GW - 1

WORK PLANS

CERTIFIED MAIL # 7099 3220 0010 2242 4825

January 31, 2005

Ms. Hope Monzeglio State of New Mexico Environmental Department Hazardous Waste Bureau 2905 Rodeo Park Drive East, Building 1 Santa Fe, New Mexico 87505-6303

Re: Giant Bloomfield Refinery – NMED Conditional Approval of River Terrace Area Voluntary Corrective Measures Plan RCRA Permit No. NMD 089416416 HWB-GRCB-04-006

Dear Ms. Monzeglio:

Giant Refining Company Bloomfield (GRCB) received the December 29, 2004 letter from the New Mexico Environmental Department (NMED) stating NMED's conditional approval of the November 24, 2004 *Voluntary Corrective Measure Plan* (VCM Plan) submitted by GRCB. The VCM Plan describes the voluntary corrective measures to be implemented by GRCB at the Bloomfield refinery at the River Terrace. The purpose of this letter is to respond to several of the conditions stated in NMED's letter.

Response to NMED Conditions of Approval

The following responses correspond to the conditions in NMED's December 29, 2004 approval letter.

- 1. We have provided the construction diagram and boring log for monitoring wells MW-48 and MW-49 (Attachment A).
- Depth-to-water measurements were collected following the installation of the two monitoring wells and eight temporary well points in November 2004 (Attachment B). A survey of each River Terrace well location and top-of-casing elevation will be completed following the installation of the additional well points east of TP-3 (See Response #7). Once surveying of the River Terrace wells has been completed, groundwater elevation data will be compiled and submitted to NMED as requested.

PHONE 505-632-8013 FAX 505-632-3911 50 ROAD 4990 P.O. BOX 159 BLOOMFIELD NEW MEXICO 87413 Ms. Hope Monzeglio January 31, 2005

- 3. Each of the eight temporary well points (TP-1 through TP-8) was constructed using two-inch diameter five-foot hand-slotted PVC piping, extending approximately five feet below the water table. Groundwater has been detected approximately five feet below existing grade. We have provided a typical temporary well point construction drawing (Attachment C). The depth to water (bgs) in each of the locations is stated in the upper left header of the logs contained in the VCM plan.
- 4. Separate phase hydrocarbon (SPH) was not observed during the installation of the two monitoring wells (MW-48 and MW-49) and eight temporary well points (TP-1 through TP-8) in the River Terrace. Similarly, SPH was not observed during the two subsequent rounds of monthly sampling for December 2004 and January 2005.
- 5. The description of "black" in the boring logs refers to hydrocarbon staining.
- 6. In accordance with the agreed upon monthly sampling plan stated within the RTSPA Plan, groundwater samples were collected at monitoring wells MW-48 and MW-49 on December 27, 2004 and January 18, 2005. Samples from each well were analyzed for BTEX, TPH (GRO and DRO), and PAHs. We have provided the analytical report for the December 2004 sample results, and a table summarizing the groundwater analytical results for the River Terrace wells through December 2004 (Attachment D).

The analytical results from the January 2005 monthly sample event will be provided to NMED upon receipt of the laboratory reports.

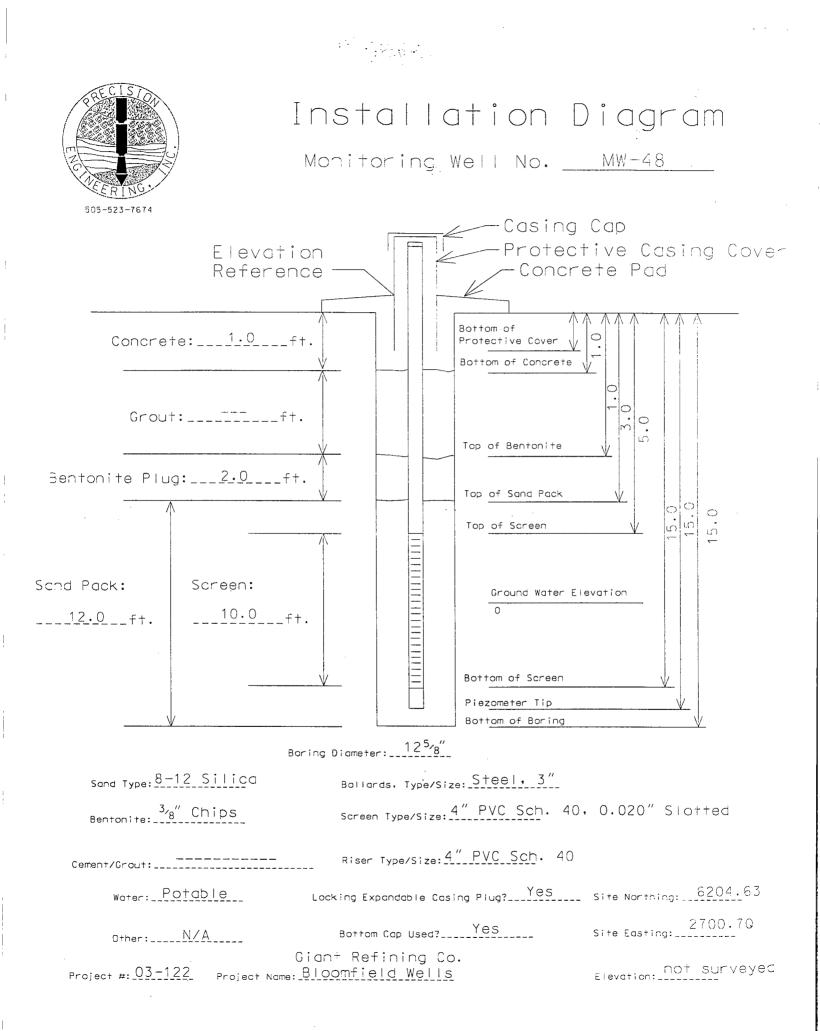
- 7. In order to delineate the extent of the contamination north and east of TP-3, we propose installing five additional temporary well points (TP-9 through TP-13). We have provided a revised River Terrace Well Location Map, which includes the location of the existing and proposed monitoring and temporary well points in the River Terrace (Attachment E). The well points will be constructed using machine-slotted screen. Weather and access conditions permitting, GRCB anticipates installing the additional well points by early March 2005.
- 8. The following responses correspond to comments of the proposed activities No. 1-6 outlined in the RTSPA Plan.
 - 1. The results and findings of the 24-hours aquifer test performed on MW-48 have been summarized in the Aquifer Test Summary Report (Attachment F).
 - 2. The results of the capture zone analysis are summarized as part of the Aquifer Test Summary Report (Attachment F).
 - 3. A revised Well Location Map has been provided, which includes the location of the existing and proposed monitoring and temporary well points in the River Terrace (Attachment E).
 - 4. Two subsequent monthly sampling events have been completed for December 2004 and January 2005. We have provided an analytical summary table and a copy of the laboratory report for the December 2004 sampling

event (Attachment F). The results of the January 2005 sampling event will be submitted to NMED once the results become available from the lab.

- 5. In the November 24, 2004 VCM Plan, GRCB's use of the term "feasibility study" was intended to mean the evaluation, selection, and implementation of appropriate voluntary corrective measures to reduce the concentrations of fuel hydrocarbons on the refinery side of the barrier, and further mitigate fuel hydrocarbon migration to the river.
- 6. Based on the results of the October 2004 site investigation, it appears that the dissolved-phase hydrocarbon plume is biologically active. Therefore, the January 2005 River Terrace sampling event included an expanded suite of parameters that will allow GRCB to further evaluate the subsurface biologic activity. These data, the aquifer test data presented in Attachment F, and sampling results from the additional monitoring points (see Response #7 above) will be used to assess voluntary corrective measures alternatives. The results of the alternatives assessment and a proposed Voluntary Corrective Measure will be included in a Voluntary Corrective Measures Work Plan (VCMWP). The VCMWP will be prepared and submitted to OCD and NMED for review in April 2005.

If you have any questions in this matter, please contact me at 505-632-4171.

Sincerely,


GIANT REFINING-GOMPANY

James R. Schmaltz Environmental Manager

Cc: Denny Foust - NMED Aztec Office Dave Cobrain – NMED Hazardous Waste Bureau Hope Monzeglio – NMED Hazardous Waste Bureau Bob Wilkinson – EPA Ed Riege Chad King Letter to Ms. Hope Monzeglio January 31, 2005

ATTACHMENT A

MW-48 and MW-49 Construction Diagram and Boring Log

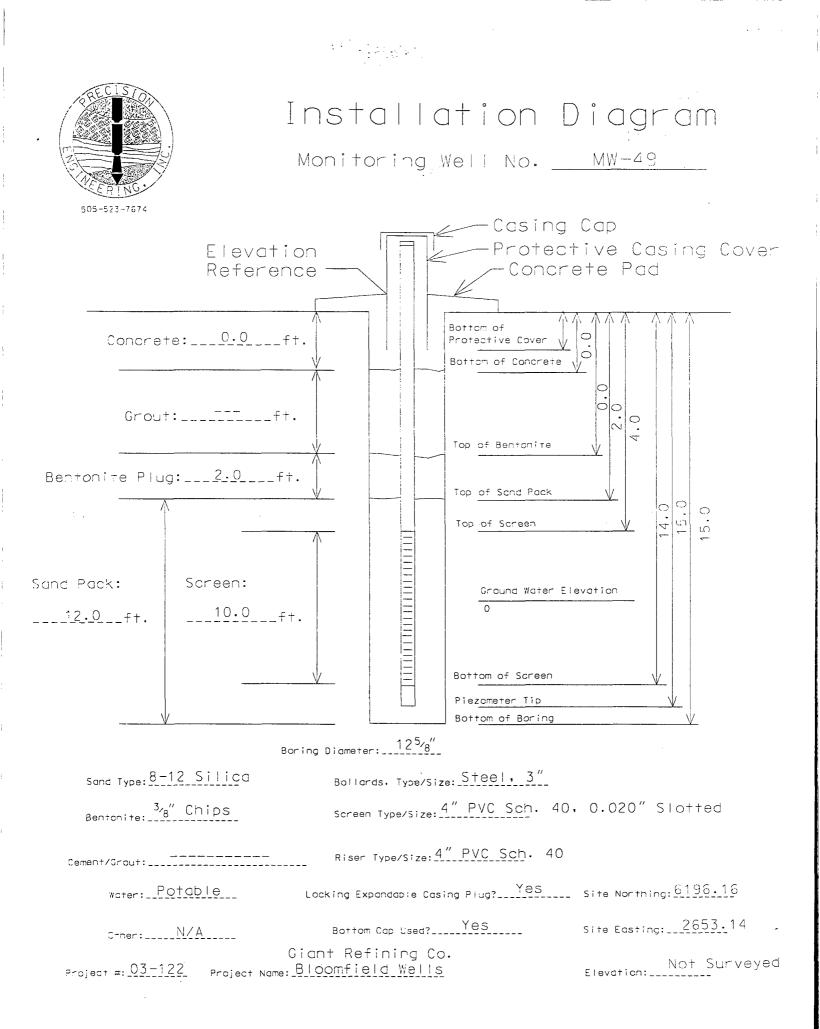
Sheet: 1 of 1 Bore Point: See plan Water Elevation: 7.70 Boring No.: MW-48

L

Precision Engineering, Inc. P.O. Box 422 Las Cruces, NM 88004 505-523-7674

File #: 03-122 Site: Bloomfield Giant Refining Elevation: Not Surveyed Date: 10/28/2004

2


Τ.

Log of Test Borings

[]		BLOW			MATERIAL CHARACTERISTICS		<u> </u>		· · · · · · · · · · · · · · · · · · ·
LAB #	DEPTH		PLOT	SCALE		0/ 14		m	
LAD #		COONT	FLOT	SCALE		%M	LL	PI	CLASS.
	0-1		 *-*0-*-*		<u>Silt</u> , sand, very fine to fine, brown, damp, a few				
	1-15.0		- 0 *-*o-*-*		cobbles				
	1-15.0		- 0 *_*0-*-*		Sand, silty, very fine to fine, brown, damp,				
1			- 0 *_*o-*-*	0.5	gravelly				
	2.0		*-*0-*-*	<u>2.5</u>	Black with hydrocarbon odor	i.			
			*-*0-*-*						
			*-*0-*-*						

			******	5.0	medium to coarse sand				
			******	<u>5.0</u>					

			******			i			

			******	<u>7.5</u>					
			******	1.0	water bearing				
	· .		******						

			0*	10.0	some gravel				
			0*						
			0*						
			0*						
			0*						
			0*						
			0*						
			0*						
			0*						
			0*	<u>15.0</u>					
					T.D. 15.0				
					Bottom of well 15'				
					Placed 4" PVC, 10' factory slotted .020" screen				
					Sanded with 8-12 Silica Sand to 3' bgs				
					Bentonite Plug to 1' bgs				
				<u>20.0</u>					
							·		
ļ	l							L	
SIZE	E & TYPE (OF BORING	4 1/4" IC	HOLLOV	V STEMMED AUGER	LOGO	SED	BY:	KM
C·\bill\P	raiacte\200/	Nhammond di	tch corre	enondenci	e\ditchlogsasof11105\[M]				

C:\bill\Projects\2004\hammond ditch correspondence\ditchlogsasof11105\[M\

* *

Sheet: 1 of 1 Bore Point: See plan Water Elevation: 9.00 Boring No.: MW49

Precision Engineering, Inc. P.O. Box 422 Las Cruces, NM 88004 505-523-7674

File #: 03-122 Site: Bloomfield Giant Refining Elevation: Not Surveyed Date: 10/28/2004

Log of Test Borings

[BLOW			MATERIAL CHARACTERISTICS				
LAB #	DEPTH	COUNT	PLOT	SCALE		%M	LL	ΡI	CLASS.
	0-3		*0*-*-0		Cobbles , sand, very fine to fine, gravel, brown,				
			0-*-0		damp, cobbles				
			0-*-0						
			0-*-0						
			0-*-0	<u>2.5</u>					
			0-*-0						
	3-15.0		*-*0-*-*		Sand, silty, very fine to fine, brown, moist,				
			*-*0-*-*						

			******	<u>5.0</u>					
-			*****						
			******		fine to medium sand				
			******		Black with hydrocarbon odor, wet				
			00*	_	some cobbles				
			00*	<u>7.5</u>					
			00*						
			*******		water bearing				

			*******	10.0					
			******	<u>10.0</u>			ļ		

			******		medium to coarse sand, grey				

			******	<u>15.0</u>					
					T.D. 15.0				
					Bottom of well 14'				
					Placed 4" PVC, 10' factory slotted .020" screen				
					Sanded with 8-12 Silica Sand to 2' bgs				
					Bentonite Plug to gs				
								1	
			ļ	<u>20.0</u>					
		5							
					4				
	<u> </u>								L
					N STEMMED AUGER	LOG	ED	BA:	KM

C:\bill\Projects\2004\hammond ditch correspondence\ditchlogsasof11105\[M\

1.

a i i

Letter to Ms. Hope Monzeglio January 31, 2005

ille in the

I II N

11.4 (1.4

ATTACHMENT B

River Terrace Water Level Data – December 2004

Giant Bloomfield Refinery River Terrace - Water Level Data December 2004

Well #	Date Collected	Depth to Water ⁽¹⁾ (ft)	SPH ⁽²⁾ (ft)	Well Depth ⁽³⁾ (ft)	Well Casing Height ⁽⁴⁾ (ft)	Observations
TP #1	10/28/04	5.44	0		0.9	No SPH - But have a visible sheen
<u>T</u> P #2	10/28/04	7.01	0		0.59	No SPH - But have a visible sheen
TP #3	10/28/04	7.02	0		1.22	No SPH - No odor or sheen
TP #4	10/28/04	6.28	0		0.9	No SPH - But have a visible sheen
<u>T</u> P #5	10/28/04	6.18	0		0.83	No SPH - But have a visible sheen
<u>TP #6</u>	10/28/04	5.96	0		1.16	No SPH - No sheen
<u>TP #7</u>	10/28/04	6.79	0		1.1	No SPH - Barely any water in it
TP #8	10/28/04	5.96	0		1.39	No SPH - But have a visible sheen
MW #48	11/01/04	7.73	0	17.22	2.89	
MW #49	11/01/04	9	0	16.48	3.15	

Notes:

(1) = Depth-to-water measurements are recorded from the top of casing.

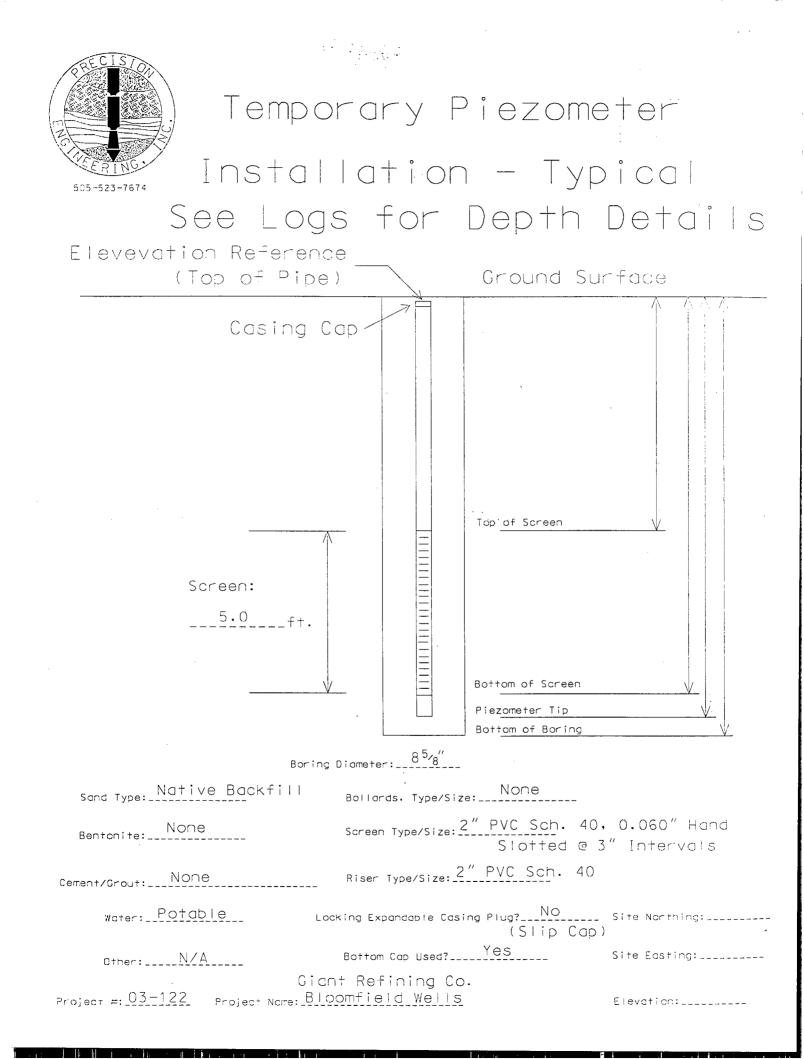
(2) = SPH refers to separate phase hydrocarbons.

(3) = Well depth readings are reflective of field measurements at the time of data collection.

(4) = Well casing height refers to high of casing stick-up above existing grade.

Letter to Ms. Hope Monzeglio January 31, 2005

1


a i i

ii.

1

ATTACHMENT C

Typical Temporary Well Point Construction Drawing

Letter to Ms. Hope Monzeglio January 31, 2005

h l h

ATTACHMENT D

River Terrace Groundwater Analytical Results Summary

COVER LETTER

January 13, 2005

Cindy Hurtado San Juan Refining #50 CR 4990 Bloomfield, NM 87413 TEL: (505) 632-4161 FAX (505) 632-3911

RE: River Terrace - MW #48 & MW #49

Order No.: 0412237

Dear Cindy Hurtado:

Hall Environmental Analysis Laboratory received 2 samples on 12/28/2004 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent.

Reporting limits are determined by EPA methodology. No determination of compounds below these (denoted by the ND or < sign) has been made.

Please don't hesitate to contact HEAL for any additional information or clarifications.

Sincerely,

Andy Freeman, Business Manager Nancy McDuffie, Laboratory Manager

4901 Hawkins NE■ Suite D■ Albuquerque, NM 87109 505.345.3975 ■ Fax 505.345.4107 www.hallenvironmental.com

Hall Environmental Analysis Laboratory

ł

Date: 13-Jan-05

CLIENT:	San Juan Refining			Cli	ent Sample ID: M	MW #4	8
Lab Order:	0412237				Collection Date:	12/27/	/2004 1:50:00 PM
Project:	River Terrace - MW #48	3 & MW #49					
Lab ID:	0412237-01				Matrix:	AQUI	EOUS
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed
EPA METHOD	8015B: DIESEL RANGE				· · · · ·		Analyst: JMF
Diesel Range O	Irganics (DRO)	ND	1.0		mg/L	1	1/3/2005 5:09:41 PM
Motor Oil Range	e Organics (MRO)	ND	5.0		mg/L	1	1/3/2005 5:09:41 PM
Surr: DNOP		112	58-140		%REC	1	1/3/2005 5:09:41 PM
EPA METHOD	8015B: GASOLINE RANG	Ξ					Analyst: NSE
Gasoline Range	e Organics (GRO)	28	5.0		mg/L	100	1/3/2005 5:34:00 PM
Surr. BFB		111	78.3-120		%REC	100	1/3/2005 5:34:00 PM
EPA METHOD	8021B: VOLATILES						Analyst: NSE
Methyl tert-buly	l ether (MTBE)	ND	250		ug/L	100	1/3/2005 5:34:00 PM
Benzene		690	50		μg/L	100	1/3/2005 5:34:00 PM
Toluene		ND	50		μg/L	100	1/3/2005 5:34:00 PM
Ethylbenzene		1900	50		µg/L	100	1/3/2005 5:34:00 PM
Xylenes, Total		8200	50		µg/L	100	1/3/2005 5:34:00 PM
Surr: 4-Brom	ofluorobenzene	110	83.3-121		%REC	100	1/3/2005 5:34:00 PM
EPA METHOD	8310: PAHS						Analyst: BL
Naphthalene		190	13		μg/L	5	1/10/2005 12:51:57 PM
1-Methylnaphth	alene	69	2.5		μg/L	1	1/7/2005 3:18:32 PM
2-Methylnaphth		76	2.5		µg/L	1	1/7/2005 3:18:32 PM
Acenaphthylen	e	ND	2.5		µg/L	1	1/7/2005 3:18:32 PM
Acenaphthene		ND	2.5		µg/L	1	1/7/2005 3:18:32 PM
Fluorene		1.1	0.80		µg/L	1	1/7/2005 3:18:32 PM
Phenanthrene		2.2	0.60		µg/L	1	1/7/2005 3:18:32 PM
Anthracene		ND	0.60		µg/L	1	1/7/2005 3:18:32 PM
Fluoranthene		ND	0.30		µg/L	1	1/7/2005 3:18:32 PM
Pyrene		ND	0.30		µg/L	1	1/7/2005 3:18:32 PM
Benz(a)anihrad	zene	ND	0.020		µg/∟	1	1/7/2005 3:18:32 PM
Chrysene		ND	0.20		µg/L	1	1/7/2005 3:18:32 PM
Benzo(b)fluora	nlhene	ND	0.050		µg/L	1	1/7/2005 3:18:32 PM
Benzo(k)fluora	nthene	ND	0.020		µg/L	1	1/7/2005 3:18:32 PM
Benzo(a)pyren	e	ND	0.020		µg/L	1	1/7/2005 3:18:32 PM
Dibenz(a,h)ant	hracene	ND	0.040		µg/L	1	1/7/2005 3:18:32 PM
Benzo(g,h,i)pe	rylene	ND	0.030		μg/L	1	1/7/2005 3:18:32 PM
Indeno(1,2,3-c	d)pyrene	ND	0.080		μg/L	1	1/7/2005 3:18:32 PM
Sun: Benzo	(e)pyrene	81.8	54-102		%REC	1	1/7/2005 3:18:32 PM

Qualifiers:

ND - Not Detected at the Reporting Limit

- J Analyte detected below quantitation limits
- B Analyte detected in the associated Method Blank
- * Value exceeds Maximum Contaminant Level
- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range

1/10

Page 1 of 2

Hall Environmental Analysis Laboratory

Matrix: AQUEOUS

DF

Date Analyzed

----CLIENT: San Juan Refining Client Sample ID: MW #49 Lab Order: 0412237 Collection Date: 12/27/2004 1:00:00 PM **Project:** River Terrace - MW #48 & MW #49 Lab ID: 0412237-02 Analyses Result POL Oual Units

Anaryses	Kesun	rQL		Dr	Date Analyzeu
EPA METHOD 8015B: DIESEL RANG	E				Analyst: JMP
Diesel Range Organics (DRO)	ND	1.0	mg/L	1	1/4/2005 10:11:04 AM
Motor Oil Range Organics (MRO)	ND	5.0	mg/L	1	1/4/2005 10:11:04 AM
Surr: DNOP	98.2	58-140	%REC	1	1/4/2005 10:11:04 AM
EPA METHOD 8015B: GASOLINE RA	ANGE				Analyst: NSB
Gasoline Range Organics (GRO)	0.23	0.050	mg/L	1	1/4/2005 10:13:32 AM
Surr: BFB	108	78.3-120	%REC	1	1/4/2005 10:13:32 AM
EPA METHOD 8021B: VOLATILES					Analyst: NSB
Methyl tert-butyl ether (MTBE)	ND	2.5	µg/L	1	1/4/2005 10:13:32 AM
Benzene	9.7	0.50	µg/L	1	1/4/2005 10:13:32 AM
Toluene	ND	0.50	μg/L	1	1/4/2005 10:13:32 AM
Ethylbenzene	1.9	0.50	µg/L	1	1/4/2005 10:13:32 AM
Xylenes, Total	0.52	0.50	µg/L	1	1/4/2005 10:13:32 AM
Sur: 4-Bromofluorobenzene	105	83.3-121	%REC	1	1/4/2005 10:13:32 AM
EPA METHOD 8310: PAHS					Analyst: BL
Naphthalene	ND	2.5	µg/L	1	1/7/2005 4:06:32 PM
1-Methylnaphthalene	ND	2.5	µg/L	1	1/7/2005 4:06:32 PM
2-Methylnaphthalene	ND	2.5	μg/L	1	1/7/2005 4:06:32 PM
Acenaphthylene	ND	2.5	µg/L	1	1/7/2005 4:06:32 PM
Acenaphihene	ND	2.5	µg/L	1	1/7/2005 4:06:32 PM
Fluorene	ND	0.80	µg/L	1	1/7/2005 4:06:32 PM
Phenanthrene	ND	0.60	µg/L	1	1/7/2005 4:06:32 PM
Anthracene	ND	0.60	µg/L	1	1/7/2005 4:06:32 PM
Fluoranthene	ND	0.30	µg/L	1	1/7/2005 4:06:32 PM
Pyrene	ND	0.30	µg/L	1	1/7/2005 4:06:32 PM
Benz(a)anthracene	ND	0.020	µg/L	1	1/7/2005 4:06:32 PM
Chrysene	ND	0.20	µg/L	1	1/7/2005 4:06:32 PM
Benzo(b)fluoranthene	ND	0.050	µg/L	1	1/7/2005 4:06:32 PM
Benzo(k)fluoranthene	ND	0.020	µg/L	1	1/7/2005 4:06:32 PM
Benzo(a)pyrene	ND	0.020	ha\r	1	1/7/2005 4:06:32 PM
Dibenz(a,h)anthracene	ND	0.040	µg/L	1	1/7/2005 4:06:32 PM
Benzo(g,h,i)perylene	ND	0.030	μg/L	1	1/7/2005 4:06:32 PM
Indeno(1,2,3-cd)pyrene	ND	0.080	µg/L	1	1/7/2005 4:06:32 PM
Surr: Benzo(ø)pyrene	88.0	54-102	%REC	1	1/7/2005 4:06:32 PM

Qua	lifi	ers:
-----	------	------

ND - Not Detected at the Reporting Limit

- J Analyte detected below quantitation limits
- B Analyte detected in the associated Method Blank
- * Value exceeds Maximum Contaminant Level
- S Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2/10

Page 2 of 2

Model Dial Model Dial <th>CLIENT: 5</th> <th>San Juan Refining</th> <th>tefining</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>ULS JO</th> <th>AMAR</th> <th>RVREP</th> <th>ORT</th>	CLIENT: 5	San Juan Refining	tefining							ULS JO	AMAR	RVREP	ORT
MUV #49 & MVV #49 Not 10: F10 (NV #49 & MVV #49 Not 17:109 Not 17:100 Distribution Nu5-7163 Task Cole: SV0015 Unit::: mg/L Amalysis Date 1/3/2013 3:39:14 PM Prop Date 1/3/201200 Nu6-7163 Run ID: F10 (TA), 2. e412.00A SeqNo:: 330395 SeqNo:: 330395 Nu6-7163 Run ID: F10/140 F20 F20 F20 F20 F20 F20 Nu6-7163 Run ID: F10/140 F20 SeqNo:: 330395 SeqNo:: 330316 F20 F20 F20 Nu60 1 0 1 0 1 0 1 9 0	Work Order: (0412237								うつく		And the first	
Batch ID: 7169 Tast Codic: SW0015 Unlts: mg/L Analysis Date 1732005 3:39:14 PM Prep Date 12302030 Run ID: FD(1/A) 2_o4720A SeqNo: 330395 330315 330305 330316 12302030 Run ID: FD(1/A) 2_o4720A SeqNo: 330395 330315 MD MP PP	Project: I	River Tern	ace - MW #48 & MW	#49								Method	Blank
Result FID(17A)2_04120A SeqNo: 303055 Result PCL SPK relue SFK Ref Val %REC LowLimit RPD Ref Val %RPD RPD Ref Val %RPD Ref Val %RPD RPD Ref Val %RPD Ref Val %	Sample ID MB-7169		Batch ID: 7169	Test Code:	SWB015	Units: mg/L		Analysi	s Date 1/3/2	005 3:39:14 PM	Prep D	ale 12/30/2(004
Result PCL SPK relival %REC Low Limit Hightlimit RPD Rel Val %RPD RPD Limit NO 5 1194 5 140 0 5 140 5 Pol Limit Prep Date Batch ID: R14193 Test Code: SW0015 Units: mg/L Analysis Date 1372005 9:35:16 AM Prep Date Batch ID: R14193 Test Code: SPK rel Val MREC Low Limit Hghtlimit RPD Rel Val MRPD Rel Val	Client ID:			Run ID:	FID(17A) 2_0	41230A		SeqNo:		15			
ND 1 1 0 1 0 1 0 5 140 0 1.113d 1 0 1 0 11 0 11 0 0 Barch 1D: F14139 Tast Code: SW015 Units: mg/L Analysis Date 12/12/05 Prep Date Barch 1D: F14139 Tast Code: SW015 Units: mg/L Analysis Date 12/12/05 Prep Date Run 1D: PIDFID_G50103A MREC LowUnit<	halyte		Result	Pal	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD		Qual
Batch ID: R14193 Test Code: SW0015 Units: mg/L Analysis Date 1732005 9:35:16 AM Prep Date Run ID: PIDFID_050103A SeqNo: 330242 Rep Date Run ID: PIDFID_050103A SeqNo: 330242 KPD Imit Run ID: PIDFID_050103A SeqNo: 330242 KPD Imit ND 0.05 0 20 0 85.5 78.3 120 0 Batch ID: R14206 Test Code: SW015 Units: mg/L Analysis Date 14/2005 8:43:42 AM Prep Date Run ID: PIDFID_050104A Sa0471 RPD Imit RPD Imit Run ID: PIDFID_050104A Sa0471 Sa0471 RPD imit Run ID: PIDFID_050104A MREC LowLintt HighLintt RPD Ref Val MRPD imit Run ID: PIDFID_050104A MREC LowLintt HighLintt RPD Ref Val MRPD imit Run ID: PIDFID_050104A MREC LowLintt HighLintt RPD Ref Val MRPD imit Run ID: Run ID: PIDFID_050104A MREC LowLintt HighLintt RPD Imit Run ID: PIDFID_050104A MREC LowLintt HighLintt RPD Imit Run ID: PIDFID_050104A <td>Diesel Range Organic Aotor Oil Range Orga Surr: DNOP</td> <td>cs (DRO) anics (MRO)</td> <td></td> <td>0 20 -</td> <td>-</td> <td>D</td> <td>119</td> <td>58</td> <td>140</td> <td>0</td> <td>* *</td> <td></td> <td></td>	Diesel Range Organic Aotor Oil Range Orga Surr: DNOP	cs (DRO) anics (MRO)		0 20 -	-	D	119	58	140	0	* *		
Result POLID_US0103A SeqNoc: 330242 Result POL SPK Value SPK Ref Val %REC LowLinit RPD Ref Val %RPD RPDLinit ND 0.05 20 0 86.5 78.3 120 0 P Balch ID: R14206 Test Code: SW8015 Units: mg/L Analysis Date 14/2005 8.43:42 AM Prep Date Run ID: PIDE ID_050104A SeqNo: 330471 RPD Ref Val %RPD RPDLinit ND 0.05 POL SPK Kef Val %REC LowLinit HghLinit RPD Ref Val %RPD RPDLinit 19:24 0 20 0 96.2 78.3 120 0 120 0 120	iample ID Reagent	Blank 5m	Batch ID: R14198	Test Code:	SW8015	Units: mg/L		Analysi	s Date 1/3/2	005 9:35:16 AM	Prep Da	ate	
ND 0.05 20 0 85.5 78.3 120 0 19.09 0 20 0 85.5 78.3 120 0 Batch ID: R14206 Test Code: SW8015 Units: mg/L Analysis Date 14/2005 8:43:42 AM Prep Date Rauhl POL SPK value SPK Ref Val %AFEC LowLimit HighLimit RPD Ref Val %RPD RPDLimit ND 0.05 20 0 96.2 78.3 120 0 10 19.24 0 20 0 96.2 78.3 120 0 10 19.24 0 20 0 96.2 78.3 120 0 10	Client ID: colute		Recut		PIDFID_0501 SPK value	03A SPK Ref Val	%RFC	L nwl imit	Hinhi imit	iz RPD Ref Val	Uda%		
ND 0.05 20 0 95.5 7B.3 120 0 19.0B 0 20 20 0 95.5 7B.3 120 0 Batch ID: R14205 Test Code: SWB015 Untis: mg/L Analysis Date 14/2005 8:43:42.4 M Prep Date Run ID: POL SPK Natue SPK Ref Val %REC LowLimit HighLimit RPD Ref %RPD RPDLimit ND 0.05 0 20 0 96.2 78.3 120 0 1 19.24 0 20 0 96.2 78.3 120 0 1 19.24 0 20 0 96.2 78.3 120 0 0	nalyle		ווחנסע	2									
Batch ID: R14206 Test Code: SW8015 Units: mg/L Analysis Date I/42005 8:43:42 AM Prep Date Run ID: PIDFID_050104A SeqNo: 330471 SeqNo: 330471 Result PCL SPK value SPK Kef Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit ND 0.05 0 20 0 96.2 78.3 120 0 RPD Imit 19.24 0 20 0 96.2 78.3 120 0 78.9 RPDLimit reted at the Reporting Limit S - Spike Recovery outside accepted recovery limits S - Analyte detected in the associated Method Bit Analyte detected in the associated Method Bit R - RPD outside accepted recovery limits B - Analyte detected in the associated Method Bit	asoline Range Orga Surr: BFB	inics (GRO)	ND 19.09	0.05 0	20	D	95.5	78.3	120	O			
Run ID: PIDFID_050104A SeqNo: 330471 Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit ND 0.05 3.04 96.2 78.3 120 0 %RPD RPDLimit 19.24 0 20 0 96.2 78.3 120 0 APDLimit <		Blank 5m	Batch ID: R14206	Test Code:	SW8015	Units: mg/L		Analysis	5 Date 1/4/20	005 8:43:42 AM	Prep Da	ate	
Result POL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit ND 0.05 0.05 0 96.2 78.3 120 0 19.24 0 20 0 96.2 78.3 120 0	Xiant ID:			Run ID:	PIDFID_0501	04A		SeqNo:		,			
ND 0.05 19.24 0 20 0 96.2 78.3 120 cered at the Reporting Limit R - RPD outside accopted recovery limits	naiyte		Result	Par	SPK value	SPK Ref Val	%REC	LawLimit	HighLimit	RPD Ref Val	%RPD		Qual
ND - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits 1 - Analyte detected below outsides accepted recovery limits	asoline Range Orga Surr: BFB	inics (GRO)	ND 19.24	0.05	20	0	96.2	78.3	120	O			
ND - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits 1 - Amlyre detected below oumitiation limits													
ND - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits 1 - Amlyre detected below omartination limits R - RPD outside accepted recovery limits													
		ID - Not Dete	cted at the Reporting Limit acted below ountitation lin	lits	S - Sp R - RP	ike Recovery outside 'D outside accepted i	e accepted reco recovery limit	overy limits	_	B - Analyte detected	in the associ	ated Method	Blank 1

T.

÷

1 14 14

3/10

1

In Le

Work Order: 0412237	7										
		1							Ž	Method Blank	lank
Project: River Te	River Terrace - MW #48 & MW #49	#49									
Sample ID Reagent Blank 5m	m Batch ID: R14198	Test Code: SW8021	: SW8021	Units: µg/L		Analysis	Date 1/3/2	Analysis Date 1/3/2005 9:35:16 AM	Prep Date		
		Run ID:	PIDFID_050103A	103 A		SeqNo:	330238	38			
Analyte	Result	POL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	LowLimit HighLimit RPD Ref Val	%RPD RF	RPDLimit	Qual
Methyl tert-hityl ether (MTBE)		2.5							- 	:	
	CN N	0.5									
Toluene	2	0.5									
Ethylbenzene	QN	0.5									
Xvienes. Total	QN	0.5									
Surr: 4-Bromofluorobenzene	9.22	0	20	0	96.1	83.3	121	Ð			
Sample ID Reagent Blank 5m	n Batch ID: R14206	Test Code	Fest Code: SW8021	Units: µg/L		Analysis	Date 1/4/2	Analysis Date 1/4/2005 8:43:42 AM	Prep Date		[
Client ID:		Run ID:	PIDFID_050104A	104A		SeqNo:	330470	0			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	LowLimit HighLimit RPD Ref Val	%RPD RF	RPDLimit	Qual
······································		ц с 1							•		
ואפווואו ופור-טטואי פעופו (ואיו טבן) 	2 1										
Benzene		0.1									
Toluene	QN	0.5									
Ethylbenzene	Q	0.5									
Xylenes, Total	Q	0.5									
Surr: 4-Bromofluorobenzene	19.97	0	20	o	99.9	83.3	121	o			
Qualifiers: ND - Not D	ND - Not Detected at the Reporting Limit		S - SF	S - Spike Recovery outside accepted recovery limits	de accepted reci	overy limits		B - Analyte detected in the associated Method Blank	in the associated	Method Bh	ank

· · · · · ·

S - Spike Recovery outside accepted recove R - RPD outside accepted recovery limits

ni

J - Analyte detected below quantitation limits

-

: 1 I I

4/10

Γí

CLIENT: San Juan Work Order: 0412237	San Juan Refining 0412237							QC SUMMARY REPORT Method Blank	IMAR	Y REPORT Method Blank	DRT
Project: River	River Terrace - MW #48 & MW #49	449									
Sample (D MB-7179	Batch ID: 7179	Test Code: SW8310	SW8310	Units: µg/L		Anatysis	Date 1171	Analysis Date 117/2005 12:54:33 PM	Prep D	Prep Date 1/3/2005	
Client ID:		Run ID:	HUG0_050107A	07A		SeqNo:	331224	24			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	QN	2.5									
1-Methylnaphthalene	QN	2.5									
2-Methylnaphthalene	QN	2.5									
Acenaphthylene	QN	2.5									
Acenaphthene	ON	2.5									
Fluorene	QN	0.8									
Phenanthrene	QN	0.6									
Anthracene	QN	0.6									
Fluoranthene	QN	0.3									
Pyrene	GN	0.3									
Benz(a)anthracene	QN	0.02									
Chrysene	N	0.2									
Benzo(b)fluoranthene	QN	0,05									
Benzo(k)fluoranthene	<u>N</u>	0.02									
Benzo(a)pyrene	ON	0.02									
Dibenz(a,ħ)anthracene	ON	0.04									
Benzo(g,h,i)perylene	ON	0.03									
Indeno(1,2,3-cd)pyrene	ON	0.08									
Surr: Benzo(e)pyrene	8.55	o	10	D	B5.5	54	102	o			
Qualifiers: ND - No	ND - Not Detected at the Reporting Limit		S-Spi	S - Spike Recovery outside accepted recovery limits	e accepted reco	very limits		B - Analyte detected in the associated Method Blank	in the associ	iated Method I	3lank
נושיע - ר	עם הפובמוכם הביהא אחתואותיהייהיו	2	N - 1	ביולייים סטונוטט ע	וכנטענוץ ווווויני	_					٦

5/10

1

i.

CLIENT: San Juar Work Order: 0412237	San Juan Refining 0412237							QC SUMMARY REPORT	IMAR'	Y REP(DRT
Project: River To	River Terrace - MW #48 & MW #49	#49						randu and			
Sample ID LCS-7169 Client ID:	Batch ID: 7169	Test Code Run ID:	Test Code: SW8015 Units: Run ID: FID(17A) 2 041230A	Units: mg/L 41230A		Analysis SegNo:	s Date 1/3/200 330396	Analysis Date 1/3/2005 4:09:07 PM SedNo: 330396	Prep Da	Prep Date 12/30/2004	2
Analyte	Result	Pal	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesei Range Organics (DRO)	5.595	-	α	o	112	81.2	149	0	-	:	•
Sample ID LCSD-7169	Batch ID: 7169	Test Code:	: SW8015	Units: mg/L		Analysi	s Date 1/3/20	Analysis Date 1/3/2005 4:39:01 PM	Prep Da	Prep Date 12/30/2004	5
Cilent ID:		Run ID:	FID(17A) 2_041230A	41230A		SeqNo:	330397				
Analyte	Result	POL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	5.657	-	5	0	113	81.2	149	5.595	1.10	23	
Sample ID GRO std 2.5ug	Batch ID: R14198	Test Code:	Test Code: SW8015	Units: mg/L		Analysł	5 Date 1/3/200	Analysis Date 1/3/2005 10:05:01 AM	Prep Date	lte	
Client ID:		Run 1D:	PIDFID_050103A	03 A		SeqNo:	330248	_			
Analyte	Result	Pal	SPK value	SPK Ref Val	%REC	LowLimlt	HighLimit RPD Ref Val	ZPD Ref Val	Q48%	RPDLimit	Qual
Gasoline Range Organics (GRO)	0) 0.5244	0.05	0.5	0.	105	82.6	114	o			• ,
Sample ID GRO std 2.5ug	Batch ID: R14198	Test Code:	Test Code: SW8015	Units: mg/L		Analysis	s Date 1/3/20(Analysis Date 1/3/2005 6:33:51 PM	Prep Date	te	
Client ID:		Run (D:	PIDFID_050103A	03A		SeqNo:	330252				
Analyte	Result	POL	SPK value	SPK Ref Val	%REC	LowLimit	LowLimit HighLimit RPD Ref Val	RPD Ref Val	%RPD	RPDLimit	Quai
Gasoline Range Organics (GRO)	O) 0.4968	0.05	0.5	0	99.4	82.6	114	0.5244	5.41	B.39	
Sample ID GRO std 2.5ug	Batch ID: R14206	Test Code:	Test Code: SW8015	Units: mg/L		Analysf	5 Date 1/4/200	Analysis Date 1/4/2005 11:13:21 AM	Prep Date	fe	
Client ID: Analyte	Darit	Run 10: POI	PIDFID_050104A	04A SPK Ref Vat	, PEC	SeqNo:	33047 Hinhi imit	3 RPD Ref Val	Udd%	timi tuda	ć
Gasoline Range Organics (GRO)		0.05	0.5	0	00-	82.6		0			
Oualifiers: ND - Not D	ND - Not Detected at the Reporting Limit		S - Spi	S - Spike Recovery outside accepted recovery limits	accepted rect	overy limits	B	B - Analyte detected in the associated Method Blank	n the associa	ated Method E	llank
				The second free second and			1	· · · · · · · · · · · · · · · · · · ·			

6/10

1

E i

associated Method Blank	B - Analyte detected in the associated Method Blank		scovery limits	side accepted re	S - Spike Recovery outside accepted recovery limits	S - Spi		ND - Not Detected at the Reporting Limit	ND - Not De	Qualifiers:
	0 0			98.6	. 0	8	0.5	59.17		Xylenes, Total
	2	113	88.6	101		202	0.5	20.19		l oluene Ethvihenzene
	0 1	-		101	0,0	5	0.5	20.16		Benzene
	0		I	95.2	0	40	2.5	38.09	Methyl tert-butyl ether (MTBE)	Methyl tert-but
%RPD RPDLimit Qual	RPD Ref Val	HighLimit	LowLimit	%REC	SPK Ref Val	SPK value	POL	Result		Analyte
	-	: 330511	SeqNo:		04A	PIDFID_050104A	Run ID:			Client ID:
Prep Date	5 7:42:37 PM	is Date 1/4/2	Analys		Units: µg/L	SWB021	Test Code: SWB021	Balch ID: R14206	BTEX std 100ng	Sample ID B1
	٥	112	89.4	100	0	60	0.5	60.06		Xylenes, Total
	0			103	0	20	0.5	20.64		Ethylbenzene
	0	112		100	Ċ	20	0.5	20.01		Toluene
	0			102	00	202	0.5	20,36	א בנווםו (און ואר)	Benzene
			1	109		40	2.5	43.46	Mathul tarkhind ather (MTRE)	Mathul tart.hut
International Content	leV Jed Ud		Loui imit		CDK Def Vial	Cold union_uring		1,0		Client IU:
rrep uate	MI4 50:40:5 61	1/2/1 3/12/13/17	Analys		units: pg/L	SWB0Z1	Test Code: SWB021	Batch ID: R14198	Sample ID BTEX Ics 100ng	Sample (D B)
Laboratory Control Spike - generic	Laboratory Con						/ #49	River Terrace - MW #48 & MW		Project:
								0		Work Order:
OC SUMMARV REPORT	MMITS DO							San Juan Refining	San Juan	CLIENT:

l à b I

111

7/10

r						;				
- Analyte detected in the associated Method Blank	B - Analyte detected in th		overv limits	accepted rec	S - Snike Recovery outside accented recovery limits	S - Sn		ND - Not Detected at the Recording 1 limit	ND - Not Deter	
					÷.:					
	0	104.794	79.328	90.8	0	1.002	0.08	0.91	pyrene	Indeno(1,2,3-cd)pyrene
	0	135.014	55.168	88.0	D	0.5	0.03	0.44	ilene	Benzo(g,h,i)perylene
	0	106.931	80.693	91.8	0	0.501	0.04	0.46	racene	Dibenz(a,h)anthracene
	0	100.742	74.556	87.6	0	0.251	0.02	0.22		Benzo(a)pyrene
	0	107.209	75.336	88.0	0	0.25	0.02	0.22	hene	Benzo(k)fluoranthene
	0	103.368	71.192	83.8	o	0.501	0.05	0.42	thene	Benzo(b)/luoranthene
	0	141.404	43.942	84.1	o	2.01	0.2	1.69		Chrysene
	0	113.452	70.18	84.8		0.401	60 U	95.0		ryrene Doordolaathracene
		120.832	57 799	87 D		10.4		04.0		Huoranthene
		110.093	43./D/ 55 33/	0.20 0.20		2.01	0.6	1.66		Anthracene
	-	115.749	42.279	87.1	0	2.01	0.6	1.75		Phenanthrene
	0	113.32	31.046	75.3	D	4.01	0.8	3.02		Fluorene
	0	111.73	27.524	78.5	0	40	2.5	31.39		Acenaphthene
	0	116.857	23.852	76.8	D	40.1	2.5	30.78		Acenaphthylene
	0	111.261	21.098	79.1	0	40	2.5	31.65	llene	1-Weinyinaphualene 2-Methvinaphthalene
	0	110.385	22.016	80.8		40.1		32 30		vaprunarane Matrijaaahteo
	0	111.211	20.939	80.9	0	40	2.5	32.35		Manhthalana
%RPD RPDLimit Qual	RPD Ref Val	HighLimit	LowLimit	%REC	SPK Ref Val	SPK value	Pal	Result		Analyte
	5	331225	SeqNo:		17A	HUGO_050107A	Run ID:			Client ID:
Prep Date 1/3/2005	Analysis Date 1/7/2005 1:42:33 PM	Date 1/1/2	Analysis		Units: µg/L	SWB310	Test Code: 1	Batch ID: 7179	-7179	Sample ID LCS-7179
ntrol Snike - generic	in from the second						49	River Terrace - MW #48 & MW #49	River Terra	roject:
	Laboratory Control Spike - generic						49	ce - MW #48 & MW #	0412237 River Terra	Work Order: Project:

8/10

CLJENT: S Work Order: 0 Project: F	San Juan Refining 0412237 River Terrace - MW #48 & MW #49	#49						QC SUMMARY REPORT Laboratory Control Spike Duplicate	IMAR) Control Sp	V REPO bike Dupli	RT cate
Samula (D. 1. CSD-7179	7179 Batch ID: 7179	Test Code: SW8310	SW8310	Units: µg/L		Analysis	Date 1/7/20	Analysis Date 1/7/2005 2:30:33 PM	Prep Da	Prep Date 1/3/2005	
Client ID:		Run ID:	HUGO_050107A	07A		SeqNo:	331226				
Analyte	Result	Pat	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit F	RPD Ref Val	%RPD	RPDLimit	Qual
Nanhthalene	27.72	2.5	40	0	69.3	20.939	111.211	32.35	15.4	32.1	
1-Methvinaohthalene	29.52	2.5	40.1	0	73.6	22.016	110.385	32.39	9.27	32.7	
2-Methylnaphthalene	28.91	2.5	40	0	72.3	21.098	111.261	31.65	9.05	34	
Acenaphthylene	29.32	2.5	40.1	0	73.1	23.852	116.857	30.78	4.86	38.8	
Acenaphthene	30.78	2.5	40	o	77.0	27.524	111.73	31.39	1.96	38.6	
Fluorene	3.01	0.8	4.01	Ð	75.1	31.046	113.32	3.02	0.332	39.3	
Phenanthrene	1.77	0.6	2.01	0	88.1	42.279	115.749	1.75	1.14	25	
Anthracene	1.7	0.6	2.01	0	84.6	43.767	118.693	1.66	2.38	23.9	
Fluoranthene	3.66	0.3	4.01	0	91.3	55.334	117.461	3.46	5.62	15.7	
Pvrene	3.48	0.3	4.01	0	86.8	57.722	120.832	3.49	0.287	15.3	
Benz(a)anthracene	0.35	0.02	0.401	0	87.3	70.18	113.452	0.34	2.90	119	
Chrysene	1.72	0.2	2.01	0	85.6	43.942	141.404	1.69	1.76	16.6	
Benzo(b)fluoranthene	D.42	0.05	0.501	o	83.8	71.192	103.368	0.42	0	21.7	
Benzo(k)fluoranthene	0.23	0.02	0.25	Ð	92.0	75.336	107.209	0.22	4.44	19.4	
Benzo(a)pyrene	0.22	0.02	0.251	0	87.6	74.556	100.742	0.22	D	16.7	
Dibenz(a,h)anthracene		0.04	0.501	Ð	91.8	80,693	106.931	0.46	0	17.3	
Benzo(g,h,l)perylene		0.03	0.5	a	86.0	55.168	135.014	0.44	2.30	118	
Indena(1,2,3-cd)pyrene		0,08	1.002	0	90.8	79.328	104.794	0.91	0	17.7	

9/10

ND - Not Detected at the Reporting Limit J - Analyte detected below quantitation limits

S - Spike Recovery outside accepted recovery limits
 R - RPD outside accepted recovery limits

B - Analyte detected in the associated Method Blank

4

ļ

Qualifiers:

Hall Environmental Analysis Laboratory

	Sample	Rece	eipt Chec	klist				
Client Name SJR				Date and Time	Received:			
Work Order Number 0412237				Received by	AMG			
Checkilst completed by	Q12 13/	<u>-</u> 2 	Date					
Malrix	Carrier name	<u>UPS</u>	i					
Shipping container/cooler in good condition?		Yes		No 🗔	Not Present			
Custody seals intact on shipping container/coole	er?	Yes		No 🗀	Not Present	\checkmark	Not Shipped	
Custody seals intact on sample bottles?		Yes		No 🗆	N/A	\checkmark		
Chain of custody present?		Yes		No 🗆				
Chain of custody signed when relinquished and	received?	Yes	\checkmark	No 🗆				
Chain of custody agrees with sample labels?		Yes	\checkmark	No 🗔				
Samples in proper container/bottle?		Yes						
Sample containers intact?		Yes		No 🗆				
Sufficient sample volume for indicated test?		Yes		No 🗖				
All samples received within holding time?		Yes		No 🗖				
Water - VOA vials have zero headspace?	No VOA vials subr	nitted		Yes 🗹	No 🗆			
Water - pH acceptable upon receipt?		Yes		No 🗖	N/A 🗹			
Container/Temp Blank temperature?				• C ± 2 Accepta given sufficient				
COMMENTS:								
~================								
Client contacted	Date contacted:			Pers	on conlacted			<u></u>
Conlacted by:	Regarding							
Comments:								
					···			
		•						
Corrective Action				<u> </u>				
	<u> </u>							
			<u></u> .	<u> </u>	<u></u> <u>.</u>			

I

í

-l fi

1.

i (ki

HALL ENVIRONMENTAL ANALYSIS LABORATORY 4901 Hawkins NE, Suite D Albuorenue. New Mexico 87109	Tel. 505.345.3975 Fax 505.345.4107 www.hallenvironmental.com	ANALYSIS REQUEST	[Å]	r/ (lesei ((losei	01/2650) () (201, (20), (201,)	HPT - 100 11.8 11.8 11.8 11.8 11.8 11.8 11.8	008 bo 1004 47 1004 50 1004 50 1000 1000 1000 1000 1000000000000000	Meth Meth (Meth (Meth 1980) 1980 1980 1980 1980 1980 1981 1981 1981	81EX 8310 8310 8310 808 808 808 808 808 808 808 8260 8260						×				Remarks:
0A/0C Package: Std 🔲 Level 4 🗍 Other:	Project Name. Terrace	Project #:		Project Manager:	•	Sampler (Indu Austado	Sample Temperéturé: 5°C	Preservative	Haciy HND3 Haci, HND3	1 X VOA - K	EI X VON-E	1 Liter Ander 1	2-2004-X 2	2-V04 X 2	1-liter Ambr 2				Received By: (Signature) r 1 13 04 Freeswed By: (Signature)
CHAIN-OF-CUSTODY RECORD	Client SAN Juan Repaired	Address: If CO Rol 4991)	Bloomsfield NW	1 24	I	Phone #: SDS-632-416 /	Fax #: 505-632-3911			12/27/04 150m H2 MU)#-40	. /		12/27/1 Pm HEU MW#49					<	Date: Time: Refinduished By: (Bignature) A 27104 ZAM Lux/AC LUX/DUXO Date: Time: Relinquished By: (Signature)

•

River Terrace Groundwater Analytical Results Summary Giant Refinery - Bloomfield, NM

	MW-	9 (River Side)			MW-48 (P	lant Side)	т	P#1	TP#2	TP#2	TP#3	TP#3	TP#4	TP#4	TP#5	TP#5	TP#6	TP#6	TP#7	TP#7	TP#8	TP#8
	Collected 11/1/04	DF Collected I	2/27/04 DF	Collected 11/1/	04 DF	Collected 12/27/04	DF Collected 10/28/2004 DF	Collected 12/27-04_DF	Collected 10/28/2004 I	F Collected 12/27/04 DE	F Collected 10/28/2004 DE	F Collected 12/27/04 DE	Collected 10 28/2004 DF	Collected 12 27 04 DF	Collected 10/28/2004 DF	Collected 12/27:04 DI	F Collected 10/28/2004 DF	Collected 12/27/04 DF	Collected 10/28 2004 DF	Collected 12:27 04 DF	Collected 10/28/2004 DF	F Collected 12/27/04 D
Lead	<0.0050 mg/L	(1) NS	-	0.014 mg/L	(1)	NS —										La construction						
Manganese	2.1 mg/L	(i) NS		0.55 mg/L	(1)	NS											1					
. Selenium	<0.05 mg/L	(1) NS		<0.05 mg/L	(1)	NS	-					1 3 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1										
	<0.005 mg/L	(i) NS		<0.005 mg/L <0.10 mg/L	(1)	NS	- 04	1000 1000	C. See				A AN AND AND				A Contraction of the		1.			1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
Uranium	<0.10 mg/L 0.0089 mg/L	(f) NS		0.026 mg/L		NS											1					1
Zinc EPA METHOD 6010C: TOTAL RECOVER.				0.010 Mg/L	(1)		1 2 2 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	. 1	1	ac in the second of the second s	[1						
Arsenid	<0.02 mg/L	(1) NS		<0.02 mg/L	(1)	NS	- 0.022002000000					5									12000	
Barrium	0.48 mg/L	(1) NS		0.32 mg/L	(1)	NS —	- 225 - 225										and the state of the					
Cadmium	<0.002 mg/L	(1) NS		<0.002 mg/L	(1)	NS	-					the second states				a harris		1.				
Calcium	160 mg/L <0.006 mg/L	(1) NS		130 mg/L <0.006 mg/L	(1)	NS	-	A STATE OF		a single and a	Constant Stands					Line Carrie						1.000
Chromium		10 NS		19 mg/L	10	NS															1	
Lead	19 mg/L (0.014 mg/L	INS -		0.023 mg/L	and and	NS		A DEALER AND							1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -		1. A. C. 1. 2. 1.		2010-2020		10.200	
Magnesium	31 mg L	1) NS		22 mg/L	0	NS						210273				1				Sector Sector		Contraction of the
Manganese	4.4 mg L	 NS 		2.4 mg/L	(1)	NS		Constant -	1.4.1		1					1. 22 See			and the second second			
Potassium	7.9 mg/L	(1) NS —		6.9 mg/L	(1)	NS	-		1. A.	and the second	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	1	Carter La contraction			1.25		Design of the second				
Selenium	<0.05 mg L	(1) NS		<0.05 mg/L <0.005 mg/L		NS	-				A COLORADOR A					1-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2			· · · · · · ·	·		
Silv er Sodium	<0.005 mg/L 330 mg/L ((1) NS 10) NS		400 mg/L	100	NS			1. Sec. 1. Sec. 3.				A Start Start			1 Section 1						
Uranium	<0.10 mg/L (() NS		<0.10 mg/L	0	NS	_	1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1											
Zinc		(1) NS -		0.056 mg/L	(1)	NS			1 4 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1					ar - fille and a specific and	C. C	1		and the second second second			t de la companya de l	
EPA METHOD 150.1: pH	-									in a second design of the second design of the					0							Contraction of
pH	7.73 pH units	(I) NS —		7.88 pH un	its	NS				• • • • • • • • • • • • • • • • • • •	1.0.0			on , in the second s		- CHARLESSEL - SECTOR		1	1		1.1 2 w 11 200 000 000 000 000 000 000 000 000	1
EPA METHOD 160.1: TDS Total Dissolved Solid	1400	n NS-		1500 mg/L	- 1	NS	_				CARLES AND		Selfer Selfer	The state of the second se	-1765				-270000 (1992) T-2000			State State of the second

NOTE: (1) The below list includes analytes detected within at least one of the collected samples.

. •

M:5127001/Agency Correspondance Responce to NMED River Terrace VCM_012905/Summary Analytical ResultsSummary Analytical ResultsWater Results (Cumm Summary)

River Terrace Groundwater Analytical Results Summary Giant Refinery - Bloomfield, NM

I

	MW-49 Collected 113.01 D	9 (River Side)	MW-48 Collected 11/1.04 DF	(Plant Side) Collected 12/27/04 D	T F Collected 10 28 2004 DI	P#1 F Collected 12/27/04 DF	TP#2 Collected II) 28 2004 DF	TP#2 Collected 12/27/04_DF	TP#3 Collected 10 28 2004 DF	TP#3 Collected 12:27:04 DF	TP#4 Collected 10:28 2004 DF	TP#4 Collected 12/27 04 DF	TP#5 Collected 10/28/2004 DF	TP#5 Collected 12 27 04 DF	TP#6 Collected 10/28/2004 DF	TP#6 Collected 12:27 04 DF	TP#7 Collected 10/28/2004D	TP =7 F_Collected 12 27 04 DF	TP#8 Collected 10 28 2004 DF	TP#8 Collected 12/27/04 E
PA METHOD 300.0: ANIONS Fluoride Chloride Nitrogen, Nitrite (As N Nitrogen, Nitrate (As N Phosphorus, Orthophosphate (As F)	0.48 mgL (1 130 mgL (10 <0.10 mgL (1 <0.10 mgL (1 <0.50 mgL (1	NS 0) NS 1) NS 1) NS 1) NS 1) NS 1) NS	0.54 mg/L (1) 120 mg/L (10) <0.10 mg/L (1) <0.10 mg/L (1) <0.50 mg/L (1)	NS NS NS NS NS																
Sulfate EPA METHOD 8015B: DIESEL RANGE Diesel Range Organic Motor Oil Range Organic EPA METHOD 8015B: GASOLINE RANGE	280 mgl (10 <1.0 mgL (1 <5.0 mgL (1	10) NS 11) <1.0 mg/L	250 mg/L (10) 1.5 mg/L (1) <5.0 mg/L (1)	<1.0 mg/L (1) NS NS	1.3 mg L (1) <50 mg L (1)	NS	<1.0 mg l. (1) <5.0 mg l. (1)	×8	1.3 mgl. (1) <5.0 mgl. (1)		<1.0 mg L (1) <5.0 mg L (1)	NS NS	<1.0 mg/L (1) <5.0 mg/L (1)	NS NS	<1.0 mg/L (1 <5.0 mg/L (1) NS NS	14 mg/L (1) <5.0 mg/L (1) 89 mg/L (200)	NS NS
Gasoline Range Organic Gasoline Range Organic EPA METHOD 8021B: VOLATILES Methyl tert-butyl ether (MTBE Benzene	1.8 mgL (10) NS NS	0) 0.23 mg/L (1) <2.5 ug/L (1) 9.7 ug/L (1)	NS	<250 ug/L (10 690 ug/L (10	 (10) (250 ug.L. (10) (10) (10) (10) (10) (10) 	0) NS 0) NS	92 mg I. (100 <250 ug I. (100 3100 ug I (100	NS NS	1.8 mg L (1) <2.5 ug L (1) 3 5 ug L (1)		22 mg L (20) <50 ug L (10) <10 ug L (10) <10 ug L (10)) NS	 67 mg/L (100 <250 ug/L (100 280 ug/L (200 <100 ug/L (200 	NS NS	13 mg/L (20) <50 ug/L (20) 98 ug/L (20) <10 ug/L (20)	NS	1.7 mg/L (1 <2.5 ug/L (1 5.5 ug/L (1 <0.50 ug/L (1) NS) NS	 <500 ug L. (200) <870 ug L. (200) 340 ug L. (200) 	NS NS NS
Toluene Ethlbenzene Xylenes, Tota EPA METHOD 8260B: VOLATILES	NS NS NS	<0.5 ug/L (1) 1.9 ug/L (1) 0.52 ug/L (1)	NS	8200 ug/L (10	(5) 5200 ug L (50)	0) NS	8200 ug.L. (10) 4200 ug.L. (100 27000 ug.L. (500	NS	23 ug l. (1) 51 ug l. (10) 310 ug l. (10)		<10 ug I. (10 810 ug L. (10 1600 ug L. (10	NS	2200 ug.L (200 21000 ug.L (200	NS	1100 ug/L (20) 3900 ug/L (20)	NS	15 ug/L (5 220 ug/L (1) NS	3(0) ug L (200) 33009 ug L (200)	NS NS
Benzre Toluere Eitylbenzes Methyl ter-furyl etter (MTS) 1.31-frinethylbenzes 1.3.5-1-frinethylbenzes 1.3.5-1-frinethylbenzes 1.3.5-1-frinethylbenzes 1.3.5-1-frinethylbenzes 1.3.5-1-frinethylbenzes Naphtales 2Methylaphtales 4Methylaphtales 4Methylaphtales 4Methylaphtales 4Methylaphtales 4Methylaphtales 6Methylaphtales 4Methylaphtales 6Methylaphtales 7Methylaphtales 8Methylaphtales 6Methylaphtales 8Methylaphtales 6Methylaphtales 6Methylaphtales 7Methylaphtales 6Methylaphtales 7	370 ugl (1) 170 ugl (1) 10 ugl (1) 11 ugl (1) 12 ugl (1) 13 ugl (1) 13 ugl (1) 13 ugl (1) 10 ugl (1) 13 ugl (1) 10 ugl (1) 10 ugl (1) 11 ugl (1) 12 ugl (1) 13 ugl (1) 13 ugl (1) 10 ugl (1) 10 ugl (1) 10 ugl (1)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<100																	
Naphhales Naphhales I-Methylasphtales Accusphthyles Hourse Phenanthree Benav(k)flooranthee Benav(a)pree Benav(a)pree Benav(a)pree Benav(a)pree Benav(a)pree Benav(a)pree Benav(a)pree Benav(a)pree	6 ug L (< 2.5 ug L (< 2.5 ug L (< 0.8 ug L (< 0.6 ug L (< 0.0	(1) $< 2.5 \text{ ugL}$ (1) (1) $< 0.8 \text{ ugL}$ (1) (1) $< 0.6 \text{ ugL}$ (1) (1) $< 0.3 \text{ ugL}$ (1) (1) $< 0.3 \text{ ugL}$ (1) (1) $< 0.3 \text{ ugL}$ (1) (1) $< 0.2 \text{ ugL}$ (1) (1) $< 0.2 \text{ ugL}$ (1) (1) $< 0.02 \text{ ugL}$ (1) (1) $< 0.03 \text{ ugL}$ (1) (1) $< 0.04 \text{ ugL}$ (1) (1) $< 0.03 \text{ ugL}$ (1) (1) $< 0.08 \text{ ugL}$ (1)	$\begin{array}{c} 160 \ ugL & (1) \\ 1 & 250 \ ugL & (1) \\ 1 & 250 \ ugL & (1) \\ 1 & <2.5 \ ugL & (1) \\ 1 & <2.5 \ ugL & (1) \\ 1 & 0.5 \ ugL & (1) \\ 1 & 0.5 \ ugL & (1) \\ 1 & -0.50 \ ugL & (1) \\ 1 & -0.5 \ ugL & (1) \\ 1 & -0.02 \ ugL & (1) \\ 1 & -0.02 \ ugL & (1) \\ 1 & -0.03 \ ugL & (1) \\ 1 & -0.03 \ ugL & (1) \\ 1 & -0.04 \ ugL & (1) \\ 1 & -0.04 \ ugL & (1) \\ 1 & -0.08 \ ugL & ($	$\begin{array}{c})) & 69 \ \text{ugl.} \\)) & 76 \ \text{ugl.} \\)) & 75 \ \text{ugl.} \\)) & <2.5 \ \text{ugl.} \\)) & <2.5 \ \text{ugl.} \\)) & 1.1 \ \text{ugl.} \\)) & 2.2 \ \text{ugl.} \\)) & <0.0 \ \text{ugl.} \\)) & <0.3 \ \text{ugl.} \\)) & <0.3 \ \text{ugl.} \\)) & <0.3 \ \text{ugl.} \\)) & <0.0 \ \text{ugl.} \\) & <0.08 \ \text{ugl.} \\ \end{array}$																
Specific Conductanc A METHOD 7470: MERCURY Mercury A METHOD 6010C: DISSOLVED MET. Arsenia Barium Cadmiur Chomiur Chomiur	0.0003 mg/L ALS <0.02 mg/L 0.3 mg/L <0.002 mg/L <0.006 mg/L <0.006 mg/L	NS (1) NS	<0.006 mg/L (1 <0.006 mg/L (1	i) NS																

· · · .

M/S127001/Agency Correspondance Responce to NMED River Terrace VCM_9(2005 Summary Analytical Results/Semmary Analytical Results/Water Results (Cumm Summary)

---- -- -

_

Letter to Ms. Hope Monzeglio January 31, 2005

ATTACHMENT E

River Terrace Well Location Map (Revised)

Giant Bloomfield Refinery

Notes: \blacksquare = Proposed location of additional temporary wells.

Letter to Ms. Hope Monzeglio January 31, 2005

ATTACHMENT F

Aquifer Test Results Summary Report

AQUIFER TEST RESULTS SUMMARY REPORT San Juan River Terrace Site Giant Refinery, Bloomfield, NM

· · · · · ·

GENERAL

ł

This report describes the aquifer (pump) test that was performed in December 2004 on well MW-48 at the Giant Refinery Facility located in Bloomfield, New Mexico. The purpose of the pump test was to obtain aquifer hydraulic properties of the river terrace alluvial aquifer below the refinery. Monitoring well MW-48 was pump tested at a constant pumping rate of 4.7 gallons per minute for a period of over 17 hours. Water levels were monitored in the test well, well MW-49, and six piezometers throughout the test. A temporary staff gage was placed in the San Juan River located adjacent to well MW-49 and hourly stage river level readings were recorded. Once the pump test was terminated, water level recovery measurements were recorded in the test well and 2 piezometers for a period of approximately 5 hours. The locations of the wells and piezometers are shown on Figure 1.

The test well and piezometers are located on the San Juan River floodplain located at the Giant refinery. Well MW-48 was drilled and installed in October 28, 2004. The well consists of a 4-inch diameter, schedule 40 well casing and 0.020–inch slotted screen. The well extends to a depth of 15-feet and is gravel packed with Colorado Silica 8 -12 sand. The screen length is 10 feet and is positioned 5 to 15-feet below ground surface. The lithologic materials encountered during drilling and installation of the well ranged from fine sands to gravel and cobbles. Observation of nearby bluff exposures along the river suggests that bedrock is present at a depth of about 15 to 20 feet below ground surface at the terrace.

Well MW-48 is located approximately 65 feet east and 100 feet south of the San Juan River. An exposed bedrock (Nacimiento Formation) bluff face is located about 65 feet to the south. The barrier wall was installed in the early 1990s, and is located approximately 15 to 20 feet east of the San Juan River. The barrier wall is approximately 150 to 180 feet in length, beginning near the bedrock bluff to the south, running north and parallel to the San Juan River. Well MW-48 is located approximately 40 feet east of the barrier wall, 100 feet south from the San Juan River, and approximately 70 feet north of the bedrock bluff.

A pre-pump test "kick off" meeting was held prior to the pump test with Malcolm Pirnie (MPI), Giant, and Envirotech, Inc. personnel. Pump test procedures, personnel duties, individual assignments, equipment checks, and other requirements for the test were

finalized at that time. A geologist was assigned to manage the test and that person was responsible for the operation of the pumping test.

EQUIPMENT

-

Envirotech Inc. provided the pump, discharge equipment, generator, piping and related accessories to perform the test. Envirotech personnel operated the pump throughout the testing activities. A 4-inch, 3/4 horsepower pump capable of pumping 25 gallons per minute was installed in well MW-48. The discharge water was piped to and contained in a temporary 16,000 gallon tank provided by Giant. The tank was located approximately 25 feet from well MW-48. The outlet for the discharge pipe entered the tank from the top.

Refer to Table 1 for the list of equipment used during the pre-pumping and final pump tests. In addition to the equipment listed, a micro processor-based data acquisition system (In-Situ) was utilized to collect water level information during the pumping periods in piezometers TP-6 and TP-8. In all observation wells identified for monitoring, water levels were measured using battery-powered water level sensing devices.

	TA Equip	BLE	
Ö	Pump test forms (Write-in-Rain [™] paper)	0	Log Paper – 3-cycle semi-log graph
0	Ruler – Engineer Scale	٥	Flashlights (with extra batteries)
0	Water Level Measuring Devices (with assigned number on each device)	o	Metal Clipboard (with cover)
0	Extra batteries with each device	o	Stop Watches
o	Calculator	0	Base Map of pumping well & observation wells
٥	Pencils and Erasers	o	Boring logs and Piezometer Construction Details
٥	Table and Chair		

MONITORING LOCATIONS

Water levels were monitored in the pumping well and seven observation wells (six piezometers and one monitoring well) throughout the pumping test. The piezometers included TP-1, TP-2, TP- 5, TP-6, TP-7, and TP-8. Monitoring well MW-49, located on the river side of the existing barrier wall, was also monitored. A temporary staff gage was placed in the river adjacent to well MW-49 and was monitored hourly throughout the test. The locations of all observation wells are shown on Figure 1.

Pre-pumping Test

One day prior to the pump test, a 10- to 30-minute pre-pumping test was run in the pumping well. The objectives of the pre-pumping test were as follows:

- Select a pumping rate for the optional final pumping test.
- Determine the expected drawdown in the test well at various pumping rates.
- Calibrate and verify the operational capacity of all equipment being used in pump test.

These trial runs were needed to make final adjustments to the pump test plan, which included making final decisions on equipment changes and measurement of water levels. The pre-pump test procedures were as follows:

- Coordinate installation of the test pump, power supply, discharge line, and flow meter with Envirotech.
- Install battery-powered electrical depth gages in all observation wells to measure groundwater levels during the test.
- Install In-Situ data acquisition system and transducers (mini trolls) in piezometers TP-6 and TP-8 to monitor groundwater levels during the test.
- Start the pre-test, measuring pump discharge during the test. At least three pumping rates were run to determine the optimum pumping rate for the long-term pump test.
- Collect water level readings at 5-minute levels to the nearest 0.01 foot. The depth to water was referenced from the top of the monitoring well casing.

CONSTANT-RATE PUMP TEST

A 17-hour Constant-Rate Pump Test was performed in well MW-48. The constant rate aquifer test began at 1:15 PM on December 9, 2004. All of the equipment, including pumping, discharge piping, water flow, and water depth measuring equipment, was assembled, proven operational, and inspected the day before initiation of the constant rate drawdown test.

Scheduling, Planning, and Coordination

A meeting of all pump test field personnel was held at the test well site one hour prior to commencing the pump test. The data acquisition and transducer systems were checked and proven operational. Personnel were given a final brief on their individual duties and responsibilities and a final equipment check was conducted at that time, including synchronization of stop watches.

Rest Period

Static non-pumping water level readings were recorded at least one hour prior to the start of pumping. The last readings were recorded immediately before starting the pump.

Data Collection

The pumping test was started at 1:15 PM on December 9, 2004. Any adjustments of the pumping rate required to maintain a nearly constant pumping rate throughout the test were noted on the field forms. The exact time of each recorded measurement was documented on the pumping well and observation well forms. As discussed above, the depth-to-water level measurements were referenced from the top of the monitoring well or top of the steel casing. Measurements were made to the nearest 0.01 foot. MPI, Giant, and Envirotech personnel assisted in recording water level measurement readings. In addition, river stage readings were recorded on an hourly basis.

Pumping Rate

The well was pumped at a constant pumping rate of 4.7 gpm determined from the pre-test pumping. The pumping rate remained constant for the duration of the pumping test. The pumping rate was measured by using both a totalizing flow meter and using the "bucket test".

Recovery Period

After completion of the pump test, we recorded the exact time of pump shutdown, and the rate of recovery of the water levels in wells being monitored and recorded these levels for a 5-hour period.

FIELD REDUCTION OF DATA

During the pump test, the field data was compiled and reduced to estimate drawdown and calculated recovery in the pumping well. Drawdown and recovery measurements for the pumping well and piezometers are presented in Appendix A.

The distances from test well MW-48 to well MW-49 and all the peizometers were measured in the field using a 100-foot tape measure. Table 2 shows a summary of the distances from MW-48 to each respective well or piezometer.

Summary of V	TABLE 2Vell / Piezometer Distance	ces from MW-48
Well / Piezometer ID	Distance from MW-48 (ft)	Location
MW-49	53	Outside Barrier Wall
TP-1	66	Inside Barrier Wall
TP-2	52	Adjacent to Bluff
TP-5	99	East of Well MW-48
TP-6	44	East of Well MW-48
TP-7	96	North End of Barrier Wall
TP-8	42	Inside Barrier Wall

AQUIFER TEST RESULTS

Drawdown was measured in pumping well MW-48 and piezometers TP-1, TP-2, TP-5, TP-6, TP-7, and TP-8 (Appendix A). The pumping test ran for approximately 1,050 minutes until the generator failed. Recovery measurements began shortly there after.

The following is a summary of the results observed after 1,000 minutes of pumping:

- The drawdown observed in MW-48 showed a water level decline of approximately 2.5 feet.
- The maximum drawdown observed in all piezometers was 0.45 feet measured in TP-8.
- A minimum drawdown observed in the piezometers was 0.10 feet in TP-6.
- The staff gage showed no significant change in river stage height (>0.10 foot of decline) during the test.
- No drawdown was observed in well MW-49, except for a slight decline measured near the end of the test. The water level declined <0.05 feet. The water level fully recovered prior to terminating the pumping test, suggesting the decline was caused by a variation in river stage height.

Recovery water levels were taken in well MW-48 and piezometers TP-6 and TP-8 for approximately 5 hours after the pump test was terminated. The water level in the test well MW-48 recovered 2.24 feet, or 88% of recovery to static level after 5 hours. Water levels in TP-6, located east of pumping well MW-48, did not recover during that period. Water levels in piezometer in TP-8 recovered 0.16 feet, or 36 % of recovery from static water level.

AQUIFER TEST INTERPRETATION

Data from the aquifer test was utilized from both the pumping and recovery phases. The aquifer test data was used to estimate hydraulic conductivity of the aquifer. The drawdown data was plotted on a semi-log cycle graph and analyzed over a single time log cycle. The transmissivity was determined from the Cooper and Jacob (1946) equation, $T = 264 \text{ Q}/\Delta s$, and the hydraulic conductivity was calculated using a 10-foot aquifer thickness.

Analysis of the drawdown data revealed two distinct types of curves. These curves indicate the presence of distinct hydraulic boundaries in the vicinity of each well. At TP-8, the slope of the drawdown curve increases sharply as the test progresses, while TP-6 remains relatively flat. The response at TP-8 is characteristic of an impermeable boundary (i.e. barrier wall and/or bedrock face). The results from TP-6 are more characteristic of a recharging boundary (i.e. San Juan River).

For piezometers TP-1 and TP-2, the slopes of the drawdown curves "steepen" or increase throughout the test. These piezometers are located adjacent to either the barrier wall or to the bedrock face. The increased drawdown observed is typically encountered when the cone of depression reaches an impermeable boundary, causing the rate of drawdown to increase in that direction.

The drawdown curves for piezometer TP-5 and well MW-49, like TP-6, indicate an opposite effect. The drawdown response is relatively flat, which reflects recharge effects from the San Juan River. Piezometers TP-5 and TP-6 are located upgradient of the pumping well, between well MW-48 and the river. Very little drawdown was observed at these two locations and at MW-49 until the later portion of the aquifer test. The observed drawdown in MW-49 was likely due to a slight change in river stage near the end of the pumping test.

Distribution of Drawdown

The semi-log drawdown curves for piezometers located near the barrier wall and the bluff face (TP-1,-2 and -8) show continuous drawdown when pumping at 4.7 gpm. As the cone of depression from the pumping well spreads laterally and intercepts the barrier wall and bedrock face, drawdown increases in these areas due to their impermeable characteristics (lack of available water for the well to draw in). In contrast, the water levels east or upgradient of well MW-48 only slightly declined during the test.

Impermeable Boundary Effects

The semi-log drawdown curves for the three piezometers by the barrier wall and the bluff face show nearly 0.5 feet of drawdown after 17 hours of pumping. The drawdown data

suggests the barrier wall and bluff face (impermeable boundary) have a large affect on water level declines in TP-1, TP-2, TP-6 and TP-7. After several hundred minutes of pumping, the drawdown curves show an increasing rate of drawdown. The drawdown curves, if extrapolated out to several days and weeks, suggest drawdown would likely accelerate due to the effects of the impermeable boundaries.

River Recharge Effects

The semi-log drawdown curves for the two piezometers (TP-5 and TP-6) and well MW-49 show little to effect from pumping well MW-48. A slight drawdown was observed after several hours of pumping in all three observation points. However, when recovery levels measured in TP-6 were reviewed, no recovery was evident as the water level had stabilized for 5 hours, suggesting the San Juan River stage had decreased about 0.10 foot. This drop likely caused aquifer levels to drop in response to the change. It appears that the area east of pumping well MW-48 is affected by recharge from the river.

Parameter Estimation Results

Transmissivity (T) and hydraulic conductivity (K) were calculated for well MW-48 and piezometers TP-1, TP-2, and TP-8 using the Jacob method (semi-log straight line method). Drawdown and recovery curves were analyzed. Each curve yielded a different hydraulic conductivity. An aquifer thickness of 10 feet (bedrock is shallow below the alluvial aquifer) was assumed. T and K values calculated for each well or piezometer decreased significantly from early time to late time analyses. Average T and K values were calculated as follows:

- Early Time : T=1,200 ft2/day; K= 120 ft/d Boundary effects are absent in the early time response.
- Mid-Late Time: T =500 ft2/day; K-50 ft/d Boundary effects are significant during late time response.

CAPTURE ZONE ANALYSIS

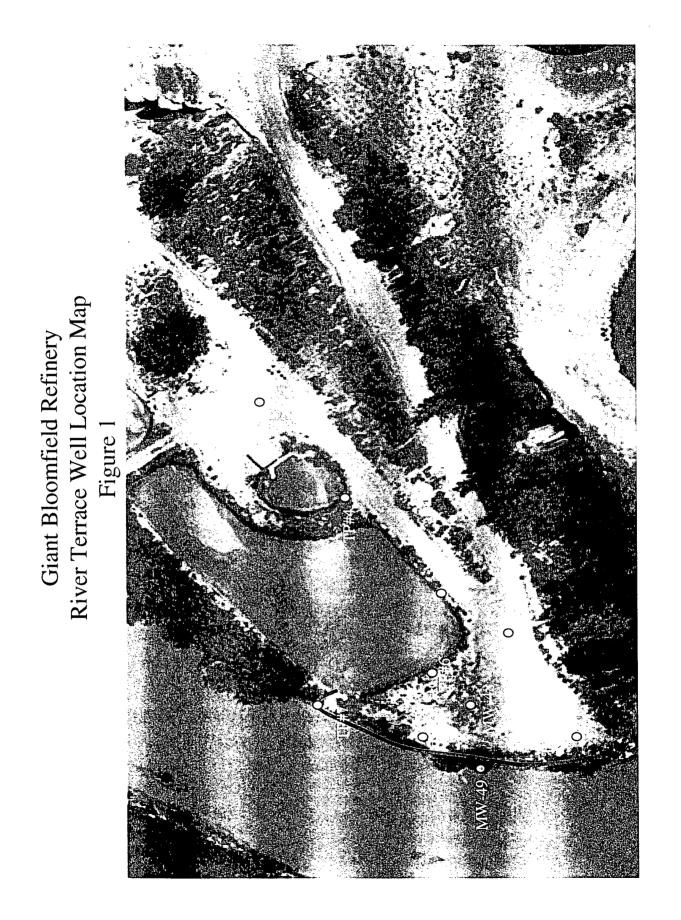
The hydraulic conductivities determined from the pump test analysis were used to estimate the capture zone for a pumping well located on the river terrace. A groundwater spreadsheet (D.K. Todd. Groundwater Hydrology. *John Wiley and Sons, Inc., New York, 1990, 2nd Edition.*) was used to calculate and model the area of capture. The formulas in the spreadsheet assume an aquifer of uniform thickness that is homogeneous, isotropic and infinite in aerial extent.

The hydraulic conductivity input was evaluated based on the proximity of the pumping well to a hydraulic boundary. As the boundary conditions were observed to drive the hydraulic response of the aquifer during the pump test, similarly the capture zone of a pumping well will be affected by the boundaries.

In addition to the hydraulic conductivity, a pumping rate, aquifer thickness and hydraulic gradient were input parameters for the capture model. A sensitivity analysis of each parameter revealed various capture zone shapes and sizes. The hydraulic gradient was determined from a topographic map of the San Juan river basin, and ranged from 0.0005 foot per foot (ft/ft) to 0.001 ft/ft. The aquifer thickness was varied between 10 feet and 15 feet, and the pumping rate was varied between 1 gpm and 5 gpm. In this range of inputs, the area of capture for a pumping well located on the river terrace extended as far as 500 feet downgradient, 1600 feet upgradient and 3000 feet wide.

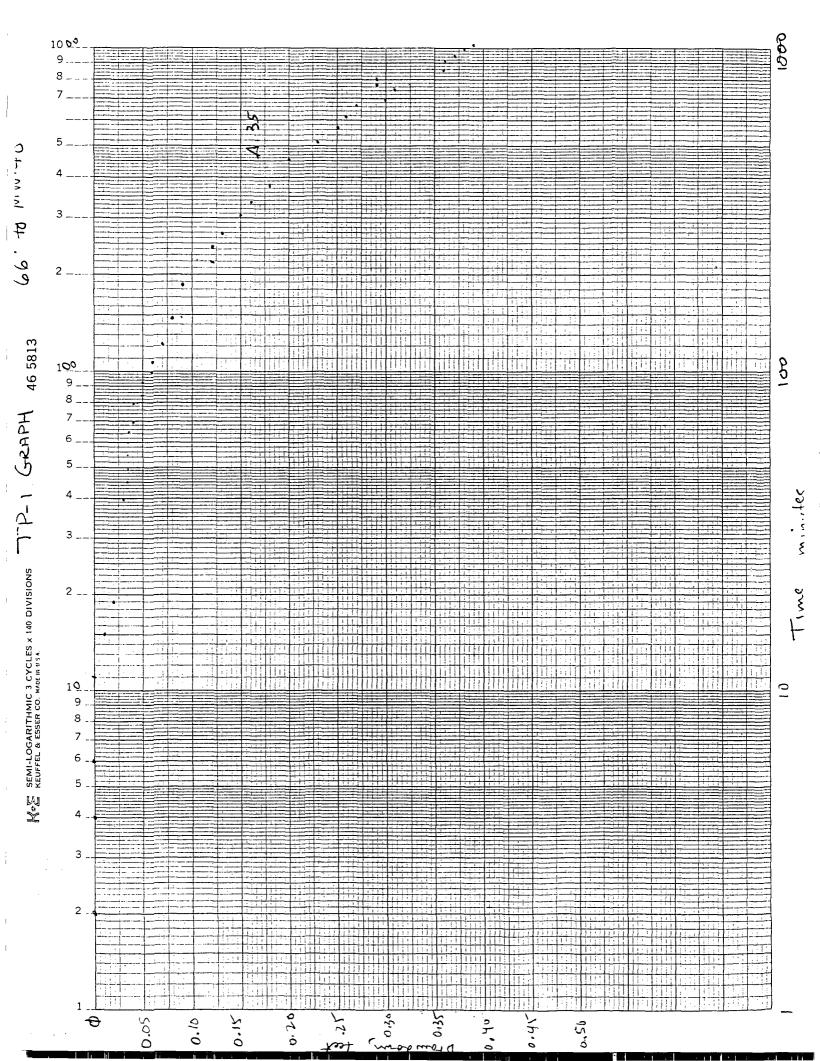
After running multiple iterations of the capture zone model, Malcolm Pirnie determined that an adequate capture zone can be obtained at a pumping rate of 2 to 5 gpm.

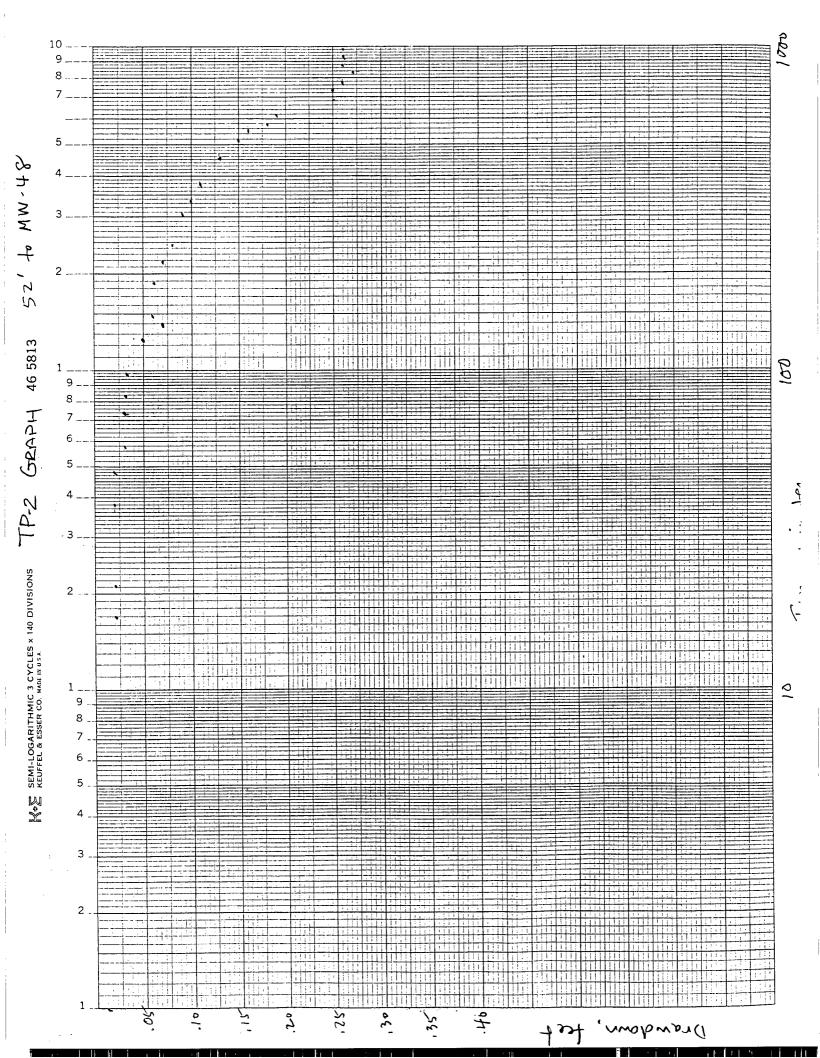
FIGURE 1


River Terrace Well Location Map

I Í

-Ci


i


¥ .1

APPENDIX A

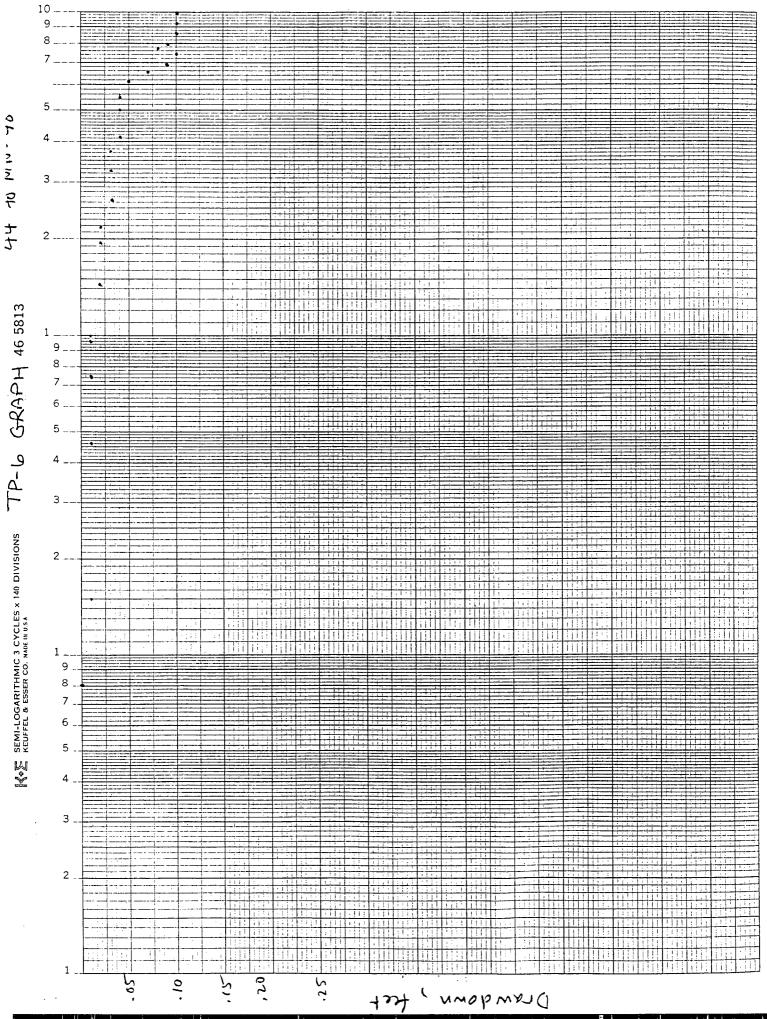
Drawdown and Recovery Graphs

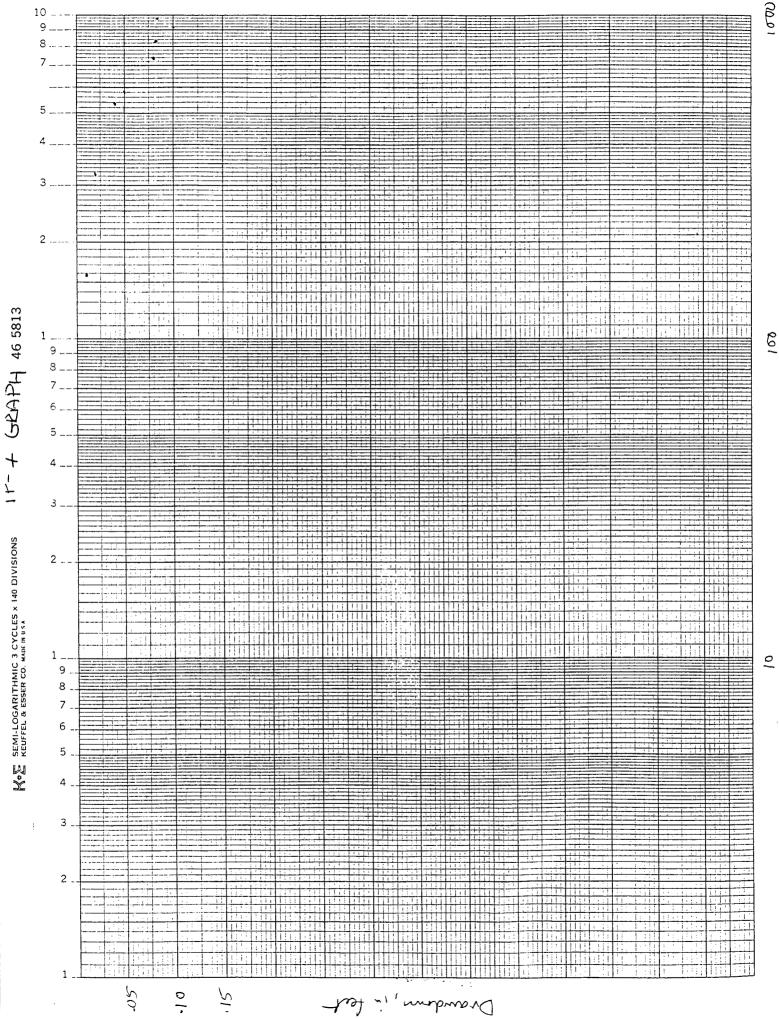
											-											
).)					-	<u> </u>					 										
																						Ē
												 										Ē
						·																Ē
												 	1									
												 										+-
																						-
																						+
				<u>-</u>																		+
																						Ē
																						ŧ
																						Ē
-				_								 			+							Ē
-																						
																	 					+
																						Ŧ
									┢┽╄╍┤┿						+++++++++++++++++++++++++++++++++++++++							╪
			•+																+	1 1		
																						T
-																						I
																						+
-						1																Ŧ
										1.1.1.1												
	E		+==																			=
															1.1							
-									-													
											<u> </u>				······		 					
					·																	-
						·		1								{						
			-	· [·																		-
											1111	111		······					<u>+</u>			
			-+					111									111	1	<u> </u>			-

| !

|

i

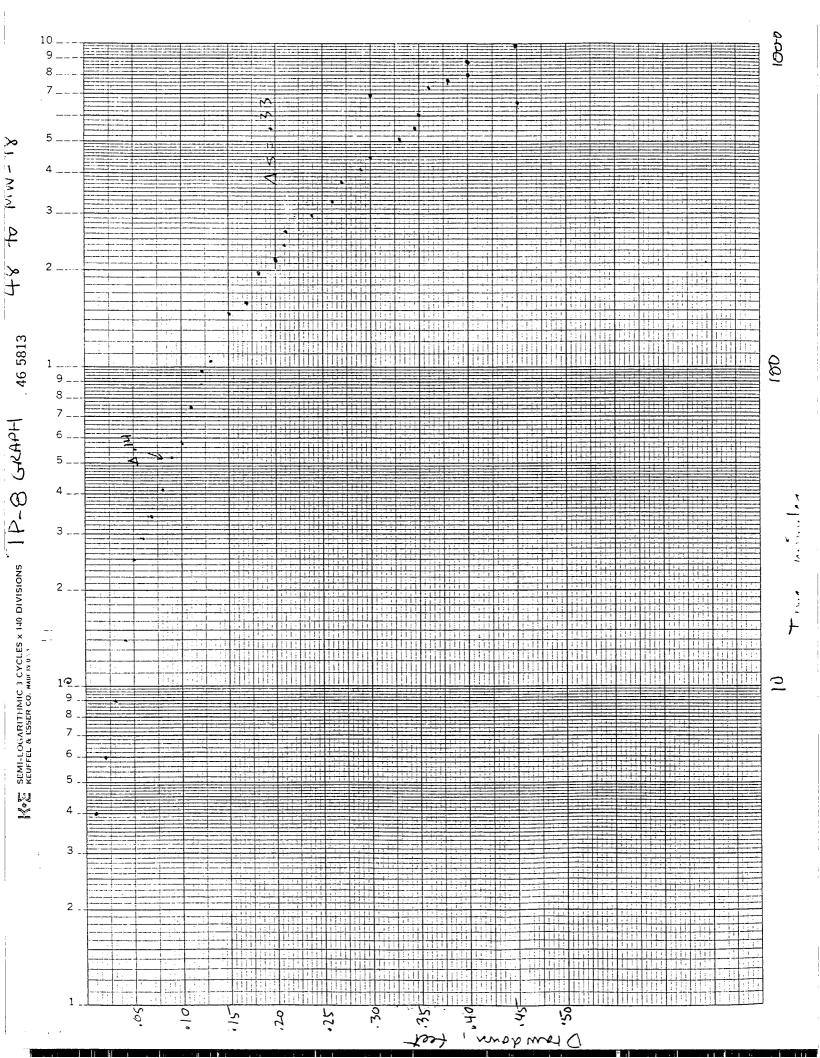

.

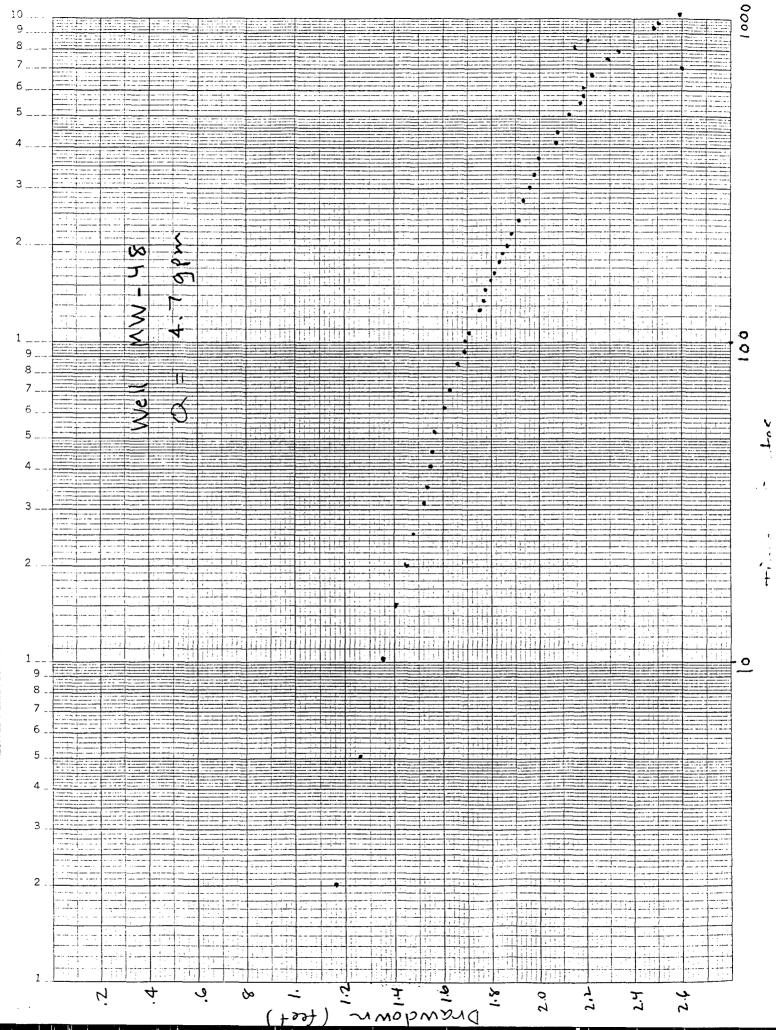

i

T Li i.l 201

2

11110

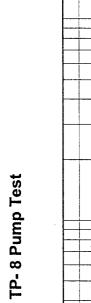


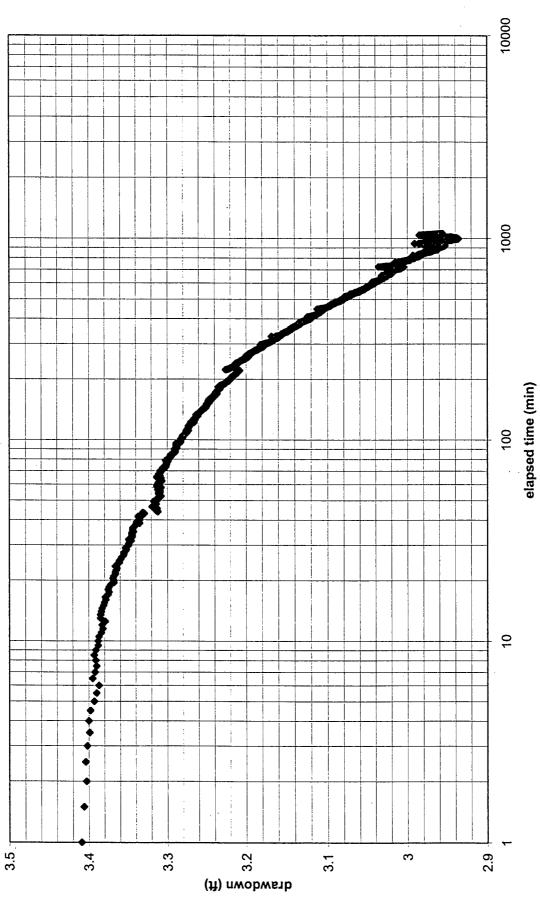


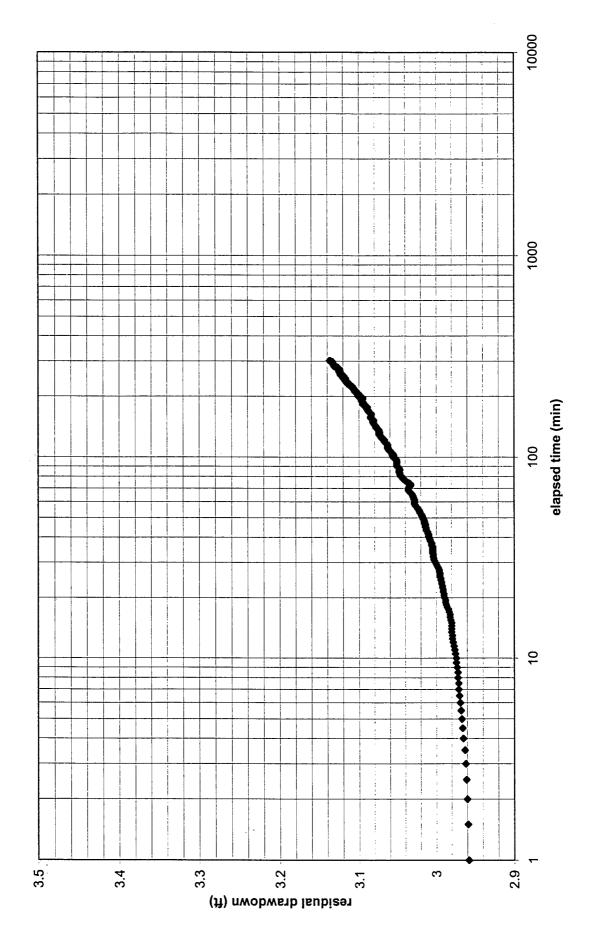
minute 2

H M

1 i i






SEMI-LOGARITHIMIC 3 CYCLES × 140 DIVISIONS KEUFFEL & ESSER CO. MADEM 15 4

46 5813

₩ X

TP-8 Recovery Test

· · · · ·