 7000 ft are considered in item 1 above.) 35
- If insolation class number has not been modified by steps (1), (2), or (3) above, assume modified class number equal to insolation class number. Ŧ
 - If modified insolation class number is less than 1, let it equal 1.
 - Use the net radiation index in Table A-1 corresponding to the modified insolation class number. 33

Since urban areas do not become as stable in the lower layers as non-urban areas, stability classes 5, 6 and 7 computed using the STAR program may be combined into a single class (5), or classes 6 and 7 may be combined and identified as class 6.

JOB NO.

THE TADULATE DECODED LETNE THE EAL DUING HEADED CADD INFORMATION
TREFACED COINCE THE EVECTATING TEADER
LATITUDE = 35.517
LONGITUDE = 108.783
TIME ZONE = 105.0
THIS IS A REGULAR STAR RUN
HEMISPHERE = WESTERN
NUMBER OF STABILITY CLASSES = 6
INPUT = MAGHETIC TAPE DECK FAMILY 14 TAPE =4
OUTPUT = MONTHLY AND ANNUAL INPUT MUST BE SORTED IN STATION-MONTH SEQUENCE
PERIOD OF RECORD = 7601 8012
1
A TAPE CONTAINING INDIVIDUAL STABILITY OBSERVATIONS WAS NOT REQUESTED
1

	1976-80		· · ·		-	-																				Print a bullet - Anna A manual and a start and a manual and a start and a st
	8 08S		TOTAL	6	2	ę	2	ب	1		2	6	t	7	20	12	6	4	5							
	MM • MM		AVG SP	4 • 7	4 • 8	4 • 8	5.0	4 ° 8	۲. د	4 .7	4 • 5	4 • 7	4 • 7	5 ° 0	4 • 9	4.8	4.9	5 • O	4 • 8	1.8				-		
	STATION =23081 GALLUP, NM		GREATER THAN 21	o	o	O	O	o	O	0	0	D	0	D	O	0	O	0	0	0.	0					
	S		17-21	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.	0					
	DISTRIBUTION	(KTS)	11-16	0	0	0	0	O	0	0	0	0	D	0	D	0	0	D	0	0.	0					
	FREQUENCY	SPEEDI	7 - 10	0	0	0	-	0	0	0	O	0	0	0	0	0	0	0	0	•	0	281				
			4 - 6	ę	ß	ę	2	ę	7	Ŧ	2	S	4	7	20	12	6	4	S	4 • 9	104	STABILITY = 2	_ITY = 175		-	
	ANNAL		1 - 3	0	o	0	0	0		0	O	1	0	0	0	0	0	0	0	٥°٤	2	OCCURRENCES OF A S'	WITH A STABILITY			
)			DIRECTION	z	NNE	RE	UN NU NU		اریا . در ایل	ы. S	S S E	S	SSH	SW	e Se	.3	ANA	NN	NNN	AVG	TOTAL	ЦO	NUMBER OF CALMS			
				-41 							in and the second	a setter			ار ایک وقت میرا امریک ایک	- And	1267					NUMBER	IN			

SPECIALISI SPECIALISI D146CT104 0 - 3 4 - 6 7 - 10 11 - 16 17 - 21 GRATER FLMM 21 101AL N -000518 -000511 -000000 -000000 -000000 -000000 -000000 NE -000518 -00011 -000000 -000000 -000000 -000000 -000000 NE -000518 -00011 -000000 -000000 -000000 -000000 -000000 NE -000513 -00011 -000000 -000000 -000000 -000000 -000000 SV -000513 -00011 -000000 -000000 -000000 -000000 -000000 -000000 -000000 -000000 -000000 -000000 -000000 -000000 -000000 -000000 -000155 -00155 -00155 -00155 -00155 -00155 -00155 -00155 -00155 -00155 -00155 -00155 -00155 -00155 -00155 -00155 -00155 -00155 -00155 <td< th=""><th></th><th>ANNUAL</th><th></th><th>RELATIVE FRE</th><th>FREQUENCY DISTRIBUTION</th><th>UTION</th><th>STATION = 23081 G</th><th>GALLUP, NM B OPS</th><th>1976-80</th></td<>		ANNUAL		RELATIVE FRE	FREQUENCY DISTRIBUTION	UTION	STATION = 23081 G	GALLUP, NM B OPS	1976-80
International Special (ris) 101 0 - 3 4 - 6 7 - 10 11 - 16 17 - 21 Greater Tuan 21 101 11 .000619 .000411 .000000 .000000 .000000 .000000 .000000 11 .000515 .000312 .0000000 .000000 .000000									
II III IIII IIII IIII IIII IIII IIII IIII IIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII				SPEE	D(KTS)			· · · · · · · · · · · · · · · · · · ·	
N .000018 .000010 .000000 .000000 .000000 .000000 E .00055 .000137 .000000 .000000 .000000 .000000 F .00055 .000137 .000000 .000000 .000000 .000000 F .000573 .000117 .000000 .000000 .000000 .000000 F .000473 .000137 .000000 .000000 .000000 .000000 F .000473 .000137 .000000 .000000 .000000 .000000 F .000473 .000137 .000000 .000000 .000000 .000000 F .000157 .000137 .000000 .000000 .000000 .000000 F .000174 .000100 .000000 .000000 .000000 .000000 F .000174 .000100 .000000 .000000 .000000 .000000 F .000174 .000174 .000000 .000000 .000000 .	IRECTION	1	•	•	1	1	THAN	TOTAL	
(C) .000565 .000342 .000000 .0	Z	.000678	.000411	• 000000	• 000000	• 0 0 0 0 0	• 000000	.001089	
(c) (c) <td>NNE</td> <td>.000565</td> <td>.000342</td> <td>• 00000</td> <td>• • • • • • •</td> <td>.00000</td> <td>• 000000</td> <td>• 000908</td> <td></td>	NNE	.000565	.000342	• 00000	• • • • • • •	.00000	• 000000	• 000908	
(6) .000226 .000137 .000000 .0	NE	.000678	.000411	• 000000	• 00000	• 0 000 0	• 000000	•001089	
E .000678 .000411 .000000 .000	ENE	.000226	.000137	• 00000	• 000000	00000.	• 00000	• 000363	
5E .000973 .000479 .000000 .00	ω	.000678	.000411	• 000000	• 000000	00000	• 00000	.001089	
EE .000452 .000214 .000000 .00	ESE	°000973	• 0004 79	.00000	• 000000	00000	• 000000	• 001453	
EE .000226 .000137 .000000 .00	SE	• 0004 52	.000274	• 00000	• 000000	00000.	• 000000	.000726	
5 .000747 .000342 .000000 .000	SSE	.000226	.000137	• 000000	• 000000	• 0 0 0 0 0	• 000000	• 000363	
SW .000452 .000274 .000000 .000000 .000000 .000000 .000000 SW .000792 .000479 .000000 .000000 .000000 .000000 .000000 SW .001256 .001377 .000000 .000000 .000000 .000000 .000000 W .001357 .000822 .000000 .000000 .000000 .000000 .000000 W .001018 .000516 .000000 .000000 .000000 .000000 .000000 W .0010452 .000274 .000000 .000000 .000000 .000000 .000000 W .0012555 .000742 .000000 .000000 .000000 .000000 W .0012123 .0007123 .000000 .000000 .000000 .000000 W .012123 .007123 .000000 .000000 .000000 .000000 VE FREQUENCY A STABILITY .011986 .011986	S	• 000747	• 000342	• 00000	• 000000	• 0 000 0	• 000000	•001089	
SW .000792 .000479 .000000 .000000 .000000 .000000 SW .002262 .001370 .000000 .000000 .000000 .000000 W .001357 .000822 .000000 .000000 .000000 .000000 W .001357 .000822 .000000 .000000 .000000 .000000 W .001357 .000822 .000000 .000000 .000000 .000000 W .001357 .000274 .000000 .000000 .000000 .000000 W .000565 .000342 .000000 .000000 .000000 .000000 W .000565 .001342 .000000 .000000 .000000 .000000 VH .0012123 .001123 .000000 .000000 .000000 .000000 .012123 .001123 .0012123 .0012247 .000000 .000000 .000000 .VE FREQUENCY OF CALMS DISTRIBUTED ABOVE WITH A STABILITY = .019247 .011986 .011986 .011986	SSW	• 000452	•000274	. 00000	.00000	.00000	• 00000	•000726	
5W .001370 .000000 .000000 .000000 .000000 W .001357 .000822 .000000 .000000 .000000 .000000 W .001357 .000616 .000000 .000000 .000000 .000000 VW .00118 .000514 .000000 .000000 .000000 .000000 VW .000452 .000274 .000000 .000000 .000000 .000000 VW .000452 .000342 .000000 .000000 .000000 .000000 VW .000565 .000342 .000000 .000000 .000000 .000000 VW .000565 .000342 .000000 .000000 .000000 .000000 VE FREQUENCY OF OCURRENCE OF A STABILITY = .019247 .000000 .000000 .000000 FREQUENCY OF CALMS DISTRIBUTED ABOVE WITH A STABILITY = .011986 .011986 .011986	Sw	.000792	• 000479	.00000	• 000000	• 0 000 0	• 000000	.001271	
W .001357 .000822 .000000 .000000 .000000 VW .001018 .000616 .000000 .000000 .000000 .000000 VW .001452 .000274 .000000 .000000 .000000 .000000 VW .000452 .000274 .000000 .000000 .000000 .000000 VW .000565 .000274 .000000 .000000 .000000 .000000 VW .000565 .000274 .000000 .000000 .000000 .000000 VW .0012123 .0007123 .000000 .000000 .000000 .000000 VE FREQUENCY OF OCURRENCE OF A STABILITY = .019247 .01986 .01986 .000000	WSH	.002262	• 001370	•00000	. 00000	00000.	• 000000	•003631	
W .0001018 .0000616 .000000 .000000 .000000 .000000 VM .000452 .000274 .000000 .000000 .000000 .000000 VM .000565 .000342 .000000 .000000 .000000 .000000 VM .000565 .000342 .000000 .000000 .000000 .000000 VM .0012123 .000000 .000000 .000000 .000000 .000000 IVE FREQUENCY OF OCLURRENCE OF A STABILITY = .01926 .019267 .019265 .019265	3	.001357	.000822	• 000000	.00000	00000.	• 00000	.002179	
VW .000452 .000274 .000000 .000000 .000000 .000000 VW .000565 .000342 .000000 .000000 .000000 VW .000565 .000123 .000000 .000000 .000000 VW .000565 .000123 .000000 .000000 .000000 VE FREQUENCY OF OCURRENCE OF A STABILITY .019247 .011986 FREQUENCY OF CALMS DISTRIBUTED ABOVE WITH A STABILITY .011986	MNM	.001018	.000616	• 000000	.00000	• 0 000 0	• 000000	.001634	
VW .000565 .000342 .000000 .000000 .000000 .000000 .012123 .007123 .000000 .000000 IVE FREQUENCY OF OCCURRENCE OF A STABILITY = .019247 FREQUENCY OF CALMS DISTRIBUTED ABOVE WITH A STABILITY = .011986	MN	.000452	.000274	•000000	• 00000	• 0 0 0 0 0	• 00000	.000726	And and a second se
.012123 .007123 .000000 .000000 .000000 .000000 .000000	NNM	• 000565	• 000342	• 00000	• 00000	• 0 0 0 0 0		• 000908	
IVE FREQUENCY OF OCCURRENCE OF A STABILITY = .019247 Frequency of Calms distributed above with a stability = .011986	OTAL	.012123	.007123	• 000000	00000.	00000			
FREQUENCY OF CALMS DISTRIBUTED ABOVE WITH A STABILITY = .011986	1	ΟF	ΟF	STABILITY					
		CALMS		WITH A	ABILITY	.011986			
								n on any any angle of the second s	

	С В 93	•						a contraction of the second seco	•	Man and a community of the second s	•	· · · · · · · · · · · · · · · · · · ·			for every state of the same state of the same state of the same		-	·		· · · · · · · · · · · · · · · · · · ·	a . The state of t		•			
	0P.S. 197		TOTAL	45	20	37	28	28	10	17	17	32	31	5 1	73	62	39	4 0	25					· · · ·		
	P. NM B		AVG SP T	5 . 7	6.0	5.8	5 8 8	6.3	6.1	5.7	5 • 7	6.2	6.2	6.7	6.3	6.2	6•3	5 • 9	6.2	2.8						
	STATION =23091 GALLUP.		GREATER THAN 21	D	D	D	D	O	D	D	D	0	D	D	D	0	0	0	0	0.	0					
			17-21	0	D	0	0	0	0	-	o	D	0	0	0	0	0	0	0	•	C					
	au I Le	(KTS)	11-16	D	D	D	D	0	0	0	0	0	D	D	D	0	D	0	0	0.	O					
#**	FREQUENCY	SPEED (KTS	7 - 10	12	80	11	11	11	ŧ	9	5	14	15	29	36	33	18	12	12	7.5	237	1260			· · · · · · · · · · · · · · · · · · ·	
			t - 6	31	11	23	16	16	ę	10	11	18	13	22	39	4 4	20	26	11	5 • 3	317	STABILITY = 12	ILITY = 683			
	ANNUAL		1 - 3	2	1	£	1	1	D	1	1	D	m	O	S	2	1	2	2	2,8	23	OF B	WITH B STABILI			
			DIRECTION	Z	NNE	NE	ENE		ESE	SE	SSE	S	SSW	SE	MSW	3	ANA	AZ	372	AVG	TOTAL	NUMBER OF OCCURRENCES	NUMBER OF CALMS W			

SPEED(KTS) 4 - 6 7 - 10 11 - 16 17 - 21 GREAT .002123 .000822 .000000 .000000 .000000 .002153 .000648 .000000 .000000 .000000 .001575 .000548 .000000 .000000 .000000 .001575 .000753 .000000 .000000 .000000 .001575 .000753 .000000 .000000 .000000 .001096 .000753 .000000 .000000 .000000 .001096 .000741 .000000 .000000 .000000 .001058 .000741 .000000 .000000 .000000 .001053 .000000 .000000 .000000 .000000 .001233 .000000 .000000 .000000 .000000 .001233 .000000 .000000 .000000 .000000 .0010507 .000000 .000000 .000000 .000000 .0010507 .000000 .0000000 .0000000 .0000	TOTAL .007623 .003021 .006112
4 - 6 7 - 10 11 - 16 17 - 21 GREATER THAN .002123 .000822 .000000 .000000 .000000 .001575 .000548 .000000 .000000 .000000 .001575 .000533 .000000 .000000 .000000 .001096 .000753 .000000 .000000 .000000 .001096 .000753 .000000 .000000 .000000 .001096 .000174 .000000 .000000 .000000 .001096 .0000174 .000000 .000000 .000000 .0001233 .000342 .000000 .000000 .000000 .001233 .000342 .000000 .000000 .000000 .001233 .0010342 .000000 .000000 .000000 .001233 .001020 .000000 .000000 .000000 .001233 .001020 .000000 .000000 .000000 .001267 .0010000 .000000 .0000000 .000000	T0TAL .007623 .003021 .006112
.002123 .000822 .000000 .000000 .000753 .000548 .000000 .000000 .001575 .000753 .000000 .000000 .001096 .000753 .000000 .000000 .001096 .000753 .000000 .000000 .001096 .000774 .000000 .000000 .000123 .000342 .000000 .000000 .001233 .000342 .000000 .000000 .001233 .000342 .000000 .000000 .001233 .001224 .000000 .000000 .001233 .001264 .000000 .000000 .001207 .001986 .000000 .000000 .001207 .001986 .000000 .000000 .001207 .002466 .000000 .000000 .0023014 .002360 .000000 .000000	.007623 .003021 .006112
.000753 .000548 .000000 .000000 .001575 .000753 .000000 .000000 .001096 .000753 .000000 .000000 .001096 .000753 .000000 .000000 .001096 .000753 .000000 .000000 .000685 .00011 .000000 .000000 .000533 .000000 .000000 .000000 .000753 .000000 .000000 .000000 .001233 .000342 .000000 .000000 .001233 .001966 .000000 .000000 .001233 .001966 .000000 .000000 .001233 .001966 .000000 .000000 .001233 .001966 .000000 .000000 .001233 .001966 .000000 .000000 .001567 .001966 .000000 .000000 .002660 .000000 .000000 .000000 .002361 .000000 .000000 .000000	.003021
.001575 .000753 .000000 .000000 .001096 .000753 .000000 .000000 .001096 .000753 .000000 .000000 .000685 .00074 .000000 .000000 .000685 .000342 .000000 .000000 .000585 .000342 .000000 .000000 .000753 .000342 .000000 .000000 .001233 .001027 .000000 .000000 .001233 .001027 .000000 .000000 .001233 .001027 .000000 .000000 .001233 .001926 .000000 .000000 .001233 .001926 .000000 .000000 .001233 .001926 .000000 .000000 .001267 .002360 .000000 .000000 .002460 .000000 .000000 .000000	.006112
.001096 .000753 .000000 .000000 .001096 .000753 .000000 .000000 .000685 .000342 .000000 .000000 .000753 .000342 .000000 .000000 .001233 .000342 .000000 .000000 .001233 .000342 .000000 .000000 .001233 .001959 .000000 .000000 .001233 .001927 .000000 .000000 .001233 .001927 .000000 .000000 .001233 .001927 .000000 .000000 .001507 .001986 .000000 .000000 .001507 .001986 .000000 .000000 .001507 .002466 .000000 .000000 .002601 .000000 .000000 .000000	
.001096 .000153 .000000 .000000 .000411 .000120 .000000 .000000 .000585 .000342 .000000 .000000 .0001233 .000342 .000000 .000000 .001233 .000959 .000000 .000000 .001233 .001959 .000000 .000000 .001507 .001986 .000000 .000000 .001507 .001986 .000000 .000000 .001507 .001986 .000000 .000000 .001507 .001986 .000000 .000000 .001507 .002466 .000000 .000000 .002560 .000000 .000000 .000000	•004257
.000411 .000274 .000000 .000685 .000411 .000000 .000000 .000753 .000342 .000000 .000000 .001233 .000342 .000000 .000000 .001233 .000342 .000000 .000000 .001233 .001959 .000000 .000000 .001233 .001926 .000000 .000000 .001253 .001926 .000000 .000000 .001251 .002260 .000000 .000000	.004257
.000685 .000411 .000000 .000000 .000753 .000342 .000000 .000000 .001233 .000959 .000000 .000000 .001507 .001986 .000000 .000000 .001507 .001986 .000000 .000000 .001507 .001986 .000000 .000000 .002671 .002466 .000000 .000000 .003014 .002260 .000000 .000000	.001510
.000753 .000342 .000000 .000000 .001233 .000959 .000000 .000000 .000890 .001027 .001986 .000000 .000000 .001507 .001986 .000000 .000000 .000000 .001507 .001986 .000000 .000000 .000000 .002671 .002466 .000000 .000000 .000000	•002678
.001233 .000959 .000000 .000000 .000890 .001027 .001986 .000000 .000000 .001507 .001986 .000000 .000000 .000000 .002671 .002466 .000000 .000000 .000000 .003014 .002260 .000000 .000000 .000000	.002815
.000890 .001027 .000000 .000000 .001507 .001986 .000000 .000000 .002671 .002466 .000000 .000000 .003014 .002260 .000000 .000000	• 004668
.001507 .001986 .000000 .000000 .002671 .002466 .0000000 .000000 .003014 .002260 .000000 .000000	•004325
.002671 .002466 .000000 .000000 .003014 .002260 .000000 .000000	.006520
.003014 .00226D .000000 .000000	.011121
	.011740
•002958 •001370 •001233 •000000 •000000 •000000	.005561
.003990 .001781 .300822 .000000 .000000 .000000	.006592
.001926 .000753 .000822 .000000 .000000 .000000	.003501
•048356 •021712 •016233 •000000 •000000 •000000	
FREQUENCY OF OCCURRENCE OF B STABILITY = .086301	

VOLATILE	ORGANIC	COMPOUNDS	-	EXAMPLES
----------	---------	-----------	---	----------

		Quar	actical ntitation imits ^b
		Ground water	Low Soil/Sediment
Volatiles	CAS Number	ug/L	ug/Kg
1. Chloromethane	74-87-3	10	10
2. Bromomethane	74-83-9	10	10
3. Vinyl Chloride	75-01-4	10	10
4. Chloroethane	75-00-3	10	10
5. Methylene Chloride	75-09-2	5	5
6. Acetone	67-64-1	100	100
7. Carbon Disulfide	75-15-0	5	5
 1,1-Dichloroethene 	75-35-4	5 5 5	5
9. 1,1-Dichloroethane	75-35-3	5	5
10. trans-1,2-Dichloroethene	156-60-5	5	5
11. Chloroform	67-66-3	5	5
12. 1,2-Dichloroethane	107-06-2	5	5
13. 2-Butanone	78-93-3	100	100
14. 1,1,1-Trichloroethane	71-55-6	5	5
15. Carbon Tetrachloride	56-23-5	5	5
16. Vinyl Acetate	108-05-4	50	50
17. Bromodichloromethane	75-27-4	5	5
18. 1,1,2,2-Tetrachloroethane	79-34-5	5	5 5
19. 1,2-Dichloropropane	78-87-5	5	5
20. trans-1,3-Dichloropropene	10061-02-6	5	5
21. Trichloroethene	79-01-6	5	5
22. Dibromochloromethane	124-48-1	5	5 5 5 5
23. 1,1,2-Trichloroethane	79-00-5	5 5	5
24. Benzene	71-43-2		5
25. cis-1,3-Dichloropropene	10061-01-5	5	5
26. 2-Chloroethyl Vinyl Ether	110-75-8	10	10
27. Bromoform	75-25-2	5	5
28. 2-Hexanone	591-78-6	50	50
29. 4-Methyl-2-pentanone	108-10-1	50	50
30. Tetrachloroethene	127-18-4	5	5
31. Toluene	108-88-3	5	5
32. Chlorobenzene	108-90-7	5	5 5 5 5
33. Ethyl Benzene	100-41-4	5	5
34. Styrene	100-42-5	5 5	5
35. Total Xylenes		5	5
-			

^aSample PQLs are highly matrix-dependent. The PQLs listed herein are provided for guidance and may not always be achieveable. See the following information for further guidance on matrix-dependent PQLs.

 b PQLs listed for soil/sediment are based on wet weight. Normally data is reported on a dry weight basis; therefore, PQLs will be higher, based on the % moisture in each sample.

Other Matrices:	<u>Factor</u> 1
Water miscible liquid waste	50
High-level soil & sludges	125
Non-water miscible waste	500

 $^{1}PQL = [PQL for ground water (Table 2)] X [Factor]. For non-aqueous samples, the factor 1s on a wet-weight basis.$

SEMI-VOLATILE ORGANIC COMPOUNDS - EXAMPLES

Base/Neutral Extractables

Parameter	CAS No.
Acenaphthene	83-32-9
Acenaphthylene	208-96-8
Anthracene	120-12-7
Aldrin	309-00-2
Benzo(a)anthracene	56-55-3
Benzo(b)fluoranthene	205-99-2
Benzo(k)fluoranthene	207-08-9
Benzo(a)pyrene	50-32-8
Benzo(ghi)perylene	191-24-2 85-68-7
Benzyl butyl phthalate	319-85-7 319-85-7
β-ВНС δ-ВНС	319-86-8
Bis(2-chloroethyl)ether	111-44-4
Bis(2-chloroethoxy)methane	111-91-1
Bis(2-ethylhexyl)phthalate	117-81-7
Bis(2-chloroisopropyl)ether	108-60-1
4-Bromophenyl phenyl ether	101-55-3
Chlordana	57-74-9
2-Chloronaphthalene	91-58-7
4-Chlorophenyl phenyl ether	7005-72-3
Chrysene	218-01-9
4,4'-DDD	72-54-8
4,4'-DDE	72-55-9
4,4'-DDT	50-29-3
Dibenzo(a,h)anthracene	<i>53-70-3</i>
Di-n-butylphthalate	84-74-2
1,3-Dichlorobenzene	541-73-1
1,2-Dichlorobenzene	95-50-1
1,4-Dichlorobenzene	106-46-7
3,3'-Dichlorobenzidin e	91-94-1
Dieldrin	60-57-1
Diethyl phthalate	84-66-2
Dimethyl phthalate	131-11-3
2,4-Dinitrotoluene	121-14-2
2,6-Dinitrotoluene	606-20-2
Di-n-octylphthalate	117-84-0
Endosulfan sulfate	1031-07-8
Endrin aldehyde	7421-93-4
Fluoranthene	206-44-0
Fluorene	86-7 3 -7
Heptachlor Hastachlor spovide	76-44-8
Heptachlor epoxida Hexachlorobanzana	1024-57-3 118-74-1
Hexachlorobutadiene	87-68-3
Hexachloroethane	67-72-1
Indeno(1,2,3-cd)pyrene	193-39-5
Isophorone	78-59-1
Naphthalana	91-20-3
Nitrobenzene	98-95-3
N-Nitrosodi-n-propylamine	621-64-7
PCB-1016	12674-11-2
PCB-1221	11104-28-2
PCB-1232	11141-16-5
PCB-1242	53469-21-9
PCB-1248	12672-29-6
PCB-1254	11097-69-1
PCB-1260	11096-82-5
Phenanthrena	85-01-8
Pyrene	129-00-0
Toxaphene	8001-35-2

Acid Extractables	
Parameter	CAS No.
4-Chloro-3-methylphenol	59-50-7
2-Chlorophenol	95-57-8
2,4-Dichlorophenol	120-83-2
2,4-Dimethylphenol	105-67-9
2,4-Dinitrophenol	51-28-5
2-Methyl-4, 6-dinitrophenol	534-52-1
2-Nitrophenol	88-7 5 -5
4-Nitrophenol	100-02-7
Pentachlorophenol	87-86-5
Phenol	108-95-2
2,4,6-Trichlorophenol	88-06-2

REGULATORY LIMITS - DRINKING WATER

Contaminant	Unit	MCL
Primary regulations*		
Inorganics		
Arsenic	mg/L	0.05
Barium	mg/L	1.0
Cadmium	mg/L	0.01
Chromium	mg/L	0.05
Fluoride	mg/L	4.0
Lead	mg/L	0.05
Mercury	mg/L	0.002
Nitrate (as N)	mg/L	[·] 10.0
Selenium	mg/L	0.01
Silver	mg/L	0.05
Microbials		
Coliforms		1/100 mL
Turbidity	ntu	1-5
Organics		
2,4-D	mg/L	0.1
Endrin	mg/L	0.0002
Lindane	mg/L	0.0004
Methoxychlor	mg/L	0.1
Toxaphene	mg/L	0.005
2.4.5.TP silvex	mg/L	0.01
Trihalomethanes (chloroform,		
bromoform, bromodichlo-		
romethane, dibromochloromethane)		0.10
Radionuclides		
Beta particle and		
photon radioactivity	mrem	4 (annual dose
photon radioactivity		equivalent)
Gross alpha particle		cquiraini,
activity	pCi/L	15
Radium-226 + radium-228	pCi/L	5
Volatile organic chemicals	pond	•
Benzene	mg/L	0.005
Carbon tetrachloride	mg/L	0.005
1.2.Dichloroethane	mg/L	0.005
1,1-Dichloroethylene	mg/L	0.007
	mg/L	0.20
1,1,1. Trichloroethane	mg/L	0.075
para-Dichlorobenzene	mg/L	0.005
Trichloroethylene	mg/L	0.002
Vinyl chloride	iiig/ E	0.005
Secondary regulations†	mg/L	250
Chloride	color units	
Color	mg/L	1
Copper	IIIg/L	noncorrosive
Corrosivity	mall	2
Fluoride	mg/L	0.5
Foaming agents	mg/L	0.3
Iron	mg/L	0.05
Manganese	mg ′L TON	3
Odor	10.1	6.5-8.5
pH	medi	250
Sulfate	mg/L	500
Total dissolved solids	mg/L	
Zinc	mg/L	5

Indust Indus Indus Indus <th></th> <th></th> <th></th> <th></th> <th></th> <th>A deficiency of the second sec</th> <th></th> <th>- ripprendition</th> <th></th> <th></th>						A deficiency of the second sec		- ripprendition		
About FREGUENCY DESTRIBUTION FREGUENCY DESTRIBUTION FREGUENCY DESTRIBUTION 6.05 120-3 3 3 3 3 3 3 3 3 1 1 3 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 4 1 1 1 1 1 1 1 1 1										
SPECIMITS) SPECIMITS) SPECIMITS) SPECIMITS) NECTION 1 - 3 N <th></th> <th>ANNLAL</th> <th></th> <th>1</th> <th></th> <th></th> <th>STATION =23081 GALI</th> <th>NN . AU</th> <th></th> <th></th>		ANNLAL		1			STATION =23081 GALI	NN . AU		
SPEED(N15) DIRECTION 1 - 3 1 - 10 17 - 10 17 - 10 17 - 10 17 - 10 N 2 169 116 14 3 3 2 7, 1 NE 4 136 116 14 3 1 7, 7 NE 4 23 118 39 2 7, 7 NE 7 204 135 46 10 1 7, 7 NE 7 204 135 46 10 1 7, 7 NE 7 204 135 46 13 7, 7 NE 7 204 135 46 10 1 7, 7 NE 7 20 145 13 1 1 7, 7 NE 81 135 46 11 1 7, 7 7, 7 NE 25 13 1 1 1 7, 7 7, 7 7, 7 SE 2 10 146 11 1 1									n den en de la company de la compa	
DIRCTION 1 - 3 4 - 6 7 - 10 11 - 10 17 - 12 77 - 12 77 - 7 N 2 166 154 3 2 7.6 NE 4 26 116 91 3 2 7.7 NE 4 236 114 39 2 7.7 NE 7 2 196 116 91 3 1 7.7 NE 7 2 196 194 35 2 1 7.7 NE 7 204 135 92 9 1 7.7 NE 7 2 196 194 35 9 1 7.7 SE 9 1				SPEED	(KTS)					No the Management County of the state
N 2 169 154 53 13 1 7 NC 4 160 114 39 2 0 6.6 NC 4 236 114 39 2 0 6.6 NC 4 236 114 39 2 0 6.6 NC 7 20 135 46 10 1 7.4 NC 2 13 46 13 4 13 1 6.6 NC 4 135 46 13 1 1 1 1 NC 4 135 14 13 1	DIRECTION	•	1	1	11-16	17-21	THAN		TOTAL	
MIC 4 146 116 41 3 1 7 7 MC 4 236 114 39 2 0 6.8 MC 2 199 182 56 1 7.7 EWC 2 199 182 46 10 1 7.4 EVC 2 135 14 13 1 1 7.4 EVC 4 121 46 13 1 1 7.2 SE 4 135 14 13 1 7.2 SE 4 14 19 5 8.3 SE 19 14 19 5 8.3 SE 10 255 149 15 11.3 1 MS 3 5 13 13 1 11.3 1 SE 5 14 15 14 19 16 11.3 1	Z	2	169	154	53	M	2	7.8	383	
HE 4 236 114 39 2 0 6.8 ENE 2 198 182 52 8 1 7.1 E 7 2 198 182 52 8 1 7.1 E 7 2 19 135 46 1 1 7.1 E 7 2 19 135 14 13 1 7.1 E 5 4 135 14 15 1 7.2 E 5 19 316 50 14 1 <td< td=""><td></td><td>Ŧ</td><td>146</td><td>116</td><td>41</td><td>£</td><td>1</td><td>7.7</td><td>311</td><td>for the communications states in the second</td></td<>		Ŧ	146	116	41	£	1	7.7	311	for the communications states in the second
CNC 2 198 182 52 8 1 7.7 C 7 204 135 46 13 1 1 7.4 C 7 204 135 46 13 1 1 7.4 C 55 4 121 46 13 1 1 1 1.2 C 55 138 91 46 11 3 1 1.2 C 55 138 91 14 19 3 1 1.2 C 54 10 267 564 469 14 11.5 1 S4 3 136 137 137 1 <td< td=""><td></td><td></td><td>236</td><td>114</td><td>39</td><td>2</td><td>0</td><td>6 • 8</td><td>395</td><td>And the second second</td></td<>			236	114	39	2	0	6 • 8	395	And the second
E 7 204 135 46 10 1 7.4 SE 4 121 46 13 1 1 6 SE 4 121 46 13 1 1 7.5 SE 4 115 50 22 5 1 7.5 SE 10 267 316 114 19 5 8.3 SS 10 267 316 114 19 5 8.3 SS 10 267 316 144 153 5 11.3 1 SS 1 5 15 16 14 19 5 8.3 SS 5 15 16 14 19 6 10.5 11.3 1 SS 4 5 54 25 7 1 11.5 1 1 1 1 1 1 1 1 1 <td< td=""><td>ENE</td><td>2</td><td>198</td><td>182</td><td>52</td><td>80</td><td>1</td><td>7.7</td><td>443</td><td></td></td<>	ENE	2	198	182	52	80	1	7.7	443	
CEC 4 121 46 13 1 7.2 SE 4 115 50 22 5 1 7.2 SEE 2 138 91 46 11 3 8.1 SEE 2 138 91 46 11 3 8.1 SE 10 Z67 316 114 19 5 8.3 SE 10 Z67 316 114 19 5 8.3 SE 10 Z67 549 489 153 59 11.3 1 SE 3 564 489 107 27 73 18.1 11.6 1 W 5 555 549 107 272 73 18.1 10.2 W 1 118 146 107 27 73 18.1 11.6 1 W 2 59 14 107 27 3 9.5 1 11.6 1 1 1 1 1 1<		7	204	135	46	10	1	7.4	403	
5E 4 115 50 22 5 1 7.2 5SE 2 138 91 46 11 3 8.1 5 10 267 316 114 19 5 8.3 5Su 6 194 372 185 46 14 9.6 5Su 6 194 372 185 46 14 9.6 45 54 555 540 225 73 18 10.2 45 1 118 146 107 27 73 18 10.2 410 1 118 146 107 27 73 18 10.2 414 1 1 1 1 17 17 11.5 1 414 1	ES		121	46	13	1	1	6 • 5	186	
5E 2 136 91 46 11 3 6.1 5 10 267 316 114 19 5 8.3 554 6 194 372 185 46 14 9.6 554 4 153 267 564 469 153 59 11.3 1 554 564 469 153 57 73 18 10.2 11.5 1 45 5 54 469 153 59 11.3 1 11.5 1 11.5 1 11.5 1 11.5 1 11.5 1 11.5 1 11.5 1 11.5 1 11.5 1 11.5 1 10.2 1 10.2 10.2 1 10.2 10.2 10.2 10.2 10.2 10.2 10.2 1 10.2 1 10.2 1 10.2 1 10.2 1 1 1 1 1 1 1 1 1 1 1 1 1	9	7	115	50	22		7	7.2	197	
S 10 267 316 114 19 5 8.3 SSM 6 194 372 185 46 14 9.6 SSM 4 267 564 489 153 59 11.3 1 SW 4 267 564 489 153 59 11.3 1 WSW 3 565 540 272 73 18 10.5 1 WSW 3 560 514 272 73 18 10.5 1 WM 1 118 146 107 27 73 9.5 9.5 WM 2 82 83 60 9 2 9.5 9.5 NNM 2 5.9 9.1 13.5 18.9 6.0 9.6 9.6 9.5 9.5 NM 2 5.9 5.1 8.6 9.5 18.9 9.5 10.2		2	138	16	46		E.	8.1	291	
SSM 6 194 372 185 46 14 9.6 SM 4 267 564 489 153 59 11.3 1 WM 3 366 555 540 225 71 11.5 1 WM 3 366 555 540 225 73 18 10.2 WM 1 118 146 107 27 73 18 10.2 WM 2 82 83 60 9 2 9.5 WM 2 59 62 19 6 0 8.0 NM 2 59 5.1 8.6 13.5 18.9 24.2 6.0 IOTAL 63 2930 2098 601 182 7.2 6.0 IOTAL 63 2930 2098 601 182 7.4 6.0 IOTAL WUBER OF OSERVATIONS 14.600 14.600 14.600 16.1 182 7.4 6.0 IOTAL WUBER OF CALMS 5426 542 5.1 54.2 5.1 5.1		10	267	316	114	19	5	8 ° 3	731	
SM 4 267 564 489 153 59 11.5 1 WSM 3 366 555 540 225 71 11.5 1 WSM 3 366 555 540 225 71 11.5 1 WSM 1 6 250 314 272 73 18 10.2 WM 2 83 60 9 2 9.5 WM 2 60 9 2 9.5 NM 2 60 9 2 9.5 NM 2 59 62 13.5 18.9 24.2 6.0 AVG 2.9 5.1 8.6 13.5 18.9 24.2 6.0 TOTAL 63 3300 2098 601 192 71 TOTAL 63 293 3300 2098 601 182 TOTAL 63 24.5 54.6 54.5 54.6		Q	194	372	185	46	14	9.6	817	
WSW 3 366 555 540 225 71 11.5 1 W 6 250 314 272 73 18 10.2 WM 1 118 146 107 27 3 9.5 WM 2 82 83 60 9 2 9.5 NM 2 59 62 19 6 0 8.0 NM 2 5.1 8.6 13.5 18.9 24.2 6.0 AVG 2.9 5.1 8.6 13.5 18.9 24.2 6.0 TOTAL 63 29.0 3300 2098 601 182 182 TOTAL 63 29.3 3300 2098 601 182 182 TOTAL 63 29.3 3300 2098 601 182 182 TOTAL 63 29.3 29.4 182 182 182 182 TOTAL 63 29.4 601 182 182 182 <		Ŧ	267	564	489	153	59	11.3	1536	
W 50 314 272 73 18 10.2 MW 1 18 146 107 27 3 9.5 WW 2 82 83 60 9 2 9.5 NNW 2 59 60 9 2 9.5 NNW 2 59 62 19 6 0 8.0 NNW 2 59 62 13.5 18.9 24.2 6.0 OTAL 63 3300 2098 601 182 TOTAL 63 14600 14.600 19.9 24.2 6.0 TOTAL NUBER OF OBSERVATIONS 14600 19.9 24.2 6.0 TOTAL NUBER OF CALMS 5426 54.2 54.2 54.2		£	366	555	540	225	71	11.5	1760	
WM 1 118 146 107 27 3 9.5 NH 2 82 83 60 9 2 9.2 NH 2 59 62 19 6 0 8.0 NN 2 59 62 19 6 0 8.0 AVG 2.9 5.1 8.6 13.5 18.9 24.2 6.0 TOTAL 63 3300 2098 601 182 182 TOTAL NUHBER OF OSERVATIONS 14600 196 18.9 24.2 6.0 TOTAL NUHBER OF CALMS 5426 18.9 54.2 18.9 182		¢	250	314	272	73	18	10.2	933	
NH Z 82 83 60 9 2 9.2 NNM Z 59 62 19 6 0 8.0 NNM Z 59 62 13 6 0 8.0 AVG Z.99 5.1 8.6 13.5 18.9 24.2 6.0 TOTAL 63 Z.99 5.1 8.6 13.5 18.9 24.2 6.0 TOTAL 63 Z.99 5.09 6.01 1.82 5.0			118	146	107	27	3	9•5	402	the state and and any analysis and any and any and
NNW Z 59 62 19 6 0 8.0 AVG Z.99 5.1 8.6 13.5 18.9 Z4.2 6.0 JOTAL 63 2930 3300 2098 6.01 1.82 JOTAL 63 2930 3300 2098 6.01 1.82 JOTAL 63 2930 3300 2098 6.01 1.82 JOTAL NUMBER OF OBSERVATIONS 14600 14600 1.82 1.82 JOTAL NUMBER OF CALMS 5426 5.12 1.82 1.82		2	82	83	60	6	2	9.2	238	· · · · · · · · · · · · · · · · · · ·
AVG 2.9 5.1 8.6 13.5 18.9 24.2 6.0 TOTAL 6.3 2930 3300 2098 601 182 TOTAL NUMBER OF OBSERVATIONS 14600 2098 601 182 TOTAL NUMBER OF CALMS 5426 5426 5426	1.	2	59	62	19	9	0	8.0	148	
TOTAL 63 2930 3300 2098 601 182 TOTAL NUMBER OF OBSERVATIONS 14600 14600 14600 14600 TOTAL NUMBER OF CALMS 5426 14600 1600 1600		2 • 9	5.1	8.6	13.5	18.9	24.2	6•0		
TOTAL NUMBER OF OBSERVATIONS 14600 TOTAL NUMBER OF CALMS 5426		63	2930	3300	2098	601	182		-	al an en an
TOTAL NUMBER OF CALMS 5426	TOTAL NUMBER									
	TOTAL NUMBER	CALMS	5426							
	26 I									
	. ц.									
										No. on Companyation of the Companyation of the Companyation

- Compared and the second		Advanced (blog)	ObdetBillionemperferen;	the synthesizable and	 A second of the second s	A second and a second	Another and the another another and the another another another another and the another another another and the another an	
)							
				-				
	ANNUAL	1	RELATIVE FREQU	FREQUENCY DISTRIBUTION	TION	STATION = 23081 (GALLUP, NM 8 085 1976-80	
			SPEED(KTS	(KTS)				
THE DIRECTION	0N 0 - 3	4 - 6	7 - 10	11 - 16	17 - 21 GR	GREATER THAN 21	TOTAL	
N	.021370	.011575	.010548	.003630	• 0 00 2 0 5	.000137	.047466	
NNE NNE	.018900	.01000	• 007945	.002808	• 0 00205	• 000068	.039927	
NE	.030075	.016164	.007808	.002671	.000137	. 000000	.056856	A MARINA AND A MARIN
ENE	°024971	.013562	.012466	.003562	.000548	.000068	.055177	
	•026680	.013973	.009247	.003151	.000685	• 000068	• 053803	
ESE	°015795	.008288	.003151	.000890	.000068	.000068	.028261	
SE	.015050	.007877	• 003425	.001507	.000342	.000068	.028270	
SSE SSE	°017521	.009452	.006233	.003151	.000753	.000205	.037315	<u> </u>
S	•035080	.018288	.021644	• 007808	•001301	• 000342	。O84464	
SSW	• 025245	•013288	.025479	.012671	.003151	• 000959	• 080793	
SW	。033924	.018288	.038630	•033493	.010479	°004041	•138856	and the second
HSH	°046025	.025068	.038014	•036986	.015411	° 004863	.166367	
3	.032199	.017123	.021507	.018630	• 0 02 0 0	.001233	.095692	
MNA	.014845	• 008082 `	.010000	.007329	•001849	.000205	.042311	
NW	.010567	.005616	.005685	.004110	•000616	.000137	.026732	
BNN Strategy	.007711	• 00+04	• 004247	.001301	.000411	• 00000	.017711	
TOTAL	.375959	.200685	.226027	.143699	.041164	.012466		
TOTALR	TOTAL RELATIVE FREQUENCY	CY OF OBSERVATIONS	NS = 1.000000					
TOTAL	RELATIVE FREQUENCY	OF	CALMS DISTRIBUTED ABOVE =	• 37 1644				The second s
		 A summary processing provide the second s	and a summary from the summary of the sum of		ي الله الله الله الله الله الله الله الل		a design for more formal particular a survey of a survey more design for each particular particular survey.	

APPENDIX C

Appendix IX - Analyses and Methodology

Analytical Services

RADIAN

Volume 2, Nomber 3 May 1989

GCMS TARGET LISTS MADE SIMPLE

To simplify project planning and data review, Tech Note 3 provides a table of gas chromatographic/mass spectrometric (GC/MS) volatile and semivolatile organic chemicals covered by EPA's reaker water and waste regulations. Pesticides normally analyzed by gas chromatographic methods have been omitted from the lists. Be aware that the table of GC/MS target compounds can change as EPA amends its regulations or promulgates new ones. Note, also, that there are two separate TCLP lists \sim Toxicity and Land ban - for solvent wastes (F001-F005) and those containing dioxins (F020-F023; F026-F028). Stay aware of changes in regulations by referring to appropriate technical or trade journals or to the *Pederal Register*.

In addition, call us for an update from time to time - we will be happy to advise you on changes to Tech Note 3. And as always, Radian's Marketing Managers and Client Service Courdinators will actively help you identify the best analysis methods and the most appropriate compound lists for your monitoring needs when you schedole work with Radian's Analytical Services Laboratories.

VOLATILE COMPOUNDS*

a man a sa		100	TEST PA	MAMEICE	IS BT REGUL	ATTUNS		
	CV	VA.		R	CRA			SUPERFUN
ANALYTE	NPDES"	624 ⁵	APPENDIX IX	8240 ^c	SKINNER	T	X.P	CLPd
					1000	limicity	Land han	1
4			1		1			
Acetone			V	e de la compañía de	I	-	¥	4
Adstocielle		-	1 P				1	
Acrolem	V	-	1 1	Ý	t	-		Į
Acrylonitelle	V		*	*	5 C	¥2	÷	-
A 191 chloride		*Patro	K					
8			1					
Benzene	× v	×.	1	12 ²	r .	r		V
Bromodichlammethane	K	1	1	V		1	3,	*
Bromolorm	v	¥.	V	v				V
Bromomethane	W.	V	1	V.H	4-1-1-1-4	4.7 ···· 114	A Collected	V
Buty! Alcoliol							4	
C								
Carbon disulfide	i i		Y.	V	1	v.	V	v
Ciribon letrachloride		V	× 1	V	20 1 1 - 1	Ý	V	Ý
Cirrbon tetrachtoride ¹⁷ Tus list of compounds, which is a c a substitute for consulting the most <i>40 CFR</i> , Pc. 122, Appendix D <i>40 CFR</i> , Pt. 130, Appendix A <i>534-846, 346 Edition</i> <i>40 CFR</i> , Pt. 188	omosrison of lists and	d methods a	s performed at loa	eian, is cum changes	est as of public			√ .sed as

	CW	A		R	CRA			SUPERFUN
ANALYTE	NPDES	624	APPENDIX IX	8240	SKINNER	l Tt	CLP	CLP
นและแรงชีวิธีการสมุนเวลาสารีปูกกรรมเหม						Toxicity	Land ban	
Chlorobenzene	V	\checkmark	V	V	V	~	V	V
Chlorodibromomethane	·	√ f	√f f	· · · · · · · · · · · · · · · · · · ·		· ·		V
Chloroethane	- ·	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·				V
2-Chloroethylvinyl ether	V	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	+		<u> </u>	<u> </u>
Chloroform	V	· · · · · · · · · · · · · · · · · · ·	V	· · · · · · · · · · · · · · · · · · ·	V	v		
Chloromethane			· ·	· · · · · · · · · · · · · · · · · · ·			1	V
Chloropropene			v					
D		arnone ann an Maria a' Statemann a						
1,2 Dichlorobenzene	V 1	v	1					1
1,3 Dichlorobenzene	V	· · · · · · · · · · · · · · · · · · ·	+		1			
1,4 Dichlorobenzene	· · ·				-			
1,2-Dibromo-3-chloropropane			V				<u> </u>	
Dibromomethane			√ g	V				
1,2-Dibromoethane			······································	·····	✔ h			<u> </u>
1,4-Dichloro-2-butane				V				
trans-1,4-Dichloro-2-butene	-++	·····	V	· ·				
Dichlorodifluoromethane			· · ·	· · · · · · · · · · · · · · · · · · ·				
1,1-Dichloroethane	- V		· ·	· ·				V
1,2-Dichloroethane	- V			· · · · · · · · · · · · · · · · · · ·	V			· · · · · · · · · · · · · · · · · · ·
1,1-Dichloroethylene	V		· · ·	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		· · · · · ·
trans-1,2-dichloroethylene	- · ·		V					· · · · · · · · · · · · · · · · · · ·
1,2-Dichloropropane	- · ·	· · · · · · · · · · · · · · · · · · ·	· · ·	· ·				· · ·
<i>cis</i> -1,3-Dichloropropene	V	· · · · · · · · · · · · · · · · · · ·	V	· · · · · ·				· · · ·
trans-1,3-Dichloropropene	- ·		· · ·	· ·				· · · ·
1,4 Dioxane			V		V			
P								
E Ethanol				./				
Ethyl acetate				<u> </u>	<u> </u>			
Ethyl benzene			V		V		V V	
Ethyl ether	- v	<u>v</u>		V			V	¥
Ethyl methacrylate			V	·	<u> </u>		V	
				<u>v</u>				
N 2 Hoverone						Terresta A. (1997) (199	1.9 <u>000000000000000000000000000000000000</u>	,
2-Hexanone				V				v
Listed as dibromochloromethane Listed as methylene dibromide Listed as ethylene dibromide Listed as methyl iodide		alanda Santa Bata da ya na		-		Tean de la transmission de la transm		207 gurran 200 gurran 2

2

(cont ⊳)

			TEST PA	RAMETEI	RS BY REGUL	ATIONS		
	CW	/A		R	CRA			SUPERFUND
ANALYTE	NPDES	624	APPENDIX IX	8240	SKINNER	Tt	CLP	CLP
					an and a subsection of the sub	Toxicity	Land ban	
Iodomethane			✓i	V				
Isobutanol			V 1	<u>v</u>	-	✓	V	
						v	v	
M				(2004)0000000000000000000000000000000000				
Methacrylonitrile			V					
Methanol				1.11.100			V	
Methylene chloride	v	V	V	V		v	- V	V
Methyl ethyl ketone		•	v j −		×		V	
Methyl isobutyl ketone			√ k	✓ k		•	V	V V
Methyl methacrylate								
								<u> </u>
Р	-	ana ina dia dia dia mandri dia kaominina dia kaominina dia kaominina dia kaominina dia kaominina dia kaominina						
Propionitrile			V					
S								
Styrene			V	V	✓			V
Т								
1,1,1,2-Tetrachloroethane			V			✓		
1,1,2,2-Tetrachloroethane	V	v	V	V		✓		V
Tetrachloroethylene	V	v	V	V		v	V	V
Toluene	V	V	V	v	V	✓	V	V
1,1,1-Trichloroethane	V	v	V	V	1	V	V	V
1,1,2Trichloroethane	V	V · ·	V	v		v		V
Trichloroethylene	V	v		v		✓	v	V
Trichlorofluoromethane		v	V	V			v	
1,2,3-Trichloropropane			V	V				
1,1,2-Trichloro-2,2,1-trifluoroethane					_		V	
••						1941 - 1941 - 1944 - 1949 - 1949 - 1949 - 1949 - 1949 - 1949 - 1949 - 1949 - 1949 - 1949 - 1949 - 1949 - 1949 -		
V Vinyl acetate			~	✓				v
Vinyl chloride	V	v		 V		V		
Y MYT CHIOTIQE	V	V		<u>v</u>		V		
X								,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Xylenes			V	\mathbf{V}	V		\checkmark	V
i Liotod og 2 hutetore		<u></u>						

iListed as 2-butatone kListed as 4-methyl-2-pentanone

APPENDIX VIII MASS SPECTRA LIBRARY

1-Acey1-2-thiourea 5-(Aminomethyl)-3-isoxazoldl Amitrole Auramine Benz(c)acridine Benzene, Dichloromethyl Benzo(j)fluoroanthene p-Benzoquinone Benzotrichloride Benzyl chloride 3-Chloropropionitrile 2-Cyclohexyl-4,6-dinitrophenol · • • • Dibenz(a,h)acridine -Dibenzo(a,j)acridine 7H-Dibenzo(c,g)carbazole Dibenzo(a, e)pyrene Dibenzo(a,h)pyrene Dibenzo(a, i)pyrene 3,3'-Dimethoxybenzidine 1,4-Dinitrobenzene Ethyl carbamate Ethylenethiourea Malanonitrile Methomyl Methylcholanthrene 4,4'-Methylenebis(2-chloroaniline) 2-Methyl-2-(methylthio) propionaldehyde Methylthiouracil 1-Naphthy1-2-thiourea Nicotine N-nitrosodiethanolamine N-nitroso-n-ethylurea N-nitroso-n-methylurea N-nitroso-n-methylurethane N-nitrosomethylvinylamine N-nitrosonornicotine N-nitrososarcosine 1,3-Propane sulfone N-propylamine Resorcinol

Saccharin 2,4-Toluene diamine 2,3-Toluene diamine 2,6-Toluene diamine 3,4-Toluene diamine **Trichloromethanethiol** Tris(1-azridiny1)phosphine sulfide Tris-(2,3 DBP)phosphate Warfarin Allyl alcohol N, N-bis (2-chloroethyl) -2-naphthylamine Brucine 2-Butanone peroxide Dihydrosafrole 1,1-Dimethylhydrazine 1,2-Dimethylhydrazine Dimethyl sulfate 2,4-Dithiobiuret Ethleneimine Ethlene bis dithiocarbamic acid Formic acid Hydrazine Isosafrole Maleic anhydride Maleic hydrazine 2-Methylaziridine 2-Methyllactonitrile Phthalic anhydride Propylthiouracil 2-Propyn-1-ol Safrole Uracil mustard

PAGE,002

INDUSTRIAL INORGANIC CHEMISTRY

METALS DEPARTMENT

1.5

ICP INSTRUMENT DETECTION LIMITS

NOVEMBER 1989

Sze Dave Obout Values TDL

		"GC-	
ELEMENT	10L* - CV (mg/L)	ENSECO REPORTING LIMIT	ILL* (mg/L)
Aluminum	0.03	0.1	500
Antimony	0.02	0.05	100
Bartum	0.002	0.01	100
Beryllium	0.002	0.002	40
Cadmium	0.004	0.005	100
Calcium	0.02	0.1	500
Chromium	0.01	0.01	100
Cobalt	0.005	0.01	100
Copper	0.004	0.01	100
Iron	0.001	0.1	500
Lead	0.008	0.05	100
Magnesium	0.009	0.2	500
Manganese	0.006	0.01	100
Molybdenum	0.003	0.02	100
Nickel	800.0	0.04	100
Potassium	0.06	5	500
Silver	0.002	0.01	100
Sodium	0.01	5	800
Vanadium	0.003	0.01	100
Zinc	0.001	er (0.01 /	100
Additional analy	tes and lev	els available	
Arsenic	0.02	0.1	100
Boron	0.001	0.02	100
Lithium	0.008	0.05	500
Phosphorus	0.05	0.2	400
Selenium	0.05	0.2	100
Silica as SiO2	0.04	0.2	500
Strontium	0.02	0.05	100
Thallium	0.4	2	100
Tin	0.05	0.05	100
Titanium	0.001	0.005	100

* IDL = Instrument Detection Limit ILL = Instrument Linear Limit

4 ЕКОМ ЕИЗЕСО КМАГ

44:21 68' 25 UON

SEMIVOLATILE COMPOUNDS*

	CV	VA	1	R	CRA			SUPERFUND
ANALYTE	NPDES	625 ¹	APPENDIX IX	8270 ^m	SKINNER	T	CLP	CLP
				- 		Toxicity	Land ban	
A								
Acenaphthene	V	V	V	V				V
Acenaphthylene	V	· · ·		· · · · · · · · · · · · · · · · · · ·				· · ·
Acetophenone				· · · · · · · · · · · · · · · · · · ·				
2-Acetylaminofluorene			V	<u>_</u>				
4-Aminobiphenyl			V					
Aniline			V					
Anthracene	V	V	V	V	V			V
Aramite			V					1
B								
Benzenethiol					V			}
Benzidine	V			V				
Benzoic acid				V				V
Benzo(a)anthracane	V	v	V	V	V			V
Benzo(b)fuoranthene	V	V	V	V	V			V
Benzo(k)fluoranthe e	V	V	V	V	V			v
Benzo(g,h,i)perylene	V	V	V	v				V
Participa	V	V	V	·	V			V
Benzyl alcohol			V	v				v
Bis(2-chloroethoxy)methane	V	V	V	v				V
Bis(2 chloroethyl)ethe	V	V	V	V		v		v
Bis(2-chloroisopropyl)ether	√ n	V		√ °				v
Bis(2-ethylhexyl)phthalate	V	V	V	V	V			V
4-Bromophenyl phenyl ether	V	V	V	V				✓
Butyl benzyl phthalate	✔ p	v	✓	V	V			v
						<u> </u>	<u> </u>	
C								
4-Chloroaniline			√ q	V				V
Chlorobenzilate			V					
4-Chloro-3-methylphenol	√ r	<u> </u>	√r	V				V
1-Chloronaphthane				V	ļ			
2-Chloronaphthane	V		V	V	ļ			V
2-Chlorophenol	V	v	V	V			ļ	V
4-Chlorophenyl phenyl ether	V	v	V					\checkmark

*This list of compounds, which is a comparison of lists and methods as performed at Radian, is current as of publication date. It should not be used as a substitute for consulting the most recent issue of 40 CFR or methods for any changes. Chromatographicable pesticides are excluded from this list. 40 CFR, Pt. 136, Appendix A. *SW*-846, 3rd Edition

"Listed as 2,2'oxybis(1-chloropropane) "Listed as bis(2-chloro-1 methylethyl)ether

PListed as benzyl butyl phthlate

Listed as p-chloraniline

' Listed as p-chloro-m-cresol

	CW	/A		R	CRA			SUPERFUNC
ANALYTE	NPDES	625	APPENDIX IX	8270	SKINNER	TC	LP	CLP ^d
				-		Toxicity	Land ban	
	v	v	V	✓	V			~
Cyclohexanone							V	
					+	·····		
D								
Diallate		<u>_</u>	V					
Alberta Machilian					V			
Dibenzo(a,j)acridine				<u> </u>	<u> </u>			,
	V	V	V	/	V	······		V
Dibenzofurans tetrachloro			V	V			*	 ✓
pentachloro						1		
hexachloro								
1,2-Dibromo-3-chloropropane			V					
	V	V	V	V	V			v
- A station benzen	V	V	V	v	v	✓	v	V
	V	V	V	V	V			v
1	V	v	V	 ✓ 	v	✓		V
3,3 ² Dichlorobenzidine	 ✓ 	v	V	v				v
2,4-Dichlorophenol	V	v	V	v				v
2,6-Dichlorophenol			V	<u> </u>				v
and majore and	V	V	V	<u> </u>	 ✓ 		······	V
<i>p</i> (Dimethylamino)azobenzene			V					
7,12-Dimethylbenz(a)anthracena			V	v	V			
3-3 ² Dimethylbenzidine		·····	V			<u></u>		
α,α-Dimethylphenethylamine			V	V .				
	V	<u> </u>	V	V	V			V
	V	<u> </u>	V	v	V			v
<i>m</i> -Dinitrobenzene			V					
4,6-Dinitro-2-methylphenol	V	V	√ s	√ s				<u> </u>
	V	<u> </u>	V	<u> </u>	V			<u> </u>
2,4-Dinitrotoluene 2,6-Dinitrotoluene		<u> </u>		<u></u>	· · · · · · · · · · · · · · · · · · ·	V		<u> </u>
2,6-Dimitrotoldene	V		V V	<u></u>	V			
Dioxins	V	V		V	- V		*	V
tetrachlorodibenzo-p-							Ŷ	
pentachlorodibenzo-p-								
hexachlorodibenzo-p-								
Diphenylamine			V	V				
1,2-Diphenylhydrazine	V			V				
					<u> </u>			

^s Listed as 4,6-dinitro-o-cresol * Dioxin Wastes (F020, 021, 022, 023, 026, 027, 028)

(cont ≥)

	CM	/A		RCRA				SUPERFUND
ANALYTE	NPDES	625	APPENDIX IX	8270	SKINNER	TCLP		CLP
					and the second	Toxicity	Land ban	
-								
E Market Market				,				
Ethyl methanesulfonate			V		-			
F								
Èlloran Cen	V	\checkmark	V	\checkmark	V			V
Fluorene	V	v	V	V				V
H Hexachlorobenzene	v	✓		V		\checkmark		· ·
Hexachlorobutadiene	- V - V	V		<u>v</u> v				V V
Hexachlorocyclopentadiene		V	V	 		¥		V V
Hexachloroethane				 	-	V		V V
	V	V		V		V		V
Hexachlorophene			V					
Hexachloropropene			V					
2-Hexanone			· · ·					
					,			
Indeno(1,2,3-cd)pyrene				· · · · · · · · · · · · · · · · · · ·	V			
Isodrin		•		•				· · ·
Isophorone				·				
Isosafrole	V	V	- V - V	v				v
1505411012								
M		*****				namen (a. Barta de la Calada a Baildean nam		
Methapyrilene			V					
3-Methylcholanthrene			V	v				
Mednickernete					V			
Methyl methanesulfonate			V	v				
1					1 V			
2-Methylnaphthalene		•	V	v				~
are the second s			√ t	v	V	√ t	√ t	V
S. Methylpheno			√ t		V	√ t	√ t	
The Present			v∕ t	V	V	√ t	√ t	V
N						g.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
Northalene	V	✓	V	V	V			V
1,4-Naphthoquinone			V					

¹Listed as o,m,p cresols ⁴Listed as o,m,p nitroanilines ⁵Listed as o nitrophenol

1

	CW	VA	RCRA				SUPERFUND	
ANALYTE	NPDES	625	APPENDIX IX	8270	SKINNER	TCLP		CLP
				44- -		Toxicity	Land ban	
1-Naphthylamine			✓	~				
2-Naphthylamine		·						
2-Nitroaniline			V u	· · · · · · · · · · · · · · · · · · ·				V
3-Nitroaniline			V u	· · · · · · · · · · · · · · · · · · ·				V
4-Nitroaniline			√ u	V				V
Nitrobenzene	V	V	V 1	V		V	V	V
5-Nitro-o-toluidine	-		V					
2-Nitrophenol	V		V V	V				V
4 March March	V	×	V W		V			V
4-Nitroquinoline-1-oxide			V					
N-Nitrosodiethylamine			V					
N-Nitrosodimethylamine	V		V	V				
N-Nitroso-di-n-butylamine				· ·				
N-Nitrosodi-n-propylamine	V	V	V	V				V
N-Nitrosopiperidine			V	v				
N-Nitrosodiphenylamine	V		· · ·	V	-			V
N-Nitrosomethylethylamine			V					
N-Nitrosomorpholine			V					
N-Nitrosopyrrolidine			V		-			
Р		Dalla dala angla dala dala dala dala dala dala dala d						
Pentachlorobenzene			V	\checkmark				
Pentachloroethane			· ·					
Pentachloronitrobenzene			· ·	v				
Pentachlorophenol	V	· · ·	· ·	· · · · · · · · · · · · · · · · · · ·		V	*	V
Phenacetin			· ·	· ·				
pi	V	v	· ·	· ·	V			 V
	V	· · · · · · · · · · · · · · · · · · ·	V	· · · · · · · · · · · · · · · · · · ·	V	✓		V
<i>p</i> -Phenylenediamine			V					
2-Picoline			V	V				-
Polychlorinated dibenzofurans			V X					
Polychlorinated dioxins			V X					
Pronamide			V	·				
Telle	V	V	V	V	V			v
			V		V	v	V	
A A A A A A A A A A A A A A A A A A A		ND4035111111111111111111111111111111111111				ergessige WWW. The local data and the solution of the solution	and the second	ana ana amin'ny fisiana amin'ny fisiana amin'ny fisiana amin'ny fisiana amin'ny fisiana amin'ny fisiana amin'ny
Q Contraction					V			
					·			

* Listed as p-nitrophenol
* Listed as polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans by Method SW8280, SW-846, 3rd Edition
* Dioxin Wastes (F020, 021, 022, 023, 026, 027, 028)

(cont ⊳)

·			TEST PA	RAMETER	RS BY REGUL	ATIONS		
	CW	A		RCRA				
ANALYTE	NPDES ^a	625	APPENDIX IX	8270	SKINNER	TCLP		CLP
						Toxicity	Land ban	
•								
S								
Safrole			V					
								· · · · ·
T								
1,2,4,5-Tetrachlorobenzene			V	V				
2,3,4,6-Tetrachlorophenol			V	v		V	*	
<i>o</i> -Toluidine			V					
1,2,4-Trichlorobenzene	V	v	V	v				V
2,4,5-Trichlorophenol			V	V		v	*	V
2,4,6-Trichlorophenol	V	v	V	V		V	*	V
sym-Trinitrobenzene			V					
0,0,0 Triethylphosphorothlate			V					

* Dioxin Wastes (F020, 021, 022, 023, 026, 027, 028)

RADIAN

Return Address: P.O. Box 201088 Austin, Texas 78720-1088

Radian Laboratories: AUSTIN 8501 Mo-Pac Blvd. P.O. Box 201088 Austin, TX 78720-1088 (512) 454-4797

MILWAUKEE 5101 West Beloit Rd. Milwaukee, WI 53214 (414)643-2701

PERIMETER PARK PO. Box 13000 Research Triangle Park, NC 27709 (919)481-0212

SACRAMENTO 10395 Old Placerville Road Sacramento, CA 95827 (916)362-5332

A company of The Hartford Steam Boiler Inspection and Insurance Co.

BULK RATE U.S. POSTAGE PD. AUSTIN, TEXAS PERMIT NO. 266

Resource Conservation and Recovery Act (RCRA)

Appendix VIII

Appendix VIII is a list of approximately 375 constituents, some of which cannot be measured. The Appendix IX list contains those analytes in Appendix VIII which can be measured. Additional work can be performed upon request to address Appendix VIII concerns on a project-specific basis. Due to the unique and customized nature of this work, standard prices cannot be established.

Appendix IX

On July 9, 1987, the EPA finalized new groundwater monitoring requirements for TSD facilities. The new requirements specify monitoring for a list of 252 organic, metallic and inorganic analytes contained in Appendix IX of 40 CFR Part 264. Although the regulation is specific for groundwater analyses, the analytes can be determined in other matrices.

00:51 68, 62 AON

Rowen Incomound

ЕВОМ ЕИЗЕСО ВМЫГ

Title: Volatile Organics - Appendix IX List Method 8240

Code #VOAM-AP9-SW Units: ug/kg (wet weight) Mati x: Soil

(CAS	TCL #	Analyte		Reporting Limit
	57-63-1 75-65-8 107-02-8 107-13-1 0102-05-1	б. * * *	Acetone Acetonit Acrolein Acrylonii Allyl Ch		5000 5000 5000 5000 1000
	71-43-2 75-27-4 75-26-2 74-83-9 78-93-3	23. 17. 25. 2. 13.	Benzene Bromodic! Bromoforn Bromomet! 2-Butanon	ane	500 500 500 1000 5000
	75-15-0 56-23-5 108-90-7 75-60-3 57-65-3	7. 15. 31. 4. 11.	Carbon D Carbon Te Chlorober Chloroeth Chlorofor	trachloride Izene Iane	500 500 500 1000 500
(1 2	74-87-3)126-99-8 124-8-1 96-12-8 106-33-4	1. * 21. *	Dibromoch 1,2-Dibro	hane ne (2-chloro-1,3butadiene) loromethane mo-3-chloropropane (DBCP) moethane (EDB)	1000 500 500 1000 1000
1	74-93-3 10-77-6 75-71-8 75-34-3 107-46-2	* * 9. 12.	Dichloroc 1,1-Dichl	thane -Dichloro-2-butene lifluoromethane (Freon 12) oroethane oroethane	500 500 2000 500 500
5 7 1	25-33-4 540-59-0 28-82-5 0061-01-5 0061-02-6	8. 10. 18. 19. 24.	1,2-Dich1 1,2-Dich1 cis-1,3-D	oroethene (-ethylene) oroethene (total) oropropane ichloropropene -Dichloropropene	500 500 500 500 500
1 7 0	23-11-1 00-1-4 4-8 -4 78-3-1 91-8-6	* 32. * 27.	1,4-Dioxa Ethyl Ben Iodometha Isobutano 2-Hexanon	zene ne 1	10000 500 500 5000 1000
7 1 1	26-8-7 5-06-2 08-0-1 07-2-0 00-2-5	* 26. * 33.	Methylene 4-Methyl-	ylonitrile Chloride(dichloromethane) 2-pentanone (MIBK) rile (ethyl cyanide)	500 2500 1000 500 500

---61 V Page 2 #VOA1-AP9-SW

630-20-6 79-3-5 127-18-4 71-55-6 79-00-5	* 28. 14. 22.	1,1,2,2-1 Tetrachlo 1,1,1-Tri	etrachloroethane etrachloroethane roethene chloroethane chloroethane	500 500 500 500 500
79-03-6 75-69-4 96-18-4 108-88-3 108-85-4	20. * 29. 16.		fluoromethane (Freon 11) chloropropane	500 500 500 500 1000
75-0 -4 1330-20-7	3. 34.	Vinyl Chl Xylenes (1000 500

Surregates: 460-00-4 S2 4-Bromofluorobenzene (BFB) 1706-07-0 S3 1,2-Dichloroethane-d4 2037-26-5 S1 Toluene-d8

PAGE .004

NOU 29 '89 15:31 FROM ENSECO RMAL

Tit P:	Chlorinated	Pesticides	and	PCB's	 Appendix	IX	Lis
	Method 8080						

t

Code	#OCPM-/	163-21	1
Unita	: ug/kg	(wet	weight)
Matrax	(: Šoil		weight)

CAS	TCL #	Analyte	Reporting Limit
309-0-2 1267-11-2 1110-28-2 1114-16-5 53469-21-9	105. 120. 121. 122. 123.	Aldrin Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242	60 600 600 600 600
12672-29-6 1109 -69-1 1109 -82-5 319-4-6 319-5-7	124. 125. 126. 100. 101.	Aroclor 1248 Aroclor 1254 Aroclor 1260 alpha-BHC beta-BHC	600 1200 1200 50 50
319-6-8 58-8-9 5103 71-9 5103 74-2 510-5-6	102. 103. 117. 118. *	delta-BHC gamma-BHC (Lindane) alpha-Chlordane gamma-Chlordane Chlorobenzilate	50 60 600 600 120
72-58 72-5-9 50-2-3 2303-16-4 60-5-1	112. 109. 114. *	4,4'-DDD 4,4'-DDE 4,4'-DDT Diallate Dieldrin	120 120 120 120 120
959-8-8 3321 -65-9 1031 07-8 72-2 -8 7421 93-4	107. 111. 113. 110.	Endosulfan I Endosulfan II Endosulfan Sulfate Endrin Endrin Aldehyde	60 120 120 120 120
76-4-8 1024 57-3 465-3-6 143-0-0 72-48-5 8001-35-2	104. 106. * 115. 119.	Heptachlor Heptachlor Epoxide Isodrin Kepone Methoxychlor Toxaphene	50 60 120 120 600 1200

Surrigate: 1770-80-5

S1

Dibutyl Chlorendate (DBC)

Note: Deviation from TCL list - Endrin ketone is replaced with Endrin aldehyde. The * compounds (except endrin aldehyde) can be analyzed as semivolatiles.

The chlordane isomers are the major components of technical chlordane and are reported instead of total chlordane as listed in Appendix IX. EPA has stated the measurement of alpha- and gamma-chlordane is the more accurate and preferred method of determining chlordane in samples. Title: Semivolatile Organics - Appendix IX List Method 8270

Code: #BNAM-AP9-SW Units: ug/kg (wet weight) Matrix: Soil

...

Į

۰,

CAS#	TCL	#	Analyte		Reporting Limit
83-32-9 208-96-8 98-86-1 53-96-3 92-67-1	1 2 3 4 6		Acenaph Acenaph Acetoph 2-Acety 4-Amino	thylene	5000 5000 5000
62-53-3 120-12-7 140-57-8 56-55-3 50-32-8	7 8 9 18 19	* 90.	Aniline Anthrac Aramíte Benzo(a Benzo(a	ene) anthracene	5000 5000 5000 5000
205-99-2 191-24-2 207-08-9 100-51-6 101-55-3	20 21 22 24 29	99. 95. 40.	Benzo(g Benzo(k Benzyl)fluoranthene (11) h,i)perylene)fluoranthene (11) Alcohol phenyl-phenylether	5000 5000 5000 5000 5000
85-68-7 88-85-7 106-47-8 510-15-6 111-91-1	30 31 33 34 35	* 56. *	2-sec-B 4-Chlor Chlorob	nzylphthalate utyl-4,6-dinitrophenol oaniline enzilate hloroethoxy)methane	5000 5000 5000
111-44-4 108-60-1 59-50-7 91-58-7 95-57-8	36 37 38 40 41	43. 58. 63.	bis(2-C 4-Chlor	hloroethyl)ether hloroisopropyl)ether o-3-methylphenol onaphthalene ophenol	5000 5000 5000 5000 5000
7005-72-3 218-01-9 84-74-2 117-84-0 53-70-3	42 43 47 48 49	93.	Chrysen Di-n-bu Di-n-oc	ophenyl-phenylether e tylphthalate tylphthalate a,h)anthracene	5000 330 5000 5000 5000
132-64-9 95-59-1 541-33-1 106-6-7 91-99-1	52 53	41. 38. 39.	1,3-Dic 1,4-Dic	furan hlorobenzene hlorobenzene hlorobenzene chlorobenzidine	5000 5000 5000 5000 10000
120-33-2 87-65-0 84-65-2 60-5-5 60-17-7	56 57 59 60 61	<u></u> ት	2,6-Dic Diethyl Dimetho	hlorophenol hlorophenol phthalate ate hylaminoazobenzene	5000 5000 5000 5000

11/10/88

Page 2 #BNAM-AP9-SW

)

Ć

CAS#	TCL	ŧ	Analyte		leporting Limit
57-97-6 119-90-4 122-09-8 105-67-9 131-11-3	52 53 54 65 66		3,3'-Di a,a-Dim 2,4-Dim	methylbenz(a)anthracene methylbenzidine ethylphenethylamine ethylphenol lphthalate	5000 5000 5000 5000
99-65-0 534-52-1 51-28-5 121-14-2 606-20-2	67 68 69 70 71	70. 73.	4,6-Din 2,4-Din 2,4-Din	itrobenzene itro-2-methylphenol itrophenol itrotoluene itrotoluene	25000 25000 5000 5000
122-39-4 298-04-4 117-81-7 97-63-2 62-50-0	72 74 81 82 83	☆ 92. *	Disulft bis(2-E Ethyl m	lamine (2) on thylhexyl)phthalate ethacrylate ethanesulfonate	5000 5000 5000
52-85-7 206-44-0 86-73-7 118-74-1 87-68-3		76. 81.		thene	5000 5000 5000 5000
77-47-4 67-72-1 70-30-4 1888-71-7 193-39-5	92 93		Hexach1 Hexach1 Hexach1	orocyclopentadiene oroethane orophene oropropene 1,2,3-c,d)pyrene	5000 5000 5000
78-59-1 120-58-1 91-80-5 56-49-5 66-27-3	96 97 98 100 102	48. * * *	Isosaph Methapy 3-Methy	role	5000 5000 5000
80-62-6 91-57-6 298-00-0 95-48-7 108-39-4	105 106	59. * 42.	2-Methy Methylp 2-Methy	ethacrylate Inaphthalene arathion Iphenol Iphenol (14)	5000 5000
106-44-5 91-20-3 130-15-4 134-32-7 91-59-8		55. * *	Naphtha 1,4-Nap 1-Napht	lphenol (14) lene hthoquinone hylamine hylamine	5000 5000 5000 5000

Page 3 ∦BNAM-AP9-S₩

(

CAS#	TCL #	Analyte	Reporting Limit
88-74-4 99-09-2 100-01-6 98-95-3 88-75-5	115 68. 116 77. 117 47.	2-Nitroaniline 3-Nitroaniline 4-Nitroaniline Nitrobenzene 2-Nitrophenol	25000 25000 25000 5000 5000
100-02-7 56-57-5 924-92-2 55-18-5 62-75-9	119 71. 120 * 121 * 122 * 123 *	4-Nitrophenol 4-Nitroquinoline-1-o N-Nitroso-di-n-butyl N-Nitrosodiethylamin N-Nitrosodimethylami	amine 5000 e
86-30-6 621-64-7 10595-95-6 59-89-2 100-75-4	125 45.	N-Nitrosodiphenylami N-Nitroso-di-n-propy N-Nitrosomethylethyl N-Nitrosomorpholine N-Nitrosopiperidine	lamine 5000
930-55-2 9-55-8 56-38-2 76-01-7 82-68-8	129 * 130 * 131 * 133 * 134 *	N-Nitrosopyrrolidine 5-Nitro-o-toluidine Parathion Pentachloroethane Pentachloronitrobenz	
87-86-5 62-44-2 85-01-8 108-95-2 106-50-3	136 *	Pentachlorophenol Phenacetin Phenanthrene Phenol 4-Phenylenediamine	25000 5000 5000 5000
298-02-2 109-06-8 23950-58-5 129-00-0 110-86-1	140 * 141 * 142 * 143 87. 144 *	Phorate 2-Pîcoline Pronamide Pyrene Pyridine	5000 5000 5000 10000
94-59-7 3689-24-5 95-94-3 58-90-2 95-53-4	145 * 146 * 147 * 148 * 149 *	Safrole Sulfotepp 1,2,4,5-Tetrachlorob 2,3,4,6-Tetrachlorop 2-Toluidine	
120-82-1 95-95-4 88-06-2 126-68-1 99-35-4	152 62. 153 61.	1,2,4-Trichlorobenze 2,4,5-Trichloropheno 2,4,6-Trichloropheno 0,0,0-Triethyl phosp 1,3,5-Trinitrobenzeno	1 25000 1 5000 horothioate

NON S3 ,83 12:33 EKOW ENSECO KWUR

- Rocky Mountain Analytical Laboratory-

TABLE III-7 - RECOMMENDED CONTAINERS AND PRESERVATIVES

Techniques and Holding Times for RMAL's Proposed Quantitative Analytical Screen (QAS)

	2		Minimum	Methods/	Recommended
Sample Container		eservation	Sample Size	Parameters,	Holding Time
A. Ground Water Sai	mples				
2 x 40 ml glass (VOA)) ¹	4 ^o C	40 ml ea.	8240	14 days
6 x 1 liter glass		4 ⁰ С	1000 ml ea.	8080,8140,8150, 8270,8320,8330 -	7 days until extraction 40 days after extraction
Polyethylene	2 m	1 50% HNO ₃ to pH< 2	500 ml	Metals Mercury	6 months 28 days
Plastic		150% NaOH H≻12,4°C	500 m1	Cyanide	14 days
Plastic	1 m	in ZnAcetate 1 50% NaOH pH> 9, 4 ⁰ C	250 ml	Sulfide	7 days
Plastic		4 ^o C	100 ml	Hexavalent chromium	24 hours
B. Waste Samples	ar j				
1 liter wide-mouth glass	· · · · · · · · · · · · · · · · · · ·		500 g	Organics except volatiles; metals; inorganics	nd ²
40 ml glass vial ¹	· -		40 ml	8240	nd
Notes:					
 1. Duplicate samples 2. nd = Insufficient d 	are desirate to det	able. ermine.			· ·
	00010001000000000000000000000000000000		56		
			лемя ор	2:34 EKOW ENSE	1 68, 62 AON

TABLE 2 APPENDIX VIII COMPOUNDS DETERMINED BY METHODS 6010, 7041, 7051, 7421, 7470, 7740, 7841, 9010, 9030, and 340.2*

9030

Sulfide

<u>6010</u>		· :	1. 1 . 1. 1
			-
Aluminum		97 A 91 A	
Barium		<u>7470</u>	
Beryllium		₿ <i>₫</i>	
Cadmium		Mercury	1
Calcium 🖗			
Chromium		OPAN S	
Cobalt		<u>7740</u>	
Copper			
Iron	-	Seleniun	
Lead			₹_10,570
Magnesium			م چېر مېر د د د د
Manganese		<u>7841</u>	
Nickel		430.	
Osmium		Thallium	5
Potassium			
Silver			
Sodium		<u>9010</u>	1997 - 1997 1997 - 1997 1997 - 1997
Strontium			
Tin		Cyanide	
Vanadium			
Zine			· ·
		0.20	

<u>7041</u> Antimony

CA

7081

Arsenic

*40 CFR 136; no method exists in SW-846.

NON S8, 88 12:32 EKOW ENZECO KWHF

INDUSTRIAL INORGANIC CHEMISTRY

METALS DEPARTMENT

GRAPHITE FURNACE AND COLD VAPOR AA

INSTRUMENT DETECTION LIMITS NOVEMBER 1989

GFAA

AND TADE TOTAT **

)		
ELEMENT	IDL* (mg/L)	ENSECO Reporting limit	ILL* (mg/L)
Antimony Arsenic Cadmium Chromium Lead Selenium Silver Thallium	0.002 0.001 0.0001 0.0006 0.0002 0.001 0.0001 0.002	0.01 0.005 0.0005 0.001 0.005 0.005 0.005 0.005	0.1 0.005 0.1 0.1 0.1 0.005 0.1
CVAA			
Mercury	0.0001	0.0002	0.002

Arsenic and selenium are analyzed using Zeeman background correction. An Iron lamp is used for background correction in the mercury determination. All other elements are determined using Deuterium arc background correction.

* IDL = Instrument Detection Limit ILL = Instrument linear Limit

APPENDIX D

Laboratory QA/QC Program

Enseco

ENSECO INCORPORATED QUALITY ASSURANCE PROGRAM PLAN FOR ENVIRONMENTAL CHEMICAL MONITORING

Prepared by:

Enseco Incorporated 2200 Cottontail Lane Somerset, NJ 08873

> Revision 3.3 May, 1989

© Enseco Incorporated, 1988

Approval:

alley Dee

Kathleen Carlberg Vice President Quality Assurance

4955 Yarrow Street Arvada, Colorado 80002 303/421-6611 Fax: 303/431-7171 E-22

Table of Contents

1.	Introduction	1
2.	Quality Assurance Policy	3
3.	Purpose and Scope of Document	4
4.	Definition of Terms	7
5.	Responsibilities and Authorities	9
6.	Sampling Procedures	16
7.	Sample Custody	18
8.	Calibration Procedures and Frequency	22
9.	Analytical Procedures	27
10.	Data Reduction, Validation, and Reporting	29
11.	Internal Quality Control Checks	34
12.	Performance and System Audits	45
13.	Preventive Maintenance	47
14.	Specific Routine Procedures Used to Assess Data Quality and Determine Detection Limits	48
15.	Corrective Action	54
16.	Quality Assurance Reports to Management	55
17.	Laboratory Documentation	56

Appendix I Enseco Recommended Maximum Holding Times and Sample Collection/Preservation Information

Appendix II Formats for Standard Operating Procedures (SOPs)

List of Figures

Figure

Page

5-1	Enseco Incorporated Quality Assurance Organizational Chart	10
7-1	Enseco Sample Processing Flow Chart	19
7-2	Chain-of-Custody Record	20
7-3	Interlaboratory Analysis Custody Record	21
10-1	Data Validation Scheme	30
11-1	Laboratory Performance Quality Control Sample Evaluation	38
14-1	Graphical Representation of Detection Limits	53

List of Tables

<u>Table</u> Page

1-1	Enseco Laboratory Locations	2
3-1	Elements of QA Program Plan	6
14-1	Definition of Detection Limit Terms	52

Section No. 1 Revision No. 3.3 Date 5/89 Page 1 of 58

1. INTRODUCTION

Enseco Incorporated (Enseco) is the largest and most experienced environmental testing laboratory in the United States. The environmental component of Enseco consists of the combined resources of:

- Enseco-Erco Laboratory in Cambridge, Massachusetts,
- Enseco-Marblehead in Marblehead, Massachusetts,
- Enseco-East in Somerset, New Jersey,
- Enseco-Rocky Mountain Analytical Laboratory in Denver, Colorado,
- Enseco-Houston in Houston, Texas,
- Enseco-California Analytical Laboratory in Sacramento, California,
- Enseco-CRL in Garden Grove, California,
- Enseco-El Monte in El Monte, California,
- Enseco-Santa Maria in Santa Maria, California,
- Enseco-Ventura in Ventura, California, and
- Enseco-Mobile Laboratories headquartered in Garden Grove, California.

Addresses and telephone numbers for these Enseco laboratories are listed in Table 1-1.

This document describes the Enseco Quality Assurance policies and procedures related to chemical monitoring for environmental pollutants.

Section No. 1 Revision No. 3.3 Date 5/89 Page 2 of 58

TABLE 1-1

ENSECO LABORATORY LOCATIONS

Enseco-California Analytical Laboratory 2544 Industrial Boulevard West Sacramento, CA 95691 (916) 372-1393 Facsimile (916) 372-1059

Enseco-CRL 7440 Lincoln Way Garden Grove, CA 92641 (714) 898-6370 Facsimile (714) 891-5917

Enseco-East 2200 Cottontail Lane Somerset, NJ 08873 (201) 469-5800 Facsimile (201) 469-7516

Enseco-El Monte 9537 Telstar Avenue #118 El Monte, CA 91731 (818) 442-8400 Facsimile (818) 442-3758

Enseco-Erco Laboratory 205 Alewife Brook Parkway Cambridge, MA 02138 (617) 661-3111 Facsimile (617) 354-5258

Enseco-Houston 1420 East North Belt Suite 120 Houston, TX 77032 (713) 987-9767 Facsimile (713) 987-9769 Enseco-Marblehead Doaks Lane at Little Harbor Marblehead, Massachusetts 01945 (617) 639-2695 Facsimile (617) 639-2637

Enseco-Mobile Laboratories 7440 Lincoln Way Garden Grove, CA 92641 (714) 898-6370 Facsimile (714) 891-5917

Enseco-Rocky Mountain Analytical Laboratory 4955 Yarrow Street Arvada, CO 80002 (303) 421-6611 Facsimile (303) 431-7171

Enseco-Santa Maria 2325 Skyway Drive, Suite K Santa Maria, CA 93455 (805) 922-2776 Facsimile (805) 922-5897

Enseco-Ventura 2810 Bunsen Avenue, Unit A Ventura, CA 93003 (805) 650-0546 Facsimile (805) 650-0756

Enseco, Inc. (Corporate Office) 2200 Cottontail Lane Somerset, NJ 08873 (201) 469-5800 Facsimile (201) 469-7516

Section No. 2 Revision No. 3.3Date 5/89Page 3 of 58

2. QUALITY ASSURANCE POLICY

Enseco is committed to providing quality environmental analytical services to both the public and private sectors. To ensure the production of scientifically sound, legally defensible data of known and documentable quality, an extensive Quality Assurance (QA) program has been implemented within Enseco. This program relies on clearly defined objectives, well-documented procedures, a comprehensive audit system, and management support, both Corporate and Divisional, for its effectiveness.

3. PURPOSE AND SCOPE OF DOCUMENT

Purpose

This QA Program Plan presents an overview of the essential elements of the Enseco QA program. Enseco has modeled this plan along EPA guidelines as outlined in "Interim Guidelines and Specifications for Preparing Quality Assurance Program Plans," QAMS-004/80, December 29, 1980 and "Interim Guidelines and Specifications for Preparing Quality Assurance Project Plans," QAMS-005/80, February, 1983. Both of these documents have been issued by the Office of Monitoring Systems and Quality Assurance, Office of Research and Development, U.S. Environmental Protection Agency (U.S. EPA). Elements above and beyond those specified in these two documents have been included in this QA Program Plan in order to completely describe the Enseco QA/QC system.

Scope

The Enseco QA program is designed to control and monitor the quality of data generated in Enseco laboratories. The program has four key elements.

- Demonstrating laboratory capability by providing information which documents the overall qualifications of the laboratory to perform environmental analyses;
- Controlling laboratory operations by establishing procedures which measure the laboratory's performance on a daily basis;
- Measuring matrix effects to determine the effect of a specific matrix on method performance, and
- Reporting appropriate QC information with the analytical results to enable the end-user to assess the quality of the data.

The specific procedures involved in implementing each aspect of the Enseco program are described in this document. An overview of these QC procedures, along with the section number in which each is discussed, is given in Table 3-1.

Section No. 3 Revision No. 3.3 Date 5/89 Page 5 of 58

The QA/QC policies and procedures described herein are designed to eliminate systematic errors and minimize the occurrence of other errors. However, no QA program, regardless of how elaborate, can eliminate all errors which may occur during an analysis. The QA program forms the framework for minimizing errors and identifying and correcting those errors which do occasionally occur. These QA/QC policies and procedures must be coupled with the professional judgement of the technical staff in interpreting the events surrounding the generation of the final result to ensure that quality data is consistently produced.

Section No. 3 Revision No. 3.3Date 5/89Page 6 of 58

Table 3-1

ELEMENTS OF QA PROGRAM PLAN

Evaluation	Criteria	Operational Elements		ion of <u>Plan</u>
LABORATORY	QUALIFICATIONS	Facilities/equipment/staff Written SOPs for all laboratory procedures, including: Sample custody Calibration procedures Analytical procedures Data validation Documented QA program Laboratory certifications	· · · ·	* 15 5 6 7 8 1-15 10
LABORATORY	PERFORMANCE	Check samples Method blanks Calibration data Method detection limits (determined on method blank)	•••	9 9 6 12
MATRIX EFF	ECTS	Matrix spike/matrix duplicate/ matrix spike duplicate analyses Sample surrogate recoveries Standard additions Field blanks Method detection limits (determined with specific sample matrix)	•••	9 9 9 9 12
DATA REPOR	TING	Data reduction and validation Data reporting Reporting Limits	• • •	10 10 12

* Described in a separate document available from Enseco.

Section No.4Revision No.3.3Date5/89Page7 of 58

4. DEFINITION OF TERMS

<u>Quality Assurance</u> (QA): the total integrated program for assuring the reliability of data generated in the laboratory.

<u>Quality Control</u> (QC): the routine application of specific, welldocumented procedures to ensure the generation of data of known and accepted quality, thus fulfilling the objectives of the QA program.

<u>Quality Assurance Program Plan</u> (QAPP): an assemblage of management policies, objectives, principles, and general procedures outlining the techniques by which the laboratory produces data of known and accepted quality.

<u>Standard Operating Procedure</u> (SOP): a detailed, written description of a procedure designed to systematize and standardize the performance of the procedure.

<u>Quality Assurance Project Plan</u> (QAPjP): an assemblage of detailed procedures describing how the laboratory will generate data that meet the Data Quality Objective (DQOs) of a specific project.

<u>Holding Time</u>: the period of time during which a sample can be stored after collection and preservation without significantly affecting the accuracy of the analysis.

<u>Sample Delivery Acceptance</u>: the point in time at which Enseco determines that it can proceed with the analytical work. Sample delivery acceptance follows receipt and inspection of the samples and complete definition of analyses required.

<u>Initiate Preparation</u>: the point in time at which the separation of organic extractable compounds or metals from the sample matrix by solvent extraction or acid digestion is begun.

Section No. 4 Revision No. 3.3 Date 5/89 Page 8 of 58

<u>Initiate Analysis</u>: the point in time at which the sample, extract or digestate is introduced into an instrument or process which complies with the SOP for analysis of the parameter of interest.

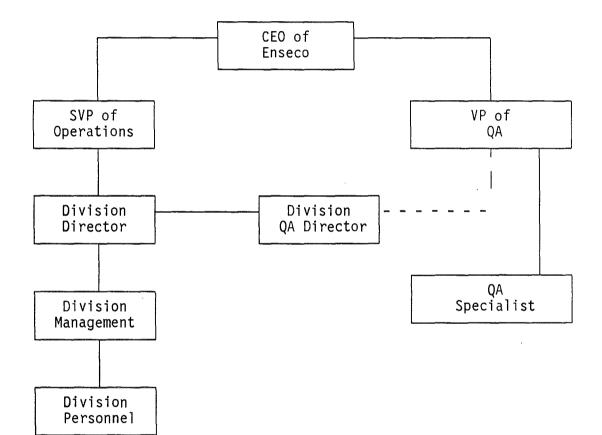
Section No. 5 Revision No. 3.3 Date 5/89 Page 9 of 58

5. RESPONSIBILITIES AND AUTHORITIES

Executing an effective QA program in a large and complex multi-laboratory system demands the commitment and attention of both management and staff. The QA effort at Enseco is directed by the Vice President of Quality Assurance who manages the Corporate Quality Assurance Office. The VP of QA reports directly to the Chief Executive Officer (CEO) and has the responsibility for overseeing and regulating all laboratory functions (see Figure 5-1). The QA Office operates independently of all areas generating analytical data to ensure complete objectivity in the evaluation of laboratory operations.

The implementation of the QA program within each individual Enseco laboratory is the responsibility of the Division QA Director. The QA Director reports to both the VP of QA and to the Division Director, who manages the laboratory. In addition, all scientists within the organization play a vital role in assuring the quality of their work. We believe that the success of Enseco is dependent upon the continued commitment of all within the organization to a strong and viable QA Program. The responsibilities and levels of authority within the organization are described below.

Corporate Quality Assurance Office


Members

The QA effort within Enseco is directed by the VP of QA who reports directly to the CEO of Enseco. The Corporate QA Office also includes a QA specialist who assists the VP in carrying out the responsibilities of the department.

9
58

Figure 5-1

ENSECO QA ORGANIZATIONAL CHART

Section No. 5 Revision No. 3.3 Date 5/89 Page 11 of 58

Responsibilities

The VP of QA is responsible for:

- Developing and implementing a Corporate QA program that ensures that all data generated in Enseco laboratories are scientifically sound, legally defensible, and of known precision and accuracy;
- Monitoring the QA Plan to ensure compliance with QA objectives in all Enseco laboratories;
- Developing and implementing new QA procedures within the corporation to improve data quality;
- Conducting audits and inspections of all Enseco laboratories on a regular basis, reporting the results of those audits to management, and applying corrective actions as needed to ensure compliance with the Enseco QA Plan;
- Coordinating the distribution of Performance Evaluation (PE) samples to all Enseco laboratories on a routine basis, evaluating the results of those samples, reporting to management, and applying corrective actions as needed to ensure that all Enseco laboratories are able to generate data that meet the data quality objectives defined in the QA Plan;
- Establishing databases that accurately reflect the performance of each of the Enseco laboratories;
- Directing Division QA Directors in the implementation of the Enseco QA Plan within individual facilities;
- Chairing the Enseco QA Committee, a working committee which includes all of the Division QA Directors and QA Specialists and deals with QA issues on an ongoing basis;
- Coordinating certification programs within Enseco;
- Conducting seminars on QA issues for both clients and laboratory staff; and
- Promoting sound QA practices within the environmental regulatory and analytical communities.

Section No. 5 Revision No. 3.3 Date 5/89 Page 12 of 58

Authority

The VP of QA is the final authority on all issues dealing with data quality and has the authority to require that procedures be amended or discontinued, or analyses suspended or repeated. Also, the VP of QA has the authority to suspend or terminate employees on the grounds of dishonesty, incompetence, or repeated non-compliance with QA procedures. In addition, the VP of QA has the authority to overrule decisions and actions of the Division QA Directors and must approve the termination or transfer of any Division QA Director. The authority of the VP of QA comes directly from the CEO of Enseco.

Divisional Quality Assurance Departments

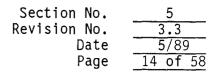
Members

Each Divisional QA Department is managed by a QA Director. The QA Director reports directly to the Division Director and indirectly to the Corporate VP of QA. The QA Director is supported by a QA staff within the laboratory.

Responsibilities

The Division QA Director is responsible for:

- Implementing Enseco QA policies;
- Monitoring the implementation of the QA Plan within the laboratory to ensure complete compliance with QA objectives;
- Conducting in-house audits to identify potential problems and ensure compliance with written SOPs;
- Performing statistical analyses of QC data and establishing databases that accurately reflect the performance of the laboratory;


	Enseco	QA	Program	Plan
--	--------	----	---------	------

Section No. 5 Revision No. 3.3 Date 5/89 Page 13 of 58

- Prescribing and monitoring corrective actions;
- Serving as the in-house client representative on all project inquiries involving data quality issues;
- Monitoring the preparation and verification of analytical standards;
- Assisting chemists in the writing of SOPs;
- Reporting the status of the laboratory QA program to the Corporate VP of QA with formal and informal communications;
- Maintaining records and archives of all QC data, PE results, audit comments, and customer inquiries concerning data quality;
- Assuring that the laboratory staff has access to current SOPs;
- Monitoring laboratory performance in the areas of holding times, turn-around times, and meeting contractual obligations;
- Conducting seminars on QA issues for clients and laboratory staff;
- Preparing QA Project Plans when needed;
- Assisting the Corporate QA office in the writing of QA policies and procedures;
- Serving as a member of the Enseco QA Committee; and
- Auditing subcontractors.

Authority

The Division QA Director is the final authority within each laboratory on all issues dealing with data quality. He/she has the authority to require that procedures be amended or discontinued or analyses suspended or repeated. He/she can make recommendations to the Division Director and the Corporate VP of QA regarding suspension or termination of employees for

incompetence or non-compliance with QA procedures. The authority of the Division QA Director comes directly from the Corporate VP of QA.

Divisional Management

Members

The managers and supervisors who direct the analytical work at each laboratory are directly responsible for ensuring that all employees reporting to them are complying with the Enseco QA Plan.

Responsibilities

Laboratory management is responsible for:

- Actively supporting the implementation of the Enseco QA Plan within the laboratory;
- Maintaining accurate SOPs and enforcing their use in the laboratory;
- Maintaining a work environment that emphasizes the importance of data quality; and
- Providing management support to the Corporate and Divisional QA departments.

Authority

The managers and supervisors of the laboratory have the authority to accept or reject databased on compliance with well-defined QC criteria. In addition, managers and supervisors, with the approval of the QA department, can accept or reject data that fall outside of established QC guidelines if, in their judgment, there are technical reasons which warrant the acceptance or rejection of the data. These circumstances must be well documented and any need for corrective action identified by the incident must be defined and

Section No. 5 Revision No. 3.3 Date 5/89 Page 15 of 58

initiated. The authority of the laboratory management comes directly from the Corporate VP of Operations and the Division Director.

Divisional Personnel

Members

All laboratory personnel involved in the generation and reporting of data have a responsibility to understand and follow the Enseco QA Plan.

Responsibilities

Laboratory personnel are responsible for:

- Having a working knowledge of the Enseco QA Plan;
- Ensuring that all work is generated in compliance with the Enseco QA Plan;
- Performing all work according to written SOPs;
- Ensuring that all documentation related to their work is complete and accurate; and
- Providing management with immediate notification of quality problems.

Authority

Laboratory personnel have the authority to accept or reject databased on compliance with well-defined QC criteria. The acceptance or rejection of data that fall outside of established QC guidelines must be approved by laboratory management and the QA department. The authority of the laboratory personnel flows from the Division Director.

 Section No.
 6

 Revision No.
 3.3

 Date
 5/89

 Page
 16 of 58

6. SAMPLING PROCEDURES

The generation of quality data begins with the collection of the sample, and therefore the integrity of the sample collection process is of concern to the laboratory. Samples must be collected in such a way that no foreign material is introduced into the sample and no material of interest escapes from the sample prior to analysis. To ensure sample integrity, the following must be considered:

- Samples must be collected in appropriate containers. In general, glass containers are used for organic parameters and polyethylene containers for inorganic/metal parameters (see Appendix I);
- The sample containers must be properly cleaned to ensure that the sample is not contaminated during the collection process;
- Samples must be preserved appropriately to minimize the loss of materials of interest due to adsorption, chemical or biological degradation, or volatilization (see Appendix I);
- Appropriate volumes of sample must be collected to ensure that the required detection limits can be met and quality control samples can be analyzed (see Appendix I); and
- Samples must be properly shipped to the laboratory, in the appropriate time frame, to ensure that holding times for the analyses can be met (see Appendix I).

Sample Containers and Preservatives

Enseco can assist in the sample collection process by providing consultation and assistance to clients designing sampling programs. Also Enseco can make available to the client the Enseco "Sample SafeTM," a set of sample containers that are properly cleaned and preserved for use in sample collection. Appropriate containers and preservatives, and minimum sample volumes required for analyzing routine organic, metal, and conventional parameters are listed in Appendix I.

Section No. 6 Revision No. 3.3 Date 5/89 Page 17 of 58

Holding Times

EPA has established holding time requirements for some analyses. These holding time requirements are listed in Appendix I, along with container and preservative requirements. As indicated in Appendix I, holding time requirements differ depending on the regulatory program. Enseco follows the holding times given in SW-846, Update I unless otherwise instructed by the client. CLP holding times are followed when CLP protocols are requested by the client. Other holding times can be honored if special arrangements are made with the laboratory.

Enseco is obligated to initiate preparation and/or analysis of the sample within holding times if sample delivery acceptance occurs within 72 hours of sampling or before one-half of the holding time period has expired, whichever is less. (See Section 4 for definition of above terms.)

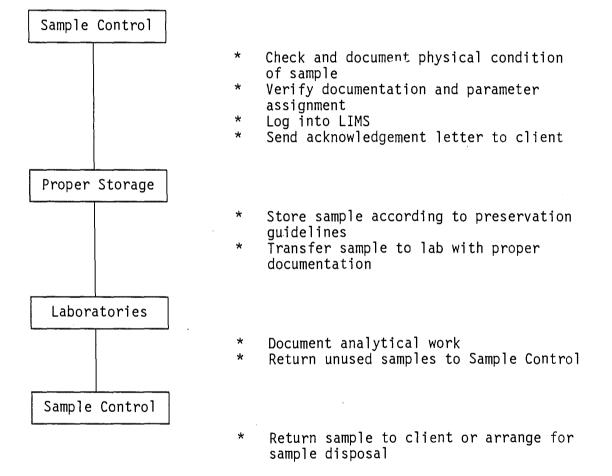
On occasion, a sample must be reanalyzed to comply with this QA Program Plan. If this reanalysis is conducted outside of the holding time, the laboratory will be considered to have fulfilled its obligation to meet holding times if the first preparation and/or analysis was initiated within the prescribed holding time.

Section No. 7 Revision No. 3.3 Date 5/89 Page 18 of 58

7. SAMPLE CUSTODY

Upon receipt by Enseco, samples proceed through an orderly processing sequence specifically designed to ensure continuous integrity of both the sample and its documentation.

All samples are received by Enseco's Sample Control Group and are carefully checked for label identification, and completed, accurate chain-of-custody records. Photographs document the condition of samples and each sample is then assigned a unique laboratory identification number through a computerized Laboratory Information Management System (LIMS) that stores all identifications and essential information. The LIMS system tracks the sample from storage through the laboratory system until the analytical process is completed and the sample is returned to the custody of the Sample Control Group for disposal. This process is summarized in Figure 7-1. Access to all Enseco laboratories is restricted to prevent any unauthorized contact with samples, extracts, or documentation.


An example of the Enseco Chain-Of-Custody Record used to transmit samples from the client to the laboratory is given in Figure 7-2. The Chain-Of-Custody Record (Interlaboratory Analysis Form) used to transmit samples between laboratories within Enseco is given in Figure 7-3.

Sample bottles provided to the client by Enseco are transmitted under custody using the Enseco "Sample SafeTM".

Section No. 7 Revision No. 3.3 Date 5/89 Page 19 of 58

Figure 7-1

ENSECO SAMPLE PROCESSING FLOW CHART

	glogionna anna an an anna anna anna anna ann	FIGURE 7-2	
No. 5608	_ Seal #Yes No Seal #	Remarks	Date/Time
SAMPLE SAFE" CONDITIONS	pt by Sampling Co.: Continuing Until pt by Laboratory: Upon Receipt by Lab:	Analysis Parameters	SHIPPING DETAILS Airbill # Signed
HAIN OF CUSTODY	 Packed by: Seal Intact Upon Receip Seal Intact Upon Receip Condition of Contents: Sealed for Shipping by: Initial Contents Temp: Initial Contents Temp: Sampling Status: Do Seal Intact Upon Receip Contents Temperature U Condition of Contents: 	Sample Type No. Containers	Time Delivered to Shipper by: Method of Shipment Received for Lab: Enseco Project Nu
Enseco - Rocky Mountain Analytical Cl	Arvada, Colorado 80002 303/421-6611 Facsimile: 303/431-7171 Aftin:	Sample iD/Description S.	CUSTODY TRANSFERS PRIOR TO SHIPPING signed) Received by (signed) Date
Enseco - No 4955 Yarrow Street	Atrvada, Culorad 303/421-6611 Enseco Client Project Sampling Co Sampling Site Team Leader	Date Time	CUST Relinquished by: (signed) 2 3

White and Pink-Copies to Lation 2.24 Perfox to Sumpler

SS-001

			FIGUR	RE 7-3			
							of
			En	seco		File 1	ndex
		INTE	RLABORA	TORY ANA	LYSIS		
)	and the second secon	and the second	and the second				
HIP TO:	: (circle one)	annal <u>a serangang serapananan separan sanan 1999</u> anna serangan ja	ĨŔĸĨĨŔĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸ	SEND RES		Andres Andres and Antonio a	
CAL	ERCO CLE		NOU	Roci	ky Mountain Anal Yarrow Street	ytical Laborat	tory
CAL	ERCU CLE	GAS MAR	HOU		ada, CO 80002		
				(303) 421-6611 FAC	: (303) 431-71	.71
ttention:	and the grant of the second	zan yan manan san ay taga san ana ana ana ana ana ana ana ana an		Attention:			anna an an ann an an an an an an an an a
LIENT		uuulaniishadabaykkaasa (oo googoo ay aa daa ahaa ahaa ahaa ahaa ahaa ahaa			PROJECT NO.	an a	an for a first state of the state
elinquish	ed by: (Signature)		Received by: (S	Signature)		Date	Time
elinquish	ed by: (Signature)	າຍສຸດ <mark>ີແລະການ</mark> ເປັນແຕ່ມີແຕ່ມີແຕ່ມີເປັນມີແຜນແຜນແຫຼ່ງແຫຼງແຫຼງແຫຼງແຫຼງແຫຼງແຫຼງແຫຼງແຫຼງແຫຼງແຫຼ	Received by: (S	Signature)	ethelasterrenzen annaelden son annen einer 2000 gevenne van einer Deb 50 g	Date	Time
						Analysis	Sample
nport			Matrix	Date Dat	e Date	Requested/ P.L.	Conditio Upon
ab ID	Enseco ID	Client ID	(a, s, w)	Sampled Rec'		Item #	Receipt
and the second							
anna cuanna a Griffian cun				}	2	ورور و می والد است. مربوع با والد است المالی المالی و الم	
NA <u>a kurrent</u> egeneanan <u>in durc</u>	ggorgennish <u>an gy</u> ngegenerennish <u>gan</u> ggegennismilli <mark>dyn hy</mark> regeneren ,	Bi⊄gganggan berroooligi gagaan yoonin biggan gagab	7	5	and a second	georgeonation (19 ₆ 2), e i tracqueon a	yn d <i>astriff_{ernen fe}</i> llun yn un yn orgener officiaen. .
	ar na hadin di Miggang pang kalan kating gang pang kating kating pang kating kating kating kating kating kating K	6	at	<u>, , , , , , , , , , , , , , , , , , , </u>	ing daman ng punenak 10 gang sanan mandi 10 m (ing punenka akada 10 m (ing punenka akada 10 m (ing pu	neoronian fan di tatti groppe yn mei in ditti <mark>an eere prom</mark>	**************************************
n an an an Anna an Ann	innin 1999 an an an Andrea Dalland an an Angres an	· · /	\mathcal{N}	an a fair an	<u>, 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 199</u>	na dina dala any sete de la constante da any sete de la constante da any sete de la constante da any sete de la	
Таннын арай байлага Сай	allenanan ^{ma} lle di Manangaran ^{ang} shindarin maaring ké sindarin			an kanangangan di persemuan nangan di pengangan merikan 200	ferry serves have a subserve and a s	<u>ແຫຼກເບັດເບັດແຕ່ເຊັ່ງຊາວເຊັ່ງ (ກາວເຊັ່ງ (</u> ກາວເຊັ່ງ ແລະ ເຊັ່ງ (
Stand and an and a stand of the st	anny gaara ^{an a} gaara an	-19>-	and a feature of the second	nn in this is a surply of this is a surply of the surply o	2009 gpmmm 200 gommen 200 200 mm and	ามทางเป็นได้รู้สุดทุกและอาการในมีเป็นได้รู้สึกกิจอาการกระ	III THE STREET STREET STREET
an a		<u> </u>		າກອອກແຫຼມແຫຼມແຫຼ _{ອອ} ກອກການແຫຼງຊຸດແຫ່ນມີໃນແຫຼງແຫຼນ,ນັ້ນການແຫຼນ	า _{นการท} างการการการการการการการการการการการการการก	ne a sa anna 1979 ne na sa anna dhearachear	
nicygospani//En/7781genom	<u> </u>	and the succession of the second s	and an and a state of the state	<u>aan yoo ahaa ahaa ahaa ahaa ahaa ahaa ahaa </u>	le da e receptor da la compositiva da compositiva da compositiva da compositiva da compositiva da compositiva d	prioria del Caracteri Mannenero Del Citta D'A Decencernomo	ant the more granded and a second
ورواني ومرجوع ومرجوع		anning generating generating and generating and a state of the	anno ann an tha ann an a	ooraa geena ya ka	ann nin 1999 ann an	and the second	
	#211944-000-000-000-000-000-000-000-000-000-		1200grg-100-00-000000000000000000000000000			muchelisticity www.energenit/fillowenergenite	
Bgodennen unsein and einen eine	<u>مەرەپ يەرەپ مەرەپ مە</u>	andan sa	leklegzgenennerszenekkiggegegenenektrikizziggege	apporninensäälipt <u>oor</u> pooneosaasion ⁰ eoesaenikeittoppoolon	999 - 999 - 999 - 999 - 999 - 999 - 999 - 999 - 999 - 999 - 999 - 999 - 999 - 999 - 999 - 999 - 999 - 999 - 99	###1229996000000000000000000000000000000000	an fearman fear an
G ^{anga} onna ann 2017 ann an 1800 ann an		ana kana ana ang kalandara kana ang ka	นมารีสรุขการการการการการที่สารีที่กฎฎการการการการไรการีที่สุขุญญาต	oosaaniikaasiiniggaygaaniitaaliiniikaasiaaniitijkaaanii		Malaninersensenn ^{gen} Malaninersenser ^e enseren ^{gen}	antennen Byernen under einen eine
Writte	en results required by	(date):		Verbalrecu	ilts required by (dat	te).	
QC:	Standard Ense						
-	le Disposal:		Return to Clies		ne RMAL	nganan 1970 (kalan na sang bin 1987) na manan s	#778779000000000000000000000000000000000
-	Data Copies Needed:						
	tion Limits:	Standard Product		k			
	ng Times:	Enseco	EPA-CLP	Other*			
	al Instructions:			020102			
*Specia						•	and and a second se
torman to an	<u>๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛</u>		, , , , , , , , , , , , , , , , , , ,			prosection and a second and a se	g/Tgançianan _{erind} enininininininininininingaaaaragaaayaayaa
Interco	mpany Rebate: (circ	le one) 0%	5% 10%	i. P.(O. Number		
799899999	anapressay area westers [401 6	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~ / V AV /V	5. A.		and a second data and a second design of the second data and a second data and a second data and a second data	

Section No. Revision No. Date Page 22 of 58

8. CALIBRATION PROCEDURES AND FREQUENCY

Standard/Reagent Preparation

A critical element in the generation of quality data is the purity/quality and traceability of the standard solutions and reagents used in the analytical operations. Enseco continually monitors the quality of reagents and standard solutions through a series of well-documented procedures.

To ensure the highest purity possible, all primary reference standards and standard solutions used by Enseco are obtained from the National Institue of Standards and Technology, the EPA Repository or other reliable commercial sources. All standards and standard solutions are logged into a database that identifies the supplier, lot number, purity/concentration, receipt/preparation date, preparer's name, method of preparation, expiration date, and all other pertinent information.

Standard solutions are validated prior to use. Validation procedures can range from a check for chromatographic purity to verification of the concentration of the standard using a standard prepared at a different time or obtained from a different source. Stock and working standards are checked regularly for signs of deterioration, such as discoloration, formation of precipitates, or change in concentration. Care is exercised in the proper storage and handling of standard solutions, and all containers are labeled as to compound, concentration, solvent, expiration date, and preparation data (initials of preparer/date of preparation).

Reagents are examined for purity by subjecting an aliquot or subsample to the analytical method in which it will be used; for example, every lot of dichloromethane (for organic extractables) is analyzed for undesirable contaminants prior to use in the laboratory. A database is used to store essential information on specific standards or reagents. The system is designed to serve various functions (e.g., the system issues warnings on expiration dates and allows chemists to obtain a list of all working standard solutions prepared from the same stock solution). The program also facilitates the management and auditing of reagents and standards.

Instrument Calibration and Tuning

Calibration of instrumentation is required to ensure that the analytical system is operating correctly and functioning at the proper sensitivity to meet established reporting limits. Each instrument is calibrated with standard solutions appropriate to the type of instrument and the linear range established for the analytical method. The frequency of calibration and the concentration of calibration standards is determined by the manufacturer's guidelines, the analytical method, or the requirements of special contracts.

Gas Chromatography/Mass Spectrometry (GC/MS)

Each day prior to analysis of samples, the instrument is tuned with bromofluorobenzene (BFB) for volatile compounds and decafluorotriphenylphosphine (DFTPP) for semivolatile compounds (according to the tuning criteria specified in the U.S. EPA Contract Laboratory Program (CLP)). No samples are analyzed until the instrument has met tuning criteria.

The instrument is then calibrated for all target compounds. An initial calibration curve is produced and certain key compounds referred to as System Performance Calibration Compounds (SPCC) and Continuing Calibration Compounds (CCC) are evaluated on a daily basis

to ensure that the system is within calibration. If the daily standard does not meet the established criteria, the system is recalibrated.

Chromatography

The field of chromatography involves a variety of instrumentation and detection systems. While calibration standards and acceptance criteria vary depending on the type of system and analytical methodology required for a specific analysis, the general principles of calibration apply uniformly. Each chromatographic system is calibrated prior to performance of analyses. Initial calibration consists of determining the linear range, establishing limits of detection, and establishing retention time windows. The calibration is checked on a daily basis to ensure that the system remains within specifications. If the daily calibration check does not meet established criteria, the system is recalibrated and samples analyzed since the last acceptable calibration check are reanalyzed.

Metals

Metals analysis basically involves two types of analytical instrumentation: inductively coupled argon plasma emission spectroscopy (ICP), and atomic absorption spectroscopy (AA).

Each ICP is calibrated prior to any analyses being performed using criteria prescribed in the CLP protocol. The calibration is then verified using standards from an independent source. The linear range of the instrument is established once every quarter using a linear range verification check standard. No values are reported above this upper concentration value without dilution. A calibration curve is established daily by analyzing a minimum of two standards, one of which is a calibration blank. The calibration is monitored throughout the day by analyzing a Continuing Calibration Blank (CCB) and a Continuing Calibration Verification standard (CCV). The standard must meet established criteria or the system is recalibrated and all samples analyzed since the last acceptable calibration check are reanalyzed.

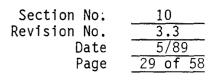
An interelement check standard is analyzed at the beginning and end of each analytical run, and on a continuing basis, to verify that interelement and background correction factors have remained constant. Results outside of the established criteria trigger reanalysis of samples.

Each AA unit is calibrated prior to any analyses being conducted. A calibration curve is prepared with a minimum of a calibration blank and three standards and then verified with a standard that has been prepared from an independent source at a concentration near the middle of the calibration range. The calibration is then verified on an ongoing basis with a midpoint calibration standard. If the ongoing calibration standard does not meet established acceptance criteria, the system is recalibrated and all samples analyzed since the last acceptable calibration check are reanalyzed. All samples are spiked to verify the absence of matrix effects or interferences. The method of standard additions is used when matrix interferences are present.

Conventional Analyses

The field of conventional, non-metals analysis involves a variety of instrumental and wet chemical techniques. While calibration and standardization procedures vary depending on the type of system and analytical methodology required for a specific analysis, the general principles of calibration apply universally. Each system is

9. ANALYTICAL PROCEDURES

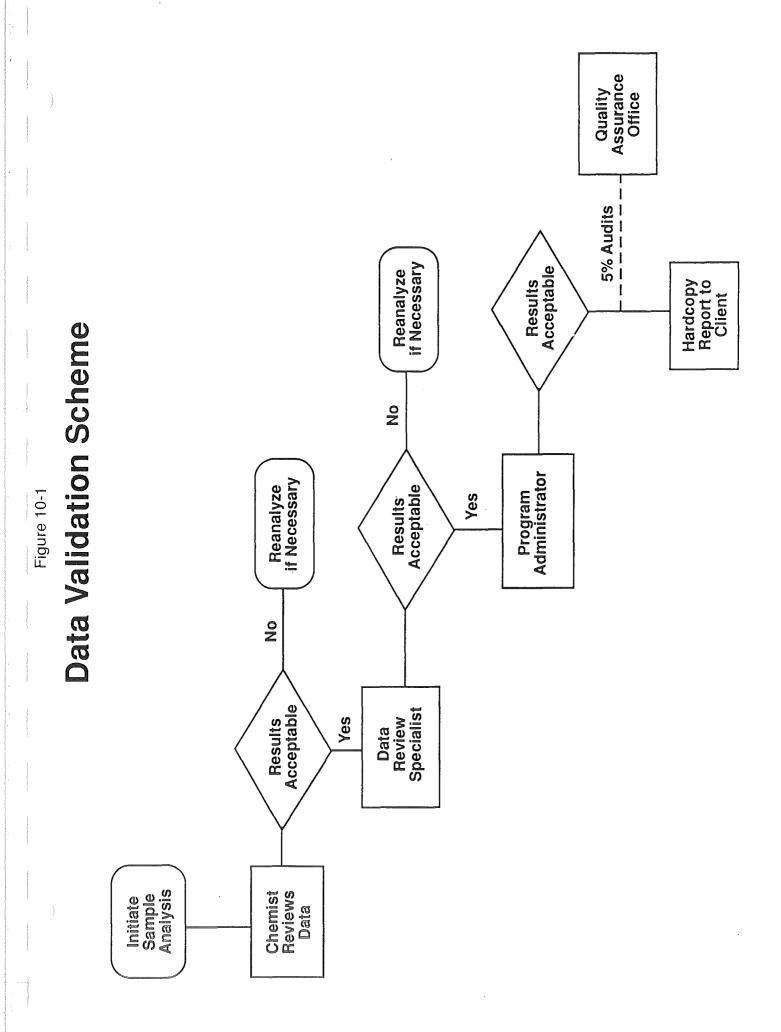

Most analyses performed by Enseco are driven by regulatory concerns. Therefore, methods used at Enseco predominantly originate from regulatory agencies. Generally the methods used are those specified by the U.S. EPA and other federal agencies, state agencies, and professional organizations, as provided in the following references:

- Current EPA (CLP) protocols for the analysis of organic and inorganic hazardous substances including chlorinated dioxins and furans.
- "Guidelines Establishing Test Procedures for the Analysis of Pollutants Under the Clean Water Act," 40 CFR, Part 136.
- "Methods for Chemical Analysis of Water and Wastes," EPA-600/4-79-020 (revised March, 1983).
- "Methods for Organic Chemical Analysis of Municipal and Industrial Wastewater," EPA-600/4-82-057 (July, 1982).
- "Test Methods for Evaluating Solid Waste" (SW-846), 2nd Edition (revised), Update I (1984), Update II (1985), 3rd Edition (1986), Update I (1989), Office of Solid Waste and Emergency Response, U.S. EPA.
- "Standard Methods for the Examination of Water and Wastewater," 16th Edition, American Public Health Association, American Water Works Association, Water Pollution Control Federation, Washington, DC (1985).
- "Official Methods of Analysis," 14th Edition, Association of Official Analytical Chemists, Arlington, VA (1984).
- "Methods for the Determination of Organic Compounds in Finished Drinking Water and Raw Source Water," U.S. EPA, Environmental Monitoring and Support Laboratory - Cincinnati (September, 1986).
- "Annual Book of ASTM Standards," Volumes 11.01 and 11.02, American Society for Testing and Materials (ASTM), Philadelphia, PA (1987).
- "Techniques of Water Resources Investigations of the United States Geological Survey (USGS), Book 5, Laboratory Analysis," USGS, Washington, DC (1979).

The choice of method is dependent on the objectives of the study in terms of qualitative certainty, quantitative sensitivity, precision and accuracy, and the type of matrix to be analyzed. Each method used routinely is documented in the form of an SOP. The SOP contains detailed instructions concerning both the use and the expected performance of the method. Any deviations from published methodology are documented and explained in the SOP. A complete description of the contents of laboratory SOPs is given in Section 17.

Before any methods are routinely used to generate analytical data, the method is validated. Validation criteria consist of:

- Method selection by a senior staff member;
- Documentation of the method in an SOP. This includes a summary of the method, detailed description of the analytical procedure, calculations, reporting formats, safety concerns, and special remarks;
- Testing of the method to verify detection limits and linear range, establish reporting limits and precision and accuracy criteria; and
- Establishment of data acceptance criteria that must be approved by a senior staff member and the Divisional QA Director.


10. DATA REDUCTION, VALIDATION, AND REPORTING

Data Reduction and Validation

All analytical data generated within Enseco laboratories are extensively checked for accuracy and completeness. The data validation process consists of data generation, reduction, and three levels of review, as described below (also see Figure 10-1).

The analyst who generates the analytical data has the prime responsibility for the correctness and completeness of the data. All data are generated and reduced following protocols specified in laboratory SOPs. Each analyst reviews the quality of his or her work based on an established set of guidelines. The analyst reviews the data package to ensure that:

- Sample preparation information is correct and complete;
- Analysis information is correct and complete;
- The appropriate SOPs have been followed;
- Analytical results are correct and complete;
- QC samples are within established control limits;
- Blanks are within appropriate QC limits;
- Special sample preparation and analytical requirements have been met; and
- Documentation is complete (e.g., all anomalies in the preparation and analysis have been documented, Out-of-Control forms [if required] are complete; holding times are documented, etc.).

The data reduction and validation steps are documented, signed and dated by the analyst. This initial review step, performed by the analyst, is designated Level 1 review. The analyst then passes the data package to an independent reviewer, who performs a Level 2 review.

Level 2 review is performed by a supervisor or data review specialist whose function is to provide an independent review of the data package. This review is also conducted according to an established set of guidelines and is structured to ensure that:

- Calibration data are scientifically sound, appropriate to the method, and completely documented;
- QC samples are within established guidelines;
- Qualitative identification of sample components is correct;
- Quantitative results are correct;
- Documentation is complete and correct (e.g., anomalies in the preparation and analysis have been documented; Out-of-Control forms [if required] are complete; holding times are documented, etc.);
- The data are ready for incorporation into the final report; and
- The data package is complete and ready for data archive.

Level 2 review is structured so that all calibration data and QC sample results are reviewed and all of the analytical results from 10% of the samples are checked back to the bench sheet. If no problems are found with the data package, the review is complete. If any problems are found with the data package, an additional 10% of the samples are checked to the bench sheet. The process continues until no errors are found or until the data package has been reviewed in its entirety.

An important element of Level 2 review is the documentation of any errors that have been identified and corrected during the review process. Enseco believes that the data package submitted by the analyst for Level 2 review should be free of errors. Errors that are found are documented and transmitted to the appropriate supervisor. The cause of the errors is then addressed with additional training or clarification of procedures to ensure that quality data will be generated at the bench.

Level 2 data review is also documented and the signature of the reviewer and the date of review recorded. The reviewed data are then approved for release and a final report is prepared.

Before the report is released to the client, the Program Administrator who is responsible for interfacing directly with the client reviews the report to ensure that the data meet the overall objectives of the client, as understood by the Program Administrator. This review is labeled Level 3 review.

Each step of this review process involves evaluation of data quality based on both the results of the QC data and the professional judgement of those conducting the review. This application of technical knowledge and experience to the evaluation of the data is essential in ensuring that data of high quality are generated consistently.

In addition to the three levels of review discussed above, the Divisional QA department randomly audits 5% of all projects reported. The QA audit includes verifying that holding times have been met, calibration checks are adequate, qualitative and quantitative results are correct, documentation is complete, and QC results are complete and accurate. During the review, the QA department checks the data from 20% of the samples back to the bench sheet. If no problems are found with the data package, the review is complete. If any problems are found with the data package, an additional 10% of the samples are checked to the bench sheet. The process continues until no errors are found or until the data package has been reviewed in its entirety.

Data Reporting

A variety of reporting formats, from computerized data tables, to complex reports discussing regulatory issues, to a CLP-deliverables package, are available. In general, Enseco reports contain:

<u>General Discussion</u>: Description of samples types, tests performed, any problems encountered and general comments are given.

<u>Analytical Data</u>: Data are reported by sample or by test. Pertinent information including dates sampled, received, prepared, and extracted are included on each results page. The Enseco reporting limit for each analyte is also given.

<u>QC Information</u>: The results (Percent Recovery and Relative Percent Difference) of the Laboratory Control Samples analyzed with the project are listed, together with the control limits. Also, the analytical results for method blanks generated during analysis of organic and metals parameters are given.

Results of any matrix spikes, duplicates, matrix spike duplicates or other project-specific QC are also reported.

Methodology: Reference for analytical methodology used is cited.

<u>Custom Services</u>: Special services including data interpretation, special consultation, and raw data packages (when requested) are included.

Enseco QA Program Plan

Section No. 11 Revision No. 3.3 Date 5/89 Page 34 of 58

11. INTERNAL QC CHECKS

The Enseco QA/QC program monitors data quality with internal QC checks. Internal QC checks are used to answer two questions:

- Are laboratory operations "in control," (i.e., operating within acceptable QC guidelines), during data generation?
- 2) What effect does the sample matrix have on the data being generated?

The first question is answered by <u>Laboratory Performance QC</u>. Laboratory performance QC is based on the use of a standard, control matrix to generate precision and accuracy data that are compared, on a daily basis, to control limits. This information, in conjunction with method blank data, is used to assess daily laboratory performance.

The second question is addressed with <u>Matrix-Specific QC</u>. Matrix-Specific QC is based on the use of an actual environmental sample for precision and accuracy determinations and commonly relies on the analysis of matrix spikes, matrix duplicates, and matrix spike duplicates. This information, supplemented with field blank results, is used to assess the effect of the matrix and field conditions on analytical data.

Laboratory Performance QC is provided as a standard part of every routine Enseco analysis. Matrix-Specific QC is available as an option to the client and should be specified based on the types of matrices to be analyzed and the Data Quality Objectives (DQOs) and regulatory requirements of the project.

A complete discussion of the Enseco Internal QC Check program follows.

Enseco QA Program Plan

Section No. 11 Revision No. 3.3 Date 5/89 Page 35 of 58

Laboratory Performance QC Program

Laboratory Performance QC is provided as a standard part of every routine Enseco analysis. The main elements of Laboratory Performance QC are:

- The analysis of Laboratory Control Samples, which include Duplicate Control Samples (DCS), Single Control Samples (SCS), and method blanks, and
- The generation of daily calibration data.

The Laboratory Control Sample program is discussed below. Please refer to Section 8 of this manual for a discussion of calibration procedures.

Laboratory Control Samples (LCS)

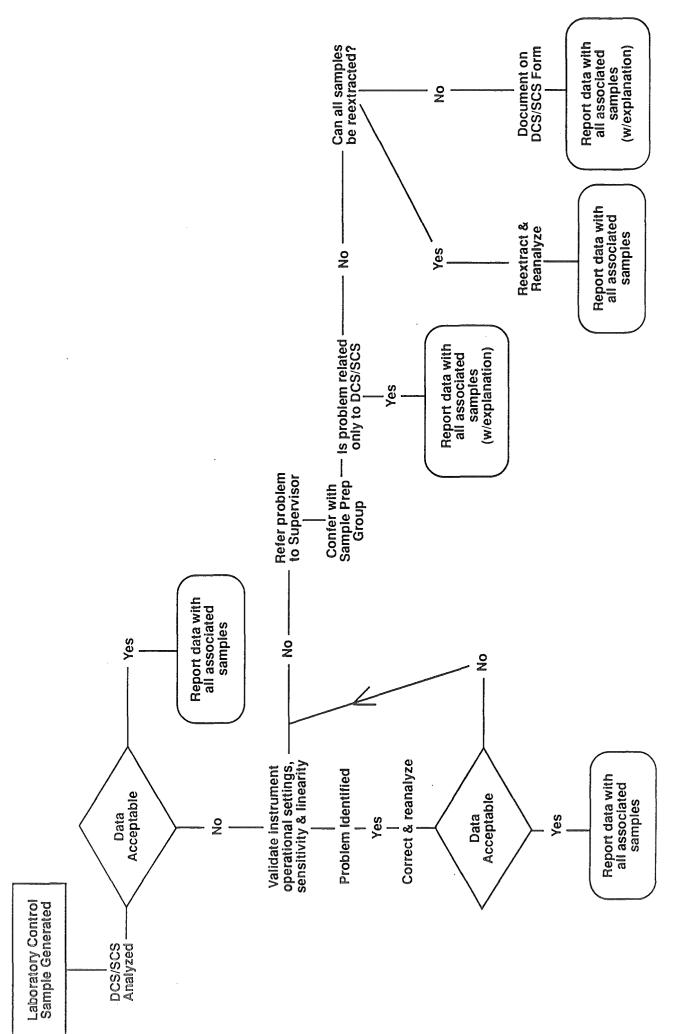
Laboratory Control Samples (LCS) are well-characterized, laboratory generated samples used to monitor the laboratory's day-to-day performance of routine analytical methods. Certain LCS are used to monitor the precision and accuracy of the analytical process, independent of matrix effects. Other LCS are used to identify any background interference or contamination of the analytical system which may lead to the reporting of elevated concentration levels or false positive data.

The results of the LCS are compared to well-defined laboratory acceptance criteria to determine whether the laboratory system is "in control." Controlling lab operations with LCS (as opposed to matrix spike/matrix spike duplicate samples), offers the advantage of being able to differentiate low recoveries due to procedural errors from those due to matrix effects. As a result, procedural errors can be identified and corrected by the analyst at the bench, without waiting for extensive senior level review or costly and time-consuming reanalysis of the sample. Three types of LCS are routinely analyzed: Duplicate Control Samples (DCS), Single Control Samples (SCS), and Method Blanks. Each of these LCS are described below.

Duplicate Control Samples (DCS)

Duplicate Control Samples (DCS) are used to monitor the precision and accuracy of the analytical system on an on-going basis. Each DCS consists of a standard, control matrix that is spiked with a group of target compounds representative of the method analytes. A DCS pair is analyzed for every 20 samples processed by the method. DCS are analyzed with environmental samples to provide evidence that the laboratory is performing the method within accepted QC guidelines for accuracy and precision.

Accuracy (average recovery of each analyte in the DCS pair) and precision (Relative Percent Difference [RPD] between each analyte in the DCS pair) data are compared to control limits that have been established for each of the analytes contained in the DCS. Initially, control limits for analytes spiked into the DCS are taken directly from the CLP program. If CLP limits are not available, Enseco historical data are used to set the control limits. As sufficient laboratory data become available, the control limits are redefined based upon the most recent nine months of DCS data. Control limits for accuracy for each analyte are based on the historical average recovery (mean of the average recoveries of the DCS pairs) plus or minus three standard deviation units. Control limits for precision for each analyte are based on the historical RPD and range from zero (no difference between DCS results) to the average RPD plus three standard deviation units. Calculated control limits tend to be tighter than CLP limits because of the use of a control matrix. However, if the calculated limits are broader than the CLP limits, the CLP limits are used to control the laboratory.


Analytical data that are generated with a DCS pair which falls within the established control limits are judged to be in control. Data generated with a DCS pair which falls outside of the control limits are considered suspect and are repeated or reported with qualifiers. The procedure used to evaluate data from control samples is given in Figure 11-1. The protocols include examination of instrument performance and preparation and analysis information, consultation with the supervisor, and finally a decision path for determining whether reanalysis is warranted.

DCS have been established for each routine analytical method. Reagent water is used as the control matrix for the analysis of aqueous samples. The DCS compounds are spiked into reagent water and carried through the appropriate steps of the analysis. The control matrix for solids samples is standard Ottawa sand, an ASTM approved material for use in highway construction, due to its fine degree of homogeneity. The DCS compounds are spiked into the Ottawa sand and carried through the appropriate steps of the analysis.

As stated previously, DCS are analyzed at a frequency of no less than one DCS pair per 20 samples. The DCS program is supplemented with the SCS program to ensure that Laboratory Performance QC is available with each batch of samples processed (see following subsection).

DCS precision and accuracy data are archived in the LIMS. In addition, the associated DCS data are reported with each set of sample results to enable the client to make a quality assessment of the data. Figure 11-1

Enseco QA Program Plan

 Section No.
 11

 Revision No.
 3.3

 Date
 5/89

 Page
 39 of 58

Single Control Samples (SCS)

As stated above, a DCS pair is analyzed with every 20 samples to measure the precision and accuracy of an analysis on an ongoing basis. However, samples are often analyzed in lots of less than 20, due to holding time or turn-around time requirements. Since it is necessary to have a measure of laboratory performance with each batch of samples processed, Enseco has instituted the SCS program.

An SCS consists of a control matrix that is spiked with surrogate compounds appropriate to the method being used. In cases where no surrogate is available, (e.g., metals or conventional analyses) a single DCS serves as the control sample. An SCS is prepared for each sample lot for which the DCS pair are not analyzed. Recovery data generated from the SCS are compared to control limits that have been established for each of the compounds being monitored. Initially, CLP control limits or Enseco historical data are used to set the control limits. When sufficient SCS data are available, control limits are redefined based on the most recent nine months of data. Control limits for SCS components are based on the historical average recovery in the SCS plus or minus three standard deviation units.

Analytical data that are generated with an SCS which falls within the control limits are judged to be in control. Data that are generated with an SCS which falls outside of acceptance criteria are considered suspect and are reanalyzed or reported with qualifiers. The protocols for evaluating SCS are identical to those established for DCS (see Figure 11-1).

SCS recovery (accuracy) data are archived in the LIMS. In addition, the associated SCS data are reported with each set of sample results to enable the client to make a quality assessment of the data.

Method Blank

Method blanks, also known as reagent, analytical, or preparation blanks, are analyzed to assess the level of background interference or contamination which exists in the analytical system and which might lead to the reporting of elevated concentration levels or false positive data.

As part of the standard Enseco QC program, a method blank is analyzed with every batch of samples processed. A method blank consists of reagents specific to the method which are carried through every aspect of the procedure, including preparation, clean-up, and analysis. The results of the method blank analysis are evaluated, in conjunction with other QC information, to determine the acceptability of the data generated for that batch of samples.

Ideally, the concentration of target analytes in the blank should be below the Reporting Limit for that analyte. In practice, however, some common laboratory solvents and metals are difficult to eliminate to the parts-per-billion levels commonly reported in environmental analyses. Therefore, criteria for determining blank acceptability must be based on consideration of the analytical techniques used, analytes reported, and Reporting Limits required.

For organic analyses, the concentration of target analytes in the blank must be below the Reporting Limit for that analyte in order for the blank to be considered acceptable. An exception is made for common laboratory contaminants [methylene chloride, acetone, 2-butanone, toluene, and bis(2-ethylhexyl)phthalate] which may be present in the blank at up to 5 times the Reporting Limit and still be considered acceptable. This policy is consistent with the CLP policy and has been established in recognition of the fact that these compounds are frequently found at low levels in method blanks due to the materials used in the collection, preparation, and analysis of samples for organic parameters. For metals analysis, where the Reporting Limits are typically near the Instrument Detection Limit (IDL) and background levels for certain metals are difficult to completely eliminate, the policy is that the concentration of the target analytes in the blank must be below two times the Reporting Limit. If the blank value for a target analyte lies below the Reporting Limit, the Reporting Limit for that analyte in the associated samples is unaffected. If the blank value lies between the Reporting Limit and two times the Reporting Limit, the Reporting Limit for that analyte in the associated samples is raised to the level found in the blank. A blank containing an analyte(s) above two times the Reporting Limit is considered unacceptable unless the lowest concentration of the analyte in the associated samples is at least ten times the blank concentration (as per CLP protocol).

For conventional inorganic tests, the method SOP directs how the blank is treated. Generally, a reagent blank is used both to zero the equipment and as one of the calibration standards. If a preparation step is required for the analysis, then a prep blank is also analyzed to determine the extent of contamination or background interference. In most cases, the concentration found in the prep blank is subtracted from the concentration found in any associated sample prior to calculating the final result. Blanks have no application or significance for some conventional inorganic parameters (e.g. pH).

If the blank does not meet acceptance criteria, the source of contamination must be investigated and appropriate corrective action must be taken and documented. Investigation includes an evaluation of the data to determine the extent and effect of the contamination on the sample results. Corrective actions may include reanalysis of the blank, and/or repreparation and reanalysis of the blank and all associated samples.

For organic and metals analyses, and selected conventional inorganic tests, method blank results are reported with each set of sample results.

Sample results are <u>not</u> corrected for blank contamination. Occasionally, due to limited sample volume or other constraints, the laboratory reports data associated with an unacceptable blank. In these cases, the Reporting Limit for the each analyte contained in the blank is raised to the level found in the blank.

Matrix-Specific QC

Matrix-Specific QC is used to assess the effects of a sample matrix or field conditions on the analytical data. The main elements of Matrix-Specific QC are:

- The analysis of matrix spikes, matrix duplicates, and matrix spike duplicates;
- Monitoring the recovery of surrogate compounds from environmental samples;
- Monitoring the results of standard additions in environmental samples;
- The analysis of field blanks; and
- The determination of method detection limits in a specific matrix.

Different regulatory programs have different requirements in terms of Matrix-Specific QC. In order to ensure that the data generated meet all Data Quality Objectives, Enseco encourages its clients to include Matrix-Specific QC that fulfills the Data Quality Objectives and regulatory requirements of the project. A discussion of the different elements of Matrix-Specific QC follows.

Matrix Spikes, Matrix Duplicates, and Matrix Spike Duplicates

A Matrix Spike (MS) is an environmental sample to which known concentrations of analytes have been added. The MS is taken through the entire analytical procedure and the recovery of the analytes is

Section No.	11
Revision No.	3.3
Date	5/89
Page	43 of 58

calculated. Results are expressed as percent recovery. The MS is used to evaluate the effect of the sample matrix on the accuracy of the analysis.

A Matrix Duplicate (MD) is an environmental sample that is divided into two separate aliquots. The aliquots are processed separately and the results compared to determine the effects of the matrix on the precision of the analysis. Results are expressed as RPD.

A Matrix Spike Duplicate (MSD) is an environmental sample that is divided into two separate aliquots, each of which is spiked with known concentrations of analytes. The two spiked aliquots are processed separately and the results compared to determine the effects of the matrix on the precision and accuracy of the analysis. Results are expressed as RPD and percent recovery.

Surrogate Recoveries and Standard Additions

Surrogates are organic compounds which are similar to the analytes of interest in chemical behavior, but which are not normally found in environmental samples. Surrogates are added to samples to monitor the effect of the matrix on the accuracy of the analysis. Results are reported in terms of percent recovery.

Enseco routinely adds surrogates to samples requiring GC/MS analysis and reports these surrogate recoveries to the client. The laboratory does not control its operations based on surrogate recoveries in environmental samples. As discussed earlier in this section, Enseco controls its operations based on the results of Laboratory Control Samples. The surrogate recoveries are primarily used by the laboratory to assess matrix effects. However, obvious problems with sample preparation and analysis (e.g. evaporation to dryness, leaking septum, etc.) which can lead to poor surrogate spike recoveries must be ruled out prior to attributing low surrogate recoveries to matrix effects.

 Section No.
 11

 Revision No.
 3.3

 Date
 5/89

 Page
 44 of 58

Standard Additions (SA) is the practice of adding a series of known amounts of an analyte to an environmental sample. The fortified samples are then analyzed and the recovery of the analytes calculated. The practice of SA's is generally used with metal and conventional analyses to determine the effect of the sample matrix on the accuracy of the analyses.

<u>Field Blanks</u>

<u>Field blanks</u> are check samples that monitor contamination originating from the collection, transport or storage of environmental samples. One example of a field blank is an equipment blank. An <u>equipment blank</u> is blank water that is poured through the sample collection device to check the adequacy of the cleaning procedures for the sampling equipment. Another type of field blank is a trip blank. A <u>trip blank</u> is a laboratory control matrix (typically water) which is sent to the field in an appropriate sample container, remains unopened in the field, and then is sent back to the laboratory. The purpose of the trip blank is to assess the impact of field and shipping conditions on the samples. The results from field blanks are reported to the client as samples in the same concentration units as the samples. No correction of the analytical data is done in the laboratory based on the analysis of field blanks.

Matrix-Specific Detection Limits

Method Detection Limits (MDL's) determined on a specific sample matrix are called Matrix-Specific Detection Limits. See Section 14 for a discussion of detection and reporting limits.

Enseco QA Program Plan

 Section No.
 12

 Revision No.
 3.3

 Date
 5/89

 Page
 45 of 58

12. PERFORMANCE AND SYSTEM AUDITS

Enseco laboratories participate in a variety of federal and state certification programs, (including the U.S. EPA CLP), that subject each of the laboratories to stringent system and performance audits on a regular basis. A <u>system audit</u> is a review of laboratory operations conducted to verify that the laboratory has the necessary facilities, equipment, staff and procedures in place to generate acceptable data. A <u>performance audit</u> verifies the ability of the laboratory to correctly identify and quantitate compounds in blind check samples submitted by the auditing agency. The purpose of these audits is to identify those laboratories that are capable of generating scientifically sound data. Enseco is certified to perform environmental analyses under programs administered by the U.S. EPA, U.S. Army, U.S. Navy, and over 15 states. The most current list of Enseco certifications is available upon request.

In addition to external audits conducted by certifying agencies or clients, Enseco regularly conducts the following internal audits:

- Quarterly systems audits conducted by the Divisional QA Director.
- Periodic (at least yearly) audits conducted by the Corporate QA Office.
- Special audits by the Divisional QA Director or Corporate QA Office when a problem is suspected.

Enseco laboratories also routinely analyze check samples as described below:

- Laboratory Control Samples (DCS, SCS, and method blanks) are analyzed at a frequency equal to at least 10% of the total number of samples analyzed (see Section 11).
- All Enseco laboratories participate in the analyses of EPA check samples provided under the Water Supply (WS) and Water Pollution (WP) Performance Evaluation Studies. The results of these PE samples are tabulated by the Corporate QA Office to identify performance trends within the Enseco laboratories.

Enseco ()A	Program	Plan
----------	----	---------	------

- The majority of the Enseco laboratories are CLP labs and thus analyze organic and/or inorganic CLP PE samples on a quarterly basis. The results of these analyses are also tabulated and evaluated by the Corporate QA Office.
- The laboratories participate in multiple state certification programs (including New York, New Jersey and California) which require that PE samples be analyzed periodically.
- Blind check samples from an independent commercial firm are sent to the laboratories periodically by the Corporate QA Office. The frequency and type of samples sent is based on problem areas identified by evaluation of tabulated PE results.

The results of these check samples are used to identify areas where additional training is needed or clarification of procedures is required.

Enseco QA Program Plan

 Section No.
 13

 Revision No.
 3.3

 Date
 5/89

 Page
 47 of 58

13. PREVENTIVE MAINTENANCE

To minimize downtime and interruption of analytical work, preventive maintenance is routinely performed on each analytical instrument. Designated laboratory personnel are trained in routine maintenance procedures for all major instrumentation. When repairs are necessary, they are performed by either trained staff or trained service engineers employed by the instrument manufacturer.

Each laboratory has detailed SOPs on file that describe preventive maintenance procedures and schedules. The laboratories also maintain detailed logbooks documenting the preventive maintenance and repairs performed on each analytical instrument.

Section No.	14
Revision No.	3.3
Date	5/89
Page	48 of 58

14. SPECIFIC ROUTINE PROCEDURES USED TO ASSESS DATA QUALITY AND DETERMINE REPORTING LIMITS

Data Quality Assessment

The effectiveness of a QA program is measured by the quality of data generated by the laboratory. Data quality is judged in terms of its precision, accuracy, representativeness, completeness and comparability. These terms are described as follows:

<u>Precision</u> is the degree to which the measurement is reproducible. Precision can be assessed by replicate measurements of DCS, reference materials, or environmental samples. Enseco routinely monitors precision by comparing the RPD between DCS measurements with control limits established at plus three standard deviations from the mean RPD of historical DCS data.

Precision is frequently determined by comparison of replicates. The standard deviation of "n" measurements of "x" is commonly used to estimate precision.

Standard deviation (S) is calculated as follows:

$$S = \begin{pmatrix} & n & & \\ & 1 & \Sigma & & \\ & & i=1 & (X_1 - \bar{X})^2 \\ & & & n-1 \end{pmatrix}$$

where a quantity "x" (e.g., a concentration) is measured "n" times.

The relative standard deviation (or sample coefficient of variation, CV), which expresses standard deviation as a percentage of the mean, is generally useful in the comparison of three or more replicates (although it may be applied in the case of n = 2).

Enseco QA Program Plan

 $RSD = 100 (s/\overline{X})$ or $CV = 100 (s/\overline{X})$ where: RSD = relative standard deviation CV = coefficient of variation s = standard deviation $\overline{X} = mean$

In the case of duplicates, the RPD between the two samples may be used to estimate precision.

$$RPD = \frac{|D_1 - D_2|}{(D_1 + D_2)/2} \times 100$$

where: RPD = relative percent difference

 D_1 = first sample value

 D_2 = second sample value (duplicate)

<u>Accuracy</u> is a determination of how close the measurement is to the true value. Accuracy can be assessed using LCS, standard reference materials, or spiked environmental samples. Unless specified otherwise in special contracts, Enseco monitors accuracy by comparing LCS results with control limits established at plus or minus three standard deviation units from the mean of historical LCS results.

The determination of the accuracy of a measurement requires a knowledge of the true or accepted value for the signal being measured. Accuracy may be calculated in terms of percent recovery as follows:

Percent Recovery = $\frac{X}{T}$ x 100

where: X = the observed value of measurement

T = "true" value

<u>Representativeness</u> is the degree to which data accurately and precisely represent a characteristic of a population, parameter variations at a sampling point, a process condition, or an environmental condition. Analytical data should represent the sample analyzed regardless of the heterogeneity of the original sample matrix. Enseco strives to accommodate all sample matrices. Some samples may require analysis of multiple phases to obtain representative results.

<u>Completeness</u> is a measure of the amount of valid data obtained from a measurement system compared with the amount that was expected to be obtained under normal conditions.

To be considered complete, the data set must contain all QC check analyses verifying precision and accuracy for the analytical protocol. In addition, all data are reviewed in terms of stated goals in order to determine if the database is sufficient.

When possible, the percent completeness for each set of samples is calculated as follows:

Completeness = total data planned x 100%

<u>Comparability</u> expresses the confidence with which one data set can be compared to another data set measuring the same property. Comparability is ensured through the use of established and approved analytical methods, consistency in the basis of analysis (wet weight, volume, etc.), consistency in reporting units (ppm, ppb, etc.), and analysis of standard reference materials.

Reporting Limits

Assuring the validity of quantitative measurements at low concentrations is an extremely difficult technical problem. With regulatory action levels being pushed lower and lower, the validity of any given measurement becomes even more important. The consequences of false positive or false negative data can be significant.

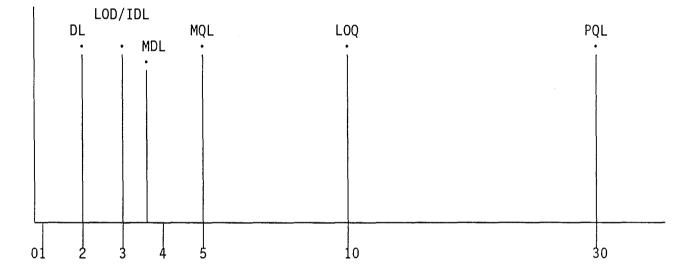
A number of terms have been used, by the EPA and other technical groups, to express the lowest concentration of an analyte which can be measured. Some of these terms, their definitions, and sources are listed in Table 14-1. A graphical representation of these terms is given in Figure 14-1.

Enseco takes very seriously its responsibility to report technically defensible data. Therefore, we have established a Reporting Limit (RL) for each analyte in each method. The RL represents the value above which we believe reliable data can be routinely obtained.

These Reporting Limits were established by collecting Method Detection Limit (MDL) data for organic analyses and Instrument Detection Limit (IDL) data for metals analyses from each Enseco laboratory. The MDL data were collected using the procedures described in 40CFR136 Appendix B. IDL data were calculated using the procedures outlined in the EPA Contract Laboratory Program (CLP) Statement of Work dated 12/87. The MDL/IDL data were then compared to various limits published in EPA methods and in the regulations. For example for Volatile Organics, the MDL data generated in Enseco laboratories were compared to the Practical Quantitation Limits (PQLs) published in SW-846 method 8240; the PQLs contained in the July 9, 1987, Federal Register Final Rulemaking on Appendix IX: the Contract Required Detection Limits (CRDLs) in the CLP Method for Volatile Organics; and the MDLs in Method 624. Then a Reporting Limit for each analyte was established which considered all of this information. The RL was set at a level above which we were confident that our laboratories could detect and quantify the analyte consistently. Using this procedure, the Reporting Limits established are generally between 2 to 5 times the laboratory MDL/IDL. This range is consistent with the American Chemical Society definition for the Limit of Quantitation (LOQ). (See Table 14-1)

	DEFINIT	NITION OF DETECTION LIMIT TE	TERWS	
Detection Limit (DL)	DEFINITION The concentration which is distinctly detectable above, but close to a blank.	DETERMINATION Analysis of replicate standards	CALCULATION Two times the standard deviation	SOURCE Methods for Chemical Analysis of Water and Wastes
Limit of Datection (LOD)	The lowest concentration that can be determined to be statistically different from a blank	Analysis of replicate samples	Three times the standard deviation	ACS Definition
Method Detection Limit (MDL)	The minimum concentration of a substance that can be identified, measured and reported with 99% confidence that the analyte concentration is greater than zero.	Analysis of a minimum of seven replicates spiked at 1 to 5 times the expected detection limit.	The standard deviation times the Student t- value at the desired confidence level. (For seven replicates, the value is 3.14)	40 CFR 136 Definition for EPA Water Programs
Instrument Detection Limit (IDL)	The smallest signal above background noise that an instrument can detect reliably.	Analysis of three replicate standards at concentrations of 3-5 times the detection limit.	Three times the standard deviation	Contract Laboratory Program
Method Quantitation Limit (MQL)	The minimum concentration of a substance that can be measured and reported	Analysis of replicate samples	Five times the standard deviation	SW-846
Limit of Quantitation (LOQ)	The level above which quantitative results may be obtained witha specified degree of confidence	Analysis of replicate samples	Ten times the standard deviation	ACS Definition
Practical Quantitation Limit (PQL)	The lowest level that can be reliably determined within specified limits of precision and accuracy during routine laboratory operating conditions	Interlaboratory analysis of check samples	 Ten times the MDL Value where 80% of laboratories are within 20% of the true value 	RCRA SDWA Programs
Contract Required Detection Limit (CRDL)	Reporting limit specified for laboratories under contract to the EPA for Superfund activities	Unknown N	Unknown	Contract Laboratory Program

ଶ


TABLE 14-1

Enseco QA Program Plan

Section No.	14
Revision No.	3.3
Date	5/89
Page	53 of 58

FIGURE 14-1

Graphical Representation of Detection Limit Terms (See Table 14-1 for Definitions)

MULTIPLIER OF STANDARD DEVIATION OF REPLICATES

NOTE: The values along the horizontal "Standard Deviation (SD)" axis are approximate values and are meant to show the relative, not absolute, relationship between the terms.

Enseco QA Program Plan

 Section No.
 15

 Revision No.
 3.3

 Date
 5/89

 Page
 54 of 58

15. CORRECTIVE ACTION

When errors, deficiencies, or out-of-control situations exist, the QA program provides systematic procedures, called "corrective actions," to resolve problems and restore proper functioning to the analytical system.

Laboratory personnel are alerted that corrective actions may be necessary if:

- QC data are outside the acceptable windows for precision and accuracy;
- Blanks, DCS or SCS contain contaminants above acceptable levels;
- Undesirable trends are detected in spike recoveries or RPD between duplicates;
- There are unusual changes in detection limits;
- Deficiencies are detected by the QA department during internal or external audits or from the results of performance evaluation samples; or
- Inquiries concerning data quality are received from clients.

Corrective action procedures are often handled at the bench level by the analyst, who reviews the preparation or extraction procedure for possible errors, checks the instrument calibration, spike and calibration mixes, instrument sensitivity, and so on. If the problem persists or cannot be identified, the matter is referred to the laboratory supervisor, manager and/or QA department for further investigation. Once resolved, full documentation of the corrective action procedure is filed with the QA department. Corrective action documentation is routinely reviewed by the VP of QA. Examples of anomalous situation include: formation of a precipitate in an extract; formation of an emulsion during an extraction step; or missed holding times. These situations are thoroughly documented to enable a thorough review of the data to occur.

Out-of-Control situations are also documented on Anomaly Forms. An Outof-Control situation occurs when QC data fall outside of established control limits. The documentation associated with and Out-of-Control situation is reviewed by the supervisor and the QA Department. Out-of-Control situations trigger Corrective Action. Corrective Actions taken are also documented on the Anomaly Form.

Project Files

A project file is created for each project handled within the laboratory. The project file contains all documents associated with the project. This includes correspondence from the client, chain-of-custody records, raw data, copies of laboratory notebook entries pertaining to the project, and a copy of the final report. When a project is complete, all records are passed to the Document Custodian who inventories the file, checks for completeness, and puts the file into document archive.

APPENDIX I

MAXIMUM HOLDING TIMES AND SAMPLE COLLECTION/PRESERVATION INFORMATION

Sources: Tables A-E: Federal Register, October 26, 1984 SW-846, 3rd Edition, Update I State of California Leaking Underground Fuel Tank Field Manual, May 1988

Table F:

Contract Laboratory Program Statement of Work for Organic Analysis dated 10/86 Contract Laboratory Program Statement of Work for Inorganic Analysis dated 12/87 A. VOLATILE ORGANICS

Matrix	Container	Minimum Sample Size	Preser/ative (Fr	Holding Time (From Date Sampled)
Water Samples				
No Residual Chlorine Present	3 40 mL vials with Teflon lined septum caps	40 mL	4 drops conc. HCl, 4 ^o C	14 days
Residual Chlorine Present	3 40 mL vials with Teflon lined septum caps	40 mL	4 drops of 10% sodium thiosulfate, 4 drops conc. HCl, 40C	14 days
Acrolein and Acrylonitrile	3 40 mL vials with Teflon lined septum caps	40 mL	Adjust to pH 4-5, 4 ^o C	14 days
Soil/Sediments and Sludges	Glass jar with Teflon liner or core tube	10 g	4oC	14 days
Concentrated Waste Samples	Glass jar with Teflon liner or core tube	10 g	None	14 days

The above information applies to the following parameters and methods:

Parameter

Volatile Halocarbons Volatile Aromatics Volatile Organics Acrolein/Acrylonitrile

601/8010 (GC) 602/8020 (GC) 624/8240/8260 (GC/MS) 603/8030 (GC)

Method

AI-1

B. SEMIVOLATILE ORGANICS

Matrix	Container	Minimum Sample Size	Preservative	Holding Time (From Date Sampled)
Water Samples				
No Residual Chlorine Present	l liter glass with Teflon liner	1 liter	4ºC	Samples must be extracted within 7 days and analyzed within 40 days of extraction.
Residual Chlorine Present	1 liter glass with Teflon liner	1 liter	Add 3 mL 10% sodium thiosulfate per gallon, 4ºC	Samples must be extracted within 7 days and analyzed within 40 days of extraction.
Soil/Sediments and Sludges	Glass jar with Teflon liner or core tube	50 g	4oC	Samples must be extracted within 14 days and analyzed within 40 days of extraction.
Concentrated Waste Samples	Glass jar with Teflon liner or core tube	50 g	None	Samples must be extracted within 14 days and analyzed within 40 days of extraction.

The above information applies to the following parameters and methods:

51
er
ابو
E
ral
al l

Method

604/8040 (GC)	000/0000 (4C)	615/8150 (GC)
606/8060 (GC)	610/8310 (HPLC)	625/8270 (GC/MS)
608/8080 (GC)	614/8140 (6C)	632 (HPLC)
Phenols Phthalate Esters Arranochloring Desticidos/DCDs	Polyaromaltic Hydrocarbons Organophosphate Pesticides	Phénoxy acid Herbicides Semivolatile Organics Carbamate & Urea Pesticides

(QA Program Plan, Revision 3.3)

AI-2

C. OTHER ORGANICS

Parameter	Method No.	Matrix	Holding Time(a) (from Date Sampled)	Container	Preservative	Min. Sample Size
Dioxins/Furans	8280	Water Soil/Waste	30 days extn. 45 days anal.(b) 30 days extn.(b) 45 days anal.(b)	One liter glass core tube or glass jar	4ºC 4ºC	1000 ml 50 g
Petroleum Hydrocarbons as Gasoline	TPH-Gasoline Purge & Trap (LUFT manual)	Water Soil/Waste	14 days 14 days	3 40 mL vials with Teflon liners Core tube or glass jar	4°C, HCl to pH < 2 4ºC	40 mL 50 g
Petroleum Hydrocarbons as Gasoline	TPH-Gasoline Extractable (LUFT manual)	Water Soil/Waste	14 days extn. 40 days anal. 14 days extn. 40 days anal.	One liter glass Core tube or glass jar	4°C, HCl to pH < 2 4°C	500 mL 50 g
Petroleum Hydrocarbons as Diesel	TPH-Diesel Extractable (LUFT manual)	Water Soil/Waste	14 days extn. 40 days anal. 14 days extn. 40 days anal.	One liter glass Core tube or glass jar	4°C 4ºC	500 mL 50 g
Petroleum Hydrocarbons (TPH)	TPH-IR (418.1)	Water	28 days	One liter glass	4 ⁰ C, H ₂ SO ₄ to pH < 2	1000 mL

extn: extraction anal: analysis
from date of collection

pa)

(QA Program Plan, Revision 3.3)

A1-3

FORMAT FOR SOP - LABORATORY, ANALYTICAL METHOD (cont.)

- 9. QA/QC Requirements
 - 9.1 QC samples
 - 9.2 Acceptance criteria (precision and accuracy, % of multi-component QC analytes which must be within windows)
 - 9.3 Corrective action required (reference current QC manual)
- 10. Calculations
- 11. Reporting
 - 11.1 Reporting units
 - 11.2 Reporting limits
 - 11.3 Significant figures and reporting values below detection limit
 - 11.4 LIMS data entry

12. References

- 12.1 Method source
- 12.2 Deviations from source method and rationale

FORMAT FOR SOP - LABORATORY, STANDARDS AND REAGENTS

Title

- 1. Reagent/Standard Name
- 2. Type (reagent, calibration standard, DCS, SCS, stock solution, etc.)
- 3. Constituents/concentration
- 4. Solvent
- 5. Safety Issues (specific to the reagent or standard)
- 6. Shelf Life

7. Procedure

- 7.1 Preparation
- 7.2 Documentation (purchase date, open date, labeling, etc.)
- 7.3 Verification

FORMAT FOR SOP - LABORATORY, EQUIPMENT OPERATION, CALIBRATION, AND MAINTENANCE

Title

- 1. Purpose
- 2. Safety Issues (applicable to the specific equipment)

3. Procedure

- 3.1 Initial start-up
- 3.2 Calibration and performance documentation
- 3.3 Example output
- 3.4 Shut-down
- 3.5 Maintenance and maintenance records
- 4. Responsibilities
- 5. Comments
- 6. Definitions

FORMAT FOR SOP - LABORATORY, PROCEDURAL

Title

- 1. Purpose
- 2. Policies
- 3. Safety Issues
- 4. Procedure
- 5. Responsibilities
- 6. Comments
- 7. Definitions

	DEFINIT	ITION OF DETECTION LIMIT TE	TERMS	
Detection Limit (DL)	DEFINITION The concentration which is distinctly detectable above, but close to a blank.	DETERMINATION Analysis of replicate standards	CALCULATION Two times the standard deviation	SOURCE Methods for Chemical Analysis of Water and Wastes
Limit of Detection (LOD)	The lowest concentration that can be determined to be statistically different from a blank	Analysis of replicate samples	Three times the standard deviation	ACS Definition
Method Detection Limit (MDL)	The minimum concentration of a substance that can be identified, measured and reported with 99% confidence that the analyte concentration is greater than zero.	Analysis of a minimum of seven replicates spiked at 1 to 5 times the expected detection limit.	The standard deviation times the Student t- value at the desired confidence level. (For seven replicates, the value is 3.14)	40 CFR 138 Definition for EPA Water Programs
Instrument Detection Limit (IDL)	The smallest signal above background noise that an instrument can detect reliably.	Analysis of three replicate standards at concentrations of 3-5 times the detection timit.	Three times the standard deviation	Contract Laboratory Program
Method Quantitation Limit (MQL)	The minimum concentration of a substance that can be measured and reported	Analysis of replicate samples	Five times the standard deviation	SW-846
Limit of Quantitation (LOQ)	The level above which quantitative results may be obtained witha specified degree of confidence	Analysis of replicate samples	Ten times the standard deviation	ACS Definition
Practical Quantitation Limit (PQL)	The lowest level that can be reliably determined within specified limits of precision and accuracy during routine laboratory operating conditions	Interlaboratory analysis of check samples	 Ten times the MDL Value where 80% of laboratories are within 20% of the true value 	RCRA SDWA Programs
Contract Required Detection Limit (CRDL)	Reporting limit specified for laboratories under contract to the EPA for Superfund activities	u k o w n	u k n o k n	Contract Laboratory Program

TABLE 14-1

GENERIC SAMPLING PLAN RCRA FACILITIES INVESTIGATIVE PROJECT GIANT REFINERY GALLUP, NEW MEXICO

> A REPORT PREPARED FOR GIANT INDUSTRIES, INC. ROUTE 3, BOX 7 GALLUP, NEW MEXICO 87301

> > (______

trian Tardona

Daw

Patricia Tardona Project Hydrogeologist David Bratberg Associate Hydrogeologist

Parameter	Method No.	Matrix	Holding Time (from Date Sampled)	Container P1	Preservative(a)	Min. Sample Size
Metals	200.7/6010	Water	6 months	Poly	HNO3 to	100 m]
(ICP)		Soil/Waste	6 months	core tube/glass jar	рн < 2.0 40С	10 g
Arsenic	206.2/7060	Water	6 months	Poly	HNO3 to	100 ml
(ur-AA)		Soil/Waste	6 months	core tube/glass jar	ри < 2.0 40С	10 g
Mercury	245.1/7470	Water	28 days	Poly	HNO3 to	100 ml
(UV-AA)		Soil/Waste	28 days	core tube/glass jar	ри < 2.0 40С	10 g
Selenium	270.2/7740	Water	6 months	Poly	HNO3 to	100 ml
(GT-AA)		Soil/Waste	6 months	core tube/glass jar	рн < 2.0 4°С	10 g
Thallium //r	279.2/7841	Water	6 months	Poly	HNO3 to	100 ml
(ur-AA)		Soil/Waste	6 months	core tube/glass jar	рн < 2.U 4°С	10 g
Lead	239.2/7421	Water	6 months	Poly	HNO3 to	100 ml
(ur-AA)		Soil/Waste	6 months	core tube/glass jar	рн < 2.0 4°С	10 g
Chromium (III/VI)	220.7/218.4/ Water	/ Water	24 hours	Poly	4oC	100 ml
	161//071C	Soil/Waste	24 hours extn. (b)	core tube/glass jar	4°C	10 g
Silica	200.7/6010	Water	28 days	Poly	4oC	100 ml
		Soil/Waste	28 days	core tube/glass jar	4oC	10 g
(a) Listed preser adjustment.	Listed preservative is for total metals adjustment.	•	Dissolved or suspended metals require filtration prior to	etals require filtrat	ion prior to pH	

D. METALS

adjustment. extn: extraction

(q)

(QA Program Plan, Revision 3.3)

A1-4

			E. LUNVENI LUNALS	0		
Parameter	Method No.	Matrix	Holding Time(a) (from Date Sampled)	Container	Preservative	Min. Sample Size
Color	110.2	Water	48 hours	Poly	4°C	100 ml
Oil and Grease	413.1/ 413.2	Water	28 days	Glass	4°C, H2SO4 to pH < 2	1000 m]
Specific Conductance	120.1	Water	28 days	Poly	4oC	50 m]
Acidity	305.1	Water	14 days	Poly	4°C	50 ml
Н	150.1	Water	ASAP	Poly	4°C	50 m]
Alkalinity	310.1	Water	14 days	Poly	4°C	50 m]
Hardness	200.7/ 314A/314B	Water	6 months	Poly	HNO3 to pH < 2	50 ml
Biochemical Oxygen Demand	405.1	Water	48 hours	Poly	4°C	200 ml
Chemical Oxygen Demand	410.4	Water	28 days	Glass	4 ⁰ C, H ₂ S04 to pH < 2	100 ml
Organic Carbon (TOC)	415.1	Water	28 days	Glass	4°C, H2SO4 to pH < 2	100 m]
			AI-5		(QA Program Plan, Revision 3.3)	Revision 3.3)

E. CONVENTIONALS

(QA Program Plan, Revision 3.3)

G-1A

		0	C. CONVENTIONALS (Cont.)	ıt.)		
Parameter	Method No.	Matrix	Holding Time(a) (from Date Sampled)	Container	Preservative	Min. Sample Size
Orthophosphate	365.3	Water	48 hours	Poly	40C	100 ml
Total Phosphorus	365.3	Water	28 days	Glass	H2S04 to pH < 2	100 ml
Total Kjeldahl Nitrogen	351.2	Water	28 days	Glass	4°C, H2S04 to pH < 2	100 ml
Ammonia	350.1	Water	28 days	Glass	4°C, H ₂ S04 to pH < 2	50 ml
Nitrite	354.1	Water	48 hours	Poly	4oC	50 m]
Nitrate	353.2/300.0	Water	48 hours	Poly	40C	50 ml
Nitrite plus Nitrate	353.2	Water	28 days	Glass	4°C, H2SO4 to pH < 2	50 m]
Total Solids	160.3	Water	7 days	Poly	Jo4	100 ml
Total Suspended Solids	160.2	Water	7 days	Poly	4oC	100 ml
Total Dissolved Solids	160.1	Water	7 days	Poly	Jof	100 ml
			AI-6		(OA Program Plan,	Revision 3.3)

(UA Program Plan, Revision 3.3)

A1-D

		-	C. CONVENTIONALS (Cont.)	ıt.)		
Parameter	Method No.	Matrix	Holding Time(a) (from Date Sampled)	Container	Preservative	Min. Sample Size
Total Volatile Solids	160.4	Water	7 days	Poly	4 oC	100 ml
Turbidity	180.1	Water	48 hours	Poly	40C	50 ml
Sulfate	300.0	Water	28 days	Poly	4°C	50 m]
Sulfite	377.1	Water	ASAP	Poly	40C	100 ml
Sulfide	376.2	Water	7 days	Poly	40C, NaOH to pH > 9 Zn(C2H303)2	100 ml
Cyanide	335.1/ 335.2/335.3	Water	14 days	Poly	4 ^o C, NaOH to pH > 12	250 m]
Coliform, Total & Fecal	909A/ 909C	Water	6 hours	Sterile poly	4°C, Na2S203	100 ml
Bromide	Dionex	Water	28 days	Poly	4°C	50 m]
Chloride	300.0	Water	28 days	Poly	4oC	50 ml
Chlorine, residual	330.1	Water	ASAP	Poly	4 o.C	100 ml
			AI-7		(OA Program Plan. Revision 3.3)	Revision 3.3)

-

erianae

(QA Program Plan, Revision 3.3)

A1-/

		с.	CONVENTIONALS (Cont.)	(
Parameter	Method No.	H Matrix	Holding Time(a) (from Date Sampled)	Container	Preservative	Min. Sample Size
Fluoride	340.2	Water	28 days	Poly	Jo4	50 m]
Iodide	Dionex	Water	28 days	Poly	4°C	50 m]
Organic Halogen (TOX)	9020	Water	28 days	Glass	4°C, H ₂ SO4 to pH < 2	200 ml
Phenolics	420.1/ 420.2	Water	28 days	Glass	4°C, H ₂ SO4 to ph < 2	100 ml
Surfactants (MBAS)	425.1	Water	48 hours	Poly	4 oC	100 m]
Gross Alpha, Beta and Radium	9310/ 9315	Water	6 months	Poly	HNO3 to ph < 2	2000 m]
Odor	140.1	Water	ASAP	Glass	Job	1000 mL
a) Parameters with holding times of 24 hours with holding times between 24 and 48 hour	h holding time imes between 2	of 24 hours and 48 hours	or less are analyzed on the day of receipt in the laboratory. s are analyzed within one day of receipt in the laboratory.	e day of receipt in ay of receipt in th	the laboratory. e laboratory.	Parameters

.

(QA Program Plan, Revision 3.3)

AI-8

		•			
Parameter	Matrix	Holding Time(a) (from Date Received)	Container	Preservative	Min. Sample Size
Volatile Organics	Water Soil	10 days 10 days	2 40 mL vials with Teflon lined caps Glass jar with Teflon liner or core tube	4oC 4oC	40 mL 10 g
Extractable Organics	Water Soil	5 days extn. 40 days anal. 10 days extn. 40 days anal.	1 liter glass with Teflon liner Glass jar with Teflon liner or core tube	4°C 4°C	1000 mL 50 g
Metals (other than Mercury)	Water Soil	180 days 180 days	P,G (b) P,G	HNO3 to pH < 2 4°C	100 mL 10 g
Mercury	Water Soil	26 days 26 days	P,G P,G	HNO3 to pH < 2 4oC	100 mL 10 g
Cyanide	Water Soil	14 days 14 days	P,G P,G	0.6 g ascorbic acid, ^(c) 100 mL NaOH to pH >12, 4 ^o C 10 g 4 ^o C 10 g	100 mL 10 g
<pre>(a) Holding times ca (b) Polyethylene (P) (c) Only used in the</pre>	lculated from d or glass (G) presence of re	Holding times calculated from date of receipt in laboratory Polyethylene (P) or glass (G) Only used in the presence of residual chlorine	oratory		

F. CLP HOLDING TIMES

(QA Program Plan, Revision 3.3)

AI-9

මුල

APPENDIX II

FORMATS FOR STANDARD OPERATING PROCEDURES (SOP)

(QA Program Plan, Revision 3.3)

FORMAT FOR SOP - LABORATORY, ANALYTICAL METHOD

Title (includes method number)

- 1. Scope and Application
 - 1.1 Analytes
 - 1.2 Detection limit (instrument and method)
 - 1.3 Applicable matrices
 - 1.4 Dynamic range
 - 1.5 Approximate analytical time (i.e., 5 minutes, 2 days)
- 2. Summary of Method
 - 2.1 Generic description of method and chemistry behind it (i.e., extract with solvent, convert to methyl ester, analyze by electron-capture gas chromatography)
- 3. Comments
 - 3.1 Interferences
 - 3.2 Helpful hints
- 4. Safety Issues (specific to the method)
- 5. Sample Collection, Preservation, Containers, and Holding Times
- 6. Apparatus
- 7. Reagents and Standards
- 8. Procedure (detailed step-by-step)
 - 8.1 Sample preparation
 - 8.2 Calibration
 - 8.3 Analysis