AP - 111

LANDFARMS

2019

From:	Caitlin Fields
То:	Chavez, Carl J, EMNRD
Cc:	Cobrain, Dave, NMENV; Suzuki, Michiya, NMENV; Heidi Jones; Paul Hildebrandt
Subject:	[EXT] OCD Landfarm Closure Letter
Date:	Wednesday, April 29, 2020 1:11:07 PM
Attachments:	image001.png
	image002.png
	image003.png
	image004.png
	image005.png
	image006.png
	202004 OCDLandfarmClosure LTR Signed.pdf

Hi Carl,

Please find Marathon's response to the requests made by OCD regarding the Central OCD Landfarm Closure Request at the Gallup Refinery. Marathon would like to request the closure of the OCD Landfarm independent of NMED. Please let us know if you have any questions.

Thank you, Caitlin

Caitlin Fields Associate Engineer

OUR SAFETY IS MY RESPONSIBILITY

1252 Commerce Drive Laramie, Wyoming 82070 (307) 745-7474 (phone) (307) 745-7729 (fax) <u>cfields@trihydro.com</u>

CONFIDENTIAL INFORMATION: This electronic message is intended only for the use of the person or entity to which it is addressed and may contain information that is privileged and confidential, the disclosure of which is governed by applicable law. If the reader of this message is not the intended recipient, or the employee or agent responsible for delivering it to the intended recipient, you are hereby notified that any dissemination, distribution or copying of this information is STRICTLY PROHIBITED. If you have received this message in error, please immediately notify the sender by either email or telephone. Please destroy the related message. Thank you for your cooperation.

Western Refining Southwest, Inc.

A subsidiary of Marathon Petroleum Corporation

92 Giant Crossing Road Jamestown, NM 87347 Tel: 505.722.3833

April 28, 2020

Mr. Carl J. Chavez New Mexico Oil Conservation Division Energy Minerals and Natural Resources Department 1220 South St Francis Drive Santa Fe, New Mexico 87505

RE: RE: Request for Closure, Central Oil Conservation Division Landfarm Marathon Petroleum Company LP, Gallup Refinery EPA ID# NMD000333211

Dear Mr. Chavez:

The Marathon Petroleum Company LP (MPC) Gallup Refinery (Refinery) is submitting this correspondence to the Oil Conservation Division (OCD) to request closure of the Central OCD Landfarm (Landfarm) and to clarify requests made by OCD on March 24, 2020. As concluded in the *OCD Landfarm Closure Request* letter of January 16, 2020, the Refinery does not believe that the referenced chloride exceedances are the result of Landfarm operation. Accordingly, the Refinery does not believe that the chloride exceedances and investigation of Pond 10 need to be addressed prior to Landfarm closure as requested in OCD March 24, 2020 correspondence.

MPC received an approval from the New Mexico Environmental Department (NMED) for the *Response* to Comments NMED Approval with Modifications Letter Dated March 17, 2017 [Chloride Exceedance Excavation Report] on May 16, 2019 regarding a previously submitted report. NMED Comment 2, in that approval, states that "a work plan to install soil borings to collect soil samples of the underlying native soils, pond sediments, and the upper zone waste" needs to be submitted but no due date was stated in the letter.

OCD, in a March 24, 2020 email, agreed with the findings of the OCD Landfarm Closure Plan Report, but preferred "to await the results of the deeper environmental investigation of former Evaporation Pond 10" requested by NMED in the above-referenced Approval Letter. As stated above, Pond 10 which lies within the footprint of the Landfarm, will be investigated when MPC deems the Landfarm is accessible per the RCRA permit. MPC considers that the Landfarm is not accessible in part because the OCD Landfarm is not closed.

Therefore, MPC is requesting that the OCD formally grant MPC closure of the Central OCD Landfarm. If OCD believes that insufficient information is available for Landfarm closure, MPC will work with OCD to

92 Giant Crossing Road Gallup, NM 87301 develop a workplan and sampling program to address their concerns. In addition, MPC will include OCD on any communications with NMED related to the Pond 10 investigation.

Upon OCD approval of this request, the Refinery shall proceed with closure in general accordance with NMAC Rule 36 and the submittal of Form C-137 EZ and its requirements. If you have any questions or comments, please do not hesitate to call Brian Moore at 505-726-9745.

Certification

Icertify under penalty of law that this document and all attachments were prepared under my direction or supervision according to a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Sincerely, Marathon Petroleum Company LP, Gallup Refinery

Robert S. Hanks

Robert S. Hanks Refinery General Manager

cc D. Cobrain, NMED HWB M. Suzuki, NMED HWB B. Moore, Marathon Gallup Refinery H. Jones, Trihydro Corporation

From:	Chavez, Carl J, EMNRD
То:	Moore, Brian; "Scott Crouch"
Cc:	Griswold, Jim, EMNRD; Wade, Gabriel, EMNRD; Cobrain, Dave, NMENV; Suzuki, Michiya, NMENV
Subject:	OCD Centralized Landfarm (Former Evaporation Pond 10) Closure Plan Report
Date:	Tuesday, March 24, 2020 8:57:00 AM

Brian, et al.:

The New Mexico Oil Conservation Division (OCD) has completed review of the above subject closure plan report.

While OCD agrees with the findings of the report, OCD prefers to await the results of the deeper environmental investigation of former Evaporation Pond 10 requested by the New Mexico Environment Department to assess the complete investigation of the area of concern before issuing a final determination.

Please contact me if you have questions. Thank you.

Mr. Carl J. Chavez, CHMM (#13099) New Mexico Oil Conservation Division (Albuquerque Office) Energy Minerals and Natural Resources Department 5200 Oakland Avenue, NE Albuquerque, New Mexico 87113 Ph. (505) 660-7923 E-mail: <u>CarlJ.Chavez@state.nm.us</u> "Why not prevent pollution, minimize waste to reduce operating costs, reuse or recycle, and move forward with the rest of the Nation?" (To see how, go to: http://www.emnrd.state.nm.us/OCD and see "Publications")

January 6, 2020

Mr. Carl J. Chavez New Mexico Oil Conservation Division Energy Minerals and Natural Resources Department 1220 South St Francis Drive Santa Fe, New Mexico 87505

RE: Request for Closure, Central Oil Conservation Division Landfarm Marathon Petroleum Company LP, Gallup Refinery EPA ID# NMD000333211

Dear Mr. Chavez:

The Marathon Petroleum Company LP Gallup Refinery (Refinery) is submitting this correspondence to the Oil Conservation Division (OCD) to request closure of the Central OCD Landfarm (Landfarm). To support this recommendation, the Refinery is re-submitting the September and October 2016 Chloride Exceedance Excavation Report (under Marathon's letterhead). The report is provided as Attachment A. As concluded in the report, the Refinery does not believe that the referenced chloride exceedances are the result of Landfarm operation. Accordingly, the Refinery does not believe that the chloride exceedances need to be addressed prior to Landfarm closure.

The Refinery has conducted semiannual Landfarm sampling since the original submittal of the abovereferenced report (January 2017). To further support the closure recommendation, this submittal includes a data summary and evaluation of the DiSorbo-collected data. The semiannual data were collected from randomly selected locations within the Landfarm in general accordance with New Mexico Administrative Code (NMAC) Rule 36 (19.15.36 NMAC). For each semiannual sampling event, four samples were collected from the treatment zone and four samples from the vadose zone. Lab reports for the data are included as an Attachment B, and a Tier II data validation report for the June 2019 sampling event (the most recent sampling event) is provided as (Attachment C). The June 2019 data received additional validation because it is this data set that the Refinery is using to support the Landfarm closure request.

The June 2019 sampling data were compared to OCD Form C-137 EZ closure performance standards and alternative beneficial reuse soil screening levels (ABRSC). ABRSCs were developed by the Refinery conditionally approved by OCD in a letter dated November 4, 2011, and have been used to conduct Landfarm evaluations since that time. Rule 36 closure criteria rely on evaluation of treatment zone data; June 2019 treatment zone and vadose zone data are provided in Table 1. No sampling results (treatment zone or vadose zone) exceed the above-referenced standards/screening levels for the June 2019 sampling event.

92 Giant Crossing Road Gallup, NM 87301 The Refinery would like to move forward with the closure of the Central OCD Landfarm. Upon OCD approval of this request, the Refinery shall proceed with closure in general accordance with NMAC Rule 36 and the submittal of Form C-137 EZ and its requirements. If you have any questions or comments, please do not hesitate to call Brian Moore at 505-726-9745.

Certification

Icertify under penalty of law that this document and all attachments were prepared under my direction or supervision according to a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Sincerely, Marathon Petroleum Company LP, Gallup Refinery

Robert S. Hanks

Robert S. Hanks Refinery General Manager

Enclosures

cc B. Moore Marathon Gallup Refinery

Table

Sample ID	Date Sampled	1,1,1,2- Tetrachloroethane (mg/kg)	1,1,1-Trichloroethane (mg/kg)	1,1,2,2- Tetrachloroethane (mg/kg)	1,1,2-Trichloroethane (mg/kg)	1,1-Dichloroethane (mg/kg)	1,1-Dichloroethene (mg/kg)	1,1-Dichloropropene (mg/kg)	1,2,3-Trichlorobenzene (mg/kg)
CentralOCD-TZ01-06272019	06/27/19	ND(0.048)	ND(0.048)	ND(0.048)	ND(0.048)	ND(0.048)	ND(0.048)	ND(0.096)	ND(0.096)
	06/27/19	ND(0.05)	ND(0.05)	ND(0.05)	ND(0.05)	ND(0.05)	ND(0.05)	ND(0.1)	ND(0.1)
CentralOCD-TZ02-06272019	06/27/19	ND(0.049)	ND(0.049)	ND(0.049)	ND(0.049)	ND(0.049)	ND(0.049)	ND(0.099)	ND(0.099)
CentralOCD-TZ03-06272019	06/27/19	ND(0.05)	ND(0.05)	ND(0.05)	ND(0.05)	ND(0.05)	ND(0.05)	ND(0.1)	ND(0.1)
CentralOCD-TZ04-06272019	06/27/19	ND(0.05)	ND(0.05)	ND(0.05)	ND(0.05)	ND(0.05)	ND(0.05)	ND(0.099)	ND(0.099)
CentralOCD-VZ01-06272019	06/27/19	ND(0.048)	ND(0.048)	ND(0.048)	ND(0.048)	ND(0.048)	ND(0.048)	ND(0.096)	ND(0.096)
CentralOCD-VZ02-06272019	06/27/19	ND(0.048)	ND(0.048)	ND(0.048)	ND(0.048)	ND(0.048)	ND(0.048)	ND(0.097)	ND(0.097)
CentralOCD-VZ03-06272019	06/27/19	ND(0.048)	ND(0.048)	ND(0.048)	ND(0.048)	ND(0.048)	ND(0.048)	ND(0.096)	ND(0.096)
CentralOCD-VZ04-06272019	06/27/19	ND(0.049)	ND(0.049)	ND(0.049)	ND(0.049)	ND(0.049)	ND(0.049)	ND(0.098)	ND(0.098)

Action Level and ABRSC	NA	64,300	NA	1,240	6,880	1,830	NA	NA
NMAC Closure Standard	NA	NA	NA	NA	NA	NA	NA	NA

Notes:

There are no Action Level/Alternate Beneficial Reuse Soil Screening Level (ABRSC) exceedances. Dup - Duplicate

Jup - Duplicate J - Estimated concentration J- - Estimated concentration, but may be biased low mg/kg - milligrams per kilogram NA - Not Applicable ND - Non-Detect NMAC - New Mexico Administrative Code

OCD - Oil Conservation Division UJ - Estimated reporting limit

Sample ID	Date Sampled	1,2,3-Trichloropropane (mg/kg)	1,2,4-Trichlorobenzene (mg/kg)	1,2,4-Trimethylbenzene (mg/kg)	1,2-Dibromo- 3-chloropropane (mg/kg)	1,2-Dibromoethane (mg/kg)	1,2-Dichlorobenzene (mg/kg)	1,2-Dichloroethane (mg/kg)	1,2-Dichloropropane (mg/kg)
CentralOCD-TZ01-06272019	06/27/19	ND(0.096)	ND(0.23)	ND(0.048)	ND(0.096)	ND(0.048)	ND(0.23)	ND(0.048)	ND(0.048)
	06/27/19	ND(0.1)	ND(0.2)	ND(0.05)	ND(0.1)	ND(0.05)	ND(0.2)	ND(0.05)	ND(0.05)
CentralOCD-TZ02-06272019	06/27/19	ND(0.099)	ND(0.19)	ND(0.049)	ND(0.099)	ND(0.049)	ND(0.19)	ND(0.049)	ND(0.049)
CentralOCD-TZ03-06272019	06/27/19	ND(0.1)	ND(2.1)	ND(0.05)	ND(0.1)	ND(0.05)	ND(2.1)	ND(0.05)	ND(0.05)
CentralOCD-TZ04-06272019	06/27/19	ND(0.099)	ND(2)	ND(0.05)	ND(0.099)	ND(0.05)	ND(2)	ND(0.05)	ND(0.05)
CentralOCD-VZ01-06272019	06/27/19	ND(0.096)	ND(2)	ND(0.048)	ND(0.096)	ND(0.048)	ND(2)	ND(0.048)	ND(0.048)
CentralOCD-VZ02-06272019	06/27/19	ND(0.097)	ND(0.21)	ND(0.048)	ND(0.097)	ND(0.048)	ND(0.21)	ND(0.048)	ND(0.048)
CentralOCD-VZ03-06272019	06/27/19	ND(0.096)	ND(0.23)	ND(0.048)	ND(0.096)	ND(0.048)	ND(0.23)	ND(0.048)	ND(0.048)
CentralOCD-VZ04-06272019	06/27/19	ND(0.098)	ND(0.47)	ND(0.049)	ND(0.098)	ND(0.049)	ND(0.47)	ND(0.049)	ND(0.049)

Action Level and ABRSC	NA	NA	NA	NA	NA	NA	751	NA
NMAC Closure Standard	NA	NA						

Notes:

There are no Action Level/Alternate Beneficial Reuse Soil Screening Level (ABRSC) exceedances. Dup - Duplicate

Jup - Duplicate J - Estimated concentration J- - Estimated concentration, but may be biased low mg/kg - milligrams per kilogram NA - Not Applicable ND - Non-Detect NMAC - New Mexico Administrative Code

OCD - Oil Conservation Division UJ - Estimated reporting limit

Sample ID	Date Sampled	1,3,5-Trimethylbenzene (mg/kg)	1,3-Dichlorobenzene (mg/kg)	1,3-Dichloropropane (mg/kg)	1,4-Dichlorobenzene (mg/kg)	1-Methylnaphthalene (mg/kg)	2,2-Dichloropropane (mg/kg)	2,2'-oxybis (1-Chloropropane) (mg/kg)	2,4,5-Trichlorophenol (mg/kg)
CentralOCD-TZ01-06272019	06/27/19	ND(0.048)	ND(0.23)	ND(0.048)	ND(0.23)	ND(0.23)	ND(0.096)	ND(0.23)	ND(0.23)
	06/27/19	ND(0.05)	ND(0.2)	ND(0.05)	ND(0.2)	ND(0.2)	ND(0.1)	ND(0.2)	ND(0.2)
CentralOCD-TZ02-06272019	06/27/19	ND(0.049)	ND(0.19)	ND(0.049)	ND(0.19)	ND(0.2)	ND(0.099)	ND(0.19)	ND(0.19)
CentralOCD-TZ03-06272019	06/27/19	ND(0.05)	ND(2.1)	ND(0.05)	ND(2.1)	ND(2.1)	ND(0.1)	ND(2.1)	ND(2.1)
CentralOCD-TZ04-06272019	06/27/19	ND(0.05)	ND(2)	ND(0.05)	ND(2)	ND(2)	ND(0.099)	ND(2)	ND(2)
CentralOCD-VZ01-06272019	06/27/19	ND(0.048)	ND(2)	ND(0.048)	ND(2)	ND(2)	ND(0.096)	ND(2)	ND(2)
CentralOCD-VZ02-06272019	06/27/19	ND(0.048)	ND(0.21)	ND(0.048)	ND(0.21)	ND(0.21)	ND(0.097)	ND(0.21)	ND(0.21)
CentralOCD-VZ03-06272019	06/27/19	ND(0.048)	ND(0.23)	ND(0.048)	ND(0.23)	ND(0.23)	ND(0.096)	ND(0.23)	ND(0.23)
CentralOCD-VZ04-06272019	06/27/19	ND(0.049)	ND(0.47)	ND(0.049)	ND(0.47)	ND(0.47)	ND(0.098)	ND(0.47)	ND(0.47)

Action Level and ABRSC	NA	NA	NA	NA	0.6	NA	NA	23,800
NMAC Closure Standard	NA	NA	NA	NA	NA	NA	NA	NA

Notes:

There are no Action Level/Alternate Beneficial Reuse Soil Screening Level (ABRSC) exceedances. Dup - Duplicate

Jup - Duplicate J - Estimated concentration J- - Estimated concentration, but may be biased low mg/kg - milligrams per kilogram NA - Not Applicable ND - Non-Detect NMAC - New Mexico Administrative Code

OCD - Oil Conservation Division

UJ - Estimated reporting limit

Sample ID	Date Sampled	2,4,6-Trichlorophenol (mg/kg)	2,4-Dichlorophenol (mg/kg)	2,4-Dimethylphenol (mg/kg)	2,4-Dinitrophenol (mg/kg)	2,4-Dinitrotoluene (mg/kg)	2,6-Dinitrotoluene (mg/kg)	2-Butanone (mg/kg)	2-Chloronaphthalene (mg/kg)
CentralOCD-TZ01-06272019	06/27/19	ND(0.23)	ND(0.47)	ND(0.35)	ND(0.59)	ND(0.59)	ND(0.59)	0.1 J	ND(0.29)
	06/27/19	ND(0.2)	ND(0.4)	ND(0.3)	ND(0.5)	ND(0.5)	ND(0.5)	0.069 J	ND(0.25)
CentralOCD-TZ02-06272019	06/27/19	ND(0.19)	ND(0.37)	ND(0.28)	ND(0.46)	ND(0.46)	ND(0.46)	0.084 J	ND(0.23)
CentralOCD-TZ03-06272019	06/27/19	ND(2.1)	ND(4.3)	ND(3.2)	ND(5.4)	ND(5.4)	ND(5.4)	0.1 J	ND(2.7)
CentralOCD-TZ04-06272019	06/27/19	ND(2)	ND(4.1)	ND(3)	ND(5.1)	ND(5.1)	ND(5.1)	0.081 J	ND(2.5)
CentralOCD-VZ01-06272019	06/27/19	ND(2)	ND(3.9)	ND(2.9)	ND(4.9)	ND(4.9)	ND(4.9)	0.073 J	ND(2.4)
CentralOCD-VZ02-06272019	06/27/19	ND(0.21)	ND(0.42)	ND(0.31)	ND(0.52)	ND(0.52)	ND(0.52)	0.078 J	ND(0.26)
CentralOCD-VZ03-06272019	06/27/19	ND(0.23)	ND(0.46)	ND(0.34)	ND(0.57)	ND(0.57)	ND(0.57)	ND(0.48)	ND(0.29)
CentralOCD-VZ04-06272019	06/27/19	ND(0.47)	ND(0.94)	ND(0.71)	ND(1.2)	ND(1.2)	ND(1.2)	0.096 J	ND(0.59)

Action Level and ABRSC	238	715	4,760	476	NA	NA	NA	NA
NMAC Closure Standard	NA	NA	NA	NA	NA	NA	NA	NA

Notes:

There are no Action Level/Alternate Beneficial Reuse Soil Screening Level (ABRSC) exceedances. Dup - Duplicate

Jup - Duplicate J - Estimated concentration J- - Estimated concentration, but may be biased low mg/kg - milligrams per kilogram NA - Not Applicable ND - Non-Detect NMAC - New Mexico Administrative Code

OCD - Oil Conservation Division UJ - Estimated reporting limit

Sample ID	Date Sampled	2-Chlorophenol (mg/kg)	2-Chlorotoluene (mg/kg)	2-Hexanone (mg/kg)	2-Methylnaphthalene (mg/kg)	2-Methylphenol (mg/kg)	2-Nitroaniline (mg/kg)	2-Nitrophenol (mg/kg)	3,3'-Dichlorobenzidine (mg/kg)
CentralOCD-TZ01-06272019	06/27/19	ND(0.23)	ND(0.048)	ND(0.48)	ND(0.23)	ND(0.47)	ND(0.23)	ND(0.23)	ND(0.29)
	06/27/19	ND(0.2)	ND(0.05)	ND(0.5)	ND(0.2)	ND(0.4)	ND(0.2)	ND(0.2)	ND(0.25)
CentralOCD-TZ02-06272019	06/27/19	ND(0.19)	ND(0.049)	ND(0.49)	ND(0.2)	ND(0.37)	ND(0.19)	ND(0.19)	ND(0.23)
CentralOCD-TZ03-06272019	06/27/19	ND(2.1)	ND(0.05)	ND(0.5)	ND(2.1)	ND(4.3)	ND(2.1)	ND(2.1)	ND(2.7)
CentralOCD-TZ04-06272019	06/27/19	ND(2)	ND(0.05)	ND(0.5)	ND(2)	ND(4.1)	ND(2)	ND(2)	ND(2.5)
CentralOCD-VZ01-06272019	06/27/19	ND(2)	ND(0.048)	ND(0.48)	ND(2)	ND(3.9)	ND(2)	ND(2)	ND(2.4)
CentralOCD-VZ02-06272019	06/27/19	ND(0.21)	ND(0.048)	ND(0.48)	ND(0.21)	ND(0.42)	ND(0.21)	ND(0.21)	ND(0.26)
CentralOCD-VZ03-06272019	06/27/19	ND(0.23)	ND(0.048)	ND(0.48)	ND(0.23)	ND(0.46)	ND(0.23)	ND(0.23)	ND(0.29)
CentralOCD-VZ04-06272019	06/27/19	ND(0.47)	ND(0.049)	ND(0.49)	ND(0.47)	ND(0.94)	ND(0.47)	ND(0.47)	ND(0.59)

Action Level and ABRSC	1,550	NA	NA	0.6	0.1	NA	0.1	NA
NMAC Closure Standard	NA	NA	NA	NA	NA	NA	NA	NA

Notes:

There are no Action Level/Alternate Beneficial Reuse Soil Screening Level (ABRSC) exceedances. Dup - Duplicate

Jup - Duplicate J - Estimated concentration J- - Estimated concentration, but may be biased low mg/kg - milligrams per kilogram NA - Not Applicable ND - Non-Detect NMAC - New Mexico Administrative Code

OCD - Oil Conservation Division UJ - Estimated reporting limit

				2-Methyl-4,6-	4-Bromophenyl			4-Chlorophenyl	
Sample ID	Date Sampled	3,4-Methylphenol (mg/kg)	3-Nitroaniline (mg/kg)	dinitrophenol (mg/kg)	phenyl ether (mg/kg)	4-Chloro-3-Methylphenol (mg/kg)	4-Chloroaniline (mg/kg)	phenyl ether (mg/kg)	4-Chlorotoluene (mg/kg)
CentralOCD-TZ01-06272019	06/27/19	ND(0.23)	ND(0.23)	ND(0.47)	ND(0.23)	ND(0.59)	ND(0.59)	ND(0.23)	ND(0.048)
	06/27/19	ND(0.2)	ND(0.2)	ND(0.4)	ND(0.2)	ND(0.5)	ND(0.5)	ND(0.2)	ND(0.05)
CentralOCD-TZ02-06272019	06/27/19	ND(0.19)	ND(0.19)	ND(0.37)	ND(0.19)	ND(0.46)	ND(0.46)	ND(0.19)	ND(0.049)
CentralOCD-TZ03-06272019	06/27/19	ND(2.1)	ND(2.1)	ND(4.3)	ND(2.1)	ND(5.4)	ND(5.4)	ND(2.1)	ND(0.05)
CentralOCD-TZ04-06272019	06/27/19	ND(2)	ND(2)	ND(4.1)	ND(2)	ND(5.1)	ND(5.1)	ND(2)	ND(0.05)
CentralOCD-VZ01-06272019	06/27/19	ND(2)	ND(2)	ND(3.9)	ND(2)	ND(4.9)	ND(4.9)	ND(2)	ND(0.048)
CentralOCD-VZ02-06272019	06/27/19	ND(0.21)	ND(0.21)	ND(0.42)	ND(0.21)	ND(0.52)	ND(0.52)	ND(0.21)	ND(0.048)
CentralOCD-VZ03-06272019	06/27/19	ND(0.23)	ND(0.23)	ND(0.46)	ND(0.23)	ND(0.57)	ND(0.57)	ND(0.23)	ND(0.048)
CentralOCD-VZ04-06272019	06/27/19	ND(0.47)	ND(0.47)	ND(0.94)	ND(0.47)	ND(1.2)	ND(1.2)	ND(0.47)	ND(0.049)

Action Level and ABRSC	0.1	NA	23.8	NA	0.1	NA	NA	NA
NMAC Closure Standard	NA	NA	NA	NA	NA	NA	NA	NA

Notes:

There are no Action Level/Alternate Beneficial Reuse Soil Screening Level (ABRSC) exceedances. Dup - Duplicate

Jup - Duplicate J - Estimated concentration J- - Estimated concentration, but may be biased low mg/kg - milligrams per kilogram NA - Not Applicable ND - Non-Detect NMAC - New Mexico Administrative Code

OCD - Oil Conservation Division UJ - Estimated reporting limit

Sample ID	Date Sampled	4-Methyl-2-Pentanone (mg/kg)	4-Nitroaniline (mg/kg)	4-Nitrophenol (mg/kg)	Acenaphthene (mg/kg)	Acenaphthylene (mg/kg)	Acetone (mg/kg)	Aniline (mg/kg)	Anthracene (mg/kg)
CentralOCD-TZ01-06272019	06/27/19	ND(0.48)	ND(0.47)	ND(0.29)	ND(0.23)	ND(0.23)	ND(0.72)	ND(0.23)	ND(0.23)
	06/27/19	ND(0.5)	ND(0.4)	ND(0.25)	ND(0.2)	ND(0.2)	ND(0.75)	ND(0.2)	ND(0.2)
CentralOCD-TZ02-06272019	06/27/19	ND(0.49)	ND(0.37)	ND(0.23)	ND(0.19)	ND(0.19)	ND(0.74)	ND(0.19)	ND(0.19)
CentralOCD-TZ03-06272019	06/27/19	ND(0.5)	ND(4.3)	ND(2.7)	ND(2.1)	ND(2.1)	ND(0.75)	ND(2.1)	ND(2.1)
CentralOCD-TZ04-06272019	06/27/19	ND(0.5)	ND(4.1)	ND(2.5)	ND(2)	ND(2)	ND(0.74)	ND(2)	ND(2)
CentralOCD-VZ01-06272019	06/27/19	ND(0.48)	ND(3.9)	ND(2.4)	ND(2)	ND(2)	ND(0.72)	ND(2)	ND(2)
CentralOCD-VZ02-06272019	06/27/19	ND(0.48)	ND(0.42)	ND(0.26)	ND(0.21)	ND(0.21)	ND(0.73)	ND(0.21)	ND(0.21)
CentralOCD-VZ03-06272019	06/27/19	ND(0.48)	ND(0.46)	ND(0.29)	ND(0.23)	ND(0.23)	ND(0.72)	ND(0.23)	ND(0.23)
CentralOCD-VZ04-06272019	06/27/19	ND(0.49)	ND(0.94)	ND(0.59)	ND(0.47)	ND(0.47)	ND(0.74)	ND(0.47)	ND(0.47)

Action Level and ABRSC	NA	NA	0.1	18,600	0.6	NA	NA	66,800
NMAC Closure Standard	NA	NA	NA	NA	NA	NA	NA	NA

Notes:

There are no Action Level/Alternate Beneficial Reuse Soil Screening Level (ABRSC) exceedances. Dup - Duplicate

Jup - Duplicate J - Estimated concentration J- - Estimated concentration, but may be biased low mg/kg - milligrams per kilogram NA - Not Applicable ND - Non-Detect NMAC - New Mexico Administrative Code

OCD - Oil Conservation Division UJ - Estimated reporting limit

Sample ID	Date Sampled	Azobenzene (mg/kg)	Benzene (mg/kg)	Benzo(a)anthracene (mg/kg)	Benzo(a)pyrene (mg/kg)	Benzo(b)fluoranthene (mg/kg)	Benzo(ghi)perylene (mg/kg)	Benzo(k)fluoranthene (mg/kg)	Benzoic Acid (mg/kg)
CentralOCD-TZ01-06272019	06/27/19	ND(0.23)	ND(0.024)	ND(0.23)	ND(0.23)	ND(0.23)	ND(0.23)	ND(0.23)	0.12 J
	06/27/19	ND(0.2)	ND(0.025)	ND(0.2)	ND(0.2)	ND(0.2)	ND(0.2)	ND(0.2)	ND(0.5)
CentralOCD-TZ02-06272019	06/27/19	ND(0.19)	ND(0.025)	ND(0.19)	ND(0.19)	ND(0.19)	ND(0.19)	ND(0.19)	0.096 J
CentralOCD-TZ03-06272019	06/27/19	ND(2.1)	ND(0.025)	ND(2.1)	ND(2.1)	ND(2.1)	ND(2.1)	ND(2.1)	ND(5.4)
CentralOCD-TZ04-06272019	06/27/19	ND(2)	ND(0.025)	1.1 J	ND(2)	ND(2)	ND(2)	ND(2)	1.1 J
CentralOCD-VZ01-06272019	06/27/19	ND(2)	ND(0.024)	ND(2)	ND(2)	ND(2)	ND(2)	ND(2)	ND(4.9)
CentralOCD-VZ02-06272019	06/27/19	ND(0.21)	ND(0.024)	ND(0.21)	ND(0.21)	ND(0.21)	ND(0.21)	ND(0.21)	0.11 J
CentralOCD-VZ03-06272019	06/27/19	ND(0.23)	ND(0.024)	ND(0.23)	ND(0.23)	ND(0.23)	ND(0.23)	ND(0.23)	ND(0.57)
CentralOCD-VZ04-06272019	06/27/19	ND(0.47)	ND(0.025)	ND(0.47)	ND(0.47)	ND(0.47)	ND(0.47)	ND(0.47)	0.24 J

Action Level and ABRSC	NA	0.2	213	21.3	213	0.6	2,060	NA
NMAC Closure Standard	NA	0.2	NA	NA	NA	NA	NA	NA

Notes:

There are no Action Level/Alternate Beneficial Reuse Soil Screening Level (ABRSC) exceedances. Dup - Duplicate

Jup - Duplicate J - Estimated concentration J- - Estimated concentration, but may be biased low mg/kg - milligrams per kilogram NA - Not Applicable ND - Non-Detect NMAC - New Mexico Administrative Code

OCD - Oil Conservation Division UJ - Estimated reporting limit

			Bis(2-chloroethoxy)		Bis(2-ethylhexyl)				
Sample ID	Date Sampled	Benzyl Alcohol	methane	Bis(2-chloroethyl)ether	phthalate	Bromobenzene	Bromodichloromethane	Bromoform	Bromomethane (mg/kg)
		(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	
CentralOCD-TZ01-06272019	06/27/19	ND(0.23)	ND(0.23)	ND(0.23)	ND(0.59)	ND(0.048)	ND(0.048)	ND(0.048)	ND(0.14)
	06/27/19	ND(0.2)	ND(0.2)	ND(0.2)	ND(0.5)	ND(0.05)	ND(0.05)	ND(0.05)	ND(0.15)
CentralOCD-TZ02-06272019	06/27/19	ND(0.19)	ND(0.19)	ND(0.19)	0.14 J	ND(0.049)	ND(0.049)	ND(0.049)	ND(0.15)
CentralOCD-TZ03-06272019	06/27/19	ND(2.1)	ND(2.1)	ND(2.1)	ND(5.4)	ND(0.05)	ND(0.05)	ND(0.05)	ND(0.15)
CentralOCD-TZ04-06272019	06/27/19	ND(2)	ND(2)	ND(2)	ND(5.1)	ND(0.05)	ND(0.05)	ND(0.05)	ND(0.15)
CentralOCD-VZ01-06272019	06/27/19	ND(2)	ND(2)	ND(2)	ND(4.9)	ND(0.048)	ND(0.048)	ND(0.048)	ND(0.14)
CentralOCD-VZ02-06272019	06/27/19	ND(0.21)	ND(0.21)	ND(0.21)	0.28 J	ND(0.048)	ND(0.048)	ND(0.048)	ND(0.15)
CentralOCD-VZ03-06272019	06/27/19	ND(0.23)	ND(0.23)	ND(0.23)	ND(0.57)	ND(0.048)	ND(0.048)	ND(0.048)	ND(0.14)
CentralOCD-VZ04-06272019	06/27/19	ND(0.47)	ND(0.47)	ND(0.47)	ND(1.2)	ND(0.049)	ND(0.049)	ND(0.049)	ND(0.15)

| Action Level and ABRSC | NA |
|------------------------|----|----|----|----|----|----|----|----|
| NMAC Closure Standard | NA |

Notes:

There are no Action Level/Alternate Beneficial Reuse Soil Screening Level (ABRSC) exceedances. Dup - Duplicate

Jup - Duplicate J - Estimated concentration J- - Estimated concentration, but may be biased low mg/kg - milligrams per kilogram NA - Not Applicable ND - Non-Detect NMAC - New Mexico Administrative Code

OCD - Oil Conservation Division UJ - Estimated reporting limit

Sample ID	Date Sampled	Benzyl Butyl Phthalate (mg/kg)	Carbazole (mg/kg)	Carbon Disulfide (mg/kg)	Carbon Tetrachloride (mg/kg)	Chlorobenzene (mg/kg)	Chloroethane (mg/kg)	Chloroform (mg/kg)	Chloromethane (mg/kg)
CentralOCD-TZ01-06272019	06/27/19	ND(0.23)	ND(0.23)	ND(0.48)	ND(0.048)	ND(0.048)	ND(0.096)	ND(0.048)	ND(0.14)
	06/27/19	ND(0.2)	ND(0.2)	ND(0.5)	ND(0.05)	ND(0.05)	ND(0.1)	ND(0.05)	ND(0.15)
CentralOCD-TZ02-06272019	06/27/19	ND(0.19)	ND(0.19)	ND(0.49)	ND(0.049)	ND(0.049)	ND(0.099)	ND(0.049)	ND(0.15)
CentralOCD-TZ03-06272019	06/27/19	ND(2.1)	ND(2.1)	ND(0.5)	ND(0.05)	ND(0.05)	ND(0.1)	ND(0.05)	ND(0.15)
CentralOCD-TZ04-06272019	06/27/19	ND(2)	ND(2)	ND(0.5)	ND(0.05)	ND(0.05)	ND(0.099)	ND(0.05)	ND(0.15)
CentralOCD-VZ01-06272019	06/27/19	ND(2)	ND(2)	ND(0.48)	ND(0.048)	ND(0.048)	ND(0.096)	ND(0.048)	ND(0.14)
CentralOCD-VZ02-06272019	06/27/19	ND(0.21)	ND(0.21)	ND(0.48)	ND(0.048)	ND(0.048)	ND(0.097)	ND(0.048)	ND(0.15)
CentralOCD-VZ03-06272019	06/27/19	ND(0.23)	ND(0.23)	ND(0.48)	ND(0.048)	ND(0.048)	ND(0.096)	ND(0.048)	ND(0.14)
CentralOCD-VZ04-06272019	06/27/19	ND(0.47)	ND(0.47)	ND(0.49)	ND(0.049)	ND(0.049)	ND(0.098)	ND(0.049)	ND(0.15)

Action Level and ABRSC	NA	NA	NA	199	NA	NA	671	NA
NMAC Closure Standard	NA	NA	NA	NA	NA	NA	NA	NA

Notes:

There are no Action Level/Alternate Beneficial Reuse Soil Screening Level (ABRSC) exceedances. Dup - Duplicate

Jup - Duplicate J - Estimated concentration J- - Estimated concentration, but may be biased low mg/kg - milligrams per kilogram NA - Not Applicable ND - Non-Detect NMAC - New Mexico Administrative Code

OCD - Oil Conservation Division

UJ - Estimated reporting limit

Sample ID	Date Sampled	Chrysene (mg/kg)	cis-1,2-Dichloroethene (mg/kg)	cis-1,3-Dichloropropene (mg/kg)	Dibenz(a,h)anthracene (mg/kg)	Dibenzofuran (mg/kg)	Dibromochloromethane (mg/kg)	Dibromomethane (mg/kg)	Dichlorodifluoromethane (mg/kg)
CentralOCD-TZ01-06272019	06/27/19	ND(0.23)	ND(0.048)	ND(0.048)	ND(0.23)	ND(0.23)	ND(0.048)	ND(0.048)	ND(0.048)
	06/27/19	ND(0.2)	ND(0.05)	ND(0.05)	ND(0.2)	ND(0.2)	ND(0.05)	ND(0.05)	ND(0.05)
CentralOCD-TZ02-06272019	06/27/19	ND(0.19)	ND(0.049)	ND(0.049)	ND(0.19)	ND(0.19)	ND(0.049)	ND(0.049)	ND(0.049)
CentralOCD-TZ03-06272019	06/27/19	ND(2.1)	ND(0.05)	ND(0.05)	ND(2.1)	ND(2.1)	ND(0.05)	ND(0.05)	ND(0.05)
CentralOCD-TZ04-06272019	06/27/19	ND(2)	ND(0.05)	ND(0.05)	ND(2)	ND(2)	ND(0.05)	ND(0.05)	ND(0.05)
CentralOCD-VZ01-06272019	06/27/19	ND(2)	ND(0.048)	ND(0.048)	ND(2)	ND(2)	ND(0.048)	ND(0.048)	ND(0.048)
CentralOCD-VZ02-06272019	06/27/19	ND(0.21)	ND(0.048)	ND(0.048)	ND(0.21)	ND(0.21)	ND(0.048)	ND(0.048)	ND(0.048)
CentralOCD-VZ03-06272019	06/27/19	ND(0.23)	ND(0.048)	ND(0.048)	ND(0.23)	ND(0.23)	ND(0.048)	ND(0.048)	ND(0.048)
CentralOCD-VZ04-06272019	06/27/19	ND(0.47)	ND(0.049)	ND(0.049)	ND(0.47)	ND(0.47)	ND(0.049)	ND(0.049)	ND(0.049)

Action Level and ABRSC	20,600	NA	NA	21.3	NA	NA	0.002	NA
NMAC Closure Standard	NA	NA	NA	NA	NA	NA	NA	NA

Notes:

There are no Action Level/Alternate Beneficial Reuse Soil Screening Level (ABRSC) exceedances. Dup - Duplicate

Jup - Duplicate J - Estimated concentration J- - Estimated concentration, but may be biased low mg/kg - milligrams per kilogram NA - Not Applicable ND - Non-Detect NMAC - New Mexico Administrative Code

OCD - Oil Conservation Division UJ - Estimated reporting limit

Sample ID	Date Sampled	Diethyl Phthalate (mg/kg)	Dimethyl Phthalate (mg/kg)	Di-n-butylphthalate (mg/kg)	Di-n-octylphthalate (mg/kg)	Ethylbenzene (mg/kg)	Fluoranthene (mg/kg)	Fluorene (mg/kg)	Hexachlorobenzene (mg/kg)
CentralOCD-TZ01-06272019	06/27/19	ND(0.23)	ND(0.23)	ND(0.47)	ND(0.47)	ND(0.048)	ND(0.23)	ND(0.23)	ND(0.23)
	06/27/19	ND(0.2)	ND(0.2)	ND(0.4)	ND(0.4)	ND(0.05)	ND(0.2)	ND(0.2)	ND(0.2)
CentralOCD-TZ02-06272019	06/27/19	ND(0.19)	ND(0.19)	ND(0.37)	ND(0.37)	ND(0.049)	ND(0.19)	ND(0.19)	ND(0.19)
CentralOCD-TZ03-06272019	06/27/19	ND(2.1)	ND(2.1)	ND(4.3)	ND(4.3)	ND(0.05)	ND(2.1)	ND(2.1)	ND(2.1)
CentralOCD-TZ04-06272019	06/27/19	ND(2)	ND(2)	ND(4.1)	ND(4.1)	ND(0.05)	ND(2)	ND(2)	ND(2)
CentralOCD-VZ01-06272019	06/27/19	ND(2)	ND(2)	ND(3.9)	ND(3.9)	ND(0.048)	ND(2)	ND(2)	ND(2)
CentralOCD-VZ02-06272019	06/27/19	ND(0.21)	ND(0.21)	0.23 J	ND(0.42)	ND(0.048)	ND(0.21)	ND(0.21)	ND(0.21)
CentralOCD-VZ03-06272019	06/27/19	ND(0.23)	ND(0.23)	ND(0.46)	ND(0.46)	ND(0.048)	ND(0.23)	ND(0.23)	ND(0.23)
CentralOCD-VZ04-06272019	06/27/19	ND(0.47)	ND(0.47)	ND(0.94)	ND(0.94)	ND(0.049)	ND(0.47)	ND(0.47)	ND(0.47)

Action Level and ABRSC	NA	NA	NA	NA	50	8,910	8,910	NA
NMAC Closure Standard	NA	NA	NA	NA	NA	NA	NA	NA

Notes:

There are no Action Level/Alternate Beneficial Reuse Soil Screening Level (ABRSC) exceedances. Dup - Duplicate

Jup - Duplicate J - Estimated concentration J- - Estimated concentration, but may be biased low mg/kg - milligrams per kilogram NA - Not Applicable ND - Non-Detect NMAC - New Mexico Administrative Code

OCD - Oil Conservation Division UJ - Estimated reporting limit

Sample ID	Date Sampled	Hexachlorobutadiene (mg/kg)	Hexachloro cyclopentadiene (mg/kg)	Hexachloroethane (mg/kg)	Indeno-(1,2,3-cd)pyrene (mg/kg)	lsophorone (mg/kg)	Isopropylbenzene (mg/kg)	Methylene Chloride (mg/kg)	MTBE (mg/kg)
CentralOCD-TZ01-06272019	06/27/19	ND(0.23)	ND(0.23)	ND(0.23)	ND(0.23)	ND(0.47)	ND(0.048)	ND(0.14)	ND(0.048)
06/27/19	06/27/19	ND(0.2)	ND(0.2)	ND(0.2)	ND(0.2)	ND(0.4)	ND(0.05)	ND(0.15)	ND(0.05)
CentralOCD-TZ02-06272019	06/27/19	ND(0.19)	ND(0.19)	ND(0.19)	ND(0.19)	ND(0.37)	ND(0.049)	ND(0.15)	ND(0.049)
CentralOCD-TZ03-06272019	06/27/19	ND(2.1)	ND(2.1)	ND(2.1)	ND(2.1)	ND(4.3)	ND(0.05)	ND(0.15)	ND(0.05)
CentralOCD-TZ04-06272019	06/27/19	ND(2)	ND(2)	ND(2)	ND(2)	ND(4.1)	ND(0.05)	ND(0.15)	ND(0.05)
CentralOCD-VZ01-06272019	06/27/19	ND(2)	ND(2)	ND(2)	ND(2)	ND(3.9)	ND(0.048)	ND(0.14)	ND(0.048)
CentralOCD-VZ02-06272019	06/27/19	ND(0.21)	ND(0.21)	ND(0.21)	ND(0.21)	ND(0.42)	ND(0.048)	ND(0.15)	ND(0.048)
CentralOCD-VZ03-06272019	06/27/19	ND(0.23)	ND(0.23)	ND(0.23)	ND(0.23)	ND(0.46)	ND(0.048)	ND(0.14)	ND(0.048)
CentralOCD-VZ04-06272019	06/27/19	ND(0.47)	ND(0.47)	ND(0.47)	ND(0.47)	ND(0.94)	ND(0.049)	ND(0.15)	ND(0.049)

Action Level and ABRSC	NA	NA	NA	213	NA	NA	10,600	NA
NMAC Closure Standard	NA	NA	NA	NA	NA	NA	NA	NA

Notes:

There are no Action Level/Alternate Beneficial Reuse Soil Screening Level (ABRSC) exceedances. Dup - Duplicate

Jup - Duplicate J - Estimated concentration J- - Estimated concentration, but may be biased low mg/kg - milligrams per kilogram NA - Not Applicable ND - Non-Detect NMAC - New Mexico Administrative Code

OCD - Oil Conservation Division UJ - Estimated reporting limit

Sample ID	Date Sampled	Naphthalene (mg/kg)	n-Butylbenzene (mg/kg)	Nitrobenzene (mg/kg)	Nitrogen, Nitrate (mg/kg)	N-Nitrosodi-n- propylamine (mg/kg)	N-Nitroso diphenylamine (mg/kg)	n-Propylbenzene (mg/kg)	Pentachlorophenol (mg/kg)
CentralOCD-TZ01-06272019	06/27/19	ND(0.23)	ND(0.14)	ND(0.47)	4.5 J-	ND(0.23)	ND(0.23)	ND(0.048)	ND(0.47)
	06/27/19	ND(0.2)	ND(0.15)	ND(0.4)	4.9 J-	ND(0.2)	ND(0.2)	ND(0.05)	ND(0.4)
CentralOCD-TZ02-06272019	06/27/19	ND(0.19)	ND(0.15)	ND(0.37)	4.2 J-	ND(0.19)	ND(0.19)	ND(0.049)	ND(0.37)
CentralOCD-TZ03-06272019	06/27/19	ND(2.1)	ND(0.15)	ND(4.3)	13 J-	ND(2.1)	ND(2.1)	ND(0.05)	ND(4.3)
CentralOCD-TZ04-06272019	06/27/19	ND(2)	ND(0.15)	ND(4.1)	4 J-	ND(2)	ND(2)	ND(0.05)	ND(4.1)
CentralOCD-VZ01-06272019	06/27/19	ND(2)	ND(0.14)	ND(3.9)	2.4 J-	ND(2)	ND(2)	ND(0.048)	ND(3.9)
CentralOCD-VZ02-06272019	06/27/19	ND(0.21)	ND(0.15)	ND(0.42)	2 J-	ND(0.21)	ND(0.21)	ND(0.048)	ND(0.42)
CentralOCD-VZ03-06272019	06/27/19	ND(0.23)	ND(0.14)	ND(0.46)	6.7 J-	ND(0.23)	ND(0.23)	ND(0.048)	ND(0.46)
CentralOCD-VZ04-06272019	06/27/19	ND(0.47)	ND(0.15)	ND(0.94)	3.1 J-	ND(0.47)	ND(0.47)	ND(0.049)	ND(0.94)

Action Level and ABRSC	702	NA	NA	496,000	NA	NA	NA	1,030
NMAC Closure Standard	NA	NA	NA	NA	NA	NA	NA	NA

Notes:

There are no Action Level/Alternate Beneficial Reuse Soil Screening Level (ABRSC) exceedances. Dup - Duplicate

Jup - Duplicate J - Estimated concentration J- - Estimated concentration, but may be biased low mg/kg - milligrams per kilogram NA - Not Applicable ND - Non-Detect NMAC - New Mexico Administrative Code

OCD - Oil Conservation Division

UJ - Estimated reporting limit

Sample ID	Date Sampled	Phenanthrene (mg/kg)	Phenol (mg/kg)	p-lsopropyltoluene (mg/kg)	Pyrene (mg/kg)	Pyridine (mg/kg)	sec-Butylbenzene (mg/kg)	Styrene (mg/kg)	tert-Butylbenzene (mg/kg)
CentralOCD-TZ01-06272019	06/27/19	ND(0.23)	ND(0.23)	ND(0.048)	ND(0.23)	ND(0.47)	ND(0.048)	ND(0.048)	ND(0.048)
	06/27/19	ND(0.2)	ND(0.2)	ND(0.05)	ND(0.2)	ND(0.4)	ND(0.05)	ND(0.05)	ND(0.05)
CentralOCD-TZ02-06272019	06/27/19	ND(0.19)	ND(0.19)	ND(0.049)	ND(0.19)	ND(0.37)	ND(0.049)	ND(0.049)	ND(0.049)
CentralOCD-TZ03-06272019	06/27/19	ND(2.1)	ND(2.1)	ND(0.05)	ND(2.1)	ND(4.3)	ND(0.05)	ND(0.05)	ND(0.05)
CentralOCD-TZ04-06272019	06/27/19	ND(2)	ND(2)	ND(0.05)	ND(2)	ND(4.1)	ND(0.05)	ND(0.05)	ND(0.05)
CentralOCD-VZ01-06272019	06/27/19	ND(2)	ND(2)	ND(0.048)	ND(2)	ND(3.9)	ND(0.048)	ND(0.048)	ND(0.048)
CentralOCD-VZ02-06272019	06/27/19	ND(0.21)	ND(0.21)	ND(0.048)	ND(0.21)	ND(0.42)	ND(0.048)	ND(0.048)	ND(0.048)
CentralOCD-VZ03-06272019	06/27/19	ND(0.23)	ND(0.23)	ND(0.048)	ND(0.23)	ND(0.46)	ND(0.048)	ND(0.048)	ND(0.048)
CentralOCD-VZ04-06272019	06/27/19	ND(0.47)	ND(0.47)	ND(0.049)	ND(0.47)	ND(0.94)	ND(0.049)	ND(0.049)	ND(0.049)

Action Level and ABRSC	7,150	68,800	NA	6,680	NA	NA	NA	NA
NMAC Closure Standard	NA	ŇA	NA	NA	NA	NA	NA	NA

Notes:

There are no Action Level/Alternate Beneficial Reuse Soil Screening Level (ABRSC) exceedances. Dup - Duplicate

Jup - Duplicate J - Estimated concentration J- - Estimated concentration, but may be biased low mg/kg - milligrams per kilogram NA - Not Applicable ND - Non-Detect NMAC - New Mexico Administrative Code

OCD - Oil Conservation Division

UJ - Estimated reporting limit

Sample ID	Date Sampled	Tetrachloroethene (mg/kg)	Toluene (mg/kg)	trans-1,2-Dichloroethene (mg/kg)	trans-1,3- Dichloropropene (mg/kg)	Trichloroethene (mg/kg)	Trichlorofluoromethane (mg/kg)	Vinyl Chloride (mg/kg)	Xylenes, Total (mg/kg)
CentralOCD-TZ01-06272019	06/27/19	ND(0.048)	ND(0.048)	ND(0.048)	ND(0.048)	ND(0.048)	ND(0.048)	ND(0.048)	ND(0.096)
	06/27/19	ND(0.05)	ND(0.05)	ND(0.05)	ND(0.05)	ND(0.05)	ND(0.05)	ND(0.05)	ND(0.1)
CentralOCD-TZ02-06272019	06/27/19	ND(0.049)	ND(0.049)	ND(0.049)	ND(0.049)	ND(0.049)	ND(0.049)	ND(0.049)	ND(0.099)
CentralOCD-TZ03-06272019	06/27/19	ND(0.05)	ND(0.05)	ND(0.05)	ND(0.05)	ND(0.05)	ND(0.05)	ND(0.05)	ND(0.1)
CentralOCD-TZ04-06272019	06/27/19	ND(0.05)	ND(0.05)	ND(0.05)	ND(0.05)	ND(0.05)	ND(0.05)	ND(0.05)	ND(0.099)
CentralOCD-VZ01-06272019	06/27/19	ND(0.048)	ND(0.048)	ND(0.048)	ND(0.048)	ND(0.048)	ND(0.048)	ND(0.048)	ND(0.096)
CentralOCD-VZ02-06272019	06/27/19	ND(0.048)	ND(0.048)	ND(0.048)	ND(0.048)	ND(0.048)	ND(0.048)	ND(0.048)	ND(0.097)
CentralOCD-VZ03-06272019	06/27/19	ND(0.048)	ND(0.048)	ND(0.048)	ND(0.048)	ND(0.048)	ND(0.048)	ND(0.048)	ND(0.096)
CentralOCD-VZ04-06272019	06/27/19	ND(0.049)	ND(0.049)	ND(0.049)	ND(0.049)	ND(0.049)	ND(0.049)	ND(0.049)	ND(0.098)

Action Level and ABRSC	338	50	NA	NA	4,600	NA	248	50
NMAC Closure Standard	NA	NA	NA	NA	NA	NA	NA	NA

Notes:

There are no Action Level/Alternate Beneficial Reuse Soil Screening Level (ABRSC) exceedances. Dup - Duplicate

Jup - Duplicate J - Estimated concentration J- - Estimated concentration, but may be biased low mg/kg - milligrams per kilogram NA - Not Applicable ND - Non-Detect NMAC - New Mexico Administrative Code

OCD - Oil Conservation Division UJ - Estimated reporting limit

Sample ID	Date Sampled	Chloride (mg/kg)	Fluoride, Total (mg/kg)	Sulfate (mg/kg)	Mercury, Total (mg/kg)	Arsenic, Total (mg/kg)	Barium, Total (mg/kg)	Cadmium, Total (mg/kg)	Chromium, Total (mg/kg)
CentralOCD-TZ01-06272019	06/27/19	140	7.3	990	0.0068 J	ND(4.9)	350	ND(0.2)	13
optrolOCD_T702-06272010	06/27/19	160	5.4 J-	920	0.043	ND(5)	300	ND(0.2)	14
CentralOCD-TZ02-06272019	06/27/19	150	10 J-	700	0.14	3.4 J	320	ND(0.2)	13
CentralOCD-TZ03-06272019	06/27/19	330	7.1	1300	0.094	ND(5.1)	260	ND(0.2)	15
CentralOCD-TZ04-06272019	06/27/19	300	14	1500	0.077	ND(5)	350	ND(0.2)	16
CentralOCD-VZ01-06272019	06/27/19	240	3.7 J-	740	0.018 J	2.9 J	180	ND(0.2)	15
CentralOCD-VZ02-06272019	06/27/19	150	3.1 J-	850	0.0051 J	ND(5.1)	240	ND(0.2)	16
CentralOCD-VZ03-06272019	06/27/19	180	5.2	650	0.0053 J	ND(5)	290	ND(0.2)	14
CentralOCD-VZ04-06272019	06/27/19	280	2.4	550	0.0043 J	ND(4.9)	260	ND(0.2)	15

Action Level and ABRSC	500	18,600	12,000	63.6	65.4	4,350	309	447,000
NMAC Closure Standard	500	NA	NA	NA	NA	NA	NA	NA

Notes:

There are no Action Level/Alternate Beneficial Reuse Soil Screening Level (ABRSC) exceedances. Dup - Duplicate

Jup - Duplicate J - Estimated concentration J- - Estimated concentration, but may be biased low mg/kg - milligrams per kilogram NA - Not Applicable ND - Non-Detect NMAC - New Mexico Administrative Code

OCD - Oil Conservation Division UJ - Estimated reporting limit

Sample ID	Date Sampled	Copper, Total (mg/kg)	Cyanide, Total (mg/kg)	Iron, Total (mg/kg)	Lead, Total (mg/kg)	Manganese, Total (mg/kg)	Selenium, Total (mg/kg)	Silver, Total (mg/kg)	Uranium, Total (mg/kg)
CentralOCD-TZ01-06272019	06/27/19	4 J	0.89 J-	17000	2.9	450	3.3 J	ND(0.49) UJ	ND(9.8) UJ
	06/27/19	12 J	ND(0.25) UJ	18000	3.4	380	ND(5)	ND(0.5) UJ	ND(10) UJ
CentralOCD-TZ02-06272019	06/27/19	17	ND(0.25) UJ	16000	3.9	410	ND(5)	ND(0.5) UJ	ND(9.9) UJ
CentralOCD-TZ03-06272019	06/27/19	15	ND(0.25) UJ	20000	5.8	400	ND(5.1)	ND(0.51) UJ	ND(10) UJ
CentralOCD-TZ04-06272019	06/27/19	7	ND(0.25) UJ	17000	20	430	ND(5)	ND(0.5) UJ	ND(10) UJ
CentralOCD-VZ01-06272019	06/27/19	4.1	ND(0.25) UJ	18000	ND(0.5)	340	ND(5)	ND(0.5) UJ	ND(10) UJ
CentralOCD-VZ02-06272019	06/27/19	4.2	ND(0.25) UJ	21000	1.8	370	3 J	ND(0.51) UJ	ND(10) UJ
CentralOCD-VZ03-06272019	06/27/19	7.4	ND(0.25) UJ	19000	3.1	430	ND(5)	ND(0.5) UJ	ND(10) UJ
CentralOCD-VZ04-06272019	06/27/19	3.9	0.27 J-	18000	3	400	3.5 J	ND(0.49) UJ	ND(9.8) UJ

Action Level and ABRSC	12,400	6,190	217,000	800	463	1,550	1,550	929
NMAC Closure Standard	NA	NA	NA	NA	NA	NA	NA	NA

Notes:

There are no Action Level/Alternate Beneficial Reuse Soil Screening Level (ABRSC) exceedances. Dup - Duplicate

Jup - Duplicate J - Estimated concentration J- - Estimated concentration, but may be biased low mg/kg - milligrams per kilogram NA - Not Applicable ND - Non-Detect NMAC - New Mexico Administrative Code

OCD - Oil Conservation Division UJ - Estimated reporting limit

			Total Petroleum		Gasoline Range				
Sample ID	Date Sampled	Zinc, Total	Hydrocarbon	Diesel Range Organics	Organics	Motor Oil	Aroclor-1016	Aroclor-1221	Aroclor-1232
		(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
CentralOCD-TZ01-06272019	06/27/19	24	5.6 J	24 J	ND(4.8)	ND(49)	ND(0.024)	ND(0.024)	ND(0.024)
	06/27/19	33	ND(19)	ND(8.5) UJ	ND(5)	ND(43)	ND(0.023)	ND(0.023)	ND(0.023)
CentralOCD-TZ02-06272019	06/27/19	59	54	33	ND(4.9)	57	ND(0.025)	ND(0.025)	ND(0.025)
CentralOCD-TZ03-06272019	06/27/19	53	52	87	ND(5)	110	ND(0.023)	ND(0.023)	ND(0.023)
CentralOCD-TZ04-06272019	06/27/19	49	600	490	ND(5)	480	ND(0.048)	ND(0.048)	ND(0.048)
CentralOCD-VZ01-06272019	06/27/19	21	ND(19)	ND(9.6)	ND(4.8)	ND(48)	ND(0.023)	ND(0.023)	ND(0.023)
CentralOCD-VZ02-06272019	06/27/19	23	ND(20)	ND(8.6)	ND(4.8)	ND(43)	ND(0.018)	ND(0.018)	ND(0.018)
CentralOCD-VZ03-06272019	06/27/19	47	ND(19)	ND(9.9)	ND(4.8)	ND(50)	ND(0.024)	ND(0.024)	ND(0.024)
CentralOCD-VZ04-06272019	06/27/19	24	ND(20)	ND(10)	ND(4.9)	ND(50)	ND(0.024)	ND(0.024)	ND(0.024)

Action Level and ABRSC	92,900	2,500	NA	NA	NA	15.3	71.3	71.3
NMAC Closure Standard	NA	2,500	NA	NA	NA	NA	NA	NA

Notes:

There are no Action Level/Alternate Beneficial Reuse Soil Screening Level (ABRSC) exceedances. Dup - Duplicate

Jup - Duplicate J - Estimated concentration J- - Estimated concentration, but may be biased low mg/kg - milligrams per kilogram NA - Not Applicable ND - Non-Detect NMAC - New Mexico Administrative Code

OCD - Oil Conservation Division

UJ - Estimated reporting limit

Sample ID	Date Sampled	Aroclor-1242 (mg/kg)	Aroclor-1248 (mg/kg)	Aroclor-1254 (mg/kg)	Aroclor-1260 (mg/kg)
CentralOCD-TZ01-06272019	06/27/19	ND(0.024)	ND(0.024)	ND(0.024)	ND(0.024)
	06/27/19	ND(0.023)	ND(0.023)	ND(0.023)	ND(0.023)
CentralOCD-TZ02-06272019	06/27/19	ND(0.025)	ND(0.025)	ND(0.025)	ND(0.025)
CentralOCD-TZ03-06272019	06/27/19	ND(0.023)	ND(0.023)	ND(0.023)	ND(0.023)
CentralOCD-TZ04-06272019	06/27/19	ND(0.048)	ND(0.048)	ND(0.048)	ND(0.048)
CentralOCD-VZ01-06272019	06/27/19	ND(0.023)	ND(0.023)	ND(0.023)	ND(0.023)
CentralOCD-VZ02-06272019	06/27/19	ND(0.018)	ND(0.018)	ND(0.018)	ND(0.018)
CentralOCD-VZ03-06272019	06/27/19	ND(0.024)	ND(0.024)	ND(0.024)	ND(0.024)
CentralOCD-VZ04-06272019	06/27/19	ND(0.024)	ND(0.024)	ND(0.024)	ND(0.024)

Action Level and ABRSC NMAC Closure Standard	75.8 NA	75.8 NA	4.36	75.8 NA	
NMAC Closure Standard	NA	INA .	NA		

Notes:

There are no Action Level/Alternate Beneficial Reuse Soil Screening Level (ABRSC) exceedances. Dup - Duplicate

Jup - Duplicate J - Estimated concentration J- - Estimated concentration, but may be biased low mg/kg - milligrams per kilogram NA - Not Applicable ND - Non-Detect NMAC - New Mexico Administrative Code

OCD - Oil Conservation Division

UJ - Estimated reporting limit

Appendix A

MARATHON REFINING LOGISTICS SERVICES SEPTEMBER AND OCTOBER 2016 CHLORIDE EXCEEDANCE EXCAVATION REPORT

September and October 2016 Chloride Exceedance Excavation Report

Table of Contents

Background	3
Excavation Extents and Confirnation Sampling Results	3
Former Evaporation Pond #10	4
Proposed Path Forward	5
Tables	6
Figures	7
Appendix A: September 2016 and October 2016 Analytical Laboratory Reports	8
Appendix B: September 2016 and October 2016 Tier II Data Validation Reports	9

September and October 2016 Chloride Exceedance Excavation Report

Marathon Petroleum Company, Gallup Refining Division (Gallup) is submitting this report to present the results of chloride-contaminated soil excavation and confirmation sampling conducted in accordance with the "Chloride Exceedance Response Action Plan, Central Oil Conservation Division Landfarm, Western Refining Company Southwest, Inc., Gallup Refinery, Gallup, New Mexico" (Response Action Plan), dated July 26, 2016. This report is also intended to inform the Oil Conservation Division (OCD) of a non-landfarm potential alternate chloride source believed to be the cause of the elevated chloride concentrations reported in samples collected from the vadose zone beneath the Central OCD Landfarm.

Background

Semiannual vadose zone monitoring is conducted at random locations in accordance with New Mexico Administrative Code (NMAC) Rule 36 (19.15.36 NMAC). The landfarm has been divided into 6 foot (ft) by 6 ft grids to assist with random sample location selection. As required by the Response Action Plan, Gallup excavated chloride-contaminated soil associated with two these grids. Chloride contamination was originally identified within these grids during the April 2016 semiannual vadose zone sampling event and the June 2016 confirmation sampling event. Per the Response Action Plan, soils with chloride concentrations in excess of the 500 milligram per kilogram (mg/kg) action level/alternate beneficial reuse screening concentration (ABRSC) were to be excavated. Confirmation samples were to be collected from the floor of the excavations, as well as the from the sidewalls of the excavation at the depths of the original exceedances (6 ft below ground surface (bgs)) in the four cardinal directions. The excavations were to be extended or deepened in the direction of chloride concentrations in excess of 500 mg/kg, as determined via the confirmation sampling.

Excavation Extents and Confirmation Sampling Results

Excavation of chloride contaminated soils began in September 2016 and continued through October 2016. Gallup contracted Trihydro Corporation (Trihydro) to oversee excavation completion and collect confirmation samples. The two grids scheduled for excavation were grids 1021 and 2271. The excavations associated with each grid are shown on Figure 1. Confirmation sampling results are summarized in Table 1. Analytical laboratory reports and data validation reports are provided as Attachments A and B, respectively.

As shown in Table 1, the chloride concentrations reported for the September 2016 floor and sidewall samples associated with Grid 1021 are below the 500 mg/kg action level/ARBSC. Accordingly, the excavation of chloride-

contaminated soil associated with Grid 1021 was deemed complete. The approximate excavation extents are illustrated on Figure 1, and the total depth of the excavation is 8 ft bgs.

Chloride concentrations reported for two of the September 2016 sidewall samples associated with Grid 2271 exceed the 500 mg/kg action level/ARBSC. In response to these confirmation sample exceedances, the excavation was expanded in the direction of the exceedances and additional confirmation samples were collected. Two such excavation expansion/resampling events were conducted in October 2016, and as shown on Figure 1, sidewall sample exceedances persist on the northern and eastern excavation boundaries. The growing size of the Grid 2271 excavation and the fact that contamination appears to extend to and possibly beyond the berms of the landfarm prompted Gallup and Trihydro to regroup and assess whether the current excavation plans (those outlined in the Response Action Plan) remain appropriate. This resulted in the Central OCD Landfarm prior to landfarm operation. Figure 2 illustrates the location of the former Evaporation Pond #10 and the Central OCD Landfarm. As discussed in the following section, former Evaporation Pond # 10 is believed to be the source of the elevated chloride concentrations present in the vadose zone soils beneath the Central OCD Landfarm.

Former Evaporation Pond #10

According to the "Inventory of Solid Waste Management Units", dated June 14, 1985, "cell" or Evaporation Pond # 10 received "wastewater from the boiler house and water softener regeneration wastes". The pond was replaced in 1980 with an in-line neutralization tank. Both of these wastes would be expected to contain elevated chloride concentrations. Since these wastes were stored in the unlined evaporation pond whose footprint is similar to the Central OCD Landfarm prior to landfarm operation, it is likely that the pond may have contributed to the chloride contamination in the area and may be the cause of the vadose zone chloride exceedances.

This idea is further supported by soil data collected from the landfarm's treatment zone over the past four years. Gallup has collected 6 treatment zone samples since 2013 to assist in determining if the landfarm may be eligible for closure or soil reuse. As shown in Table 2, the maximum reported chloride concentration for samples collected from the treatment zone (1 ft bgs) is 310 mg/kg. This is less than the 500 mg/kg action level/ABRSC and far less than some of the more elevated vadose zone samples which are in excess of 2,500 mg/kg (see Table 1). If soils treated in the landfarm were the source of the vadose zone chloride contamination, it would be Printed on Oct 3, 2019 Page **4** of **5**

September and October 2016 Chloride Exceedance Excavation Report

expected that the treatment zone chloride concentrations would be greater than the vadose zone chloride concentrations, but the data indicate the opposite. This line of evidence suggests a non-landfarm chloride source.

Proposed Path Forward

OCD Landfarm operation is governed by NMAC Rule 36. The Response Action Plan and subsequent excavations were intended to satisfy Rule 36 requirements and Central OCD Landfarm-specific agreements reached between Gallup and OCD. In light of the information presented in this correspondence, Gallup does not believe that vadose zone chloride concentrations in excess of the 500 mg/kg action level/ABRSC are a result of landfarm operation. Accordingly, Gallup does not believe vadose zone chloride contamination needs be addressed or remedied in accordance with NMAC Rule 36 or previous Central OCD Landfarm-specific agreements. The elevated chloride concentrations are believed to be associated with former Evaporation Pond # 10. Former Evaporation Pond # 10 is part of Solid Waste Management Unit (SWMU) 2. Therefore, Gallup believes that it would be appropriate to address the chloride contaminated soil as part of SWMU 2 remedies.

Gallup does intend to dispose of the already excavated chloride contaminated soil at an off-site disposal facility permitted to receive such wastes and to the fill the excavations with clean fill material. The excavated soil is currently stock piled on plastic sheeting within the landfarm berms. Pending OCD approval of this correspondence, Gallup will begin soil disposal and excavation backfilling.

Gallup is also still considering closure of the Central OCD landfarm. When closure is sought, Gallup believes that closure should still be conducted in general accordance with NMAC Rule 36. However, Central OCD Landfarm-specific agreements reached between Gallup and OCD, as well as the alternate chloride source identified in this correspondence (i.e., former Evaporation Pond # 10) should be taken into consideration. Pending OCD approval of this correspondence, Gallup will discuss closure details and expectations with OCD. If you have any questions or comments, please do not hesitate to call me at (505) 722-0217.

Tables

TABLE 1. CHLORIDE-CONTAMINATED SOIL EXCAVATION CONFIRMATION SAMPLING RESULTS WESTERN REFINING COMPANY SOUTHWEST, INC., GALLUP, NEW MEXICO

Sample Type	Sample ID	Date Sampled	Chloride (mg/kg)	
Grid 1021 Confirmation Sample	CentralOCD-1021-09062016-F	09/06/16	270	
Grid 1021 Confirmation Sample	CentralOCD-1021-09062016-SW-E	09/06/16	130	
Grid 1021 Confirmation Sample	CentralOCD-1021-09062016-SW-E Dup	09/06/16	110	
Grid 1021 Confirmation Sample	CentralOCD-1021-09062016-SW-N	09/06/16	160	
Grid 1021 Confirmation Sample	CentralOCD-1021-09062016-SW-S	09/06/16	280	
Grid 1021 Confirmation Sample	CentralOCD-1021-09062016-SW-W	09/06/16	490	
Grid 2271 Confirmation Sample	CentralOCD-2271-09062016-F	09/06/16	170	
Grid 2271 Confirmation Sample	CentralOCD-2271-09062016-SW-E	09/06/16	1500	
Grid 2271 Confirmation Sample	CentralOCD-2271-09062016-SW-N	09/06/16	2200	
Grid 2271 Confirmation Sample	CentralOCD-2271-09062016-SW-S	09/06/16	160	
Grid 2271 Confirmation Sample	CentralOCD-2271-09062016-SW-W	09/06/16	300	
Grid 2271 Confirmation Sample	CentralOCD-2271-10062016-SW-E	10/06/16	800	
Grid 2271 Confirmation Sample	CentralOCD-2271-10062016-SW-E Dup	10/06/16	480	
Grid 2271 Confirmation Sample	CentralOCD-2271-10062016-SW-N	10/06/16	790	
Grid 2271 Confirmation Sample	CentralOCD-2271-10202016-SW-E	10/20/16	640	
Grid 2271 Confirmation Sample	CentralOCD-2271-10202016-SW-E Dup	10/20/16	600	
Grid 2271 Confirmation Sample	CentralOCD-2271-10202016-SW-NE	10/20/16	2600	
Grid 2271 Confirmation Sample	CentralOCD-2271-10202016-SW-NW	10/20/16	2600	

Action Level and ABRSC

500

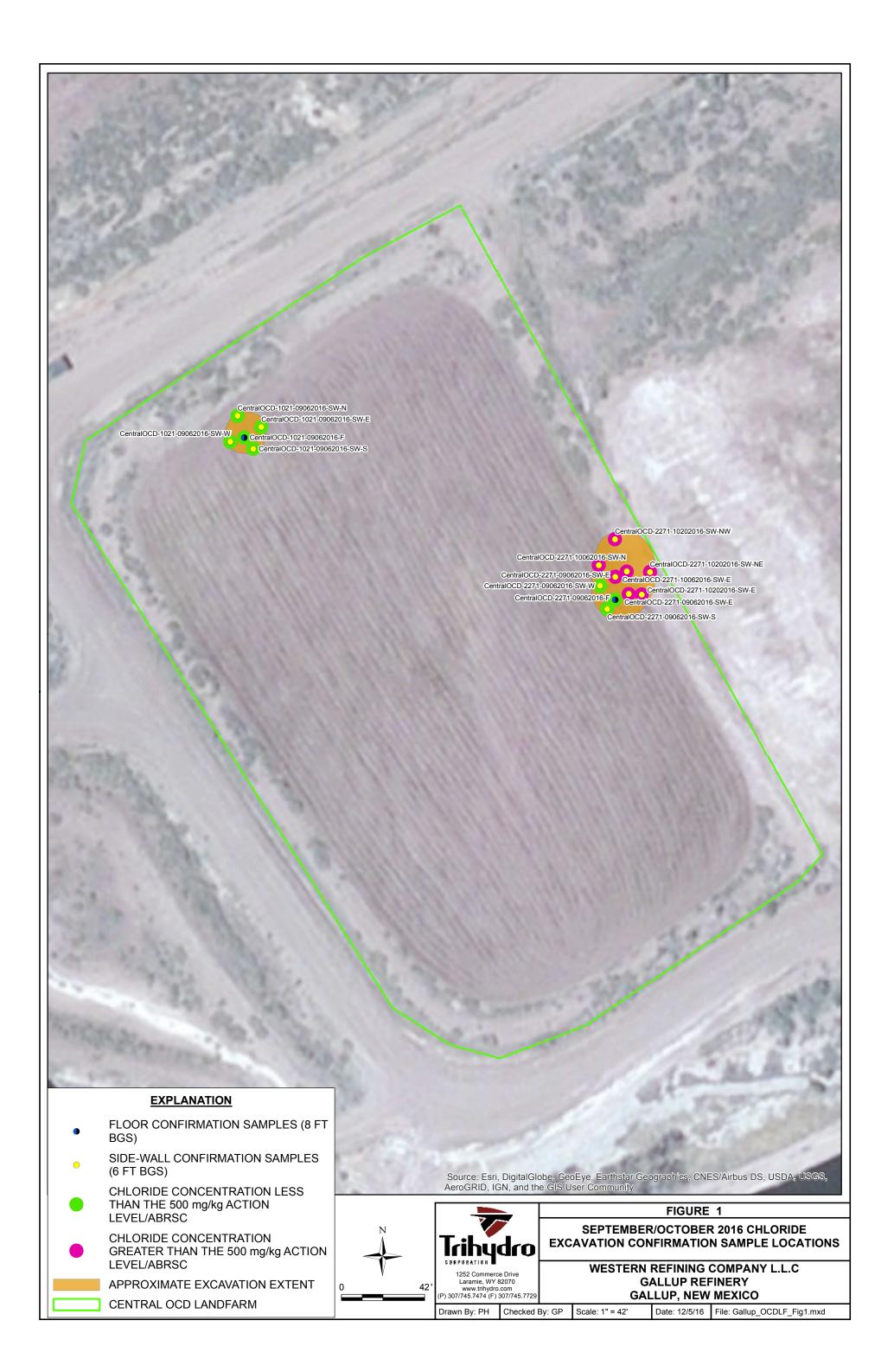
Notes:

Action Level/Alternate Beneficial Reuse Soil Screening Level (ABRSC) exceedances are shown in bold font.

TABLE 2. HISTORICAL TREATMENT ZONE CHLORIDE ANALYTICAL DATA SUMMARY WESTERN REFINING COMPANY SOUTHWEST, INC., GALLUP, NEW MEXICO

Sample Type	Sample ID	Date Sampled	Chloride (mg/kg)	
Treatment Zone Sample	CentralOCD-TZ_032713	03/27/13	310	
Treatment Zone Sample	CentralOCD-TZ_091614	09/16/14	130	
Treatment Zone Sample	CentralOCD-TZ-04062015	04/06/15	130	
Treatment Zone Sample	Central OCD-TZ-11242015	11/24/15	280	
Treatment Zone Sample	CentralOCD-TZ-04072016	04/07/16	260 J	
Treatment Zone Sample	CentralOCD-TZ-06162016	06/16/16	290	

Action Level and ABRSC


Notes:

Action Level/Alternate Beneficial Reuse Soil Screening Level (ABRSC) exceedances are shown in bold font.

J - Estimated concentration

500

Figures

Appendix A: September 2016 and October 2016 Analytical Laboratory Reports

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: <u>www.hallenvironmental.com</u>

November 03, 2016

Ed Riege Western Refining Southwest, Gallup 92 Giant Crossing Road Gallup, NM 87301 TEL: (505) 722-3833 FAX (505) 722-0210

RE: OCD Central Landfarm Semiannual Sampling

OrderNo.: 1610A38

Dear Ed Riege:

Hall Environmental Analysis Laboratory received 4 sample(s) on 10/20/2016 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to <u>www.hallenvironmental.com</u> or the state specific web sites. In order to properly interpret your results it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Lab Order: 1610A38 Hall Environmental Analysis Laboratory, Inc. Date Reported: 11/3/2016 **CLIENT:** Western Refining Southwest, Gallup Lab Order: 1610A38 **Project:** OCD Central Landfarm Semiannual Sampling Lab ID: 1610A38-001 Collection Date: 10/20/2016 9:38:00 AM Client Sample ID: CentralOCD-2271-10202016-SW-NW Matrix: SOIL Analyses Result MDL PQL Qual Units DF **Date Analyzed Batch ID EPA METHOD 300.0: ANIONS** Analyst: LGT 10/29/2016 12:36:19 AM 28324 Chloride 2600 31 75 mg/Kg 50 1610A38-002 Collection Date: 10/20/2016 10:40:00 AM Lab ID: Client Sample ID: CentralOCD-2271-10202016-SW-NE Matrix: SOIL Result MDL PQL Oual Units DF **Date Analyzed Batch ID** Analyses **EPA METHOD 300.0: ANIONS** Analyst: LGT Chloride 2600 31 75 mg/Kg 50 10/29/2016 12:48:43 AM 28324 Lab ID: 1610A38-003 Collection Date: 10/20/2016 11:10:00 AM Client Sample ID: CentralOCD-2271-10202016-SW-E Matrix: SOIL MDL PQL Units DF **Date Analyzed Batch ID** Analyses Result Oual **EPA METHOD 300.0: ANIONS** Analyst: LGT mg/Kg Chloride 640 12 30 10/27/2016 3:14:33 PM 28324 20 1610A38-004 Collection Date: 10/20/2016 Lab ID: CentralOCD-BD-10202016 Matrix: SOIL Client Sample ID: POL **Date Analyzed Batch ID** Analyses Result **MDL** Oual Units DF **EPA METHOD 300.0: ANIONS** Analyst: LGT Chloride 600 12 30 mg/Kg 20 10/27/2016 3:26:57 PM 28324

Analytical Report

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method B	lank
	D	Sample Diluted Due to Matrix	Е	Value above quantitation range	
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits	Page 1 of 2
	ND	Not Detected at the Reporting Limit	Р	Sample pH Not In Range	1 age 1 01 2
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit	
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit	as specified

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

Page 2 of 2

Client: Project:		rn Refining Sout Central Landfarn		· •	ampling						
Sample ID	MB-28324	SampType	e: MB	LK	Tes	tCode: EF	PA Method	300.0: Anion	s		
Client ID:	PBS	Batch ID	283	324	F	RunNo: 38	3293				
Prep Date:	10/27/2016	Analysis Date	: 10	/27/2016	5	SeqNo: 11	94989	Units: mg/K	g		
Analyte		Result P	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride		ND	1.5								
Sample ID	LCS-28324	SampType	: LC	s	Tes	tCode: EF	PA Method	300.0: Anion	s		
Client ID:	LCSS	Batch ID	: 283	324	F	RunNo: 38	3293				
Prep Date:	10/27/2016	Analysis Date	: 10	/27/2016	S	SeqNo: 11	94990	Units: mg/K	g		
Analyte		Result P	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride		14	1.5	15.00	0	95.4	90	110			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

HALL ENVIRONMENTAL ANALYSIS LABORATORY

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

Sample Log-In Check List

Client Name: Western Refining Gallup Work Order Number:			RcptNo:	1
Received by/date: LC 10 2016				
Logged By: Lindsay Mangin 10/20/2016 4:40:00 PM	Λ	strucky Horopo		
Completed By: Lindsay Mangin , 10/21/2016 8:47:40 AM	Л	Junebug Hongo		
Reviewed By: 10 21/16				
Chain of Custody				
1. Custody seals intact on sample bottles?	Yes	No	Not Present 🖌	
2. Is Chain of Custody complete?	Yes 🗸	No	Not Present	
3. How was the sample delivered?	Client			
<u>Log in</u>		,		
4. Was an attempt made to cool the samples?	Yes 🖌	No []	NA	
	[]]	•• (***)	NA	
5. Were all samples received at a temperature of >0° C to 6.0°C	Yes 🖌	No	NA L. i	
6. Sample(s) in proper container(s)?	Yes 🗸	No		
	11774	("'']		
7. Sufficient sample volume for indicated test(s)?	Yes 🗹	No []		
8. Are samples (except VOA and ONG) properly preserved?	Yes 🗹	No []	NA	
9. Was preservative added to bottles?	Yes	No 🗹	NA L. I	
10.VOA vials have zero headspace?	Yes	No []	No VOA Vials 🗹	
11. Were any sample containers received broken?	Yes	No 🗹		
			# of preserved bottles checked	
12.Does paperwork match bottle labels?	Yes 🖌	No	for pH:	or >12 unless noted)
(Note discrepancies on chain of custody)	¥ ()	No []	Adjusted?	
13. Are matrices correctly identified on Chain of Custody?	Yes ⊻ Yes У	No 🛄	-	
14. Is it clear what analyses were requested? 15.Were all holding times able to be met?	Yes 🔽	No []]	Checked by:	
(If no, notify customer for authorization.)	105 005			
Special Handling (if applicable)				
16. Was client notified of all discrepancies with this order?	Yes [No	NA 🖌	
Person Notified: Date:				
By Whom: Via:	eMail	Phone [] Fax	In Person	
Regarding:		en annen an annen ann		
Client Instructions:				
17. Additional remarks:				
18 Cooler Information				
18. <u>Cooler Information</u> Cooler No Temp ºC Condition Seal Intact Seal No	Seal Date	Signed By	ļ	
1 2.8 Good Not Present				

Page 1 of 1

_	ı≿							(N	Y or) səlddu8 i≀	/			-	F		[- Hint	4 1 2	 2	
HALL ENVIDONMEN			4901 Hawkins NE - Albuquerque, NM 87109	Tel. 505-345-3975 Fax 505-345-4107	lys			×													Bemarks: Please or Grant Price (nurice@htihwdro.com) with	results. Call Grant @ 307-745-7474 w/ questions. Data results. Call Grant @ 307-745-7474 w/ questions. Data report and nackage w/ Tribvdro FDD needed within 40	ept.	Wonday 10/20/16 640
			4901 F	Tel. 5(marks [.] DI	ults. Call	days of reciept	640
			inual Sampling					4.C		Chloride by E	× (00~	× ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	-003 ×	× 150-							Date Time Rc	1.00	ate Time	ondry 10/20/16 6
	μsp.		Ifarm Semian					240	Marco Jie: 2. B	Preservativ e Type	none	none	none	none) 92		Vorreh
	X Standard	Project Name:	OCD Central Landfarm Semiannual Sampling	Project #:	697-052-004	Project Manager:	Ed Riege	Sampler.	Temperatu	Container Type and #	T - 704	L - 204	4	T-zoh							Received by:		Received by:	Nurliey
Ci dil-ol-custouy record		western Refining	Route 3 Box 7		-3833	-0210	vel 4 (Fuil Validation)			Sample Request ID	CentralOCD-2271-10202016-SW-NW	CentralOCD-2271-10202016-SW-NE	CentralOCD-2271-10202016-SW-E	CentralOCD-BD-100202016								Ð	d by	H adreedsarv beforeles submitted to Hall Environmented and
	, R efining	stern k			505-722-3833	505-722-0210		□ Other	ise provid	Matrix	soil	soit	soil	soil				 			Relinquished by	V	Relinquished by:	
ן כ	N F M	WCS	ress:	87301		¢#;	age:	Ę	pe)_Plea	Time	938		1110	NA							Time:	1300	Time:	600
	Client		Mailing Address:	Gailup, NM 87301	Phone #:	email or Fax#:	0A/QC Package:	Accreditation:	C EDD (Type) Please provide EDD	Date	10/20/2016 938	10/20/2016 /040	10/20/2016 1110	10/20/2016							Date:	10-20-16 1300	Date:	6/16

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: <u>www.hallenvironmental.com</u>

September 22, 2016

Ed Riege Western Refining Southwest, Gallup 92 Giant Crossing Road Gallup, NM 87301 TEL: (505) 722-3833 FAX (505) 722-0210

RE: OCD Central Landfarm Semiannual Sampling

OrderNo.: 1609455

Dear Ed Riege:

Hall Environmental Analysis Laboratory received 11 sample(s) on 9/8/2016 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to <u>www.hallenvironmental.com</u> or the state specific web sites. In order to properly interpret your results it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Analytical Report

Lab Ord	ler: 160	9455
Lab Ore	101. 100	7733

Hall Enviror	nmental Analysis	Laborate	ory, In	с.				1609455 rted: 9/22/2016				
	Western Refining Southw OCD Central Landfarm S	-	mpling			Lab Or	der:	1609455				
Lab ID:	1609455-001			Coll	ection Da	ate: 9/6/2	2016 4:	13:00 PM				
Client Sample ID	CentralOCD-1021-090)62016-F	Matrix:									
Analyses		Result	MDL	PQL	Qual	Units	DF	Date Analyzed	Batch ID			
EPA METHOD 30 Chloride	0.0: ANIONS	270	12	30		mg/Kg	20	Analyst: LGT 9/19/2016 9:00:29 PM	27590			
Lab ID:	1609455-002			Colle	ection Da	ate: 9/6/2	2016 4:	07:00 PM				
Client Sample ID	: CentralOCD-1021-090)62016-SW-N	ſ		Mat	rix:						
Analyses		Result	MDL	PQL	Qual	Units	DF	Date Analyzed	Batch ID			
EPA METHOD 30	0.0: ANIONS							Analyst: LGT				
Chloride		160	12	30		mg/Kg	20	9/19/2016 9:12:53 PM	27590			
Lab ID:	1609455-003			Colle	ection Da	ate: 9/6/2	2016 4:	20:00 PM				
Client Sample ID	CentralOCD-1021-090)62016-SW-S			Mat	rix:						
Analyses		Result	MDL	PQL	Qual	Units	DF	Date Analyzed	Batch ID			
EPA METHOD 30 Chloride	0.0: ANIONS	280	12	30		mg/Kg	20	Analyst: LGT 9/19/2016 9:25:18 PM	27590			
		200	12				-		21000			
Lab ID:	1609455-004	C2016 SW E		Colle			2016 3:	55:00 PM				
Client Sample ID Analyses	: CentralOCD-1021-090	Result	MDL	PQL	Mat Qual	rix: Units	DF	Date Analyzed	Batch ID			
-				Ľ	Ľ							
Chloride	CUUINA	130	12	30		mg/Kg	20	Analyst: LGT 9/20/2016 12:53:42 PM	27599			
Lab ID:	1609455-005			Colle	ection Da	ate: 9/6/2	2016 4:	25:00 PM				
Client Sample ID	CentralOCD-1021-090)62016-SW-W	V		Mat	rix:						
Analyses		Result	MDL	PQL	Qual	Units	DF	Date Analyzed	Batch ID			
EPA METHOD 30	0.0: ANIONS							Analyst: LGT				
Chloride		490	12	30		mg/Kg	20	9/20/2016 1:06:07 PM	27599			

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	Е	Value above quantitation range

- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- RPD outside accepted recovery limits R
- S % Recovery outside of range due to dilution or matrix
- Value above quantitation range E
- Analyte detected below quantitation limits J Page 1 of 4
- Р Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Analytical Report

Lab Orde	r: 1609455

Hall Enviror	nmental Analysis	Laborate	ory, In	с.				1609455 rted: 9/22/2016			
	Western Refining Southv OCD Central Landfarm S	-	mpling			Lab Oro	ler:	1609455			
Lab ID:	1609455-006			Coll	ection Da	ate: 9/6/2	016 1:	30:00 PM			
Client Sample ID	CentralOCD-2271-090)62016-F	Matrix:								
Analyses		Result	MDL	PQL	Qual	Units	DF	Date Analyzed	Batch ID		
EPA METHOD 30 Chloride	0.0: ANIONS	170	12	30		mg/Kg	20	Analyst: LGT 9/20/2016 1:18:31 PM	27599		
Lab ID:	1609455-007			Colle	ection Da	ate: 9/6/2	2016 1:	20:00 PM			
Client Sample ID	CentralOCD-2271-090)62016-SW-N	1		Mat	rix:					
Analyses		Result	MDL	PQL	Qual	Units	DF	Date Analyzed	Batch ID		
EPA METHOD 30	0.0: ANIONS							Analyst: LGT			
Chloride		2200	31	75		mg/Kg	50	9/22/2016 5:18:25 AM	27599		
Lab ID:	1609455-008			Coll	ection D	a te: 9/6/2	016 1:	37:00 PM			
Client Sample ID	CentralOCD-2271-090)62016-SW-S			Mat	rix:					
Analyses		Result	MDL	PQL	Qual	Units	DF	Date Analyzed	Batch ID		
EPA METHOD 30 Chloride	0.0: ANIONS	160	12	30		mg/Kg	20	Analyst: LGT 9/20/2016 1:43:20 PM	27599		
Lab ID:	1609455-009			Coll	ection Da	a te: 9/6/2	2016 1:	05:00 PM			
Client Sample ID	CentralOCD-2271-090)62016-SW-E			Mat	rix:					
Analyses		Result	MDL	PQL	Qual	Units	DF	Date Analyzed	Batch ID		
EPA METHOD 30 Chloride	0.0: ANIONS	1500	30	75		mg/Kg	50	Analyst: LGT 9/22/2016 5:30:50 AM	27599		
Lab ID:	1609455-010			Colle	ection Da	ate: 9/6/2	016 1:	45:00 PM			
Client Sample ID	CentralOCD-2271-09)62016-SW-W	V		Mat	rix:					
Analyses		Result	MDL	PQL	Qual	Units	DF	Date Analyzed	Batch ID		
EPA METHOD 30	0.0: ANIONS							Analyst: LGT			
Chloride		300	12	30		mg/Kg	20	9/20/2016 2:45:23 PM	27599		

			-		
Qualifiers:	*	Value exceeds Maximum Contaminant Level.	I	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	I	Е	Value above quantitation range

- D
- H Holding times for preparation or analysis exceeded ND Not Detected at the Reporting Limit
- RPD outside accepted recovery limits R
- S % Recovery outside of range due to dilution or matrix
- Е Value above quantitation range
- J Analyte detected below quantitation limits Page 2 of 4
- Р Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Analytical Report Lab Order: 1609455

Date Reported: 9/22/2016

Page 3 of 4

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Project:	Western Refining Sout OCD Central Landfarm	· 1	ampling			Lab Ore	der:	1609455	
Lab ID: Client Sample I	1609455-011 ID: CentralOCD-BD-09	062016		Colle	ection Da Mat	ate: 9/6/2 rix:	2016		
Analyses		Result	MDL	PQL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD	300.0: ANIONS							Analyst: LGT	
Chloride		110	12	30		mg/Kg	20	9/20/2016 3:22:36 PM	27599

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method B	lank
	D	Sample Diluted Due to Matrix	Е	Value above quantitation range	
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits	Page 3 of
	ND	Not Detected at the Reporting Limit	Р	Sample pH Not In Range	1 450 5 01
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit	
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit	as specified

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

Client:		tern Refining Southwest, Gallup			
Project:	OCD	Central Landfarm Semiannual Sam	pling		
Sample ID	MB-27590	SampType: MBLK	TestCode: EPA Method	300.0: Anions	
Client ID:	PBS	Batch ID: 27590	RunNo: 37316		
Prep Date:	9/19/2016	Analysis Date: 9/19/2016	SeqNo: 1158856	Units: mg/Kg	
Analyte		Result PQL SPK value SI	PK Ref Val %REC LowLimit	HighLimit %RPD	RPDLimit Qual
Chloride		ND 1.5			
Sample ID	LCS-27590	SampType: LCS	TestCode: EPA Method	300.0: Anions	
Client ID:	LCSS	Batch ID: 27590	RunNo: 37316		
Prep Date:	9/19/2016	Analysis Date: 9/19/2016	SeqNo: 1158857	Units: mg/Kg	
Analyte		Result PQL SPK value SI	PK Ref Val %REC LowLimit	HighLimit %RPD	RPDLimit Qual
Chloride		14 1.5 15.00	0 94.0 90	110	
Sample ID	MB-27599	SampType: MBLK	TestCode: EPA Method	300.0: Anions	
Client ID:	PBS	Batch ID: 27599	RunNo: 37349		
Prep Date:	9/20/2016	Analysis Date: 9/20/2016	SeqNo: 1160293	Units: mg/Kg	
Analyte		Result PQL SPK value SI	PK Ref Val %REC LowLimit	HighLimit %RPD	RPDLimit Qual
Chloride		ND 1.5			
Sample ID	LCS-27599	SampType: LCS	TestCode: EPA Method	300.0: Anions	
Client ID:	LCSS	Batch ID: 27599	RunNo: 37349		
Prep Date:	9/20/2016	Analysis Date: 9/20/2016	SeqNo: 1160294	Units: mg/Kg	
Analyte		Result PQL SPK value SI	PK Ref Val %REC LowLimit	HighLimit %RPD	RPDLimit Qual
Chloride		14 1.5 15.00	0 94.1 90	110	

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified
- Page 4 of 4

HALL ENVIRONMENTAL ANALYSIS LABORATORY	Hall Environmental / Albu TEL: 505-345-3975 / Website: www.hal	4901 Hawi querque, NN FAX: 505-34	kins NE 1.87109 15-4107	Samp	ble Log-In Check List
Client Name: Western Refining Gallup	Work Order Number	1609455	•		RcptNo: 1
Received by/date: AQ 09	108/10				
Logged By: Ashley Gallegos	9/8/2016 5:10:00 PM		54	F	
Completed By: Ashley Gallegos	9/9/2016 12:34:02 PM		A	F	
Reviewed By: 2000/12/16					
Chain of Custody					
1. Custody seals intact on sample bottles?		Yes	.	No []	Not Present
2. Is Chain of Custody complete?		Yes 🕩) L	No	Not Present
3. How was the sample delivered?		Courier			
Log In			·	No L]	NA
4. Was an attempt made to cool the samples?		∵Yes k∰	· ·		
5. Were all samples received at a temperature	of >0° C to 6.0°C	Yes 😿	. 1	No 🗋	NA [
6. Sample(s) in proper container(s)?		Yes 🕷		No 🗌 1	
		 irrzi		1777	
7. Sufficient sample volume for indicated test(s		Yes 🛃	1.1.1	No II	
8. Are samples (except VOA and ONG) proper	y preserved?	Yes 🧖		No 🛄 🛛	
9. Was preservative added to bottles?		Yes		No 🛃	NA []]
10.VOA vials have zero headspace?		Yes 🗖		No 🖂	No VOA Vials
11. Were any sample containers received broke	n?	Yes		No 🛃	
12. Does paperwork match bottle labels?		Yes 🛷	· . 	No E]	# of preserved bottles checked for pH: (<2 or >12 unless noted)
(Note discrepancies on chain of custody)			• •	No	(<2 of >12 unless hoteu) Adjusted?
13. Are matrices correctly identified on Chain of	Custody?	'Yes konnomia va i≣a			
14. Is it clear what analyses were requested?		Yes 🖉	1		Checked by:
15. Were all holding times able to be met? (If no, notify customer for authorization.)		Yes 📌			

145)

(44) 译成

<u></u> 推动

編

·袖 ······

Special Handling (if applicable)

16.	Was client notified of all of	discrepancies with this order?		Yes	No []]	NA 🔙
	Person Notified:	30 X0399M399999749M39A99898571874857428294294945797575975797579757	Date		and and a second respectively is reprinted	
	By Whom:	and a subsection of the operation of the subsection of the subsect	Via:	eMail	[] Phone [] Fax	
	Regarding:	annan han annan an annan annan annan annan an a		, george and a second second second second	an a	COLUMN CONTRACTOR & COLUMN CONTRACTOR OF CONTRACTOR CONTRACTOR OF CONTRACT
	Client Instructions:	a na	alata estenare a regi	and a contraction of a second second		
17.	Additional remarks:					

18. Cooler Information

Cooler No	Temp °C	Condition	Seal Intact	Seal No	Seal Date	Signed By
1	1.0	Good	Yes			·

	۳.a	www.hailenvironmental.com	4901 Hawkins NE - Albuquerque, NM 87109	Tel. 505-345-3975 Fax 505-345-4107	Analysis Request						Chloride by	X		2. x	f ×		C × D	7 × 1		×		209 ×	× 69		×	× 100		Remarks: Please cc Grant Price (gprice@trihydro.com) with results. Call Grant @ 307-745-7474 w/ questions. Data report and package w/ Trihydro EDD needed within 10	days of reciept.	may be subcontracted to attract aboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.
Turn-Around Time:	dard D Read	lame:	OCD Central Landfarm Semiannual Sampling	±.,	-004	Aanager:	0	24 0 -50 0	X Yes DNG	Sample i emperature. 🔶 🕖	Container Type Preservativ HEALNor and # e Type (U.O.C.U.F.		none - 000	none - 00 3			none -00	none	none -00 §	none -000	none -0/0			none -0/B	Her.	HOL		by Date Time		Contracting the serves as notices. This serves as noticed
Chrin-of-Custody Record	Xstandard	Project Name	Route 3 Box 7 OCD Cen	Project #:	3833 697-052-004	0210 Project Manager.	Ed Riege	Samoler			Sample Request ID	CentralOCD-1021-09062016-F [two 4-oz	CentralOCD-1021-09062016-SW-N [two 4-02	CentralOCD-1021-09062016-SW-S [two 4-oz	CentralOCD-1021-09062016-SW-E [two 4-oz	CentralOCD-1021-09062016-SW-W [two 4-oz	CentralOCD-2271-09062016-F two 4-oz	CentralOCD-2271-09082016-SW-N two 4-oz	CentralOCD-2271-09062016-SW-S [two 4-oz	CentralOCD-2271-09062016-SW-E two 4-oz	CentralOCD-2271-09062016-SW-W two 4-oz	CentralOCD 3271090620165W1E-MS two 4-02	CentralOCD227]-09062016-244E-MSD two 4-oz	CentralOCD-BD-09062016 two 4-oz	EB-09052016 VOA-3	FB-09062016 VOA-3		ed by Received by	ed by:	if necessary, samples submitted to Half Environmental may be subcontact
Chrin-of-(Client West cefining		Mailing Address:	Gallup, NM 87301	Phone #: 505-722-3833	email or Fax#: 505-722-0210	QA/QC Package: X Standard	Årraditation		EDD (Type)_Please provide EDD	Date Time Matrix	9/6/2016 [[a]3 soil	1007		1555	1	9/6/2016 [330] soil	9/6/2016 330 soii	9/6/2016 337 soil	9/6/2016 / 305 soil	9/6/2016 1345 soil	9/6/2016 210 soil		9/6/2016 NA soil	9/6/2016 / 635 water	9/6/2016 1640 water	-	Date: Time: Relinquished.by A-lo-10 1830 ZEE	Date: Time: Relinquished by	

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: <u>www.hallenvironmental.com</u>

October 13, 2016

Ed Riege Western Refining Southwest, Gallup 92 Giant Crossing Road Gallup, NM 87301 TEL: (505) 722-3833 FAX (505) 722-0210

RE: OCD Central Landfarm Semiannual Sampling

OrderNo.: 1610345

Dear Ed Riege:

Hall Environmental Analysis Laboratory received 3 sample(s) on 10/7/2016 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to <u>www.hallenvironmental.com</u> or the state specific web sites. In order to properly interpret your results it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Analytical Report Lab Order 1610345 Date Reported: 10/13/2016

Hall Environmental Analysis Laboratory, Inc.

CLIENT	: Western Refining Southwest	, Gallup		Client Sample ID: CentralOCD-2271-10062016-S							
Project:	OCD Central Landfarm Sem		Collection Date: 10/6/2016 10:50:00 AM								
Lab ID:	1610345-001	SOIL	Received Date: 10/7/2016 9:22:00 AM								
Analyses		Result	MDL	PQL	Qual	Units	DF	Date Analyzed	Batch ID		
EPA MET	HOD 300.0: ANIONS							Analyst: LGT			

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	Е	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits
	ND	Not Detected at the Reporting Limit	Р	Sample pH Not In Range
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

Page 1 of 4

Analytical Report Lab Order 1610345 Date Reported: 10/13/2016

Hall Environmental Analysis Laboratory, Inc.

CLIENT:	Western Refining Southwest, G	allup		Clier	nt Sampl	le ID: Cen	tralOC	D-2271-10062016-S	
Project:	OCD Central Landfarm Semian		Collection Date: 10/6/2016 10:40:00 AM						
Lab ID:	1610345-002	SOIL	Received Date: 10/7/2016 9:22:00 AM						
A		Result	MDI	DOI	01	T In the	DE	Data Analunad	Batch ID
Analyses		Result	MDL	PQL	Qual	Units	DF	Date Analyzed	Datch ID
	HOD 300.0: ANIONS	Kesun	MDL	PQL	Quai	Units	DF	Analyst: LGT	Batch ID

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	Е	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits
	ND	Not Detected at the Reporting Limit	Р	Sample pH Not In Range
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

Analytical Report Lab Order 1610345 Date Reported: 10/13/2016

Hall Environmental Analysis Laboratory, Inc.

CLIENT:	: Western Refining Southw	est, Gallup		Clier	nt Sampl	le ID: Cen	tralOC	D-BD-10062016	
Project:	OCD Central Landfarm S		Collection Date: 10/6/2016						
Lab ID:	1610345-003	Matrix:	SOIL	Received Date: 10/7/2016 9:22:00 AM					
Analyses		Result	MDL	PQL	Qual	Units	DF	Date Analyzed	Batch ID
EPA MET	HOD 300.0: ANIONS							Analyst: LGT	
Chloride		480	12	30		mg/Kg	20	10/12/2016 5:08:43 PM	28015

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	Е	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits
	ND	Not Detected at the Reporting Limit	Р	Sample pH Not In Range
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as spe

as specified

Page 3 of 4

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

Client: Project:		ern Refining S Central Landf		· •	ampling						
Sample ID	/B-28015	SampT	ype: ME	BLK	Tes	tCode: EP	PA Method	300.0: Anion	s		
Client ID: F	PBS	Batch	n ID: 28	015	F	RunNo: 37	905				
Prep Date:	10/11/2016	Analysis D	ate: 10)/12/2016	S	SeqNo: 11	80857	Units: mg/K	g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride		ND	1.5								
Sample ID L	_CS-28015	SampT	ype: LC	S	Tes	tCode: EP	A Method	300.0: Anion	s		
Client ID: L	CSS	Batch	n ID: 28	015	F	RunNo: 37	905				
Prep Date:	10/11/2016	Analysis D	ate: 10	0/12/2016	5	SeqNo: 11	80858	Units: mg/K	ģ		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride		14	1.5	15.00	0	94.7	90	110			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified
- Page 4 of 4

HALL ENVIRONMENTAL ANALYSIS LABORATORY	Hall Environmental A Albuq TEL: 505-345-3975 F Website: www.halle	4901 H uerque, AX: 505	awkins NE NM 87109 -345-4107	Sam	ole Log-In Ch	eck List
Client Name: Western Refining Gallup V	fork Order Number:	161034	5		RopiNo:	;;;
Received by/date: A 10/ 67/14						
Logged By: Anne Thorne 10/7	/2016 9:22:00 AM		Ű.	ene Arm	-	
Completed By: Anne Thorne 10/7	//2016		0	In An	/	
Reviewed By: LC 1010116			U(,		-	
Chain of Custody						
1. Custody seals intact on sample bottles?		Yes 🗌		No 🗌	Not Present 🗹	
2. Is Chain of Custody complete?		Yes 🛽		No 🗌	Not Present	
3. How was the sample delivered?	• .	<u>Client</u>				
Log In			1 A.			
4. Was an attempt made to cool the samples?		Yes		No 🗌		
5. Were all samples received at a temperature of >	0° C to 6.0°C	Yes 🔽	•	No 🗌		
6. Sample(s) in proper container(s)?		Yes 🛛		No 🗌		
7. Sufficient sample volume for indicated test(s)?		Yes 🛛		No 🗌		
8. Are samples (except VOA and ONG) properly pre	eserved?	Yes 🛛		No 🗌		
9. Was preservative added to bottles?		Yes [No 🗹	NA 🗔	
10.VOA vials have zero headspace?		Yes []	No 🗌	No VOA Vials 🗹	
11. Were any sample containers received broken?		Yes [No 🗹	# of preserved	
12. Does paperwork match bottle labels?		Yes		No 🗌	bottles checked for pH:	
(Note discrepancies on chain of custody)		_	3		(<2 or Adjusted?	>12 unless noted)
13. Are matrices correctly identified on Chain of Cust	ody?	Yes 🕨	_			
14. Is it clear what analyses were requested? 15. Were all holding times able to be met?		Yes Ves		No 🗌	Checked by:	
(If no, notify customer for authorization.)						
Special Handling (if applicable)						
16. Was client notified of all discrepancies with this o	rder?	Yes [No 🗌	NA 🔽	
Person Notified:	Date					
By Whom:	Via:	eMail	Phone	e ∏ Fax	In Person	
Regarding:	- avairantia	_ =an		<u> </u>		
Client Instructions:	e en da della come il tra fonda e de la construcción de la construcción de la construcción de la construcción d	na ta' Esc. An an ammin		- 1627 - 1756 - 1628 - 1628 - 1638 - 1638 - 1638 - 1638 - 1638 - 1638 - 1638 - 1638 - 1638 - 1638 - 1638 - 163	ale and the second second of the second s	
17. Additional remarks:			<u> </u>	<u> </u>		
18. <u>Cooler Information</u>						
Cooler No Temp °C Condition Seal In	tact Seal No S	eal Date	Sigr	ned By		
1 1.0 Good Yes						

								(N	110	<u>ک</u>	Air Bubbles				·													£	·····	
الديو	ž													-														Remarks: Please cc Grant Price (gprice@trihydro.com) with results. Call Grant @ 307-745-7474 w/ questions. Data	n 10	
.	ē		g													ļ													Vith	
HALL ENVIRONMEN	ANALYSIS LABORAT		- Albuquerque, NM 87109	107			<u>. </u>								;	ļ	<u> </u>											Remarks: Please cc Grant Price (gprice@trihydro. results. Call Grant @ 307-745-7474 w/ questions.	ed v	
Σ	BO	_	WZ	Fax 505-345-4107					<u> </u>																			@tril	leed	
õ	ğ	E C E	he	5-34	lest											<u> </u>			<u> </u>									N orice		
ĽĽ]	antal	Juer	x 50	Sedt												·										<u>-</u>	e (<u>g</u>	ш 2	
2	SIS	nme	Abuc	Fa	sis																							Pric 45-	pAų	
Ш	ž	enviro	-	75	Analysis Request				·																	_		Srant 307-	v/ Tr	
F	N	halle	IS NE	5-397	A																							80	de v	
H	AN	www.hatlenvironmental.com	4901 Hawkins NÉ	Tel. 505-345-3975				÷																			<u> </u>	ease Gran	acka nf	32
1		5	1 Ha	505							<u></u>		·	.															<u>report and paci</u> days of recient	
			490	Tel																							 	arks ts. (n L L L L L L L L L L L L L L L L L L L	
				1			(0.00	εA	EЪ	Chloride by	×	х	×														Rem	<u>repo</u>	
											10	10	2	63		1				····								1		
			5								HEAL No. 010345	20)	202	4														Date Time	\Im	Date Time / 6
			nid Liid					2	1. 1. S. A. S.		HEAL No. 1034	١																	2	ine (
			San					3	No	0																		⊢ 、	$\tilde{\sigma}$	2/0
			inual					Bitswi	D No	\sim					ļ	 			ļ		ļ	L	ļ		 		<u> </u>	S Bet	1,	Date Date
	- Lo		mian					2			vativ pe								, in the second se				ļ						∇	7
÷	Ó		n Se					380	又 Yes		Preservativ e Type	e	e	ы					Ì			ļ					-			
			OCD Central Landfarm Semiannual Sampling						×	ture	<u> </u>	none	none	none	<u> </u>	 		ļ	<u></u>		ļ	 						4		: :
:		ن د	Lan			iger.				pera	ype																		}	<u> </u>
:	danc	lam	ntral	-	904	Mana	d)	<i>.</i> .		Tem	Container Type and #							Î										3 /	,Π	à là
23	Stan	ect	ပိ	ect #	-052	ect	Riege	npler	ce:	ple	ontai ar	two 4-oz	4-0Z	two 4-oz														Received by:	À	Received by:
	W Standard	Proj	Ö	Proj	697	Project Manager:	Ed Riege	San	On Ice: X	San	ပိ	₹ 2	two 4-oz	t vo											ļ	ļ		Rec		a Sec
												N-/											1							6
												NS-S	NS-S	116																
											st II	2016	2016	0620											1					
5							Level 4 (Full Validation)				Sample Request ID	CentralOCD-2271-10062016-SW-N	CentralOCD-2271-10062016-SW-E	CentralOCD-BD-10062016									•						$\langle \Lambda \rangle$	
3							/alid		1		Re	-1-2	271-	D-BI	ľ		l											i		
1			2								nple	D-22	D-2	NOC C															λ	
Ş		0	Route 3 Box 7				14 (1		ĺ			loc	0 0	entra														N	\mathcal{N}	
50		Ś	ute 3		102	0	eve					entra	entre	Ō														N	$\tilde{\sim}$	_
3	ت مر)	Refinin	Rot		-383	-021				ride		Ö	0		[<u> </u>			 	<u> </u>	_	ļ	 	ļ	_	1-			
יודטודטעטיטען וועטעוע	Refining				505-722-3833	505-722-0210			D Other	bro	Matrix															ļ		Relinquished by:		Relinquished by
	e Ç	Vestern			505	505	1			_Please provide EDD	Ÿ	soil	1040 soil	soil					<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	1	_	Reli		
5		est	10	5							Time	<i>ins</i> 0	2	A														l g	8	ă V
2	C Wes	3	tdres	A 87.		ax#:	kage Kage	i iii	-	Уре)	F									_		-	ļ		-		-	Time:	5	Time:
	-		lailing Address:	ailup. NM 87301	# 0	mail or Fax#:	A/QC Package:	ccreditation.	NELAP	1 EDD (Type)	Date	0/6/2016	0/6/2016	10/6/2016						1								ate: Time: \A-L-1Le /20D	2	1
	lient	1	lailir	allu	hone #	mail	NA S	l S	J NE	Ш	ă	0/0/	10/6/	0/0														A_/	6	K ^{afe}

Appendix B: September 2016 and October 2016 Tier II Data Validation Reports

Client: Western Refining Southwest, Inc.	Laboratory: Hall Environmental						
Project Name: OCD Landfarm Semiannual Sampling	Sample Matrix: Soil						
Project Number: 697-052-003	Sample Start Date: 10/20/2016						
Date Validated: 11/14/2016	Sample End Date: 10/20/2016						
Parameters Included: Chloride by Environmental Protection Agency (EPA) Method 300.0							
Laboratory Project ID: 1610A38							
Data Validator: Charles Ballek, Senior Chemist							
Reviewer: Kyle Power, Environmental Chemist							

DATA EVALUATION CRITERIA SUMMARY

A Tier II Data Validation was performed by Trihydro Corporation's Chemical Data Evaluation Services Group on the analytical data report package generated by Hall Environmental Analysis Laboratory in Albuquerque, New Mexico, evaluating samples from the Western Refining Southwest, Inc. site located in Gallup, New Mexico.

Precision, accuracy, method compliance, and completeness of this data package were assessed during this data review. Precision was determined by evaluating the calculated relative percent difference (RPD) values from:

Field duplicate pairs

Laboratory accuracy was established by reviewing the demonstrated percent recoveries (%R) of the following items to verify that data are not biased.

Laboratory control sample (LCS)

Method compliance was established by reviewing sample integrity, holding times, detection limits, laboratory blanks, initial and continuing calibrations (where applicable), and the LCS percent recoveries against method-specific requirements.

Completeness was evaluated by determining the overall ratio of the number of samples and analyses planned versus the number of samples with valid analyses. Determination of completeness included a review of the chain-of-custody (CoC), laboratory analytical methods, and other laboratory and field documents associated with this analytical data set.

SAMPLE NUMBERS TABLE

Client Sample ID	Laboratory Sample Number
CentralOCD-2271-10202016-SW-NW	1610A38-001A
CentralOCD-2271-10202016-SW-NE	1610A38-002A
CentralOCD-2271-10202016-SW-E	1610A38-003A
CentralOCD-BD-10202016	1610A38-004A

The laboratory data were reviewed to evaluate compliance with the methods and the quality of the reported data. Assessment of CoC completeness is included in Item 3 of the Data Validation Checklist. A check mark (\checkmark) indicates that the referenced validation criteria were deemed acceptable, whereas a crossed circle (\otimes) indicates validation criteria for which the data have been qualified by the data validator. An empty circle (\bigcirc) indicates that the specified criterion does not apply to the reviewed data. Details are noted in the tables below.

Validation Criteria

- ✓ Data Completeness
- ✓ CoC Documentation (Item 3)
- ✓ Holding Times and Preservation (Items 6 and 7)
- O Initial and Continuing Calibrations (Item 9)
- ✓ Laboratory Blanks (Item 11)
- O Matrix Spike/Matrix Spike Duplicate (MS/MSD) (Item 13)
- ✓ LCS (Item 15)
- O System Monitoring Compounds (i.e., Surrogates) (Item 17)
- O Field, Equipment, and Trip Blanks (Item 18)
- ✓ Field Duplicates (Item 20)
- O Laboratory Duplicates (Item 22)

Guidance References

Chemical data validation was conducted in accordance with the United States Environmental Protection Agency (USEPA) Contract Laboratory Program (CLP) National Functional Guidelines for the analyses listed below, or by the appropriate method if not covered in the National Functional Guidelines.

- Data for inorganic analyses were evaluated according to validation criteria set forth in the USEPA CLP National Functional Guidelines for Inorganic Superfund Data Review, document number EPA-540-R-013-001, August 2014 with additional reference to the USEPA CLP National Functional Guidelines for Inorganic Data Review, document number EPA 540-R-04-004, October 2004.
- Review of field duplicates was conducted according to the USEPA New England Environmental Data Review Supplement for Regional Data Review Elements and Superfund Specific Guidance/Procedures, EQADR-Supplement0, April 2013.
- Trihydro Data Validation Variance Documentation, February 2016.
- Project-specific Quality Assurance Project Plans (QAPP) data validation requirements, as applicable.

OVERALL DATA PACKAGE ASSESSMENT

Based on a data validation review, the data are acceptable as delivered. Data qualified by the laboratory are discussed in Item 2 of the Validation Criteria Checklist.

The purpose of validating data and assigning qualifiers is to assist in proper data interpretation. Data that are not qualified meet the site data quality objectives.

Data qualifiers were not applied as a result of this validation.

Data Completeness

The analyses were performed as requested on the CoC records. The associated samples were received by the laboratory and analyzed properly unless otherwise noted in the Criteria Checklist below. The complete data package consisted of 4 data points. No data points were rejected. The data completeness measure for this data package is calculated to be 100% and is acceptable.

VALIDATION CRITERIA CHECKLIST							
1. Was the report free of non-conformances identified by the laboratory?	Yes						
Comments: The laboratory did not identify non-conformances regarding the analytical data.							
 Were the data free of data qualification flags and/or notes used by the laboratory? If no, define. 	Yes						
Comments: The laboratory did not apply data qualification flags to results in this data set.							
3. Were sample CoC forms and procedures complete?	Yes						
Comments: The CoC records from field to laboratory were complete and custody was maintained as evid and laboratory personnel signatures, dates, and times of receipt.	denced by field						
Custody seals were not present nor required since the samples were delivered to the laboratory by field p custody was maintained at all times.	personnel and						
4. Were detection limits in accordance with the quality assurance project plan (QAPP), permit, or method, or indicated as acceptable?	Yes						
Comments: The detection limits appeared to be acceptable. The following dilutions were applied.							
<u>Method 300.0</u> : Samples CentralOCD-2271-10202016-SW-E and CentralOCD-BD-10202016 were diluted by factors of 20 times for the chloride analyses and dilutions of 50 times were applied to samples CentralOCD-2271-10202016-SW-NW and CentralOCD-2271-10202016-SW-NE.							
 Were the reported analytical methods and constituents in compliance with the QAPP, permit, or CoC? Specify if any analytes were reported by more than one method. 	Yes						
Comments: The reported analytical method was in compliance with the CoC and the laboratory reported constituents in accordance with the CoC.	the requested						
6. Were samples received in good condition within method-specified requirements?	Yes						
Comments: Samples were received on ice, in good condition, and with the cooler temperature within the temperature range of $4^{\circ}C \pm 2^{\circ}C$ at 2.8°C as noted on the Sample Log-In Check List.	recommended						
7. Were samples extracted/digested and analyzed within method-specified or technical holding times?	Yes						
Comments: The samples were analyzed within method-specific holding times.							
8. Were reported units appropriate for the sample matrix/matrices and analytical method(s)? Specify if wet or dry units were used for soil.	Yes						
Comments: The results were reported in concentration units of milligrams per kilogram (mg/kg), which w the sample matrices and the analyses requested. Analytical results for the soil samples were reported or wet weight basis.							
9. Did the laboratory provide any specific initial and/or continuing calibration results?	No						
Comments: Initial and continuing calibration data were not included as part of this data set.							
10. If initial and/or continuing calibration results were provided, were the results within acceptable limits?	N/A						
Comments: Initial and continuing calibration data were not included as part of this data set.							
11. Was the total number of laboratory blank samples prepared equal to at least 5% of the total number of samples or analyzed as required by the method?	Yes						
Comments: The number of laboratory blank samples prepared was equal to at least 5% of the total num	ber of samples.						
🛜 Trihydro							

4 of 7 \\trihydro.com\Clients\ItoN\Marathon\ProjectDocs\Gallup\OCD-Landfarms\2019Chlorides&Closure\201910_OCDLetter\Attachments\Att-A\4-Attachments\ATT-B_TierII-DVs\201612_1610A38-TierII-DV_ATT-B1.docx

VALIDATION CRITERIA CHECKLIST								
12. Were target analytes reported as not detected in the laboratory blanks?	Yes							
Comments: The target analyte was reported as not detected in the laboratory blank.								
13. Was the total number of MS samples prepared equal to at least 5% of the total No number of samples or analyzed as required by the method? No								
Comments: The total number of matrix spike samples prepared was not equal to at least 5% of the total number of samples.								
Matrix spike samples were not prepared for the analyses reported in this data set.								
14. For MS/MSDs prepared from project samples, were percent recoveries and RPDs within data validation or laboratory quality control (QC) limits?	N/A							
Comments: Matrix spike samples were not prepared for the analyses reported in this data set.								
15. Was the total number of LCSs analyzed equal to at least 5% of the total number of samples or analyzed as required by the method?	Yes							
Comments: The total number of LCS samples analyzed was equal to at least 5% of the total number of s	samples.							
16. Were LCS/LCSD percent recoveries and LCS/LCSD RPDs within data validation or laboratory QC limits?	Yes							
Comments: The LCS percent recovery was within laboratory QC limits.								
17. Were surrogate recoveries within laboratory QC limits?	N/A							
Comments: Analysis of surrogates is not required for Method 300.0.								
18. Were the number of trip blank, field blank, and/or equipment blank samples collected equal to at least 10% of the total number of samples or as required by the project guidelines, QAPP, SAP, or permit?	No							
Comments: The number of trip, field, and equipment blanks collected was not equal to at least 10% of th samples.	ne number of							
Trip, field, and equipment blank samples were not collected for this sample set.								
19. Were target analytes reported as not detected in the trip blank, field blank, and/or equipment blank samples?	N/A							
Comments: Trip, field, and equipment blank samples were not collected for this sample set.								
20. Was the number of field duplicates collected equal to at least 10% of the total number of samples or as required by the project guidelines, QAPP, SAP, or permit?	Yes							
Comments: The number of field duplicates collected was equal to at least 10% of the number of samples	S.							
Sample CentralOCD-BD-10202016 was collected as a field duplicate of sample CentralOCD-2271-10202	2016-SW-E.							
 Were field duplicate RPD values within data validation QC limits (soil 0-50%, water 0-30%, or air 0-25%)? 	Yes							
Comments: As indicated in the Field Duplicate Summary Table at the end of this report, field duplicate R within data validation QC limits of 0-50% for soil samples.	PD values were							
22. For laboratory duplicates prepared from project samples, were RPDs within laboratory QC limits?	N/A							
Comments: Laboratory duplicate samples were not prepared for this sample set.								

FIELD DUPLICATE SUMMARY

Client Sample ID: CentralOCD-2271-10202016-SW-E									
Field Duplicate Sample ID: CentralOCD-BD-10202016									
Method	Analyte	Laboratory Result (mg/kg)	Duplicate Result (mg/kg)	Relative Percent Difference (RPD)					
300.0	Chloride	640	600	6.5%					
Field duplicate RPD control limits are not to exceed 50% for soil as established by USEPA New England Environmental Data Review Elements and Superfund Specific Guidance/Procedures, EQADR-Supplement0, April 2013.									

6 of 7 \\trihydro.com\Clients\\toN\Marathon\ProjectDocs\Gallup\OCD-Landfarms\2019Chlorides&Closure\201910_OCDLetter\Attachments\Att-A\4-Attachments\ATT-B_TierlI-DVs\201612_1610A38-TierlI-DV_ATT-B1.docx

DATA QUALIFICATION SUMMARY

Data qualifiers were not applied as a result of this validation.

\trihydro.com\Clients\toN\Marathon\ProjectDocs\Gallup\OCD-Landfarms\2019Chlorides&Closure\201910_OCDLetter\Attachments\Att-A\4-Attachments\ATT-B_TierlI-DVs\201612_1610A38-TierlI-DV_ATT-B1.docx

Client: Western Refining Southwest, Inc.	Laboratory: Hall Environmental Analysis Laboratory						
Project Name: OCD Landfarm Semiannual Sampling	Sample Matrix: Soil						
Project Number: 697-052-003	Sample Start Date: 09/06/2016						
Date Validated: 09/30/2016	Sample End Date: 09/06/2016						
Parameters Included: Chloride by US Environmental Protection Agency (EPA) Method 300.0							
Laboratory Project ID: 1609455							
Data Validator: Charles Ballek, Senior Chemist							
Reviewer: Mike Phillips, Senior Chemist							

DATA EVALUATION CRITERIA SUMMARY

A Tier II Data Validation was performed by Trihydro Corporation's Chemical Data Evaluation Services Group on the analytical data report package generated by Hall Environmental Analysis Laboratory in Albuquerque, New Mexico, evaluating samples from the Western Refining Southwest, Inc. site, located in Gallup, New Mexico.

Precision, accuracy, method compliance, and completeness of this data package were assessed during this data review. Precision was determined by evaluating the calculated relative percent difference (RPD) values from:

Field duplicate pairs

Laboratory accuracy was established by reviewing the demonstrated percent recoveries (%R) of the following items to verify that data are not biased.

Laboratory control sample (LCS)

Method compliance was established by reviewing sample integrity, holding times, detection limits, laboratory blanks, initial and continuing calibrations (where applicable), and the LCS percent recoveries against method-specific requirements.

Completeness was evaluated by determining the overall ratio of the number of samples and analyses planned versus the number of samples with valid analyses. Determination of completeness included a review of the chain-of-custody (CoC), laboratory analytical methods, and other laboratory and field documents associated with this analytical data set.

SAMPLE NUMBERS TABLE

Client Sample ID	Laboratory Sample Number
CentralOCD-1021-09062016-F	1609455-001A
CentralOCD-1021-09062016-SW-N	1609455-002A
CentralOCD-1021-09062016-SW-S	1609455-003A
CentralOCD-1021-09062016-SW-E	1609455-004A
CentralOCD-1021-09062016-SW-W	1609455-005A
CentralOCD-2271-09062016-F	1609455-006A
CentralOCD-2271-09062016-SW-N	1609455-007A
CentralOCD-2271-09062016-SW-S	1609455-008A
CentralOCD-2271-09062016-SW-E	1609455-009A
CentralOCD-2271-09062016-SW-W	1609455-010A
CentralOCD-BD-09062016	1609455-011A

2 of 8 \\trihydro.com\Clients\toN\Marathon\ProjectDocs\Gallup\OCD-Landfarms\2019Chlorides&Closure\201910_OCDLetter\Attachments\Att-A\4-Attachments\ATT-B_Tierll-DVs\201612_1609455-Tierll-DV_ATT-B2.docx

The laboratory data were reviewed to evaluate compliance with the methods and the quality of the reported data. Assessment of CoC completeness is included in Item 3 of the Data Validation Checklist. A check mark (\checkmark) indicates that the referenced validation criteria were deemed acceptable, whereas a crossed circle (\otimes) indicates validation criteria for which the data have been qualified by the data validator. An empty circle (\bigcirc) indicates that the specified criterion does not apply to the reviewed data. Details are noted in the tables below.

Validation Criteria

- ✓ Data Completeness
- ✓ CoC Documentation (Item 3)
- ✓ Holding Times and Preservation (Items 6 and 7)
- O Initial and Continuing Calibrations (Item 9)
- ✓ Laboratory Blanks (Item 11)
- O MS/MSD (Item 13)
- ✓ LCS (Item 15)
- O System Monitoring Compounds (i.e., Surrogates) (Item 17)
- O Field, Equipment, and Trip Blanks (Item 18)
- ✓ Field Duplicate (Item 20)
- O Laboratory Duplicates (Item 22)

Guidance References

Chemical data validation was conducted in accordance with the United States Environmental Protection Agency (USEPA) Contract Laboratory Program (CLP) National Functional Guidelines for the analyses listed below, or by the appropriate method if not covered in the National Functional Guidelines.

- Data for inorganic analyses were evaluated according to validation criteria set forth in the USEPA CLP National Functional Guidelines for Inorganic Superfund Data Review, document number EPA-540-R-013-001, August 2014 with additional reference to the USEPA CLP National Functional Guidelines for Inorganic Data Review, document number EPA 540-R-04-004, October 2004.
- Review of field duplicates was conducted according to the USEPA New England Environmental Data Review Supplement for Regional Data Review Elements and Superfund Specific Guidance/Procedures, EQADR-Supplement0, April 2013.
- Trihydro Data Validation Variance Documentation, February 2016.
- Project-specific Quality Assurance Project Plans (QAPP) data validation requirements, as applicable.

OVERALL DATA PACKAGE ASSESSMENT

Based on a data validation review, the data are acceptable as delivered. Data qualified by the laboratory are discussed in Item 2 of the Validation Criteria Checklist.

The purpose of validating data and assigning qualifiers is to assist in proper data interpretation. Data that are not qualified meet the site data quality objectives. Please see the Data Qualification Summary table at the end of this report for a complete list of samples and analytes qualified.

Data qualifiers were not applied as a result of this validation.

Data Completeness

The analyses were performed as requested on the CoC records. The associated samples were received by the laboratory and analyzed properly unless otherwise noted in the Criteria Checklist below. The complete data package consisted of 11 data points. No data points were rejected. The data completeness measure for this data package is calculated to be 100% and is acceptable.

VALIDATION CRITERIA CHECKLIST	
1. Was the report free of non-conformances identified by the laboratory?	Yes
Comments: The laboratory did not identify non-conformances regarding the analytical data.	
 Were the data free of data qualification flags and/or notes used by the laboratory? If no, define. 	Yes
Comments: The laboratory did not apply data qualification flags to results in this data set.	
3. Were sample CoC forms and procedures complete?	Yes
Comments: The CoC records from field to laboratory were complete and custody was maintained as ev and laboratory personnel signatures, dates, and times of receipt.	idenced by field
Custody seals were not present nor required since the samples were transferred to a lab courier for deli- laboratory and custody was maintained at all times.	very to the
4. Were detection limits in accordance with the quality assurance project plan (QAPP), permit, or method, or indicated as acceptable?	Yes
Comments: The detection limits appeared to be acceptable. The following dilutions were applied.	
<u>Method 300.0</u> : Dilutions of 20 times were applied for the chloride analyses of the samples except Centr 09062016-SW-N and CentralOCD-2271-09062016-SW-E that were diluted by factors of 50 times.	alOCD-2271-
5. Were the reported analytical methods and constituents in compliance with the QAPP, permit, or CoC? Specify if any analytes reported by more than one method?	Yes
Comments: The reported analytical methods were in compliance with the CoC and the laboratory repor constituents in accordance with the CoC.	ted the requested
6. Were samples received in good condition within method-specified requirements?	No
Comments: Samples were received on ice, in good condition, and with the cooler temperature outside t temperature range of 4°C ± 2°C at 1.0°C as noted on the Sample Log-In Check List. The cooler temper was judged as acceptable since the laboratory did not report the sample containers as broken or frozen.	ature below 2.0°C
7. Were samples extracted/digested and analyzed within method-specified or technical holding times?	Yes
Comments: The samples were analyzed within method-specific holding times.	
 Were reported units appropriate for the sample matrix/matrices and analytical method(s)? Specify if wet or dry units were used for soil. 	Yes
Comments: The results were reported in concentration units of milligrams per kilogram (mg/kg) which w the sample matrices and the analyses requested. Analytical results for the soil samples were reported of wet weight basis.	
9. Did the laboratory provide any specific initial and/or continuing calibration results?	No
Comments: Initial and continuing calibration data were not included as part of this data set.	
10. If initial and/or continuing calibration results were provided, were the results within acceptable limits?	N/A
Comments: Initial and continuing calibration data were not included as part of this data set.	
11. Was the total number of laboratory blank samples prepared equal to at least 5% of the total number of samples or analyzed as required by the method?	Yes
Comments: The number of laboratory blank samples prepared was equal to at least 5% of the total num	nber of samples.

😽 Trihydro

VALIDATION CRITERIA CHECKLIST	
12. Were target analytes reported as not detected in the laboratory blanks?	Yes
Comments: Target analytes were reported as not detected in the laboratory blanks.	
13. Was the total number of MS samples prepared equal to at least 5% of the total number of samples or analyzed as required by the method?	No
Comments: The total number of matrix spike samples prepared was not equal to at least 5% of the total samples.	number of
Matrix spike samples were not prepared for the analyses reported in this data set.	
14. For MS/MSDs prepared from project samples, were percent recoveries and RPDs within data validation or laboratory quality control (QC) limits?	N/A
Comments: Matrix spike samples were not prepared for the analyses reported in this data set.	
15. Was the total number of LCSs analyzed equal to at least 5% of the total number of samples or analyzed as required by the method?	Yes
Comments: The total number of LCS samples analyzed was equal to at least 5% of the total number of	samples.
16. Were LCS/LCSD percent recoveries and LCS/LCSD RPDs within data validation or laboratory QC limits?	Yes
Comments: The LCS percent recoveries were within laboratory QC limits.	
17. Were surrogate recoveries within laboratory QC limits?	N/A
Comments: Analysis of surrogates is not required for Method 300.0.	
18. Were the number of trip blank, field blank, and/or equipment blank samples collected equal to at least 10% of the total number of samples or as required by the project guidelines, QAPP, SAP, or permit?	No
Comments: The number of trip, field, and equipment blanks collected was not equal to at least 10% of the samples.	ne number of
Trip, field, and equipment blank samples were not collected for this sample set.	
19. Were target analytes reported as not detected in the trip blank, field blank, and/or equipment blank samples?	N/A
Comments: Trip, field, and equipment blank samples were not collected for this sample set.	
20. Was the number of field duplicates collected equal to at least 10% of the total number of samples or as required by the project guidelines, QAPP, SAP, or permit?	Yes
Comments: The number of field duplicates collected was equal to at least 10% of the number of sample	S.
Sample CentralOCD-BD-09062016 was collected as a field duplicate of sample CentralOCD-1021-0906	2016-SW-E.
 Were field duplicate RPD values within data validation QC limits (soil 0-50%, water 0-30%, or air 0-25%)? 	Yes
Comments: As indicated in the Field Duplicate Summary Table at the end of this report, field duplicate F within data validation QC limits of 0-50% for soil samples.	RPD values were
22. For laboratory duplicates prepared from project samples, were RPDs within laboratory QC limits?	N/A
Comments: Laboratory duplicate samples were not prepared for this sample set.	

🔊 Trihydro

6 of 8 \\trihydro.com\Clients\toN\Marathon\ProjectDocs\Gallup\OCD-Landfarms\2019Chlorides&Closure\201910_OCDLetter\Attachments\Att-A\4-Attachments\ATT-B_Tierll-DVs\201612_1609455-Tierll-DV_ATT-B2.docx

FIELD DUPLICATE SUMMARY

Client Sample ID: CentralOCD-1021-09062016-SW-E Field Duplicate Sample ID: CentralOCD-BD-09062016								
Analyte Method Laboratory Result (mg/kg) Duplicate Result (mg/kg) Relative Percent								
Chloride	300.0	130	110	16.7%				
Field duplicate RPD control limit Review Supplement for Regiona								

Supplement0, April 2013.

DATA QUALIFICATION SUMMARY

Data qualifiers were not applied as a result of this validation.

\trihydro.com\Clients\toN\Marathon\ProjectDocs\Gallup\OCD-Landfarms\2019Chlorides&Closure\201910_OCDLetter\Attachments\Att-A\4-Attachments\ATT-B_TierlI-DVs\201612_1609455-TierlI-DV_ATT-B2.docx

Tier II Data Validation Report Summary

Client: Western Refining Southwest, Inc.	Laboratory: Hall Environmental
Project Name: OCD Landfarm Semiannual Sampling	Sample Matrix: Soil
Project Number: 697-052-003	Sample Start Date: 10/06/2016
Date Validated: 10/17/2016	Sample End Date: 10/06/2016
Parameters Included: Chloride by Environmental Protection Agency (EPA) Methods 	nod 300.0
Laboratory Project ID: 1610345	
Data Validator: Caitlin Fields, Staff Engineer	
Reviewer: Charles Ballek, Senior Chemist	

DATA EVALUATION CRITERIA SUMMARY

A Tier II Data Validation was performed by Trihydro Corporation's Chemical Data Evaluation Services Group on the analytical data report package generated by Hall Environmental Analysis Laboratory in Albuquerque, New Mexico, evaluating samples from the Western Refining Southwest, Inc. site located in Gallup, New Mexico.

Precision, accuracy, method compliance, and completeness of this data package were assessed during this data review. Precision was determined by evaluating the calculated relative percent difference (RPD) values from:

Field duplicate pairs

Laboratory accuracy was established by reviewing the demonstrated percent recoveries (%R) of the following items to verify that data are not biased.

Laboratory control sample (LCS)

Method compliance was established by reviewing sample integrity, holding times, detection limits, laboratory blanks, initial and continuing calibrations (where applicable), and the LCS percent recoveries against method-specific requirements.

Completeness was evaluated by determining the overall ratio of the number of samples and analyses planned versus the number of samples with valid analyses. Determination of completeness included a review of the chain-of-custody (CoC), laboratory analytical methods, and other laboratory and field documents associated with this analytical data set.

SAMPLE NUMBERS TABLE

Client Sample ID	Laboratory Sample Number
CentralOCD-2271-10062016-SW-N	1610345-001
CentralOCD-2271-10062016-SW-E	1610345-002
CentralOCD-BD-10062016	1610345-003

Tier II Data Validation Report Summary

The laboratory data were reviewed to evaluate compliance with the methods and the quality of the reported data. Assessment of CoC completeness is included in Item 3 of the Data Validation Checklist. A check mark (\checkmark) indicates that the referenced validation criteria were deemed acceptable, whereas a crossed circle (\otimes) indicates validation criteria for which the data have been qualified by the data validator. An empty circle (O) indicates that the specified criterion does not apply to the reviewed data. Details are noted in the tables below.

Validation Criteria

- ✓ Data Completeness
- ✓ CoC Documentation (Item 3)
- ✓ Holding Times and Preservation (Items 6 and 7)
- O Initial and Continuing Calibrations (Item 9)
- ✓ Laboratory Blanks (Item 11)
- O MS/MSD (Item 13)
- ✓ LCS (Item 15)
- O System Monitoring Compounds (i.e., Surrogates) (Item 17)
- O Field, Equipment, and Trip Blanks (Item 18)
- ✓ Field Duplicates (Item 20)
- O Laboratory Duplicates (Item 22)

Guidance References

Chemical data validation was conducted in accordance with the United States Environmental Protection Agency (USEPA) Contract Laboratory Program (CLP) National Functional Guidelines for the analyses listed below, or by the appropriate method if not covered in the National Functional Guidelines.

- Data for inorganic analyses were evaluated according to validation criteria set forth in the USEPA CLP National Functional Guidelines for Inorganic Superfund Data Review, document number EPA-540-R-013-001, August 2014 with additional reference to the USEPA CLP National Functional Guidelines for Inorganic Data Review, document number EPA 540-R-04-004, October 2004.
- Review of field duplicates was conducted according to the USEPA New England Environmental Data Review Supplement for Regional Data Review Elements and Superfund Specific Guidance/Procedures, EQADR-Supplement0, April 2013.
- Trihydro Data Validation Variance Documentation, February 2016.
- Project-specific Quality Assurance Project Plans (QAPP) data validation requirements, as applicable.

Tier II Data Validation Report Summary

OVERALL DATA PACKAGE ASSESSMENT

Based on a data validation review, the data are acceptable as delivered. Data qualified by the laboratory are discussed in Item 2 of the Validation Criteria Checklist.

The purpose of validating data and assigning qualifiers is to assist in proper data interpretation. Data that are not qualified meet the site data quality objectives.

Data qualifiers were not applied as a result of this validation.

Data Completeness

The analyses were performed as requested on the CoC records. The associated samples were received by the laboratory and analyzed properly unless otherwise noted in the Criteria Checklist below. The complete data package consisted of 3 data points. No data points were rejected. The data completeness measure for this data package is calculated to be 100% and is acceptable.

VALIDATION CRITERIA CHECKLIST	
1. Was the report free of non-conformances identified by the laboratory?	Yes
Comments: The laboratory did not identify non-conformances regarding the analytical data.	
 Were the data free of data qualification flags and/or notes used by the laboratory? If no, define. 	Yes
Comments: The laboratory did not apply data qualification flags to results in this data set.	
3. Were sample CoC forms and procedures complete?	Yes
Comments: The CoC records from field to laboratory were complete and custody was maintained as evand laboratory personnel signatures, dates, and times of receipt.	videnced by field
Custody seals were not present nor required since the samples were delivered to the laboratory by field custody was maintained at all times.	personnel and
4. Were detection limits in accordance with the quality assurance project plan (QAPP), permit, or method, or indicated as acceptable?	Yes
Comments: The detection limits appeared to be acceptable. The following dilutions were applied.	
Method 300.0: Dilutions of 20 times were applied for the chloride analyses of the samples.	
 Were the reported analytical methods and constituents in compliance with the QAPP, permit, or CoC? Specify if any analytes were reported by more than one method. 	Yes
Comments: The reported analytical methods were in compliance with the CoC and the laboratory report constituents in accordance with the CoC.	ted the requested
6. Were samples received in good condition within method-specified requirements?	No
Comments: Samples were received on ice, in good condition, and with the cooler temperature outside temperature range of 4°C ± 2°C at 1.0°C as noted on the Sample Log-In Check List. The cooler temper was judged as acceptable since the laboratory did not report the sample containers as broken or frozen	rature below 2.0°C
7. Were samples extracted/digested and analyzed within method-specified or technical holding times?	No
Comments: The samples were analyzed within method-specific holding times.	
 Were reported units appropriate for the sample matrix/matrices and analytical method(s)? Specify if wet or dry units were used for soil. 	Yes
Comments: The results were reported in concentration units of milligrams per kilogram (mg/kg) which v the sample matrices and the analyses requested. Analytical results for the soil samples were reported of wet weight basis.	-
9. Did the laboratory provide any specific initial and/or continuing calibration results?	No
Comments: Initial and continuing calibration data were not included as part of this data set.	
10. If initial and/or continuing calibration results were provided, were the results within acceptable limits?	N/A
Comments: Initial and continuing calibration data were not included as part of this data set.	
11. Was the total number of laboratory blank samples prepared equal to at least 5% of the total number of samples or analyzed as required by the method?	Yes
Comments: The number of laboratory blank samples prepared was equal to at least 5% of the total nur	nber of samples.

VALIDATION CRITERIA CHECKLIST	
12. Were target analytes reported as not detected in the laboratory blanks?	Yes
Comments: The target analyte was reported as not detected in the laboratory blank.	
13. Was the total number of MS samples prepared equal to at least 5% of the total number of samples or analyzed as required by the method?	No
Comments: The total number of matrix spike samples prepared was not equal to at least 5% of the total samples.	number of
Matrix spike samples were not prepared for the analyses reported in this data set.	
14. For MS/MSDs prepared from project samples, were percent recoveries and RPDs within data validation or laboratory quality control (QC) limits?	N/A
Comments: Matrix spike samples were not prepared for the analyses reported in this data set.	
15. Was the total number of LCSs analyzed equal to at least 5% of the total number of samples or analyzed as required by the method?	Yes
Comments: The total number of LCS samples analyzed was equal to at least 5% of the total number of	samples.
16. Were LCS/LCSD percent recoveries and LCS/LCSD RPDs within data validation or laboratory QC limits?	Yes
Comments: The LCS percent recovery was within laboratory QC limits.	
17. Were surrogate recoveries within laboratory QC limits?	N/A
Comments: Analysis of surrogates is not required for Method 300.0.	
18. Were the number of trip blank, field blank, and/or equipment blank samples collected equal to at least 10% of the total number of samples or as required by the project guidelines, QAPP, SAP, or permit?	No
Comments: The number of trip, field, and equipment blanks collected was not equal to at least 10% of th samples.	ne number of
Trip, field, and equipment blank samples were not collected for this sample set.	
19. Were target analytes reported as not detected in the trip blank, field blank, and/or equipment blank samples?	N/A
Comments: Trip, field, and equipment blank samples were not collected for this sample set.	
20. Was the number of field duplicates collected equal to at least 10% of the total number of samples or as required by the project guidelines, QAPP, SAP, or permit?	Yes
Comments: The number of field duplicates collected was equal to at least 10% of the number of samples	S.
Sample CentralOCD-BD-10062016 was collected as a field duplicate of sample CentralOCD-2271-10062	2016-SW-E.
 Were field duplicate RPD values within data validation QC limits (soil 0-50%, water 0-30%, or air 0-25%)? 	Yes
Comments: As indicated in the Field Duplicate Summary Table at the end of this report, field duplicate R within data validation QC limits of 0-50% for soil samples.	PD values were
22. For laboratory duplicates prepared from project samples, were RPDs within laboratory QC limits?	N/A
Comments: Laboratory duplicate samples were not prepared for this sample set.	

FIELD DUPLICATE SUMMARY

Client Sample ID: CentralOCD-2271-10062016-SW-E Field Duplicate Sample ID: CentralOCD-BD-10062016								
Method Analyte Laboratory Result (mg/kg) Duplicate Result (mg/kg) Relative Percent								
300.0 Chloride 800 480 50.0%								
Field duplicate RPD control limits are not to exceed 50% for soil as established by USEPA New England Environmental Data Review Supplement for Regional Data Review Elements and Superfund Specific Guidance/Procedures, EQADR-Supplement0, April 2013.								

6 of 7 \\trihydro.com\Clients\\toN\Marathon\ProjectDocs\Gallup\OCD-Landfarms\2019Chlorides&Closure\201910_OCDLetter\Attachments\Att-A\4-Attachments\ATT-B_Tierll-DVs\201612_1610345-Tierll-DV_ATT-B3.docx

DATA QUALIFICATION SUMMARY

Data qualifiers were not applied as a result of this validation.

\trihydro.com\Clients\toN\Marathon\ProjectDocs\Gallup\OCD-Landfarms\2019Chlorides&Closure\201910_OCDLetter\Attachments\Att-A\4-Attachments\ATT-B_TierlI-DVs\201612_1610345-TierlI-DV_ATT-B3.docx

Appendix B

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

July 31, 2019

Brian Moore Marathon 92 Giant Crossing Rd Gallup, NM 87301 TEL: (505) 722-3833 FAX

RE: OCD Central Landfarm Semiannual Sampling

OrderNo.: 1906G37

Dear Brian Moore:

Hall Environmental Analysis Laboratory received 13 sample(s) on 6/27/2019 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Hall Environmental Analysis Laboratory, Inc.

Lab Order **1906G37** Date Reported: **7/31/2019**

CLIENT: Marathon Client Sample ID: CENTRAL OCD LF TZ01								
Project: OCD Central Landfarm Semian	nual Sam		Collection Date: 6/27/2019 9:30:00 AM					
Lab ID: 1906G37-001	Matrix: S	OIL	Rec	eived I) ate: 6/2	7/201	9 4:20:00 PM	
							/	
Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8082A: PCB'S							Analyst: TON	1
Aroclor 1016	ND	0.0098	0.023		mg/Kg	1	7/9/2019 11:39:53 PM	45963
Aroclor 1221	ND	0.018	0.023		mg/Kg	1	7/9/2019 11:39:53 PM	45963
Aroclor 1232	ND	0.022	0.023		mg/Kg	1	7/9/2019 11:39:53 PM	45963
Aroclor 1242	ND	0.012	0.023		mg/Kg	1	7/9/2019 11:39:53 PM	45963
Aroclor 1248	ND	0.018	0.023		mg/Kg	1	7/9/2019 11:39:53 PM	45963
Aroclor 1254	ND	0.018	0.023		mg/Kg	1	7/9/2019 11:39:53 PM	45963
Aroclor 1260	ND	0.0085	0.023		mg/Kg	1	7/9/2019 11:39:53 PM	45963
Surr: Decachlorobiphenyl	82.8	0	25.7-135		%Rec	1	7/9/2019 11:39:53 PM	45963
Surr: Tetrachloro-m-xylene	98.4	0	32.3-138		%Rec	1	7/9/2019 11:39:53 PM	45963
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS						Analyst: BRN	1
Diesel Range Organics (DRO)	ND	1.7	8.5		mg/Kg	1	7/5/2019 3:43:02 PM	45994
Motor Oil Range Organics (MRO)	ND	43	43		mg/Kg	1	7/5/2019 3:43:02 PM	45994
Surr: DNOP	96.7	0	70-130		%Rec	1	7/5/2019 3:43:02 PM	45994
EPA METHOD 300.0: ANIONS							Analyst: smb	1
Fluoride	5.4	0.46	1.5		mg/Kg	5	7/10/2019 8:12:14 PM	46094
Chloride	160	0.51	7.5		mg/Kg	5	7/10/2019 8:12:14 PM	46094
Nitrogen, Nitrate (As N)	4.9	0.75	1.5		mg/Kg	5	7/10/2019 8:12:14 PM	46094
Sulfate	920	14	30		mg/Kg	20	7/10/2019 8:24:39 PM	46094
EPA METHOD 7471: MERCURY							Analyst: JLF	
Mercury	0.043	0.0018	0.032		mg/Kg	1	7/10/2019 2:21:22 PM	46081
EPA METHOD 6010B: SOIL METALS							Analyst: bcv	
Arsenic	ND	2.9	5.0		mg/Kg	2	7/2/2019 8:55:34 AM	45944
Barium	300	0.047	0.20		mg/Kg	2	7/2/2019 8:55:34 AM	45944
Cadmium	ND	0.049	0.20		mg/Kg	2	7/2/2019 8:55:34 AM	45944
Chromium	14	0.16	0.60		mg/Kg	2	7/2/2019 8:55:34 AM	45944
Copper	12	0.23	0.60		mg/Kg	2	7/2/2019 8:55:34 AM	45944
Iron	18000	73	250		mg/Kg	100	7/2/2019 8:15:38 AM	45944
Lead	3.4	0.49	0.50		mg/Kg	2	7/2/2019 8:55:34 AM	45944
Manganese	380	0.042	0.20		mg/Kg	2	7/2/2019 8:55:34 AM	45944
Selenium	ND	2.5	5.0		mg/Kg	2	7/2/2019 8:55:34 AM	45944
Silver	ND	0.064	0.50		mg/Kg	2	7/2/2019 8:55:34 AM	45944
Uranium	ND	4.4	10		mg/Kg	2	7/2/2019 8:55:34 AM	45944
Zinc	33	0.80	5.0		mg/Kg	2	7/2/2019 8:55:34 AM	45944
EPA METHOD 8270C: SEMIVOLATILES							Analyst: DAN	1
Acenaphthene	ND	0.12	0.20		mg/Kg	1	7/8/2019 5:19:18 PM	45929
Acenaphthylene	ND	0.11	0.20		mg/Kg	1	7/8/2019 5:19:18 PM	45929
Aniline	ND	0.13	0.20		mg/Kg	1	7/8/2019 5:19:18 PM	45929
Refer to the QC Summary report a	and sample los			ed OC		prese	rvation information.	

Qualifiers:

* Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix

ND Not Detected at the Reporting Limit

S

H Holding times for preparation or analysis exceeded

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limitsP Sample pH Not In Range

RL Reporting Limit

PQL Practical Quanitative Limit

% Recovery outside of range due to dilution or matrix

Page 1 of 65

Hall Environmental Analysis Laboratory, Inc.

Lab Order 1906G37 Date Reported: 7/31/2019

CLIENT: Marathon Client Sample ID: CENTRAL OCD LF TZ01 **Project:** OCD Central Landfarm Semiannual Sam Collection Date: 6/27/2019 9:30:00 AM Lab ID: 1906G37-001 Matrix: SOIL Received Date: 6/27/2019 4:20:00 PM Result MDL DF **Date Analyzed Batch ID** Analyses RL **Qual Units EPA METHOD 8270C: SEMIVOLATILES** Analyst: DAM 7/8/2019 5:19:18 PM ND 0.11 Anthracene 0.20 mg/Kg 1 45929 Azobenzene ND 0.14 0.20 mg/Kg 1 7/8/2019 5:19:18 PM 45929 Benz(a)anthracene ND 0.097 0.20 mg/Kg 1 7/8/2019 5:19:18 PM 45929 ND 0.090 0.20 mg/Kg 1 7/8/2019 5:19:18 PM Benzo(a)pyrene 45929 Benzo(b)fluoranthene ND 0.089 0.20 1 mg/Kg 7/8/2019 5:19:18 PM 45929 0.087 1 Benzo(a.h.i)pervlene ND 0.20 mg/Kg 7/8/2019 5:19:18 PM 45929 Benzo(k)fluoranthene ND 0.092 0.20 mg/Kg 1 7/8/2019 5:19:18 PM 45929 Benzoic acid ND 0.10 0.50 mg/Kg 1 7/8/2019 5:19:18 PM 45929 ND 1 Benzyl alcohol 0.13 0.20 mg/Kg 7/8/2019 5:19:18 PM 45929 Bis(2-chloroethoxy)methane ND 0.15 0.20 mg/Kg 1 7/8/2019 5:19:18 PM 45929 Bis(2-chloroethyl)ether ND 0.12 0.20 mg/Kg 1 7/8/2019 5:19:18 PM 45929 7/8/2019 5:19:18 PM Bis(2-chloroisopropyl)ether ND 0.11 0.20 mg/Kg 1 45929 Bis(2-ethylhexyl)phthalate ND 0.14 0.50 mg/Kg 1 7/8/2019 5:19:18 PM 45929 4-Bromophenyl phenyl ether ND 0.12 0.20 mg/Kg 1 7/8/2019 5:19:18 PM 45929 Butyl benzyl phthalate ND 0.10 0.20 mg/Kg 1 7/8/2019 5:19:18 PM 45929 ND 0.12 0.20 1 Carbazole mg/Kg 7/8/2019 5:19:18 PM 45929 4-Chloro-3-methylphenol ND 0.15 0.50 mg/Kg 1 7/8/2019 5:19:18 PM 45929 ND 0.14 4-Chloroaniline 0.50 mg/Kg 1 7/8/2019 5:19:18 PM 45929 2-Chloronaphthalene ND 0.13 0.25 mg/Kg 1 7/8/2019 5:19:18 PM 45929 2-Chlorophenol ND 0.13 0.20 mg/Kg 1 7/8/2019 5:19:18 PM 45929 4-Chlorophenyl phenyl ether ND 0.11 1 0.20 mg/Kg 7/8/2019 5:19:18 PM 45929 Chrysene ND 0.089 0.20 mg/Kg 1 7/8/2019 5:19:18 PM 45929 ND Di-n-butyl phthalate 0.15 mg/Kg 1 0.40 7/8/2019 5:19:18 PM 45929 Di-n-octyl phthalate ND 0.10 1 0.40 mg/Kg 7/8/2019 5:19:18 PM 45929 ND 0.092 Dibenz(a,h)anthracene 0.20 mg/Kg 1 7/8/2019 5:19:18 PM 45929 Dibenzofuran ND 0.13 0.20 mg/Kg 1 7/8/2019 5:19:18 PM 45929 ND 0.12 0.20 mg/Kg 1 1,2-Dichlorobenzene 7/8/2019 5:19:18 PM 45929 1,3-Dichlorobenzene ND 0.11 0.20 mg/Kg 1 7/8/2019 5:19:18 PM 45929 ND 1 1,4-Dichlorobenzene 0.11 0.20 mg/Kg 7/8/2019 5:19:18 PM 45929 3.3'-Dichlorobenzidine ND 0.090 0.25 mg/Kg 1 7/8/2019 5:19:18 PM 45929 Diethyl phthalate ND 0.14 0.20 mg/Kg 1 7/8/2019 5:19:18 PM 45929 Dimethyl phthalate ND 0.13 0.20 mg/Kg 1 7/8/2019 5:19:18 PM 45929 2,4-Dichlorophenol ND 0.12 0.40 mg/Kg 1 7/8/2019 5:19:18 PM 45929 ND 2,4-Dimethylphenol 0.11 0.30 mg/Kg 1 7/8/2019 5:19:18 PM 45929 4,6-Dinitro-2-methylphenol ND 0.093 mg/Kg 1 0.40 7/8/2019 5:19:18 PM 45929 2,4-Dinitrophenol ND 0.073 0.50 mg/Kg 1 7/8/2019 5:19:18 PM 45929 1 2,4-Dinitrotoluene ND 0.12 0.50 mg/Kg 7/8/2019 5:19:18 PM 45929 2,6-Dinitrotoluene ND 0.13 0.50 mg/Kg 1 7/8/2019 5:19:18 PM 45929 ND Fluoranthene 0.11 0.20 mg/Kg 1 7/8/2019 5:19:18 PM 45929

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Oualifiers:

Value exceeds Maximum Contaminant Level. D

Sample Diluted Due to Matrix

Н Holding times for preparation or analysis exceeded Not Detected at the Reporting Limit

ND POL Practical Quanitative Limit в Analyte detected in the associated Method Blank

Е Value above quantitation range J

Analyte detected below quantitation limits Р Sample pH Not In Range

% Recovery outside of range due to dilution or matrix

RL Reporting Limit Page 2 of 65

Hall Environmental Analysis Laboratory, Inc.

Lab Order 1906G37 Date Reported: 7/31/2019

CLIENT: Marathon Client Sample ID: CENTRAL OCD LF TZ01								
Project: OCD Central Landfarm Semian	nual Sam		Collection Date: 6/27/2019 9:30:00 AM					
Lab ID: 1906G37-001	Matrix: S	OIL	Rec	eived I	Date: 6/2	7/201	9 4:20:00 PM	
Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8270C: SEMIVOLATILES							Analyst: DA	M
Fluorene	ND	0.11	0.20		mg/Kg	1	7/8/2019 5:19:18 PM	45929
Hexachlorobenzene	ND	0.12	0.20		mg/Kg	1	7/8/2019 5:19:18 PM	45929
Hexachlorobutadiene	ND	0.14	0.20		mg/Kg	1	7/8/2019 5:19:18 PM	45929
Hexachlorocyclopentadiene	ND	0.12	0.20		mg/Kg	1	7/8/2019 5:19:18 PM	45929
Hexachloroethane	ND	0.11	0.20		mg/Kg	1	7/8/2019 5:19:18 PM	45929
Indeno(1,2,3-cd)pyrene	ND	0.10	0.20		mg/Kg	1	7/8/2019 5:19:18 PM	45929
Isophorone	ND	0.15	0.40		mg/Kg	1	7/8/2019 5:19:18 PM	45929
1-Methylnaphthalene	ND	0.15	0.20		mg/Kg	1	7/8/2019 5:19:18 PM	
2-Methylnaphthalene	ND	0.15	0.20		mg/Kg	1	7/8/2019 5:19:18 PM	
2-Methylphenol	ND	0.12	0.40		mg/Kg	1	7/8/2019 5:19:18 PM	
3+4-Methylphenol	ND	0.12	0.20		mg/Kg	1	7/8/2019 5:19:18 PM	
N-Nitrosodi-n-propylamine	ND	0.14	0.20		mg/Kg	1	7/8/2019 5:19:18 PM	
N-Nitrosodiphenylamine	ND	0.11	0.20		mg/Kg	1	7/8/2019 5:19:18 PM	
Naphthalene	ND	0.15	0.20		mg/Kg	1	7/8/2019 5:19:18 PM	
2-Nitroaniline	ND	0.14	0.20		mg/Kg	1	7/8/2019 5:19:18 PM	
3-Nitroaniline	ND	0.14	0.20		mg/Kg	1	7/8/2019 5:19:18 PM	
4-Nitroaniline	ND	0.13	0.40		mg/Kg	1	7/8/2019 5:19:18 PM	
Nitrobenzene	ND	0.14	0.40		mg/Kg	1	7/8/2019 5:19:18 PM	
2-Nitrophenol	ND	0.14	0.20		mg/Kg	1	7/8/2019 5:19:18 PM	
4-Nitrophenol	ND	0.14	0.25		mg/Kg	1	7/8/2019 5:19:18 PM	
Pentachlorophenol	ND	0.10	0.40		mg/Kg	1	7/8/2019 5:19:18 PM	
Phenanthrene	ND	0.11	0.20		mg/Kg	1	7/8/2019 5:19:18 PM	
Phenol	ND	0.13	0.20		mg/Kg	1	7/8/2019 5:19:18 PM	
Pyrene	ND	0.095	0.20		mg/Kg	1	7/8/2019 5:19:18 PM	
Pyridine	ND	0.12	0.40		mg/Kg	1	7/8/2019 5:19:18 PM	
1,2,4-Trichlorobenzene	ND	0.16	0.20		mg/Kg	1	7/8/2019 5:19:18 PM	
2,4,5-Trichlorophenol	ND	0.13	0.20		mg/Kg	1	7/8/2019 5:19:18 PM	
2,4,6-Trichlorophenol	ND	0.11	0.20		mg/Kg	1	7/8/2019 5:19:18 PM	
Surr: 2-Fluorophenol	60.5		4.8-95.2		%Rec	1	7/8/2019 5:19:18 PM	
Surr: Phenol-d5	61.6		9.9-97.8		%Rec	1	7/8/2019 5:19:18 PM	
Surr: 2,4,6-Tribromophenol	65.4		35.7-108		%Rec	1	7/8/2019 5:19:18 PM	
Surr: Nitrobenzene-d5	64.0		32.5-106		%Rec	1	7/8/2019 5:19:18 PM	
Surr: 2-Fluorobiphenyl	64.4		27.7-114		%Rec	1	7/8/2019 5:19:18 PM	
Surr: 4-Terphenyl-d14	65.1		15-148		%Rec	1	7/8/2019 5:19:18 PM	45929
EPA METHOD 8260B: VOLATILES							Analyst: DJ	F
Benzene	ND	0.0041	0.025		mg/Kg	1	7/3/2019 6:33:15 PM	
Toluene	ND	0.0048	0.050		mg/Kg	1	7/3/2019 6:33:15 PM	
Ethylbenzene	ND	0.0029	0.050		mg/Kg	1	7/3/2019 6:33:15 PM	
Methyl tert-butyl ether (MTBE)	ND	0.012	0.050		mg/Kg	1	7/3/2019 6:33:15 PM	45983

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix

Holding times for preparation or analysis exceeded

Н ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

В Analyte detected in the associated Method Blank

Е Value above quantitation range J

Analyte detected below quantitation limits Sample pH Not In Range

Р Reporting Limit RL

Page 3 of 65

% Recovery outside of range due to dilution or matrix S

Hall Environmental Analysis Laboratory, Inc.

Lab Order **1906G37** Date Reported: **7/31/2019**

CLIENT: Marathon				Client Sample ID: CENTRAL OCD LF TZ01						
Project: OCD Central Landfarm Semia	annual Sam		Collection Date: 6/27/2019 9:30:00 AM							
Lab ID: 1906G37-001	Matrix: S	OIL	Re	Received Date: 6/27/2019 4:20:00 PM						
Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID			
EPA METHOD 8260B: VOLATILES						Analyst: DJ	F			
1,2,4-Trimethylbenzene	ND	0.0045	0.050	mg/Kg	1	7/3/2019 6:33:15 PM	45983			
1,3,5-Trimethylbenzene	ND	0.0048	0.050	mg/Kg	1	7/3/2019 6:33:15 PM	45983			
1,2-Dichloroethane (EDC)	ND	0.0051	0.050	mg/Kg	1	7/3/2019 6:33:15 PM	45983			
1,2-Dibromoethane (EDB)	ND	0.0045	0.050	mg/Kg	1	7/3/2019 6:33:15 PM	45983			
Naphthalene	ND	0.010	0.10	mg/Kg	1	7/3/2019 6:33:15 PM	45983			
1-Methylnaphthalene	ND	0.029	0.20	mg/Kg	1	7/3/2019 6:33:15 PM	45983			
2-Methylnaphthalene	ND	0.022	0.20	mg/Kg	1	7/3/2019 6:33:15 PM	45983			
Acetone	ND	0.041	0.75	mg/Kg	1	7/3/2019 6:33:15 PM	45983			
Bromobenzene	ND	0.0048	0.050	mg/Kg	1	7/3/2019 6:33:15 PM	45983			
Bromodichloromethane	ND	0.0045	0.050	mg/Kg	1	7/3/2019 6:33:15 PM	45983			
Bromoform	ND	0.0045	0.050	mg/Kg	1	7/3/2019 6:33:15 PM	45983			
Bromomethane	ND	0.012	0.15	mg/Kg	1	7/3/2019 6:33:15 PM	45983			
2-Butanone	ND	0.058	0.50	mg/Kg	1	7/3/2019 6:33:15 PM	45983			
Carbon disulfide	ND	0.016	0.50	mg/Kg	1	7/3/2019 6:33:15 PM	45983			
Carbon tetrachloride	ND	0.0047	0.050	mg/Kg	1	7/3/2019 6:33:15 PM	45983			
Chlorobenzene	ND	0.0064	0.050	mg/Kg	1	7/3/2019 6:33:15 PM	45983			
Chloroethane	ND	0.0073	0.10	mg/Kg	1	7/3/2019 6:33:15 PM	45983			
Chloroform	ND	0.0040	0.050	mg/Kg	1	7/3/2019 6:33:15 PM	45983			
Chloromethane	ND	0.0048	0.15	mg/Kg	1	7/3/2019 6:33:15 PM	45983			
2-Chlorotoluene	ND	0.0043	0.050	mg/Kg	1	7/3/2019 6:33:15 PM	45983			
4-Chlorotoluene	ND	0.0041	0.050	mg/Kg	1	7/3/2019 6:33:15 PM	45983			
cis-1,2-DCE	ND	0.0068	0.050	mg/Kg	1	7/3/2019 6:33:15 PM	45983			
cis-1,3-Dichloropropene	ND	0.0042	0.050	mg/Kg	1	7/3/2019 6:33:15 PM	45983			
1,2-Dibromo-3-chloropropane	ND	0.0051	0.10	mg/Kg	1	7/3/2019 6:33:15 PM	45983			
Dibromochloromethane	ND	0.0035	0.050	mg/Kg	1	7/3/2019 6:33:15 PM	45983			
Dibromomethane	ND	0.0054	0.050	mg/Kg	1	7/3/2019 6:33:15 PM	45983			
1,2-Dichlorobenzene	ND	0.0034	0.050	mg/Kg	1	7/3/2019 6:33:15 PM	45983			
1,3-Dichlorobenzene	ND	0.0043	0.050	mg/Kg	1	7/3/2019 6:33:15 PM	45983			
1,4-Dichlorobenzene	ND	0.0043	0.050	mg/Kg	1	7/3/2019 6:33:15 PM	45983			
Dichlorodifluoromethane	ND	0.0042	0.050	mg/Kg	1	7/3/2019 6:33:15 PM	45983			
1,1-Dichloroethane	ND	0.0032	0.050			7/3/2019 6:33:15 PM	45983			
1,1-Dichloroethene	ND	0.0032	0.050	mg/Kg mg/Kg	1	7/3/2019 6:33:15 PM	45983			
·					1	7/3/2019 6:33:15 PM	45983			
1,2-Dichloropropane 1,3-Dichloropropane	ND ND	0.0036 0.0054	0.050 0.050	mg/Kg mg/Kg	1	7/3/2019 6:33:15 PM	45983 45983			
2,2-Dichloropropane	ND	0.0054	0.050	mg/Kg	1	7/3/2019 6:33:15 PM	45983 45983			
1,1-Dichloropropene					1	7/3/2019 6:33:15 PM	45983 45983			
Hexachlorobutadiene	ND	0.0045	0.10	mg/Kg	1	7/3/2019 6:33:15 PM 7/3/2019 6:33:15 PM				
	ND	0.0051	0.10	mg/Kg	1	7/3/2019 6:33:15 PM 7/3/2019 6:33:15 PM	45983			
2-Hexanone	ND	0.0083	0.50	mg/Kg	1					
Isopropylbenzene	ND	0.0036	0.050	mg/Kg	1	7/3/2019 6:33:15 PM	45983			

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix

Sample Diluted Due to Matrix Holding times for preparation or analysis exceeded

% Recovery outside of range due to dilution or matrix

H Holding times for preparation or analysis exceedND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S

B Analyte detected in the associated Method Blank

E Value above quantitation rangeJ Analyte detected below quantitation limit

J Analyte detected below quantitation limits P Sample pH Not In Range

P Sample pH Not RL Reporting Limit

Page 4 of 65

Hall Environmental Analysis Laboratory, Inc.

Lab Order 1906G37 Date Reported: 7/31/2019

CLIENT: Marathon				Client Sample ID: CENTRAL OCD LF TZ01						
Project: OCD Centra	l Landfarm Semiannual Sar	n	Co	Collection Date: 6/27/2019 9:30:00 AM						
Lab ID: 1906G37-00	Matr	ix: SOIL	R	eceived Da	te: 6/27	7/201	9 4:20:00 PM			
Analyses	Re	sult M	DL RI	. Qual (U nits	DF	Date Analyzed	Batch ID		
EPA METHOD 8260B:	VOLATILES						Analyst: DJ	F		
4-Isopropyltoluene	١	ID 0.004	41 0.050	r	ng/Kg	1	7/3/2019 6:33:15 PM	45983		
4-Methyl-2-pentanone	1	ID 0.009	94 0.50	r	ng/Kg	1	7/3/2019 6:33:15 PM	45983		
Methylene chloride	1	D 0.008	38 0.15	r	ng/Kg	1	7/3/2019 6:33:15 PM	45983		
n-Butylbenzene	1	ID 0.004	46 0.15	r	ng/Kg	1	7/3/2019 6:33:15 PM	45983		
n-Propylbenzene	1	ID 0.004	10 0.050	r	ng/Kg	1	7/3/2019 6:33:15 PM	45983		
sec-Butylbenzene	1	D 0.00	56 0.050	r	ng/Kg	1	7/3/2019 6:33:15 PM	45983		
Styrene	1	ID 0.003	39 0.050	r	ng/Kg	1	7/3/2019 6:33:15 PM	45983		
tert-Butylbenzene	1	D 0.004	17 0.050	r	ng/Kg	1	7/3/2019 6:33:15 PM	45983		
1,1,1,2-Tetrachloroethane	e N	ID 0.003	.050	r	ng/Kg	1	7/3/2019 6:33:15 PM	45983		
1,1,2,2-Tetrachloroethane	e N	D 0.00	50 0.050	r	ng/Kg	1	7/3/2019 6:33:15 PM	45983		
Tetrachloroethene (PCE)	1	ID 0.004	10 0.050	r	ng/Kg	1	7/3/2019 6:33:15 PM	45983		
trans-1,2-DCE	1	ID 0.004	16 0.050	r	ng/Kg	1	7/3/2019 6:33:15 PM	45983		
trans-1,3-Dichloropropene	e l	D 0.00	53 0.050	r	ng/Kg	1	7/3/2019 6:33:15 PM	45983		
1,2,3-Trichlorobenzene	1	ID 0.004	14 0.10	r	ng/Kg	1	7/3/2019 6:33:15 PM	45983		
1,2,4-Trichlorobenzene	1	D 0.00	50 0.050	r	ng/Kg	1	7/3/2019 6:33:15 PM	45983		
1,1,1-Trichloroethane	1	ID 0.004	15 0.050	r	ng/Kg	1	7/3/2019 6:33:15 PM	45983		
1,1,2-Trichloroethane	1	ID 0.003	35 0.050	r	ng/Kg	1	7/3/2019 6:33:15 PM	45983		
Trichloroethene (TCE)	1	D 0.00	58 0.050	r	ng/Kg	1	7/3/2019 6:33:15 PM	45983		
Trichlorofluoromethane	1	ID 0.0 ⁻	0.050	r	ng/Kg	1	7/3/2019 6:33:15 PM	45983		
1,2,3-Trichloropropane	1	D 0.008	31 0.10	r	ng/Kg	1	7/3/2019 6:33:15 PM	45983		
Vinyl chloride	1	ID 0.003	33 0.050	r	ng/Kg	1	7/3/2019 6:33:15 PM	45983		
Xylenes, Total	1	ID 0.0 ⁻	13 0.10	r	ng/Kg	1	7/3/2019 6:33:15 PM	45983		
Surr: Dibromofluorome	ethane 1	10	70-130	Q	%Rec	1	7/3/2019 6:33:15 PM	45983		
Surr: 1,2-Dichloroethar	ne-d4 1	09	70-130	Q	%Rec	1	7/3/2019 6:33:15 PM	45983		
Surr: Toluene-d8	99	.4	70-130	Q	%Rec	1	7/3/2019 6:33:15 PM	45983		
Surr: 4-Bromofluorober	nzene 97	.2	70-130	Q	%Rec	1	7/3/2019 6:33:15 PM	45983		
EPA METHOD 8015D M	IOD: GASOLINE RANGE						Analyst: DJ I	F		
Gasoline Range Organics	s (GRO)	ID 1	.2 5.0	r	ng/Kg	1	7/3/2019 6:33:15 PM	45983		
Surr: BFB		.2	0 70-130		%Rec	1	7/3/2019 6:33:15 PM	45983		
EPA METHOD 418.1: T	PH						Analyst: Irm			
Petroleum Hydrocarbons	, TR	ID 2	.6 19	r	ng/Kg	1	7/9/2019	45999		

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix

Н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

% Recovery outside of range due to dilution or matrix S

В Analyte detected in the associated Method Blank

Е Value above quantitation range J Analyte detected below quantitation limits

Sample pH Not In Range

Р Reporting Limit

RL

Hall Environmental Analysis Laboratory, Inc.

Lab Order 1906G37

Date Reported: 7/31/2019

CLIENT: Marathon	: Marathon Client Sample ID: CENTRAL OCD LF VZ01								
Project: OCD Central Landfarm Semian	nual Sam		Colle	ection I	Date: 6/2	7/201	9 10:00:00 AM		
Lab ID: 1906G37-002	Matrix: S	OIL					9 4:20:00 PM		
Analyses	Result	MDL	RL		Units	DF		Batch ID	
Analyses	Kesun	MDL	KL	Quai	Units	DF	Date Analyzeu		
EPA METHOD 8082A: PCB'S							Analyst: TON	1	
Aroclor 1016	ND	0.010	0.023		mg/Kg	1	7/10/2019 12:12:55 AN	45963	
Aroclor 1221	ND	0.019	0.023		mg/Kg	1	7/10/2019 12:12:55 AN	45963	
Aroclor 1232	ND	0.023	0.023		mg/Kg	1	7/10/2019 12:12:55 AN		
Aroclor 1242	ND	0.012	0.023		mg/Kg	1	7/10/2019 12:12:55 AN		
Aroclor 1248	ND	0.019	0.023		mg/Kg	1	7/10/2019 12:12:55 AN		
Aroclor 1254	ND	0.019	0.023		mg/Kg	1	7/10/2019 12:12:55 AN		
Aroclor 1260	ND	0.0087	0.023		mg/Kg	1	7/10/2019 12:12:55 AN		
Surr: Decachlorobiphenyl	74.4	0	25.7-135		%Rec	1	7/10/2019 12:12:55 AN		
Surr: Tetrachloro-m-xylene	78.8	0	32.3-138		%Rec	1	7/10/2019 12:12:55 AN	1 45963	
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS						Analyst: BRN	1	
Diesel Range Organics (DRO)	ND	1.9	9.6		mg/Kg	1	7/5/2019 4:05:11 PM	45994	
Motor Oil Range Organics (MRO)	ND	48	48		mg/Kg	1	7/5/2019 4:05:11 PM	45994	
Surr: DNOP	93.2	0	70-130		%Rec	1	7/5/2019 4:05:11 PM	45994	
EPA METHOD 300.0: ANIONS							Analyst: smb)	
Fluoride	3.7	0.46	1.5		mg/Kg	5	7/10/2019 8:37:04 PM	46094	
Chloride	240	0.51	7.5		mg/Kg	5	7/10/2019 8:37:04 PM	46094	
Nitrogen, Nitrate (As N)	2.4	0.75	1.5		mg/Kg	5	7/10/2019 8:37:04 PM	46094	
Sulfate	740	14	30		mg/Kg	20	7/10/2019 9:14:16 PM	46094	
EPA METHOD 7471: MERCURY							Analyst: JLF		
Mercury	ND	0.0018	0.032		mg/Kg	1	7/10/2019 2:23:22 PM	46081	
EPA METHOD 6010B: SOIL METALS							Analyst: bcv		
Arsenic	ND	2.8	5.0		mg/Kg	2	7/2/2019 8:57:26 AM	45944	
Barium	180	0.046	0.20		mg/Kg	2	7/2/2019 8:57:26 AM	45944	
Cadmium	ND	0.048	0.20		mg/Kg	2	7/2/2019 8:57:26 AM	45944	
Chromium	15	0.16	0.60		mg/Kg	2	7/2/2019 8:57:26 AM	45944	
Copper	4.1	0.22	0.60		mg/Kg	2	7/2/2019 8:57:26 AM	45944	
Iron	18000	72	250		mg/Kg	100	7/2/2019 8:17:23 AM	45944	
Lead	ND	0.48	0.50		mg/Kg	2	7/2/2019 8:57:26 AM	45944	
Manganese	340	0.041	0.20		mg/Kg	2	7/2/2019 8:57:26 AM	45944	
Selenium	ND	2.5	5.0		mg/Kg	2	7/2/2019 8:57:26 AM	45944	
Silver	ND	0.064	0.50		mg/Kg	2	7/2/2019 8:57:26 AM	45944	
Uranium	ND	4.3	10		mg/Kg	2	7/2/2019 8:57:26 AM	45944	
Zinc	21	0.79	5.0		mg/Kg	2	7/2/2019 8:57:26 AM	45944	
EPA METHOD 8270C: SEMIVOLATILES							Analyst: DAN	1	
Acenaphthene	ND	1.2	2.0	D	mg/Kg	1	7/8/2019 5:49:19 PM	45929	
Acenaphthylene	ND	1.1	2.0	D	mg/Kg	1	7/8/2019 5:49:19 PM	45929	
Aniline	ND	1.3	2.0	D	mg/Kg	1	7/8/2019 5:49:19 PM	45929	
Refer to the QC Summary report a	nd sample log	gin checkli	st for flagg	ed OC	data and	prese	rvation information.		

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix

Analyte detected in the associated Method Blank

Е

H Holding times for preparation or analysis exceeded ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

В Value above quantitation range

J Analyte detected below quantitation limits

Р Sample pH Not In Range

RL Reporting Limit

Page 6 of 65

% Recovery outside of range due to dilution or matrix S

Hall Environmental Analysis Laboratory, Inc.

Lab Order 1906G37

Date Reported: 7/31/2019

CLIENT: Marathon Project: OCD Central Landfarm Semian			-			AL OCD LF VZ01 9 10:00:00 AM		
Lab ID: 1906G37-002	Matrix: SO	DIL	Rec	eived I	Date: 6/2	7/201	9 4:20:00 PM	
Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8270C: SEMIVOLATILES							Analyst: DA	м
Anthracene	ND	1.0	2.0	D	mg/Kg	1	7/8/2019 5:49:19 PM	45929
Azobenzene	ND	1.4	2.0	D	mg/Kg	1	7/8/2019 5:49:19 PM	45929
Benz(a)anthracene	ND	0.94	2.0	D	mg/Kg	1	7/8/2019 5:49:19 PM	45929
Benzo(a)pyrene	ND	0.87	2.0	D	mg/Kg	1	7/8/2019 5:49:19 PM	
Benzo(b)fluoranthene	ND	0.86	2.0	D	mg/Kg	1	7/8/2019 5:49:19 PM	
Benzo(g,h,i)perylene	ND	0.84	2.0	D	mg/Kg	1	7/8/2019 5:49:19 PM	
Benzo(k)fluoranthene	ND	0.89	2.0	D	mg/Kg	1	7/8/2019 5:49:19 PM	
Benzoic acid	ND	1.0	4.9	D	mg/Kg	1	7/8/2019 5:49:19 PM	
Benzyl alcohol	ND	1.2	2.0	D	mg/Kg	1	7/8/2019 5:49:19 PM	
Bis(2-chloroethoxy)methane	ND	1.4	2.0	D	mg/Kg	1	7/8/2019 5:49:19 PM	
Bis(2-chloroethyl)ether	ND	1.2	2.0	D	mg/Kg	1	7/8/2019 5:49:19 PM	
Bis(2-chloroisopropyl)ether	ND	1.1	2.0	D	mg/Kg	1	7/8/2019 5:49:19 PM	
Bis(2-ethylhexyl)phthalate	ND	1.4	4.9	D	mg/Kg	1	7/8/2019 5:49:19 PM	
4-Bromophenyl phenyl ether	ND	1.1	2.0	D	mg/Kg	1	7/8/2019 5:49:19 PM	
Butyl benzyl phthalate	ND	1.0	2.0	D	mg/Kg	1	7/8/2019 5:49:19 PM	
Carbazole	ND	1.1	2.0	D	mg/Kg	1	7/8/2019 5:49:19 PM	
4-Chloro-3-methylphenol	ND	1.5	4.9	D	mg/Kg	1	7/8/2019 5:49:19 PM	
4-Chloroaniline	ND	1.4	4.9	D	mg/Kg	1	7/8/2019 5:49:19 PM	
2-Chloronaphthalene	ND	1.2	2.4	D	mg/Kg	1	7/8/2019 5:49:19 PM	
2-Chlorophenol	ND	1.2	2.0	D	mg/Kg	1	7/8/2019 5:49:19 PM	
4-Chlorophenyl phenyl ether	ND	1.1	2.0	D	mg/Kg	1	7/8/2019 5:49:19 PM	
Chrysene	ND	0.86	2.0	D	mg/Kg	1	7/8/2019 5:49:19 PM	
Di-n-butyl phthalate	ND	1.5	3.9	D	mg/Kg	1	7/8/2019 5:49:19 PM	
Di-n-octyl phthalate	ND	0.99	3.9	D	mg/Kg	1	7/8/2019 5:49:19 PM	
Dibenz(a,h)anthracene	ND	0.89	2.0	D	mg/Kg	1	7/8/2019 5:49:19 PM	
Dibenzofuran	ND	1.3	2.0	D	mg/Kg	1	7/8/2019 5:49:19 PM	
1,2-Dichlorobenzene	ND	1.2	2.0	D	mg/Kg	1	7/8/2019 5:49:19 PM	
1,3-Dichlorobenzene	ND	1.0	2.0	D	mg/Kg	1	7/8/2019 5:49:19 PM	
1,4-Dichlorobenzene	ND	1.0	2.0	D	mg/Kg	1	7/8/2019 5:49:19 PM	
3,3´-Dichlorobenzidine	ND	0.87	2.4	D	mg/Kg	1	7/8/2019 5:49:19 PM	45929
Diethyl phthalate	ND	1.4	2.0	D	mg/Kg	1	7/8/2019 5:49:19 PM	
Dimethyl phthalate	ND	1.3	2.0	D	mg/Kg	1	7/8/2019 5:49:19 PM	
2,4-Dichlorophenol	ND	1.1	3.9	D	mg/Kg	1	7/8/2019 5:49:19 PM	
2,4-Dimethylphenol	ND	1.1	2.9	D	mg/Kg	1	7/8/2019 5:49:19 PM	
4,6-Dinitro-2-methylphenol	ND	0.90	3.9	D	mg/Kg	1	7/8/2019 5:49:19 PM	
2,4-Dinitrophenol	ND	0.71	4.9	D	mg/Kg	1	7/8/2019 5:49:19 PM	
2,4-Dinitrotoluene	ND	1.1	4.9	D	mg/Kg	1	7/8/2019 5:49:19 PM	
2,6-Dinitrotoluene	ND	1.3	4.9	D	mg/Kg	1	7/8/2019 5:49:19 PM	
Fluoranthene	ND	1.1	2.0	D	mg/Kg	1	7/8/2019 5:49:19 PM	45929

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix

Е

Н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

В Analyte detected in the associated Method Blank

Value above quantitation range J

Analyte detected below quantitation limits Sample pH Not In Range

Р

S

% Recovery outside of range due to dilution or matrix

Reporting Limit RL

Page 7 of 65

Hall Environmental Analysis Laboratory, Inc.

Lab Order 1906G37

Date Reported: 7/31/2019

CLIENT: Marathon	Client	t Sampl	e ID: CE	ENTR	AL OCD LF VZ01			
Project: OCD Central Landfarm Semian	nual Sam		Coll	ection l	Date: 6/2	27/201	9 10:00:00 AM	
Lab ID: 1906G37-002	Matrix: S	OIL	Re	ceived l	Date: 6/2	27/201	9 4:20:00 PM	
Analyses	Result	MDI	L RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8270C: SEMIVOLATILES							Analyst: DA	М
Fluorene	ND	1.1	2.0	D	mg/Kg	1	7/8/2019 5:49:19 PM	45929
Hexachlorobenzene	ND	1.2	2.0	D	mg/Kg	1	7/8/2019 5:49:19 PM	45929
Hexachlorobutadiene	ND	1.4	2.0	D	mg/Kg	1	7/8/2019 5:49:19 PM	45929
Hexachlorocyclopentadiene	ND	1.1	2.0	D	mg/Kg	1	7/8/2019 5:49:19 PM	45929
Hexachloroethane	ND	1.1	2.0	D	mg/Kg	1	7/8/2019 5:49:19 PM	45929
Indeno(1,2,3-cd)pyrene	ND	0.97	2.0	D	mg/Kg	1	7/8/2019 5:49:19 PM	45929
Isophorone	ND	1.4	3.9	D	mg/Kg	1	7/8/2019 5:49:19 PM	45929
1-Methylnaphthalene	ND	1.5	2.0	D	mg/Kg	1	7/8/2019 5:49:19 PM	45929
2-Methylnaphthalene	ND	1.4	2.0	D	mg/Kg	1	7/8/2019 5:49:19 PM	45929
2-Methylphenol	ND	1.2	3.9	D	mg/Kg	1	7/8/2019 5:49:19 PM	45929
3+4-Methylphenol	ND	1.2	2.0	D	mg/Kg	1	7/8/2019 5:49:19 PM	45929
N-Nitrosodi-n-propylamine	ND	1.4	2.0	D	mg/Kg	1	7/8/2019 5:49:19 PM	45929
N-Nitrosodiphenylamine	ND	1.0	2.0	D	mg/Kg	1	7/8/2019 5:49:19 PM	45929
Naphthalene	ND	1.5	2.0	D	mg/Kg	1	7/8/2019 5:49:19 PM	45929
2-Nitroaniline	ND	1.4	2.0	D	mg/Kg	1	7/8/2019 5:49:19 PM	45929
3-Nitroaniline	ND	1.3	2.0	D	mg/Kg	1	7/8/2019 5:49:19 PM	45929
4-Nitroaniline	ND	1.2	3.9	D	mg/Kg	1	7/8/2019 5:49:19 PM	45929
Nitrobenzene	ND	1.3	3.9	D	mg/Kg	1	7/8/2019 5:49:19 PM	45929
2-Nitrophenol	ND	1.3	2.0	D	mg/Kg	1	7/8/2019 5:49:19 PM	45929
4-Nitrophenol	ND	1.3	2.4	D	mg/Kg	1	7/8/2019 5:49:19 PM	45929
Pentachlorophenol	ND	1.0	3.9	D	mg/Kg	1	7/8/2019 5:49:19 PM	45929
Phenanthrene	ND	1.1	2.0	D	mg/Kg	1	7/8/2019 5:49:19 PM	45929
Phenol	ND	1.2	2.0	D	mg/Kg	1	7/8/2019 5:49:19 PM	45929
Pyrene	ND	0.92	2.0	D	mg/Kg	1	7/8/2019 5:49:19 PM	45929
Pyridine	ND	1.2	3.9	D	mg/Kg	1	7/8/2019 5:49:19 PM	45929
1,2,4-Trichlorobenzene	ND	1.5	2.0	D	mg/Kg	1	7/8/2019 5:49:19 PM	45929
2,4,5-Trichlorophenol	ND	1.3	2.0	D	mg/Kg	1	7/8/2019 5:49:19 PM	45929
2,4,6-Trichlorophenol	ND	1.0	2.0	D	mg/Kg	1	7/8/2019 5:49:19 PM	45929
Surr: 2-Fluorophenol	0		24.8-95.2	SD	%Rec	1	7/8/2019 5:49:19 PM	45929
Surr: Phenol-d5	0		29.9-97.8	SD	%Rec	1	7/8/2019 5:49:19 PM	45929
Surr: 2,4,6-Tribromophenol	0		35.7-108	SD	%Rec	1	7/8/2019 5:49:19 PM	
Surr: Nitrobenzene-d5	0		32.5-106	SD	%Rec	1	7/8/2019 5:49:19 PM	
Surr: 2-Fluorobiphenyl	0		27.7-114	SD	%Rec	1	7/8/2019 5:49:19 PM	
Surr: 4-Terphenyl-d14	0		15-148	SD	%Rec	1	7/8/2019 5:49:19 PM	
EPA METHOD 8260B: VOLATILES	-				,		Analyst: DJ	
Benzene	ND	0.0039	0.024		mg/Kg	1	7/3/2019 7:02:39 PM	
Toluene	ND	0.0046	0.048		mg/Kg	1	7/3/2019 7:02:39 PM	
Ethylbenzene	ND	0.0028	0.048		mg/Kg	1	7/3/2019 7:02:39 PM	
Methyl tert-butyl ether (MTBE)	ND	0.011	0.048		mg/Kg	1	7/3/2019 7:02:39 PM	

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

B Analyte detected in the associated Method Blank

E Value above quantitation rangeJ Analyte detected below quantitation limits

Analyte detected below quantitation limits
 Sample pH Not In Range

P Sample pH Not RL Reporting Limit

S % Recovery outside of range due to dilution or matrix

Page 8 of 65

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 7/31/2019

CLIENT: Marathon			Client	Sample	ID: CE	NTR	AL OCD LF VZ01	
Project: OCD Central Landfarm Semiar	nnual Sam		Colle	ection D	ate: 6/2	7/201	9 10:00:00 AM	
Lab ID: 1906G37-002	Matrix: S	OIL	Rec	ceived D	ate: 6/2	7/201	9 4:20:00 PM	
Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES							Analyst: DJ	F
1,2,4-Trimethylbenzene	ND	0.0044	0.048		mg/Kg	1	7/3/2019 7:02:39 PM	45983
1,3,5-Trimethylbenzene	ND	0.0047	0.048		mg/Kg	1	7/3/2019 7:02:39 PM	45983
1,2-Dichloroethane (EDC)	ND	0.0049	0.048		mg/Kg	1	7/3/2019 7:02:39 PM	45983
1,2-Dibromoethane (EDB)	ND	0.0044	0.048		mg/Kg	1	7/3/2019 7:02:39 PM	45983
Naphthalene	ND	0.0096	0.096		mg/Kg	1	7/3/2019 7:02:39 PM	45983
1-Methylnaphthalene	ND	0.028	0.19		mg/Kg	1	7/3/2019 7:02:39 PM	45983
2-Methylnaphthalene	ND	0.021	0.19		mg/Kg	1	7/3/2019 7:02:39 PM	45983
Acetone	ND	0.040	0.72		mg/Kg	1	7/3/2019 7:02:39 PM	45983
Bromobenzene	ND	0.0046	0.048		mg/Kg	1	7/3/2019 7:02:39 PM	45983
Bromodichloromethane	ND	0.0044	0.048		mg/Kg	1	7/3/2019 7:02:39 PM	45983
Bromoform	ND	0.0043	0.048		mg/Kg	1	7/3/2019 7:02:39 PM	45983
Bromomethane	ND	0.012	0.14		mg/Kg	1	7/3/2019 7:02:39 PM	45983
2-Butanone	ND	0.056	0.48		mg/Kg	1	7/3/2019 7:02:39 PM	45983
Carbon disulfide	ND	0.016	0.48		mg/Kg	1	7/3/2019 7:02:39 PM	45983
Carbon tetrachloride	ND	0.0046	0.048		mg/Kg	1	7/3/2019 7:02:39 PM	45983
Chlorobenzene	ND	0.0062	0.048		mg/Kg	1	7/3/2019 7:02:39 PM	45983
Chloroethane	ND	0.0071	0.096		mg/Kg	1	7/3/2019 7:02:39 PM	45983
Chloroform	ND	0.0039	0.048		mg/Kg	1	7/3/2019 7:02:39 PM	45983
Chloromethane	ND	0.0046	0.14		mg/Kg	1	7/3/2019 7:02:39 PM	45983
2-Chlorotoluene	ND	0.0042	0.048		mg/Kg	1	7/3/2019 7:02:39 PM	45983
4-Chlorotoluene	ND	0.0039	0.048		mg/Kg	1	7/3/2019 7:02:39 PM	45983
cis-1,2-DCE	ND	0.0066	0.048		mg/Kg	1	7/3/2019 7:02:39 PM	45983
cis-1,3-Dichloropropene	ND	0.0041	0.048		mg/Kg	1	7/3/2019 7:02:39 PM	45983
1,2-Dibromo-3-chloropropane	ND	0.0049	0.096		mg/Kg	1	7/3/2019 7:02:39 PM	45983
Dibromochloromethane	ND	0.0034	0.048		mg/Kg	1	7/3/2019 7:02:39 PM	45983
Dibromomethane	ND	0.0052	0.048		mg/Kg	1	7/3/2019 7:02:39 PM	45983
1,2-Dichlorobenzene	ND	0.0039	0.048		mg/Kg	1	7/3/2019 7:02:39 PM	45983
1,3-Dichlorobenzene	ND	0.0042	0.048		mg/Kg	1	7/3/2019 7:02:39 PM	45983
1,4-Dichlorobenzene	ND	0.0040	0.048		mg/Kg	1	7/3/2019 7:02:39 PM	45983
Dichlorodifluoromethane	ND	0.011	0.048		mg/Kg	1	7/3/2019 7:02:39 PM	45983
1,1-Dichloroethane	ND	0.0031	0.048		mg/Kg	1	7/3/2019 7:02:39 PM	45983
1,1-Dichloroethene	ND	0.019	0.048		mg/Kg	1	7/3/2019 7:02:39 PM	45983
1,2-Dichloropropane	ND	0.0035	0.048		mg/Kg	1	7/3/2019 7:02:39 PM	45983
1,3-Dichloropropane	ND	0.0052	0.048		mg/Kg	1	7/3/2019 7:02:39 PM	45983
2,2-Dichloropropane	ND	0.016	0.096		mg/Kg	1	7/3/2019 7:02:39 PM	45983
1,1-Dichloropropene	ND	0.0044	0.096		mg/Kg	1	7/3/2019 7:02:39 PM	45983
Hexachlorobutadiene	ND	0.0049	0.096		mg/Kg	1	7/3/2019 7:02:39 PM	45983
2-Hexanone	ND	0.0080	0.48		mg/Kg	1	7/3/2019 7:02:39 PM	45983
Isopropylbenzene	ND	0.0035	0.048		mg/Kg	1	7/3/2019 7:02:39 PM	45983

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix

Holding times for preparation or analysis exceeded

Н ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

В Analyte detected in the associated Method Blank

Е Value above quantitation range

J Analyte detected below quantitation limits

Р Sample pH Not In Range

Reporting Limit RL

Page 9 of 65

% Recovery outside of range due to dilution or matrix S

Hall Environmental Analysis Laboratory, Inc.

Lab Order 1906G37

Date Reported: 7/31/2019

CLIENT: Marathon			Client	Sample ID: C	ENTR	AL OCD LF VZ01	
Project: OCD Central Landfarm Semiann	ual Sam		Colle	ection Date: 6/	27/201	9 10:00:00 AM	
Lab ID: 1906G37-002	Matrix: S	OIL	Rec	ceived Date: 6/	27/201	9 4:20:00 PM	
Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES						Analyst: DJ	F
4-Isopropyltoluene	ND	0.0040	0.048	mg/Kg	1	7/3/2019 7:02:39 PM	45983
4-Methyl-2-pentanone	ND	0.0091	0.48	mg/Kg	1	7/3/2019 7:02:39 PM	45983
Methylene chloride	ND	0.0085	0.14	mg/Kg	1	7/3/2019 7:02:39 PM	45983
n-Butylbenzene	ND	0.0045	0.14	mg/Kg	1	7/3/2019 7:02:39 PM	45983
n-Propylbenzene	ND	0.0038	0.048	mg/Kg	1	7/3/2019 7:02:39 PM	45983
sec-Butylbenzene	ND	0.0054	0.048	mg/Kg	1	7/3/2019 7:02:39 PM	45983
Styrene	ND	0.0038	0.048	mg/Kg	1	7/3/2019 7:02:39 PM	45983
tert-Butylbenzene	ND	0.0045	0.048	mg/Kg	1	7/3/2019 7:02:39 PM	45983
1,1,1,2-Tetrachloroethane	ND	0.0032	0.048	mg/Kg	1	7/3/2019 7:02:39 PM	45983
1,1,2,2-Tetrachloroethane	ND	0.0049	0.048	mg/Kg	1	7/3/2019 7:02:39 PM	45983
Tetrachloroethene (PCE)	ND	0.0038	0.048	mg/Kg	1	7/3/2019 7:02:39 PM	45983
trans-1,2-DCE	ND	0.0044	0.048	mg/Kg	1	7/3/2019 7:02:39 PM	45983
trans-1,3-Dichloropropene	ND	0.0051	0.048	mg/Kg	1	7/3/2019 7:02:39 PM	45983
1,2,3-Trichlorobenzene	ND	0.0042	0.096	mg/Kg	1	7/3/2019 7:02:39 PM	45983
1,2,4-Trichlorobenzene	ND	0.0049	0.048	mg/Kg	1	7/3/2019 7:02:39 PM	45983
1,1,1-Trichloroethane	ND	0.0043	0.048	mg/Kg	1	7/3/2019 7:02:39 PM	45983
1,1,2-Trichloroethane	ND	0.0034	0.048	mg/Kg	1	7/3/2019 7:02:39 PM	45983
Trichloroethene (TCE)	ND	0.0056	0.048	mg/Kg	1	7/3/2019 7:02:39 PM	45983
Trichlorofluoromethane	ND	0.016	0.048	mg/Kg	1	7/3/2019 7:02:39 PM	45983
1,2,3-Trichloropropane	ND	0.0078	0.096	mg/Kg	1	7/3/2019 7:02:39 PM	45983
Vinyl chloride	ND	0.0031	0.048	mg/Kg	1	7/3/2019 7:02:39 PM	45983
Xylenes, Total	ND	0.012	0.096	mg/Kg	1	7/3/2019 7:02:39 PM	45983
Surr: Dibromofluoromethane	99.6		70-130	%Rec	1	7/3/2019 7:02:39 PM	45983
Surr: 1,2-Dichloroethane-d4	101		70-130	%Rec	1	7/3/2019 7:02:39 PM	45983
Surr: Toluene-d8	98.8		70-130	%Rec	1	7/3/2019 7:02:39 PM	45983
Surr: 4-Bromofluorobenzene	93.3		70-130	%Rec	1	7/3/2019 7:02:39 PM	45983
EPA METHOD 8015D MOD: GASOLINE RA	ANGE					Analyst: DJ	F
Gasoline Range Organics (GRO)	ND	1.2	4.8	mg/Kg	1	7/3/2019 7:02:39 PM	45983
Surr: BFB	86.0	0	70-130	%Rec	1	7/3/2019 7:02:39 PM	45983
EPA METHOD 418.1: TPH						Analyst: Irm	ı
Petroleum Hydrocarbons, TR	ND	2.7	19	mg/Kg	1	7/9/2019	45999

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 10 of 65

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 7/31/2019

CLIENT: Marathon			Client	Sample	ID: CE	NTRA	AL OCD LF TZ02	
Project: OCD Central Landfarm Semian	nual Sam		Colle	ection Da	ate: 6/2	7/201	9 10:50:00 AM	
Lab ID: 1906G37-003	Matrix: S	OIL	Rec	eived Da	n te: 6/2	7/201	9 4:20:00 PM	
Analyses	Result	MDL	RL	Qual U	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8082A: PCB'S							Analyst: TOI	Л
Aroclor 1016	ND	0.011	0.025	ı	mg/Kg	1	7/10/2019 1:52:12 AM	45963
Aroclor 1221	ND	0.020	0.025	ı	mg/Kg	1	7/10/2019 1:52:12 AM	45963
Aroclor 1232	ND	0.024	0.025	ı	mg/Kg	1	7/10/2019 1:52:12 AM	45963
Aroclor 1242	ND	0.013	0.025	ı	mg/Kg	1	7/10/2019 1:52:12 AM	45963
Aroclor 1248	ND	0.020	0.025	ı	mg/Kg	1	7/10/2019 1:52:12 AM	45963
Aroclor 1254	ND	0.020	0.025	I	mg/Kg	1	7/10/2019 1:52:12 AM	45963
Aroclor 1260	ND	0.0093	0.025	I	mg/Kg	1	7/10/2019 1:52:12 AM	45963
Surr: Decachlorobiphenyl	75.6	0	25.7-135	0	%Rec	1	7/10/2019 1:52:12 AM	45963
Surr: Tetrachloro-m-xylene	87.6	0	32.3-138	0	%Rec	1	7/10/2019 1:52:12 AM	45963
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS						Analyst: BRI	л
Diesel Range Organics (DRO)	33	1.8	9.1	r	mg/Kg	1	7/8/2019 6:24:41 PM	45994
Motor Oil Range Organics (MRO)	57	46	46	I	mg/Kg	1	7/8/2019 6:24:41 PM	45994
Surr: DNOP	96.5	0	70-130	0	%Rec	1	7/8/2019 6:24:41 PM	45994
EPA METHOD 300.0: ANIONS							Analyst: sml	5
Fluoride	10	0.46	1.5	ı	mg/Kg	5	7/10/2019 9:26:41 PM	46094
Chloride	150	0.51	7.5	ı	mg/Kg	5	7/10/2019 9:26:41 PM	46094
Nitrogen, Nitrate (As N)	4.2	0.75	1.5	I	mg/Kg	5	7/10/2019 9:26:41 PM	46094
Sulfate	700	3.4	7.5	I	mg/Kg	5	7/10/2019 9:26:41 PM	46094
EPA METHOD 7471: MERCURY							Analyst: JLF	
Mercury	0.14	0.0017	0.031	ı	mg/Kg	1	7/10/2019 2:29:25 PM	46081
EPA METHOD 6010B: SOIL METALS							Analyst: bcv	
Arsenic	ND	2.8	5.0	ı	mg/Kg	2	7/2/2019 9:04:56 AM	45944
Barium	320	0.046	0.20	I	mg/Kg	2	7/2/2019 9:04:56 AM	45944
Cadmium	ND	0.048	0.20	ı	mg/Kg	2	7/2/2019 9:04:56 AM	45944
Chromium	13	0.16	0.60	I	mg/Kg	2	7/2/2019 9:04:56 AM	45944
Copper	17	0.22	0.60	I	mg/Kg	2	7/2/2019 9:04:56 AM	45944
Iron	16000	72	250	I	mg/Kg	100	7/2/2019 8:24:54 AM	45944
Lead	3.9	0.48	0.50		mg/Kg	2	7/2/2019 9:04:56 AM	45944
Manganese	410	0.041	0.20		mg/Kg	2	7/2/2019 9:04:56 AM	45944
Selenium	ND	2.5	5.0		mg/Kg	2	7/2/2019 9:04:56 AM	45944
Silver	ND	0.064	0.50		mg/Kg	2	7/2/2019 9:04:56 AM	45944
Uranium	ND	4.3	9.9		mg/Kg	2	7/2/2019 9:04:56 AM	45944
Zinc	59	0.79	5.0	I	mg/Kg	2	7/2/2019 9:04:56 AM	45944
EPA METHOD 8270C: SEMIVOLATILES							Analyst: DAI	И
Acenaphthene	ND	0.11	0.19	I	mg/Kg	1	7/8/2019 6:19:41 PM	45929
Acenaphthylene	ND	0.10	0.19	I	mg/Kg	1	7/8/2019 6:19:41 PM	45929
Aniline	ND	0.12	0.19	I	mg/Kg	1	7/8/2019 6:19:41 PM	45929

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix

Analyte detected in the associated Method Blank

Е J

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

В

Value above quantitation range Analyte detected below quantitation limits

Sample pH Not In Range

Р

% Recovery outside of range due to dilution or matrix S

Page 11 of 65

RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 7/31/2019

CLIENT: Marathon	Client	Sampl	e ID: CE	ENTR	AL OCD LF TZ02			
Project: OCD Central Landfarm Semianr	ual Sam		Colle	ection I	Date: 6/2	27/201	9 10:50:00 AM	
Lab ID: 1906G37-003	Matrix: S	OIL	Rec	eived I	Date: 6/2	27/201	9 4:20:00 PM	
Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8270C: SEMIVOLATILES							Analyst: DA	М
Anthracene	ND	0.099	0.19		mg/Kg	1	7/8/2019 6:19:41 PM	45929
Azobenzene	ND	0.13	0.19		mg/Kg	1	7/8/2019 6:19:41 PM	45929
Benz(a)anthracene	ND	0.089	0.19		mg/Kg	1	7/8/2019 6:19:41 PM	45929
Benzo(a)pyrene	ND	0.083	0.19		mg/Kg	1	7/8/2019 6:19:41 PM	45929
Benzo(b)fluoranthene	ND	0.082	0.19		mg/Kg	1	7/8/2019 6:19:41 PM	45929
Benzo(g,h,i)perylene	ND	0.080	0.19		mg/Kg	1	7/8/2019 6:19:41 PM	45929
Benzo(k)fluoranthene	ND	0.084	0.19		mg/Kg	1	7/8/2019 6:19:41 PM	45929
Benzoic acid	ND	0.096	0.46		mg/Kg	1	7/8/2019 6:19:41 PM	45929
Benzyl alcohol	ND	0.12	0.19		mg/Kg	1	7/8/2019 6:19:41 PM	45929
Bis(2-chloroethoxy)methane	ND	0.14	0.19		mg/Kg	1	7/8/2019 6:19:41 PM	45929
Bis(2-chloroethyl)ether	ND	0.11	0.19		mg/Kg	1	7/8/2019 6:19:41 PM	45929
Bis(2-chloroisopropyl)ether	ND	0.11	0.19		mg/Kg	1	7/8/2019 6:19:41 PM	45929
Bis(2-ethylhexyl)phthalate	ND	0.13	0.46		mg/Kg	1	7/8/2019 6:19:41 PM	45929
4-Bromophenyl phenyl ether	ND	0.11	0.19		mg/Kg	1	7/8/2019 6:19:41 PM	45929
Butyl benzyl phthalate	ND	0.095	0.19		mg/Kg	1	7/8/2019 6:19:41 PM	45929
Carbazole	ND	0.11	0.19		mg/Kg	1	7/8/2019 6:19:41 PM	45929
4-Chloro-3-methylphenol	ND	0.14	0.46		mg/Kg	1	7/8/2019 6:19:41 PM	45929
4-Chloroaniline	ND	0.13	0.46		mg/Kg	1	7/8/2019 6:19:41 PM	45929
2-Chloronaphthalene	ND	0.12	0.23		mg/Kg	1	7/8/2019 6:19:41 PM	45929
2-Chlorophenol	ND	0.12	0.19		mg/Kg	1	7/8/2019 6:19:41 PM	45929
4-Chlorophenyl phenyl ether	ND	0.10	0.19		mg/Kg	1	7/8/2019 6:19:41 PM	45929
Chrysene	ND	0.082	0.19		mg/Kg	1	7/8/2019 6:19:41 PM	45929
Di-n-butyl phthalate	ND	0.14	0.37		mg/Kg	1	7/8/2019 6:19:41 PM	45929
Di-n-octyl phthalate	ND	0.095	0.37		mg/Kg	1	7/8/2019 6:19:41 PM	45929
Dibenz(a,h)anthracene	ND	0.084	0.19		mg/Kg	1	7/8/2019 6:19:41 PM	45929
Dibenzofuran	ND	0.12	0.19		mg/Kg	1	7/8/2019 6:19:41 PM	45929
1,2-Dichlorobenzene	ND	0.11	0.19		mg/Kg	1	7/8/2019 6:19:41 PM	45929
1,3-Dichlorobenzene	ND	0.098	0.19		mg/Kg	1	7/8/2019 6:19:41 PM	45929
1,4-Dichlorobenzene	ND	0.099	0.19		mg/Kg	1	7/8/2019 6:19:41 PM	45929
3,3´-Dichlorobenzidine	ND	0.083	0.23		mg/Kg	1	7/8/2019 6:19:41 PM	45929
Diethyl phthalate	ND	0.13	0.19		mg/Kg	1	7/8/2019 6:19:41 PM	45929
Dimethyl phthalate	ND	0.12	0.19		mg/Kg	1	7/8/2019 6:19:41 PM	
2,4-Dichlorophenol	ND	0.12	0.10		mg/Kg	1	7/8/2019 6:19:41 PM	
2,4-Dimethylphenol	ND	0.10	0.28		mg/Kg	1	7/8/2019 6:19:41 PM	
4,6-Dinitro-2-methylphenol	ND	0.086	0.20		mg/Kg	1	7/8/2019 6:19:41 PM	
2,4-Dinitrophenol	ND	0.067	0.37		mg/Kg	1	7/8/2019 6:19:41 PM	
2,4-Dinitrotoluene	ND	0.007	0.46		mg/Kg	1	7/8/2019 6:19:41 PM	
2,6-Dinitrotoluene	ND	0.11	0.46		mg/Kg	1	7/8/2019 6:19:41 PM	
Fluoranthene	ND	0.12	0.40		mg/Kg	1	7/8/2019 6:19:41 PM	
		0.10	0.19		iiig/itg	1	110/2013 0.13.41 FIVI	40323

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix

Н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

В Analyte detected in the associated Method Blank

Е Value above quantitation range J

Analyte detected below quantitation limits Sample pH Not In Range

Р Reporting Limit

RL

Page 12 of 65

% Recovery outside of range due to dilution or matrix S

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon

Lab Order **1906G37** Date Reported: **7/31/2019**

Client Sample ID: CENTRAL OCD LF TZ02

Project: OCD Central Landfarm Semia	Coll	ection l	Date: 6/2	7/201	9 10:50:00 AM			
Lab ID: 1906G37-003	Matrix: S	OIL	Ree	ceived l	Date: 6/2	7/201	9 4:20:00 PM	
Analyses	Result	MDI	. RL	Qual	Units	DF	Date Analyzed	Batch II
EPA METHOD 8270C: SEMIVOLATILES							Analyst: DA	М
Fluorene	ND	0.11	0.19		mg/Kg	1	7/8/2019 6:19:41 PM	45929
Hexachlorobenzene	ND	0.11	0.19		mg/Kg	1	7/8/2019 6:19:41 PM	45929
Hexachlorobutadiene	ND	0.13	0.19		mg/Kg	1	7/8/2019 6:19:41 PM	45929
Hexachlorocyclopentadiene	ND	0.11	0.19		mg/Kg	1	7/8/2019 6:19:41 PM	45929
Hexachloroethane	ND	0.10	0.19		mg/Kg	1	7/8/2019 6:19:41 PM	45929
Indeno(1,2,3-cd)pyrene	ND	0.092	0.19		mg/Kg	1	7/8/2019 6:19:41 PM	45929
Isophorone	ND	0.14	0.37		mg/Kg	1	7/8/2019 6:19:41 PM	45929
1-Methylnaphthalene	ND	0.14	0.19		mg/Kg	1	7/8/2019 6:19:41 PM	45929
2-Methylnaphthalene	ND	0.14	0.19		mg/Kg	1	7/8/2019 6:19:41 PM	45929
2-Methylphenol	ND	0.11	0.37		mg/Kg	1	7/8/2019 6:19:41 PM	45929
3+4-Methylphenol	ND	0.11	0.19		mg/Kg	1	7/8/2019 6:19:41 PM	45929
N-Nitrosodi-n-propylamine	ND	0.13	0.19		mg/Kg	1	7/8/2019 6:19:41 PM	45929
N-Nitrosodiphenylamine	ND	0.098	0.19		mg/Kg	1	7/8/2019 6:19:41 PM	45929
Naphthalene	ND	0.14	0.19		mg/Kg	1	7/8/2019 6:19:41 PM	45929
2-Nitroaniline	ND	0.13	0.19		mg/Kg	1	7/8/2019 6:19:41 PM	45929
3-Nitroaniline	ND	0.13	0.19		mg/Kg	1	7/8/2019 6:19:41 PM	45929
4-Nitroaniline	ND	0.12	0.37		mg/Kg	1	7/8/2019 6:19:41 PM	45929
Nitrobenzene	ND	0.13	0.37		mg/Kg	1	7/8/2019 6:19:41 PM	45929
2-Nitrophenol	ND	0.13	0.19		mg/Kg	1	7/8/2019 6:19:41 PM	45929
4-Nitrophenol	ND	0.13	0.23		mg/Kg	1	7/8/2019 6:19:41 PM	45929
Pentachlorophenol	ND	0.096	0.37		mg/Kg	1	7/8/2019 6:19:41 PM	45929
Phenanthrene	ND	0.10	0.19		mg/Kg	1	7/8/2019 6:19:41 PM	45929
Phenol	ND	0.12	0.19		mg/Kg	1	7/8/2019 6:19:41 PM	45929
Pyrene	ND	0.087	0.19		mg/Kg	1	7/8/2019 6:19:41 PM	45929
Pyridine	ND	0.11	0.37		mg/Kg	1	7/8/2019 6:19:41 PM	45929
1,2,4-Trichlorobenzene	ND	0.14	0.19		mg/Kg	1	7/8/2019 6:19:41 PM	45929
2,4,5-Trichlorophenol	ND	0.12	0.19		mg/Kg	1	7/8/2019 6:19:41 PM	45929
2,4,6-Trichlorophenol	ND	0.098	0.19		mg/Kg	1	7/8/2019 6:19:41 PM	45929
Surr: 2-Fluorophenol	76.3		24.8-95.2		%Rec	1	7/8/2019 6:19:41 PM	45929
Surr: Phenol-d5	78.6		29.9-97.8		%Rec	1	7/8/2019 6:19:41 PM	45929
Surr: 2,4,6-Tribromophenol	77.1		35.7-108		%Rec	1	7/8/2019 6:19:41 PM	45929
Surr: Nitrobenzene-d5	85.1		32.5-106		%Rec	1	7/8/2019 6:19:41 PM	45929
Surr: 2-Fluorobiphenyl	80.6		27.7-114		%Rec	1	7/8/2019 6:19:41 PM	45929
Surr: 4-Terphenyl-d14	83.7		15-148		%Rec	1	7/8/2019 6:19:41 PM	45929
EPA METHOD 8260B: VOLATILES							Analyst: DJ	F
Benzene	ND	0.0040	0.025		mg/Kg	1	7/3/2019 11:56:17 PM	/ 45983
Toluene	ND	0.0047	0.049		mg/Kg	1	7/3/2019 11:56:17 PM	
Ethylbenzene	ND	0.0029	0.049		mg/Kg	1	7/3/2019 11:56:17 PM	
Methyl tert-butyl ether (MTBE)	ND	0.012	0.049		mg/Kg	1	7/3/2019 11:56:17 PM	

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix

Sample Diluted Due to Matrix Holding times for preparation or analysis exceeded

H Holding times for preparation or analysis exceedND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

B Analyte detected in the associated Method Blank

E Value above quantitation rangeJ Analyte detected below quantitation limits

P Sample pH Not In Range

P Sample pH Not RL Reporting Limit

Page 13 of 65

S % Recovery outside of range due to dilution or matrix

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 7/31/2019

CLIENT: Marathon			Client	Sample ID: C	ENTR	AL OCD LF TZ02	
Project: OCD Central Landfarm Semianr	ual Sam		Coll	ection Date: 6/	27/201	9 10:50:00 AM	
Lab ID: 1906G37-003	Matrix: S	OIL	Rec	ceived Date: 6/	27/201	9 4:20:00 PM	
Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES						Analyst: DJI	=
1,2,4-Trimethylbenzene	ND	0.0045	0.049	mg/Kg	1	7/3/2019 11:56:17 PM	45983
1,3,5-Trimethylbenzene	ND	0.0048	0.049	mg/Kg	1	7/3/2019 11:56:17 PM	45983
1,2-Dichloroethane (EDC)	ND	0.0050	0.049	mg/Kg	1	7/3/2019 11:56:17 PM	45983
1,2-Dibromoethane (EDB)	ND	0.0045	0.049	mg/Kg	1	7/3/2019 11:56:17 PM	45983
Naphthalene	ND	0.0099	0.099	mg/Kg	1	7/3/2019 11:56:17 PM	45983
1-Methylnaphthalene	ND	0.028	0.20	mg/Kg	1	7/3/2019 11:56:17 PM	45983
2-Methylnaphthalene	ND	0.022	0.20	mg/Kg	1	7/3/2019 11:56:17 PM	45983
Acetone	ND	0.041	0.74	mg/Kg	1	7/3/2019 11:56:17 PM	45983
Bromobenzene	ND	0.0047	0.049	mg/Kg	1	7/3/2019 11:56:17 PM	45983
Bromodichloromethane	ND	0.0045	0.049	mg/Kg	1	7/3/2019 11:56:17 PM	45983
Bromoform	ND	0.0044	0.049	mg/Kg	1	7/3/2019 11:56:17 PM	45983
Bromomethane	ND	0.012	0.15	mg/Kg	1	7/3/2019 11:56:17 PM	45983
2-Butanone	ND	0.057	0.49	mg/Kg	1	7/3/2019 11:56:17 PM	45983
Carbon disulfide	ND	0.016	0.49	mg/Kg	1	7/3/2019 11:56:17 PM	45983
Carbon tetrachloride	ND	0.0047	0.049	mg/Kg	1	7/3/2019 11:56:17 PM	45983
Chlorobenzene	ND	0.0063	0.049	mg/Kg	1	7/3/2019 11:56:17 PM	45983
Chloroethane	ND	0.0073	0.099	mg/Kg	1	7/3/2019 11:56:17 PM	45983
Chloroform	ND	0.0040	0.049	mg/Kg	1	7/3/2019 11:56:17 PM	45983
Chloromethane	ND	0.0047	0.15	mg/Kg	1	7/3/2019 11:56:17 PM	45983
2-Chlorotoluene	ND	0.0043	0.049	mg/Kg	1	7/3/2019 11:56:17 PM	45983
4-Chlorotoluene	ND	0.0040	0.049	mg/Kg	1	7/3/2019 11:56:17 PM	45983
cis-1,2-DCE	ND	0.0067	0.049	mg/Kg	1	7/3/2019 11:56:17 PM	45983
cis-1,3-Dichloropropene	ND	0.0042	0.049	mg/Kg	1	7/3/2019 11:56:17 PM	45983
1,2-Dibromo-3-chloropropane	ND	0.0051	0.099	mg/Kg	1	7/3/2019 11:56:17 PM	45983
Dibromochloromethane	ND	0.0035	0.049	mg/Kg	1	7/3/2019 11:56:17 PM	45983
Dibromomethane	ND	0.0053	0.049	mg/Kg	1	7/3/2019 11:56:17 PM	45983
1,2-Dichlorobenzene	ND	0.0040	0.049	mg/Kg	1	7/3/2019 11:56:17 PM	45983
1,3-Dichlorobenzene	ND	0.0043	0.049	mg/Kg	1	7/3/2019 11:56:17 PM	45983
1,4-Dichlorobenzene	ND	0.0041	0.049	mg/Kg	1	7/3/2019 11:56:17 PM	45983
Dichlorodifluoromethane	ND	0.011	0.049	mg/Kg	1	7/3/2019 11:56:17 PM	45983
1,1-Dichloroethane	ND	0.0032	0.049	mg/Kg	1	7/3/2019 11:56:17 PM	45983
1,1-Dichloroethene	ND	0.020	0.049	mg/Kg	1	7/3/2019 11:56:17 PM	45983
1,2-Dichloropropane	ND	0.0036	0.049	mg/Kg	1	7/3/2019 11:56:17 PM	45983
1,3-Dichloropropane	ND	0.0053	0.049	mg/Kg	1	7/3/2019 11:56:17 PM	45983
2,2-Dichloropropane	ND	0.016	0.099	mg/Kg	1	7/3/2019 11:56:17 PM	45983
1,1-Dichloropropene	ND	0.0045	0.099	mg/Kg	1	7/3/2019 11:56:17 PM	45983
Hexachlorobutadiene	ND	0.0050	0.099	mg/Kg	1	7/3/2019 11:56:17 PM	45983
2-Hexanone	ND	0.0082	0.49	mg/Kg	1	7/3/2019 11:56:17 PM	45983
Isopropylbenzene	ND	0.0036	0.049	mg/Kg	1	7/3/2019 11:56:17 PM	45983

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix

Holding times for preparation or analysis exceeded

Н ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

В Analyte detected in the associated Method Blank

Е Value above quantitation range

J Analyte detected below quantitation limits Sample pH Not In Range

Р

Reporting Limit RL

Page 14 of 65

% Recovery outside of range due to dilution or matrix S

Date Reported: 7/31/2019

CLIENT: MarathonProject:OCD Central Landfarm Semiannual SamLab ID:1906G37-003Matrix: SOIL					ection D	Date: 6/2	7/201	AL OCD LF TZ02 9 10:50:00 AM 9 4:20:00 PM	
Analyses		Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA MET	HOD 8260B: VOLATILES							Analyst: DJF	:
4-Isoprop	yltoluene	ND	0.0041	0.049		mg/Kg	1	7/3/2019 11:56:17 PM	45983
4-Methyl-	2-pentanone	ND	0.0093	0.49		mg/Kg	1	7/3/2019 11:56:17 PM	45983
Methylen	e chloride	ND	0.0087	0.15		mg/Kg	1	7/3/2019 11:56:17 PM	45983
n-Butylbe	enzene	ND	0.0046	0.15		mg/Kg	1	7/3/2019 11:56:17 PM	45983
n-Propylb	penzene	ND	0.0039	0.049		mg/Kg	1	7/3/2019 11:56:17 PM	45983
sec-Butyl	benzene	ND	0.0056	0.049		mg/Kg	1	7/3/2019 11:56:17 PM	45983
Styrene		ND	0.0039	0.049		mg/Kg	1	7/3/2019 11:56:17 PM	45983
tert-Butyl	benzene	ND	0.0047	0.049		mg/Kg	1	7/3/2019 11:56:17 PM	45983
1,1,1,2-T	etrachloroethane	ND	0.0033	0.049		mg/Kg	1	7/3/2019 11:56:17 PM	45983
1,1,2,2-T	etrachloroethane	ND	0.0050	0.049		mg/Kg	1	7/3/2019 11:56:17 PM	45983
Tetrachlo	roethene (PCE)	ND	0.0039	0.049		mg/Kg	1	7/3/2019 11:56:17 PM	45983
trans-1,2-	-DCE	ND	0.0045	0.049		mg/Kg	1	7/3/2019 11:56:17 PM	45983
trans-1,3-	Dichloropropene	ND	0.0052	0.049		mg/Kg	1	7/3/2019 11:56:17 PM	45983
1,2,3-Tric	hlorobenzene	ND	0.0043	0.099		mg/Kg	1	7/3/2019 11:56:17 PM	45983
1,2,4-Tric	hlorobenzene	ND	0.0050	0.049		mg/Kg	1	7/3/2019 11:56:17 PM	45983
1,1,1-Tric	hloroethane	ND	0.0045	0.049		mg/Kg	1	7/3/2019 11:56:17 PM	45983
1,1,2-Tric	hloroethane	ND	0.0035	0.049		mg/Kg	1	7/3/2019 11:56:17 PM	45983
Trichloroe	ethene (TCE)	ND	0.0057	0.049		mg/Kg	1	7/3/2019 11:56:17 PM	45983
Trichlorof	luoromethane	ND	0.017	0.049		mg/Kg	1	7/3/2019 11:56:17 PM	45983
1,2,3-Tric	chloropropane	ND	0.0080	0.099		mg/Kg	1	7/3/2019 11:56:17 PM	45983
Vinyl chlo	bride	ND	0.0032	0.049		mg/Kg	1	7/3/2019 11:56:17 PM	45983
Xylenes,	Total	ND	0.012	0.099		mg/Kg	1	7/3/2019 11:56:17 PM	45983
Surr: D	Dibromofluoromethane	107		70-130		%Rec	1	7/3/2019 11:56:17 PM	45983
Surr: 1	,2-Dichloroethane-d4	106		70-130		%Rec	1	7/3/2019 11:56:17 PM	45983
Surr: T	oluene-d8	98.2		70-130		%Rec	1	7/3/2019 11:56:17 PM	45983
Surr: 4	-Bromofluorobenzene	95.4		70-130		%Rec	1	7/3/2019 11:56:17 PM	45983
EPA MET	HOD 8015D MOD: GASOLINE RA	ANGE						Analyst: DJF	=
Gasoline	Range Organics (GRO)	ND	1.2	4.9		mg/Kg	1	7/3/2019 11:56:17 PM	45983
Surr: B		88.6	0	70-130		%Rec	1	7/3/2019 11:56:17 PM	
	HOD 418.1: TPH		2					Analyst: Irm	
	n Hydrocarbons, TR	54	2.7	20		mg/Kg	1	7/9/2019	45999
		54	2.1	20		<u>9</u> /119		1,0/2010	-0000

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

Hall Environmental Analysis Laboratory, Inc.

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Date Reported: 7/31/2019

CLIENT: Marathon			Client	Sample	e ID: CE	NTR/	AL OCD LF VZ02	
Project: OCD Central Landfarm Semian	nual Sam		Colle	ection D	Date: 6/2	7/201	9 11:10:00 AM	
Lab ID: 1906G37-004	Matrix: S	SOIL	Rec	reived D	Date: 6/2	7/201	9 4:20:00 PM	
Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8082A: PCB'S							Analyst: TON	4
Aroclor 1016	ND	0.0077	0.018		mg/Kg	1	7/10/2019 2:25:16 AM	45963
Aroclor 1221	ND	0.014	0.018		mg/Kg	1	7/10/2019 2:25:16 AM	45963
Aroclor 1232	ND	0.017	0.018		mg/Kg	1	7/10/2019 2:25:16 AM	45963
Aroclor 1242	ND	0.0094	0.018		mg/Kg	1	7/10/2019 2:25:16 AM	45963
Aroclor 1248	ND	0.014	0.018		mg/Kg	1	7/10/2019 2:25:16 AM	45963
Aroclor 1254	ND	0.014	0.018		mg/Kg	1	7/10/2019 2:25:16 AM	45963
Aroclor 1260	ND	0.0067	0.018		mg/Kg	1	7/10/2019 2:25:16 AM	45963
Surr: Decachlorobiphenyl	56.0	0	25.7-135		%Rec	1	7/10/2019 2:25:16 AM	45963
Surr: Tetrachloro-m-xylene	65.2	0	32.3-138		%Rec	1	7/10/2019 2:25:16 AM	45963
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS						Analyst: BRN	Λ
Diesel Range Organics (DRO)	ND	1.7	8.6		mg/Kg	1	7/5/2019 5:34:23 PM	45994
Motor Oil Range Organics (MRO)	ND	43	43		mg/Kg	1	7/5/2019 5:34:23 PM	45994
Surr: DNOP	95.0	0	70-130		%Rec	1	7/5/2019 5:34:23 PM	45994
EPA METHOD 300.0: ANIONS							Analyst: smb	,
Fluoride	3.1	0.46	1.5		mg/Kg	5	7/10/2019 10:16:20 PM	A 46094
Chloride	150	0.51	7.5		mg/Kg	5	7/10/2019 10:16:20 PM	/ 46094
Nitrogen, Nitrate (As N)	2.0	0.75	1.5		mg/Kg	5	7/10/2019 10:16:20 PM	/ 46094
Sulfate	850	14	30		mg/Kg	20	7/10/2019 10:28:44 PM	/ 46094
EPA METHOD 7471: MERCURY							Analyst: JLF	
Mercury	ND	0.0017	0.031		mg/Kg	1	7/10/2019 2:31:29 PM	46081
EPA METHOD 6010B: SOIL METALS							Analyst: bcv	
Arsenic	ND	2.9	5.1		mg/Kg	2	7/2/2019 9:12:40 AM	45944
Barium	240	0.047	0.20		mg/Kg	2	7/2/2019 9:12:40 AM	45944
Cadmium	ND	0.049	0.20		mg/Kg	2	7/2/2019 9:12:40 AM	45944
Chromium	16	0.16	0.61		mg/Kg	2	7/2/2019 9:12:40 AM	45944
Copper	4.2	0.23	0.61		mg/Kg	2	7/2/2019 9:12:40 AM	45944
Iron	21000	74	250		mg/Kg	100	7/2/2019 8:26:40 AM	45944
Lead	1.8	0.49	0.51		mg/Kg	2	7/2/2019 9:12:40 AM	45944
Manganese	370	0.042	0.20		mg/Kg	2	7/2/2019 9:12:40 AM	45944
Selenium	ND	2.5	5.1		mg/Kg	2	7/2/2019 9:12:40 AM	45944
Silver	ND	0.065	0.51		mg/Kg	2	7/2/2019 9:12:40 AM	45944
Uranium	ND	4.4	10		mg/Kg	2	7/2/2019 9:12:40 AM	45944
Zinc	23	0.80	5.1		mg/Kg	2	7/2/2019 9:12:40 AM	45944
EPA METHOD 8270C: SEMIVOLATILES							Analyst: DAN	Л
Acenaphthene	ND	0.13	0.21		mg/Kg	1	7/8/2019 6:50:14 PM	45929
Acenaphthylene	ND	0.11	0.21		mg/Kg	1	7/8/2019 6:50:14 PM	45929
Aniline	ND	0.13	0.21		mg/Kg	1	7/8/2019 6:50:14 PM	45929
Refer to the QC Summary report a	nd sample log	gin checkli	st for flagg	ged QC o	lata and	prese	rvation information.	

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix

Analyte detected in the associated Method Blank

Е Value above quantitation range J

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

В

Analyte detected below quantitation limits Sample pH Not In Range

Р

RL Reporting Limit

Page 16 of 65

% Recovery outside of range due to dilution or matrix S

Hall Environmental Analysis Laboratory, Inc.

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 7/31/2019

CLIENT: Marathon Client Sample ID: CENTRAL OCD LF VZ02 **Project:** OCD Central Landfarm Semiannual Sam Collection Date: 6/27/2019 11:10:00 AM Lab ID: 1906G37-004 Matrix: SOIL Received Date: 6/27/2019 4:20:00 PM Result MDL DF **Date Analyzed Batch ID** Analyses RL **Qual Units EPA METHOD 8270C: SEMIVOLATILES** Analyst: DAM ND 0.11 0.21 7/8/2019 6:50:14 PM Anthracene mg/Kg 1 45929 Azobenzene ND 0.15 0.21 mg/Kg 1 7/8/2019 6:50:14 PM 45929 Benz(a)anthracene ND 0.10 0.21 mg/Kg 1 7/8/2019 6:50:14 PM 45929 ND 0.093 0.21 mg/Kg 1 7/8/2019 6:50:14 PM Benzo(a)pyrene 45929 Benzo(b)fluoranthene ND 0.092 1 0.21 mg/Kg 7/8/2019 6:50:14 PM 45929 0.090 1 Benzo(a.h.i)pervlene ND 0.21 mg/Kg 7/8/2019 6:50:14 PM 45929 Benzo(k)fluoranthene ND 0.095 0.21 mg/Kg 1 7/8/2019 6:50:14 PM 45929 Benzoic acid ND 0.11 0.52 mg/Kg 1 7/8/2019 6:50:14 PM 45929 ND 1 Benzyl alcohol 0.13 0.21 mg/Kg 7/8/2019 6:50:14 PM 45929 Bis(2-chloroethoxy)methane ND 0.15 0.21 mg/Kg 1 7/8/2019 6:50:14 PM 45929 Bis(2-chloroethyl)ether ND 0.13 0.21 mg/Kg 1 7/8/2019 6:50:14 PM 45929 7/8/2019 6:50:14 PM Bis(2-chloroisopropyl)ether ND 0.12 0.21 mg/Kg 1 45929 Bis(2-ethylhexyl)phthalate ND 0.15 0.52 mg/Kg 1 7/8/2019 6:50:14 PM 45929 4-Bromophenyl phenyl ether ND 0.12 0.21 mg/Kg 1 7/8/2019 6:50:14 PM 45929 Butyl benzyl phthalate ND 0.11 0.21 mg/Kg 1 7/8/2019 6:50:14 PM 45929 ND 0.12 1 Carbazole 0.21 mg/Kg 7/8/2019 6:50:14 PM 45929 4-Chloro-3-methylphenol ND 0.16 0.52 mg/Kg 1 7/8/2019 6:50:14 PM 45929 ND 0.15 4-Chloroaniline 0.52 mg/Kg 1 7/8/2019 6:50:14 PM 45929 2-Chloronaphthalene ND 0.13 0.26 mg/Kg 1 7/8/2019 6:50:14 PM 45929 2-Chlorophenol ND 0.13 0.21 mg/Kg 1 7/8/2019 6:50:14 PM 45929 4-Chlorophenyl phenyl ether ND 0.11 1 0.21 mg/Kg 7/8/2019 6:50:14 PM 45929 Chrysene ND 0.092 0.21 mg/Kg 1 7/8/2019 6:50:14 PM 45929 ND 0.16 mg/Kg 1 Di-n-butyl phthalate 0.42 7/8/2019 6:50:14 PM 45929 Di-n-octyl phthalate ND 0.11 1 0.42 mg/Kg 7/8/2019 6:50:14 PM 45929 ND 0.095 Dibenz(a,h)anthracene 0.21 mg/Kg 1 7/8/2019 6:50:14 PM 45929 Dibenzofuran ND 0.14 0.21 mg/Kg 1 7/8/2019 6:50:14 PM 45929 ND 0.13 mg/Kg 1 1,2-Dichlorobenzene 0.21 7/8/2019 6:50:14 PM 45929 1,3-Dichlorobenzene ND 0.11 0.21 mg/Kg 1 7/8/2019 6:50:14 PM 45929 ND 1 1,4-Dichlorobenzene 0.11 0.21 mg/Kg 7/8/2019 6:50:14 PM 45929 3.3'-Dichlorobenzidine ND 0.093 0.26 mg/Kg 1 7/8/2019 6:50:14 PM 45929 Diethyl phthalate ND 0.15 0.21 mg/Kg 1 7/8/2019 6:50:14 PM 45929 Dimethyl phthalate ND 0.14 0.21 mg/Kg 1 7/8/2019 6:50:14 PM 45929 2,4-Dichlorophenol ND 0.12 0.42 mg/Kg 1 7/8/2019 6:50:14 PM 45929 ND 2,4-Dimethylphenol 0.12 0.31 mg/Kg 1 7/8/2019 6:50:14 PM 45929 4,6-Dinitro-2-methylphenol ND 0.097 mg/Kg 1 7/8/2019 6:50:14 PM 0.42 45929 2,4-Dinitrophenol ND 0.076 0.52 mg/Kg 1 7/8/2019 6:50:14 PM 45929 1 2,4-Dinitrotoluene ND 0.12 0.52 mg/Kg 7/8/2019 6:50:14 PM 45929 2,6-Dinitrotoluene ND 0.14 0.52 mg/Kg 1 7/8/2019 6:50:14 PM 45929 ND Fluoranthene 0.12 0.21 mg/Kg 1 7/8/2019 6:50:14 PM 45929

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Oualifiers:

Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix

Holding times for preparation or analysis exceeded

Н ND Not Detected at the Reporting Limit

POL Practical Quanitative Limit в Analyte detected in the associated Method Blank

Е Value above quantitation range

Analyte detected below quantitation limits J Sample pH Not In Range

Р RL

% Recovery outside of range due to dilution or matrix

Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

Lab Order **1906G37** Date Reported: **7/31/2019**

CLIENT:	Marathon	Client	Sampl	e ID: CE	ENTRA	AL OCD LF VZ02			
Project:	OCD Central Landfarm Semiann	ual Sam		Colle	ection l	Date: 6/2	27/201	9 11:10:00 AM	
Lab ID:	1906G37-004	Matrix: S	OIL	Rec	eived l	Date: 6/2	27/201	9 4:20:00 PM	
Analyses		Result	MDL	, RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METH	HOD 8270C: SEMIVOLATILES							Analyst: DA	M
Fluorene		ND	0.12	0.21		mg/Kg	1	7/8/2019 6:50:14 PM	45929
Hexachlor	obenzene	ND	0.13	0.21		mg/Kg	1	7/8/2019 6:50:14 PM	45929
Hexachlor	obutadiene	ND	0.15	0.21		mg/Kg	1	7/8/2019 6:50:14 PM	45929
Hexachlor	ocyclopentadiene	ND	0.12	0.21		mg/Kg	1	7/8/2019 6:50:14 PM	45929
Hexachlor	roethane	ND	0.12	0.21		mg/Kg	1	7/8/2019 6:50:14 PM	45929
Indeno(1,	2,3-cd)pyrene	ND	0.10	0.21		mg/Kg	1	7/8/2019 6:50:14 PM	45929
Isophoron		ND	0.15	0.42		mg/Kg	1	7/8/2019 6:50:14 PM	45929
	aphthalene	ND	0.16	0.21		mg/Kg	1	7/8/2019 6:50:14 PM	
•	aphthalene	ND	0.15	0.21		mg/Kg	1	7/8/2019 6:50:14 PM	
2-Methylp		ND	0.12	0.42		mg/Kg	1	7/8/2019 6:50:14 PM	
3+4-Meth		ND	0.13	0.21		mg/Kg	1	7/8/2019 6:50:14 PM	
	di-n-propylamine	ND	0.15	0.21		mg/Kg	1	7/8/2019 6:50:14 PM	
	diphenylamine	ND	0.11	0.21		mg/Kg	1	7/8/2019 6:50:14 PM	
Naphthale		ND	0.16	0.21		mg/Kg	1	7/8/2019 6:50:14 PM	
2-Nitroani		ND	0.15	0.21		mg/Kg	1	7/8/2019 6:50:14 PM	
3-Nitroani		ND	0.14	0.21		mg/Kg	1	7/8/2019 6:50:14 PM	
4-Nitroani		ND	0.13	0.42		mg/Kg	1	7/8/2019 6:50:14 PM	
Nitrobenz		ND	0.14	0.42		mg/Kg	1	7/8/2019 6:50:14 PM	
2-Nitrophe		ND	0.14	0.21		mg/Kg	1	7/8/2019 6:50:14 PM	
4-Nitrophe		ND	0.14	0.26		mg/Kg	1	7/8/2019 6:50:14 PM	
Pentachlo	•	ND	0.11	0.42		mg/Kg	1	7/8/2019 6:50:14 PM	
Phenanth	rene	ND	0.11	0.21		mg/Kg	1	7/8/2019 6:50:14 PM	
Phenol		ND	0.13	0.21		mg/Kg	1	7/8/2019 6:50:14 PM	
Pyrene		ND	0.098	0.21		mg/Kg	1	7/8/2019 6:50:14 PM	
Pyridine		ND	0.13	0.42		mg/Kg	1	7/8/2019 6:50:14 PM	
1,2,4-Tricl	hlorobenzene	ND	0.16	0.21		mg/Kg	1	7/8/2019 6:50:14 PM	
	hlorophenol	ND	0.14	0.21		mg/Kg	1	7/8/2019 6:50:14 PM	
	hlorophenol	ND	0.11	0.21		mg/Kg	1	7/8/2019 6:50:14 PM	
Surr: 2-	Fluorophenol	69.1		24.8-95.2		%Rec	1	7/8/2019 6:50:14 PM	45929
Surr: P	henol-d5	76.9		29.9-97.8		%Rec	1	7/8/2019 6:50:14 PM	
	4,6-Tribromophenol	71.8		35.7-108		%Rec	1	7/8/2019 6:50:14 PM	
	itrobenzene-d5	82.4		32.5-106		%Rec	1	7/8/2019 6:50:14 PM	
	Fluorobiphenyl	83.1		27.7-114		%Rec	1	7/8/2019 6:50:14 PM	
Surr: 4-	Terphenyl-d14	83.5		15-148		%Rec	1	7/8/2019 6:50:14 PM	45929
EPA METH	HOD 8260B: VOLATILES							Analyst: DJ	F
Benzene		ND	0.0040	0.024		mg/Kg	1	7/4/2019 12:25:34 AN	A 45983
Toluene		ND	0.0046	0.048		mg/Kg	1	7/4/2019 12:25:34 AN	M 45983
Ethylbenz	ene	ND	0.0028	0.048		mg/Kg	1	7/4/2019 12:25:34 AN	M 45983
Methyl ter	t-butyl ether (MTBE)	ND	0.011	0.048		mg/Kg	1	7/4/2019 12:25:34 AN	M 45983

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix

Sample Diluted Due to Matrix Holding times for preparation or analysis exceeded

H Holding times for preparation or analysis exceedND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 18 of 65

S % Recovery outside of range due to dilution or matrix

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 7/31/2019

CLIENT: Marathon Client Sample ID: CENTRAL OCD LF VZ02														
Project: OCD Central Landfarm Semian	ect: OCD Central Landfarm Semiannual Sam						Collection Date: 6/27/2019 11:10:00 AM							
Lab ID: 1906G37-004	Matrix: S	OIL	Rec	9 4:20:00 PM										
Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID						
EPA METHOD 8260B: VOLATILES							Analyst: DJF							
1,2,4-Trimethylbenzene	ND	0.0044	0.048		mg/Kg	1	7/4/2019 12:25:34 AM	45983						
1,3,5-Trimethylbenzene	ND	0.0047	0.048		mg/Kg	1	7/4/2019 12:25:34 AM	45983						
1,2-Dichloroethane (EDC)	ND	0.0049	0.048		mg/Kg	1	7/4/2019 12:25:34 AM	45983						
1,2-Dibromoethane (EDB)	ND	0.0044	0.048		mg/Kg	1	7/4/2019 12:25:34 AM	45983						
Naphthalene	ND	0.0097	0.097		mg/Kg	1	7/4/2019 12:25:34 AM							
1-Methylnaphthalene	ND	0.028	0.19		mg/Kg	1	7/4/2019 12:25:34 AM							
2-Methylnaphthalene	ND	0.021	0.19		mg/Kg	1	7/4/2019 12:25:34 AM							
Acetone	ND	0.040	0.73		mg/Kg	1	7/4/2019 12:25:34 AM							
Bromobenzene	ND	0.0046	0.048		mg/Kg	1	7/4/2019 12:25:34 AM							
Bromodichloromethane	ND	0.0044	0.048		mg/Kg	1	7/4/2019 12:25:34 AM							
Bromoform	ND	0.0044	0.048		mg/Kg	1	7/4/2019 12:25:34 AM							
Bromomethane	ND	0.012	0.15		mg/Kg	1	7/4/2019 12:25:34 AM							
2-Butanone	ND	0.056	0.48		mg/Kg	1	7/4/2019 12:25:34 AM							
Carbon disulfide	ND	0.016	0.48		mg/Kg	1	7/4/2019 12:25:34 AM							
Carbon tetrachloride	ND	0.0046	0.048		mg/Kg	1	7/4/2019 12:25:34 AM							
Chlorobenzene	ND	0.0062	0.048		mg/Kg	1	7/4/2019 12:25:34 AM							
Chloroethane	ND	0.0071	0.097		mg/Kg	1	7/4/2019 12:25:34 AM	45983						
Chloroform	ND	0.0039	0.048		mg/Kg	1	7/4/2019 12:25:34 AM	45983						
Chloromethane	ND	0.0046	0.15		mg/Kg	1	7/4/2019 12:25:34 AM	45983						
2-Chlorotoluene	ND	0.0042	0.048		mg/Kg	1	7/4/2019 12:25:34 AM	45983						
4-Chlorotoluene	ND	0.0040	0.048		mg/Kg	1	7/4/2019 12:25:34 AM							
cis-1,2-DCE	ND	0.0066	0.048		mg/Kg	1	7/4/2019 12:25:34 AM							
cis-1,3-Dichloropropene	ND	0.0041	0.048		mg/Kg	1	7/4/2019 12:25:34 AM	45983						
1,2-Dibromo-3-chloropropane	ND	0.0050	0.097		mg/Kg	1	7/4/2019 12:25:34 AM	45983						
Dibromochloromethane	ND	0.0034	0.048		mg/Kg	1	7/4/2019 12:25:34 AM	45983						
Dibromomethane	ND	0.0052	0.048		mg/Kg	1	7/4/2019 12:25:34 AM	45983						
1,2-Dichlorobenzene	ND	0.0040	0.048		mg/Kg	1	7/4/2019 12:25:34 AM	45983						
1,3-Dichlorobenzene	ND	0.0042	0.048		mg/Kg	1	7/4/2019 12:25:34 AM	45983						
1,4-Dichlorobenzene	ND	0.0041	0.048		mg/Kg	1	7/4/2019 12:25:34 AM	45983						
Dichlorodifluoromethane	ND	0.011	0.048		mg/Kg	1	7/4/2019 12:25:34 AM	45983						
1,1-Dichloroethane	ND	0.0031	0.048		mg/Kg	1	7/4/2019 12:25:34 AM	45983						
1,1-Dichloroethene	ND	0.019	0.048		mg/Kg	1	7/4/2019 12:25:34 AM	45983						
1,2-Dichloropropane	ND	0.0035	0.048		mg/Kg	1	7/4/2019 12:25:34 AM	45983						
1,3-Dichloropropane	ND	0.0052	0.048		mg/Kg	1	7/4/2019 12:25:34 AM	45983						
2,2-Dichloropropane	ND	0.016	0.097		mg/Kg	1	7/4/2019 12:25:34 AM	45983						
1,1-Dichloropropene	ND	0.0044	0.097		mg/Kg	1	7/4/2019 12:25:34 AM	45983						
Hexachlorobutadiene	ND	0.0049	0.097		mg/Kg	1	7/4/2019 12:25:34 AM	45983						
2-Hexanone	ND	0.0080	0.48		mg/Kg	1	7/4/2019 12:25:34 AM	45983						
Isopropylbenzene	ND	0.0035	0.048		mg/Kg	1	7/4/2019 12:25:34 AM	45983						

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix

Holding times for preparation or analysis exceeded

Н ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

В Analyte detected in the associated Method Blank

Е Value above quantitation range J

Analyte detected below quantitation limits Sample pH Not In Range

Р

Reporting Limit RL

Page 19 of 65

% Recovery outside of range due to dilution or matrix S

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 7/31/2019

CLIENT	: Marathon			Client	Sample	e ID: CE	NTR	AL OCD LF VZ02				
Project: OCD Central Landfarm Semiannual Sam					Collection Date: 6/27/2019 11:10:00 AM							
Lab ID:	1906G37-004	Matrix: S	OIL	Received Date: 6/27/2019 4:20:00 PM								
Analyses		Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID			
EPA MET	HOD 8260B: VOLATILES							Analyst: DJI	=			
4-Isoprop	byltoluene	ND	0.0040	0.048		mg/Kg	1	7/4/2019 12:25:34 AM	45983			
4-Methyl-	2-pentanone	ND	0.0091	0.48		mg/Kg	1	7/4/2019 12:25:34 AM	45983			
Methylen	e chloride	ND	0.0086	0.15		mg/Kg	1	7/4/2019 12:25:34 AM	45983			
n-Butylbe	enzene	ND	0.0045	0.15		mg/Kg	1	7/4/2019 12:25:34 AM	45983			
n-Propylb	benzene	ND	0.0039	0.048		mg/Kg	1	7/4/2019 12:25:34 AM	45983			
sec-Butyl	lbenzene	ND	0.0055	0.048		mg/Kg	1	7/4/2019 12:25:34 AM	45983			
Styrene		ND	0.0038	0.048		mg/Kg	1	7/4/2019 12:25:34 AM	45983			
tert-Butyl	benzene	ND	0.0046	0.048		mg/Kg	1	7/4/2019 12:25:34 AM	45983			
1,1,1,2-T	etrachloroethane	ND	0.0033	0.048		mg/Kg	1	7/4/2019 12:25:34 AM	45983			
1,1,2,2-T	etrachloroethane	ND	0.0049	0.048		mg/Kg	1	7/4/2019 12:25:34 AM	45983			
Tetrachlo	proethene (PCE)	ND	0.0039	0.048		mg/Kg	1	7/4/2019 12:25:34 AM	45983			
trans-1,2-	-DCE	ND	0.0044	0.048		mg/Kg	1	7/4/2019 12:25:34 AM	45983			
trans-1,3-	-Dichloropropene	ND	0.0051	0.048		mg/Kg	1	7/4/2019 12:25:34 AM	45983			
1,2,3-Tric	chlorobenzene	ND	0.0043	0.097		mg/Kg	1	7/4/2019 12:25:34 AM	45983			
1,2,4-Tric	chlorobenzene	ND	0.0049	0.048		mg/Kg	1	7/4/2019 12:25:34 AM	45983			
1,1,1-Tric	chloroethane	ND	0.0044	0.048		mg/Kg	1	7/4/2019 12:25:34 AM	45983			
1,1,2-Tric	chloroethane	ND	0.0034	0.048		mg/Kg	1	7/4/2019 12:25:34 AN	45983			
Trichloroe	ethene (TCE)	ND	0.0056	0.048		mg/Kg	1	7/4/2019 12:25:34 AM	45983			
Trichlorof	fluoromethane	ND	0.016	0.048		mg/Kg	1	7/4/2019 12:25:34 AM	45983			
1,2,3-Tric	chloropropane	ND	0.0078	0.097		mg/Kg	1	7/4/2019 12:25:34 AM	45983			
Vinyl chlo	bride	ND	0.0032	0.048		mg/Kg	1	7/4/2019 12:25:34 AM	45983			
Xylenes,	Total	ND	0.012	0.097		mg/Kg	1	7/4/2019 12:25:34 AM	45983			
Surr: D	Dibromofluoromethane	102		70-130		%Rec	1	7/4/2019 12:25:34 AM	45983			
Surr: 1	,2-Dichloroethane-d4	102		70-130		%Rec	1	7/4/2019 12:25:34 AM	45983			
Surr: T	oluene-d8	96.3		70-130		%Rec	1	7/4/2019 12:25:34 AM	45983			
Surr: 4	-Bromofluorobenzene	96.0		70-130		%Rec	1	7/4/2019 12:25:34 AM	45983			
EPA MET	HOD 8015D MOD: GASOLINE R	ANGE						Analyst: DJI	=			
Gasoline	Range Organics (GRO)	ND	1.2	4.8		mg/Kg	1	7/4/2019 12:25:34 AM	45983			
Surr: E		93.2	0	70-130		%Rec	1	7/4/2019 12:25:34 AM				
	HOD 418.1: TPH		*					Analyst: Irm				
	n Hydrocarbons, TR	ND	2.7	20		mg/Kg	1	7/9/2019	45999			
	•			-		0.0						

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Lab Order 1906G37

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 7/31/2019

CLIENT: Marathon				Client Sample ID: Trip Blank						
Project: OCD Central Landfarm Semiannual Sam				Collection Date:						
Lab ID: 1906G37-005	Matrix: A	atrix: AQUEOUS Received Date: 6/27/2019 4:20:00 PM								
Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID			
EPA METHOD 8260: VOLATILES SHOR	T LIST					Analyst: RA	A			
Benzene	ND	0.17	1.0	µg/L	1	7/8/2019 3:11:00 PM	SL6122			
Toluene	ND	0.35	1.0	µg/L	1	7/8/2019 3:11:00 PM	SL6122			
Ethylbenzene	ND	0.13	1.0	µg/L	1	7/8/2019 3:11:00 PM	SL6122			
Xylenes, Total	ND	0.45	1.5	µg/L	1	7/8/2019 3:11:00 PM	SL6122			
Surr: 1,2-Dichloroethane-d4	116	0	70-130	%Rec	1	7/8/2019 3:11:00 PM	SL6122			
Surr: 4-Bromofluorobenzene	101	0	70-130	%Rec	1	7/8/2019 3:11:00 PM	SL6122			
Surr: Dibromofluoromethane	111	0	70-130	%Rec	1	7/8/2019 3:11:00 PM	SL6122			
Surr: Toluene-d8	95.5	0	70-130	%Rec	1	7/8/2019 3:11:00 PM	SL6122			

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix

Н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

% Recovery outside of range due to dilution or matrix S

В Analyte detected in the associated Method Blank

Е Value above quantitation range

J Analyte detected below quantitation limits Sample pH Not In Range

Р

Reporting Limit RL

Page 21 of 65

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 7/31/2019

CLIENT: Marathon			Client	Sampl	e ID: CE	ENTR/	AL OCD LF TZ03			
Project: OCD Central Landfarm Semianr		Collection Date: 6/27/2019 11:50:00 AM								
Lab ID: 1906G37-006	Matrix: S	OIL	Received Date: 6/27/2019 4:20:00 PM							
Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID		
EPA METHOD 8082A: PCB'S				-			Analyst: TOI	v		
Aroclor 1016	ND	0.0098	0.023		mg/Kg	1	7/10/2019 2:58:19 AM			
Aroclor 1221	ND	0.018	0.023		mg/Kg	1	7/10/2019 2:58:19 AM			
Aroclor 1232	ND	0.022	0.023		mg/Kg	1	7/10/2019 2:58:19 AM			
Aroclor 1242	ND	0.012	0.023		mg/Kg	1	7/10/2019 2:58:19 AM	45963		
Aroclor 1248	ND	0.018	0.023		mg/Kg	1	7/10/2019 2:58:19 AM	45963		
Aroclor 1254	ND	0.018	0.023		mg/Kg	1	7/10/2019 2:58:19 AM	45963		
Aroclor 1260	ND	0.0085	0.023		mg/Kg	1	7/10/2019 2:58:19 AM	45963		
Surr: Decachlorobiphenyl	78.8	0	25.7-135		%Rec	1	7/10/2019 2:58:19 AM	45963		
Surr: Tetrachloro-m-xylene	91.6	0	32.3-138		%Rec	1	7/10/2019 2:58:19 AM	45963		
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS						Analyst: BRI	N		
Diesel Range Organics (DRO)	87	2.0	9.8		mg/Kg	1	7/8/2019 6:47:09 PM	45994		
Motor Oil Range Organics (MRO)	110	49	49		mg/Kg	1	7/8/2019 6:47:09 PM	45994		
Surr: DNOP	100	0	70-130		%Rec	1	7/8/2019 6:47:09 PM	45994		
EPA METHOD 300.0: ANIONS							Analyst: CAS	5		
Fluoride	7.1	0.46	1.5		mg/Kg	5	7/11/2019 5:03:32 PM	46126		
Chloride	330	2.0	30		mg/Kg	20	7/11/2019 5:15:56 PM	46126		
Nitrogen, Nitrate (As N)	13	0.75	1.5		mg/Kg	5	7/11/2019 5:03:32 PM	46126		
Sulfate	1300	14	30		mg/Kg	20	7/11/2019 5:15:56 PM	46126		
EPA METHOD 7471: MERCURY							Analyst: JLF			
Mercury	0.094	0.0018	0.032		mg/Kg	1	7/10/2019 2:33:43 PM	46081		
EPA METHOD 6010B: SOIL METALS							Analyst: bcv			
Arsenic	ND	2.9	5.1		mg/Kg	2	7/2/2019 9:16:28 AM	45944		
Barium	260	0.047	0.20		mg/Kg	2	7/2/2019 9:16:28 AM	45944		
Cadmium	ND	0.049	0.20		mg/Kg	2	7/2/2019 9:16:28 AM	45944		
Chromium	15	0.16	0.61		mg/Kg	2	7/2/2019 9:16:28 AM	45944		
Copper	15	0.23	0.61		mg/Kg	2	7/2/2019 9:16:28 AM	45944		
Iron	20000	74	250		mg/Kg	100	7/2/2019 8:30:19 AM	45944		
Lead	5.8	0.49	0.51		mg/Kg	2	7/2/2019 9:16:28 AM	45944		
Manganese	400	0.042	0.20		mg/Kg	2	7/2/2019 9:16:28 AM	45944		
Selenium	ND	2.5	5.1		mg/Kg	2	7/2/2019 9:16:28 AM	45944		
Silver	ND	0.065	0.51		mg/Kg	2	7/2/2019 9:16:28 AM	45944		
Uranium	ND	4.4	10		mg/Kg	2	7/2/2019 9:16:28 AM	45944		
Zinc	53	0.80	5.1		mg/Kg	2	7/2/2019 9:16:28 AM	45944		
EPA METHOD 8270C: SEMIVOLATILES							Analyst: DAI			
Acenaphthene	ND	1.3	2.1	D	mg/Kg	1	7/8/2019 7:20:47 PM	45929		
Acenaphthylene	ND	1.2	2.1	D	mg/Kg	1	7/8/2019 7:20:47 PM	45929		
Aniline	ND	1.4	2.1	D	mg/Kg	1	7/8/2019 7:20:47 PM	45929		

* Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix

В Analyte detected in the associated Method Blank

Е

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit PQL Practical Quanitative Limit

Value above quantitation range

J Analyte detected below quantitation limits

Р Sample pH Not In Range

RL Reporting Limit

% Recovery outside of range due to dilution or matrix S

Page 22 of 65

Qualifiers:

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 7/31/2019

Client Sample ID: CENTRAL OCD LF TZ03

Project:	OCD Central Landfarm Semian	nual Sam
Lab ID:	1906G37-006	Matrix: SOIL

CLIENT: Marathon

Collection Date: 6/27/2019 11:50:00 AM

Received Date: 6/27/2019 4:20:00 PM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8270C: SEMIVOLATILES							Analyst: DA	M
Anthracene	ND	1.1	2.1	D	mg/Kg	1	7/8/2019 7:20:47 PM	45929
Azobenzene	ND	1.5	2.1	D	mg/Kg	1	7/8/2019 7:20:47 PM	45929
Benz(a)anthracene	ND	1.0	2.1	D	mg/Kg	1	7/8/2019 7:20:47 PM	45929
Benzo(a)pyrene	ND	0.95	2.1	D	mg/Kg	1	7/8/2019 7:20:47 PM	45929
Benzo(b)fluoranthene	ND	0.95	2.1	D	mg/Kg	1	7/8/2019 7:20:47 PM	45929
Benzo(g,h,i)perylene	ND	0.92	2.1	D	mg/Kg	1	7/8/2019 7:20:47 PM	45929
Benzo(k)fluoranthene	ND	0.97	2.1	D	mg/Kg	1	7/8/2019 7:20:47 PM	45929
Benzoic acid	ND	1.1	5.4	D	mg/Kg	1	7/8/2019 7:20:47 PM	45929
Benzyl alcohol	ND	1.3	2.1	D	mg/Kg	1	7/8/2019 7:20:47 PM	45929
Bis(2-chloroethoxy)methane	ND	1.6	2.1	D	mg/Kg	1	7/8/2019 7:20:47 PM	45929
Bis(2-chloroethyl)ether	ND	1.3	2.1	D	mg/Kg	1	7/8/2019 7:20:47 PM	45929
Bis(2-chloroisopropyl)ether	ND	1.2	2.1	D	mg/Kg	1	7/8/2019 7:20:47 PM	45929
Bis(2-ethylhexyl)phthalate	ND	1.5	5.4	D	mg/Kg	1	7/8/2019 7:20:47 PM	45929
4-Bromophenyl phenyl ether	ND	1.3	2.1	D	mg/Kg	1	7/8/2019 7:20:47 PM	45929
Butyl benzyl phthalate	ND	1.1	2.1	D	mg/Kg	1	7/8/2019 7:20:47 PM	45929
Carbazole	ND	1.3	2.1	D	mg/Kg	1	7/8/2019 7:20:47 PM	45929
4-Chloro-3-methylphenol	ND	1.6	5.4	D	mg/Kg	1	7/8/2019 7:20:47 PM	45929
4-Chloroaniline	ND	1.5	5.4	D	mg/Kg	1	7/8/2019 7:20:47 PM	45929
2-Chloronaphthalene	ND	1.3	2.7	D	mg/Kg	1	7/8/2019 7:20:47 PM	45929
2-Chlorophenol	ND	1.3	2.1	D	mg/Kg	1	7/8/2019 7:20:47 PM	45929
4-Chlorophenyl phenyl ether	ND	1.2	2.1	D	mg/Kg	1	7/8/2019 7:20:47 PM	45929
Chrysene	ND	0.94	2.1	D	mg/Kg	1	7/8/2019 7:20:47 PM	45929
Di-n-butyl phthalate	ND	1.6	4.3	D	mg/Kg	1	7/8/2019 7:20:47 PM	45929
Di-n-octyl phthalate	ND	1.1	4.3	D	mg/Kg	1	7/8/2019 7:20:47 PM	45929
Dibenz(a,h)anthracene	ND	0.97	2.1	D	mg/Kg	1	7/8/2019 7:20:47 PM	45929
Dibenzofuran	ND	1.4	2.1	D	mg/Kg	1	7/8/2019 7:20:47 PM	45929
1,2-Dichlorobenzene	ND	1.3	2.1	D	mg/Kg	1	7/8/2019 7:20:47 PM	45929
1,3-Dichlorobenzene	ND	1.1	2.1	D	mg/Kg	1	7/8/2019 7:20:47 PM	45929
1,4-Dichlorobenzene	ND	1.1	2.1	D	mg/Kg	1	7/8/2019 7:20:47 PM	45929
3,3´-Dichlorobenzidine	ND	0.95	2.7	D	mg/Kg	1	7/8/2019 7:20:47 PM	45929
Diethyl phthalate	ND	1.5	2.1	D	mg/Kg	1	7/8/2019 7:20:47 PM	45929
Dimethyl phthalate	ND	1.4	2.1	D	mg/Kg	1	7/8/2019 7:20:47 PM	45929
2,4-Dichlorophenol	ND	1.2	4.3	D	mg/Kg	1	7/8/2019 7:20:47 PM	45929
2,4-Dimethylphenol	ND	1.2	3.2	D	mg/Kg	1	7/8/2019 7:20:47 PM	45929
4,6-Dinitro-2-methylphenol	ND	0.99	4.3	D	mg/Kg	1	7/8/2019 7:20:47 PM	45929
2,4-Dinitrophenol	ND	0.78	5.4	D	mg/Kg	1	7/8/2019 7:20:47 PM	45929
2,4-Dinitrotoluene	ND	1.3	5.4	D	mg/Kg	1	7/8/2019 7:20:47 PM	45929
2,6-Dinitrotoluene	ND	1.4	5.4	D	mg/Kg	1	7/8/2019 7:20:47 PM	45929
Fluoranthene	ND	1.2	2.1	D	mg/Kg	1	7/8/2019 7:20:47 PM	45929

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Н

ND

* Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix

В Analyte detected in the associated Method Blank

Е Value above quantitation range

J Analyte detected below quantitation limits Р Sample pH Not In Range

Not Detected at the Reporting Limit PQL Practical Quanitative Limit

% Recovery outside of range due to dilution or matrix S

Holding times for preparation or analysis exceeded

Reporting Limit RL

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 7/31/2019

CLIENT: Marathon Client Sample ID: CENTRAL OCD LF TZ03 **Project:** OCD Central Landfarm Semiannual Sam Collection Date: 6/27/2019 11:50:00 AM Lab ID: 1906G37-006 Matrix: SOIL Received Date: 6/27/2019 4:20:00 PM Result MDL DF **Date Analyzed** Analyses RL **Qual Units Batch ID EPA METHOD 8270C: SEMIVOLATILES** Analyst: DAM 7/8/2019 7:20:47 PM ND 1.2 2.1 D Fluorene mg/Kg 1 45929 Hexachlorobenzene ND 1.3 2.1 D mg/Kg 1 7/8/2019 7:20:47 PM 45929 ND 1.5 21 D mg/Kg 1 7/8/2019 7:20:47 PM 45929 Hexachlorobutadiene ND 1.2 2.1 D mg/Kg 1 7/8/2019 7:20:47 PM Hexachlorocyclopentadiene 45929 ND D 1 Hexachloroethane 1.2 2.1 mg/Kg 7/8/2019 7:20:47 PM 45929 D 1 Indeno(1.2.3-cd)pyrene ND 1.1 2.1 mg/Kg 7/8/2019 7:20:47 PM 45929 ND 4.3 D mg/Kg 1 Isophorone 1.6 7/8/2019 7:20:47 PM 45929 1-Methylnaphthalene ND 1.6 2.1 D mg/Kg 1 7/8/2019 7:20:47 PM 45929 D 1 2-Methylnaphthalene ND 1.6 2.1 mg/Kg 7/8/2019 7:20:47 PM 45929 2-Methylphenol ND 1.3 4.3 D mg/Kg 1 7/8/2019 7:20:47 PM 45929 3+4-Methylphenol ND 1.3 2.1 D mg/Kg 1 7/8/2019 7:20:47 PM 45929 7/8/2019 7:20:47 PM N-Nitrosodi-n-propylamine ND 1.5 2.1 D mg/Kg 1 45929 N-Nitrosodiphenylamine ND 1.1 2.1 D mg/Kg 1 7/8/2019 7:20:47 PM 45929 Naphthalene ND 1.6 21 D mg/Kg 1 7/8/2019 7:20:47 PM 45929 ND 1.5 2.1 D mg/Kg 1 7/8/2019 7:20:47 PM 2-Nitroaniline 45929 ND 1.5 2.1 D 1 3-Nitroaniline mg/Kg 7/8/2019 7:20:47 PM 45929 4-Nitroaniline ND 1.4 4.3 D mg/Kg 1 7/8/2019 7:20:47 PM 45929 ND D Nitrobenzene 1.5 4.3 mg/Kg 1 7/8/2019 7:20:47 PM 45929 2-Nitrophenol ND 1.5 2.1 D mg/Kg 1 7/8/2019 7:20:47 PM 45929 4-Nitrophenol ND 1.5 2.7 D mg/Kg 1 7/8/2019 7:20:47 PM 45929 Pentachlorophenol ND 4.3 D 1 1 1 mg/Kg 7/8/2019 7:20:47 PM 45929 Phenanthrene ND 1.2 2.1 D mg/Kg 1 7/8/2019 7:20:47 PM 45929 Phenol ND D 1.3 21 mg/Kg 1 7/8/2019 7:20:47 PM 45929 Pyrene ND 1.0 2.1 D mg/Kg 1 7/8/2019 7:20:47 PM 45929 ND 1.3 D Pyridine 4.3 mg/Kg 1 7/8/2019 7:20:47 PM 45929 1,2,4-Trichlorobenzene ND 1.7 21 D mg/Kg 1 7/8/2019 7:20:47 PM 45929 2,4,5-Trichlorophenol ND D mg/Kg 1 7/8/2019 7:20:47 PM 1.4 2.1 45929 2,4,6-Trichlorophenol ND 1.1 2.1 D mg/Kg 1 7/8/2019 7:20:47 PM 45929 SD Surr: 2-Fluorophenol 0 1 24.8-95.2 %Rec 7/8/2019 7:20:47 PM 45929 Surr: Phenol-d5 0 29.9-97.8 SD %Rec 1 7/8/2019 7:20:47 PM 45929 Surr: 2,4,6-Tribromophenol 0 35.7-108 SD %Rec 1 7/8/2019 7:20:47 PM 45929 Surr: Nitrobenzene-d5 0 32.5-106 SD %Rec 1 7/8/2019 7:20:47 PM 45929 Surr: 2-Fluorobiphenyl 0 27.7-114 SD %Rec 1 7/8/2019 7:20:47 PM 45929 0 Surr: 4-Terphenyl-d14 15-148 SD %Rec 1 7/8/2019 7:20:47 PM 45929 **EPA METHOD 8260B: VOLATILES** Analyst: DJF ND 7/4/2019 12:55:21 AM Benzene 0.0041 0.025 mg/Kg 1 45983 0.050 Toluene ND 0.0048 mg/Kg 1 7/4/2019 12:55:21 AM 45983 Ethylbenzene ND 0.0029 0.050 mg/Kg 1 7/4/2019 12:55:21 AM 45983 Methyl tert-butyl ether (MTBE) ND 0.012 0.050 mg/Kg 1 7/4/2019 12:55:21 AM 45983

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Oualifiers:

Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix

Holding times for preparation or analysis exceeded

Н ND Not Detected at the Reporting Limit

POL Practical Quanitative Limit

Analyte detected in the associated Method Blank В

Е Value above quantitation range J

Analyte detected below quantitation limits Р Sample pH Not In Range

RL Reporting Limit Page 24 of 65

% Recovery outside of range due to dilution or matrix

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon

Date Reported: 7/31/2019

Client Sample ID: CENTRAL OCD LF TZ03

Project:	OCD Central Landfarm Semia		Coll	ection I	Date: 6/2	7/201	9 11:50:00 AM		
Lab ID:	1906G37-006	Matrix: S	OIL	Rec	ceived I	Date: 6/2	7/201	9 4:20:00 PM	
Analyses		Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA MET	HOD 8260B: VOLATILES							Analyst: DJF	
1,2,4-Trin	nethylbenzene	ND	0.0046	0.050		mg/Kg	1	7/4/2019 12:55:21 AM	45983
1,3,5-Trin	nethylbenzene	ND	0.0048	0.050		mg/Kg	1	7/4/2019 12:55:21 AM	45983
1,2-Dichlo	proethane (EDC)	ND	0.0051	0.050		mg/Kg	1	7/4/2019 12:55:21 AM	45983
1,2-Dibro	moethane (EDB)	ND	0.0046	0.050		mg/Kg	1	7/4/2019 12:55:21 AM	45983
Naphthale	ene	ND	0.010	0.10		mg/Kg	1	7/4/2019 12:55:21 AM	45983
1-Methylr	naphthalene	ND	0.029	0.20		mg/Kg	1	7/4/2019 12:55:21 AM	45983
2-Methylr	naphthalene	ND	0.022	0.20		mg/Kg	1	7/4/2019 12:55:21 AM	45983
Acetone		ND	0.041	0.75		mg/Kg	1	7/4/2019 12:55:21 AM	45983
Bromobe	nzene	ND	0.0048	0.050		mg/Kg	1	7/4/2019 12:55:21 AM	45983
Bromodic	hloromethane	ND	0.0046	0.050		mg/Kg	1	7/4/2019 12:55:21 AM	45983
Bromofor	m	ND	0.0045	0.050		mg/Kg	1	7/4/2019 12:55:21 AM	45983
Bromome	ethane	ND	0.012	0.15		mg/Kg	1	7/4/2019 12:55:21 AM	45983
2-Butano	ne	ND	0.058	0.50		mg/Kg	1	7/4/2019 12:55:21 AM	45983
Carbon d	isulfide	ND	0.016	0.50		mg/Kg	1	7/4/2019 12:55:21 AM	45983
Carbon te	etrachloride	ND	0.0047	0.050		mg/Kg	1	7/4/2019 12:55:21 AM	45983
Chlorobe	nzene	ND	0.0064	0.050		mg/Kg	1	7/4/2019 12:55:21 AM	45983
Chloroeth	nane	ND	0.0074	0.10		mg/Kg	1	7/4/2019 12:55:21 AM	45983
Chlorofor	m	ND	0.0040	0.050		mg/Kg	1	7/4/2019 12:55:21 AM	45983
Chlorome	ethane	ND	0.0048	0.15		mg/Kg	1	7/4/2019 12:55:21 AM	45983
2-Chlorot	oluene	ND	0.0043	0.050		mg/Kg	1	7/4/2019 12:55:21 AM	45983
4-Chlorot	oluene	ND	0.0041	0.050		mg/Kg	1	7/4/2019 12:55:21 AM	45983
cis-1,2-D	CE	ND	0.0068	0.050		mg/Kg	1	7/4/2019 12:55:21 AM	45983
cis-1,3-Di	chloropropene	ND	0.0042	0.050		mg/Kg	1	7/4/2019 12:55:21 AM	45983
1,2-Dibro	mo-3-chloropropane	ND	0.0051	0.10		mg/Kg	1	7/4/2019 12:55:21 AM	45983
Dibromoc	chloromethane	ND	0.0035	0.050		mg/Kg	1	7/4/2019 12:55:21 AM	45983
Dibromor	nethane	ND	0.0054	0.050		mg/Kg	1	7/4/2019 12:55:21 AM	45983
1,2-Dichlo	probenzene	ND	0.0041	0.050		mg/Kg	1	7/4/2019 12:55:21 AM	45983
1,3-Dichlo	probenzene	ND	0.0043	0.050		mg/Kg	1	7/4/2019 12:55:21 AM	45983
1,4-Dichlo	probenzene	ND	0.0042	0.050		mg/Kg	1	7/4/2019 12:55:21 AM	45983
Dichlorod	lifluoromethane	ND	0.012	0.050		mg/Kg	1	7/4/2019 12:55:21 AM	45983
1,1-Dichle	proethane	ND	0.0032	0.050		mg/Kg	1	7/4/2019 12:55:21 AM	45983
1,1-Dichlo	proethene	ND	0.020	0.050		mg/Kg	1	7/4/2019 12:55:21 AM	45983
1,2-Dichlo	oropropane	ND	0.0036	0.050		mg/Kg	1	7/4/2019 12:55:21 AM	45983
1,3-Dichlo	oropropane	ND	0.0054	0.050		mg/Kg	1	7/4/2019 12:55:21 AM	45983
2,2-Dichlo	propropane	ND	0.016	0.10		mg/Kg	1	7/4/2019 12:55:21 AM	45983
1,1-Dichle	propropene	ND	0.0045	0.10		mg/Kg	1	7/4/2019 12:55:21 AM	45983
Hexachlo	robutadiene	ND	0.0051	0.10		mg/Kg	1	7/4/2019 12:55:21 AM	45983
2-Hexand	ne	ND	0.0083	0.50		mg/Kg	1	7/4/2019 12:55:21 AM	45983
Isopropyl	benzene	ND	0.0036	0.050		mg/Kg	1	7/4/2019 12:55:21 AM	45983

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix

Holding times for preparation or analysis exceeded

Н ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

В Analyte detected in the associated Method Blank

Е Value above quantitation range J

Analyte detected below quantitation limits Sample pH Not In Range

Р

% Recovery outside of range due to dilution or matrix S

Page 25 of 65

RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 7/31/2019

CLIENT:	Marathon			Client	Sample	e ID: CE	ENTR.	AL OCD LF TZ03	
Project:	OCD Central Landfarm Semi	annual Sam		Coll	ection D	ate: 6/2	7/201	9 11:50:00 AM	
Lab ID:	1906G37-006	Matrix: S	OIL	Ree	ceived D	ate: 6/2	7/201	9 4:20:00 PM	
Analyses		Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METH	OD 8260B: VOLATILES							Analyst: DJ	F
4-Isopropyl	toluene	ND	0.0041	0.050		mg/Kg	1	7/4/2019 12:55:21 AN	45983
4-Methyl-2-	pentanone	ND	0.0094	0.50		mg/Kg	1	7/4/2019 12:55:21 AN	45983
Methylene	chloride	ND	0.0088	0.15		mg/Kg	1	7/4/2019 12:55:21 AN	45983
n-Butylben:	zene	ND	0.0047	0.15		mg/Kg	1	7/4/2019 12:55:21 AN	45983
n-Propylbe	nzene	ND	0.0040	0.050		mg/Kg	1	7/4/2019 12:55:21 AN	45983
sec-Butylbe	enzene	ND	0.0056	0.050		mg/Kg	1	7/4/2019 12:55:21 AN	45983
Styrene		ND	0.0039	0.050		mg/Kg	1	7/4/2019 12:55:21 AN	45983
tert-Butylbe	enzene	ND	0.0047	0.050		mg/Kg	1	7/4/2019 12:55:21 AN	45983
1,1,1,2-Tet	rachloroethane	ND	0.0034	0.050		mg/Kg	1	7/4/2019 12:55:21 AN	45983
1,1,2,2-Tet	rachloroethane	ND	0.0051	0.050		mg/Kg	1	7/4/2019 12:55:21 AN	45983
Tetrachloro	pethene (PCE)	ND	0.0040	0.050		mg/Kg	1	7/4/2019 12:55:21 AN	45983
trans-1,2-D	OCE	ND	0.0046	0.050		mg/Kg	1	7/4/2019 12:55:21 AN	45983
trans-1,3-D	Vichloropropene	ND	0.0053	0.050		mg/Kg	1	7/4/2019 12:55:21 AN	45983
1,2,3-Trichl	lorobenzene	ND	0.0044	0.10		mg/Kg	1	7/4/2019 12:55:21 AN	45983
1,2,4-Trichl	lorobenzene	ND	0.0050	0.050		mg/Kg	1	7/4/2019 12:55:21 AN	45983
1,1,1-Trichl	loroethane	ND	0.0045	0.050		mg/Kg	1	7/4/2019 12:55:21 AN	45983
1,1,2-Trichl	loroethane	ND	0.0035	0.050		mg/Kg	1	7/4/2019 12:55:21 AN	45983
Trichloroet	hene (TCE)	ND	0.0058	0.050		mg/Kg	1	7/4/2019 12:55:21 AN	45983
Trichloroflu	oromethane	ND	0.017	0.050		mg/Kg	1	7/4/2019 12:55:21 AN	45983
1,2,3-Trichl	loropropane	ND	0.0081	0.10		mg/Kg	1	7/4/2019 12:55:21 AN	45983
Vinyl chlori	de	ND	0.0033	0.050		mg/Kg	1	7/4/2019 12:55:21 AN	45983
Xylenes, To	otal	ND	0.013	0.10		mg/Kg	1	7/4/2019 12:55:21 AN	45983
Surr: Dib	promofluoromethane	107		70-130		%Rec	1	7/4/2019 12:55:21 AN	45983
Surr: 1,2	P-Dichloroethane-d4	107		70-130		%Rec	1	7/4/2019 12:55:21 AN	45983
Surr: Tol	luene-d8	90.3		70-130		%Rec	1	7/4/2019 12:55:21 AN	45983
Surr: 4-E	Bromofluorobenzene	91.7		70-130		%Rec	1	7/4/2019 12:55:21 AN	45983
EPA METH	OD 8015D MOD: GASOLINE	RANGE						Analyst: DJ I	F
Gasoline R	ange Organics (GRO)	ND	1.2	5.0		mg/Kg	1	7/4/2019 12:55:21 AN	45983
Surr: BF	В	81.9	0	70-130		%Rec	1	7/4/2019 12:55:21 AN	45983
EPA METH	OD 418.1: TPH							Analyst: Irm	I
Petroleum	Hydrocarbons, TR	52	2.8	20		mg/Kg	1	7/9/2019	45999

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix

Н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

% Recovery outside of range due to dilution or matrix S

В Analyte detected in the associated Method Blank

Е Value above quantitation range J

Analyte detected below quantitation limits Sample pH Not In Range

Р

Reporting Limit RL

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 7/31/2019

CLIENT: Marathon			Client	Sample	e ID: CE	NTR/	AL OCD LF VZ03	
Project: OCD Central Landfarm Semian	nual Sam			-			9 12:10:00 PM	
Lab ID: 1906G37-007	Matrix: S	OII					9 4:20:00 PM	
Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8082A: PCB'S							Analyst: TON	1
Aroclor 1016	ND	0.010	0.024		mg/Kg	1	7/10/2019 3:31:20 AM	45963
Aroclor 1221	ND	0.019	0.024		mg/Kg	1	7/10/2019 3:31:20 AM	45963
Aroclor 1232	ND	0.023	0.024		mg/Kg	1	7/10/2019 3:31:20 AM	45963
Aroclor 1242	ND	0.013	0.024		mg/Kg	1	7/10/2019 3:31:20 AM	45963
Aroclor 1248	ND	0.019	0.024		mg/Kg	1	7/10/2019 3:31:20 AM	45963
Aroclor 1254	ND	0.019	0.024		mg/Kg	1	7/10/2019 3:31:20 AM	45963
Aroclor 1260	ND	0.0090	0.024		mg/Kg	1	7/10/2019 3:31:20 AM	45963
Surr: Decachlorobiphenyl	61.6	0	25.7-135		%Rec	1	7/10/2019 3:31:20 AM	45963
Surr: Tetrachloro-m-xylene	68.0	0	32.3-138		%Rec	1	7/10/2019 3:31:20 AM	45963
EPA METHOD 8015M/D: DIESEL RANGE							Analyst: BRN	Λ
Diesel Range Organics (DRO)	ND	2.0	9.9		mg/Kg	1	7/5/2019 6:18:57 PM	45994
Motor Oil Range Organics (MRO)	ND	50	50		mg/Kg	1	7/5/2019 6:18:57 PM	45994
Surr: DNOP	95.4	0	70-130		%Rec	1	7/5/2019 6:18:57 PM	45994
EPA METHOD 300.0: ANIONS							Analyst: CAS	5
Fluoride	5.2	0.46	1.5		mg/Kg	5	7/11/2019 5:53:10 PM	46126
Chloride	180	0.51	7.5		mg/Kg	5	7/11/2019 5:53:10 PM	46126
Nitrogen, Nitrate (As N)	6.7	0.75	1.5		mg/Kg	5	7/11/2019 5:53:10 PM	46126
Sulfate	650	14	30		mg/Kg	20	7/11/2019 6:05:34 PM	46126
EPA METHOD 7471: MERCURY							Analyst: JLF	
Mercury	ND	0.0017	0.032		mg/Kg	1	7/10/2019 3:34:38 PM	46081
EPA METHOD 6010B: SOIL METALS							Analyst: bcv	
Arsenic	ND	2.9	5.0		mg/Kg	2	7/2/2019 9:18:20 AM	45944
Barium	290	0.047	0.20		mg/Kg	2	7/2/2019 9:18:20 AM	45944
Cadmium	ND	0.049	0.20		mg/Kg	2	7/2/2019 9:18:20 AM	45944
Chromium	14	0.16	0.60		mg/Kg	2	7/2/2019 9:18:20 AM	45944
Copper	7.4	0.23	0.60		mg/Kg	2	7/2/2019 9:18:20 AM	45944
Iron	19000	73	250		mg/Kg	100	7/2/2019 8:32:05 AM	45944
Lead	3.1	0.49	0.50		mg/Kg	2	7/2/2019 9:18:20 AM	45944
Manganese	430	0.042	0.20		mg/Kg	2	7/2/2019 9:18:20 AM	45944
Selenium	ND	2.5	5.0		mg/Kg	2	7/2/2019 9:18:20 AM	45944
Silver	ND	0.064	0.50		mg/Kg	2	7/2/2019 9:18:20 AM	45944
Uranium	ND	4.4	10		mg/Kg	2	7/2/2019 9:18:20 AM	45944
Zinc	47	0.79	5.0		mg/Kg	2	7/2/2019 9:18:20 AM	45944
EPA METHOD 8270C: SEMIVOLATILES							Analyst: DAN	Λ
Acenaphthene	ND	0.14	0.23		mg/Kg	1	7/8/2019 7:51:22 PM	45929
Acenaphthylene	ND	0.13	0.23		mg/Kg	1	7/8/2019 7:51:22 PM	45929
Aniline	ND	0.15	0.23		mg/Kg	1	7/8/2019 7:51:22 PM	45929
Refer to the QC Summary report a	and sample log	gin checkli	st for flagg	ged QC o	data and	prese	rvation information.	

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix

Analyte detected in the associated Method Blank

Е Value above quantitation range

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

В

J Analyte detected below quantitation limits

Р Sample pH Not In Range

RL Reporting Limit

Page 27 of 65

% Recovery outside of range due to dilution or matrix S

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 7/31/2019

CLIENT: Marathon	•								
Project: OCD Central Landfarm Semianr Lab ID: 1906G37-007	Matrix: S	ווכ					9 4:20:00 PM		
	Matrix, St	JIL	Ku			77201	9 4.20.00 I W		
Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID	
EPA METHOD 8270C: SEMIVOLATILES							Analyst: DA	м	
Anthracene	ND	0.12	0.23		mg/Kg	1	7/8/2019 7:51:22 PM	45929	
Azobenzene	ND	0.16	0.23		mg/Kg	1	7/8/2019 7:51:22 PM	45929	
Benz(a)anthracene	ND	0.11	0.23		mg/Kg	1	7/8/2019 7:51:22 PM	45929	
Benzo(a)pyrene	ND	0.10	0.23		mg/Kg	1	7/8/2019 7:51:22 PM	45929	
Benzo(b)fluoranthene	ND	0.10	0.23		mg/Kg	1	7/8/2019 7:51:22 PM	45929	
Benzo(g,h,i)perylene	ND	0.098	0.23		mg/Kg	1	7/8/2019 7:51:22 PM	45929	
Benzo(k)fluoranthene	ND	0.10	0.23		mg/Kg	1	7/8/2019 7:51:22 PM	45929	
Benzoic acid	ND	0.12	0.57		mg/Kg	1	7/8/2019 7:51:22 PM	45929	
Benzyl alcohol	ND	0.14	0.23		mg/Kg	1	7/8/2019 7:51:22 PM	45929	
Bis(2-chloroethoxy)methane	ND	0.17	0.23		mg/Kg	1	7/8/2019 7:51:22 PM	45929	
Bis(2-chloroethyl)ether	ND	0.14	0.23		mg/Kg	1	7/8/2019 7:51:22 PM	45929	
Bis(2-chloroisopropyl)ether	ND	0.13	0.23		mg/Kg	1	7/8/2019 7:51:22 PM	45929	
Bis(2-ethylhexyl)phthalate	ND	0.16	0.57		mg/Kg	1	7/8/2019 7:51:22 PM	45929	
4-Bromophenyl phenyl ether	ND	0.13	0.23		mg/Kg	1	7/8/2019 7:51:22 PM	45929	
Butyl benzyl phthalate	ND	0.12	0.23		mg/Kg	1	7/8/2019 7:51:22 PM	45929	
Carbazole	ND	0.13	0.23		mg/Kg	1	7/8/2019 7:51:22 PM	45929	
4-Chloro-3-methylphenol	ND	0.18	0.57		mg/Kg	1	7/8/2019 7:51:22 PM	45929	
4-Chloroaniline	ND	0.16	0.57		mg/Kg	1	7/8/2019 7:51:22 PM	45929	
2-Chloronaphthalene	ND	0.14	0.29		mg/Kg	1	7/8/2019 7:51:22 PM	45929	
2-Chlorophenol	ND	0.14	0.23		mg/Kg	1	7/8/2019 7:51:22 PM	45929	
4-Chlorophenyl phenyl ether	ND	0.12	0.23		mg/Kg	1	7/8/2019 7:51:22 PM	45929	
Chrysene	ND	0.10	0.23		mg/Kg	1	7/8/2019 7:51:22 PM	45929	
Di-n-butyl phthalate	ND	0.17	0.46		mg/Kg	1	7/8/2019 7:51:22 PM	45929	
Di-n-octyl phthalate	ND	0.12	0.46		mg/Kg	1	7/8/2019 7:51:22 PM	45929	
Dibenz(a,h)anthracene	ND	0.10	0.23		mg/Kg	1	7/8/2019 7:51:22 PM	45929	
Dibenzofuran	ND	0.15	0.23		mg/Kg	1	7/8/2019 7:51:22 PM	45929	
1,2-Dichlorobenzene	ND	0.14	0.23		mg/Kg	1	7/8/2019 7:51:22 PM	45929	
1,3-Dichlorobenzene	ND	0.12	0.23		mg/Kg	1	7/8/2019 7:51:22 PM	45929	
1.4-Dichlorobenzene	ND	0.12	0.23		mg/Kg	1	7/8/2019 7:51:22 PM	45929	
3,3´-Dichlorobenzidine	ND	0.10	0.29		mg/Kg	1	7/8/2019 7:51:22 PM	45929	
Diethyl phthalate	ND	0.16	0.23		mg/Kg	1	7/8/2019 7:51:22 PM	45929	
Dimethyl phthalate	ND	0.15	0.23		mg/Kg	1	7/8/2019 7:51:22 PM	45929	
2,4-Dichlorophenol	ND	0.13	0.46		mg/Kg	1	7/8/2019 7:51:22 PM	45929	
2,4-Dimethylphenol	ND	0.13	0.34		mg/Kg	1	7/8/2019 7:51:22 PM	45929	
4,6-Dinitro-2-methylphenol	ND	0.10	0.46		mg/Kg	1	7/8/2019 7:51:22 PM	45929	
2,4-Dinitrophenol	ND	0.083	0.40		mg/Kg	1	7/8/2019 7:51:22 PM	45929	
2,4-Dinitrotoluene	ND	0.003	0.57		mg/Kg	1	7/8/2019 7:51:22 PM	45929	
2,6-Dinitrotoluene	ND	0.15	0.57		mg/Kg	1	7/8/2019 7:51:22 PM	45929	
Fluoranthene	ND	0.13	0.23		mg/Kg	1	7/8/2019 7:51:22 PM	45929	
		0.15	0.20		mg/rxy	'	110/2013 1.01.22 FIVI	40323	

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix

В

Н Holding times for preparation or analysis exceeded ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S

Analyte detected in the associated Method Blank

Е Value above quantitation range J

Analyte detected below quantitation limits Sample pH Not In Range

Р

% Recovery outside of range due to dilution or matrix

Reporting Limit RL

Page 28 of 65

Hall Environmental Analysis Laboratory, Inc.

Lab Order **1906G37** Date Reported: **7/31/2019**

CLIENT: Marathon Client Sample ID: CENTRAL OC								
Project: OCD Central Landfarm Semiar	nual Sam		Colle	ection I	Date: 6/2	7/201	9 12:10:00 PM	
Lab ID: 1906G37-007	Matrix: S	OIL	Rec	ceived I	Date: 6/2	7/201	9 4:20:00 PM	
Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8270C: SEMIVOLATILES							Analyst: DA	M
Fluorene	ND	0.13	0.23		mg/Kg	1	7/8/2019 7:51:22 PM	45929
Hexachlorobenzene	ND	0.14	0.23		mg/Kg	1	7/8/2019 7:51:22 PM	45929
Hexachlorobutadiene	ND	0.16	0.23		mg/Kg	1	7/8/2019 7:51:22 PM	45929
Hexachlorocyclopentadiene	ND	0.13	0.23		mg/Kg	1	7/8/2019 7:51:22 PM	45929
Hexachloroethane	ND	0.13	0.23		mg/Kg	1	7/8/2019 7:51:22 PM	45929
Indeno(1,2,3-cd)pyrene	ND	0.11	0.23		mg/Kg	1	7/8/2019 7:51:22 PM	45929
Isophorone	ND	0.17	0.46		mg/Kg	1	7/8/2019 7:51:22 PM	45929
1-Methylnaphthalene	ND	0.17	0.23		mg/Kg	1	7/8/2019 7:51:22 PM	45929
2-Methylnaphthalene	ND	0.17	0.23		mg/Kg	1	7/8/2019 7:51:22 PM	45929
2-Methylphenol	ND	0.14	0.46		mg/Kg	1	7/8/2019 7:51:22 PM	
3+4-Methylphenol	ND	0.14	0.23		mg/Kg	1	7/8/2019 7:51:22 PM	
N-Nitrosodi-n-propylamine	ND	0.16	0.23		mg/Kg	1	7/8/2019 7:51:22 PM	
N-Nitrosodiphenylamine	ND	0.12	0.23		mg/Kg	1	7/8/2019 7:51:22 PM	
Naphthalene	ND	0.17	0.23		mg/Kg	1	7/8/2019 7:51:22 PM	
2-Nitroaniline	ND	0.16	0.23		mg/Kg	1	7/8/2019 7:51:22 PM	
3-Nitroaniline	ND	0.16	0.23		mg/Kg	1	7/8/2019 7:51:22 PM	
4-Nitroaniline	ND	0.15	0.46		mg/Kg	1	7/8/2019 7:51:22 PM	
Nitrobenzene	ND	0.16	0.46		mg/Kg	1	7/8/2019 7:51:22 PM	
2-Nitrophenol	ND	0.16	0.23		mg/Kg	1	7/8/2019 7:51:22 PM	
4-Nitrophenol	ND	0.16	0.29		mg/Kg	1	7/8/2019 7:51:22 PM	
Pentachlorophenol	ND	0.12	0.46		mg/Kg	1	7/8/2019 7:51:22 PM	
Phenanthrene	ND	0.12	0.23		mg/Kg	1	7/8/2019 7:51:22 PM	
Phenol	ND	0.14	0.23		mg/Kg	1	7/8/2019 7:51:22 PM	
Pyrene	ND	0.11	0.23		mg/Kg	1	7/8/2019 7:51:22 PM	
Pyridine	ND	0.14	0.46		mg/Kg	1	7/8/2019 7:51:22 PM	
1,2,4-Trichlorobenzene	ND	0.18	0.23		mg/Kg	1	7/8/2019 7:51:22 PM	
2,4,5-Trichlorophenol	ND	0.15	0.23		mg/Kg	1	7/8/2019 7:51:22 PM	
2,4,6-Trichlorophenol	ND	0.12	0.23 4.8-95.2		mg/Kg	1	7/8/2019 7:51:22 PM	
Surr: 2-Fluorophenol	63.6				%Rec	1	7/8/2019 7:51:22 PM	
Surr: Phenol-d5	65.9		9.9-97.8		%Rec %Rec	1	7/8/2019 7:51:22 PM 7/8/2019 7:51:22 PM	
Surr: 2,4,6-Tribromophenol Surr: Nitrobenzene-d5	64.5 72.6		35.7-108		%Rec %Rec	1	7/8/2019 7:51:22 PM	
Surr: 2-Fluorobiphenyl	72.0		32.5-106		%Rec %Rec	1		
	65.5	4	27.7-114		%Rec %Rec	1	7/8/2019 7:51:22 PM	
Surr: 4-Terphenyl-d14	05.5		15-148		%Rec	1	7/8/2019 7:51:22 PM	
EPA METHOD 8260B: VOLATILES							Analyst: DJ	
Benzene	ND	0.0039	0.024		mg/Kg	1	7/4/2019 1:25:05 AM	
Toluene	ND	0.0046	0.048		mg/Kg	1	7/4/2019 1:25:05 AM	
Ethylbenzene	ND	0.0028	0.048		mg/Kg	1	7/4/2019 1:25:05 AM	
Methyl tert-butyl ether (MTBE)	ND	0.011	0.048		mg/Kg	1	7/4/2019 1:25:05 AM	45983

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix

Sample Diluted Due to Matrix Holding times for preparation or analysis exceeded

H Holding times for preparation or analysis exceedND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

B Analyte detected in the associated Method Blank

E Value above quantitation rangeJ Analyte detected below quantitation limits

J Analyte detected below quantitation limitsP Sample pH Not In Range

P Sample pH Not RL Reporting Limit

RL Reportin

Page 29 of 65

S % Recovery outside of range due to dilution or matrix

Hall Environmental Analysis Laboratory, Inc.

Lab Order 1906G37

Date Reported: 7/31/2019

CLIENT: Marathon Client Sample ID: CENTRAL OCD LF VZ03								
Project: OCD Central Landfarm Semiar	nnual Sam		Colle	ection E	Date: 6/2	7/201	9 12:10:00 PM	
Lab ID: 1906G37-007	Matrix: S	OIL	Rec	ceived E	Date: 6/2	7/201	9 4:20:00 PM	
Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES							Analyst: DJ	F
1,2,4-Trimethylbenzene	ND	0.0044	0.048		mg/Kg	1	7/4/2019 1:25:05 AM	45983
1,3,5-Trimethylbenzene	ND	0.0046	0.048		mg/Kg	1	7/4/2019 1:25:05 AM	45983
1,2-Dichloroethane (EDC)	ND	0.0049	0.048		mg/Kg	1	7/4/2019 1:25:05 AM	45983
1,2-Dibromoethane (EDB)	ND	0.0044	0.048		mg/Kg	1	7/4/2019 1:25:05 AM	45983
Naphthalene	ND	0.0096	0.096		mg/Kg	1	7/4/2019 1:25:05 AM	45983
1-Methylnaphthalene	ND	0.028	0.19		mg/Kg	1	7/4/2019 1:25:05 AM	45983
2-Methylnaphthalene	ND	0.021	0.19		mg/Kg	1	7/4/2019 1:25:05 AM	45983
Acetone	ND	0.040	0.72		mg/Kg	1	7/4/2019 1:25:05 AM	45983
Bromobenzene	ND	0.0046	0.048		mg/Kg	1	7/4/2019 1:25:05 AM	45983
Bromodichloromethane	ND	0.0044	0.048		mg/Kg	1	7/4/2019 1:25:05 AM	45983
Bromoform	ND	0.0043	0.048		mg/Kg	1	7/4/2019 1:25:05 AM	45983
Bromomethane	ND	0.012	0.14		mg/Kg	1	7/4/2019 1:25:05 AM	45983
2-Butanone	ND	0.055	0.48		mg/Kg	1	7/4/2019 1:25:05 AM	45983
Carbon disulfide	ND	0.016	0.48		mg/Kg	1	7/4/2019 1:25:05 AM	45983
Carbon tetrachloride	ND	0.0045	0.048		mg/Kg	1	7/4/2019 1:25:05 AM	45983
Chlorobenzene	ND	0.0061	0.048		mg/Kg	1	7/4/2019 1:25:05 AM	45983
Chloroethane	ND	0.0071	0.096		mg/Kg	1	7/4/2019 1:25:05 AM	45983
Chloroform	ND	0.0038	0.048		mg/Kg	1	7/4/2019 1:25:05 AM	45983
Chloromethane	ND	0.0046	0.14		mg/Kg	1	7/4/2019 1:25:05 AM	45983
2-Chlorotoluene	ND	0.0042	0.048		mg/Kg	1	7/4/2019 1:25:05 AM	45983
4-Chlorotoluene	ND	0.0039	0.048		mg/Kg	1	7/4/2019 1:25:05 AM	45983
cis-1,2-DCE	ND	0.0066	0.048		mg/Kg	1	7/4/2019 1:25:05 AM	45983
cis-1,3-Dichloropropene	ND	0.0040	0.048		mg/Kg	1	7/4/2019 1:25:05 AM	45983
1,2-Dibromo-3-chloropropane	ND	0.0049	0.096		mg/Kg	1	7/4/2019 1:25:05 AM	45983
Dibromochloromethane	ND	0.0034	0.048		mg/Kg	1	7/4/2019 1:25:05 AM	45983
Dibromomethane	ND	0.0052	0.048		mg/Kg	1	7/4/2019 1:25:05 AM	45983
1,2-Dichlorobenzene	ND	0.0039	0.048		mg/Kg	1	7/4/2019 1:25:05 AM	45983
1,3-Dichlorobenzene	ND	0.0042	0.048		mg/Kg	1	7/4/2019 1:25:05 AM	45983
1,4-Dichlorobenzene	ND	0.0040	0.048		mg/Kg	1	7/4/2019 1:25:05 AM	45983
Dichlorodifluoromethane	ND	0.011	0.048		mg/Kg	1	7/4/2019 1:25:05 AM	45983
1,1-Dichloroethane	ND	0.0031	0.048		mg/Kg	1	7/4/2019 1:25:05 AM	45983
1,1-Dichloroethene	ND	0.019	0.048		mg/Kg	1	7/4/2019 1:25:05 AM	45983
1,2-Dichloropropane	ND	0.0035	0.048		mg/Kg	1	7/4/2019 1:25:05 AM	45983
1,3-Dichloropropane	ND	0.0052	0.048		mg/Kg	1	7/4/2019 1:25:05 AM	45983
2,2-Dichloropropane	ND	0.002	0.096		mg/Kg	1	7/4/2019 1:25:05 AM	45983
1,1-Dichloropropene	ND	0.0044	0.096		mg/Kg	1	7/4/2019 1:25:05 AM	45983
Hexachlorobutadiene	ND	0.0049	0.096		mg/Kg	1	7/4/2019 1:25:05 AM	45983
2-Hexanone	ND	0.0049	0.090		mg/Kg	1	7/4/2019 1:25:05 AM	45983
Isopropylbenzene	ND	0.0035	0.48		mg/Kg	1	7/4/2019 1:25:05 AM	45983

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

В Analyte detected in the associated Method Blank

Е Value above quantitation range J Analyte detected below quantitation limits

Sample pH Not In Range

Р

% Recovery outside of range due to dilution or matrix S

RL Reporting Limit

Page 30 of 65

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 7/31/2019

CLIENT:	: Marathon	Client	Sample	ID:CE	NTR	AL OCD LF VZ03			
Project:	OCD Central Landfarm Semian	nual Sam		Colle	ection D	ate: 6/2	7/201	9 12:10:00 PM	
Lab ID:	1906G37-007	Matrix: S	OIL	Rec	ceived D	ate: 6/2	7/201	9 4:20:00 PM	
Analyses		Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA MET	HOD 8260B: VOLATILES							Analyst: DJ	F
4-Isoprop	pyltoluene	ND	0.0040	0.048		mg/Kg	1	7/4/2019 1:25:05 AM	45983
4-Methyl-	2-pentanone	ND	0.0090	0.48		mg/Kg	1	7/4/2019 1:25:05 AM	45983
Methylen	e chloride	ND	0.0085	0.14		mg/Kg	1	7/4/2019 1:25:05 AM	45983
n-Butylbe	enzene	ND	0.0045	0.14		mg/Kg	1	7/4/2019 1:25:05 AM	45983
n-Propylb	benzene	ND	0.0038	0.048		mg/Kg	1	7/4/2019 1:25:05 AM	45983
sec-Butyl	benzene	ND	0.0054	0.048		mg/Kg	1	7/4/2019 1:25:05 AM	45983
Styrene		ND	0.0038	0.048		mg/Kg	1	7/4/2019 1:25:05 AM	45983
tert-Butyl	benzene	ND	0.0045	0.048		mg/Kg	1	7/4/2019 1:25:05 AM	45983
1,1,1,2-T	etrachloroethane	ND	0.0032	0.048		mg/Kg	1	7/4/2019 1:25:05 AM	45983
1,1,2,2-T	etrachloroethane	ND	0.0049	0.048		mg/Kg	1	7/4/2019 1:25:05 AM	45983
Tetrachlo	roethene (PCE)	ND	0.0038	0.048		mg/Kg	1	7/4/2019 1:25:05 AM	45983
trans-1,2-	-DCE	ND	0.0044	0.048		mg/Kg	1	7/4/2019 1:25:05 AM	45983
trans-1,3-	-Dichloropropene	ND	0.0051	0.048		mg/Kg	1	7/4/2019 1:25:05 AM	45983
1,2,3-Tric	chlorobenzene	ND	0.0042	0.096		mg/Kg	1	7/4/2019 1:25:05 AM	45983
1,2,4-Tric	chlorobenzene	ND	0.0048	0.048		mg/Kg	1	7/4/2019 1:25:05 AM	45983
1,1,1-Tric	chloroethane	ND	0.0043	0.048		mg/Kg	1	7/4/2019 1:25:05 AM	45983
1,1,2-Tric	chloroethane	ND	0.0034	0.048		mg/Kg	1	7/4/2019 1:25:05 AM	45983
Trichloroe	ethene (TCE)	ND	0.0055	0.048		mg/Kg	1	7/4/2019 1:25:05 AM	45983
Trichlorof	fluoromethane	ND	0.016	0.048		mg/Kg	1	7/4/2019 1:25:05 AM	45983
1,2,3-Tric	chloropropane	ND	0.0078	0.096		mg/Kg	1	7/4/2019 1:25:05 AM	45983
Vinyl chlo	oride	ND	0.0031	0.048		mg/Kg	1	7/4/2019 1:25:05 AM	45983
Xylenes,	Total	ND	0.012	0.096		mg/Kg	1	7/4/2019 1:25:05 AM	45983
Surr: D	Dibromofluoromethane	106		70-130		%Rec	1	7/4/2019 1:25:05 AM	45983
Surr: 1	,2-Dichloroethane-d4	105		70-130		%Rec	1	7/4/2019 1:25:05 AM	45983
Surr: T	oluene-d8	96.1		70-130		%Rec	1	7/4/2019 1:25:05 AM	45983
Surr: 4	-Bromofluorobenzene	94.5		70-130		%Rec	1	7/4/2019 1:25:05 AM	45983
EPA MET	HOD 8015D MOD: GASOLINE R	ANGE						Analyst: DJ	F
Gasoline	Range Organics (GRO)	ND	1.2	4.8		mg/Kg	1	7/4/2019 1:25:05 AM	45983
Surr: B	8 8 ()	86.4	0	70-130		%Rec	1	7/4/2019 1:25:05 AM	45983
EPA MET	HOD 418.1: TPH							Analyst: Irn	ı
Petroleun	n Hydrocarbons, TR	ND	2.7	19		mg/Kg	1	7/9/2019	45999
	-			-		5 5			

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

Lab Order 1906G37

Date Reported: 7/31/2019

CLIENT: Marathon			Client	Sampl	e ID: CE	ENTRA	AL OCD LF TZ04	ed Batch ID 20 AM 45963 20 AM 45964 20 AM 45994 50 PM 46126 59 PM 46126 50 PM 46126 51 PM 46126 52			
Project: OCD Central Landfarm Semiar	nnual Sam		Coll	ection l	Date: 6/2	27/201	9 12:45:00 PM				
Lab ID: 1906G37-008	Matrix: S	OIL	Ree	ceived l	Date: 6/2	27/201	9 4:20:00 PM				
Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch II			
EPA METHOD 8082A: PCB'S							Analyst: TOI	N			
Aroclor 1016	ND	0.021	0.048		mg/Kg	1	7/10/2019 4:04:20 AM	45963			
Aroclor 1221	ND	0.038	0.048		mg/Kg	1	7/10/2019 4:04:20 AM	45963			
Aroclor 1232	ND	0.047	0.048		mg/Kg	1	7/10/2019 4:04:20 AM	45963			
Aroclor 1242	ND	0.025	0.048		mg/Kg	1	7/10/2019 4:04:20 AM	45963			
Aroclor 1248	ND	0.038	0.048		mg/Kg	1	7/10/2019 4:04:20 AM	45963			
Aroclor 1254	ND	0.038	0.048		mg/Kg	1	7/10/2019 4:04:20 AM	45963			
Aroclor 1260	ND	0.018	0.048		mg/Kg	1	7/10/2019 4:04:20 AM	45963			
Surr: Decachlorobiphenyl	113	0	25.7-135		%Rec	1	7/10/2019 4:04:20 AM	45963			
Surr: Tetrachloro-m-xylene	130	0	32.3-138		%Rec	1	7/10/2019 4:04:20 AM	45963			
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS						Analyst: BRI	М			
Diesel Range Organics (DRO)	490	1.8	8.9		mg/Kg	1	7/8/2019 7:31:56 PM	45994			
Motor Oil Range Organics (MRO)	480	45	45		mg/Kg	1	7/8/2019 7:31:56 PM	45994			
Surr: DNOP	121	0	70-130		%Rec	1	7/8/2019 7:31:56 PM	45994			
EPA METHOD 300.0: ANIONS							Analyst: CAS	S			
Fluoride	14	0.46	1.5		mg/Kg	5	7/11/2019 6:17:59 PM	46126			
Chloride	300	2.0	30		mg/Kg	20	7/11/2019 6:30:24 PM	46126			
Nitrogen, Nitrate (As N)	4.0	0.75	1.5		mg/Kg	5	7/11/2019 6:17:59 PM	46126			
Sulfate	1500	14	30		mg/Kg	20	7/11/2019 6:30:24 PM	46126			
EPA METHOD 7471: MERCURY							Analyst: JLF				
Mercury	0.077	0.0017	0.031		mg/Kg	1	7/10/2019 3:36:41 PM	46081			
EPA METHOD 6010B: SOIL METALS							Analyst: bcv				
Arsenic	ND	2.9	5.0		mg/Kg	2	7/2/2019 9:20:12 AM	45944			
Barium	350	0.047	0.20		mg/Kg	2	7/2/2019 9:20:12 AM	45944			
Cadmium	ND	0.049	0.20		mg/Kg	2	7/2/2019 9:20:12 AM	45944			
Chromium	16	0.16	0.60		mg/Kg	2	7/2/2019 9:20:12 AM	45944			
Copper	7.0	0.23	0.60		mg/Kg	2	7/2/2019 9:20:12 AM	45944			
Iron	17000	73	250		mg/Kg	100	7/2/2019 8:33:51 AM	45944			
Lead	20	0.49	0.50		mg/Kg	2	7/2/2019 9:20:12 AM	45944			
Manganese	430	0.042	0.20		mg/Kg	2	7/2/2019 9:20:12 AM	45944			
Selenium	ND	2.5	5.0		mg/Kg	2	7/2/2019 9:20:12 AM	45944			
Silver	ND	0.064	0.50		mg/Kg	2	7/2/2019 9:20:12 AM	45944			
Uranium	ND	4.4	10		mg/Kg	2	7/2/2019 9:20:12 AM	45944			
Zinc	49	0.80	5.0		mg/Kg	2	7/2/2019 9:20:12 AM	45944			
EPA METHOD 8270C: SEMIVOLATILES							Analyst: DAI	М			
Acenaphthene	ND	1.2	2.0	D	mg/Kg	1	7/8/2019 8:21:53 PM	45929			
Acenaphthylene	ND	1.1	2.0	D	mg/Kg	1	7/8/2019 8:21:53 PM	45929			
Aniline	ND	1.3	2.0	D	mg/Kg	1	7/8/2019 8:21:53 PM	45929			
Refer to the QC Summary report	and cample los	rin chook!	st for flage			nrose					

Qualifiers:

D

* Value exceeds Maximum Contaminant Level. Sample Diluted Due to Matrix

В Analyte detected in the associated Method Blank

Е Value above quantitation range Analyte detected below quantitation limits

J Sample pH Not In Range

Р RL Reporting Limit

PQL Practical Quanitative Limit % Recovery outside of range due to dilution or matrix S

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Page 32 of 65

Hall Environmental Analysis Laboratory, Inc.

Lab Order 1906G37 Date Reported: 7/31/2019

CLIENT: Marathon Client Sample ID: CENTRAL OCD LF TZ04 **Project:** OCD Central Landfarm Semiannual Sam Collection Date: 6/27/2019 12:45:00 PM Lab ID: 1906G37-008 Matrix: SOIL Received Date: 6/27/2019 4:20:00 PM Result MDL DF **Date Analyzed** Analyses RL **Qual Units Batch ID EPA METHOD 8270C: SEMIVOLATILES** Analyst: DAM ND 2.0 D 7/8/2019 8:21:53 PM Anthracene 1.1 mg/Kg 1 45929 Azobenzene ND 1.4 2.0 D mg/Kg 1 7/8/2019 8:21:53 PM 45929 Benz(a)anthracene ND 0.98 2.0 D mg/Kg 1 7/8/2019 8:21:53 PM 45929 ND 0.90 2.0 D mg/Kg 1 7/8/2019 8:21:53 PM Benzo(a)pyrene 45929 Benzo(b)fluoranthene ND 0.90 D mg/Kg 1 2.0 7/8/2019 8:21:53 PM 45929 0.87 D 1 Benzo(a.h.i)pervlene ND 2.0 mg/Kg 7/8/2019 8:21:53 PM 45929 Benzo(k)fluoranthene ND 0.92 2.0 D mg/Kg 1 7/8/2019 8:21:53 PM 45929 Benzoic acid ND 1.0 5.1 D mg/Kg 1 7/8/2019 8:21:53 PM 45929 ND D 1 Benzyl alcohol 1.3 2.0 mg/Kg 7/8/2019 8:21:53 PM 45929 Bis(2-chloroethoxy)methane ND 1.5 2.0 D mg/Kg 1 7/8/2019 8:21:53 PM 45929 Bis(2-chloroethyl)ether ND 1.2 2.0 D mg/Kg 1 7/8/2019 8:21:53 PM 45929 Bis(2-chloroisopropyl)ether ND 1.2 2.0 D mg/Kg 1 7/8/2019 8:21:53 PM 45929 Bis(2-ethylhexyl)phthalate ND 1.5 5.1 D mg/Kg 1 7/8/2019 8:21:53 PM 45929 4-Bromophenyl phenyl ether ND 1.2 2.0 П mg/Kg 1 7/8/2019 8:21:53 PM 45929 Butyl benzyl phthalate ND 1.0 2.0 D mg/Kg 1 7/8/2019 8:21:53 PM 45929 ND 1.2 2.0 D 1 Carbazole mg/Kg 7/8/2019 8:21:53 PM 45929 4-Chloro-3-methylphenol ND 1.6 5.1 D mg/Kg 1 7/8/2019 8:21:53 PM 45929 ND 5.1 D 4-Chloroaniline 1.4 mg/Kg 1 7/8/2019 8:21:53 PM 45929 2-Chloronaphthalene ND 1.3 2.5 D mg/Kg 1 7/8/2019 8:21:53 PM 45929 2-Chlorophenol ND 1.3 2.0 D mg/Kg 1 7/8/2019 8:21:53 PM 45929 4-Chlorophenyl phenyl ether ND 2.0 D mg/Kg 1 1.1 7/8/2019 8:21:53 PM 45929 Chrysene ND 0.89 2.0 D mg/Kg 1 7/8/2019 8:21:53 PM 45929 D Di-n-butyl phthalate ND 1.5 4.1 mg/Kg 1 7/8/2019 8:21:53 PM 45929 Di-n-octyl phthalate ND 1.0 D mg/Kg 1 4.1 7/8/2019 8:21:53 PM 45929 ND 0.92 D mg/Kg Dibenz(a,h)anthracene 20 1 7/8/2019 8:21:53 PM 45929 Dibenzofuran ND 1.3 2.0 D mg/Kg 1 7/8/2019 8:21:53 PM 45929 ND 1.2 2.0 D mg/Kg 1 1,2-Dichlorobenzene 7/8/2019 8:21:53 PM 45929 1,3-Dichlorobenzene ND 1.1 2.0 D mg/Kg 1 7/8/2019 8:21:53 PM 45929 ND D 1 1,4-Dichlorobenzene 1.1 2.0 mg/Kg 7/8/2019 8:21:53 PM 45929 3,3'-Dichlorobenzidine ND 0.90 2.5 D mg/Kg 1 7/8/2019 8:21:53 PM 45929 Diethyl phthalate ND 1.4 2.0 D mg/Kg 1 7/8/2019 8:21:53 PM 45929 Dimethyl phthalate ND 1.4 2.0 D mg/Kg 1 7/8/2019 8:21:53 PM 45929 2,4-Dichlorophenol ND 1.2 4.1 D mg/Kg 1 7/8/2019 8:21:53 PM 45929 ND 2,4-Dimethylphenol 1.1 3.0 D mg/Kg 1 7/8/2019 8:21:53 PM 45929 4,6-Dinitro-2-methylphenol ND 0.94 D mg/Kg 1 7/8/2019 8:21:53 PM 4.1 45929 2,4-Dinitrophenol ND 0.74 5.1 D mg/Kg 1 7/8/2019 8:21:53 PM 45929 1.2 D 1 2,4-Dinitrotoluene ND 5.1 mg/Kg 7/8/2019 8:21:53 PM 45929 2,6-Dinitrotoluene ND 1.3 D mg/Kg 1 5.1 7/8/2019 8:21:53 PM 45929 D Fluoranthene ND 1.1 2.0 mg/Kg 1 7/8/2019 8:21:53 PM 45929

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Oualifiers:

Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix

Analyte detected in the associated Method Blank

Е Value above quantitation range J

Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit POL

Н

Practical Quanitative Limit

В

Analyte detected below quantitation limits Sample pH Not In Range

Р Reporting Limit

RL

Page 33 of 65

% Recovery outside of range due to dilution or matrix

Hall Environmental Analysis Laboratory, Inc.

Lab Order 1906G37

Date Reported: 7/31/2019

CLIENT: Marathon	e ID: CE	ENTR	AL OCD LF TZ04					
Project: OCD Central Landfarm Semian	nual Sam		Coll	ection l	Date: 6/2	27/201	9 12:45:00 PM	
Lab ID: 1906G37-008	Matrix: S	OIL	Ree	ceived l	Date: 6/2	27/201	9 4:20:00 PM	
Analyses	Result	MDI	. RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8270C: SEMIVOLATILES							Analyst: DA	M
Fluorene	ND	1.2	2.0	D	mg/Kg	1	7/8/2019 8:21:53 PM	45929
Hexachlorobenzene	ND	1.3	2.0	D	mg/Kg	1	7/8/2019 8:21:53 PM	45929
Hexachlorobutadiene	ND	1.4	2.0	D	mg/Kg	1	7/8/2019 8:21:53 PM	45929
Hexachlorocyclopentadiene	ND	1.2	2.0	D	mg/Kg	1	7/8/2019 8:21:53 PM	45929
Hexachloroethane	ND	1.1	2.0	D	mg/Kg	1	7/8/2019 8:21:53 PM	45929
Indeno(1,2,3-cd)pyrene	ND	1.0	2.0	D	mg/Kg	1	7/8/2019 8:21:53 PM	45929
Isophorone	ND	1.5	4.1	D	mg/Kg	1	7/8/2019 8:21:53 PM	45929
1-Methylnaphthalene	ND	1.5	2.0	D	mg/Kg	1	7/8/2019 8:21:53 PM	45929
2-Methylnaphthalene	ND	1.5	2.0	D	mg/Kg	1	7/8/2019 8:21:53 PM	45929
2-Methylphenol	ND	1.2	4.1	D	mg/Kg	1	7/8/2019 8:21:53 PM	45929
3+4-Methylphenol	ND	1.2	2.0	D	mg/Kg	1	7/8/2019 8:21:53 PM	45929
N-Nitrosodi-n-propylamine	ND	1.4	2.0	D	mg/Kg	1	7/8/2019 8:21:53 PM	45929
N-Nitrosodiphenylamine	ND	1.1	2.0	D	mg/Kg	1	7/8/2019 8:21:53 PM	45929
Naphthalene	ND	1.5	2.0	D	mg/Kg	1	7/8/2019 8:21:53 PM	45929
2-Nitroaniline	ND	1.4	2.0	D	mg/Kg	1	7/8/2019 8:21:53 PM	45929
3-Nitroaniline	ND	1.4	2.0	D	mg/Kg	1	7/8/2019 8:21:53 PM	45929
4-Nitroaniline	ND	1.3	4.1	D	mg/Kg	1	7/8/2019 8:21:53 PM	45929
Nitrobenzene	ND	1.4	4.1	D	mg/Kg	1	7/8/2019 8:21:53 PM	45929
2-Nitrophenol	ND	1.4	2.0	D	mg/Kg	1	7/8/2019 8:21:53 PM	45929
4-Nitrophenol	ND	1.4	2.5	D	mg/Kg	1	7/8/2019 8:21:53 PM	45929
Pentachlorophenol	ND	1.0	4.1	D	mg/Kg	1	7/8/2019 8:21:53 PM	45929
Phenanthrene	ND	1.1	2.0	D	mg/Kg	1	7/8/2019 8:21:53 PM	45929
Phenol	ND	1.3	2.0	D	mg/Kg	1	7/8/2019 8:21:53 PM	
Pyrene	ND	0.95	2.0	D	mg/Kg	1	7/8/2019 8:21:53 PM	
Pyridine	ND	1.2	4.1	D	mg/Kg	1	7/8/2019 8:21:53 PM	
1,2,4-Trichlorobenzene	ND	1.6	2.0	D	mg/Kg	1	7/8/2019 8:21:53 PM	
2,4,5-Trichlorophenol	ND	1.3	2.0	D	mg/Kg	1	7/8/2019 8:21:53 PM	
2,4,6-Trichlorophenol	ND	1.1	2.0	D	mg/Kg	1	7/8/2019 8:21:53 PM	
Surr: 2-Fluorophenol	0		24.8-95.2	SD	%Rec	1	7/8/2019 8:21:53 PM	
Surr: Phenol-d5	0		29.9-97.8	SD	%Rec	1	7/8/2019 8:21:53 PM	
Surr: 2,4,6-Tribromophenol	0		35.7-108	SD	%Rec	1	7/8/2019 8:21:53 PM	
Surr: Nitrobenzene-d5	0		32.5-106	SD	%Rec	1	7/8/2019 8:21:53 PM	
Surr: 2-Fluorobiphenyl	0		27.7-114	SD	%Rec	1	7/8/2019 8:21:53 PM	
Surr: 4-Terphenyl-d14	0		15-148	SD	%Rec	1	7/8/2019 8:21:53 PM	
EPA METHOD 8260B: VOLATILES	Ū		10 1 10	02	,01100		Analyst: DJ	
Benzene	ND	0.0041	0.025		mg/Kg	1	7/4/2019 1:54:19 AM	
Toluene	ND	0.0041	0.025		mg/Kg	1	7/4/2019 1:54:19 AM	
Ethylbenzene	ND	0.0047	0.050		mg/Kg	1	7/4/2019 1:54:19 AM	
Methyl tert-butyl ether (MTBE)	ND	0.012	0.050		mg/Kg	1	7/4/2019 1:54:19 AM	45983

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

В Analyte detected in the associated Method Blank

Е Value above quantitation range J Analyte detected below quantitation limits

Sample pH Not In Range

Р

RL Reporting Limit

Page 34 of 65

% Recovery outside of range due to dilution or matrix S

Hall Environmental Analysis Laboratory, Inc.

Lab Order 1906G37 Date Reported: 7/31/2019

CLIENT: Marathon			Client	Sample ID: CH	ENTR	AL OCD LF TZ04	
Project: OCD Central Landfarm Semia	annual Sam		Coll	ection Date: 6/2	27/201	9 12:45:00 PM	
Lab ID: 1906G37-008	Matrix: S	OIL	Ree	ceived Date: 6/2	27/201	9 4:20:00 PM	
Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES						Analyst: DJ	F
1,2,4-Trimethylbenzene	ND	0.0045	0.050	mg/Kg	1	7/4/2019 1:54:19 AM	45983
1,3,5-Trimethylbenzene	ND	0.0048	0.050	mg/Kg	1	7/4/2019 1:54:19 AM	
1,2-Dichloroethane (EDC)	ND	0.0051	0.050	mg/Kg	1	7/4/2019 1:54:19 AM	
1,2-Dibromoethane (EDB)	ND	0.0045	0.050	mg/Kg	1	7/4/2019 1:54:19 AM	
Naphthalene	ND	0.0099	0.099	mg/Kg	1	7/4/2019 1:54:19 AM	45983
1-Methylnaphthalene	ND	0.029	0.20	mg/Kg	1	7/4/2019 1:54:19 AM	45983
2-Methylnaphthalene	ND	0.022	0.20	mg/Kg	1	7/4/2019 1:54:19 AM	45983
Acetone	ND	0.041	0.74	mg/Kg	1	7/4/2019 1:54:19 AM	
Bromobenzene	ND	0.0048	0.050	mg/Kg	1	7/4/2019 1:54:19 AM	
Bromodichloromethane	ND	0.0045	0.050	mg/Kg	1	7/4/2019 1:54:19 AM	
Bromoform	ND	0.0045	0.050	mg/Kg	1	7/4/2019 1:54:19 AM	45983
Bromomethane	ND	0.012	0.15	mg/Kg	1	7/4/2019 1:54:19 AM	45983
2-Butanone	ND	0.057	0.50	mg/Kg	1	7/4/2019 1:54:19 AM	45983
Carbon disulfide	ND	0.016	0.50	mg/Kg	1	7/4/2019 1:54:19 AM	45983
Carbon tetrachloride	ND	0.0047	0.050	mg/Kg	1	7/4/2019 1:54:19 AM	45983
Chlorobenzene	ND	0.0064	0.050	mg/Kg	1	7/4/2019 1:54:19 AM	45983
Chloroethane	ND	0.0073	0.099	mg/Kg	1	7/4/2019 1:54:19 AM	
Chloroform	ND	0.0040	0.050	mg/Kg	1	7/4/2019 1:54:19 AM	
Chloromethane	ND	0.0047	0.15	mg/Kg	1	7/4/2019 1:54:19 AM	
2-Chlorotoluene	ND	0.0043	0.050	mg/Kg	1	7/4/2019 1:54:19 AM	45983
4-Chlorotoluene	ND	0.0041	0.050	mg/Kg	1	7/4/2019 1:54:19 AM	
cis-1,2-DCE	ND	0.0068	0.050	mg/Kg	1	7/4/2019 1:54:19 AM	
cis-1,3-Dichloropropene	ND	0.0042	0.050	mg/Kg	1	7/4/2019 1:54:19 AM	
1,2-Dibromo-3-chloropropane	ND	0.0051	0.099	mg/Kg	1	7/4/2019 1:54:19 AM	
Dibromochloromethane	ND	0.0035	0.050	mg/Kg	1	7/4/2019 1:54:19 AM	
Dibromomethane	ND	0.0053	0.050	mg/Kg	1	7/4/2019 1:54:19 AM	
1,2-Dichlorobenzene	ND	0.0041	0.050	mg/Kg	1	7/4/2019 1:54:19 AM	
1,3-Dichlorobenzene	ND	0.0043	0.050	mg/Kg	1	7/4/2019 1:54:19 AM	
1,4-Dichlorobenzene	ND	0.0041	0.050	mg/Kg	1	7/4/2019 1:54:19 AM	
Dichlorodifluoromethane	ND	0.012	0.050	mg/Kg	1	7/4/2019 1:54:19 AM	
1,1-Dichloroethane	ND	0.0032	0.050	mg/Kg	1	7/4/2019 1:54:19 AM	
1,1-Dichloroethene	ND	0.020	0.050	mg/Kg	1	7/4/2019 1:54:19 AM	
1,2-Dichloropropane	ND	0.0036	0.050	mg/Kg	1	7/4/2019 1:54:19 AM	
1,3-Dichloropropane	ND	0.0054	0.050	mg/Kg	1	7/4/2019 1:54:19 AM	
2,2-Dichloropropane	ND	0.016	0.099	mg/Kg	1	7/4/2019 1:54:19 AM	
1,1-Dichloropropene	ND	0.0045	0.099	mg/Kg	1	7/4/2019 1:54:19 AM	
Hexachlorobutadiene	ND	0.0050	0.099	mg/Kg	1	7/4/2019 1:54:19 AM	
2-Hexanone	ND	0.0082	0.50	mg/Kg	1	7/4/2019 1:54:19 AM	
	ND	0.0036	0.050				
Isopropylbenzene	ND	0.0036	0.050	mg/Kg	1	7/4/2019 1:54:19 AM	45983

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix

Н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

В Analyte detected in the associated Method Blank

Е Value above quantitation range J

Analyte detected below quantitation limits Sample pH Not In Range

Р

RL Reporting Limit Page 35 of 65

% Recovery outside of range due to dilution or matrix S

Hall Environmental Analysis Laboratory, Inc.

Lab Order 1906G37

Date Reported: 7/31/2019

CLIENT: Marathon		Client	Sample ID: C	ENTR	AL OCD LF TZ04		
Project: OCD Central Landfarm Semian	nual Sam		Colle	ection Date: 6/	27/201	9 12:45:00 PM	
Lab ID: 1906G37-008	Matrix: S	OIL	Rec	ceived Date: 6/	27/201	9 4:20:00 PM	
Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES						Analyst: DJ	F
4-Isopropyltoluene	ND	0.0041	0.050	mg/Kg	1	7/4/2019 1:54:19 AM	45983
4-Methyl-2-pentanone	ND	0.0094	0.50	mg/Kg	1	7/4/2019 1:54:19 AM	45983
Methylene chloride	ND	0.0088	0.15	mg/Kg	1	7/4/2019 1:54:19 AM	45983
n-Butylbenzene	ND	0.0046	0.15	mg/Kg	1	7/4/2019 1:54:19 AM	45983
n-Propylbenzene	ND	0.0040	0.050	mg/Kg	1	7/4/2019 1:54:19 AM	45983
sec-Butylbenzene	ND	0.0056	0.050	mg/Kg	1	7/4/2019 1:54:19 AM	45983
Styrene	ND	0.0039	0.050	mg/Kg	1	7/4/2019 1:54:19 AM	45983
tert-Butylbenzene	ND	0.0047	0.050	mg/Kg	1	7/4/2019 1:54:19 AM	45983
1,1,1,2-Tetrachloroethane	ND	0.0033	0.050	mg/Kg	1	7/4/2019 1:54:19 AM	45983
1,1,2,2-Tetrachloroethane	ND	0.0050	0.050	mg/Kg	1	7/4/2019 1:54:19 AM	45983
Tetrachloroethene (PCE)	ND	0.0040	0.050	mg/Kg	1	7/4/2019 1:54:19 AM	45983
trans-1,2-DCE	ND	0.0045	0.050	mg/Kg	1	7/4/2019 1:54:19 AM	45983
trans-1,3-Dichloropropene	ND	0.0052	0.050	mg/Kg	1	7/4/2019 1:54:19 AM	45983
1,2,3-Trichlorobenzene	ND	0.0044	0.099	mg/Kg	1	7/4/2019 1:54:19 AM	45983
1,2,4-Trichlorobenzene	ND	0.0050	0.050	mg/Kg	1	7/4/2019 1:54:19 AM	45983
1,1,1-Trichloroethane	ND	0.0045	0.050	mg/Kg	1	7/4/2019 1:54:19 AM	45983
1,1,2-Trichloroethane	ND	0.0035	0.050	mg/Kg	1	7/4/2019 1:54:19 AM	45983
Trichloroethene (TCE)	ND	0.0057	0.050	mg/Kg	1	7/4/2019 1:54:19 AM	45983
Trichlorofluoromethane	ND	0.017	0.050	mg/Kg	1	7/4/2019 1:54:19 AM	45983
1,2,3-Trichloropropane	ND	0.0080	0.099	mg/Kg	1	7/4/2019 1:54:19 AM	45983
Vinyl chloride	ND	0.0032	0.050	mg/Kg	1	7/4/2019 1:54:19 AM	45983
Xylenes, Total	ND	0.013	0.099	mg/Kg	1	7/4/2019 1:54:19 AM	45983
Surr: Dibromofluoromethane	104		70-130	%Rec	1	7/4/2019 1:54:19 AM	45983
Surr: 1,2-Dichloroethane-d4	105		70-130	%Rec	1	7/4/2019 1:54:19 AM	45983
Surr: Toluene-d8	97.7		70-130	%Rec	1	7/4/2019 1:54:19 AM	45983
Surr: 4-Bromofluorobenzene	93.5		70-130	%Rec	1	7/4/2019 1:54:19 AM	45983
EPA METHOD 8015D MOD: GASOLINE R	ANGE					Analyst: DJ	F
Gasoline Range Organics (GRO)	ND	1.2	5.0	mg/Kg	1	7/4/2019 1:54:19 AM	45983
Surr: BFB	86.5	0	70-130	%Rec	1	7/4/2019 1:54:19 AM	45983
EPA METHOD 418.1: TPH						Analyst: Irm	ı
Petroleum Hydrocarbons, TR	600	2.6	19	mg/Kg	1	7/9/2019	45999

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

Lab Order 1906G37

Date Reported: 7/31/2019

CLIENT: Marathon			Client	Sampl	e ID: CE	NTR/	AL OCD LF VZ04			
Project: OCD Central Landfarm Semian	ual Sam		Colle	ection I	Date: 6/2	7/201	9 1:00:00 PM	00 PM 00 PM Analyzed Batch ID Analyst: TOM 019 5:10:26 AM 45963 019 5:10:26 AM 45941 19 7:03:24 PM 45941 19 7:03:24 PM 46126 019 6:42:49 PM 46126 019 6:42:49 PM 46126 019 6:42:49 PM 46126 019 3:38:45 PM 46081 Analyst: DCV 19 9:22:03 AM 45944 19 9:22:03 AM 45944 19 9:22:03 AM 45944		
Lab ID: 1906G37-009	Matrix: S	OIL	Rec	eived I	Date: 6/2	7/201	9 4:20:00 PM			
Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID		
EPA METHOD 8082A: PCB'S				-			Analyst: TON	I		
Aroclor 1016	ND	0.011	0.024		mg/Kg	1	7/10/2019 5:10:26 AM			
Aroclor 1221	ND	0.020	0.024		mg/Kg	1	7/10/2019 5:10:26 AM			
Aroclor 1232	ND	0.024	0.024		mg/Kg	1	7/10/2019 5:10:26 AM			
Aroclor 1242	ND	0.013	0.024		mg/Kg	1	7/10/2019 5:10:26 AM			
Aroclor 1248	ND	0.020	0.024		mg/Kg	1	7/10/2019 5:10:26 AM	45963		
Aroclor 1254	ND	0.020	0.024		mg/Kg	1	7/10/2019 5:10:26 AM	45963		
Aroclor 1260	ND	0.0092	0.024		mg/Kg	1	7/10/2019 5:10:26 AM	45963		
Surr: Decachlorobiphenyl	73.2	0	25.7-135		%Rec	1	7/10/2019 5:10:26 AM	45963		
Surr: Tetrachloro-m-xylene	82.0	0	32.3-138		%Rec	1	7/10/2019 5:10:26 AM	45963		
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS						Analyst: BRN	1		
Diesel Range Organics (DRO)	ND	2.0	10		mg/Kg	1	7/5/2019 7:03:24 PM	45994		
Motor Oil Range Organics (MRO)	ND	50	50		mg/Kg	1	7/5/2019 7:03:24 PM	45994		
Surr: DNOP	94.7	0	70-130		%Rec	1	7/5/2019 7:03:24 PM	45994		
EPA METHOD 300.0: ANIONS							Analyst: CAS	i		
Fluoride	2.4	0.46	1.5		mg/Kg	5	7/11/2019 6:42:49 PM	46126		
Chloride	280	2.1	30		mg/Kg	20	7/11/2019 6:55:14 PM	46126		
Nitrogen, Nitrate (As N)	3.1	0.75	1.5		mg/Kg	5	7/11/2019 6:42:49 PM	46126		
Sulfate	550	3.4	7.5		mg/Kg	5	7/11/2019 6:42:49 PM	46126		
EPA METHOD 7471: MERCURY							Analyst: JLF			
Mercury	ND	0.0018	0.032		mg/Kg	1	7/10/2019 3:38:45 PM	46081		
EPA METHOD 6010B: SOIL METALS							Analyst: bcv			
Arsenic	ND	2.8	4.9		mg/Kg	2	7/2/2019 9:22:03 AM	45944		
Barium	260	0.046	0.20		mg/Kg	2	7/2/2019 9:22:03 AM	45944		
Cadmium	ND	0.048	0.20		mg/Kg	2	7/2/2019 9:22:03 AM	45944		
Chromium	15	0.16	0.59		mg/Kg	2	7/2/2019 9:22:03 AM	45944		
Copper	3.9	0.22	0.59		mg/Kg	2	7/2/2019 9:22:03 AM	45944		
Iron	18000	72	250		mg/Kg	100	7/2/2019 8:35:36 AM	45944		
Lead	3.0	0.48	0.49		mg/Kg	2	7/2/2019 9:22:03 AM			
Manganese	400	0.041	0.20		mg/Kg	2	7/2/2019 9:22:03 AM			
Selenium	ND	2.5	4.9		mg/Kg	2	7/2/2019 9:22:03 AM			
Silver	ND	0.063	0.49		mg/Kg	2	7/2/2019 9:22:03 AM			
Uranium	ND	4.3	9.8		mg/Kg	2	7/2/2019 9:22:03 AM			
Zinc	24	0.78	4.9		mg/Kg	2	7/2/2019 9:22:03 AM	45944		
EPA METHOD 8270C: SEMIVOLATILES							-			
Acenaphthene	ND	0.28	0.47	D	mg/Kg	1	7/8/2019 8:52:17 PM			
Acenaphthylene	ND	0.26	0.47	D	mg/Kg	1	7/8/2019 8:52:17 PM			
Aniline	ND	0.30	0.47	D	mg/Kg	1	7/8/2019 8:52:17 PM	45929		
Refer to the QC Summary report a	nd sample log	gin checkli	st for flagg	ged QC	data and	prese	rvation information.			

Qualifiers: * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

JAnalyte detected below quantitation limitsPSample pH Not In Range

P Sample pH Not I RL Reporting Limit

RL

Page 37 of 65

S % Recovery outside of range due to dilution or matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

Hall Environmental Analysis Laboratory, Inc.

Lab Order 1906G37

Date Reported: 7/31/2019

CLIENT: Marathon			Client	Sampl	e ID: CE	NTR/	AL OCD LF VZ04	
Project: OCD Central Landfarm Semian	nual Sam		Colle	ection I	Date: 6/2	7/201	9 1:00:00 PM	
Lab ID: 1906G37-009	Matrix: SO	DIL	Rec	eived I	Date: 6/2	7/201	9 4:20:00 PM	
Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8270C: SEMIVOLATILES							Analyst: DA	М
Anthracene	ND	0.25	0.47	D	mg/Kg	1	7/8/2019 8:52:17 PM	45929
Azobenzene	ND	0.33	0.47	D	mg/Kg	1	7/8/2019 8:52:17 PM	45929
Benz(a)anthracene	ND	0.23	0.47	D	mg/Kg	1	7/8/2019 8:52:17 PM	45929
Benzo(a)pyrene	ND	0.21	0.47	D	mg/Kg	1	7/8/2019 8:52:17 PM	45929
Benzo(b)fluoranthene	ND	0.21	0.47	D	mg/Kg	1	7/8/2019 8:52:17 PM	45929
Benzo(g,h,i)perylene	ND	0.20	0.47	D	mg/Kg	1	7/8/2019 8:52:17 PM	45929
Benzo(k)fluoranthene	ND	0.21	0.47	D	mg/Kg	1	7/8/2019 8:52:17 PM	45929
Benzoic acid	ND	0.24	1.2	D	mg/Kg	1	7/8/2019 8:52:17 PM	45929
Benzyl alcohol	ND	0.29	0.47	D	mg/Kg	1	7/8/2019 8:52:17 PM	45929
Bis(2-chloroethoxy)methane	ND	0.35	0.47	D	mg/Kg	1	7/8/2019 8:52:17 PM	45929
Bis(2-chloroethyl)ether	ND	0.29	0.47	D	mg/Kg	1	7/8/2019 8:52:17 PM	45929
Bis(2-chloroisopropyl)ether	ND	0.27	0.47	D	mg/Kg	1	7/8/2019 8:52:17 PM	45929
Bis(2-ethylhexyl)phthalate	ND	0.34	1.2	D	mg/Kg	1	7/8/2019 8:52:17 PM	45929
4-Bromophenyl phenyl ether	ND	0.28	0.47	D	mg/Kg	1	7/8/2019 8:52:17 PM	45929
Butyl benzyl phthalate	ND	0.24	0.47	D	mg/Kg	1	7/8/2019 8:52:17 PM	45929
Carbazole	ND	0.28	0.47	D	mg/Kg	1	7/8/2019 8:52:17 PM	45929
4-Chloro-3-methylphenol	ND	0.36	1.2	D	mg/Kg	1	7/8/2019 8:52:17 PM	45929
4-Chloroaniline	ND	0.33	1.2	D	mg/Kg	1	7/8/2019 8:52:17 PM	45929
2-Chloronaphthalene	ND	0.29	0.59	D	mg/Kg	1	7/8/2019 8:52:17 PM	45929
2-Chlorophenol	ND	0.29	0.47	D	mg/Kg	1	7/8/2019 8:52:17 PM	45929
4-Chlorophenyl phenyl ether	ND	0.26	0.47	D	mg/Kg	1	7/8/2019 8:52:17 PM	45929
Chrysene	ND	0.21	0.47	D	mg/Kg	1	7/8/2019 8:52:17 PM	45929
Di-n-butyl phthalate	ND	0.35	0.94	D	mg/Kg	1	7/8/2019 8:52:17 PM	45929
Di-n-octyl phthalate	ND	0.24	0.94	D	mg/Kg	1	7/8/2019 8:52:17 PM	45929
Dibenz(a,h)anthracene	ND	0.21	0.47	D	mg/Kg	1	7/8/2019 8:52:17 PM	45929
Dibenzofuran	ND	0.31	0.47	D	mg/Kg	1	7/8/2019 8:52:17 PM	45929
1,2-Dichlorobenzene	ND	0.28	0.47	D	mg/Kg	1	7/8/2019 8:52:17 PM	45929
1,3-Dichlorobenzene	ND	0.25	0.47	D	mg/Kg	1	7/8/2019 8:52:17 PM	
1,4-Dichlorobenzene	ND	0.25	0.47	D	mg/Kg	1	7/8/2019 8:52:17 PM	45929
3,3´-Dichlorobenzidine	ND	0.21	0.59	D	mg/Kg	1	7/8/2019 8:52:17 PM	45929
Diethyl phthalate	ND	0.34	0.47	D	mg/Kg	1	7/8/2019 8:52:17 PM	45929
Dimethyl phthalate	ND	0.31	0.47	D	mg/Kg	1	7/8/2019 8:52:17 PM	
2,4-Dichlorophenol	ND	0.27	0.94	D	mg/Kg	1	7/8/2019 8:52:17 PM	
2,4-Dimethylphenol	ND	0.26	0.71	D	mg/Kg	1	7/8/2019 8:52:17 PM	
4,6-Dinitro-2-methylphenol	ND	0.22	0.94	D	mg/Kg	1	7/8/2019 8:52:17 PM	
2,4-Dinitrophenol	ND	0.17	1.2	D	mg/Kg	1	7/8/2019 8:52:17 PM	
2,4-Dinitrotoluene	ND	0.28	1.2	D	mg/Kg	1	7/8/2019 8:52:17 PM	
2,6-Dinitrotoluene	ND	0.31	1.2	D	mg/Kg	1	7/8/2019 8:52:17 PM	
Fluoranthene	ND	0.26	0.47	D	mg/Kg	1	7/8/2019 8:52:17 PM	45929

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix

Sample Diluted Due to Matrix Holding times for preparation or analysis exceeded

H Holding times for preparation or analysis exceedND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 38 of 65

S % Recovery outside of range due to dilution or matrix

Hall Environmental Analysis Laboratory, Inc.

Lab Order 1906G37

Date Reported: 7/31/2019

CLIENT: Marathon			Client	Sampl	e ID: CE	ENTR.	AL OCD LF VZ04	
Project: OCD Central Landfarm Semian	ual Sam			-			9 1:00:00 PM	
Lab ID: 1906G37-009	Matrix: S	OII					9 4:20:00 PM	
Lao ID. 1900037-009	Matrix. 5	UIL	NC	leiveu I	Jate. 0/2	.7/201	9 4.20.00 F M	
Analyses	Result	MDL	, RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8270C: SEMIVOLATILES							Analyst: DA	М
Fluorene	ND	0.27	0.47	D	mg/Kg	1	7/8/2019 8:52:17 PM	45929
Hexachlorobenzene	ND	0.29	0.47	D	mg/Kg	1	7/8/2019 8:52:17 PM	45929
Hexachlorobutadiene	ND	0.33	0.47	D	mg/Kg	1	7/8/2019 8:52:17 PM	45929
Hexachlorocyclopentadiene	ND	0.27	0.47	D	mg/Kg	1	7/8/2019 8:52:17 PM	45929
Hexachloroethane	ND	0.26	0.47	D	mg/Kg	1	7/8/2019 8:52:17 PM	45929
Indeno(1,2,3-cd)pyrene	ND	0.23	0.47	D	mg/Kg	1	7/8/2019 8:52:17 PM	45929
Isophorone	ND	0.35	0.94	D	mg/Kg	1	7/8/2019 8:52:17 PM	45929
1-Methylnaphthalene	ND	0.35	0.47	D	mg/Kg	1	7/8/2019 8:52:17 PM	45929
2-Methylnaphthalene	ND	0.34	0.47	D	mg/Kg	1	7/8/2019 8:52:17 PM	45929
2-Methylphenol	ND	0.28	0.94	D	mg/Kg	1	7/8/2019 8:52:17 PM	45929
3+4-Methylphenol	ND	0.29	0.47	D	mg/Kg	1	7/8/2019 8:52:17 PM	45929
N-Nitrosodi-n-propylamine	ND	0.34	0.47	D	mg/Kg	1	7/8/2019 8:52:17 PM	45929
N-Nitrosodiphenylamine	ND	0.25	0.47	D	mg/Kg	1	7/8/2019 8:52:17 PM	45929
Naphthalene	ND	0.36	0.47	D	mg/Kg	1	7/8/2019 8:52:17 PM	45929
2-Nitroaniline	ND	0.34	0.47	D	mg/Kg	1	7/8/2019 8:52:17 PM	45929
3-Nitroaniline	ND	0.33	0.47	D	mg/Kg	1	7/8/2019 8:52:17 PM	45929
4-Nitroaniline	ND	0.30	0.94	D	mg/Kg	1	7/8/2019 8:52:17 PM	45929
Nitrobenzene	ND	0.33	0.94	D	mg/Kg	1	7/8/2019 8:52:17 PM	45929
2-Nitrophenol	ND	0.32	0.47	D	mg/Kg	1	7/8/2019 8:52:17 PM	
4-Nitrophenol	ND	0.32	0.59	D	mg/Kg	1	7/8/2019 8:52:17 PM	
Pentachlorophenol	ND	0.24	0.94	D	mg/Kg	1	7/8/2019 8:52:17 PM	45929
Phenanthrene	ND	0.26	0.47	D	mg/Kg	1	7/8/2019 8:52:17 PM	45929
Phenol	ND	0.29	0.47	D	mg/Kg	1	7/8/2019 8:52:17 PM	
Pyrene	ND	0.22	0.47	D	mg/Kg	1	7/8/2019 8:52:17 PM	
Pyridine	ND	0.28	0.94	D	mg/Kg	1	7/8/2019 8:52:17 PM	
1,2,4-Trichlorobenzene	ND	0.37	0.47	D	mg/Kg	1	7/8/2019 8:52:17 PM	
2,4,5-Trichlorophenol	ND	0.31	0.47	D	mg/Kg	1	7/8/2019 8:52:17 PM	
2,4,6-Trichlorophenol	ND	0.25	0.47	D	mg/Kg	1	7/8/2019 8:52:17 PM	
Surr: 2-Fluorophenol	72.5		24.8-95.2	D	%Rec	1	7/8/2019 8:52:17 PM	45929
Surr: Phenol-d5	77.1		29.9-97.8	D	%Rec	1	7/8/2019 8:52:17 PM	45929
Surr: 2,4,6-Tribromophenol	74.0		35.7-108	D	%Rec	1	7/8/2019 8:52:17 PM	
Surr: Nitrobenzene-d5	88.1		32.5-106	D	%Rec	1	7/8/2019 8:52:17 PM	
Surr: 2-Fluorobiphenyl	83.8		27.7-114	D	%Rec	1	7/8/2019 8:52:17 PM	
Surr: 4-Terphenyl-d14	83.7		15-148	D	%Rec	1	7/8/2019 8:52:17 PM	
EPA METHOD 8260B: VOLATILES							Analyst: DJ	
Benzene	ND	0.0040	0.025		mg/Kg	1	7/4/2019 2:24:18 AM	45983
Toluene	ND	0.0047	0.049		mg/Kg	1	7/4/2019 2:24:18 AM	
Ethylbenzene	ND	0.0029	0.049		mg/Kg	1	7/4/2019 2:24:18 AM	
Methyl tert-butyl ether (MTBE)	ND	0.012	0.049		mg/Kg	1	7/4/2019 2:24:18 AM	
······································		0.012	0.010			•		

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix

Sample Diluted Due to Matrix Holding times for preparation or analysis exceeded

H Holding times for preparation or analysis exceedND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

B Analyte detected in the associated Method Blank

E Value above quantitation rangeJ Analyte detected below quantitation limits

Analyte detected below quantitation limits
 Sample pH Not In Range

P Sample pH Not RL Reporting Limit

S % Recovery outside of range due to dilution or matrix

Page 39 of 65

Hall Environmental Analysis Laboratory, Inc.

Lab Order 1906G37 Date Reported: 7/31/2019

CLIENT: Marathon			Client	Sample	e ID: CE	ENTR.	AL OCD LF VZ04	
Project: OCD Central Landfarm Semia	annual Sam		Coll	ection I	Date: 6/2	7/201	9 1:00:00 PM	
Lab ID: 1906G37-009	Matrix: S	OIL					9 4:20:00 PM	
Analyses	Result	MDL	RL		Units	DF	Date Analyzed	Batch ID
	Result		RE	Quui	emus	21	•	
EPA METHOD 8260B: VOLATILES							Analyst: DJ	
1,2,4-Trimethylbenzene	ND	0.0045	0.049		mg/Kg	1	7/4/2019 2:24:18 AM	45983
1,3,5-Trimethylbenzene	ND	0.0048	0.049		mg/Kg	1	7/4/2019 2:24:18 AM	45983
1,2-Dichloroethane (EDC)	ND	0.0050	0.049		mg/Kg	1	7/4/2019 2:24:18 AM	45983
1,2-Dibromoethane (EDB)	ND	0.0045	0.049		mg/Kg	1	7/4/2019 2:24:18 AM	45983
Naphthalene	ND	0.0098	0.098		mg/Kg	1	7/4/2019 2:24:18 AM	45983
1-Methylnaphthalene	ND	0.028	0.20		mg/Kg	1	7/4/2019 2:24:18 AM	45983
2-Methylnaphthalene	ND	0.021	0.20		mg/Kg	1	7/4/2019 2:24:18 AM	45983
Acetone	ND	0.041	0.74		mg/Kg	1	7/4/2019 2:24:18 AM	45983
Bromobenzene	ND	0.0047	0.049		mg/Kg	1	7/4/2019 2:24:18 AM	45983
Bromodichloromethane	ND	0.0045	0.049		mg/Kg	1	7/4/2019 2:24:18 AM	45983
Bromoform	ND	0.0044	0.049		mg/Kg	1	7/4/2019 2:24:18 AM	45983
Bromomethane	ND	0.012	0.15		mg/Kg	1	7/4/2019 2:24:18 AM	45983
2-Butanone	ND	0.057	0.49		mg/Kg	1	7/4/2019 2:24:18 AM	45983
Carbon disulfide	ND	0.016	0.49		mg/Kg	1	7/4/2019 2:24:18 AM	45983
Carbon tetrachloride	ND	0.0047	0.049		mg/Kg	1	7/4/2019 2:24:18 AM	45983
Chlorobenzene	ND	0.0063	0.049		mg/Kg	1	7/4/2019 2:24:18 AM	45983
Chloroethane	ND	0.0072	0.098		mg/Kg	1	7/4/2019 2:24:18 AM	45983
Chloroform	ND	0.0039	0.049		mg/Kg	1	7/4/2019 2:24:18 AM	45983
Chloromethane	ND	0.0047	0.15		mg/Kg	1	7/4/2019 2:24:18 AM	45983
2-Chlorotoluene	ND	0.0043	0.049		mg/Kg	1	7/4/2019 2:24:18 AM	45983
4-Chlorotoluene	ND	0.0040	0.049		mg/Kg	1	7/4/2019 2:24:18 AM	45983
cis-1,2-DCE	ND	0.0067	0.049		mg/Kg	1	7/4/2019 2:24:18 AM	45983
cis-1,3-Dichloropropene	ND	0.0041	0.049		mg/Kg	1	7/4/2019 2:24:18 AM	45983
1,2-Dibromo-3-chloropropane	ND	0.0050	0.098		mg/Kg	1	7/4/2019 2:24:18 AM	45983
Dibromochloromethane	ND	0.0035	0.049		mg/Kg	1	7/4/2019 2:24:18 AM	45983
Dibromomethane	ND	0.0053	0.049		mg/Kg	1	7/4/2019 2:24:18 AM	45983
1,2-Dichlorobenzene	ND	0.0040	0.049		mg/Kg	1	7/4/2019 2:24:18 AM	45983
1,3-Dichlorobenzene	ND	0.0040	0.049		mg/Kg	1	7/4/2019 2:24:18 AM	45983
•	ND	0.0043	0.049			1	7/4/2019 2:24:18 AM	45983
1,4-Dichlorobenzene Dichlorodifluoromethane	ND	0.0041	0.049		mg/Kg	1	7/4/2019 2:24:18 AM	45983 45983
					mg/Kg	1		
1,1-Dichloroethane	ND	0.0031	0.049		mg/Kg	1	7/4/2019 2:24:18 AM	45983
1,1-Dichloroethene	ND	0.020	0.049		mg/Kg	1	7/4/2019 2:24:18 AM	45983
1,2-Dichloropropane	ND	0.0036	0.049		mg/Kg	1	7/4/2019 2:24:18 AM	45983
1,3-Dichloropropane	ND	0.0053	0.049		mg/Kg	1	7/4/2019 2:24:18 AM	45983
2,2-Dichloropropane	ND	0.016	0.098		mg/Kg	1	7/4/2019 2:24:18 AM	45983
1,1-Dichloropropene	ND	0.0045	0.098		mg/Kg	1	7/4/2019 2:24:18 AM	45983
Hexachlorobutadiene	ND	0.0050	0.098		mg/Kg	1	7/4/2019 2:24:18 AM	45983
2-Hexanone	ND	0.0082	0.49		mg/Kg	1	7/4/2019 2:24:18 AM	45983
Isopropylbenzene	ND	0.0035	0.049		mg/Kg	1	7/4/2019 2:24:18 AM	45983

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix

Е

Н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit S

% Recovery outside of range due to dilution or matrix

В Analyte detected in the associated Method Blank

Value above quantitation range J

Analyte detected below quantitation limits Sample pH Not In Range

Р Reporting Limit RL

Page 40 of 65

Hall Environmental Analysis Laboratory, Inc.

Lab Order 1906G37 Date Reported: 7/31/2019

CLIENT: Marathon				-			AL OCD LF VZ04	
Project: OCD Central Landfarm Semian	nual Sam		Coll	ection I	Date: 6/2	7/201	9 1:00:00 PM	
Lab ID: 1906G37-009	Matrix: S	OIL	Rec	ceived I	Date: 6/2	7/201	9 4:20:00 PM	
Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES							Analyst: DJ	F
4-Isopropyltoluene	ND	0.0041	0.049		mg/Kg	1	7/4/2019 2:24:18 AM	45983
4-Methyl-2-pentanone	ND	0.0093	0.49		mg/Kg	1	7/4/2019 2:24:18 AM	45983
Methylene chloride	ND	0.0087	0.15		mg/Kg	1	7/4/2019 2:24:18 AM	45983
n-Butylbenzene	ND	0.0046	0.15		mg/Kg	1	7/4/2019 2:24:18 AM	45983
n-Propylbenzene	ND	0.0039	0.049		mg/Kg	1	7/4/2019 2:24:18 AM	45983
sec-Butylbenzene	ND	0.0055	0.049		mg/Kg	1	7/4/2019 2:24:18 AM	45983
Styrene	ND	0.0039	0.049		mg/Kg	1	7/4/2019 2:24:18 AM	45983
tert-Butylbenzene	ND	0.0046	0.049		mg/Kg	1	7/4/2019 2:24:18 AM	45983
1,1,1,2-Tetrachloroethane	ND	0.0033	0.049		mg/Kg	1	7/4/2019 2:24:18 AM	45983
1,1,2,2-Tetrachloroethane	ND	0.0050	0.049		mg/Kg	1	7/4/2019 2:24:18 AM	45983
Tetrachloroethene (PCE)	ND	0.0039	0.049		mg/Kg	1	7/4/2019 2:24:18 AM	45983
trans-1,2-DCE	ND	0.0045	0.049		mg/Kg	1	7/4/2019 2:24:18 AM	45983
trans-1,3-Dichloropropene	ND	0.0052	0.049		mg/Kg	1	7/4/2019 2:24:18 AM	45983
1,2,3-Trichlorobenzene	ND	0.0043	0.098		mg/Kg	1	7/4/2019 2:24:18 AM	45983
1,2,4-Trichlorobenzene	ND	0.0050	0.049		mg/Kg	1	7/4/2019 2:24:18 AM	45983
1,1,1-Trichloroethane	ND	0.0044	0.049		mg/Kg	1	7/4/2019 2:24:18 AM	45983
1,1,2-Trichloroethane	ND	0.0035	0.049		mg/Kg	1	7/4/2019 2:24:18 AM	45983
Trichloroethene (TCE)	ND	0.0057	0.049		mg/Kg	1	7/4/2019 2:24:18 AM	45983
Trichlorofluoromethane	ND	0.017	0.049		mg/Kg	1	7/4/2019 2:24:18 AM	45983
1,2,3-Trichloropropane	ND	0.0079	0.098		mg/Kg	1	7/4/2019 2:24:18 AM	45983
Vinyl chloride	ND	0.0032	0.049		mg/Kg	1	7/4/2019 2:24:18 AM	45983
Xylenes, Total	ND	0.012	0.098		mg/Kg	1	7/4/2019 2:24:18 AM	45983
Surr: Dibromofluoromethane	106		70-130		%Rec	1	7/4/2019 2:24:18 AM	45983
Surr: 1,2-Dichloroethane-d4	102		70-130		%Rec	1	7/4/2019 2:24:18 AM	45983
Surr: Toluene-d8	96.8		70-130		%Rec	1	7/4/2019 2:24:18 AM	45983
Surr: 4-Bromofluorobenzene	93.5		70-130		%Rec	1	7/4/2019 2:24:18 AM	45983
EPA METHOD 8015D MOD: GASOLINE R	ANGE						Analyst: DJ	F
Gasoline Range Organics (GRO)	ND	1.2	4.9		mg/Kg	1	7/4/2019 2:24:18 AM	45983
Surr: BFB	93.7	0	70-130		%Rec	1	7/4/2019 2:24:18 AM	45983
EPA METHOD 418.1: TPH							Analyst: Irm	ı
Petroleum Hydrocarbons, TR	ND	2.7	20		mg/Kg	1	7/9/2019	45999

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

% Recovery outside of range due to dilution or matrix S

В Analyte detected in the associated Method Blank

Е Value above quantitation range J

Analyte detected below quantitation limits Sample pH Not In Range

Р

RL Reporting Limit

Page 41 of 65

Date Reported: 7/31/2019

CLIENT: Marathon			Client	Sample	e ID: CE	ENTR A	AL OCD LF DUP01	
Project: OCD Central Landfarm Semiar	nual Sam			ection D				
Lab ID: 1906G37-010	Matrix: S	OII					9 4:20:00 PM	
	Matrix, 5	OIL	Ku			.77201		
Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8082A: PCB'S							Analyst: TON	1
Aroclor 1016	ND	0.010	0.024		mg/Kg	1	7/10/2019 5:43:25 AM	45963
Aroclor 1221	ND	0.019	0.024		mg/Kg	1	7/10/2019 5:43:25 AM	45963
Aroclor 1232	ND	0.023	0.024		mg/Kg	1	7/10/2019 5:43:25 AM	45963
Aroclor 1242	ND	0.013	0.024		mg/Kg	1	7/10/2019 5:43:25 AM	45963
Aroclor 1248	ND	0.019	0.024		mg/Kg	1	7/10/2019 5:43:25 AM	45963
Aroclor 1254	ND	0.019	0.024		mg/Kg	1	7/10/2019 5:43:25 AM	45963
Aroclor 1260	ND	0.0090	0.024		mg/Kg	1	7/10/2019 5:43:25 AM	45963
Surr: Decachlorobiphenyl	71.2	0	25.7-135		%Rec	1	7/10/2019 5:43:25 AM	45963
Surr: Tetrachloro-m-xylene	79.6	0	32.3-138		%Rec	1	7/10/2019 5:43:25 AM	45963
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS						Analyst: BRN	1
Diesel Range Organics (DRO)	24	2.0	9.9		mg/Kg	1	7/10/2019 11:18:34 AN	1 45994
Motor Oil Range Organics (MRO)	ND	49	49		mg/Kg	1	7/10/2019 11:18:34 AN	
Surr: DNOP	101	0	70-130		%Rec	1	7/10/2019 11:18:34 AN	1 45994
EPA METHOD 300.0: ANIONS							Analyst: CAS	;
Fluoride	7.3	0.46	1.5		mg/Kg	5	7/11/2019 7:07:39 PM	46126
Chloride	140	0.51	7.5		mg/Kg	5	7/11/2019 7:07:39 PM	46126
Nitrogen, Nitrate (As N)	4.5	0.75	1.5		mg/Kg	5	7/11/2019 7:07:39 PM	46126
Sulfate	990	14	30		mg/Kg	20	7/11/2019 7:20:03 PM	46126
EPA METHOD 7471: MERCURY							Analyst: JLF	
Mercury	ND	0.0017	0.032		mg/Kg	1	7/10/2019 3:40:49 PM	46081
EPA METHOD 6010B: SOIL METALS							Analyst: bcv	
Arsenic	ND	2.8	4.9		mg/Kg	2	7/2/2019 9:23:55 AM	45944
Barium	350	0.046	0.20		mg/Kg	2	7/2/2019 9:23:55 AM	45944
Cadmium	ND	0.048	0.20		mg/Kg	2	7/2/2019 9:23:55 AM	45944
Chromium	13	0.16	0.59		mg/Kg	2	7/2/2019 9:23:55 AM	45944
Copper	4.0	0.22	0.59		mg/Kg	2	7/2/2019 9:23:55 AM	45944
Iron	17000	71	250		mg/Kg	100	7/2/2019 8:37:22 AM	45944
Lead	2.9	0.48	0.49		mg/Kg	2	7/2/2019 9:23:55 AM	45944
Manganese	450	0.041	0.20		mg/Kg	2	7/2/2019 9:23:55 AM	45944
Selenium	ND	2.5	4.9		mg/Kg	2	7/2/2019 9:23:55 AM	45944
Silver	ND	0.063	0.49		mg/Kg	2	7/2/2019 9:23:55 AM	45944
Uranium	ND	4.3	9.8		mg/Kg	2	7/2/2019 9:23:55 AM	45944
Zinc	24	0.78	4.9		mg/Kg	2	7/2/2019 9:23:55 AM	45944
EPA METHOD 8270C: SEMIVOLATILES							Analyst: DAN	
Acenaphthene	ND	0.14	0.23		mg/Kg	1	7/8/2019 9:22:35 PM	45929
Acenaphthylene	ND	0.13	0.23		mg/Kg	1	7/8/2019 9:22:35 PM	45929
Aniline	ND	0.15	0.23		mg/Kg	1	7/8/2019 9:22:35 PM	45929
Refer to the QC Summary report	and sample log	gin checkli	st for flagg	ged QC o	data and	prese	rvation information.	

* Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

Hall Environmental Analysis Laboratory, Inc.

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

В Analyte detected in the associated Method Blank

Е Value above quantitation range J

Analyte detected below quantitation limits Sample pH Not In Range

Р

RL Reporting Limit

Page 42 of 65

% Recovery outside of range due to dilution or matrix S

Qualifiers:

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 7/31/2019

CLIENT: N	Marathon			Client	Sample	e ID: CE	NTR.	AL OCD LF DUP01	
Project: (OCD Central Landfarm Semiann	ual Sam		Colle	ection I	Date: 6/2	7/201	9	
Lab ID: 1	906G37-010	Matrix: SO	DIL	Rec	eived I	Date: 6/2	7/201	9 4:20:00 PM	
Analyses		Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHO	DD 8270C: SEMIVOLATILES							Analyst: DA	M
Anthracene		ND	0.13	0.23		mg/Kg	1	7/8/2019 9:22:35 PM	45929
Azobenzene		ND	0.16	0.23		mg/Kg	1	7/8/2019 9:22:35 PM	
Benz(a)anth		ND	0.11	0.23		mg/Kg	1	7/8/2019 9:22:35 PM	
Benzo(a)pyr		ND	0.10	0.23		mg/Kg	1	7/8/2019 9:22:35 PM	
Benzo(b)fluc		ND	0.10	0.23		mg/Kg	1	7/8/2019 9:22:35 PM	
Benzo(g,h,i)		ND	0.10	0.23		mg/Kg	1	7/8/2019 9:22:35 PM	
Benzo(k)fluo		ND	0.11	0.23		mg/Kg	1	7/8/2019 9:22:35 PM	
Benzoic acio		ND	0.12	0.59		mg/Kg	1	7/8/2019 9:22:35 PM	
Benzyl alcol		ND	0.15	0.23		mg/Kg	1	7/8/2019 9:22:35 PM 7/8/2019 9:22:35 PM	
	ethoxy)methane	ND ND	0.17 0.14	0.23 0.23		mg/Kg	1 1	7/8/2019 9:22:35 PM	
Bis(2-chloro	isopropyl)ether	ND	0.14	0.23		mg/Kg mg/Kg	1	7/8/2019 9:22:35 PM	
	exyl)phthalate	ND	0.13	0.23		mg/Kg	1	7/8/2019 9:22:35 PM	
	enyl phenyl ether	ND	0.17	0.33		mg/Kg	1	7/8/2019 9:22:35 PM	
Butyl benzyl		ND	0.14	0.23		mg/Kg	1	7/8/2019 9:22:35 PM	
Carbazole	philade	ND	0.12	0.23		mg/Kg	1	7/8/2019 9:22:35 PM	
	nethylphenol	ND	0.18	0.59		mg/Kg	1	7/8/2019 9:22:35 PM	
4-Chloroanil		ND	0.17	0.59		mg/Kg	1	7/8/2019 9:22:35 PM	
2-Chloronap		ND	0.15	0.29		mg/Kg	1	7/8/2019 9:22:35 PM	
2-Chlorophe		ND	0.15	0.23		mg/Kg	1	7/8/2019 9:22:35 PM	
	enyl phenyl ether	ND	0.13	0.23		mg/Kg	1	7/8/2019 9:22:35 PM	
Chrysene		ND	0.10	0.23		mg/Kg	1	7/8/2019 9:22:35 PM	45929
Di-n-butyl pł	hthalate	ND	0.17	0.47		mg/Kg	1	7/8/2019 9:22:35 PM	45929
Di-n-octyl pł	nthalate	ND	0.12	0.47		mg/Kg	1	7/8/2019 9:22:35 PM	45929
Dibenz(a,h)a	anthracene	ND	0.11	0.23		mg/Kg	1	7/8/2019 9:22:35 PM	45929
Dibenzofura	in	ND	0.15	0.23		mg/Kg	1	7/8/2019 9:22:35 PM	45929
1,2-Dichloro	benzene	ND	0.14	0.23		mg/Kg	1	7/8/2019 9:22:35 PM	45929
1,3-Dichloro	benzene	ND	0.12	0.23		mg/Kg	1	7/8/2019 9:22:35 PM	45929
1,4-Dichloro	benzene	ND	0.12	0.23		mg/Kg	1	7/8/2019 9:22:35 PM	45929
3,3'-Dichlor	obenzidine	ND	0.10	0.29		mg/Kg	1	7/8/2019 9:22:35 PM	45929
Diethyl phth	alate	ND	0.17	0.23		mg/Kg	1	7/8/2019 9:22:35 PM	45929
Dimethyl ph	thalate	ND	0.16	0.23		mg/Kg	1	7/8/2019 9:22:35 PM	
2,4-Dichloro		ND	0.14	0.47		mg/Kg	1	7/8/2019 9:22:35 PM	
2,4-Dimethy	•	ND	0.13	0.35		mg/Kg	1	7/8/2019 9:22:35 PM	
	2-methylphenol	ND	0.11	0.47		mg/Kg	1	7/8/2019 9:22:35 PM	
2,4-Dinitropl		ND	0.085	0.59		mg/Kg	1	7/8/2019 9:22:35 PM	
2,4-Dinitroto		ND	0.14	0.59		mg/Kg	1	7/8/2019 9:22:35 PM	
2,6-Dinitroto		ND	0.15	0.59		mg/Kg	1	7/8/2019 9:22:35 PM	
Fluoranthen	e	ND	0.13	0.23		mg/Kg	1	7/8/2019 9:22:35 PM	45929

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix

В Analyte detected in the associated Method Blank

Е Value above quantitation range

J Analyte detected below quantitation limits Sample pH Not In Range

Р

Not Detected at the Reporting Limit PQL Practical Quanitative Limit

Н

ND

% Recovery outside of range due to dilution or matrix S

Holding times for preparation or analysis exceeded

RL Reporting Limit

Page 43 of 65

Hall Environmental Analysis Laboratory, Inc.

Lab Order 1906G37 Date Reported: 7/31/2019

CLIENT: Marathon	1.0			-			AL OCD LF DUP01	
Project: OCD Central Landfarm Semian				ection D				
Lab ID: 1906G37-010	Matrix: S	OIL	Rec	eived D	ate: 6/2	7/201	9 4:20:00 PM	
Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8270C: SEMIVOLATILES							Analyst: DA	М
Fluorene	ND	0.13	0.23		mg/Kg	1	7/8/2019 9:22:35 PM	45929
Hexachlorobenzene	ND	0.15	0.23		mg/Kg	1	7/8/2019 9:22:35 PM	45929
Hexachlorobutadiene	ND	0.16	0.23		mg/Kg	1	7/8/2019 9:22:35 PM	45929
Hexachlorocyclopentadiene	ND	0.13	0.23		mg/Kg	1	7/8/2019 9:22:35 PM	45929
Hexachloroethane	ND	0.13	0.23		mg/Kg	1	7/8/2019 9:22:35 PM	45929
Indeno(1,2,3-cd)pyrene	ND	0.12	0.23		mg/Kg	1	7/8/2019 9:22:35 PM	45929
Isophorone	ND	0.17	0.47		mg/Kg	1	7/8/2019 9:22:35 PM	45929
1-Methylnaphthalene	ND	0.18	0.23		mg/Kg	1	7/8/2019 9:22:35 PM	45929
2-Methylnaphthalene	ND	0.17	0.23		mg/Kg	1	7/8/2019 9:22:35 PM	45929
2-Methylphenol	ND	0.14	0.47		mg/Kg	1	7/8/2019 9:22:35 PM	45929
3+4-Methylphenol	ND	0.14	0.23		mg/Kg	1	7/8/2019 9:22:35 PM	45929
N-Nitrosodi-n-propylamine	ND	0.17	0.23		mg/Kg	1	7/8/2019 9:22:35 PM	45929
N-Nitrosodiphenylamine	ND	0.12	0.23		mg/Kg	1	7/8/2019 9:22:35 PM	45929
Naphthalene	ND	0.18	0.23		mg/Kg	1	7/8/2019 9:22:35 PM	45929
2-Nitroaniline	ND	0.17	0.23		mg/Kg	1	7/8/2019 9:22:35 PM	45929
3-Nitroaniline	ND	0.16	0.23		mg/Kg	1	7/8/2019 9:22:35 PM	45929
4-Nitroaniline	ND	0.15	0.47		mg/Kg	1	7/8/2019 9:22:35 PM	45929
Nitrobenzene	ND	0.16	0.47		mg/Kg	1	7/8/2019 9:22:35 PM	45929
2-Nitrophenol	ND	0.16	0.23		mg/Kg	1	7/8/2019 9:22:35 PM	45929
4-Nitrophenol	ND	0.16	0.29		mg/Kg	1	7/8/2019 9:22:35 PM	45929
Pentachlorophenol	ND	0.12	0.47		mg/Kg	1	7/8/2019 9:22:35 PM	45929
Phenanthrene	ND	0.13	0.23		mg/Kg	1	7/8/2019 9:22:35 PM	45929
Phenol	ND	0.15	0.23		mg/Kg	1	7/8/2019 9:22:35 PM	45929
Pyrene	ND	0.11	0.23		mg/Kg	1	7/8/2019 9:22:35 PM	45929
Pyridine	ND	0.14	0.47		mg/Kg	1	7/8/2019 9:22:35 PM	45929
1,2,4-Trichlorobenzene	ND	0.18	0.23		mg/Kg	1	7/8/2019 9:22:35 PM	45929
2,4,5-Trichlorophenol	ND	0.15	0.23		mg/Kg	1	7/8/2019 9:22:35 PM	45929
2,4,6-Trichlorophenol	ND	0.12	0.23		mg/Kg	1	7/8/2019 9:22:35 PM	45929
Surr: 2-Fluorophenol	54.9		24.8-95.2		%Rec	1	7/8/2019 9:22:35 PM	45929
Surr: Phenol-d5	59.0		29.9-97.8		%Rec	1	7/8/2019 9:22:35 PM	45929
Surr: 2,4,6-Tribromophenol	59.4		35.7-108		%Rec	1	7/8/2019 9:22:35 PM	45929
Surr: Nitrobenzene-d5	64.1		32.5-106		%Rec	1	7/8/2019 9:22:35 PM	45929
Surr: 2-Fluorobiphenyl	65.6		27.7-114		%Rec	1	7/8/2019 9:22:35 PM	45929
Surr: 4-Terphenyl-d14	62.3		15-148		%Rec	1	7/8/2019 9:22:35 PM	
EPA METHOD 8260B: VOLATILES							Analyst: DJ	F
Benzene	ND	0.0039	0.024		mg/Kg	1	7/4/2019 2:53:31 AM	45983
Toluene	ND	0.0046	0.048		mg/Kg	1	7/4/2019 2:53:31 AM	
Ethylbenzene	ND	0.0028	0.048		mg/Kg	1	7/4/2019 2:53:31 AM	
Methyl tert-butyl ether (MTBE)	ND	0.011	0.048		mg/Kg	1	7/4/2019 2:53:31 AM	
, ,					39			

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix

Sample Diluted Due to Matrix Holding times for preparation or analysis exceeded

H Holding times for preparation or analysis exceedND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

B Analyte detected in the associated Method Blank

E Value above quantitation rangeJ Analyte detected below quantitation limits

J Analyte detected below quantitation limits P Sample pH Not In Range

P Sample pH Not RL Reporting Limit

S % Recovery outside of range due to dilution or matrix

Page 44 of 65

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 7/31/2019

Project: OCD Central Landfarm Semiannual Sam Collection Date: 6/27/2019 Lab ID: 1906G37-010 Matrix: SOIL Received Date: 6/27/2019 4:20:00 PM Analyses Result MDL RL Qual Units DF Date Analyzed EPA METHOD 8260B: VOLATILES ND 0.0044 0.048 mg/Kg 1 7/4/2019 2:53:31 AN 1,2,4-Trimethylbenzene ND 0.0047 0.048 mg/Kg 1 7/4/2019 2:53:31 AN 1,2,5-Trimethylbenzene ND 0.0047 0.048 mg/Kg 1 7/4/2019 2:53:31 AN 1,2-Dichloroethane (EDC) ND 0.0049 0.048 mg/Kg 1 7/4/2019 2:53:31 AN 1,2-Dibromoethane (EDB) ND 0.0044 0.048 mg/Kg 1 7/4/2019 2:53:31 AN Naphthalene ND 0.0097 0.096 mg/Kg 1 7/4/2019 2:53:31 AN 2-Methylnaphthalene ND 0.028 0.19 mg/Kg 1 7/4/2019 2:53:31 AN 2-Methylnaphthalene ND 0	45983
Analyses Result MDL RL Qual Units DF Date Analyzed EPA METHOD 8260B: VOLATILES ND 0.0044 0.048 mg/Kg 1 7/4/2019 2:53:31 AN 1,2,4-Trimethylbenzene ND 0.0047 0.048 mg/Kg 1 7/4/2019 2:53:31 AN 1,3,5-Trimethylbenzene ND 0.0047 0.048 mg/Kg 1 7/4/2019 2:53:31 AN 1,2-Dichloroethane (EDC) ND 0.0044 0.048 mg/Kg 1 7/4/2019 2:53:31 AN 1,2-Dibromoethane (EDB) ND 0.0044 0.048 mg/Kg 1 7/4/2019 2:53:31 AN Naphthalene ND 0.0097 0.096 mg/Kg 1 7/4/2019 2:53:31 AN 1-Methylnaphthalene ND 0.028 0.19 mg/Kg 1 7/4/2019 2:53:31 AN 2-Methylnaphthalene ND 0.021 0.19 mg/Kg 1 7/4/2019 2:53:31 AN	JF 1 45983
EPA METHOD 8260B: VOLATILES Analyst: D. 1,2,4-Trimethylbenzene ND 0.0044 0.048 mg/Kg 1 7/4/2019 2:53:31 AM 1,3,5-Trimethylbenzene ND 0.0047 0.048 mg/Kg 1 7/4/2019 2:53:31 AM 1,2-Dichloroethane (EDC) ND 0.0049 0.048 mg/Kg 1 7/4/2019 2:53:31 AM 1,2-Dibromoethane (EDB) ND 0.0044 0.048 mg/Kg 1 7/4/2019 2:53:31 AM 1,2-Dibromoethane (EDB) ND 0.0044 0.048 mg/Kg 1 7/4/2019 2:53:31 AM 1,2-Dibromoethane (EDB) ND 0.0097 0.096 mg/Kg 1 7/4/2019 2:53:31 AM Naphthalene ND 0.028 0.19 mg/Kg 1 7/4/2019 2:53:31 AM 2-Methylnaphthalene ND 0.021 0.19 mg/Kg 1 7/4/2019 2:53:31 AM	JF 1 45983
1,2,4-TrimethylbenzeneND0.00440.048mg/Kg17/4/2019 2:53:31 AM1,3,5-TrimethylbenzeneND0.00470.048mg/Kg17/4/2019 2:53:31 AM1,2-Dichloroethane (EDC)ND0.00490.048mg/Kg17/4/2019 2:53:31 AM1,2-Dibromoethane (EDB)ND0.00440.048mg/Kg17/4/2019 2:53:31 AMNaphthaleneND0.00970.096mg/Kg17/4/2019 2:53:31 AM1-MethylnaphthaleneND0.0280.19mg/Kg17/4/2019 2:53:31 AM2-MethylnaphthaleneND0.0210.19mg/Kg17/4/2019 2:53:31 AM	45983
ND 0.0047 0.048 mg/Kg 1 7/4/2019 2:53:31 AN 1,3,5-Trimethylbenzene ND 0.0047 0.048 mg/Kg 1 7/4/2019 2:53:31 AN 1,2-Dichloroethane (EDC) ND 0.0049 0.048 mg/Kg 1 7/4/2019 2:53:31 AN 1,2-Dibromoethane (EDB) ND 0.0044 0.048 mg/Kg 1 7/4/2019 2:53:31 AN Naphthalene ND 0.0097 0.096 mg/Kg 1 7/4/2019 2:53:31 AN 1-Methylnaphthalene ND 0.028 0.19 mg/Kg 1 7/4/2019 2:53:31 AN 2-Methylnaphthalene ND 0.021 0.19 mg/Kg 1 7/4/2019 2:53:31 AN	
1,2-Dichloroethane (EDC) ND 0.0049 0.048 mg/Kg 1 7/4/2019 2:53:31 AN 1,2-Dibromoethane (EDB) ND 0.0044 0.048 mg/Kg 1 7/4/2019 2:53:31 AN Naphthalene ND 0.0097 0.096 mg/Kg 1 7/4/2019 2:53:31 AN 1-Methylnaphthalene ND 0.028 0.19 mg/Kg 1 7/4/2019 2:53:31 AN 2-Methylnaphthalene ND 0.021 0.19 mg/Kg 1 7/4/2019 2:53:31 AN	1 46000
1,2-Dibromoethane (EDB) ND 0.0044 0.048 mg/Kg 1 7/4/2019 2:53:31 AM Naphthalene ND 0.0097 0.096 mg/Kg 1 7/4/2019 2:53:31 AM 1-Methylnaphthalene ND 0.028 0.19 mg/Kg 1 7/4/2019 2:53:31 AM 2-Methylnaphthalene ND 0.021 0.19 mg/Kg 1 7/4/2019 2:53:31 AM	
Naphthalene ND 0.0097 0.096 mg/Kg 1 7/4/2019 2:53:31 AM 1-Methylnaphthalene ND 0.028 0.19 mg/Kg 1 7/4/2019 2:53:31 AM 2-Methylnaphthalene ND 0.021 0.19 mg/Kg 1 7/4/2019 2:53:31 AM	
1-Methylnaphthalene ND 0.028 0.19 mg/Kg 1 7/4/2019 2:53:31 AN 2-Methylnaphthalene ND 0.021 0.19 mg/Kg 1 7/4/2019 2:53:31 AN	
2-Methylnaphthalene ND 0.021 0.19 mg/Kg 1 7/4/2019 2:53:31 AM	
Acetone ND 0.040 0.72 mg/Kg 1 7/4/2019 2:53:31 AK	
Bromobenzene ND 0.0046 0.048 mg/Kg 1 7/4/2019 2:53:31 AM Drawed in blane ND 0.0046 0.048 mg/Kg 1 7/4/2019 2:53:31 AM	
Bromodichloromethane ND 0.0044 0.048 mg/Kg 1 7/4/2019 2:53:31 AM Dramadeum ND 0.0044 0.048 mg/Kg 1 7/4/2019 2:53:31 AM	
Bromoform ND 0.0044 0.048 mg/Kg 1 7/4/2019 2:53:31 AN Bromomethane ND 0.012 0.14 mg/Kg 1 7/4/2019 2:53:31 AN	
5.5	
Carbon disulfide ND 0.016 0.48 mg/Kg 1 7/4/2019 2:53:31 AN Carbon tetrachloride ND 0.0046 0.048 mg/Kg 1 7/4/2019 2:53:31 AN	
Calibon tetrachionae ND 0.0046 0.046 mg/Kg 1 7/4/2019 2:53:31 AM Chlorobenzene ND 0.0062 0.048 mg/Kg 1 7/4/2019 2:53:31 AM	
Chloroethane ND 0.002 0.046 mg/Kg 1 7/4/2019 2:53:31 AM	
Chloroform ND 0.0039 0.048 mg/Kg 1 7/4/2019 2:53:31 AM	
Chloromethane ND 0.0046 0.14 mg/Kg 1 7/4/2019 2:53:31 AM	
2-Chlorotoluene ND 0.0042 0.048 mg/Kg 1 7/4/2019 2:53:31 AM	
4-Chlorotoluene ND 0.0039 0.048 mg/Kg 1 7/4/2019 2:53:31 AN	
cis-1,2-DCE ND 0.0066 0.048 mg/Kg 1 7/4/2019 2:53:31 AN	
cis-1,3-Dichloropropene ND 0.0041 0.048 mg/Kg 1 7/4/2019 2:53:31 AN	
1,2-Dibromo-3-chloropropane ND 0.0049 0.096 mg/Kg 1 7/4/2019 2:53:31 AN	
Dibromochloromethane ND 0.0034 0.048 mg/Kg 1 7/4/2019 2:53:31 AN	
Dibromomethane ND 0.0052 0.048 mg/Kg 1 7/4/2019 2:53:31 AN	
1,2-Dichlorobenzene ND 0.0040 0.048 mg/Kg 1 7/4/2019 2:53:31 AN	
1,3-Dichlorobenzene ND 0.0042 0.048 mg/Kg 1 7/4/2019 2:53:31 AM	
1,4-Dichlorobenzene ND 0.0040 0.048 mg/Kg 1 7/4/2019 2:53:31 AM	45983
Dichlorodifluoromethane ND 0.011 0.048 mg/Kg 1 7/4/2019 2:53:31 AN	45983
1,1-Dichloroethane ND 0.0031 0.048 mg/Kg 1 7/4/2019 2:53:31 AN	45983
1,1-Dichloroethene ND 0.019 0.048 mg/Kg 1 7/4/2019 2:53:31 AN	45983
1,2-Dichloropropane ND 0.0035 0.048 mg/Kg 1 7/4/2019 2:53:31 AN	
1,3-Dichloropropane ND 0.0052 0.048 mg/Kg 1 7/4/2019 2:53:31 AN	45983
2,2-Dichloropropane ND 0.016 0.096 mg/Kg 1 7/4/2019 2:53:31 AN	45983
1,1-Dichloropropene ND 0.0044 0.096 mg/Kg 1 7/4/2019 2:53:31 AN	45983
Hexachlorobutadiene ND 0.0049 0.096 mg/Kg 1 7/4/2019 2:53:31 AN	45983
2-Hexanone ND 0.0080 0.48 mg/Kg 1 7/4/2019 2:53:31 AN	45983
Isopropylbenzene ND 0.0035 0.048 mg/Kg 1 7/4/2019 2:53:31 AN	45983

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix

Н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

В Analyte detected in the associated Method Blank

Е Value above quantitation range J

Analyte detected below quantitation limits Sample pH Not In Range

Р

RL Reporting Limit

Page 45 of 65

% Recovery outside of range due to dilution or matrix S

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 7/31/2019

CLIENT: Marathon				-			AL OCD LF DUP01	
Project: OCD Central Landfarm Semianr	ual Sam		Colle	ection D	Date: 6/2	7/201	9	
Lab ID: 1906G37-010	Matrix: S	OIL	Rec	ceived D	Date: 6/2	7/201	9 4:20:00 PM	
Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES							Analyst: DJ	F
4-Isopropyltoluene	ND	0.0040	0.048		mg/Kg	1	7/4/2019 2:53:31 AM	45983
4-Methyl-2-pentanone	ND	0.0091	0.48		mg/Kg	1	7/4/2019 2:53:31 AM	45983
Methylene chloride	ND	0.0085	0.14		mg/Kg	1	7/4/2019 2:53:31 AM	45983
n-Butylbenzene	ND	0.0045	0.14		mg/Kg	1	7/4/2019 2:53:31 AM	45983
n-Propylbenzene	ND	0.0038	0.048		mg/Kg	1	7/4/2019 2:53:31 AM	45983
sec-Butylbenzene	ND	0.0054	0.048		mg/Kg	1	7/4/2019 2:53:31 AM	45983
Styrene	ND	0.0038	0.048		mg/Kg	1	7/4/2019 2:53:31 AM	45983
tert-Butylbenzene	ND	0.0045	0.048		mg/Kg	1	7/4/2019 2:53:31 AM	45983
1,1,1,2-Tetrachloroethane	ND	0.0033	0.048		mg/Kg	1	7/4/2019 2:53:31 AM	45983
1,1,2,2-Tetrachloroethane	ND	0.0049	0.048		mg/Kg	1	7/4/2019 2:53:31 AM	45983
Tetrachloroethene (PCE)	ND	0.0039	0.048		mg/Kg	1	7/4/2019 2:53:31 AM	45983
trans-1,2-DCE	ND	0.0044	0.048		mg/Kg	1	7/4/2019 2:53:31 AM	45983
trans-1,3-Dichloropropene	ND	0.0051	0.048		mg/Kg	1	7/4/2019 2:53:31 AM	45983
1,2,3-Trichlorobenzene	ND	0.0042	0.096		mg/Kg	1	7/4/2019 2:53:31 AM	45983
1,2,4-Trichlorobenzene	ND	0.0049	0.048		mg/Kg	1	7/4/2019 2:53:31 AM	45983
1,1,1-Trichloroethane	ND	0.0044	0.048		mg/Kg	1	7/4/2019 2:53:31 AM	45983
1,1,2-Trichloroethane	ND	0.0034	0.048		mg/Kg	1	7/4/2019 2:53:31 AM	45983
Trichloroethene (TCE)	ND	0.0056	0.048		mg/Kg	1	7/4/2019 2:53:31 AM	45983
Trichlorofluoromethane	ND	0.016	0.048		mg/Kg	1	7/4/2019 2:53:31 AM	45983
1,2,3-Trichloropropane	ND	0.0078	0.096		mg/Kg	1	7/4/2019 2:53:31 AM	45983
Vinyl chloride	ND	0.0031	0.048		mg/Kg	1	7/4/2019 2:53:31 AM	45983
Xylenes, Total	ND	0.012	0.096		mg/Kg	1	7/4/2019 2:53:31 AM	45983
Surr: Dibromofluoromethane	102		70-130		%Rec	1	7/4/2019 2:53:31 AM	45983
Surr: 1,2-Dichloroethane-d4	101		70-130		%Rec	1	7/4/2019 2:53:31 AM	45983
Surr: Toluene-d8	99.6		70-130		%Rec	1	7/4/2019 2:53:31 AM	45983
Surr: 4-Bromofluorobenzene	98.5		70-130		%Rec	1	7/4/2019 2:53:31 AM	45983
EPA METHOD 8015D MOD: GASOLINE RA	ANGE						Analyst: DJ	F
Gasoline Range Organics (GRO)	ND	1.2	4.8		mg/Kg	1	7/4/2019 2:53:31 AM	45983
Surr: BFB	87.8	0	70-130		%Rec	1	7/4/2019 2:53:31 AM	45983
EPA METHOD 418.1: TPH							Analyst: Irm	ı
Petroleum Hydrocarbons, TR	ND	2.7	20		mg/Kg	1	7/9/2019	45999

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix

Н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

% Recovery outside of range due to dilution or matrix S

В Analyte detected in the associated Method Blank

Е Value above quantitation range

J Analyte detected below quantitation limits Sample pH Not In Range

Р

Reporting Limit RL

Page 46 of 65

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 7/31/2019

CLIENT: Marathon Client Sample ID: CENTRAL OCD LF FB01									
Project: OCD Central Landfarm Se	miannual Sam		Collection Date: 6/27/2019 1:15:00 PM						
Lab ID: 1906G37-011	Matrix: A	QUEOUS	Ree	ceived Dat	e: 6/2	7/201	9 4:20:00 PM		
Analyses	Result	MDL	RL	Qual U	nits	DF	Date Analyzed	Batch ID	
EPA METHOD 8260: VOLATILES SH	ORT LIST						Analyst: RA	Α	
Benzene	ND	0.17	1.0	μί	g/L	1	7/8/2019 3:35:00 PM	SL6122	
Toluene	ND	0.35	1.0	μί	g/L	1	7/8/2019 3:35:00 PM	SL6122	
Ethylbenzene	ND	0.13	1.0	μί	g/L	1	7/8/2019 3:35:00 PM	SL6122	
Xylenes, Total	ND	0.45	1.5	μί	g/L	1	7/8/2019 3:35:00 PM	SL6122	
Surr: 1,2-Dichloroethane-d4	120	0	70-130	%	Rec	1	7/8/2019 3:35:00 PM	SL6122	
Surr: 4-Bromofluorobenzene	101	0	70-130	%	Rec	1	7/8/2019 3:35:00 PM	SL6122	
Surr: Dibromofluoromethane	115	0	70-130	%	Rec	1	7/8/2019 3:35:00 PM	SL6122	
Surr: Toluene-d8	94.6	0	70-130	%	Rec	1	7/8/2019 3:35:00 PM	SL6122	

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 7/31/2019

CLIENT: Marathon			Client Sample ID: CENTRAL OCD LF EB01						
Project: OCD Central Landfarm Se	emiannual Sam		Collection Date: 6/27/2019 1:25:00 PM						
Lab ID: 1906G37-012	Matrix: A	QUEOUS	Rec	ceived Dat	te: 6/2	7/201	9 4:20:00 PM		
Analyses	Result	MDL	RL	Qual U	J nits	DF	Date Analyzed	Batch ID	
EPA METHOD 8260: VOLATILES SH	IORT LIST						Analyst: RA	A	
Benzene	ND	0.17	1.0	μ	ıg/L	1	7/8/2019 3:59:00 PM	SL6122	
Toluene	ND	0.35	1.0	μ	ıg/L	1	7/8/2019 3:59:00 PM	SL6122	
Ethylbenzene	ND	0.13	1.0	μ	ıg/L	1	7/8/2019 3:59:00 PM	SL6122	
Xylenes, Total	ND	0.45	1.5	μ	ıg/L	1	7/8/2019 3:59:00 PM	SL6122	
Surr: 1,2-Dichloroethane-d4	115	0	70-130	%	%Rec	1	7/8/2019 3:59:00 PM	SL6122	
Surr: 4-Bromofluorobenzene	98.9	0	70-130	%	%Rec	1	7/8/2019 3:59:00 PM	SL6122	
Surr: Dibromofluoromethane	109	0	70-130	%	%Rec	1	7/8/2019 3:59:00 PM	SL6122	
Surr: Toluene-d8	94.7	0	70-130	%	%Rec	1	7/8/2019 3:59:00 PM	SL6122	

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix

Н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

% Recovery outside of range due to dilution or matrix S

В Analyte detected in the associated Method Blank

Е Value above quantitation range

J Analyte detected below quantitation limits Sample pH Not In Range

Р

RL Reporting Limit

Page 48 of 65

Lab Order 1906G37

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 7/31/2019

CLIENT: Marathon			Client	Sample ID: T	rip Bla	nk		
Project: OCD Central Landfarm Se	miannual Sam		Collection Date:					
Lab ID: 1906G37-013	Matrix: A	QUEOUS	Ree	9 4:20:00 PM				
Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID	
EPA METHOD 8260: VOLATILES SH	IORT LIST					Analyst: RA	Α	
Benzene	ND	0.17	1.0	µg/L	1	7/8/2019 4:23:00 PM	SL6122	
Toluene	ND	0.35	1.0	µg/L	1	7/8/2019 4:23:00 PM	SL6122	
Ethylbenzene	ND	0.13	1.0	µg/L	1	7/8/2019 4:23:00 PM	SL6122	
Xylenes, Total	ND	0.45	1.5	µg/L	1	7/8/2019 4:23:00 PM	SL6122	
Surr: 1,2-Dichloroethane-d4	116	0	70-130	%Rec	1	7/8/2019 4:23:00 PM	SL6122	
Surr: 4-Bromofluorobenzene	102	0	70-130	%Rec	1	7/8/2019 4:23:00 PM	SL6122	
Surr: Dibromofluoromethane	112	0	70-130	%Rec	1	7/8/2019 4:23:00 PM	SL6122	
Surr: Toluene-d8	94.4	0	70-130	%Rec	1	7/8/2019 4:23:00 PM	SL6122	

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix

Н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

% Recovery outside of range due to dilution or matrix S

В Analyte detected in the associated Method Blank

Е Value above quantitation range

J Analyte detected below quantitation limits Sample pH Not In Range

Р

Reporting Limit RL

Page 49 of 65

1906G37-001C CENTRAL OCD LF TZ01 Collected date/time: 06/27/19 09:30

SAMPLE RESULTS - 01

Wet Chemistry by Method 9012B

Nr.

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Cyanide	ND		0.250	1	07/12/2019 11:12	WG1308753	

² Tc
³ Ss
⁴Cn
^s Sr
®Qc
⁷ GI
^B A1
Sc

1906G37-002C CENTRAL OCD LF VZ01 Collected date/time: 06/27/19 10:00

SAMPLE RESULTS - 02

Wet Chemistry by Method 9012B

2

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Cyanide	ND		0.250	1	07/12/2019 11:13	WG1308753	

²Tc ³Ss ⁴Cn ⁶Qc ⁷Gl ¹Al ²Sc

DATE/TIME: 07/12/19 15:39

1906G37-003C CENTRAL OCD LF TZ02 Collected date/time: 06/27/19 10:50

SAMPLE RESULTS - 03

Wet Chemistry by Method 9012B

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Cyanide	ND		0.250	1	07/12/2019 11:18	WG1308753	

50

DATE/TIME: 07/12/19 15:39

1906G37-004C CENTRAL OCD LF VZ02 Collected date/time: 06/27/19 11:10

SAMPLE RESULTS - 04

Wet Chemistry by Method 9012B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Cyanide	ND		0.250	1	07/12/2019 11:19	WG1308753

34

1906G37-006C CENTRAL OCD LF TZ03 SA Collected date/time: 06/27/19 11:50

SAMPLE RESULTS - 05

Wet Chemistry by Method 9012B

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/kg	(mg/kg		date / time		
Cyanide	ND		0.250	1	07/12/2019 11:20	WG1308753	

34

1906G37-007C CENTRAL OCD LF VZ03 Collected date/time: 06/27/19 12:10

SAMPLE RESULTS - 06

Wet Chemistry by Method 9012B

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Cyanide	ND		0.250	1	07/12/2019 11:21	WG1308753	

38

SDG:

1906G37-008C CENTRAL OCD LF TZ04 Collected date/time: 06/27/19 12:45

SAMPLE RESULTS - 07

Wet Chemistry by Method 9012B

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Cyanide	ND		0.250	1	07/12/2019 11:22	WG1308753	

36

1906G37-009C CENTRAL OCD LF VZ04 Collected date/time: 06/27/19 13:00

SAMPLE RESULTS - 08

Wet Chemistry by Method 9012B

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Cyanide	0.269	<u>P1</u>	0.250	1	07/12/2019 11:23	WG1308753	

DATE/TIME: 07/12/19 15:39

1906G37-010C CENTRAL OCD LF DUP01 Collected date/time: 06/27/19 00:00

SAMPLE RESULTS - 09

Wet Chemistry by Method 9012B

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Cyanide	0.887		0.250	1	07/12/2019 11:25	WG1308753	

WG1308/53 Wet Chemistry by Me	WGIJU&/53 Wet Chemistry by Method 9012B			3		ITY CONTROL SUM 11114971-01,02.03.04.05,05.07.08.09	20L S	CONTROL SUMMARY 1-01,02,03,04,05,06,07,08.09	۲۲			ONE LAB. NATIONWIDE
Method Blank (MB)	(MB)											
(MB) R3430073-1 07/12/19 10:54	07/12/19 10:54											
	MB Result	MB Qualifier	MB MDL	MB RDL								
Analyte	mg/kg		mg/kg	mg/kg								
Cyanide	D		0.0390	0.250								
L1112842-01 C	L1112842-01 Original Sample (OS) • Duplicate (DUP)	ing • (so)	olicate (DI	(dr								
(OS) L1112842-01 0	(OS) L1112842-01 07/12/19 11:01 • (DUP) R3430073-3 07/12/19 11:02	3430073-3 (07/12/19 11:02					-				
	Original Result	Original Result DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD						
Analyte	mg/kg	mg/kg		96		-96 						
Cyanide	QN	0.0542	-	0.000		20						
L1114971-08 O	L1114971-08 Original Sample (OS) • Duplicate (DUP)	os) • Dup	olicate (DL	(dr								
(OS) L1114971-08 0	(OS) L1114971-08 07/12/19 11:23 • (DUP) R3430073-8 07/12/19 11:24	3430073-8	07/12/19 11:24									
	Original Result	Original Result DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits						
Analyte	mg/kg	mg/kg		⁹⁶		⁶						
Cyanide	0.269	0.000	Ļ	200	E	20						
Laboratory Co	Laboratory Control Sample (LCS)	(SS)										
(LCS) R3430073-2 07/12/19 10:55	07/12/19 10:55											
	Spike Amount		LCS Rec.	Rec. Limits	LCS Qualifier	ier						
Analyte	mg/kg	mg/kg	96	%								
Cyanide	Cyanide 2.50 2.59 104 50.0-150	2.59	104	50.0-150			ĉ					
(OS) L1113860-02 (LITTOOUV-VZ OTIGITIKI SATIPLE (VS) • INTAUTS SPIKE (IND) • INTAUTS SPIKE UNDIG (OS) LITT3860-02 07/12/19 11:07 • (MS) R3430073-4 07/12/19 11:08 • (MSD) R3430073-5 07/12/19 11:09	3430073-4 C	07/12/19 11:08	· (MSD) R34300	13-5 07/12/1	e L'uplicate (IVI) 12/19 11:09	(m)					
	Spike Amount		Original Result MS Result	MSD Result		MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	96	9 ₆		96			²⁶	% 9
Cyanide 1 1114971-00	Cyanide 1.67 ND 1.49 1.47 86.4 85.1 1 1114071-07 Original Samula (OS) - Martix Spilos (MAS) - Martix Spilos Duplicato MASD	ND - Mat	1.49 Friv Snibor	1.47 MACV MARK	86.4	85.1 Lolisoto INACI	-	75.0-125			1,40	20
(OS) L1114971-02 0	(OS) L1114971-02 07/12/19 11:13 (MS) R3430073-6 07/12/19 11:14 (MSD) R3430073-7 07/12/19 11:15 Staike Amount - Original Decult - MS Decult - MSD Decult	130073-6 07 0rinial Bac	0073-6 07/12/19 11:14 • (I	MSD) R3430073 MSD R3430073	3-7 07/12/19 1 MS Boc	115 MED Doc			Sector Se			
			אוחכאא כואו זוח			MOU KEC.	nintion		MS Qualifier	MSD Qualitier		
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	8	8		%			8	95
Cyanide	1.67	QN	1.51	1.61	6.06	96.4	F	75.0-125			5.85	20
	ACCOUNT:			đ.	PROJECT:			SDG:		DATE	DATE/TIME:	
Contraction of the second seco		are address of					1	L1114971		07/12/	07/12/19 15:39	

GLOSSARY OF TERMS

Te

Ss

Cn

Sr

Qc

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Abbreviations and Definitions

MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the resu reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section fo each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.
Qualifier	Description

DATE/TIME: 07/12/19 15:39

ANALYTICAL RESULTS - RADIOCHEMISTRY

Sample: 1906G37-001DCENTR OCD LFTZ01	AL Lab ID: 30311799	001 Collected: 06/27/19 09:30	Received:	07/02/19 09:30	Matrix: Solid	
PWS:	Site ID:	Sample Type:				
Results reported on a "dry-weig	ght" basis					
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Potassium-40	EPA 901.1	9.974 ± 2.360 (1.033)	pCi/g	07/30/19 13:42	13966-00-2	
Radium-226	EPA 901.1	C:NA T:NA 1.372 ± 0.315 (0.189) C:NA T:NA	pCi/g	07/30/19 13:42	13982-63-3	Ra
Radium-228	EPA 901.1	1.359 ± 0.581 (0.551) C:NA T:NA	pCi/g	07/30/19 13:42	2 15262-20-1	
Sample: 1906G37-002DCENTR OCD LFVZ01	AL Lab ID: 30311799	002 Collected: 06/27/19 10:00	Received:	07/02/19 09:30	Matrix: Solid	
PWS:	Site ID:	Sample Type:				
Results reported on a "dry-weig	ht" basis					
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Potassium-40	EPA 901.1	11.644 ± 3.379 (2.324) C:NA T:NA	pCi/g	07/30/19 14:02	13966-00-2	
Radium-226	EPA 901.1	1.322 ± 0.324 (0.155)	pCi/g	07/30/19 14:02	13982-63-3	Ra
		C:NA T:NA				
Radium-228	EPA 901.1	C:NA T:NA 2.012 ± 0.483 (0.261) C:NA T:NA	pCi/g	07/30/19 14:02	15262-20-1	
Sample: 1906G37-003DCENTR		2.012 ± 0.483 (0.261) C:NA T:NA	pCi/g	07/30/19 14:02 07/02/19 09:30		
Sample: 1906G37-003DCENTR OCD LFTZ02		2.012 ± 0.483 (0.261) C:NA T:NA	pCi/g			
Sample: 1906G37-003DCENTR OCD LFTZ02 PWS:	AL Lab ID: 30311799 Site ID:	2.012 ± 0.483 (0.261) C:NA T:NA 003 Collected: 06/27/19 10:50	pCi/g			
Sample: 1906G37-003DCENTR OCD LFTZ02 PWS:	AL Lab ID: 30311799 Site ID:	2.012 ± 0.483 (0.261) C:NA T:NA 003 Collected: 06/27/19 10:50	pCi/g			Qual
Sample: 1906G37-003DCENTR OCD LFTZ02 PWS: Results reported on a "dry-weig Parameters	AL Lab ID: 30311799 Site ID: ht" basis Method EPA 901.1	2.012 ± 0.483 (0.261) C:NA T:NA 003 Collected: 06/27/19 10:50 Sample Type: Act ± Unc (MDC) Carr Trac 8.101 ± 2.195 (1.415) C:NA T:NA	pCi/g	07/02/19 09:30 N	Matrix: Solid CAS No.	Qual
Sample: 1906G37-003DCENTR OCD LFTZ02 PWS: Results reported on a "dry-weig	AL Lab ID: 30311799 Site ID: ht" basis Method EPA 901.1	2.012 ± 0.483 (0.261) C:NA T:NA 003 Collected: 06/27/19 10:50 Sample Type: Act ± Unc (MDC) Carr Trac 8.101 ± 2.195 (1.415) C:NA T:NA 0.910 ± 0.237 (0.154)	pCi/g Received: Units	07/02/19 09:30 M	Matrix: Solid CAS No. 13966-00-2	
Sample: 1906G37-003DCENTR OCD LFTZ02 PWS: Results reported on a "dry-weig Parameters Potassium-40 Radium-226	AL Lab ID: 30311799 Site ID: ht" basis Method EPA 901.1 EPA 901.1 EPA 901.1	2.012 ± 0.483 (0.261) C:NA T:NA 003 Collected: 06/27/19 10:50 Sample Type: Act ± Unc (MDC) Carr Trac 8.101 ± 2.195 (1.415) C:NA T:NA	pCi/g Received: Units pCi/g	07/02/19 09:30 M Analyzed 07/30/19 14:21	Matrix: Solid CAS No. 13966-00-2 13982-63-3	Qual
Sample: 1906G37-003DCENTR OCD LFTZ02 PWS: Results reported on a "dry-weig Parameters Potassium-40 Radium-226 Radium-228 Sample: 1906G37-004DCENTR/	AL Lab ID: 30311799 Site ID: ht" basis Method EPA 901.1 EPA 901.1 EPA 901.1	2.012 ± 0.483 (0.261) C:NA T:NA 003 Collected: 06/27/19 10:50 Sample Type: Act ± Unc (MDC) Carr Trac 8.101 ± 2.195 (1.415) C:NA T:NA 0.910 ± 0.237 (0.154) C:NA T:NA 1.120 ± 0.419 (0.341) C:NA T:NA	pCi/g Received: Units pCi/g pCi/g pCi/g	07/02/19 09:30 M Analyzed 07/30/19 14:21 07/30/19 14:21 07/30/19 14:21	Matrix: Solid CAS No. 13966-00-2 13982-63-3	
Sample: 1906G37-003DCENTR. OCD LFTZ02 PWS: Results reported on a "dry-weig Parameters Potassium-40 Radium-226 Radium-228 Sample: 1906G37-004DCENTR. OCD LFVZ02	AL Lab ID: 30311799 Site ID: ht" basis Method EPA 901.1 EPA 901.1 EPA 901.1	2.012 ± 0.483 (0.261) C:NA T:NA 003 Collected: 06/27/19 10:50 Sample Type: Act ± Unc (MDC) Carr Trac 8.101 ± 2.195 (1.415) C:NA T:NA 0.910 ± 0.237 (0.154) C:NA T:NA 1.120 ± 0.419 (0.341) C:NA T:NA	pCi/g Received: Units pCi/g pCi/g pCi/g	07/02/19 09:30 M Analyzed 07/30/19 14:21 07/30/19 14:21 07/30/19 14:21	Matrix: Solid CAS No. 13966-00-2 13982-63-3 15262-20-1	
Sample: 1906G37-003DCENTR OCD LFTZ02 PWS: Results reported on a "dry-weig Parameters Potassium-40 Radium-226 Radium-228 Sample: 1906G37-004DCENTR/ OCD LFVZ02	AL Lab ID: 30311799 Site ID: iht" basis Method EPA 901.1 EPA 901.1 EPA 901.1 Site ID: Site ID: Site ID:	2.012 ± 0.483 (0.261) C:NA T:NA 003 Collected: 06/27/19 10:50 Sample Type: Act ± Unc (MDC) Carr Trac 8.101 ± 2.195 (1.415) C:NA T:NA 0.910 ± 0.237 (0.154) C:NA T:NA 1.120 ± 0.419 (0.341) C:NA T:NA 0.04 Collected: 06/27/19 11:10	pCi/g Received: Units pCi/g pCi/g pCi/g	07/02/19 09:30 M Analyzed 07/30/19 14:21 07/30/19 14:21 07/30/19 14:21	Matrix: Solid CAS No. 13966-00-2 13982-63-3 15262-20-1	
Sample: 1906G37-003DCENTR OCD LFTZ02 PWS: Results reported on a "dry-weig Parameters Potassium-40 Radium-226 Radium-228 Sample: 1906G37-004DCENTR/ OCD LFVZ02	AL Lab ID: 30311799 Site ID: iht" basis Method EPA 901.1 EPA 901.1 EPA 901.1 Site ID: Site ID: Site ID:	2.012 ± 0.483 (0.261) C:NA T:NA 003 Collected: 06/27/19 10:50 Sample Type: Act ± Unc (MDC) Carr Trac 8.101 ± 2.195 (1.415) C:NA T:NA 0.910 ± 0.237 (0.154) C:NA T:NA 1.120 ± 0.419 (0.341) C:NA T:NA 0.04 Collected: 06/27/19 11:10	pCi/g Received: Units pCi/g pCi/g pCi/g	07/02/19 09:30 M Analyzed 07/30/19 14:21 07/30/19 14:21 07/30/19 14:21	Matrix: Solid CAS No. 13966-00-2 13982-63-3 15262-20-1	Ra
Sample: 1906G37-003DCENTR OCD LFTZ02 PWS: Results reported on a "dry-weig Parameters Potassium-40 Radium-226 Radium-228 Sample: 1906G37-004DCENTR/ OCD LFVZ02 PWS: Results reported on a "dry-weig Parameters	AL Lab ID: 30311799 Site ID: Int" basis Method EPA 901.1 EPA 901.1 EPA 901.1 EPA 901.1 Site ID: Method EPA 901.1 EPA 901.1 EPA 901.1 EPA 901.1 EPA 901.1 EPA 901.1	2.012 ± 0.483 (0.261) C:NA T:NA 003 Collected: 06/27/19 10:50 Sample Type: Act ± Unc (MDC) Carr Trac 8.101 ± 2.195 (1.415) C:NA T:NA 0.910 ± 0.237 (0.154) C:NA T:NA 1.120 ± 0.419 (0.341) C:NA T:NA 004 Collected: 06/27/19 11:10 Sample Type: Act ± Unc (MDC) Carr Trac 14.187 ± 3.125 (1.198)	pCi/g Received: Units pCi/g pCi/g Received:	07/02/19 09:30 M Analyzed 07/30/19 14:21 07/30/19 14:21 07/30/19 14:21	Matrix: Solid CAS No. 13966-00-2 13982-63-3 15262-20-1 Matrix: Solid CAS No.	
Sample: 1906G37-003DCENTR OCD LFTZ02 PWS: Results reported on a "dry-weig Parameters Potassium-40 Radium-226 Radium-228 Sample: 1906G37-004DCENTR/ OCD LFVZ02 PWS: Results reported on a "dry-weig	AL Lab ID: 30311799 Site ID:	2.012 ± 0.483 (0.261) C:NA T:NA 003 Collected: 06/27/19 10:50 Sample Type: Act ± Unc (MDC) Carr Trac 8.101 ± 2.195 (1.415) C:NA T:NA 0.910 ± 0.237 (0.154) C:NA T:NA 1.120 ± 0.419 (0.341) C:NA T:NA 004 Collected: 06/27/19 11:10 Sample Type: Act ± Unc (MDC) Carr Trac	pCi/g Received: Units pCi/g pCi/g pCi/g Received:	07/02/19 09:30 M Analyzed 07/30/19 14:21 07/30/19 14:21 07/02/19 09:30 M Analyzed	Matrix: Solid <u>CAS No.</u> 13966-00-2 13982-63-3 15262-20-1 Matrix: Solid <u>CAS No.</u> 13966-00-2	Ra

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

ANALYTICAL RESULTS - RADIOCHEMISTRY

Sample: 1906G37-006DCENTR	AL Lab ID: 303117	99005 Collected: 06/27/19 11:50	Received:	07/02/19 09:30	Matrix: Solid	
OCD LFTZ03 PWS:	Site ID:	Sample Type:				
Results reported on a "dry-weig	nht" basis	Start Start				
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Potassium-40	EPA 901.1	10.658 ± 2.105 (0.656)	pCi/g	07/30/19 14:41	13966-00-2	
Radium-226	EPA 901.1	C:NA T:NA 1.455 ± 0.301 (0.134) C:NA T:NA	pCi/g	07/30/19 14:41	13982-63-3	Ra
Radium-228	EPA 901.1	1.102 ± 0.410 (0.356) C:NA T:NA	pCi/g	07/30/19 14:41	15262-20-1	
Sample: 1906G37-007D CENTRALOCD LFVZ0	Lab ID: 303117	99006 Collected: 06/27/19 12:10	Received:	07/02/19 09:30	Matrix: Solid	-
PWS:	Site ID:	Sample Type:				
Results reported on a "dry-weig	ht" basis	1.				
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Potassium-40	EPA 901.1	11.742 ± 2.710 (1.134) C:NA T:NA	pCi/g	07/30/19 14:42	13966-00-2	
Radium-226	EPA 901.1	1.282 ± 0.327 (0.212) C:NA T:NA	pCi/g	07/30/19 14:42	13982-63-3	Ra
Radium-228	EPA 901.1	1.819 ± 0.530 (0.262) C:NA T:NA	pCi/g	07/30/19 14:42	15262-20-1	
Sample: 1906G37-008D CENTRAL OCD ETZ0/	Lab ID: 303117	99007 Collected: 06/27/19 12:45	Received:	07/02/19 09:30	Matrix: Solid	
CENTRALOCD LFTZ04		99007 Collected: 06/27/19 12:45 Sample Type:	Received:	07/02/19 09:30	Matrix: Solid	
CENTRALOCD LFTZ04	I Site ID:		Received:	07/02/19 09:30	Matrix: Solid	
CENTRALOCD LFTZ04	I Site ID:		Received: Units	07/02/19 09:30 1 Analyzed	Matrix: Solid CAS No.	Qual
CENTRALOCD LFTZ04 PWS: Results reported on a "dry-weig Parameters	l Site ID: ht" basis	Sample Type:			CAS No.	Qual
CENTRALOCD LFTZ04 PWS: Results reported on a "dry-weig Parameters Potassium-40	Site ID: ht" basis Method	Sample Type: Act ± Unc (MDC) Carr Trac 11.766 ± 2.240 (0.635) C:NA T:NA 1.207 ± 0.284 (0.149)	Units	Analyzed	CAS No. 13966-00-2	
CENTRALOCD LFTZ04 PWS: Results reported on a "dry-weig Parameters Potassium-40 Radium-226	Site ID: ht" basis Method EPA 901.1	Sample Type: Act ± Unc (MDC) Carr Trac 11.766 ± 2.240 (0.635) C:NA T:NA	Units pCi/g	Analyzed 07/30/19 15:00	CAS No. 13966-00-2 13982-63-3	
CENTRALOCD LFT204 PWS: Results reported on a "dry-weig Parameters Potassium-40 Radium-226 Radium-228	Site ID: ht" basis Method EPA 901.1 EPA 901.1 EPA 901.1	Sample Type: Act ± Unc (MDC) Carr Trac 11.766 ± 2.240 (0.635) C:NA T:NA 1.207 ± 0.284 (0.149) C:NA T:NA 1.201 ± 0.437 (0.364) C:NA T:NA	Units pCi/g pCi/g pCi/g	Analyzed 07/30/19 15:00 07/30/19 15:00	CAS No. 13966-00-2 13982-63-3 15262-20-1	
CENTRALOCD LFTZ04 PWS: Results reported on a "dry-weig Parameters Potassium-40 Radium-226 Radium-228 Sample: 1906G37-009DCENTRA OCD LFVZ04 PWS:	Site ID: ht" basis Method EPA 901.1 EPA 901.1 EPA 901.1 AL Lab ID: 3031175 Site ID:	Sample Type: Act ± Unc (MDC) Carr Trac 11.766 ± 2.240 (0.635) C:NA T:NA 1.207 ± 0.284 (0.149) C:NA T:NA 1.201 ± 0.437 (0.364) C:NA T:NA	Units pCi/g pCi/g pCi/g	Analyzed 07/30/19 15:00 07/30/19 15:00 07/30/19 15:00	CAS No. 13966-00-2 13982-63-3 15262-20-1	
CENTRALOCD LFTZ04 PWS: Results reported on a "dry-weig Parameters Potassium-40 Radium-226 Radium-228 Sample: 1906G37-009DCENTRA OCD LFVZ04 PWS:	Site ID: ht" basis Method EPA 901.1 EPA 901.1 EPA 901.1 AL Lab ID: 3031175 Site ID:	Sample Type: Act ± Unc (MDC) Carr Trac 11.766 ± 2.240 (0.635) C:NA T:NA 1.207 ± 0.284 (0.149) C:NA T:NA 1.201 ± 0.437 (0.364) C:NA T:NA 99008 Collected: 06/27/19 13:00	Units pCi/g pCi/g pCi/g	Analyzed 07/30/19 15:00 07/30/19 15:00 07/30/19 15:00	CAS No. 13966-00-2 13982-63-3 15262-20-1	Qual
CENTRALOCD LFTZ04 PWS: Results reported on a "dry-weig Parameters Potassium-40 Radium-226 Radium-228 Sample: 1906G37-009DCENTRA	Site ID: ht" basis Method EPA 901.1 EPA 901.1 EPA 901.1 AL Lab ID: 3031175 Site ID:	Sample Type: Act ± Unc (MDC) Carr Trac 11.766 ± 2.240 (0.635) C:NA T:NA 1.207 ± 0.284 (0.149) C:NA T:NA 1.201 ± 0.437 (0.364) C:NA T:NA 99008 Collected: 06/27/19 13:00	Units pCi/g pCi/g pCi/g	Analyzed 07/30/19 15:00 07/30/19 15:00 07/30/19 15:00	CAS No. 13966-00-2 13982-63-3 15262-20-1	Ra
CENTRALOCD LFTZ04 PWS: Results reported on a "dry-weig Parameters Potassium-40 Radium-226 Radium-228 Sample: 1906G37-009DCENTRA OCD LFVZ04 PWS: Results reported on a "dry-weig Parameters	Site ID: ht" basis Method EPA 901.1 EPA 901.1 EPA 901.1 AL Lab ID: 3031179 Site ID: ht" basis	Sample Type: Act ± Unc (MDC) Carr Trac 11.766 ± 2.240 (0.635) C:NA T:NA 1.207 ± 0.284 (0.149) C:NA T:NA 1.201 ± 0.437 (0.364) C:NA T:NA 99008 Collected: 06/27/19 13:00 Sample Type: Act ± Unc (MDC) Carr Trac 12.218 ± 2.741 (1.088)	Units pCi/g pCi/g pCi/g Received:	Analyzed 07/30/19 15:00 07/30/19 15:00 07/30/19 15:00	CAS No. 13966-00-2 13982-63-3 15262-20-1 Matrix: Solid CAS No.	
CENTRALOCD LFTZ04 PWS: Results reported on a "dry-weig Parameters Potassium-40 Radium-226 Radium-228 Sample: 1906G37-009DCENTRA OCD LFVZ04 PWS: Results reported on a "dry-weig	Site ID: ht" basis Method EPA 901.1 EPA 901.1 EPA 901.1 AL Lab ID: 3031175 Site ID: ht" basis Method	Sample Type: Act ± Unc (MDC) Carr Trac 11.766 ± 2.240 (0.635) C:NA T:NA 1.207 ± 0.284 (0.149) C:NA T:NA 1.201 ± 0.437 (0.364) C:NA T:NA 99008 Collected: 06/27/19 13:00 Sample Type: Act ± Unc (MDC) Carr Trac	Units pCi/g pCi/g pCi/g Received: Units	Analyzed 07/30/19 15:00 07/30/19 15:00 07/30/19 15:00 07/02/19 09:30	CAS No. 13966-00-2 13982-63-3 15262-20-1 Matrix: Solid CAS No. 13966-00-2	Ra

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

CAS No.

Qual

Analyzed

ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: 1906G37 Pace Project No .: 30311799 Sample: 1906G37-010DCENTRAL Lab ID: 30311799009 Collected: 06/27/19 00:01 Received: 07/02/19 09:30 Matrix: Solid OCD LFDUP PWS: Site ID: Sample Type: Results reported on a "dry-weight" basis Parameters Method Act ± Unc (MDC) Carr Trac Units

Potassium-40	EPA 901.1	12.113 ± 2.436 (0.979)	pCi/g	07/30/19 15:17	13966-00-2	/
		C:NA T:NA				
Radium-226	EPA 901.1	1.354 ± 0.288 (0.173)	pCi/g	07/30/19 15:17	13982-63-3	Ra
		C:NA T:NA	r-a	5115-509-5-08-34	A 24 22 42 2.	1.2
Radium-228	EPA 901.1	1.480 ± 0.392 (0.312)	pCi/g	07/30/19 15:17	15262-20-1	
		C:NA T:NA	pong	01100/10 10.11	IOLOL LO I	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

QUALITY CONTROL - RADIOCHEMISTRY

Project:	1906G	37				
Pace Project No.:	303117	99				
QC Batch:	3525	50	Analysis Method:	EPA 901.1	3.5 . F	
QC Batch Method:	EPA 9	901.1	Analysis Description:	901.1 Gamma	Spec Ingrowth	
Associated Lab Sar	nples:	30311799001, 303117 30311799008, 303117	799002, 30311799003, 303117990 799009	04, 30311799005, 3	0311799006, 30311	799007,
METHOD BLANK:	171269	95	Matrix: Solid			
Associated Lab Sar	nples:	30311799001, 303117 30311799008, 303117	799002, 30311799003, 303117990 799009	04, 30311799005, 3	0311799006, 30311	799007,
Parar	neter	A	Act ± Unc (MDC) Carr Trac	Units	Analyzed	Qualifiers
Potassium-40		0.000 ± 0.1	88 (1.927) C:NA T:NA	pCi/g	07/30/19 13:25	1
Radium-226		0.046 ± 0.0	86 (0.148) C:NA T:NA	pCi/g	07/30/19 13:25	Ra
Radium-228		0.000 ± 0.1	08 (0.392) C:NA T:NA	pCi/g	07/30/19 13:25	

Results presented on this page are in the units Indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Pace Analytical Services, LLC 1638 Roseytown Road - Suites 2,3,4 Greensburg, PA 15601 (724)850-5600

QUALIFIERS

Project: 1906G37 Pace Project No.: 30311799

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1.2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Act - Activity

Unc - Uncertainty: For Safe Drinking Water Act (SDWA) analyses, the reported Unc. Is the calculated Count Uncertainty (95% confidence interval) using a coverage factor of 1.96. For all other matrices (non-SDWA), the reported Unc. is the calculated Expanded Uncertainty (aka Combined Standard Uncertainty, CSU), reported at the 95% confidence interval using a coverage factor of 1.96.

Gamma Spec: The Unc. reported for all gamma-spectroscopy analyses (EPA 901.1), is the calculated Expanded Uncertainty (CSU) at the 95.4% confidence interval, using a coverage factor of 2.0.

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

Ra The reported Ra-226 results were determined by hermetically sealing the dried, processed sample in an appropriatesized can. Each sample was stored for a minimum of 21 days to ensure that equilibrium between Ra-226 and daughters Bi-214 and Pb-214 was achieved. Reported Ra-226 results were inferred from gamma peaks attributable to Bi-214 and Pb-214.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

WO#: 1906G37 31-Jul-19

Client: Marath	on									
Project: OCD C	entral Landf	arm Sei	miannual Sa	ampling						
Sample ID: 1906G37-002AN	IS SampT	ype: MS	3	Tes	tCode: EF	PA Method	300.0: Anion	s		
Client ID: CENTRAL OCD	LF V Batch	n ID: 46	094	F	RunNo: 6 '	1307				
Prep Date: 7/10/2019	Analysis D	ate: 7/	10/2019	S	SeqNo: 20	078213	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Fluoride	4.4	1.5	3.000	3.729	23.7	15	138			
Chloride	280	7.5	30.00	241.1	128	54.5	140			_
Nitrogen, Nitrate (As N)	9.8	1.5	15.00	2.368	49.8	54.8	141			S
Sample ID: 1906G37-002AM	ISD SampT	ype: MS	SD.	Tes	tCode: EF	PA Method	300.0: Anion	s		
Client ID: CENTRAL OCD	LF V Batch	n ID: 46	094	F	RunNo: 6'	1307				
Prep Date: 7/10/2019	Analysis D	ate: 7/	10/2019	5	SeqNo: 20	078214	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Fluoride	3.8	1.5	3.000	3.729	1.33	15	138	16.4	20	S
Chloride	250	7.5	30.00	241.1	43.4	54.5	140	9.47	20	S
Nitrogen, Nitrate (As N)	9.4	1.5	15.00	2.368	47.1	54.8	141	4.20	20	S
Sample ID: MB-46094	SampT	ype: ME	BLK	Tes	tCode: EF	PA Method	300.0: Anion	s		
Client ID: PBS	Batch	n ID: 46	094	F	RunNo: 6	1307				
Prep Date: 7/10/2019	Analysis D	ate: 7/	10/2019	SeqNo: 2078230 Units: mg/Kg						
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Fluoride	ND	0.30								
Chloride	ND	1.5								
Nitrogen, Nitrate (As N)	ND	0.30								
Sulfate	ND	1.5								
Sample ID: LCS-46094	SampT	ype: LC	S	Tes	tCode: EF	PA Method	300.0: Anion	s		
Client ID: LCSS	Batch	n ID: 46	094	F	RunNo: 6	1307				
Prep Date: 7/10/2019	Analysis D	ate: 7/	10/2019	S	SeqNo: 20	078231	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Fluoride	1.6	0.30	1.500	0	110	90	110			
Chloride	14	1.5	15.00	0	92.9	90	110			
Nitrogen, Nitrate (As N)	7.4	0.30	7.500	0	99.2	90	110			
Sulfate	29	1.5	30.00	0	96.5	90	110			
Sample ID: MB-46126	SampT	ype: ME	BLK	Tes	tCode: EF	PA Method	300.0: Anion	s		
Client ID: PBS	Batch	n ID: 46	126	F	RunNo: 6'	1343				
Prep Date: 7/11/2019	Analysis D	ate: 7/	11/2019	S	SeqNo: 20	079410	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Fluoride	ND	0.30								
Chloride	ND	1.5								

Qualifiers:

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit S % Recovery outside of range due to dilution or matrix B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

29

1.5

30.00

	athon D Central Landf	farm Se	miannual S	ampling						
Sample ID: MB-46126		Type: ME		1 0	tCode: El	PA Method	300.0: Anion	s		
Client ID: PBS		h ID: 46		F	RunNo: 6	1343				
Prep Date: 7/11/2019	Analysis E	Date: 7/	11/2019	S	SeqNo: 2	079410	Units: mg/k	٤g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Nitrogen, Nitrate (As N)	ND	0.30								
Sulfate	ND	1.5								
Sample ID: LCS-46126	SampT	Гуре: LC	S	Tes	tCode: El	PA Method	300.0: Anion	S		
Client ID: LCSS	Batc	h ID: 46	126	F	RunNo: 6	1343				
Prep Date: 7/11/2019	Analysis E	Date: 7/	11/2019	S	SeqNo: 2	079411	Units: mg/k	ζg		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Fluoride	1.5	0.30	1.500	0	103	90	110			
Chloride	14	1.5	15.00	0	93.3	90	110			
Nitrogen, Nitrate (As N)										

0

98.1

90

110

Qualifiers:

Sulfate

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 51 of 65

Client: Project:	Marathon	ı ıtral Landfa	rm So	miannual S	maling						
	OCD CEI	III al Lanula	ini se		ampning						
Sample ID:	MB-45999	SampTy	pe: ME	BLK	Tes	tCode: El	PA Method	418.1: TPH			
Client ID:	PBS	Batch	ID: 45	999	F	RunNo: 6	1241				
Prep Date:	7/3/2019	Analysis Da	te: 7/	9/2019	S	SeqNo: 2	075997	Units: mg/K	g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Petroleum Hyd	rocarbons, TR	ND	20								
Sample ID:	LCS-45999	SampTy	pe: LC	S	Tes	tCode: El	PA Method	418.1: TPH			
Client ID: LCSS Batch ID: 45999 RunNo: 61241											
Prep Date:	App Date: 7/3/2019 Analysis Date: 7/9/2019 SeqNo: 2075998 Units: mg/Kg										
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Petroleum Hyd	rocarbons, TR	110	20	100.0	0	111	54.3	153			
Sample ID:	1906G37-002AMS	SampTy	pe: MS	6	Tes	tCode: El	PA Method	418.1: TPH			
Client ID:	CENTRAL OCD L	V Batch	ID: 45	999	F	RunNo: 6	1241				
Prep Date:	7/3/2019	Analysis Da	te: 7/	9/2019	S	SeqNo: 2	076001	Units: mg/K	g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Petroleum Hyd	rocarbons, TR	110	19	94.88	0	116	80	120			
Sample ID:	1906G37-002AMS	D SampTy	pe: MS	SD	Tes	tCode: El	PA Method	418.1: TPH			
Client ID:	CENTRAL OCD LI	v Batch	ID: 45	999	F	RunNo: 6	1241				
Prep Date:	7/3/2019	Analysis Da	te: 7/	9/2019	S	SeqNo: 2	076002	Units: mg/K	g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Petroleum Hyd	rocarbons, TR	110	19	94.52	0	113	80	120	3.14	20	

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range

Page 52 of 65

RL Reporting Limit

Client: Mai	athon										
Project: OC	D Central Landfa	ırm Sei	miannual Sa	ampling							
Sample ID: MB-45994	SampTy	/pe: ME	BLK	Test	Code: EF	PA Method	od 8015M/D: Diesel Range Organics				
Client ID: PBS	Batch	ID: 459	994	R	unNo: 6	1163					
Prep Date: 7/3/2019	Analysis Da	ate: 7/	5/2019	S	eqNo: 20	072907	Units: mg/k	٢g			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Diesel Range Organics (DRO)	ND	10									
Motor Oil Range Organics (MR	0) ND	50									
Surr: DNOP	8.3		10.00		83.3	70	130				
Sample ID: LCS-45994 SampType: LCS TestCode: EPA Method 8015M/D: Diesel Range Organics											
Client ID: LCSS	Batch ID: 45994 RunNo: 61163										
Prep Date: 7/3/2019	Analysis Da	ate: 7/	5/2019	S	SeqNo: 2072909 Units: mg/Kg						
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Diesel Range Organics (DRO)	45	10	50.00	0	89.9	63.9	124				
Surr: DNOP	4.0		5.000		80.7	70	130				
Sample ID: 1906G37-00	2AMS SampTy	/pe: MS	6	Test	Code: EF	PA Method	8015M/D: Di	esel Rang	e Organics		
Client ID: CENTRAL C	CD LF V Batch	ID: 459	994	R	unNo: 6	1157					
Prep Date: 7/3/2019	Analysis Da	ate: 7/	5/2019	S	eqNo: 20	074746	Units: mg/k	٢g			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Diesel Range Organics (DRO)	46	9.2	46.04	0	100	57	142				
Surr: DNOP	4.2		4.604		91.2	70	130				
Sample ID: 1906G37-00	2AMSD SampTy	/pe: MS	SD	Test	Code: EF	PA Method	8015M/D: Di	esel Rang	e Organics		
Client ID: CENTRAL C	CD LF V Batch	ID: 459	994	R	unNo: 6	1157					
Prep Date: 7/3/2019	Analysis Da	ate: 7/	5/2019	S	eqNo: 20	074747	Units: mg/k	٢g			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Diesel Range Organics (DRO)	47	9.1	45.33	0	105	57	142	2.95	20		
Surr: DNOP	4.3		4.533		94.3	70	130	0	0		

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

WO#: 1906G37

31-Jul-19

Client:MaratProject:OCD	hon Central Landf	farm Sei	miannual S	ampling						
Sample ID: MB-45963	SampT	Гуре: МЕ	BLK	Tes	tCode: El	PA Method	8082A: PCB'	s		
Client ID: PBS	Batc	h ID: 45	963	F	RunNo: 6	1252				
Prep Date: 7/2/2019	Analysis E	Date: 7/	9/2019	5	SeqNo: 2076333 Units: mg			(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Aroclor 1016	ND	0.025								
Aroclor 1221	ND	0.025								
Aroclor 1232	ND	0.025								
Aroclor 1242	ND	0.025								
Aroclor 1248	ND	0.025								
Aroclor 1254	ND	0.025								
Aroclor 1260	ND	0.025								
Surr: Decachlorobiphenyl	0.040		0.06250		64.8	25.7	135			
Surr: Tetrachloro-m-xylene	0.047		0.06250		75.2	32.3	138			
Sample ID: LCS-45963	SampT	Гуре: LC	S	Tes	tCode: El	PA Method	8082A: PCB'	s		
Client ID: LCSS	Batc	h ID: 45	963	F	RunNo: 6	1252				
Prep Date: 7/2/2019	Analysis E	Date: 7/	9/2019	S	SeqNo: 2	076334	Units: mg/K	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Aroclor 1016	0.11	0.025	0.1250	0	87.6	32	156			
Aroclor 1260	0.086	0.025	0.1250	0	69.1	32.2	111			
Surr: Decachlorobiphenyl	0.048		0.06250		76.8	25.7	135			
Surr: Tetrachloro-m-xylene	0.046		0.06250		72.8	32.3	138			
Sample ID: 1906G37-002A	MS Samp1	Гуре: МS	6	Tes	tCode: El	PA Method	8082A: PCB'	s		
Client ID: CENTRAL OC	D LF V Batcl	h ID: 45	963	F	RunNo: 6	1252				
Prep Date: 7/2/2019	Analysis E	Date: 7/	10/2019	S	SeqNo: 2	076343	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Aroclor 1016	0.099	0.022	0.1122	0	88.0	33.5	145			
Aroclor 1260	0.11	0.022	0.1122	0	96.6	39.1	160			
Surr: Decachlorobiphenyl	0.047		0.05610		84.4	25.7	135			
Surr: Tetrachloro-m-xylene	0.042		0.05610		75.6	32.3	138			
Sample ID: 1906G37-002A	MSD Samp1	Гуре: МS	SD	Tes	tCode: El	PA Method	8082A: PCB'	s		
Client ID: CENTRAL OC	D LF V Batcl	h ID: 45	963	F	RunNo: 6	1252				
Prep Date: 7/2/2019	Analysis E	Date: 7/	10/2019	5	SeqNo: 2	076344	Units: mg/K	íg		
Analyte	Result	PQL		SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Aroclor 1016	0.088	0.021	0.1057	0	82.9	33.5	145	11.9	36.6	
Aroclor 1260	0.088	0.021	0.1057	0	83.0	39.1	160	21.1	39	
Surr: Decachlorobiphenyl	0.036		0.05283		68.8	25.7	135	0	0	
Surr: Tetrachloro-m-xylene	0.041		0.05283		77.6	32.3	138	0	0	

- Value exceeds Maximum Contaminant Level. *
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

WO#: 1906G37 31-Jul-19

₩0π.

Client: Maratho	n									
Project: OCD Ce	ntral Landf	farm Sei	miannual Sa	ampling						
Sample ID: mb-45983	SampT	ype: ME	BLK	Tes	tCode: E	PA Method	8260B: Volat	iles		
Client ID: PBS	Batcl	n ID: 45	983	F	RunNo: 6	1138				
Prep Date: 7/2/2019	Analysis D	Date: 7/	3/2019	S	SeqNo: 2	072389	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	0.025								
Toluene	ND	0.050								
Ethylbenzene	ND	0.050								
Methyl tert-butyl ether (MTBE)	ND	0.050								
1,2,4-Trimethylbenzene	ND	0.050								
1,3,5-Trimethylbenzene	ND	0.050								
1,2-Dichloroethane (EDC)	ND	0.050								
1,2-Dibromoethane (EDB)	ND	0.050								
Naphthalene	ND	0.10								
1-Methylnaphthalene	ND	0.20								
2-Methylnaphthalene	ND	0.20								
Acetone	ND	0.75								
Bromobenzene	ND	0.050								
Bromodichloromethane	ND	0.050								
Bromoform	ND	0.050								
Bromomethane	ND	0.15								
2-Butanone	ND	0.50								
Carbon disulfide	ND	0.50								
Carbon tetrachloride Chlorobenzene	ND ND	0.050 0.050								
Chloroethane	ND	0.050								
Chloroform	ND	0.050								
Chloromethane	ND	0.050								
2-Chlorotoluene	ND	0.050								
4-Chlorotoluene	ND	0.050								
cis-1,2-DCE	ND	0.050								
cis-1,3-Dichloropropene	ND	0.050								
1,2-Dibromo-3-chloropropane	ND	0.10								
Dibromochloromethane	ND	0.050								
Dibromomethane	ND	0.050								
1,2-Dichlorobenzene	ND	0.050								
1,3-Dichlorobenzene	ND	0.050								
1,4-Dichlorobenzene	ND	0.050								
Dichlorodifluoromethane	ND	0.050								
1,1-Dichloroethane	ND	0.050								
1,1-Dichloroethene	ND	0.050								
1,2-Dichloropropane	ND	0.050								
1,3-Dichloropropane	ND	0.050								
2,2-Dichloropropane	ND	0.10								

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

WO#: **1906G37**

Client:MarathProject:OCD (ion Central Landf	farm Sei	miannual Sa	ampling						
Sample ID: mb-45983	SampT	ype: ME	BLK	Tes	tCode: El					
Client ID: PBS	Batc	n ID: 45	983	F	RunNo: 6	1138				
Prep Date: 7/2/2019	Analysis E	Date: 7/	3/2019	5	SeqNo: 2072389			Units: mg/Kg		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
1,1-Dichloropropene	ND	0.10								
Hexachlorobutadiene	ND	0.10								
2-Hexanone	ND	0.50								
Isopropylbenzene	ND	0.050								
4-Isopropyltoluene	ND	0.050								
4-Methyl-2-pentanone	ND	0.50								
Methylene chloride	ND	0.15								
n-Butylbenzene	ND	0.15								
n-Propylbenzene	ND	0.050								
sec-Butylbenzene	ND	0.050								
Styrene	ND	0.050								
tert-Butylbenzene	ND	0.050								
1,1,1,2-Tetrachloroethane	ND	0.050								
1,1,2,2-Tetrachloroethane	ND	0.050								
Tetrachloroethene (PCE)	ND	0.050								
trans-1,2-DCE	ND	0.050								
trans-1,3-Dichloropropene	ND	0.050								
1,2,3-Trichlorobenzene	ND	0.10								
1,2,4-Trichlorobenzene	ND	0.050								
1,1,1-Trichloroethane	ND	0.050								
1,1,2-Trichloroethane	ND	0.050								
Trichloroethene (TCE)	ND	0.050								
Trichlorofluoromethane	ND	0.050								
1,2,3-Trichloropropane	ND	0.10								
Vinyl chloride	ND	0.050								
Xylenes, Total	ND	0.10								
Surr: Dibromofluoromethane	0.51		0.5000		103	70	130			
Surr: 1,2-Dichloroethane-d4	0.51		0.5000		102	70	130			
Surr: Toluene-d8	0.49		0.5000		98.4	70	130			
Surr: 4-Bromofluorobenzene	0.47		0.5000		93.6	70	130			
Sample ID: Ics-45983	SampT	ype: LC	S	Tes	tCode: El	PA Method	8260B: Volat	iles		
Client ID: LCSS	Batc	n ID: 45	983	F	RunNo: 6	1138				
Prep Date: 7/2/2019	Analysis E	Date: 7/	3/2019	S	SeqNo: 2	072390	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	1.2	0.025	1.000	0	118	70	130			
Toluene	0.95	0.050	1.000	0	94.9	70	130			
Chlorobenzene	0.92	0.050	1.000	0	92.5	70	130			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

WO#: **1906G37**

31-Jul-19

Client: Maratho		G ()	1.0	1'						
Project: OCD Ce	entral Land	larm Sei	mannual S	ampling						
Sample ID: Ics-45983	Samp	Гуре: LC	S	Tes	tCode: El	PA Method	8260B: Vola	tiles		
Client ID: LCSS	Batc	h ID: 45 9	983	F	RunNo: 6	1138				
Prep Date: 7/2/2019	Analysis [Date: 7/	3/2019	S	SeqNo: 2					
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
1,1-Dichloroethene	1.1	0.050	1.000	0	115	50.8	164			
Trichloroethene (TCE)	0.97	0.050	1.000	0	96.8	70	130			
Surr: Dibromofluoromethane	0.52		0.5000		105	70	130			
Surr: 1,2-Dichloroethane-d4	0.53		0.5000		105	70	130			
Surr: Toluene-d8	0.46		0.5000		92.6	70	130			
Surr: 4-Bromofluorobenzene	0.48		0.5000		96.9	70	130			
Sample ID: 1906g37-002ams	s Samp	Гуре: МS	3	Tes	tCode: El	PA Method	8260B: Vola	tiles		
Client ID: CENTRAL OCD I		h ID: 45	983	F	RunNo: 6	1138				
Prep Date: 7/2/2019	Analysis [Date: 7/	3/2019	S	SeqNo: 2	072393	Units: mg/k	٢g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	1.2	0.025	0.9960	0	124	68.9	131			
Toluene	1.0	0.050	0.9960	0	104	64.3	137			
Chlorobenzene	0.97	0.050	0.9960	0	97.1	65.9	143			
,1-Dichloroethene	1.2	0.050	0.9960	0	124	53.4	150			
richloroethene (TCE)	0.99	0.050	0.9960	0	99.8	70	130			
Surr: Dibromofluoromethane	0.52		0.4980		103	70	130			
Surr: 1,2-Dichloroethane-d4	0.53		0.4980		105	70	130			
Surr: Toluene-d8	0.49		0.4980		98.3	70	130			
Surr: 4-Bromofluorobenzene	0.46		0.4980		91.6	70	130			
Sample ID: 1906g37-002ams	d Samp	Гуре: МS	SD	Tes	tCode: El	PA Method	8260B: Vola	tiles		
Client ID: CENTRAL OCD I	FV Batc	h ID: 45	983	F	RunNo: 6	1138				
Prep Date: 7/2/2019	Analysis [Date: 7/	3/2019	S	SeqNo: 2	072394	Units: mg/H	٢g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	1.2	0.025	0.9843	0	125	68.9	131	0.768	20	
Toluene	1.0	0.049	0.9843	0	102	64.3	137	3.49	20	
Chlorobenzene	1.0	0.049	0.9843	0	102	65.9	143	3.63	20	
,1-Dichloroethene	1.2	0.049	0.9843	0	120	53.4	150	3.96	20	
richloroethene (TCE)	1.0	0.049	0.9843	0	104	70	130	3.21	20	
			0.4921		103	70	130	0	0	
Surr: Dibromofluoromethane	0.51									
Surr: Dibromofluoromethane Surr: 1,2-Dichloroethane-d4	0.51		0.4921		104	70	130	0	0	
			0.4921 0.4921		104 93.8	70 70	130 130	0 0	0 0	

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

WO#: 1906G37 31-Jul-19

Client: Ma	rathon									
Project: OC	D Central Land	farm Sei	miannual S	ampling						
Sample ID: 100ng Ics	SampT	Гуре: LC	S	Tes	tCode: El	PA Method	8260: Volatile	es Short L	.ist	
Client ID: LCSW	Batcl	h ID: SL	61220	F	RunNo: 6	1220				
Prep Date:	Analysis E	Date: 7/	8/2019	S	SeqNo: 2	075444	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	20	1.0	20.00	0	101	70	130			
Toluene	20	1.0	20.00	0	101	70	130			
Surr: 1,2-Dichloroethane-d4	10		10.00		104	70	130			
Surr: 4-Bromofluorobenzene	e 10		10.00		102	70	130			
Surr: Dibromofluoromethane	e 10		10.00		101	70	130			
Surr: Toluene-d8	9.7		10.00		96.9	70	130			
		Гуре: МЕ		Tes			130 8260: Volatile	es Short L	ist	
Surr: Toluene-d8	Samp1	Гуре: МЕ h ID: SL	BLK			PA Method		es Short L	ist	
Surr: Toluene-d8 Sample ID: RB	Samp1	h ID: SL	3LK 61220	F	tCode: El	PA Method		es Short L	ist	
Surr: Toluene-d8 Sample ID: RB Client ID: PBW Prep Date:	Samp1 Batcl	h ID: SL	3LK 61220 8/2019	F	tCode: El RunNo: 6	PA Method	8260: Volatile	es Short L %RPD	.ist RPDLimit	Qual
Surr: Toluene-d8 Sample ID: RB Client ID: PBW Prep Date: Analyte	Samp1 Batcl Analysis [h ID: SL Date: 7/	3LK 61220 8/2019	F	tCode: El RunNo: 6 SeqNo: 2	PA Method 1220 075445	8260: Volatile Units: μg/L			Qual
Surr: Toluene-d8 Sample ID: RB Client ID: PBW Prep Date: Analyte Benzene	Sampī Batcl Analysis E Result	h ID: SL Date: 7/ PQL	3LK 61220 8/2019	F	tCode: El RunNo: 6 SeqNo: 2	PA Method 1220 075445	8260: Volatile Units: μg/L			Qual
Surr: Toluene-d8 Sample ID: RB Client ID: PBW Prep Date: Analyte Benzene Toluene	SampT Batcl Analysis D Result ND	h ID: SL Date: 7/ PQL 1.0	3LK 61220 8/2019	F	tCode: El RunNo: 6 SeqNo: 2	PA Method 1220 075445	8260: Volatile Units: μg/L			Qual
Surr: Toluene-d8 Sample ID: RB Client ID: PBW Prep Date: Analyte Benzene Toluene Ethylbenzene	SampT Batcl Analysis E Result ND ND	h ID: SL Date: 7/ <u>PQL</u> 1.0 1.0	3LK 61220 8/2019	F	tCode: El RunNo: 6 SeqNo: 2	PA Method 1220 075445	8260: Volatile Units: μg/L			Qual
Surr: Toluene-d8 Sample ID: RB Client ID: PBW Prep Date:	SampT Batcl Analysis D Result ND ND ND	h ID: SL Date: 7/ <u>PQL</u> 1.0 1.0 1.0	3LK 61220 8/2019	F	tCode: El RunNo: 6 SeqNo: 2	PA Method 1220 075445	8260: Volatile Units: μg/L			Qual
Surr: Toluene-d8 Sample ID: RB Client ID: PBW Prep Date: Analyte Benzene Toluene Ethylbenzene Xylenes, Total	Samp1 Batcl Analysis E Result ND ND ND ND ND	h ID: SL Date: 7/ <u>PQL</u> 1.0 1.0 1.0	BLK 61220 8/2019 SPK value	F	tCode: El RunNo: 6 SeqNo: 2 %REC	PA Method 1220 075445 LowLimit	8260: Volatile Units: μ g/L HighLimit			Qual
Surr: Toluene-d8 Sample ID: RB Client ID: PBW Prep Date: Analyte Benzene Toluene Ethylbenzene Xylenes, Total Surr: 1,2-Dichloroethane-d4	Samp1 Batcl Analysis E Result ND ND ND ND 11 10	h ID: SL Date: 7/ <u>PQL</u> 1.0 1.0 1.0	BLK 61220 8/2019 SPK value 10.00	F	tCode: El RunNo: 6 SeqNo: 2 %REC 107	PA Method 1220 075445 LowLimit	8260: Volatile Units: μg/L HighLimit 130			Qual

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 58 of 65

Client:

Marathon

Project: OCD Central Landfarm Semiannual Sampling

Sample ID: Ics-45929	SampT	ype: LC	S	Tes	tCode: El	PA Method	8270C: Semi	ivolatiles		
Client ID: LCSS	Batch	n ID: 459	929	F	RunNo: 6	1183				
Prep Date: 7/1/2019	Analysis D	Date: 7/	5/2019	S	SeqNo: 2073789 Units: mg/Kg					
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Acenaphthene	1.0	0.20	1.670	0	61.1	41.3	106			
I-Chloro-3-methylphenol	2.4	0.50	3.330	0	71.9	39.7	113			
2-Chlorophenol	2.2	0.20	3.330	0	67.5	30.1	99.9			
,4-Dichlorobenzene	1.0	0.20	1.670	0	60.0	27.5	98.1			
,4-Dinitrotoluene	0.89	0.50	1.670	0	53.2	36	98.3			
I-Nitrosodi-n-propylamine	1.1	0.20	1.670	0	66.3	34.6	115			
-Nitrophenol	1.8	0.25	3.330	0	54.9	39.7	114			
entachlorophenol	1.2	0.40	3.330	0	37.3	37	94.7			
henol	2.2	0.20	3.330	0	66.2	35	96.7			
yrene	1.1	0.20	1.670	0	67.8	44.8	108			
,2,4-Trichlorobenzene	1.2	0.20	1.670	0	69.1	31.2	114			
Surr: 2-Fluorophenol	2.0		3.330		59.6	24.8	95.2			
Surr: Phenol-d5	2.3		3.330		69.5	29.9	97.8			
Surr: 2,4,6-Tribromophenol	2.1		3.330		62.9	35.7	108			
Surr: Nitrobenzene-d5	1.2		1.670		69.5	32.5	106			
Surr: 2-Fluorobiphenyl	1.1		1.670		66.2	27.7	114			
Surr: 4-Terphenyl-d14	1.1		1.670		65.7	15	148			
Sample ID: mb-45929	SampT	уре: МВ	LK	Tes	tCode: El	PA Method	8270C: Sem	ivolatiles		
Client ID: PBS	Batch	n ID: 459	929	F	RunNo: 6	1183				
Prep Date: 7/1/2019	Analysis D	Date: 7/	5/2019	S	SeqNo: 2	073790	Units: mg/k	٢g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
cenaphthene	ND	0.20								
cenaphthylene	ND	0.20								
niline	ND	0.20								
nthracene	ND	0.20								
zobenzene	ND	0.20								
enz(a)anthracene	ND	0.20								
lenzo(a)pyrene	ND	0.20								
enzo(b)fluoranthene	ND	0.20								
enzo(g,h,i)perylene	ND	0.20								
enzo(k)fluoranthene	ND	0.20								
enzoic acid	ND	0.50								
	ND	0.20								
enzyl alcohol										
	ND	0.20								
lis(2-chloroethoxy)methane	ND ND	0.20 0.20								
lenzyl alcohol lis(2-chloroethoxy)methane lis(2-chloroethyl)ether lis(2-chloroisopropyl)ether	ND ND ND	0.20 0.20 0.20								

Qualifiers:

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

	Marathon OCD Central Lanc	Landfarm Semiannual Sampling								
Sample ID: mb-459	29 Samp	Type: MBLI	٢	TestCode: EPA Method 8270C: Semivolatiles						
Client ID: PBS	Bate	ch ID: 45929	Ð	F	RunNo: 6					
Prep Date: 7/1/20	19 Analysis	Date: 7/5/2	2019	SeqNo: 2073790			Units: mg/K	g		
Analyte	Result	PQL S	PK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
4-Bromophenyl phenyl et	her ND	0.20								
Butyl benzyl phthalate	ND	0.20								
Carbazole	ND	0.20								
4-Chloro-3-methylphenol	ND	0.50								
4-Chloroaniline	ND	0.50								
2-Chloronaphthalene	ND	0.25								
2-Chlorophenol	ND	0.20								
4-Chlorophenyl phenyl et		0.20								
Chrysene	ND	0.20								
Di-n-butyl phthalate	ND	0.40								
Di-n-octyl phthalate	ND	0.40								
Dibenz(a,h)anthracene	ND	0.20								
Dibenzofuran	ND ND	0.20 0.20								
1,2-Dichlorobenzene 1,3-Dichlorobenzene	ND	0.20								
1,4-Dichlorobenzene	ND	0.20								
3,3'-Dichlorobenzidine	ND	0.20								
Diethyl phthalate	ND	0.20								
Dimethyl phthalate	ND	0.20								
2,4-Dichlorophenol	ND	0.40								
2,4-Dimethylphenol	ND	0.30								
4,6-Dinitro-2-methylpheno		0.40								
2,4-Dinitrophenol	ND	0.50								
2,4-Dinitrotoluene	ND	0.50								
2,6-Dinitrotoluene	ND	0.50								
Fluoranthene	ND	0.20								
Fluorene	ND	0.20								
Hexachlorobenzene	ND	0.20								
Hexachlorobutadiene	ND	0.20								
Hexachlorocyclopentadie	ne ND	0.20								
Hexachloroethane	ND	0.20								
Indeno(1,2,3-cd)pyrene	ND	0.20								
Isophorone	ND	0.40								
1-Methylnaphthalene	ND	0.20								
2-Methylnaphthalene	ND	0.20								
2-Methylphenol	ND	0.40								
3+4-Methylphenol	ND	0.20								
N-Nitrosodi-n-propylamine		0.20								
N-Nitrosodiphenylamine	ND	0.20								

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

WO#: **1906G37** *31-Jul-19*

Project: OCD Central Landfarm Semiannual Sampling

Marathon

lethod 8270C: Semivolatiles 90 Units: mg/Kg
90 Units: mg/Kg
6 6
wLimit HighLimit %RPD RPDLimit Qual
24.8 95.2
29.9 97.8
35.7 108
32.5 106
27.7 114
15 148

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 61 of 65

Client: Project:	Marathon OCD Cer		arm Se	miannual Sa	ampling						
Sample ID:	MB-46081	SampT	ype: ME	BLK	Tes	tCode: EF	PA Method	7471: Mercu	у		
Client ID:	PBS	Batch	ID: 46	081	F	RunNo: 6 '	1284				
Prep Date:	7/9/2019	Analysis Da	ate: 7/	10/2019	S	SeqNo: 20	077571	Units: mg/K	g		
Analyte Mercury		Result ND	PQL 0.033	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Sample ID:	LLLCS-46081	SampT	ype: LC	SLL	Tes	tCode: EF	PA Method	7471: Mercu	у		
Client ID:	BatchQC	Batch	ID: 46	081	F	RunNo: 6	1284				
Prep Date:	7/9/2019	Analysis Da	ate: 7/	10/2019	S	SeqNo: 20	077572	Units: mg/K	g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Mercury		ND	0.033	0.006660	0	89.8	70	130			
Sample ID:	LCS-46081	SampT	ype: LC	S	Tes	tCode: EF	PA Method	7471: Mercu	у		
Client ID:	LCSS	Batch	ID: 46	081	F	RunNo: 6 '	1284				
Prep Date:	7/9/2019	Analysis Da	ate: 7/	10/2019	ç	SeqNo: 20	077573	Units: mg/K	g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Mercury		0.17	0.033	0.1667	0	100	80	120			
Sample ID:	1906G37-002BMS	SampT	ype: MS	3	Tes	tCode: EF	PA Method	7471: Mercu	у		
Client ID:	CENTRAL OCD LE	V Batch	ID: 46	081	F	RunNo: 6	1284				
Prep Date:	7/9/2019	Analysis Da	ate: 7/	10/2019	5	SeqNo: 20	077576	Units: mg/K	g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Mercury		0.18	0.033	0.1663	0.01771	94.8	80	120			
Sample ID:	1906G37-002BMS	D SampT	ype: M \$	SD	Tes	tCode: EF	PA Method	7471: Mercu			
Client ID:	CENTRAL OCD LE	V Batch	ID: 46	081	F	RunNo: 6 '	1284				
Prep Date:	7/9/2019	Analysis Da	ate: 7/	10/2019	S	SeqNo: 20	077577	Units: mg/K	g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Mercury		0.17	0.032	0.1595	0.01771	94.7	80	120	3.81	20	

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range

RL Reporting Limit

Client:
Project:

OCD Central Landfarm Semiannual Sampling

Marathon

Sample ID:	LCS-45944	SampT	Гуре: LC	S	TestCode: EPA Method 6010B: Soil Metals						
Client ID:	LCSS	Batcl	h ID: 45	944	F	RunNo: 61102					
Prep Date:	7/1/2019	Analysis E	Date: 7/	2/2019	S	SeqNo: 2	070362	Units: mg/k	٢g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Arsenic		26	2.5	25.00	0	102	80	120			
Barium		25	0.10	25.00	0	99.0	80	120			
Cadmium		26	0.10	25.00	0	102	80	120			
Chromium		26	0.30	25.00	0	102	80	120			
Copper		27	0.30	25.00	0	107	80	120			
Iron		27	2.5	25.00	0	109	80	120			
Lead		25	0.25	25.00	0	99.6	80	120			
Manganese		25	0.10	25.00	0	102	80	120			
Selenium		25	2.5	25.00	0	99.7	80	120			
Silver		5.2	0.25	5.000	0	103	80	120			
Uranium		25	5.0	25.00	0	98.3	80	120			
Zinc		26	2.5	25.00	0	102	80	120			
Sample ID:	MB-45944	SampT	Type: ME	BLK	Tes	tCode: El	PA Method	6010B: Soil	Metals		
Client ID:	PBS	Batcl	h ID: 45	944	F	RunNo: 6	1102				
Prep Date:	7/1/2019	Analysis D	Date: 7/	2/2019	S	SeqNo: 2	070364	Units: mg/k	٢g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Arsenic		ND	2.5								
Barium		ND	0.10								
Cadmium		ND	0.10								
Chromium		ND	0.30								
Copper		ND	0.30								
Iron		ND	2.5								
Lead		ND	0.25								
Manganese		ND	0.10								
Selenium		ND	2.5								
Silver		ND	0.25								
Uranium		ND	5.0								
Zinc		ND	2.5								
Sample ID:	1906G37-002BM	S SampT	Гуре: М	6	Tes	tCode: El	PA Method	6010B: Soil	Metals		
Client ID:	CENTRAL OCD	LFV Batcl	h ID: 45	944	F	RunNo: 6	1102				
Prep Date:	7/1/2019	Analysis D	Date: 7/	2/2019	S	SeqNo: 2	070395	Units: mg/k	٢g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Arsenic		24	5.0	25.11	2.944	83.0	75	125			
		260	0.20	25.11	184.7	286	75	125			S
		200	0.20	20.11							-
Barium Cadmium		200	0.20	25.11	0	90.1	75	125			-

Qualifiers:

Value exceeds Maximum Contaminant Level. *

D Sample Diluted Due to Matrix

Н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit PQL Practical Quanitative Limit

% Recovery outside of range due to dilution or matrix S

Е Value above quantitation range

J Analyte detected below quantitation limits

Р Sample pH Not In Range

RL Reporting Limit

Analyte detected in the associated Method Blank В

WO#: **1906G37**

31-Jul-19

Client: Project:	Marathon OCD Cer		farm Sei	niannual Sa	ampling						
Sample ID:	1906G37-002BMS	SampT	Гуре: МS	5	Tes	tCode: EF	PA Method	6010B: Soil I	Metals		
Client ID:	CENTRAL OCD LE	FV Batcl	h ID: 45	944	F	RunNo: 6	1102				
Prep Date:	7/1/2019	Analysis D	Date: 7/	2/2019	S	SeqNo: 20	070395	Units: mg/K	٢g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Copper		29	0.60	25.11	4.131	99.6	75	125			
Lead		22	0.50	25.11	0	85.8	75	125			
Manganese		430	0.20	25.11	343.9	357	75	125			S
Selenium		26	5.0	25.11	0	105	75	125			
Silver		3.6	0.50	5.022	0	71.4	75	125			S
Uranium		ND	10	25.11	0	33.8	75	125			S
Zinc		45	5.0	25.11	21.02	95.9	75	125			
Sample ID:	1906G37-002BMS	D SampT	Гуре: М	D	Tes	tCode: EF	PA Method	6010B: Soil I	Metals		
Client ID:	CENTRAL OCD LE	FV Batcl	h ID: 45	944	F	RunNo: 6	1102				
Prep Date:	7/1/2019	Analysis D	Date: 7/	2/2019	S	SeqNo: 20	070396	Units: mg/K	٤g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Arsenic		24	5.0	25.14	2.944	85.4	75	125	2.53	20	
Barium		320	0.20	25.14	184.7	554	75	125	23.2	20	RS
Cadmium		23	0.20	25.14	0	91.9	75	125	2.16	20	
Chromium		41	0.60	25.14	15.08	104	75	125	5.56	20	
Copper		30	0.60	25.14	4.131	105	75	125	4.53	20	
Lead		24	0.50	25.14	0	95.6	75	125	11.0	20	
Manganese		390	0.20	25.14	343.9	202	75	125	9.39	20	S
Selenium		27	5.0	25.14	0	108	75	125	2.88	20	
Silver		3.5	0.50	5.028	0	70.6	75	125	1.08	20	S
Uranium		ND	10	25.14	0	31.9	75	125	0	20	S
Zinc		48	5.0	25.14	21.02	109	75	125	6.86	20	
Sample ID:	1906G37-002B	SampT	Гуре: РЅ		Tes	tCode: EF	PA Method	6010B: Soil I	Metals		
Client ID:	CENTRAL OCD LE	FV Batch	h ID: 45	944	F	RunNo: 6 '	1102				
Prep Date:	7/1/2019	Analysis D	Date: 7/	2/2019	S	SeqNo: 20	070397	Units: mg/K	(g		
Analyte		Result	PQL		SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Barium		230	0.20	49.78	184.7	88.6	80	120			
Manganese		390	0.20	49.78	343.9	85.5	80	120			
Silver		8.0	0.50	9.955	0	80.6	80	120			
Uranium		29	10	49.78	0	59.2	80	120			S

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Client: Project:	Marathon OCD Ce	n ntral Landfa	rm Sei	miannual Sa	ampling						
Sample ID:	mb-45983	SampTy	pe: ME	BLK	Tes	tCode: EF	PA Method	8015D Mod:	Gasoline I	Range	
Client ID:	PBS	Batch	ID: 45	983	F	RunNo: 61	1138				
Prep Date:	7/2/2019	Analysis Da	ite: 7/	3/2019	S	SeqNo: 20	072414	Units: mg/K	(g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Rang Surr: BFB	ge Organics (GRO)	ND 440	5.0	500.0		88.2	70	130			
Sample ID:	Ics-45983	SampTy	pe: LC	S	Tes	tCode: EF	PA Method	8015D Mod:	Gasoline	Range	
Client ID:	LCSS	Batch	ID: 45	983	F	RunNo: 61	1138				
Prep Date:	7/2/2019	Analysis Da	ite: 7/	3/2019	S	SeqNo: 20	072415	Units: mg/K	g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Rang	ge Organics (GRO)	20	5.0	25.00	0	80.2	70	130			
Surr: BFB		440		500.0		87.4	70	130			
Sample ID:	1906g37-002ams	g SampTy	pe: M\$	3	Tes	tCode: EF	PA Method	8015D Mod:	Gasoline	Range	
Client ID:	CENTRAL OCD L	FV Batch	ID: 45	983	F	RunNo: 61	1138				
Prep Date:	7/2/2019	Analysis Da	ite: 7/	3/2019	S	SeqNo: 20	072418	Units: mg/K	(g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Rang											
	je Organics (GRO)	22	4.9	24.68	0	91.1	68.2	135			
Surr: BFB	ge Organics (GRO)	22 500	4.9	24.68 493.6	0	91.1 101	68.2 70	135 130			
	: 1906g37-002ams	500	-	493.6		101	70		Gasoline	Range	
Sample ID:		500 dg SampTy	-	493.6	Tes	101	70 PA Method	130	Gasoline	Range	
Sample ID: Client ID:	1906g37-002ams	500 dg SampTy	pe: M \$ ID: 45	493.6 SD 983	Tes	101 tCode: EF	70 PA Method 1138	130		Range	
Sample ID: Client ID:	1906g37-002ams CENTRAL OCD L	500 dg SampTy FV Batch	pe: M \$ ID: 45	493.6 SD 983 3/2019	Tes	101 tCode: EF RunNo: 6 SeqNo: 20	70 PA Method 1138	130 8015D Mod:		Range RPDLimit	Qual
Sample ID: Client ID: Prep Date: Analyte	1906g37-002ams CENTRAL OCD L	500 dg SampTy F V Batch Analysis Da	pe: MS ID: 45 ate: 7/	493.6 SD 983 3/2019	Tes F S	101 tCode: EF RunNo: 6 SeqNo: 20	70 PA Method 1138 072419	130 8015D Mod: Units: mg/K	ſg	U	Qual

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

Sample Log-In Check List

Client Name: MARATHON GALLUP	Work Order Numb	oer: 1906	G37		RcptNo	: 1
Received By: Andy Freeman	6/27/2019 4:20:00 F	PM		ady	-	
Completed By: Anne Thorne	6/28/2019 4:26:34 F	м		And An		
Reviewed By: X7,1,14				2,,2 /// -	-	
Chain of Custody						
1. Is Chain of Custody complete?		Yes	\checkmark	No 🗌	Not Present	
2. How was the sample delivered?		<u>Clien</u>	t			
Log In						
3. Was an attempt made to cool the sample	s?	Yes	\checkmark	No 🗌	NA 🗌	
4. Were all samples received at a temperatu	re of >0° C to 6.0°C	Yes	✓	No 🗌	NA \Box	
5. Sample(s) in proper container(s)?		Yes	✓	No 🗌		
Sufficient sample volume for indicated tes	t(s)?	Yes	\checkmark	No 🗌		
7. Are samples (except VOA and ONG) prop	erly preserved?	Yes	✓	No 🗌		
3. Was preservative added to bottles?		Yes		No 🗹	NA 🗌	
. VOA vials have zero headspace?		Yes	V	No 🗌	No VOA Vials	119
0, Were any sample containers received bro	ken?	Yes		No 🗹	# of preserved	04229112
1. Does paperwork match bottle labels? (Note discrepancies on chain of custody)		Yes	✓	No 🗌	bottles checked for pH:	12 unless noted)
2. Are matrices correctly identified on Chain	of Custody?	Yes		No 🗌	Adjusted?	
3. Is it clear what analyses were requested?		Yes	✓	No 🗌		
 Were all holding times able to be met? (If no, notify customer for authorization.) 		Yes	✓	No 🗌	Checked by:	
pecial <u>Handling (if applicable)</u>						
5. Was client notified of all discrepancies wit	th this order?	Yes		No 🗌	NA 🗹	
Person Notified:	Date	I				
By Whom:	Via:	🗌 eMa	il 🗌 Pho	ne 🛄 Fax	In Person	
Regarding:						
Client Instructions:					· ······	
6. Additional remarks:						
CUSTODY SEALS INTACT ON SA	MPLE BOTTLES/at 6/28/	19				
7. <u>Cooler Information</u> Cooler No Temp C Condition	Seal Intact Seal No	Seal Da	te	gned By		

1	Cooler No	lemp °C	Condition	Seal Intact	Seal No	Seal Date	Signed By
	1	4.6	Good	Yes			
	2	4.9	Good	Yes			άνα στα το
	3	5.1	Good	Yes	-		, , , , , , , , , , , , , , , , , , ,

Ì		י זיי זיי								(N JO) У)	Air Bubbles										
or 2		<u>e</u>											BTEX	-						×			
ō				60							LSIT		VADOSE ZO		×	××	××	××	×	<u> </u>	<u> </u>		
ન	Z	Ö	Ē	M 871	505-345-4107								-ime2) 0728							<u> </u>			
•	Ż		tal.co	e, N	345-	uest							8260B										
			ment	nbuər	505	Req		s'8;	5 РС	280	8/9	səbi	oitee¶ r808										
	HALL EDB (Method 8011) PAH (6310 or 82705IMS) PAH (6																						
		<u>'</u>	allen	1		Ana			(0)				RCRA 8 Me										ŀ
	HALL	Z	h.ww	s NE	-397		_		S				EDB (Metho 0128) HA9				-				·		L
	1	. <	3	wkin	5-345		-						odtoW) HGT										o
		1 Г		4901 Hawkins NE	Tel. 505-345-3975			(0)	มพ/) 2108 HGT	×				×				S:	3 costes
	_			49(Чe			(ʎju	O SE	(G	ЬН	L+3	a⊤M+X∃Ta									Remarks	20
г		J L_			1			()	208)s,	LME	L+3	атм+хэта									Rei	
			Project Name: CENTRAL OCD LANDFARM				oore	·			oN 🗆	6.4.9 5.1 %	НЕАL No. 1906/437	-201	202-	202	202	<u>5</u> 72	A	200-		Date Time	6/27/19/1620
	Time:	□ Rush_	ENTRAL C	SEMIANNUAL SAMPLING			Manager: Brian Moore			-	X es	7	ative	None	None	None	None	None	None	₽ ₹~1)) N
	Turn-Around Time	X Standard	Project Name	SEMIANNUA	Project #:	_	Project Mana			Sampler:	On Ice:	Sample Temperature:	Container Type and #	8oz jar - 3 4oz jar - 1	40ml voa-X		Received by:	Received by:					
	Chain-of-Custody Record	Client: Marathon Petroleum Company	ry	92 Giant Crossing Road	Gallup, NM 87301	6-3745	<u>BMoore1@Marathonpetroleum.com</u>	standard OC PUTP	XLevel 4 (Full Validation)	AT 010/24/14			Sample Request ID	CENTRAL OCD LF TZ01	CENTRAL OCD LF VZ01	CENTRAL OCD LF VZ01MS	CENTRAL OCD LF VZ01MSD	CENTRAL OCD LF TZ02	CENTRAL OCD LF VZ02	TRIP BLANK		Apr.	ď by:
(of-Cu	non Pet	Gallup Refinery		Gallu	505-726-3745	BMoore1		• •		EXCEL		Matrìx	SOIL						WATER		Relinquished by:	Relinquished by:
•	hain-	Marath	Gallup	Mailing Address:		# :	r Fax#:	QA/QC Package:	dard	ŗ	X EDD (Type)		Time	0930	0001	1000	1000	1050	1110	I			19 16 19
(Client:		Mailing		Phone #:	email or Fax#:	QA/QC }	🕅 Standard		X EDD		Date	6/21/19 0930								19	garrig

	_	ג ר	1							(١	or 1	Y)	Air Bubbles											
2	ENVTDONMENTAL	ANALYSIS LABORATORY											XJT8	I —			I		×	×	×			
Ъ,	Z		I I	6											×	×	×	×						
2	2	20	, , , _	Albuquerque, NM 87109	107		_						imə2) 0728 OX 320 0AV	-	×	×	×	×						
ļ		59		NN NN	505-345-4107	est					(0)	J <u>/</u>	8250 (Semi	ł										
	ē	2	enta	anbu	505-3	equi		SBIS	2 b	808	}/s	əpi	8081 Pestic											
		SI	Lonm	anbn	Fax 5	sis R							D,7) anoinA											
		i Ņ	lenvi	Alb	ш.	Analysis Request					ę	stals	ым 8 Аяря											
		Į₹	www.hallenvironmental.com	Ч	975	A		((SM	IS0	728	or {	0168) HAA											
			Ŵ	4901 Hawkins NE	Tel. 505-345-3975								EDB (Metho											
	_			Haw	505-5								DATEM) HAT	· · ·								 		
				1901	Tel.								TPH 8015 (×		×						arks		
				N									8TEX+MT8 BTEX+MT8									Remarks:		
								() (0,0		, ב י 	atm.yata	<u>e</u>	~	\sim							Q	
			NRM										o M	20l	8	E B	a	010	1	212	$\left \begin{array}{c} 0 \\ 0 \end{array} \right $	Time 1902	ne / <i>K</i> 2.6	
													HEAL NO.	ì		(-		- 10			٢	⊨ •	Т д	
							e				No.		HE									Date	Date	
			ÖCI	G			Mod						/ /									6	61	
		□ Rush_	Project Name: CENTRAL OCD LANDFARM	SEMIANNUAL SAMPLING			Project Manager: Brian Moore						Preservative Type	e	ЭС	Je	e	Je				$ \cdot \rangle$		
	ne:		CENT	SAM							🗆 Yes	ature	Type	None	None	None	None	None	오	HCI	НСI	/•		
	iT br	rd	me: (UAL			nage					emperature:		. 1	۰ ۱	5	۰ ۲		ę	ې ۲	<u>ل</u> م لا	/ //		
	Aroui	X Standard	ct Na	ANN	¥ #		ct Ma			ler:		le Te	Container 「ype and #									iá pg (ed by:	
	Turn-Around Time:	X St	^p roje(SEMI	Project #:		roje(Sampler:	On Ice:	Sample T	Container Type and #	8oz jar - 4oz jar -	40ml voa	40ml voa	40ml voa	Received by	Received by					
			<u> </u>									<u></u>			03	54		201			•			
	2	<u>></u>		ad			00. 10	46	datio				Sample Request ID	CENTRAL OCD LF TZ03	CENTRAL OCD LF VZ03	CENTRAL OCD LF TZ04	CENTRAL OCD LF VZ04	DUF	CENTRAL OCD LF FB01	CENTRAL OCD LF EB01				
	000	pan		l Ro			roleu	C Pe.	Valio	-			anpe	שמ	рГ	ΡC	בט	DLF	ЫÜ	ים	AN			
	Re	- Mol		sing	301		npet	0	(Full	122			e Re	ГО	г ос	ΓΟ	ΓOC	0	No.	Г ОС	TRIP BLANK			
	dy	Ē		ros	A 87	15	ratho	nga		100			mple	ITRA	TRA	TRA	TRA	IRAL	TRA	TRA	TR	ι .		ł
	sto	olet	~	nt C	, NN	-372	@Ma	Standard OL PerTP	K-Level-4 (Full Validation)	ţ			Sa	CEN	CEN	CEN	CEN	CENTRAL OCD LF DUP01	CEN	CEN			ă	8
	ü	Petr	iner	Gia	Gallup, NM 87301	505-726-3745	BMoore 1@Marathonpetroleum.com	ų,	-		E	ł								RR.	ER		Kelinquished by:	
	Ĵ	nor	Rei	: 92	Ga	505	BMo				EXCEL		Matrix	SOIL				→	WAT	WATER	WATER		Keling	٩
	Chain-of-Custody Record	Client: Marathon Petroleum Company	Gallup Refinery	Mailing Address: 92 Giant Crossing Road			Fax#:	QA/QC Package:	ard		X EDD (Type)_		Time	6/27/9 1150	1210	1245	1300	1	1315 WATER	325		me: 1400	Time: /6 19	
	Ö	۲. ۲:	5	ling A		Phone #:	email or Fax#:	JC Pε	K Standard	□ Other) ag	ł		161								Election I	1	
		Clie		Mai		Pho	emê	QAK	S.		×		Date	p/1)								er-	Date:	1
																							10	~

NMAC LIST ANALYTES AND REPORTING LIMITS, CONSTITUENTS LISTED IN SUBSECTIONS A AND 8 OF 20.0.2.3103 NMAC, CENTRAL, OIL CONSERVATION DIVISION LANDFARM WESTERN REFINING SOUTHWEST, GALLUP REFINERY, GALLUP, NEW MEXICO

Analyte	Analyticzi Method	Reporting Unite	Requested Reporting Limit
Fluorida	E300	mg/kg	D,3000
Nitrogen, Nilrate (As N)	E300	markg	2.2000
Sulfate *Redjum-226	E300 E801.1	ng/kg pCi/g	21,5000
*Radium-228	E901.1		1.2500
*Radium-228+Redium-228	E901.1	pCi/g	2.6450
Arsenic	SW6D10A	ាលស្វ	2.5000
Barium Cedmium	SW8010A SW8010A	mg/kg	0.1000
Chronilum	SW601DA	mg/kg	0.3000
Copper	SW601DA	marka	0.6000
Lead	SW6010A SW6010A	mp/kg	500.0000 0,2500
Manganese	8W8010A	<u>mg/kg</u> mg/kg	1.0000
Selenkum	SW8010A	_mg/kg	2.5000
Säver	SW601DA	marka	0.2500
Ucentum	SW6010A	marka	5.0000
Zinc Mercury	SW6010A SW7471	mg/kg mg/kg	2.5000
Aracior 1016	SW8062	mg/kg	0.0200
Arodor 1221	SW8082	mg/kg	0.0200
Aroclor 1232	SW8062	marka .	0.0200
Aractor 1242 Aractor 1248	SW8082 SW8082	mg/kg mg/kg	0.0200
Aroclor 1254	SW8062	marka	0.0200
Anctor 1280	SW-8082	marka	0.0200
1,1,1-Trichloronthena	SW82608	ma/kg	0.0480
1,1,2-Trichloroethane	SW82608 SW82808	mg/kg mg/ka	0.0460
1,1-Dichloroethene	SW82808	marka	0.0480
1.2-Dichloroethane	SW8260B	marka	0.0480
Cerbon letrachloride	SW82808	mg/kg	0.0970
Chloroform Dibromomethane	SW82608 SW82608	mg/kg mg/kg	0.0480
Melhylene chloride	SW82808	nec/kg	0.1500
Tetrachloroethene	SW6260B	mg/kg	0.0480
Trichlaroethane	SW0260H	mg/kg	0.0480
Vinyl chloride 2,4,5-Trichlorophenol	SW82808 SW8270C	mg/kg mg/kg	0.0460
2,4,8 Trichtprophenol	SWB270C	marka	0.2000
2,4-Dichicrophena!	SW8270C	mg/kg	0.4000
2,4-Dimethylphonol	SW8270C	mg/kg	0,3000
2,4-Dinitrophanol 2-Chlorophanol	SW8270C SW8270C	mg/kg	0,4000
2-Methylphenol	SW8270C	marka	0.1000
2-Nitrophanoi	SW8270C	mg/kg	0.1000
3+4-Meihylphenol	SW8270C	ma/ka	0.1000
4,6-Dinitro-2-methylphenol 4-Chioro-3-methylphenol	SW8270C SW8270C	mg/kg mg/kg	0.5000
4-Nkrophenol	SW8270C	mg/kg	0,1000
Panlach/orophenol	SW8270C	mg/kg	0.4000
Phenol	SW8270C	<u></u>	0.2000
<u>1-Melhyinaphthelene</u> 2-Melhyinaphthalane	SW8260B SW8260B	mg/kg mg/kg	0.2000
Actraphthene	SW8270C	mg/kg	0.2000
Acensphihylene	SW6270C	<u>ma/kg</u>	0.2000
Anihrecens	SW8270C	mg/kg	0.2000
Benzo(a)ant/tracenta Benzo(a)pyrene	SW8270C	mg/kg	0.2000
Benzo(b)/luorenihene	SW6270C	mg/kg	0.2000
Benzo(g,h,l)perylens	SW8270C	mg/kg	0.2000
Benzo(k)fiu0renthene	SW8270C SW8270C	mg/kg	0,2000
Chrysene Dibenz(s,h)enthraceno	SW8270C	mg/kg mg/kg	0.2000
Fluorarithana	SW8270C	mg/kg	_0.2000
Fluorena	SW8270C	កាចូរីស្អ	0,2000
Indeno(1,2,3-c,d)pyrena	6W8270C	mg/kg	0.2000
Naphthalene Phenanthrene	SW8270C SW8270C	mu/kg mg/kg	0.2000
Pyrene	SW/8270C	mg/kg	0.2000
Cyanice	EPA 335.4	mo/kg	0,3000
Diesel Range Organics (DRO)	SW6015	mg/kg	12

()

 $(\overline{})$

11 5

٦

iCienteRAioZiViestemRefningtProjectDoperCleitup/OCID-Lendbittat/OCIDLatAftamSociping(20)5V-ob2016ContineStorpMiD_AntiyleList

1 of 1

1

VADOSE ZONE ANALYTES AND REPORTING LIMITS, CENTRAL OIL CONSERVATION DIVISION LANDFARM WESTERN REFINING SOUTHWEST, GALLUP REFINERY, GALLUP, NEW MEXICO

Analyte	Analytical Method	Reporting Units	Requested Reporting Limit
Chloride	E300	mg/kg	30
Benzene	SW8260B	mg/kg	0.050
Ethylbenzene	SW82608	mg/kg	0.050
Toluene	SW8260B	mg/kg	0.050
Xylenes, Total	SW8260B	mg/kg	0.100
Petroleum Hydrocarbons, TR	E418.1	_mg/kg	20

 $\label{eq:conversion} while the the the the term of term of$

()

()

1 of 1

;

Appendix C

Client: Marathon Oil	Laboratory: Hall Environmental Analysis Laboratory			
Project Name: DiSorbo Sampling, Western Refining Southwest	Sample Matrix: Soil			
Project Number: 697-064-001 Task: 0002	Sample Start Date: 06/27/2019			
Date Validated: 12/19/2019	Sample End Date: 06/27/2019			

Parameters Included:

- Volatile Organic Compounds (VOC) by Test Methods for Evaluating Solid Waste (SW-846) Method 8260B
- Semivolatile Organic Compounds (SVOC) by SW-846 Method 8270C
- Total Petroleum Hydrocarbons (TPH) Gasoline Range Organics (GRO), TPH Diesel Range Organics (DRO), and TPH Motor Oil Range Organics (MRO) by SW-846 Method 8015D
- Polychlorinated Biphenyls (PCB) by SW-846 Method 8082
- Cyanide by SW-846 Method 9012
- Metals by SW-846 Method 6010B
- Mercury by SW-846 Method 7471
- Anions by Methods for Chemical Analysis of Water and Wastes (MCAWW) Method 300.0
- Total Recoverable Petroleum Hydrocarbons (TRPH) by Environmental Protection Agency (EPA) Method 418.1
- Radium 226 and Radium 228 by EPA Method 901.1

Laboratory Project ID: 1906G37

Data Validator: Daran O'Hollearn, Lead Project Scientist

Reviewer: Mike Phillips, Senior Chemist

DATA EVALUATION CRITERIA SUMMARY

A Tier II Data Validation was performed by Trihydro Corporation's Chemical Data Evaluation Services Group on the analytical data report package generated by Hall Environmental Analysis Laboratory of Albuquerque, New Mexico with additional data from Pace Analytical, evaluating samples from the Marathon Oil site, located in Gallup, New Mexico.

Precision, accuracy, method compliance, and completeness of these data package were assessed during this data review. Precision was determined by evaluating the calculated relative percent difference (RPD) values from:

- Field duplicate pairs
- Laboratory duplicate pairs
- Matrix spike (MS) and matrix spike duplicate (MSD) pairs

Laboratory accuracy was established by reviewing the demonstrated percent recoveries (%R) of the following items to verify that data are not biased.

- MS/MSD samples
- Laboratory control samples (LCS)
- Organic system monitoring compounds (surrogates)

Field accuracy was established by collecting and analyzing the following samples to monitor for possible ambient or cross contamination during sampling and transportation.

- Trip blanks
- Field blanks
- Equipment blanks

Method compliance was established by reviewing sample integrity, holding times, detection limits, surrogate recoveries, laboratory blanks, initial and continuing calibrations (where applicable), and the LCS percent recoveries against method-specific requirements.

Completeness was evaluated by determining the overall ratio of the number of samples and analyses planned versus the number of samples with valid analyses. Determination of completeness included a review of the chain-of-custody (CoC), laboratory analytical methods, and other laboratory and field documents associated with these analytical data sets.

Client Sample ID	Laboratory Sample Number
CENTRAL OCD LF TZ01	1906g37-001
CENTRAL OCD LF VZ01	1906g37-002
CENTRAL OCD LF TZ02	1906g37-003
CENTRAL OCD LF VZ02	1906g37-004
Trip Blank	1906g37-005
CENTRAL OCD LF TZ03	1906g37-006
CENTRAL OCD LF VZ03	1906g37-007
CENTRAL OCD LF TZ04	1906g37-008
CENTRAL OCD LF VZ04	1906g37-009
CENTRAL OCD LF DUP01	1906g37-010
CENTRAL OCD LF FB01	1906g37-011
CENTRAL OCD LF EB01	1906g37-012

SAMPLE NUMBERS TABLE

The laboratory data were reviewed to evaluate compliance with the methods and the quality of the reported data. Assessment of CoC completeness is included in Item 3 of the Data Validation Checklist. A check mark (\checkmark) indicates that the referenced validation criteria were deemed acceptable, whereas a crossed circle (\otimes) indicates validation criteria for which the data have been qualified by the data validator. An empty circle (O) indicates that the specified criterion does not apply to the reviewed data. Details are noted in the tables below.

Validation Criteria

- ✓ Data Completeness
- ✓ CoC Documentation (Item 3)
- ⊗ Holding Times and Preservation (Items 6 and 7)
- O Initial and Continuing Calibrations (Items 9 and 10)
- ✓ Laboratory Blanks (Items 11 and 12)
- ⊗ MS/MSD (Items 13 and 14)
- ✓ LCS (Items 15 and 16)
- ✓ System Monitoring Compounds (i.e., Surrogates) (Item 17)
- ✓ Field, Equipment, and Trip Blanks (Items 18 and 19)
- ⊗ Field Duplicates (Items 20 and 21)
- ✓ Laboratory Duplicates (Item 22)
- ✓ Data Relationships (Item 23)

Guidance References

Chemical data validation was conducted in accordance with the United States Environmental Protection Agency (USEPA) Contract Laboratory Program (CLP) National Functional Guidelines for the analyses listed below, or by the appropriate method if not covered in the National Functional Guidelines.

- Data for organic analyses were evaluated according to validation criteria set forth in the USEPA CLP National Functional Guidelines for Organic Superfund Methods Data Review, document number EPA-540-R-2017-002, January 2017 with additional reference to the USEPA CLP National Functional Guidelines for Organic Data Review, document number EPA 540/R-99/008, October 1999
- Data for inorganic analyses were evaluated according to validation criteria set forth in the USEPA CLP National Functional Guidelines for Inorganic Superfund Methods Data Review, document number EPA-540-R-2017-001, January 2017 with additional reference to the USEPA CLP National Functional Guidelines for Inorganic Data Review, document number EPA 540-R-04-004, October 2004.
- Review of field duplicates was conducted according to the USEPA Region 1 New England Environmental Data Review Supplement for Region 1 Data Review Elements and Superfund Specific Guidance/Procedures, EQADR-Supplement1, June 2018.
- Trihydro Data Validation Variance Documentation, February 2019.
- Project-specific Quality Assurance Project Plans (QAPP) data validation requirements, as applicable.

OVERALL DATA PACKAGE ASSESSMENT

Based on a data validation review, the data are acceptable as delivered. Data qualified by the laboratory are discussed in Item 2 of the Validation Criteria Checklist.

The purpose of validating data and assigning qualifiers is to assist in proper data interpretation. Data that are not qualified meet the site data quality objectives. If values are assigned qualifiers other than an R (rejected, data not usable), the data may be used for site evaluation; however, consideration should be given to the reasons for qualification when interpreting sample concentrations. Data points that are assigned an R qualifier should not be used for site evaluation purposes.

If applicable, text was identified in **bold font** in the Validation Criteria Checklist to indicate that further action and/or qualification of the data were required. Data may have been qualified with J data flags by the laboratory if the result was greater than or equal to the method detection limit (MDL) but less than the reporting limit (RL). These laboratory-applied J flags were preserved, if present, and included in the Data Qualification Summary table at the end of this report. If applicable, data validation qualifiers were added for the items noted with crossed circles in the Validation Criteria section above. Please see the Data Qualification Summary table at the end of this report.

If data would be qualified with more than one flag, one qualifier was assigned based on the severity; however, all reasons for qualification were retained. Data that would be qualified with both J+ and J- flags were evaluated based on validation criteria and assigned the appropriate flag. The hierarchy of qualifiers from the most to least severe is as follows:

■ R > JB/U > NJ > J+/J- > J/UJ

Data qualifiers used during this validation are included in the following table.

<u>Qualifier</u>	Definition						
J	Estimated concentration						
J-	The result is an estimated concentration, but may be biased low						
UJ	Estimated reporting limit						

Data Completeness

The analyses were performed as requested on the CoC records. The associated samples were received by the laboratory and analyzed properly unless otherwise noted in the Criteria Checklist below. The complete data package consisted of 1,494 data points. No data points were rejected. The data completeness measure for this data package is calculated to be 100% and is acceptable.

VALIDATION CRITERIA CHECKLIST									
1. Was the	1. Was the report free of non-conformances identified by the laboratory? Yes								
Comments: The laboratory did not identify non-conformances regarding the analytical data.									
2. Were th If no, de		of data qualification flags and/or	notes used by the laboratory?	No					
Comments:	The laborat	tory applied the following data qu	alification flags to data in this report						
J – Analyte	detected bel	low quantitation limits.							
D – Sample	diluted due	to matrix.							
P1 – RPD v	alue not app	licable for sample concentrations	s less than 5 times the reporting limi	ts.					
R – %RPD o	outside of ra	nge.							
sized can. E 214 and Pb- 214.	Ra – The reported Ra-226 results were determined by hermetically sealing the dried, processed sample in an appropriate sized can. Each sample was stored for a minimum of 21 days to ensure the equilibrium between Ra-226 and daughters Bi-214 and Pb-214 was achieved. Reported Ra-226 results were inferred from gamma peaks attributable to Bi-224 and Pb-								
	-	of range due to dilution or matrix							
3. Were sa	ample CoC f	forms and custody procedures co	omplete?	Yes					
and laborate	Comments: The CoC records from field to laboratory were complete and custody was maintained as evidenced by field and laboratory personnel signatures, dates, and times of receipt. The laboratory also noted that the shipping containers were sealed and custody seals were present.								
		ts in accordance with the quality or indicated as acceptable?	assurance project plan (QAPP),	Yes					
		ng limits for the data set were revect samples.	viewed and appeared to be accepta	ble. The following dilutions					
	<u>Method</u>	<u>Sample(s)</u>	Analyte(s)	Dilution Factor					
	6010B	Submitted Samples	Select Metals	2					
	300.0	Submitted Samples	Fluoride and Nitrate	5					
	300.0	Multiple Samples	Chloride	5					
	300.0	CENTRAL OCD LF TZ02, CENTRAL OCD LF VZ04	Sulfate	5					
	300.0	CENTRAL OCD LF TZ03, CENTRAL OCD LF TZ04, CENTRAL OCD LF VZ04	Chloride	20					
	300.0	Multiple Samples	Sulfate	20					
	6010B Submitted Samples Iron 100								
	5. Were the reported analytical methods and constituents in compliance with the Yes QAPP, permit, or CoC?								
	Comments: The reported analytical methods were in compliance with the CoC and the laboratory reported the requested constituents in accordance with the CoC.								
6. Were sa	amples rece	ived in good condition within met	thod-specified requirements?	Yes					

Comments: Samples were received on ice, with the cooler temperatures within the recommended temperature range of $4^{\circ}C \pm 2^{\circ}C$ at 4.6°C, 4.9°C, and 5.1°C as noted in the *Sample Log-in Check List*.

VALIDATION CRITERIA CHECKLIST								
7. Were samples extracted/digested and analyzed within method-specified or No technical holding times?								
Comments: The samples were extracted/digested and analyzed within method-specific holding times, with the following exception.								
<u>Method 300.0:</u> Nitrate as Nitrogen was analyzed outside the holding time of 7 days for the submitted samples by approximately 6 to 7 days. The nitrate as N results in the submitted samples were detections and were qualified as J- to indicate estimated concentrations with a potential low bias.								
<u>Method 9012:</u> Cyanide was analyzed outside the holding time of 14 days for the submitted samples by approximately 1 day. Detected results in the submitted samples were qualified as J- to indicate estimated concentrations. Non-detected results were qualified as UJ to indicate estimated detection limits.								
8. Were reported units appropriate for the sample matrix/matrices and analytical Yes method(s)? Specify if wet or dry units were used for soil.								
Comments: The results were reported in concentration units of micrograms per liter (μ g/L), milligrams per kilogram (mg/kg), and picoCuries per gram (pCi/g), which were acceptable for the sample matrices and the analyses requested. Radium 226 and radium 228 soil results were reported on a dry weight basis for this sample set, and the remaining soil parameters were reported on a wet weight basis.								
9. Did the laboratory provide any specific initial and/or continuing calibration results? No								
Comments: Initial and continuing calibration data were not included as part of this data set.								
10. If initial and/or continuing calibration results were provided, were the results within N/A acceptable limits?								
Comments: Initial and continuing calibration data were not included as part of this data set.								
11. Was the total number of laboratory blank samples prepared equal to at least 5% ofYesthe total number of samples or analyzed as required by the method?Yes								
Comments: The total number of laboratory blank samples prepared was equal to at least 5% of the total number of samples.								
12. Were target analytes reported as not detected in the laboratory blanks? No								
Comments: Target analytes were reported as not detected in the laboratory blanks, with the following exceptions.								
Radium-226 was detected in the laboratory blank for Method 901.1 batch 352550 at a concentration of 0.046 pCi/g. The associated sample results were concentrations greater than 10 times the blank detection; therefore, qualification was not required.								
The analyte 2-butanone was detected in the laboratory blank for Method 8260B batch 45983 at a concentration of 0.068 mg/kg. The associated sample results for 2-butanone were non-detections and qualification was not required.								
Copper, iron, and zinc were detected in the laboratory blank for Method 6010B batch 45944 at concentrations of 0.22 mg/kg, 0.96 mg/kg, and 0.42 mg/kg. The associated sample results were concentrations greater than 10 times the blank detection; therefore, gualification was not required.								

6 of 14

VALIDATION CRITERIA CHECKLIST

13. Was the total number of MS samples prepared equal to at least 5% of the total number of samples or analyzed as required by the method?

Yes

Comments: The total number of matrix spike samples prepared was equal to at least 5% of the total number of samples, although MS samples were not prepared for all analyses. The matrix spike sample source for each analytical batch in this sample set has been indicated below.

<u>Method</u>	<u>Analytes</u>	<u>Analysis Batch</u>	MS Sample Source
300.0	Anions	46094	CENTRAL OCD LF VZ01
300.0	Anions	46126	Not Prepared
418.1	TRPH	45999	CENTRAL OCD LF VZ01
901.1	Radium-226 and Radium-228	352550	Not Prepared
6010B	Metals	45944	CENTRAL OCD LF VZ01
7471	Mercury	46081	CENTRAL OCD LF VZ01
8015D	DRO and MRO	45994	CENTRAL OCD LF VZ01
8015D	GRO	45983	CENTRAL OCD LF VZ01
8082	PCB 1016 and PCB 1260	45963	CENTRAL OCD LF VZ01
8260B	VOCs	45983	CENTRAL OCD LF VZ01
8260B	VOCs	SL61220	Not Prepared
8270C	SVOCs	45929	Not Prepared
9012B	Cyanide	WG1308753	CENTRAL OCD LF VZ01 and Not Associated

Not Prepared – Matrix spikes were not prepared or reported for this batch.

Not Associated – The MS sample source was not associated with this project.

A post-digestion spike (PDS) was prepared for Method 6010B batch 45944 from sample CENTRAL OCD LF VZ01 for the analyses of metals. The PDS recovery result for uranium was 59.2% which was below the laboratory QC acceptance limits of 80-120% and the data validation QC limits of 75-125%.

14. For MS/MSDs prepared from project samples, were percent recoveries and RPDs within data validation or laboratory QC limits?

No

Comments: The percent recoveries and RPDs for MS/MSDs prepared from project samples were within data validation and laboratory QC limits or were not applicable because the unspiked amount was more than four times the spike added, with the following exceptions.

<u>Method</u>	<u>Analyte</u>	<u>Batch</u>	<u>MS</u> <u>Recovery</u>	<u>MSD</u> <u>Recovery</u>	MS/MSD QC Limits
300.0	Fluoride	46094	Acceptable	1.33%	15-138%
300.0	Nitrate	46094	49.8%	47.1%	54.8-141%
6010B	Silver	45944	71.4%	70.6%	75-125%
6010B	Uranium	45944	33.8%	31.9%	75-125%

The MSD recovery for fluoride in Method 300.0 batch 46094 was outside the QC limits of 15-138% at 1.33%. Fluoride results were detections in the associated samples and were qualified as J- due to evidence of potential low bias. The MS and MSD recoveries for nitrate in Method 300.0 batch 46094 were outside the QC limits of 54.8-141% at 49.8% and 47.1%, respectively. Nitrate was detected in the associated samples and the results were qualified as J- due to evidence of potential low bias.

The MS and MSD recoveries for silver and uranium in Method 6010B batch 45944 were less than the lower laboratory QC limit. The silver and uranium results for the associated samples in batch 45944 were non-detections and were qualified as UJ due to evidence of potential low bias.

Trihydro

VALIDATION CRITERIA CHECKLIST						
The percent recoveries and RPD values for MS/MSDs prepared from non-project samples were evaluated and considered but data were not qualified based on those results since matrix similarity to project samples could not be guaranteed.						
15. Was the total number of LCSs analyzed equal to at least 5% of the total number of samples or analyzed as required by the method?	Yes					
Comments: The total number of LCS samples analyzed was equal to at least 5% of the total number of samples.						
16. Were LCS/LCSD percent recoveries and LCS/LCSD RPDs within data validation or laboratory QC limits?	Yes					
The LCS percent recoveries were within laboratory QC limits. LCSDs were not analyzed as part of this sample set.						
17. Were surrogate recoveries within laboratory QC limits?	No					
Comments: The surrogate recoveries were within laboratory QC limits with the following exceptions.						
As explained in external communications with laboratory personnel, the SVOC results for samples CENTRAL OCD LF VZ01, CENTRAL OCD LF TZ03, and CENTRAL OCD LF TZ04 were not qualified based on the surrogate non- conformances in the Method 8270C analyses since the applied dilutions of 10, 10, and 10 times, respectively, resulted in surrogate concentrations below routinely calibrated levels and those results were deemed unreliable and possibly inaccurate.						
18. Were the number of trip blank, field blank, and/or equipment blank samples collected equal to at least 10% of the total number of samples or as required by the project guidelines, QAPP, SAP, or permit?	Yes					
Comments: The number of trip, field, and equipment blanks collected was equal to at least 10% of the total number of samples. One trip blank sample, Trip Blank, one field blank sample, CENTRAL OCD LF FB01, and one equipment blank sample, CENTRAL OCD LF EB01, were collected as part of this sample set.						
19. Were target analytes reported as not detected in the trip blank, field blank, and/or equipment blank samples?	Yes					
Comments: Target analytes were reported as not detected in the trip blank sample, field blank sample, and equipment blank sample.						
20. Was the number of field duplicates collected equal to at least 10% of the total number of samples or as required by the project guidelines, QAPP, SAP, or permit?	Yes					
Comments: The number of field duplicates collected was equal to at least 10% of the number of samples. Sample CENTRAL OCD LF DUP01 was collected as a field duplicate of sample CENTRAL OCD LF TZ01.						
 Were field duplicate RPD values within data validation QC limits (soil 0-50%, water 0-30%, or air 0-25%)? 	No					
Comment: As indicated in the Field Duplicate Summary Table at the end of this report, field duplicate RPD values were within data validation QC limits of 0-50% for soil samples, with the following exceptions.						
The RPD value for copper exceeded the data validation limit of 50% at 100.0%, which was evidence of poor precision. The copper results were qualified as J for samples CENTRAL OCD LF TZ01 and CENTRAL OCD LF DUP						
An RPD value could not be calculated for TPH DRO for the field duplicate pair CENTRAL OCD LF TZ01 and CENTRAL OCD LF DUP 01 since the analyte was detected in the duplicate sample and was undetected in the parent sample. As the detection in the duplicate sample was greater than two times the reporting limit, TPH DRO was qualified as J and UJ for the duplicate and parent samples, respectively.						
An RPD value could not be calculated for total cyanide for the field duplicate pair CENTRAL OCD LF TZ01 and CENTRAL OCD LF DUP 01 since the analyte was detected in the duplicate sample and was undetected in the parent sample. As the detection in the duplicate sample was greater than two times the reporting limit, total cyanide was qualified as J and UJ for the duplicate and parent samples, respectively.						

VALIDATION CRITERIA CHECKLIST				
22. For laboratory duplicates prepared from project samples, were RPDs within laboratory QC limits?	Yes			
Comments: Laboratory duplicates were prepared for the analysis of cyanide in batch WG1308753 from s OCD LF VZ04 and from a sample not related to this project. The RPD for the laboratory duplicate pair pro- project sample was not applicable since the cyanide concentrations in both the original sample and the laboratory were less than 5 times the reporting limit.	epared from the			
The RPD value for the laboratory duplicate pair prepared from the non-project sample was evaluated and data were not qualified based on that result since matrix similarity to project samples could not be guarant				
23. Were the following data relationships realistic and acceptable?				
 Target analytes were reported by more than one method (e.g., 8260/8270, EPH/8270) and the results were in agreement? 	Yes			
Comments: Target analytes were not reported by more than one method in this data set, with the followin	g exceptions.			
Target analytes 1,2,4-trichlorobenzene, 1,2-dichlorobenzene, 1,3-dichlorobenzene, 1,4-dichlorobenzene, hexachlorobutadiene, and naphthalene were reported by both Method 8260B and Method 8270C. These analytes were reported as not detected by both methods.				
 Both total and dissolved metals analyses were performed and the total metals results were greater than or equal to the dissolved metals results? 	N/A			
Comments: Dissolved metals analyses were not performed for the samples in this data set.				

FIELD DUPLICATE SUMMARY

		Sample ID: CENTRAL OC te Sample ID: CENTRAL		
Analyte	Method	Laboratory Result	Duplicate Result	Relative Percent Difference (RPD)
Chloride	E300	160 mg/kg	140 mg/kg	13.3%
Fluoride, Total	E300	5.4 mg/kg	7.3 mg/kg	29.9%
Nitrogen, Nitrate	E300	4.9 mg/kg	4.5 mg/kg	8.5%
Sulfate	E300	920 mg/kg	990 mg/kg	7.3%
Radium 226 Total	E901.1	1.372 pCi/g	1.354 pCi/g	1.3%
Radium 228 Total	E901.1	1.359 pCi/g	1.480 pCi/g	8.5%
Barium, Total	SW6010B	300 mg/kg	350 mg/kg	15.4%
Chromium, Total	SW6010B	14 mg/kg	13 mg/kg	7.4%
Copper, Total	SW6010B	12 mg/kg	4 mg/kg	100.0%
Iron, Total	SW6010B	18,000 mg/kg	17,000 mg/kg	5.7%
Lead, Total	SW6010B	3.4 mg/kg	2.9 mg/kg	15.9%
Manganese, Total	SW6010B	380 mg/kg	450 mg/kg	16.9%
Zinc, Total	SW6010B	33 mg/kg	24 mg/kg	31.6%
Mercury, Total	SW7471	0.043 mg/kg	ND (0.032 mg/kg)	DL
TPH DRO	SW8015	ND (8.5 mg/kg)	24 mg/kg	DL
Cyanide, Total	SW9012	ND (0.25 mg/kg)	0.89 mg/kg	DL

Field duplicate RPD control limits are not to exceed 50% for soil as established by USEPA New England Environmental Data Review Supplement for Regional Data Review Elements and Superfund Specific Guidance/Procedures, EQADR-Supplement0, April 2013.

DL – Indicates that the analyte was detected in one of the duplicate samples and was undetected in the other sample, and therefore an RPD could not be calculated. Data were not qualified since the detection was within two times the reporting limit. Non-detected results are indicated above with the applicable reporting limit as ND (RL).

<u>Method 6010B</u>: The RPD value for copper exceeded the data validation limit of 50% at 100.0%, which was evidence of poor precision. The copper results were qualified as J for samples CENTRAL OCD LF TZ01 and CENTRAL OCD LF DUP 01.

<u>Method 8015</u>: An RPD value could not be calculated for TPH DRO for the field duplicate pair CENTRAL OCD LF TZ01 and CENTRAL OCD LF DUP 01 since the analyte was detected in the duplicate sample and was undetected in the parent sample. As the detection in the duplicate sample was greater than two times the reporting limit, TPH DRO was qualified as J and UJ for the duplicate and parent samples, respectively.

<u>Method 9012</u>: An RPD value could not be calculated for total cyanide for the field duplicate pair CENTRAL OCD LF TZ01 and CENTRAL OCD LF DUP 01 since the analyte was detected in the duplicate sample and was undetected in the parent sample. As the detection in the duplicate sample was greater than two times the reporting limit, total cyanide was qualified as J and UJ for the duplicate and parent samples, respectively.

DATA QUALIFICATION SUMMARY

Abbreviation	Reason
HT-AN	Sample was analyzed outside of the method holding time.
LR-MS	The MS and/or MSD percent recovery was less than the lower acceptable limit indicating possible matrix interference.
ERPD-FD	High field duplicate RPD.
MDLRL	Flagged by the laboratory: The result was greater than the MDL but less than the RL.

Analyte	Method	Field Sample ID	Lab Sample ID	Result	Limit	Units	Reviewer Qualifier	DV Flag Reasons
2-Butanone	SW8260B	CENTRAL OCD LF TZ01	1906g37-001a	0.069	0.50	mg/kg	J	MDLRL
2-Butanone	SW8260B	CENTRAL OCD LF VZ01	1906g37-002a	0.073	0.48	mg/kg	J	MDLRL
2-Butanone	SW8260B	CENTRAL OCD LF TZ02	1906g37-003a	0.084	0.49	mg/kg	J	MDLRL
2-Butanone	SW8260B	CENTRAL OCD LF VZ02	1906g37-004a	0.078	0.48	mg/kg	J	MDLRL
2-Butanone	SW8260B	CENTRAL OCD LF TZ03	1906g37-006a	0.10	0.50	mg/kg	J	MDLRL
2-Butanone	SW8260B	CENTRAL OCD LF TZ04	1906g37-008a	0.081	0.50	mg/kg	J	MDLRL
2-Butanone	SW8260B	CENTRAL OCD LF VZ04	1906g37-009a	0.096	0.49	mg/kg	J	MDLRL
2-Butanone	SW8260B	CENTRAL OCD LF DUP01	1906g37-010a	0.10	0.48	mg/kg	J	MDLRL
Arsenic, Total	SW6010B	CENTRAL OCD LF VZ01	1906G37-002B	2.9	5	mg/kg	J	MDLRL
Arsenic, Total	SW6010B	CENTRAL OCD LF TZ02	1906G37-003B	3.4	5	mg/kg	J	MDLRL
Benzo(a)anthracene	SW8270C	CENTRAL OCD LF TZ04	1906g37-008a	1.1	2	mg/kg	J	MDLRL
Benzoic Acid	SW8270C	CENTRAL OCD LF TZ02	1906g37-003a	0.096	0.46	mg/kg	J	MDLRL
Benzoic Acid	SW8270C	CENTRAL OCD LF VZ02	1906g37-004a	0.11	0.52	mg/kg	J	MDLRL
Benzoic Acid	SW8270C	CENTRAL OCD LF TZ04	1906g37-008a	1.1	5.1	mg/kg	J	MDLRL
Benzoic Acid	SW8270C	CENTRAL OCD LF VZ04	1906g37-009a	0.24	1.2	mg/kg	J	MDLRL

Analyte	Method	Field Sample ID	Lab Sample ID	Result	Limit	Units	Reviewer Qualifier	DV Flag Reasons
Benzoic Acid	SW8270C	CENTRAL OCD LF DUP01	1906g37-010a	0.12	0.59	mg/kg	J	MDLRL
Bis(2-ethylhexyl)phthalate	SW8270C	CENTRAL OCD LF TZ02	1906g37-003a	0.14	0.46	mg/kg	J	MDLRL
Bis(2-ethylhexyl)phthalate	SW8270C	CENTRAL OCD LF VZ02	1906g37-004a	0.28	0.52	mg/kg	J	MDLRL
Copper, Total	SW6010B	CENTRAL OCD LF TZ01	1906G37-001B	12	0.60	mg/kg	J	ERPD-FD
Copper, Total	SW6010B	CENTRAL OCD LF DUP01	1906G37-010B	4	0.59	mg/kg	J	ERPD-FD
Cyanide, Total	SW9012	CENTRAL OCD LF VZ04	1906G37-009C	0.27	0.25	mg/kg	J-	HT-AN
Cyanide, Total	SW9012	CENTRAL OCD LF VZ01	1906G37-002C	ND	0.25	mg/kg	UJ	HT-AN
Cyanide, Total	SW9012	CENTRAL OCD LF TZ02	1906G37-003C	ND	0.25	mg/kg	UJ	HT-AN
Cyanide, Total	SW9012	CENTRAL OCD LF VZ02	1906G37-004C	ND	0.25	mg/kg	UJ	HT-AN
Cyanide, Total	SW9012	CENTRAL OCD LF TZ03	1906G37-006C	ND	0.25	mg/kg	UJ	HT-AN
Cyanide, Total	SW9012	CENTRAL OCD LF VZ03	1906G37-007C	ND	0.25	mg/kg	UJ	HT-AN
Cyanide, Total	SW9012	CENTRAL OCD LF TZ04	1906G37-008C	ND	0.25	mg/kg	UJ	HT-AN
Cyanide, Total	SW9012	CENTRAL OCD LF DUP01	1906G37-010C	0.89	0.25	mg/kg	J-	ERPD-FD, HT-AN
Cyanide, Total	SW9012	CENTRAL OCD LF TZ01	1906G37-001C	ND	0.25	mg/kg	UJ	ERPD-FD, HT-AN
Di-n-butylphthalate	SW8270C	CENTRAL OCD LF VZ02	1906g37-004a	0.23	0.42	mg/kg	J	MDLRL
Fluoride, Total	E300	CENTRAL OCD LF TZ01	1906G37-001A	5.4	1.5	mg/kg	J-	LR-MS
Fluoride, Total	E300	CENTRAL OCD LF VZ01	1906G37-002A	3.7	1.5	mg/kg	J-	LR-MS
Fluoride, Total	E300	CENTRAL OCD LF TZ02	1906G37-003A	10	1.5	mg/kg	J-	LR-MS
Fluoride, Total	E300	CENTRAL OCD LF VZ02	1906G37-004A	3.1	1.5	mg/kg	J-	LR-MS
Mercury, Total	SW7471	CENTRAL OCD LF VZ01	1906G37-002B	0.018	0.032	mg/kg	J	MDLRL
Mercury, Total	SW7471	CENTRAL OCD LF VZ02	1906G37-004B	0.0051	0.031	mg/kg	J	MDLRL

Analyte	Method	Field Sample ID	Lab Sample ID	Result	Limit	Units	Reviewer Qualifier	DV Flag Reasons
Mercury, Total	SW7471	CENTRAL OCD LF VZ03	1906G37-007B	0.0053	0.032	mg/kg	J	MDLRL
Mercury, Total	SW7471	CENTRAL OCD LF VZ04	1906G37-009B	0.0043	0.032	mg/kg	J	MDLRL
Mercury, Total	SW7471	CENTRAL OCD LF DUP01	1906G37-010B	0.0068	0.032	mg/kg	J	MDLRL
Nitrogen, Nitrate	E300	CENTRAL OCD LF TZ03	1906G37-006A	13	1.5	mg/kg	J-	HT-AN
Nitrogen, Nitrate	E300	CENTRAL OCD LF VZ03	1906G37-007A	6.7	1.5	mg/kg	J-	HT-AN
Nitrogen, Nitrate	E300	CENTRAL OCD LF TZ04	1906G37-008A	4	1.5	mg/kg	J-	HT-AN
Nitrogen, Nitrate	E300	CENTRAL OCD LF VZ04	1906G37-009A	3.1	1.5	mg/kg	J-	HT-AN
Nitrogen, Nitrate	E300	CENTRAL OCD LF DUP01	1906G37-010A	4.5	1.5	mg/kg	J-	HT-AN
Nitrogen, Nitrate	E300	CENTRAL OCD LF TZ01	1906G37-001A	4.9	1.5	mg/kg	J-	HT-AN, LR-MS
Nitrogen, Nitrate	E300	CENTRAL OCD LF VZ01	1906G37-002A	2.4	1.5	mg/kg	J-	HT-AN, LR-MS
Nitrogen, Nitrate	E300	CENTRAL OCD LF TZ02	1906G37-003A	4.2	1.5	mg/kg	J-	HT-AN, LR-MS
Nitrogen, Nitrate	E300	CENTRAL OCD LF VZ02	1906G37-004A	2	1.5	mg/kg	J-	HT-AN, LR-MS
Selenium, Total	SW6010B	CENTRAL OCD LF VZ02	1906G37-004B	3	5.1	mg/kg	J	MDLRL
Selenium, Total	SW6010B	CENTRAL OCD LF VZ04	1906G37-009B	3.5	4.9	mg/kg	J	MDLRL
Selenium, Total	SW6010B	CENTRAL OCD LF DUP01	1906G37-010B	3.3	4.9	mg/kg	J	MDLRL
Silver, Total	SW6010B	CENTRAL OCD LF TZ01	1906G37-001B	ND	0.50	mg/kg	UJ	LR-MS
Silver, Total	SW6010B	CENTRAL OCD LF VZ01	1906G37-002B	ND	0.50	mg/kg	UJ	LR-MS
Silver, Total	SW6010B	CENTRAL OCD LF TZ02	1906G37-003B	ND	0.50	mg/kg	UJ	LR-MS
Silver, Total	SW6010B	CENTRAL OCD LF VZ02	1906G37-004B	ND	0.51	mg/kg	UJ	LR-MS
Silver, Total	SW6010B	CENTRAL OCD LF TZ03	1906G37-006B	ND	0.51	mg/kg	UJ	LR-MS
Silver, Total	SW6010B	CENTRAL OCD LF VZ03	1906G37-007B	ND	0.5	mg/kg	UJ	LR-MS

Analyte	Method	Field Sample ID	Lab Sample ID	Result	Limit	Units	Reviewer Qualifier	DV Flag Reasons
Silver, Total	SW6010B	CENTRAL OCD LF TZ04	1906G37-008B	ND	0.5	mg/kg	UJ	LR-MS
Silver, Total	SW6010B	CENTRAL OCD LF VZ04	1906G37-009B	ND	0.49	mg/kg	UJ	LR-MS
Silver, Total	SW6010B	CENTRAL OCD LF DUP01	1906G37-010B	ND	0.49	mg/kg	UJ	LR-MS
Total Petroleum Hydrocarbons	E418.1	CENTRAL OCD LF DUP01	1906G37-010A	5.6	20	mg/kg	J	MDLRL
TPH DRO	SW8015	CENTRAL OCD LF DUP01	1906G37-010A	24	9.9	mg/kg	J	ERPD-FD
TPH DRO	SW8015	CENTRAL OCD LF TZ01	1906G37-001A	ND	8.5	mg/kg	UJ	ERPD-FD
Uranium, Total	SW6010B	CENTRAL OCD LF TZ01	1906G37-001B	ND	10	mg/kg	UJ	LR-MS
Uranium, Total	SW6010B	CENTRAL OCD LF VZ01	1906G37-002B	ND	10	mg/kg	UJ	LR-MS
Uranium, Total	SW6010B	CENTRAL OCD LF TZ02	1906G37-003B	ND	9.9	mg/kg	UJ	LR-MS
Uranium, Total	SW6010B	CENTRAL OCD LF VZ02	1906G37-004B	ND	10	mg/kg	UJ	LR-MS
Uranium, Total	SW6010B	CENTRAL OCD LF TZ03	1906G37-006B	ND	10	mg/kg	UJ	LR-MS
Uranium, Total	SW6010B	CENTRAL OCD LF VZ03	1906G37-007B	ND	10	mg/kg	UJ	LR-MS
Uranium, Total	SW6010B	CENTRAL OCD LF TZ04	1906G37-008B	ND	10	mg/kg	UJ	LR-MS
Uranium, Total	SW6010B	CENTRAL OCD LF VZ04	1906G37-009B	ND	9.8	mg/kg	UJ	LR-MS
Uranium, Total	SW6010B	CENTRAL OCD LF DUP01	1906G37-010B	ND	9.8	mg/kg	UJ	LR-MS

Michelle Lujan Grisham Governor

> Howie C. Morales Lt. Governor

NEW MEXICO ENVIRONMENT DEPARTMENT

Hazardous Waste Bureau 2905 Rodeo Park Drive East, Building 1 Santa Fe, New Mexico 87505-6313 Phone (505) 476-6000 Fax (505) 476-6030 www.env.nm.gov

James C. Kenney Cabinet Secretary

Jennifer J. Pruett Deputy Secretary

CERTIFIED MAIL – RETURN RECEIPT REQUESTED

May 16, 2019

John Moore Environmental Superintendent Western Refining, Southwest Inc., Gallup Refinery 92 Giant Crossing Road Gallup, New Mexico 87301

RE: APPROVAL RESPONSE TO COMMENTS NMED APPROVAL WITH MODIFICATIONS LETTER DATED MARCH 17, 2017 [CHLORIDE EXCEEDANCE EXCAVATION REPORT] WESTERN REFINING SOUTHWEST INC., GALLUP REFINERY EPA ID # NMD000333211 HWB-WRG-17-003

Dear Mr. Moore:

The New Mexico Environment Department (NMED) has reviewed the *Response to Comments NMED Approval with Modifications Letter dated March 17, 2017[Chloride Exceedance Excavation Report]* (Response), dated April 11, 2019, submitted on behalf of Marathon Petroleum Company dba Western Refining Southwest Inc., Gallup Refinery (the Permittee). NMED hereby issues this Approval. The Permittee must address the following comments provided by both NMED and the New Mexico Energy Minerals and Natural Resources Department Oil Conservation Division (OCD).

Comment 1

NMED's Approval with Modifications Comment 1 states, "[t]he OCD regulates the Central OCD Landfarm under 19.15.36 NMAC (also known as Part 36) and required the Permittee to address chloride exceedances discovered in the landfarm." With the exception of sample identified as CentralOCD-03-6/16/2016, the chloride concentrations did not exceed the screening level of 500 mg/kg in the rest of samples collected from the landfarm. Although the chloride

Mr. Moore May 16, 2019 Page 2

concentrations in the excavation confirmation samples collected from depths of approximately six feet below ground surface exceed the screening level in multiple locations, these soil samples were likely collected within the footprint of former Evaporation Pond (EP)-10 or native soils below the pond, rather than shallow soils within the OCD Landfarm. Therefore, the landfarm is likely not the source of chloride in groundwater. Since the landfarm is not closed, current and future use of the landfarm must be clarified in a response letter to OCD.

Comment 2

The response to NMED's Approval with Modifications Comment 2 states, "[w]hile Marathon Petroleum Company (MPC) is unaware of any design drawings for Pond 10, the surface expression of the pond currently appears to be approximately 325 feet by 200 feet." Since the OCD Landfarm overlies former pond EP-10 and pond EP-10 may be the source of the chloride contamination in groundwater, the depth of pond EP-10 must be identified and the soils below the landfarm must be investigated. Submit a work plan to install soil borings to collect soil samples of the underlying native soils, pond sediments, and the upper zone waste treated within the landfarm. If the interface between the native soils, pond sediments, and landfarm waste can be distinguished, collect the samples within six inches of each interface.

This approval is based on the information presented in the document as it relates to the objectives of the work identified by NMED at the time of review. Approval of this document does not constitute agreement with all information or every statement presented in the document.

If you have questions regarding this letter, please contact Michiya Suzuki of my staff at 505-476-6059.

Sincerely,

John E. Kieling Chief

Hazardous Waste Bureau

- ce: K. Van Horn, NMED HWB D. Cobrain, NMED HWB M. Suzuki, NMED HWB C. Chavez, OCD L. King, EPA Region 6 (6LCRRC) B. Moore, WRG
- File: Reading File and WRG 2019 File HWB-WRG-17-003

Chavez, Carl J, EMNRD

From:	Martinez, Cynthia, NMENV
Sent:	Monday, April 8, 2019 10:47 AM
То:	John.Moore@andeavor.com
Cc:	Kieling, John, NMENV; Cobrain, Dave, NMENV; VanHorn, Kristen, NMENV; Suzuki,
	Michiya, NMENV; Chavez, Carl J, EMNRD; 'king.laurie@epa.gov';
	Brian.Moore@andeavor.com
Subject:	Letter to Mr. Moore
Attachments:	Western Refining- HWB-WRG-18-016.pdf

Good Morning, Please open attachment.

Cynthia Martinez New Mexico Environment Department Hazardous Waste Bureau 2905 Rodeo Park Drive East, Bldg.1 Santa Fe, New Mexico 87505 Phone 505-476-6000

Michelle Lujan Grisham Governor

> Howie C. Morales Lt. Governor

NEW MEXICO ENVIRONMENT DEPARTMENT

Hazardous Waste Bureau

2905 Rodeo Park Drive East, Building 1 Santa Fe, New Mexico 87505-6313 Phone (505) 476-6000 Fax (505) 476-6030 www.env.nm.gov

James C. Kenney Cabinet Secretary

Jennifer J. Pruett Deputy Secretary

CERTIFIED MAIL – RETURN RECEIPT REQUESTED

April 5, 2019

John Moore Environmental Superintendent Western Refining, Southwest Inc., Gallup Refinery 92 Giant Crossing Road Gallup, New Mexico 87301

RE: DISAPPROVAL INVESTIGATION WORK PLAN SWMU NO. 9 – DRAINAGE DITCH AND INACTIVE LANDFARM WESTERN REFINING SOUTHWEST INC., GALLUP REFINERY EPA ID # NMD000333211 HWB-WRG-18-016

Dear Mr. Moore:

The New Mexico Environment Department (NMED) has reviewed the *Investigation Work Plan SWMU No. 9 – Drainage Ditch and Inactive Landfarm* (Work Plan), dated December 2018, submitted on behalf of Marathon Petroleum Company dba Western Refining Southwest Inc., Gallup Refinery (the Permittee). NMED hereby issues this Disapproval. The Permittee must address the following comments.

Comment 1

In Section 2, *Background*, page 2-2, the Permittee states, "[o]nly chromium was detected at a concentration above the residential soil screening level. This occurred in one soil sample collected at boring RFI 0907 in the surface interval collected from 0 - 0.5 feet with a concentration of 102 mg/kg vs. the screening level of 96.6 mg/kg." Discuss historic use of chromium at the site in the revised Work Plan.

Comment 2

In Section 2, *Background*, page 2-3, the Permittee states, "[i]n the 2001 No Further Action Request, the drainage ditch was described as being on the west side of the Inactive Landfarm; however, further review of the survey plat and other early RFI documents and field reconnaissance confirms the drainage ditch is actually on the east side of the Inactive Landfarm and is a much smaller feature. The ditch is two to three fect wide and up to two feet deep, running north to south along the east side of the Inactive Landfarm (Figures 2 and 5)." According to Figure 5, *Proposed Sample Locations*, the ditch is depicted along the east side of the Inactive Landfarm; however, the figure titled as *Inactive Land Treatment and Associated Drainage Ditch*, included in Appendix B, *Historical Documentation*, indicates that the ditch is located along the west side of the Inactive Landfarm. Clarify if the north arrow on the figure included in Appendix B is correct and whether previous samples were collected along the correct ditch. In addition, the topographic survey map included in Appendix B shows that the surface elevation is higher at the south side of the Inactive Landfarm; however, the statement describes the ditch runs north to south. Resolve the discrepancy in the revised Work Plan and provide clarification in a response letter.

Comment 3

In Section 2, Background, page 2-4, the Permittee states, "[t]he eastern most soil borings/temporary wells (NDD-4, NDD-5 and NDD-6) are shown on Figure 2. The analytical results for soil samples collected at NDD-4, NDD-5 and NDD-6 are summarized in Table 2 and the groundwater analyses from samples collected at NDD-4, NDD-6, OW-14, OW-54, OW-55, and OW-56 are provided in Tables 3-1 and 3-2. Both the soil and groundwater analyses from these locations along the Drainage Ditch show increasing concentrations of constituents to the west, away from the up-gradient direction of surface water flow along the Drainage Ditch and the location of the Inactive Landfarm." The statement is not clear regarding the reference to the "Drainage Ditch". The ditch next to the Inactive Landfarm does not extend west; however, the North Drainage Ditch does. According to Table 2, NDD-4, NDD-5, and NDD-6 Soil Analytical Results Summary, the organic constituents concentrations in the soil samples collected from borings NDD-5 and NDD-6, located at the west side of the North Drainage Ditch are generally higher compared to those from boring NDD-4, located at the east side of the North Drainage Ditch, closer to the Inactive Landfarm. However, the discussion does not appear to be relevant to the Drainage Ditch (the ditch next to the Inactive Landfarm) and the Inactive Landfarm. Similarly, according to Table 3-1, 2016 Groundwater Analytical Results Summary, the benzene concentrations in the groundwater samples collected from wells OW-14 and OW-55, located on the south and north sides of the Inactive Landfarm, are recorded as 8,100 ug/L and 18,000 ug/L (average of two values), respectively. The benzene concentrations increase to the north along the Drainage Ditch, rather than to the west. However, the benzene concentrations in the groundwater samples collected from wells NDD-4, NDD-6 and OW-56, located west of the Inactive Landfarm along the North Drainage Ditch, downgradient of the Inactive Landfarm, are recorded as < 0.195 ug/L, 5,300 ug/L and 1.5 ug/L (average of two values), respectively. The benzene concentrations do increase to the west of the North Drainage Ditch; however, the discussion does not appear to be relevant to the Drainage Ditch and the Inactive Landfarm. Clarify the statement regarding the reference to the Drainage Ditch and revise the Work Plan, as needed.

Comment 4

In Section 3.1, *Surface Conditions*, page 3-1, the Permittee states, "[a] topographic map of the area near SWMU 9 is included as Figure 3." Well OW-14 is the only well identified in Figure 3, *Topographic Map*. Since other wells (e.g., RW-5, OW-55) are also present in the area covered by Figure 3, these wells must also be included on the figure; otherwise, remove well OW-14 from the revised figure. In addition, Figure 3 does not provide detailed elevation data in the vicinity of SWMU 9. Provide another topographic map with larger image of SWMU 9, similar to that included in Appendix B. Provide the revised figures in the revised Work Plan.

Comment 5

In Section 3.1, *Surface Conditions*, page 3-1, the Permittee states, "[t]he area of the site near SWMU 11 is at an approximate elevation of 6,896 feet above mean sea level (msl)." SWMU 11 is not pertinent to the discussion in the Work Plan. Revise the statement to include information pertaining to SWMU 9.

Comment 6

In Section 4.1, Investigation, page 4-1, the Permittee states, "[a]ll soil borings will be drilled to a minimum depth of 6 feet, five feet below the reported depth of tilling. If there is field evidence of impacts at depths greater than 6 feet, then soil borings will be drilled deeper to achieve full vertical delineation." Provide a more specific explanation for what field evidence will prompt advancement of deeper borings in the revised Work Plan (e.g., criteria for the PID readings). Similarly, the Permittee states, "[i]f there are indications of lateral migration of constituents, then additional borings will be completed within approximately 30 feet of the original boring location." Provide a more specific explanation for what indications of lateral migration of constituents will prompt advancement of additional borings in the revised Work Plan (e.g., laboratory analytical and/or field screening results). Additionally, the location of additional borings 30 feet from the original boring location will not likely delineate the contamination associated with the ditch and the Inactive Landfarm since the distribution of the contaminated soils may be limited to the areas where refinery waste was previously placed. Propose to advance additional borings ten feet from the original boring location in the revised Work Plan. Furthermore, clarify whether additional borings will be advanced in all directions (e.g., north, south, east and west) from the original boring location; otherwise, include a provision for the Permittee to consult the NMED to determine the location of additional borings when the advancement of additional borings is warranted.

Comment 7

In Section 4.1.1, *Soil Sample Field Screening and Logging*, page 4-2, the Permittee states, "[d]iscrete soil samples will be retained for laboratory analysis from within the following intervals: [f]rom the upper 0.5-foot interval of the ground surface..." The proposed sampling method may not capture potential contamination from the upper one-foot interval. The constituents in the soils from the upper 0.5-foot interval may not be representative of the site conditions. Propose to collect soil samples from depths of 0.5 to 1.5 foot to capture the upper one-foot interval of potential contamination in the revised Work Plan.

Comment 8

In Section 4.1.1, *Soil Sample Field Screening and Logging*, page 4-2, the Permittee states, "[d]iscrete soil samples will be retained for laboratory analysis from within the following intervals: [f]rom the upper 0.5 foot interval of native soils (i.e., below any fill material)." Explain whether a part of SWMU 9 was previously excavated and backfilled with fill material and how the fill material and native soils are distinguished in the revised Work Plan. The Permittee also states that additional intervals will be sampled as determined based on field screening results. Provide a more specific explanation for what field screening results will prompt collection of samples from additional intervals in the revised Work Plan (e.g., criteria for the PID readings).

Comment 9

In Section 4.1.2, *Drilling Activities*, page 4-3, the Permittee states, "[a]fter groundwater samples are collected from the temporary well completion, the well screen will be pulled and all borings will be grouted to the ground surface." If separate-phase hydrocarbon (SPH) is present in any temporary wells after purging, the wells must be converted to permanent groundwater monitoring or recovery wells or the Permittee must contact NMED to discuss the circumstances. While most likely not related to the SWMU, the opportunity to delineate SPH plumes during an investigation may save time in the future.

Comment 10

In Section 4.1.7, *Chemical Analyses*, page 4-7, the Permittee states, "[g]roundwater and soil samples will also be analyzed for the following Skinner List metals and iron and manganese using the indicated analytical methods shown." Elevated total chromium concentrations were previously detected at the site (see Comment 1). Hexavalent chromium may potentially be present at the site. Include hexavalent and total chromium analyses for soil and groundwater samples collected at the site. Add the analysis to the revised Work Plan.

The Permittee must address all comments in this Disapproval and submit a revised Work Plan. Two bound hard copies and two electronic versions must be submitted to NMED. In addition, include a red-line strikeout version in electronic format showing where all revisions to the Work Plan have been made. The revised Work Plan must be accompanied with a response letter that details where revisions have been made, cross-referencing NMED's numbered comments. The revised Work Plan must be submitted to NMED no later than **August 30, 2019**.

If you have questions regarding this Disapproval, please contact Michiya Suzuki of my staff at 505-476-6059.

Sincerely, John E. Kieling Chief Hazardous Waste Bureau

- cc: K. Van Horn, NMED HWB D. Cobrain, NMED HWB M. Suzuki, NMED HWB C. Chavez, OCD L. King, EPA Region 6 B. Moore, WRG
- File: Reading File and WRG 2019 File HWB-WRG-18-016