UIC - I - ____11____ EPA FALL-OFF TEST

2020

Submit 1 Copy To Appropriate District Office <u>District I</u> – (575) 393-6161	State of New Mexico Energy, Minerals and Natural Resources	Form C-103 Revised July 18, 2013
1625 N. French Dr., Hobbs, NM 88240 <u>District II</u> – (575) 748-1283 811 S. First St., Artesia, NM 88210 District III – (505) 334-6178	OIL CONSERVATION DIVISION 1220 South St. Francis Dr. Santa Fe, NM 87505	WELL API NO. 30-045-35747 5. Indicate Type of Lease
1000 Rio Brazos Rd., Aztec, NM 87410 <u>District IV</u> – (505) 476-3460 1220 S. St. Francis Dr., Santa Fe, NM 87505		6. State Oil & Gas Lease No.
SUNDRY NOTICES (DO NOT USE THIS FORM FOR PROPOSALS DIFFERENT RESERVOIR. USE "APPLICATI	S AND REPORTS ON WELLS S TO DRILL OR TO DEEPEN OR PLUG BACK TO A ON FOR PERMIT" (FORM C-101) FOR SUCH	7. Lease Name or Unit Agreement Name
1. Type of Well: Oil Well 🔲 Gas	Well 🛛 Other Wastewater Disposal Well	8. Well Number: WDW #2
2. Name of Operator Western Refining Southwest,,Inc.		9. OGRID Number 267595
 Address of Operator County Road 4990 (PO Box 159) B 	loomfield, NM 87413	10. Pool name or Wildcat Entrada
4. Well Location		
Unit Letter H : 2	2028 feet from the <u>North</u> line and	<u>East</u> feet from theline
Section 27	Township 29N Range 11W	NMPM San Juan County
11 	1. Elevation (Show whether DR, RKB, RT, GR, etc.,	

12. Check Appropriate Box to Indicate Nature of Notice, Report or Other Data

NOTICE OF	INTENTION TO:	SUBSEQUENT RE	PORT OF:	
PERFORM REMEDIAL WORK	PLUG AND ABANDON		REMEDIAL WORK	ALTERING CASING
TEMPORARILY ABANDON	CHANGE PLANS		COMMENCE DRILLING OPNS.	PANDA 🗌
PULL OR ALTER CASING	MULTIPLE COMPL		CASING/CEMENT JOB	
DOWNHOLE COMMINGLE				
CLOSED-LOOP SYSTEM				
OTHER: Fall Off Test			OTHER:	

 Describe proposed or completed operations. (Clearly state all pertinent details, and give pertinent dates, including estimated date of starting any proposed work). SEE RULE 19.15.7.14 NMAC. For Multiple Completions: Attach wellbore diagram of proposed completion or recompletion.

Pursuant to the Bloomfield Terminal Injection Well Discharge Permit (UICI-011), Western Refining Southwest, Inc. ("Western") is scheduled to perform a Fall-Off Test (FOT) on WDW #2. The fall-off test will consist of three phases:

- Phase 1: Build-Up
- Phase 2: Pressure Fall-Off Monitoring
- Phase 3: Post Monitoring Operations

Phase 1: Build-Up

The Build-Up Phase involves the injection of the Terminal's treated wastewaters into the well for 72 hours or until the injection pressure reaches the high-pressure set-point of 1,400 psi, whichever occurs first. A stabilized injection rate will be established using the dedicated injection well pump. Due to the limited time the injection well can operate before reaching the high-pressure set-point of 1,400 psi, tandem memory gauges will first be installed through the crown valve and lubricator using a slick-line unit. The gauges will be positioned at 7,312 ft below grade (reflective to the top of the injection interval). The memory gauges to be used are SP-2000 hybrid-quartz gauges provided by Tefteller, Inc. that will have a resolution of 0.01 psi and an accuracy of \pm 0.05% of full scale. The pressure range of the gauges will be 0-5,000 psi minimum. The dedicated injection well will operate for 72-hours or until the discharge pressure approaches the 1,400 psi shutdown pressure following the placement of the tandem memory gauges to allow the gauges to stabilize. During this time, down-hole pressure readings will be recorded. Once the stabilization time has elapsed, the injection well pump will be shut down and the well will be blocked-in by closing the valve at the wellhead and in the pump room (double-block).

Phase 2: Pressure Fall-Off Monitoring

With the well blocked-in, bottom-hole readings will be recorded for a minimum of 3 days and up to 14 days. The recording period will be set to record pressures at a minimum of 5-minute intervals, with readings collected more frequently during the early part of the Fall-Off Test period.

Phase 3: Post Monitoring Operations

Following completion of the fall-off monitoring, the gauges will be pulled while making 5-minute stops at each 1,000 ft interval starting at 7,000 ft to collect pressure gradient readings. After removal of the gauges, the well will return to normal operation.

Upon receipt of NMOCD approval of this test protocol, Western will coordinate with NMOCD District III to provide the opportunity to witness all testing activities. The intent is to initiate field-testing activities on Friday, September 18th to ensure completion of field activities prior to September 30, 2020.

Spud Date:	Rig Release Date:	
I hereby certify that the information above is true and c	omplete to the best of my knowledge and belief.	
SIGNATURE Kellifdenory	TITLE Environmental Superior	_{DATE} ٩/١७/20
Type or print name	E-mail address:	PHONE:
For State Use Only APPROVED BY: Carl J. University	Environmental Engineer	_DATE9/17/2020
Conditions of Approval (II any):		

- 1) Permittee shall gradually increase the injection flow rate and injection pressure over time to attain and achieve the appropriate steady-state condition below the permit MSIP before FOT monitoring.
- 2) If the Permittee is unable to achieve a steady-state condition before FOT monitoring, the test shall proceed in order to study and evaluate test results and provide observations, conclusions and final recommendations from the test based on operational conditions.
- 3) The Permittee shall ensure the perforated interval, borehole and the immediate injection interval is free from obstructions before the FOT.
- 4) The Permittee shall apply a pressure gauge with the resolution and accuracy requirements commensurate with the Fall-Off Test Plan requirements.
- 5) The Permittee shall provide notice of the dates and times for installation of any bottom hole gauge(s) start of FOT monitoring, bottom hole gauge recovery and MITs to the OCD District Office.

Submit 1 Copy To Appropriate District Office District 1 – (575) 393-6161	State of New Mexico Energy, Minerals and Natural Resources	Form C-103 Revised July 18, 2013
$\frac{1025 \text{ N. French Dr., Hobbs, NM 88240}}{\frac{\text{District II} - (575) 748-1283}{811 \text{ S. First St., Artesia, NM 88210}}$ $\frac{\text{District III} - (505) 334-6178}{1000 \text{ Rio Brazos Rd., Aztec, NM 87410}}$ $\frac{\text{District IV} - (505) 476-3460}{1220 \text{ S. St. Francis Dr., Santa Fe, NM}}$	OIL CONSERVATION DIVISION 1220 South St. Francis Dr. Santa Fe, NM 87505	30-045-35747 5. Indicate Type of Lease STATE FEE 6. State Oil & Gas Lease No.
SUNDRY NOTICES (DO NOT USE THIS FORM FOR PROPOSALS DIFFERENT RESERVOIR. USE "APPLICATI	S AND REPORTS ON WELLS S TO DRILL OR TO DEEPEN OR PLUG BACK TO A ON FOR PERMIT" (FORM C-101) FOR SUCH	7. Lease Name or Unit Agreement Name
1. Type of Well: Oil Well Gas	Well 🛛 Other Wastewater Disposal Well	8. Well Number: WDW #2
2. Name of Operator Western Refining Southwest, Inc.		9. OGRID Number 267595
 Address of Operator County Road 4990 (PO Box 159) B 	loomfield, NM 87413	10. Pool name or Wildcat Entrada
4. Well Location Unit Letter H : 2	2028 feet from the <u>North</u> line and	East feet from the line
Section 27	Township 29N Range 11W	NMPM San Juan County
	L. Elevation (Show whether DR, RKB, RT, GR, etc.)

12. Check Appropriate Box to Indicate Nature of Notice, Report or Other Data

NOTICE OF	- IN	TENTION TO:	SUBSEQUENT REPORT OF:		
PERFORM REMEDIAL WORK		PLUG AND ABANDON		REMEDIAL WORK ALTERING CASING	
TEMPORARILY ABANDON		CHANGE PLANS		COMMENCE DRILLING OPNS. P AND A	
PULL OR ALTER CASING		MULTIPLE COMPL		CASING/CEMENT JOB	
DOWNHOLE COMMINGLE					
CLOSED-LOOP SYSTEM					
OTHER 🗌				OTHER: X Bradenhead Test Report	_

 Describe proposed or completed operations. (Clearly state all pertinent details, and give pertinent dates, including estimated date of starting any proposed work). SEE RULE 19.15.7.14 NMAC. For Multiple Completions: Attach wellbore diagram of proposed completion or recompletion.

Pursuant to Condition 3.D.1 of the Bloomfield Terminal Injection Well Discharge Permit (UICI-011), Western Refining Southwest, Inc. conducted a pressure test on the Bradenhead and Intermediate casings of WDW #2 on Friday, September 18, 2020. A representative of NMOCD observed the testing via face-time in the field.

Spud Date:		Rig Release Date:			
I hereby certify that the	ne information above is true ar	id complete to the best of	f my knowledge and belie	f.	-
signature K	MyColeiron	TITLE <u>Environme</u>	ental Supervisor	DATE_09/18/2020	
Type or print name For State Use Only	Kelly Robinson E-ma	ail address: <u>krobinson3@</u>	Imarathonpetroleum.com	PHONE: (505) 801-5616	
APPROVED BY: Conditions of Approv	/al (if any):	TITLE		DATE	

BRADENHEAD	TEST REPORT

(submit 1 copy to above address)

Date of	Test_	9-18	3-ZO		Operat	tor Western Refining Southund PI #30-045-35747
Propert	y Nan	ne Wast	e Dispose	ul Well V	Vell No	<u>2</u> Location: Unit <u>H</u> Section <u>27</u> Township <u>29</u> Range <u>11</u>
Well St	Well Status(Shut-In or Producing) Initial PSI: Tubing October Intermediate 🖉 Casing 🖉 Bradenhead 43					
OPE	N BRA	DENHE	EAD AN	D INTER	MEDIATI	E TO ATMOSPHERE INDIVIDUALLY FOR 15 MINUTES EACH
Testing		Braden	PRESSU	RE NITE	РM	FLOW CHARACTERISTICS
resting	BH	Int	Csg		Csg	DRADENNEAD INTERNIEDIATE
TIME 5 min	Ø	Ø	Ø	Ø	ø	Steady Flow
10 min_	Ø	Ø	Ø	Ø	Ø	Surges
15 min_	Ø	Ø	Ø	Ø	Ø	Down to Nothing
20 min_						Nothing
25 min_						Gas
30 min_						Gas & Water
C	K =	Zen	a			Water
If bradenhead flowed water, check all of the descriptions that apply below:						
CLEAR FRESH SALTY SULFUR BLACK						
5 MINU	Light putt when opened atter 5 Minutes					
REMAR	Ke -		NESSUN		BRADDING	
	K5	The i	ntern	rediate	e and	bradenhead have not been opened prior to
testin	ng.	Brac	Jenha	d pre	ssure -	to Opsi in 4 seconds. Intermedicate to opsi
ìn	IHS	cond	ls.	whenme	diox	had no puff after 5 minute shut-in.
By_K	elly	Robin	un : Fi	raukDa	sting	Witness Monica Kuchling (Via Face-Time)
WN	WNR Personnell					
	(Positio	on) L L			11 -	1.
E-mail ad	ldress	Krobil	No.3(2 Mara	thon pe	troleum. com

2020 ANNUAL BOTTOM-HOLE PRESSURESURVEY AND PRESSURE FALLOFF TEST REPORT WESTERN REFINING SOUTHWEST, INC.

WASTE DISPOSAL WELL NO. 2 Bloomfield, New Mexico

November 2020

Houston, TX

Project No. 192143A

Prepared by Larry McDonald Reviewed by Jeffry Tahtouh

TABLE OF CONTENTS

EXECUT		5
1.	FACILITY INFORMATION	6
2.	WELL INFORMATION	6
3.	CURRENT WELLBORE SCHEMATIC	6
4.	ELECTRIC LOG ENCOMPASSING THE COMPLETED INTERVAL	7
5.	RELEVANT PORTIONS OF THE POROSITY LOG USED TO ESTIMATE FORMATION	
	POROSITY	7
6.	PVT DATA OF THE FORMATION AND INJECTION FLUID	7
7.	DAILY RATE HISTORY DATA (MINIMUM OF ONE MONTH PRECEDING THE FALLO	۶FF
	TEST)	7
8.	CUMULATIVE INJECTION INTO THE FORMATION FROM TEST WELL	7
9.	PRESSURE GAUGES	7
10.	ONE MILE AREA OF REVIEW (AOR)	8
11.	GEOLOGY	9
12.	OFFSET WELLS	9
13.	CHRONOLOGICAL LISTING OF THE DAILY TESTING ACTIVITIES	10
14.	PRESSURE FALLOFF ANALYSIS	10
15.	NEW MEXICO OIL CONSERVATION DIVISION THREE YEAR RECORDING KEEPING	3
	STATEMENT	16

- TABLE 1:TABULATION OF WELLS WITHIN ONE MILE AREA OF REVIEW FOR Waste Disposal Well No. 2
- TABLE 2:
 WELL CHANGES IN THE COMBINED AREA OF REVIEW
- TABLE 3: WELLS THAT HAVE BEEN PLUGGED AND ABANDONED SINCE THE 2019 AOR UPDATE
- TABLE 4: WELLS THAT HAVE BEEN TEMPORARILY ABANDONED SINCE THE 2019 AOR UPDATE
- TABLE 5:
 WELLS THAT HAVE BEEN RECOMPLETED SINCE THE 2019 AOR UPDATE
- TABLE 6:
 NEWLY DRILLED WELLS SINCE THE 2019 AOR UPDATE
- TABLE 7:
 TABULATION OF THE FIGURES INCLUDED IN THE REPORT
- TABLE 8:COMPARISON OF PERMEABILITY, MOBILITY-THICKNESS, SKIN, AND FALSE EXTRAPOLATED
PRESSURE 2020, AND 2019 FROM AVAILABLE DATA
- TABLE 9:
 STATIC PRESSURE GRADIENT DATA

FIGURES

- FIGURE 1: WASTE DISPOSAL WELL NO. 2 SCHEMATIC
- FIGURE 2: MAP OF ONE MILE AREA OF REVIEW
- FIGURE 3: TEST OVERVIEW
- FIGURE 4: CARTESIAN PLOT OF THE DATA USED IN THE ANALYSIS
- FIGURE 5: DERIVATIVE LOG-LOG PLOT
- FIGURE 6: SUPERPOSITION HORNER (SEMI-LOG) PLOT
- FIGURE 7: EXPANDED SUPERPOSITION HORNER (SEMI-LOG) PLOT
- FIGURE 8: STATIC PRESSURE GRADIENT SURVEY

APPENDICES

- APPENDIX A:DUAL INDUCTION LOG SECTIONS FROM 7200 FEET TO 7532 FEETAPPENDIX B:POROSITY LOG SECTIONS FROM 7200 FEET TO 7532 FEETAPPENDIX C:INJECTION AND FORMATION FLUID ANALYSISAPPENDIX D:DAILY RATE HISTORY DATAAPPENDIX E:GAUGE CALIBRATION SHEETS
- APPENDIX F: PANSYSTEM© ANALYSIS OUTPUT

EXECUTIVE SUMMARY

WSP USA Inc. (WSP) was contracted by Western Refining Southwest Inc. (Western) to conduct the analysis of the annual bottom-hole pressure survey and pressure falloff test on Western's Waste Disposal Well No. 2 (WDW#2). The test was performed according to New Mexico Oil Conservation Division (OCD) falloff test guidelines (*New Mexico Oil Conservation Division UIC Class I Well Fall-Off Test Guidance, December 3, 2007*).

The test provides the state regulatory agency with the necessary information to access the validity of requested or existing injection well permit conditions and satisfy the permitting objective of protecting the underground sources of drinking water (USDW). Specifically, 40 CFR Part 146 states "the Director shall require monitoring of the pressure buildup in the injection zone annually, including at a minimum, a shutdown of the well for a time sufficient to conduct a valid observation of the pressure fall-off curve" (40 CFR§146.13 for Nonhazardous Class I Wells).

The falloff testing was conducted according to the testing plan submitted to and approved by the NM OCD.

As prescribed by the guidelines, the report discusses supporting and background information in Sections 1 through 9. The one-mile area of review (updated since the 2019 falloff testing) is discussed in Section 10 and geology in Section 11. Information on the offset wells is discussed in Section 12, daily testing activities in Section 13. The pressure falloff testing and analysis results are discussed in Section 14. The OCD required record keeping statement is discussed in Section 15.

1. FACILITY INFORMATION

- a. Name: Western Refining Southwest, Inc. (subsidiary of the Marathon Petroleum Company)
- b. Facility Location: 50 County Road 4990 (PO Box 159) Bloomfield, New Mexico 87413
- c. Operator's Oil and Gas Remittance Identifier (OGRID) Number: 267595

2. WELL INFORMATION

- a. OCD UIC Permit Number: UICI-011
- b. Well Classification: Class I Non-hazardous
- c. Well Name and Number: WDW#2
- d. API Number: 30-045-35747
- e. Well Legal Location: 2028' FNL and 111' FEL, Unit letter H of Section 27, Township 29 North, Range 11 West

3. CURRENT WELLBORE SCHEMATIC

The WDW#2 wellbore schematic is presented in Figure 1. The schematic contains data, as requested by the guidelines and includes the following:

- a. Tubing: 4-1/2-inch, 11.6 pound per foot, API grade L-80, with Internal Plastic Coated (IPC) casing, set at 7230 feet
- b. Packer: Baker, 7-inch by 4-1/2-inch set at 7230 feet.
- c. Size, Type, and Depth of Casing: There are three casing strings in the well. The information for these casing strings was obtained from OCD records on file with the state and geophysical logs. The casing strings are:
 - i. 13-3/8-inch, 48 pound per foot, steel construction, API grade H40, set at a depth of 298 feet. The casing was cemented to the surface with 394 sacks of cement. The casing was set in open hole with a diameter of 17.5 inches.
 - ii. 9-5/8-inch, 36 pound per foot, steel construction, API grade J-55, set at a depth of 3500 feet. The casing was cemented to the surface with 857 sacks of cement. The casing was set in open hole with a diameter of 12.25 inches.
 - iii. 7-inch, 26 pound per foot and 23 pound per foot, steel construction, API grade L-80, set at a depth of 7525 feet. The casing was cemented to surface with 868 sacks of cement. The casing was set in open hole with a diameter of 8.75 inches.

Annual Bottom-Hole Pressure Survey and Pressure Falloff Test Report – Waste Disposal Well No. 2 – Project 192143A Western Refining Southwest, Inc. – Bloomfield, New Mexico – November 2020

4. ELECTRIC LOG ENCOMPASSING THE COMPLETED INTERVAL

The dual induction log is presented in Appendix A and encompasses the completed interval between 7200 feet and 7532 feet. The dual induction log was submitted to the OCD with the original permit after the well was drilled.

5. RELEVANT PORTIONS OF THE POROSITY LOG USED TO ESTIMATE FORMATION POROSITY

The porosity log is presented in Appendix B and encompasses the completed interval between 7200 feet and 7532 feet. The neutron density log was submitted to the OCD with the original permit after the well was drilled. The porosity of the formation, 14.9%, and the reservoir thickness, 123 feet, were determined from this log. These values were used in the analysis of the pressure falloff data (Section 15). Additional information concerning the geology of the injection reservoir is discussed in Section 11.

6. PVT DATA OF THE FORMATION AND INJECTION FLUID

The fluid used for the injection test is the terminal treated wastewater (effluent). A current effluent analysis collected on July 13, 2020 and August 17, 2020 is included in Appendix C. A summary of the formation water is also in Appendix C. The formation water analyses taken on January 25, 2017 is included.

7. DAILY RATE HISTORY DATA (MINIMUM OF ONE MONTH PRECEDING THE FALLOFF TEST)

The rate history used in the analysis of the pressure falloff data began on May 28, 2020 and ends when the well was shut-on September 21, 2020. The daily rate history is summarized in Appendix D.

8. CUMULATIVE INJECTION INTO THE FORMATION FROM TEST WELL

The total volume of fluid injected into the WDW#2 was 6,738,018 gallons. The injected volumes were obtained from NMOCD online records.

9. PRESSURE GAUGES

Two (2) downhole pressure gauges were used for the WDW-2 buildup and falloff testing. The downhole pressure gauge was set at 7312 feet, ground level.

a. Describe the type of downhole surface pressure readout gauge used including manufacture and type:

An MRO pressure gauge was used to monitor the bottom-hole pressure and temperature during the pressure buildup and falloff testing. The gauge was a sapphire crystal gauge with Serial No.240. The gauges are manufactured by Micro-Smart.

b. List the full range, accuracy and resolution of the gauge:

The MRO pressure gauge, Serial No. 240, has a full range of 14.73 psi to 5000 psi and an accuracy of 0.05% of full scale.

c. Provide the manufacturer's recommended frequency of calibration and a calibration certificate showing date the gauge was last calibrated:

The certificates of calibration for the pressure gauge used during the testing are included as Appendix E. The pressure gauge was last calibrated on March 10, 2020 and is within the recommended calibration frequency as recommended by Micro-Smart.

10. ONE MILE AREA OF REVIEW (AOR)

Federal Abstract Company was contracted by WSP to undertake a review of well changes made within a one-mile area of review (AOR) of WDW#2. The current update of the one-mile area of review includes all existing wells within the one-mile AOR and any changes that have occurred to these wells since the 2019 update.

No new freshwater wells were reported within the search area since the submittal of the 2019 report.

a. Identify wells located within the one-mile AOR:

There are 62 wells in the one-mile radius of investigation. Table 1 contains a listing of all wells within the one-mile AOR of WDW#2. Figure 2 is a base map of the area containing the one-mile AOR.

b. Ascertain the status of wells within the one-mile AOR:

Table 1 also contains a listing of all wells within the one-mile AOR, with their current status. Tables 2 through 6 contain a list of all wells within the one-mile AOR that have had modifications to the current permit or have had new drilling and/or completion permits issued since the 2019 pressure falloff report.

Five (5) additional wells were found in the AOR that were not identified in the previous reports. They can be found in the Table 1 and are numbered 58 through 62. Ten (10) wells were found in which the owner had changed. Three (3) wells were found in which the permit was cancelled. Five (5) new wells were plugged and abandoned. No wells were placed in temporarily abandoned status. No wells were found that were returned to production status. No wells were found that had been recompleted.

No new wells were drilled and no permits were issued to drill new wells. All plugged and abandoned wells were successfully plugged and isolated from the WDW#2 injection interval according to current OCD records.

c. Provide details on any offset producers and injectors completed in the same interval:

One of the sixty-two wells in the AOR, Ashcroft SWD #1, penetrates the Entrada injection zone. This well is 0.64 miles from the disposal well and is an active water disposal well. Ashcroft SWD #1 is listed as ID No. 24 in Table 1 and no changes have occurred to this well. No wells are currently producing form the Entrada injection zone within the AOR.

11. GEOLOGY

The injection zone is the Entrada sandstone formation. The formations occur in WDW #2 at the depths shown in the table below. The injection zone is shown in WDW #2 logs in Appendices A and B.

	Waste Disposal Well #2			
Injection Zone Formation	(KB elev = 5,550 ft)			
	MD below KB (ft)	SS Depth (ft)		
Bluff Sandstone	Not completed	7,031		
Entrada Sandstone	7,312 to 7,470	7,308		

The Jurassic aged Entrada Sandstone is thought to be one of the best water disposal rock units in the San Juan Basin. The Entrada is the basal formation of the San Rafael Group which also includes the Todilto and Wanakah Formations. The Entrada Sandstone is present throughout the basin's subsurface and crops out along its margin as step cliffs. The Entrada unconformably overlies the Chinle Formation. The Todilto Formation made up of limestone and anhydrite in dense and thought to an impermeable barrier or seal and likely seal for the injection zone.

The Entrada Sandstone consists of mottled reddish-brown very fine to medium grained wellsorted, silica cemented quartz sandstone interbedded with thinner reddish-brown siltstones. The sandstone units are assembled in high-angle, large-scale crossbeds indicating eolian environment deposition and with the siltstones representing interdue and sabkha deposition. The crossstratified sandstone is competent, laterally persistent and with homogenous reservoir properties. Entrada Sandstone gross thickness ranges from 60 feet to 330 feet across the basin.

At the WDW #2 location the Entrada is 158 feet thick. Based upon the nearby XTO Energy Ashcroft SWD #1 water disposal well density porosities are up to 18 percent with the most porous interval found in the upper 90 feet of the formation where many of the density porosities are greater than 10 percent. WDW #2 has a density porosity of 12.1 percent. The two intervals with the highest porosity are 20 feet from 7,333 feet to 7,353 feet with 14.1 percent porosity and 26 feet from 7,442 feet to 7,468 feet with 14.9 percent porosity. Permeability for the well as measured by this falloff test is 1.14 md or less.

12. OFFSET WELLS

The offset well is discussed in Section 10.0.

13. CHRONOLOGICAL LISTING OF THE DAILY TESTING ACTIVITIES

a. Date of the testing:

The buildup portion of the testing started on September 18, 2020 at 1334 hours and continued until September 21, 2020 at 1424 hours when WDW-2 was shut-in. The falloff test ended on October 1, 2020 at 0802 hours. Five-minute gradient stops were made at 1000-foot intervals while pulling the pressure gauges out of the well. After the pressure gauges were pulled out of the well, the well was turned over to Western plant operations personnel.

b. Time of the injection period:

The buildup portion of the testing began on September 18, 2020 when the injection rate was set at an average injection rate of approximately 22 gallons per minute (gpm). The bottomhole pressure and temperature were monitored for 72.83 hours after which time the well was shut in.

c. Type of injection fluid:

The injected fluid was non-hazardous wastewater from the plant. The density of the injection fluid averaged 8.33 pounds per gallon during the test.

d. Final injection pressure and temperature prior to shutting in the well:

The final flowing pressure feet (P_{wf}) and temperature (T_{wf}) were 4479.71 psia and 181.71°F, respectively.

e. Total shut-in time:

WDW-2 was shut-in for 234 hours.

f. Final static pressure and temperature at the end of the fall-off portion of the test:

The final static pressure (P_{static}) and temperature (T_{static}) were 3750.78 psia and 184.46°F, respectively.

14. PRESSURE FALLOFF ANALYSIS

The following discussion of the analysis of the pressure data recorded during the falloff testing of WDW- 2 satisfies Sections 15 through 19 of Section IX, Report Components, of the OCD's falloff test guidelines. Where appropriate, the specific guideline addressed is annotated. Specific parameters used in the equations and discussed previously in this report are also annotated. The plots included with this report are summarized in Table 7. The inclusion of these plots in this report satisfies OCD Guideline Section IX.18.

The pressure data obtained during the falloff test were analyzed using the commercially available pressure transient analysis software program PanSystem[©]. Appendix F contains the output from this software program. Figure 3 shows the pressure data recorded by the bottomhole pressure gauge from the time the tool was in place through the 234-hour shut-in period. Figure 4 is a Cartesian plot of the pressure data recorded during the falloff period.

Figure 5 is the derivative log-log diagnostic plot of the falloff data, showing change in pressure and pressure derivative versus elapsed shut-in time. The different flow regimes, wellbore storage, fracture bilinear flow, pseudo-radial flow and change in reservoir characteristics if present, are indicated on the log-log plot and the superposition Horner plot (OCD Guideline Section IX.18.c and IX.18.d).

Wellbore storage begins at 0.036 hours and continues to an elapsed shut in time of 0.052 hours. The bi- linear flow period begins at an elapsed shut-in time of 0.488 and continues until an elapsed shut-in time of 1.10 hours. The linear flow period was not apparent on the 2020 derivative log-log plot as was seen on the 2019 pressure falloff analysis report. Although the pseudo-radial flow period is not fully developed, it gives a good determination of the reservoir permeability. The pseudo-radial flow period begins at an elapsed shut in time of 153.77 hours and continues to an elapsed time of 233.94 hours. (OCD Guideline Section IX.15.b).

The reservoir permeability was determined from the pseudo-radial flow region of the superposition semi-log plot, Figure 6. The superposition time function was used to account for all rate changes during the injection period used in the analysis of the data. The pseudo-radial flow regime begins at a Superposition time of 1.96 and continues to 1.76. Figure 7 shows an expanded view of the pseudo-radial flow regime. The slope of the radial flow period, as calculated by the analysis software, was 482.305 psi/cycle (OCD Guideline Section IX.15.c). The injection rate just prior to shut in was 24 gpm which is equivalent to 882.86 barrels per day (bbls/day).

An estimate of mobility-thickness (transmissibility, OCD Guideline Section IX.15.d), kh/ μ , for the reservoir was determined to be 297.64 md-ft/cp using the following equation:

$$\frac{kh}{\mu} = 162.6 \frac{qB}{m}$$

where,

kh/μ	=	formation mobility-thickness, millidarcy-feet/centipoise
q	=	rate prior to shut in, bpd
В	=	formation volume factor, reservoir volume/surface volume
m	=	slope of radial flow period, psi/cycle

$$\frac{kh}{\mu} = 162.6 \ \frac{(882.86)(1.0)}{482.305}$$

= 297.64 md-ft/cp

The permeability-thickness (flow capacity, OCD Guideline Section IX.15.i), kh, was determined to be 138.89 md-ft by multiplying the mobility-thickness, kh/ μ , by the viscosity of the reservoir fluid (see Section 6), $\mu_{reservoir}$, of 0.47 centipoise (cp):

$$kh = \frac{(kh)}{\mu} \mu_{reservoir}$$
$$= (297.64)(0.47)$$
$$= 139.89 \text{ md-ft}$$

The reservoir permeability (OCD Guideline Section IX.15.e) using the total thickness (see Section 5 and Section 11) of 123 feet was 1.14 md:

$$k = \frac{kh}{h}$$
$$= \frac{139.89}{123}$$
$$= 1.14 \text{ md}$$

To determine whether the proper viscosity was used in arriving at this permeability, the travel time for a pressure transient to pass beyond the waste front needs to be calculated (OCD Guideline Section VIII.5). The distance to the waste front is determined from the following equation:

$$r_{waste} = \left(\frac{0.13368 V}{\pi h \Phi}\right)^{1/2}$$

where,

r _{waste}	=	radius to waste front, feet
V	=	total volume injected into the injection interval, gallons
h	=	formation thickness, feet
φ	=	formation porosity, fraction
0.13368	=	constant

A cumulative volume of approximately 6,738,018 gallons of waste has been injected into WDW-2 (see Section 8). The formation has a porosity of 0.149 (see Section 5 and Section 11).

The distance to the waste front was determined to be 125.08 feet:

$$r_{waste} = \left(\frac{(0.13368)(6738018)}{\pi (123)(0.149)}\right)^{1/2}$$

= 125.08 feet

The time necessary for a pressure transient to traverse this distance is calculated from the following equation:

$$t_{waste} = 948 \frac{\Phi \,\mu_{waste} \, c_t \, r_{waste}^2}{k}$$

where,

t_{waste}	=	time for pressure transient to reach waste front, hours
φ	=	formation porosity, fraction
μ_{waste}	=	viscosity of the waste at reservoir conditions, centipoise
\mathbf{r}_{waste}	=	radius to waste front, feet
Ct	=	total compressibility of the formation and fluid, psi
k	=	formation permeability, millidarcies
948	=	constant

The pore volume compressibility is $4.44 \ge 10^{-6} \operatorname{psi}^{-1}$ (see Section 6). The viscosity of the waste fluid is 0.47 cp (see Section 6). The time necessary for a pressure transient to traverse the distance from the wellbore to the leading edge of the waste front would be 4.04 hours:

 $t_{waste} = 948 \frac{(0.149)(0.47)(4.44 \times 10^{-6})(125.08)^2}{1.14}$

= 4.04 hours

Since the time required to pass through the waste is less than the 153.77 hours required to reach the beginning of the radial flow period, the assumption that the pressure transient was traveling through reservoir fluid during the period of the semi-log straight line was correct.

The near wellbore skin damage (OCD Guideline Section IX.15.f) was determined from the following equation:

s = 1.151
$$\left[\frac{p_{wf} - p_{1hr}}{m_1} - log \left(\frac{k}{\phi \mu c_t r_w^2} \right) + 3.23 \right]$$

where,

S	=	formation skin damage, dimensionless
1.151	=	constant
p_{wf}	=	flowing pressure immediately prior to shut in, psi

p_{1hr}	=	pressure determined from extrapolating the first radial flow semi-log line to a Δt
		of one hour, psi
m_1	=	slope of the first radial flow semi-log line, psi/cycle
k	=	permeability of the formation, md
φ	=	porosity of the injection interval, fraction
μ	=	viscosity of the fluid the pressure transient is traveling through, cp
Ct	=	total compressibility of the formation plus fluid, psi ⁻¹
r _w	=	radius of the wellbore, feet
3.23	=	constant

The final measured flowing pressure was 4479.71 psia. The pressure determined by extrapolating the radial flow semi-log line to a Δt of one hour, p_{1hr}, was 4522.64 psia (calculated from the analysis software). The wellbore radius, r_w, is 0.3281 feet (completion records). Using these values in addition to the previously discussed parameters results in a skin of -5.05:

$$s = 1.151 \left[\frac{4479.71 - 4522.64}{482.305} - \log \left(\frac{1.14}{(0.149)(0.47)(4.44x10^{-6})(0.3281^2)} \right) + 3.23 \right]$$

= -5.05

The change in pressure, Δp_{skin} , in the wellbore associated with the skin factor (OCD Guideline Section IX.15.g) was calculated using the following equation:

 $\Delta p_{skin} = 0.869(m)(s)$

where,

0.869	=	constant
m	=	slope from superposition plot of the well test, psi/cycle
S	=	skin factor calculated from the well test

The change in pressure, $\Delta p_{skin},$ using the previously calculated and defined values was determined to be -2117 psi:

 $\Delta p_{skin} = 0.869(m)(s)$

= 0.869 (482.305)(-5.05)

= – 2117 psi

The flow efficiency (E, OCD Guideline Section IX.15.h) was determined from the following equation:

$$E = \frac{p_{wf} - \Delta p_{skin} - p_{static}}{p_{wf} - p_{static}}$$

NSD

where,

=	flow efficiency, fraction
=	flowing pressure prior to shutting in the well for the fall-off test,
=	final pressure from the pressure falloff test
=	pressure change due to skin damage
	= = =

Using the previously determined parameters, the flow efficiency was calculated to be 3.91:

$$E = \frac{4479.71 - (-2117) - 3750.78}{4479.40 - 3750.78}$$

= 3.91

The radius of investigation (OCD Guideline Section IX.15.a) was calculated using the following equation:

$$R_{inv} = 0.029 \sqrt{\frac{k \Delta ts}{\phi \mu Ct}}$$

The radius of investigation, r_{inv}, using the previously defined values was determined to be 849 feet:

$$R_{inv} = 0.029 \sqrt{\frac{(1.14)(234)}{(0.149)(0.47)(4.44 \times 10^{-6})}}$$

As indicated on Figure 5, the pressure data does not depart the pseudo-radial flow region. No pressure or temperature anomalies were noted on any of the analysis plots (OCD Guideline Section VIII.9 and IX17.b).

Because WDW-2 was shut in approximately 1915 hours prior to the 2020 pressure falloff testing, a current Hall plot (OCD Guideline Section IX.18.h) could not be constructed.

A comparison of the 2020 and 2019 reservoir analysis results are available in Table 8 (OCD Guideline Section IX.19).

On October 1, 2020, a static pressure gradient survey was conducted while pulling the pressure gauges out of the well. Static gradient stops were conducted at 7312 feet, 7000 feet, 6000 feet,

5000 feet, 4000 feet, 3000 feet, 2000 feet, 1000 feet, and at the surface. The bottom-hole pressure and temperature, after 234 hours of shut-in at 7312 feet were 3750.78 psia and 184.46°F, respectively. The gradient survey is summarized in Table 8. The data are graphically depicted in Figure 8.

15. NEW MEXICO OIL CONSERVATION DIVISION THREE YEAR RECORDING KEEPING STATEMENT

Western will keep the raw test data, generated during the testing, on file for a minimum of three years. The raw test data will be made available to OCD upon request.

																														_
Penetrate	Injection	Zone	λ	N	z	z	z	N	z	N	N	N	z	z	N	z	N	z	z	z	z	z	z	N	z	N	γ	Z	z	Z
		Plug Date				12/31/1901	10/29/2015				1/19/1994	11/15/2011		11/3/1982				12/31/9999			12/31/1901				6/14/1999	3/2/2000				
		Status	Active	Active	Active	Plugged	Plugged	Active	Active	Active	Plugged	Plugged	Active	Plugged	Active	Inactive	Inactive	Cancelled	Active	Active	Plugged	Active	Active	Active	Plugged	Plugged	Active	Active	Active	Active
		Type	SWD	Gas	Gas	Gas	SWD	Gas	Gas	Gas	Gas	Gas	Gas	Gas	Gas	N/A	N/A	Gas	Oil	Gas	Gas	Gas	Gas	Gas	Gas	Gas	SWD	Oil	Gas	Gas
		ULSTR	H-27-29N-11W	H-27-29N-11W	H-27-29N-11W	H-27-29N-11W	I-27-29N-11W	I-27-29N-11W	F-26-29N-11W	F-26-29N-11W	I-27-29N-11W	I-27-29N-11W	I-27-29N-11W	I-27-29N-11W	M-26-29N-11W	27-29N-11W	27-29N-11W	F-27-29N-11W	K-26-29N-11W	N-26-29N-11W	M-26-29N-11W	P-22-29N-11W	N-26-29N-11W	B-26-29N-11W	P-22-29N-11W	0-22-29N-11W	B-26-29N-11W	K-27-29N-11W	F-27-29N-11W	J-26-29N-11W
	Total	Depth	7525	1897	6392	0	3601	6700	4331	6329	6365	2951	1890	0	6450	3028	3028	0	5970	1970	0	2824	2960	6260	6310	1620	7512	6150	6240	6525
	Well	No	2	2	001E	2	1	001R	1	001E	L	1	1	1	L	1	1	001S	3	100	-	2	6	1	1	L	L	18	001E	001F
		Lease	Waste Disposal Well	Jacque	Davis Gas Com F	Pre-Ongard Well	Disposal	Davis Gas Com F	Davis Gas Com J	Sullivan Gas Com D	Davis Gas Com F	Davis Gas Com G	Jacque	Pre-Ongard Well	Calvin	Lauren Kelly	B Garland	Mangum	Calvin	Calvin	Pre-Ongard Well	Nancy Hartman	Congress	Sullivan Gas Com D	Hartman	Grace Pearce	Ashcroft Swd	Congress	Mangum	Calvin
		CO	Western Refining Southwest, Inc.	Holcomb Oil & Gas Inc	Hilcorp Energy Co	Pre-Ongard Well Operator	San Juan Refining Co	Hilcorp Energy Co	Holcomb Oil & Gas Inc	Hilcorp Energy Co	Bp America Production Co	XTO Energy, Inc	Holcomb Oil & Gas Inc	Pre-Ongard Well Operator	Hilcorp Energy Co	N/A	N/A	Holcomb Oil & Gas Inc	Hilcorp Energy Co	Hilcorp Energy Co	Pre-Ongard Well Operator	Manana Gas Inc	Morningstar Operating Llc	Hilcorp Energy Co	Manana Gas Inc	John C Pickett	Hilcorp Energy Co	Hilcorp Energy Co	Hilcorp Energy Co	Hilcorp Energy Co
		API No	30-045-35747	30-045-34409	30-045-24084	30-045-07883	30-045-29002	30-045-30833	30-045-25329	30-045-24083	30-045-07825	30-045-23554	30-045-34463	30-045-07812	30-045-12003	30-045-02133	30-045-02134	30-045-34266	30-045-25612	30-045-31118	30-045-07776	30-045-26721	30-045-24572	30-045-07733	30-045-07961	30-045-07959	30-045-30788	30-045-25673	30-045-24673	30-045-33093
	Distance	(ft)	0	1041	1141	1170	1380	1582	1643	1693	1740	1742	1756	1793	2376	2640	2640	2713	2750	2904	2909	3018	3025	3121	3146	3391	3412	3451	3498	3597
	Map	D	0	1	2	3	4	2	9	L	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27

TABULATION OF WELLS WITHIN ONE MILE AREA OF REVIEW FOR WASTE DISPOSAL WELL NO. 2

TABLE 1

1 OF 3

Penetrate	Injection	Zone	N	z	Z	N	N	z	z	z	N 2	z	z	Ν	z	Z	Z	Z	N	Z	z	z	Z	z	z	z	N	z	z	N
		Plug Date			7/28/1955	7/1/195	11/27/1978				3/12/1997								8/26/1980				3791/1975				8/9/2010			12/18/1900
		Status	Active	Active	Plugged	Plugged	Plugged	Active	Active	Active	Plugged	Active	Active	Active	Active	Active	Active	Active	Plugged	Active	Active	Active	Plugged	Active	Active	Active	Plugged	Active	Active	Pluaged
		Type	Gas	Gas	Gas	Gas	Gas	Gas	lio	Gas	Gas	Gas	Gas	Gas	Gas	Gas	Gas	Gas	Gas	0il	Gas	Gas	Gas	Gas	lio	Gas	Gas	lio	Gas	Gas
		ULSTR	F-27-29N-11W	F-27-29N-11W	G-26-29N-11W	G-26-29N-11W	C-27-29N-11W	B-26-29N-11W	A-34-29N-11W	K-23-29N-11W	K-23-29N-11W	L-27-29N-11W	N-22-29N-11W	A-34-29N-11W	N-22-29N-11W	N-22-29N-11W	N-22-29N-11W	H-26-29N-11W	K-23-29N-11W	C-35-29N-11W	I-26-29N-11W	C-34-29N-11W	M-27-29N-11W	M-27-29N-11W	P-26-29N-11W	P-26-29N-11W	M-27-29N-11W	H-26-29N-11W	E-35-29N-11W	E-35-29N-11W
	Total	Depth	2840	1500	0	0	0	2861	6200	2954	6230	6350	2845	2985	2045	9305	1440	1478	0	9030	2900	6216	0	2062	2950	9500	1810	5751	9059	1900
	Well	No	1	1	001X	X00	1	L	16	١	1	L	1	6	L	1	2	2	L	15	10	15	1	3	2	001E	001R	2	004E	-
		Lease	Marian S	Lauren Kelly	Pre-Ongard Well	Pre-Ongard Well	Pre-Ongard Well	Earl B Sullivan	Congress	State Gas Com Bs	Pearce Gas Com	Mangum	Mary Jane	Summit	Royal Flush	Cook	Cook	Sullivan	Pre-Ongard Well	Congress	Delo	Summit	Pre-Ongard Well	Garland	Calvin	Calvin	Garland B	Earl B Sullivan	Congress	Lea Ann
		CO	Manana Gas Inc	Manana Gas Inc	Pre-Ongard Well Operator	Pre-Ongard Well Operator	Pre-Ongard Well Operator	Hilcorp Energy Co	Hilcorp Energy Co	Holcomb Oil & Gas Inc	Bp America Production Co	Holcomb Oil & Gas Inc	Manana Gas Inc	Hilcorp Energy Co	Manana Gas Inc	Manana Gas Inc	Manana Gas Inc	Holcomb Oil & Gas Inc	Pre-Ongard Well Operator	Hilcorp Energy Co	Morningstar Operating Llc	Morningstar Operating Llc	Pre-Ongard Well Operator	Morningstar Operating Llc	Hilcorp Energy Co	Hilcorp Energy Co	Burlington Resources O&G Co Lp	Holcomb Oil & Gas Inc	Hilcorp Energy Co	Chaparral Oil & Gas Co
		API No	30-045-27365	30-045-27361	30-045-29107	30-045-07870	30-045-07896	30-045-23163	30-045-25657	30-045-23550	30-045-07985	30-045-07835	30-045-26731	30-045-24574	30-045-34312	30-045-07940	30-045-13089	30-045-07868	30-045-08009	30-045-25675	30-045-21457	30-045-25707	30-045-07903	30-045-24573	30-045-25195	30-045-24772	30-045-21732	30-045-25621	30-045-24837	30-045-20752
	Distance	(ft)	3645	3654	3803	3805	3836	3874	3907	3936	3963	4155	4199	4192	4209	4364	4391	4587	4583	4649	4722	4736	4773	4816	4897	4908	4983	5038	5056	5133
	Map	D	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55

TABULATION OF WELLS WITHIN ONE MILE AREA OF REVIEW FOR WASTE DISPOSAL WELL NO. 2

2 OF 3

											Penetrate
Dis	stance				Well	Total					Injection
	(ft)	API No	CO	Lease	No	Depth	ULSTR	Type	Status	Plug Date	Zone
	5165	30-045-22639	General Minerals Corp	Delo	11	1945	P-26-29N-11W	Gas	Plugged	7/30/2010	N
	5221	30-045-24082	Hilcorp Energy Co	Pearce Gas Com	001E	6365	J-23-29N-11W	Gas	Active		N
	703	30-045-25745	Pre-Ongard Well Operator	Pre-Ongard Well	1	0	E-26-29N-11W	Gas	Cancelled		N
	1129	30-045-23553	Pre-Ongard Well Operator	Pre-Ongard Well	1	0	W11-N92-72-H	Gas	Plugged		N
	1658	30-045-23552	Pre-Ongard Well Operator	Pre-Ongard Well	L	0	F-26-29N-11W	Gas	Cancelled		Ν
	4766	30-045-23551	Pre-Ongard Well Operator	Pre-Ongard Well	1	0	0-23-29N-11W	Gas	Cancelled		N
	4894	30-045-25738	Pre-Ongard Well Operator	Pre-Ongard Well	23	0	I-26-29N-11W	Gas	Cancelled		N

TABULATION OF WELLS WITHIN ONE MILE AREA OF REVIEW FOR WASTE DISPOSAL WELL NO. 2

2	
щ	
B	
Ā	

WELL CHANGES IN THE AREA OF REVIEW

	Cancelled															[X]		[X]	[X]	[X]
	New																			
	Recomp																			
	T&A																			
	P&A		[X]			[X]	[X]			[X]							[X]			
Change of	Owner	[X]		[X]	[X]			[X]	[X]		[X]	[X]	[X]	[X]	[X]					
	Changes	Owner	P&A	Owner	Owner	P&A	P&A	Owner	Owner	P&A	Owner	Owner	Owner	Owner	Owner	Cancelled	P&A	Cancelled	Cancelled	Cancelled
	Operator	Davis Gas Com F	Pre-Ongard Well	Davis Gas Com F	Sullivan Gas Com D	Mangum	Pre-Ongard Well	Sullivan Gas Com D	Ashcroft Swd	Pre-Ongard Well	Earl B Sullivan	Delo	Summit	Garland	Pearce Gas Com	Pre-Ongard Well Operator				
	Well Name	Davis Gas Com F	Pre-Ongard Well	Davis Gas Com F	Sullivan Gas Com D	Mangum	Pre-Ongard Well	Sullivan Gas Com D	Ashcroft Swd	Pre-Ongard Well	Earl B Sullivan	Delo	Summit	Garland	Pearce Gas Com	Pre-Ongard Well				
	Map ID	2	3	5	7	15	18	21	24	32	33	46	47	49	57	58	59	60	61	62
	Rng I	11W	11W	11W	11W	11W	11W	11W	11W	11W	11W	11W	11W	11W	11W	11W	11W	11W	11W	11W
	Twp	29N	29N	29N	29N	29N	29N	29N	29N	29N	29N	29N	29N	29N	29N	29N	29N	29N	29N	29N
	f. Sect	27	27	27	26	27	26	26	26	27	26	26	34	27	23	26	27	26	23	26
	Unit	Т	н		щ	ш	Σ	В	В	ပ	В	_	C	Σ	-	ш	Т	ш	0	—

끹	
A	
Ę	
2	
õ	
4 6	
5	
Ñ	
Ξ	
н	
Ζ	
S C	
핃	
õ	
₽	
Z	
¥	
ģ	
AND	
ED AND	
GED AND	
UGGED AND	
PLUGGED AND	
EN PLUGGED AND	
3EEN PLUGGED AND	
'E BEEN PLUGGED AND	
AVE BEEN PLUGGED AND	
F HAVE BEEN PLUGGED AND	
AT HAVE BEEN PLUGGED AND	
THAT HAVE BEEN PLUGGED AND	
LS THAT HAVE BEEN PLUGGED AND	
FELLS THAT HAVE BEEN PLUGGED AND	
WELLS THAT HAVE BEEN PLUGGED AND	

								Change of					
Unit	Sect	Twp	Rng	Map ID	API No	Well Name	Operator	Owner	P&A	T&A	Prod	Recomp	New
Н	27	29N	11W	3	30-045-07883	Pre-Ongard Well	Pre-Ongard Well		[X]				
ц	27	29N	11W	15	30-045-34266	Mangum	Mangum		[X]				
Μ	26	29N	11W	18	30-045-07776	Pre-Ongard Well	Pre-Ongard Well		[X]				
C	27	29N	11W	32	30-045-07896	Pre-Ongard Well	Pre-Ongard Well		[X]				
Н	27	29N	11W	59	30-045-23553	Pre-Ongard Well	Pre-Ongard Well		[X]				

	1
	New
	Recomp
	Prod
	T&A
	P&A
Change of	Owner
	Operator
	Well Name
	API No
	Map ID
	Rng
	Twp
	Sect
	Unit

NO CHANGES

WELLS THAT HAVE BEEN TEMPORARILY ABANDONED SINCE THE 2019 AOR UPDATE

TABLE 4

TED SINCE THE 2019 AOR UPDATE	
N RECOMPLET	
S THAT HAVE BEE	
WELL	

New	Recomp	Prod	T&A	P&A	Owner	II Name Operator	API No We	Map ID	Rng	Twp	Sect	Unit
					Change of							

NO CHANGES

9	
щ	
Ы	
A	
\vdash	

NEWLY DRILLED WELLS SINCE THE 2019 AOR UPATE

							Change of					
Unit	Sect	Twp	Rng	Map ID	API No	Well Name Operator	Owner	P&A	T&A	Prod	Recomp	New

NO CHANGES

FIGURES INCLUDED IN THE REPORT

Figure	Description	OCD Reference
1	Waste Disposal Well #2 Schematic	Section VI.1 and IX.3
2	Map of One Mile Area of Review	n/a
3	Waste Disposal Well #2 Test Overview	Section IX.18.f
4	Waste Disposal Well #2 Cartesian Plot of Data Used in the Analysis	Section IX.18.a
5	Waste Disposal Well #2 Derivative Log-Log Plot	Section IX.18.c
6	Waste Disposal Well #2 Superposition Horner (Semi- Log) Plot	Section IX.18.d
7	Waste Disposal Well #2 Expanded Superposition Horner (Semi-Log) Plot	Section IX.18.d
8	Waste Disposal Well #2 Static Pressure Gradient Survey	n/a

Waste Disposal Well #2 Comparison of Permeability, Transmissibility, Skin, False Extrapolated Pressure, and Fill Depth

Date of Test	Permeability (k)	Mobility-Thickness (kh/u)	Skin (s)	False Extrapolated Pressure (p*)
September 21 to October 1, 2020	1.14 md	297.64 md-ft/cp	-5.05	3632.37 psia
April 15 – 30, 2019	1.73 md	451 md-ft/cp	-3.80	3809.70 psia

STATIC PRESSURE GRADIENT SURVEY WASTE DISPOSAL WELL No. 2 OCTOBER 1, 2020

	Mer Ser	nory Gauge ial No. 1243	
Depth (feet)	Pressure (psig)	Pressure Gradient (psi/ft)	Temperature (ºF)
0	587.92	-	65.86
1000	1024.54	0.437	75.71
2000	1437.63	0.413	95.25
3000	1888.65	0.451	112.31
4000	2319.81	0.431	131.73
5000	2749.02	0.429	149.61
6000	3176.71	0.428	177.27
7000	3603.32	0.427	187.23
7312	3736.08	0.426	184.46

FIGURES

.....

STATIC PRESSURE GRADIENT SURVEY WASTE DISPOSAL WELL No. 2 OCTOBER 1, 2020

APPENDICES

APPENDIX A

DUAL INDUCTION LOG SECTIONS FROM 7200 FEET TO 7532 FEET

Table 1: A copy of the well log showing the Entrada interval to be tested.

APPENDIX B

POROSITY LOG SECTIONS FROM 7200 FEET TO 7532 FEET

APPENDIX C

INJECTION AND FORMATION FLUID ANALYSIS

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

February 01, 2017

Kelly Robinson Western Refining Southwest, Inc. #50 CR 4990 Bloomfield, NM 87413 TEL: (505) 632-4135 FAX (505) 632-3911

RE: DWD #2

OrderNo.: 1701A75

Dear Kelly Robinson:

Hall Environmental Analysis Laboratory received 1 sample(s) on 1/26/2017 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to <u>www.hallenvironmental.com</u> or the state specific web sites. In order to properly interpret your results it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Analytical Report Lab Order 1701A75

Date Reported: 2/1/2017

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Project: DWD #2

Lab ID: 1701A75-001

Client Sample ID: DWD 2 Formation Water Collection Date: 1/25/2017 11:00:00 AM Received Date: 1/26/2017 7:05:00 AM

Analyses	Result	PQL (Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS	100 MAR					Analyst:	MRA
Fluoride	ND	2.0		mg/L	20	1/26/2017 6:37:17 PM	R40335
Chioride	23000	2500	*	mg/L	5E	1/27/2017 7:20:01 PM	R40361
Bromide	ND	2.0		mg/L	20	1/26/2017 6:37:17 PM	R40335
Phosphorus, Orthophosphate (As P)	ND	10		mg/L	20	1/26/2017 6:37:17 PM	R40335
Sulfate	910	25	*	mg/L	50	1/27/2017 7:07:36 PM	R40361
Nitrate+Nitrite as N	ND	20		mg/L	100	1/27/2017 7:32:26 PM	R40361
SM2510B: SPECIFIC CONDUCTANC	E					Analyst	JRR
Conductivity	94000	50		µmhos/cm	50	1/30/2017 1:40:54 PM	R40366
SM2320B: ALKALINITY						Analyst	JRR
Bicarbonate (As CaCO3)	255.3	20.00		mg/L CaCO3	1	1/30/2017 11:39:53 AM	R40366
Carbonate (As CaCO3)	ND	2.000		mg/L CaCO3	1	1/30/2017 11:39:53 AM	R40366
Total Alkalinity (as CaCO3)	255.3	20.00		mg/L CaCO3	1	1/30/2017 11:39:53 AM	R40366
SM2540C MOD: TOTAL DISSOLVED	SOLIDS					Analyst	KS
Total Dissolved Solids	48900	2000	*D	mg/L	1	2/1/2017 3:56:00 PM	29970
EPA 6010B: TOTAL RECOVERABLE	METALS					Analyst	pmf
Calcium	1700	20		mg/L	20	1/30/2017 10:59:56 AM	29930
Magnesium	200	20		mg/L	20	1/30/2017 10:59:56 AM	29930
Potassium	450	20		mg/L	20	1/30/2017 10:59:56 AM	29930
Sodium	16000	500		mg/L	500) 1/30/2017 11:06:12 AM	29930

Matrix: AQUEOUS

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

(COL	atom	e de Buillinary Teport and Bampie 105m encomme	101 11486	5 C
Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	Е	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits Page 1 of 5
	ND	Not Detected at the Reporting Limit	Р	Sample pH Not In Range
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

LABORATORY ANALYTICAL REPORT

Prepared by Billings, MT Branch

Client:Hall EnvironmentalReport Date:01/27/17Project:Not indicatedCollection Date:01/25/17 11:00Lab ID:B17011690-001DateReceived:01/27/17Client Sample ID:1701A75-001C DWD 2 Formation WaterMatrix:Aqueous

Analyses	Result Units	Qualifiers	RL	MCI) QCL	Method	Analysis Date / By
CORROSIVITY					214/22 (40)	
pH	6.46 s.u.		0.10		SW9040C	01/27/17 10:54 / jmg

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit.

ř

MCL - Maximum contaminant level. ND - Not detected at the reporting limit.

QA/QC Summary Report

Prepared by Billings, MT Branch

Client: Hall Environmental

Project: Not Indicated

Report Date: 01/27/17

Work Order: B17011690

Analyte		Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDI_imit	Qual
Melhod:	8W9040C						Analytical Ru	n: ORION	720A HZW	_170127A
Lab ID: pH	ICV	Initial Calibra 8.11	tion Verifications.u.	on Standard 0.10	101	98	102		01/2	7/17 10:54
Method:	SW9040C								Batch	: R273874
Lab ID: pH	B17011690-001ADUP	Sample Dupli 6.49	icate s.u.	0.10		Run: ORIC	ON 720A HZW_	170127A 0.5	01/2 3	7/17 10:54

Qualifiers: RL - Analyte reporting limit.

ND - Not detected at the reporting limit.

Western Refining Southwest, Inc.

Project: DV	VD #2	2								
Sample ID MB	San	npType: m	bik	Tos	tCode: EF	PA Method	300.0: Anions		2000	
Client ID: PBW	Ba	atch ID: R4	0335	F	lunNo: 40	0335				
Prep Date:	Analysi	s Date: 1	/26/2017	S	SeqNo: 12	264291	Units: mg/L			
Analyte	Resul	t PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Fluoride	NC	0.10								
Bromide	NE	0.10								
Phosphorus, Orthophosphate	(As P NE	0.50								
Sample ID LCSb	San	npType: Ic:	S	Tes	tCode: El	PA Method	300.0: Anions			
Client ID: LCSW	B	atch ID: R4	40335	F	RunNo: 40	0335				
Prep Date:	Analys	is Date: 1	/26/2017	5	SeqNo: 1	264293	Units: mg/L			
Analyte	Resul	t PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLImit	Qual
Fluoride	0.53	2 0.10	0.5000	0	104	90	110	1580.00		
Bromide	2.4	4 0,10	2.500	0	96.4	90	110			
Phosphorus, Orthophosphate	(As P 4.6	в 0.50	5.000	0	96.7	90	110			
Sample ID MB	Sar	npType: m	bik	Tes	tCode: El	PA Method	300.0: Anions			
Client ID: PBW	В	atch ID: R	40361	F	RunNo: 4	0361				
Prep Date:	Analys	is Date: 1	/27/2017	5	SeqNo: 1	265117	Units: mg/L			
Analyte	Resu	lt PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride	N	0.50								
Sulfate	N	0.50								
Nitrate+Nitrite as N	NI	0.20								
Sample ID LCS	Sar	npType: Ic	5	Tes	tCode: El	PA Method	300.0: Anions	Î		
Client ID: LCSW	В	atch ID: R	40361	F	RunNo: 4	0361				
Prep Date:	Analys	is Date: 1	/27/2017	\$	SeqNo: 1	265118	Units: mg/L			
Analyte	Resu	It PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride	4.	8 0.50	5.000	0	95.5	90	110	2007 Sec. 1990		

Qualifiers:

Sulfate

Nitrate+Nitrite as N

Client:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded

9.7

3.5

0.50

0.20

10.00

3,500

- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range

97.2

98.8

0

0

90

90

110

110

Page 2 of 5

- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

1701A75 01-Feb-17

WO#:

JI-1 CU-1/

Client: Western Refining Southwest, Inc.

Project: DWD #2

Sample ID MB-29930	SampType:	IBLK	Test	tCode: El	PA 6010B:	Total Recover	able Meta	lls	
Client ID: PBW	Batch ID:	9930	R	RunNo: 4	0375				
Prep Date: 1/27/2017	Analysis Date:	1/30/2017	S	SeqNo: 1	265583	Units: mg/L			
Analyte	Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Calcium	ND 1.	0							
Magnesium	ND 1.	0							
Potassium	ND 1.	0							
Sodium	ND 1.	D	20						
Sample ID LCS-29930	SampType: I	.CS	Tes	tCode: El	PA 6010B:	Total Recover	able Meta	ls	
Client ID: LCSW	Batch ID:	9930	F	RunNo: 4	0375				
Prep Date: 1/27/2017	Analysis Date:	1/30/2017	5	GegNo: 1	265584	Units: mg/ L			
					energian de l'actual de				
Analyte	Result PQL	. SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Analyte Calcium	Result PQL 49 1.	SPK value 0 50.00	SPK Ref Val 0	%REC 98.3	LowLimit 80	HighLimit 120	%RPD	RPDLimit	Qual
Analyte Calcium Magnesium	Result PQL 49 1. 49 1.	<u>SPK value</u> 0 50.00 0 50.00	SPK Ref Val 0 0	%REC 98.3 97.3	LowLimit 80 80	HighLimit 120 120	%RPD_	RPDLimit	Qual
Analyte Calcium Magnesium Potassium	Result POI 49 1. 49 1. 49 1. 47 1.	<u>SPK value</u> 0 50.00 0 50.00 0 50.00	SPK Ref Val 0 0 0	%REC 98.3 97.3 94.9	LowLimit 80 80 80	HighLimit 120 120 120	<u> </u>	RPDLimit	Qual
Analyte Calcium Magnesium Potassium Sodium	Result PQI 49 1. 49 1. 47 1. 48 1.	<u>SPK value</u> 0 50.00 0 50.00 0 50.00 0 50.00	SPK Ref Val 0 0 0 0	%REC 98.3 97.3 94.9 95.4	LowLimit 80 80 80 80	HighLimit 120 120 120 120	<u></u>	RPDLimit	Qual

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Page 3 of 5

WO#: 1701A75 01-Feb-17

Client: Western Refining Southwest, Inc. DWD #2 **Project:**

		SALESS COMPANY									
Sample ID mb-1	SampT	fype: mt	olk	Tes	tCode: SI	12320B: A	kalinity			57 (5963)	
Client ID: PBW	Batch	h ID: R4	0366	F	RunNo: 4	0366					
Prep Date:	Analysis D	Date: 1/	30/2017	5	SeqNo: 1	266120	Units: mg/L	CaCO3			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	10000
Total Alkalinity (as CaCO3)	ND	20.00								2	
Sample ID Ics-1	SampT	Type: Ics		Tes	tCode: SI	M2320B: A	lkalinity				
Client ID: LCSW	Batch	h ID: R4	0366	F	RunNo: 4	0366					
Prep Date:	Analysis E	Date: 1/	30/2017	Ş	SeqNo: 1	266121	Units: mg/l	CaCO3			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	Lowl imit	HighLimit	%RPD	RPDLimit	Qual	
Total Alkalinity (as CaCO3)	78,04	20.00	80.00	0	97.6	90	110				

Qualifiers:

- Value exceeds Maximum Contaminant Level. *
- D Sample Diluted Due to Matrix
- Holding times for preparation or analysis exceeded Н
- Not Detected at the Reporting Limit ND
- RPD outside accepted recovery limits R
- % Recovery outside of range due to dilution or matrix S
- Analyte detected in the associated Method Blank В
- Value above quantitation range Е
- Analyte detected below quantitation limits J
- Р Sample pH Not In Range
- **Reporting Detection Limit** RL
- Sample container temperature is out of limit as specified W

WO#: 1701A75 01-Feb-17

Page 4 of 5

Page 5 of 5

01-Feb-17

Client: Project:	Western H DWD #2	Refining So	uthwe	st, Inc.							2
Sample ID	MB-29970	SampTy	pe; MI	3LK	Test	Code: SI	M2540C MC	D: Total Diss	olved So	lids	
Client ID: Pren Date:	PBW 1/31/2017	Batch I Analysis Da	D: 29 te: 2	970 /1/2017	R S	iunno: 4 SeaNo: 1:	0436 267368	Units: mg/L			
Analyte	nonzorr	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Total Dissolved	l Solids	ND	20.0								
Sample ID	LCS-29970	SampTy	be: LC	s	Tes	tCode: SI	M2540C MC	DD: Total Dise	olved So	lids	5303 6
Client ID:	LCSW	Batch	D: 29	970	F	tunNo: 4	0436				
Prep Dato:	1/31/2017	Analysis Da	te: 2	/1/2017	S	eqNo: 1	267369	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	I owl imit	HighLimit	%RPD	RPDLimit	Qual
Total Dissolved	d Solids	1010	20.0	1000	0	101	80	120	0000000000000		

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

4

HALL ENVIRONMENTAL ANALYSIS LABORATORY	Hall Environmental Aibı TEL: 505-345-3975 Website: www.ha	Analysis 4901 H Iquerque, FAX: 505 Henvirom	Laboratory Jawkins NE MM 87109 5-345-4107 mental.com	Sam	ole Log-In C	heck List
Cilent Name: Western Refining Southw	Work Order Number.	1701A7	75		RoptNo:	1
Received by/date: AT 611 210/17			2012		<u></u>	
Logged By: Anne Thorne 1/	26/2017 7:05:00 AM		6	Tere Il-	-	
Completed By: Anne Thorne 1/	26/2017 9:13:16 AM			2. 11	~	
Reviewed By: 1/2	6/17		6			
Chain of Custody						
1. Custody seals intact on sample bottles?		Yes [No 🗆	Not Present 🗹	
2. Is Chain of Custody complete?		Yes (V	No 🗌	Not Present	
3. How was the sample delivered?		<u>Courie</u>	<u>91</u>			
Log In						
4. Was an attempt made to cool the samples?		Yeş		No 🗆		
5. Were all samples received at a temperature of	>0° C to 6.0°C	Yes 🛙		No 🗌	NA 🗆	
6. Sample(s) in proper container(s)?		Yes		No 🗌		
7. Sufficient sample volume for indicated test(s)?		Yes	v	No 🗆		
8. Are samples (except VOA and ONG) properly	preserved?	Yes	✓	Na 🗆		
9. Was preservative added to bottles?		Yes		No 🗹	NA 🗌	
10. VOA viais have zero headspace?	58 -	Yes [No 🗆	No VOA Viais 🗹	
11. Were any sample containers received broken?	2	Yes		No 🔽 [# of preserved	<u> </u>
12. Does paperwork match bottle labels?		Yes			for pH:	2
(Note discrepancies on chain of custody)			- 47	No 🗆	Adjusted?	N
13. Are matrices correctly identified on Chain of Ch	ustody?	Yes				\mathcal{O}
14. Is it clear what analyses were requested?		Yes	¥.		Checked by:	da
(If no, notify customer for authorization.)		res i	×.			
Special Handling (if applicable)						
16 Was client notified of all discrepancies with this	s order?	Yes		No 🗆	NA 🗹	
		-		yy		1
Person Nounea:	Date			ne 🗌 Fav	In Person	
Begarding:	Vid.					
Client Instructione						

17. Additional remarks:

18. Cooler Information

Cooler No	Temp °C	Condition	Seal Intact	Seal No	Seal Date	Signed By
	1.0	Good	Yes			

Page 1 of 1	5
-------------	---

e,. . 3 																r			1		
							οι <u>(</u> Ν το) X)	Air Bubbles						_				1		
	A R												-		-						
	E C					3 in 1999								_				-			
			60		-	M	Myo	101	200 01	X	X	X		+							
	ξő	c	871	107		<u> </u>	(\	، -۸٥	imə2) 0728				╞┼								
	ō 🖗	l.con	WN.	45-4	est			(∀	0V) 80928						-						
	R]	lenta	rque	05-3	kequ	s'8D9 s	2808 / 1	sebi	olitea 1 1808	-											
	25	nno"	Idue	ax 5	200 ()	,02,409,	² ON' [€]) DN'R	D, A) snoinA	9											-
	E S	envil	Abt	ш	faly			slete	M 8 AADA												Î
	J Z	r.hall	ш	75	∢	(SWIS	8270	10 Ot	168) a'HA A												
	Z Z	www	ns N	15-35			(1.40	g po	EDB (Metho												
	⊥⋖	5	awki	5-34			(1.81	17 PC	odteM) H9T												
			01 H	əl. 50	(() ମୁକ୍ଳ / ୦୨	10 / D	(GF	88108 H9T											:S	
1		12	49	Τe	(/	(Ino 260)	HqT +	- B E	TM + Xəta											mark	
						(1208) s	+ TMB	- 38.	TM + X3T8						_				L	Re	
				4						-		17	~							トレ	
				(Q 		3			漫画の	9	B	Ø								Time	1 Time
	d p			· ·		0	3	「「「「「」」」	N PI	Ľ										- L	en c
	Å			ΰ,		2	L S	0	FS	F										1/2S	2/2
	ر م ا		-	9	-	4	۲ رو رو	(ala)		•				- 10 - 1			_				A.
	Rusł	(6	ى	9	പ്	と		rative e	_		7	-	26						TF-	$\sum N$
j ini	×		#	3	3		イ	2	Typ	210	No.	55								10rd	
Ē	-	ین ان	\bigcirc	١			20	node	<u> </u>	Ç÷-	Ŧ	H ₂			4			_		171	6 K
pund	ldaro	Nam	3	J.	2		1. U	Ten	iner nd #	4	X	Ŧ								itt.	A A
-Arc	Stan	ject	Д	ject -	€ לי		nple:	nple	ontaj pe a	500	R S	50								aived	
Tun		D		Pro		2	Sar	Sar	٥Ъ	- H	-	-		_	-				<u> </u>	en C	
						l G			≙	33							10 10 10				
7	2			M	,	idati	Ĩ		est	KM							2]	
	S		0	14	s Q	l Val			edn	Ma										2	The
	2 S	7	96	a:	7	(Ful			e K	たい										1h	J.
. 4			49		4	vel 4			Idm	CO	i									21	
	o F		X	2	20	l Le			Sa	JU.										i di	in the
	Si (Ž				<u>د</u>		her		×											Stor 1	Lished
4			15	2	6		δ		Matri	t .(4										
	日率		SS:	31	C C					C H	-			-		$\left \right $		-	-		<u> </u>
j.	Jes.		ddrei	2	S	-ax# ickag	o đion	Type	ЦЩ	1:0								1		THE L	lime.
ć	ک _ا		Ng A	(co	ا #	to Pa to Pa tanda	edita		Ø						-						
	2lier.		Vaili	pp	John .	ema DA/C	Acc		Dat	25-1										S I.	N B

· 2,.. 67 3

All Anions	EPA Method 300.0	1-500ml unpreserved plastic 1-125 ml H2SO4 plastic
Alkalinity	SM2320 B	Volume will come from the 500ml unpreserved plastic
eC	SM 2510B	Volume will come from the 500ml unpreserved plastic
TDS	SM 2540 C	Volume will come from the 500ml unpreserved plastic
Cations	EPA Method 200.7	1-500ml HNO3 Plastic
pH	EPA Method 9040	Volume will come from the 500ml unpreserved plastic

SM = Standard Methods

EPA Methods 310.1, 150.1, 160.1, 320.1 and 120.1 have been withdrawn by EPA. Most labs have are accredited for all of the tests listed above and we perform these methods regularly for !

We will ship out one bottle set today as listed below. Fill all bottles to the neck and keep the sa We can rush this work on a 1-2 business day TAT.

.

1-500ml unpreserved plastic

1-125ml H2SO4 Plastic

1-500ml HNO3 plastic

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: clients.hallenvironmental.com

August 17, 2020

Kelly Robinson Western Refining Southwest, Inc. #50 CR 4990 Bloomfield, NM 87413 TEL: (505) 632-4135 FAX:

OrderNo.: 2007018

RE: Injection Well 2 2Q2020

Dear Kelly Robinson:

Hall Environmental Analysis Laboratory received 1 sample(s) on 7/1/2020 for the analyses presented in the following report.

This report is a revised report and it replaces the original report issued July 23, 2020.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. All samples are reported as received unless otherwise indicated.

Please don't hesitate to contact HEAL for any additional information or clarifications.

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Analytical Report Lab Order 2007018

Date Reported: 8/17/2020

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Injection Well 2 2Q2020 **Project:**

Lab ID:

2007018-001

Collection Date: 6/30/2020 Matrix: AQUEOUS

Received Date: 7/1/2020 8:05:00 AM

Client Sample ID: Injection Well #2

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 8081: PESTICIDES TCLP					Analyst:	JME
Chlordane	ND	0.20	mg/L	1	7/15/2020 9:21:46 AM	53534
Surr: Decachlorobiphenyl	75.8	38.2-102	%Rec	1	7/15/2020 9:21:46 AM	53534
Surr: Tetrachloro-m-xylene	52.7	32.3-92.4	%Rec	1	7/15/2020 9:21:46 AM	53534
EPA METHOD 8270C TCLP					Analyst:	DAM
2-Methylphenol	ND	200	mg/L	1	7/22/2020 8:27:37 PM	53528
3+4-Methylphenol	ND	200	mg/L	1	7/22/2020 8:27:37 PM	53528
2,4-Dinitrotoluene	ND	0.13	mg/L	1	7/22/2020 8:27:37 PM	53528
Hexachlorobenzene	ND	0.13	mg/L	1	7/22/2020 8:27:37 PM	53528
Hexachlorobutadiene	ND	0.50	mg/L	1	7/22/2020 8:27:37 PM	53528
Hexachloroethane	ND	3.0	mg/L	1	7/22/2020 8:27:37 PM	53528
Nitrobenzene	ND	2.0	mg/L	1	7/22/2020 8:27:37 PM	53528
Pentachlorophenol	ND	100	mg/L	1	7/22/2020 8:27:37 PM	53528
Pyridine	ND	5.0	mg/L	1	7/22/2020 8:27:37 PM	53528
2,4,5-Trichlorophenol	ND	400	mg/L	1	7/22/2020 8:27:37 PM	53528
2,4,6-Trichlorophenol	ND	2.0	mg/L	1	7/22/2020 8:27:37 PM	53528
Cresols, Total	ND	200	mg/L	1	7/22/2020 8:27:37 PM	53528
Surr: 2-Fluorophenol	54.9	15-81.1	%Rec	1	7/22/2020 8:27:37 PM	53528
Surr: Phenol-d5	45.6	15-61.1	%Rec	1	7/22/2020 8:27:37 PM	53528
Surr: 2,4,6-Tribromophenol	77.5	17.2-108	%Rec	1	7/22/2020 8:27:37 PM	53528
Surr: Nitrobenzene-d5	63.0	18.7-120	%Rec	1	7/22/2020 8:27:37 PM	53528
Surr: 2-Fluorobiphenyl	47.7	23.6-103	%Rec	1	7/22/2020 8:27:37 PM	53528
Surr: 4-Terphenyl-d14	94.9	24.1-105	%Rec	1	7/22/2020 8:27:37 PM	53528
SPECIFIC GRAVITY					Analyst:	CAS
Specific Gravity	0.9946	0		1	7/1/2020 2:10:00 PM	R70056
EPA METHOD 300.0: ANIONS					Analyst	CAS
Fluoride	ND	0.50	mg/L	5	7/1/2020 10:01:06 PM	R70074
Chloride	1200	50	* mg/L	100	7/2/2020 4:39:21 PM	R70134
Nitrogen, Nitrite (As N)	ND	0.50	mg/L	5	7/1/2020 10:01:06 PM	R70074
Bromide	4.0	0.50	mg/L	5	7/1/2020 10:01:06 PM	R70074
Nitrogen, Nitrate (As N)	ND	0.50	mg/L	5	7/1/2020 10:01:06 PM	R70074
Phosphorus, Orthophosphate (As P)	ND	2.5	mg/L	5	7/1/2020 10:01:06 PM	R70074
Sulfate	78	2.5	mg/L	5	7/1/2020 10:01:06 PM	R70074
SM2510B: SPECIFIC CONDUCTANCE					Analyst:	JRR
Conductivity	4500	10	µmhos/c	1	7/7/2020 10:26:38 AM	R70195
SM2320B: ALKALINITY					Analyst:	JRR
Bicarbonate (As CaCO3)	647.1	20.00	mg/L Ca	1	7/7/2020 10:26:38 AM	R70195
Carbonate (As CaCO3)	ND	2.000	mg/L Ca	1	7/7/2020 10:26:38 AM	R70195

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

* Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix

Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

Qualifiers:

Н

ND

в Analyte detected in the associated Method Blank

Е Value above quantitation range

J Analyte detected below quantitation limits Р Sample pH Not In Range

RL Reporting Limit Page 1 of 14

% Recovery outside of range due to dilution or matrix S

Holding times for preparation or analysis exceeded

Analytical Report
Lab Order 2007018

Date Reported: 8/17/2020

CLIENT: Project: Lab ID:	Western Refining Southwest, Inc. Injection Well 2 2Q2020 2007018-001	c. Client Sample ID: Injection Well #2 Collection Date: 6/30/2020 Matrix: AQUEOUS Received Date: 7/1/2020 8:05:00 AM									
Analyses		Result	RL	Qual	Units	DF	Date Analyzed	Batch			
SM2320B	B: ALKALINITY						Analvst:	JRR			
Total Alk	alinity (as CaCO3)	647.1	20.00		mg/L Ca	1	7/7/2020 10:26:38 AM	R70195			
SM2E40C		2	20100		<u>g</u> , <u> </u>		Applyst:	Ke			
5IVI2540C				*5				N 3			
Total Dis	solved Solids	2870	200	۰D	mg/L	1	7/8/2020 10:16:00 AM	53514			
SM4500-I	H+B / 9040C: PH						Analyst:	JRR			
рН		7.77		Н	pH units	1	7/7/2020 10:26:38 AM	R70195			
EPA MET	HOD 7470: MERCURY						Analyst:	JLF			
Mercurv		ND	0.0010		ma/L	5	7/7/2020 4:27:56 PM	53531			
EPA 6010	DB: TOTAL RECOVERABLE META	LS			0		Analyst:	ELS			
Arsenic		ND	0.030		ma/L	1	7/8/2020 12:41:36 PM	53551			
Barium		0.22	0.0020		ma/L	1	7/8/2020 12:41:36 PM	53551			
Cadmiun	n	ND	0.0020		mg/L	1	7/8/2020 12:41:36 PM	53551			
Calcium		73	1.0		mg/L	1	7/8/2020 12:41:36 PM	53551			
Chromiu	m	ND	0.0060		mg/L	1	7/8/2020 12:41:36 PM	53551			
Lead		ND	0.020		mg/L	1	7/8/2020 12:41:36 PM	53551			
Magnesi	um	52	1.0		mg/L	1	7/8/2020 12:41:36 PM	53551			
Potassiu	m	13	1.0		mg/L	1	7/8/2020 12:41:36 PM	53551			
Selenium	1	ND	0.050		mg/L	1	7/8/2020 12:41:36 PM	53551			
Silver		ND	0.0050		mg/L	1	7/8/2020 12:41:36 PM	53551			
Sodium		910	10		mg/L	10	7/8/2020 1:06:08 PM	53551			
TCLP VO	LATILES BY 8260B						Analyst:	ССМ			
Benzene		ND	0.50		mg/L	200	7/7/2020 12:55:00 AM	T70113			
1,2-Dichl	loroethane (EDC)	ND	0.50		mg/L	200	7/7/2020 12:55:00 AM	T70113			
2-Butanc	one	ND	200		mg/L	200	7/7/2020 12:55:00 AM	T70113			
Carbon T	Fetrachloride	ND	0.50		mg/L	200	7/7/2020 12:55:00 AM	T70113			
Chlorofo	rm	ND	6.0		mg/L	200	7/7/2020 12:55:00 AM	T70113			
1,4-Dichl	lorobenzene	ND	7.5		mg/L	200	7/7/2020 12:55:00 AM	T70113			
1,1-Dichl	loroethene	ND	0.70		mg/L	200	7/7/2020 12:55:00 AM	T70113			
Tetrachlo	proethene (PCE)	ND	0.70		mg/L	200	7/7/2020 12:55:00 AM	T70113			
Trichloro	ethene (TCE)	ND	0.50		mg/L	200	7/7/2020 12:55:00 AM	T70113			
Vinyl chlo	oride	ND	0.20		mg/L	200	7/7/2020 12:55:00 AM	T70113			
Chlorobe	enzene	ND	100		mg/L	200	7/7/2020 12:55:00 AM	T70113			
Surr: 1	1,2-Dichloroethane-d4	103	70-130		%Rec	200	7/7/2020 12:55:00 AM	T70113			
Surr: 4	4-Bromotluorobenzene	102	70-130		%Rec	200	7/7/2020 12:55:00 AM	170113			
Surr: [106	70-130		%Rec	200	////2020 12:55:00 AM	170113			
Surr: 1	I Oluene-d8	102	70-130		%Rec	200	////2020 12:55:00 AM	170113			

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Hall Environmental Analysis Laboratory, Inc.

B Analyte detected in the associated Method Blank

Value exceeds Maximum Contaminant Level. Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

*

D

Qualifiers:

S % Recovery outside of range due to dilution or matrix

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 2 of 14

ANALYTICAL REPORT July 14, 2020

Hall Environmental Analysis Laboratory

Sample Delivery Group:

Samples Received:

Project Number:

L1236077 07/02/2020

Report To:

Description:

Jackie Bolte 4901 Hawkins NE Albuquerque, NM 87109

Тс Ss Cn Sr ʹQc Gl A Sc

Entire Report Reviewed By: John V Haulins

John Hawkins Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

PROJECT:

SDG: L1236077

DATE/TIME: 07/14/20 07:36

TABLE OF CONTENTS

1	
2	Ср
3	² Tc
4	
5	³ Ss
5	4
6	Ch
7	⁵Sr
8	
8	ိ႖င
9	7
10	G
11	⁸ Al
12	
13	[°] Sc
14	
15	

Cp: Cover Page
Tc: Table of Contents
Ss: Sample Summary
Cn: Case Narrative
Sr: Sample Results
2007018-001E INJECTION WELL #2 L1236077-01
2007018-001F INJECTION WELL #2 L1236077-02
2007018-001G INJECTION WELL #2 L1236077-03
Qc: Quality Control Summary
Wet Chemistry by Method 2580
Wet Chemistry by Method 4500 CN E-2011
Wet Chemistry by Method 4500H+ B-2011
Wet Chemistry by Method 9034-9030B
Wet Chemistry by Method D93/1010A
GI: Glossary of Terms
Al: Accreditations & Locations
Sc: Sample Chain of Custody

SDG: L1236077 DATE/TIME: 07/14/20 07:36

SAMPLE SUMMARY

ONE LAB. NATIONWIDE.

*

Ср

Тс

Ss

Cn

Sr

Qc

GI

ΆI

Sc

			Collected by	Collected date/time	Received da	te/time
2007018-001E INJECTION WELL #2 L1236077-01	WW			06/30/20 00:00	07/02/20 08	:45
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Wet Chemistry by Method 2580	WG1504658	1	07/07/20 05:39	07/07/20 05:39	AKA	Mt. Juliet, TN
Wet Chemistry by Method 4500H+ B-2011	WG1503689	1	07/03/20 12:57	07/03/20 12:57	KEG	Mt. Juliet, TN
Wet Chemistry by Method D93/1010A	WG1506806	1	07/11/20 19:15	07/11/20 19:15	JIC	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
2007018-001F INJECTION WELL #2 L1236077-02	WW			06/30/20 00:00	07/02/20 08	:45
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Wet Chemistry by Method 9034-9030B	WG1504791	1	07/07/20 15:23	07/07/20 15:23	SL	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
2007018-001G INJECTION WELL #2 L1236077-03	WW			06/30/20 00:00	07/02/20 08	:45
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
			datertine	datartine		

CASE NARRATIVE

*

Τс

Ss

Cn

Sr

Qc

GI

AI

Sc

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

butins

John Hawkins Project Manager

Project Narrative

All Reactive Cyanide results reported in the attached report were determined as totals using method 9012B. All Reactive Sulfide results reported in the attached report were determined as totals using method 9034/9030B.

SAMPLE RESULTS - 01 L1236077

Qc

Sc

Wet Chemistry by Method 2580

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	mV			date / time		2
ORP	37.7	Q	1	07/07/2020 05:39	WG1504658	Tc

Wet Chemistry by Method 4500H+ B-2011

Wet Chemistry by Metho	: Chemistry by Method 4500H+ B-2011							
	Result	Qualifier	Dilution	Analysis	Batch			
Analyte	su			date / time		⁴ Cn		
Corrosivity by pH	7.63	<u>T8</u>	1	07/03/2020 12:57	WG1503689			

Sample Narrative:

L1236077-01 WG1503689: 7.63 at 21.1C

Wet Chemistry by Method D93/1010A

	Result	Qualifier	Dilution	Analysis	Batch	⁷ Gl
Analyte	deg F			date / time		
Flashpoint	DNF at 170		1	07/11/2020 19:15	WG1506806	⁸ Al

SAMPLE RESULTS - 02

Гс

Wet Chemistry by Method 9034-9030B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Reactive Sulfide	0.833		0.0500	1	07/07/2020 15:23	WG1504791

³ Ss
⁴ Cn
⁵Sr
⁶ Qc
⁷ Gl
⁸ Al
°Sc

SAMPLE RESULTS - 03

Τс

Wet Chemistry by Method 4500 CN E-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Reactive Cyanide	ND		0.00500	1	07/13/2020 15:06	WG1507316

~
ω
വ
Q
4
0
വ
$\sum_{i=1}^{n}$
U
>
>

QUALITY CONTROL SUMMARY

*

Wet Chemistry by Method 2580

$\hat{\mathbf{n}}$	
5	
5	
Ð	
g	
0	
Ō	
•	
n	
Ď	
-	
$\underline{\Phi}$	
<u>p</u>	
Ē	
Ö	
_	
σ	
<u>_</u>	
5	
_	
С	
>	
S	
'n	
Ń	

-	}	2	LC	S S S
		DUP Diff Limits	mV	20
		DUP Qualifier		
	/20 05:39	n DUP Diff	шV	18.1
plicate	2 07/07	Dilutio		-
le (OS) • Du	OUP) R3546691-:	sult DUP Result	шV	55.8
riginal Samp	7/07/20 05:39 • (1	Original Re	МV	37.7
L1236077-01 O	(OS) L1236077-01 07		Analyte	ORP

Laboratory Control Sample (LCS)

CD ⁴][S		0 O C	
		LCS Qualifier				
		Rec. Limits	%	86.0-105		
		LCS Rec.	%	0.66		
(LCS)		nt LCS Result	ШV	226		
trol Sample	07/20 05:39	Spike Amou	шV	228		
Laboratory Con	(LCS) R3546691-1 07/		Analyte	ORP		

Sc

Ū

4
WG1507316 Wet Chemistry by Method 4500 CN E-2011

QUALITY CONTROL SUMMARY

Ч Ss Б ğ SC പ് $\overline{\mathbb{O}}$ ₹ DUP RPD Limits 20 % LCS Qualifier DUP Qualifier Rec. Limits 90.0-110 0.00500 MB RDL mg/l % Dilution DUP RPD 0.000 % LCS Rec. MB MDL 0.00180 l/gm 98.4 % Original Sample (OS) • Duplicate (DUP) MB Qualifier Original Result DUP Result Spike Amount LCS Result 0.0984 mg/l mg/l QN Laboratory Control Sample (LCS) (OS) • (DUP) R3548947-3 07/13/20 14:37 **MB** Result (LCS) R3548947-2 07/13/20 14:33 mg/l 0.100 (MB) R3548947-1 07/13/20 14:32 mg/l ⊃ Method Blank (MB) Reactive Cyanide Reactive Cyanide Reactive Cyanide Analyte Analyte Analyte

Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

15:04 • (MSD) R3548947-5 07/13/20 15:05	ount Original Result MS Result MSD Result MS Rec. MSD Rec. Dilution Rec. Limits <u>MS Qualifier</u> MSD Qualifier RPD RPD Limits	mg/l mg/l % % % mg/l	0.106 0.101 106 101 1 75.0-125 4.83 20
(MSD) R3548947-5 07/13/20 15:05	Original Result MS Result MSD Result	mg/l mg/l	0.106 0.101
(MS) R3548947-4 07/13/20 15:04 • (I	Spike Amount Or	l/gm	Cvanide 0.100
(OS)		Analyte	Reactive (

ACCOUNT: Hall Environmental Analysis Laboratory

PROJECT:

SDG: L1236077

DATE/TIME: 07/14/20 07:36

PAGE: 9 of 15

NG1503689			
NG150368	(5)
NG15036	(χ)
WG1503	(2)
VG150	(Υ)
VG15	(2)
NG1	L	2)
Š	(Г)
	A L	\leq	-

QUALITY CONTROL SUMMARY

*

Wet Chemistry by Method 4500H+ B-2011

Laboratory Control Sample (LCS)

(LCS) R3545989-1 07/03/20 12:57 (LCS) R3545989-1 07/03/20 12:57 Spike Amount LCS Result LCS Rec. Rec. Limits LCS Qualifier Analyte su su % % Corrosivity by PH 10.0 10.1 101 99.0-101 35	Laboratory Contr	ol Sample (L	CS)				(
Spike Amount LCS Result LCS Rec. Rec. Limits LCS Qualifier Analyte su % % 7 7 Corrosivity by pH 10.0 10.1 101 99.0-101 3 3 3 3	(LCS) R3545989-1 07/C	33/20 12:57					}
Analyte su su % TC Corrosivity by PH 10.0 10.1 101 99.0-101 35		Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	0
Corrosivity by PH 10.0 10.1 101 99.0-101 3 ³ SS	Analyte	SU	SU	%	%		U H
SS	Corrosivity by pH	10.0	10.1	101	99.0-101		
							°SS SS

0⁴

ğ

പ്

Ū

4

Sc

LCS: 10.05 at 22.2C Sample Narrative:

DATE/TIME: 07/14/20 07:36

SDG: L1236077

Hall Environmental Analysis Laboratory ACCOUNT:

PROJECT:

*

Method Blank (MB)

					د د ا
(MB) R3547698-1 0	7/07/20 14:56				} }
	MB Result	MB Qualifier	MB MDL	MDL MB RDL	0
Analyte	mg/l		l/gm	mg/l	U H
Reactive Sulfide	n		0.00650	0550 0.0500	
					°SS
	-	ĺ			
Laboratory Co	ntrol Sample (L	-CS)			4
(LCS) R3547698-2 (07/07/20 14:56				5

5		ی ۲		0 O C
	LCS Qualifier			
	Limits		-115	
	Rec.	%	85.0	
	LCS Rec.	%	94.6	
	LCS Result	mg/l	0.473	
56	e Amount		0	
7/07/20 14.	Spik	l/gm	0.50	
17698-2 0			îde	
(LCS) R352		Analyte	Reactive Suli	

Sc

Ū

₹

	D93/1010A
506806	mistry by Method
WG15	Wet Che

QUALITY CONTROL SUMMARY

*

0 U Ч

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LOO) ROOTOOTOOTOOTOOT	C 13.13 • (LC3D)		01/11/20 13.13						
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier RPD	RPD Limits
Analyte	deg F	deg F	deg F	%	%	%		%	%
Flashpoint	126	127	125	101	99.1	96.0-104		1.59	10

ğ

Ū

₹

្តភ

Sc

Ъ,

Ss

ACCOUNT:	Hall Environmental Analysis Laboratory
----------	--

DATE/TIME: 07/14/20 07:36

SDG: L1236077

PAGE: 12 of 15

GLOSSARY OF TERMS

Τс

Ss

Cn

Sr

Qc

GI

AI

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.
Qualifier	Description
Q	Sample was prepared and/or analyzed past holding time as defined in the method. Concentrations should be

Τ8

Sample(s) received past/too close to holding time expiration.

considered minimum values.

SDG: L1236077

ACCREDITATIONS & LOCATIONS

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.
* Not all certifications held by the laboratory are applicable to the results reported in the attached report.
* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

State Accreditations

Alabama	40660
Alaska	17-026
Arizona	AZ0612
Arkansas	88-0469
California	2932
Colorado	TN00003
Connecticut	PH-0197
Florida	E87487
Georgia	NELAP
Georgia ¹	923
Idaho	TN00003
Illinois	200008
Indiana	C-TN-01
lowa	364
Kansas	E-10277
Kentucky ¹⁶	90010
Kentucky ²	16
Louisiana	Al30792
Louisiana ¹	LA180010
Maine	TN0002
Maryland	324
Massachusetts	M-TN003
Michigan	9958
Minnesota	047-999-395
Mississippi	TN00003
Missouri	340
Montana	CERT0086

Nebraska	NE-OS-15-05	
Nevada	TN-03-2002-34	
New Hampshire	2975	
New Jersey-NELAP	TN002	
New Mexico 1	n/a	
New York	11742	
North Carolina	Env375	
North Carolina ¹	DW21704	
North Carolina ³	41	
North Dakota	R-140	
Ohio-VAP	CL0069	
Oklahoma	9915	
Oregon	TN200002	
Pennsylvania	68-02979	
Rhode Island	LAO00356	
South Carolina	84004	
South Dakota	n/a	
Tennessee ^{1 4}	2006	
Texas	T104704245-18-15	
Texas ⁵	LAB0152	
Utah	TN00003	
Vermont	VT2006	
Virginia	460132	
Washington	C847	
West Virginia	233	
Wisconsin	9980939910	
Wyoming	A2LA	

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA-Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

ACCOUNT: Hall Environmental Analysis Laboratory PROJECT:

SDG: L1236077

DATE/TIME: 07/14/20 07:36

and the first of the second second							Websii	TEL: 505-345-3975 FAX: 505-345-4107 te: clients.hallenvironmental.com
B CONTRATOR Pace TN	COMPI	ANY: PACE	NI		PHONE	(800) 767-5859	FAX	(615) 758-5859
DRESS: 12065 Leb.	anon Rd		a factor of the	and the second	ACCOUNT #		EMAIL:	
IY, STATE, ZIP. Mt. Juliet,	TN 37122		All the state					
EM SAMPLE	CLIENT SAMPLE ID		BOTTLE TYPE	MATRIX	COLLECTION DATE	VUV # CONTAINERS	TTICAL	COMMENTS
1 2007018-001E Injec	tion Well #2		SOOHDPE	Aqueous 6.	30/2020	1 ORP, Corrosivity, Ignitabilit	Y	1,236077-01
2 2007018-001F Injec	tion Well #2		SOOPLNAOH	Aqueous 6	30/2020	1 Reactive Sulfide		80
3 2007018-001G Injec	tion Well #2		500PL-NaOH	Aqueous 6	30/2020	1 Reactive Cyanide		60
ease include the LAB ID a quished By: <i>CM</i> quished By: quished By: TAT:	d the CLJENT SAMPLI Date: 7112020 Time: 1 Date: Time: 1 Date: Time: 1	 E.ID on all final report I:19 AM Received By: Received By: RUSH 	arts. Please e-ma	il results to la Date	b@hallenvironmenta	al.com. Please return all coolers and F D HARDCOPY (extra to Temp of samples	I blue ice. Thank y REPORT TRANSMIT 80	ou. TTAL DESTRED: BMAIL ONLINE ONLY Attempt to Cool ?

QC SUMMARY REPORT	
Hall Environmental Analysis Laboratory, Inc.	

Western Refining Southwest, Inc.

WO#:	2007018
	17 4

17-Aug-20

Project: Injection	Well 2 2Q	2020								
Sample ID: MB	SampT	Type: mb	olk	Tes	tCode: El	PA Method	300.0: Anions	6		
Client ID: PBW	Batcl	h ID: R7	0074	F	RunNo: 7	0074				
Prep Date:	Analysis E	Date: 7/	1/2020	S	SeqNo: 24	434415	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Fluoride	ND	0.10								
Nitrogen, Nitrite (As N)	ND	0.10								
Bromide	ND	0.10								
Nitrogen, Nitrate (As N)	ND	0.10								
Phosphorus, Orthophosphate (As P	ND	0.50								
Sulfate	ND	0.50								
Sample ID: LCS	SampT	Type: Ics	6	Tes	tCode: EF	PA Method	300.0: Anions	5		
Client ID: LCSW	Batcl	h ID: R7	0074	F	RunNo: 7	0074				
Prep Date:	Analysis E	Date: 7/	1/2020	S	SeqNo: 24	434416	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Fluoride	0.54	0.10	0.5000	0	108	90	110			
Nitrogen, Nitrite (As N)	0.98	0.10	1.000	0	98.3	90	110			
Bromide	2.5	0.10	2.500	0	101	90	110			
Nitrogen, Nitrate (As N)	2.5	0.10	2.500	0	100	90	110			
Phosphorus, Orthophosphate (As P	4.7	0.50	5.000	0	94.3	90	110			
Sulfate	9.8	0.50	10.00	0	98.0	90	110			
Sample ID: MB	SampT	Type: mb	olk	TestCode: EPA Method 300.0: Anions						
Client ID: PBW	Batcl	h ID: R7	0134	F	RunNo: 7	0134				
Prep Date:	Analysis E	Date: 7/	2/2020	5	SeqNo: 24	437168	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride	ND	0.50								
Sample ID: LCS	SampT	Type: Ics		Tes	tCode: El	PA Method	300.0: Anions	5		
Client ID: LCSW	Batcl	h ID: R7	0134	F	RunNo: 7	0134				
Prep Date:	Analysis E	Date: 7/	2/2020	5	SeqNo: 24	437169	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride	4.9	0.50	5.000	0	98.4	90	110			

Qualifiers:

Client:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

17-A	ug-20

Client: Project:	Western Refining S Injection Well 2 20	Southwe Q2020	st, Inc.							
Sample ID: MB-53	534 Samp	Type: ME	BLK	Test	tCode: El	PA Method	8081: Pestici	des TCLP		
Client ID: PBW	Batc	h ID: 53	534	R	RunNo: 7	0353				
Prep Date: 7/7/2	Analysis I	Date: 7/	15/2020	S	SeqNo: 24	445441	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chlordane	ND	0.030								
Surr: Decachlorobiph	enyl 0.0022		0.002500		87.3	38.2	102			
Surr: Tetrachloro-m-x	vlene 0.0018		0.002500		72.0	32.3	92.4			
Sample ID: LCS-5	3534 Samp	Type: LC	s	Test	tCode: El	PA Method	8081: Pesticio	des TCLP		
Client ID: LCSW	Batc	h ID: 53	534	R	RunNo: 7	0353				
Prep Date: 7/7/2	Analysis I	Date: 7/	15/2020	S	SeqNo: 24	445442	Units: %Rec			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: Decachlorobiph	enyl 0.0022		0.002500		88.4	38.2	102			
Surr: Tetrachloro-m-x	vlene 0.0019		0.002500		77.1	32.3	92.4			
Sample ID: LCSD-	53534 Samp	Type: LC	SD	Test	tCode: El	PA Method	8081: Pestici	des TCLP		
Client ID: LCSS	2 Batc	h ID: 53	534	R	RunNo: 7	0353				
Prep Date: 7/7/2	Analysis I	Date: 7/	15/2020	S	SeqNo: 24	445443	Units: %Rec			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: Decachlorobiph	enyl 0.0024		0.002500		96.2	38.2	102	0	0	
Surr: Tetrachloro-m-x	vlene 0.0017		0.002500		66.1	32.3	92.4	0	0	
Sample ID: MB-53	534 Samp	Type: ME	BLK	Test	tCode: El	PA Method	8081: Pestici	des TCLP		
Client ID: PBW	Batc	h ID: 53	534	R	RunNo: 7	0353				
Prep Date: 7/7/2	Analysis I	Date: 7/	15/2020	S	SeqNo: 24	445445	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chlordane	ND	0.030								
Surr: Decachlorobiph	enyl 0.0022		0.002500		86.5	38.2	102			
Surr: Tetrachloro-m-x	/lene 0.0018		0.002500		72.9	32.3	92.4			

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

WO#:	2007018

Project: Injection	n Well 2 2	Southwes Q2020	st, Inc.							
Sample ID: 100ng Ics	Samp	Type: LC	s	Tes	tCode: TC	LP Volatil	es by 8260B			
Client ID: LCSW	Bat	ch ID: T7	0113	F	RunNo: 7(0113				
Prep Date:	Analysis	Date: 7/	6/2020	S	SeqNo: 24	138829	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	0.019	0.00023	0.02000	0	95.7	70	130			
1,1-Dichloroethene	0.019	0.00013	0.02000	0	95.1	70	130			
Trichloroethene (TCE)	0.018	0.00020	0.02000	0	88.0	70	130			
Chlorobenzene	0.021	0.00014	0.02000	0	107	70	130			
Surr: 1,2-Dichloroethane-d4	0.0098		0.01000		98.0	70	130			
Surr: 4-Bromofluorobenzene	0.010		0.01000		102	70	130			
Surr: Dibromofluoromethane	0.0096		0.01000		96.4	70	130			
Surr: Toluene-d8	0.010		0.01000		102	70	130			
Sample ID: MB	Samp	Туре: МЕ	BLK	Tes	tCode: TC	LP Volatile	es by 8260B			
Client ID: PBW	Bat	ch ID: T7	0113	F	RunNo: 7(0113				
Prep Date:	Analysis	Date: 7/	6/2020	5	SeqNo: 24	138830	Units: mg/L			
							•			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Analyte Benzene	Result ND	PQL 0.50	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Analyte Benzene 1,2-Dichloroethane (EDC)	Result ND ND	PQL 0.50 0.50	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Analyte Benzene 1,2-Dichloroethane (EDC) 2-Butanone	Result ND ND ND	PQL 0.50 0.50 200	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Analyte Benzene 1,2-Dichloroethane (EDC) 2-Butanone Carbon Tetrachloride	Result ND ND ND ND	PQL 0.50 0.50 200 0.50	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Analyte Benzene 1,2-Dichloroethane (EDC) 2-Butanone Carbon Tetrachloride Chloroform	Result ND ND ND ND ND	PQL 0.50 0.50 200 0.50 6.0	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Analyte Benzene 1,2-Dichloroethane (EDC) 2-Butanone Carbon Tetrachloride Chloroform 1,4-Dichlorobenzene	Result ND ND ND ND ND ND	PQL 0.50 200 0.50 6.0 7.5	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Analyte Benzene 1,2-Dichloroethane (EDC) 2-Butanone Carbon Tetrachloride Chloroform 1,4-Dichlorobenzene 1,1-Dichloroethene	Result ND ND ND ND ND ND ND	PQL 0.50 0.50 0.50 0.50 6.0 7.5 0.70	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Analyte Benzene 1,2-Dichloroethane (EDC) 2-Butanone Carbon Tetrachloride Chloroform 1,4-Dichlorobenzene 1,1-Dichloroethene Tetrachloroethene (PCE)	Result ND ND ND ND ND ND ND ND	PQL 0.50 0.50 200 0.50 6.0 7.5 0.70 0.70	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Analyte Benzene 1,2-Dichloroethane (EDC) 2-Butanone Carbon Tetrachloride Chloroform 1,4-Dichlorobenzene 1,1-Dichloroethene Tetrachloroethene (PCE) Trichloroethene (TCE)	Result ND ND ND ND ND ND ND ND ND	PQL 0.50 0.50 200 0.50 6.0 7.5 0.70 0.70 0.70 0.50	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Analyte Benzene 1,2-Dichloroethane (EDC) 2-Butanone Carbon Tetrachloride Chloroform 1,4-Dichlorobenzene 1,1-Dichloroethene Tetrachloroethene (PCE) Trichloroethene (TCE) Vinyl chloride	Result ND ND ND ND ND ND ND ND ND ND	PQL 0.50 0.50 0.50 6.0 7.5 0.70 0.70 0.70 0.50 0.20	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Analyte Benzene 1,2-Dichloroethane (EDC) 2-Butanone Carbon Tetrachloride Chloroform 1,4-Dichlorobenzene 1,1-Dichloroethene Tetrachloroethene (PCE) Trichloroethene (TCE) Vinyl chloride Chlorobenzene	Result ND ND ND ND ND ND ND ND ND ND ND	PQL 0.50 200 0.50 6.0 7.5 0.70 0.70 0.70 0.50 0.20 100	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Analyte Benzene 1,2-Dichloroethane (EDC) 2-Butanone Carbon Tetrachloride Chloroform 1,4-Dichlorobenzene 1,1-Dichloroethene Tetrachloroethene (PCE) Trichloroethene (TCE) Vinyl chloride Chlorobenzene Surr: 1,2-Dichloroethane-d4	Result ND ND ND ND ND ND ND ND ND ND ND 0.010	PQL 0.50 200 0.50 6.0 7.5 0.70 0.70 0.70 0.50 0.20 100	SPK value 0.01000	SPK Ref Val	%REC	LowLimit	HighLimit 130	%RPD	RPDLimit	Qual
Analyte Benzene 1,2-Dichloroethane (EDC) 2-Butanone Carbon Tetrachloride Chloroform 1,4-Dichlorobenzene 1,1-Dichloroethene (PCE) Trichloroethene (TCE) Vinyl chloride Chlorobenzene Surr: 1,2-Dichloroethane-d4 Surr: 4-Bromofluorobenzene	Result ND ND ND ND ND ND ND ND ND ND 0.010 0.010	PQL 0.50 0.50 0.50 6.0 7.5 0.70 0.70 0.70 0.50 0.20 100	SPK value 0.01000 0.01000	SPK Ref Val	%REC 102 100	LowLimit 70 70	HighLimit 130 130	%RPD	RPDLimit	Qual
Analyte Benzene 1,2-Dichloroethane (EDC) 2-Butanone Carbon Tetrachloride Chloroform 1,4-Dichlorobenzene 1,1-Dichloroethene (PCE) Trichloroethene (PCE) Trichloroethene (TCE) Vinyl chloride Chlorobenzene Surr: 1,2-Dichloroethane-d4 Surr: 4-Bromofluorobenzene Surr: Dibromofluoromethane	Result ND ND ND ND ND ND ND ND ND 0.010 0.010	PQL 0.50 200 0.50 6.0 7.5 0.70 0.70 0.70 0.20 100	SPK value 0.01000 0.01000 0.01000	SPK Ref Val	%REC 102 100 99.5	LowLimit 70 70 70	HighLimit 130 130 130	%RPD	RPDLimit	Qual

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

QC SUMM Hall Enviror	IAR` nmen	Y REP(tal Anal	ORT ysis I	aborat	ory, Inc.					WO#:	200 17-Au
Client: Project:	Wester Injectio	n Refining S on Well 2 2Q	outhwe 2020	st, Inc.							
Sample ID: mb-535	28	SampT	ype: ME	BLK	Tes	tCode: El	PA Method	8270C TCLP			
Client ID: PBW		Batcl	h ID: 53	528	F	RunNo: 7	0542				
Prep Date: 7/7/202	20	Analysis E	Date: 7/	22/2020	S	SeqNo: 2	453803	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
2-Methylphenol		ND	200								
3+4-Methylphenol		ND	200								
2,4-Dinitrotoluene		ND	0.13								
Hexachlorobenzene		ND	0.13								
Hexachlorobutadiene		ND	0.50								
Hexachloroethane		ND	3.0								
Nitrobenzene		ND	2.0								
Pentachlorophenol		ND	100								
Pyridine		ND	5.0								
2,4,5-Trichlorophenol		ND	400								
2,4,6-Trichlorophenol		ND	2.0								
Cresols, Total		ND	200								
Surr: 2-Fluorophenol		0.13		0.2000		67.3	15	81.1			
Surr: Phenol-d5		0.10		0.2000		52.1	15	61.1			
Surr: 2,4,6-Tribromophe	enol	0.15		0.2000		74.1	17.2	108			
Surr: Nitrobenzene-d5		0.078		0.1000		77.9	18.7	120			
Surr: 2-Fluorobiphenyl		0.059		0.1000		59.0	23.6	103			
Surr: 4-Terphenyl-d14		0.11		0.1000		114	24.1	105			S

Sample ID: Ics-53528	Samp	Туре: LC	S	Tes	tCode: El	PA Method	8270C TCLP			
Client ID: LCSW	Bato	ch ID: 53	528	F	RunNo: 7	0542				
Prep Date: 7/7/2020	Analysis	Date: 7/	22/2020	S	SeqNo: 2	453804	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
2-Methylphenol	0.077	0.0010	0.1000	0	76.5	33.8	121			
3+4-Methylphenol	0.16	0.0010	0.2000	0	81.8	33.6	109			
2,4-Dinitrotoluene	0.055	0.0010	0.1000	0	54.8	50.4	124			
Hexachlorobenzene	0.088	0.0010	0.1000	0	88.1	50.1	120			
Hexachlorobutadiene	0.043	0.0010	0.1000	0	42.5	16.1	103			
Hexachloroethane	0.042	0.0010	0.1000	0	42.3	15	94.2			
Nitrobenzene	0.087	0.0010	0.1000	0	87.4	32.4	125			
Pentachlorophenol	0.080	0.0010	0.1000	0	79.7	44.6	114			
Pyridine	0.011	0.0010	0.1000	0	11.2	15	67			S
2,4,5-Trichlorophenol	0.082	0.0010	0.1000	0	81.9	49.4	118			
2,4,6-Trichlorophenol	0.083	0.0010	0.1000	0	82.6	50.3	116			
Cresols, Total	0.24	0.0010	0.3000	0	80.0	33.8	109			
Surr: 2-Fluorophenol	0.12		0.2000		61.5	15	81.1			
Surr: Phenol-d5	0.092		0.2000		45.8	15	61.1			
Surr: 2,4,6-Tribromophenol	0.14		0.2000		72.4	17.2	108			

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Holding times for preparation or analysis exceeded Η

ND Not Detected at the Reporting Limit

- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

В Analyte detected in the associated Method Blank

Value above quantitation range Е

J Analyte detected below quantitation limits

Р Sample pH Not In Range

RL Reporting Limit

Client: Western I Project: Injection	Refining S Well 2 20	Southwe Q2020	st, Inc.							
Sample ID: Ics-53528	Samp	Type: LC	S	Tes	tCode: El	PA Method	8270C TCLP			
Client ID: LCSW	Bato	ch ID: 53	528	F	RunNo: 7	0542				
Prep Date: 7/7/2020	Analysis	Date: 7/	22/2020	S	SeqNo: 24	453804	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: Nitrobenzene-d5	0.080		0.1000		80.5	18.7	120			
Surr: 2-Fluorobiphenyl	0.060		0.1000		59.6	23.6	103			
Surr: 4-Terphenyl-d14	0.11		0.1000		108	24.1	105			S
Sample ID: 2007018-001bms	Samp	Туре: М	6	Tes	tCode: El	PA Method	8270C TCLP			
Client ID: Injection Well #2	Bato	ch ID: 53	528	F	RunNo: 7	0542				
Prep Date: 7/7/2020	Analysis	Date: 7/	22/2020	S	SeqNo: 24	453806	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
2-Methylphenol	0.095	0.0010	0.1000	0	95.3	30.5	98.2			
3+4-Methylphenol	0.21	0.0010	0.2000	0	106	27.4	98.6			S
2,4-Dinitrotoluene	0.077	0.0010	0.1000	0	77.0	34.3	87.4			
Hexachlorobenzene	0.094	0.0010	0.1000	0	93.8	36.5	100			
Hexachlorobutadiene	0.053	0.0010	0.1000	0	52.9	15	108			
Hexachloroethane	0.054	0.0010	0.1000	0	53.6	15	90.7			
Nitrobenzene	0.095	0.0010	0.1000	0	95.4	39	100			
Pentachlorophenol	0.088	0.0010	0.1000	0	87.5	15	97.5			
Pyridine	0.010	0.0010	0.1000	0	10.4	15	65.8			S
2,4,5-Trichlorophenol	0.091	0.0010	0.1000	0	90.7	36.1	109			
2,4,6-Trichlorophenol	0.095	0.0010	0.1000	0	94.9	37.8	104			
Cresols, Total	0.31	0.0010	0.3000	0	102	27.1	99.8			S
Surr: 2-Fluorophenol	0.15		0.2000		72.6	15	81.1			
Surr: Phenol-d5	0.11		0.2000		54.5	15	61.1			
Surr: 2,4,6-Tribromophenol	0.17		0.2000		86.3	17.2	108			
Surr: Nitrobenzene-d5	0.091		0.1000		91.2	18.7	120			
Surr: 2-Fluorobiphenyl	0.070		0.1000		69.8	23.6	103			
Surr: 4-Terphenyl-d14	0.10		0.1000		102	24.1	105			
Sample ID: 2007018-001bmsd	I Samp	Туре: М	SD	Tes	tCode: EF	PA Method	8270C TCLP			
Client ID: Injection Well #2	Bato	ch ID: 53	528	F	RunNo: 7	0542				
Prep Date: 7/7/2020	Analysis	Date: 7/	22/2020	S	SeqNo: 24	453807	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
2-Methylphenol	0.076	0.0010	0.1000	0	75.9	30.5	98.2	22.7	44.3	
3+4-Methylphenol	0.16	0.0010	0.2000	0	79.5	27.4	98.6	28.3	50	

Qualifiers:

Nitrobenzene

2,4-Dinitrotoluene

Hexachlorobenzene

Hexachlorobutadiene

Hexachloroethane

> Value exceeds Maximum Contaminant Level. *

D Sample Diluted Due to Matrix

Η Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit Practical Quanitative Limit

PQL S

% Recovery outside of range due to dilution or matrix

0.067

0.082

0.039

0.039

0.077

0.0010

0.0010

0.0010

0.0010

0.0010

в Analyte detected in the associated Method Blank

67.0

81.9

39.3

38.9

76.6

34.3

36.5

15

15

39

Е Value above quantitation range

0

0

0

0

0

0.1000

0.1000

0.1000

0.1000

0.1000

J Analyte detected below quantitation limits

Р Sample pH Not In Range RL Reporting Limit

87.4

100

108

90.7

100

13.9

13.6

29.4

31.8

21.9

Page 7 of 14

45.1

47.2

43.4

39.2

42.1

WO#: 2007018 17-Aug-20

Client:

Western Refining Southwest, Inc. Wall 2 202020 . •

Project:	Injection	Well 2	2 2Q2020
----------	-----------	--------	----------

Sample ID: 2007018-001bms	d Samp	Type: MS	D	Tes	tCode: El	PA Method	8270C TCLP			
Client ID: Injection Well #2	Bate	ch ID: 53	528	F	RunNo: 7	0542				
Prep Date: 7/7/2020	Analysis	Date: 7/2	22/2020	S	SeqNo: 24	453807	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Pentachlorophenol	0.086	0.0010	0.1000	0	85.6	15	97.5	2.30	50	
Pyridine	ND	0.0010	0.1000	0	0.0392	15	65.8	200	50	RS
2,4,5-Trichlorophenol	0.086	0.0010	0.1000	0	85.6	36.1	109	5.85	49.7	
2,4,6-Trichlorophenol	0.080	0.0010	0.1000	0	80.2	37.8	104	16.8	47	
Cresols, Total	0.23	0.0010	0.3000	0	78.3	27.1	99.8	26.5	27.4	
Surr: 2-Fluorophenol	0.13		0.2000		62.9	15	81.1	0	0	
Surr: Phenol-d5	0.10		0.2000		50.9	15	61.1	0	0	
Surr: 2,4,6-Tribromophenol	0.16		0.2000		81.5	17.2	108	0	0	
Surr: Nitrobenzene-d5	0.079		0.1000		79.4	18.7	120	0	0	
Surr: 2-Fluorobiphenyl	0.060		0.1000		59.7	23.6	103	0	0	
Surr: 4-Terphenyl-d14	0.10		0.1000		104	24.1	105	0	0	

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Η Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- в Analyte detected in the associated Method Blank
- Е
- J
- Р

Value above quantitation range

- Analyte detected below quantitation limits
- Sample pH Not In Range
- RL Reporting Limit

WO#: 2007018 17-Aug-20

Page 8 of 14

Client: Project:	Western I Injection	Refining S Well 2 2Q	outhwes 2020	st, Inc.							
Sample ID: Ics-1 9	9.5uS eC	SampT	ype: Ics	;	Tes	tCode: SI	/12510B: Sp	pecific Condu	ictance		
Client ID: LCSW		Batch	n ID: R7	0195	F	RunNo: 70	0195				
Prep Date:		Analysis D	Date: 7/	7/2020	S	SeqNo: 24	439134	Units: µmho	os/cm		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Conductivity		99	10	99.50	0	99.8	85	115			

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 9 of 14

QC SUMMARY REPORT	
Hall Environmental Analysis Laboratory, In	c.

WO#:	2007018
	17-Aug-20

Client: Project:	Western I Injection	Refining S Well 2 20	Southwe Q2020	est, Inc.							
Sample ID:	MB-53531	Samp	Type: MI	BLK	Tes	Code: E	PA Method	7470: Mercur	у		
Client ID:	PBW	Bato	h ID: 53	531	F	unNo: 7	0152				
Prep Date:	7/7/2020	Analysis I	Date: 7	7/2020	S	eqNo: 2	437876	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Mercury		ND	0.00020								
Sample ID:	LLLCS-53531	Samp	Type: LC	SLL	Tes	Code: E	PA Method	7470: Mercur	у		
Client ID:	BatchQC	Bato	h ID: 53	531	F	unNo: 7	0152				
Prep Date:	7/7/2020	Analysis I	Date: 7	7/2020	S	eqNo: 2	437877	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Mercury		ND	0.00020	0.0001500	0	96.1	50	150			
Sample ID:	LCS-53531	Samp	Туре: LC	S	Tes	Code: E	PA Method	7470: Mercur	у		
Client ID:	LCSW	Bato	h ID: 53	531	F	unNo: 7	0152				
Prep Date:	7/7/2020	Analysis I	Date: 7	7/2020	S	eqNo: 2	437878	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Mercury		0.0049	0.00020	0.005000	0	98.2	80	120			
Sample ID:	2007018-001DMS	Samp	Type: M	S	Tes	Code: E	PA Method	7470: Mercur	у		
Client ID:	Injection Well #2	Bato	h ID: 53	531	F	unNo: 7	0152				
Prep Date:	7/7/2020	Analysis I	Date: 7	7/2020	S	eqNo: 2	437885	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Mercury		0.0025	0.0010	0.005000	0	49.4	75	125			S
Sample ID:	2007018-001DMS) Samp	Type: M	SD	Tes	Code: E	PA Method	7470: Mercur	у		
Client ID:	Injection Well #2	Bato	h ID: 53	531	R	unNo: 7	0152				
Prep Date:	7/7/2020	Analysis I	Date: 7	/7/2020	S	eqNo: 2	437886	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Mercury		0.0024	0.0010	0.005000	0	48.5	75	125	1.89	20	S

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 10 of 14

WO#:	200'	7018

17-Aug-20	,
-----------	---

Client: Project:	Western I Injection	Refining S Well 2 20	Southwe Q2020	st, Inc.							
Sample ID:	MB-53551	Samp	Туре: МІ	BLK	Tes	stCode: E	PA 6010B:	Total Recover	able Meta	als	
Client ID:	PBW	Bato	ch ID: 53	551	F	RunNo: 7	0197				
Prep Date:	7/7/2020	Analysis	Date: 7/	/8/2020	5	SeqNo: 2	439313	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Arsenic		ND	0.030								
Jarium		ND	0.0020								
Cadmium		ND	0.0020								
alcium		ND	1.0								
hromium		ND	0.0060								
ead		ND	0.020								
agnesium		ND	1.0								
otassium		ND	1.0								
elenium		ND	0.050								
ilver		ND	0.0050								
odium		ND	1.0								
Sample ID:	LCS-53551	Samp	Type: LC	s	Tes	stCode: E	PA 6010B:	Total Recover	able Meta	als	
Client ID:	LCSW	Bato	ch ID: 53	551	F	RunNo: 7	0197				
Prep Date:	7/7/2020	Analysis	Date: 7/	/8/2020	Ş	SeqNo: 2	439314	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
senic		0.45	0.030	0.5000	0	89.1	80	120			
arium		0.47	0.0020	0.5000	0	93.1	80	120			
admium		0.46	0.0020	0.5000	0	92.8	80	120			
alcium		51	1.0	50.00	0	102	80	120			
hromium		0.45	0.0060	0.5000	0	89.1	80	120			
ead		0.45	0.020	0.5000	0	90.6	80	120			
agnesium		51	1.0	50.00	0	103	80	120			
otassium		50	1.0	50.00	0	99.2	80	120			
elenium		0.45	0.050	0.5000	0	90.1	80	120			
ilver		0.095	0.0050	0.1000	0	95.0	80	120			
odium		51	1.0	50.00	0	101	80	120			
Sample ID:	2007018-001DMS	Samp	Туре: М	S	Tes	stCode: E	PA 6010B:	Total Recover	able Meta	als	
Client ID:	Injection Well #2	Bato	ch ID: 53	551	F	RunNo: 7	0197				
				0 10 0 0 0		SeaNo [.] 2	439318	Units: mg/L			
rep Date:	7/7/2020	Analysis	Date: 7/	8/2020	,			-			
Prep Date: Analyte	7/7/2020	Analysis Result	Date: 7/ PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Prep Date: Analyte rsenic	7/7/2020	Analysis Result 0.32	Date: 7/ PQL 0.030	SPK value 0.5000	SPK Ref Val	%REC 63.1	LowLimit 75	HighLimit 125	%RPD	RPDLimit	Qual S
Prep Date: Analyte rsenic arium	7/7/2020	Analysis Result 0.32 0.58	Date: 7/ PQL 0.030 0.0020	SPK value 0.5000 0.5000	SPK Ref Val 0 0.2229	%REC 63.1 71.2	LowLimit 75 75	HighLimit 125 125	%RPD	RPDLimit	Qual S S
Prep Date: Analyte rsenic arium admium	7/7/2020	Analysis Result 0.32 0.58 0.37	Date: 7/ PQL 0.030 0.0020 0.0020	SPK value 0.5000 0.5000 0.5000	SPK Ref Val 0 0.2229 0	%REC 63.1 71.2 73.1	LowLimit 75 75 75	HighLimit 125 125 125	%RPD	RPDLimit	Qual S S S
Prep Date: Analyte rsenic arium admium hromium	7/7/2020	Analysis Result 0.32 0.58 0.37 0.32	Date: 7/ PQL 0.030 0.0020 0.0020 0.0060	SPK value 0.5000 0.5000 0.5000 0.5000 0.5000	SPK Ref Val 0 0.2229 0 0	%REC 63.1 71.2 73.1 64.2	LowLimit 75 75 75 75 75	HighLimit 125 125 125 125 125	%RPD	RPDLimit	Qual S S S S
Prep Date: Analyte .rsenic arium admium hromium ead	7/7/2020	Analysis Result 0.32 0.58 0.37 0.32 0.33	Date: 7/ PQL 0.030 0.0020 0.0020 0.0060 0.020	SPK value 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000	SPK Ref Val 0 0.2229 0 0 0	%REC 63.1 71.2 73.1 64.2 65.8	LowLimit 75 75 75 75 75 75	HighLimit 125 125 125 125 125 125	%RPD	RPDLimit	Qual S S S S S

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to MatrixH Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit PQL Practical Quanitative Limit

% Recovery outside of range due to dilution or matrix S

В Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

Р Sample pH Not In Range

RL Reporting Limit

WO#:	2007018	3
	1= 1 01	

17-Aug-20	
-----------	--

Client: Project:	Western I Injection	Refining S Well 2 20	Southwes Q2020	st, Inc.							
Sample ID:	2007018-001DMS	6	Tes	tCode: EF	PA 6010B: "	Total Recover	able Meta	als			
Client ID:	Injection Well #2	Bate	Batch ID: 53551			RunNo: 7 0	0197				
Prep Date:	7/7/2020	Analysis	Date: 7/	8/2020	S	SeqNo: 24	439318	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Potassium		60	1.0	50.00	12.98	94.1	75	125			
Selenium		0.32	0.050	0.5000	0	63.5	75	125			S
Silver		0.074	0.0050	0.1000	0	74.0	75	125			S
Sample ID:	2007018-001DMS	D Samp	Туре: МS	SD.	Tes	tCode: EF	PA 6010B: "	Total Recover	able Meta	als	
Client ID:		RunNo: 70197									
Client ID:	Injection Well #2	Bato	ch ID: 53	551	F	RunNo: 7 0	0197				
Prep Date:	Injection Well #2 7/7/2020	Bate Analysis	ch ID: 53 Date: 7/	551 8/2020	F	RunNo: 7(SeqNo: 2 4	0197 439319	Units: mg/L			
Prep Date: Analyte	Injection Well #2 7/7/2020	Bate Analysis Result	ch ID: 53 Date: 7/ PQL	551 8/2020 SPK value	R S SPK Ref Val	RunNo: 7(SeqNo: 2 4 %REC	0197 439319 LowLimit	Units: mg/L HighLimit	%RPD	RPDLimit	Qual
Analyte	Injection Well #2 7/7/2020	Bato Analysis Result 0.30	ch ID: 53 Date: 7/ PQL 0.030	551 8/2020 SPK value 0.5000	R S SPK Ref Val 0	RunNo: 7(SeqNo: 24 %REC 59.7	0197 439319 LowLimit 75	Units: mg/L HighLimit 125	%RPD 5.44	RPDLimit 20	Qual S
Analyte Barium	Injection Well #2 7/7/2020	Bato Analysis Result 0.30 0.55	ch ID: 53 Date: 7/ PQL 0.030 0.0020	551 8/2020 SPK value 0.5000 0.5000	R SPK Ref Val 0 0.2229	RunNo: 7(SeqNo: 24 <u>%REC</u> 59.7 65.3	0197 439319 LowLimit 75 75	Units: mg/L HighLimit 125 125	%RPD 5.44 5.26	RPDLimit 20 20	Qual S S
Prep Date: Analyte Arsenic Barium Cadmium	Injection Well #2 7/7/2020	Bate Analysis Result 0.30 0.55 0.35	ch ID: 53 Date: 7/ PQL 0.030 0.0020 0.0020	551 8/2020 SPK value 0.5000 0.5000 0.5000	F SPK Ref Val 0 0.2229 0	RunNo: 70 SeqNo: 24 %REC 59.7 65.3 69.8	0197 439319 LowLimit 75 75 75	Units: mg/L HighLimit 125 125 125	%RPD 5.44 5.26 4.61	RPDLimit 20 20 20	Qual S S S
Prep Date: Analyte Arsenic Barium Cadmium Chromium	Injection Well #2 7/7/2020	Bate Analysis Result 0.30 0.55 0.35 0.31	ch ID: 539 Date: 7/ PQL 0.030 0.0020 0.0020 0.0060	551 8/2020 SPK value 0.5000 0.5000 0.5000 0.5000	F SPK Ref Val 0 0.2229 0 0 0	RunNo: 7 SeqNo: 24 <u>%REC</u> 59.7 65.3 69.8 61.1	0197 439319 LowLimit 75 75 75 75 75	Units: mg/L HighLimit 125 125 125 125 125	%RPD 5.44 5.26 4.61 5.01	RPDLimit 20 20 20 20 20	Qual S S S S
Analyte Arsenic Barium Cadmium Lead	Injection Well #2 7/7/2020	Bate Analysis Result 0.30 0.55 0.35 0.31 0.32	ch ID: 539 Date: 7/ PQL 0.030 0.0020 0.0020 0.0060 0.020	551 8/2020 0.5000 0.5000 0.5000 0.5000 0.5000	F SPK Ref Val 0 0.2229 0 0 0 0 0	RunNo: 76 SeqNo: 24 %REC 59.7 65.3 69.8 61.1 63.9	0197 439319 LowLimit 75 75 75 75 75 75	Units: mg/L HighLimit 125 125 125 125 125 125	%RPD 5.44 5.26 4.61 5.01 2.92	RPDLimit 20 20 20 20 20 20	Qual S S S S S S
Prep Date: Analyte Arsenic Barium Cadmium Chromium Lead Magnesium	Injection Well #2 7/7/2020	Bate Analysis Result 0.30 0.55 0.35 0.31 0.32 91	ch ID: 539 Date: 7/ PQL 0.030 0.0020 0.0020 0.0060 0.020 1.0	551 8/2020 0.5000 0.5000 0.5000 0.5000 0.5000 50.00	F SPK Ref Val 0 0.2229 0 0 0 0 0 52.48	RunNo: 76 SeqNo: 24 %REC 59.7 65.3 69.8 61.1 63.9 76.5	0197 439319 LowLimit 75 75 75 75 75 75 75 75	Units: mg/L HighLimit 125 125 125 125 125 125 125	%RPD 5.44 5.26 4.61 5.01 2.92 6.58	RPDLimit 20 20 20 20 20 20 20 20	Qual S S S S S
Prep Date: Analyte Arsenic Barium Cadmium Chromium Lead Magnesium Potassium	Injection Well #2 7/7/2020	Bate Analysis Result 0.30 0.55 0.35 0.31 0.32 91 56	ch ID: 539 Date: 7/ PQL 0.030 0.0020 0.0020 0.0060 0.020 1.0 1.0	551 8/2020 0.5000 0.5000 0.5000 0.5000 0.5000 50.00 50.00	F SPK Ref Val 0 0.2229 0 0 0 0 52.48 12.98	RunNo: 76 SeqNo: 24 %REC 59.7 65.3 69.8 61.1 63.9 76.5 85.7	0197 439319 LowLimit 75 75 75 75 75 75 75 75 75	Units: mg/L HighLimit 125 125 125 125 125 125 125 125	%RPD 5.44 5.26 4.61 5.01 2.92 6.58 7.22	RPDLimit 20 20 20 20 20 20 20 20 20	Qual S S S S S
Prep Date: Analyte Arsenic Barium Cadmium Chromium Lead Magnesium Potassium Selenium	Injection Well #2 7/7/2020	Bate Analysis Result 0.30 0.55 0.35 0.31 0.32 91 56 0.30	ch ID: 539 Date: 7/ PQL 0.030 0.0020 0.0020 0.0060 0.020 1.0 1.0 1.0 0.050	551 8/2020 0.5000 0.5000 0.5000 0.5000 0.5000 50.00 50.00 0.5000	F SPK Ref Val 0 0.2229 0 0 0 0 52.48 12.98 0	RunNo: 7 SeqNo: 24 %REC 59.7 65.3 69.8 61.1 63.9 76.5 85.7 59.0	0197 439319 LowLimit 75 75 75 75 75 75 75 75 75 75 75	Units: mg/L HighLimit 125 125 125 125 125 125 125 125 125 125	%RPD 5.44 5.26 4.61 5.01 2.92 6.58 7.22 7.36	RPDLimit 20 20 20 20 20 20 20 20 20 20 20	Qual S S S S S

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 12 of 14

QC SUMMARY REPORT	
Hall Environmental Analysis Laboratory, In	c.

WO#:	2007018
	17-Aug-20

Client: Project:		Western Refining Southwest, Inc. Injection Well 2 2Q2020
Sample ID:	mb-1 all	k SampType: mblk TestCode: SM2320B: Alkalinity
Client ID:	PBW	Batch ID: R70195 RunNo: 70195
Prep Date:		Analysis Date: 7/7/2020 SeqNo: 2439098 Units: mg/L CaCO3
Analyte		Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual
Total Alkalinity	(as CaCO3	3) ND 20.00
Sample ID:	Ics-1 all	SampType: Ics TestCode: SM2320B: Alkalinity
Client ID:	LCSW	Batch ID: R70195 RunNo: 70195
Prep Date:		Analysis Date: 7/7/2020 SeqNo: 2439099 Units: mg/L CaCO3
Analyte		Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual
Total Alkalinity	(as CaCO3	3) 76.40 20.00 80.00 0 95.5 90 110
Sample ID:	mb-2 all	k SampType: mblk TestCode: SM2320B: Alkalinity
Client ID:	PBW	Batch ID: R70195 RunNo: 70195
Prep Date:		Analysis Date: 7/7/2020 SeqNo: 2439121 Units: mg/L CaCO3
Analyte		Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual
Total Alkalinity	(as CaCO3	3) ND 20.00
Sample ID:	lcs-2 alk	SampType: Ics TestCode: SM2320B: Alkalinity
Client ID:	LCSW	Batch ID: R70195 RunNo: 70195
Prep Date:		Analysis Date: 7/7/2020 SeqNo: 2439122 Units: mg/L CaCO3
Analyte		Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual
Total Alkalinity	(as CaCO3	3) 77.32 20.00 80.00 0 96.7 90 110

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 13 of 14

WO#:	2007018
	17-Aug-20

Client: Project:	Wes Inje	stern Refining S ction Well 2 2Q	outhwe 2020	st, Inc.									
Sample ID: I Client ID:	MB-53514 PBW	SampT Batcl	SampType: MBLK Batch ID: 53514			tCode: SN RunNo: 7(//2540C MC	D: Total Diss	olved Sol	lids			
Prep Date:	7/6/2020	Analysis D	Date: 7/	8/2020	5	SeqNo: 24	138320	Units: mg/L					
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
Total Dissolved	Solids	ND	20.0										
Sample ID: I	LCS-53514	SampT	SampType: LCS			TestCode: SM2540C MOD: Total Dissolved Solids							
Client ID:	LCSW	Batcl	n ID: 53	514	F	RunNo: 70	0168						
Prep Date:	Prep Date: 7/6/2020 Analysis Date: 7/8/2020			S	SeqNo: 24	138321	Units: mg/L						
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
Total Dissolved	Solids	1010	20.0	1000	0	101	80	120					

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 14 of 14

HALL ENVIRONMENTAL ANALYSIS LABORATORY	Hall Environmental Alb. TEL: 505-345-3975 Website: clients.ha	l Analys 4901 uquerqu 5 FAX: 2 allenviro	is Laboratory Hawkins NE 10, NM 87109 505-345-4107 onmental.com	Sa	ample Log-In Check List
Client Name: Western Refining Southwest, Inc.	Work Order Number	2007	018		RcptNo: 1
Received By: Emily Mocho	7/1/2020 8:05:00 AM				
Completed By: Emily Mocho	7/1/2020 10:48:41 AM	Ê.			
Reviewed By: 5PA 12:40 7.1-20					
Chain of Custody					
1. Is Chain of Custody complete?		Yes		No 🗌	Not Present
2. How was the sample delivered?		<u>Couri</u>	er		
Log In				Ē	
5. Was an attempt made to cool the samples?		Yes		No L	
4. Were all samples received at a temperature of	of >0° C to 6.0°C	Yes	v	No 🗌] NA 🗌
5. Sample(s) in proper container(s)?		Yes	~	No 🗌	1
6. Sufficient sample volume for indicated test(s)	?	Yes	~	No 🗌	100
7. Are samples (except VOA and ONG) properly	preserved?	Yes	v 1	No 🗌	711/20
8. Was preservative added to bottles?		Yes [No V	NA 🗆
9. Received at least 1 vial with headspace <1/4"	for AQ VOA?	Yes		No 🗆	
10. Were any sample containers received broken	1?	Yes		No 🔽	# of preserved
				. —	bottes checked
(Note discrepancies on chain of custody)		Yes		NO [_]	(<2 or \$12 unless noted)
2. Are matrices correctly identified on Chain of C	ustody?	Yes		No 🗆	Adjusted? Jes
3. Is it clear what analyses were requested?		Yes [No 🗆	5 .
14. Were all holding times able to be met?		Yes [No 🗌	Checked by: JP 7112
Special Handling (if applicable)					
15. Was client notified of all discrepancies with th	nis order?	Yes		No 🗌	NA 🗹
Person Notified:	Date:				-
By Whom:	Via:	eMai	I Phone	□ Fa	ax In Person
Regarding:		-0.500.50			
Client Instructions:					
16. Additional remarks: 0.5 wl of H	NO3 was .	ada	led to	Sa	mple our for phi
17. <u>Cooler Information</u> <u>Cooler No</u> Temp °C Condition Set 1 8.05 Good Yes	tals analy al Intact Seal No S	∦S ('S Seal Da	te Sign	((20

HALL ENVIRONMENTAL	ANALYSIS LABORATORY	www.hallenvironmental.com	Awkins NE - Albuquerque, NM 87109		05-345-39/5 Fax 505-345-410/ Analysis Request	()tr	SMIS	ا ²⁰ 1، 200 ا 20, 1 ا 200 ر 1)	ог 8 9 то (Ач (Ач	10 2 10 2 10 2 10 2 10 2 10 2 10 2 10 2	ethce y 83 h Me h Me h A O A D h f f o n h f f o n h f f o f f o A D A D A D A D A B A B A B A B A B B B A B B B B	EDB (M 2CRA 8 3260 (V 3270 (S fotal Cc 5<5		X	X	X	X	X	X	X		ee Attached Analatical Lit	the state of the s
			4901 F	u ivit	1el. 5	(C	CB, ²	ряа 1 280	1 0	Rek Sebi	15D(08:H97	}								+	Sarks:	And Add
			9	Г		()	.208) s	NB.	1 /	BE	TM	\ X∃TE										Rem	
Turn-Around Time:	Standard 🗆 Rush	Project Name:	- Injection Well #2 - 20202	Project #:	- PO# 4300183752	Project Manager:	K. Zobiuson	Samoler	On Ice: ZYes DNo	# of Coolers: j	Cooler Temp(including CF): 2.0±0=2.0 (°C	Container Preservative HEAL No. Type and # TymeL	M-Sebur Nove	2-some Poly	3-VOA HCI	1- SDOWL DOL NaDH	1 = SDOWL PUL Z. Acethet	2-250ml Ru HNO3	1-125ml All H.Sou	testout 200-1		Repeived by: Via: Date Time	Received by: Via: Dáte Time 2000 (DUUN'UN 7/1/20 8:05
Chain-of-Custody Record	client: Western Kehning	7	Mailing Address: SD CR 490	RIDONIA LI ANU ATUR	2hone # 505 801 - 5616	amail or Fax#:	QA/QC Package: V Standard □ 1 evel 4 (Full Validation)	Accreditation: A Compliance	D NELAC D Other	ZEDD (Type) Excel	2	Date Time Matrix Sample Name	10/30/20 Witcher Will #2									Pade: Time: Relinduished by: CLUNN	Jate: Time: Relinquished by: / Journal Control Parts

WESTERN REFINING SOUTHWEST, INC. WASTE DISPOSAL WELL NO. 2

UICI-011 (WDW-2) July 20, 2016

immediately or within a specified time period, or assess a civil penalty, or both (see Section 74-6-10 NMSA 1978). The compliance order may also include a suspension or termination of this Discharge Permit. OCD may also commence a civil action in district court for appropriate relief, including injunctive relief (see Section 74-6-10(A)(2) NMSA 1978). The Permittee may be subject to criminal penalties for discharging a water contaminant without a discharge permit or in violation of a condition of a discharge permit; making any false material statement, representation, certification or omission of material fact in a renewal application, record, report, plan or other document filed, submitted or required to be maintained under the Water Quality Act; falsifying, tampering with or rendering inaccurate any monitoring device, method or record required to be maintained under the Water Quality Act; or failing to monitor, sample or report as required by a Discharge Permit issued pursuant to a state or federal law or regulation (see Section 74-6-10.2 NMSA 1978).

2. GENERAL FACILITY OPERATIONS:

2.A. QUARTERLY MONITORING REQUIREMENTS FOR CLASS I NON-

HAZARDOUS WASTE INJECTION WELL: The Permittee shall properly conduct waste management injection operations at its facility by injecting only non-hazardous (RCRA exempt and RCRA non-hazardous, non-exempt) oil field waste fluids. Injected waste fluids shall not exhibit the RCRA characteristics, i.e., ignitability, reactivity, corrosivity, or toxicity under 40 CFR 261 Subpart "C" 261.21 – 261.24 (July 1, 1992), at the point of injection into WDW-2, based upon environmental analytical laboratory testing. Pursuant to 20.6.2.5207B, the Permittee shall provide analyses of the injected fluids at least quarterly to yield data representative of their toxicity characteristic.

The Permittee shall also analyze the injected fluids quarterly for the following characteristics:

- pH (Method 9040);
- • Eh;
- Specific conductance;
- Specific gravity;
 - Temperature;
- Major dissolved cations and anions, including: fluoride, calcium, potassium, magnesium, sodium bicarbonate, carbonate, chloride, sulfate, bromide, total dissolved solids, and cation/anion balance using the methods specified in 40 CFR 136.3); and,
- EPA RCRA Characteristics for Ignitability (ASTM Methods); Corrosivity (SW-846) and Reactivity (determined through Permittee's application of knowledge or generating process).

The Permittee shall analyze the injected fluids quarterly for the constituents identified in the Quarterly Monitoring List (below) to demonstrate that the injected fluids do not exhibit the characteristic of toxicity using the Toxicity Characteristic Leaching Procedure, EPA SW-846 Test Method 1311 (see Table 1, 40 CFR 261.24(b)).

WESTERN REFINING SOUTHWEST, INC. WASTE DISPOSAL WELL NO. 2

ſ

UICI-011 (WDW-2) July 20, 2016

EPA HW No.	Contaminant	SW-846 Methods	Regulatory Level (mg/L)
D004	Arsenic	1311	5.0
D005	Barium	1311	100.0
D018	Benzene	8021B	0.5
D006	Cadmium	1311	1.0
D019	Carbon tetrachloride	8021B 8260B	0.5
D020	Chlordane	8081A	0.03
D021	Chlorobenzene	8021B 8260B	100.0
D022	Chloroform	8021B 8260B	6.0
D007	Chromium	1311	5.0
D023	o-Cresol	8270D	200.0
D024	m-Cresol	8270D	200.0
D025 .	p-Cresol	8270D	200.0
D026	Cresol	8270D	200.0
D027	1,4-Dichlorobenzene	8021B 8121 8260B 8270D	7.5
D028	1,2-Dichloroethane	8021B 8260B	0.5
D029	1,1-Dichloroethylene	8021B 8260B	0.7
D030	2,4-Dinitrotoluene	8091 8270D	0.13
D032	Hexachlorobenzene	8121	0.13
D033	Hexachlorobutadiene	8021B 8121 8260B	0.5
D034	Hexachloroethane	8121	3.0
D008	Lead	1311	5.0
D009	Mercury	7470A 7471B	0.2
	Methyl ethyl ketone	8015B 8260B	200.0
036	Nitrobenzene	8091 8270D	2.0
0037	Pentrachlorophenol	8041	100.0
038	Pyridine	8260B 8270D	5.0

Page 6

WESTERN REFINING SOUTHWEST, INC. WASTE DISPOSAL WELL NO. 2

UICI-011 (WDW-2) July 20, 2016

D010	Selenium	1311	1.0	
D011	Silver	1311	5.0	
D039	Tetrachloroethylene	8260B	0.7	
D040	Trichloroethylene	8021B	0.5	
		8260B	-	
D041	2,4,5-Trichlorophenol	8270D	400.0	
D042	2,4,6-Trichlorophenol	8041A	2.0	
		8270D		
D043	Vinyl chloride	8021B	0.2	
		8260B		

If o-, m-, and p-cresol concentrations cannot be differentiated, then the total cresol (D026) concentration is used. The regulatory level of total cresol is 200 mg/L.

If the quantitation limit is greater than the regulatory level, then the quantitation limit becomes the regulatory level. If metals (dissolved), the EPA 1311 TCLP Laboratory Method is required with the exception of Mercury (total).

1. Monitor and Piezometer Wells: Groundwater with a total dissolved solids concentration of less than 10,000 mg/L occurs at an estimated depth of approximately 10 - 30 ft. below ground surface at the WDW-2 well (hereafter, "uppermost water-bearing unit"). Groundwater monitoring well (MW) with GW sampling capability shall be installed proximal to and hydrogeologically downgradient from WDW-2 in order to monitor the uppermost waterbearing unit. The MW shall be screened (15 ft. screen with top of screen positioned 5 ft. above water table) into the uppermost water-bearing unit. The Permittee shall propose a monitoring frequency with chemical monitoring parameters in order to detect potential groundwater contamination either associated with or not associated with WDW-2.

2.B. CONTINGENCY PLANS: The Permittee shall implement its proposed contingency plan(s) included in its application to cope with failure of a system(s) in the Discharge Permit.

2.C. CLOSURE: Prior to closure of the facility, the Permittee shall submit for OCD's approval, a closure plan including a completed form C-103 for plugging and abandonment of the waste injection well. The Permittee shall plug and abandon its well pursuant to 20.6.2.5209 NMAC and as specified in Permit Condition 2.D.

- Pre-Closure Notification: Pursuant to 20.6.2.5005A NMAC, the Permittee shall submit a pre-closure notification to OCD's Environmental Bureau at least 30 days prior to the date that it proposes to close or to discontinue operation of WDW-2. Pursuant to 20.6.2.5005B NMAC, OCD's Environmental Bureau must approve all proposed well closure activities before the Permittee may implement its proposed closure plan.
- 2. Required Information: The Permittee shall provide OCD's Environmental Bureau with the following information in the pre-closure notification specified in Permit Condition 2.C.1:
 - Name of facility;
 - Address of facility;
 - Name of Permittee (and owner or operator, if appropriate);

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: clients.hallenvironmental.com

July 13, 2020

Kelly Robinson Western Refining Southwest, Inc. #50 CR 4990 Bloomfield, NM 87413 TEL: (505) 632-4135 FAX: (505) 632-3911

RE: Evaporation Ponds

OrderNo.: 2007061

Dear Kelly Robinson:

Hall Environmental Analysis Laboratory received 1 sample(s) on 7/1/2020 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Analytical Report Lab Order 2007061

Date Reported: 7/13/2020

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Project:

Evaporation Ponds 2007061-001 Matrix: AQUEOUS Lab ID:

Client Sample ID: Evap Pond South Collection Date: 6/30/2020 7:45:00 AM Received Date: 7/1/2020 8:05:00 AM

Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 8015D: DIESEL RANGE						Analyst	JME
Diesel Range Organics (DRO)	0.54	0.40		mg/L	1	7/7/2020 10:40:40 AM	53522
Motor Oil Range Organics (MRO)	ND	2.5		mg/L	1	7/7/2020 10:40:40 AM	53522
Surr: DNOP	113	81.5-152		%Rec	1	7/7/2020 10:40:40 AM	53522
SM2340B: HARDNESS						Analyst	ags
Hardness (As CaCO3)	390	6.6		mg/L	1	7/7/2020 12:58:00 PM	R70149
EPA METHOD 300.0: ANIONS						Analyst	CJS
Fluoride	ND	1.0		mg/L	10	7/6/2020 6:28:24 PM	R70144
Chloride	1100	50	*	mg/L	100) 7/6/2020 6:41:15 PM	R70144
Bromide	3.7	1.0		mg/L	10	7/6/2020 6:28:24 PM	R70144
Phosphorus, Orthophosphate (As P)	ND	5.0	Н	mg/L	10	7/6/2020 6:28:24 PM	R70144
Sulfate	79	5.0		mg/L	10	7/6/2020 6:28:24 PM	R70144
Nitrate+Nitrite as N	ND	2.0		mg/L	10	7/6/2020 6:54:07 PM	R70144
SM2510B: SPECIFIC CONDUCTANCE						Analyst	JRR
Conductivity	4600	10		µmhos/c	1	7/7/2020 1:18:10 PM	R70195
SM2320B: ALKALINITY						Analyst	JRR
Bicarbonate (As CaCO3)	653.3	20.00		mg/L Ca	1	7/7/2020 1:18:10 PM	R70195
Carbonate (As CaCO3)	ND	2.000		mg/L Ca	1	7/7/2020 1:18:10 PM	R70195
Total Alkalinity (as CaCO3)	653.3	20.00		mg/L Ca	1	7/7/2020 1:18:10 PM	R70195
SM2540C MOD: TOTAL DISSOLVED SOLIDS						Analyst	KS
Total Dissolved Solids	2660	200	*D	mg/L	1	7/8/2020 6:10:00 PM	53532
EPA METHOD 200.7: METALS						Analyst	ags
Calcium	72	1.0		mg/L	1	7/7/2020 2:19:40 PM	53509
Iron	1.7	0.25	*	mg/L	5	7/7/2020 2:21:25 PM	53509
Magnesium	52	1.0		mg/L	1	7/7/2020 2:19:40 PM	53509
Manganese	0.20	0.0020	*	mg/L	1	7/7/2020 2:19:40 PM	53509
Potassium	13	1.0		mg/L	1	7/7/2020 2:19:40 PM	53509
Sodium	840	10		mg/L	10	7/7/2020 3:10:25 PM	53509
EPA METHOD 8015D: GASOLINE RANGE						Analyst	DJF
Gasoline Range Organics (GRO)	0.11	0.10		mg/L	2	7/9/2020 2:37:38 PM	GW7022
Surr: BFB	104	70-130		%Rec	2	7/9/2020 2:37:38 PM	GW7022
EPA METHOD 8260B: VOLATILES						Analyst	DJF
Benzene	ND	2.0		µg/L	2	7/9/2020 2:37:38 PM	W70228
Toluene	12	2.0		µg/L	2	7/9/2020 2:37:38 PM	W70228
Ethylbenzene	ND	2.0		µg/L	2	7/9/2020 2:37:38 PM	W70228
Methyl tert-butyl ether (MTBE)	ND	2.0		µg/L	2	7/9/2020 2:37:38 PM	W70228

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix Н

Holding times for preparation or analysis exceeded Not Detected at the Reporting Limit

ND PQL Practical Quanitative Limit

Qualifiers:

% Recovery outside of range due to dilution or matrix S

в Analyte detected in the associated Method Blank

Е Value above quantitation range

J Analyte detected below quantitation limits Р

Sample pH Not In Range RL Reporting Limit

Page 1 of 13

Analytical Report
Lab Order 2007061

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Project: Evaporation Ponds

Lab ID:

2007061-001

Client Sample ID: Evap Pond SouthCollection Date: 6/30/2020 7:45:00 AMMatrix: AQUEOUSReceived Date: 7/1/2020 8:05:00 AM

Analyses	Result	RL (Qual Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analys	t: DJF
1,2,4-Trimethylbenzene	ND	2.0	µg/L	2	7/9/2020 2:37:38 PM	W70228
1,3,5-Trimethylbenzene	ND	2.0	µg/L	2	7/9/2020 2:37:38 PM	W70228
1,2-Dichloroethane (EDC)	ND	2.0	µg/L	2	7/9/2020 2:37:38 PM	W70228
1,2-Dibromoethane (EDB)	ND	2.0	µg/L	2	7/9/2020 2:37:38 PM	W70228
Naphthalene	ND	4.0	µg/L	2	7/9/2020 2:37:38 PM	W70228
1-Methylnaphthalene	ND	8.0	µg/L	2	7/9/2020 2:37:38 PM	W70228
2-Methylnaphthalene	ND	8.0	µg/L	2	7/9/2020 2:37:38 PM	W70228
Acetone	120	20	µg/L	2	7/9/2020 2:37:38 PM	W70228
Bromobenzene	ND	2.0	µg/L	2	7/9/2020 2:37:38 PM	W70228
Bromodichloromethane	ND	2.0	µg/L	2	7/9/2020 2:37:38 PM	W70228
Bromoform	ND	2.0	µg/L	2	7/9/2020 2:37:38 PM	W70228
Bromomethane	ND	6.0	µg/L	2	7/9/2020 2:37:38 PM	W70228
2-Butanone	ND	20	µg/L	2	7/9/2020 2:37:38 PM	W70228
Carbon disulfide	ND	20	µg/L	2	7/9/2020 2:37:38 PM	W70228
Carbon Tetrachloride	ND	2.0	µg/L	2	7/9/2020 2:37:38 PM	W70228
Chlorobenzene	ND	2.0	µg/L	2	7/9/2020 2:37:38 PM	W70228
Chloroethane	ND	4.0	µg/L	2	7/9/2020 2:37:38 PM	W70228
Chloroform	ND	2.0	µg/L	2	7/9/2020 2:37:38 PM	W70228
Chloromethane	ND	6.0	µg/L	2	7/9/2020 2:37:38 PM	W70228
2-Chlorotoluene	ND	2.0	µg/L	2	7/9/2020 2:37:38 PM	W70228
4-Chlorotoluene	ND	2.0	µg/L	2	7/9/2020 2:37:38 PM	W70228
cis-1,2-DCE	ND	2.0	µg/L	2	7/9/2020 2:37:38 PM	W70228
cis-1,3-Dichloropropene	ND	2.0	µg/L	2	7/9/2020 2:37:38 PM	W70228
1,2-Dibromo-3-chloropropane	ND	4.0	µg/L	2	7/9/2020 2:37:38 PM	W70228
Dibromochloromethane	ND	2.0	µg/L	2	7/9/2020 2:37:38 PM	W70228
Dibromomethane	ND	2.0	µg/L	2	7/9/2020 2:37:38 PM	W70228
1,2-Dichlorobenzene	ND	2.0	µg/L	2	7/9/2020 2:37:38 PM	W70228
1,3-Dichlorobenzene	ND	2.0	µg/L	2	7/9/2020 2:37:38 PM	W70228
1,4-Dichlorobenzene	ND	2.0	µg/L	2	7/9/2020 2:37:38 PM	W70228
Dichlorodifluoromethane	ND	2.0	µg/L	2	7/9/2020 2:37:38 PM	W70228
1,1-Dichloroethane	ND	2.0	µg/L	2	7/9/2020 2:37:38 PM	W70228
1,1-Dichloroethene	ND	2.0	µg/L	2	7/9/2020 2:37:38 PM	W70228
1,2-Dichloropropane	ND	2.0	µg/L	2	7/9/2020 2:37:38 PM	W70228
1,3-Dichloropropane	ND	2.0	µg/L	2	7/9/2020 2:37:38 PM	W70228
2,2-Dichloropropane	ND	4.0	µg/L	2	7/9/2020 2:37:38 PM	W70228
1,1-Dichloropropene	ND	2.0	µg/L	2	7/9/2020 2:37:38 PM	W70228
Hexachlorobutadiene	ND	2.0	µg/L	2	7/9/2020 2:37:38 PM	W70228
2-Hexanone	ND	20	µg/L	2	7/9/2020 2:37:38 PM	W70228
Isopropylbenzene	ND	2.0	µg/L	2	7/9/2020 2:37:38 PM	W70228

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers: * Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to MatrixH Holding times for preparation or analysis exceeded

 H
 Holding times for preparation or analysis exceeded

 ND
 Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation rangeJ Analyte detected below quantitation limits

JAnalyte detected below quantitation limitsPSample pH Not In Range

L Reporting Limit

Page 2 of 13

RL Reporti

Analytical Report Lab Order 2007061

Date Reported: 7/13/2020

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Project: Evaporation Ponds

Lab ID:

2007061-001

Client Sample ID: Evap Pond South Collection Date: 6/30/2020 7:45:00 AM Matrix: AQUEOUS

Received Date: 7/1/2020 8:05:00 AM

Analyses	Result	RL (Qual Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analysi	DJF
4-Isopropyltoluene	ND	2.0	µg/L	2	7/9/2020 2:37:38 PM	W70228
4-Methyl-2-pentanone	ND	20	µg/L	2	7/9/2020 2:37:38 PM	W70228
Methylene Chloride	ND	6.0	µg/L	2	7/9/2020 2:37:38 PM	W70228
n-Butylbenzene	ND	6.0	µg/L	2	7/9/2020 2:37:38 PM	W70228
n-Propylbenzene	ND	2.0	µg/L	2	7/9/2020 2:37:38 PM	W70228
sec-Butylbenzene	ND	2.0	µg/L	2	7/9/2020 2:37:38 PM	W70228
Styrene	ND	2.0	µg/L	2	7/9/2020 2:37:38 PM	W70228
tert-Butylbenzene	ND	2.0	µg/L	2	7/9/2020 2:37:38 PM	W70228
1,1,1,2-Tetrachloroethane	ND	2.0	µg/L	2	7/9/2020 2:37:38 PM	W70228
1,1,2,2-Tetrachloroethane	ND	4.0	µg/L	2	7/9/2020 2:37:38 PM	W70228
Tetrachloroethene (PCE)	ND	2.0	µg/L	2	7/9/2020 2:37:38 PM	W70228
trans-1,2-DCE	ND	2.0	μg/L	2	7/9/2020 2:37:38 PM	W70228
trans-1,3-Dichloropropene	ND	2.0	µg/L	2	7/9/2020 2:37:38 PM	W70228
1,2,3-Trichlorobenzene	ND	2.0	µg/L	2	7/9/2020 2:37:38 PM	W70228
1,2,4-Trichlorobenzene	ND	2.0	µg/L	2	7/9/2020 2:37:38 PM	W70228
1,1,1-Trichloroethane	ND	2.0	µg/L	2	7/9/2020 2:37:38 PM	W70228
1,1,2-Trichloroethane	ND	2.0	µg/L	2	7/9/2020 2:37:38 PM	W70228
Trichloroethene (TCE)	ND	2.0	µg/L	2	7/9/2020 2:37:38 PM	W70228
Trichlorofluoromethane	ND	2.0	µg/L	2	7/9/2020 2:37:38 PM	W70228
1,2,3-Trichloropropane	ND	4.0	µg/L	2	7/9/2020 2:37:38 PM	W70228
Vinyl chloride	ND	2.0	µg/L	2	7/9/2020 2:37:38 PM	W70228
Xylenes, Total	9.6	3.0	µg/L	2	7/9/2020 2:37:38 PM	W70228
Surr: 1,2-Dichloroethane-d4	104	70-130	%Rec	2	7/9/2020 2:37:38 PM	W70228
Surr: 4-Bromofluorobenzene	91.6	70-130	%Rec	2	7/9/2020 2:37:38 PM	W70228
Surr: Dibromofluoromethane	101	70-130	%Rec	2	7/9/2020 2:37:38 PM	W70228
Surr: Toluene-d8	99.8	70-130	%Rec	2	7/9/2020 2:37:38 PM	W70228

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

* **Qualifiers:**

- Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- в Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 3 of 13

[%] Recovery outside of range due to dilution or matrix S

QC SUMMARY REPORT	
Hall Environmental Analysis Laboratory, In	c.

WO#:	2007061
	13-Jul-20

Client: Project:	Western Evaporat	Refining Stion Ponds	Southwes	st, Inc.							
Sample ID:	MBLK-53509	Samp	Туре: МЕ	BLK	Tes	tCode: EF	PA Method	200.7: Metals			
Client ID:	PBW	Bato	ch ID: 53	509	F	RunNo: 70	0149				
Prep Date:	7/6/2020	Analysis	Date: 7/	7/2020	5	SeqNo: 24	437613	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Calcium		ND	1.0								
Iron		ND	0.050								
Magnesium		ND	1.0								
Manganese		ND	0.0020								
Potassium		ND	1.0								
Sodium		ND	1.0								
Sample ID:	LLLCS-53509	Samp	Type: LC	SLL	Tes	tCode: EF	PA Method	200.7: Metals			
Client ID:	BatchQC	Bato	ch ID: 53	509	F	RunNo: 7(0149				
Prep Date:	7/6/2020	Analysis	Date: 7/	7/2020	S	SeqNo: 24	437614	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Calcium		ND	1.0	0.5000	0	110	50	150			
Iron		ND	0.050	0.02000	0	111	50	150			
Magnesium		ND	1.0	0.5000	0	106	50	150			
Manganese		0.0020	0.0020	0.002000	0	102	50	150			
Potassium		ND	1.0	0.5000	0	78.7	50	150			
Sodium		ND	1.0	0.5000	0	134	50	150			
Sample ID:	LCS-53509	Samp	Type: LC	S	Tes	tCode: EF	PA Method	200.7: Metals			
Client ID:	LCSW	Bato	ch ID: 53	509	F	RunNo: 7(0149				
Prep Date:	7/6/2020	Analysis	Date: 7/	7/2020	S	SeqNo: 24	437615	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Calcium		49	1.0	50.00	0	97.3	85	115			
Iron		0.47	0.050	0.5000	0	93.7	85	115			
Magnesium		49	1.0	50.00	0	98.2	85	115			
Manganese		0.46	0.0020	0.5000	0	91.1	85	115			
Potassium		48	1.0	50.00	0	95.7	85	115			
Sodium		49	1.0	50.00	0	98.8	85	115			

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range

RL Reporting Limit

Page 4 of 13

WO#:	2	00	70)6	1

Client: Western Project: Evapora	a Refining S Action Ponds	outhwe	st, Inc.									
Sample ID: MB	SampT	SampType: mblk			tCode: El	code: EPA Method 300.0: Anions						
Client ID: PBW	Batc	h ID: R7	0144	F	RunNo: 7	0144						
Prep Date:	Analysis E	Date: 7/	6/2020	S	SeqNo: 2	437459	Units: mg/L					
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
Fluoride	ND	0.10										
Chloride	ND	0.50										
Bromide	ND	0.10										
Phosphorus, Orthophosphate (As P	ND	0.50										
Sulfate	ND	0.50										
Nitrate+Nitrite as N	ND	0.20										
Sample ID: LCS	SampT	Гуре: Іся	5	TestCode: EPA Method 300.0: Anions								
Client ID: LCSW	Batcl	h ID: R7	0144	F	RunNo: 7	0144						
Prep Date:	Analysis E	Date: 7/	6/2020	S	SeqNo: 2	437460	Units: mg/L					
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
Fluoride	0.46	0.10	0.5000	0	91.4	90	110					
Chloride	4.8	0.50	5.000	0	95.5	90	110					
Bromide	2.4	0.10	2.500	0	97.2	90	110					
Phosphorus, Orthophosphate (As P	4.6	0.50	5.000	0	93.0	90	110					
Sulfate	9.6	0.50	10.00	0	96.4	90	110					
Nitrate+Nitrite as N	3.4	0.20	3.500	0	95.9	90	110					

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 5 of 13

Client:	Western H	Refining So	outhwes	st, Inc.								
Project:	Evaporati	on Ponds										
Sample ID:	MB-53522	SampT	SampType: MBLK			TestCode: EPA Method 8015D: Diesel Range						
Client ID:	PBW	Batch	ID: 53	522	F	RunNo: 7	0147					
Prep Date:	7/6/2020	Analysis Da	ate: 7/	7/2020	S	SeqNo: 2	437591	Units: mg/L				
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Diesel Range (Organics (DRO)	ND	0.40									
Motor Oil Rang	ge Organics (MRO)	ND	2.5									
Surr: DNOP		0.51		0.5000		101	81.5	152				
Sample ID: LCS-53522 SampType: LCS TestCode: EPA Method 8015D: Diesel Rar							l Range					
Client ID:	LCSW	Batch	ID: 53	522	F	RunNo: 7	0147					
Prep Date:	7/6/2020	Analysis D	ate: 7/	7/2020	S	SeqNo: 24	437592	Units: mg/L				
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Diesel Range (Organics (DRO)	3.1	0.40	2.500	0	123	82	138				
Surr: DNOP		0.25		0.2500		99.2	81.5	152				
Sample ID:	2007061-001BMS	SampT	/pe: MS	6	Tes	tCode: El	PA Method	8015D: Diese	l Range			
Client ID:	Evap Pond South	Batch	ID: 53	522	F	RunNo: 7	0147					
Prep Date:	7/6/2020	Analysis Da	ate: 7/	7/2020	S	SeqNo: 2	437594	Units: mg/L				
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Diesel Range (Organics (DRO)	3.5	0.40	2.500	0.5436	118	70.1	159				
Surr: DNOP		0.30		0.2500		120	81.5	152				
Sample ID:	2007061-001BMSE	SampT	/pe: MS	D	Tes	tCode: El	PA Method	8015D: Diese	l Range			
Client ID:	Evap Pond South	Batch	ID: 53	522	RunNo: 70147							
Dran Data	7/0/2020		oto: 7/	7/0000	c	Contra o	407505	linitor mar/l				

Prep Date: 7/6/2020	Analysis L	bate: 11	//2020	5	eqino: 24	437595	Units: mg/L				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Diesel Range Organics (DRO)	3.4	0.40	2.500	0.5436	115	70.1	159	1.96	20		
Surr: DNOP	0.30		0.2500		119	81.5	152	0	0		

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- в Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 6 of 13

WO#:	2007061
	12 7 1 20

Client: W	estern Refining S	outhwe	est, Inc.								
Project: Ev	aporation Ponds										
Sample ID: mb1	Samp	Гуре: М	BLK	Tes	stCode: I	EPA Method	8260B: VOL	ATILES			
Client ID: PBW	Batc	h ID: W	70228		RunNo:	70228					
Prep Date:	Analysis [Date: 7	/9/2020		SeqNo:	2440715	Units: µg/L				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	C LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Benzene	ND	1.0									
Toluene	ND	1.0									
Ethylbenzene	ND	1.0									
Methyl tert-butyl ether (MTBE) ND	1.0									
1,2,4-Trimethylbenzene	ND	1.0									
1,3,5-Trimethylbenzene	ND	1.0									
1,2-Dichloroethane (EDC)	ND	1.0									
1,2-Dibromoethane (EDB)	ND	1.0									
Naphthalene	ND	2.0									
1-Methylnaphthalene	ND	4.0									
2-Methylnaphthalene	ND	4.0									
Acetone	ND	10									
Bromobenzene	ND	1.0									
Bromodichloromethane	ND	1.0									
Bromoform	ND	1.0									
Bromomethane	ND	3.0									
2-Butanone	ND	10									
Carbon disulfide	ND	10									
Carbon Tetrachloride	ND	1.0									
Chlorobenzene	ND	1.0									
Chloroethane	ND	2.0									
Chloroform	ND	1.0									
Chloromethane	ND	3.0									
2-Chlorotoluene	ND	1.0									
4-Chlorotoluene	ND	1.0									
cis-1 2-DCF	ND	1.0									
cis-1 3-Dichloronronene		1.0									
1 2-Dibromo-3-chloropropane		2.0									
Dibromochloromethane	, ND	1.0									
Dibromomethane		1.0									
1.2-Dichlorobenzene		1.0									
1.3-Dichlorobenzene		1.0									
1 4-Dichlorohenzene		1.0									
Dichlorodifluoromethane	סא	1.0									
	סא	1.0									
		1.0									
1.2 Dichloropropago		1.0									
1.2 Dichloropropago		1.0									
		1.0									
z,z-Dichioropropane	IND	∠.0									

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to MatrixH Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- в Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

WO#:	2007061
	13-Jul-20

Client:WProject:E	Vestern Refining vaporation Pond	Southwe s	st, Inc.								
Sample ID: mb1	Sam	рТуре: М	BLK	TestCode: EPA Method 8260B: VOLATILES							
Client ID: PBW	Bat	F									
Prep Date:	Analysis	Date: 7/	9/2020	ç	SeqNo: 2 4	440715	Units: µg/L				
Analyte	Result	POI	SPK value	SPK Ref Val	%REC	Lowl imit	Highl imit	%RPD	RPDI imit	Qual	
1.1-Dichloropropene	ND	1.0		or renter var	701120	LOWEINK	- ingritzinin	/or tr D		Quui	
Hexachlorobutadiene	ND	1.0									
2-Hexanone	ND	10									
Isopropylbenzene	ND	1.0									
4-Isopropyltoluene	ND	1.0									
4-Methyl-2-pentanone	ND	10									
Methylene Chloride	ND	3.0									
n-Butvlbenzene	ND	3.0									
n-Propylbenzene	ND	1.0									
sec-Butylbenzene	ND	1.0									
Styrene	ND	1.0									
tert-Butylbenzene	ND	1.0									
1,1,1,2-Tetrachloroethane	ND	1.0									
1,1,2,2-Tetrachloroethane	ND	2.0									
Tetrachloroethene (PCE)	ND	1.0									
trans-1,2-DCE	ND	1.0									
trans-1,3-Dichloropropene	ND	1.0									
1,2,3-Trichlorobenzene	ND	1.0									
1,2,4-Trichlorobenzene	ND	1.0									
1,1,1-Trichloroethane	ND	1.0									
1,1,2-Trichloroethane	ND	1.0									
Trichloroethene (TCE)	ND	1.0									
Trichlorofluoromethane	ND	1.0									
1,2,3-Trichloropropane	ND	2.0									
Vinyl chloride	ND	1.0									
Xylenes, Total	ND	1.5									
Surr: 1,2-Dichloroethane-	d4 9.9		10.00		98.6	70	130				
Surr: 4-Bromofluorobenze	ene 9.1		10.00		91.4	70	130				
Surr: Dibromofluorometha	ine 10		10.00		99.8	70	130				
Surr: Toluene-d8	10		10.00		100	70	130				
Sample ID: 100ng Ics	Sam	oType: LC	s	Tes	tCode: El	PA Method	8260B: VOL	ATILES			
Client ID: LCSW	Bat	ch ID: W	70228	F	RunNo: 7	0228					
Prep Date:	Analysis	Date: 7/	/9/2020	SeqNo: 2440716 Units: µg/L							
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Benzene	22	1.0	20.00	0	111	70	130				
Toluene	21	1.0	20.00	0	106	70	130				

Qualifiers:

Chlorobenzene

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit PQL Practical Quanitative Limit

% Recovery outside of range due to dilution or matrix S

20

1.0

20.00

в Analyte detected in the associated Method Blank

101

70

130

Е Value above quantitation range

J Analyte detected below quantitation limits

Р Sample pH Not In Range

RL Reporting Limit

0

WO#:	2007061
	13-Jul-20

Client: Western Refining Southwest, Inc.

Project: Evaporation Ponds

Sample ID: 100ng Ics Client ID: LCSW	SampType: LCS Batch ID: W70228			Tes F	tCode: El RunNo: 7	PA Method 0228	ATILES			
Prep Date: Analysis Date: 7/9/2020			S	SeqNo: 2	440716					
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
1,1-Dichloroethene	22	1.0	20.00	0	109	70	130			
Trichloroethene (TCE)	19	1.0	20.00	0	95.3	70	130			
Surr: 1,2-Dichloroethane-d4	9.5		10.00		95.2	70	130			
Surr: 4-Bromofluorobenzene	9.3		10.00		92.8	70	130			
Surr: Dibromofluoromethane	10		10.00		101	70	130			
Surr: Toluene-d8	9.7		10.00		97.4	70	130			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 9 of 13

Client:	Western Refining Southwest, Inc.										
Project:	Evaporation Ponds										
Sample ID: Ics-1		Tes	tCode: SN	//2510B: Sj	pecific Condu	ictance					
Client ID: LCSV	1	Batcl	n ID: R7	0195	RunNo: 70195						
Prep Date:	Prep Date: Analysis Date: 7/7/2020			7/2020	SeqNo: 2439134 Units: µmhos/cm						
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Conductivity		99	10	99.50	0	99.8	85	115			

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 10 of 13

2007061	WO#:
13-Jul-20	

Client: Project:	Western H Evaporati	Refining S on Ponds	outhwe	st, Inc.									
Sample ID: mb	b1	SampT	ype: MI	BLK	TestCode: EPA Method 8015D: Gasoline Range								
Client ID: PE	3W	Batch	n ID: G	N70228	RunNo: 70228								
Prep Date:		Analysis D	ate: 7	9/2020	S	SeqNo: 2	440763	Units: mg/L					
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
Gasoline Range Or	rganics (GRO)	ND	0.050										
Surr: BFB		11		10.00		105	70	130					
Sample ID: 2.5ug gro Ics SampType: LCS				S	TestCode: EPA Method 8015D: Gasoline Range								
Client ID: LC	sw	Batch	n ID: GN	GW70228 RunNo: 70228									
Prep Date:		Analysis D	ate: 7	9/2020	S	SeqNo: 2	440764	Units: mg/L					
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
Gasoline Range Or	rganics (GRO)	0.48	0.050	0.5000	0	96.7	70	130					
Surr: BFB		10		10.00		102	70	130					
Sample ID: 20	07061-001ams	SampT	ype: M	3	Tes	tCode: El	PA Method	8015D: Gaso	line Rang	e			
Client ID: Ev	ap Pond South	Batch	n ID: GN	N70228	RunNo: 70228								
Prep Date:		Analysis D	ate: 7	9/2020	S	SeqNo: 24	440766	Units: mg/L					
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
Gasoline Range Or	rganics (GRO)	1.1	0.10	1.000	0.1140	99.4	70	130					
Surr: BFB		21		20.00		104	70	130					
Sample ID: 20	TestCode: EPA Method 8015D: Gasoline Range												
Client ID: Ev	ap Pond South	Batch	n ID: GN	N70228	RunNo: 70228								
Prep Date:		Analysis D	ate: 7	9/2020	S	SeqNo: 2	440767	Units: mg/L					
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
Gasoline Range Or	rganics (GRO)	1.1	0.10	1.000	0.1140	95.2	70	130	3.86	20			
Surr: BFB		21		20.00		103	70	130	0	0			

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit
| QC SUMMARY REPORT | |
|---|--|
| Hall Environmental Analysis Laboratory, Inc | |

WO#:	2007061
	13-Jul-20

Client: Project:	Western Refining Southwest, Inc. Evaporation Ponds
Sample ID: mb-1	alk SampType: mblk TestCode: SM2320B: Alkalinity
Client ID: PBW	Batch ID: R70195 RunNo: 70195
Prep Date:	Analysis Date: 7/7/2020 SeqNo: 2439098 Units: mg/L CaCO3
Analyte Total Alkalinity (as CaC	Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual 03) ND 20.00
Sample ID: Ics-1	alk SampType: Ics TestCode: SM2320B: Alkalinity
Client ID: LCSW	Batch ID: R70195 RunNo: 70195
Prep Date:	Analysis Date: 7/7/2020 SeqNo: 2439099 Units: mg/L CaCO3
Analyte	Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual
Total Alkalinity (as CaC	03) 76.40 20.00 80.00 0 95.5 90 110
Sample ID: mb-2	alk SampType: mblk TestCode: SM2320B: Alkalinity
Client ID: PBW	Batch ID: R70195 RunNo: 70195
Prep Date:	Analysis Date: 7/7/2020 SeqNo: 2439121 Units: mg/L CaCO3
Analyte	Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual
Total Alkalinity (as CaC	O3) ND 20.00
Sample ID: Ics-2	alk SampType: Ics TestCode: SM2320B: Alkalinity
Client ID: LCSW	Batch ID: R70195 RunNo: 70195
Prep Date:	Analysis Date: 7/7/2020 SeqNo: 2439122 Units: mg/L CaCO3
Analyte	Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual
Total Alkalinity (as CaC	03) 77.32 20.00 80.00 0 96.7 90 110

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 12 of 13

WO#:	2007061
	13-Jul-20

Client: Project:	W Ev	estern Refining Sovaporation Ponds	outhwe	st, Inc.							
Sample ID:	MB-53532	SampT	ype: ME	BLK	Tes	tCode: SN	M2540C MC	D: Total Diss	olved So	lids	
Client ID:	PBW	Batch	n ID: 53	532	F	RunNo: 7(0189				
Prep Date:	7/7/2020	Analysis D	ate: 7/	8/2020	S	SeqNo: 24	438885	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Total Dissolved	I Solids	ND	20.0								
Sample ID:	LCS-5353	2 SampT	ype: LC	s	Tes	tCode: SN	M2540C MC	D: Total Diss	olved So	lids	
Client ID:	LCSW	Batch	n ID: 53	532	F	RunNo: 7(0189				
Prep Date:	7/7/2020	Analysis D	ate: 7/	8/2020	5	SeqNo: 24	438886	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Total Dissolved	l Solids	995	20.0	1000	0	99.5	80	120			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 13 of 13

HALL ENVIRONMENTAL ANALYSIS LABORATORY	Hall Environmental Alba TEL: 505-345-3975 Website: clients.ha	Analy 49(uquero FAX: Ilenvii	sis Laborate 11 Hawkins 11 Hawkins 11 Hawkins 11 Hawkins 12 Hawkin	ory NE 109 107 om	Sample Log-In Check List					
Client Name: Western Refining Southwest, Inc.	Work Order Number:	200	7061			RcptNo: 1				
Received By: Emily Mocho 7/	1/2020 8:05:00 AM									
Completed By: John Caldwell 7/	1/2020 2:33:35 PM			ah	alle	nell				
Reviewed By: $\leq PA$	7.2.20									
Chain of Custody										
1. Is Chain of Custody complete?		Yes	~	No		Not Present				
2. How was the sample delivered?		<u>Cou</u>	rier							
Log In										
3. Was an attempt made to cool the samples?		Yes		No		NA 🗌				
4. Were all samples received at a temperature of	>0° C to 6.0°C	Yes		No		NA 🗌				
5. Sample(s) in proper container(s)?		Yes		No						
6. Sufficient sample volume for indicated test(s)?		Yes	~	No						
7. Are samples (except VOA and ONG) properly pro	eserved?	Yes	~	No						
8. Was preservative added to bottles?		Yes		No	V	NA 🗌				
9. Received at least 1 vial with headspace <1/4" for	AQ VOA?	Yes	~	No						
0, Were any sample containers received broken?		Yes		No	~	# of preserved				
11. Does paperwork match bottle labels? (Note discrepancies on chain of custody)		Yes	v	No		for pH:				
2. Are matrices correctly identified on Chain of Cus	tody?	Yes	~	No		Adjusted? NO				
3. Is it clear what analyses were requested?		Yes	~	No						
4. Were all holding times able to be met? (If no, notify customer for authorization.)		Yes		No		Checked by: <u>EM 7/2/</u> 2				
Special Handling (if applicable)										
15. Was client notified of all discrepancies with this	order?	Yes		No		NA 🔽				
Person Notified:	Date									
By Whom:	Via:	eMa	ail 🗌 Pho	one 🗌	Fax	In Person				
Regarding:										

16. Additional remarks:

Client Instructions:

17. Cooler Information

Cooler No	Temp °C	Condition	Seal Intact	Seal No	Seal Date	Signed By
1	2.0	Good	1.000	10 T		

	ANALYSIS LABORATORY	www.hallenvironmental.com	4901 Hawkins NE - Albuquerque, NM 87109	Tel. 505-345-3975 Fax 505-345-4107	Analysis Request	1) 0)	s (802 PCB's PCB's MYAbse Abse Abse Abse Abse	езец 9852(085 10 ^{2;} 10 ^{2;}	05 8/8 504 504 (Pri (Pri (Pri	103 103 103 103 103 103 103 103 103 103	MT Batic Metal Met	ВТЕХ / ТРН:801 8081 Ре В260 (Ма В260 (Ма В260 (Va В260 (Va В260 (Va В260 (Va В260 (Va В260 (Va В260 (Va Ва Ва Ва Ва Ва Ва Ва Ва Ва Ва			× ·	X	X	X			X	×		Remarks: No North Soundle.	
Turn-Around Time:	E Standard 🗆 Rush	Phoject Name:	Evaporation touds	Project #:	100# 120103752	Project Manager:	lidation) R. Robiusur	Sampler:	On Ice: ZYes DNo	# of Coolers:	Cooler Temp(including cF): 2.0 (°C)	Container Preservative HEAL No. Type and # Type 20006/	OUTA SVOAS HCI -001	(1250ml Amber - 1	B Poly Sould	(1)Poly 1254 Sulfwirthed	(1) Ru, 250m to HNO,	TONYLA S VON HCI	North (1) 250ml Andre -	2) Poly soul	and all tasal toth, sol	(1) poli zsa trub,		W Received by: Via: Date Time F	Received by: Via: Date Time EXM COUNTER 17/1/20 8:05
Chain-of-Custody Reco	Western Refining		Mailing Address: SOCR 490	Blowfield, NN BHUS	Phone #: (SDS) 801-5016	email or Fax#:	QA/QC Package:	Accreditation:	D NELAC D Other	REDD (Type) Excel		Date Time Matrix Sample Name	10/20/22 7:45 Werter Ever Rand -S					- BIST L ELOPARIA -N	6/34/2 Birs Nerty Evan Pond-r					Date: Time: Relinquished by Clon	Bolynu 1874 Christ Wall

pH	SM 4500-11+R					
EC	SM2510B					
TDS	SM 2540C MOD	1 500ml (
alkalinity	SM12320B	i - soonn (non preserved)				
hardness	SM2340R					
	EPA Method 300.0					
	Diffale Diffue					
	bromide	1 - 250mt 112804				
ANIONS	chloride					
	sulfate					
	phosporus					
	fluoride					
	EPA Method 200.7					
	calcium #	1 - 500ml HNO3				
	iron -	iron -				
ATIONS / METALS	magnesium -	1				
	manganese -	se -				
	potassium -					
	sodium _					
	EPA Method 200.7					
	barium -					
	beryllium_					
	cadmium _					
1	chromium					
	silver -					
	lead					
Metals	EPA 280.8	1 500ml HNO 2				
	copper -	1 - 500mi HNO3				
	zinc -					
	antimony					
	arsenic –					
-	sclenium -					
	thallium -					
Γ	Epa Method 245.1					
L L	mercury					

Scanned with CamScanner

DAILY RATE HISTORY

WDW#2 Daily Injection Rates and Pressures

	WDW#2	WDW#2
Date/Time	Daily Rates	Pressure
,	, (gpm)	(psig)
05/28/20 00:00	0	595
05/29/20 00:00	27	1233
05/30/20 00:00	26	1316
05/31/20 00:00	0	984
06/01/20 00:00	0	791
06/02/20 00:00	0	740
06/03/20 00:00	0	713
06/04/20 00:00	0	694
06/05/20 00:00	0	681
06/06/20 00:00	0	670
06/07/20 00:00	0	661
06/08/20 00:00	0	653
06/09/20 00:00	0	647
06/10/20 00:00	0	641
06/11/20 00:00	0	636
06/12/20 00:00	0	631
06/13/20 00:00	0	627
06/14/20 00:00	0	623
06/15/20 00:00	0	619
06/16/20 00:00	0	616
06/17/20 00:00	0	613
06/18/20 00:00	0	610
06/19/20 00:00	0	607
06/20/20 00:00	0	605
06/21/20 00:00	0	602
06/22/20 00:00	0	600
06/23/20 00:00	0	597
06/24/20 00:00	0	772
06/25/20 00:00	0	636
06/26/20 00:00	0	618
06/27/20 00:00	0	610
06/28/20 00:00	0	605
06/29/20 00:00	0	601
06/30/20 00:00	33	1252
07/01/20 00:00	0	919
07/02/20 00:00	0	733
07/03/20 00:00	0	690
07/04/20 00:00	0	669
07/05/20 00:00	0	655
07/06/20 00:00	0	644
07/07/20 00:00	0	636

WDW#2 Daily Injection Rates and Pressures

	WDW#2	WDW#2
Date/Time	Daily Rates	Pressure
,	(gpm)	(psig)
07/08/20 00:00	0	629
07/09/20 00:00	0	624
07/10/20 00:00	0	618
07/11/20 00:00	0	614
07/12/20 00:00	0	610
07/13/20 00:00	0	607
07/14/20 00:00	0	603
07/15/20 00:00	0	600
07/16/20 00:00	0	597
07/17/20 00:00	0	595
07/18/20 00:00	0	592
07/18/20 00:00	0	592
07/20/20 00:00	0	588
07/20/20 00:00	0	588
07/21/20 00:00	0	580
07/22/20 00:00	0	504
07/23/20 00:00	0	582
07/24/20 00.00	0	560
07/25/20 00:00	0	578
07/26/20 00:00	0	576
07/27/20 00:00	0	575
07/28/20 00:00	0	573
07/29/20 00:00	0	572
07/30/20 00:00	0	570
07/31/20 00:00	0	569
08/01/20 00:00	0	567
08/02/20 00:00	0	566
08/03/20 00:00	0	565
08/04/20 00:00	0	563
08/05/20 00:00	0	562
08/06/20 00:00	0	561
08/07/20 00:00	0	560
08/08/20 00:00	0	559
08/09/20 00:00	0	557
08/10/20 00:00	0	556
08/11/20 00:00	0	555
08/12/20 00:00	0	554
08/13/20 00:00	0	553
08/14/20 00:00	0	552
08/15/20 00:00	0	551
08/16/20 00:00	0	550
08/17/20 00:00	0	549

WDW#2 Daily Injection Rates and Pressures

	WDW#2	WDW#2
Date/Time	Daily Rates	Pressure
, -	(gpm)	(psig)
08/18/20 00:00	0	548
08/19/20 00:00	0	547
08/20/20 00:00	0	546
08/21/20 00:00	0	545
08/22/20 00:00	0	544
08/23/20 00:00	0	544
08/24/20 00:00	0	543
08/25/20 00:00	0	542
08/26/20 00:00	0	541
08/27/20 00:00	0	540
08/28/20 00:00	0	540
08/29/20 00:00	0	539
08/30/20 00:00	0	538
08/31/20 00:00	0	537
09/01/20 00:00	0	536
09/02/20 00:00	0	535
09/03/20 00:00	0	535
09/04/20 00:00	0	534
09/05/20 00:00	0	533
09/06/20 00:00	0	533
09/07/20 00:00	0	532
09/08/20 00:00	0	531
09/09/20 00:00	0	531
09/10/20 00:00	0	530
09/11/20 00:00	0	529
09/12/20 00:00	0	528
09/13/20 00:00	0	528
09/14/20 00:00	0	527
09/15/20 00:00	0	527
09/16/20 00:00	0	526
09/17/20 00:00	0	525
09/18/20 00:00	0	534
09/19/20 00:00	23	1064
09/20/20 00:00	22	1180
09/21/20 14:24	22	1291

APPENDIX E

GAUGE CALIBRATION CERTIFICATES

Gauge Model Gauge S/N

SP-2000 240

Pressure Range		5 K
Accuracy	0.05%	Full Scale

Applied	Recorded	T):CC	la presida de la companya de la comp
Pressure	Pressure	Dille	Porcent (%)
hard	psig	psi	Tercent (70)
0.01	0.01	0.00	0.0000%
774.08	772.99	-1.09	-0.0218%
1498.24	1496.97	-1.27	-0.0254%
2222.36	2221.20	-1.16	-0.0232%
2946.53	2945.44	-1.09	-0.0218%
3670.66	3669.59	-1.07	-0.0214%
4394.87	4393.80	-1.07	-0.0214%
5119.00	5118.01	-0.99	-0.0198%
4394.87	4393.83	-1.04	-0.0208%
3670.66	3669.56	-1.10	-0.0220%
2946.53	2945.51	-1.02	-0.0204%
2222.36	2221.22	-1.14	-0.0228%
1498.24	1496.99	-1.25	-0.0250%
774.08	772.81	-1.27	-0.0254%
0.01	0.01	0.00	0.0000%

Oven Temperature: 2

218.7 °F

Probe Temperature:

218.6 °F

Smart Gauge Calibration accuracy is confirmed.

Calibrated with RUSKA Pressure Standard, model # 2451-700-00 Serial #26618, Mass Set Serial #25608 Compensated to local acceleration due to gravity

psig	psig	psi	Percent (%)
Pressure	Pressure	Differen	ıce
Applied	Recorded		
Gauge S/N	240	Accuracy 0.05%	Full Scale
Gauge Model	SP-2000	Pressure Range	5 K

parg	parg	psi	rercent (70)	
0.01	2.38	2.37	0.0474%	
774.08	776.30	2.22	0.0444%	
1498.24	1500.18	1.94	0.0388%	
2222.36	2224.29	1.93	0.0386%	
2946.53	2948.24	1.71	0.0342%	
3670.66	3672.19	1.53	0.0306%	
4394.87	4396.25	1.38	0.0276%	
5119.00	5120.28	1.28	0.0256%	
4394.87	4396.11	1.24	0.0248%	
3670.66	3671.87	1.21	0.0242%	
2946.53	2947.80	1.27	0.0254%	
2222.36	2223.58	1.22	0.0244%	
1498.24	1499.16	0.92	0.0184%	
774.08	775.38	1.30	0.0260%	
0.01	1.82	1.81	0.0362%	

Oven Temperature: 254.1 °F

Probe Temperature:

.

253.4 °F

Smart Gauge Calibration accuracy is confirmed.

Calibrated with RUSKA Pressure Standard, model # 2451-700-00 Serial #26618, Mass Set Serial #25608 Compensated to local acceleration due to gravity

Gauge Model Gauge S/N

SP-2000 262 Pressure Range5 KAccuracy0.05%Full Scale

Applied	Recorded	Diffe	17-011 (° 0
psig	psig	psi	Percent (%)
0.01	1.00	0.99	0.0198%
774.08	774.85	0.77	0.0154%
1498.24	1499.96	1.72	0.0344%
2222.36	2222.84	0.48	0.0096%
2946.53	2947.01	0.48	0.0096%
3670.66	3671.21	0.55	0.0110%
4394.87	4395.43	0.56	0.0112%
5119.00	5119.62	0.62	0.0124%
4394.87	4395.86	0.99	0.0198%
3670.66	3671.85	1.19	0.0238%
2946.53	2947.85	1.32	0.0264%
2222.36	2223.50	1.14	0.0228%
1498.24	1499.51	1.27	0.0254%
774.08	775.37	1.29	0.0258%
0.01	1.52	1.51	0.0302%

Oven Temperature:

e: 218.9 °F

Probe Temperature:

218.6 °F

Smart Gauge Calibration accuracy is confirmed.

Calibrated with RUSKA Pressure Standard, model # 2451-700-00 Serial #26618, Mass Set Serial #25608 Compensated to local acceleration due to gravity

Gauge Model	SP-2000	Pressure Range	5 K
Gauge S/N	262	Accuracy 0.05	% Full Scale

Applied	Recorded		
Pressure	Pressure	Diffe	erence
psig	psig	psi	Percent (%)
0.01	1.40	1.39	0.0278%
774.08	774.85	0.77	0.0154%
1498.24	1499.96	1.72	0.0344%
2222.36	2222.84	0.48	0.0096%
2946.53	2947.01	0.48	0.0096%
3670.66	3671.51	0.85	0.0170%
4394.87	4395.43	0.56	0.0112%
5119.00	5119.62	0.62	0.0124%
4394.87	4395.86	0.99	0.0198%
3670.66	3671.85	1.19	0.0238%
2946.53	2947.80	1.27	0.0254%
2222.36	2223.52	1.16	0.0232%
1498.24	1499.51	1.27	0.0254%
774.08	775.37	1.29	0.0258%
0.01	1.52	1.51	0.0302%

Oven Temperature:

254.1 °F

Probe Temperature:

253.4 °F

Smart Gauge Calibration accuracy is confirmed.

Calibrated with RUSKA Pressure Standard, model # 2451-700-00 Serial #26618, Mass Set Serial #25608 Compensated to local acceleration due to gravity

APPENDIX F

PANSYSTEM© ANALYSIS OUTPUT

WSP USA	Report File:	LKM 2020 PanSystem WDW-2
PanSystem Version 3.5		
Well Test Analysis Report		
Company	Western Refining Company	
Well	Waste Disposal Well No. 2	
Location	Bloomfield, New Mexico	
Test	Pressure Buildup/Falloff Test	
Date		
Gauge Depth	7312	
Gauge Type/Serial Number	Micro-Smart Systems/SP2000/#240	
Analyst	LKM	
WSP USA Project No.	N/A	

Report File:

PanSystem Version 3.5

Well Test Analysis Report

Reservoir Description

Fluid type : Water Well orientation : Vertical Number of wells : 1 Number of layers : 1

Layer Parameters Data

	Entrada Sandstone
Formation thickness	123.0000 ft
Average formation porosity	0.1490
Water saturation	0.0000
Gas saturation	0.0000
Formation compressibility	0.000000 psi-1
Total system compressibility	4.4400e-6 psi-1
Layer pressure	3632.369000 psia
Temperature	181.710000 deg F

Well Parameters Data

	WDW-2
Well radius	0.3281 ft
Distance from observation to active well	0.000000 ft
Wellbore storage coefficient	0.02338 bbl/psi
Storage Amplitude	0.000000 psi
Storage Time Constant	0.000000 hr
Second Wellbore Storage	0.000000 bbl/psi
Time Change for Second Storage	0.000000 hr
Well offset - x direction	0.0000 ft
Well offset - y direction	0.0000 ft

Fluid Parameters Data

	Entrada Sandstone
Oil gravity	0.000000 API
Gas gravity	0.000000 sp grav
Gas-oil ratio (produced)	0.000000 scf/STB
Water cut	0.000000
Water salinity	0.000000 ppm
Check Pressure	3698.530000 psia
Check Temperature	181.710000 deg F
Gas-oil ratio (solution)	0.000000 scf/STB
Bubble-point pressure	0.000000 psia
Oil density	0.000 lb/ft3

Report File:

LKM 2020 PanSystem WDW-2.pa

PanSystem Version 3.5

Well Test Analysis Report

Fluid Parameters Data (cont)

	Entrada Sandstone
Oil viscosity	0.000 cp
Oil formation volume factor	0.000 RB/STB
Gas density	0.000 lb/ft3
Gas viscosity	0.0 ср
Gas formation volume factor	0.000 ft3/scf
Water density	62.1852 lb/ft3
Water viscosity	0.470 cp
Water formation volume factor	1.000 RB/STB
Oil compressibility	0.000000 psi-1
Initial Gas compressibility	0.000000 psi-1
Water compressibility	2.9753e-6 psi-1

Entrada Sandstone Correlations

Not Used

Entrada Sandstone Model Data

Entrada Sandstone Model Type : Vertical fracture - finite conductivity

	Entrada Sandstone
Permeability	1.13706 md
Fracture face skin	0.0000
Fracture half-length	137.4750 ft
Dimensionless fracture conductivity	1.091280

Rate Change Data

Time	Pressure	Rate
Hours	psia	STB/day
-2745.566670	0.000000	-922.520000
-2682.566670	0.000000	0.000000
-1970.566670	0.000000	-1095.880000
4.133330	3698.530000	0.000000
69.596255	4439.165000	-720.000000
76.963378	4479.706000	-882.860000
310.999696	3750.402000	0.000000

2020 WDW-2 Radial Flow Plot Model Results

Vertical fracture - finite conductivity - Infinitely acting

Classic Wellbore Storage

	Value
Permeability	1.13706 md
Permeability-thickness	139.858329 md.ft
Extrapolated pressure	3632.368779 psia
Radius of investigation	632.271493 ft
Flow efficiency	3.496704
dP skin (constant rate)	-2115.550411 psi
Pseudo-radial skin factor	-5.049953

2020 WDW-2 Radial Flow Plot Line Details

Line type : Pseudo-radial flow Slope : 482.305 Intercept : 3632.37 Coefficient of Determination : 0.999736

	Pseudo-radial flow
Extrapolated pressure	3632.368779 psia
Pressure at dt = 1 hour	4522.643982 psia

Number of Intersections = 0

2020 WDW-2 Log-Log Plot Model Results

Vertical fracture - finite conductivity - Infinitely acting

Classic Wellbore Storage

	Value
Wellbore storage coefficient	0.02338 bbl/psi
Dimensionless wellbore storage	2386.135683
Dimensionless fracture conductivity	1.953579
Fracture conductivity	305.378305 md.ft
Permeability	1.181857 md
Permeability-thickness	145.368424 md.ft
Pseudo-radial skin factor	-5.819792

2020 WDW-2 Log-Log Plot Line Details

Line type : Wellbore storage Slope : 1 Intercept : 1.78215 Coefficient of Determination : Not Used

Line type : Fracture bilinear flow Slope : 0.25 Intercept : 0.0988643 Coefficient of Determination : Not Used WSP USA

Report File:

PanSystem Version 3.5

Well Test Analysis Report

Line type : Pseudo-radial flow Slope : 0 Intercept : 0.228261 Coefficient of Determination : Not Used

Number of Intersections = 0